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ABSTRACT 
 

Role of P-glycoprotein in Haemonchus contortus  
 

Anthelmintic Resistance. (August 2007) 
 

Pamela Donn Garretson, B.S., Colorado State University 
 

Chair of Advisory Committee:   Dr. Patricia Holman 
 
 

 The gastrointestinal parasite, Haemonchus contortus, is of major concern in the 

sheep and goat industry as well as in zoological settings.  Over the years this parasite has 

developed resistance to the three classes of anthelmintics, benzimidazoles, 

imidazothiazoles and macrocyclic lactones, that are currently used for treatment.  One of 

the mechanisms proposed to be involved in this resistance is the efflux transporter        

P-glycoprotein (Pgp).  In this study, the resistance status of several strains of                 

H. contortus was evaluated using the larval development assay DrenchRite®.  After 

documenting the resistance status of these strains, transcription of Pgp in L3 larvae after 

exposure to anthelmintics was quantitated using polymerase chain reaction (PCR).  Of 

the strains analyzed, only one was determined to be susceptible to all of the 

anthelmintics tested, while the others showed variable levels of resistance to one or 

more.  A Haemonchus strain acquired from a giraffe at a zoo in Florida was the most 

resistant, showing extremely high levels of resistance to benzimidazoles and levamisole.  

Molecular characterization of the 18S rRNA gene and the internal transcriber spacer 

region (ITS) were performed on the giraffe strain to identify the species.  Although there 

were variations in the isolate sequences, the most likely species for the giraffe strain was 

H. contortus.  No transcription of Pgp was identified in H. contortus L3 larvae under the 
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conditions of this study.  Thus, increased Pgp does not appear to be a primary 

mechanism of drug resistance in this stage of the worm. 
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1.  INTRODUCTION 

For the sheep and goat industry, the parasitic nematode Haemonchus contortus is 

of great concern.  Commonly known as the barber’s pole worm, H. contortus can inflict 

a considerable amount of damage to a flock or herd in a short span of time.  

Haemonchosis, the disease associated with H. contortus infections, may be chronic, 

resulting in minor clinical signs, acute or hyperacute, resulting in death.  Treatment and 

control of this gastrointestinal parasite have been successful through the use of 

anthelmintics, such as benzimidazoles, levamisole, and ivermectin.  However, resistance 

to these anti-parasitic drugs has developed worldwide and is becoming an area of 

increasing concern.  This has led to an influx of research to determine the mechanisms 

employed by H. contortus that enables them to be highly efficient in drug resistance.  By 

understanding the mechanisms involved, better methods of treatment as well as 

prevention may be developed. 

Haemonchus contortus was first described in 1803 by Rudolphi.  The 

classification is as follows: Class Nematoda, Order Strongylida, and Family 

Trichostrongylidae.  Originally, the parasite was called Strongylus contortus and over 

the years has been referred to as Strongylus falicollis (Molin, 1861), Filaria dendiculata 

(Simmonds, 1881) and Strongylus placei (Place, 1893) (as cited in Morgan, 1949).  It 

wasn’t until the 1900s that H. contortus became the preferred nomenclature (Morgan, 

1949).  There have been several common names associated with H. contortus.   
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These include barber’s pole worm, twisted stomach worm, and wire worm (Soulsby, 

1982; Kassai, 1999; Anderson, 2000). 

The adult female H. contortus ranges in size from 2.0-3.5 cm in length and the 

males from 1.5-2.5 cm (Dunn, 1978).  Haemonchus contortus are blood sucking 

parasites that possess a slender dorsal lancet within the buccal cavity for accessing the 

host blood supply (Soulsby, 1982).  The appearance of the female, in which the red, 

blood filled intestine intertwines with the white reproductive organs, gave rise to the 

common name barber’s pole worm (Morgan, 1949).  The males are red in color and 

possess a characteristic three-lobed copulatory bursa consisting of two symmetrical 

lateral lobes and one asymmetrical dorsal lobe (Morgan, 1949; Soulsby, 1982).  The 

adults are found in the abomasum, the fourth digestive compartment of the ruminant 

stomach, where they feed and sexually reproduce. 

  Haemonchus contortus is distributed throughout the world in tropical and 

subtropical regions.  Approximately 60 different species of ruminants, both domestic and 

wild, have been identified as hosts for this gastrointestinal worm (Dunn, 1978).  Sheep 

and goats tend to be the preferred host, however, H. contortus has been found in cattle, 

white-tailed deer, bison, antelope, giraffes, and camels to name a few (Hoberg et al., 

2004).  According to McGhee et al. (1981), cross-transmission is possible between wild 

and domestic hosts, as was seen in their studies on white-tailed deer and domestic cattle 

and sheep.  Although H. contortus has a wide host range, domestic sheep appear to be 

the most drastically affected, which may be due, in part, to their grazing behaviors.  

Most sheep exhibit strong flocking habits where they remain in close proximity to each 
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other while grazing.  This concentrates the area of parasite contamination increasing the 

chance for infection (Dunn, 1978). 

Haemonchus contortus has a direct life cycle in the natural hosts.  The females 

are prolific egg layers and can deposit 5,000 to 10,000 eggs per day, which are released 

into the environment via the host’s feces (Morgan, 1949).  Once the eggs are released 

into the environment, larval development occurs and the L1 stage larvae hatch within 24 

hours.  The L1 larvae molt into the L2 stage larvae soon after and within 3-5 days, molt 

into the L3 stage larvae (Veglia, 1916).  The resilient L3 larvae is the infective stage and 

proceeds to migrate up damp vegetation during early morning and late evening hours in 

order to increase the chance of ingestion by the ruminant host (Morgan, 1949).  This 

larval migration is highly dependent upon the combination of ideal temperature, 

humidity and light (Anderson, 2000).  Once inside the rumen of the host, the L3 larvae 

exsheath, migrate to the abomasum and molt into the L4 larval stage, followed by the L5.  

The L5 are the immature adults, which develop into mature adults within the abomasum 

approximately 15 days post infection (Morgan, 1949; Urquhart et al., 1987).  Females 

will begin to produce eggs within 25-35 days post infection (Morgan, 1949).   

 Warm, rainy weather is essential for the survival and development of the free-

living larval stages of H. contortus (Kassai, 1999).  Larval development is hindered by 

extremely dry or cold conditions (Kassai, 1999; Anderson, 2000).  However, in 

temperate climates H. contortus overcome these adverse conditions through a process 

called hypobiosis, where the L4 stage larvae enter into a state of dormancy within the 

host.  Michel (1974) defines hypobiosis as “the temporary cessation of development of 
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nematodes at a precise point in early parasitic development, where such an interruption 

contains a facultative element, occurring only in certain hosts, certain circumstances, or 

at certain times of the year and often affecting only a portion of the worms.”   

There are at least two types of arrested development that occur in nematodes.  

The first is termed immune mediated arrest and is considered to be non-specific and of 

immunological origin.  It may arise at any time of the year and be triggered by either 

host-related or parasite-related factors.  The second is termed seasonally induced arrest 

and occurs at the same time each year.  This type of hypobiosis is similar to diapause in 

insects and is most often triggered by an external environmental stimulus (Horak, 1981; 

Gibbs, 1986a).  The latter appears to be the predominant form of hypobiosis in 

H. contortus (Blitz and Gibbs, 1971; Gibbs, 1986b).   

There are three categories of factors that have been suggested as triggers for 

hypobiosis. These triggers may act independently or in combination with each other to 

induce an arrested development of the nematode larvae.  The first category consists of 

host-related factors including host resistance, acquired immunity, and age (Blitz and 

Gibbs, 1972a; Connan, 1975; Horak, 1981; Gibbs, 1982).  The second category is 

parasite-related factors, which include population density and genetic predisposition 

(Horak, 1981; Gibbs, 1986a).  The final category consists of environmental factors 

including temperature, humidity, and photoperiod length.  Since hypobiosis in 

H. contortus appears to be more seasonal than immunological, environmental factors are 

most likely to be the triggers involved (Blitz and Gibbs, 1972a; Michel, 1974; Horak, 

1981; Soulsby, 1982; Gibbs, 1986a, 1986b).   



 

 

5 

The external triggers for hypobiosis probably act upon the L3 larval stage in the 

environment prior to ingestion by the host.  These include a decrease in photoperiod 

from 14.25 to 12.5 hours and an average temperature of 17°C in temperate climates 

(Blitz and Gibbs, 1972a; Gibbs, 1982).  In tropical and arid climates, H. contortus may 

also utilize hypobiosis to withstand hot dry conditions (Gibbs, 1982).  However, parasite 

genetics may also play a significant role in triggering an arrest in development.   

Hypobiosis in H. contortus, as well as other nematodes, closely resembles the 

arrested development phenomenon known as diapause in insects.  Diapause is an 

inhibition of development triggered by environmental factors and considered to be 

genetically controlled.  This arrest in development is temporarily irreversible and may 

continue until either a specific stimulus presents itself or a predetermined period of time 

has elapsed (Horak, 1981; Sommerville and Davey, 2002). 

Once conditions become suitable for parasite survival, the L4 larvae come out of 

arrest and continue to develop into the mature adult.  By undergoing hypobiosis,           

H. contortus reaches the reproductive stage at a time when it is most beneficial to the 

parasite and the eggs are released into the environment during conditions that are more 

favorable for the free-living larval stages (Soulsby, 1982; Urquhart et al., 1987). 

There are several factors that may trigger the hypobiotic larvae to emerge from 

their dormant state and continue development.  These include photoperiod, temperature, 

humidity, and host immune system relaxation due to periparturition and/or lactation.  

However, the larval development may also recommence spontaneously after a 

predetermined length of time without the influence of a stimulus (Blitz and Gibb, 1972b; 
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Horak, 1981; Gibbs, 1982, 1986a).  This aspect further demonstrates the similarity 

between hypobiosis in H. contortus and diapause in insects (Horak, 1981). 

The resumed development of the arrested larvae often results in the events 

known as “spring rise” and “periparturient rise.”  Both are characterized by a sudden 

marked increase in nematode egg counts as a result of the arrested larvae reaching the 

reproductive adult stage en masse (Brunsdon, 1964; Procter and Gibbs, 1968).  Spring 

rise, as its name suggests, occurs during the spring and although it is commonly 

associated with parturition, it is also seen in non-reproducing hosts (Crofton, 1958; 

Brunsdon, 1964).  On the other hand, periparturient rise per se coincides with parturition, 

and is most evident during the spring lambing/kidding season but may also occur at 

other times of the year. 

 The combination of the short life cycle and the survivability of the larvae has 

enabled H. contortus to be a highly infective parasite able to cause a considerable 

amount of damage to an entire host population.  Characteristic clinical signs of a           

H. contortus infection are anemia, edema, bottle jaw (intermandibular edema), lethargy, 

emaciation, weakness, wool loss, and even death (Dunn, 1978).  Anemia is the most 

common clinical sign resulting from the adult worms feeding on host blood.  An adult 

can consume as much as 0.5 cc of blood in one day (Urquhart et al., 1987).  In addition 

to this, H. contortus adults are mobile feeders and move from one feeding site to 

another, leaving behind wounds that continue to hemorrhage, contributing to the anemia 

(Soulsby, 1982).  The amount of blood that is lost with a high worm burden may result 

in the death of the host.  
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 The disease associated with H. contortus infections is known as haemonchosis, 

which may be categorized into three forms based on the worm burden and the associated 

clinical signs.  The first, hyperacute haemonchosis, is rare, but also the most severe and 

tends to affect young and/or unhealthy individuals (Barriga, 1997).  In this form of the 

disease, the worm burden is extremely high (> 10,000 worms) and the only sign of 

infection is the sudden death of the animal.  Death often occurs within a week and is 

brought on by a severe anemia due to the large number of worms consuming the host 

blood (Dunn, 1978).  

In the acute form of haemonchosis, the worm burden is moderate, 1,000-10,000 

individuals, and all ages of animals are affected, regardless of current health status.  The 

signs of infection are visible and include anemia, edema, lethargy, and wool loss.  

Anemia develops rapidly and the host mounts an erythropoietic response resulting in the 

production of red blood cells (Soulsby, 1982).  Ewes often suffer from agalactia in 

which their ability to produce milk is lost and suckling lambs will often die due to 

malnutrition.  Death may occur with acute haemonchosis, but may take several weeks to 

transpire (Dunn, 1978). 

 The third and final form of the disease is chronic haemonchosis.  This is the most 

widespread of the three disease forms and often affects the entire flock or herd.  Chronic 

haemonchosis is a result of a low worm burden, 100-1,000 individuals, and the most 

prominent clinical sign is the appearance of malnutrition (Soulsby, 1982).  Anemia and 

edema are not usually present, and death is rare (Dunn, 1978).  This type of 

haemonchosis is most often seen during dry periods when the pasture is in poor 
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condition and the host immune system is already being compromised by poor nutrition 

(Urquhart et al., 1987). 

 Early diagnosis of haemonchosis is essential for the treatment and survival of a 

flock or herd afflicted by this invasive parasite.  Generally, a diagnosis for the acute and 

chronic forms of this disease is based on clinical signs as well as history.  Fecal testing 

can also be performed to support the diagnosis.  For hyperacute haemonchosis, the only 

way a diagnosis may be made is by performing a necropsy and looking for H. contortus 

adults in the abomasum of the deceased animal (Urquhart et al., 1987). 

 Many sheep do not develop an effective acquired immunity to H. contortus 

infections.  However, some breeds, such as the Florida Native, St. Croix and Barbados 

Blackbelly, are less susceptible than others, such as the Rambouillet (Courtney et al., 

1985).  Amarante et al. (1999a, 1999b) crossed Florida Native sheep, which are small 

and resistant to H. contortus infection, and Rambouillet sheep, which are larger, faster 

growing, good wool producers and susceptible to H. contortus infections, to investigate 

if the offspring would possess the more desirable characteristics and show resistance to 

H. contortus infections.  Upon challenge with the parasite, the F1 generation did show a 

level of resistance.  When the F1 generation was crossed with each other, the resulting F2 

generation showed an even higher level of resistance (Amarante et al., 1999a, 1999b), 

which shows that crossing resistant breeds with susceptible ones could be valuable in 

developing a line of sheep with desirable production characteristics that is resistant to 

H. contortus infections.   
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Conflicting evidence questions the role of hemoglobin type in H. contortus 

resistance within certain breeds.  In one study, Scottish Blackface and Finn Dorset sheep 

with type A hemoglobin possessed lower worm burdens and fecal egg counts and 

presented with less severe clinical signs than those with type B hemoglobin (Altaif and 

Dargie, 1978a, 1978b).  However, many of the breeds that are considered to be highly 

resistant to H. contortus are predominantly type B while others, such as the Florida 

Native, are predominantly type A (Jilek and Bradley, 1969; Agar et al., 1972).  Thus, the 

role of hemoglobin type is not clear in resistance of sheep to H. contortus infections. 

To cope with gastrointestinal parasitic infections, sheep may undergo a 

phenomenon known as “self-cure” in order to alleviate the burden of H. contortus adults.  

Self-cure is a process in which the majority of adult parasites are expelled from the host 

when induced experimentally by a challenge dose of infective larvae or by the natural 

ingestion of a large number of infective larvae (Soulsby, 1982).  As the larvae develop 

from the L3 stage to the L4 stage, an immediate-type hypersensitivity reaction develops 

to H. contortus antigens, leading to the expulsion of the adult worms.  The host as well 

as the parasite each benefit from the self-cure process.  The host is temporarily relieved 

of feeding adults and the damage that they cause, while the adult parasite population is 

replenished with a new generation (Urquhart et al., 1987). 

 Treatment of haemonchosis is accomplished by targeting the parasite itself.  

Today, this is accomplished through the use of anthelmintics, but over the past 200 

years, several methods have been tried.  Some of the earliest forms of treatment included 

arsenic and turpentine.  These were highly toxic to the host, so new forms of treatment 
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were constantly being tested.  One of the earliest and most significantly efficient forms 

of treatment was an oral dose of copper sulphate, which was widely used from the late 

1800s to around 1940 (Gibson, 1975).  When administered correctly, copper sulphate 

had very few toxic effects on the host and was effective against the adult worms but not 

the immature larval stages (Morgan, 1949).  However, copper must be administered with 

caution since sheep are sensitive to chronic copper toxicity.  Current evidence has shown 

that small doses (0.5-2 grams) of copper oxide wire particles given annually may be 

effective in controlling H. contortus infections in lambs without being toxic (Miller et 

al., 2005; Burke and Miller, 2006; Fleming et al., 2006).   

In 1940, phenothiazine was introduced and replaced copper sulphate as the drug 

of choice.  This drug proved to be highly effective for not only eliminating infections, 

but also for controlling outbreaks.  Administration of phenothiazine was often through 

the use of a salt lick with the ideal concentration of a 1:10 phenothiazine to salt 

concentration.  This proved to be a highly efficient dosing method with minimal toxic 

side effects (Gibson, 1975).   

 However, by the 1960s H. contortus began to show signs of resistance to 

phenothiazine, leading to the development of new anthelmintics.  In 1961, the first to be 

introduced was a benzimidazole called Thiabendazole (Gibson, 1975).  Although highly 

effective against both the adult and immature stages, H. contortus began to show signs 

of resistance to this anthelmintic after being in use for just a few years (Drudge et al., 

1964; Soulsby, 1982).  Several other anthelmintics followed, including additional 
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benzimidazoles, imidazothiazoles (levamisole), and macrocyclic lactones (ivermectin).  

These three classes of drugs are currently used to treat H. contortus infections. 

Each class of anthelmintics possesses a distinct mode of action against parasites 

(Kohler, 2001).  The target of benzimidazoles is the tubulin within the parasite intestinal 

cells, which forms into microtubules that are necessary for nutrient acquisition (Sangster 

and Dobson, 2002).  Benzimidazoles bind to the β-tubulin component preventing it from 

forming microtubules within the intestinal cells of the helminth.  This impairs the uptake 

of nutrients and inhibits the transportation of necessary digestive enzymes resulting in 

parasite death due to starvation (Kohler, 2001; Mansour, 2002).  Imidazothiazoles, such 

as levamisole, are acetylcholine agonists that affect the nervous system of the parasite 

(Kohler, 2001).  These drugs cause muscle contraction and paralysis in the helminth, 

resulting in the eventual expulsion of the parasite from the body (Craig, 1993; Mansour, 

2002).  Finally, macrocyclic lactones act on glutamate-gated chloride channels (GluCl).  

These drugs cause paralysis of the parasite neuromusculature, including the pharynx, 

preventing the worm from feeding (Kohler, 2001; Winterrowd et al., 2003).  

Benzimidazoles and macrocyclic lactones are effective against the adult and immature 

stages of the parasite, while the imidazothiazoles are effective against the adults and the 

later stages of immature larvae.  These three classes of anthelmintics have proven to be 

successful in treating H. contortus infections. 

 Resistance to anthelmintics continues to be a growing concern in the treatment 

and control of H. contortus throughout the world.  Anthelmintic resistance is defined as 

a genetically transmittable trait in which the sensitivity to a particular drug is lost in a 
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population of worms over time (Kohler, 2001).  Through the use of anthelmintics, 

susceptible populations are being removed from the gene pool allowing the resistant 

populations to pass on their genes to successive generations.  By 1994, resistance to the 

majority of the anthelmintics including the benzimidazoles, levamisole, and ivermectin 

was reported (Barriga, 1997).  In addition, H. contortus populations are showing 

resistance to multiple anthelmintics (Sangster et al., 1999).  Extensive use of drug 

treatments, whether proper or improper, and the ability of H. contortus to adapt to and 

overcome the deleterious effects of the drugs, have led to the development of drug 

resistance and, therefore, to the success of the parasite.  

 The key to controlling anthelmintic resistance in H. contortus is to understand the 

many mechanisms that may be involved, since each class of anthelmintics has a known 

different target.  There are three main groups of mechanisms: those that change the 

binding sites of drugs, those that detoxify, and those that involve the active efflux of 

drugs by membrane transporters (Kerboeuf et al., 2003).  The mechanism involved in 

resistance to each class of anthelmintic may be different or there may be a common one 

amongst all three classes. 

In 1995, Kwa et al. suggested that a mutation in the β-tubulin is most likely the 

cause of resistance to the class of benzimidazoles.  This mutation results in a single 

amino acid substitution from Phe200 to Tyr200 in the β-tubulin isotype 1 allele of 

resistant H. contortus strains.  This mutation causes a decrease in the high affinity 

binding of the anthelmintic allowing for microtubule formation to occur in the presence 
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of the drug (Prichard, 1994).  Without the inhibitory action of the anthelmintic, the 

parasite is capable of acquiring nutrients that are essential to its survival.  

Resistance to levamisole in H. contortus is believed to be associated with an 

alteration in the nicotinic acetylcholine receptor found on the body muscles of 

nematodes.  Responsible for the conduction of sodium, potassium and calcium through 

the muscle membranes, this receptor consists of five subunits (2α, 1β, 1γ and 1δ) 

arranged around a central ion-channel (Martin et al., 1997).  Under normal conditions, 

the channel is closed, but in the presence of a ligand, such as levamisole, the channel 

may be opened.  This opening of the channel allows ions to pass through, aiding in the 

muscle contraction and paralysis of the helminth (Martin and Robertson, 2000).  

Alterations in the acetylcholine receptor may lead to fewer receptors for levamisole to 

bind to or to a reduction in the receptor’s sensitivity, which could prevent the channel 

from opening (Prichard, 1994).  These alterations may also result in the shut down of the 

channel or in a blockage of the channel by the large levamisole molecule, interfering 

with the effectiveness of levamisole as an anthelmintic (Martin and Robertson, 2000).       

The mechanisms involved with macrocyclic lactone resistance are not fully 

understood (Kohler, 2001).  Blackhall et al. (1998a) correlated the selection of an altered 

GluCl gene with resistance to ivermectin.  Glutamate-gated chloride channels are 

believed to be similar in structure to acetylcholine receptors in that they consist of five 

subunits (α and β) that come together to form a central ion-channel (Martin et al., 1997, 

1998).  The α-subunits contain the glutamate binding site and the β-subunits contain the 

ivermectin binding sites (Martin et al., 1997).  The selection of a single allele of the      
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α-subunit was found in increased frequency in resistant strains of H. contortus 

(Blackhall et al., 1998a).  The mutation that results from this allelic selection may 

interfere with the conformational changes induced by the drug binding and may not 

actually inhibit the binding itself (Kerboeuf et al., 2003).  The γ-aminobutyric acid 

(GABA) receptor gene has also been suggested as a mechanism for macrocyclic lactone 

resistance.  Its function is similar to GluCl and so an alteration in its gene may also 

contribute to resistance (Blackhall et al., 2003).   

The mechanism that is primarily considered to be involved in resistance to 

macrocyclic lactones is the detoxification process of P-glycoproteins.  P-glycoproteins 

(Pgp) are efflux transporters that belong to the ATP binding cassette (ABC) superfamily 

which actively transport compounds, including drugs, across membranes (Sangster and 

Dobson, 2002).  The hydrolysis of ATP is required for the efflux of xenobiotics 

(chemicals foreign to the organism) by Pgp to occur (Sharom, 1997).  P-glycoproteins 

are predominately confined to the digestive tract and are highly expressed on the 

membranes of intestinal and pharyngeal cells (Smith and Prichard, 2002).  The primary 

function of Pgp is to protect the organism by actively pumping toxic substances out of its 

cells (Sangster, 1994; Geick et al., 2001; Thompson and Geary, 2002).   

P-glycoproteins are highly conserved transmembrane proteins (Sangster and 

Dobson, 2002).  They are made up of two homologous halves, each with six 

transmembrane domains (TM) and one nucleotide binding domain (NBD) (Sangster, 

1994; Sharom, 1997; Ambudker et al., 1999).  The highly conserved NBDs are separated 

by an internucleotide binding domain (IBD) which allows both halves to interact and 
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work together as a single transporter (Ambudker et al., 1999; Sangster et al., 1999).  

Anthelmintic binding occurs within the TM while ATP binding and hydrolysis occur in 

the NBD (Sangster, 1994; Sharom, 1997; Ambudker et al., 1999; Sangster et al., 1999).  

The normal function of Pgp in nematodes is not fully understood, but due to its 

capability to bind a wide range of substrates including anthelmintics, the function of Pgp 

may be to protect the organism from toxic substances (Sharom, 1997; Ambudker et al., 

1999).  

P-glycoproteins have been identified in H. contortus and the full cDNA sequence 

has been obtained (Xu et al., 1998).  At least 7 genes are known to be involved in 

encoding Pgp in H. contortus, allowing for numerous isoforms (Kerboeuf et al., 2003).  

In addition to the full cDNA sequence, numerous internucleotide binding domains (IBD) 

within Pgp have also been sequenced (Sangster, 1994; Sangster et al., 1999).  Each IBD 

is sequentially different, and one IBD in particular, correlates with resistance to the 

macrocyclic lactone avermectin/milbemycin (Sangster et al., 1999).  The combinations 

of the different genes and their variable IBDs allow for considerable variation in the Pgp 

of H. contortus.  This may contribute to the binding of a wide variety of substrates and 

possibly to the development of anthelmintic resistance (Xu et al., 1998; Sangster et al., 

1999).    

In vertebrates, Pgp is encoded for by the multidrug resistance gene, MDR1.  This 

gene is activated by a family of nuclear receptors that includes the human SXR (steroid 

and xenobiotic receptor) and its animal homolog PXR (pregnane X receptor) (Xie et al., 

2000; Geick et al., 2001; Synold et al., 2001).  These nuclear receptors are found in the 
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intestine and enhance the removal of xenobiotics by Pgp.  This is accomplished through 

the regulation of the transcription of the cytochrome P450 (CYP) gene product CYP3A, 

which is involved in the oxidative metabolism of a variety of steroid hormones and 

xenobiotics (Xie et al., 2000; Synold et al., 2001, Ding and Staudinger, 2005).  The 

receptors, SXR/PXR, must form a heterodimer with RXR (retinoic acid receptor) which 

enables the molecule to bind to specific DNA sequences, including those of CYP3A 

(Kliewer et al., 1998; Masuyama et al., 2001).  The activation of SXR/PXR by a variety 

of agents may contribute to pharmaceutical resistance as well as regulate multidrug 

resistance (Synold et al., 2001).  

 Currently, a SXR/PXR homolog has not been identified in nematodes.  The 

complete genome of Caenorhabditis elegans, a free-living nematode, has been 

sequenced and the RXR, or a homolog, is not present or has not yet been determined 

(Enmark and Gustafsson, 2000; verified by a protein-protein BLAST).  However, 

numerous CYP genes have been identified in nematodes. Gotoh (1998) determined that 

C. elegans possesses at least 60 potentially active CYP genes.  These genes are closely 

related to the CYP genes in vertebrates and may function in the catabolism of 

xenobiotics.   

The activity of CYP in H. contortus may depend on the environment in which the 

parasite lives.  Cytochrome P450 has the ability to catalyze substrates as a 

monooxygenase, which requires molecular oxygen, or as a peroxygenase, which does 

not.  In 1997, Kotze found that the monooxygenase catalysis of certain substrates by 

CYP was readily detectable in the free-living stages of H. contortus, but considerably 
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lower or absent in the adult stages and attributed this to the level of oxygen present.  In 

oxygen-poor environments, CYP may function as a peroxygenase, thereby utilizing 

hydroperoxide to catalyze substrate oxidations without requiring molecular oxygen 

(Kotze, 1999).   The role of CYP in metabolizing xenobiotics in H. contortus is not yet 

fully understood, but may play a role in anthelmintic resistance. 

Since H. contortus has developed resistance to each of the classes of 

anthelmintics, a common mechanism may be involved.  The mechanism believed to be 

associated with anthelmintic resistance in H. contortus is the overexpression of Pgp.  

Benzimidazoles, levamisole and ivermectin possess characteristics that are common to 

Pgp substrates.  These include a planar shape, at least one ring structure, hydrophobic 

properties and they are amphiphilic (a molecule possessing a polar, water-soluble group 

attached to a non-polar, water-insoluble hydrocarbon chain) (Ford and Hait, 1990; 

Ambudkar et al., 1999).   

Both benzimidazole-resistant and ivermectin-resistant strains of H. contortus 

have been found to possess Pgp alleles in higher frequency than susceptible strains.  For 

benzimidazoles, Pgp may modulate drug concentration at the target site (Kerboeuf et al., 

2003).  In humans, it has been determined that benzimidazoles bind to Pgp in multidrug-

resistant (MDR) lymphoma cells (Nare et al., 1994).  A relationship between Pgp and 

benzimidazole resistance was indirectly demonstrated through the use of the Pgp 

inhibitor verapamil (Beugnet et al., 1997).  Verapamil is a calcium channel blocker, 

which actively inhibits the Pgp drug-binding domain.  When given in conjunction with 

an anthelmintic, the efflux of the drug is reduced, resulting in its increased efficacy 
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(Molento and Prichard, 1999).  The experiments conducted by Beugnet et al. (1997) 

showed that, in the presence of verapamil, the toxicity of the drug increased and that 

benzimidazole resistance could be partially reversed.   

The role of Pgp in macrocyclic lactone resistance, especially ivermectin, is better 

understood.  Ivermectin has been described as a possible substrate for Pgp in nematodes 

(Xu et al., 1998; Blackhall et al., 1998b).  In 1998, Xu et al. found higher levels of Pgp 

in ivermectin-resistant H. contortus populations than in susceptible populations.  They 

also found alterations in the structure and/or transcription of Pgp that resulted in its 

overexpression, which may modulate drug concentration at the target site.  When 

verapamil was given to ivermectin-resistant strains of H. contortus, the efficacy of 

ivermectin was increased, similar to that seen in the benzimidazole resistant strains (Xu 

et al., 1998).  The role of Pgp in resistance to levamisole is not known, however, 

levamisole may act as a substrate for Pgp much like ivermectin (Kerboeuf et al., 2003) 

Based on this information, Pgp transport may be an important mechanism in 

anthelmintic resistance. 

Since Pgp appears to play a role in resistance to different drugs, the occurrence of 

multidrug-resistance (MDR) may be explained by this one mechanism.  The 

overexpression of Pgp has been associated with MDR in tumor cells in humans and has 

been suggested as the mechanism of resistance in nematodes (Kerboeuf et al., 2002).  

Through the use of MDR-reversing agents, such as verapamil, reversal of resistance can 

be accomplished (Molento and Prichard, 1999). 
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There are several methods available to determine the presence of anthelmintic 

resistance in a population of H. contortus.  These methods include in vivo as well as in 

vitro tests and there are advantages as well as disadvantages associated with each one.  

In vivo tests are time consuming, expensive and not very reliable.  In vitro tests are more 

technically demanding, but are more accurate and may be used to detect resistance to 

multiple anthelmintics at one time (Craven et al., 1999). 

The most commonly used in vivo method is the fecal egg count reduction test 

(FECRT) and is considered to be the gold standard.  The FECRT utilizes the modified 

McMaster technique to compare egg counts before and after anthelmintic treatment to 

give an estimate of anthelmintic efficacy.  This is a simple test and may be used to detect 

resistance to all classes of anthelmintics (Coles et al., 1992; Craven et al., 1999; Fleming 

et al., 2006).  However, the FECRT may give false indications of levamisole resistance 

due to the development of immature larvae which are not affected by treatment 

(Grimshaw et al., 1996; Taylor et al., 2002; Coles et al., 2006).  The results of the 

FECRT are subject to interpretation and the parasitic species present can not be directly 

determined; therefore, the sample must also be cultured in order to identify the species 

present (Vizard and Wallace, 1987; Coles et al., 2006). 

The egg hatch test (EHT), the larval development assay (LDA), and the recently 

developed molecular testing are the prominent methods used for in vitro testing.  The 

EHT is used for testing resistance to the benzimidazoles.  First described by Le Jambre 

(1976), eggs are hatched in serial dilutions of anthelmintic and the level of resistance is 

determined.  There are several factors which can influence the outcome of this test 
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including the age of the feces and the development level of the eggs at the start of testing 

(Taylor et al., 2002; Coles et al., 2006).  One advantage to the EHT is that the larvae 

which hatch can be identified to determine the parasitic species which is resistant.  

However, similar to the FECRT, the results of the EHT are subject to interpretation 

(Taylor et al., 2002). 

Larval development assays (LDA) are capable of determining the level of 

resistance to all three classes of anthelmintics simultaneously.  One such test is the 

DrenchRite® Assay (CSIRO) in which eggs are loaded onto a 96-well microtiter plate 

containing agar with serial concentrations of each drug.  Resistance is determined by 

analyzing the level of larval development after a period of incubation (Tandon and 

Kaplan, 2004).  In 2001, Terrill et al. showed that results obtained from the DrenchRite® 

assay were consistent with FECRT, which is considered to be the gold standard.  Larvae 

can be identified directly from the plate in order to determine the resistant species 

present (Coles et al., 2006).   

In recent years, molecular diagnosis of anthelmintic resistance has become a 

focus of research.  Several studies have shown polymerase chain reactions (PCR) to be 

highly accurate and sensitive in determining resistance.  However, this type of testing is 

very expensive and must be conducted on an adequate sample size to provide significant 

results, which is not always possible.  The development of a molecular test, which is 

capable of determining the level of resistance in a parasitic population from a pooled 

DNA sample, will be fundamental to the advancement of molecular testing of 

anthelmintic resistance (Coles et al., 2006; von Samson-Himmelstjerna, 2006). 



 

 

21 

Prevention of H. contortus infections is difficult.  Since there are no vaccines 

available, the best preventative method is good pasture management.  If a flock or herd 

has been diagnosed with H. contortus infections, then in addition to treatment with 

anthelmintics, the flock or herd should be moved to a non-infested pasture (Urquhart et 

al., 1987).  The infested pasture should not be used until there is no longer evidence of 

the presence of H. contortus, which is impossible. Also, limiting the number of 

individuals and alternating the species grazing on a pasture may be helpful in controlling 

infections (Dunn, 1978).  It is not recommended that the pasture be treated, since this 

will only increase the incidence of resistance by eliminating susceptible worms leaving 

behind only resistant worms to infect hosts and treatment of the pasture is difficult 

(Barriga, 1997). 

Haemonchus contortus is a very problematic parasite.  Found worldwide, this 

parasitic nematode can inflict a significant amount of damage to a population of 

ruminants in a short period of time.  High parasitism levels are possible, due to the 

proficiency of the females as egg layers, the efficiency of the life cycle, and the high 

survivability of the larvae.  Haemonchosis can often lead to the death of a significant 

number of individuals within a flock/herd if not properly diagnosed and treated.  Many 

classes of anthelmintics are used as treatments with varying modes of action.  

Benzimidazoles, imidazothiazoles and macrocyclic lactones are the most commonly 

used due to their effectiveness.  However, resistance to the majority of anthelmintics 

used today is developing rapidly in H. contortus.  Several studies have been conducted 
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to determine the mechanisms responsible for drug resistance.  Hopefully, these studies 

will aid in the development of new methods for the control of this devastating parasite. 

The objectives of this study were to determine the anthelmintic 

resistance/susceptibility status of H. contortus strains using a larval development assay 

and to compare the levels of transcription of the transporter protein, P-glycoprotein, in 

these strains before and after exposure to anthelmintics.  Our hypothesis was that          

P-glycoprotein will be expressed in higher levels upon exposure to anthelmintics and 

that higher levels will be seen in anthelmintic resistant populations of H. contortus 

compared to susceptible populations. 
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2.  MATERIALS AND METHODS 

2.1  Parasite strains 

 A total of seven strains of H. contortus were evaluated in this study (Table 1).  

Four strains suspected to be anthelmintic susceptible were obtained from mixed 

sheep/goat farms in Texas.  These included H. contortus – Eldorado Sheep (Hc-ES),    

H. contortus – Eldorado Goat (Hc-EG), H. contortus – Ozona Sheep (Hc-OS) and        

H. contortus – Ozona Goat (Hc-OG).  For all of these strains, L3 larvae were inoculated 

into helminth-free sheep and goats and housed in a controlled environment at the Texas 

A&M University Research Farm.   

Three of the seven strains were suspected to be anthelmintic resistant.  Two of 

these were obtained from animals on the Texas A&M University Research Farm.  The 

first, Hc-H992, was obtained approximately ten years ago and has been maintained in a 

controlled environment without exposure to anthelmintics.  The second, Hc-RFR, was 

recently acquired from a mixed population of sheep and goats on the Research Farm, 

which had been continuously exposed to anthelmintics.  For both strains, L3 larvae were 

inoculated into helminth-free sheep and goats and housed in a controlled environment.  

The third suspected resistant strain (Hc-GRF) was submitted by a zoo in Florida to the 

Texas A&M University Diagnostic Parasitology Laboratory for diagnostic evaluation.  

The sample was from a giraffe housed at the zoo that had previously been diagnosed and 

treated for H. contortus and was currently not responding to anthelmintic treatment.  The 

strain was inoculated into a helminth-free sheep housed at the Research Farm and 

housed in a controlled environment.   
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Table 1 
Haemonchus contortus strains 
 

Strain 
 

Host Geographic Origin 
Suspected 

Anthelmintic 
Status 

Hc-ES Sheep Eldorado, Texas Susceptible 

Hc-EG Goat Eldorado, Texas Susceptible 

Hc-OS Sheep Ozona, Texas Susceptible 

Hc-OG Goat Ozona, Texas Susceptible 

Hc-RFR Sheep/Goat College Station, Texas Resistant 

Hc-H992 Sheep/Goat College Station, Texas Resistant 

Hc-GRF Giraffe Loxahatchee, Florida Resistant 
 

 
 
 
2.2  Modified McMaster test 

 For each strain of H. contortus, feces were collected directly from the rectum 

(except for the Hc-GRF strain, which was collected from the ground).  A modified 

McMaster test was conducted on the feces to determine the eggs per gram (EPG) using a 

McMaster slide.  This provided an estimate of the quantity of eggs present in the fecal 

sample to determine whether sufficient eggs were present for conducting a larval 

development assay (DrenchRite®, Horizon Technology Pty Limited, Roseville, NSW, 

Australia).  A fecal solution was made in a vial by combining 28 ml of saturated sodium 

chloride (specific gravity 1.2) with 2 grams of feces.  The feces were carefully broken 

apart and the solution was mixed by gentle inversion.  Immediately following mixing, a 

sample of the fecal solution was pulled from the center of the vial and the two chambers 
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of the McMaster slide were filled with the solution.  At 100X magnification, the number 

of eggs that fell within the grid of each chamber was counted and EPG was calculated as 

follows: 

Grid 1 + Grid 2   X   100    =    EPG 
      2     

The EPG was then multiplied by the weight of the remaining feces to provide an 

estimate of the number of eggs in the fecal sample.     

                               

2.3  Copro culture, Baermann technique, and larval identification 

 Since worm identification cannot be determined based on the trichostrongyle 

egg, copro cultures of feces were performed to allow for the development of L3 larvae, 

which can be identified to genus.  For each strain, approximately 20 grams of feces were 

placed in the center of a piece of cheesecloth and the sides were tied together using 

cotton string to form a fecal packet.  The bottom of a culture jar was filled with 

approximately 25-30 ml of tap water and the fecal sample was suspended 5-6 cm above 

the surface of the water by tightening the lid on the string (Fig. 1A).  The jar was 

incubated at room temperature for 7 days to allow parasite development to the L3 larval 

stage. 

Upon completion of the incubation, the fecal sample was transferred to a 

Baermann apparatus for larval collection.  The gauze containing the feces was placed 

into a funnel attached to a 15 ml conical tube by rubber tubing and the entire set-up was 

set in a graduated cylinder which served as a funnel stand (Fig. 1B).  Warm tap water 
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was added to the funnel until the fecal sample was adequately covered.  The larvae were 

allowed to emerge from the feces and collect in the bottom of the conical tube for 

approximately 2-3 h. 

 
 
 

 

   
  
 
 
 Larvae were transferred to a glass slide using a transfer pipette, cover-slipped, 

and immobilized with a dilute solution of Lugol’s iodine for identification.  The larvae 

were examined under 400X and 1000X magnification and identification was based on 

morphological characteristics using a L3 identification key (from The Manual of 

Veterinary Parasitological Laboratory Techniques modified by C.G. Wade, Texas A&M 

University, Appendix A).  The first step was to determine if the esophagus was 

rhabditiform or non-rhabditiform.  For H. contortus, the esophagus is non-rhabditiform.  

Next, it was determined 1) whether there was a sheath present, 2) if the esophagus was ¼ 

A B A B 

Fig. 1. (A) Drawing of a copro culture set-up.  (B) Drawing of a 
Baermann apparatus. 
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or ½ the length of the body and 3) if the tail was notched or tapered.  For H. contortus, 

there is a sheath present, the esophagus is ¼ the length of the body and the tail is tapered.  

The length of the tail of the sheath was then determined to be either short (< 50 µm), 

medium (> 50 µm < 100 µm), or long (> 100 µm).  Finally, the anterior of the larvae was 

examined for the presence of refractive bodies or a bright transverse band between the 

buccal cavity and the esophagus.  The tail of the sheath for H. contortus larvae is 

medium length, and is often kinked, and the larvae do not possess refractive bodies or a 

bright transverse band at the anterior end.  The remaining larvae were dispensed in 

aliquots of 50 larvae, washed extensively, and stored at -80 °C for later use in molecular 

analysis. 

 

2.4  Egg isolation     

A modified protocol of the DrenchRite® User Manual was followed to isolate the 

eggs from the feces for each of the strains tested.  The weight of the feces was 

determined in grams and combined with 1 ml of tap water per gram of feces in a plastic 

beaker and allowed to soak for 30 min.  The feces were broken up using a wooden 

tongue depressor and at least 2 ml of tap water per gram of feces was added to make a 

fecal slurry.   

The fecal slurry was first washed with tap water and passed through a 250 µm 

sieve.  The debris retained on the sieve was saved until it was determined that an 

adequate quantity of eggs had been isolated. The filtrate was collected and allowed to 

settle for 30 min, and then the top ⅔ was decanted and discarded.  The resulting 
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sediment was similarly washed through a 180 µm sieve followed by a 75 µm sieve with 

tap water and the filtrate was collected for each wash and allowed to settle for 30 min.  

The top ⅔ of the filtrate was decanted and discarded as before and the debris on the 

sieves was saved for each step.  Depending on the condition of the feces, additional 

washings through the 75 µm sieve were conducted to remove as much debris as possible.  

The final sediment was filtered through a 37 µm sieve and washed with tap water.  The 

material containing the eggs that was collected on the 37 µm sieve was back washed 

with a minimal volume of tap water into a clean beaker and allowed to settle for 30 min.  

Using a 30 cc syringe, excess water was carefully removed from the sediment. 

A sugar gradient was used to separate the eggs from any residual debris.  The 

gradient was prepared in a 50 ml conical tube using 10%, 25% and 40% sugar solutions.  

First, 10 ml of the 10% sugar solution (yellow solution in DrenchRite® protocol) was 

added to the tube using a large bore Luerlock needle and a 20 cc syringe.  Next, 10 ml of 

the 25% sugar solution (blue) was added beneath the 10% solution.  Then, 15 ml of the 

40% sugar solution (red) was added beneath the 25% sugar solution.  Finally, 10-15 ml 

of the egg slurry was carefully layered on top of the sugar gradient.  The tube was placed 

in a bench top centrifuge and centrifuged for 7 min at 2450 X g.  The eggs were 

collected from the sugar gradient using a 1 ml transfer pipette at the yellow/blue 

interface where a distinct white band could be seen in a green area of the gradient.  The 

eggs were transferred to a plastic cup, and then washed on a 37 µm sieve with distilled 

water to remove the sugar.  The eggs were then back washed into a plastic cup with 
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distilled water, transferred to several 15 ml conical tubes, and placed in 4 °C overnight to 

allow the eggs to settle. 

Once the eggs had settled to the bottom, excess water was removed from each of 

the 15 ml conical tubes and the eggs were pooled into a single tube.  The eggs were 

allowed to settle for 30 minutes and excess water was removed until the final volume 

was 2 ml.  The eggs were resuspended by vortexing and 20 µl was transferred to a glass 

slide and cover-slipped.  An egg count was conducted at 100X magnification to 

determine the concentration of eggs isolated.  The egg concentration was then adjusted 

to ~ 50 eggs per 20 µl and Fungizone (provided in kit) was added per the DrenchRite® 

protocol and the solution was mixed well. 

 

2.5  DrenchRite®  assay 

 The larval development assay, DrenchRite® (DR), is an in vitro assay to 

determine anthelmintic resistance in gastrointestinal parasitic nematodes of ruminants   

The DR assay consists of wells in a 96-well microtiter plate containing agar with 

increasing concentrations of benzimidazole (BZ), levamisole (LEV), 

avermectin/milbemycin (AVM) or benzimidazole/levamisole in combination (BZ/LEV) 

across the rows (Fig. 2).  There are duplicate wells for each anthelmintic concentration, 

except for the avermectin/milbemycin group, and the plate is color-coded: clear for 

control wells (no anthelmintic), green for susceptible, yellow for weak resistant, and 

pink for resistant. 
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Each DR plate was removed from the aluminum pouch and examined for 

dehydrated wells and varying agar amounts.  For any dehydrated well, 10 µl of distilled 

water was added to the well.  Based on observation, the perimeter wells were often 

dehydrated or would become dehydrated within the first 24 hours of the assay, so 10 µl 

of distilled water was automatically added to these wells for each plate. 

 

 
 
 
 
 
 
For each strain, 20 µl of the egg suspension (~50 eggs) described above was 

added to each well of the plate.  The suspension was vortexed after dispensing into every 

4th well to keep the mixture homogeneous.  The eggs in each well were counted under 

10-45X magnification on a dissecting scope and the count was recorded on a log sheet 

(Appendix B).  The plate was placed in a humidified 25 °C incubator.  Any remaining 

 

   Avermectin/ 
    Milbemycin 

Control    Susceptible          Weak          High Resistance 

A 

B 

C 

D 

E 

F 

G

H 

1      2      3      4      5     6      7      8     9     10 11   12

Increasing Drug Concentration 

Benzimidazole 

  Levamisole 

    Combination 
  BZ/LVS 

A 

B 

C 

D 

E 

F 

G 

H 

1       2      3     4       5      6      7      8       9    10 11    12

Increasing Drug Concentration 

Fig. 2.  Diagram of the DrenchRite® assay plate. (Adapted from the 
DrenchRite® Manual). 
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egg solution was transferred to a 250 ml canted neck flask and placed in the incubator 

alongside the plate.  Distilled water was added to the flask until the bottom was 

adequately covered. 

The plate was checked for dehydration and larval development approximately   

20 h after adding the eggs.  If any of the wells were dehydrated, 10 µl of distilled water 

was added to the well.  After 24-48 h of incubation, 20 µl of growth medium (included 

in kit) was added to each well of the plate and 1-2 ml was added to the flask.  The plate 

was checked daily for dehydration and to monitor larval development.  After 168 h 

(approximately 7 d) of incubation, the plate was ready for interpretation. 

  

2.6  DrenchRite® larval counts and collection 

 Each well of the assay plate was inspected and the L1/L2 larvae and L3 larvae 

were counted under 10-45X magnification on a dissecting scope.  The DrenchRite® 

protocol recommended adding a dilute solution of Lugol’s iodine to each well to kill the 

larvae.  However, for the purpose of this study, the larvae were not killed so the larvae 

could be collected and used for molecular analysis.  For each well, the L1/L2 larvae were 

counted in the well and the number was recorded on the log sheet (Appendix B).  

Starting with the control wells (A1-H1), the L3 larvae from each well were 

transferred to a 3-well depression slide (one well per depression) using a 100 µl pipette 

with a wide-bore tip.  The L3 were counted and the surviving L3 count was recorded 

separate from the count of any L3 larvae that had died.  The surviving L3 were then 

collected from the slide using a 100 µl pipette with a fine tip.  Aliquots of 50 larvae were 
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transferred to 2 ml tubes starting with the first well (A1) and pulling from the next well 

(B1) and so on down the control wells to complete the 50 until all surviving L3 larvae 

had been transferred to a tube.   

The L3 larvae for the wells containing anthelmintic (wells 2-12) were treated in 

much the same way.  Starting with the BZ larvae in wells A2 and B2, the larvae were 

counted, the number was recorded on the log sheet, and the surviving larvae were 

collected.  If there were not 50 larvae between wells A2 and B2, then larvae from well 

A3 were added, then B3 and so on until there were 50 larvae in the tube.  The larvae 

were pooled according to the groupings in the plate: wells 2-5 (susceptible), wells 6-8 

(weak resistant) and wells 9-10 (resistant).  If there were not 50 surviving larvae in a 

group, then the number in the tube was recorded and the next group started anew.  Once 

all the BZ larvae were counted and collected, the LEV, BZ/LEV combination and AVM 

larvae were counted and collected in the same manner.   

After all of the L3 larvae were collected from the plate, then the tubes were 

labeled and the larvae were washed.  Dulbecco’s phosphate buffered saline (PBS) with 

500 U/ml penicillin, 500 µg/ml streptomycin, 1.25 µg/ml amphotericin B 

(Antibiotic/Antimycotic, Invitrogen, Carlsbad, California, USA) (PBS-AB/AM) was 

prepared and 500 µl was added to each tube of larvae and mixed.  The tubes were placed 

on ice for a few minutes to allow the active larvae to become immobilized and collect in 

the bottom of the tube so that the PBS-AB/AM could be removed without loss of larvae.  

The PBS-AB/AM was transferred to a 3-well depression slide and examined under     

10-45X magnification to ensure that no larvae had been removed.  Any larvae that had 
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been removed were then returned to the tube using a 100 µl pipette.  This was repeated 

with a second wash with PBS-AB/AM, followed by a third wash with PBS without 

antibiotics.  After the final wash, as much PBS as possible was removed without losing 

any larvae.  The tubes were centrifuged briefly to bring the contents to the bottom, flash 

frozen in liquid nitrogen, and stored in -80 °C until RNA isolation.   

 

2.7  Determination of resistance 

 The level of resistance to each anthelmintic in the DR assay was determined for 

each strain tested based on the counts obtained above (Appendix B).  The percentage of 

L1/L2 larvae in each well was calculated as follows: 

Controls, BZ (wells 2 – 4), LEV, AVM and BZ/LEV: 

     # of L1/L2 larvae    X    100  =  L1/L2   
     Total # of larvae 

BZ (wells 5 – 12): 

  # of L1/L2 larvae + # of unhatched eggs    X    100  =  L1/L2   
                   Total # of eggs 

The percentage of L3 larvae for all wells was calculated as follows: 

         Total # of L3 larvae    X    100  =  L3   
                       Total # of larvae 

The critical well, in which 50% of larval development to the L3 stage was blocked, was 

estimated to the nearest half-well.   

 

 



 

 

34 

2.8  RNA isolation 

 Hc-OS, Hc-OG, Hc-EG, Hc-RFR, Hc-H992 and Hc-GRF were selected for 

molecular analysis based on the DrenchRite® assay results.  For each strain, the 

anthelmintic exposure status of the tubes of larvae collected from the DR plate was 

designated as indicated in Figure 3 and several tubes containing 50 larvae each were 

selected for molecular analysis as shown in Table 2.   

   

  

 
 

 
 

 

 
 
 

   Avermectin/ 
    Milbemycin 

Benzimidazole 

    Combination 

 

  Control    Susceptible          Weak          High Resistance 

A 

B 

C 

D 

E 

F 

G

H 

1      2      3      4      5     6      7      8     9     10 11   12

Increasing Drug Concentration 

  Levamisole 

  BZ/LVS 

A 

B 

C 

D 

E 

F 

G 

H 

1       2      3     4       5      6      7      8       9    10 11    12

Increasing Drug Concentration 

  SS 

   ---MS---                                         ---MR--- 
  ---HS--- 

 ---LS---   ------WR------                     ---HR--- 

Fig. 3.  The anthelmintic exposure designations for the tubes of larvae 
based upon the DrenchRite® assay plate. (SS = super susceptible (well 2), 
HS = highly susceptible (wells 2 and 3), MS = moderately susceptible 
(wells 3 and 4), LS = low susceptible (wells 4 and 5), WR = weakly 
resistant (wells 6, 7 and 8), MR = moderately resistant (wells 9 and 10), 
HR = highly resistant (wells 11 and 12). 
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Total RNA was isolated from the larvae samples selected for each strain of 

H. contortus using the TōTALLY RNATM kit (Ambion, Austin, Texas, USA).  For each 

tube, the larvae were ground to a powder under liquid nitrogen using a plastic pestle 

powered by a cordless motor (Kontes Glass Company, Vineland, New Jersey, USA).  

Denaturation Solution (200 µl) was added to the tube and the pestle was rinsed into the 

tube with an additional 200 µl of Denaturation Solution.  The volume of the resulting 

lysate was measured and this volume was referred to as the Starting Volume.  The RNA 

was then isolated following the Ambion protocol.  The final RNA pellet was 

resuspended in 10 µl of DEPC Water/0.1mM EDTA (Ambion), placed in a 55 °C water 

bath for 15 min, and then stored at -80 °C.   

 

2.9  cDNA synthesis 

 Reverse transcription to generate 3' cDNA was accomplished from the larvae 

total RNA preparations (above) using the SMART™ RACE cDNA Amplification Kit 

(Clontech, Mountain View, California, USA).  Similarly, 3'-RACE-Ready cDNA was 

synthesized from total RNA isolated from adult H. contortus for use as a positive 

control.  Following the kit protocol, 3 µl total RNA (approximately 125-225 ng) was 

used for each sample, the reactions were mixed gently by stirring after each step, and a 

hot-lid thermal cycler programmed to the appropriate temperatures was used for all 

incubations.  In the final step, the reactions were diluted with 20 µl of Tricine-EDTA 

Buffer and incubated at 72 °C for 7 min.  Once the reactions were complete, the first-

strand cDNA was transferred to a 0.5 ml microcentrifuge tube and stored at -20 °C. 
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Table 2   
Tubes selected for molecular analysis of P-glycoprotein transcription 
 

 Hc-EG Hc-OS Hc-OG Hc-RFR Hc-H992 Hc-GRF TOTAL 

Controls 3 3 3 3 3 3 18 

BZ        

SS      1 1 

HS 1 2 2 1 1  7 

WR 1  1 2 4  8 

HR    1 1 1 3 

LEV        

SS      1 1 

HS  2 2  1  5 

MS 1 2 2 2 2  9 

HR      1 1 

AVM        

HS 1 2 2 1 1 1 8 

WR 1   1 1 1 4 

TOTAL 8 11 12 11 14 9 65 

 
 
 

The cDNA concentration was determined for each sample using a NanoDrop 

ND-1000 Spectrophotometer (NanoDrop Technologies, Inc., Wilmington, Delaware, 

USA).  After all of the concentrations had been measured, dilutions of the cDNA were 

made to obtain a concentration of approximately 150 ng/µl, which had been previously 
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determined to be an appropriate concentration for molecular analysis.  The concentration 

of the dilutions was then confirmed by NanoDrop spectrophotometry and the exact 

volume of cDNA suspension that would give 150 ng was calculated for molecular 

analysis (Appendix C). 

 

2.10  P-glycoprotein molecular analysis 

 The cDNA samples for each strain were analyzed by quantitative 

polymerase chain reactions (PCR) to determine the level of Pgp transcription.  To 

amplify the entire gene, primers Pgp003-20F and PgpAF003-HcR were designed from a 

complete H. contortus Pgp gene sequence in GenBank (accession no. AF003908) (Table 

3).  Primers Hc18S-620F and Hc18S-1010R were also designed from the H. contortus 

18S ribosomal RNA (rRNA) gene (GenBank accession no. L04153) for use as a 

housekeeping gene internal standard (Table 3).  Due to the different optimal conditions, 

reactions for the Pgp and 18S PCR were set up separately for each strain, and included a 

negative (sterile water) and positive control (cDNA from adult worms).  The PCR 

reactions were performed according to manufacturer’s instructions (Advantage 2 PCR 

Enzyme System, Clontech, Mountain View, California, USA), except using 150 ng 

cDNA in a 12.5 µl volume.  The Pgp PCR cycling parameters were 30 cycles of 94 °C 

for 30 s, 60 °C for 30 s and 72 °C for 3 min, followed by a cycle of 72 °C for 10 min and 

then held at 4 °C.  The 18S PCR cycling parameters were 30 cycles of 96 °C for 10 s and 

72 °C for 1 min, followed by a cycle of 72 °C for 10 min and then held at 4 °C.  The Pgp  
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Table 3 
Primers for P-glycoprotein transcription analysis 
 

Primer Sequence (5´ to 3´) TA  
Expected 

length   

Pgp003-20F AGAGATCGTTCTCAAGCTGGT 

PgpAF003-
HcR 

TCATTGTGATTCAACGAGTCGT 

60 °C 3852 bp 

    

Pgp003-3250F ATGGCGTTGTTGGAACGGTTT 

Pgp003-3400R GGTACAGTCGAACAGCGTTGGTTCC 

56 °C 141 bp 

    

Hc18S-620F GAGTTACATGCAGTGATTCGCCTTTGGCGTTAATCGCTGTTG 

Hc18S-1010R GCTCCTCGACAAGGCAACTATACCCCATCGGAT 

72 °C 423 bp 

 

 
 
and 18S PCR products were co-loaded and visualized on a 1% agarose gel, stained with 

ethidium bromide, and viewed under UV transillumination.  The samples for each 

individual strain were amplified and evaluated under identical conditions.  

 Amplification of a smaller fragment of Pgp was also evaluated for some of the 

experimental samples.  The primers Pgp003-3250F and Pgp003-3400R were designed 

from the H. contortus Pgp gene sequence in GenBank (accession no. AF003908) (Table 

3).  Reactions were set up as for the larger amplicon using 150ng per reaction.  The PCR 

cycling parameters were 30 cycles of 94 °C for 30 s, 56 °C for 30 s and 72 °C for 1 min, 

followed by a cycle of 72 °C for 10 min and then held at 4 °C.  The products were 
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visualized on a 1% agarose gel, stained with ethidium bromide, and viewed under UV 

transillumination. 

 

2.11  Molecular characterization of Hc-GRF strain 

The 18S rRNA gene and the internal transcribed spacer 1 (ITS 1) and ITS 2 

regions were analyzed from Hc-H992 and the H. contortus strain obtained from the 

giraffe (Hc-GRF). 

 

2.11.1  Genomic DNA extraction 

 Genomic DNA (gDNA) was extracted from Hc-H992 and Hc-GRF strain L3 

larvae using a standard phenol-chloroform extraction method facilitated by the use of the 

Phase-Lock Gel tubes (Eppendorf Scientific, Inc., Westbury, New York, USA).  The 

larvae were ground to a powder as described above.  A 100 µl volume of PBS was added 

to the sample and the pestle was rinsed with an additional 50 µl of PBS.  An equal 

volume of lysis buffer (10 mM Tris-chloride (pH 8.0), 0.1 M EDTA (pH 8.0), 0.5% 

SDS) was added to the tube and the lysate was transferred to a Light Phase-Lock Gel 

tube.   RNAse A was added to the lysate at a final concentration of 50 µg/ml and the 

tube was incubated in a 37 °C water bath for 1 h.  Then, Proteinase K was added to a 

final concentration of 100 µg/ml concentration and incubated in a 50 °C water bath for   

3 h with occasional swirling.  The sample was cooled to room temperature. 

 A volume of Tris-equilibrated phenol equal to the sample volume was added to 

the tube and mixed gently on a rocker for 30 min then centrifuged at 10,000 X g for       
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8 min.  The volume of the top aqueous phase was estimated and an equal volume of 

Tris-equilibrated phenol was added.  The tube was mixed gently on a rocker for 10 min 

then centrifuged at 10,000 X g for 8 min.  The top aqueous phase was measured and 

transferred to a Heavy Phase-Lock Gel tube.  An equal volume of 50:50 

chloroform:phenol was added to the sample and mixed for 5 min.  The tube was 

centrifuged at 10,000 X g for 8 min.  The volume of the top aqueous phase was 

estimated and an equal volume of chloroform/iso-amyl alcohol was added.  The sample 

was mixed for 5 min, and then centrifuged at 10,000 X g for 8 min.  The top aqueous 

phase was transferred to a 2 ml RNAse/DNAse free tube, the volume was measured and 

sodium acetate to a final concentration of 0.3 M was added.  The tube was mixed gently 

and 3 volumes of cold absolute ethyl alcohol (EtOH) were pipetted down the side of the 

tube and mixed.  The sample was placed in -80 °C to precipitate overnight.   

 The sample was centrifuged for 30 min at 12,000 X g at 4 °C.  The EtOH was 

carefully removed from the pellet and 500 µl cold 70% EtOH was added, and then 

centrifuged for 10 minutes at 12,000 X g at 4 °C.  The EtOH was removed, the pellet 

was allowed to dry, and 20-50 µl of Tricine-EDTA Buffer was added directly to the 

pellet for resuspension.  To ensure that the pellet was fully resuspended, the tube was 

placed in a 50 °C water bath for 1 h.  The concentration of the gDNA was measured on a 

NanoDrop Spectrophotometer. 
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2.11.2  18S rRNA standard PCR 

 Polymerase chain reactions were conducted for the 18S small subunit rRNA gene 

(18S) and the ITS region of the Hc-GRF and Hc-H992 gDNA.  For the 18S PCR, 

primers AN and B were designed from a conserved region of the gene (Sogin, 1990; 

Schoelkopf et al., 2005) and used for amplification (Advantage 2 PCR Enzyme System, 

Clontech, Mountain View, California, USA) (Table 4).  PCR reactions contained 10 ng 

Hc-GRF gDNA, 30 ng Hc-H992 gDNA, and water as a negative control.  The thermal 

cycler program was as follows: 1 cycle of 96 °C for 3 min, then 30 cycles of 94 °C for 

30 s, 60 °C for 30 s, 72 °C for 2 min, followed by a cycle of 72 °C for 10 min and then 

held at 4 °C.  The products were visualized on a 1% agarose gel, stained with ethidium 

bromide, and viewed under UV transillumination. 

 

2.11.3  ITS region standard PCR 

For the ITS region, 1055F forward primer designed from a conserved region of 

the 18S rRNA gene (Sogin, 1990) and ITSR reverse primer designed from a conserved 

region of the 28S rRNA gene (Aktas et al., 2007) (Table 4) were used to amplify the 

genomic region spanning the ITS1-5.8S gene-ITS2 region.  Primary PCR reactions were 

prepared using 10 ng Hc-GRF gDNA, 30 ng Hc-H992 gDNA, and water as a negative 

control.  The PCR was conducted in a thermal cycler programmed with the following 

conditions: 1 cycle of 96 °C for 3 min, then 30 cycles of 94 °C for 30 s, 55 °C for 30 s, 

72 °C for 2 min, followed by a cycle of 72 °C for 10 min, and then held at 4 °C.   

 



 

 

42 

Table 4 
Primers for 18S rRNA gene and ITS genomic region amplification 
 

Primer Sequence (5´ to 3´) TA Expected 
length  

18S Primary PCR     

       AN GCTTGTCTTAAAGATTAAGCCATGC 

       B  GATCCTTCTGCAGGTTCACCTAC 
60 °C 1727 bp 

ITS Primary PCR    

       1055F GGTGGTGCATGGCCG 

       ITSR  GGTCCGTGTTTCAAGACGG 
55 °C 1981 bp 

ITS Nested PCR    

       ITSF   GAGAAGTCGTAACAAGGTTTCCG 

       28SRN2   CGGGTAACCTCGCCTG 
55 °C 872 bp 

 

 

The products were visualized on a 1% agarose gel and viewed under UV 

transillumination. 

  A nested PCR was performed for the ITS reactions using primers ITSF (located 

in the 18S rRNA gene) (Aktas et al., 2007) and 28SRN2 (designed from the 28S rRNA 

gene) and 1 µl of a 1:10 dilution of the primary PCR reactions as template (Table 4).  

The thermal cycler conditions were: 1 cycle of 96 °C for 3 min, then 30 cycles of 94 °C 

for 10 s, 55 °C for 10 s, 72 °C for 2 min, followed by a cycle of 72 °C for 10 min and 

then held at 4 °C.  The products were visualized on a 1% agarose gel, stained with 

ethidium bromide, and viewed under UV transillumination. 
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2.11.4  Ligation and transformation 

The Hc-GRF and Hc-H992 products from the 18S rRNA PCR and the nested ITS 

PCR were ligated using the TOPO® TA Cloning Kit and transformed into One Shot® 

competent E. coli cells (Invitrogen).  Following the TOPO® protocol, 2-4 µl 

(approximately 600-800 ng) of each PCR product was ligated into the TOPO® vector, 

and then transformed into the competent cells.  The samples were plated on LB agar 

with 50 µg/ml kanamycin and incubated in a 37 °C incubator overnight. 

 

2.11.5  Colony PCR 

For each transformation, colonies were analyzed by PCR to determine if the gene 

fragment of interest was successfully incorporated into the vector.  The reactions were 

performed using M13 forward and M13 reverse primers (located in the vector) and the 

following thermal cycler conditions: 1 cycle of 94 °C for 10 min, then 30 cycles of 94 °C 

for 30 s, 50 °C for 30 s, and 72 °C for 2 min, followed by a cycle of 72 °C for 10 min, 

and then held at 4 °C.  The products were visualized on a 1% agarose gel and viewed 

under UV transillumination.  Colonies that possessed the appropriate sized insert for 

each transformation were inoculated into 6 ml LB broth containing 6 µl ampicillin and 

incubated overnight in a 37 °C shaker incubator at 200 rpm. 

 

2.11.6  Plasmid DNA preparation 

 For select colonies, plasmid DNA (pDNA) for each of the samples was prepared 

using the QIAprep Spin Mini Kit (Qiagen Inc.,Valencia, California, USA).  The bacteria 
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cells from the broth cultures were pelleted by centrifuging at 4 °C for 30 min at 720 X g.  

The pDNA was purified following the kit protocol and eluted in 50 µl of sterile water.  

The pDNA was visualized on a 1% agarose gel, stained with ethidium bromide, and 

viewed under UV transillumination to verify the presence of the insert.  The 

concentration of the pDNA was determined using the NanoDrop Spectrophotometer.  

 

2.11.7  Sequencing and analysis 

   The cloned Hc-H992 and Hc-GRF 18S and ITS genes were sequenced by 

Davis Sequencing (Davis, California, USA).  The sequences were analyzed using 

Sequencher 3.11 software (Gene Codes Corporation, Inc., Ann Arbor, Michigan, USA).  

BLAST similarity searches (Altschul et al., 1990) were performed for all 18S rRNA 

gene and ITS region sequences obtained (GenBank database, National Center for 

Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA).   

The sequences were aligned and compared using the ClustalW 1.8 Program (EMBL-

EBI, 2007). 
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3.  RESULTS 

3.1  Modified McMaster test and larval identification 

 For all of the H. contortus strains, the EPG determined that adequate quantities of 

eggs were present in the fecal sample for conducting the DR assay (Table 5).  The larval 

identification determined that H. contortus was the only species of nematode present in 

all of the fecal samples.   

 
 
 
Table 5 
Results of the modified McMaster test and the larval identification for each strain of 
H. contortus 
 

H. contortus      
Strain 

EPG 
Fecal Weight 

(grams) 
Estimated     
egg count 

Larval Identification 

Hc-ES 4,266 26.80 114,329 100 %  H. contortus 

Hc-EG 300 5.02 1,506 100 %  H. contortus 

Hc-OS 900 13.40 12,060 100 %  H. contortus 

Hc-OG 4,200 8.90 37,380 100 %  H. contortus 

Hc-RFR 1,000 6.92 6,920 100 %  H. contortus 

Hc-H992 500 10.71 5,355 100 %  H. contortus 

Hc-GRF 16,700 224.70 3,752,490 100 %  H. contortus 
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3.2  DrenchRite® assay 

 

3.2.1  Hc-ES strain 

 The Hc-ES strain was susceptible to BZ/LEV combination and AVM with 

critical wells 4 and 2.5 respectively (Table 6; Fig. 2).  The strain approached the weak 

resistance level to BZ with critical well 5.  The critical well for LEV was well 7.5, which 

falls within the weakly resistant range.  Due to the level of resistance to LEV, this strain 

was not included in the molecular analysis of the P-glycoprotein.    

 
 
Table 6 
The critical wells (Cw) and corresponding levels of resistance for the H. contortus 
strains as determined by the DrenchRite® assay. (S = susceptible, S / W = bordering on 
susceptible and weakly resistant, W = weakly resistant, W / R = bordering on weakly 
resistant and highly resistant, R = highly resistant) 
 

 
Suspected Susceptible Suspected Resistant 

 Hc-ES        Hc-EG      Hc-OS      Hc-OG      Hc-RFR     Hc-H992    Hc-GRF 

BZ 
Cw = 5      

S 
Cw = 6      

W 
Cw = 4.5     

S 
Cw = 4.5     

S 
Cw = 7.5     

W 
Cw = 8.5     

W / R 
Cw = 11     

R 

LEV 
Cw = 7.5     

W 
Cw = 8.5   

W / R 
Cw = 5.5    

S / W 
Cw = 5      

S 
Cw = 5.5     

S / W 
Cw = 5      

S 
Cw = 10.5   

R  

BZ / 
LEV 

Cw = 4      
S 

Cw = 5      
S 

Cw = 4.5     
S 

Cw = 5      
S           

Cw = 6      
W 

Cw = 5.5     
S / W 

Cw = 8.5     
W / R 

AVM 
Cw = 2.5     

S 
Cw = 5.5     

S / W 
Cw = 3      

S 
Cw = 3.5     

S 
Cw = 6.5     

W 
Cw = 6.5     

W 
Cw = 6.5     

W 
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3.2.2  Hc-EG strain 

 The Hc-EG strain was susceptible to the BZ/LEV combination with a critical 

well of 5, which is nearing the weakly resistant range (Table 6; Fig. 2). The critical well 

for AVM was 5.5, which borders between the susceptible and weakly resistant ranges.  

For BZ, the critical well was determined to be well 6, which falls within the weakly 

resistant range and the LEV critical well was 8.5, which falls on the border between the 

weakly resistant and the highly resistant ranges.  This strain was included in the Pgp 

molecular analysis because it demonstrated a higher level of resistance to LEV. 

 

3.2.3  Hc-OS strain 

   The Hc-OS strain was susceptible to BZ, BZ/LEV combination and AVM, with 

critical wells 4.5, 4.5, and 3, respectively (Table 6; Fig. 2).  The critical well for LEV 

was 5.5, which falls on the border between the susceptible and weakly resistant range.  

This strain was predominantly susceptible with the LEV bordering on weak resistance 

and was included in the molecular analysis.  

 

3.2.4  Hc-OG strain 

 The Hc-OG strain was susceptible to all anthelmintics tested.  The critical wells 

were as follows: well 4.5 for BZ, well 5 for LEV, well 5 for BZ/LEV combination, and 

well 3.5 for AVM (Table 6; Fig. 2).  However, the levels of resistance to LEV, as well as 

the BZ/LEV combination, are approaching the weakly resistant level.  This strain was 
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determined to be the most susceptible in this study and was included in the molecular 

analysis. 

 

3.2.5  Hc-RFR strain 

The Hc-RFR critical well for LEV was 5.5, which falls on the border between the 

susceptible and weakly resistant ranges (Table 6; Fig. 2).  For the other anthelmintics 

tested, the critical wells were within the weakly resistant range and were as follows: well 

7.5 for BZ, well 6 for BZ/LEV combination, and well 6.5 for AVM.  This strain was 

determined to be predominantly weakly resistant, with LEV on the border between 

susceptible and weakly resistant and was included in the molecular analysis.   

 

3.2.6  Hc-H992 strain 

 The Hc-H992 was susceptible for LEV with a critical well of 5, which is nearing 

the weakly resistant range (Table 6; Figure 2).  The critical well was 5.5 for the BZ/LEV 

combination, which falls on the border between the susceptible and weakly resistant 

ranges.  This strain was weakly resistant to AVM with a critical well of 6.5, but bordered 

on the weakly and highly resistant ranges for BZ with a critical well of 8.5.  This strain 

was not as resistant as originally suspected, but still showed a level of resistance to BZ 

and AVM and was included in the molecular analysis.   
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3.2.7  Hc-GRF strain 

 The Hc-GRF strain was weakly resistant to AVM with a critical well of 6.5, but 

bordered on the weakly and highly resistant ranges for the BZ/LEV combination with a 

critical well of 8.5 (Table 6; Figure 2).  This strain was highly resistant to BZ and LEV 

with critical wells of 11 and 10.5 respectively.  This strain was determined to be the 

most resistant strain in the study, being either weakly or highly resistant to all of the 

anthelmintics tested and was included in the molecular analysis.  

 

3.3  P-glycoprotein molecular analysis 

 None of the H. contortus strains showed transcription levels of Pgp at levels 

detectable in the PCR assay used in this study (represented by Fig. 4).  Using the same 

amount of cDNA in the reactions, the housekeeping gene for each of the samples was 

amplified at detectable levels.  The smaller amplicon of Pgp showed similar results.  

 

 3.4  Hc-GRF molecular characterization 

 

3.4.1  18S rRNA 

 The 18S rRNA sequences obtained from isolates for Hc-H992 and Hc-GRF were 

compared to the sequences available in the GenBank database for H. contortus 

(accession no. L04153), Haemonchus placei (accession no. L04154) and Haemonchus 

similis (accession no. L04152) (Fig. 5).  The three reference sequences were 100%  
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A)        B)     

 

 

 
 
 
identical when aligned using a Lalign program (EMBNET.CH, 2007).  The Hc-H992 

consensus sequence showed an identity of 99.4% to H. contortus, H. placei and 

H. similis and 99.5% to the Hc-GRF.  In comparison, the Hc-GRF showed a 99.9% 

identity to all three of the reference sequences.  Several base differences (designated in 

bold below) occurred in the Hc-H992 isolates, however at position 1165 (↓), there was a 

nucleotide inserted for both Hc-H992 and Hc-GRF.  Based on the similarity of the Hc-

GRF sequences to the other known Haemonchus spp, it was confirmed to be a species of 

Haemonchus. 

 
 
 
 
 
 
 
 
 

Fig. 4. A) Gel image of the P-glycoprotein analysis for the Hc-H992 strain. B) Gel image of the P-
glycoprotein analysis for the Hc-OS strain.  For both images: the Pgp positive (G079) and negative 
(water) are shown on the right of each gel at 3850bp and the housekeeping gene for each sample 
tested is shown at 450bp.  There was not amplification of Pgp for the test samples.  These gels are 
representative for all of the strains evaluated. 

3850 bp 

423 bp 
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        Primer AN → 
 
L04153-Hc       GCTCAGTTTAAAGATTAAGCCATGCATGTCGAGTTCATCTTTGAAGAGAAACTGCGAACG 60 
Hc-GRF-6        -----------AGATTAAGCCATGCATGTCGAGTTCATCTTTGAAGAGAAACTGCGAACG 49 
Hc-GRF-8        GCTTGTCTTAAAGATTAAGCCATGCATGTCGAGTTCATCTTTGAAGAGAAACTGCGAACG 60 
Hc-H992-2       GCTTGTCTTAAAGATTAAGCCATGCATGTCGAGTTCATCTTTGAAGAGAAACTGCGAACG 60 
Hc-H992-3       GCTTGTCTTAAAGATTAAGCCATGCATGTCGAGTTCATCTTTGAAGAGAAACTGCGAACG 60 
L04154-Hp       GCTCAGTTTAAAGATTAAGCCATGCATGTCGAGTTCATCTTTGAAGAGAAACTGCGAACG 60 
L04152-Hs       GCTCAGTTTAAAGATTAAGCCATGCATGTCGAGTTCATCTTTGAAGAGAAACTGCGAACG 60 
                           ************************************************* 
 
L04153-Hc       GCTCATTAGAGCAGATGTCATTTATTCGGAACGTCCTTTTGGATAACTGCGGTAATTCTG 120 
Hc-GRF-6        GCTCATTAGAGCAGATGTCATTTATTCGGAACGTCCTTTTGGATAACTGCGGTAATTCTG 109 
Hc-GRF-8        GCTCATTAGAGCAGATGTCATTTATTCGGAACGTCCTTTTGGATAACTGCGGTAATTCTG 120 
Hc-H992-2       GCTCATTAGAGCAGATGTCATTTATTCGGAACGTCCTTTTGGATAACTGCGGTAATTCTG 120 
Hc-H992-3       GCTCATTAGAGCAGATGTCATTTATTCGGAACGACCTTTTGGATAACTGCGGTAATTCTG 120 
L04154-Hp       GCTCATTAGAGCAGATGTCATTTATTCGGAACGTCCTTTTGGATAACTGCGGTAATTCTG 120 
L04152-Hs       GCTCATTAGAGCAGATGTCATTTATTCGGAACGTCCTTTTGGATAACTGCGGTAATTCTG 120 
                ********************************* ************************** 
 
L04153-Hc       GAGCTAATACATGCAAATAAACCCTGACTTTTGAAAGGGTGCAATTATTAGAGCAAATCA 180 
Hc-GRF-6        GAGCTAATACATGCAAATAAACCCTGACTTTTGAAAGGGTGCAATTATTAGAGCAAATCA 169 
Hc-GRF-8        GAGCTAATACATGCAAATAAACCCTGACTTTTGAAAGGGTGCAATTATTAGAGCAAATCA 180 
Hc-H992-2       GAGCTAATACATGCAAATAAACCCTGACTTTTGAAAGGGTGCAATTATTAGAGCAAATCA 180 
Hc-H992-3       GAGCTAATACATGCGAATAAACCCTGACTTTTGAAAGGGTGCAATTATTAGAGCAAATCA 180 
L04154-Hp       GAGCTAATACATGCAAATAAACCCTGACTTTTGAAAGGGTGCAATTATTAGAGCAAATCA 180 
L04152-Hs       GAGCTAATACATGCAAATAAACCCTGACTTTTGAAAGGGTGCAATTATTAGAGCAAATCA 180 
                ************** ********************************************* 
 
L04153-Hc       ATCACTTTCGGGTGCAGTTTGCTGACTCTGAATAACGCAGCATATCGGCGGCTTGTTCGC 240 
Hc-GRF-6        ATCACTTTCGGGTGCAGTTTGCTGACTCTGAATAACGCAGCATATCGGCGGCTTGTTCGC 229 
Hc-GRF-8        ATCACTTTCGGGTGCAGTTTGCTGACTCTGAATAACGCAGCATATCGGCGGCTTGTTCGC 240 
Hc-H992-2       ATCACTTTCGGGTGCAGTTTGCTGACTCTGAATAACGCAGCATATCGGCGGCTTGTTCGC 240 
Hc-H992-3       ATCACTTTCGGGTGCATTTTGCTGACTCTGAATAACGCAGCATATCGGCGGCTTGTTCGC 240 
L04154-Hp       ATCACTTTCGGGTGCAGTTTGCTGACTCTGAATAACGCAGCATATCGGCGGCTTGTTCGC 240 
L04152-Hs       ATCACTTTCGGGTGCAGTTTGCTGACTCTGAATAACGCAGCATATCGGCGGCTTGTTCGC 240 
                **************** ******************************************* 
 
L04153-Hc       CGATATTCCGAAAAAGTGTCTGCCCTATCAACCTGATGGTAGTCTATTAGTCTACCATGG 300 
Hc-GRF-6        CGATATTCCGAAAAAGTGTCTGCCCTATCAACCTGATGGTAGTCTATTAGTCTACCATGG 289 
Hc-GRF-8        CGATATTCCGAAAAAGTGTCTGCCCTATCAACCTGATGGTAGTCTATTAGTCTACCATGG 300 
Hc-H992-2       CGATATTCCGAAAAAGTGTCTGCCCTATCAACCTGATGGTAGTCTATTAGTCTACCATGG 300 
Hc-H992-3       CGATATTCCGAAAAAGTGTCTGCCCTATCAACCTGATGGTAGTCTATTAGTCTACCATGG 300 
L04154-Hp       CGATATTCCGAAAAAGTGTCTGCCCTATCAACCTGATGGTAGTCTATTAGTCTACCATGG 300 
L04152-Hs       CGATATTCCGAAAAAGTGTCTGCCCTATCAACCTGATGGTAGTCTATTAGTCTACCATGG 300 
                ************************************************************ 
 
L04153-Hc       TTATTACGGGTAACGGAGAATAAGGGTTCGACTCCGGAGAGGGAGCCTTAGAAACGGCTA 360 
Hc-GRF-6        TTATTACGGGTAACGGAGAATAAGGGTTCGACTCCGGAGAGGGAGCCTTAGAAACGGCTA 349 
Hc-GRF-8        TTATTACGGGTAACGGAGAATAAGGGTTCGACTCCGGAGAGGGAGCCTTAGAAACGGCTA 360 
Hc-H992-2       TTATTACGGGTAACGGAGAATAAGGGTTCGACTCCGGAGAGGGAGCCTTAGAAACGGCTA 360 
Hc-H992-3       TTATTACGGGTAACGGAGAATAAGGGTTCGACTCCGGAGAGGGAGCCTTAGAAACGGCTA 360 
L04154-Hp       TTATTACGGGTAACGGAGAATAAGGGTTCGACTCCGGAGAGGGAGCCTTAGAAACGGCTA 360 
L04152-Hs       TTATTACGGGTAACGGAGAATAAGGGTTCGACTCCGGAGAGGGAGCCTTAGAAACGGCTA 360 
                ************************************************************ 
 
 

Fig. 5.  The Hc-H992 and Hc-GRF 18S rRNA gene sequence alignment with denotation of 
primer location.  The reference sequences are designated by the GenBank accession numbers as 
follows: L04153-Hc for H. contortus, L04154-Hp for H. placei and L04152-Hs for H. similis.  
Single base substitutions are designated in bold type.  A single base insertion at position 1165 (↓) 
occurred in both the Hc-H992 and Hc-GRF sequences. 
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L04153-Hc       CCACATCCAAGGAAGGCAGCAGGCGCGAAACTTATCCAATCTTGAACAGATGAGATAGTG 420 
Hc-GRF-6        CCACATCCAAGGAAGGCAGCAGGCGCGAAACTTATCCAATCTTGAACAGATGAGATAGTG 409 
Hc-GRF-8        CCACATCCAAGGAAGGCAGCAGGCGCGAAACTTATCCAATCTTGAACAGATGAGATAGTG 420 
Hc-H992-2       CCACATCCAAGGAAGGCAGCAGGCGCGAAACTTATCCAATCTTGAACAGATGAGATAGTG 420 
Hc-H992-3       CCACATCCAAGGAAGGCAGCAGGCGCGAAACTTATCCAATCTTGAACAGATGAGATAGTG 420 
L04154-Hp       CCACATCCAAGGAAGGCAGCAGGCGCGAAACTTATCCAATCTTGAACAGATGAGATAGTG 420 
L04152-Hs       CCACATCCAAGGAAGGCAGCAGGCGCGAAACTTATCCAATCTTGAACAGATGAGATAGTG 420 
                ************************************************************ 
 
L04153-Hc       ACTAAAAATAAAAAGACCATTCCTATGGAACGGTCATTTCAATGAGTTGATCATAAACCT 480 
Hc-GRF-6        ACTAAAAATAAAAAGACCATTCCTATGGAACGGTCATTTCAATGAGTTGATCATAAACCT 469 
Hc-GRF-8        ACTAAAAATAAAAAGACCATTCCTATGGAACGGTCATTTCAATGAGTTGATCATAAACCT 480 
Hc-H992-2       ACTAAAAATAAAAAGACCATTCCTATGGAACGGTCATTTCAATGAGTTGATCATAAACCT 480 
Hc-H992-3       ACTAAAAATAAAAAGACCATTCCTATGGAACGGTCATTTCAATGAGTTGATCATAAACCT 480 
L04154-Hp       ACTAAAAATAAAAAGACCATTCCTATGGAACGGTCATTTCAATGAGTTGATCATAAACCT 480 
L04152-Hs       ACTAAAAATAAAAAGACCATTCCTATGGAACGGTCATTTCAATGAGTTGATCATAAACCT 480 
                ************************************************************ 
 
L04153-Hc       TTTTTCGAGGATCAAGTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCC 540 
Hc-GRF-6        TTTTTCGAGGATCAAGTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCC 529 
Hc-GRF-8        TTTTTCGAGGATCAAGTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCC 540 
Hc-H992-2       TTTTTCGAGGATCAAGTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCC 540 
Hc-H992-3       TTTTTCGAGGATCAAGTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCC 540 
L04154-Hp       TTTTTCGAGGATCAAGTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCC 540 
L04152-Hs       TTTTTCGAGGATCAAGTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCC 540 
                ************************************************************ 
 
L04153-Hc       ACTAGTGTAAATCGTCATTGCTGCGGTTAAAAAGCTCGTAGTTGGATCTGAGTTACATGC 600 
Hc-GRF-6        ACTAGTGTAAATCGTCATTGCTGCGGTTAAAAAGCTCGTAGTTGGATCTGAGTTACATGC 589 
Hc-GRF-8        ACTAGTGTAAATCGTCATTGCTGCGGTTAAAAAGCTCGTAGTTGGATCTGAGTTACATGC 600 
Hc-H992-2       ACTAGTGTAAATCGTCATTGCTGCGGTTAAAAAGCTCGTAGTTGGATCTGAGTTACATGC 600 
Hc-H992-3       ACTAGTGTAAATCGTCATTGCTGCGGTTAAAAAGCTCGTAGTTGGATCTGAGTTACATGC 600 
L04154-Hp       ACTAGTGTAAATCGTCATTGCTGCGGTTAAAAAGCTCGTAGTTGGATCTGAGTTACATGC 600 
L04152-Hs       ACTAGTGTAAATCGTCATTGCTGCGGTTAAAAAGCTCGTAGTTGGATCTGAGTTACATGC 600 
                ************************************************************ 
 
L04153-Hc       AGTGATTCGCCTTTGGCGTTAATCGCTGTTGTAACTATTTGCTGGTTTTCTATTGAGGTT 660 
Hc-GRF-6        AGTGATTCGCCTTTGGCGTTAATCGCTGTTGTAACTATTTGCTGGTTTTCTATTGAGGTT 649 
Hc-GRF-8        AGTGATTCGCCTTTGGCGTTAATCGCTGTTGTAACTATTTGCTGGTTTTCTATTGAGGTT 660 
Hc-H992-2       AGTGATTCGCCTTTGGCGTTAATCGCTGTTGTAACTATTTGCTGGTTTTCTGTTGAGGTT 660 
Hc-H992-3       AGTGATTCGCCTTTGGCGTTAATCGCAGTTGTAACTATTTGCTGGTTTTCTGTTGAGGTT 660 
L04154-Hp       AGTGATTCGCCTTTGGCGTTAATCGCTGTTGTAACTATTTGCTGGTTTTCTATTGAGGTT 660 
L04152-Hs       AGTGATTCGCCTTTGGCGTTAATCGCTGTTGTAACTATTTGCTGGTTTTCTATTGAGGTT 660 
                ************************** ************************ ******** 
 
L04153-Hc       TCGGCTTCTTTAGTGGCTAGCGAGTTTACTTTGAATAAATTAGAGTGCTCAGAACAAGCG 720 
Hc-GRF-6        TCGGCTTCTTTAGTGGCTAGCGAGTTTACTTTGAATAAATTAGAGTGCTCAGAACAAGCG 709 
Hc-GRF-8        TCGGCTTCTTTAGTGGCTAGCGAGTTTACTTTGAATAAATTAGAGTGCTCAGAACAAGCG 720 
Hc-H992-2       TCGGCTTCTTTAGTGGCTAGCGAGTTTACTTTGAATAAATTAGAGTGCTCAGAACAAGCG 720 
Hc-H992-3       TCGGCTTCTTTAGTGGCTAGCGAGTTTACTTTGAATAAATTAGAGTGCTCAGAACAAGCG 720 
L04154-Hp       TCGGCTTCTTTAGTGGCTAGCGAGTTTACTTTGAATAAATTAGAGTGCTCAGAACAAGCG 720 
L04152-Hs       TCGGCTTCTTTAGTGGCTAGCGAGTTTACTTTGAATAAATTAGAGTGCTCAGAACAAGCG 720 
                ************************************************************ 
 
L04153-Hc       TTTGCTTGAATGGTCGATCATGGAATAATAAAAGAGGACTTCGGTTCTATTTATTGGTTC 780 
Hc-GRF-6        TTTGCTTGAATGGTCGATCATGGAATAATAAAAGAGGACTTCGGTTCTATTTATTGGTTC 769 
Hc-GRF-8        TTTGCTTGAATGGTCGATCATGGAATAATAAAAGAGGACTTCGGTTCTATTTATTGGTTC 780 
Hc-H992-2       TTTGCTTGAATGGTCGATCATGGAATAATAAAAGAGGACTTCGGTTCTATTTATTGGTTC 780 
Hc-H992-3       TTTGCTTGAATGGTCGATCATGGAATAATAAAAGAGGACTTCGGTTCTATTTATTGGTTC 780 
L04154-Hp       TTTGCTTGAATGGTCGATCATGGAATAATAAAAGAGGACTTCGGTTCTATTTATTGGTTC 780 
L04152-Hs       TTTGCTTGAATGGTCGATCATGGAATAATAAAAGAGGACTTCGGTTCTATTTATTGGTTC 780 
                ************************************************************ 
 

Fig. 5. Continued. 
 



 

 

53 

L04153-Hc       AGGAACTGAAATAATGGTTAAGAGGGACAATTCGGGGGCATTCGTATCCCTGCGCGAGAG 840 
Hc-GRF-6        AGGAACTGAAATAATGGTTAAGAGGGACAATTCGGGGGCATTCGTATCCCTGCGCGAGAG 829 
Hc-GRF-8        AGGAACTGAAATAATGGTTAAGAGGGACAATTCGGGGGCATTCGTATCCCTGCGCGAGAG 840 
Hc-H992-2       AGGAACTGAAATAATGGTTAAGAGGGACAATTCGGGGGCATTCGTATCCCTGCGCGAGAG 840 
Hc-H992-3       AGGAACTGAAATAATGGTTAAGAGGGACAATTCGGGGGCATTCGTATCCCTGCGCGAGAG 840 
L04154-Hp       AGGAACTGAAATAATGGTTAAGAGGGACAATTCGGGGGCATTCGTATCCCTGCGCGAGAG 840 
L04152-Hs       AGGAACTGAAATAATGGTTAAGAGGGACAATTCGGGGGCATTCGTATCCCTGCGCGAGAG 840 
                ************************************************************ 
 
L04153-Hc       GTGAAATTCGTGGACCGCAGGGGGACGCCCTAAAGCGAAAGCATTTGCCAAGAATGTCTT 900 
Hc-GRF-6        GTGAAATTCGTGGACCGCAGGGGGACGCCCTAAAGCGAAAGCATTTGCCAAGAATGTCTT 889 
Hc-GRF-8        GTGAAATTCGTGGACCGCAGGGGGACGCCCTAAAGCGAAAGCATTTGCCAAGAATGTCTT 900 
Hc-H992-2       GTGAAATTCGTGGACCGCAGGGGGACGCCCTAAAGCGAAAGCATTTGCCAAGAATGTCTT 900 
Hc-H992-3       GTGAAATTCGTGGACCGCAGGGGGACGCCCTAAAGCGAAAGCATTTGCCAAGAATGTCTT 900 
L04154-Hp       GTGAAATTCGTGGACCGCAGGGGGACGCCCTAAAGCGAAAGCATTTGCCAAGAATGTCTT 900 
L04152-Hs       GTGAAATTCGTGGACCGCAGGGGGACGCCCTAAAGCGAAAGCATTTGCCAAGAATGTCTT 900 
                ************************************************************ 
 
L04153-Hc       CATTAATCAAGAACGAAAGTCAGAGGTTCGAAGGCGATTAGATACCGCCCTAGTTCTGAC 960 
Hc-GRF-6        CATTAATCAAGAACGAAAGTCAGAGGTTCGAAGGCGATTAGATACCGCCCTAGTTCTGAC 949 
Hc-GRF-8        CATTAATCAAGAACGAAAGTCAGAGGTTCGAAGGCGATTAGATACCGCCCTAGTTCTGAC 960 
Hc-H992-2       CATTAATCAAGAACGAAAGTCAGAGGTTCGAAGGCGATTAGATACCGCCCTAGTTCTGAC 960 
Hc-H992-3       CATTAATCAAGAACGAAAGTCAGAGGTTCGAAGGCGATTAGATACCGCCCTAGTTCTGAC 960 
L04154-Hp       CATTAATCAAGAACGAAAGTCAGAGGTTCGAAGGCGATTAGATACCGCCCTAGTTCTGAC 960 
L04152-Hs       CATTAATCAAGAACGAAAGTCAGAGGTTCGAAGGCGATTAGATACCGCCCTAGTTCTGAC 960 
                ************************************************************ 
 
L04153-Hc       CGTAAACTATGCCATCTAGCGATCCGATGGGGTATAGTTGCCTTGTCGAGGAGCTTCCCG 1020 
Hc-GRF-6        CGTAAACTATGCCATCTAGCGATCCGATGGGGTATAGTTGCCTTGTCGAGGAGCTTCCCG 1009 
Hc-GRF-8        CGTAAACTATGCCATCTAGCGATCCGATGGGGTATAGTTGCCTTGTCGAGGAGCTTCCCG 1020 
Hc-H992-2       CGTAAACTATGCCATCTAGCGATCCGATGGGGTATAGTTGCCTTGTCGAGGAGCTTCCCG 1020 
Hc-H992-3       CGTAAACTATGCCATCTAGCGATCCGATGGGGTATAGTTGCCTTGTCGAGGAGCTTCCCG 1020 
L04154-Hp       CGTAAACTATGCCATCTAGCGATCCGATGGGGTATAGTTGCCTTGTCGAGGAGCTTCCCG 1020 
L04152-Hs       CGTAAACTATGCCATCTAGCGATCCGATGGGGTATAGTTGCCTTGTCGAGGAGCTTCCCG 1020 
                ************************************************************ 
 
L04153-Hc       GAAACGAAAGTCTTTCGGTTCCTGGGGTAGTATGGTTGCAAAGCTGAAACTTAAAGAAAT 1080 
Hc-GRF-6        GAAACGAAAGTCTTTCCGTTCCTGGGGTAGTATGGTTGCAAAGCTGAAACTTAAAGAAAT 1069 
Hc-GRF-8        GAAACGAAAGTCTTTCGGTTCCTGGGGTAGTATGGTTGCAAAGCTGAAACTTAAAGAAAT 1080 
Hc-H992-2       GAAACGAAAGTCTTTCGGTTCCTGGGGTAGTATGGTTGCAAAGCTGAAACTTAAAGAAAT 1080 
Hc-H992-3       GAAACGAAAGTCTTTCGGTTCCTGGGGTAGTATGGTTGCAAAGCTGAAACTTAAAGAAAT 1080 
L04154-Hp       GAAACGAAAGTCTTTCGGTTCCTGGGGTAGTATGGTTGCAAAGCTGAAACTTAAAGAAAT 1080 
L04152-Hs       GAAACGAAAGTCTTTCGGTTCCTGGGGTAGTATGGTTGCAAAGCTGAAACTTAAAGAAAT 1080 
                **************** ******************************************* 
 
L04153-Hc       TGACGGAATGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAAA 1140 
Hc-GRF-6        TGACGGAATGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAAA 1129 
Hc-GRF-8        TGACGGAATGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAAA 1140 
Hc-H992-2       TGACGGAATGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAAA 1140 
Hc-H992-3       TGACGGAATGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAAA 1140 
L04154-Hp       TGACGGAATGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAAA 1140 
L04152-Hs       TGACGGAATGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAAA 1140 
                ************************************************************ 
 
      ↓ 
L04153-Hc       CTCACCCGGCCCGGACACCGTAAG-ATTGACAGATTGAAAGCTCTTTCTCGATTTGGTGG 1199 
Hc-GRF-6        CTCACCCGGCCCGGACACCGTAAGGATTGACAGATTGAAAGCTCTTTCTCGATTTGGTGG 1189 
Hc-GRF-8        CTCACCCGGCCCGGACACCGTAAGGATTGACAGATTGAAAGCTCTTTCTCGATTTGGTGG 1200 
Hc-H992-2       CTCACCCGGCCCGGACACCGTAAGGATTGACAGATTGAAAGCTCTTTCTCGATTTGGTGG 1200 
Hc-H992-3       CTCACCCGGCCCGGACACCGTAAGGATTGACAGATTGAAAGCTCTTTCTCGATTTGGTGG 1200 
L04154-Hp       CTCACCCGGCCCGGACACCGTAAG-ATTGACAGATTGAAAGCTCTTTCTCGATTTGGTGG 1199 
L04152-Hs       CTCACCCGGCCCGGACACCGTAAG-ATTGACAGATTGAAAGCTCTTTCTCGATTTGGTGG 1199 
                ************************ *********************************** 
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L04153-Hc       TTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGCGATTTGTCTGGTTTATTCCGATAACG 1259 
Hc-GRF-6        TTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGCGATTTGTCTGGTTTATTCCGATAACG 1249 
Hc-GRF-8        TTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGCGATTTGTCTGGTTTATTCCGATAACG 1260 
Hc-H992-2       TTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGCGATTTGTCTGGTTTATTCCGATAACG 1260 
Hc-H992-3       TTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGCGATTTGTCTGGTTTATTCCGATAACG 1260 
L04154-Hp       TTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGCGATTTGTCTGGTTTATTCCGATAACG 1259 
L04152-Hs       TTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGCGATTTGTCTGGTTTATTCCGATAACG 1259 
                ************************************************************ 
 
L04153-Hc       AGCGAGACTCTAGCCTGCTAAATAGTGGCTGGATTTTTGAGTCCAGTCTACTTCTTAGAG 1319 
Hc-GRF-6        AGCGAGACTCTAGCCTGCTAAATAGTGGCTGGATTTTTGAGTCCAGTCTACTTCTTAGAG 1309 
Hc-GRF-8        AGCGAGACTCTAGCCTGCTAAATAGTGGCTGGATTTTTGAGTCCAGTCTACTTCTTAGAG 1320 
Hc-H992-2       AGTGAGACTCTAGCCTGCTAAATAGTGGCTGGATTTTTGGGTCCAGTCTACTTCTTAGAG 1320 
Hc-H992-3       AGCGAGACTCTAGCCTGCTAAATAGTGGCTGGATTTTTGAGTCCAGTCTACTTCTTAGAG 1320 
L04154-Hp       AGCGAGACTCTAGCCTGCTAAATAGTGGCTGGATTTTTGAGTCCAGTCTACTTCTTAGAG 1319 
L04152-Hs       AGCGAGACTCTAGCCTGCTAAATAGTGGCTGGATTTTTGAGTCCAGTCTACTTCTTAGAG 1319 
                ** ************************************ ******************** 
 
L04153-Hc       GGATAAGCGGTGTTTAGCCGCACGAGATTGAGCGATAACAGGTCTGTGATGCCCTTAGAT 1379 
Hc-GRF-6        GGATAAGCGGTGTTTAGCCGCACGAGATTGAGCGATAACAGGTCTGTGATGCCCTTAGAT 1369 
Hc-GRF-8        GGATAAGCGGTGTTTAGCCGCACGAGATTGAGCGATAACAGGTCTGTGATGCCCTTAGAT 1380 
Hc-H992-2       GGATAAGCGGTGTTTAGCCGCACGAGATTGAGCGATAACAGGTCTGTGATGCCCTTAGAT 1380 
Hc-H992-3       GGATAAGCGGTGTTTAGCCGCACGAGATTGAGCGATAACAGGTCTGTGATGCCCTTAGAT 1380 
L04154-Hp       GGATAAGCGGTGTTTAGCCGCACGAGATTGAGCGATAACAGGTCTGTGATGCCCTTAGAT 1379 
L04152-Hs       GGATAAGCGGTGTTTAGCCGCACGAGATTGAGCGATAACAGGTCTGTGATGCCCTTAGAT 1379 
                ************************************************************ 
 
L04153-Hc       GTCCGGGGCTGCACGCGCGCTACAATGGAAGAATCAGCTGGCCTATCCATTGCCGAAAGG 1439 
Hc-GRF-6        GTCCGGGGCTGCACGCGCGCTACAATGGAAGAATCAGCTGGCCTATCCATTGCCGAAAGG 1429 
Hc-GRF-8        GTCCGGGGCTGCACGCGCGCTACAATGGAAGAATCAGCTGGCCTATCCATTGCCGAAAGG 1440 
Hc-H992-2       GTCCGGGGCTGCACGCGCGCTACAATGGAAGAATCAGCTGGCCTATCCATTGCCGAAAGG 1440 
Hc-H992-3       GTCCGGGGCTGCACGCGCGCTACAATGGAAGAATCAGCTGGCCTATCCATTGCCGAAAGG 1440 
L04154-Hp       GTCCGGGGCTGCACGCGCGCTACAATGGAAGAATCAGCTGGCCTATCCATTGCCGAAAGG 1439 
L04152-Hs       GTCCGGGGCTGCACGCGCGCTACAATGGAAGAATCAGCTGGCCTATCCATTGCCGAAAGG 1439 
                ************************************************************ 
 
L04153-Hc       CATTGGTAAACCGTTGAAACTCTTCCGTGACCGGGATAGGGAATTGTAATTATTTCCCTT 1499 
Hc-GRF-6        CATTGGTAAACCGTTGAAACTCTTCCGTGACCGGGATAGGGAATTGTAATTATTTCCCTT 1489 
Hc-GRF-8        CATTGGTAAACCGTTGAAACTCTTCCGTGACCGGGATAGGGAATTGTAATTATTTCCCTT 1500 
Hc-H992-2       CATTGGTAAACCGTTGAAACTCTTCCGTGACCGGGATAGGGAATTGTAATTATTTCCCTT 1500 
Hc-H992-3       CATTGGTAAACCGTTGAAACTCTTCCGTGACCGGGATAGGGAATTGTAATTATTTCCCTT 1500 
L04154-Hp       CATTGGTAAACCGTTGAAACTCTTCCGTGACCGGGATAGGGAATTGTAATTATTTCCCTT 1499 
L04152-Hs       CATTGGTAAACCGTTGAAACTCTTCCGTGACCGGGATAGGGAATTGTAATTATTTCCCTT 1499 
                ************************************************************ 
 
L04153-Hc       GAACGAGGAATTCCTAGTAAGTGTGAGTCATCAGCTCACGCTGATTACGTCCCTGCCATT 1559 
Hc-GRF-6        GAACGAGGAATTCCTAGTAAGTGTGAGTCATCAGCTCACGCTGATTACGTCCCTGCCATT 1549 
Hc-GRF-8        GAACGAGGAATTCCTAGTAAGTGTGAGTCATCAGCTCACGCTGATTACGTCCCTGCCATT 1560 
Hc-H992-2       GAACGAGGAATTCCTAGTAAGTGTGAGTCATCAGCTCACGCTGATTACGTCCCTGCCATT 1560 
Hc-H992-3       GAACGAGGAATTCCTAGTAAGTGTGAGTCATCAGCTCACGCTGATTACGTCCCTGCCATT 1560 
L04154-Hp       GAACGAGGAATTCCTAGTAAGTGTGAGTCATCAGCTCACGCTGATTACGTCCCTGCCATT 1559 
L04152-Hs       GAACGAGGAATTCCTAGTAAGTGTGAGTCATCAGCTCACGCTGATTACGTCCCTGCCATT 1559 
                ************************************************************ 
 
L04153-Hc       TGTACACACCGCCCGTCGCTGTCCGGGACTGAGCTGTCTCGAGAGGACTGCGGACTGCTG 1619 
Hc-GRF-6        TGTACACACCGCCCGTCGCTGTCCGGGACTGAGCTGTCTCGAGAGGACTGCGGACTGCTG 1609 
Hc-GRF-8        TGTACACACCGCCCGTCGCTGTCCGGGACTGAGCTGTCTCGAGAGGACTGCGGACTGCTG 1620 
Hc-H992-2       TGTACACACCGCCCGTCGCTGTCCGGGACTGAGCTGTCTCGAGAGGACTGCGGACTGCTG 1620 
Hc-H992-3       TGTACACACCGCCCGTCGCTGTCCGGGACTGAGCTGTCTCGAGAGGACTGCGGACTGCTG 1620 
L04154-Hp       TGTACACACCGCCCGTCGCTGTCCGGGACTGAGCTGTCTCGAGAGGACTGCGGACTGCTG 1619 
L04152-Hs       TGTACACACCGCCCGTCGCTGTCCGGGACTGAGCTGTCTCGAGAGGACTGCGGACTGCTG 1619 
                ************************************************************ 
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L04153-Hc       TATCGAGGCCTTCGGGTCGCGGTATGGCGGGAAACAGTTCAATCGCAATGGCTTGAACCG 1679 
Hc-GRF-6        TATCGAGGCCTTCGGGTCGCGGTATGGCGGGAAACAGTTCAATCGCAATGGCTTGAACCG 1669 
Hc-GRF-8        TATCGAGGCCTTCGGGTCGCGGTATGGCGGGAAACAGTTCAATCGCAATGGCTTGAACCG 1680 
Hc-H992-2       TATCGAGGCCTTCGGGTCGCGGTATGGCGGGAAACAGTTCAATCGCAATGGCTTGAACCG 1680 
Hc-H992-3       TATCGAGGCCTTCGGGTCGCGGTGTGGCGGGAAACAGTTCAATCGCAATGGCTTGAACCG 1680 
L04154-Hp       TATCGAGGCCTTCGGGTCGCGGTATGGCGGGAAACAGTTCAATCGCAATGGCTTGAACCG 1679 
L04152-Hs       TATCGAGGCCTTCGGGTCGCGGTATGGCGGGAAACAGTTCAATCGCAATGGCTTGAACCG 1679 
                *********************** ************************************ 
 
          ← Primer B 
 
L04153-Hc       GGTAAAAGTCGTAACAAGGTATCTGTAGGTGAACCTGCAGATGGATC 1726 
Hc-GRF-6        GGTAAAAGTCGTAACAAGGTATCTGTAGGTGAACCTGCAGAAGGATC 1716 
Hc-GRF-8        GGTAAAAGTCGTAACAAGGTATCTGTAGGTGAACCTGCAGAAGGATC 1727 
Hc-H992-2       GGTAAAAGTCGTAACAAGGTATCTGTAGGTGAACCTGCAGAAGGATC 1727 
Hc-H992-3       GGTAAAAGTCGTAACAAGGTATCTGGAGGTGAACCTGCAGAAGGATC 1727 
L04154-Hp       GGTAAAAGTCGTAACAAGGTATCTGTAGGTGAACCTGCAGATGGATC 1726 
L04152-Hs       GGTAAAAGTCGTAACAAGGTATCTGTAGGTGAACCTGCAGATGGATC 1726 
                ************************* *************** ***** 
 

Fig. 5. Continued. 
 
 
 

3.4.2  ITS region 

 

 The ITS sequences obtained from isolates for Hc-H992 and Hc-GRF were 

compared to the sequences available in GenBank for H. contortus and H. placei ITS 

regions.  There were no GenBank sequences available for H. similis to include in the 

comparisons.   

The ITS 1 sequence in GenBank for H. contortus (accession no. AF044927) 

shows a 99.0% identity with H. placei (accession no. AF044929) with a total of 3 base 

substitution differences between the species.  The Hc-H992 consensus sequence showed 

an identity of 97.5% to the Hc-GRF sequence, 100% to the H. contortus reference 

sequence and 99.0% to H. placei.  In comparison, the Hc-GRF showed a 97.5% identity 

to H. contortus and a 97.0% identity to H. placei.   

The sequences for the Hc-H992 and the Hc-GRF isolates contained a few minor 

differences (Fig. 6).  Single base substitutions occurred in the Hc-H992 isolates as well 
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as in the Hc-GRF isolates (designated in bold type).  There was a single base insertion at 

position 134 (↓) in only one of the Hc-H992 isolates and at position 270-273 (↓↓↓↓) 

there was a four base deletion in two of the Hc-GRF isolates and a single base deletion 

in one of the Hc-H992 isolates (position 270).  All of the Hc-H992 and Hc-GRF 

sequences matched H. contortus in two out of the three nucleotide differences between 

H. contortus and H. placei.  At the third position, two of the Hc-H992 isolates and one of 

the Hc-GRF isolates matched with H. contortus while the other three isolates matched 

with H. placei.  The Hc-H992 and the Hc-GRF are most likely H. contortus based on 

these results.    

 

 
AF044927-Hc       TCGAAACCTAAACACAAGGTTCCTTTGATCACGAGAAACCAACAGCTATGTTTTACGACT 60 
6-GRF-ITS1        TCGAAACCTAAACACAAGGTTCCTTTGATCACGAGAAACCAACAGCTATGTTTTACGACT 60 
7-GRF-ITS1        TCGAAACCTAAACACAAGGTTCCTTTGATCACGAGAAACCAACAGCTATGTTTTACGACT 60 
10-GRF-ITS1       TCGAAACCTAAACACAAGGTTCCTTTGATCACGAGAAACCAACAGCTATGTTTTACGACT 60 
9-H992-ITS1       TCGAAACCTAAACACAAGGTTCCTTTGATCACGAGAAACCAACAGCTATGTTTTACGACT 60 
12-H992-ITS1      TCGAAACCTAAACACAAGGTTCCATTGATCACGAGAAACCAACAACTATGTTTTACGACT 60 
14-H992-ITS1      TCGAAACCTGAACACAAGGTTCCTTTGATCACGAGAAACCAACAGCTATGTTTTACGACT 60 
AF044929-Hp       TCGAAACCTAAACACAAGGTTCCTTTGATCACGAGAAACCAACAGCTATGTTTTACGACT 60 
                  ********* ************* ******************** *************** 
 
AF044927-Hc       TTGTCGTAAAAGTTGGGAGTATCACCCCCGTTAAAGCTCTATTACATGAGGTGTCTATGT 120 
6-GRF-ITS1        TTGTCGTACAAGTTGGGAGTATCACCCCCGTTAAAGCTCTATTACATGAGGTGTCTATGT 120 
7-GRF-ITS1        TTGTCGTAAAAGTTGGGAGTATCACCCCCGTTAAAGCTCTATTACATGAGGTGTCTATGT 120 
10-GRF-ITS1       TTGTCGTACAAGTTGGGAGTATCACCCCCGTTAAAGCTCTATTACATGAGGTGTCTATGT 120 
9-H992-ITS1       TTGTCGTAAAAGTTGGGAGTATCACCCCCGTTAAAGCTCTATTACATGAGGTGTCTATGT 120 
12-H992-ITS1      TTGTCGTAAAAGTTGGGAGTCTCACCCCCGTTAAAGCTCTATTACATGAGGTGTCTATGT 120 
14-H992-ITS1      TTGTCGTAAAAGTTGGGAGTATCACCCCCGTTAAAGCTCTATTACATGAGGTGTCTATGT 120 
AF044929-Hp       TTGTCGTAAAAGTTGGGAGTATCACCCCCGTTAAAGCTCTATTACMTGAGGTGTCTATGT 120 
                                           ******** *********** ************************ ************** 

 
Fig. 6.  The Hc-H992 and Hc-GRF ITS 1 alignment with single base substitutions designated in 
bold type.  The reference sequences are designated by the GenBank accession numbers as 
follows: AF044927-Hc for H. contortus and AF044929-Hp for H. placei.  A single base 
insertion at position 134 (↓) occurred in both the Hc-H992 and Hc-GRF isolates.  In two of the 
Hc-GRF isolates, a four base deletion occurred at position 270-273 and a single base deletion 
occurred in one of the Hc-H992 isolates at position 270 (↓↓↓↓).  The Hc-H992 and Hc-GRF 
isolates matched two out of three substitutions between H. contortus and H. placei (▼). 
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                       ↓            ▼ 
AF044927-Hc       ATGACATGAGCCG-TTCGAGAGTGGCGGCTGTGATTGTTCATGCGAAGTTCCTATCATTG 179 
6-GRF-ITS1        ATGACATGAGCCG-TTCAAGAGTGGTGGCTGTGATTGTTCATGCGAAGTTCCTATCATTG 179 
7-GRF-ITS1        ATGACATGAGCCG-TTCGAGAGTGGCGGCTGTGATTGTTCATGCGAAGTTCCTATCATTG 179 
10-GRF-ITS1       ATGACATGAGCCG-TTCAAGAGTGGTGGCTGTGATTGTTCATGCGAAGTTCCTATCATTG 179 
9-H992-ITS1       ATGACATGAGCCG-TTCGAGAGTGGCGGCTGTGATTGTTCATGCGAAGTTCCTATCATTG 179 
12-H992-ITS1      ATGACACGAGCCGCTTCAAGAGTGGCGGCTGTGATTGTTCATGCGAAGTTCCTATCATTG 180 
14-H992-ITS1      ATGACATGAGCCG-TTCGAGAGTGGCGGCTGTGATTGTTCATGCGAAGTTCCTATCATTG 179 
AF044929-Hp       ATGACATGAGCCG-TTCGAGAGTGGCGGCTGTGATTGTTCATGCGAAGTTCCTATCAGTG 179 
                  ****** ****** *** ******* ******************************* ** 
 
   ▼          ▼ 
AF044927-Hc       ATGGTTGAGCTTGAGACTTAATAAGTATTGCTATAATACTGCCTCACCGTTTATTAATGG 239 
6-GRF-ITS1        ATGGTTGAGCTTGAGACTTAATAAGTATTGCTATAATACTGCCTCGCCGTTTATTAATGG 239 
7-GRF-ITS1        ATGGTTGAGCTTGAGACTTAATAAGTATTGCTATAATACTGCCTCACCGTTTATTAATGG 239 
10-GRF-ITS1       ATGGTTGAGCTTGAGACTTAATAAGTATTGCTATAATACTGCCTCGCCGTTTATTAATGG 239 
9-H992-ITS1       ATGGTTGAGCTTGAGACTTAATAAGTATTGCTATAATACTGCCTCACCGTTTATTAATGG 239 
12-H992-ITS1      ATGGTTGAGCTTGAGACTTAATAAGTATTGCTATAATACTGCCTCGCCGTTTATTGATGG 240 
14-H992-ITS1      ATGGTTGAGCTTGAGACTTAATAAGTATTGCTATAATACTGCCTCACCGTTTATTAATGG 239 
AF044929-Hp       ATAGTTGAGCTTGAGACTTAATAAGTATTGCTATAATACTGCCTCGCCGTTTATTAATGG 239 
                  ** ****************************************** ********* **** 
 
     ↓↓↓↓ 
AF044927-Hc       TGGTTAAGTACGAACCAAATTACTTCTTGAAGTATGTGGTGTACTGTACCCGATTATATC 299 
6-GRF-ITS1        TGGTTAAGTACGAACCAAATTACTTCTTGA----TGTGGTGTACTGTACCCGATTATATC 295 
7-GRF-ITS1        TGGTTAAGTACGAACCAAATTACTTCTTGAAGTATGTGGTGTACTGTACCCGATTATATC 299 
10-GRF-ITS1       TGGTTAAGTACGAACCAAATTACTTCTTGA----TGTGGTGTACTGTACCCGATTATATC 295 
9-H992-ITS1       TGGTTAAGTACGAACCAAATTACTTCTTGAAGTATGTGGTGTACTGTACCCGATTATATC 299 
12-H992-ITS1      TGGTTAAGTACGAACCAAATTACTTCTTGA-GTATGTGGTGTACTGTACCCGATTATATC 299 
14-H992-ITS1      TGGTTAAGTACGAACCAAATTACTTCTTGAAGTATGTGGTGTACTGTACCCGATTATATC 299 
AF044929-Hp       TGGTTAAGTACGAACCAAATTACTTCTTGAAGTATGTGGTGTACTGTACCCGATTATATC 299 
                  ******************************    ************************** 
 
AF044927-Hc       GGGGAACCTTAATGATCACGCGTAGACGCCATTATAAAACACAAACATTCATTTTTACAG 359 
6-GRF-ITS1        GGGGAACCTTAATGATCATGCGTAGACGCCATTGTAAAACACAAACATTCATTTTTACAG 355 
7-GRF-ITS1        GGGGAACCTTAATGATCACGCGTAGACGCCATTATAAAACACAAACATTCATTTTTACAG 359 
10-GRF-ITS1       GGGGAACCTTAATGATCATGCGTAGACGCCATTGTAAAACACAAACATTCATTTTTACAG 355 
9-H992-ITS1       GGGGAACCTTAATGATCACGCGTAGACGCCATTATAAAACACAAACATTCATTTTTACAG 359 
12-H992-ITS1      GGGGAACCTTAATGATCATGCGTAGACGCCATTATAAAACACAAACATTCATTTTTACAG 359 
14-H992-ITS1      GGGGAACCTTAATGATCACGCGTAGACGCCATTATAAAACACAAACATTCATTTTTACAG 359 
AF044929-Hp       GGGGAACCTTAATGATCACGCGTAGACGCCATTATAAAACACAAACATTCATTTTTACAG 359 
                  ****************** ************** ************************** 
 
AF044927-Hc       TTTGCAGAACTTAGTGTTCACATTCATTTGTGTCACAAATATCGA 404 
6-GRF-ITS1        TTTGCAGAACTTAGTGTTCACATTCATTTGTGTCACAAATATCGA 400 
7-GRF-ITS1        TTTGCAGAACTTAGTGTTCACATTCATTTGTGCCACAAATATCGA 404 
10-GRF-ITS1       TTTGCAGAACTTAGTGTTCACATTCATTTGTGTCACAAATATCGA 400 
9-H992-ITS1       TTTGCAGAACTTAGTGTTCACATTCATTTGTGTCACAAATATCGA 404 
12-H992-ITS1      TTTGCAGAACTTAGTGTTCACATTCATTTGTGTCACAAATATCGA 404 
14-H992-ITS1      TTTGCAGAACTTAGTGTTCACATTCATTTGTGTCACAAATATCGA 404 
AF044929-Hp       TTTGCAGAACTTAGTGTTCACATTCATTTGTGTCACAAATATCGA 404 
                  ******************************** ************ 
 

Fig. 6. Continued. 
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The ITS 2 sequence in GenBank for H. contortus (accession no. AY647245) 

showed a 94.9% and 94.5% identity with H. placei (accession nos. X78812 and 

AJ577466 (99.6% identity)).  The consensus sequence for Hc-H992 showed an identity 

of 96.5% to the Hc-GRF sequence, 97.0% to H. contortus, 97.8% to H. placei (X78812) 

and 97.4% to H. placei (AJ577466).  The consensus sequence for the Hc-GRF showed 

an identity of 93.6% to H. contortus, 96.1% to H. placei (X78812) and 95.7% to 

H. placei (AJ577466).   

 Differences occurred in both the Hc-H992 isolates and the Hc-GRF isolates 

(Fig. 7).  At position 32 (↓), there is a single base insertion in two of the Hc-GRF isolates 

and one of the Hc-H992 isolates.  There was a six base deletion in the Hc-H992 and   

Hc-GRF isolates at position 95-100 (↓↓↓↓↓↓) compared to the H. contortus reference 

sequence, which is similar to H. placei.  At positions 129 and 202 (†), some of the      

Hc-H992 and Hc-GRF isolates matched with the H. placei sequence.  These positions 

were variable within H. placei isolates with two bases, T/C and T/A substituted at these 

positions; therefore the differences were not significant (Stevenson et al., 1995).   

Stevenson et al. (1995) demonstrated that the ITS 2 sequence for H. contortus differed 

by only three bases (▼) from H. placei.  The sequences for all of the Hc-H992 and      

Hc-GRF isolates matched the sequence for H. contortus at these positions.  Therefore, 

both isolates are most likely H. contortus.  
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      ↓   ▼ 
AY647245-Hc       -----------AACCATATACTACAATGTGG-CTAATTTCAACATTGTTTGTCAAATGGC 48 
6-GRF-ITS2        -----------AACCATATACTACAATGAGGGC-AATTTCAACATTGTTTGTCAAATGGC 48 
7-GRF-ITS2        -----------AACCATATACTACAATGTGG-CTAATTTCAACATTGTTTGTCAAATGGC 48 
10-GRF-ITS2       -----------AACCATATACTACAATGAGGGC-AATTTCAACATTGTTTGTCAAATGGC 48 
9-H992-ITS2       -----------AACCATATACTACAATGTGG-CTAATTTCAACATTGTTTGTCAAATGGC 48 
12-H992-ITS2      -----------AACCATATACTACAATGAGGGCTAATTTCAACATTGTTTGTCAAATGGC 49 
14-H992-ITS2      -----------AACCATATACTACAATGTGG-CTAATTTCAACATTGTTTGTCAAATGGC 48 
X78812-Hp         -----------AACCATATACTACAATGTGG-CTAGTTTCAACATTGTTTGTCAAATGGC 48 
AJ577466-Hp       TCAGGGTTGTTAACCATATACTACAATGTGG-CTAGTTTCAACATTGTTTGTCAAATGGC 59 
                             ***************** ** * * ************************ 
 
             ↓↓↓↓↓↓      
AY647245-Hc       ATTTGTCTTTTAGACAATTCCCATTTCAGTTCAAGAACATATACATATACATGCAACGTG 108 
6-GRF-ITS2        ATTTGTCTTTGAGATAATTCCCATTTCAGCTCAAGAACATATACAT------GCAACGTG 102 
7-GRF-ITS2        ATTTGTCTTTTAGACAATTCCCATTTCAGTTCAAGAACATATACAT------GCAACGTG 102 
10-GRF-ITS2       ATTTGTCTTTGAGATAATTCCCATTTCAGCTCAAGAACATATACAT------GCAACGTG 102 
9-H992-ITS2       ATTTGTCTTTTAGACAATTCCCATTTCAGTTCAAGAACATATACAT------GCAACGTG 102 
12-H992-ITS2      ATTTGTCTTTAAGACAATTCCCATTTCAGTTCAAGAACATATACAT------GCAACGTG 103 
14-H992-ITS2      ATTTGTCTTTTAGACAATTCCCATTTCAGTTCAAGAACATATACAT------GCAACGCG 102 
X78812-Hp         ATTTGTCTTTTAGACAATTCCCATTTCAGTTCAAGAACATATACAT------GCAACGTG 102 
AJ577466-Hp       ATTTGTCTTTTAGACATTTCCCATTTCAGTTCAAGAACATATACAT------GCAACGTG 113 
                  ********** *** * ************ ****************      ****** * 
 
             † 
AY647245-Hc       ATGTTATGAAATTGTAACATTCCTGAATGATNTGAACATGTTGCCACTATTTGAGTGTAC 168 
6-GRF-ITS2        ATGTTATGAAATTGTAACATCCCTGAATGATATGAACATGTTGCCACTATTTGAGTGTAC 162 
7-GRF-ITS2        ATGTTATGAAATTGTAACATTCCTGAATGATATGAACATGTTGCCACTATTTGAGTGTAC 162 
10-GRF-ITS2       ATGTTATGAAATTGTAACATCCCTGAATGATATGAACATGTTGCCACTATTTGAGTGTAC 162 
9-H992-ITS2       ATGTTATGAAATTGTAACATTCCTGAATGATATGAACATGTTGCCACTATTTGAGTGTAC 162 
12-H992-ITS2      ATGTTATGAAATTGTAACATCCCTGAATGATATGAACATGTTGCCACTATTTGAGTGTAC 163 
14-H992-ITS2      ATGTTATGAAATTGTAACATTCCTGAATGATATGAACATGTTGCCACTATTTGAGTGTAC 162 
X78812-Hp         ATGTTATGAAATTGTAACATCCCTGAATGATATGAACATGTTGCCACTATTTGAGTGTAC 162 
AJ577466-Hp       ATGTTATGAAATTGTAACATCCCTGAATGATATGAACATGTTGCCACTATTTGAGTGTAC 173 
                  ******************** ********** **************************** 
 
        †         ▼            ▼ 
AY647245-Hc       TCAGCGAATATTGAGATTGACTTAGATAGTGACTTGTATGGCGACGATGTTCTTTTATCA 228 
6-GRF-ITS2        TCAGCGAATATTGAGATTGACTTAGATAGTGACATGTATGGCGACGATGTTCTTTTATCA 222 
7-GRF-ITS2        TCAGCGAATATTGAGATTGACTTAGATAGTGACTTGTATGGCGACGATGTTCTTTTATCA 222 
10-GRF-ITS2       TCAGCGAATATTGAGATTGACTTAGATAGTGACATGTATGGCGACGATGTTCTTTTATCA 222 
9-H992-ITS2       TCAGCGAATATTGAGATTGACTTAGATAGTGACTTGTATGGCGACGATGCTCTTTTATCA 222 
12-H992-ITS2      TCAGCGAATATAGAGAT-GACCTAGATAGTGACATGTATAGCGACGATGTTCTTTTATCA 222 
14-H992-ITS2      TCAGCGAATATTGAGATTGACTTAGATAGTGACTTGTATGGCGACGATGTTCTCTTATCA 222 
X78812-Hp         TCAGCGAATATTGAGATTGACTTAGATAGTGACATGTATGGCAACGATGTTCTTTTGTCA 222 
AJ577466-Hp       TCAGCGAATATTGAGATTGACTTAGATAGTGACATGTATGGCAACGATGTTCTTTTGTCA 233 
                  *********** ***** *** *********** ***** ** ****** *** ** *** 
 
 

Fig. 7.  The Hc-H992 and Hc-GRF ITS 2 alignment with single base substitutions designated in 
bold type.  The reference sequences are designated by the GenBank accession numbers as 
follows: AY647245-Hc for H. contortus and X78812-Hp and AJ577466-Hp for H. placei.  A 
single base insertion at position 32 (↓) occurred in one of the Hc-H992 isolates and two of the 
Hc-GRF isolates.  In all of the Hc-H992 and Hc-GRF isolates, a six base deletion occurred at 
position 95-100 (↓↓↓↓↓↓) which matches with H. placei. At positions 129 and 202 (†), the Hc-
H992 and Hc-GRF isolates match with H. placei, however these are areas of variable bases.  The 
Hc-H992 and Hc-GRF isolates matched H. contortus at the three bases where H. contortus 
differs from H. placei (▼) as determined be Stevenson et al., 1995. 
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AY647245-Hc       TTTGTATAA---------------------------- 237 
6-GRF-ITS2        TTTGTATAATGCAACCTGAGCTCAGGCGAGGTTACCC 259 
7-GRF-ITS2        TTTGTATAATGCAACCTGAGCTCAGGCGAGGTTACCC 259 
10-GRF-ITS2       TTTGTATAATGTAACCTGAGCTCAGGCGAGGTTACCC 259 
9-H992-ITS2       TTTGTATAATGCAACCTGAGCTCAGGCGAGGTTACCC 259 
12-H992-ITS2      TTTGTATAATGCAACCTGAGCTCAGGCGAGGTTACCC 259 
14-H992-ITS2      TTTGTATAATGCAACCTGAGCTCAGGCGAGGTTACCC 259 
X78812-Hp         TTTGTATAA---------------------------- 231 
AJ577466-Hp       TTTGTATAATGCAACCTGAGCTCAGGCGTGATTACCC 270 
                  *********                             
 

Fig. 7. Continued. 
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4. DISCUSSION 

Seven isolates of H. contortus were evaluated for anthelmintic resistance at the 

outset of this study.  The isolates were passaged through experimental sheep and/or 

goats, the eggs recovered and allowed to develop to larvae for worm identification.  The 

results of the larval identification confirmed the recovery of the Texas strains of 

H. contortus.  These were the expected results since the parasites had been administered 

to known helminth-free sheep/goats housed in a controlled environment and the feces 

had been collected directly from the rectum.  Only H. contortus was identified in the 

giraffe sample, although it was anticipated that the giraffe would have a multiple 

infection based upon the condition of the feces and since the host was not housed in a 

controlled environment.  It was also expected that free-living nematodes would be found 

in the giraffe fecal sample since the feces were collected from the ground, but none were 

present in the sample evaluated. 

 At the onset of this study, it was anticipated that resistant and susceptible strains 

of H. contortus would be acquired for molecular comparison.  However, acquiring a 

completely susceptible strain of H. contortus proved to be a challenge in this study due 

to the extensive use of anthelmintics and the ensuing development of resistance.  Of the 

suspected susceptible strains evaluated, only one, Hc-OG, was determined to be 

susceptible to all of the anthelmintics.  The other strains were susceptible to at least one 

of the anthelmintics, but were bordering on or were weakly resistant to the others. 

As for the resistant strains, the Hc-RFR was believed to be highly resistant to all 

of the anthelmintics and the Hc-H992 was believed to be highly resistant to 
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benzimidazoles.  However, the DrenchRite® assay determined both of these strains to be 

only moderately resistant to the anthelmintics evaluated.  Fortunately, the submission of 

a giraffe fecal sample to the Texas A&M University Diagnostic Parasitology Laboratory 

for evaluation provided us with a highly resistant Haemonchus strain for inclusion in this 

study.   

This sample was from a young, male giraffe that had recently been acquired by 

the Florida zoo from a zoo in New Jersey.  Upon arriving in Florida, an initial fecal 

sample was submitted to the Texas A&M University diagnostic laboratory. The EPG 

was 850 and the larvae were identified as H. contortus and several free-living nematode 

species.  A DrenchRite® assay was performed and the results were inconclusive, 

possibly due to residual anthelmintics given prior to sample collection. 

The giraffe was then successfully treated with ivermectin in conjunction with 

fenbendazole by the zoo and eventually introduced into the resident giraffe population. 

Initially, the giraffe was placed in a pasture with a larger population, but was quickly 

relocated to a smaller pasture with a feeder group consisting of four giraffes (three 

castrated males and one intact female).  Approximately 2 months later, the giraffe 

presented with diarrhea and a fecal sample was submitted to Texas A&M University for 

evaluation.  The EPG at this time was 16,700; the larvae were identified as H. contortus, 

and the DrenchRite® assay demonstrated resistance to all of the anthelmintics.  

The young giraffe most likely acquired the highly resistant H. contortus infection 

while in the feeder group.  Other giraffes that were previously placed in this group have 

also shown signs of severe infection (two of which died due to a heavy parasitemia).  
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Unfortunately, due to the resistance to all of the anthelmintics, the options available to 

treat H. contortus infections are limited.  However, the zoo was successful in treating the 

young giraffe with a topical dose of moxidectin in conjunction with fenbendazole, 

followed 15 d later with a dose of ivermectin and ending with a second dose of topical 

moxidectin 27 d later.  The use of these drugs in combination most likely enabled the 

clearing of the infection. 

Upon reviewing the deworming schedule implemented by the zoo, it is clear how 

the H. contortus developed resistance to all three classes of anthelmintics.  For more 

than 5 years, pyrantel tartrate (levamisole-like in activity) was administered daily in the 

feed, while ivermectin, fenbendazole and albendazole were rotated on a monthly basis.  

This allowed for the elimination of the highly susceptible parasites but did not allow 

enough time for the removal of the more resistant parasites.  Therefore, only highly 

resistant parasites were present to reproduce, which compounded the problem and 

contributed to even stronger resistance development. 

Transcription of Pgp was not detected in any larval worms in this study, whether 

exposed or not to anthelmintics, and even the smaller Pgp amplicon, which was located 

at the 3´ end of the gene sequence, was not detected.  Unfortunately, the quality of the 

total RNA was not determined due to small sample volume and may have been a factor 

in the outcome of this study.   

Our results would suggest that Pgp efflux is not involved in anthelmintic 

resistance in this stage of H. contortus.  However, its importance in anthelmintic 

resistance should not be ruled out.  P-glycoprotein is encoded for by at least seven 
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different genes which allows for a considerable amount of variability between the 

different isoforms.  In this study, primers for the amplification of Pgp were designed 

from a sequence derived from adult H. contortus worms, which at the start of the study 

was the only complete sequence available in GenBank.  However, this may not be the 

sequence of the Pgp isoform transcribed in the larval stage and not every Pgp isoform 

confers resistance (Sangster et al., 1999). 

The mechanism of resistance to all three classes of anthelmintics may be 

explained by the overexpression of Pgp due to its ability to bind a wide range of 

substrates.  The binding affinity of Pgp may be important in eliminating toxins from the 

parasites.  However, the primary target of anthelmintics is the adult parasite and there 

may be stage-related differences in the expression of Pgp (Geary et al., 1999).  There are 

also a number of other possible resistance mechanisms that may be employed by the 

larvae to combat the effects of anthelmintics.     

 Currently, there are three species of Haemonchus (H. contortus, H. placei and 

H. similis) that have been identified in North American ruminants (Lichtenfels et al., 

1994).  Both H. placei and H. similis are predominately found in cattle, while 

H. contortus is found in sheep, goats and many other domestic and wild ruminants.  

There is some controversy over whether these are indeed separate species.  

Morphologically, these species are slightly different, so molecular analysis has been 

conducted to determine species specific differences.  Stevenson et al., (1995) identified 

only three single base differences between the ITS 2 region of H. contortus and 

H. placei. 
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The 18S rRNA gene sequence from the nematode acquired from the giraffe 

shared 99.9% identity with each of three Haemonchus species (GenBank accession nos. 

L04153, L04154 and L04152). This genus identity was supported by the 5.8S rRNA 

gene sequence analysis which matched the sequence for H. contortus (GenBank 

accession no. AY190133-5). 

The analysis of the ITS 1 sequence showed that the parasite had a slightly higher 

identity (97.5%) to H. contortus than to H. placei (97.0%).  There were three base 

differences identified in ITS 1 sequences previously reported from H. contortus 

(GenBank accession no. AF044927) and H. placei (GenBank accession no. AF044929) 

in this study.  However, all three do not appear to be defining differences.  Although all 

of the sequences for the Hc-H992 and Hc-GRF isolates matched two of these positions 

with H. contortus, the third position was variable with three of the isolates (one Hc-

H992 and 2 Hc-GRF) matching H. contortus while the other three matched H. placei. 

The ITS 2 sequence was more similar to H. placei (96.1% and 95.7%) than to 

H. contortus (93.6%).  However, based on the 3 base differences between H. contortus 

and H. placei as described by Stevenson et al. (1995), the species from the giraffe is 

most likely H. contortus due to a 100% identity at these positions.  Additional isolates 

should be evaluated to determine if there is truly a lack of variability in bases at these 

positions.   
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5. CONCLUSION 

 Haemonchus contortus continues to be a problematic parasite in the sheep and 

goat industry due to its increased resistance to anthelmintics.  As is evidenced by the 

case of the giraffe, H. contortus is also becoming a problem in zoo settings where a 

number of ruminant species are at risk of acquiring this devastating parasite.                  

Although Pgp transcription was not evident in the larvae in this study, the possible role 

of Pgp isoforms should not be ruled out in anthelmintic resistance in H. contortus.   
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Fig. A.1  The L3 larval identification key modified from The Manual of 
Veterinary Parasitological Laboratory Techniques, 1977. 



 

 

77 

 
 Fig. A.1  Continued. 
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Fig. A.1  Continued. 
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Table B.1 
DrenchRite® assay counts for Hc-ES. ** Final egg count included in % L1/L2. 
 

Hc-ES Wells 

BZ  -  A     1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 20 21 13 0 21 27 25 15 17 26 20 30 

L1 / L2 4 3 2 0 11 15 14 5 4 2 0 0 

L3 Dead 1 1 0 0 2 1 0 0 0 0 0 0 

L3 Alive 10 10 6 0 3 3 2 0 0 0 0 0 

Total Larvae 15 14 8 0 16 19 16 5 4 2 0 0 

Final egg 5 7 5 0 5 8 9 10 13 24 20 30 

%  L1 / L2 27 21 25 N/A 76 85 92 100 100 100 100 100 

%  L3 73 79 75 N/A 24 15 8 0 0 0 0 0 

BZ  -  B   1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 14 26 22 18 24 20 23 27 21 22 29 32 

L1 / L2 0 2 2 3 10 10 7 0 5 2 0 0 

L3 Dead 2 0 0 0 1 3 3 2 0 0 0 0 

L3 Alive 9 16 12 9 8 3 1 0 0 0 0 0 

Total Larvae 11 18 14 12 19 16 11 2 5 2 0 0 

Final egg 3 8 8 6 5 4 12 25 16 20 29 32 

%  L1 / L2 0 11 14 25 63 70 83 93 100 100 100 100 

%  L3 100 89 86 75 37 30 17 7 0 0 0 0 

LEV  -  C 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 23 17 25 15 27 19 18 21 19 16 22 23 

L1 / L2 5 5 6 2 1 3 3 6 7 7 17 16 

L3 Dead 0 1 1 0 1 0 1 1 0 1 0 1 

L3 Alive 14 4 14 7 14 8 7 4 9 4 1 2 

Total Larvae 19 10 21 9 16 11 11 11 16 12 18 19 

Final egg 4 7 4 6 11 8 7 10 3 4 4 4 

%  L1 / L2 26 50 29 22 6 27 27 55 44 58 94 84 

%  L3 74 50 71 78 94 73 73 45 56 42 6 16 

LEV  -  D 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 23 19 15 18 10 25 18 17 21 19 17 20 

L1 / L2 2 1 2 8 1 11 7 8 8 6 7 8 

L3 Dead 0 0 1 0 1 1 1 0 1 2 0 2 

L3 Alive 13 8 8 4 6 7 4 3 3 2 4 3 

Total Larvae 15 9 11 12 8 19 12 11 12 10 11 13 

Final egg 8 10 4 6 2 6 6 6 9 9 6 7 

%  L1 / L2 13 11 18 67 12 58 58 73 67 60 64 62 

%  L3 87 89 82 33 88 42 42 27 33 40 36 38 
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Table B.1 Continued 
 
Hc-ES Wells 

BZ/LEV  -  E     1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 19 15 23 25 17 21 24 20 21 22 26 20 

L1 / L2 4 2 3 10 10 13 18 15 14 14 18 10 

L3 Dead 0 0 1 3 0 2 0 0 0 0 0 0 

L3 Alive 7 8 13 7 2 0 0 0 0 0 0 0 

Total Larvae 11 10 17 20 12 15 18 15 14 14 18 10 

Final egg 8 5 6 5 5 6 6 5 7 8 8 10 

%  L1 / L2 36 20 18 50 83 87 100 100 100 100 100 100 

%  L3 64 80 82 50 17 13 0 0 0 0 0 0 

BZ/LEV  -  F     1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 19 18 20 14 20 20 17 24 24 14 18 18 

L1 / L2 0 1 3 4 8 14 11 16 15 9 13 10 

L3 Dead 1 0 0 2 3 0 0 0 0 0 0 0 

L3 Alive 11 8 7 3 1 0 0 0 0 0 0 0 

Total Larvae 12 9 10 9 12 14 11 16 15 9 13 10 

Final egg 7 9 10 5 8 6 6 8 9 5 5 8 

%  L1 / L2 0 11 30 44 67 100 100 100 100 100 100 100 

%  L3 100 89 70 56 33 0 0 0 0 0 0 0 

AVM  -  G 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 23 17 15 19 13 20 15 22 26 22 18 25 

L1 / L2 4 3 7 7 6 14 9 13 21 19 12 18 

L3 Dead 1 1 0 1 0 0 0 0 0 0 0 0 

L3 Alive 13 6 4 0 0 0 0 0 0 0 0 0 

Total Larvae 18 10 11 8 6 14 9 13 21 19 12 18 

Final egg 5 7 4 11 7 6 6 9 5 3 6 7 

%  L1 / L2 22 30 64 88 100 100 100 100 100 100 100 100 

%  L3 78 70 36 12 0 0 0 0 0 0 0 0 

AVM  -  H 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 27 17 15 21 22 21 24 20 15 20 32 20 

L1 / L2 10 5 4 15 17 18 19 15 11 14 27 13 

L3 Dead 1 0 1 0 0 0 0 0 0 0 0 0 

L3 Alive 11 5 3 3 0 0 0 0 0 0 0 0 

Total Larvae 22 10 8 18 17 18 19 15 11 14 27 13 

Final egg 5 7 7 3 5 3 5 5 4 6 5 7 

%  L1 / L2 45 50 50 83 100 100 100 100 100 100 100 100 

%  L3 55 50 50 17 0 0 0 0 0 0 0 0 
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Table B.2 
DrenchRite® assay averages for Hc-ES. ** Final egg count included in % L1/L2. 

Hc-ES Wells 

BZ  AVG  1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 34 47 35 18 45 47 48 42 38 48 49 62 

L1 / L2 4 5 4 3 21 25 21 5 9 4 0 0 

L3 Dead 3 1 0 0 3 4 3 2 0 0 0 0 

L3 Alive 19 26 18 9 11 6 3 0 0 0 0 0 

Total Larvae 26 32 22 12 35 35 27 7 9 4 0 0 

Final egg 8 15 13 6 10 12 21 35 29 44 49 62 

%  L1 / L2 15 16 18 25 69 79 88 95 100 100 100 100 

%  L3 85 84 82 75 31 21 12 5 0 0 0 0 

LEV AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 46 36 40 33 37 44 36 38 40 35 39 43 

L1 / L2 7 6 8 10 2 14 10 14 15 13 24 24 

L3 Dead 0 1 2 0 2 1 2 1 1 3 0 3 

L3 Alive 27 12 22 11 20 15 11 7 12 6 5 5 

Total Larvae 34 19 32 21 24 30 23 22 28 22 29 32 

Final egg 12 17 8 12 13 14 13 16 12 13 10 11 

%  L1 / L2 21 32 25 48 8 47 43 64 54 59 83 75 

%  L3 79 68 75 52 92 53 57 36 46 41 17 25 

BZ/LEV AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 38 33 43 39 37 41 41 44 45 36 44 38 

L1 / L2 4 3 6 14 18 27 29 31 29 23 31 20 

L3 Dead 1 0 1 5 3 2 0 0 0 0 0 0 

L3 Alive 18 16 20 10 3 0 0 0 0 0 0 0 

Total Larvae 23 19 27 29 24 29 29 31 29 23 31 20 

Final egg 15 14 16 10 13 12 12 13 16 13 13 18 

%  L1 / L2 17 16 22 48 75 93 100 100 100 100 100 100 

%  L3 83 84 78 52 25 7 0 0 0 0 0 0 

AVM AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 50 34 30 40 35 41 39 42 41 42 50 45 

L1 / L2 14 8 11 22 23 32 28 28 32 33 39 31 

L3 Dead 2 1 1 1 0 0 0 0 0 0 0 0 

L3 Alive 24 11 7 3 0 0 0 0 0 0 0 0 

Total Larvae 40 20 19 26 23 32 28 28 32 33 39 31 

Final egg 10 14 11 14 12 9 11 14 9 9 11 14 

%  L1 / L2 35 40 58 85 100 100 100 100 100 100 100 100 

%  L3 65 60 42 15 0 0 0 0 0 0 0 0 
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Table B.3 
DrenchRite® assay counts for Hc-EG. ** Final egg count included in % L1/L2. 
 
Hc-EG Wells 

BZ  -  A     1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 34 32 32 44 30 26 42 35 36 41 35 47 

L1 / L2 1 3 5 8 3 12 20 14 14 8 11 3 

L3 Dead 1 1 1 1 3 2 4 4 1 2 2 0 

L3 Alive 29 26 19 25 16 9 10 5 6 8 1 0 

Total Larvae 31 30 25 34 22 23 34 23 21 18 14 3 

Final egg 3 2 7 10 8 3 8 12 15 23 21 44 

% L1 / L2 3  10  20  24  37  58  67  74  81  76  91  100  

%  L3 97  90  80  76  63  42  33  26  19  24  9  0  

BZ  -  B   1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 28 22 39 34 21 37 42 36 38 42 24 32 

L1 / L2 5 2 8 6 5 16 16 15 12 13 2 0 

L3 Dead 2 0 2 0 1 3 6 5 4 4 1 1 

L3 Alive 14 12 23 16 14 13 14 8 3 6 2 0 

Total Larvae 21 14 33 22 20 32 36 28 19 23 5 1 

Final egg 7 8 6 12 1 5 6 8 19 19 19 31 

% L1 / L2 24  14  24  27  29  57  52  64  82  76  88  97  

%  L3 76  86  76  73  71  43  48  36  18  24  12  3  

LEV  -  C 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 31 37 36 27 30 26 49 34 43 32 52 35 

L1 / L2 4 1 3 2 4 3 8 12 20 18 35 28 

L3 Dead 1 0 1 0 2 2 4 1 2 2 3 2 

L3 Alive 20 32 24 19 17 17 28 12 10 7 7 4 

Total Larvae 25 33 28 21 23 22 40 25 32 27 45 34 

Final egg 6 4 8 6 7 4 9 9 11 5 7 1 

%  L1 / L2 16  3  11  10  17  14  20  48  63  67  78  82  

%  L3 84  97  89  90  83  86  80  52  73  33  22  18  

LEV  -  D 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 18 31 24 47 43 34 37 34 46 38 42 31 

L1 / L2 1 0 5 2 2 2 7 11 28 24 23 22 

L3 Dead 0 1 0 1 0 0 2 2 3 1 1 0 

L3 Alive 13 26 15 31 32 27 23 16 4 6 5 3 

Total Larvae 14 27 20 34 34 29 32 29 35 31 29 25 

Final egg 4 4 4 13 9 5 5 5 11 7 13 6 

%  L1 / L2 7  0  25  6  6  7  22  38  80  77  79  88  

%  L3 93  100  75  94  94  93  78  62  20  23  21  12  
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Table B.3 Continued 
 
Hc-EG Wells 

BZ/LEV  -  E     1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 37 19 37 38 38 34 46 49 55 45 44 34 

L1 / L2 1 0 4 11 17 20 34 43 45 32 35 24 

L3 Dead 0 2 0 2 2 2 4 1 0 0 0 0 

L3 Alive 27 14 28 20 12 2 1 1 0 0 0 0 

Total Larvae 28 16 32 33 31 24 39 45 45 32 35 24 

Final egg 9 3 5 5 7 10 7 4 10 13 9 10 

% L1 / L2 4  0  13  33  55  83  87  96  100  100  100  100  

%  L3 96  100  87  67  45  17  13  4  0  0  0  0  

BZ/LEV  -  F     1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 30 40 39 24 36 35 30 84 35 33 42 43 

L1 / L2 2 2 9 9 16 18 23 76 25 27 28 33 

L3 Dead 0 0 1 0 3 2 1 0 0 0 0 0 

L3 Alive 15 33 28 12 10 5 2 0 0 0 0 0 

Total Larvae 17 35 38 21 29 25 26 76 25 27 28 33 

Final egg 13 5 1 3 7 10 4 8 10 6 14 10 

%  L1 / L2 12  6  24  43  55  72  88  100  100  100  100  100  

%  L3 88  94  76  57  45  28  12  0  0  0  0  0  

AVM  -  G 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 27 38 37 36 37 39 31 73 43 30 35 40 

L1 / L2 3 3 9 6 17 15 21 50 35 28 27 32 

L3 Dead 2 0 0 0 1 1 0 2 0 0 0 0 

L3 Alive 15 26 21 23 15 14 2 9 1 0 0 0 

Total Larvae 20 29 30 29 33 30 23 61 36 28 27 32 

Final egg 7 9 7 7 4 9 8 12 7 2 8 8 

%  L1 / L2 15  10  30  21  52  50  91  82  97  100  100  100  

 %  L3 85  90  70  79  48  50  9  18  3  0  0  0  

AVM  -  H 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 32 30 41 29 32 46 46 74 35 33 34 36 

L1 / L2 1 7 6 5 10 21 29 47 27 25 26 29 

L3 Dead 1 0 1 0 0 0 0 3 1 0 0 0 

L3 Alive 25 16 23 13 12 14 9 7 2 1 1 0 

Total Larvae 27 23 30 18 22 35 38 57 30 26 27 29 

Final egg 5 7 11 11 10 11 8 17 5 7 7 7 

%  L1 / L2 4  30  20  28  45  60  76  82  90  96  96  100  

%  L3 96  70  80  72  55  40  24  18  10  4  4  0  

             



 

 

85 

Table B.4 
DrenchRite® assay averages for Hc-EG. ** Final egg count included in % L1/L2. 
 

Hc-EG Wells 

BZ  AVG  1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 62 54 71 78 51 63 84 71 74 83 59 79 

L1 / L2 6 5 13 14 8 28 36 29 26 21 13 3 

L3 Dead 3 1 3 1 4 5 10 9 5 6 3 1 

L3 Alive 43 38 42 41 30 22 24 13 9 14 3 0 

Total Larvae 52 44 58 56 42 55 70 51 40 41 19 4 

Final egg 10 10 13 22 9 8 14 20 34 42 40 75 

%  L1 / L2 12  11  22  25  33  57  60  69  81  76  90  99  

%  L3 88  89  78  75  67  43  40  31  19  24  10  1  

LEV AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 49 68 60 74 73 60 86 68 89 70 94 66 

L1 / L2 5 1 8 4 6 5 15 23 48 42 58 50 

L3 Dead 1 1 1 1 2 2 6 3 5 3 4 2 

L3 Alive 33 58 39 50 49 44 51 28 14 13 12 7 

Total Larvae 39 60 48 55 57 51 72 54 67 58 74 59 

Final egg 10 8 12 19 16 9 14 14 22 12 20 7 

%  L1 / L2 13  2  17  7  11  10  21  43  72  72  78  85  

%  L3 87  98  83  93  89  90  79  57  28  28  22  15  

BZ/LEV AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 67 59 76 62 74 69 76 133 90 78 86 77 

L1 / L2 3 2 13 20 33 38 57 119 70 59 63 57 

L3 Dead 0 2 1 2 5 4 5 1 0 0 0 0 

L3 Alive 42 47 56 32 22 7 3 1 0 0 0 0 

Total Larvae 45 51 70 54 60 49 65 121 70 59 63 57 

Final egg 22 8 6 8 14 20 11 12 20 19 23 20 

%  L1 / L2 7  4  19  37  55  78  88  98  100  100  100  100  

%  L3 93  96  81  63  45  22  12  2  0  0  0  0  

AVM AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 59 68 78 65 69 85 77 147 78 63 69 76 

L1 / L2 4 10 15 11 27 36 50 97 62 53 53 61 

L3 Dead 3 0 1 0 1 1 0 5 1 0 0 0 

L3 Alive 40 42 44 36 27 28 11 16 3 1 1 0 

Total Larvae 47 52 60 47 55 65 61 118 66 54 54 61 

Final egg 12 16 18 18 14 20 16 29 12 9 15 15 

%  L1 / L2 9  19  25  23  49  55  82  82  94  98  98  100  

%  L3 91  81  75  77  51  45  18  18  6  2  2  0  
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Table B.5 
DrenchRite® assay counts for Hc-OS. ** Final egg count included in % L1/L2. 

 

Hc-OS Wells 

BZ  -  A     1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 45 20 29 25 26 20 30 25 65 27 36 18 

L1 / L2 3 1 3 6 11 14 18 5 10 4 1 1 

L3 Dead 1 2 1 0 1 1 0 1 0 0 1 1 

L3 Alive 30 15 15 16 9 4 4 0 0 0 0 0 

Total Larvae 34 18 19 22 21 19 22 6 10 4 2 2 

Final egg 11 2 10 3 5 1 8 19 55 23 34 16 

%  L1 / L2 9  6  16  27  62  75  87  96  100  100  97  94  

 %  L3 91  94  84  73  38  25  13  4  0  0  3  6  

BZ  -  B   1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 30 29 32 33 42 46 36 37 48 44 32 45 

L1 / L2 4 2 3 4 23 25 21 14 9 3 1 3 

L3 Dead 1 1 0 2 3 2 0 2 2 1 0 2 

L3 Alive 20 18 24 16 13 7 3 0 0 0 0 0 

Total Larvae 25 21 27 22 39 34 24 16 11 4 1 5 

Final egg 5 8 5 11 3 12 12 21 37 40 31 40 

%  L1 / L2 16  10  11  18  62  80  92  95  96  98  100  96  

%  L3 84  90  89  82  38  20  8  5  4  2  0  4  

LEV  -  C 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 54 34 39 26 88 37 48 41 38 39 37 41 

L1 / L2 6 6 8 6 29 16 27 29 37 27 28 32 

L3 Dead 0 0 0 1 5 3 0 0 0 4 2 0 

L3 Alive 31 21 17 16 36 5 10 6 0 0 1 1 

Total Larvae 37 27 25 23 70 24 37 35 37 31 31 33 

Final egg 17 7 14 3 18 13 11 6 1 8 6 8 

%  L1 / L2 16  22  32  26  41  67  73  83  100  87  90  97  

%  L3 84  78  68  74  59  33  27  17  0  13  10  3  

LEV  -  D 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 34 31 36 24 37 46 54 31 26 34 36 49 

L1 / L2 2 2 3 3 12 26 33 20 24 32 27 37 

L3 Dead 0 1 1 1 1 3 1 0 0 0 0 1 

L3 Alive 23 22 28 19 22 5 4 3 0 0 1 1 

Total Larvae 25 25 32 23 35 34 38 23 24 32 28 39 

Final egg 9 6 4 1 2 12 16 8 2 2 8 10 

%  L1 / L2 8  8  9  13  34  76  87  87  100  100  96  95  

%  L3 92  92  91  87  66  24  13  13  0  0  4  5  
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Table B.5 Continued 
 
Hc-OS Wells 

BZ/LEV  -  E     1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 46 47 36 51 38 32 43 39 44 45 46 35 

L1 / L2 6 4 4 16 24 25 41 37 36 38 44 28 

L3 Dead 0 0 0 0 0 2 0 0 0 0 0 0 

L3 Alive 29 32 22 19 10 1 0 0 0 0 0 0 

Total Larvae 35 36 26 35 34 28 41 37 36 38 44 28 

Final egg 11 11 10 16 4 4 2 2 8 7 2 7 

%  L1 / L2 17  11  15  46  71  89  100  100  100  100  100  100  

%  L3 83  89  85  54  29  11  0  0  0  0  0  0  

BZ/LEV  -  F     1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 50 76 47 46 44 52 41 47 58 57 61 49 

L1 / L2 5 5 3 11 30 43 39 45 53 43 60 46 

L3 Dead 0 2 1 3 0 0 0 0 0 0 0 0 

L3 Alive 34 47 35 24 8 2 0 0 0 0 0 0 

Total Larvae 39 54 39 38 38 45 39 45 53 43 60 46 

Final egg 11 22 8 8 6 7 2 2 5 14 1 3 

%  L1 / L2 13  9  8  29  79  96  100  100  100  100  100  100  

%  L3 87  91  92  71  21  4  0  0  0  0  0  0  

AVM  -  G 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 51 62 64 42 73 63 46 37 54 59 56 69 

L1 / L2 4 8 22 29 56 46 40 33 48 46 54 55 

L3 Dead 0 1 2 1 0 0 0 0 0 0 0 0 

L3 Alive 31 39 22 9 7 6 1 0 0 0 0 0 

Total Larvae 35 48 46 39 63 52 41 33 48 46 54 55 

Final egg 16 14 18 3 10 11 5 4 6 13 2 14 

%  L1 / L2 11  17  48  74  89  88  98  100  100  100  100  100  

%  L3 89  83  52  26  11  12  2  0  0  0  0  0  

AVM  -  H 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 38 36 84 23 78 63 42 38 67 57 48 41 

L1 / L2 5 4 38 13 53 49 41 33 62 51 47 37 

L3 Dead 0 1 2 0 0 0 0 1 1 0 0 0 

L3 Alive 15 17 25 8 10 2 1 1 0 0 0 0 

Total Larvae 20 22 65 21 63 51 42 35 63 51 47 37 

Final egg 18 14 19 2 15 12 0 3 4 6 1 4 

%  L1 / L2 25  18  58  62  84  96  98  94  98  100  100  100  

%  L3 75  82  42  38  16  4  2  6  2  0  0  0  
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Table B.6 
DrenchRite® assay averages for Hc-OS. ** Final egg count included in % L1/L2. 
 

Hc-OS Wells 

BZ  AVG  1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 75 49 61 58 68 66 66 62 113 71 68 63 

L1 / L2 7 3 6 10 34 39 39 19 19 7 2 4 

L3 Dead 2 3 1 2 4 3 0 3 2 1 1 3 

L3 Alive 50 33 39 32 22 11 7 0 0 0 0 0 

Total Larvae 59 39 46 44 60 53 46 22 21 8 3 7 

Final egg 16 10 15 14 8 13 20 40 92 63 65 56 

%  L1 / L2 12  8  13  23  62  79  89  95  98  99  99  95  

%  L3 88  92  87  77  38  21  11  5  2  1  1  5  

LEV AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 88 65 75 50 125 83 102 72 64 73 73 90 

L1 / L2 8 8 11 9 41 42 60 49 61 59 55 69 

L3 Dead 0 1 1 2 6 6 1 0 0 4 2 1 

L3 Alive 54 43 45 35 58 10 14 9 0 0 2 2 

Total Larvae 62 52 57 46 105 58 75 58 61 63 59 72 

Final egg 26 13 18 4 20 25 27 14 3 10 14 18 

%  L1 / L2 13  15  19  20  39  72  80  84  100  94  93  96  

%  L3 87  85  81  80  61  28  20  16  0  6  7  4  

BZ/LEV AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 96 123 83 97 82 84 84 86 102 102 107 84 

L1 / L2 11 9 7 27 54 68 80 82 89 81 104 74 

L3 Dead 0 2 1 3 0 2 0 0 0 0 0 0 

L3 Alive 63 79 57 43 18 3 0 0 0 0 0 0 

Total Larvae 74 90 65 73 72 73 80 82 89 81 104 74 

Final egg 22 33 18 24 10 11 4 4 13 21 3 10 

%  L1 / L2 15  10  11  37  75  93  100  100  100  100  100  100  

%  L3 85  90  89  63  25  7  0  0  0  0  0  0  

AVM AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 89 98 148 65 151 126 88 75 121 116 104 110 

L1 / L2 9 12 60 42 109 95 81 66 110 97 101 92 

L3 Dead 0 2 4 1 0 0 0 1 1 0 0 0 

L3 Alive 46 56 47 17 17 8 2 1 0 0 0 0 

Total Larvae 55 70 111 60 126 103 83 68 111 97 101 92 

Final egg 34 28 37 5 25 23 5 7 10 19 3 18 

%  L1 / L2 16  17  54  70  87  92  98  97  99  100  100  100  

%  L3 84  83  46  30  13  8  2  3  1  0  0  0  
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Table B.7 
DrenchRite® assay counts for Hc-OG. ** Final egg count included in % L1/L2. 

 

Hc-OG Wells 

BZ  -  A     1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 59 44 32 37 41 46 37 51 41 46 43 32 

L1 / L2 7 7 2 4 2 12 12 11 10 3 2 1 

L3 Dead 0 0 0 0 0 2 1 2 5 2 0 0 

L3 Alive 13 14 15 12 8 7 3 9 3 0 0 0 

Total Larvae 20 21 17 16 10 21 16 22 18 5 2 1 

Final egg 39 23 15 21 31 25 21 29 23 41 41 31 

%  L1 / L2 35  33  12  25  80  80  89  78  80  96  100  100  

%  L3 65  67  88  75  20  20  11  22  20  4  0  0  

BZ  -  B   1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 62 59 45 36 45 49 55 48 50 64 48 38 

L1 / L2 12 4 8 5 7 15 14 22 13 17 3 2 

L3 Dead 0 3 0 0 1 2 2 3 3 2 1 0 

L3 Alive 21 23 13 10 13 12 10 2 3 0 1 0 

Total Larvae 33 30 21 15 21 29 26 27 19 19 5 2 

Final egg 29 29 24 21 24 20 29 21 31 45 43 36 

%  L1 / L2 36  13  38  33  69  71  78  90  88  97  96  100  

%  L3 64  87  62  67  31  29  22  10  12  3  4  0  

LEV  -  C 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 57 66 67 23 32 53 77 49 42 61 59 45 

L1 / L2 6 7 3 14 11 21 34 23 14 28 31 20 

L3 Dead 0 0 0 0 1 3 2 3 3 2 1 1 

L3 Alive 16 22 27 7 6 2 2 2 1 0 0 1 

Total Larvae 22 29 30 21 18 26 38 28 18 30 32 22 

Final egg 35 37 37 2 14 27 39 21 24 31 27 23 

%  L1 / L2 27  24  10  67  61  81  89  82  78  93  97  91  

%  L3 73  76  90  33  39  19  11  18  22  7  3  9  

LEV  -  D 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 69 40 49 44 55 63 48 53 41 63 52 49 

L1 / L2 5 6 7 8 10 20 24 22 19 19 27 15 

L3 Dead 2 2 0 0 3 5 2 1 1 2 1 1 

L3 Alive 9 9 14 16 11 4 1 0 2 1 0 0 

Total Larvae 16 17 21 24 24 29 27 23 22 22 28 16 

Final egg 53 23 28 20 31 34 21 30 19 41 24 33 

%  L1 / L2 31  35  33  33  42  69  89  96  86  86  96  94  

%  L3 69  65  67  67  58  31  11  4  14  14  4  6  
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Table B.7 Continued 
 
Hc-OG Wells 

BZ/LEV  -  E     1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 65 61 47 60 55 59 50 63 49 57 46 51 

L1 / L2 8 7 8 7 10 27 23 29 21 26 26 21 

L3 Dead 2 0 2 2 2 2 0 0 0 0 0 0 

L3 Alive 28 24 11 18 11 1 0 0 0 0 0 0 

Total Larvae 38 31 21 27 23 30 23 29 21 26 26 21 

Final egg 27 30 26 33 32 29 27 34 28 31 20 30 

%  L1 / L2 21  23  38  26  43  90  100  100  100  100  100  100  

%  L3 79  77  62  74  57  10  0  0  0  0  0  0  

BZ/LEV  -  F     1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 61 75 60 57 64 52 45 53 53 44 57 53 

L1 / L2 6 6 9 10 20 19 26 26 15 11 23 28 

L3 Dead 1 0 2 2 3 1 0 0 0 0 0 0 

L3 Alive 29 18 16 14 12 2 0 0 0 0 0 0 

Total Larvae 36 24 27 26 35 22 26 26 15 11 23 28 

Final egg 25 51 33 31 29 30 19 27 38 33 34 25 

%  L1 / L2 17  25  33  38  57  86  100  100  100  100  100  100  

%  L3 83  75  67  62  43  14  0  0  0  0  0  0  

AVM  -  G 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 54 70 57 50 51 62 57 54 45 58 49 52 

L1 / L2 2 12 13 22 25 31 31 32 24 28 27 28 

L3 Dead 0 0 0 3 0 1 1 0 0 0 0 0 

L3 Alive 18 21 13 7 2 2 0 0 0 0 0 0 

Total Larvae 20 33 26 32 27 34 32 32 24 28 27 28 

Final egg 34 37 31 18 24 28 25 22 21 30 22 24 

%  L1 / L2 10  36  50  69  93  91  97  100  100  100  100  100  

%  L3 90  64  50  31  7  9  3  0  0  0  0  0  

AVM  -  H 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 42 49 60 53 34 61 50 44 48 42 72 72 

L1 / L2 6 11 10 22 17 34 24 13 17 14 31 31 

L3 Dead 0 2 2 1 3 0 1 0 0 0 0 0 

L3 Alive 12 15 22 4 1 0 0 0 1 0 0 0 

Total Larvae 18 28 34 27 21 34 25 13 18 14 31 31 

Final egg 24 21 26 26 13 27 25 31 30 28 41 41 

%  L1 / L2 33  39  29  81  81  100  96  100  94  100  100  100  

%  L3 67  61  71  19  19  0  4  0  6  0  0  0  
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Table B.8 
DrenchRite® assay averages for Hc-OG. ** Final egg count included in % L1/L2. 
 

Hc-OG Wells 

BZ  AVG  1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 121 103 77 73 86 95 92 99 91 110 91 70 

L1 / L2 19 11 10 9 9 27 26 33 23 20 5 3 

L3 Dead 0 3 0 0 1 4 3 5 8 4 1 0 

L3 Alive 34 37 28 22 21 19 13 11 6 0 1 0 

Total Larvae 53 51 38 31 31 50 42 49 37 24 7 3 

Final egg 68 52 39 42 55 45 50 50 54 86 84 67 

%  L1 / L2 36  22  26  29  74  76  83  84  85  96  98  100  

%  L3 64  78  74  71  26  24  17  16  15  4  2  0  

LEV AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 126 106 116 67 87 116 125 102 83 124 111 94 

L1 / L2 11 13 10 22 21 41 58 45 33 47 58 35 

L3 Dead 2 2 0 0 4 8 4 4 4 4 2 2 

L3 Alive 25 31 41 23 17 6 3 2 3 1 0 1 

Total Larvae 38 46 51 45 42 55 65 51 40 52 60 38 

Final egg 88 60 65 22 45 61 60 51 43 72 51 56 

%  L1 / L2 29  28  20  49  50  75  89  88  83  90  97  92  

%  L3 71  72  80  51  50  25  11  12  17  10  3  8  

BZ/LEV AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 126 136 107 117 119 111 95 116 102 101 103 104 

L1 / L2 14 13 17 17 30 46 49 55 36 37 49 49 

L3 Dead 3 0 4 4 5 3 0 0 0 0 0 0 

L3 Alive 57 42 27 32 23 3 0 0 0 0 0 0 

Total Larvae 74 55 48 53 58 52 49 55 36 37 49 49 

Final egg 52 81 59 64 61 59 46 61 66 64 54 55 

%  L1 / L2 19  24  35  32  52  88  100  100  100  100  100  100  

%  L3 81  76  65  68  48  12  0  0  0  0  0  0  

AVM AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 96 119 117 103 85 123 107 98 93 100 121 124 

L1 / L2 8 23 23 44 42 65 55 45 41 42 58 59 

L3 Dead 0 2 2 4 3 1 2 0 0 0 0 0 

L3 Alive 30 36 35 11 3 2 0 0 1 0 0 0 

Total Larvae 38 61 60 59 48 68 57 45 42 42 58 59 

Final egg 58 58 57 44 37 55 50 53 51 58 63 65 

%  L1 / L2 21  38  38  75  88  96  96  100  98  100  100  100  

%  L3 79  62  62  25  12  4  4  0  2  0  0  0  
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Table B.9 
DrenchRite® assay counts for Hc-RFR. ** Final egg count included in % L1/L2. 

 

Hc-RFR Wells 

BZ  -  A     1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 54 36 33 50 53 47 35 53 47 44 37 34 

L1 / L2 9 3 2 5 6 2 3 6 2 10 7 5 

L3 Dead 2 1 0 0 2 0 1 2 1 1 2 2 

L3 Alive 21 19 21 29 27 30 13 26 28 12 8 0 

Total Larvae 32 23 23 34 35 32 17 34 31 23 17 7 

Final egg 22 13 10 16 18 15 18 19 16 21 20 27 

%  L1 / L2 28  13  9  15  45  36  60  47  38  70  73  94  

%  L3 72  87  91  85  55  64  40  53  62  30  27  6  

BZ  -  B   1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 61 42 47 42 40 46 56 68 58 47 56 43 

L1 / L2 6 3 0 1 4 2 3 7 4 15 17 8 

L3 Dead 6 2 0 3 1 1 3 4 0 2 2 1 

L3 Alive 25 24 29 24 19 22 29 27 28 18 9 2 

Total Larvae 37 29 29 28 24 25 35 38 32 35 28 11 

Final egg 24 13 18 14 16 21 21 30 26 12 28 32 

%  L1 / L2 16  10  0  4  50  50  43  54  52  57  80  93  

%  L3 84  90  100  96  50  50  57  46  48  43  20  7  

LEV  -  C 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 45 49 38 56 54 44 37 42 51 47 45 43 

L1 / L2 3 1 2 12 22 16 17 29 29 40 28 31 

L3 Dead 0 0 1 1 2 1 1 3 1 0 1 0 

L3 Alive 27 29 26 23 17 5 3 1 0 0 1 1 

Total Larvae 30 30 29 36 41 22 21 33 30 40 30 32 

Final egg 15 19 9 20 13 22 16 9 21 7 15 11 

%  L1 / L2 10  3  7  33  54  73  81  88  97  100  93  97  

%  L3 90  97  93  67  46  27  19  12  3  0  7  3  

LEV  -  D 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 53 35 42 45 43 44 44 37 42 46 41 37 

L1 / L2 4 0 2 8 11 19 27 28 21 31 22 29 

L3 Dead 1 2 1 1 4 0 1 1 0 0 0 0 

L3 Alive 29 21 28 23 16 2 1 2 1 0 0 0 

Total Larvae 34 23 31 32 31 21 29 31 22 31 22 29 

Final egg 19 12 11 13 12 23 15 6 20 15 19 8 

%  L1 / L2 12  0  6  25  35  90  93  90  95  100  100  100  

%  L3 88  100  94  75  65  10  7  10  5  0  0  0  
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Table B.9 Continued 
 
Hc-RFR Wells 

BZ/LEV  -  E     1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 64 47 55 46 46 44 35 40 58 53 35 40 

L1 / L2 6 7 5 4 6 10 23 22 40 23 22 24 

L3 Dead 2 3 1 1 1 2 0 2 0 0 0 0 

L3 Alive 32 24 33 26 22 10 2 2 0 0 0 0 

Total Larvae 40 34 39 31 29 22 25 26 40 23 22 24 

Final egg 24 13 16 15 17 22 10 14 18 30 13 16 

%  L1 / L2 15  21  13  13  21  45  92  85  100  100  100  100  

%  L3 85  79  87  87  79  55  8  15  0  0  0  0  

BZ/LEV  -  F     1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 51 54 46 53 36 51 52 38 53 41 46 44 

L1 / L2 4 4 4 3 5 20 36 23 37 25 30 29 

L3 Dead 0 1 1 3 1 1 1 1 0 0 0 0 

L3 Alive 33 37 29 24 17 9 4 3 0 0 0 0 

Total Larvae 37 42 34 30 23 30 41 27 37 25 30 29 

Final egg 14 12 12 23 13 21 11 11 16 16 16 15 

%  L1 / L2 11  10  12  10  22  67  88  85  100  100  100  100  

%  L3 89  90  88  90  78  33  12  15  0  0  0  0  

AVM  -  G 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 71 81 59 38 49 57 56 37 88 46 73 53 

L1 / L2 3 9 6 7 7 6 33 19 39 25 38 27 

L3 Dead 0 0 0 0 0 1 2 0 0 1 0 0 

L3 Alive 39 44 40 22 24 22 1 4 1 1 0 0 

Total Larvae 42 53 46 29 31 29 36 23 40 27 38 27 

Final egg 29 28 13 9 18 28 20 14 48 19 35 26 

%  L1 / L2 7  17  13  24  23  21  92  83  98  93  100  100  

%  L3 93  83  87  76  77  79  8  17  3  7  0  0  

AVM  -  H 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 66 41 40 39 49 49 53 37 45 55 52 52 

L1 / L2 3 7 4 3 6 13 24 23 29 33 29 33 

L3 Dead 3 1 1 0 1 0 0 0 0 0 0 0 

L3 Alive 37 25 23 21 23 14 7 5 1 0 0 0 

Total Larvae 43 33 28 24 30 27 31 28 30 33 29 33 

Final egg 23 8 12 15 19 22 22 9 15 22 23 19 

%  L1 / L2 7  21  14  13  20  48  77  82  97  100  100  100  

%  L3 93  79  86  87  80  52  23  18  3  0  0  0  

             



 

 

94 

Table B.10 
DrenchRite® assay averages for Hc-RFR. ** Final egg count included in %L1/L2. 
 

Hc-RFR Wells 

BZ  AVG  1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 115 78 80 92 93 93 91 121 105 91 93 77 

L1 / L2 15 6 2 6 10 4 6 13 6 25 24 13 

L3 Dead 8 3 0 3 3 1 4 6 1 3 4 3 

L3 Alive 46 43 50 53 46 52 42 53 56 30 17 2 

Total Larvae 69 52 52 62 59 57 52 72 63 58 45 18 

Final egg 46 26 28 30 34 36 39 49 42 33 48 59 

%  L1 / L2 22  12  4  10  47  43  49  51  46  64  77  94  

%  L3 78  88  96  90  53  57  51  49  54  36  23  6  

LEV AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 98 84 80 101 97 88 81 79 93 93 86 80 

L1 / L2 7 1 4 20 33 35 44 57 50 71 50 60 

L3 Dead 1 2 2 2 6 1 2 4 1 0 1 0 

L3 Alive 56 50 54 46 33 7 4 3 1 0 1 1 

Total Larvae 64 53 60 68 72 43 50 64 52 71 52 61 

Final egg 34 31 20 33 25 45 31 15 41 22 34 19 

%  L1 / L2 11  2  7  29  46  81  88  89  96  100  96  98  

%  L3 89  98  93  71  54  19  12  11  4  0  4  2  

BZ/LEV AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 115 101 101 99 82 95 87 78 111 94 81 84 

L1 / L2 10 11 9 7 11 30 59 45 77 48 52 53 

L3 Dead 2 4 2 4 2 3 1 3 0 0 0 0 

L3 Alive 65 61 62 50 39 19 6 5 0 0 0 0 

Total Larvae 77 76 73 61 52 52 66 53 77 48 52 53 

Final egg 38 25 28 38 30 43 21 25 34 46 29 31 

%  L1 / L2 13  14  12  11  21  58  89  85  100  100  100  100  

%  L3 87  86  88  89  79  42  11  15  0  0  0  0  

AVM AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 137 122 99 77 98 106 109 74 133 101 125 105 

L1 / L2 6 16 10 10 13 19 57 42 68 58 67 60 

L3 Dead 3 1 1 0 1 1 2 0 0 1 0 0 

L3 Alive 76 69 63 43 47 36 8 9 2 1 0 0 

Total Larvae 85 86 74 53 61 56 67 51 70 60 67 60 

Final egg 52 36 25 24 37 50 42 23 63 41 58 45 

%  L1 / L2 7  19  14  19  21  34  85  82  97  97  100  100  

%  L3 93  81  86  81  79  66  15  18  3  3  0  0  
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Table B.11 
DrenchRite® assay counts for Hc-H992. ** Final egg count included in % L1/L2. 

 

Hc-H992 Wells 

BZ  -  A     1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 58 55 49 66 69 65 80 75 77 57 75 79 

L1 / L2 6 3 2 8 10 8 12 11 16 26 44 10 

L3 Dead 1 1 2 0 2 1 2 3 3 4 1 1 

L3 Alive 36 29 39 37 42 34 38 41 25 7 8 2 

Total Larvae 43 33 43 45 54 43 52 55 44 37 53 13 

Final egg 15 22 6 21 15 22 28 20 33 20 22 66 

% L1 / L2 14  9  5  18  36  46  50  41  64  81  88  96  

%  L3 86  91  95  82  64  54  50  59  36  19  12  4  

BZ  -  B   1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 59 52 65 58 83 67 85 83 76 75 58 59 

L1 / L2 1 3 4 8 8 6 13 20 21 19 26 21 

L3 Dead 0 1 3 1 2 4 2 2 4 6 1 2 

L3 Alive 37 32 43 35 64 44 47 36 32 24 4 0 

Total Larvae 38 36 50 44 74 54 62 58 57 49 31 23 

Final egg 21 16 15 14 9 13 23 25 19 26 27 36 

% L1 / L2 3  8  8  18  20  28  42  54  53  60  91  97  

%  L3 97  92  92  82  80  72  58  46  47  40  9  3  

LEV  -  C 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 58 73 49 43 42 51 62 57 61 48 57 46 

L1 / L2 2 8 2 7 20 29 36 39 44 39 40 41 

L3 Dead 1 0 1 1 1 0 1 0 0 1 0 0 

L3 Alive 37 53 38 26 10 4 1 3 0 0 1 1 

Total Larvae 40 61 41 34 31 33 38 42 44 40 41 42 

Final egg 18 12 8 9 11 18 24 15 17 8 16 4 

%  L1 / L2 5  13  5  21  65  88  95  93  100  98  98  98  

%  L3 95  87  95  79  35  12  5  7  0  2  2  2  

LEV  -  D 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 56 49 42 43 50 47 36 53 55 46 50 47 

L1 / L2 2 6 8 5 12 23 23 34 38 36 38 42 

L3 Dead 1 1 1 0 2 0 0 0 0 0 0 0 

L3 Alive 39 31 31 27 9 7 5 4 1 1 0 0 

Total Larvae 42 38 40 32 23 30 28 38 39 37 38 42 

Final egg 14 11 2 11 27 17 8 15 16 9 12 5 

%  L1 / L2 5  16  20  16  52  77  82  89  97  97  100  100  

%  L3 95  84  80  84  48  23  18  11  3  3  0  0  
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Table B.11 Continued 
 
Hc-H992 Wells 

BZ/LEV  -  E     1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 50 61 55 52 67 55 53 64 66 59 60 44 

L1 / L2 4 4 4 5 16 27 39 49 49 39 45 30 

L3 Dead 0 0 1 1 2 2 0 0 0 0 0 0 

L3 Alive 35 45 35 38 33 6 1 0 0 0 0 0 

Total Larvae 39 49 40 44 51 35 40 49 49 39 45 30 

Final egg 11 12 15 8 16 20 13 15 17 20 15 14 

%  L1 / L2 10  8  10  11  31  77  98  100  100  100  100  100  

%  L3 90  92  90  89  69  23  2  0  0  0  0  0  

BZ/LEV  -  F     1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 48 60 61 70 66 39 54 44 49 56 58 60 

L1 / L2 9 3 4 6 14 25 39 35 38 37 46 45 

L3 Dead 1 0 0 2 3 0 0 0 0 0 0 0 

L3 Alive 30 28 43 50 31 7 0 1 0 0 0 0 

Total Larvae 40 31 47 58 48 32 39 36 38 37 46 45 

Final egg 8 29 14 12 18 7 15 8 11 19 12 15 

%  L1 / L2 23  10  9  10  29  78  100  97  100  100  100  100  

%  L3 77  90  91  90  71  22  0  3  0  0  0  0  

AVM  -  G 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 61 58 54 52 77 55 62 51 49 57 70 42 

L1 / L2 7 1 4 3 15 10 33 31 32 45 55 28 

L3 Dead 1 1 1 0 0 0 0 0 0 0 0 0 

L3 Alive 40 45 38 33 44 27 11 5 5 0 0 0 

Total Larvae 48 47 43 36 59 37 44 36 37 45 55 28 

Final egg 13 11 11 16 18 18 18 15 12 12 15 14 

% L1 / L2 15  2  9  8  25  27  75  86  86  100  100  100  

%  L3 85  98  91  92  75  73  25  14  14  0  0  0  

AVM  -  H 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 47 50 67 50 60 68 67 63 55 80 60 40 

L1 / L2 2 4 8 3 14 15 33 48 38 62 47 29 

L3 Dead 1 1 1 1 0 1 0 0 0 0 0 0 

L3 Alive 32 36 43 38 41 37 10 3 1 1 0 0 

Total Larvae 35 41 52 42 55 53 43 51 39 63 47 29 

Final egg 12 9 15 8 5 15 24 12 16 17 13 11 

%  L1 / L2 6  10  15  7  25  28  77  94  97  98  100  100  

%  L3 94  90  85  93  75  72  23  6  3  2  0  0  
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Table B.12 
DrenchRite® assay averages for Hc-H992. ** Final egg count included in % L1/L2. 
 

Hc-H992 Wells 

BZ  AVG  1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 117 107 114 124 152 132 165 158 153 132 133 138 

L1 / L2 7 6 6 16 18 14 25 31 37 45 70 31 

L3 Dead 1 2 5 1 4 5 4 5 7 10 2 3 

L3 Alive 73 61 82 72 106 78 85 77 57 31 12 2 

Total Larvae 81 69 93 89 128 97 114 113 101 86 84 36 

Final egg 36 38 21 35 24 35 51 45 52 46 49 102 

%  L1 / L2 9  9  6  18  28  37  46  48  58  69  89  96  

%  L3 91  91  94  82  72  63  54  52  42  31  11  4  

LEV AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 114 122 91 86 92 98 98 110 116 94 107 93 

L1 / L2 4 14 10 12 32 52 59 73 82 75 78 83 

L3 Dead 2 1 2 1 3 0 1 0 0 1 0 0 

L3 Alive 76 84 69 53 19 11 6 7 1 1 1 1 

Total Larvae 82 99 81 66 54 63 66 80 83 77 79 84 

Final egg 32 23 10 20 38 35 32 30 33 17 28 9 

%  L1 / L2 5  14  12  18  59  83  89  91  99  97  99  99  

%  L3 95  86  88  82  41  17  11  9  1  3  1  1  

BZ/LEV AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 98 121 116 122 133 94 107 108 115 115 118 104 

L1 / L2 13 7 8 11 30 52 78 84 87 76 91 75 

L3 Dead 1 0 1 3 5 2 0 0 0 0 0 0 

L3 Alive 65 73 78 88 64 13 1 1 0 0 0 0 

Total Larvae 79 80 87 102 99 67 79 85 87 76 91 75 

Final egg 19 41 29 20 34 27 28 23 28 39 27 29 

%  L1 / L2 16  9  9  11  30  78  99  99  100  100  100  100  

%  L3 84  91  91  89  70  22  1  1  0  0  0  0  

AVM AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 108 108 121 102 137 123 129 114 104 137 130 82 

L1 / L2 9 5 12 6 29 25 66 79 70 107 102 57 

L3 Dead 2 2 2 1 0 1 0 0 0 0 0 0 

L3 Alive 72 81 81 71 85 64 21 8 6 1 0 0 

Total Larvae 83 88 95 78 114 90 87 87 76 108 102 57 

Final egg 25 20 26 24 23 33 42 27 28 29 28 25 

%  L1 / L2 11  6  13  8  25  28  76  91  92  99  100  100  

%  L3 89  94  87  92  75  72  24  9  8  1  0  0  
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Table B.13 
DrenchRite® assay counts for Hc-GRF. ** Final egg count included in % L1/L2. 

 

Hc-GRF Wells 

BZ  -  A     1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 36 46 26 59 46 73 47 41 58 54 44 37 

L1 / L2 6 4 3 8 5 6 5 7 11 12 11 9 

L3 Dead 1 0 0 0 0 0 1 0 0 2 3 0 

L3 Alive 16 27 15 33 25 41 28 24 30 24 19 4 

Total Larvae 23 31 18 41 30 47 34 31 41 38 33 13 

Final egg 13 15 8 18 16 26 13 10 17 16 11 24 

%  L1 / L2 26  13  17  20  46  44  38  41  48  52  50  89  

%  L3 74  87  83  80  54  56  62  59  52  48  50  11  

BZ  -  B     1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 52 69 61 47 47 72 48 42 56 59 56 54 

L1 / L2 7 5 7 7 9 9 6 5 10 16 7 16 

L3 Dead 0 2 1 1 0 0 0 0 0 3 4 0 

L3 Alive 25 39 35 33 23 39 32 18 33 30 17 5 

Total Larvae 32 46 43 41 32 48 38 23 43 49 28 21 

Final egg 20 23 18 6 15 24 10 19 13 10 28 33 

%  L1 / L2 22  11  16  17  51  46  33  57  41  44  63  91  

%  L3 78  89  84  83  49  54  67  43  59  56  37  9  

LEV  -  C 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 55 78 65 46 45 66 57 50 58 74 52 52 

L1 / L2 8 11 13 8 8 17 12 15 24 28 21 26 

L3 Dead 0 1 0 0 1 2 2 1 2 2 2 4 

L3 Alive 24 42 31 31 26 23 18 19 12 27 14 12 

Total Larvae 32 54 44 39 35 42 32 35 38 57 37 42 

Final egg 23 24 21 7 10 24 25 15 20 17 15 10 

%  L1 / L2 25  20  30  21  23  40  38  43  63  49  57  62  

%  L3 75  80  70  79  77  60  63  57  37  51  43  38  

LEV - D 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 69 50 45 42 51 71 75 51 73 46 61 45 

L1 / L2 10 6 8 7 11 15 16 12 29 13 25 23 

L3 Dead 0 0 0 2 3 1 0 0 2 0 2 3 

L3 Alive 44 33 28 22 25 33 37 20 21 17 11 8 

Total Larvae 54 39 36 31 39 49 53 32 52 30 38 34 

Final egg 15 11 9 11 12 22 22 19 21 16 23 11 

% L1 / L2 19  15  22  23  28  31  30  37  56  43  66  68  

%  L3 81  85  78  77  72  69  70  63  44  57  34  32  
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Table B.13 Continued 
 
Hc-GRF Wells 

BZ/LEV – E 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 101 66 58 77 34 65 59 46 53 65 51 61 

L1 / L2 12 10 13 11 9 12 7 7 20 42 32 36 

L3 Dead 0 2 1 2 1 2 4 3 3 0 1 2 

L3 Alive 61 39 30 49 20 24 24 9 1 0 3 2 

Total Larvae 73 51 44 62 30 38 35 19 24 42 36 40 

Final egg 28 15 14 15 4 27 24 27 29 23 15 21 

% L1 / L2 16  20  30  18  30  32  20  37  83  100  89  90  

%  L3 84  80  70  82  70  68  80  63  17  0  11  10  

BZ/LEV - F 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 54 66 46 45 55 59 76 54 71 48 47 64 

L1 / L2 14 9 9 6 8 6 12 16 19 30 32 39 

L3 Dead 0 0 0 0 0 2 3 5 2 0 2 1 

L3 Alive 32 34 23 25 25 31 30 15 10 0 2 5 

Total Larvae 46 43 32 31 33 39 45 36 31 30 36 45 

Final egg 8 23 14 14 22 20 31 18 40 18 11 19 

%  L1 / L2 30  21  28  19  24  15  27  44  61  100  89  87  

%  L3 70  79  72  81  76  85  73  56  39  0  11  13  

AVM - G 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 67 53 32 53 44 45 53 55 47 45 68 59 

L1 / L2 7 10 5 15 11 13 34 41 36 33 38 37 

L3 Dead 1 2 0 1 1 0 2 1 0 0 0 0 

L3 Alive 31 25 20 22 16 18 5 1 0 0 0 0 

Total Larvae 39 37 25 38 28 31 41 43 36 33 38 37 

Final egg 28 16 7 15 16 14 12 12 11 12 30 22 

%  L1 / L2 18  27  20  39  39  42  83  95  100  100  100  100  

%  L3 82  73  80  61  61  58  17  5  0  0  0  0  

AVM - H 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 45 46 62 50 51 51 64 40 69 88 64 58 

L1 / L2 7 10 9 5 14 13 30 29 39 56 41 38 

L3 Dead 0 1 0 0 1 1 2 0 0 0 0 0 

L3 Alive 23 22 38 23 29 20 11 0 2 0 0 0 

Total Larvae 30 33 47 28 44 34 43 29 41 56 41 38 

Final egg 15 13 15 22 7 17 21 11 28 32 23 20 

%  L1 / L2 23  30  19  18  32  38  70  100  95  100  100  100  

%  L3 77  70  81  82  68  62  30  0  5  0  0  0  
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Table B.14 
DrenchRite® assay averages for Hc-GRF. ** Final egg count included in % L1/L2. 
 

Hc-GRF Wells 

BZ-AVG 1 2 3 4 5** 6** 7** 8** 9** 10** 11** 12** 

Starting Egg 88 115 87 106 93 145 95 83 114 113 100 91 

L1 / L2 13 9 10 15 14 15 11 12 21 28 18 25 

L3 Dead 1 2 1 1 0 0 1 0 0 5 7 0 

L3 Alive 41 66 50 66 48 80 60 42 63 54 36 9 

Total Larvae 55 77 61 82 62 95 72 54 84 87 61 34 

Final egg 33 38 26 24 31 50 23 29 30 26 39 57 

% L1 / L2 24  12  16  18  48  45  36  49  45  48  57  90  

%  L3 76  88  84  82  52  55  64  51  55  52  43  10  

LEV AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 124 128 110 88 96 137 132 101 131 120 113 97 

L1 / L2 18 17 21 15 19 32 28 27 53 41 46 49 

L3 Dead 0 1 0 2 4 3 2 1 4 2 4 7 

L3 Alive 68 75 59 53 51 56 55 39 33 44 25 20 

Total Larvae 86 93 80 70 74 91 85 67 90 87 75 76 

Final egg 38 35 30 18 22 46 47 34 41 33 38 21 

 %  L1 / L2 21  18  26  21  26  35  33  40  59  47  61  64  

%  L3 79  82  74  79  74  65  67  60  41  53  39  36  

BZ/LEV AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 155 132 104 122 89 124 135 100 124 113 98 125 

L1 / L2 26 19 22 17 17 18 19 23 39 72 64 75 

L3 Dead 0 2 1 2 1 4 7 8 5 0 3 3 

L3 Alive 93 73 53 74 45 55 54 24 11 0 5 7 

Total Larvae 119 94 76 93 63 77 80 55 55 72 72 85 

Final egg 36 38 28 29 26 47 55 45 69 41 26 40 

%  L1 / L2 22  20  29  18  27  23  24  42  71  100  89  88  

%  L3 78  80  71  82  73  77  76  58  29  0  11  12  

AVM AVG 1 2 3 4 5 6 7 8 9 10 11 12 

Starting Egg 112 99 94 103 95 96 117 95 116 133 132 117 

L1 / L2 14 20 14 20 25 26 64 70 75 89 79 75 

L3 Dead 1 3 0 1 2 1 4 1 0 0 0 0 

L3 Alive 54 47 58 45 45 38 16 1 2 0 0 0 

Total Larvae 69 70 72 66 72 65 84 72 77 89 79 75 

Final egg 43 29 22 37 23 31 33 23 39 44 53 42 

% L1 / L2 20  29  19  30  35  40  76  97  97  100  100  100  

%  L3 80  71  81  70  65  60  24  3  3  0  0  0  
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Table C.1 
The cDNA concentrations (original and dilutions) from NanoDrop Spectrophotometer.  
The dilution factor is the dilution that was made on the sample to obtain 150 ng per 
reaction.  The volume per reaction is the adjusted volume to obtain 150 ng per reaction. 
 
 

Sample ID 
cDNA     

concentration    
(ng/ul) 

÷ 150 
Dilution   
Factor        
( 1 : X ) 

Dilution 
concentration     

(ng/ul) 

Volume per    
reaction        

(µl) 

Hc-OS      

Control 1 652.15 4.35 4.5 131.25 1.14 

Control 2 461.53 3.08 3.0 154.46 0.97 

Control 3 528.43 3.52 3.5 144.05 1.04 

BZ HS 1 570.70 3.80 4.0 107.45 1.40 

BZ HS 2 469.15 3.13 3.0 152.61 0.98 

LEV HS 1 537.08 3.58 3.5 126.97 1.18 

LEV HS 2 543.63 3.62 3.5 128.22 1.17 

LEV MS 1 544.45 3.63 3.5 142.17 1.06 

LEV MS 2 587.38 3.92 4.0 127.96 1.17 

AVM HS 1 573.86 3.83 4.0 112.68 1.33 

AVM HS 2 560.14 3.73 4.0 126.98 1.18 

Hc-OG      

Control 1 755.74 5.04 5.0 167.03 0.90 

Control 2 694.90 4.63 5.0 126.74 1.18 

Control 3 576.75 3.85 4.0 135.78 1.10 

BZ HS 1 483.13 3.22 3.0 155.76 0.96 

BZ HS 2 493.02 3.29 3.5 132.93 1.13 

BZ WR 1 552.84 3.69 3.5 137.70 1.09 

LEV HS 1 593.26 3.96 4.0 121.54 1.23 

LEV HS 2 538.20 3.59 3.5 133.09 1.13 

LEV MS 1 515.94 3.44 3.5 134.90 1.11 

 LEV MS 2 478.72 3.19 3.0 166.28 0.90 

AVM HS 1 568.85 3.79 4.0 110.99 1.35 

AVM HS 2 540.63 3.60 3.5 113.90 1.32 
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Table C.1  Continued 
 

Sample ID 
cDNA     

concentration    
(ng/ul) 

÷ 150 
Dilution   
Factor        
( 1 : X ) 

Dilution 
concentration     

(ng/ul) 

Volume per    
reaction        

(µl) 

Hc-EG      

Control 1 556.36 3.71 4.0 129.37 1.16 

Control 2 637.51 4.25 4.5 123.27 1.22 

Control 3 541.05 3.61 3.5 140.54 1.07 

BZ HS 1 506.29 3.38 3.5 128.84 1.16 

BZ WR 1 477.91 3.19 3.0 154.82 0.97 

LEV MS 1 524.48 3.50 3.5 140.11 1.07 

AVM HS 1 535.91 3.57 3.5 139.96 1.07 

AVM WR 1 523.81 3.49 3.5 142.81 1.05 

Hc-RFR      

Control 1 486.22 3.24 3.5 137.08 1.09 

Control 2 697.67 4.65 4.5 134.14 1.12 

Control 3 527.50 3.52 3.5 129.91 1.15 

BZ HS 1 518.68 3.46 3.5 137.05 1.09 

BZ WR 1 425.40 2.84 3.0 141.91 1.06 

BZ WR 2 476.19 3.17 3.0 159.87 0.94 

BZ HR 1 564.28 3.76 4.0 120.39 1.25 

LEV MS 1 481.46 3.21 3.5 137.52 1.09 

LEV MS 2 549.14 3.66 3.5 148.41 1.01 

AVM HS 1 461.65 3.08 3.0 150.58 1.00 

AVM WR 1 506.89 3.38 3.5 144.98 1.03 

Hc-H992      

Control 1 613.91 4.09 4.0 132.79 1.13 

Control 2 607.36 4.05 4.0 130.38 1.15 

Control 3 488.74 3.26 3.5 125.74 1.19 

BZ HS 1 616.21 4.11 4.0 128.74 1.17 

BZ WR 1 483.58 3.22 3.5 137.64 1.09 

BZ WR 2 548.08 3.65 3.5 144.34 1.04 

BZ WR 3 524.58 3.50 3.5 126.55 1.19 
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Table C-1  Continued 
 

Sample ID 
cDNA 

concentration    
(ng/ul) 

÷ 150 
Dilution   
Factor        
( 1 : X ) 

Dilution 
concentration    

(ng/ul) 

Volume per    
reaction         

(µl) 

Hc-H992      

BZ WR 4 480.52 3.20 3.5 129.30 1.16 

BZ HR 1 504.86 3.37 3.5 136.36 1.10 

LEV HS 1 547.53 3.65 3.5 128.12 1.17 

LEV MS 1 572.96 3.82 4.0 123.97 1.21 

LEV MS 2 574.43 3.83 4.0 127.22 1.18 

AVM HS 1 519.82 3.47 3.5 136.49 1.10 

AVM WR 1 500.04 3.33 3.5 142.26 1.05 

Hc-GRF      

Con 1 426.03 2.84 3.0 151.92 0.99 

Con 2 468.40 3.12 3.0 164.98 0.91 

Con 3 431.70 2.88 3.0 151.21 0.99 

BZ SS 448.72 2.99 3.0 159.84 0.94 

BZ HR 445.48 2.97 3.0 154.60 0.97 

LEV SS 451.38 3.01 3.0 155.95 0.96 

LEV HR 445.17 2.97 3.0 161.92 0.93 

AVM HS 402.68 2.68 2.5 170.09 0.88 

AVM WR 412.15 2.75 3.0 142.14 1.06 

Positive control 143.19 0.95 N/A N/A 1.05 
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