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ABSTRACT 
 

Behavioral Ecology and Conservation of Large Mammals: Historical Distribution, 

Reintroduction and the Effects of Fragmented Habitat. (August 2006) 

Oranit Gilad, B.S., University of Houston 

Co-Chairs of Advisory Committee:   Dr. Rodney L. Honeycutt 
                                     Dr. X. Ben Wu   

  

     Conservation biologists have used reintroduction as a method to reestablish 

extirpated species in their native habitat.  Three important aspects of a successful 

reintroduction effort include: (1) a habitat suitability study of the reintroduction area, 

including effects of migration corridors; (2) identification of possible predators of the 

reintroduced species; and (3) a post-reintroduction assessment including an evaluation of 

the species’ population dynamics.  In this study I examine the suitability of Guadalupe 

Mountains National Park (GUMO) as a reintroduction area for desert bighorn sheep.  

The study used landscape metrics to compare GUMO to a nearby mountain range that is 

currently supporting an estimated population of 400 bighorn sheep.  This study identified 

migration corridors for bighorns throughout the region and evaluated mountain lion (a 

potential predator of bighorn sheep) numbers either residing in or passing through the 

park between the years 1997 to 2004.    

     Results on the studies in GUMO revealed 15,884 ha of suitable habitat for 

bighorn sheep and provided evidence of migration routes between GUMO and 

neighboring mountain ranges.  In terms of potential predators, a minimum of 32 resident 

and/or transient mountain lions occurred in GUMO over a seven year period, and a 
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minimum of 15 cats used the park in 2002.  Based on estimates of individual home range 

of males and females, GUMO should be able to support four to five individuals.  The 

genetic data indicates a high number of transients or perhaps an unstable population of 

mountain lions that may be the result of intense hunting pressure of cats in Texas.   

Finally, my study simulates parameters of the population dynamics of a different 

species, the Arabian oryx that was reintroduced as three separate populations to the 

Israeli Negev between 1998 and 2005.  I simulated population growth and the effect of 

migration corridors on species persistence.  Results suggest that migration corridors are 

essential for a self-sustaining viable metapopulation under current natality rates.  In the 

event that natality rates increase (as was evident in a reintroduced population of Arabian 

oryx in Oman), metapopulation can reach viable size with only two of the release sites 

(open, flat terrain) connected by migration corridors. 
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CHAPTER I 

INTRODUCTION 

1Many species have been suffering a drastic and continuous loss of habitat as a 

result of ongoing expansion of human activities (Stanley Price, 1989; Sarrazin and 

Barbault, 1996).  This loss is especially detrimental to large mammals that require large 

home ranges to sustain a viable population (Wilcove et al., 1986).  Many species have 

experienced severe range reductions as a result of habitat loss, and remaining populations 

of some species are experiencing added pressure from primarily anthropogenic sources 

(Griffith et al., 1989).   Conservation biologists have used reintroduction and translocation 

as methods to reestablish extirpated species throughout portions of their native range 

(Griffith et al., 1989; Lubow, 1996; Hodder and Bullock, 1997). As indicated by the by the 

World Conservation Union (IUCN) in 1987, these efforts are aimed at enhancing the long-

tern survival of a species in an ecosystem and maintain and/or restore natural biodiversity.  

Reintroduction, as a conservation approach, has been recommended in the majority of all 

recovery plans for endangered and threatened species in the United States (Tear et al., 

1993) as well as in other regions of the world (Kleiman et al., 1994).  Despite the large 

numbers of reintroduction plans, only a small number of all attempts at reintroduction in 

the US (reviewed by Tear et al., 1993) have been successful (Beck et al., 1994; Earnhardt, 

1999), and very few are well documented.  The scarce information regarding successful 

and/or failed reintroduction projects is due in part to the failure to document procedures, 

monitor released animals (Beck et al., 1994; Ostermann et al., 2001), reluctance to report 
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failures, and publication in obscure sources of literature (Scott and Carpenter, 1987; 

Griffith et al., 1989; Beck et al., 1994; Sarrazin and Barbault, 1996).   

     Several studies attempted to examine historical reintroductions and evaluate the 

causes for their success or failure (Griffith et al., 1989; Wolf et al., 1996; Wolf et al., 

1998).  Some of the findings of these studies indicated a correlation between a successful 

reintroduction and several key factors including the type of species reintroduced (higher 

success to native game species, especially herbivores), habitat quality (the higher quality 

of habitat, the more successful the reintroduction), the location of the habitat (historical 

range vs. peripheral or outside historical range), size of the initial reintroduced population 

(more animals released, higher chance of success), and habitat free of competitors.  None 

of the evaluations included the effect of possible predators on the success of the 

reintroduction, although at least in the case of desert bighorn sheep, presence of mountain 

lion in the release area appeared to influence the persistence of introduced sheep (Hoban, 

1990; Wehausen, 1996; Ross et al., 1997; Hayes et al., 2000; Rominger and Weisenberger, 

2000; Logan and Sweanor, 2001).  It is also possible that the correlation between a 

successful reintroduction and the presence of predators within the reintroduced area results 

from whether or not reintroduced animals were either wild-caught or captive bred  (Hill 

and Robertson, 1988; Griffith et al., 1989; Marcstrom, 1990).  In the case of the desert 

bighorn sheep, the main source of released animals to predator rich habitat were naïve 

animals (Vernon Bleich, California Department of Fish and Game, personal 

communication 2004), raised in a predator-free environment where behavioral attributes 

for predator recognition and avoidance failed to develop (Curio, 1993), alarm (Russock 

 
 



  3    

and Hale, 1978; Thaler, 1987; Tulley and Huntingford, 1987; Dowell, 1990; Curio, 1993).  

In the translocation of black-faced impala (Aepyceros melampus petersi) to predator rich 

(cheetah) and predator free environments, Matson et al. (2004) found that the primary 

effect for a successful translocation was the initial size of the population being released 

followed by the presence of predators.  This study showed that in the presence of cheetah 

(Acinonyx jubatus) the persistence of the black-faced impala decline was correlated with 

the initial size of the population that was translocated.  Small, recently translocated 

population of impala had a lower survival rate in predator rich habitat while the larger 

populations survived.  The impala released were obtained from predator-rich environment, 

and the populations did not require time to acquire recognition and escape techniques from 

the cheetah. 

     A high quality habitat is species-specific and must be evaluated in accordance to 

the biology of the species being reintroduced (Stanley Price, 1989).  As in the case of the 

Arabian oryx, the abundance of water sources played a lesser role in selecting an area for 

reintroduction because the oryx lives independent of drinking water (Tear et al., 1997; 

Williams et al., 2001, Seddon and Ismail, 2002), while desert bighorn sheep, despite their 

adaptation to dry environmental conditions, spend most of their time in the proximity of 

water, especially during the summer (Smith and Flinders, 1992). Other factors contributing 

to habitat quality are availability and abundance of food, appropriate topography, distance 

from human development and other human disturbances as well as possible competitors 

(Griffith et al., 1989; Berner and Krausman, 1992). Habitat suitability studies prior to 

reintroduction are extremely important because the success of the reintroduction is directly 
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correlated to the quality of the habitat, and the source of the initial decline of the species 

must be identified and removed (Griffith et al., 1989).   

     Another problem associated with reintroduction of an endangered or threatened 

species is habitat alterations by humans that have created a network of fragmented patches 

of suitable habitat (Wilcove et al., 1986; Woodroffe and Ginsberg, 2000).  Persistence of 

species in small patches can be aided with the establishment of migration corridors, where 

animals can migrate from one patch to another (Simberloff and Cox, 1987; Noss, 1987; 

McCullough, 1996; Hanski and Gilpin, 1997; Woodroffe, 2003).  This migration will 

allow the species to extend its overall habitat as well as exchange individuals between 

subpopulations that will sustain a higher genetic diversity and prevent the long term 

effects of inbreeding depression and genetic drift (Woodroffe, 2003).  An illustration of 

the importance of corridors is the study of juvenile cougar migration between the highly 

patchy habitat of the Santa Ana Mountains near Los Angeles in California.  An average 

home range for an adult cougar is 100 km2 but only 1,114 km2 currently contains 

continuous suitable range connected to the rest of the land (and addition of 956 km2) by 

highway underpasses and culverts (Diamond, 1993).  A study by Beier (1993, 1995) found 

that each of the three corridors was used at least once and in several cases multiple times 

by dispersing juveniles.  In addition, four of the dispersers explored stretches of habitat 

that overlapped with urban areas.  Corridors would have enabled all of these juveniles to 

disperse.   

     With the increasing numbers of global reintroduction efforts, the need to identify 

criteria for pre- and post-reintroduction plans have emerged (Kleiman et al., 1994).  Since 
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reintroduction is an expensive enterprise in funds, time and human involvement (Clark et 

al., 2002), it is important to take into consideration multiple factors that maximize the 

chances for a successful establishment of a self-sustaining population back to its historical 

range.  Several factors were identified that contribute to the success of a reintroduction 

(Anderegg et al., 1983; Jungius, 1985; IUCN, 1987; Griffith et al., 1989; Stanley Price, 

1989; Gilpin and Hanski, 1991; Tear and Forester, 1992; Tear et al., 1993; Kleiman et al., 

1994; Saltz, 1998; Singer et al., 2000).  These factors focused on: (1) historical and current 

status of the species through the evaluation of the causes for population decline, status of 

current populations, dynamics and trends associated with fluctuations in populations, and 

potential sources for the reintroduced population; (2) evaluation of habitat by assessing 

whether the causes for the population decline have been removed, assessing the ability of 

the habitat to support a self sustaining population (availability of water and food sources, 

proximity to human disturbances) and evaluating connectivity between populations 

especially for a migratory and dispersing species;  (3) protection of the reintroduced 

population by identifying factors that might affect population persistence such as possible 

threat from hunters, interspecific competition (native and non-native species), and high 

predation risk; (4) studies of the social and political impact of the reintroduction; and (5) 

post-reintroduction monitoring by the evaluation of  success of the release by comparing 

population status to the ultimate goal of the reintroduction, which is the persistence of a 

self sustaining population.   

     The research presented in this dissertation pertains to two major reintroduction 

programs, one involving bighorn sheep in Guadalupe Mountains National (GUMO) Park 
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in Texas and the other pertaining to the reintroduction of the Arabian oryx in Israel.  There 

were three primary objectives as follows:   

(1) A GIS-based habitat suitability study was prepared for the reintroduction of 

desert bighorn sheep (Ovis canadensis) to Guadalupe Mountains National Park 

(GUMO).  This study considered the historical and current status and biology 

of the species as well as the conditions needed for a long-term persistence of 

the population.  Migration corridors used to connect the GUMO population to 

other bighorn populations in the Trans-Pecos area were identified. 

(2) The genetic structure of the mountain lion (Puma concolor) was evaluated 

along with an estimate of the spatial and temporal distribution of cats within 

within Guadalupe Mountains National Park and the relationship between the 

cat population in GUMO and other populations of cats in the region.  These 

genetic studies were conducted using noninvasive genetic techniques.   

(3) Subsequent to reintroduction, the effects of migration corridors and post-

reintroduction changes in natality on the dynamics and viability of the 

reintroduced populations of Arabian oryx (Oryx leucoryx) in the Israeli Negev 

was investigated. 
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CHAPTER II 

REINTRODUCING DESERT BIGHORN SHEEP TO GUADALUPE MOUNTAINS 

NATIONAL PARK: A SUITABILITY AND COMPARATIVE ANALYSIS 

2.1. Introduction 

The desert bighorn sheep (Ovis canadensis) is native to North America, and once 

inhabited Texas, New Mexico, Nevada, Arizona, California, Utah and northern Mexico.  

There were estimated 1,500 individuals of desert bighorn sheep (referred to as bighorn 

sheep) in West Texas in the 1800’s (Gould, 1962; Cook, 1994), primarily distributed in 

the mountains along the drainage divide between the Pecos River and the Rio Grande, as 

well as in the Rio Grande canyons of the Big Bend region in the Trans-Pecos region of 

Texas (Monson and Summers, 1980).  By 1905, an estimated 500 bighorn sheep 

remained, and their distribution was restricted to the main mountain ridges of the Trans-

Pecos (Bailey, 1905). The last documented report of bighorn sheep in the Guadalupe 

Mountain range was made by Snow in 1938 (Davis and Taylor, 1939; Leftwich and 

Simpson, 1978), and at the time no more than 35 individual bighorn sheep were 

estimated to inhabit what is today Guadalupe Mountains National Park (Leftwich and 

Simpson, 1978). The main factors identified as the causes for the decline of bighorn 

sheep were disease transmission from domestic sheep and goats, unregulated hunting 

and loss of habitat (Leftwich and Simpson, 1978; Smith and Flinders, 1992). 

Reintroductions of desert bighorn sheep in Texas were initiated by the Texas 

Parks and Wildlife Department approximately 25 years ago.  To date, these restoration 
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efforts have resulted in four free ranging populations and one metapopulation estimated 

at 800 individuals distributed throughout west Texas.  The largest of those populations, 

approximated at 600 individuals and classified as a metapopulation due to exchange of 

individuals between the mountain ranges, exists throughout the Sierra Diablo, Baylor 

and Beach Mountains (Brewer, 2003).  Individual desert bighorn sheep have been 

observed to migrate to the nearby Delaware mountain range.  Guadalupe Mountains 

National Park (GUMO), established in 1964, encompasses the southeastern part of the 

Guadalupe Mountain range and is a natural extension of the Delaware mountain range 

located in the Trans Pecos area of West Texas (Appendix A, Fig. 1).  Reintroduction of a 

desert bighorn sheep population in GUMO is an important aspect in the restoration 

efforts to return desert bighorn sheep to its historic range.  Management guidelines of the 

National Park Service state the importance of restoring native species to its historic 

habitat and support such actions (Singer et al., 2000; USDI, National Park Service, 

2001).   

Restoration of desert bighorn sheep is time consuming, labor intensive, very 

costly and bureaucratically challenging.  Failed attempts have been reported in many of 

the early restorations attempts (Risenhoover et al., 1988) and were attributed to a 

probable lack of rigorous habitat assessment (Smith et al., 1988). As a result, many 

habitat evaluation models have been developed and used in efforts to ensure the best 

conditions possible for successful restoration (Berner and Krausman, 1992).  The use of 

geographical information systems (GIS) has been suggested in the past few years as an 

important tool in evaluating bighorn habitat (McKinney et al., 2003), and the use of 
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spatial requirements has been identified as a possible approach to evaluate bighorn 

habitat (McCarty and Bailey, 1994; McKinney et al., 2003). Several indices have been 

identified as requirements for suitable habitat for desert bighorn sheep: escape terrain, 

visibility, water sources, appropriate forage, and proximity to human activity (reviewed 

by Krausman et al., 1999). 

     The overall objective of this study is to use criteria important to desert bighorn 

sheep for the assessment of Guadalupe Mountains National Park as a reintroduction site 

that will be used to sustain a viable population of sheep.  Two independent approaches 

were taken in order to determine suitable bighorn sheep habitat.  First, a GIS-based 

model based on recognized habitat criteria was used to assess the spatial distribution of 

habitat within the park.  Second, a comparative study of landscape attributes between 

GUMO and the nearby Sierra Diablo (SD) mountain range, a region currently supporting 

a bighorn population of 400 individuals (Brewer, 2005), was initiated.  Additionally, 

connectivity between proximal mountain ranges and GUMO was evaluated in an effort 

to identify potential avenues of exchange between various regions of suitable habitat  

2.2. Methods 

2.2.1. Study Area 

Guadalupe Mountains National Park is located in West Texas, on the border of 

Texas and New Mexico, 110 miles east of El Paso, Texas.  The park encompasses 

approximately 34971 ha and is the southeastern part of the Guadalupe Mountain Range 

that extends northeast into New Mexico (Appendix A, Fig. 1).  The entire mountain 
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range is a division of the Sacramento Mountains, the southern branch of the Rocky 

Mountains.  Topography is characterized by a rugged mountain range, deep, sheer-sided 

canyons, steep slopes, high ridges, and limited but dependable seeps and springs.  The 

main plant communities in the park include creosote-tarbush desert scrub, desert 

grassland, yucca and juniper savannas, and montane forests of pinon pine and oak   The 

species mostly consumed by desert bighorn sheep, including those that provide high 

nutritional value, comprise wild buckwheat (Eriogonum spp.), globemallow 

(Sphaeralcea spp.), sagebrush (Artemisia spp.), Bouteloua spp. prickly pear, sumac 

(Rhus spp.), honey mesquite (Prosopis glandulosa), ratany (Krameria spp.), cloak fern 

(Notholeana spp.), true mountain mahogany (Cercocarpus montanus), field ragweed 

(Ambrosia confertifolia), slender janusia (Janusia gracilis), sagebrush, dalea (Dalea 

spp.), filaree (Erodium spp.), Apache plume (Fallugia paradoxa), wild buckwheat, 

acacia (Acacia spp.), lupine (Lupinus spp.), Heath cliffrose (Cowania ericifolia), 

fleabane (Erigeron spp.), milkvetch (Astragalus spp.), and deervetch (Lotus oroboides) 

(DeYoung et al., 2000). Climate is characterized with hot summers, calm, mild autumns 

and cool to cold winters. Snow storms, freezing rain, or fog can occur in winter or early 

spring. Precipitation is mostly during the summer due to summer monsoons with an 

average annual rainfall of 19 inches at the lower elevations and 24 inches at the high 

country.  Winter average temperatures range between 30°F and 53°F while summer 

temperature range from 63°F to 88°F.  
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2.2.2. Habitat Suitability Model for Desert Bighorn Sheep at Guadalupe Mountains 

National Park 

     Several important habitat variables were identified for evaluating desert bighorn 

sheep habitat suitability: escape terrain, water availability, appropriate vegetation (food 

source), open unrestricted terrain and distance from human activities (Smith et al., 1991; 

Singer et al., 2000).  Exotic species were also identified as a factor to be considered. 

Suitable escape terrain was determined primarily based on slope information 

derived from 30 meter resolution digital elevation models (DEM) from the National 

Elevation Dataset (NED) using ArcGIS 9.1 software (ESRI, 2005).  Areas with 27°–85° 

slopes are considered optimal escape terrain because bighorn sheep have been observed 

to spend most of their time within this area.  Areas within 300m of these slopes and 

areas within 500m of these slopes when escape terrain was located on both sides are 

defined as sub-optimal, but still suitable (Singer et al., 2000) because bighorn sheep 

were documented to utilize these areas but to lesser extent.  Sources of perennial water 

within GUMO were identified using the GIS coverage of springs provided by the 

National Park Service (NPS).  Based upon previous research (Smith and Flinders, 1992; 

Singer et al., 2000), two critical distances from water have been identified.  During the 

lambing season (February - August), females and their young were found within 1000m 

from water sources (Smith et al., 1991) and this area was defined as suitable habitat for 

that part of the year.  Outside the lambing season, areas within 3,200m of perennial 

water sources were defined as suitable for bighorn sheep with respect to water 
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availability.  Therefore, areas that satisfy both of these criteria were considered suitable 

habitat and other areas are considered unsuitable (Appendix B, Table 1).   

Woodland areas and areas associated with human disturbances were considered 

unsuitable for desert bighorn sheep (Appendix B, Table 1).  The ability of bighorn sheep 

to see surrounding terrain is critical, and they will not inhabit areas that limit their sight 

(Risenhoover, 1981).  Wooded areas are avoided by bighorn sheep as they restrict sheep 

visibility and are associated with high risks of predation.  Wooded areas were identified 

through a spatial vegetation coverage provided by the NPS. Roads and hiking trails were 

also excluded as desert bighorn sheep tend to avoid areas with human presence (Smith et 

al., 1991).  Roads and hiking trails were identified from Texas Department of 

Transportation (TxDOT) line coverage and digitized hiking trails provided by the NPS.  

One hundred and fifty meter buffers of both roads and hiking trails were generated and 

excluded from suitable habitat areas (Light, 1971).     

Suitable vegetation types, as mentioned in the study area description, are 

distributed throughout the suitable terrain in GUMO and supply appropriate food sources 

for the species; as a result, vegetation was not included in the habitat model.  A small, 

unmonitored population of the exotic barbary sheep resides within park boundaries and 

travel feely within the park and the surrounded terrains.  Due to lack of data regarding 

population size and distribution, as well as specific effects of this exotic species on the 

persistence of any reintroduced population of bighorn sheep, this factor has not been 

included as part of the park’s suitability analysis. 

 
 



  13    

2.2.3. Comparison between Guadalupe Mountains NP and Sierra Diablo in Their 

Landscape Characteristics 

Evaluating landscape pattern in GUMO based on metrics of habitat patch and 

comparing these metrics to the Sierra Diablo (SD) mountain range allow one to evaluate 

the quality of habitat in GUMO relative to a habitat proven to be suitable for desert 

bighorn sheep.  The SD mountain range serves as a good comparison to GUMO for 

several reasons: (1) It has an established populations of desert bighorn sheep (2) The 

landscapes are comparable in terms of general terrain, vegetation types, and climate (3) 

It is likely that the current population in SD will supplement the reintroduction of sheep 

into GUMO (Winkler, 1980 in Morrison, 1981).   

     Two separate scenarios of landscape metrics were calculated.  One, landscape 

patterns of the optimal escape terrains (areas with 27°-85° slope) in GUMO and SD were 

compared based on patch metrics calculated using the Patch Analyst 3.0 extension 

within ArcView GIS 3.3 (ESRI, 1992).  Two, landscape pattern of the all suitable escape 

terrain (optimal escape terrain buffered by 300m) was also calculated and compared 

through the use of patch metrics.  Total landscape area, mean patch size, edge density 

and mean shape index were calculated and compared. 

Due to a lack of comparable data for the SD regarding location of water sources, 

trails and exact locations of woodland areas, only habitat areas with suitable escape 

terrain were identified and used in the comparison.  Many of the water sources at SD are 

artificially constructed by TPWD in the form of guzzlers and catchments that improve 

habitat and do not reflect natural habitat conditions; this form of habitat improvement 
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can be adapted by GUMO, making the two areas compatible in that regard.  Both 

GUMO and SD experience light and infrequent human presence; and although GUMO is 

a National Park, the hiking trails usage is sporadic and consideration of hiking trails in 

this comparison is likely not essential.  Furthermore, although desert bighorn sheep seem 

to avoid human presence and activities, it has been indicated that they will cross and use 

trail areas at night and other times where humans were not in the vicinity (Hamilton et 

al., 1982).  According to Jansen (2005) desert bighorn sheep ignored heavy human 

activities (heavy traffic to and from a mine) in order to feed off palatable vegetation that 

grew adjacent to the roads leading to the mine.  This behavior indicates that bighorn 

sheep adapt to different habitat conditions and alter their behavior accordingly.  Due to 

the similarities in terrain and vegetation type it is inferred that type and presence of 

woodland areas are similar between GUMO and SD and were not taken into 

consideration in the comparison of the habitats. 

2.2.4. Migration Corridors Identification 

All areas of optimal escape terrain (27° – 85° slope) in the Trans-Pecos area, 

including historical range of desert bighorn sheep in West Texas, were identified.  A 

travel distance by bighorn sheep of up to 7.5 km across flat terrain has been reported by 

Epps et al. (2005), and movement across 17.5km of open desert was documented by 

Cochran and Smith (1983).  Furthermore, both ewes and rams were found in ranges not 

previously inhabited by a resident population (McQuivey, 1978).  These reported travel 

distances document an attainable crossing distance for bighorn sheep between the Trans-

Pecos mountain ranges.  Based on this information, a conservative 5000m buffer 
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surrounding the optimal escape terrains and a larger 7500m buffer around the terrains 

were generated to evaluate habitat connectivity and corridors connecting major habitat 

areas.   

2.3. Results 

Guadalupe Mountain National Park was found to contain 7,273 ha of optimal 

escape terrain of slope 27-85° (Appendix B, Table 2).  After buffering this area with a 

300 meters buffer, an area of 20,736 was found suitable for desert bighorn sheep.  

Evaluating existing water sources within the park and applying a 3,200m buffer around 

them reduced the size of suitable habitat to 14,839 hectares.  After excluding areas with 

continuous woody cover and areas within 150m of trails and roads, an area of 13,200 ha 

was identified as suitable to desert bighorn sheep in GUMO (Appendix A, Fig. 2).  

During the lambing season a buffer of only 1000m from water sources was calculated, 

resulting in 4,782 ha of suitable habitat for ewes and lambs. 

Results of the landscape comparison of scenario one (optimal escape terrain 

comparison) showed that GUMO has greater amount of optimal escape terrain, is less 

fragmented with larger patches of suitable terrain and shorter distances between the 

patches than SD (Appendix B, Table 3).  Density of The optimal escape terrain patches 

in GUMO was 54% lower in density, 48% greater in mean patch size, and 21.7% lower 

in edge density than in SD.  The mean shape indices (MSI) of the habitat patches in 

GUMO and SD (1.48 and 1.46 respectively) were similar, indicating that the complexity 

of the patches is similar in the two areas since the smaller patch sizes in SD may reduce 

the MSI.  Results of scenario 2 (optimal escape terrain buffered by 300m) showed a 
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continuous suitable habitat in both GUMO and SD with a 36.37% larger suitable habitat 

area in SD.  This habitat size difference may indicate that a smaller population size may 

be supported in GUMO than in SD, but more detailed research is needed for such 

comparison in order to determine such population size. Based on a conservative estimate 

of 7km traveling distance by ewes, one migration corridor from SD to the Delaware and 

then GUMO was identified (Appendix A, Fig. 3).   

2.4. Discussion 

The amount of suitable habitat in GUMO was substantially greater than the 

minimum amount suitable habitat (1,500 - 1,700 ha) suggested by previous research to 

support a viable population of desert bighorn sheep (Smith et al., 1991; Smith and 

Flinders, 1992; McKinney et al., 2003) although the minimum size of a viable 

population is still controversial  and estimated at 100 – 125 individuals (Berger, 1990, 

1993, 1999; Smith et al., 1991; Krausman et al., 1992, 1993; Goodson, 1994; Wehausen, 

1999, Singer et al., 2000).  Both the amount and spatial pattern of the optimal escape 

terrains in GUMO also compared favorably to those in SD that was established as a good 

desert bighorn sheep habitat supporting a large and growing population of desert bighorn 

sheep, which suggests that GUMO is at least equally suitable to support a desert bighorn 

sheep population. Several factors should be considered when evaluating the results of 

my study and taken into consideration when evaluating GUMO as a possible habitat for 

a future population of desert bighorn sheep. 
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2.4.1. Human Presence 

Within GUMO, current water sources correspond with trails used by visitors to 

the park and may or may not limit bighorn from using those areas during visitation 

hours.  GUMO is not a highly visited park and except during the fall season (October-

November) when the northwest trails of the park experience a larger number of visitors, 

most trails are used by individual hikers and can be easily avoided by animals (Fred 

Armstrong, resource manager, Guadalupe Mountain National Park, personal 

communication 2004).  Conflicting reports are documented in regards to desert bighorn 

sheep behavior near trails.  Complete avoidance of areas due to human activity has been 

reported in California (Krausman, 1993; Krausman and Etchberger, 1995) but opposing 

reports have documented avoidance of areas only when people where present and use of 

those terrains in the absence of activity (Hamilton et al., 1982).  Other reports account 

for desert bighorn sheep complete indifference to hikers and have been observed to cross 

trails during high visitation hours with no visible signs of stress (Esther Rubin, bighorn 

sheep biologist, San Diego Zoological Society, personal communication 2005).  Jansen 

et al. (2005) reported desert bighorn sheep feeding on the side of a heavily used mine 

road without regard to the heavy human activity.   In this study I decided to calculate 

available habitat conservatively and buffer each trail with a 150m on each side (Smith 

and Flinders, 1992; Zeigenfuss et al., 2000).  Available suitable habitat will increase by 

1,826 ha outside lambing season and by 649 ha during lambing season if those buffers 

are removed. 
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2.4.2. Water Sources 

Water development is an important aspect of desert bighorn sheep restoration 

efforts in Texas.  Texas Parks and Wildlife Department constructs guzzlers and water 

catchments within suitable bighorn sheep habitat with distances of approximately 3 

kilometers apart and 300 meters or less of escape terrain (Smith and Flinders, 1992; 

Foster et al., 2005).  Within GUMO, water development can improve suitable habitat 

across the park since some of the perennial water sources that currently exist are located 

in areas of poor visibility (mostly springs within canyons).  There is evidence that desert 

bighorn sheep populations increased in areas previously deficient of water through 

implementation of aggressive and effective water development programs (Bleich, 1983).  

The north-western area of the park lacks perennial water sources and construction of 

catchments would significantly increase suitable habitat.   Suitable habitat within 

GUMO will increase by 38% if artificial water sources will be constructed. 

2.4.3. Spatial Attributes of the Habitat 

When evaluating suitable habitat for desert bighorn sheep, continuous terrain 

must be identified to ensure unobstructed movement.  By identifying optimal terrain of 

27-85° without establishing a 300m buffer, both GUMO and SD show certain degree of 

patchiness.  My results indicate that under the first scenario (no buffer) in every 

landscape attribute evaluated, GUMO is superior to SD with respect to the amount and 

quality of terrain for the bighorn sheep.  Habitat patch size has been identified as a 

critical factor in persistence of desert bighorn sheep population (Gross et al., 1997; 

Singer et al., 2001; McKinney et al., 2003) and GUMO has a larger mean patch size than 
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SD and a greater proportion of the landscape in suitable escape terrain.  Under both 

scenarios, GUMO has lower edge density that SD which is an important indicator of 

more suitable quality habitat for desert bighorn sheep.  Different species are affected by 

size and density of edge in various ways.  Edge effect is influenced by the type of 

landscape the suitable habitat is bordering.  Large forested areas adjacent to bighorn 

habitat are visually restrictive and may affect bighorn sheep ability to identify predators, 

maintain contact with group members (Zeigenfuss et al., 2000) and alert individual 

within the group to the presence of danger.  Desert bighorn sheep are known to avoid 

areas of obstructed visibility. I interpret higher edge density as an increased association 

between suitable and unsuitable habitat and as a result, an increase in bighorn-predator 

interaction.  As my results indicate, higher density of edges was found in SD than in 

GUMO.  Under the second scenario, SD was calculated to include 36.37% more suitable 

habitat than GUMO.  Since all other factors correlated with habitat suitability and patch 

metrics found GUMO compatible to SD, habitat size can be used to roughly estimate 

possible population size of bighorn sheep in GUMO.  Based on an estimate of 400 sheep 

currently occupying SD, a rough estimate of 140 individuals could be sustained in 

GUMO if water development within the park will be compatible to that of SD. 

2.4.4. Migration Corridors 

The connectivity between GUMO and SD, as well as any other reintroduced 

populations in the region, is essential for dispersal and gene flow in order to maintain a 

healthy meta-population (Woodroffe, 2003).  Ough and deVos (1984) identified 

migration corridors as areas where the “topography and associated vegetation type 
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provides a natural crossing between mountains which minimized the distance out of 

preferred habitat.”  They also found that the primary areas where bighorn crossed were 

those that directly connected mountain ranges associated with an existing desert bighorn 

sheep population.  Continuous terrain and individual movements between ranges has 

been linked to increased persistence of species (Noss, 1987; Simberloff and Cox, 1987; 

McCullough, 1996; Hanski and Gilpin, 1997; Woodroffe, 2003), especially species that 

exchange individuals between populations and exist as a metapopulation.  As a result, 

habitat fragmentation has been suggested as one of the primary causes of the current 

extinction crisis for animal species (Wilcox and Murphy, 1985).  Annual travel of 5-7 

mountain ranges was documented on indigenous desert bighorn sheep with distances 

traveled of 8 -18 km between those ranges (Geist, 1971; Demarchi and Mitchel, 1973; 

Thorne et al., 1979; Festa-Bianchet, 1986; Singer et al., 2000) and the importance of 

migration corridors for a species such as desert bighorn sheep that is observed to move 

within mountain ranges is recognized by most ecologists.  The minimum population size 

can be relaxed if gene flow exists between subpopulations (Smith and Flinders, 1992) 

and the effect of inbreeding is avoided. Securing unobstructed migration corridors to and 

from GUMO, therefore, will ensure a higher probability of success for a reintroduced 

population.   

Interpopulation movements of more than 50km have been observed (Geist, 1971; 

Schwartz et al., 1986) and bighorn sheep movement across open desert between ranges 

of up to 17.5km have been reported (Cochran and Smith, 1983).  McQuivey (1978) 

documented both ewes and rams occupying ranges not known to previously sustain a 
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resident population with a mean distance to the closest ranges of 19.7km.  Epps et al. 

(2005) identified recent colorizations of ranges not formerly inhabited by bighorn sheep 

by straight line crossing through unsuitable terrain of up to 7.5km and 20 km movement 

across unsuitable terrain characterized by wooded areas and high levels of human 

activity (Clinton Epps, University of California-Berkeley, CA, personal communication 

2006).  A salt plain of approximately 30 kilometers separates the Sierra Diablo and the 

Guadalupe Mountains and since movements of bighorn sheep exceeding this distance 

have been documented (Cochran and Smith, 1983) I decided to consider this distance as 

a possible migration distance and established a 7500m buffer around the optimal slopes 

to examine this scenario.  Bighorn sheep are reported to cross between the Sierra 

Diablo’s, Beach and Baylor mountains and the Eastern mountain ranges of the 

Delaware’s (Morrison, 1981; Clay Brewer, bighorn sheep program director, TPWD, 

personal communication 2004); based on a more conservative crossing distance of 

10km, my results indicate a continuous habitat between SD and the mountain range east 

to it, the Delaware.  The Delaware extends north-northwest and provides not only 

suitable escape terrain for desert bighorn sheep, but also a direct connection between any 

subpopulation south of GUMO to the Guadalupe Mountain Range (Appendix A, Fig. 3).  

One consideration should be pointed out: The Delaware Mountain range, although 

suitable in terms of escape terrain, has power generated windmills along its mountain 

top.  No research has been conducted regarding desert bighorn sheep behavior in the 

presence of windmills.  Based on personal communication with Vernon Bleich 

(California Department of Fish and Game 2005), I believe that desert bighorn sheep may 
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get habituated to the windmills, especially since traffic leading to and from the 

windmills is infrequent and the windmills produce constant, monotonous sound.  

Regardless of the bighorn choice to permanently occupy the Delaware mountain range, it 

was considered as a possible migration corridor to and from the GUMO and SD.  The 

Delaware mountain ranges are privately owned lands and the Texas Parks and Wildlife 

Department is continually working with the ranchers on improvement of the habitat for 

desert bighorn sheep (Clay Brewer, bighorn sheep program director, TPWD, personal 

communication 2005).  These improvements do and should include removal of fences 

within and between the ranges to prevent unnecessary mortality of bighorn as they try to 

move from one area to another.  These efforts should be extended to the 

Delaware/GUMO areas when reintroduction to GUMO takes effect and future research 

regarding bighorn sheep behavior in the presence of windmills is needed.  This is 

extremely important in the face of future development of the Delaware and the plans to 

construct at least 100 more windmills in addition to the 112 mills already operating 

(Fred Armstrong, resource manager, Guadalupe Mountain National Park, personal 

communication 2006).  

2.4.5. Exotic Species 

A monitoring plan of the barbary sheep (aoudad, Ammotragus lervia) population 

within GUMO and adjacent areas should be considered.  It is unclear to what extent 

aoudads affect bighorn persistence and to what extent can GUMO be successful in 

removing aoudads from their landscape.  A viable population of aoudads resides in the 

Guadalupe Mountains of New Mexico (bordering GUMO on the north) and removing 
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the existing aoudad population from GUMO may create a void for the New Mexico 

aoudads to occupy these terrains.  New Mexico manages aoudad as a game species and 

would not participate in the removal of those exotics.   

2.5. Conclusion and Management Implications 

Guadalupe Mountains National Park (GUMO) was historically inhabited by desert 

bighorn sheep.  Reintroduction of desert bighorn sheep to GUMO will restore an 

important native species to an area from which it has been absent for seventy years.  My 

study showed that GUMO has sufficient amount of suitable habitat for desert bighorn 

sheep and the amount and spatial attributes of the optimal escape terrains compared 

favorably to SD that currently supports a healthy population of desert bighorn sheep. 

Several management considerations must be discussed, however, before such a project is 

undertaken.   

(1) Continuous assurance that ranchers in adjacent areas will not introduce domestic 

sheep or goats to their land, so that no nose-to-nose interaction between bighorn 

sheep and domestic sheep/goats will take place. Such interactions can result in a 

fast spread of diseases to the entire Trans-Pecos metapopulation and a local 

extinction of the species.   

(2) Construction of artificial water sources such as guzzlers and catchments especially 

in the west and north-west terrain of the park should be considered.  Suitable 

habitat can be increased from 9,817 ha to 15,884 ha, an increase of 38% of suitable 

bighorn habitat if artificial water sources are constructed.  It has been observed that 

desert bighorn sheep will expand their home ranges and terrain usage if artificial 
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water sources will be constructed in water-deficient terrain (Campbell and 

Remington, 1979). 

(3) Clearing of fences and other human-constructed structures that might inhibit safe 

movement of desert bighorn sheep to and from GUMO to other terrains needs to be 

addressed.   

(4) Future monitoring of desert bighorn sheep and their behavior in the vicinity of 

windmills, windmill construction and windmill maintenance, should be undertaken 

as avoidance of such areas may have a negative influence towards migration. 

(5) Monitoring of the mountain lion population within GUMO should be upheld since 

mountain lions have been identified as possible predators affecting the persistence 

of a naïve and small reintroduced population of desert bighorn sheep (Hoban, 

1990; Wehausen, 1996; Ross et al., 1997; Hayes et al., 2000; Rominger and 

Weisenberger, 2000; Logan and Sweanor, 2001).  
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CHAPTER III 

THE MOUNTAIN LION OF GUADALUPE MOUNTAINS NATIONAL PARK: 

GENETIC STRUCTURE, DISTRIBUTION, AND RELATIONSHIP TO OTHER 

POPULATIONS IN TEXAS  

3.1. Introduction  

One potential problem associated with the reintroduction of ungulates, such as 

desert bighorn sheep, is the risk of a small population not persisting long enough to 

increase in number (Berger, 1990).  The mountain lion (Felis concolor), a native 

predator occurring throughout the southwestern and western portions of the United 

States as well as Florida, has been correlated to bighorn sheep kills in New Mexico, 

California and Texas.  As such, the mountain lion is considered a potential threat to 

small, reintroduced populations of bighorn sheep (Hoban, 1990; Wehausen, 1996; Ross 

et al., 1997; Hayes et al., 2000; Rominger and Weisenberger, 2000; Logan and Sweanor, 

2001), and in many cases extreme measures are being used to minimize the impact of 

such predation (New Mexico Department of Game and Fish, 1996-2002; U.S. Fish and 

Wildlife Service, 2000, 2003).  These measures include the removal of all existing cats 

within the vicinity of the reintroduction area, removal of cats found in the vicinity of 

bighorn herds, and/or the removal of individual lions linked to bighorn kills (U.S Fish 

and Wildlife Service 2000, 2003; New Mexico Department of Game and Fish, 1996-

2002).   
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     Mountain lions are ambush predators (Beier et al., 1995) that use cover 

(Seidensticker, 1976) to stalk white-tail deer and desert mule deer, their primary sources 

of prey (Logan and Sweanor, 2001; McKinney, 2003).  Desert bighorn sheep are 

considered an alternative food source, and generally avoid dense cover, preferring 

instead open spaces with high visibility and a relief of 27 to 85 degrees (Etchberger et 

al., 1989, 1990, Singer et al., 2000). Consequently, mountain lions and bighorn sheep 

have low habitat overlap, thus implying that encounters between the two should be 

minimal in most circumstances.  Several factors presumably contribute to an increased 

incidence of mountain lion kills of bighorn sheep.  First, introduced sheep may lack 

appropriate predator avoidance, especially if they are either captive bred or raised in 

lion-free areas (Vernon Bleich, California Department of Fish and Game, personal 

communication 2004).  Second, animals released in unfamiliar habitat are less likely to 

escape predators (Krausman et al., 1999).  Third, a decrease in primary prey abundance 

such as mule deer can result in lions targeting other prey items (Leopold and Krausman, 

1983; Rominger and Weisenberger, 2000; Logan and Sweanor, 2001).  Fourth, in some 

cases individual lions may favor desert bighorn sheep as their source of prey 

(Hornocker, 1970; Hoban, 1990; Ross et al., 1997; Hayes et al., 2000; Logan and 

Sweanor, 2001).  Factors 1-3 are frequently unavoidable.  For instance, the source of 

bighorn sheep for reintroduction purposes is limited and in most cases animals released 

are selected from protected areas that are under predator control (Eric Rominger, bighorn 

sheep biologist, New Mexico Department of Game and Fish, personal communication 

2004; Clay Brewer, bighorn sheep program director, TPWD, personal communication 
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2004).  When animals are reintroduced to a new area, this area, by definition, will be 

unfamiliar, and predator-proofing the new area has proven unsuccessful at keeping 

mountain lions out of an area (Clay Brewer, bighorn sheep program director, TPWD, 

personal communication 2004).  Local prey populations can experience decreases in 

number as a result of environmental stochasticity, such as long periods of drought that 

affect water and food abundance (Oregon Department of Fish and Wildlife 1993).  

Finally, individual lions that demonstrate bighorn sheep as a major prey item are of 

major concern for managers, and these individuals are often the target of predator 

control measures (U.S Fish and Wildlife Service, 2000, 2003). 

The desert bighorn sheep (Ovis canadensis) is native to North America and has 

historically numbered up to an estimated 1500 individuals in the 1800’s (Gould, 1962; 

Cook, 1994), inhabiting areas throughout west Texas.  By 1960 there was no evidence of 

desert bighorn sheep north of New Mexico-Texas boundary in the Guadalupe Mountains 

(Buechner, 1960), and efforts to restore this native species to its historical range was 

initiated by Texas Parks and Wildlife Department (TPWD) in the past several years 

(Brewer, 2005).  Guadalupe Mountains National Park (GUMO), encompassing the 

Guadalupe Mountain range in Texas, was established in 1964.  Management guidelines 

of the National Park Service emphasize the importance of restoring native species to its 

historic habitat and support such actions as the reintroduction of a bighorn population to 

GUMO (USDI, National Park Service, 1988; Singer et al., 2000).  In addition, the 

guidelines include protection to any other native species residing within the National 

Park’s land allowing intervention to “manage individuals or populations of native 
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species only when such intervention will not cause unacceptable impacts to the 

populations of the species or to other components and processes of the ecosystems that 

support them” (USDI, 2001).  The status of the mountain lion population within the 

Guadalupe Mountains and the surrounding area is unknown.  Population size, 

distribution and trends have not been studied, and the effect of removing a top predator 

from its ecosystem has been linked to trophic cascades that influence other species in the 

food web.  For instance, removal of a top predator will cause an increase in herbivore 

populations that will overgraze vegetative species which in itself influence the 

abundance, distribution and persistence of dependent species (Kay, 1990; Singer et al., 

1994; National Research Council, 2002; Beschta, 2003).  Current predator control trends 

outside GUMO include: (1) systematic removal of all cats entering The Sierra Diablo 

Management Area, a desert bighorn sheep reintroduction area belonging to TPWD 

located south of GUMO and (2) random (but continuous) capture and kill of mountain 

lions by local ranchers.  The reported numbers of lions killed north of GUMO is 20 

individuals per year based on permits issued (New Mexico Department of Game and 

Fish, 1996 – 2002).  This number does not include either unreported killing of mountain 

lions or kills within the state of Texas where the species is listed as a non-protected, non-

game species, thus allowing an open season on mountain lions (TPWD, 2005). 

Guadalupe Mountains National Park’s management requires data related to 

resident and transient mountain lions within park boundaries in order to estimate 

population density and movement before reintroduction of desert bighorn sheep is 

considered.  This will allow park managers to estimate the feasibility of monitoring the 
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lion population within the park area and taking action if and when an offending lion is 

identified.  The objectives of this study are to document the approximate number of lions 

using Guadalupe Mountains National Park as well as their movement patterns and 

distribution within the park.  A survey for mountain activity was initiated over a seven 

year period (1997-2004) for the purpose of estimating these parameters.   In addition, 

fecal samples from presumed mountain lions were collected and used in a noninvasive 

genetic study of mountain lion within the park for the purposes of comparing patterns of 

variation within the lion population in the park to other regions of Texas and estimating 

the number of genetically distinct individuals identified within the park. 

3.2. Methods and Materials 

 3.2.1. Sampling Area and Specimen Preparation 

Mountain lion scat (n = 98) was collected from transects along 74 km of trails 

within Guadalupe Mountains National Park from 1995 to 2004 (Appendix B, Table 4; 

Appendix A, Fig. 4).  The park is located in west Texas on the border of Texas and New 

Mexico, 110 miles east of El Paso, Texas.  The park encompasses approximately 350 

km2 and is the southeastern part of the Guadalupe Mountain Range that extends 

northeast into New Mexico.  The entire mountain range is a division of the Sacramento 

Mountains, the southern branch of the Rocky Mountains.  All samples of scat were 

packed in sealed plastic bags and stored at -20°C and were later transferred to a – 80oC 

freezer at Texas A&M University. 
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3.2.2. DNA Extraction 

A QIAamp DNA Stool Mini Kit (GmbH, Hilden, Germany) was used to extract 

DNA from 98 scat samples.  Initially, fecal material was removed from the external 

portions of the scat sample, and 200mg of this material was placed in a 2ml 

microcentrifuge tube containing 1.6ml of buffer ASL (Stool lysis buffer).  The solution 

was incubated at 70°C for 5 minutes, vortexed until thoroughly homogenized and 

centrifuged at 13,400 rpm for 2 minutes.  The supernatant (1.4ml) was transferred to a 

new 2 ml tube, and the pellet was discarded.  One tablet of Inhibit X was added to each 

tube containing the supernatant (two at a time) and vortexed immediately for at least 1 

minute or until homogenized.  Samples were incubated at room temperature for at least 1 

minute and then centrifuged at 13,400 rpm for 6 minutes. Immediately, the supernatant 

was transferred to 1.5ml tubes and centrifuged at 13,400 rpm for 6 minutes.  After 

centrifugation, 600μl of the supernatant was pipetted into a new 2ml tube containing 

25μl of Proteinase K.  600μl of Buffer AL was added to each tube separately, and the 

solution was vortexed immediately for 15 seconds or until homogenized.  All processing 

samples were performed in groups of 12 to 14.  Subsequent to processing each batch, 

samples were incubated at 70°C for 1 hour and centrifuged briefly to remove drops from 

lid.  Then, 600μl of 100% ethanol was pipetted into each tube, vortexed and centrifuged 

briefly and 600μl of lysate was pitpetted into a spin column that was placed in a 

collection tube.  Samples were centrifuged at 13,400 rpm for 2 minutes, and the flow-

through was discarded.  This step was repeated 3 times, and then 500μl of Buffer AW1 

(wash buffer) was transferred to the spin column, which was centrifuged at 13,400 rpm 
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for six minutes, and the flow-through was discarded.  Then, 500μl of Buffer AW2 (wash 

buffer) was transferred to the spin column, centrifuged at 13,400 rpm for six minutes, 

and the flow-through was discarded.  Spin columns were transferred to new 1.5ml tubes 

and 200μl of buffer AE (elution buffer) was directly pipetted onto membrane, incubated 

at room temperature for 5 minutes and centrifuged at centrifuged at 13,400 rpm for 2 

minutes to release the DNA from spin column, and the extracted DNA was kept frozen 

at 4°C until PCR amplification was performed.  Extractions were performed twice for 

those samples that either did not provide positive DNA results or showed only small 

amount of PCR (polymerase chain reaction) product after the initial amplification of a 

mitochondrial DNA (mtDNA) fragment. 

3.2.3. Mitochondrial DNA Sequencing 

Scat samples were identified to species by amplifying an approximately 200bp 

region of the mitochondrial control region.  Primers used for PCR amplification of the 

control region fragment were kindly provided by Melanie Culver (Arizona Cooperative 

Fish and Wildlife Research Unit, University of Arizona).  Their sequences are as 

follows:  1) forward primer - PDL-1 5‘- CCC AAA GCT GAA GTT CTT TCT - 3’and 

2) reverse primer PDL-6/PDL-6del 5‘ - TAT TCA TG(G/A) GGG AT(A/G) TGG/TAT 

TCA TGG GGA T(A/G)T GG - 3’.  PCR reactions were performed in 20μl volumes 

containing 2μl of each 10μM primer, 2μl of 10X Hotmaster Taq buffer with 25 mM 

Mg2+, 0.4μl of 10mM of each DNTP, 1.8μl of 10mg/ml BSA, 0.1μl of 5U/μl HotMaster 

Taq DNA Polymerase, 7.7μl of ddH2O and 4μl of template DNA per reaction.  PCR was 

performed at 94°C for 1 min, 48 cycles of 94°C for 15 sec, 52°C for 30 sec, 72°C for 1 
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min and a final step at 72°C for 2 min.  All PCR reactions included a positive and a 

negative control.  PCR products were electrophoresed and visualized on a 2% agarose 

gel containing 1X Tris-borate EDTA (TBE), and stained with ethidium bromide 

(0.5µg/ml).  Samples with visible PCR products were cleaned by adding 2μl ExoSAP-IT 

(USB Corporation, Cleveland, OH) to 5μl PCR product and thrmocycled at 37°C for 

15min and at 80°C for 5min.  Fragments were sequenced with Big Dye termination 

following the supplier’s protocol (Applied Biosystems, Foster City, California), 2μl 

HalfBD (Genetix, Boston, MA).  Extra dye terminator was removed using Sephadax 

spin columns and dried in a spin-vac for 20 minutes.  Fragments were sequenced in both 

directions on an ABI 3100 automated sequencer (Applied Biosystems, Foster City, 

California, USA) according to manufacture’s instructions.   All sequences were aligned 

and compared using Sequencher 4.2 (Gene Code Corporation, Ann Arbor, Michigan, 

USA).  Samples identified as a species other than mountain lion were excluded from 

nuclear DNA genotyping.   

3.2.4. Nuclear DNA Genotyping 

The minimum number of microsatellite loci needed for individual identification 

of mountain lions in GUMO was determined by using allele frequency data from a 

reference group that included 7 tissue samples collected from mountain lions outside 

park boundary between 2001 and 2004 and provided by Jan Janecka, (Feline Research 

Program and Department of Wildlife and Fisheries, Texas A&M University).  Six 

microsatellite loci characterized for the domestic cat (Menotti-Raymond and O’Brien 

1995; Menotti-Raymond et al., 1999) and denoted as FCA23, FCA26, FCA35, FCA43, 
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FCA82, FCA96 were used to obtain a multilocus genotype for each samples that tested 

positive for mountain lion mtDNA.  Each primer was used separately in a 20μl reaction 

containing 0.48μl of 10 µM of each forward and reverse primer, 2μl of 10X Hotmaster 

Taq Buffer with 25 mM Mg2+,  0.4μl of 10mM of each DNTP, 1.6μl of 10mg/ml BSA, 

0.15μl of 5U/µl HotMaster Taq DNA Polymerase, 8.89μl of ddH2O and 0.3μl of 

template DNA per reaction.  PCR reactions included an initial step of 94°C for 1 min, 48 

cycles of 94°C for 15 sec, 54°C for 30 sec, 72°C for 45 sec and a final step at 72°C for 2 

min.  All PCR reactions included a positive and a negative control.  Amplification 

products were electophoresed and visualized on a 1.5% agarose gel containing Tris-

borate EDTA (TBE), and stained with ethidium bromide (0.5µg/ml). Samples with 

visible PCR product were diluted 1:20, and 1µl of diluted DNA product was mixed in a 

10µl solution of 9.7µl formamide and 0.3µl size standard (GeneScan™-400HD 

[ROX]™, Applied Biosystems, Foster City, CA).  Samples were genotyped using ABI 

3200 (Applied Biosystems, Foster City, California, USA). 

3.2.5. DNA Repair 

Samples that failed to amplify for one or more microsatellite loci and 7 samples 

that tested positive for mtDNA but failed to amplify all microsatellite loci were treated 

with an experimental DNA repair kit, PreCR-A Repair Mix (New England BioLabs, 

Ipswich, MA).  A 50μl reaction containing 38μl of ddH2O, 5μl of 10X ThermoPol RX 

Buffer, 0.5µl of each 10mM DNTP, 0.5µl 100X NAD+, 1µl PreCR repair Mix-A and 

5µl of template DNA was maintained at room temperature for 15 minutes; 5µl  of the 

repaired DNA mix were added to a 5µl PCR reaction as described in section 2.3.  PCR 
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products were visualized on a 1.5% agarose gel to determined if successful DNA repair 

had occurred, and samples testing positive for amplification were genotyped (as 

described in section 2.3).    

3.2.6. Data Analysis 

Multilocus microsatellite genotypes were used to identify individual mountain 

lions.  The procedure used was as follows.  (1) An individual was accepted as 

homozygous at a locus after repeating the genotyping twice.  (2) Individuals were scored 

as heterozygous only after each allele is observed twice independently.  To determine 

whether my results suffered from genotypic errors due to the non-invasive techniques of 

the sample collection (McKelvey and Schwartz, 2004), I estimated the minimum number 

of differences for all pairs of genotypes.  Following Mowat and Paetkau (2002), this 

method will indicate whether samples were scored erroneously if a high percentage of 

genotypes differ from each other by a low number of loci.  Results for the GUMO 

population were compared to 3 other west Texas populations of mountain lion (data 

kindly provided by Jan Janecka, Wildlife and Fisheries Department, TAMU) scored 

from blood and tissue samples, thus presumably reducing levels of potential allelic 

dropout.   

Probabilities of identity or PI (Waits et al., 2001) for the six loci were computed 

using API-CALC 1.0 (Ayres & Overall, 2004).  Estimates were derived from an adjacent 

population of mountain lions in Texas.  Jan Janecka kindly provided allele frequencies 

for this mountain lion population and the six loci examined in this study.  Probability of 

identity across these six loci was estimated as 1.21 x 10-4 for unrelated individuals.  
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Individuals identical for all six loci were interpreted as the same mountain lion.  

Measures of genetic variability at these 6 loci were calculated using GenAlEx version 

5_1.1 (Peakall and Smouse, 2001).  Deviation from Hardy-Weinberg equilibrium was 

tested using Chi-square test with pooling (Hartl and Clark, 1989) and the Markov Chain 

method (Guo and Thompson, 1992).  Expected heterozygosity, He, was calculated for 

each locus and for the overall six loci and compared to both observed heterozygosity 

(Ho) within the population and between other Texas populations.  Estimates of genotypic 

and genic differentiations between the Guadalupe population and the other populations 

of mountain lions in Texas were obtained by estimating Fst with GENEPOP 3.4 

(Raymond and Rousset, 1995).  Fis (inbreeding coefficient, the reduction in 

heterozygosity of an individual, due to non-random mating within the population) was 

also calculated and compared to the other Texas populations.  GeneClass2 (Piry et al., 

2004) was used for individual assignment of mountain lion genotypes to one of six 

populations in Texas.  ArcGIS® 9.0 software (ESRI) was used to plot locations and 

usage of the park by mountain lions and surveyed areas suitable for desert bighorn sheep 

(see Appendix A, Fig. 5). A 30 meter resolution digital elevation model (DEM) from the 

National Elevation Dataset (NED) was used to plot the distribution map.   

3.3. Results 

3.3.1. Sequencing 

DNA was isolated from 98 scat samples, and 54 samples (55%) provided a 

mtDNA amplification product.  All mtDNA fragments were sequenced, and 44 (80%) 
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samples tested positive for mountain lion mtDNA.  Only one mtDNA haplotype was 

found within the Guadalupe Mountains National Park population, and this haplotype was 

identical to haplotypes from a separate area in Terrell County, Texas (Jan Janecka, 

Wildlife and Fisheries Department, TAMU, personal communication 2006).  The 

distribution of scat that tested positive for mountain lion mtDNA was plotted on the 

park’s transects map and marked by KM number, the collection location on the park’s 

transects (Appendix B, Table 4; Appendix A, Fig. 4).   

3.3.2. Genotyping 

Microsatellite analysis revealed 32 unique genotypes (73%) for all samples found 

to have mountain lion mtDNA, and this represents 33% of total DNA extractions 

(Appendix B, Table 5).  Only two samples were identical for all loci (samples ID 4 and 

14), thus indicating the same mountain lion.  All loci were found to be polymorphic with 

a fixation index close to zero.  The mean number of effective alleles per locus (Na) was 

3.286 (range: 5-9, S.E.= 0.619), and the number of private alleles (Ne), relative to other 

Texas populations, was 6.5 (range: 2.098 - 4.654, S.E. = 0.390).  The expected (He) and 

observed (Ho) mean heterozygosity was 0.673 and 0.684, respectively (Appendix B, 

Table 6).   Individuals comparisons revealed two loci (FCA26, FCA96) out of Hardy-

Weinberg equilibrium, whereas across all loci the population was in equilibrium 

(P=0.343).  In order to determine whether the two loci not in equilibrium were unique to 

the GUMO population, P values of the six loci in the other six mountain lions 

populations were examined.   Three loci (FCA23, FCA26, FCA96) in 2 separate 
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populations were calculated to be out of HWE, although both populations were in 

equilibrium across all loci.   

Pairwise estimates of genotypes observed at GUMO indicated differences as an 

average of 4.9 loci.  Comparisons of other populations in west Texas reveal similar 

results with populations 1, 2, and 5 showing averages of 4.8, 4.36, and 3.57 differences, 

respectively (Appendix A, Fig. 6). These results indicate low levels of allelic dropout, 

and similarities to other populations in the region lend reliability to the data and may 

indicate low error rate.    

Assignment tests of the GUMO mountain lions to the six different populations in 

Texas (Appendix B, Table 7; Appendix A, Fig. 5) assigned 11 individuals (n=32) to 

population 1 (34.4%, α = 0.001), a population collected in the same county but outside 

the boundary of Guadalupe Mountains NP (Hudspeth County, Jan Janecka, Wildlife and 

Fisheries Department, TAMU, personal communication 2006).  Two of the mountain 

lions were assigned to population 4 (Brewster County Area, 230-260 miles SE) and a 

two additional samples were also assigned to this population but had a higher probability 

to population 1.  One of the samples assigned to population 1 was also assigned to 

Population 2 (Davis Mountains Area, ~120miles ESE), two of the samples were also 

assigned to Population 3 (Presidio County Area, ~250miles South of GUMO), and one 

sample was assigned to population 5 (Terrell County, 250 miles SE).  All secondary and 

tertiary assignments had lower probabilities than assignments to either populations 1 or 4 

(Appendix B, Table 4).  None of the samples were assigned to population 6 (South 

Texas Area, 600-650 miles away from GUMO).  Estimates of FST for the GUMO 
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population ranged from 0.103 (pop 1) – 0.199 (pop 6), suggesting population structure 

with some restrictions of gene flow between the GUMO population and the other 

populations in Texas.  Like the other populations in west Texas, the least amount of gene 

flow was observed between GUMO and population 6 in South Texas.  The uniqueness of 

the GUMO population may be the result of exchange between GUMO and mountain 

populations in New Mexico (Appendix B, Table 8).  

3.4. Discussion 

The mountain lion population in Guadalupe Mountains National Park shows 

evidence of high heterozygosity and shared alleles with other west Texas populations 

(defined by Jan Janecka, Wildlife and Fisheries Department, TAMU, personal 

communication 2006).  Expected heterozygosity for the six other populations in Texas 

range between 0.357 and 0.745 (Jan Janecka, Wildlife and Fisheries Department, 

TAMU, personal communication 2006).  In comparison to these six populations, GUMO 

averages about 15.15% higher levels of expected heterozygosity.  In addition to similar 

expected heterozygosity and expected allele frequencies, both GUMO and the other 

populations in Texas showed similar patterns in terms of the minimal number of loci 

differing between pairs of genotypes found in a population (Appendix A, Fig. 6).  There 

were no evidence genotypes in the GUMO population being skewed toward differences 

involving a single genotype.  In addition with the other comparisons, these data provide 

little evidence of genotyping error (McKelvey and Schwartz, 2004).    Probability of 

identity (PI), for the GUMO population was compared to the overall PI of the other 

Texas populations and was found to be similar to all five population in west Texas and 
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different from Population 6 in south Texas (Appendix A, Fig. 7).  These results add 

another level of confidence in the accuracy of data analyzed for the GUMO mountain 

lion population.   

Both assignment tests and estimates of FST suggest gene flow between the 

Guadalupe Mountains population and other populations in Texas, with some individual 

genotypes assigned to locations 230-260 miles away.  Sweanor et al. (2000) indicated 

that dispersal distance for male lion is as high as 214 km for males and 78.5 km for 

females.   The San Andres Mountains in New Mexico are protected lion habitat and 

sustain a population of lions approximately 160 miles from GUMO (Sweanor et al. 

2000).  Alleles not found in other Texas populations but found in the GUMO population 

may be the result of lions dispersing from New Mexico. 

Fifteen loci from 10 DNA samples failed to either amplify or provide a genotype.  

After treating the samples with PreCR-A Repair Mix, all 15 loci were scored 

successfully.  Additionally, five samples that tested positive for mountain lion mtDNA 

but failed to amplify for any of the six microsatellites amplified and were successfully 

gentoyped for 28 of the total 30 loci (94% success).  As a result, treatment of the 

degraded DNA with PreCR-A Repair Mix (Appendix B, Table 5) produced an overall 

19.5% increase in successful amplification. Therefore, this method provides a marked 

improvement for noninvasive genetic studies that rely on scat, which yields DNA that is 

in low quantity, degraded, and prone to allelic dropout (Hedmark and Ellegren, 2005).  

One conclusion that can be drawn from the genetic data is that the lion 

population in Guadalupe Mountains National Park is not confined to the park’s 
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boundary.  Based on allele frequencies, assignment tests, and FST, the park’s population 

consists of individuals that disperse into and outside the boundaries. Although the 

number of scat samples was limited, the genotypic data suggest that at least 32 mountain 

lions have used the park over the past eight years.  By pooling the additional seven 

individual samples collected in the vicinity of the park (Population 6, Jan Janecka, 

Wildlife and Fisheries Department, TAMU, personal communication 2006), as many as 

39 distinct individuals may have been present in the park between 1997-2004.  Only one 

animal’s DNA was collected more than once.  Over a three year period (2002-2004), 26 

different mountain lions were either inside or near Guadalupe Mountains National Park, 

with a cat density per year of 8-9 individuals.   

Logan et al. (1996) indicated that a male mountain lion’s home range averages 

187.1 km2 and females average 73.5km2.  For desert bighorn sheep habitat, other studies 

have indicated an average of 3.3 lions per 100km2 (Cunningham et al. 1995; Logan et al. 

1996).  Based on unpublished data (see Chapter II), GUMO contains approximately 80 - 

98 km2 of habitat suitable for desert bighorn sheep.   Assuming that previously estimated 

home ranges of lions are similar for GUMO, the number of potential lions occupying 

this habitat should be three to four individuals, with approximately seven estimated for 

the entire park area of 350 km2.   Clearly, it is difficult to estimate lion density from the 

restricted data presented here.  Nevertheless, 15 individuals were identified for 2002 

alone, and given the area of the park relative to habitat suitable for lion and bighorn 

sheep (Appendix A, Fig. 5) an estimate of four to five resident cats is not excessive.   
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The low recapture rate and high number of potentially transient lions may be the 

result of a high frequency of turnover in lion populations in Texas.  Lion hunting in west 

Texas is unregulated, and this may account for high levels of mortality in mountain lion.  

In his study of radio-collared lions in south Texas, Harveson (1997) estimated that the 

lifespan of mountain lions was approximately 2-3 years.  With high levels of turnover, 

one would predict an increase in transients in GUMO area as well as in other areas of 

Texas.  Studies have demonstrated that carnivore populations respond to heavy hunting 

pressures with an overall younger age structure (Smuts, 1978; Jedrzejewska et al., 1996) 

and removal of resident adults, especially those of males, may disrupt the social 

organization (Swenson et al., 1997; Lambert et al., 2006) resulting in higher immigration 

rate of juveniles or young adults (Lambert et al., 2006).  Juvenile mountain lions have 

been correlated to higher livestock killings (Beier, 1991) as they tend to gravitate 

towards the easier kill since their hunting skills are not as developed (Ross, 1994).   It is 

recommended that prior or simultaneously to the release of bighorn sheep into GUMO, 

more information on the lion population is required.  First, a more thorough monitoring 

program needs to be established, and scat should be collected in a more systematic 

matter, with a minimum of 40 samples collected per year.  Second, the density of 

primary prey needs to be determined.  In addition, information on age and sex ratios 

needs to be gained by a combination of genetic sampling, radio telemetry, and remote 

imaging.  These data should provide a better assessment of the number of resident cats 

and provide essential information regarding individual cats that might prove to prey on 

bighorn sheep.  There is evidence that specific mountain lions may develop an affinity 

 
 



  42    

for bighorn sheep, deviating from their main prey source, the mule deer (Hayes et al., 

2000) but this behavior seems to be an individual, learned behavior and isolated to 

specific cats (Ross et al., 1997).  Studies have indicated that bighorn sheep constitute 

only a small percentage of mountain lion diet (2%, Cunningham et al., 1999) and 

therefore mass removal of the cats from a reintroduction area is not an effective method 

for conservation.  Mountain lions within GUMO should be collared and monitored in 

order to identify specific, offending cats, and removal should be specific for those 

mountain lions (U.S. Fish and Wildlife Service, 2000, 2003). 
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CHAPTER IV 

SIMULATED DYNAMICS OF ARABIAN ORYX (ORYX LEUCORYX) IN THE 

ISRAELI NEGEV: EFFECTS OF MIGRATION CORRIDORS AND POST-

REINTRODUCTION CHANGES IN NATALITY ON POPULATION VIABILITY 

4.1. Introduction 

The Arabian oryx (Oryx leucoryx) is endemic to the Arabian Peninsula and once 

roamed widely from the Sinai desert to the Euphrates River (Stewart, 1963).  By the 

mid-19th century the species had vanished from the Sinai and Israeli Negev deserts 

(Griver, 1991); the last individual sighted near Israel was seen in Jordon in the 1930’s 

(Clarke, 1978).  The species was listed as critically endangered by the International 

Union for the Conservation of Nature (IUCN) in the 1960’s (IUCN, 1969), with 

endangerment attributed to activities related to the oil industry, unregulated hunting, loss 

of habitat to domestic livestock, and the capture of animals for private collections 

(Stanley Price, 1989; Tear et al., 1997).  During the early 1960’s, a captive “world herd” 

was established in several zoos in the United States and Europe (London Zoo, Basles 

Zoo, and Phoenix Zoo) from the last individuals captured in the wild and a few 

individuals donated from private collections of Arabian leaders (Stanley Price, 1989).  

During the 1980’s, a total of 40 animals from this captive herd were reintroduced at a 

site in Oman; the reintroduced population increased to approximately 400 animals over a 

15-year period (Stanley Price, 1989), but then poaching during the late 1990’s reduced 

the herd to only a few dozen individuals (Gorman, 1999). 

 
 



  44    

A second reintroduction program currently is underway in Israel.  In 1978, 7 

animals from the same “world herd” were placed in a breeding facility in the Hai Bar 

Yotvata located in the Negev desert of southern Israel.  This captive herd was the source 

for seven releases to the wild that have taken place at 3 sites: in 1997 and 1998 in 

Shahak Spring in the Arava Valley, in the eastern Negev (Site A); in 2000, 2001, and 

2002 in Har-Hanegev, in the central-western Negev (Site B); and in 2003 and 2005 in 

Nachal Ketzev, in the southern Negev (Site C) (Appendix A, Fig. 8).  Sites A and C have 

open, flat terrain whereas Site B has a more rugged terrain of canyons and low hills.  Site 

A was monitored for approximately 3 years (until 2000) and the population was 

increasing, Sites B and C still (as of 2006) are being monitored; the population at Site B 

is decreasing, and it is still too early to determine the performance of the site C 

population although will be treated as increasing due to similarities in habitat conditions 

(David Saltz, Mitrani Center for Desert Ecology, Israel, personal communication 2004). 

The greatest difficulty in projecting future trends for Arabian oryx populations in 

the Israeli Negev is related to uncertainties concerning (1) establishment of migration 

corridors among release sites and (2) post-reintroduction increases in natality rates.  The 

Arabian oryx is a migratory species and the expectation is that animals will establish 

migration corridors among the release sites, however, individuals from the different sites 

have not yet encountered one another (David Saltz, Mitrani Center for Desert Ecology, 

Israel, personal communication 2004).  The population at Site B apparently will not 

become self-sustaining without post-reintroduction increases in natality rates, similar to 

those observed in reintroduced Arabian oryx populations in Oman (Stanley Price, 1989; 
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Tear et al., 1997).  Since oryx are adapted both physiologically and behaviorally to open, 

flat terrain (Tear and Stanley Price, 1991), there remains the possibility that even the 

wild-born animals will not acclimate well to the rugged terrain of Site B, and that 

corridors connecting Site B to Sites A and C may not be established. 

In this research study, I first describe a model developed to aid in projecting 

future population trends for the Arabian oryx in the Israeli Negev.  I then evaluate the 

potential usefulness of the model by examining its ability to simulate observed trends in 

population growth following reintroductions of Arabian oryx in Oman, and also its 

ability to simulate trends observed to date in the three populations that have been 

reintroduced in the Israeli Negev.  Finally, I use the model to project future trends in the 

Israeli Negev populations under different assumptions regarding the establishment of 

migration corridors among the (currently isolated) populations, and regarding increases 

in natality rates after reintroduction. 

4.2. Background Information 

Arabian oryx populations consist of herds that adjust the size of their home 

ranges depending on availability of vegetation which is directly related to rainfall 

(Stanley Price, 1989; Van Heezik et al., 2003); individuals can satisfy their water 

requirements from vegetation, consume water infrequently, and can survive independent 

of drinking water (Tear et al., 1997; Williams et al., 2001, Seddon and Ismail, 2002).  

Herd home ranges may encompass several thousand square kilometers, and a herd might 

not return to a previously grazed area for several months (Stanley Price, 1988).  Herds 

typically break into a variable number of smaller bands as herd size increases; the 
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activity ranges of bands within a herd overlap broadly (Maoz, 2003).  Movement is age 

and gender specific, young staying within the shelter of the herd in a mother/calf pair, 

sub-adults or non-dominant males may leave the herd looking for territories and/or to 

establish new herds (Stanley Price, 1989; Tear and Ables, 1999). 

Herds usually contain relatively equal numbers of males and females distributed 

roughly evenly across all age groups (Vie, 1996).  The bands that typically form within a 

herd as the herd grows each consist of a dominant breeding male and several females 

and their young (Tear and Ables, 1999).  Newly born calves spend their first 3 to 4 

weeks apart from the band, watched by both the mother and the dominant male; no 

infanticide has been reported, and a new dominant male will show similar behavior to all 

young within its band regardless of paternity (Stanley Price, 1989).  Solitary males often 

establish temporary territories, attracting females that move in and out of the bands of 

other males (Stewart, 1963; Dieckmann, 1980; Newby, 1985; Wacher, 1986; Stanley 

Price, 1989); bachelor herds are not common (Walther, 1978).  Females are polyestrous 

and births are distributed throughout the year.  Females can give birth at 9- to 12-month 

intervals after 20 months of age (Saltz, 1998), and individuals can live up to 17 years in 

the wild (Stanley Price, 1989). 

4.3. Model Description 

4.3.1. Overview of Model Structure 

The model is formulated as a compartment model based on difference equations 

(Δt = 1 month), programmed in STELLA®7 (High Performance Systems, 2001), and 
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consists of 3 structurally identical sub-models representing the 3 reintroduced 

populations of oryx in the Israeli Negev (Appendix A, Fig. 9).  Forms of the equations in 

each of the 3 sub-models are identical, but some parameters differ by habitat.  For each 

sub-population: 

Ni,t + 1 = Ni,t + (ni,t – mi,t – ei,t – si,t) * ∆t, for i = 0                    (1) 

Ni,t + 1 = Ni,t + (ri,t + ii,t + si-1,t – mi,t – ei,t – si,t) * ∆t, for i > 0              (2) 

where Ni,t represents the number of individuals in age class i at the beginning of time t, 

ni,t represents the number of young born into the population (entering age class i = 0) 

during time t, ri,t represents the number of individuals in age class i introduced into the 

population as part of the reintroduction program during time t, and mi,t, ei,t, ii,t, and si,t 

represent the number of individuals dying, emigrating to another sub-population, 

immigrating from another sub-population, and surviving to age class i + 1 and remaining 

in the same sub-population, respectively, during time t.  The identity of individual 

cohorts is maintained up to 204 months of age; Arabian oryx have been known to live up 

to 17 years (Stanley Price, 1989).  

4.3.2. Natality 

Natality is calculated as: 

ni,t = k1j * k2t * NRt                                        (3) 

where NRt represents the number of females in the population that have attained 

reproductive maturity, k1j represents the natality rate per reproductive active female 

during the jth month after reintroduction (females born on site are assigned the maximum 
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reproductive rates; the values for j > 156 in Appendix B, Table 9a), and k2t represents a 

density-dependent reduction of natality per capita as availability of resources decreases. 

k2t = 1-(1/k3t)*Nt                                                  (4) 

where Nt is the total population at time t and k3t is the carrying capacity of the site at 

time t, which depends on the availability of water, food, and shade within the site, all of 

which are directly correlation with rainfall (Field and Blankenship, 1973; Phillipson, 

1975; Sinclair, 1975; Stanley Price, 1989; Spalton, 1999; Ostrowski et al., 2002; Van 

Heezik et al., 2003; Maoz, 2003).  I assume a linear relationship between carrying 

capacity and annual rainfall: 

k3t = b0 + b1 * rft                                          (5) 

where b0 represents k3t during severe drought, b1 represents the rate at which k3t 

increases with increasing annual rainfall, and rft represents annual rainfall (inches); rft, is 

a uniform random variant on the interval from zero to the maximum observed annual 

rainfall. 

4.3.3. Mortality and Survivorship 

The model represents three sources of mortality: 

mi,t = (k6i + k7i + k8i) * Ni,t                                  (6) 

where k6i, k7i, and k8i represent the proportions of individuals in age class i that die due 

to natural (non-human) causes, hunting (when animals cross the border and are not 

protected from hunting), and military activities (where animals die from exhaustion 

and/or starvation as a result entangling their legs in parachute strings attached to lanterns 

used by the Israeli air force).  No predation of oryx has been recorded in Israel. 
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Survivorship from age class i to age class i + 1 is calculated as: 

si,t = Ni,t – mi,t                                            (7) 

4.3.4. Migration 

The general structure of immigration and emigration rules was based on observed 

behavior of Arabian oryx (Stanley Price, 1989; Tear, 1992; Tear and Forester, 1992; 

Tear et al., 1997), specific parameter values were based on author’s assumptions.  Most 

migration occurs during winter, and animals less than 7 months of age do not migrate.  If 

the population at a given site is below carrying capacity (k3), up to 5% of the population 

will migrate during winter (November through April) and up to 1% of the population 

will migrate during summer (May through October); much of this roaming is due to the 

roaming of bachelor males (Stanley price, 1989; Tear and Ables, 1999).  If the 

population at a given site is above carrying capacity, in addition to this background 

roaming, up to 70% of the excess population at the site will migrate, provided that this 

number is smaller than the combined carrying capacities of the corridors leaving the site 

(k3cor).  Migration rules are represented in the model as: 

ei,t, = (Ni,t /∑Ni,t) * (∑Ni,t – k3t) * ran(0.7,1) + (Ni,t) * ran(0, 0.05), 

for i  ≥ 7 during winter, if (∑Ni,t > k3t) and (∑Ni,t – k3t) ≤ k3t
 cor      (8a) 

ei,t, = (Ni,t) * ran(0, 0.05), 

for i  ≥ 7 during winter, if (∑Ni,t ≤ k3t) or (∑Ni,t – k3t) > k3t
 cor       (8b) 

ei,t, = (Ni,t) * ran(0, 0.01), 

for i  ≥ 7 during summer, if (∑Ni,t ≤ k3t) or (∑Ni,t – k3t) > k3t
 cor      (8c) 
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where ran(a, b) represents a uniform random variate on the interval a to b.  I assume that 

no mortality occurs while moving among sites, and that emigrants originating from one 

site arrive as immigrants at the destination site one month later. 

ii+1,t+1, = ei,t                                               (9) 

4.4. Model Evaluation 

To evaluate the potential usefulness of the model, I examined its ability to 

simulate observed trends in population growth following the reintroductions of oryx in 

Oman, and also its ability to simulate trends observed to date in the three, currently 

isolated, populations that have been reintroduced in the Israeli Negev.   

4.4.1. Simulated and Observed Population Growth in Oman 

I simulated population growth in Oman during the 14-year period from 1982 

through 1996, when the population crashed as a result of poaching; 10 animals, 11, 11, 

and 8 animals were released during 1982, 1984, 1988, and 1989, respectively (Stanley 

Price, 1989).  I parameterized the model (Appendix B, Table 9) based on data collected 

during the first four years after reintroduction, including age at sexual maturity, natality 

rates (k1), and natural mortality rates (k6) (Stanley Price, 1989), but recalibrated natality 

rates as a function of time since reintroduction based on observed increases in natality 

rates after 1986 (Tear et al., 1997).  Hunting mortality (k7) and mortality due to military 

activities (k8) were zero, and since only one site was defined, there was no migration 

between sites.  I ran 10 replicate stochastic (Monte Carlo) simulations in which annual 

rainfall (rf) was represented as a uniform random variant on the interval from zero to 
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0.29 inches, which was the average observed monthly rainfall for the reintroduction area 

(Yalooni, Oman) (International Center for Agricultural Research in the Dry Areas, 

2003); I simulated rainfall-related changes in carrying capacity (k3) as k3t = 33 + 2586 * 

rft.  Simulated population trends paralleled observed trends reasonably well; mean 

simulated population sizes differed from those observed by +13% 60 months after the 

initial reintroduction and by -19% 144 months after reintroduction, and underestimated 

the final available field estimate 168 months after reintroduction by 9%, or 

approximately 2 standard deviations of the mean (Appendix B, Table 10).  These 

differences are within the range of uncertainty associated with the field estimates 

(Stanley Price, 1989; Tear et al., 1997), and I chose not to recalibrate model parameters. 

4.4.2. Simulated and Observed Population Growth in the Israeli Negev  

I simulated population growth in the Israeli Negev during the 8-year period from 

1997 through 2005; 21 and 11 animals were released at Site A in 1997 and 1998, 18, 14, 

and 12 animals were released at Site B in 2000, 2001, and 2002, and 18 and 10 animals 

were release at Site C in 2003 and 2005, respectively (David Saltz, Mitrani Center for 

Desert Ecology, Israel, personal communication 2004).  I parameterized the model 

(Appendix B, Table 9) based on data collected from each of the three reintroduced 

populations, including age at sexual maturity, natality rates (k1), and natural mortality 

rates (k6), (David Saltz, Mitrani Center for Desert Ecology, Israel, personal 

communication 2004).  I assumed that only animals aged 7 months and older were 

vulnerable to hunting mortality (k7) and mortality due to military activities (k8); younger 

animals seldom venture out from the security of familiar habitat.  There was no 
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migration.  I ran 10 replicate stochastic (Monte Carlo) simulations in which annual 

rainfall (rf) was represented as a uniform random variant on the interval from zero to 

0.29 inches, which was the average observed monthly rainfall for the reintroduction area 

(Israeli Negev) (Central Bureau of Statistics, 1996-1999); I simulated changes in 

carrying capacity (k3) as described in Section 4.4.1.  Simulated population trends at all 3 

sites corresponded reasonably well with available field observations; mean (±1 SD) 

simulated total population size (114 ± 1.57) was 14% larger than the last field estimate 

96 months after the initial reintroduction (100, David Saltz, Mitrani Center for Desert 

Ecology, Israel, personal communication 2004).  Mean (±1 SD) simulated population 

trends at Sites A (47 ± 1.10, and increasing), B (43 ± 0.46, and decreasing), and C (24 ± 

0.11, and increasing) all were consistent with field observations. 

4.5. Projecting future trends for the Israeli Negev Populations 

The greatest difficulty in projecting future trends for the Israeli Negev 

populations is related to uncertainties concerning (1) establishment of migration 

corridors among release sites and (2) post-reintroduction increases in natality rates.  I 

simulated six possible scenarios involving all combinations of three assumptions 

regarding migration: (1) no migration, (2) migration among all three sites, and (3) 

migration between sites A and C only; and two assumptions regarding natality rates: (1) 

no adjustment to natality after reintroduction and (2) increased natality after 

reintroduction.  For each scenario, I ran 10 replicate stochastic (Monte Carlo) 

simulations with carrying capacities of the sites depending on randomly generated 
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rainfall, as described in Section 4.4.2, and monitored population dynamics at each site as 

well as dynamics of the meta-population. 

Simulation results indicate that without migration the population at Site B is not 

sustainable and the populations at Sites A and C stabilize well below the minimum 

viable population size (MVPS, 100 animals, Saltz, 1998) if natality rates do not increase 

after reintroduction (Appendix B, Table 11; Appendix A, Fig. 10a).  If post-

reintroduction natality rates increase, all populations are self-sustaining, but all stabilize 

below MVPS (Appendix B, Table 11; Appendix A, Fig. 10b).  With migration among all 

sites, even without increases in natality rates, the meta-population stabilizes above 

MVPS, with animals approximately equally distributed among the three sites (Appendix 

B, Table 11; Appendix A, Fig. 10c).  However, with post-reintroduction increases in 

natality rates, the meta-population stabilizes at a size approximately two-and-a-half 

times larger, again with animals approximately equally distributed among the three sites 

(Appendix B, Table 11; Appendix A, Fig. 10d).  With migration between Sites A and C 

only, without increases in natality rates, the meta-population stabilizes below MVPS, 

and the isolated population at Site B is not sustainable (Appendix B, Table 11; Appendix 

A, Fig. 10e); numbers of animals at the three sites stabilize at essentially the same levels 

as in the scenario without migration.  If post-reintroduction natality rates increase, the 

meta-population stabilizes at a size approximately three times larger, well above MVPS, 

with slightly more than two-thirds of the animals approximately equally divided between 

Sites A and C, and slightly less than one-third of the animals at Site B (Appendix B, 

Table 11; Appendix A, Fig. 10f). 
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Three important trends immerge from these simulations: (1) no individual site 

supports a viable population under any of the scenarios, (2) if there are no post-

reintroduction increases in natality rates, the area supports a viable metapopulation only 

with establishment of migration corridors among all sites, and (3) if there are post-

reintroduction increases in natality rates, the area also supports a viable metapopulation 

with establishment of migration corridors only between Sites A and C.  Sensitivity 

analysis indicated these trends are robust to changes of up to ± 50% in my estimates of 

model parameters (Appendix B, Table 9), except for reduction of natality rates (k1): 

even with establishment of migration corridors among all sites, the area will not support 

a viable metapopulation if estimates of natality rates are reduced by > 20%.  Sensitivity 

analysis consisted of changing the value of each of the parameters, one at a time, by ± 

50% of its baseline value and re-running the complete set of scenarios.  I feel that it is 

unlikely that I have over- or underestimated any of the parameters by more than 50%. 

4.6. Discussion 

Projecting future trends in the Israeli Negev populations of Arabian oryx remains 

problematic in view of uncertainty regarding establishment of migration corridors 

among the (currently isolated) populations, and regarding (to date unobserved) post-

reintroduction increases in natality rates.  The expectation that animals will establish 

migration corridors is based on observations in Oman (Tear and Forester, 1992) and 

Saudi Arabia (Strauss, 2002) that herds showed lower home range fidelity and that 

migratory movements increased as population sizes increased, and the observation that 

distances between sites in the Israeli Negev are within the potential range of movements 
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of herds (David Saltz, Mitrani Center for Desert Ecology, Israel, personal 

communication 2004).  The expectation of post-reintroduction increases in natality rates 

is based on increases observed in reintroduced Arabian oryx populations in Oman 

(Stanley Price, 1989), and the fact that reproductive success commonly is different for 

animals released into the wild compared to wild-born individuals (O’Bryan and 

McCullough, 1985; Chivers, 1991; Saltz and Rubenstein, 1995; Tear and Ables, 1999). 

Uncertainty arising from lack of knowledge about key ecological processes 

(“parametric” uncertainty) and from inherently unpredictable and uncontrollable 

environmental and/or socio-economic factors (“background noise”) is an almost 

universal feature of natural resource management; the long-recognized challenge, of 

course, is to manage wisely in the face of such uncertainty (Holling, 1978; Walters 

1986).  Within the context of metapopulation dynamics, uncertainty associated with the 

relative importance of on-site reproduction versus migration among sites often is a 

critical issue (Scott and Carpenter, 1987; Hanski, 1994, 1999; Walters, 2001; Reed and 

Levine, 2005).   

In the present case, the role of Site B in maintaining population viability is 

particularly enigmatic.  Model projections suggest that if there are no post-reintroduction 

increases in natality rates, the population at Site B is essential to metapopulation 

viability, even though it acts as a “sink”, that is, is not self-sustaining and decreases the 

stable population sizes at the other two sites.  If there are post-reintroduction increases in 

natality rates, the population at Site B is not essential to metapopulation viability, 
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although it does increase metapopulation size by roughly one-third, and, since it is self-

sustaining, provides a buffer against catastrophic losses at the other two sites. 

Model projections also suggest the aspects of uncertainty regarding natality and 

migration most critical to management might be reduced substantially by continued field 

monitoring of Sites A and C over the next 5 or 6 years.  If natality rates increase as 

observed in Oman, the metapopulation should reach viable size within 5 or 6 years with 

the establishment of migration corridors between Sites A and C; mean time to reach 100 

individuals was 68.5 (±1.08) months with establishment of migration corridors among 

all sites and 68.8 (±2.04) months with establishment of migration corridors among Sites 

A and C only (Appendix B, Table 11).  Without increases in natality, it will take almost 

4 decades (442.2 ±46.11 months) for the metapopulation, consisting of populations at all 

3 sites, to reach viable size, and the population at Site B will become extinct within the 

same time frame if it remains unconnected to the other 2 sites (Appendix B, Table 11).  

Thus model projections suggest that management of Site B should remain a critical 

management issue over the next several years, either until increases in natality rates and 

the establishment of a migration corridor between at least Sites A and C have been 

confirmed, or until the decision is made to abandon Site B in favor of the establishment 

of an alternative release site. 
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CHAPTER V 

SUMMARY AND CONCLUSION 

     Wildlife conservation has become a multi-faceted field, influenced by economic 

and social factors, where science plays only one role in decision making (Schaller, 1992). 

Conservation biologists can no longer work in a vacuum where scientific principals are the 

only driving force behind identification, design and implementation of a conservation 

project (Machlis 1992).  Multiple sources influence a success or failure of a conservation 

initiative, sources such as government agencies, land owners, commercial agencies and the 

level of involvement of the local population (Schneider, 1992; Wondolleck et al., 1994).   

During the process of evaluating courses of action in conservation, an approach has 

emerged to evaluate the entire ecosystem instead of targeting a single species (Minta and 

Kareiva, 1994).  This approach not only evaluated the biological system itself, but also 

identified outside sources that may influence the success of a conservation initiative.  The 

ecosystem approach that incorporated landscape ecology with conservation biology, better 

equipped scientists to analyze habitat factors that contribute to a successful project (such 

as reintroduction), as well as evaluate the underlying processing that sustain species within 

a system (Minta and Kareiva, 1994).  Habitat suitability studies have emerged as a 

prerequisite to any reintroduction effort in order to minimize risks of failure (Griffith et al., 

1989).  Knowledge of the system of concern allows conservation biologists and other 

interest groups to make educated decisions regarding favorable locations for a species, size 

of habitat needed, resources availability, possible predators as well as exotic species within 

the reintroduction area.  Habitat suitability studies also determine whether any alterations 
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are required to the landscape in order to support a viable population of a reintroduced 

species. Supplemental water sources may be required if natural water sources are 

unavailable due to proximity to human activities, over-exploitation or contamination.  

Another factor that can be determined through a comprehensive system evaluation is 

whether the habitat is large enough to sustain a viable, self-sustaining population or 

whether migration corridors are required to connect small sub-populations and allow gene 

flow, prevent inbreeding and accumulation of deleterious genetic effects that may threat 

population persistence (Allendorf and Leary, 1986; Frankham, 1995) and may eventually 

lead to local extinction (Caro, 1998).  Habitat evaluation also includes any additional 

influences such as private land owners bordering the reintroduction area as well as hunters 

and other interest groups that may support or inhibit such a project.  

In chapter II, I used GIS modeling and landscape analysis to evaluate whether 

Guadalupe Mountains National Park (GUMO) includes suitable habitat for the 

reintroduction of desert bighorn sheep.  Despite the fact that GUMO has once sustained a 

population of bighorn sheep, human settlement has altered the landscape and introduced 

factors that may or may not prevent such reintroduction.  Based on identified parameters 

required for bighorn sheep, I concluded that GUMO has adequate habitat to sustain a 

population of bighorn sheep although some consideration to added artificial water sources, 

clearing migration corridors and evaluating the impact of the exotic species of aoudads in 

the park must be undertaken.  Bighorn sheep reintroduction has so far proved successful in 

the region, as Texas Parks and Wildlife Department continuously release, monitor and 

augment bighorn sheep populations south of GUMO (Brewer, 2005).  These populations 
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and subpopulations will provide a source of gene flow to a reintroduced population of 

bighorn sheep in GUMO and increase probability of a successful reintroduction to the 

park. 

     Successful conservation projects are often a result of a productive collaboration 

between many agencies and interests groups (Wondolleck et al., 1994).  Hunters might be 

willing to invest in conservation efforts if the species of interest is a game species but 

stakeholders may try to either prevent policy that protects species that are considered 

harmful to agriculture, such as wolves (Kellert, 1987), brown bears (Mattson, 1990; 

Craighead et al., 1995) and mountain lions that may prey on livestock (Lambert et al., 

2006), or oppose policy that contradict cultural, social or commercial interests (such as 

whales that are hunted for both cultural and commercial reasons (Kellert, 1991).  

Conservation biologists must incorporate knowledge of the socio-political trends within 

their area of interest in order to make educated decisions regarding a conservation of 

habitat or species.  Many projects fail due to misunderstanding, underestimating or a total 

ignorance of the local community’s attitude towards a particular species or conservation 

plan (Yaffee, 1994).  To a great extent, conservation projects are funded and run by 

government agencies such as the Fish and Wildlife Service and the National Marine 

Fisheries Service. These government agencies may be under pressure from interest groups 

to be selective of the species they protect, which may leave some species without adequate 

protection while policy supporting commercial or sport harvesting is in effect (Wilson, 

1980); this is the case of the mountain lion.  For example, studies have indicated that 

despite a popular belief that mountain lion population is increasing in the Pacific 
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Northwest, research indicates that population densities and survival rates are low and 

population numbers are declining (Lambert et al., 2006).  Mountain lions are only one 

species of large carnivores that suffers from growing human encroachment.  Increase in 

carnivore-human interactions due to habitat loss causes a false sense that carnivore 

numbers are growing (Spencer et al., 2001; Dickson and Beier, 2002) and many local 

governments choose to react with increased and unregulated hunting practices without a 

reliable monitoring system to evaluate repercussions of such acts (Lambert et al. 2006).  

As I indicated in chapter III, it is possible that a high turnover rate of mountain lions inn 

Guadalupe Mountains National Park is an indication of high number of transient cats 

moving north from Texas and south from New Mexico.  Population size, dynamics and the 

effect these cats have on a reintroduced population of bighorn sheep or livestock is 

currently unknown although policy in Texas classifies mountain lions as unprotected, non-

game animal that can be killed freely (TPWD, 2005).   

     Any conservation project must be assessed continuously and projects such as 

reintroduction of a species must be evaluated post-release to determine whether criteria for 

success have been attained (Stanley Price, 1991).  In chapter IV I used simulation to 

predict population dynamic of three reintroduced populations of Arabian oryx in the Israeli 

Negev.  This simulation demonstrated the importance of migration corridors for the 

persistence of the species and will allow managers to make decisions regarding such 

movement corridors as the populations increase in size.  Griffith et al. (1989) defined a 

successful reintroduction as the establishment of a self sustainable population but in order 

to evaluate such goal, a long period of time is required, and for many species exceeds the 
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life-span of a conservation project (Kleiman et al., 1991).  One suggested practice has 

been to include an educational component to every conservation effort in order to try and 

solicit public support for conservation projects as it has been demonstrated that long-term 

success in conservation projects has been correlated to the local public and government 

support (Kleiman et al., 1991).  Education will also allow conservation biologist to be 

aware of the local attitudes towards the habitat, the species and their interactions and as a 

result be able to communicate ideas and information that may influence the long-term 

success of a project (Clark and Reading, 1994). 

In a world where expanding human population increases its encroachment on 

wildlife habitat, increases its demand for natural resources and where funds are scarce, 

new effective ways must be employed to halt and reverse biodiversity erosion (Mace, 

2000).  Conservation biologist must be more than scientists; they must interact, 

communicate, educate and influence diverse groups that may affect the success of a 

conservation project. 

 
 



  62    

REFERENCES 
 

Allendorf, F.W., Leary, R.F., 1986. Heterozygosity and fitness in natural populations of 
animals. In: Soule, M.E. (Ed.), Conservation biology: the science of scarcity and diversity. 
Sinauer, Sunderland, Massachusetts, pp. 57-76. 
 
Anderegg, R., Frey, H., Muller, H.U., 1983. Reintroduction of the bearded vulture or 
Lammergeier Gypaetus barbatus aureus to the Alps. International Zoological Yearbook 
23, 35-41. 
 
Ayres, K.L.,Overall, D.J., 2004. API-CALC 1.0: a computer program for calculating the 
average probability of identity allowing for substructure, inbreeding and the presence of 
close relatives. Molecular Ecology Notes 4, 315–318. 
 
Bailey, V., 1905. Biological Survey of Texas. U.S. Department of Agriculture. Biological 
Survey of North American Fauna 25, 1-222. 
 
Beck, B.B., Rapaport, L.G., Stanley Price, M.R., Wilson A.C., 1994. Reintroduction of 
captive-born animals. In: Olney, P.J.S., Mace, G.M., and Feistner, A.T.C. (Eds.), Creative 
Conservation: Interactive Management of Wild and Captive Animals. Chapman and Hall, 
London, pp. 265-286. 
 
Beier, P. 1991. Cougar attacks on humans in the United States and Canada. Wildlife 
Society Bulletin 19, 403-412. 
 
Beier, P., 1993. Determining minimum habitat areas and habitat corridors for cougars. 
Conservation Biology 7, 94-108. 
 
Beier, P., 1995. Dispersal of juvenile cougars in fragmented habitat. Journal of Wildlife 
Management. 59, 228-237. 
 
Berger, J., 1990. Persistence of different-sized populations: an empirical assessment of 
rapid extinctions in bighorn sheep populations. Conservation Biology 4, 91–98. 
 
Berger, J., 1993. Persistence of mountain sheep: methods and statistics. Conservation 
Biology 7, 219–220. 
 
Berger, J., 1999. Intervention and persistence in small populations of bighorn sheep. 
Conservation Biology 13, 432–435. 
 
Berner, L.R., Krausman P.R., 1992. Mountain sheep habitat evaluation in Mojave Desert 
scrub. Desert Bighorn Council Transactions. 36, 10-12. 

 
 



  63    

 
Beschta, R.L., 2003.  Cottonwoods, elk, and wolves in the Lamar Valley of Yellowstone 
National Park. Ecological Applications 13, 1295-1309. 
 
Bleich, V.C., 1983.  Big game guzzlers and mountain sheep.  Outdoor California 44, 10. 
 
Brewer, C.E., 2003. Status of Desert Bighorn Sheep in Texas 2002-2003. Desert Bighorn 
Sheep Council Transactions 47, 40-42. 
 
Brewer, C.E., 2005. Desert Bighorn Sheep - State Status Report.  48th Meeting of the 
Desert Bighorn Council. Alpine, Texas. 
 
Buechner H.K., 1960. The Bighorn sheep in the United States: its past, present and 
future. Wildlife Monographs 4, 1-174. 
 
Campbell, B.H., Remington, R., 1979. Bighorn use of artificial water sources in the  
Buckskin Mountains, Arizona.  Desert Bighorn Council Transactions 23, 50-59. 
 
Caro, T., 1998. The significance of behavioral ecology for conservation biology. In: 
Caro, T.M. (Ed.), Behavioral Ecology and Conservation Biology. Oxford University 
Press, New York, pp. 3-26. 
 
Central Bureau of Statistics., 1996 - 1999. Statistical Abstracts of Israel No. 47- 50. 
Government of Israel, Hemed Press, Jerusalem. 
 
Chivers, D.J., 1991. Guideline for re-introductions: procedures and problems. In: Gipps, 
J.W.H. (Ed.), Beyond Captive Breeding: Reintroducing Endangered Mammals to the 
World. Clarendon, Oxford, UK, pp. 89 – 99. 
 
Clark, J.D, Huber, D., Serveen, C., 2002. Bear reintroduction: lessons and challenges. 
Ursus 13, 153-163. 
 
Clark, T.w., Reading, R.P., 1994. A professional perspective: improving problem solving, 
communication, and effectiveness. In: Clark, T.W, Reading, R.R, Clarke, A.L. (Eds.), 
Endangered Species Recovery: Finding the Lessons, Improving the Process. Island Press, 
Washington, D.C., pp. 351-369. 
 
Clarke J.E., 1978. Shaumari Wildlife Reserve Management Plan.  Royal Society for the 
Conservation of Nature, Amman, Jordan. 
 
Cochran, M.H., Smith, E.L., 1983. Intermountain movements by a desert bighorn ram in 
western Arizona. Transactions of the Desert Bighorn Council 27, 1-2. 
 

 
 



  64    

Cook R.L., 1994. A historical review of reports, field notes and correspondence on the 
desert bighorn sheep in Texas. Federal Aid Project Number W-127-R and W-123-D. 
Texas Parks and Wildlife Department, Austin, Texas. 
 
Craighead, J.J., Jay, S.S., Mitchell, J.A., 1995. The Grizzly Bears of Yellowstone: Their 
Ecology in the Yellowstone Ecosystem, 1959-1992. Island Press, Washington, D.C. 
 
Cunningham, S., Gustavson, C.R., Ballard, W.B. 1999. Diet selection of mountain lions 
in southeastern Arizona. Journal of Range Management 52, 202-207.  
 
Cunningham, S.C., Haynes, L.A., Gustavson, C., Haywood, D.D., 1995. Evaluation of 
the interaction between mountain lions and cattle in the Aravaipa-Klondyke area of 
southeast Arizona.  Arizona Game and Fish Department Technical Report Number 17, 
Phoenix, Arizona. 
 
Curio, E., 1993. Proximate and developmental aspects of antipredator behavior. Advanced 
Study Behavior. 22, 135-238. 
 
Davis, W.B., Taylor, W.P., 1939.  The bighorn sheep of Texas.  Journal of Mammalogy 
20, 440-445. 
 
Demarchi, D.A, Mitchel, H.B., 1973. The Chilcotin River bighorn population.  Canadian 
Field-Naturalist 87, 433-454. 
  
DeYoung, R.W., Hellgren, E. C., Fulbright, T.E., Robbins, W. F. Jr., Humphreys, I.D., 
2000. Modeling nutritional carrying capacity for translocated desert bighorn sheep in 
western Texas. Restoration Ecology 8, 57-65. 
 
Diamond, J., 1993. Cougars and corridors. Nature. 365, 16-17. 
 
Dickson, B., Beier, P., 2002. Home-range and habitat selection by adult cougars in 
Southern California. Journal of Wildlife Management 66,1235-1245. 
 
Dieckmann, R.C., 1980. The ecology and breeding biology of the gemsbok Oryx gazelle 
gazelle (Linnaeus, 1758) in the Hester Malan Nature Reserve. M.S. thesis,University of 
Pretoria, Pretoria, South Africa. 
 
Dowell, S.D. 1990. Differential behaviour and survival of hand-reared and wild grey 
partridge in the United Kingdom. In: Church, K.E., Warner, R.E. Brady, S.J. (Eds.) Perdix 
V Grey Partridge and Ring-necked Pheasant Workshop. Kansas Department of Wildlife 
and Parks, Emporia, pp. 230–241. 
 
Earnhardt, J.M., 1999. Reintroduction programmes: genetic trade-offs for populations. 
Animals Conservation 2, 279-286. 

 
 



  65    

 
Environmental Systems Research Institute, Inc. (ESRI), 1992. ArcView GIS version 3.3. 
Redlands, California.  
 
Environmental Systems Research Institute, Inc. (ESRI), 2005. ArcView GIS version 9.1. 
Redlands, California.  
 
Epps, C.W., Wehausen, J.D., Palsboll, P.J., McCullough, D.R., 2005. Using genetic 
analyses to describe and infer recent colonizations by desert bighorn sheep. Proceedings of 
Sweeney Granite Mountains 25th Anniversary Symposium 1, In Press. 
 
Etchberger, R.C., Krausman, P.R., Mazaika, R., 1989. Mountain sheep habitat 
characteristics in the Pusch Ridge Wilderness, Arizona. Journal of Wildlife Management 
53, 902-907. 
 
Etchberger, R.C., Krausman, P.R., Mazaika, R., 1990. Effects of fire on desert bighorn 
sheep habitat. In: Krausman, P. R., Smith, N.S. (Eds.), Management of Wildlife in the 
Southwest. Arizona Chapter, Wildlife Society, Phoenix, Arizona, pp. 53-57. 
 
Festa-Bianchet, M. 1986. Site fidelity and seasonal range use by bighorn rams. Canadian 
Journal Zoology 64, 2126-2132. 
 
Field, C.R., Blankenship, L.H., 1973. Nutrition and reproduction of Gant’s and 
Thompson’s gazelle, Coke’s hartebeest and giraffe in Kenya. Journal of Reproduction and 
Fertility, Supplement 19, 287-301. 
 
Foster, J.A., Pittman, M.T., Harveson, L.A. 2005. Use of Guzzlers by desert bighorn sheep 
in the Chihuahuan desert.  48th Meeting of the Desert Bighorn Council. Alpine, Texas. 
 
Frankham, R. 1995. Conservation genetics. Annual Review of Genetics 29, 305-327. 
 
Geist, V., 1971. Mountain Sheep: A Study in Behavior and Evolution. University of 
Chicago press, Chicago, Illinois. 
 
Gilpin, M., Hanski, I., 1991. Metapopulation dynamics: empirical and theoretical 
investigations. Biological Journal of the Linnean Society 42, 1-336. 
 
Goodson, N. J. 1994. Persistence and population size in mountain sheep: why different 
interpretations? Conservation Biology 8, 617–618. 
 
Gorman, M., 1999. Oryx go back to the brink. Nature 398, 190. 
 
Gould F.W., 1962. Texas plants: a checklist and ecological summary. Texas Agricultural 
Experiment Station, MS-585, College Station, Texas. 

 
 



  66    

 
Griffith, B., Scott, M.J., Carpenter, J.W., Reed, C., 1989. Translocation as a species 
conservation tool: status and strategy. Science 245, 477-480. 
 
Griver, S., 1991. Focus on Israel – Reintroducing Biblical Wildlife. Israel Ministry of 
Foreign Affairs. Jerusalem, Israel. 
http://www.mfa.gov.il/MFA/MFAArchive/2000_2009/2001/5/Focus%20on%20Israel-
%20Reintroducing%20Biblical%20Wildlife 
 
Gross J.E., Moses, M.E., Singer, F.J., 1997. Simulating desert bighorn sheep populations 
to support management decisions: effects of patch size, spatial structure, and disease.  
Desert Bighorn Sheep Council Transactions 41, 26-36. 
 
Guo, S.W. Thompson, E.A.,1992. Performing the exact test of Hardy-Weinberg 
proportions for multiple alleles. Biometrics 48, 361-372. 
 
Hamilton, K., Holl, S.A., Douglas, C.L., 1982. An evaluation of the effects of recreational 
activity on bighorn sheep in the San Gabriel Mountains, California.  Desert Bighorn 
Council Transactions 26, 50-55. 
 
Hanski, I., 1994. A practical model of metapopulation dynamics.  Journal of Animal 
Ecology 63, 151-162. 
 
Hanski, I.A., Gilpin, M. (Eds.) 1997. Metapopulation dynamics: ecology, genetics and 
evolution. Academic Press, London. 
 
Hanski, I., 1999. Metapopulation Ecology. Oxford University Press, Oxford. 
 
Hartl, D.L., Clark, A.G., 1989. Principles of Population Genetics. 2 ed. Sinauer 
Associates, Sunderland, Massachusetts. 
 
Harverson, L.A., 1997. Ecology of a mountain lion population in southern Texas. 
Dissertation. Texas A&M University & Texas A&M University-Kingsville, College 
Station, Texas. 
  
Hayes, C.L., Rubin, E.S., Jorgensen, M.C., Boyce, W.M., 2000.  Mountain lion 
predation of bighorn sheep in the Peninsular Ranges, California. Journal of Wildlife 
Management 64, 954-959. 
  
Hedmark, E. Ellegren, H., 2005. A test of the multiplex pre-amplification approach in 
microsatellite genotyping of wolverine faecal DNA. Conservation Genetics 7,  289 - 293. 
 
Hill, D., Robertson, P., 1988. Breeding success of wild and hand-reared ring necked 
pheasants. Journal of Wildlife Management 52, 446-450. 

 
 



  67    

 
Hoban, P.A., 1990. A review of desert bighorn sheep in the San Andres Mountains, New 
Mexico. Desert Bighorn Council Transactions 34, 14-22. 
 
Hodder, K.H., Bullock, J.M., 1997. Translocations of native species in the UK: 
implications for biodiversity. Journal of Applied Ecology 34, 547-565. 
 
Holling, C.S., 1978. Adaptive Environmental Assessment and Management. Wiley, New 
York. 
 
Hornocker, M.G., 1970. An analysis of mountain lion predation upon mule deer and elk 
in Idaho Primitive Area. Wildlife Monographs 21, 1-39. 
 
IUCN, 1969. Red Data Book. Vol. 1 - Mammalia. International Union for the 
Conservation of Nature and Natural Resources, Morges, Switzerland. 
 
IUCN, 1987. Position Statement on the Translocation of Living Organisms: Introductions, 
Reintroductions and Restocking. The World Conservation Union, Gland, Switzerland. 
 
Jansen, B.D., Krausman, P.R., Bristow, K.D., Heffelfinger, J.R. deVos, J.C. Jr., 2005. 
Surface mining and desert bighorn sheep ecology. 48th Meeting of the Desert Bighorn 
Council. Alpine, Texas. 
 
Jedrzejewska, B., Jedrzejewski, W., Bunevich, A.N., Milkowski, L., Okarma, H., 1996. 
Population dynamics of wolves Canis lupus in Bialowieza Primeval Forest (Poland and 
Belarus) in relation to hunting by humans, 1847-1993.  Mammal Review 26, 103-126.  
 
Jungius, N., 1985. Prospects for reintroduction. Symposium of the Zoological Society of 
London 54, 47-55. 
 
Kay, C.E., 1990. Yellowstone’s northern elk herd: a critical evaluation of the “natural-
regulation paradigm. Ph.D. Dissertation, Utah State University, Logan, Utah. 
 
Kellert, S., 1987. The public and the timber wolf in Minnesota. Anthrozoos 1, 100-109. 
 
Kellert, S. 1991. Canadian perceptions of marine mammal management and 
conservation in the northwest Atlantic. Technical report 91-04. International marine 
mammal association, Guelph, Ontario, Canada. 
 
Kleiman, D.G., Beck, B.B, Dietz, J.M. Dietz, L.A., 1991. Costs of a re-introduction and 
criteria for success: accounting and accountability in the Golden Lion Tamarin 
Conservation Program. In: Gipps, J.H.W. (Ed.), Beyond captive breeding: reintroducing 
endangered mammals to the wild. Clarendon Press, Oxford, England, pp. 125-142. 
 

 
 



  68    

Kleiman, D.G., Stanley Price, M.R., Beck, B.B., 1994. Criteria for reintroductions.  In: 
Olney, P.J.S. Creative Conservation:  Interactive management of wild and captive animals. 
Chapman and Hall, London, pp. 287-303. 
 
Krausman, P.R, Bleich, V.C, Bailey, J.A, Armentrout, D., Ramey, II R.R., 1992. What is a 
minimum viable population? Desert Bighorn Sheep Council Transactions 36, 68-75. 
 
Krausman, P.R., 1993. The exit of the last wild mountain sheep. In: Nabhan, G.P. (Ed.), 
Counting Sheep. University of Arizona Press, Tucson, Arizona, pp.242-250. 
 
Krausman, P.R., Etchberger, R.E., Lee, R.M., 1993. Persistence in mountain sheep. 
Conservation Biology 7, 219. 
 
Krausman, P.R., Etchberger, R.C., 1995.  Response of desert ungulates to a water project 
in Arizona. Journal of Wildlife Management 59, 292-300. 
 
Krausman, P.R., Sandoval, A.V., Etchberger, R.C., 1999. Natural history of desert bighorn 
sheep. In: Valdez, R., Krausman, P.R. (Eds.), Mountain Sheep of North America. The 
University of Arizona Press: Tucson, Arizona, pp. 139-191. 
 
Lambert, C.M.S., Wielgus, R.B., Robinson, H.S., Cruickshank, H., Katnik, D.D., Clarke, 
R., Almack, J. 2006. Cougar population dynamics and viability in the Pacific Northwest. 
Journal of Wildlife Management 70, 246-254. 
 
Leftwich, T.J., Simpson, C.D., 1978. The impact of domestic livestock and farming on 
Texas pronghorn. Pronghorn Antelope Workshop Proceedings 8, 307-320. 
 
Leopold, B.D., Krausman, O.R., 1983. Status of bighorn sheep in Texas. The Texas 
Journal of Science, 35, 157-160. 
 
Light, J.T., 1971. An ecological view of bighorn habitat on Mt. San Antonio. Transactions 
of North American Wild Sheep Conference, 1, 150-157. 
 
Logan, K.A., Sweanor, L.L., Ruth, T.K., Hornocker, M.G., 1996. Cougars of the San 
Andres Mountains, New Mexico. Final Report (Project W-128-R) to New Mexico 
Department of Game and Fish, Hornocker Wildlife Institute, Moscow, Idaho. 
 
Logan, K.A., Sweanor, L.L., 2001. Desert puma: evolutionary ecology and San Andres 
Mountains, New Mexico – A Final Report for New Mexico Department of Game and Fish. 
Hornocker Wildlife Institute, Inc. Santa Fe, New Mexico. 
 
Lubow, B.C., 1996. Optimal translocation strategies for enhancing stochastic 
metapopulation viability. Ecological Applications 6, 1268-1280. 
 

 
 



  69    

Mace, R. 2000. The evolutionary ecology of human population growth. In: Gosling, L.M., 
Sutherland, W.J., (Eds.), Behaviour and Conservation. Cambridge University Press, 
Cambridge, pp. 13-33. 
 
Machlis, G.E., 1992. The contribution of sociology to biodiversity research and 
management. Biological Conservation 62, 161-170. 
 
Maoz, N., 2003. The impact of repeated releases on the space use patterns and social 
organization of Arabian Oryx (Oryx leucoryx) reintroduced in the central Negev, Israel. 
M.S thesis, Ben Gurion University of The Negev, Be'er Sheva, Israel (In Hebrew). 
 
Marcstrom, V. 1990. Wild and released pheasants: a comparison of their survival and 
breeding success. In: CIC, (Ed.), Vortragssammlung Counseil Intern de la Chasse et de la 
Conservation du Gibier Symposium, Wien, pp. 52-62. 
 
Matson, T.K, Goldizen, A.W., Jarman, P.J., 2004. Factors affecting the success of 
translocations of the black-faced impala in Namibia. Biological Conservation 116, 359-
365. 
 
Mattson, D.J. 1990. Human impacts on bear habitat use. International Conference on Bear 
Research and Management 8, 35-56. 
 
McCarty, C.W., Bailey, J.A., 1994. Habitat requirements of desert bighorn sheep. Special 
Report 69. Colorado Division of Wildlife. Denver, Colorado. 
 
McCullough, D.R., 1996. Metapopulations and Wildlife Conservation. Washington D.C.: 
Island Press. 
 
McKelvey, K.S., Schawartz, M.K., 2004. Genetic errors associated with population 
estimation using non-invasive molecular tagging: problems and solutions. Journal of 
wildlife Management 68, 439-448. 
 
McKinney, B.P., 2003.  A field guide to Texas mountain lions. Texas Parks and Wildlife 
Department, Austin, Texas. 
 
McKinney, T.A., Boe, A.R., deVos, J.C. Jr., 2003. GIS-based evaluation of escape terrain 
and desert bighorn sheep population in Arizona.  Wildlife Society Bulletin 31, 1229-1236. 
 
McQuivey, R.P., 1978. The desert bighorn sheep of Nevada. Nevada Department of Fish 
and Game Biological Bulletin 6, 1-81. 
 
Menotti-Raymond, M. A., O'Brien, S. J., 1995. Evolutionary conservation of ten 
microsatellite loci in four species of Felidae. Journal of. Heredity 86, 319–322. 
 

 
 



  70    

Menotti-Raymond, M., David, V.A., Lyons, L.A., Schaffer, A.A., Tomlin, J.F., Hutton, 
M.K., O' Brien, S.J., 1999. A genetic linkage map of microsatellites in the domestic cat 
(Felis catus). Genomics 57, 9-23.  
 
Minta, S.C., Kareiva, P.M., 1994. A Conservation Science Perspective: Conceptual and 
Experimental Improvements. In: Clark, T.W, Reading, R.R, Clarke, A.L. (Eds.), 
Endangered Species Recovery: Finding the Lessons, Improving the Process. Island Press, 
Washington, D.C. pp. 275-304. 
 
Monson, G., Summer, L., 1980. The Desert Bighorn Sheep: Its Life History, Ecology, and 
Management. The University of Arizona Press, Tucson, Arizona. 
 
Morrison, B.L., 1981. History and status of bighorn sheep in the Guadalupe Mountains, 
New Mexico. Desert Bighorn Council Transactions 25, 52-54. 
 
Mowat, G. Paetkau, D. 2002. Estimating marten Martes Americana population size using 
hair capture and genetic tagging. Wildlife Biology 8, 201-209. 
 
National Research Council. 2002. Ecological Dynamics on Yellowstone’s Northern 
Range. National Academy Press, Washington D.C. 
 
New Mexico Department of Game and Fish. 1996 – 2002. Procedures for conducting 
preventive cougar control in game management unit 30, title 19: natural resources and 
wildlife, chapter 30: wildlife administration, part 6: predator management. Santa Fe, 
New Mexico. 
 
Newby, J.E., 1985. Large mammals. In: Cloudsley-Thompson, J.L., Key Environments: 
Sahara Desert. IUCN and Pergamon Press, Oxford, pp. 277-290. 
 
Noss, R.F., 1987. Corridors in real landscapes: a reply to Simberloff and Cox. 
Conservation Biology 1, 159-164. 
 
O’Bryan, M.K., McCullough, D.R., 1985. Survival of black-tailed deer following 
relocation in California. Journal of Wildlife Management 49, 115-119. 
 
Oregon Department of Fish and Wildlife. 1993. Oregon’s cougar management plan 
1993-1998. Portland, Oregon. 
 
Ostermann, S.D., Deforge, J.R., Edge, W.D., 2001. Captive breeding and reintroduction 
evaluation criteria: a case study of Peninsular bighorn sheep. Conservation Biology. 15, 
749-760. 
 

 
 



  71    

Ostrowski, S., Williams, J.B., Bedin, E. Ismail, K., 2002. Water influx and food 
conservation of free-living oryxes (Oryx leucoryx) in the Arabian desert in summer. 
Journal of Mammalogy, 83, 665 – 673. 
 
Ough, W.D., deVos, Jr. J.C., 1984. Intermountain travel corridors and their management 
implications for bighorn sheep.  Desert Bighorn Council Transactions 28, 32-36. 
 
Peakall, R., Smouse, P.E., 2001 GenAlEx V5: Genetic Analysis in Excel. Population 
genetic software for teaching and research. Australian National University, Canberra, 
Australia. http://www.anu.edu.au/BoZo/GenAlEx/ 
 
Phillipson, J., 1975. Rainfall, primary production and ‘carrying capacity’ of Tsavo 
National Park (East), Kenya. East African Wildlife Journal 13, 171-201. 
 
Piry, S., Alapetite, A., Cornuet, J.M., Paetkau, D., Baudouin, L., Estoup, A., 2004. 
GeneClass2: a software for genetic assignment and first-generation migrant detection. 
Journal of Heredity 95, 536-539. 
 
Raymond, M., Rousset, F., 1995. Genepop (version 1.2), population genetics software for 
exact tests and ecumenicism. Journal of Heredity 86, 248-249. 
 
Reed, J.M., Levine, S.H., 2005. A model for behavioral regulation of metapopulation 
dynamics. Ecological Modelling 183, 411-423. 
 
Risenhoover, K.L., 1981.  Winter ecology and behavior of bighorn sheep, Waterton 
Canyon, Colorado. M.S. thesis, Colorado State University, Fort Collins, Colorado. 
 
Risenhoover, K.L., Bailey, J.A., Wakelyn, L.A., 1988. Assessing the Rocky Mountain 
bighorn sheep management problem. Wildlife Society Bulletin 16, 346-352. 
 
Rominger, E.M., Weisenberger M.E., 2000.  Biological extinction and a test of the 
“conspicuous individual hypothesis” in the San Andres Mountains, New Mexico. In: 
Transactions of the 2nd North American Wild Sheep Conference, Reno, Nevada, pp. 
293-307. 
 
Ross, I., 1994. Lions in winter. Natural History 103, 52-59. 
 
Ross, P.I., Jalkotzy, M.G., Festa-Bianchet, M., 1997.  Cougar predation on bighorn 
sheep in south-western Ajberta during winter.  Canadian Journal of Zoology 75, 771-
775. 
 
Russock, H.I., Hale, E.B., 1978. Functional validation of the Gallus chick’s response to the 
maternal food call. Z. Tierpsychology 49, 250-259. 
 

 
 



  72    

Saltz, D., Rubenstein, D.I., 1995. Population dynamics of a reintroduced Asiatic wild-ass 
(Equus hemionus) herd. Ecological Applications 5, 327-335. 
 
Saltz, D., 1998. A long-term systematic approach to planning reintroductions: the Persian 
fallow deer and the Arabian oryx in Israel. Animal Conservation 1, 245-252. 
 
Sarrazin, F.,Barbault, R., 1996. Reintroduction: challenges and lessons for basic ecology. 
Tree 11, 474-478. 
 
Schaller, G.B., 1992. Field of dreams. Wildlife Conservation. September/October, 44-47. 
 
Schneider, K. 1992. U.S. mine inspectors charge interference by agency director. New 
York Times 22 November, 1. 
 
Schwartz, O., Bleich, C., Holl, S.A., 1986. Genetics and the conservation of mountain 
sheep Ovis candensis nelsoni. Biological Conservation 37, 179-190. 
 
Scott, J.M., Carpenter, W., 1987. The release of captive-reared or translocated endangered 
birds: what do we need to know. Auk 104, 544-545. 
 
Seddon, P.J., Ismail, K., 2002. Influence of ambient temperature on diurnal activity of 
Arabian oryx: implications from reintroduction site selection. Oryx 36, 50-55. 
 
Seidensticker, J., 1976. On the ecological separation between tigers and leopards. 
Biotropica, 8, 225-234. 
 
Simberloff, D., Cox, J., 1987. Consequences and costs of conservation corridors. 
Conservation Biology 1, 63-71. 
 
Sinclair, A.R.E., 1975. The resource limitation of trophic levels in tropical grassland 
ecosystems. Journal of Animal Ecology 44, 497-520. 
 
Singer, F.J., Zeigenfuss, L.C., Spicer, L., 2001. Role of patch size, disease, and movement 
in rapid extinction of bighorn sheep. Conservation Biology 15, 1347-1354.  
 
Singer, F.J., Mack, L. and Cates, R.G., 1994.  Ungulate herbivory of willows on 
Yellowstone’s northern winter range. Journal of Range Management 47, 435-443. 
 
Singer, F.J., Bleich, V.C., Gudorf, M.A., 2000. Restoration of bighorn sheep 
metapopulations in and near western National Parks. Restoration Ecology 8, 14-24. 
 
Smith, T.S., Flinders, J.T., Olsen, D.W., 1988.  Status and distribution of Rocky Mountain 
bighorn sheep in Utah.  Biennial Symposium of the Northern Wild Sheep and Goat 
Council 6, 5-12.  

 
 



  73    

 
Smith, T.S., Flinders, J.T., Winn, D.S., 1991. A habitat evaluation procedure for Rocky 
Mountain bighorn sheep in the intermountain west. Great Basin Naturalist 1, 205–225. 
 
Smith, T.S, Flinders, J.F., 1992. Evaluation of mountain sheep habitat in Zion National 
Park, Utah. Desert Bighorn Council Transactions 36, 4-9. 
 
Smuts, G.L. 1978. Effects if population reduction on the travels and reproduction of lions 
in Kruger National Park. Carnivore 1, 62-72. 
 
Spalton, J.A., 1999. The food supply of Arabian oryx (Oryx leucoryx) in the desert of 
Oman. Journal of Zoology, London 248, 433-441. 
 
Spencer, R.D., Pierce, D.J., Schirato, G.A., Dixon, K.R., Richards, C.B., 2001. Mountain 
lion home range, dispersal, mortality, and survival in the Western Cascade Mountains of 
Washington. Final report. Washington Department of Fish and Wildlife, Olympia, 
Washington. 
 
Stanley Price, M.R., 1988. Field operations and research in Oman. In: Dixon, A., Jones, 
D., (Eds.), Conservation and Biology of Desert Antelopes. Christopher Helm, London, 
England, pp. 18-34. 
 
Stanley Price, M.R., 1989. Animal Re-introductions: The Arabian Oryx in Oman. 
Cambridge University Press, Cambridge, UK. 
 
Stanley Price, M.R., 1991. A review of mammal re-introductions, and the role of the Re-
Introduction Specialist Group of IUCN/SSC.  In: Gipps, J.H.W. Beyond Captive 
Breeding:  Re-introducing Endangered Mammals to the Wild. Clarendon Press, Oxford, 
England, pp. 9-25. 
 
Stewart, D.R.M., 1963. The Arabian Oryx (Oryx leucoryx pallas). East African Wildlife 
Journal 1, 103-117. 
 
Strauss, W.M., 2002. Towards the effective management of the Arabian oryx Oryx 
leucoryx in the Kingdom of Saudi Arabia. Z.Jagdwiss, 48, Supplement 7-16. 
 
Sweanor, L.L., Logan, K.A., Hornocker, M.G., 2000. Cougar dispersal patterns, 
metapopulation dynamics, and conservation. Conservation Biology 14, 798 -808. 
 
Swenson, J.E., Sandegren, F., Söderberg, A., Bjärvall, A, Franzén, R. 1997. Infanticide 
caused by hunting of male bears. Nature 386, 450-451.  
 
Tear, T.H., Stanley Price, M.R., 1991. Rehabilitating desert ecosystems: The re-
reintroduction of the Arabian Oryx and rural development. In: McNeely, J.A., Neronov, 

 
 



  74    

V.M., (Eds.), Mammals in the Palaearctic Desert: Status and Trends in the Sahara-Gobian 
Region. The Russian Academy of Sciences and the Russian Committee for the UNESCO 
Programme on Man and the Biosphere (MAB), Moscow, Russia, pp. 219-231. 
 
Tear, T.H., 1992. Range use patterns and the development of a natural grazing system in 
reintroduced Arabian oryx (Oryx leucoryx) in the Sultanate of Oman. M.S. thesis, 
University of Idaho, Moscow, Idaho.  
 
Tear, T., Forester, D., 1992. The role of social theory in reintroduction planning: a case 
study of the Arabian oryx in Oman. Society and Natural Resources 5, 359- 374.  
 
Tear, T.H., Scott, J.M, Hayward, P., Griffith, B., 1993. Status and prospects for the 
Endangered Species Act: a look at recovery plans. Science 262, 976-977. 
 
Tear, T.H, Mosley, J.C, Ables, E.D., 1997. Landscape-scale foraging decisions by 
reintroduced Arabian oryx. Journal of Wildlife Management 61, 1142-1154. 
 
Tear, T.H, Ables, E.D., 1999. Social system development and variability in a reintroduced 
Arabian oryx population. Biological Conservation 89, 199 – 207. 
 
Texas Parks and Wildlife Department (TPWD). 2005. Non-game and other species. 
http://www.tpwd.state.tx.us/publications/annual/hunt/nongame/ 
 
Thaler, E., 1987. Studies on the behavior of some Phasianidae-chicks at the Alpenzoo 
Innsbuck. Journal of the Science Faculty of Chiang Mai University 14, 135-149. 
 
Thorne, E.T., Butler, T., Varcalli, K., Hayden,W.S., 1979. The status, mortality, and 
response to management of the bighorn sheep of Whisky Mountain.  Wyoming Game and 
Fish Department, Wildlife Technical Report 7, 1-198. 
 
Tulley, J.J., Huntingford, F.A., 1987. Parental care and the development of adaptive 
variation in antipredator responses in sticklebacks. Animal Behavior 35, 1570-1572. 
 
U.S. Fish and Wildlife Service. 2000. Recovery Plan for Bighorn Sheep in the 
Peninsular Ranges, California. U.S. Fish and Wildlife Service, Portland, OR. 
 
U.S. Fish and Wildlife Service. 2003.  Draft Recovery Plan for the Sierra Nevada 
Bighorn Sheep (Ovis Canadensis califoniana). U.S. Fish and Wildlife Service, Portland, 
OR. 
 
United States Department of the Interior, National Park Service. 1988. Management  
Policies. U.S. Government Printing Office, Washington, D.C. 
 

 
 



  75    

United States Department of the Interior, National Park Service. 2001. Management 
Policies. U.S. Government Printing Office, Washington, D.C. 
 
Van Heezik, Y., Ismail, K., Seddon, P.J., 2003. Shifting spatial distribution of Arabian 
oryx in relation to sporadic water provision and artificial shade. Oryx 37, 295- 303. 
 
Vie, J.C., 1996. Reproductive biology of captive Arabian oryx (Oryx leucoryx) in Saudi 
Arabia. Zoo Biology 15, 371-381. 
 
Wacher, T.J., 1986. The ecology and social organization of fringed-eared oryx, on the 
Galana Ranch, Kenya. Ph.D. Dissertation, University of Oxford, Oxford, England. 
 
Wahausen, J.D., 1996.  Effects of mountain lion predation on bighorn sheep ranges in 
Colorado Journal of Wildlife Management 51, 904-912. 
 
Waits, L.P., Luikart, G., Taberlet, P., 2001. Estimating the probability of identity among 
genotypes in natural populations: cautions and guidelines. Molecular Ecology 10, 249–
256. 
 
Walters, C. J., 1986. Adaptive Management of Renewable Resources. Macmillan, New 
York. 
 
Walters, S., 2001. Landscape pattern and productivity effects on source-sink dynamics of 
deer populations. Ecological Modelling 143, 17–32. 
 
Walther, F.R. 1978. Behavioral observations on oryx antelope (Oryx beisa) invading 
Serengeti National Park, Tanzania. Journal of Mammalogy 58, 242 – 260. 
 
Wehausen, J.D., 1996. Effects of mountain lion predation on bighorn sheep ranges in 
Colorado Journal of Wildlife Management 51, 904-912. 
 
Wehausen, J.D., 1999. Rapid extinction of mountain sheep populations revisited. 
Conservation Biology 13, 378–384. 
 
Wilcove, D.S., McLellan, C.H., Dobson, A.P.,1986. Habitat fragmentation in the 
temperate zone. In: Soulé, M. (Ed.), Conservation Biology: Science of Scarcity and 
Diversity. Sinauer Associates, Sunderland, Massachusetts, pp. 237-256. 
 
Wilcox, J.A, Murphy, D.D., 1985.  Conservation strategy: the effects of fragmentation on 
extinction. American Naturalist 125, 879-887. 
 
Williams, J.B., Ostrowski, S., Bedin, E., Ismail, K., 2001. Seasonal variation in energy 
expenditure, water influx, and food consumption of Arabina oryx Oryx leucoryx. Journal 
of Experimental Biology 204, 2301 – 2311. 

 
 



  76    

 
Wilson, J.Q., 1980. The Politics of Regulation. Harper and Row, New York. 
 
Wolf , C.M., Griffith, B., Reed, C., Temple, S.A., 1996. Avian and mammalian 
translocations: update and reanalysis of 1987 survey data. Conservation Biology 10, 1142-
1154. 
 
Wolf, C.M., Garland, T., Griffith, B., 1998. Predictors of avian and mammalian 
translocation success: reanalysis with phylogenetically independent contrasts. Biological 
Conservation 86, 243-255. 
 
Wondolleck, J.M, Yaffee, S.L., Crowfoot, J.E., 1994. A conflict management perspective: 
applying the principles of alternative dispute resolution to endangered species 
conservation. In: Clark, T.W, Reading, R.R, Clarke, A.L. (Eds.), Endangered Species 
Recovery: Finding the Lessons, Improving the Process. Island Press, Washington, D.C. pp. 
305-326. 
 
Woodroffe, R., Ginsberg, J.R., 2000. Ranging behavior and vulnerability to extinction in 
carnivores. In: Gosling, L.M, Sutherland, W.J. (Eds.), Behavior and Conservation. 
Cambridge University Press, Cambridge, pp.125-140. 
 
Woodroffe, R., 2003. Dispersal and conservation: a behavioral perspective on 
metapopulation persistence. In: Festa-Bianchet, M., Apollonio, M. (Eds), Animal 
Behaviour and Wildlife Conservation. Island Press, Washington, pp. 33–48. 
 
Yaffee, S.L. 1994. The northern spotted owl: an indicator of the importance of 
sociopolitical context, In: Clark, T.W, Reading, R.R, Clarke, A.L. (Eds.), Endangered 
Species Recovery: Finding the Lessons, Improving the Process. Island Press, Washington, 
D.C. pp. 47-71. 
 
Zeigenfuss, L.C., Singer, F.J., Gudorf, M.A., 2000. Test of a modified habitat suitability 
model for bighorn sheep. Restoration Ecology 8, 38-45. 

 
 



  77    

APPENDIX A 
 
 
 

 

Figure 1: Study Area.  
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 Figure 2: Habitat Suitability Maps for Guadalupe Mountains National Park. 
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Figure 2: Continued. 
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Figure 2: Continued. 
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Figure 2: Continued. 
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Figure 3: Migration Corridors. 

Migration corridors are defined for a 10km and 15km migration distance.  
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Figure 4: Scat Collection Locations in Guadalupe Mountains National Park. 
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Figure 5: Populations of Mountain Lions in Texas.   

Guadalupe Mountains National Park (GUMO) mountain lion population location and the six different 
populations of mountain lions it was compared to. (Jan Janecka, Wildlife and Fisheries Department, 
TAMU, personal communication 2006). Original map: ESRI (2005). 
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Figure 6: Minimum Loci Difference.  
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Figure 7: Probability of Identity P(I) Calculated for all Alleles in Each Mountain Lion Population in 
Texas. 

The GUMO population shows high similarity to all 5 west Texas populations and a distinct separation 
form the south Texas population (Population 6). 
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A 

B 

C 

Figure 8: Reintroduction Sites of Arabian Oryx in Israel. 

The map indicates the three sites at which Arabian oryx (Oryx leucoryx) have been reintroduced into the 
Israeli Negev;  Shahak Spring in the Northern Arava Valley (A),  Har Ha-Negev (B), and Nachal Ketzev 
(C). (Map provided by David Saltz, Mitrani Center for Desert Ecology, Israel,  personal communication 
2004) 
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Figure 9: Conceptual Model of Arabian Oryx Metapopulation Dynamics. 

Components are defined in the text. 
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A. No Migration, No Natality Adjustment   
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B. No Migration, Natality Increased 
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Figure 10: Simulations of Metapopulation Dynamics of Arabian Oryx under Different Scenarios. 

Mean (n = 10) simulated sizes of the Arabian oryx (Oryx leucoryx) populations in the Israeli Negev during 
the 50 years (600 months) after reintroduction in 1997 under each of six possible scenarios.  Scenarios 
represent all combinations of three assumptions regarding migration: (1) no migration, (2) migration 
among all three sites, and (3) migration between sites A and C only; and two assumptions regarding 
natality rates: (1) no adjustment to natality after reintroduction and (2) increased natality after 
reintroduction. 
 
 

 
 



  90    

C. Migration among All Sites, No Natality Adjustment     
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D. Migration among All Sites, Natality Increased 
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Figure 10: Continued. 
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E. Migration between Sites A and C only, No Natality Adjustment. 
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F. Migration between Sites A and C only, Natality Increase. 
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Figure 10: Continued. 
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APPENDIX B 
 
 Table 1:Habitat Suitability Model for Desert Bighorn Sheep in Guadalupe Mountains National 
Park. 

Woodland 
and 

disturbance 
Escape terrain Proximity to perennial water Habitat 

suitability 

27°-85° slopes plus 300 m 
buffer 

OR 

300m-500m from 27°-85° 
slopes if connected to two 

suitable escape terrains 

≤1000 m of perennial water 
during lambing season (females 

and young) 

OR 

≤3200 m from perennial water 
for non-lambing season 

Suitable Non-wooded 
areas 

AND 

>150 m from 
roads or trails 

>300 m (or 500 m, see above) from 27°-85° slopes 

OR 

>1000 m in lambing season and >3200 m in non-lambing season 
from perennial water 

Wooded   OR   <=150 m of roads or trails 

Unsuitable 
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Table 2: Areas (Hectares) of Suitable Habitat for Desert Bighorn Sheep. 

Areas are described for Guadalupe Mountains National Park and follow exclusionary criteria. 
 

Criteria Area 
 

Area Less Wooded 
Areas 

Area less woodland areas 
and buffered trails 

Optimal slopes (27° - 85°) 7,273.41 
 

7,134.02 5,614.92 

Optimal slopes with 300m 
buffer 

20,736.36 
 

15,884.03 13,200 

Optimal slopes with 300m 
buffer within 1000m Water 

5985.59 
 

5431.75 4,782.39 

Optimal slopes with 300m 
buffer,  within 3200m Water 

12,968.66 
 

9817.47 7,991.34 
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Table 3: Landscape Pattern Comparison. 

Landscape patterns are compared between Guadalupe Mountains National Park (GUMO) and Sierra 
Diablo Mountain (SD). 
 

Landscape 
metric GUMO SD % difference 

 
Optimal 
Slopes 

(27 - 85°) 

Optimal 
slopes plus 

300m 
buffer 

Optimal 
Slopes 

(27 - 85°) 

Optimal 
slopes plus 

300m buffer 

Optimal 
Slopes 

(27 - 85°) 

Optimal 
slopes plus 

300m buffer 
 

Total Land 
Area (ha) 7,273 20,736 6,997 32,572 3.8% larger 

36.37% 
smaller 

 

Number of 
patches (NumP) 1,228 1 2,258 1 

45.6% less 
patchy 

 
Equal 

Patch Density 
(NumP/ha) 0.16 N/A 0.32 N/A 

50% less 
dense 

 
N/A 

Mean patch 
size (ha) 5.92 20,736 3.10 32,572 

47.6% 
larger 

patches 

36.37% 
smaller 

Mean nearest 
neighbor 

distance (m) 
 

67.86 N/A 77.95 N/A 12.94% 
smaller N/A 

Edge density 
(m/ha) 

 
0.018 0.00087 0.023 0.00146 22% lower 40.41% 

lower 

Mean shape 
index 1.48 3.521 1.46 7.429 

1.35% 
more 

complex 

52.6% less 
complex 
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Table 4: Scat Collected by Year and Location.  

Refer to Appendix A, Fig. 4. 
  
Year Sample 

ID 
Transect Name Location 

Collected 
Year Sample ID Transect Name Location 

Collected 
1997 16 Middle McKittrick KM 49 2002 24 Dog Canyon KM 4 

 26 Upper S. McKittrick KM 43  27 Dog Canyon KM 4 
 37 Middle McKittrick KM 51  30 Bush Mt. KM 25.5 
 53 Upper S. McKittrick KM 44  31 Middle McKittrick KM 48 
 90 Upper S. McKittrick KM 46  33 Frijole Ridge KM 35.3 

1998 1 Upper S. McKittrick KM 45  35 Cox KM 21.8 
 22 Middle McKittrick KM 50-51  36 Dog Canyon KM 4 
 51 Middle McKittrick KM 49-50  42 Upper S. McKittrick KM 46 
 72 Dog Canyon KM 10  44 Cox KM 23.4 

1999 28 Middle McKittrick KM 49  49 Upper S. McKittrick KM 43 
 29 Dog Canyon KM 3  50 Dog Canyon KM 9 
 34 Dog Canyon KM 11  52 Frijole Ridge KM 32 
 38 Frijole Ridge KM 32  56 Frijole Ridge KM 33.6 
 40 Dog Canyon KM 11  57 Bush Mt. KM 26.8 
 41 W. Dog Canyon KM 19  59 Dog Canyon KM 8 
 45 Bush Mt. KM 25  64 Upper S. McKittrick KM 38.3 
 46 Dog Canyon KM 11  66 Dog Canyon KM 10 
 55 Dog Canyon KM 5  67 Dog Canyon KM 49 
 70 Dog Canyon KM 5  68 Dog Canyon KM 6 

2000 8 Cox KM 21  84 Dog Canyon KM 11 
 12 Cox KM 22.6  85 Frijole Ridge KM 31 
 14 Upper S. McKittrick KM 41  87 Upper S. McKittrick KM 39.5 
 20 Dog Canyon KM 8  91 Middle McKittrick KM 47 
 25 Dog Canyon KM 1  96 Dog Canyon KM 7 
 39 Dog Canyon KM 9  98 Dog Canyon KM 6 
 48 Dog Canyon KM 12 2003 43 Upper S. McKittrick KM 42.5 
 58 Bush Mt. KM 26  60 Dog Canyon KM 2.5 
 63 Dog Canyon KM 9  61 Upper S. McKittrick KM 39 

2001 2 Frijole Ridge KM 33  62 Frijole Ridge KM 31 
 4 Frijole Ridge KM 31  71 Cox KM 23.7 
 18 Frijole Ridge KM 35  73 Upper S. McKittrick KM 38 
 32 Middle McKittrick KM 49  74 W. Dog Canyon KM 16.8 
 47 Frijole Ridge KM 32  75 Dog Canyon KM 10 
 54 Dog Canyon KM 10  81  Frijole Ranch 
 69 Dog Canyon KM 9  82 Frijole Ridge KM 32 
 88 Middle McKittrick KM 49  89 Frijole Ridge KM 33 

2002 3 Bush Mt. KM 26.8  92 Dog Canyon KM 9 
 5 W. Dog Canyon KM 17.5  93 Bush Mt. KM 26.9 
 6 Bush Mt. KM 27.1  95 El Capitan KM 69.2 
 7 Bush Mt. KM 25.1 2004 65 El Capitan KM 69.2 
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Table 4: Continued.
Year Sample 

ID 
Transect Name Location 

Collected 
Year Sample ID Transect Name Location 

Collected 
2002 9 Bush Mt. KM 25.5  76 El Capitan KM 69.4 

 10 Bush Mt. KM 28.5  77 W. Dog Canyon KM 17 
 11 Cox KM 22.6  78 Bush Mt. KM 25 
 13 Dog Canyon KM 12  79 Bush Mt. KM 26 
 15 Bush Mt. KM 30.8  80 Dog Canyon KM 5.8 
 17 Bush Mt. KM 24.5  83 Bush Mt. KM 26 
 19 Bush Mt. KM 25.5  86 Shumard Canyon KM 72.8 
 21 Bush Mt. KM 22.6  94 Bush Mt. KM 28.5 
 23 Dog Canyon KM 11  97 Bush Mt. KM 27 
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Table 5: List of Samples That Successfully Genotyped for the Presence of Six Loci. 

Loci designated with x genotyped after a single PCR reaction; loci designated with an R had to be treated 
with PreCR-A DNA Repair Mix before positively genotyped; loci designated with failed to amplify after 
being treated by PreCR-A DNA Repair Mix.  Samples 11, 15, 58, 74 and 94 tested negative for mtDNA 
before repair. 
 

Tube 
number Sample ID FCA_23 FCA_26 FCA_35 FCA_43 FCA_82 FCA_96 

1 4 x x x x x x 
2 6 R x x x x x 
3 7 x x x x x x 
4 11 R R R R R R 
5 12 x x R x x x 
6 13 x x x x x x 
7 14 x x x x x x 
8 15 R R R R R R 
9 17 x x R x x x 

10 19 x x x x x x 
11 20 0 x x x x x 
12 21 R x x x x x 
13 22 x x x x x x 
14 25 x x x x x x 
15 26 R x x x x x 
16 29 x x x x x x 
17 35 R x x x x x 
18 39 x x x x x x 
19 45 x x x x x x 
20 49 x x x x x x 
21 50 x x x x x x 
22 53 x x R x R x 
23 58 R R R R R 0 
24 60 x x x x x x 
25 64 R x x x R x 
26 65 x x x x x x 
27 68 x x x x R R 
28 70 x x R x R R 
29 74 R R R R R R 
30 85 x x x x x x 
31 94 R R R R R R 
32 98 x x x x x x 
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Table 6: Genotypic Variations Calculated for Six Microsatellites. 

Genotypic variations calculated for six microsatellites among 32 unique genotypes of mountain lions 
extracted from scat collected at Guadalupe Mountains National Park.  Locus name, size (in nucleotides), 
number of alleles, number of effective alleles, expected heterozygosity, observed heterozygosity, Expected 
and observed heterozygosity after including 7 additional samples collected outside park boundary (Jan 
Janecka, Wildlife and Fisheries Department, TAMU,  personal communication 2006), Chi-square for 
Hardy-Weinberg equilibrium, inbreeding coefficient.  
 

Locus Size Na Ne He Ho He
After 

Pooling 

Ho
After 

Pooling 

P P 
(Pop. 

1) 

Fis

FCA 23 132-
144 

5 3.230 0.690 0.742 0.720 0.684 0.578 0.415 -
0.075 

FCA 26 118-
134 

7 2.098 0.523 0.469 0.497 0.410 0.000a 0.070 0.104 

FCA 35 120-
150 

6 2.456 0.593 0.563 0.692 0.564 0.784 0.772 0.051 

FCA 43 112-
120 

7 4.047 0.753 0.875 0.770 0.846 0.243 0.814 -
0.162 

FCA 82 233-
247 

5 3.230 0.690 0.813 0.694 0.821 0.450 0.765 -
0.177 

FCA 96 177-
203 

9 4.654 0.785 0.742 0.822 0.632 0.001b 0.562 0.178 

Population  6.5 3.286 0.673 0.684 0.699 0.660 0.343 0.566 -
0.014 

a  P<0.001, b P<0.01 
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Table 7: Individual Assignment. 

Individual assignment was performed on each of the Guadalupe Mountains National park mountain lions 
to each of the six mountain lions populations in Texas.  

Assigned 
sample 

Probability 
Population 

1 

Probability 
Population 2 

Probability 
Population 3 

Probability 
Population 4 

Probability 
Population 5 

Probability 
Population 6 

13 0.007 0.000 0.000 0.001 0.000 0.000 
19 0.003 0.000 0.000 0.000 0.000 0.000 
20 0.048 0.000 0.001 0.000 0.004 0.000 
22 0.007 0.000 0.000 0.000 0.000 0.000 
29 0.007 0.000 0.000 0.001 0.000 0.000 
35 0.005 0.000 0.000 0.000 0.000 0.000 
39 0.011 0.000 0.000 0.002 0.000 0.000 
45 0.012 0.000 0.000 0.001 0.000 0.000 
64 0.002 0.000 0.000 0.000 0.000 0.000 
68 0.005 0.001 0.010 0.013 0.000 0.000 
83 0.024 0.016 0.002 0.048 0.004 0.000 
74 0.005 0.000 0.000 0.000 0.000 0.000 
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Table 8: Pairwise Population FST (via Frequency) Values.  

Pop1 Pop2 Pop3 Pop4 Pop5 Pop6 GUMO  
0.000       Pop1 
0.044 0.000      Pop2 
0.044 0.027 0.000     Pop3 
0.031 0.014 0.013 0.000    Pop4 
0.080 0.045 0.029 0.040 0.000   Pop5 
0.105 0.086 0.083 0.083 0.167 0.000  Pop6 
0.103 0.135 0.120 0.121 0.168 0.199 0.000 GUMO 
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Table 9: Parameter Values for Metapopulation Dynamics Simulations. 

Parameter values used to simulate reintroductions of Arabian oryx (Oryx leucoryx) in Oman and in each of 
the three sites in Israel  (Appendix A, Fig. 8), including (a) natality rates (k1j, females born per female per 
month) as a function of months (j) since reintroduction, and (b) age-specific mortality rates (k6i, k7i, and 
k8i, proportions of individuals aged i that die per year due to natural causes, due to hunting, and due to 
military activities, respectively).  Data for Oman are from Stanley Price (1989) and Tear et al. (1997), and 
data for Israel are from David Saltz, (Mitrani Center for Desert Ecology, Israel, personal communication 
2004); see text for details.  
 
A. Natality rates1 

Months since 
reintroduction  

(j) 

k1j 
(Oman) 

 

k1j 
(Israel- Sites 

A and C) 

k1j - adjusted 
(Israel- Sites 

A and C) 

k1j 
(Israel- Site 

B) 

k1j - adjusted 
(Israel- Site 

B) 
0 - 60 0.059 0.071 0.071 0.021 0.021 

61 - 120 0.1012 0.071 0.1218 0.021 0.036 
121 - 144 0.185 0.071 0.223 0.021 0.066 
145 - 156 0.21 0.071 0.253 0.021 0.075 

>156 0.5 0.071 0.602 0.021 0.178 
1. Age at sexual maturity is 24 months 
 
B. Mortality rates 

Age in 
months (i) k6i (Oman) 

k6i – 
Sites A & C 

(Israel) 

k6i – 
Sites B 
(Israel) 

k7i 
All sites 
(Israel) 

k8i 
Sites A and 
C (Israel) 

k8i 
Site B 
(Israel) 

0 - 1 0.1883 0.1478 0.08637 0.00275 0.001875 
2 - 6 0.024 0.0188 0.011007 0.00275 0.001875 

7 - 36 0.0715 0.056 0.03279 0.00275 0.001875 
37 - 120 0.119 0.0934 0.05457 0.00275 0.001875 

120 – 2042 0.0240 0.0188 0.011007 

For i >=7 
ran(a, b)3

0.00275 0.001875 
2. Longevity is 17 years (204 months) 
3. ran(a, b) is a uniform random variate on the interval a to b 
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Table 10: Simulated and Observed Arabian Oryx Population in Oman. 

Mean (±1SD, n = 10) simulated and observed sizes of Arabian oryx (Oryx leucoryx) populations the 
indicated number of months after initial reintroduction in Oman.  Ten, 10, 11, 11, and 8 animals were 
introduced 1982, 1984, 1988, and 1989, respectively (Stanley Price 1989). 
 

Months After 
Initial 

Reintroduction in 
1982 

 

Observed 
Population Size 

Mean (±1SD) 
Simulated Population 

Size 

Difference 
(Simulated / 
Observed) 

60 31 35 (0.06) 1.13 
96 100 91 (0.65) 0.91 

120 134 128 (1.60) 0.96 
132 181 173 (4.05) 0.96 
144 263 213 (3.40) 0.81 
156 284 259 (5.76) 0.91 
168 400 363 (17.32) 0.91 
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Table 11:  Simulated Meta/population(s) Sizes of Arabian Oryx in Israel. 

Mean (±1SD, n = 10) simulated sizes (number of individuals) of the Arabian oryx (Oryx leucoryx) 
populations in the Israeli Negev 50 years (600 months) after reintroduction in 1997 under each of six 
possible scenarios.  Scenarios represent all combinations of three assumptions regarding migration: (1) no 
migration, (2) migration among all three sites, and (3) migration between sites A and C only; and two 
assumptions regarding natality rates: (1) no adjustment to natality after reintroduction and (2) increased 
natality after reintroduction. 
 

Scenarios  No Natality Adjustment 
Natality Increased after 

Reintroduction 
 

 Site Population Size  Population Size 
No Migration A 40(1.79 )  83 (4.09 ) 

 B 04  71 (2.44 ) 
 C 40 (1.69)  84 (3.24 ) 
     

Migration among all 
sites A 36 (1.55 )  80 (7.63 ) 

 B 32 (2.46 )  80 (6.78) 
 C 36 (1.84)  81 (8.36 ) 

 Meta
pop. 104 (4.90)1  241 (15.85 )2

 
Migration between 
sites A and C only A 41 (1.18)  85 (4.17) 

 B 05  69 (2.92) 
 C 40 (1.27)  87 (3.21) 

 Meta
pop. 81 (2.27)  172 (9.50)3

 
1. Time to reach viable population size (100 individuals, Saltz, 1998) was 442.2 (±46.11) months 
2. Time to reach viable population size was 68.5 (±1.08) months  
3. Time to reach viable population size was 68.8 (±2.04) months  
4. Time to extinction was 555.2 (±18.58) months  
5. Time to extinction was 537.8 (±20.06) months 
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