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ABSTRACT 

 

Design Techniques for Low Noise and High Speed 

A/D Converters. (December 2006) 

Amit Kumar Gupta, 

B.E(Hons), Birla Institute of Technology and Science, Pilani, India 

Chair of Advisory Committee: Dr. Edgar Sanchez-Sinencio 

 

Analog-to-digital (A/D) conversion is a process that bridges the real analog world to digital 

signal processing. It takes a continuous-time, continuous amplitude signal as its input and 

outputs a discrete-time, discrete-amplitude signal. The resolution and sampling rate of an 

A/D converter vary depending on the application. Recently, there has been a growing 

demand for broadband (>1 MHz), high-resolution (>14bits) A/D converters. Applications 

that demand such converters include asymmetric digital subscriber line (ADSL) modems, 

cellular systems, high accuracy instrumentation, and medical imaging systems.  This thesis 

suggests some design techniques for such high resolution and high sampling rate A/D 

converters.  

As the A/D converter performance keeps on increasing it becomes increasingly 

difficult for the input driver to settle to required accuracy within the sampling time. This is 

because of the use of larger sampling capacitor (increased resolution) and a decrease in 

sampling time (higher speed). So there is an increasing trend to have a driver integrated on-

chip along with A/D converter. The first contribution of this thesis is to present a new 

precharge scheme which enables integrating the input buffer with A/D converter in 

standard CMOS process.  The buffer also uses a novel multi-path common mode feedback 

scheme to stabilize the common mode loop at high speeds. 

Another major problem in achieving very high Signal to Noise and Distortion Ratio 

(SNDR) is the capacitor mismatch in Digital to Analog Converters (DAC) inherent in the 

A/D converters. The mismatch between the capacitor causes harmonic distortion, which 

may not be acceptable. The analysis of Dynamic Element Matching (DEM) technique as 



 iv

applicable to broadband data-converters is presented and a novel second order notch-DEM 

is introduced. In this thesis we present a method to calibrate the DAC. We also show that a 

combination of digital error correction and dynamic element matching is optimal in terms 

of test time or calibration time. 

Even if we are using dynamic element matching techniques, it is still critical to get the 

best matching of unit elements possible in a given technology. The matching obtained may 

be limited either by random variations in the unit capacitor or by gradient effects. In this 

thesis we present layout techniques for capacitor arrays, and the matching results obtained 

in measurement from a test-chip are presented. 

 Thus we present various design techniques for high speed and low noise A/D 

converters in this thesis. The techniques described are quite general and can be applied to 

most of the types of A/D converters. 
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 CHAPTER I 

        INTRODUCTION 

1.1 Motivation  

The increasing digitization in all spheres of electronics applications, from 

telecommunications systems to consumer electronics appliances, requires analog-to-

digital converters (ADC’s) with a higher sampling rate, higher resolution and low power 

consumption. There is also an increasing trend to reduce the system complexity by 

improving the dynamic range of A/D converter. For example the variable gain amplifier 

in front of the ADC can be eliminated if A/D converter used has sufficient dynamic 

range. The first generation of broadband ADC’s (>1Mhz) bandwidth were pipelined 

ADC’s, but there resolution was limited to 14 bits.  High-resolution sigma-delta ADC’s 

were generally designed for audio applications, dc testing and industrial applications with 

bandwidth < 100khz. Similarly high-resolution successive approximation ADC’s had 

bandwidth in hundred’s of kilohertz. With the growing demand of high resolution 

broadband ADC’s, sigma-delta and SAR ADC’s have been designed with bandwidths in 

excess of 1Mhz, and the envelope is getting stretched very fast. In this thesis we look at 

design techniques to design high resolution (>14 bit) and high bandwidth (>1Mhz) 

ADC’s. The applications of such ADC’s include wired and wireless communication 

systems, ADSL (Asymmetric Digital Subscriber Loop) modems, medical instrumentation 

such as CT scanner and MRI, vibration analysis, automatic test equipments, military 

SONAR (Sound Navigation and Ranging), high resolution scanners and spectrum 

analyzers. 

 

1.2 Goals and achievement of the research 

This research seeks to investigate techniques for design of high resolution broadband 

ADC’s. Though the focus is on design of broadband sigma-delta ADC’s, many of design 

techniques discussed are also applicable to other ADC types. While designing analog 

circuits, there are always a number of design tradeoffs to be made. There is always a  

____________________ 

This thesis follows the style and format of IEEE Journal of Solid-State Circuits. 
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                        Fig 1.1. Block diagram of a typical oversampling ADC 

 

trade-off between signal to noise ratio (SNR) and the spurious free dynamic range 

(SFDR). In this thesis we illustrate how this trade-off affects the design of input driver, 

the sampling network and the dynamic element-matching algorithm. We also studied 

various circuit techniques and analyzed the limits of performance that can be achieved 

with existing solutions and proposed new solutions where applicable. The block diagram 

of a typical sigma-delta ADC is shown in Fig 1.1. This works focuses on the highlighted 

blocks in the ADC. It is to be noted that though the quantizer (N-bit ADC) may be of low 

resolution, all the highlighted blocks need linearity commensurate with the overall 

linearity of the converter.  Specific contributions of this thesis include 

• Pre-charge scheme for input sampling network [1]: As the sampling capacitor size    

increases and sampling time reduces it becomes increasingly difficult for the input 

driver to settle to within required limits, thus limiting SFDR. The proposed pre-charge 

scheme relaxes the settling requirement of the driver; this leads to the reduced power 

consumption in input driver. 

• A Multi-path common mode feedback scheme for the input driver [2], [3]: The 

bandwidth of the input driver has to increase in proportion to the increase in sampling 

rate. For high speed ADC’s the input driver with bandwidths in excess of 100Mhz are 

commonplace. It is extremely difficult to stabilize the common mode feedback 

(CMFB) loop in such drivers. There is an additional problem of latching during power 

up if the driver has two-stages.  The proposed method avoids the latch up problem and 

improves the stability of CMFB loop. 
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• A novel second order Dynamic element matching (DEM) technique is proposed for 

low over sampling sigma delta ADC’s [4].  

• A novel method to digitally calibrate DAC mismatch errors is presented. It is shown 

that a combination of digital calibration and DEM is optimal is terms of 

test/calibration time. 

• The layout of capacitor array is very critical for DAC linearity. Various capacitor 

array layout techniques were studied and mismatch results were measured from a 

prototype test-chip. 

• A state space approach to design of continuous time modulator (CTM) with delay in 

feedback path is developed [5]  

 

1.3 Thesis organization 

Chapter II looks at some applications of high-resolution broadband A/D converters. 

Chapter III discusses the design techniques for input drivers. Chapter IV presents various 

sample and hold design techniques. Chapter V reviews existing dynamic element 

matching techniques and presents an improved second order dynamic element matching 

technique. Chapter VI discusses digital correction techniques for A/D converters and 

proposes a new method to determine the calibration coefficient. Chapter VII studies the 

mismatch in capacitor array and presents the measurement results from a prototype test-

chip. Chapter VIII presents a state space approach to design of continuous time sigma 

delta modulators with delay in feedback path. 
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CHAPTER II 

 

APPLICATIONS OF BROADBAND HIGH RESOLUTION A/D CONVERTERS 

 

In this chapter we look at some of the applications of broadband high-resolution A/D 

converters (resolution > 14bit, Bandwidth > 1Mhz). 

 

2.1 Asymmetric Digital Subscriber Line (ADSL) 

ADSL is a form of DSL (digital subscriber loop) a data communications technology that 

enables faster data transmission over copper telephone lines than a conventional modem 

can provide. The distinguishing characteristic of ADSL over xDSL is that the volume of 

data flow is greater in one direction than the other, i.e. it is asymmetric.  Providers 

usually market ADSL as a service for people to connect to the internet in a relatively 

passive mode: able to use the higher speed direction for the “download” from the Internet 

but not needing to run servers that would require bandwidth in the other direction.  The 

major advantage of high-speed ADSL services is that they can utilize the infrastructure of 

ordinary copper telephone wires, which are already installed in most commercial and 

residential buildings, for data transmission at a high or medium rate. Possible or 

emerging applications, which may take advantage of the high bandwidth of ADSL 

technology include video on demand, video conferencing, multi-media, distance learning 

and online services [6]. 

 

2.1.1 ADSL system architecture  

As illustrated in Fig. 2.1, ADSL is a point-to-point data transmission scheme over the 

existing twisted-pair copper telephone wires between the ADSL service subscriber and 

the ADSL service provider’s central office. The central office is connected to Internet. 

ADSL service is operated in conjunction with existing plain old telephone service 

(POTS). Discrete multi-tone modulation scheme has been chosen in ANSI T1.413 

standard [7] for ADSL. With DMT, coding the frequency band from dc to 1.104 MHz is 

divided into 256 sub-channels equally spaced, each with 4.3125Khz bandwidth. The low 
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                                               Fig. 2.1.  ADSL system architecture  

 

part of the frequency band is assigned to POTS services, while ADSL transmission  

utilizes higher frequency band. The frequency plan for ADSL is shown in Fig 2.2.With 

standard ADSL the band from 25.875 kHz to 138 kHz is used for upstream 

communication, while 138 kHz – 1104 kHz is used for downstream communication. 

POTS signal and ADSL signal are separated and combined by the POTS splitters, 

one at the central office and one at ADSL service user (or subscriber)’s side. POTS 

splitter, which is bidirectional device, includes a low pass filter for POTS services and a 

high pass filter for the ADSL. It splits the incoming combined signal into POTS signal 

and ADSL signal. At the central office side, the low-passed POTS signal is forwarded to 

the POTS switch, which is connected to the Public switched telephone network (PSTN). 

While at the subscriber’s side, the POTS signal is fed into telephone lines or fax 

machines. The high pass signal contains the ADSL information and is transferred to the 
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                                         Fig. 2.2.  Frequency plan for ADSL 

 

ADSL modem or transceiver unit (ATU’s). One ATU, ATU-R (ATU remote), resides in 

subscriber’s home; while another ATU-C (ATU central office), resides in the central 

office. The POTS splitter also combines the POTS signal and ADSL signal to form the 

outgoing duplexed signal.  Digital Subscriber Line Access Multiplexer (DSLAM), which 

is connected to the Internet, collects and combines ADSL signals from different 

subscribers in the vicinity at central office. Through DSLAM, the ADSL user can 

exchange information with Internet. 

For conventional ADSL, downstream rates start at 256 kbits/s and typically reach 

8 Mbits/s within 1.5 km (5000 ft) of the DSLAM equipped central office or remote 

terminal. Upstream rates start at 64 kbits/s and typically reach 256 kbits/s but can go as 

high as 1024 kbits/s.   

 

2.1.2 A/D converter specifications  

The block diagram of a typical ADSL receiver is shown in Fig 2.3. It consists of one or 

more AGC amplifiers controlled by DSP software, an analog low pass filter and an 

analog-to digital converter, the output of which is sent to DSP for further post processing 

such as digital low-pass filtering and demodulation. The bandwidth and dynamic range 

requirements for A/D converter are set forth in this section. 
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                                                              Fig. 2.3.  ADSL receiver  

 

It follows from the ADSL signal spectra shown in Fig 2.2 that a baseband A/D 

converter with a minimum conversion rate of 2.2Mhz for the downstream data and 276 

Khz for the upstream data is needed to avoid aliasing of images into the signal band upon 

sampling. Theoretically the A/D converter at the central office can therefore be operated 

at a considerably lower speed than its counterpart at the remote user. However, to avoid 

the echo of transmitted downstream signal from being aliased into the signal band of 

interest at receiver, the A/D converter at the central office typically operates at sampling 

rates comparable to those at remote user [8]. The dynamic range requirement for the A/D 

converter in the receiver architecture of Fig 2.3 is set primarily by the input range that 

must be accommodated by the receiver at acceptable error rates and also by the amount 

of AGC preceding the digitization. Elimination of AGC stages would considerably 

reduce the amount of analog processing but would also invoke the need of an A/D 

converter with at least 16 bits of dynamic range at 2.2Msps. To avoid the need to meet 

such a severe performance requirement and its attendant power demands, most ADSL 

receiver implementations employ a modest amount of AGC control to reduce the A/D 

converter dynamic range requirements to less than 16 bits. 

 

2.1.3 Future trends 

The penetration of DSL technologies is increasing around the world. Fig 2.4 shows the 

DSL subscriber lines around the world at the end of year 2005 compared to year 2004 

[9].  There is also an increased demand for bandwidth. A newer variant called ADSL2 

provides higher downstream rates of up to 12 Mbits/s for spans of less than 2.5 km 

(8000 ft). More flexible framing and error correction configurations are responsible for 

these increased speeds. ADSL2+, also referred to as ITU G.992.5, boosts these rates to up 
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to 24 Mbits/s for spans of less than 1.5 km (5000 feet) by doubling the downstream 

spectrum upper limit to 2.2MHz. Thus the A/D converter has to operate at twice the 

speed. It appears likely that data rates will increase in near future, requiring higher 

bandwidth A/D converters. 

 

2.2 Radio receivers  

The main function of a radio receiver is the reception of a, possibly weak, desired 

channel from a wideband frequency spectrum containing strong interference signals, with 

a minimum specified signal-to-noise and distortion ratio. To accomplish these tasks of 

selectivity and sensitivity, filters and amplifiers are needed to suppress interference 

signals and to increase the desired channel power respectively. Because the desired 

channel band may be modulated at very high carrier frequencies, mixers are used to 

translate the channel to more appropriate lower frequencies. The analog-to-digital 

converter is becoming an important part of the receiver architecture. The place of the 

ADC determines which functions are implemented with analog circuitry and what 

functions are implemented in DSP. 

 

 

               Fig. 2.4. Millions of DSL lines by countries at the end of 2005 
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                           Fig. 2.5. Traditional superheterodyne receiver architecture 

 

2.2.1 ADC placement in receiver 

As the size of digital circuits as well as supply voltage (and hence power) decreases with 

each new technology node, it makes common sense to put more functionality into digital 

signal processor (DSP) to take advantages of these trends. Moreover, analog signal 

processing functionality such as filtering and frequency translation can be performed by 

DSP with almost any degree of perfection. Early digitization and increased digital signal 

processing makes it possible to have, programmable communication systems that can be 

easily be adapted to new standards and offer a high degree of flexibility through multi-

mode operation. The requirements of ADC vary widely depending on where the ADC is 

placed. 

Baseband A/D converter in the traditional heterodyne receiver of Fig 2.5 has the 

most relaxed requirement. This is because the interference signals have been filtered out 

by the channel filter and the desired channel is modulated down to DC or a low IF 

frequency. At DC or low-IF frequency, high linearity performance can be easily 

achieved.  

At the other extreme is ultimate digital receiver architecture shown in Fig 2.6, also 

called as software radio.  In software radio, a high speed, high-resolution data converter 

digitizes the RF signal directly at the antenna, with all further signals processing being  
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                                   Fig. 2.6. Receiver with RF A/D conversion 

 

handled in digital domain. Requirements on A/D converter in this architecture are 

extreme, as it has to handle the full antenna receiving power. This means that converter 

should have high dynamic range, high linearity, and large bandwidth at RF frequencies. 

This approach is infeasible in current technology nodes because of impractical power 

consumption.  

Another possibility includes to digitize the IF, which may be not be very feasible if 

IF is high. Another possible approach is direct conversion receiver architecture shown in 

Fig 2.7. Here the RF is directly converted to DC or low-IF. After amplification and 

frequency down-conversion to baseband, two baseband A/D converters are used to 

individually digitize the in-phase and quadrature components. A continuous time anti-

alias filter precedes the A/D conversion to avoid aliasing of out-of-band components into 

the frequency band of interest during the subsequent sampling operation performed by 

the A/D converter. The digitization process is followed by further digital processing, such 

as channel select filtering and demodulation. Thus channel select filtering is shifted to 

digital domain. Digital selection allows multiple standards to utilize the same handset or 

base station through a simple reprogramming of the DSP.  

In cases of digital channel selection the dynamic range of A/D converter, must be 

large enough to avoid saturation in the presence of high-powered interferers that are 

digitized along with the desired signal. It is important to note that in architecture of 

Figure 2.7 AGC cannot be applied effectively to relax the A/D converter requirements 

since both the desired channel and adjacent channel interferers would be amplified by the  
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                                            Fig. 2.7. Direct conversion receiver 

 

same amount. Consequently, the dynamic range of the A/D converters must be large 

enough to enable extraction of a weak desired signal at an acceptable BER in presence of 

high-power interferers that are digitized along with the signal. 

 

2.2.2 ADC specifications with digital channel selection 

Table 2.1 summarizes the resolution and bandwidth requirements of a variety of RF 

standards place on the baseband analog-to digital interface in the architecture in Fig 2.7 

[8]. 

 

Table 2.1. Baseband A/D converter specifications for various wireless standards 

RF standard  Dynamic range  Minimum Nyquist rate 

GSM 109dB 200khz 

DECT 80dB 1.15Mhz 

CDMA ( IS-95) 90dB 1.23Mhz 

3G 99dB 5Mhz 

Bluetooth 73dB 1Mhz 

IEEE 802.11(b) 73dB 1Mhz 

Hiperlan 85dB 6Mhz 

 



 12

The A/D converter dynamic range required to meet a given standard is determined 

primarily by the receiver sensitivity and the power of worst-case channel interferers as 

specified by the standard. The bandwidth requirement is set by channel spacing and 

modulation scheme, which determines the fraction of channel spacing that can effectively 

be used. From Table 2.1 it can be concluded that RF receiver architectures employing 

digital channel-select filtering typically require an analog-to-digital interface capable of 

digitizing signal bandwidths in the megahertz range with accuracies in the order of 14 

bits and higher. Furthermore, systems such as GSM, with signal bandwidths of only 

100khz, may also benefit from baseband sampling rates in the megahertz-range through 

the simultaneous digitization of multiple channels. Multi-channel digitization is 

particularly useful in the base station of wireless communication systems, where multiple 

channels need to be digitized simultaneously. For example, for GSM, with a 25Mhz RF 

bandwidth two A/D converters with a Nyquist conversion rate of 4 MHz suffice to 

digitize the I & Q signals of all channels allocated to a single base station.  

 

2.3 Vibration analysis 

2.3.1 Introduction 

 Machinery downtime during normal shift operations is very costly due to lost 

production, but it is also avoidable. Preventative maintenance systems are being used to 

improve the operating efficiency of machinery used in factories, power plants, mining, 

and many other operations. Diagnostic electronics, used in newer preventative 

maintenance programs, monitor the operating parameters of the machine. For example, a 

roller mill may have several large electric motors and rollers, all of which have bearings, 

a hydraulic pump, and a variety of hydraulic actuators. A preventative maintenance 

system for this type of equipment could include electronic monitoring equipment to 

measure bearing vibration and temperature, hydraulic fluid pressure and temperature, and 

motor temperature [10]. 

Vibration analysis, which is the measurement of vibrations generated by moving 

parts in the frequency range of 50 Hz to 10 kHz, can be used to monitor the condition of 

bearings and other moving components. Ultrasonic analysis, an extension of vibration 
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machine bearing casings, and on some machines, on the rotating shafts.  Changes are 

detected through spectral analysis of the generated frequencies in the moving components 

due to wear or damage. As parts wear, the magnitude of the vibrations and ultrasonic 

noise will increase. The level of vibration can be compared with established standards to 

assess the severity. An increase of about 12 dB indicates possible impending failure. 

Usually a full spectrum of the vibration is sampled, and using fast Fourier algorithms the 

component frequencies and their accelerations may be determined. Analyzing the 

frequencies and their harmonics helps locate the root cause of the vibration, allowing it to 

be remedied, and hopefully designed out. For example, high vibration at the frequency 

corresponding to the speed of rotation is usually due to unbalance. Degrading rolling 

element bearings give out increasing vibration signals as they wear. Special analysis 

instruments can detect wear even months before failure, giving ample warning to 

schedule replacement. 

The system architecture for a PC-based vibration analyzer is illustrated in Figure 2.8 

The development of system can be categorized as follows [11,12]. 

• Selection of proper vibration transducers based on the criteria of high frequency 

bandwidth, better sensitivity and ease in handling. 

• Proper signal conditioning; amplification, filtering, and conditioning of the 

transducers signals, prior to interfacing with the computer 

• Analog-to-digital conversion of high frequency vibration signals. 

• Computation of frequency spectra of vibration signals. This allows evaluation of 

machine status by analysis of vibration spectra. 

 

 

 

                                      

                                  Fig. 2.8.  System architecture for vibration analysis 
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In the PC-based vibration analyzer, multiple vibration signals are acquired in real-

time with the help of fast, high-resolution data acquisition system. The data processing 

routines transform the digital time-domain data into frequency domain by using fast 

Fourier transform (FFT), and calculate signal auto- and cross-power spectral density 

functions and root mean square (rms) amplitude. The frequency spectra, or vibration 

“signatures,” obtained by the computer are analyzed for machinery fault detection and 

identification using appropriate vibration criteria, as discussed earlier. 

 

2.3.2 ADC specifications 

The requirements of the data acquisition system employed for vibration monitoring are 

fast conversion speed (high sampling frequency), high signal resolution, and multi-input 

capability. Since the signal spectrum is limited to 40khz the Nyquist rate is only 80ksps.  

To relax the requirement on anti-aliasing filtering it is common to use an over-sampling 

ratio of at least 1.5 i.e sampling rate of 120ksps. The requirement for higher speed occurs 

because typically 8-16 input channels are multiplexed. The resolution required is 

typically 14-16 bits. Even higher resolution ADC’s are being designed for vibration 

analysis, to simplify the analog front end. The higher dynamic range of ADC’s eliminates 

the need for a discrete low-noise programmable gain amplifier (PGA). This helps to 

reduce the system cost by making analog front end simpler, especially for system with 

many input channels. 

 

2.4 Very high frequency SONAR  

Sonar is an acronym for Sound Navigation and Ranging. There are two broad types of 

sonar in use. Passive sonar is a listening device that can determine the presence, 

characteristics and direction of marine noise sources. These sources may include 

biological noise (animal communication) and human sounds (e.g. ship or submarine 

noise). Passive sonar equipment is essentially an acoustic receiver, which emits no sound. 

Active sonar is a technique that uses sound to determine relative positions of submerged 

objects (including submarines, fish, mines and wrecks of ships and aircraft) and the sea  
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                                         Fig. 2.9. SONAR operating principle  

 

floor, by emitting a sound signal and listening for the echoes from the objects. Many 

different types of active sonar are used throughout the world's oceans by private, 

commercial and military vessels. These systems mirror the purpose of sonars used by 

some marine animals. Active sonar devices locate objects by the reflection of sound 

waves and remain an important means of underwater detection and navigation. The 

principle is illustrated in the Fig 2.9. Active sonar creates a pulse of sound, often called a 

"ping", and then listens for reflections of the pulse. To measure the distance to an object, 

one measures the time from emission of a pulse to reception. 

Finding objects in turbid waters with underwater video is a problem due to the lack 

of visibility. High frequency acoustic signals suffer less scattering in turbid waters, so 

attempts have been made to produce an innovation in high-resolution underwater acoustic 

imaging [13]. Until recently, it was not possible to handle the computational load 

associated with sonars with many (perhaps 100-1000) receiving elements at high 

frequency (>1 MHz). The new systems coming onto the marketplace now use sparse 

arrays, to reduce the number of elements, and modern DSP power to achieve real-time 

imaging [14]. Research at Applied Physics Laboratory, and elsewhere has resulted in the 

advent of very high-resolution acoustic imaging systems, for example the DIDSON 

sonar.  These systems use sound energy at very high frequencies (over 1 MHz) to 
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generate detailed acoustic maps of underwater features and objects. These systems allow 

increasingly greater resolution as the frequency increases but at the expense of range. The 

highest frequencies are only effective over short distances because of the rapid 

attenuation of high frequency sounds in seawater. 

The acoustic imaging system can be used to: 

• Expedite construction, repair, and maintenance of underwater structures. 

• Provide safer conditions for employees engaged in environmental, wet construction, 

and structural inspection activities. 

• Enable identification of endangered species, aid in underwater recovery operations, 

and detect cultural artifacts prior to construction projects. 

• Determine proper placement of riprap. 

• Inspect levees for failure sites. 

• Enable the user to immediately and permanently log underwater images from 

inspections. 

Most of the research in field of very high frequency SONAR is promoted by military 

and it is expected that High Frequency Sonar will play a more important role in future 

submarine missions as operations in the littorals require detailed information about the 

undersea environment to support missions requiring high-quality bathymetry, precision 

navigation, mine detection or ice avoidance.  

 

 

 

 

                                        Fig. 2.10.  Generic imaging system for scanners 
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2.5 High-end flatbed scanners 

2.5.1 Introduction 

Every imaging system starts with an image sensor. The signal from the sensor must be 

processed in the analog domain, converted to digital, and further processed in the digital 

domain. This allows the image to be analyzed, manipulated, and enhanced, prior to 

storage, display, transmission, and/or further processing. Imaging applications typically 

involve three chips—an image sensor, an analog front-end (AFE), and a digital ASIC. 

The AFE conditions the analog signal received from the image sensor and performs the 

analog-to-digital (A/D) conversion. The digital ASIC contains image processing and 

timing-generation circuitry. Fig 2.10 shows a block diagram of a typical imaging system. 

Additional application-specific circuitry following the digital image processing ASIC 

depends upon whether the imaging system is a camera, scanner or copier. 

Image sensor:  The charge-coupled-device (CCD) is widely used in consumer imaging 

systems such as scanners and digital cameras. The imaging sensor (CCD, CMOS, or CIS) 

is exposed to the image or picture much like film is exposed in a camera. The building 

blocks of a CCD are the individual light sensing elements called pixels. A single pixel 

consists of a photosensitive element, such as a photodiode or photo capacitor, which 

outputs a charge (electrons) proportional to the light (photons) that it is exposed to. The 

charge is accumulated during the exposure or integration time, and then the charge is 

transferred to the CCD shift register to be sent to the output of the device. The amount of 

accumulated charge will depend on the light level, the integration time, and the quantum 

efficiency of the photosensitive element. A small amount of charge will accumulate even 

without light present; this is called dark signal or dark current and must be compensated 

for during the signal processing. The pixels can be arranged in a linear or area 

configuration. Clock signals transfer the charge from the pixels into the analog shift 

registers, and then more clocks are applied to shift the individual pixel charges to the 

output stage of the CCD. Scanners generally use the linear configuration, while digital 

cameras use the area configuration. The analog shift register typically operates at pixel 

frequencies between 1 and 10 MHz for linear sensors, and 5 to 25 MHz for area sensors. 
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Analog front-ends: A typical AFE starts with an input clamp. The common-mode level 

of the image sensor’s output signal could range from 0 V to more than 9 V, so the signal 

must be ac-coupled to the AFE. The input clamp restores the dc level of the signal to an 

optimum point within the supply range of the AFE. A sampling function follows the 

input clamp. AFEs designed to work with charge-coupled devices (CCDs) use a 

correlated double sampler (CDS). The CDS takes two samples of each pixel, one at the 

reset level and one at the video level, and performs a differential measurement between 

the two. The CDS improves the signal-to-noise ratio (SNR) by eliminating the correlated 

kT/C noise associated with the output stage of the CCD, and by attenuating low 

frequency drift. Contact image-sensors (CIS) and focal-plane arrays (FPA) used in 

commercial infrared (IR)-imaging applications typically output a single-ended, ground-

referenced signal, and do not require a differential measurement. AFEs designed to work 

with these sensors use a sample-hold amplifier (SHA) in place of the CDS. A coarse 

black-level offset-correction stage is integrated with the CDS or SHA. 

A programmable- (or variable-) gain amplifier (PGA or VGA) follows the CDS to 

amplify the signal and better utilize the full dynamic range of the A/D converter (ADC). 

A high-speed ADC converts the conditioned analog image signal to the digital domain, 

allowing for additional processing by a digital ASIC. The choice of an AFE for an 

imaging application depends on many factors, including: the type of sensor being used, 

dynamic range, resolution, speed, noise, and power requirements. 

 

2.5.2 ADC specifications  

Resolution: Professional scanning applications use the best CCDs available today. 

Graphic-arts scanners and film scanners may also use cooling mechanisms to control the 

temperature of the CCD, maximizing the SNR. Integration times will be as long as 

reasonable to maximize the dynamic range of the CCD output signal and increase the 

SNR. With CCD signals of up to 4 V commonly available in these applications, true 13- 

or 14-bit performance is achievable. In any imaging system, the AFE should not be the 
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limiting factor in performance, so for these high-end applications a true 14-bit AFE is 

necessary. Commercial solutions with 16-bit AFE are now commonly available [15].  

Speed: To look more closely at the speed requirements for the AFE, consider typical 

copying specifications. For standard copying, a 300 dots-per-inch (dpi) scan is adequate. 

For a letter-sized document, color scanning at 300 dpi yields roughly 30 million pixels. 

Allowing for some processing overhead, scanning at a sample rate of 6 MHz (2 

MHz/color) takes about 6 seconds, for a page rate of 10 pages per minute (ppm). To 

achieve 20 ppm, a sample rate of 12 MHz is needed—double the sample rate of most 

currently available scanner AFEs. A multifunction peripheral (MFP), which integrates the 

scanner/ fax/copier functions in a single unit, typically requires a higher speed AFE than 

a flatbed document scanner, but it still needs to function as a good-quality scanner (600 

dpi or more). For this case, the resolution needed for a letter-sized document is 

approximately 120 million color pixels. For this resolution, a 6-MHz AFE can produce 

only about 2.5 ppm, and a 12-MHz AFE increases the throughput to about 5 ppm. Many 

newer MFPs on the market can support 8–10 ppm in color-copy mode, at 600 dpi 

resolution; this requires an AFE sampling rate of around 20 to 22 MHz [15].  
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CHAPTER III 

 

INTEGRATED INPUT DRIVERS 

 

3.1 Motivation  

As the resolution and speed of the A/D converters increases, it becomes increasingly 

difficult to find a catalog operational amplifier (Opamp) to drive the switching input load 

of the ADC. A typical driver circuit for high speed ADC’s, is shown in Fig 3.1. From the 

figure we observe that if we integrate the driver on ADC chip we can reduce the 

component count (the Opamp and all associated passives) as well as reduce a set of 

power supply, which is very desirable. The catalog opamps are mostly characterized with 

a resistive load in the datasheets. Hence to find a suitable opamp to drive an ADC, it 

becomes necessary to tweak the R and C at the input during measurements. The switched 

capacitor load presents the worst loading conditions for the driving opamp, which is not 

captured in datasheets. The switched capacitor load presents the driving amplifier with 

step inputs thus settling requirements on the driver is very stringent. 

 

 

Fig. 3.1. An on-board amplifier driving a high performance ADC 
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As discussed in previous chapter there is a need for higher bandwidths with both 

better SNR and SFDR. This in turn means that to keep the same over-sampling ratio the 

clock frequency as well as the sampling capacitor size has to be increased. The SFDR of 

the sampled signal in these cases is limited by how fast the input amplifier can settle once 

it sees the step at the output, caused by the switching load. Since the available time to 

settle is only half clock cycle, it becomes extremely difficult for the amplifier to settle to 

16-18-bit linearity as the clock frequencies increases and also as the value of capacitor 

being switched increases. 

On the SNR front, traditionally a RC filter has been placed at the output of the buffer 

as shown in Fig 3.2 to filter out high frequency thermal noise from the driving opamp and 

resistors if any in the opamp configuration. This approach becomes less effective as the 

signal frequency increases, since the –3db bandwidth of the filter has to be increased to 

prevent signal attenuation implying that we will get more high frequency thermal noise. 

Also this technique prevents from achieving very good SFDR numbers as output of RC 

filter is a slow moving node and it takes a large settling time.  This technique works only 

if the switching capacitor is a very small fraction of the capacitor in RC filter so that  

 

 

             

             Fig. 3.2. Input buffer with an RC filter at the output to filter out noise. 
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majority of the charge is provided by the capacitor by charge sharing and then there must 

be sufficient time for output to settle to required accuracy. This is increasingly not the 

case in high speed over-sampling ADC’s. The situation is no different for high speed 

pipelined ADC’s and SAR ADC’s. The solution that is proposed is applicable to all the 

before-mentioned ADC categories. 

 Another important concern is the high-speed catalog amplifiers are generally 

designed in BICMOS process. If the ADC is being designed in a slow CMOS process to 

achieve higher swings, then it may not possible to design very fast amplifiers (regardless 

of the power consumed it may not be possible to achieve very high Gain band-width and 

slew rate because of parasitic capacitances). One solution is to have a MCM (multi-chip 

module) with a BICMOS amplifier and the CMOS ADC in the same package. In this 

way, some parasitic inductance is avoided which may lead to better settling of the 

amplifier output. But this solution is not that simple from production point of view. Our 

proposed solution makes it possible to have an input buffer on-chip even with slow 

CMOS technologies and it is extremely simple, helps to reduce power and also improves 

SNR 

 

3.2 A novel precharge scheme 

3.2.1 Existing approaches  

For fully differential circuits, configuration shown in Fig 3.3(a) is traditionally used, with 

a possible addition of RC filter at the output. The circuit shows a continuous time 

amplifier, with a load (Cs) connected to it when the clock phase ‘S’ is high. This 

amplifier needs to be extremely fast to settle to desired accuracy in half clock cycle.  

A pre-charge scheme has been used previously used in SAR converters to relax the 

requirements on the input driver and is illustrated in Fig 3.3b. The idea in this scheme is 

to relax the requirement on external amplifier by having an internal pre-charge buffer to 

provide the initial surge current and provide a coarse sampling of input. The precharge 

buffer drives the input during precharge phase ‘P’, after which external driver takes over 

in phase ‘S’. This scheme mitigates the effect of parasitic inductance Lp on sampling. The 

pre-charge time is chosen to be about one-third the total sampling time. 
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                  (a) Integrated driver:  Load Cs is switched in the sampling phase (‘S’),  

 

                                         (b) Input driver with a precharge buffer.  

 

                                        Fig. 3.3.  Existing approaches  
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One obvious disadvantage of this solution is that we need to use an additional buffer, 

which means additional power. Other concern is that the power consumption for pre-

charge buffer may be exorbitant for over-sampling ADCs. To illustrate, let us assume that 

we want to design a 16 bit, 10Msps ADC. For a typical SAR ADC, the sampling time 

may be 20ns, but for a sigma-delta ADC with an over sampling ratio (OSR) of 8 the 

sampling time is just 6ns. 

 

3.2.2 Proposed solution   

The proposed solution [1] is shown in Fig 3.4. The idea is as follows. The amplifier needs 

to be very fast and accurate only when the ADC is sampling the input, in the other phase 

the amplifier is not really used. So in this phase, we configure the amplifier as a slow 

amplifier charging a large capacitor k*Cs (~10*Cs).  

 

      

Fig. 3.4.  Proposed solution. Amplifier sees a load capacitor of Cs in ‘S’ phase and k*Cs   

               in SZ_D phase 
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The sampling phase is split in two parts. A coarse pre-charge phase, which is about 

one-eighth of the sampling time. In this phase amplifier is configured as slow amplifier, 

the charge to the sampling capacitor Cs is provided by the large capacitor at the output by 

charge sharing. The output reaches to within 10% of its final value in this phase (for k  

~10). The second phase is fine sampling phase. In this phase amplifier is working at its 

normal speed, and the large capacitor is disconnected from the output. The amplifier now 

operates such that output settles to desired accuracy. 

The timing is illustrated in Fig 3.5. The only additional signal that needs to be 

generated is SZ_D, which is just a delayed version of SZ, so is very easy to generate. 

This signal determines when the large cap is connected to the output/compensation cap in 

increased. ‘t1’ is the non-overlap time between sample and hold phase . ‘t2’ provides the 

early edge required for bottom plate sampling explained in chapter IV. ‘t3’ is the 

precharge time, during which sampling capacitor and precharge capacitor are connected 

together.  

 

    

                                    Fig. 3.5. Timing diagram for precharge scheme 
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To reduce the area penalty because of large precharge capacitors we can place the 

capacitors differentially as illustrated in Fig 3.6. This helps to reduce the precharge 

capacitor by a factor of two.  

 

3.2.3 Simulation results 

 The scheme proposed is very general and can be used with any type of amplifier, either 

on-chip or on-board. We present the SFDR results for a specific case, in which the 

sampling capacitor is 25pF, clock frequency is 40Mhz, the max step at output is 3V 

differential, targeted SFDR is 100dB for 1Mhz input signal at –2dBFS, which is 4.8Vpp. 

Technology used is 0.5um CMOS technology. The pre-charge phase is about 1.5ns and 

the fine sampling phase is around 9ns. For the worst case step the output reaches 2.7V in 

1.5n s, which corresponds to a slew rate of 1.8V/ns, which may be extremely difficult to 

achieve with CMOS amplifiers. The comparison of the SFDR of proposed scheme with 

traditional solution is shown in Fig 3.7. The amplifier used has a closed loop bandwidth 

of 270Mhz and a slew rate of 0.6V/ns. 

 

 

 

                                 Fig. 3.6.  Reducing area penalty by using differential capacitor. 
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 Fig. 3.7.  Simulation results comparing the SFDR obtained with pre-charge scheme vs   

                 the scheme in Fig. 3.3a.  

  

From Fig. 3.7 we observe that that compared to the traditional approach (Fig 3.3a) the 

SFDR improvement is around 50dB for larger signal amplitudes. Effectively this 

improvement is achieved using an opamps with lesser bandwidth, thereby reducing 

power. Also the SNR is improved due to the reduced bandwidth of the amplifier. 

 

3.2.4 Advantages of proposed solution 

• Proposed pre-charge scheme doesn’t use any extra pre-charge buffer, so it will 

consume less power than solution in Fig 3.3b 

• This scheme makes it possible to integrate input buffer with the ADC even in slow 

CMOS technologies 
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• Even if ADC is designed in a process where it is possible to design fast amplifiers, we 

1
can save power by using this scheme by using a slower amplifier 

• Finally for high frequency input signals it is not possible to put a RC filter at the 

output to filter out noise. The bandwidth in the sampling phase is determined by the 

op-amp bandwidth as well as input circuit time constant. Having a fast amplifier is 

detrimental from SNR point of view. The noise which is aliased into base-band will 

reduce if we reduce the bandwidth of the amplifier. This is especially true if the 

dominant source of noise is the noise from feedback resistors. 

 

III     Multipath common mode feedback scheme* 

3.3.1 Introduction 

Fully differential amplifiers are widely used in modern integrated circuits because of 

larger output swings and less susceptibility to common mode (CM) noise. One major 

disadvantage of these circuits is the need of a CMFB circuit to control the CM output 

voltage. The basic aim of the CMFB circuit is to sense the output CM voltage and use 

negative feedback to force it equal to desired CM voltage VREF. This is illustrated in Fig 

3.8. The differential output voltage is well defined for a given input voltage, but for an  

 

                        

                   Fig. 3.8 A conceptual block diagram of the CMFB loop  

                                                 
* 
Part of this section has been reprinted from “Multipath common mode feedback scheme suitable for high 

speed two-stage amplifiers,” by A.K.Gupta, V.Dhanasekaran, K.Soundarapandian and E.Sanchez-Sinencio, 

April 2006, Electronics Letters, vol. 42, no 9, pp. 499-500. Copyright IEE, 2006. 
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                   Fig. 3.9 Simplified model of a high gain differential amplifier  

 

ideal amplifier the common mode rejection is infinite so input cannot define the output 

common mode level.  The need for CMFB arises because in high gain amplifiers, we 

wish a p-type current source to balance an n-type current source. As illustrated in Fig 3.9 

the difference between Ip and In must flow through the intrinsic output impedance of the 

amplifier, creating an output voltage change of (Ip-In)*ro. Since the current error depends 

on mismatches and ‘ro’ is quite high, the output may easily go to supply rails.  

          In this paper we analyze a case of practical interest in which the negative feedback 

loop is no longer effective because of positive feedback by external network, leading to 

output staying at rails [16]. The existing solutions [17] will need a large bandwidth in 

CMFB loop to alleviate the situation, making it difficult to compensate for high-speed 

designs. The proposed scheme tackles the problem by having large transconductance gain 

at low frequencies while having a low transconductance gain at high frequencies in the 

CMFB loop. 

 

3.3.2 External positive feedback and latching states  

One of the various methods to detect and feedback the CM correction signal as applicable 

to a two-stage amplifier is shown in Fig 3.10. Only a fraction (I3/(I3+I4)) of total current 

is controlled by the CM loop. The dc error in the CM output is given by  
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Fig. 3.10. A Two-stage Miller compensated amplifier with traditional resistor averaged   

                CMFB scheme 

 

where ∆I is the open-loop mismatch between the current sources (I1o+I2o –I3o-I4o) and A1 

is the voltage gain of common sense amplifier shown in broken lines in Fig1. Thus we 

observe that the error will reduce if we increase the transconductance gain (gm3A1). 

For a two-stage amplifier, although the feedback through the external network is 

negative for differential signal, it is positive for the CM signals. In normal operating 

conditions, the negative feedback loop gain is much large compared to positive feedback 

loop gain so latter is not of much concern. The problem occurs during start-up or during 

large CM transients, in which case input differential pair turns off. If not designed 

properly output swings to rails and stays there. As noted in [16], many operational 

amplifiers have no built in provision to avoid these latching states. For the design in Fig 

3.10, latching state will exist if I4 > I2 or I3 < I1. Thus to avoid the latching state CMFB 

loop should at least control I1 amount of current.  It is worth noting that this problem of 

latching states can exist even if we feed the CMFB to transistor M2 instead of M3 or if 

we had a NMOS input stage instead of a PMOS input stage. 
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In general it is more difficult to compensate the CMFB loop compared to the 

differential loop because of two additional poles in the former. The CM loop gain is 

given by (assuming that RHP zero due to Miller compensation is removed by nulling 

resistor Rz)  
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For Cgs7 <<  4C1 , ωcm1 ≈  ωz so (2) simplifies to 
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For the circuit in Fig 3.10 differential loop bandwidth is given by Cm Cg /1β , while 

A1gm3/CC gives CM loop bandwidth. Cc is generally chosen to compensate the 

differential loop optimally. Since feedback factor (β) doesn’t affect CM loop bandwidth, 

for design with small β, it is possible to have A1gm3/CC > Cm Cg /1β  leading to CM 

stability issues. Solution mentioned in [17] and widely used is to reduce the fraction of 

current controlled by CMFB (reduce I3) and hence reduce gm3. This will lead to increased 
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dc CM error (1) and also if I3 is made less than I1 we will have latching states in the 

design. 

3.3.3 Proposed solution  

There are two contradicting requirements: for stability it is desirable to have small 

bandwidth, while for avoiding latching states it is desirable to have large bias currents. 

The proposed solution [2,3] illustrated in Fig 3.11(b) solves this problem by having two 

paths in the CM loop; a slow path (M3’) and a fast path (M3’’). The combination of the 

slow path and fast path determines the dc performance of the CM loop, while only the 

fast path determines the bandwidth of the loop. The slow path is created by having a 

series RC low-pass filter (R2, C2) in the loop. The 3-dB bandwidth of this filter is set to 

about one-tenth of fast path bandwidth, which ensures that slow path is not active near 

unity gain bandwidth (UGB) of the loop.  The bandwidth of the loop is determined by 

how the current I3 is split between fast path (I3’’) and slow path (I3’). Let us define I3’’ 

=kI3 and I3’ = (1-k)I3. If it is assumed that ωcm1 ≈  ωz as in (3), we get following 

expression for loop gain   
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 Fig. 3.11. Illustration of CMFB  (a) Traditional CMFB scheme (b) Multi-Path CMFB  

                 scheme 

 

Due to the multi-path scheme, the overall transfer function (4) has an additional pole 

and zero at low frequencies. Since both the pole and zero are at low frequencies 

compared to loop bandwidth, the overall response at high frequencies is just due to the 

fast path. The loop bandwidth is now given by A1gm3’’/CC = A1kgm3/CC   

Effect of having a pole-zero doublet on the settling response of the loop has been 

analyzed in [18]. If the doublet is at low frequency compared to loop bandwidth the 

magnitude of slow-settling component is small, and this is guaranteed in design by choice 

of low-pass filter (R2C2). As the pole-zero doublet spacing increases the magnitude of 

slow settling component increases. In this design zero will appear at 1/k times the pole 

frequency, so for a practical design k should not be too small (k > 0.2). For our design k 

was chosen as 0.5. The slow settling components become visible only if we desire very 

high settling accuracies, which is generally not the case with CM feedback circuit.  

Another aspect, which deserves mention, is the fact that noise due to the R2 in the 

filter appears as CM noise. Only a very small fraction (<1%) of this noise appears as 

differential noise as long as the matching between positive and negative branch of the 

amplifier is reasonable. An additional advantage of using multi-path approach is increase 

in dc transconductance gain and hence dc accuracy of the CM loop which may be critical 

in some designs [19]. This is a direct consequence of controlling a larger fraction of bias 

currents by CMFB.  
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3.3.4 Simulation results 

 Two amplifiers were designed in 0.5u CMOS technology, one with multi-path CMFB 

loop (k =0.5) and other with conventional design. Same amount of bias current is 

controlled in both CMFB loops (> I1 to avoid latching states). Fig3.12 compares the CM 

loop ac response of both the amplifier. The UGB in the multi-path approach reduces from 

100MHz to 65MHz while the phase margin (PM) improves from 24
o
 to 50

o
. Fig 3.13 

shows the CM output with a 400mV step on CM control signal. The conventional CMFB 

output exhibits ringing due to poor phase margin. Another observation is that there are no 

slow settling components visible in output with multi-path CMFB scheme. 

 

 

Fig. 3.12 AC response for CMFB Loop: Traditional CMFB (UGB = 100MHz, PM = 24
o
)   

               and Multi-path CMFB with I3’ = I3’’ = I3/2 (UGB = 65MHz, PM = 50
o
) 
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                Fig. 3.13. Settling of the common mode output with a 400mV step on VREF 
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CHAPTER IV 

SAMPLING CIRCUITS 

 

4.1 Introduction 

In modulators, the amount of noise shaping is governed by the filtering provided by 

the integrators embedded in one or more stages. Noise injected in the forward path is 

shaped by the order of the filtering preceding it. All the integrators apart from the first 

have their imperfections like noise and distortion shaped by an order depending on the 

number of integrators preceding them. Therefore, the first integrator primarily governs 

the noise and linearity performance of the entire converter. One of the main causes of 

distortion in the first integrator is sampling distortion. This chapter focuses primarily on 

the fundamental problems in achieving high linearity and noise performance in the 

sampling network of the first integrator. 

Usually when used as a switch MOS transistor is operated in triode region or linear 

region. The equivalent circuit for the transistor is a resistor whose value is controlled by 

the transistor gate voltage (Fig 4.1). When the switch is closed the value of on-resistance 

is in range of few ohms to a few kilo-ohms. In contrast, the resistance of an open switch 

is so high that in practice the switch is an open circuit.  

The two critical specifications of the sampling network are sampling noise and 

sampling distortion. The sampling noise is determined by the value of sampling 

capacitors and once the capacitor value has been selected usually nothing more can be 

                   

 

Fig. 4.1. Simplified sampling circuit; “on” switch charging a capacitor C through a  

               resistor R 
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done about it unless we go for double sampling which gives 3db advantage in SNR [20]. 

In the next section we discuss the causes of non-linearity in sampling network. Then we 

look at various techniques to linearize the basic NMOS switch and present simulation 

results.  

 

4.2 Factors causing non-linearity in sampling circuit 

4.2.1 Voltage dependent turn –off moment  

 A MOS switch turns off when its gate –source voltage becomes less than the transistor 

threshold voltage. When the switch is on, the source voltage equals the input voltage. As 

a result of this and finite turn-off slope ‘a’ of the gate voltage, the delay ∆t from the 

moment when the gate voltage starts to fall to the switch turn-off moment depends on the 

input voltage. It can be shown [21] that voltage dependent turn –off moment results in 

second harmonic distortion  

                                               

where ACLK  is the clock amplitude and TF the clock fall time i.e ACLK /a. There are 

basically three ways to get around this problem. First making the slope of the clock 

waveform steep reduces distortion. Second solution is to make the switch control voltage 

track the input signal. Last solution is to use a circuit topology in which the switch is 

operated around a constant voltage. This last technique has been used in the design 

example and is discussed in detail later.      

           

4.2.2 Charge injection 

 A conducting MOS switch has a finite amount of mobile charge in its channel. When the 

transistor is turned off, this charge is distributed between the source, the drain, and bulk 

terminals of the device. To design accurate SC circuits the nature of this charge injection 

and redistribution phenomenon must be understood. Through the years the charge 

injection has been analyzed and discussed in various papers [22, 23, 24]. The amount of 

total inversion layer charge is dependent on the voltage VIN 

(4.1) 
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As the transistor is turned off, a part of inversion layer charge is leaked to the substrate. 

This phenomenon, known as charge pumping, is due to two effects, the capture of charge 

by interface traps and recombination in the channel and substrate. The substrate leakage 

occurs only when the gate voltage turn-off slope is extremely steep or the transistor 

channel is very long, and thus in practical switches this effect can be ignored. The 

distribution of charge is dependent on the impedance seen on both sides, the impedance 

of the driver and the clock waveform. When the transistor is turned off rapidly, the 

channel is cut-off before the potential difference between drain and source has time to 

even out and, as a result, the channel charge is equally divided between the source and 

drain terminals. On the other hand, a slow turn-off leaves time for the source and drain 

voltages to become equalized, which results in charge partitioning according to the 

impedance ratio.In practice, the charge injection has a non-linear component, which 

results in harmonic distortion. One of the techniques to minimize the effect of charge 

injection distortion is to use a technique called bottom plate sampling in which a constant 

amount of charge is injected regardless of the input. This technique has been used in the 

design and discussed in detail later. 

 

4.2.3 Nonlinear time constant 

 When the input the signal amplitudes are large, accuracy and signal bandwidth are 

limited by distortion, which originates from the fact that switch on-resistance and stray 

capacitances are not constant but vary as functions of drain and source voltages. For a 

short channel device the on-resistance is [21] 

               

 

where VG, VS, VD and VB are the voltages on the transistor’s gate source drain and 

bulk terminals. By looking at the equation three different signal-dependent terms can 

(4.3) 

(4.2) 



 39

be identified. The first and most dominant term is the gate channel voltage VG – 

(VS+VD)/2 in the denominator. The second term is the threshold voltage dependency on 

the source-bulk voltage (bulk effect) modeled with square root term in the numerator. 

Last term is the term in the numerator, which depends on the drain-source voltage, the 

critical electric field Ec and the device channel length. 

The dominant non-linear parasitic capacitances are drain and source junction 

capacitances, which are given by  

Where Vx is the drain or source voltage, Cj0 is the junction capacitance with zero bias, Vo 

the bulk junction potential and Mj the bulk junction grading coefficient. There are 

basically two ways to reduce distortion: decreasing the absolute value of the time 

constant and making the time constant less non-linear.  

 

4.3 Distortion analysis and design trade-offs 

In the design of the sampling network signal to noise ratio (SNR) and total harmonic 

distortion  (THD) requires opposing design parameters. For the switch in Fig 4.1. it is 

easily shown that the noise power is given by 
C

kT
vn =

2
, thus CASNR

2     α , where A is  

amplitude of input signal. Thus to increase SNR we must increase the sampling capacitor 

or increase the input amplitude. We next analyze how varying the sampling capacitor and 

input amplitude affects the THD. 

The switch in the “on” state is modeled as a non-linear resistor dependent on input 

signal as 

                            ......)1()(
2

21 +++== iii vrvrRovfR                                                 (4.5)         

This is illustrated in Fig 4.2. The capacitor is assumed to be linear, which is a good 

assumption, if we are using poly-poly or lateral flux capacitors. 
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                             Fig. 4.2. Non-linear switch model 

 

For estimation of distortion let us assume oerror VV << , then  
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Since errorio VvV −= , for Vo we get  
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For fully differential circuits, HD3 is the main concern for linearity. From the equation 

above we observe we note that to reduce HD3 we can reduce C or A. This will lead to a 

reduction in SNR. If SNR is to be maintained constant, reducing the input amplitude will 

not reduce HD3. So for constant SNR 
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Reduction in input signal frequency will reduce the harmonic distortion, but that is not a 

solution, as input signal frequency is a specification and cannot be changed. So there are 

only two possible solutions. The first is to reduce the absolute value of resistance  (Ro). 

This entails increasing the switch size, with an associated increase in parasitic 

capacitance. Other alternative is to reduce r2 i.e make the switch more linear. This is 

generally the preferred method. The switch size is chosen only, as large as is needed to 

meet the bandwidth requirement (see section 4.5). In next section we look at various 

approaches to linearize the sampling switch. 

 

4.4 Linearizing the basic switch 

Here we look at four different approaches used in literature to linearize the basic switch. 

• CMOS switch or transmission gate: The commonly used switch, the transmission 

gate (Fig 4.3) can be considered a linearized circuit; as the signal voltage rises the 

increase in the on-resistance of the nMOS transistor is compensated by the decrease in 

pMOS on-resistance and vice versa. Similarly, as the voltage rises, the drain and 

source junction capacitances of the nMOS decrease, while in the pMOS the opposite 

happens. The relative sizing of the transistors can be optimized in order to minimize 

distortion, however it is rather sensitive to process parameters and thus it is not same 

in different process corners. Consequently, size optimization can yield only moderate 

linearity improvements. 

 

                                    

 

                            Fig. 4.3.  CMOS switch / transmission gate                 
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                           Fig. 4.4. Bootstrapped switch 

 

• Gate voltage bootstrapping: The idea is to make the gate voltage track the input 

voltage with an offset Vo, which is, at its maximum, equal to supply voltage. This 

technique, called bootstrapping [25], is illustrated in figure 4.4, where a closed switch 

with a gate voltage with VIN + VO is shown. The switch gate source voltage in this 

circuit is constant and thus a major source of non-linearity in (4.4) is greatly 

attenuated, but something still needs to be done about the non-linear bulk effect. This 

technique has been implemented in this design and is discussed in detail later. 

• Replica sampling network:  The basic idea is maintain constant on-resistance of 

switch M1 rather than a constant VGS as illustrated in Fig 4.5a. [20] Thus this 

approach eliminated the bulk effect also. In the implementation shown in Fig 4.5b the 

amplifier drives the gate voltage of M0 to maintain the equality of node voltages cmp2 

and cmp1. This forces the resistance of M0 to be equal to R1 for signal frequencies 

within the loop bandwidth of the loop formed by the amplifier, device M0, and 

resistor. It could hence be inferred from this scheme that there is a direct relationship 

between the amount of linearization of M0 and the loop bandwidth. The issue of 

meeting the open-loop linearity of a sampling network has thus been translated to a 

bandwidth issue. 
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                            (a)                                                                              (b)   

      

          Fig. 4.5. Replica sampling network  (a) The basic idea (b) Implementation 

 

 

 

                 Fig. 4.6.  Replica gds technique 
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Replica ‘gds’ technique : The scheme is shown in Fig 4.6 [26] . The nMOS sampling 

switch M1is turned ON with the gate voltage of a replica FET M2 carrying a constant 

current. The opamp forces the source of M2 to track the analog input. Thisway, the 

sampling switch copies the ‘ron’ of the replica, held constant by the fixed bias current. 

When the sampling switch turns off, the dummy switch Md switches in to balance the 

loading of the op amp. 

 

4.5 Literature survey of performance 

 Since input switch is critical for achieving a high THD performance in any high speed/ 

high performance ADC many of published ADC’s have employed some techniques to 

improve the performance of switch. But in most of the papers the performance achieved 

by the switch is not reported separately, so to make a comparison we can look at the 

SNDR numbers of reported ADC’s. This is summarized in Table 4.1.Wherever the 

performance of switch is reported it is shown in Column 5 with the topology of switch in 

Column 6. 

Most relevant comparison is with broadband sigma-delta ADC’s with input signal 

frequencies > 1Mhz. Since many of the switch bootstrapping techniques have been 

developed initially for pipelined ADC’s, a summary is provided for performance of 

pipelined ADC’s with input signal frequencies > 1MHz in Table 4.2. The performance of 

the ADC’s in terms of SNDR is inferior to those in Table 4.2, but the signal frequencies 

is generally higher. The targeted specifications for these ADC’s are SFDR and hence they 

need linear switches. Besides the switches reported in ADC’s in Table 4.1 & Table 4.2 

some other switch topologies have been suggested in [43]-[45]. 
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Table 4.1.Comparison table of reported switched capacitor broadband sigma-delta ADC’s 

Reference Input signal 

frequency 

SNDR Technology Switch THD 

(Simulated) 

Switch topology 

[20] 1.1Mhz 88dB 0.18u/0.35u 

1.8V/3.3V 

CMOS 

122dB@1.1Mhz 

105dB@5Mhz 

Replica bridge 

network 

[27] 2Mhz 87dB 0.25u, 2.5V 

CMOS 

102dB@2Mhz Bootstrapped 

switch reported in 

[31] 

[28] 1.25Mhz 87dB 0.5u, 5V 

CMOS 

99db@1Mhz Low Vt (+/-0.3V) 

transistors 

Transmission gate 

[29] 1.25Mhz 88dB 0.6u,5V 

CMOS 

98dB@1Mhz Bootstrapped 

switch 

[30] 1.25Mhz 89dB 0.65um, 5V 

CMOS 

NA NA 

[31] 2Mhz 82dB 0.18u, 1.8V 

CMOS 

NA NA 

[32] 100kHz 100dB 0.25u,CMOS NA NA 

[33] 2.5Mhz 72dB 0.18u, CMOS NA Bootstrapped 

switch 

[34] 1.1Mhz 80dB 0.13u, 1.5V 

CMOS 

NA Bootstrapped 

switch reported in 

[31] 

[35] 1.5Mhz 71dB 0.18u,1.8V 

CMOS 

NA Bootstrapped 

switch reported in 

[36] 

[37] 2.5Mhz 88dB 0.35u, 3V/5V 

CMOS 

NA Bootstrapped 

switch 
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Table 4.2. Some pipeline ADC’s with improved switches reported in literature 

Reference  Input 

signal 

frequency 

SNDR Technology Switch THD Switch 

topology 

[25] 100kHz 58.5dB 0.6u, 1.5V 

CMOS 

NA Signal 

dependent 

boost 

[38] 6Mhz - 0.35u,3V >100db@6Mhz Variation of 

[25] 

[26] 1Mhz 64dB 0.6u,3.3V 

CMOS 

NA Bootstrapped 

with 

feedback 

[39] 15Mhz 75dB 0.25u, 

CMOS 

NA Improvement 

of [26] 

[40] 1Mhz 73.6dB 0.18u, 1.8V 

CMOS 

> 95dB 

@5.1Mhz 

Techniques 

in [25] & 

[26] 

[41] 5Mhz 28dB 0.5u, 5V 

CMOS 

NA NA 

[42] Upto 

60Mhz 

58.2dB@10Mhz 

54.1dB@50Mhz 

0.25u, 2.5V 

CMOS 

NA NA 

 

4.6 Design example 

 In this example we look at design of a switch with a target SNDR of 100dB for >1Mhz 

input signal. The design implemented in this example is the bootstrapped switch with the 

implementation similar to [38]. The idea is to have a constant VGS regardless of input, as 

suggested in Fig 4.4.  The switched capacitor implementation of bootstrapping is shown 

in Fig 4.7. 
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    Fig. 4.7.  Switched capacitor implementation of Bootstrapped switch 

 

During the hold phase the capacitor C1 is precharged to V1 –V2. To turn the switch on, 

the capacitor is switched between the input voltage and the transistor gate. The gate 

voltage however is not the sum of the input voltage and the precharge voltage, since the 

parasitic capacitances associated with the switch transistor and auxiliary switches will 

cause some distortion. 

 

 

 

 



 48

The gate voltage is given by 

  

The first two terms are the desired ones, while the other two are unwanted. In order to 

minimize distortion, the parasitic capacitances have to be minimized and the 

bootstrapping capacitance made large. 

The actual implementation of the circuit is similar to [38] and is shown in Fig 4.8. 

The circuit in Fig 4.8 still suffers from the non-linearity due to bulk effect. One 

possibility to eliminate bulk effect is to make the bulk voltage track the input during the 

sample phase, implementation is shown in Fig 4.9.  

 

 

 

Fig. 4.8. Implementation of bootstrapped switch (C1 is the bootstrapping capacitor) 
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Fig. 4.9. Implementation of bootstrapped switch with bulk effect eliminated            

 

Schematic of a typical switched capacitor integrator is shown Fig 4.10, with the sampling 

network implemented shown separately in Fig 4.11 with the timings for S, H and SP 

illustrated in Fig 4.12. 

 

             

               Fig. 4.10. A typical switched capacitor integrator  
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                                      Fig. 4.11. Sampling circuit  

 

 

 

 

Fig. 4.12.  Clock timings  (a) illustrating the non-overlapping nature of S/ H and bottom  

                 plate sampling 
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Bottom Plate Sampling: The idea in bottom plate sampling is to make SP fall previous to 

S. Since once SP falls nodes ‘Voutp’ and ‘Voutm’ are floating the charge injection of S 

switch doesn’t effect he sampled value. The charge injection of SP switch is constant 

regardless of input because it is always connected to VCM. 

Next we consider the procedure for determining the switch sizes. Let us assume that 

the switch S is accurately modeled as a clock-voltage dependent resistor. When ‘S’ is 

high switch is considered to be on, with a resistance ‘R’. When ‘S’ is low, the switch is 

considered to be off with and to have an infinite resistance.(Fig 4.1) 

During the sample mode the input is connected across the capacitor through the 

switch. To find the acquisition time, ta, the circuit can be modeled as a low-pass filter 

whose input turns on at time t = 0: 
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The first term in the equation represents the error made in the sampling because of non-

zero acquisition time. This error decays exponentially with increasing time; the time 

constant is equal to 1/α = RC. For inputs of any frequency, the magnitude of the 

coefficient of the first term is  
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For a full-scale input, to limit the magnitude of the acquisition-time error to +/-1/2 LSB 

at a N-bit level 
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For an example design N =20, C =30pF, t = 10ns  

                        24
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t
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Thus we choose R = 24 

For the sampling network in Fig 4.11 effective resistance    R = R1 + (R2 || R3/2)  

We can choose R2 = 10*R3  ;  R ≈ R1 + R3/2 

Having a small SP switch helps reduce error due to charge injection thus R3 is chosen 

larger than R1; we choose R1= 6 , R3=36; VCM is assumed to have a maximum value of 

1.5V i.e  (Vt + 2Von) . With this assumption SP switches can be taken as NMOS only 

switches. Having a shorting SP switch helps reduce error due to differential charge 

injection.  

Thus 
))(/(

1
3

TGSoxn VVLWC
R

−
=

µ
  where (W/L ) is aspect ratio for NMOS switch.  

Sampling switch S is implemented with the topology in Fig 4. 9. 

From equation (4.12) we know that choosing a large value of bootstrapping capacitor 

helps reduce distortion. But since a large capacitor means a large area and also a strong 

gate driver, we need to minimize the capacitor we can use for bootstrapping without 

sacrificing linearity. 

Fig 4.13 shows the modulation of gate source voltage and the ‘on’ resistance  by the 

input for a bootstrapping capacitor C1 = 4pF. Ideally we want the gate source voltage to 

be a constant equal to 5V. 

Fig 4.14 shows the modulation of gate source voltage and the ‘on’ resistance by the 

input for a bootstrapping capacitor C1 = 8pF. Comparing Fig 4.13 with Fig 4.14 we 

observe that VGS has increased by 0.5V.   
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        Fig. 4.13. Variation of gate source voltage and ‘on’ resistance with input (C1 = 4pF) 

 

                   

        Fig. 4.14. Variation of gate source voltage and ‘on’ resistance with input (C1 = 8pF) 
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We want to determine how non-linear is Ron , so we take a FFT of the Ron waveform the 

result is shown in Fig 4.15. From the plot we obtain 

µ6.152
2

R
      2.23      498.5

2

2O
1 ===

Ar
mArRR Oo  

Using the results from Section 4.3 we calculate the expected value of HD3 as  

           dB
eeCAωrR

HD io 156
2

1225*625.1*28.6*6.152

4

2

2
3 −=

−
=≈

µ
 

To decide on the value of C1 a graph of THD Vs bootstrapping capacitor C1 is obtained, 

which is shown in Fig 4.16. From the figure we obtained that THD improves as the C1 is  

increased but after 4-5pF THD almost becomes constant. So for this design C1 was 

chosen as 4pF. Fig 4.17 shows a typical spectrum of the sampled signal. The variation of 

THD with input frequency is illustrated in Fig 4.18, with a sampling capacitor of 25pF. 

Analysis in section 4.3 predicted a 6db/octave degradation with input frequency, but the 

simulation results shows that degradation is much more rapid. 

 

 

                          Fig. 4.15. Determining coefficients for ‘ron’ 
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                    Fig. 4.16. Dependence of THD on bootstrapping capacitor C1.  

      

    

            Fig 4.17. Typical spectrum of sampled signal (THD  = 132dB) 
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                          Fig. 4.18. Variation of THD with input frequency 
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CHAPTER V 

SECOND ORDER DYNAMIC ELEMENT MATCHING TECHNIQUES  

FOR LOW OSR SIGMA-DELTA ADC
*
 

 

5.1 Introduction 

High-resolution delta sigma ADCs with low OSRs have been designed for broadband 

communication applications  [27,32,37,46]. All these ADCs use multi-bit DACs in the 

first stage feedback path, to achieve high signal to quantization noise ratio. The mismatch 

in the DAC limits the linearity of the overall ADC. First order dynamic element matching 

(DEM) techniques have been used to improve the linearity and to shape the DAC 

mismatch noise out of base-band. The first order DEM techniques used are all variation 

of Data Weighted Averaging (DWA) technique [47]. The SNDR of these converters has 

been limited to about 90dB with exception of [32].  To achieve greater than 100dB 

SNDR (OSR <= 8), with first order DEM, we need to have extremely good element 

matching (<0.05%).  

One approach to achieve the above performance would be to use digital calibration 

to eliminate the DAC mismatch errors [48]. Another possibility is to use a combination of 

digital calibration and first order DEM where digital calibration is used to correct the 

mismatch to less than 0.02% and then use first order DEM to shape out the remaining 

DAC noise. The third approach would be to use a higher order DEM that is analyzed in 

this chapter.  A previous work [49] analyzes all the existing DEM techniques for low 

OSR ADC’s and claims that at low OSR (OSR <=16) the effectiveness of second-order 

algorithms in suppressing the errors is no better than first order algorithms. In this paper 

we analyze second order DEM techniques for low OSR and show results that prove that it 

can give better performance, if a modified noise transfer function NTF is used. 

Section II discusses the performance limitations of first order DWA. Section III 

analyzes the second order DEM techniques. Section IV proposes a modified second order 

                                                 
*
 Part of this chapter has been reprinted from “Second Order Dynamic Element Matching Techniques For 

Low OSR Sigma-Delta ADC,” by A.K.Gupta , E.Sanchez-Sinencio, S.Karthikeyan, W.M. Koe and Y.I. 

Park, May 2006, Proc. IEEE ISCAS,  pp.2973-2976. Copyright IEEE, 2006. 
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DEM that gives significantly improved SNDR performance for low OSR ADCs.  The 

architecture of the ADC chosen is such that the quantization noise is well below 100dB. 

DEM is incorporated in first stage DAC that has 16 unit elements.  

 

5.2 Evaluation of first order DEM 

Data weighted averaging: The DWA algorithm is an element rotation algorithm, which 

aims to make the long-term, average use of each unit element in the DAC same, by 

rotating the pattern of unit elements. In Figure 5.1 we consider a DAC with 8 unit 

elements. Let the first code be 2, and then elements 1,2 will be used. Let the next code be 

3, the elements used are 3,4,5. If the next code is 5, then elements 6-8 are used, then we 

wrap around and use elements 1,2. This we use all components sequentially, and as often 

as possible.  

It is well known that DWA gives first order noise shaping, but at the same time it 

suffers from tones in the base band [37]. To alleviate this problem a number of 

techniques have been proposed [27,32,37,46,47,50], but the basic idea remains that we 

need to add some randomization to break the cyclic nature of DWA. As the amount of 

randomization is increased the tones disappear but the noise floor increases, since the 

energy contained in tones is distributed from dc to fs/2. Randomization proposed in [50] 

RnDWA chooses a random pointer location after every cycle is completed, while the one  

 

      

                                                Fig. 5.1. Data weighted averaging  
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                                  (a)                                                                          (b) 

                 Fig. 5.2. SNDR distribution a) mismatch 0.1% b) mismatch 0.05%               

                               (Input signal: -6dBFs at Fs/80 with ARDWA) 

 

in [37],  AR-DWA chooses a random pointer after ‘RI’ clock cycles. This results in the 

former having lower SNDR than latter.  The approach presented in [46] Pseudo DWA is 

quite similar to AR- DWA in that randomization is achieved by flipping the LSB of the 

input after ninv clock cycles. In our simulations we used AR_DWA with random pointer 

being chosen after 512 clock cycles. This results in visible tones in the FFT, but they are 

out of base-band and the SNDR is very close to one achieved with DWA. Fig 5.2 shows a 

histogram of SNDR with 0.1% and 0.05% random mismatch respectively. To achieve an 

overall SNDR of 100 dB, SNDR due to mismatch noise should be at least 103dB, 

assuming equal contribution of kT/C noise and mismatch noise. From the figure we 

observe that for OSR =8 very few chips will achieve a SNDR of 100dB if matching is 

less than 0.05%. Thus there is a need to investigate higher order DEM techniques to 

improve noise performance. 

 

5.3 Second order dynamic element matching 

In all the second order DEM techniques proposed in literature, the idea is to shape the 

mismatch noise by NTF = (1-z
-1

)
2
 as opposed to (1-z

-1
) by DWA.  If we can achieve this 

NTF, then second order DEM will always be superior to first order DEM regardless of 
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the over-sampling ratio. The second order DEM will lower the mismatch noise by 

15dB/octave of oversampling compared to 9dB/octave of first order DEM. But the work 

done in [49] claims that for low OSR first order DEM outperforms the second order 

DEM, which indicates there is a discrepancy. In this section we look at existing second 

order implementations and try to figure out the cause for this discrepancy.  

Vector based mismatch shaping was proposed in [51] for higher order DEM. It 

actually involves implementation of M digital noise shaping loops, where M is the total 

number of unit element in the DAC. One of the error feedback loops is illustrated in 

Figure 5.3. Let di be the deviation of i
th

 unit element from the average value of unit 

elements. It has been shown in [48] that the DAC error is given by  

                                   )](.[*)()(
1

nednhne i

M

i

iD ∑
=

=                                                        (5.1) 

Thus eD(n) is a noise like signal shaped by H(z). The order of noise shaping is determined 

by that of H(z).This approach has been implemented for obtaining second order noise 

shaping in audio converters with high OSRs [52]. The major hardware complexity of this 

algorithm remains in the sorting of  wi array of length M. 

A few variations of the above technique exist in the literature. Akira [53] proposes a 

modification to vector quantizer to alleviate the sorting problem. Akselrod [54] proposes 

a modified loop filter for vector quantizer, which is claimed to give better SNDR at larger 

amplitudes compared to error feedback structure. Henderson [55] suggests a Second 

Order DWA(2DWA) which needs a unit element to be used more than once in a single  

 

 

                   Fig. 5.3.  Error feedback loop in vector mismatch shaping 
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clock cycle which is not feasible.  So a modification to 2DWA has been proposed in so-

called restricted second order DWA (R2DWA) [56]. A closer examination shows that 

R2DWA is exactly same as vector quantizer. In our simulations we use vector quantizer 

to implement second order DEM, with H(z) = (1-z
-1

)
2
. 

Fig 5.4 compares the DAC mismatch noise shaped by DWA, ideal second order and 

second order vector quantizer [51]. DWA achieves ideal first order noise shaping. As 

expected, ideal second order is always better than DWA. We observe that for vector 

quantizer, the mismatch noise rises at 40dB/decade indicating a second order transfer 

function. But it flattens out at about fs/8. Since the total noise due to mismatch is 

constant, a flattening of the noise PSD means that we will have more noise at lower 

frequencies compared to ideal second order. We will get better noise performance if the 

flattening occurs at higher 

   

 

                  Fig. 5.4. DAC mismatch noise shaped by 1
st
 order and  2

nd
 order NTF  , 

                                (fin = fs/80, Vin= -6dBFs) 
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frequencies. The PSD of second order vector quantizer is lower than DWA till about 

fs/32, so vector quantizer will perform better than DWA for OSR >=16.  

Fig 5.5 shows the DAC mismatch noise shaped by the vector quantizer for two 

different signal levels. For –2dBFS signal flattening of PSD occurs at about fs/20 

compared to fs/8 for –6dBFs signal. This leads to baseband noise being higher in the 

former case.      

It has been explained in [57] that restrictive second order DWA doesn’t allow for 

uniform element selection (cyclic element selection) thus taking longer time to obtain 

noise cancellations. This implies that restricted second order DWA can never achieve 

perfect (1-z
-1

)
2
 shaping. This helps explain the deviation from the ideal behavior for 

vector quantizer as well since both implement the same algorithm. It is interesting to note 

that this flattening of noise spectral density also occurs for tree-structured second order 

DEM [58]. 

                         

 

   Fig. 5.5. DAC mismatch noise spectrum for two signal amplitudes, fin = fs/80 
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5.4 Proposed second order DEM 

In all the second order DEM reported the noise transfer function is (1-z
-1

)
2
.  It is possible 

to place the zeros at αj
ez

±= , a special case of which is α = π/2 which corresponds to 

band-pass DEM. The NTF is now given by 

                           H(z) = 1- 2z
-1

cos α + z
-2                                                                                                          

(5.2) 

The zero placements is illustrated in Fig 5.6 for both NTF. By shifting the NTF zeros 

from z=1 to αj
ez

±= , the magnitude of the NTF in pass-band becomes equal to K(ω-

α)(ω-α)  = K(ω
2
-α

2
). The integral of the square of this quantity over the passband is a 

measure of the in-band noise, and can be minimized by choosing α such that   

                                ωαωα
ω

dI
B

22

0

2 )()( −= ∫                                                                  (5.3) 

is minimized. The solution to this optimization problem can be obtained by 

differentiating I(α) with respect to α , and equating the result to zero. This gives  

                                  
OSR

Bopt
*3

3/
π

ωα ==                                                           (5.4) 

Since the ratio of I(0)/I(αopt)= 9/4, the expected SNR improvement is 3.5dB [48]. 

These results assume that DAC mismatch noise is white, which will be the case if 

selection of unit elements doesn’t follow a fixed pattern.  Substituting the value of αopt in 

(2) for OSR = 8 gives 

 

                                 H(z) =    1 - 1.948815663 z
-1

 +  z
-2                                                                        

(5.5) 

 

       

              Fig. 5.6.  Placement of zeros for different NTF 



 64

       

                                                                   (a) 

 

       

 

                                                                     (b) 

 

      Fig.5.7. Second order error feedback loop   

                  a) Zeroes at DC    b) With notch at approximately Fs/25 
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We implement the second order DEM similar to vector quantizer with a modified loop 

filter containing a notch. Vector quantizer with both zeros at dc shown in Fig 5.7a 

requires only addition and shifting, whereas implementing (5.5) will need a 

multiplication.  

To avoid the multiplication in (5.5) we implement the vector quantizer with the 

notch as shown in Fig 5.7(b). Now the multiplication is replaced by two additional shifts 

and a subtraction. The NTF is now given by 

                             H(z) =    1 - 1.9375 z
-1

 +  z
-2                                                                                             

(5.6) 

 

This places the notch at ωB/1.56685, which is reasonably close to optimal. For an OSR of 

8 this corresponds to fs/25. The DAC noise spectrum with this transfer function is as 

shown in Fig. 5.8. There are no spurious tones visible in the spectrum. 

 

      

                           Fig. 5.8. DAC noise spectrum with a notch at Fs/25 
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Fig 5.9 compares the SNDR obtained by placing both the zeros at dc, to the one 

obtained by placing a notch at fs/25, for two different signal frequencies. We see an 

improvement of about 5-6dB for most of the signal range. 

      Fig 5.10 shows the SNDR obtained with 0.1% mismatch and 0.05% mismatch with 

the notch in DEM. We observe that compared to ARDWA in Fig 5.1, we have an 

improvement of about 6dB on average. The improvement in SNDR is at the cost of extra 

complexity involved in implementation of second order DEM, compared to DWA, which 

can be implemented easily. 

 

 

     Fig. 5.9.  SNDR vs input signal amplitude with zeroes at DC vs notch at Fs/25,  

                    for two different frequencies 
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                              (a)                                                                           (b) 

Fig. 5.10. SNDR distribution a) mismatch 0.1% b) mismatch 0.05%         

                (input signal :   -6dBFs at Fs/80 2
nd

 order DEM with notch ) 

 

5.5 Conclusion 

In this chapter we analyzed second order DEMs as applicable to low OSR sigma delta 

ADC’s. It is explained why first order DEM is better than second order at low OSR, with 

the existing solutions. It is shown that with optimal placement of the zeros of the second 

order DAC NTF, the second order DEM can give better SNDR at low OSR’s compared 

to first order at the expense of additional digital hardware complexity. 
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CHAPTER VI 

A CALIBRATION TECHNIQUE FOR HIGH-RESOLUTION 

BROADBAND ∆Σ ADC 

 

6.1 Motivation 

Broadband sigma-delta ADC’s used for scientific instrumentation applications. (Signal 

Bandwidth > 1Mhz) typically use multi-bit feedback DAC. There are numerous 

advantages in having multi-bit DAC [48] . The quantization error is reduced by 6dB for 

every bit added to the resolution of the quantizer. The feedback loop becomes more 

linear, since variations of the effective gain of the quantizer with its input signal are 

reduced. Since the DAC input to loop filter changes less from sample to sample, the 

required slew rate of the input opamp of the loop filter is reduced. For ADCs with 

continuous time loop filters, the smaller steps in DAC waveform make the operation less 

sensitive to clock jitter. But there is one significant disadvantage of using multi-bit DAC. 

The linearity of the DAC determines the over-all linearity of the ADC and there may be 

tones in the output spectrum.  

There have been two popular approaches to alleviate the problem.  Dynamic element 

techniques have been used to convert the energy contained in the tones to white noise and 

shape the mismatch noise out of base-band [37,47]. This technique works very well for 

ADC’s with large over-sampling ratios (OSR) but for low OSR converters most of the 

mismatch noise remains in base-band and the technique is not very effective [48,49]. The 

problem becomes acute as we target higher SNR while maintaining similar OSR. As 

observed in previous chapter if we target 100dB SNR with an OSR of 8, the yield may be 

limited to 50% if 0.1% mismatch is assumed. 

Another technique used is to digitally correct for the capacitor mismatch error [59]. 

The idea is to characterize the DAC output voltages for all possible input codes and then 

used it for calibration. This technique works well for low OSR converters but has a 

couple of drawbacks. First it needs a very linear ADC to calibrate the internal DAC. In 

[59] a single bit modulator is built on-chip for calibration purpose. This would increase 

on chip area and power. The second disadvantage is that the DAC needs to be calibrated 
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to the resolution of over-all ADC. This needs a long calibration time, which may result in 

long test times if it is a one-time calibration.  

Thus there is a need to find calibration techniques, which relax the linearity 

requirements of the ADC characterizing the DAC. Also the technique needs to be 

practical in terms of calibration test time. This chapter discusses the existing approaches, 

which include the DEM and blind calibration and the associated issues. Later a new 

practical idea is presented to alleviate the problem. 

 

6.2 Existing approaches 

6.2.1 Dynamic element matching  [37,47] 

The basic operating principle of delta-sigma conversion namely noise shaping has been 

used to reduce the effects of the non-linearity in a multi-bit DAC. Here ‘noise’ is the 

mismatch error introduced by the uneven spacings of the DAC levels, which is shaped 

out of the baseband. The scheme is illustrated in Fig 6.1. Dynamic element matching 

(DEM) block determines which unit elements are selected in the DAC for a given input 

code N.   

One of the most common and easy to implement dynamic element matching 

technique is element rotation or Data Weighted Averaging [47]. The technique illustrated 

in Fig 6.2 aims to make long-term average of use of each unit element in the DAC same, 

by rotating the pattern of unit elements. In the Figure 2 n
th

 code uses elements 1-3, n+1 

code uses element 4-6, n+2 code uses element 7-8 and wraps around the circle-using 

element 1.  
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                              Fig. 6.1.  Dynamic element matching 

 

 

 

 

            

 

                                   Fig. 6.2. Data weighted averaging 
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It can be shown that DWA shapes the mismatch noise by first order high pass filter 

function. DWA causes the output spectrum to have tones. This problem can be alleviated 

introducing some randomization in element selection [37] at cost of increased noise in 

baseband, thereby exhibiting a trade-off between SNR and SFDR. 

Drawbacks of this approach:  

Dynamic element matching techniques rely on over-sampling and noise shaping, and 

hence become ineffective for very low values of OSR (4-8), which are needed in 

broadband data converters [49].  

 

6.2.2 Basic digital calibration 

Fig 6.3 illustrates the basic correction scheme of a digitally corrected ∆Σ ADC. The 

digital correction stage following the modulator loop can simply be some memory 

element (register/ fuses), storing the accurate digital equivalents of the actual output 

values of N-bit DAC for all possible input codes. Thus for any loop output signal sample 

v (n), the analog output v’ (n) of the DAC and the digital output w (n) of the correction 

stage are same. Since for sufficiently high inband loop gain the inband spectrum of v’ (n) 

is very close to that of analog input u(n), and since v’(n) = w(n), it follows that inband 

spectrum of w(n) is very close to input spectrum. 

  

 

                             Fig. 6.3. A digitally corrected ∆Σ ADC 
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Drawbacks of this approach:  

For a 20 bit over-all ADC accuracy the DAC has to be calibrated to 20bit accuracy. 

Technique proposed in [59] needs an on-chip one bit (hence linear ADC) to convert the 

DAC outputs to analog values. To calibrate to 20bit accuracy each code needs to be held 

for duration of at least 2
20

 clock periods, i.e a total of 2
20+N

 clock periods, which means 

long calibration times or test times (if calibration is done one time during test) 

Output of the digital correction logic needs to have accuracy equal to over-all ADC, 

which will lead to increased word-length of the input to decimation filter. Techniques 

mentioned in [59] to reduce the word-length of output rely on having a large OSR and 

hence will not be applicable if OSR is low and the modulator is the first modulator in a 

MASH. 

 

6.3 Proposed approach  

As explained before the problem with DEM at low OSR is that there is enough baseband 

noise remaining in the base-band to degrade SNR. The amount of SNR degradation 

depends on the capacitor matching i.e. the total mismatch noise power. The idea in the 

approach presented in Fig 6.4 is to reduce the total mismatch noise power and then shape 

it out of the baseband.   It may be possible to reduce the mismatch noise power by 

trimming the DAC unit elements as in [60], but this approach becomes impractical for 

small unit capacitors.  In the proposed approach reduction of mismatch noise is done in 

digital domain and then DWA provides a first order shaping of this noise. 

. The Digital correction again needs memory element storing the accurate digital 

equivalents of the actual output values of N-bit DAC for all possible input codes. The 

difference is that now the accuracy of codes stored can be significantly lower (12-14 

bits). The pointer from DWA block is also utilized by Digital correction block to 

determine which unit elements are being used in a given code. 
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                    Fig. 6.4.  ADC with DEM and digital correction 

 

                  

                                          Fig. 6.5. Calibration setup 
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(a) (b) 

 

                             (c)                                                                      (d) 

Fig. 6.6. Modulator output PSD (fin = fs/80, amplitude = -0.5dBFs) 

                a) Ideal DAC SNDR = 103.1dBc, SFDR = 129.6dBc 

                b) DAC with 0.1% mismatch SNDR = 73.6dBc SFDR = 80.3dBc 

                c) DWA:  SNDR = 86.2dBc  SFDR = 101.2dBc 

                d) DWA+ 12 bit correction:  SNDR = 102.4dBc, SFDR = 125.9dBc 

 

Calibration phase: Instead of having a single bit ADC on-chip for calibration the idea is 

to use an external ADC for calibration (one time calibration during test). Since we need 

to calibrate till only 12-14-bit accuracy, LFAC DIG available in Teradyne (catalyst) 

tester itself can be used for calibration. Only problem that remains is that DAC is a 

switched capacitor DAC and its output cannot be tapped directly. So we insert a buffer at 

the output of DAC (shown in Fig 6.5) and then convert its output to digital by external 
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ADC. A test-chip is being fabricated with the set-up in Fig 6.5 to verify the calibration 

phase and to ensure that we can indeed calibrate to 14-bit accuracy.  

 

6.4 Simulation results 

The scheme was applied to the first modulator in of an ADC with three stages MASH 

architecture. The DAC here is a four-bit DAC with 16 unit elements.  It was assumed that 

capacitor matching is 0.1%. The results with ideal capacitor array give a SNDR of 

103dBc with an OSR of 8 (Fig 6a).  With 0.1% mismatch SNDR drops to 73.6dBc (Fig 

6b). Using DWA improves SNDR to 86.2dBc still way below the ideal value (Fig 6c). 

We assume that the capacitor array is calibrated to 12-bit accuracy in our proposed 

approach; the results obtained are close to the  ideal value. 

 

6.5 Advantages of proposed solution 

The proposed scheme reduces the requirement on the accuracy to which we calibrate the 

ADC. This in turn means smaller calibration time.  If we calibrate to 14-bit accuracy 

instead of 18-bit we cut down test time by 16 times. We need not have a very accurate 

ADC on-chip we can probably use LFAC DIG available on tester. This will lead to 

reduction in chip area. Word-length of the internal bus is reduced; this leads to reduced 

digital hardware. 
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CHAPTER VII 

CAPACITOR MISMATCH CHARACTERIZATION AND LAYOUT 

TECHNIQUES 

 

7.1 Motivation  

The D/A converter is a vital part of many electronics systems. In almost all A/D 

converters the linearity of D/A converter limits the resolution of the converter. The 

linearity of D/A converter is limited by the mismatch between unit cells (unit capacitors, 

for switched capacitor circuits). Mismatch between the capacitors of the array could be 

due to two reasons – random variation and systematic variation. Here systematic 

variation refers to spatial dependence of capacitor value. Patterning and etching 

variations during the fabrication of capacitor plates and dielectric thickness variations are 

examples of mismatch caused by process anomalies. Some of these results in random 

mismatch while others result in spatial dependence of the capacitor value.  

Laying out each required capacitor as a sum of unit capacitors usually minimizes 

random variation. The entire array is surrounded by ring of dummy capacitors to make 

the environment of each interior capacitor the same. However, inspite of great care taken 

in layout it is impossible to completely remove the effect of random errors. 

The effect of spatial variation can be reduced by grouping unit capacitors in such a 

way that the average capacitor value of the entire array. Spatial variations can be modeled 

a layout chosen to minimize such errors. Again, the extent of the error cancellation 

depends on the accuracy of modeling. Also there is a trade-off between canceling 

gradient effects and random mismatch. For example to cancel quadratic gradient, it is 

essential to split each unit cell into at least four parts, which leads to greater random 

variations. Also dividing a unit into four sub-units and placing them in four distant 

locations bring up the problem of routing the interconnection between them. Other 

disadvantage is that even though a unit is sub-divided into four separate sub-units, the 

total area of each sub-unit is more than 1/4 of the original unit. This is due to required 

minimum spacing between subunits dictated by the fabrication technologies. The 

increased number of interconnects cause the area to increase. Whether common centroid 
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layout, which cancels gradient, will perform better depends on what is limiting the 

performance: random variations or spatial variations. 

The objective of this test chip is as follows 

• To verify if we can get 12bit cap matching with 16 unit caps (1.5625pF) each. 

• To study what is limiting the matching: whether gradient is dominant factor or 

random mismatch is dominant. To test this we are having a version with each unit cap 

split into smaller units to reduce effect of gradient. 

• To study if the differential cap matching is inferior compared to single-ended cap 

matching. To this end we have a test option to measure the cap matching with single-

ended cap array. 

• To develop a method for measuring the cap-mismatch which can be extended to use 

for calibration if needed.  

• To measure how the random mismatch varies with varying size of unit capacitors. 

 

7.2 Mismatch characterization  

Capacitor mismatch cannot be typically measured on discrete devices. This is because of 

the small capacitances involved and very low level of mismatch typically seen on 

capacitors. Commercial CV meters can measure approximately down to 1pF with 10% 

accuracy. High performance capacitors of test are in range of 1-5pF but require 

measurement accuracy at low ppm level. Below we discuss standard methods used for 

capacitor characterizations and then present the method we selected for characterization.  

 

7.2.1 Floating gate measurement technique 

A typical test structure for measuring capacitor mismatch is shown in Fig 7.1 [61]. Two 

capacitors of equal size are connected in series. The common node is connected to the 

gate of a PMOS transistor. The voltage on this (floating) middle node is monitored at Vout 

using a source follower that is biased with a fixed current source e.g current source from 

a parametric tester. By applying two different input voltages (Nin,lo and Vin,hi) with C1 

connected to Vin (C2 grounded) and measuring the corresponding output voltages (Vout,lo 

and Vout,hi) at the source of MOSFET, the slope S1 can be determined, as illustrated in Fig 
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7.2 . The measurement is repeated with Vin connected to C2 and C1 grounded. The result 

is slope S2. By using S1 and S2, most parasitic effects are averaged out. Capacitor 

mismatch is calculated as follows: 

21

21

21

21

21

2
2

21

1
1

2.2
C

C

 ;  ;

SS

SS

CC

CC

CCC

C
S

CCC

C
S

parpar

+

−
=

+

−
=

∆

++
=

++
=

                                                                 (7.1) 

 

 

               

           

            (a) Setup for measuring S1                                  (b) Setup for measuring S1 

 

                             Fig. 7.1. Floating gate capacitance measurement method 
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                               Fig. 7.2. Determination of slope S for floating gate capacitance   

                                              measurement method 

7.2.2 Charge based capacitance measurement 

  Another method for characterization of capacitor is CBCM (charge-based capacitance 

measurements) introduced in  [62]. CBCM has very good resolution that allows for 

measurement of capacitances in femto-farad range. The only equipment needed for the 

CBCM method is an accurate ammeter for the measurement of a DC supply current. 

Figure 7.3 shows the principle of classical version of CBCM. 

The test structure consists of a pair of NMOS and PMOS transistors connected in a 

“pseudo” inverter configuration, each has its own gate input. The pseudo inverter 

structure on the left is identical to the one on right in every manner, with both loaded by 

capacitors C1 & C2 whose mismatch is to be characterized.  The left and right structures 

are driven by two non-overlapping clock signals. When the PMOS transistor turns in will 

draw charge from VDD to charge up the target capacitances. This amount of charge will 

then be subsequently discharged through the NMOS transistor into the ground. An 

ammeter measures this charging current. The difference between the two DC average 

currents is used to extract the mismatch between the two test capacitors. 

                                     fVCfVCfVCII dddddd ......' 21 ∆=−=−                                   (7.2) 
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                            Fig. 7.3 Test structure for CBCM method 

 

7.2.3 Proposed method  

Both the methods presented above are suitable for characterizing the mismatch between 

two unit capacitors. For our case we have a DAC with 16 unit capacitors and we wish to 

characterize the relative mismatch between them. The idea is to switch one capacitor at a 

time to the reference and observe the output. The output of the DAC cannot be directly 

loaded so we buffer it with an amplifier as shown in Fig 7.4. The output of the amplifier 

is not a dc value, so a dc meter cannot be used to measure the output of the DAC. We 

need to use a properly synchronized ADC to capture the output of DAC. A possible test 

setup is illustrated in Fig 7.5.  The same setup can be used to obtain calibration 

coefficients in an ADC. Then the buffer used can be on of the amplifiers used for 

integrators. 
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                         Fig. 7.4. Switched capacitor DAC followed by a buffer  

 

         

 

                        Fig. 7.5 Block diagram of test setup for characterization 
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                                     Fig. 7.6. Capacitor errors due to over-etching 

 

7.3 Layout techniques 

7.3.1 Capacitor matching: The major sources of error in realizing capacitors are due to 

overetching and the oxide thickness gradient across the surface of the chip [63]. The 

former effect becomes less dominant for large capacitor sizes.  Let us assume that a 

capacitor has an absolute overetching given by ∆e and its ideal dimensions are given by 

x1 and y1, then its real dimensions are given by x1a = x1 - 2∆e and y1a = y1 -2∆e , then the 

real capacitor size is given by  

                       )2)(2( 1111 eyexCyxCC oxaaoxa ∆−∆−==                       (7.4) 

Thus the error in real capacitor is given by  

                       ]4)(2[ 2

111111 eyxeCyxCyxCC oxoxaaoxt ∆++∆−=−=∆                (7.5)  

When this error is small then the second order term can be ignored and equation (7.5) can 

be approximated by  

                       oxt CyxeC )(2 11 +∆−=∆                                              (7.6) 

the relative error in capacitor is therefore given by  
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Let us now compare the relative errors for unit-cells with different areas i.e different 

capacitances values. Let the dimensions be x2 = kx1 and y2 = ky1 then 
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Thus we obtain 
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This means that matching is improved for larger unit cells. Thus splitting unit cells to 

cancel gradients will have adverse effect on random mismatch due to overetching. 

 

         

 

           Fig. 7.7 Linear gradient: a) Illustration b) Canceling the gradient  

(a) 

(b) 
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7.3.2 Canceling linear gradients  

Let us assume that there is a linear gradient in x direction as shown in Fig 7.7a. We want 

to match two capacitors C1 and C2, but because of gradient there is a mismatch of 2∆C in 

between them. To cancel linear gradient we must do a common centroid layout, this 

requires splitting the unit cell in two halves. The placement of the half-cells is shown in 

Fig 7.7b. From the figure we observe that  

 

        [ ] [ ] CCCCCLCLCC =∆++∆−=+= 2/32/2/32/)8/7()8/( 111  

        [ ] [ ] CCCCCLCLCC =∆++∆−=+= 2/2/2/2/)8/5()8/3( 222                     (7.10) 

and gradient effect is cancelled. The drawback is that splitting the unit cells will cause the 

random mismatch to increase. The common centroid layout will cancel linear gradients 

for capacitor arrays with more than two capacitors. As an example the following 

arrangement will cancel linear gradient for a capacitor array with four matched capacitors 

               C1 C2 C3 C4 C4 C3 C2 C1                                                            

 

7.3.3 Canceling quadratic gradients  

    We assume that there is a quadratic gradient in x-direction as illustrated in Fig 7.8a. 

We wish to match a capacitor array with four matched capacitor. Let us approximate the 

quadratic gradient with a linear approximations as shown in Fig 7.8a, then with this 

approximation C1 = C4 = C- ∆C/2   C2 = C3 = C+ ∆C/2, thus there is a mismatch of ∆C 

between unit cells.  

To cancel the quadratic gradient we split the unit cell into four quarters. The 

capacitors are laid out such that the layout has an axis of symmetry at the centre. Each 

half on either side of axis of symmetry also has an axis of symmetry at its centre. This is 

illustrated in Fig 7.8b.  It is easy to see that this layout will also cancel linear gradients in 

x direction.  
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         Fig. 7.8 Quadratic gradients: a) Illustration b) Canceling the gradient  

 

7.3.4 Unit cell  

The layout of the unit cells and associated interconnects is very critical for good matching 

[64]. Fig 7.9 shows the layout of unit cell used for thus test-chip. The unit caps have 

square top plates with chamfered corners. The capacitors are placed over NWELL for 

noise isolation. Top plates on each side are connected together and are routed on metal 2. 

Routing of bottom plates is more critical as each of them goes to a separate net.  
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                                                            Fig. 7.9. Layout of the unit cell  

 

Bottom plate routing is done in metal 1. The routing is built as a part of unit cell. Though 

this increases the area of unit cell it helps keep all the routings identical hence avoiding 

systematic mismatch errors.  A ring of dummy caps surrounds capacitor arrays. 

 

7.3.5 Proposed capacitor layouts 

 In this test-chip we built a DAC with 16 unit elements each with a nominal value of 

1.5625pF giving a total capacitor of 25pF. The capacitor array had three different 

versions. Besides this one more version was built with half the size of unit cell. 

Version 1: This is illustrated in Fig 7.10a; there is no attempt to cancel gradients in this 

version. The n –side is a mirror image of the p-side. Each unit cap is 1.5625pF 

Version 2: This is illustrated in Fig 7.10b. Here each unit cap is divided into two half 

cells (781.25fF) and the capacitors are arranges so as to cancel linear gradients. Total size 

of each unit element is still 1.5625pF 
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Version 3:  This is illustrated in Fig 7.10c. Here each unit cap is split into four quarters 

and the quarter cells are arranged so as to cancel quadratic gradients. Total size of each 

unit element is still 1.5625pF 

Version 4: This version is same as Version 1 except that each unit capacitor is half of 

that in latter. Ignoring gradient effects, from theory we expect the mismatch in version 4 

to be 2  times the mismatch in version 1. 

 

7.4 Test setup  

The test-chip has two test modes. In one test mode we measure the mismatch for 

differential capacitor array, whereas in second test mode we measure the single-ended 

cap mismatch.  Only one unit element is switched at a time. There is a 4 bit counter inside 

which selects the unit capacitor to be chosen at a given instance. Ideally we expect an 

output equal to VREF/16 each time, but because of capacitor mismatches the outputs 

vary from each other. 

For the single-ended case n-side is switched to common mode voltage in both the 

phases. The ADC used for this characterization is ADS1271. We used ADS1271 

Evaluation module (EVM) shown in Fig 7.11 (a) as a daughter board. We designed a 

motherboard shown in Fig 7.11 (b) on which our test-chip socket is present. This 

motherboard interacts with the data capture card and pattern generator. The ADS1271 

EVM is docked onto the motherboard as illustrated in Fig 7.11(c). The socket used is 

OZTEK 48pin TQFP socket. The version selection and test mode selection is done 

through jumpers on the motherboard. 
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                                            a) Version 1  

                   

                                            b)Version  2 

 

                                          c) Version 3  

                           Fig. 7.10. Different capacitor layouts 
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                     (a)                                                                    (b) 

                      

                                                                 (c) 

Fig. 7.11. Test boards a) Daugther Board  b) Motherboard  c) Daughter board docked on    

                mother board 
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7.5 Measurement results    

Fig 7.12 shows the die-photo of the test-chip.  The results were averaged to obtain a 

measurement accuracy of 16 bits.  Fig 7.13 shows the mismatch results for differential 

capacitor array while Fig 7.14 shows the results for single ended capacitor error.  The 

results are based on data collected from 33 devices.  

 

 

                                       

                                            Fig. 7.12. Die photo of the test-chip  
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Fig 7.15 shows the mismatch coefficient for each unit elements for different versions. It 

is clear from the figure that version 1 has systematic errors whereas version 3 has mostly 

random mismatch. Best results are obtained with quadratic gradient cancellation. The 

mismatch (1 sigma) for half sized cap array is 1.44 times the mismatch for version1.  The 

mismatch results are summarized in Table 7.1  

 

    

                        a) Version 1                                                      b) Version 2  

      

                     c) Version 3                                                         d) Version 4   

 

           Fig. 7.13. Mismatch (1 sigma) for differential capacitor array 
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                        a) Version 1                                                      b) Version 2 

 

                     c) Version 3                                                         d) Version 4    

 

             Fig. 7.14. Mismatch (1 sigma) for single-ended capacitor array 
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                                                                  a) Version 1  

                    

                                                                    b) Version 2  

                  

                                                                 c) Version 2     

 

                                Fig.7.15. Mismatch coefficient for 16 unit elements  
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Table 7.1. Mismatch results summary   

Version  Differential mismatch 

         (Mean sigma)   

Single-ended mismatch 

         (Mean sigma) 

Version 1: No gradient cancellation, 

unit = 1.5625pF 

1.51e-4 

 

2.72e-4 

 

Version 2: Linear gradient 

cancellation, unit = 1.5625pF 

1.33e-4 

 

2.13e-4 

 

Version 3:Quadratic gradient 

cancellation, unit = 1.5625pF  

1.18e-4 

 

2.11e-4 

Version 4 : No gradient cancellation, 

unit = 1.5625pF 

2.18e-4 3.99e-4 

 

7.6 Conclusion  

In this section we present a method to characterize capacitor mismatch in multi-bit DAC. 

The mismatch coefficients determined in this way can be used for calibration in a delta 

sigma ADC as discussed in last chapter. Next we present different methods of canceling 

gradient effects in a capacitor array. A test chip was built with four different versions of 

capacitor array. From the measurement results obtained we conclude that quadratic 

gradient cancellation gives the best results. This chip validates the result from equation 

(7.7) that random matching improves as square root of area. 
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CHAPTER VIII 

BROADBAND CONTINUOUS TIME Σ∆ ADC
*
 

 

8.1 Introduction 

Continuous time sigma delta modulators (CTM) are increasing becoming popular for low 

power broadband analog to digital conversion. A block diagram of CTM is shown in Fig 

8.1. Here a continuous time loop filter replaces the discrete time loop filter and the 

sampling is moved from in front of loop filter to after the loop filter. There are lots of 

advantages in designing high-resolution broadband converters using continuous time 

techniques. Below we list some of them 

• High speed input drivers are not required: As discussed in Chapter II, the input 

driver of a switched capacitor ADC sees a switching load and the output of the driver 

must settle within half a clock cycle. The step at the output is the worst loading 

condition for the input driver. For a CTM there is not sampling at the input so the 

input doesn’t see any switching load. The input driver only sees a resistive load if 

active RC integrator is used or gate/ base impedance if gm-C filter is used. 

• Boost switches are not required: The design of sampling network is relaxed to a 

great extent. The error introduced in the sampling process is now attenuated by the 

loop gain so a simple CMOS switch will mostly suffice. 

• Higher sampling rates are possible: This is due to the fact that the integrators are no 

longer clocked so the bandwidth requirements on the amplifiers for integrators are 

eased. 

• Inherent anti-aliasing property: Continuous time modulators have an inherent anti-

aliasing property. The amount of filtering depends on the order of loop filter and the 

architecture of loop filter. Loop filters with feed forward architecture have only first 

order roll –off at high input frequencies. 

 

                                                 
*
Part of this chapter has been reprinted from “State space approach to design of continuous time 

sigma delta ADC with delay in feedback path,” by A.K.Gupta, E.Sanchez-Sinencio, August 2006, 

Proc. IEEE MWSCAS. Copyright IEEE, 2006. 
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               Fig. 8.1. General block diagram of continuous time sigma delta modulator 

 

• Lower power consumption: This is a direct consequence of using lower bandwidth 

amplifiers. Also getting rid of the input driver reduces power consumption. Since there 

is no sampling in loop filter the wide band thermal noise doesn’t fold to baseband 

leading to better SNR performance. 

There also some issues in designing CTM, which are discussed below: 

• Not scaleable with clock frequency: Unlike their discrete time counterparts, the 

continuous time modulators do not scale with clock frequency. This means that a 

CTM designed to operate with a clock frequency of 100Mhz will not operate with a 

clock of 25Mhz. 

• Excess Loop delay:  This arises due to finite response time of the flash ADC and 

feedback DAC. Ideally the delay from time the ADC samples to the time DAC 

provides feedback should be zero. But in any actual circuit there is a finite delay in the 

comparator and DAC. It leads to instability in the modulator and results in degradation 

in SNR. In earlier work the attempt was made to keep this delay to less than 10% of 

the clock period. This generally meant fast comparators consuming lot of power. A 

solution to this problem shown in Fig 8.2 was first presented in [65] and then 

implemented in [66,67]. The idea is to provide an additional feedback path, which 
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provides the first output of desired impulse response. Now comparators have half 

clock time to provide decision, so they can be slowed down, saving power. We will 

look in detail, on designing modulators with delay in feedback path in next section. 

• Clock jitter: Continuous time modulators are more sensitive to clock jitter than their 

DT counterparts.  One option to reduce sensitivity to jitter is to increase the number of 

levels in the feedback DAC. Other option is to use a switched capacitor DAC instead 

of a current mode, but it requires use of high bandwidth opamps in the integrators and 

so is not very desirable. 

• Asymmetry in DAC waveform: In general CTM’s are sensitive to the shape of DAC 

pulse; any non-uniformities will tend to degrade performance. Specifically unequal 

rise/fall time of DAC pulses lead to non-linearity. It has been argued in [68] that fully 

differential circuits are inherently symmetric, so this is not a problem if using fully 

differential circuits. But [69] claims that the THD performance for them is limited by 

asymmetry in DAC waveforms, as even though the design is meant to be fully 

differential, it may not be the case in final implementation. The use of RZ DAC pulse 

will solve the problem, but will lead to increased sensitivity to jitter. Only solution is 

to make DAC waveforms should be made as steep as possible. 

• Nonlinearity of feedback DAC: This is same as in discrete time modulators. 

Dynamic element matching (DEM) and calibration techniques discussed in chapter V 

and chapter VI can be used. 

 

          

              Fig. 8.2. Excess loop delay compensation with additional feedback path. 
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Table 8.1. Recent continuous time sigma delta modulators 

Reference/yr/ 

Affiliation 

Signal  

BW 

SNR DR SNDR Power 

(mW) 

Process 

[66] 2004 /TAMU 

 

1.1Mhz 84dB 93dB 83dB 62mW 0.5uCMOS 

[67] 2005/ TI, Dallas 600khz 77dB    _ 74dB 6.0mW 90nm, 

CMOS 

[69] 2005/ Infenion 

Technologies, Austria 

2Mhz 72dB    _ 71dB 3mW 0.13um, 

CMOS 

[70] 2005/ TI, Dallas 600khz 86dB    _     _ 5.4mW 90nm, 

CMOS 

[71] 2004 / Philips, 

The Netherlands 

1Mhz     _ 89dB     _ 2mW 0.18u 

CMOS 

[72] 2004 / Philips, 

The Netherlands 

10Mhz     _ 67dB     _  122mW 0.18u 

CMOS 

[73] 2005/ ADI / 

Wilmington, MA 

20Hz-

20Khz 

106dB    _ 99dB 18mW 0.35u 

CMOS 

 

Despite the problems associated with design of CTM, some high performance very 

low power CTM have been designed recently and are summarized in Table 8.1. It appears 

that while choosing architecture for broadband high-resolution ADC, continuous time 

sigma-delta modulator is a very serious contender. It is becoming very popular in smaller 

CMOS technologies, which have significant amount of gate leakage current. Since the 

loop filter in CTM doesn’t sample the signal gate leakage is not a serious concern. 

In the next section we develop a state-space based approach for design of CTM with 

delay in feedback path 
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8.2 State space approach to design of CTM with delay in the feedback path 

Excess loop delay is one of the major sources of instability and signal to noise ratio 

(SNR) degradation in continuous time sigma delta modulators. This delay is simply the 

time between the quantizer clock and the DAC current pulse. It has been shown that such 

a delay increases the order of loop filter by one and hence degrades the stability of the 

loop [74]. One of the solutions is to provide an additional feedback path just before the 

quantizer. This feedback path affects only the first sample of the impulse response. This 

solution shown in Fig 8.1 was originally suggested in [65] and successfully implemented 

in [66], [67]. 

  The design of CTM is generally done by first designing a discrete time modulator 

with the loop transfer function G(z) and then transforming it to continuous time H(s) by 

using an ‘impulse invariant’ transformation. This transformation can be carried out by 

either z-transform techniques [74] or state space techniques [75].  In previous work [76], 

modified z-transform has been used to determine the coefficient of the modulator in Fig 

8.2 with arbitrary delay td in the feedback path.  An optimization method has been 

suggested in [77] to match the impulse response of delayed and non-delayed transfer 

function. In this paper we present state space based approach to design the CTM with 

arbitrary delay in feedback path. This is an extension of work in [75] and leads to very 

simple design procedure using MATLAB. 

We also analyze the CTM with resonators in the loop filter and see that it leads to an 

infinite series in state space form. It is shown that using some results from the z-

transform theory can greatly simplify the design procedure for such CTM 

 

8.2.1 Design with delay in feedback loop 

The design procedure starts with designing a discrete time modulator (DTM) with loop 

transfer function G(z) and then converting it to a continuous time modulator (CTM) such 

that impulse response of the DTM and CTM at the sampling instant of quantizer is same. 

We proceed to model the CTM in discrete time, with a pre-filter conditioning the input 

signal before sampling [75]. This is illustrated in Fig 8.3a, where input signal u is filtered 
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by a filter gpc and then sampled to give a discrete input signal u1. Loop filter is assumed 

to be of order n and feedback to be of NRZ (non-return to zero) type.  

The continuous time modulator in Fig 8.2 has state equations 
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where td is the delay in feedback path. It is possible to arbitrarily increase the feedback 

delay, if properly timed additional feedback paths are provided at the summing node 

before quantizer. But there is no advantage in having a delay greater than one clock 

period (T), so in this analysis we will assume that 0 < td <= T.  

 

                   

(a) With delay and additional feedback incorporated in H’(z) 

 

                   

                             (b) Another  representation with H’(z) = [1+L(z)]e
-std

 

                       Fig. 8.3. Discrete time equivalent of continuous time modulator               
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Equation (8.1) can be solved to give 
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If we let t0 = kT and t= kT+T, equation (8.2) becomes 
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Now change of variable from λτ −+= TkT  and defining Bc = [Bc1, Bc2] gives 
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We note here that output v of the quantizer is piecewise continuous-time signal which 

changes value only at the sampling instant of the quantizer. If there is no time delay (td 

=0), there will be only one value of v in the second integral. With non-zero td , as λ  varies 

from 0 to T, the value of v changes from v(kT) to v(kT-T). Thus second integral can be 

evaluated as two separate integrals giving  
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The first integral in equation (8.5) represents a collection of n prefilters 
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Each filter connects the input to one of the states in the discrete time model. The output 

of the prefilters are given by 

                                            pcgkTuu ′= *)(1                                                                  (8.7) 

To simplify notations let us define   
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Now if we normalize time with respect to T, we can write equation (8.5) as 

                )()1()()()1( 2111 kvkvkukxkx ββα +−++=+                                                 (8.9) 
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If we want to get above in state space form, we must eliminate term containing v(k-1) 

from the right side. This can be done if we define a new state xn+1(k) = v(k-1). Thus the 

state space representation for CT modulator is given by 
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Thus we observe that equation (8.10) is one order higher than the original continuous 

time system with which we started. This result has been derived earlier in [74] using z-

transform techniques. The loop filter transfer can be found using 
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For the continuous time modulator to have same impulse response as DTM we must now 

equate G(z) to H’(z). To illustrate the procedure we take example of a second order CT 

modulator shown in Fig 8.4.  We wish to determine the coefficients [b1, b2, b3] such that 

CTM has same impulse response as DTM defined by  

 

        

                                Fig. 8.4. Second order modulator with delay in feedback path 
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We chose delay = 0.5 for this example (time normalized with T). The state equation for 

modulator in Fig 8.4 is given by  
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Evaluating equation (8.8) gives  
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Substituting in equation (8.14) gives  

 

0                  0      0

0.5b-0.375b-    1       1

0.5b-              0       1

21

1

















=′A   

















−−

−

=′

1          

5.0125.0

5.0       

21

1

1 bb

b

B     ]b-   1    0[ 3=′C        (8.16) 

Now equation (8.11) can be solved and the result equated with G(z)  , which gives 
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The above procedure guarantees that the noise transfer function is as desired. The input 

signal to the modulator is pre-filtered by gpc as shown in Eq (8.8). For the example above            
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Now we want to analyze how the delay in the feedback path affects the signal transfer 

function.  Let us assume that there is no delay, in this case desired discrete time transfer 

function G(z) and the discrete equivalent of  CT design H’(z) are same,  thus STF is 

given by  
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Now with a delay in the feedback, by the above procedure we found a new transfer 

function H’(z) such that )(')( zHzG = . Referring to Fig 8.3(b) we note that  
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The signal transfer function STF is given by 
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The second term in the bracket can be ignored for the baseband signal, where loop gain is 

large. Thus comparing equation (8.20) and equation (8.18) we observe that the STF with 

delay is same as without delay except for time advancement.  This time advancement is 

absorbed by the pre-filter Gpc(s), which has a delay of one clock period.  The results are 

verified for the modulator in Fig 8.4 with the NTF as (1-z
-1

)
2
 . The quantizer is assumed 

to be 4-bit and reference voltage of one volt is assumed. The power spectral density is 

illustrated in Fig 8.5a and the signal transfer function is illustrated in Fig 8.5b.  

The analysis presented above becomes involved for higher order systems. It is at 

least as complex to solve for coefficient as using modified z-transform techniques. So it 

becomes essential to automate the procedure using MATLAB. 

 

8.2.2 Loop filters with resonators 

It is well known that having all the poles of the loop filter at dc doesn’t give the optimal 

signal to quantization noise ratio (SQNR). Optimal transfer functions can be found by 

having some of the poles as complex conjugate, spread over the pass band [48]. Figure 

8.6 shows a 3
rd

 order modulator with such a pole pair at 1gjs ±= . The desired NTF 

obtained using Schreier’s Delta Sigma toolbox [78] for a 5 bit ADC and OSR =16, is         
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a) Output power spectral density  

  

b) Signal Transfer function 

        

              Fig. 8.5. Second order modulator  
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We want to determine the coefficient [b1, b2, b3, b4, g1]. For the CT system, the state 

space matrices are  
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                             [ ]1   0   0=cC              Dc = [-a4] 

Next we proceed to determine cA
e=1α ; 

We can expand α1 as a series [79] 
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This series expansion terminated in the example in Section II, but for present Ac, it gives  
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     If g1 was known we could have solved this numerically, but since we are solving for 

g1 we cannot proceed further. One way is to vary the value of g1, solve the equations with 

that g1, and select g1, which gives the impulse response, closest to the desired DT 

response.We find it more efficient to use the following results from [78]  
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                Fig. 8.6.  A third order loop filter with a pole pair at s = +/-j g1
1/2
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It is easy to see that the loop filter in Fig 4 will have complex pole pair at 1gj± , which 

gives a factor 1/s
2
+g1. This corresponds to pole pair at 1gj

ez
±

= , which gives a factor  

of )1cos2( 1

2 +− gzz  in the denominator of loop transfer function. Thus g1 can be 

directly determined by observing the desired DT transfer function. Once g1 is determined 

the analysis can proceed with state space analysis. Since this system becomes fourth 

order once delay is taken into account, we will not attempt to solve for coefficients 

manually, instead we use MATLAB for the same in next section. 

 

8.2.3 Design examples with MATLAB 

In this section we obtain the coefficients for modulator in Fig 8.6 using MATLAB.  The 

easiest way to determine coefficient in MATLAB is to define the system as a four input, 

one output system. Next impulse response due to each input is computed. The desired 

impulse response is a weighted sum of the four individual impulse responses. The 

required coefficients are the weights for different inputs.  

                        

                         Fig. 8.7 Matlab code to determine the coefficient of  

                                      modulator with feedback architecture 
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              Table 8.2. Coefficients for modulator in Fig 8.5  

Coefficients  

Delay 

b1 b2 b3 b4 g1 

td = 0 0.3228 0.8994 1.2553 0.0000 0.02304 

td =0.5 0.3228 1.0436 1.7413 0.7462 0.02304 

td =1 0.3228 1.1818 2.2979 1.7531 0.02304 

 

This procedure can be applied only if we know g1, since then only e
Ac

 can be evaluated. 

We determine g1 as discussed in section III. The MATLAB code to determine the 

coefficients is given in Fig 8.7. The coefficients for different value of delay are listed in 

Table 8.2.  It should be noted the coefficients obtained above have not been scaled for 

dynamic range. The simulated power spectral density for the modulator is shown in Fig 

8.8 with the NTF as given in (8.21) and delay of 0.5.  The result is quite similar with 

different values of delay.  

 

         

                  Fig. 8.8. Power spectral density for all pole third order modulator  
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The signal transfer function for the in-band signals is illustrated in Figure 8.9a. We 

observe that for OSR = 16 the signal transfer function is quite flat but it rolls-off for 

higher frequencies. To illustrate the anti-aliasing property the STF is plotted for 

frequencies greater than Fs/2 in Fig 8.9b. Since it is an all pole loop filter of order three 

the role-off is at 60dB per decade, which is very desirable.  Also nulls at multiples of Fs 

help in anti-aliasing. 

          

       

     Fig. 8.9. Third order modulator signal transfer function  a) in-band ; b) out of band 

(a) 

(b) 
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                Fig. 8.10. A fourth order loop filter with feedforward architecture   

 

Next we look into a feed-forward architecture as shown in Fig 8.10. The advantage of 

this architecture is that it leads to reduce signal swing at the output of integrators.   The 

desired NTF obtained using delta sigma toolbox using OSR = 16 and 5 bit feedback DAC 

is as below  
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         Fig. 8.11.  Matlab code for modulator with feedforward architecture  
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             Table 8.3. Coefficients for modulator in Fig 8.6 

Delay 

Coefficients 

td = 0 td =0.5 td =1 

a1 1.2992 1.8701 2.5711 

a2 1.0191 1.2683 1.5392 

a3 0.4753 0.5206 0.5624 

a4 0.0940 0.0872 0.0799 

a5 0.0000 0.7871 1.8918 

g1 0.02706 0.02706 0.02706 

 

In this example we formulate the system as a single input, 5-output system. We compute 

the output impulse response for all five outputs. The desired impulse response here is the 

weighted sum of all five outputs and the weights are the required coefficient. The 

coefficient g1 is again obtained from observation. The MATLAB code for the above 

procedure is as shown in Fig 8.11 and the coefficients obtained for various values of 

delay are compared in Table 8.3. 

 

    

Fig. 8.12. Power spectral density for fourth order feedforward modulator  
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The simulated power spectral density for the modulator is shown in Fig 8.12 with the 

NTF as given in (8.25) and delay of 0.5.  The result is quite similar with different values 

of delay. The signal transfer function for the in-band signals is illustrated in Figure 8.13a. 

We observe that for OSR = 16 the signal transfer function is flat in-band but it peaks at 

higher frequencies. To illustrate the anti-aliasing property the STF is plotted for 

frequencies greater than Fs/2 in Fig 8.13b. The roll-off at higher frequencies is only 

20dB/decade because of feedforward paths. 

 

       

     

    Fig. 8.13. Fourth order feedforward modulator STF a) in-band b) out of band  

(a) 

(b) 
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8.3 Conclusion 

 In this chapter we have analyzed the continuous time sigma delta modulator with 

feedback delay using state space techniques. We also analyzed the loop filters with 

resonators as a special case in which it is not very easy to use the state space technique. 

We suggest deriving the resonator loop coefficient using z-transform techniques and then 

proceeding with state space analysis. The techniques discussed in the paper are useful as 

they can be automated using MATALB and leads to a very simple design procedure. 
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CHAPTER IX 

 CONCLUSION 

 

In this thesis we looked into design techniques for low-noise high-speed A/D converters. 

We discussed some applications for broadband high resolution ADC’s. The high dynamic 

range in ADC may sometimes be required to simplify the front-end design by removing 

the programmable gain amplifier (PGA) or automatic gain control (AGC). We discussed 

the need for high-speed drivers for A/D converters and presented a novel precharge 

scheme to relax the requirements on the driver. We discussed the latch-up problem in 

two-stage amplifiers and also presented a novel multi-path common mode feedback 

scheme to solve the problem. We looked at various sample and hold design techniques to 

achieve very high linearity and presented results for one such technique. Next we looked 

at dynamic element matching techniques to mitigate the effects of DAC mismatch. We 

presented a modified second order DEM that outperforms existing DEM techniques. Next 

we presented some results for calibration in conjunction with DEM, which can help to 

reduce calibration time. Next we looked into various capacitor array layout techniques 

and presented measurement results from a prototype test-chip. Finally we presented a 

method for determining the coefficient for a continuous time sigma delta modulator using 

state space approach, which can be automated using MATLAB.  
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