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ABSTRACT

Topics in Measurement Error and Missing Data Problems. (August 2007)

Lian Liu, B.S., Peking University, P. R. China;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Raymond J. Carroll

This dissertation research consists of two problems, which cut across the fields

of measurement error methods, semiparametric methods, missing data problems and

statistical genetics. The following two paragraphs give brief introductions to each of

the two problems, respectively.

We study the partially linear model in logistic and other types of canonical expo-

nential family regression when the explanatory variable is measured with independent

normal error. We develop a backfitting estimation procedure to this model based upon

the parametric idea of sufficiency scores so that no assumptions are made about the

latent variable measured with error. By a numerical example and a simulation study,

we show that the proposed method gives better results than the naive method.

In genetics study, the genotypes or phenotypes can be missing due to various

reasons. In this research, the impact of missing genotypes is investigated for high

resolution combined linkage and association mapping of quantitative trait loci (QTL).

We assume that the genotype data are missing completely at random (MCAR). Two

regression models are proposed to model the association between the markers and

the trait locus, and account for the missing genotypes. By simulation study we show

that the proposed method can help to get correct type I error rates for a moderate
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size data, although it does not improve power.

In this dissertation, the sufficiency score method has improved the functional

approach of measurement error study. For a canonical exponential family, this semi-

parametric method have provided better estimation and asymptotic properties. In

the genetics study, a new method is proposed to account for the missing genotype in

a combined linkage and association study. We have concluded that this method does

not improve power but it will provide better type I error rates for a moderate size

data.
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CHAPTER I

INTRODUCTION

Measurement error and missing data problems have been widely studied in literature.

These topics have many biological applications, especially in nutrition, genetics and

epidemiology areas. The interest in this dissertation research mainly focuses on two

problems. In Chapter II, a semiparametric measurement error problem is studied,

and we develop a sufficiency score method to solve this problem. In Chapter III,

a high resolution combined linkage and association mapping analysis is carried out

in a statistical genetics study, and the impact of missing genotype is investigated

for this method. Chapter IV gives a summary of the dissertation and some future

research topics. The rest of this chapter gives the background behind Chapter II and

III, respectively. Section 1.1 introduces some basics about measurement error model.

Section 1.2 turns into the missing data problems in statistical genetics study. Section

1.3 describes the structure of this dissertation.

1.1 Measurement Error

Measurement error study is usually about the regression problems in which some

predictors are measured with error. A simple measurement error problem consists of

a response variable Y , predictors X and Z and a model relating Y and (X,Z), e.g.,

Y = β0 +Xβ1 + Zβ2 + ε. (1.1)

The format and style follow that of Biometrics.
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However, X is not observable. This is the essential point of a measurement error

model. From one perspective, measurement error models can be viewed as a special

case of missing data problems. The predictor X is entirely missing. The difference

from the missing data problem is that we observe a variable W related to X. And

we usually assume W satisfies the following relationships.

W = X + U ; (1.2)

U = Normal(0,Σuu);

U = independent of (Y,X,Z).

Note that the observed data are (Y,W,Z), instead of (Y,X,Z).

The effects of measurement error are well-known. The measurement error in

predictors causes biases in estimated regression coefficients. Let us consider the simple

measurement error example defined in (1.2) and (1.2). Assume that all variables are

scalar. If we ignore the measurement error and estimate the regression coefficients

simply using the observed W , then we would not estimate β1, instead we would

estimate

var(X|Z)

var(X|Z) + Σuu

β1.

So, the goal of the measurement error study is to correct for such effects.

There are two basic approaches in the literature. See Carroll et al. (2006) for a

review. Structural methods are likelihood-based approaches which require a distri-

bution of the missing predictor X. These methods also include Bayesian modeling.

Functional methods, on the contrary, make no assumptions about the distribution

of the missing predictor. Structural methods require parametric models for the dis-

tribution of X, sometimes conditional on the observed covariates Z. When structural

models are used, there are always concerns about the possible non-robustness of es-

timation and inference due to model misspecification of the unobserved X. Fuller
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(1987, page 263) and Carroll et al. (1984) discuss this issue in the classic nonlinear

regression and probit regression problems, respectively. There is no general agree-

ment in the statistical literature about whether structural or functional methods are

more appropriate. This dissertation research will focus on functional methods.

There is an enormous number of publications on this topic in linear regression,

as summarized by Fuller (1987). In many cases, instead of a linear model, a flexible

model might be allowed for one of the covariates of interest, e.g., age or body mass

index (BMI). The partially linear model was built for this as given below,

Y = Xβ + θ(Z) + ε.

Here, the function θ(Z) is unknown and the purpose of the study is to estimate the

unknown parameter and function without assumptions about X. One may further ex-

tend this model to a generalized partially linear model. We present a sufficiency score

method in Chapter II to study the measurement error problem under this framework.

1.2 Combined Linkage and Association Mapping

For many complex traits, such as diabetes, depression, alcoholism and hypertension,

quantitative phenotypes can be very informative. Hence, it is of importance to de-

velop statistical methods for mapping of quantitative trait loci/locus (QTL). There

has been a long history in the research of linkage mapping of QTL (Almasy and

Blangero, 1998; Feingold, 2002; Fulker, Cherny, and Cardon, 1995; Goldgar, 1990;

Haseman and Elston, 1972; Pratt, Daly, and Kruglyak, 2000). Moreover, variance

component models have been proposed for combined linkage and association mapping

of QTL (Abecasis, Cardon, and Cookson, 2000a; Abecasis, Cookson, and Cardon,

2000b; Allison, 2001; Almasy et al., 1999; Boerwinkle, Chakraborty, and Sing, 1986;

George et al., 1999; Fulker et al., 1999; Sham et al., 2000). Based on combinations
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of population and pedigree data, we have proposed variance component models for

combined linkage and association mapping of QTL for complex diseases (Fan and

Jung, 2003; Fan, Jung, and Jin, 2006; Fan et al., 2005; Fan and Xiong, 2002; Fan and

Xiong, 2003; Jung, Fan, and Jin, 2005).

However, there is limited research to investigate the impact of missing data on

our models. In genetics study, the genotypes or phenotypes can be missing due to var-

ious reasons. In Chapter IV, the impact of missing genotypes is investigated for high

resolution combined linkage and association mapping of quantitative trait loci (QTL).

We assume that the genotype data are missing completely at random (MCAR). Two

regression models, “genotype effect model” and “additive effect model”, are proposed

to model the association between the markers and the trait locus. If the marker geno-

type is not missing, the model is exactly the same as those in previous study. If the

marker genotypes are missing, the expected number of genotypes or alleles is used

as weight to model the effect of the genotypes or alleles. By analytical formulae, we

show that the “genotype effect model” can be used to model the additive and domi-

nance effects simultaneously; the “additive effect model” only takes care of additive

effect. Based on the two models, F -test statistics are proposed to test association be-

tween the QTL and markers. The noncentrality parameter approximations of F -test

statistics are derived to make power calculation and comparison, which show that

the power of the F -tests is reduced due to the missingness. By simulation study, we

show that the two models have reasonable type I error rates for a dataset of moderate

sample size. However, the type I error rates can be inflated if all individuals with

missing genotypes are removed from analysis. Hence, the proposed method can help

to get correct type I error rates although it does not improve power. As a practi-

cal example, the method are applied to analyze the angiotensin-1 converting enzyme

(ACE) data.
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1.3 Dissertation Structure

Chapter II develops a sufficiency score method to a measurement error problem in a

generalized partially linear model framework. This chapter mainly contains a method-

ological proposal, a data analysis employing this method, and a complementary sim-

ulation experiment evaluating the methodology. Chapter III investigates the impact

of missing genotypes in a combined linkage and association mapping study. This

chapter consists of regression models accounting for missingness, hypothesis F -tests

of associations, a simulation study and some data analyses employing the proposed

models. Chapter IV gives a summary of the dissertation. Regularity conditions and

proofs of the theorems are detailed in the appendices.
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CHAPTER II

A SUFFICIENCY SCORE METHOD IN GENERALIZED PARTIALLY LINEAR

MODELS WITH MEASUREMENT ERROR∗

2.1 Introduction

In this chapter, we study a measurement error problem in a generalized partially

linear model framework. More specifically, we consider a partially linear canonical

exponential family models with covariate measurement errors. In the parametric

problem, Stefanski and Carroll (1987) constructed unbiased score functions by condi-

tioning on certain parameter-dependent sufficient statistics, a technique they called

sufficiency scores. The purpose of the research in this chapter is to generalize their

method to semiparametric generalized partially linear models. The resulting methods

are straightforward to compute and have relatively clean asymptotic properties.

We start with a canonical exponential family for a response Y . Given a covari-

ate vector (XT, Z)T = (xT, z)T, assume that the response Y has the density/mass

function

h(y|x, z) = exp

[
y{xTβ + θ(z)} − b{xTβ + θ(z)}

a(φ)
+ c(y, φ)

]
, (2.1)

where a(·), b(·), c(·, ·) are known functions, θ(·) is an unknown nuisance nonparametric

function and κ = (βT, φ) is the parameter of interest. Then the conditional mean

and variance functions of Y given (X,Z) can be defined by

E(Y |X,Z) = µ{XTβ + θ(Z)};

var(Y |X,Z) = φV [µ{XTβ + θ(Z)}],

∗ This article was in press in Statistics and Probability Letters, Liu, L., “Estimation of gener-
alized partially linear models with measurement error using sufficiency scores”, Elsevier (2007).
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where µ(·) and V (·) are known functions. Suppose, however, that the covariate X

cannot be observed but that W = X+U is available to the study. And U is assumed

to be normally distributed with mean zero and covariance matrix Σuu, independent

of (Y,X,Z).

So, summarizing things together, we have

Y |X,Z ∼ h(y|x, z);

W = X + U ;

U = Normal(0,Σuu),

and (Y,W,Z) are observable.

This defines a generalized partially linear measurement error model, or semipara-

metric measurement error model, in a canonical exponential family framework. The

density of canonical exponential family as in (2.1) includes normal, Poisson, logistic

and gamma regression models. These models have a common property that there

exists a natural sufficient statistic for the unobserved covariate X when other param-

eters are fixed. This is crucial because the goal of the study is to develop a functional

method to estimate the unknown parameters with no distribution assumption of the

unobserved covariate X. By the property of sufficiency we are able to achieve this

goal.

In the reminder of this chapter, a brief literature review is presented in Section

2.2 and the proposed method is developed in Section 2.3. Asymptotic properties of

our methodology are presented in Section 2.4. Section 2.5 describes a data analysis of

the Framingham Heart Study, with a complementary simulation study performed in

Section 2.6. Section 2.7 gives concluding remarks. All the technical details are listed

in Appendix A.
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2.2 Literature Review

Severini and Staniswalis (1994) studied quasi-likelihood estimation in semiparametric

models without measurement error. Stefanski and Carroll (1987) studied the mea-

surement error in a parametric model.

Let us review the results in Stefanski and Carroll (1987). In parametric model,

θ(Z) is reduced to a fixed parameter and Σuu is assumed as known. Let Z = z0 and

θ(z0) = α0. If X is viewed as a parameter and α0, κ as fixed, then the statistic

∆ = ∆(Y,W,Σuu, β) = W + Y Σuuβ (2.2)

is complete and sufficient for X. Consequently, by the properties of sufficient statis-

tics, the conditional distribution of Y given ∆ does not depend on X and can be

computed analytically.

Let hY |∆(y|δ;α0, κ) denote the conditional distribution of Y given ∆ = δ. In the

calculations, ∆ is treated as a fixed conditioning argument until the final step of the

analysis, equation (2.4), wherein ∆ is evaluated as ∆ = W + Y Σuuβ, as in equation

(2.2). It is easy to show that

hY |∆(y|δ;α0, κ) = exp[yη −
1

2
y2βTΣuuβ/a(φ) + c(y, φ) − log{S(η, β, φ)}], (2.3)

where η = (α0 + δTβ)/a(φ) and S(η, β, φ) is the normalizing constant.

By defining Ψ(y, δ, α0, κ) =
∂

∂(α0, κ)
log{hY |∆(y|δ;α0, κ)} evaluated at δ = w +

yΣuuβ, Stefanski and Carroll (1987) define the sufficiency score by

Ψ(Y,∆, α0, κ) =





{Y − Eδ(Y )}/a(φ)

{Y − Eδ(Y )}δ/a(φ) − {Y 2 − Eδ(Y
2)}Σuuβ/a(φ)

r(Y,∆, α0, κ) − Eδ{r(Y,∆, α0, κ)}




, (2.4)

evaluated at δ = W + Y Σuuβ, where Eδ(·) = E(·|∆ = δ) and

r(y, w, α0, κ) =
∂c(y, φ)

∂φ
− y

α0 + δTβ

a2(φ)
a′(φ) + y2β

TΣuuβ

2a2(φ)
a′(φ).
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Also Ψ(·) is unbiased for (α0, κ) = {θ(z0), κ}, that is

E{Ψ(Y,∆, α0, κ)} = E[E{Ψ(Y,∆, α0, κ)|∆}] = 0.

Equation (2.4) defines an unbiased sufficiency score when θ(·) is treated as a

parameter α0. Therefore, sufficiency score estimators (α̂0, κ̂) are solved by

0 =
n∑

i=1

Ψ(Yi,∆i, α̂0, κ̂).

2.3 Backfitting Method

In this section, we generalize the sufficiency score method to handle the semipara-

metric situation when α0 = θ(Z) is a function of Z. For simplicity we assume that

Σuu is known throughout this chapter. This is of course an ideal assumption to make

the study easier. In the data analysis we simply use the estimate of Σuu as the true

value. We will revisit this issue at the end of this chapter.

Since the parameter of interest β is involved in the expression of ∆, we denote

the sufficiency score in the previous section as Ψ{Y,∆(β), θ(Z), κ}. Also, write

Ψ{Y,∆(β), θ(Z), κ} =




Ψθ{Y,∆(β), θ(Z), κ}

Ψκ{Y,∆(β), θ(Z), κ}



 ,

where Ψθ(·) is the estimating function corresponding to α0 or θ(·) and Ψκ(·) is the

estimating function corresponding to κ. Suppose that Kh(x) = K(x/h)/h, K(·) is

a symmetric (kernel) density function with compact support, h is the bandwidth,

h→ 0 as n→ ∞, and Z1, · · · , Zn have marginal density fz(·).

We propose a two-step iterative estimation procedure as below.

1. First we estimate θ(·) by θ̂(·, κc) with a current value κc = (βT
c , φc)

T in the iter-

ation. Adapting the idea of local estimating equation of Carroll, Ruppert, and
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Welsh (1998), θ̂(z0, κc) is the intercept α0 in solving the local linear likelihood

equation

0 =
n∑

i=1

Kh(Zi − z0)




1

(Zi − z0)/h





× Ψθ{Yi,∆i(β), α0 + α1(Zi − z0)/h, κc}. (2.5)

Here α1 is an estimate of hθ′(z0). At the solution, for any κ we have that

0 = E[Ψθ{Y,∆(β), θ(z0, κ), κ}]. (2.6)

2. Next we update κ with given θ̂(·, κc) by solving

0 =
n∑

i=1

Ψκ{Yi,∆i(βc), θ̂(Zi, κc), κ}, (2.7)

in κ.

We solve equations (2.5) and (2.7) iteratively until convergence to obtain the back-

fitting estimator κ̂ and the fitted function θ̂(·).

To get the starting value of κ in the iteration, we suggest to solve some naive

version of the problem. For example, we may pretend that there is no measurement

error and the nonparametric function is quadratic, that is, setting Σuu = 0 and

θ(Z) = θ0 + θ1Z + θ2Z
2. Then

E(Y |X,Z) = µ{XTβ + θ0 + θ1Z + θ2Z
2}.

Therefore, this naive version of the problem is simply a generalized linear model. So

it will be easy and quick to get a reasonable starting value.

2.3.1 Logistic Regression

When the response variable in the study is binary, logistic regression is a commonly

used model. We illustrate this sufficiency score method with logistic regression. Sup-
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pose that

Pr(Y = 1|X,Z) = H{XTβ + θ(Z)},

where H(x) = ex/(1+ex) is the logistic distribution function. For this model, a(φ) =

1, and the parameter of interest κ is reduced to β. Then, derived from (2.3) we have

Pr(Y = 1|∆ = δ) = H{θ(Z) + (δ − Σuuβ/2)Tβ}, and corresponding to (2.4) is the

logistic sufficiency score

Ψ{Y,∆(β), θ(Z), β} =




Ψθ(·)

Ψβ(·)





= [Y −H{θ(Z) + (∆(β) − Σuuβ/2)Tβ}]




1

∆(β) − Σuuβ



 ,

evaluated at ∆(β) = W + Y Σuuβ. It has an equivalent estimating equation given as

n∑

i=1

[Yi −H{θ(Z) + βT∆∗
i (β)}]




1

∆∗
i (β)



 = 0, (2.8)

where ∆∗
i (β) = ∆i(β) − Σuuβ/2. Conditioned on ∆∗

i (β), Yi is Bernoulli distributed

with mean H{θ(Z) + βT∆∗
i (β)}.

Therefore, given the current value βc the two-step iterative estimating equations

(2.5) and (2.7) are simplified as

0 =
n∑

i=1

Kh(Zi − z0)




1

(Zi − z0)/h





× [Yi −H{α0 + α1(Zi − z0)/h+ βT
c ∆∗

i (βc)}]; (2.9)

0 =
n∑

i=1

[Yi −H{θ̂(Zi, βc) + βT∆∗
i (βc)}]∆

∗
i (βc). (2.10)

It is easy to see that solving equation (2.9) in θ̂(z0, βc) = α0 is simply a logistic

regression problem with weights Kh(Zi − z0) and offsets βT
c ∆∗

i (βc). Similarly, solving
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equation (2.10) in β is a logistic regression problem with offsets θ̂(Zi, βc) but without

intercept, thus simplifying computation.

2.4 Asymptotic Results

In this section we describe the limiting distribution of κ̂ and θ̂(·). Let κ0 and θ0(·) be

the true parameter and function. Define argument (•) as {Y,∆(β0), θ0(Z), κ0} and

(•i) as {Yi,∆i(β0), θ0(Zi), κ0}. Also let Ψκθ(·) be the partial derivative of Ψκ(·) with

respect to the term θ(·) and similarly for Ψθθ(·), Ψθκ(·), etc. Also define

D(z) = E[{Ψθ∆(•)
∂∆

∂κ
+ Ψθκ(•)}|Z = z]/E{Ψθθ(•)|Z = z};

U(z) = E{Ψκθ(•)|Z = z}/E{Ψθθ(•)|Z = z};

F = E{
d

dκ
Ψκ(•)} = E{Ψκ∆(•)

∂∆

∂κ
+ Ψκκ(•) − Ψκθ(•)D(Z)},

where ∂∆/∂κ = (Y Σuu, 0) is independent of κ.

Lemma 2.4.1. The derivative of the curve θ(z, κ) satisfies

∂

∂κ
θ(z, κ) = −D(z).

Proof. The lemma follows by differentiating equation (2.6) with respect to κ and

solving the resulting equation.

Theorem 2.4.2. Assume that the bandwidth h satisfies nh4 → 0 and nh2/log2(n) →

∞. Then under the regularity conditions outlined in the Appendix A.1, the backfitting

estimator κ̂ has the asymptotic expansion

−Fn1/2(κ̂− κ0) = n−1/2

n∑

i=1

{Ψκ(•i) − Ψθ(•i)U(Zi)} + op(1). (2.11)

Hence n1/2(κ̂− κ0) is asymptotically normally distributed with mean zero and covari-

ance matrix F−1ΣF−T, where Σ = cov{Ψκ(•) − Ψθ(•)U(Z)}.
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Remark. The condition nh4 → 0 is typically necessary for the backfitting method.

From the proof in the Appendix A we can see this undersmoothing of θ(·) is a direct

result of the bias of the nonparametric regression estimator, which is of order O(h2).

In order for (2.11) to hold, we used n1/2h2 → 0, i.e., nh4 → 0. The proof of Theorem

2.4.2 is given in Appendix A.3.

Consistent estimators of F and Σ can be constructed as follows. Define argu-

ment (•̂i) as {Yi,∆i(β̂), θ̂(Zi, κ̂), κ̂}. First we estimate the conditional expectations

in the definitions by fitting smooth functions of Z, e.g., E{Ψθθ(•)|Z} is estimated

by fitting a smooth function with responses Ψθθ(•̂i) and predictors Zi using kernel

regression. Then we obtain D̂(z) and Û(z) for z = Z1, · · · , Zn by plugging in the

ratio of estimated conditional expectations. Because all the kernel regressions result

in consistent estimation, a consistent estimator of F is

F̂ = n−1

n∑

i=1

{Ψκ∆(•̂i)
∂∆

∂κ
+ Ψκκ(•̂i) − Ψκθ(•̂i)D̂(Zi)}.

Further a consistent estimator of Σ is the sample covariance matrix of the terms

Ψκ(•̂i) − Ψθ(•̂i)Û(Zi).

The consistency of the estimators of F and Σ follows because of the uniformly con-

sistency of the nonparametric function estimators.

Theorem 2.4.3. Under the regularity conditions outlined in the Appendix A.1, the

fitted function θ̂(z, κ0) has the asymptotic expansion

θ̂(z, κ0) − θ0(z) =
h2

2
θ′′0(z) −

n−1
∑n

i=1Kh(Zi − z)Ψθ(•i)

fz(z)E[Ψθθ(•)|Z = z]
+ op(n

−1/2).

Thus, the asymptotic bias and variance of θ̂(z, κ0) are

E{θ̂(z, κ0)} − θ0(z) =
h2

2
θ′′0(z) + o(h2),

var{θ̂(z, κ0)} =
g

nhfz(z)

var{Ψθ(•)|Z = z}

E2{Ψθθ(•)|Z = z}
+ o{(nh)−1},
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where g =
∫
K2(s)ds.

The proof of Theorem 2.4.3 is given in Appendix A.2.

2.5 Data Analysis

In this section, we applied our methods to the Framingham Heart Study data, which

has a long history in measurement error modeling, see Carroll et al. (2006) for a

review. In this study, the response variable Y is the indicator of first evidence of

coronary heart disease (CHD) occurring at Exam 3 through Exam 6. We use the

age as our covariate Z under a linear transformation to range (0, 1). Another good

covariate in this study is the systolic blood pressure. Since it is impossible to measure

the long-term systolic blood pressureX, we treat the systolic blood pressure measured

at Exam 3 as the observed covariateW . The difference between the long-term systolic

blood pressure X and the single-visit W is due to the daily and seasonal variation of

the blood pressure. We also apply a standard transformation to the raw measurements

as

W = log(Wraw − 50) − mean{log(Wraw − 50)},

such that the measurement error U is normally distributed with mean zero and vari-

ance Σuu. Carroll et al. (2006) estimate Σuu = 0.0126 based on 1,615 degrees of

freedom, so we consider Σuu as known in this analysis. We choose the Epanechnikov

kernel function, apply equation (2.8) and solve β̂ and θ̂(·) iteratively by equations (2.5)

and (2.7). Theorem 2.4.2 is used to estimate the standard error of β and to determine

the bandwidth level. Framingham study has 1,615 subjects. Since 1615−1/4 ≈ 0.2,

We choose several bandwidths around h = 0.2 for the analysis.

The estimates of β’s and the standard errors for different bandwidths are sum-

marized in Table 1. We can see for all these bandwidths the estimated β̂ is close to

2.00. Also, the estimated standard error is around 0.45 and it is roughly independent
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Table 1: Framingham data parameter estimation. Estimates β̂ and the standard
errors for different bandwidth h.

Bandwidth h Estimate β̂ Standard Error
0.1 2.06 0.45
0.2 2.00 0.45
0.3 2.00 0.45
0.4 2.08 0.46
0.5 2.14 0.47

of the bandwidth. The estimated function θ̂(·) is somewhat curved. See Figure 1 for

the curve for bandwidth h = 0.2. Note that we transform variable age back to the

original value.

2.6 Simulation Study

In our simulation study, we construct a framework which is similar to the Framingham

data analyzed in Section 2.5 above. We assume that the true disease status Y follows a

logistic relationship by Pr(Y = 1|X,Z) = H{Xβ+θ(Z)}. We set the true parameter

β = 2.0 and the true function θ(z) = −4.15 + 4.60z − 2.35z2. The reason we use

this quadratic function is because the curve of this function in the range (0, 1) is

close to the θ̂(·) curve in the Framingham data analysis. Also, the transformed

age Z and the measurement error variance Σuu are set exactly the same as those

in Framingham data. The true transformed blood pressure X is set to the average

of the measurements of Exam 2 and Exam 3. In a single simulation, we randomly

generate disease status Y using the Bernoulli distribution with success probability

H{Xβ + θ(Z)}, and the measured transformed blood pressure W using the normal

distribution with mean X and variance Σuu. We obtain the estimate β̂ and the

standard error SE using the proposed method. Then we construct a 95% confidence

interval of β as β̂ ± (1.96)SE and record whether this interval covers the true β

or not. We ran 1,000 simulations and calculated the coverage probability and the
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Figure 1: Framingham data function fits. Estimated function θ̂(age) versus age for
bandwidth h = 0.2.

standard errors. Similar to the real data analysis, we selected several bandwidths

around h = 0.2. We also compared the results with those using a naive method. The

naive method simply assumed that there is no measurement error, i.e., Σuu = 0. The

results were summarized in Table 2.

From Table 2 we can see that the coverage probability for β using proposed

method is very close to the nominal level 0.95, much better than those using the

naive method. Also, the Monte Carlo standard error of the β̂ is very close to the

sample mean of the estimated standard error of β̂ using Theorem 2.4.2 for all the

bandwidths, indicating the effectiveness of our method for standard error estimation.

The results of the nonparametric function estimation θ̂(·) are as expected. When the

bandwidth is too small, the curves become rougher (h ≤ 0.1), while there is little
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Table 2: Simulation results. Coverage probability of 95% confidence intervals of β
using naive method and proposed method, Monte Carlo SE of all β̂’s and the average
of the estimated SE of each β̂ for different bandwidth h.

Bandwidth h Naive % Proposed % SE of β̂’s SE(β̂)
0.05 0.88 0.94 0.50 0.47
0.1 0.84 0.95 0.48 0.46
0.2 0.87 0.95 0.48 0.46
0.3 0.88 0.95 0.48 0.47
0.4 0.89 0.95 0.48 0.47
0.5 0.89 0.94 0.49 0.47

effect for h ≥ 0.2. We use h = 0.2 for illustration. Note, however, that as explained

above, the bandwidth has little effect on the estimate of β. A plot of the mean θ̂(·)

over the 1,000 simulations with the true function θ(·) is in Figure 2. As we expect,

they are very similar.

2.7 Discussion

In this chapter, we have developed a backfitting method for generalized partially linear

models with independent normal measurement error. The estimating equations are

constructed in (2.5) and (2.7). The main asymptotic results about the parameters are

summarized in Theorem 2.4.2 and 2.4.3. In Appendix A we showed in detail that the

undersmoothing is needed for backfitting. We applied our method to Framingham

Heart Study and a simulation study and the results verified our methodology very

well. The main advantage of this method is the simple therefore fast computation

and the relatively clean asymptotic theorem.

In many cases, we will have replicate measurements. Suppose that there are

mi ≥ 1 replications for subject i, and denote δi = I(mi ≥ 2). Let sui be the sample

covariance matrix for subject i. Then an unbiased estimating equation for Σuu is

0 =
n∑

i=1

δi(sui − Σuu). (2.12)



18

30 35 40 45 50 55 60 65

−5
.0

−4
.5

−4
.0

−3
.5

−3
.0

−2
.5

−2
.0

−1
.5

Age

Figure 2: Function fits for simulation. The solid line is the average of the estimated

function θ̂(age) over 1000 simulations, while the dashed line is the true function.

Thus, to allow for estimation of the measurement error covariance matrix, one merely

appeals (2.12) to equations (2.5) and (2.7). In the future more research is needed to

address this issue.
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CHAPTER III

COMBINED LINKAGE AND ASSOCIATION MAPPING OF QUANTITATIVE

TRAIT LOCI WITH MISSING GENOTYPE DATA

3.1 Introduction

In disease gene mapping, linkage analysis and linkage disequilibrium mapping (or

association study) can be carried out. Linkage analysis is based on pedigree data,

and association study can be based on either population data or pedigree data or

combinations of population and pedigree data. Linkage analysis is robust to pop-

ulation structure, and is appropriate for low resolution genetic mapping to localize

trait loci to broad chromosome regions within a few centiMorgan (cM). In contrast

to linkage analysis, association study for genetic traits is useful in high resolution of

gene mapping, i.e., fine disease gene mapping; however, association study is prone

to population structure and the false positives can be high. In recent years, there

has been great interest in carrying out combined linkage and association mapping of

complex genetic traits (Li, Boehnke, and Abecasis, 2005; Xiong and Jin, 2000). The

combined analysis of linkage and association can take the advantage of the robustness

of linkage analysis, and the high resolution of association study. In addition, it may

minimize the limits of each.

However, there is limited research to investigate the impact of missing data on

our models. In genetics study, the genotypes or phenotypes can be missing due to

various reasons. It is important to develop models which account for missing data.

In this chapter, we are going to develop models which account for missing data, and

to investigate the impact of missing genotypes on combined linkage and association

mapping of QTL. Two regression models, “genotype effect model” and “additive effect
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model”, are proposed to model the association between the markers and the trait

locus when there are missing genotypes. Based on the two models, F-test statistics

or likelihood ratio test statistics can be used to test association between the QTL

and markers. We will investigate the impact of missing data on the models, under

an assumption that the genotype data are missing completely at random (MCAR).

Simulation study will be performed to evaluate the robustness of the proposed models,

and to make comparison with models which exclude the individuals with missing

genotypes from analysis. In addition, the method will be applied to analyze the

angiotensin-1 converting enzyme data (Farrall et al., 1999; Keavney et al., 1998).

3.2 Models

Consider a quantitative trait locus Q, which is located at an autosome. Suppose that

there are two alleles Q1 and Q2 at the trait locus with frequencies q1 and q2, respec-

tively. In a region of the QTL Q, suppose that one marker or multiple markers are

typed for a sample; and the sample may include multi-generation pedigrees of any

sizes and any types of relatives, nuclear families, sibships and unrelated individuals.

However, the marker information may be missing for some individuals of the sample

at some markers. That is to say, some genotype information may not be available

for some individuals. In multiple marker case, the genotypes of an individual may be

missing at some markers and may be available at the other markers. In this chapter,

we assume that the genotype data are missing completely at random (MCAR) (Little

and Rubin, 2002), i.e., the missingness does not depend on the genotype and pheno-

type data. In the following, we first present the models by one marker, and extend

to use two/multiple markers in analysis.
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3.2.1 Log-likelihoods and Mapping Strategy

Suppose that the data are composed of a combination of N unrelated individuals and

I independent families. The I families can be multi-generation pedigrees, nuclear

families, sibships, or their combinations. Let us list the log-likelihoods of the N indi-

viduals by L1, · · · , LN , and the log-likelihoods of the I families by LN+1, · · · , LN+I .

The overall log-likelihood is L =
∑N+I

i=1 Li. In the i-th family, let ti be the total

number of individuals who are listed as j = 1, 2, · · · , ti; each individual j is pre-

ceded by all his/her ancestors. Let us denote the quantitative traits of i-th family

by a vector yi = (yi1, yi2, · · · , yiti)
T. In addition, assume that marker genotypes are

either available or missing for a family member. The log-likelihood is defined by

Li = − ti
2
log(2π) − 1

2
log|Σi| −

1
2
(yi − Xiφ)TΣ−1

i (yi − Xiφ), under the assumption of

multivariate normality. In the log-likelihood, Σi is the variance-covariance matrix

which is defined in the paragraph below; Xi is a model matrix defined in Subsections

3.2.2 and 3.2.3, and φ is a column vector of regression coefficients related to the model

matrix.

Σi is a ti × ti matrix defined as

Σi =





1 ρ12 · · · ρ1ti

ρ12 1 · · · ρ2ti

...
... · · ·

...

ρ1ti ρ2ti · · · 1





σ2,

where σ2 = σ2
g + σ2

Ga + σ2
e , σ

2
g is variance explained by the putative QTL Q, σ2

Ga is

polygenic additive variance, and σ2
e is error variance. The genetic variance σ2

g = σ2
ga +

σ2
gd is decomposed into additive and dominance components. As in the traditional

quantitative genetics, let a be the effect of genotype Q1Q1, d be the effect of genotype

Q1Q2, and −a be the effect of genotype Q2Q2 (Falconer and Mackay, 1996). Let αQ =
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a+(q2−q1)d be the average effect of gene substitution, and δQ = 2d be the dominance

deviation. In addition, let µ = a(q1 − q2) + 2dq1q2 be the aggregate effect of the QTL

on the trait mean in the population. It is well known that the additive variance σ2
ga =

2q1q2α
2
Q and the dominance variance σ2

gd = (q1q2)
2δ2

Q. ρjk = (πjkQσ
2
ga + ∆jkQσ

2
gd +

2Φjkσ
2
Ga)/σ

2 is correlation between the j-th individual and the k-th individual of the

family, where πjkQ is the proportion of alleles shared identically by descent (IBD)

at QTL Q by the j-th and the k-th individuals, ∆jkQ is the probability that both

alleles at QTL Q shared by the j-th and the k-th individuals are IBD, and Φjk is

the kinship coefficient of individuals j and k. πjkQ and ∆jkQ are usually estimated

by marker information (Amos, 1994; Amos and Elston, 1989). The recombination

fractions between the genotyped markers and the unobserved QTL are contained in

the estimations of πjkQ and ∆jkQ. Hence, linkage information is modeled in variance-

covariance matrix.

For the N unrelated individuals, the log-likelihoods are Li = −1
2
log(2πσ2) −

1
2σ2 (yi1 −Xiφ)T(yi1 −Xiφ), i = 1, · · · , N. Here, yi1 is the trait value of the i-th indi-

vidual. It can be seen that no linkage information is contained in the log-likelihoods

of the N unrelated individuals. The linkage is modeled solely in variance-covariance

matrices of the I families. Therefore, family data can be used for linkage analysis. In

Subsections 3.2.2 and 3.2.3, we will show that linkage disequilibrium information is

contained in the regression coefficients φ. Thus, linkage disequilibrium information is

contained in both population data and family data. The linkage analysis can usually

locate the trait locus in a broad chromosome region within a few cM or even around

15cM. Linkage analysis is less sensitive to population structures of subdivisions and

admixtures, although its resolution can be low. In contrast, the linkage disequilib-

rium analysis has an advantage for high resolution mapping of trait locus, but can

be prone to false positives. In practice, linkage analysis can be performed as the first
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step of analysis to obtain suggestive linkage information. With evidence of suggestive

linkage from linkage study, population data and family data can be combined together

for linkage disequilibrium analysis for fine mapping of QTL. Using this strategy to

map the trait locus, one may take advantage of both linkage analysis and linkage

disequilibrium mapping, and be more likely to avoid the spurious association.

3.2.2 Mixed Effect Models by One Marker

In a region of the QTL Q, suppose that one marker A is typed, which may be di-

allelic or multi-allelic. Let us denote the alleles of marker A by A1, · · · , Am, where m

is the number of alleles. Suppose that the marker A is in Hardy-Weinberg equilibrium

(HWE). Let the frequency of Ag be PAg
, g = 1, 2, · · · ,m. Consider the j-th pedigree

member of the i-th family with trait value yij and genotype GAij. If the genotype

GAij is not missing, there are JA = m(m + 1)/2 possibilities for GAij, which can be

listed as A1A1, · · · , AmAm, A1A2, · · · , A1Am, · · · , Am−1Am. In practice, the genotype

GAij can be missing. Therefore, the genotype GAij can be one of the JA genotypes

if it is not missing and can be missing. If GAij is missing, we denote it by GAij =?;

and if GAij is not missing, we denote it by GAij 6=?, i.e., the complementary set

of GAij =?. Let us denote the probability that the genotype GAij is missing by

εA, i.e., P (GAij =?) = εA. Notice that P (GAij 6=?) = 1 − εA. In addition, let

P (GAij = AgAh|GAij =?) or P (GAij = AgAh|GAij 6=?) be the conditional probability

of genotype AgAh given GAij =? or GAij 6=?. Since the missing mechanism is MCAR,

the probability

P (GAij = AgAh|GAij =?) = P (GAij = AgAh|GAij 6=?)

= P (AgAh) =






P 2
Ag

if g = h

2PAg
PAh

if g 6= h

.
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Genotype Effect Model. For the listed JA genotypes, let β11, · · · , βmm, β12,

· · · , β1m, · · · , βm−1,m be the corresponding effects on quantitative trait. The “geno-

type effect model” can be written as

yij = wijγ +
∑

1≤g≤h≤m

[1(GAij=AgAh) + P (GAij = AgAh|GAij =?)1(GAij=?)]βgh

+Hij + eij

= wijγ +
∑

1≤g≤h≤m

[1(GAij=AgAh) + P (AgAh)1(GAij=?)]βgh +Hij + eij, (3.1)

where 1E =






1 if E is true

0 else

is indicator function, wij is a row vector of co-variates

such as sex and age, γ is a column vector of regression coefficients of wij , Hij is

polygenic additive effect, and eij is the error term. Assume that Hij is random normal

N(0, σ2
Ga), and eij is normal N(0, σ2

e). In addition, γ and βgh are fixed effect. Hence,

model (3.1) is a mixed effect model (Pinherio and Bates, 2000). The contribution of

polygenic additive effect to the variance-covariance matrix Σi is from the terms which

contain σ2
Ga.

Now let us show that model (3.1) extends the “genotype effect model” in Fan

et al. (2006). If the genotype is not missing and GAij = AgAh, the model (3.1)

becomes yij = wijγ + βgh + Hij + eij , which is similar to “genotype effect model”

(1), Fan et al. (2006). Note that the polygenic additive effect Hij is not modeled in

Fan et al. (2006). Since only population data are used in Fan et al. (2006), polygenic

effect is not modeled to avoid redundancy and the models therein are fixed effect

models. In this chapter, the polygenic effect is modeled as random effect and so the

models are mixed effect models. Since we use both population data and family data,

the polygenic additive effect is assumed to be estimable.

If GAij =? is missing, the model (3.1) is yij = wijγ +
∑

1≤g≤h≤m P (AgAh)βgh +
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Hij +eij, which uses the conditional probability P (GAij = AgAh|GAij =?) = P (AgAh)

as the weight to model the effect βgh of genotype AgAh. Let us denote

x
(gh)
Aij = 1(GAij=AgAh) + P (AgAh)1(GAij=?), (3.2)

which can be thought as the expected number of genotype AgAh given observed

genotype GAij at marker A. The “genotype effect model” (3.1) can be re-written as

yij = wijγ +
∑

1≤g≤h≤m x
(gh)
Aij βgh +Hij + eij. Here, we add the polygenic effect to the

model proposed in Fan et al. (2006). Based on “genotype effect model” (3.1), we

may get the model matrix Xi and regression coefficient vector φ as follows: φ =

(γT, β11, · · · , βmm, β12, · · · , β1m, · · · , βm−1,m)T and Xi = (XAi1, · · · , XAiti)
T, where

XAij = (wij , x
(11)
Aij , · · · , x

(mm)
Aij , x

(12)
Aij , · · · , x

(1m)
Aij , · · · , x

(m−1,m)
Aij )T, j = 1, 2, · · · , ti.

Additive Effect Model. Assume that the genetic effect is additive, i.e., βgh =

αg +αh, where αg is effect of allele Ag. The “additive effect model” can be written as

yij = wijγ +
∑

1≤g≤h≤m

[1(GAij=AgAh) + P (AgAh)1(GAij=?)](αg + αh) +Hij + eij. (3.3)

If the genotype is not missing and GAij = AgAh, the model (3.3) becomes yij =

wijγ + αg + αh + Hij + eij, which is similar to “additive effect model”, Fan et al.

(2006). Therefore, model (3.3) extends the “additive effect model”, Fan et al. (2006).

If GAij =? is missing, the model (3.3) is

yij = wijγ +
∑

1≤g≤h≤m

P (AgAh)(αg + αh) +Hij + eij

= wijγ +
m∑

g=1

PAg
αg +

m∑

h=1

PAh
αh +Hij + eij

= wijγ +
m∑

g=1

2PAg
αg +Hij + eij .

Note that 2PAg
= 2P (GAij = AgAg|GAij =?) +

∑
h6=g P (GAij = AgAh|GAij =?) is the

expected number of alleles Ag given GAij =?, which is the weight to model the effect
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αg of allele Ag. Let us denote

x
(g)
Aij = 2 · 1(GAij=AgAg) +

∑

h6=g

1(GAij=AgAh) + 2PAg
1(GAij=?), (3.4)

which is the expected number of alleles Ag given observed genotype GAij at marker

A. From the discussion above, we may re-write the “additive effect model” (3.3) as

yij = wijγ+
∑m

g=1 x
(g)
Aijαg +Hij + eij. Again, we add the polygenic effect to the model

proposed in Fan et al. (2006). Based on “additive effect model” (3.3), we may get the

model matrix Xi and regression coefficient vector φ as follows: φ = (γT, α1, · · · , αm)T

and Xi = (ZAi1, · · · , ZAiti)
T, where ZAij = (wij, x

(1)
Aij, · · · , x

(m)
Aij )

T, j = 1, 2, · · · , ti.

Property of Model Coefficients. For g = 1, 2, · · · ,m, let us denote DAgQ =

P (Q1Ag) − q1PAg
, which are measures of LD between QTL Q and marker A. Here,

P (Q1Ag) is the frequency of haplotype Q1Ag. In Appendix B.1, the regression coef-

ficients of “genotype effect model” (3.1) are calculated as

βgh = µ+ αQ[DAgQ/PAg
+DAhQ/PAh

] − δQDAgQDAhQ/[PAg
PAh

]. (3.5)

In Appendix B.2, we will show that the regression coefficients of “additive effect

model” (3.3) are given by

αg = µ/2 + αQDAgQ/PAg
. (3.6)

Notice that relations (3.5) and (3.6) are exactly the same as those of Fan et al.

(2006). Assume that the additive effect is significantly present, but the dominance

effect is not significantly present, i.e., αQ 6= 0 but δQ = 0. To test association between

the marker A and the QTL Q, one may test hypotheses Ha0 : α1 = · · · = αm vs. Ha1:

at least two αg’s are not equal. On the other hand, assume that both additive and

dominance effects are significantly present at the putative QTL Q, i.e., αQ 6= 0 and

δQ 6= 0. To test association between the marker A and the QTL Q, one may test



27

hypotheses Had0 : β11 = · · · = βmm = β12 = · · · = β1m = · · · = βm−1,m vs. Had1: at

least two βgh are not equal.

F -tests and Noncentrality Parameter Approximations. Assume that

there are no covariates. Let us denote X = (XT
1 , · · · , X

T
N , X

T
N+1, · · · , X

T
N+I)

T, Y =

(y11, · · · , yN1,y
T
N+1, · · · ,y

T
N+I)

T, H = (H11, · · · , HN1,H
T
N+1, · · · ,H

T
N+I)

T, and e =

(e11, · · · , eN1, e
T
N+1, · · · , e

T
N+I)

T. Here, Hi = (Hi1, · · · , Hiti)
T and ei = (ei1, · · · ,

eiti)
T, i = N + 1, · · · , N + I. Then “genotype effect model” (3.1) or “additive effect

model” (3.3) can be expressed as Y = Xφ +H + e. Let Σ̂i and φ̂ be the maximum

likelihood estimations of Σi and φ. By standard regression theory, the coefficients can

be estimated by φ̂ = [
∑N+I

i=1 XT
i Σ̂−1

i Xi]
−1

∑N+I
i=1 XT

i Σ̂−1
i yi.

For “genotype effect model” (3.1), denote regression coefficient vector η = (β11,

· · · , βmm, β12, · · · , β1m, · · · , βm−1,m)T. Let us define a (JA − 1) × JA matrix by

T =





1 −1 0 0 · · · 0 0 0

1 0 −1 0 · · · 0 0 0

1 0 0 −1 · · · 0 0 0

...
...

...
... · · ·

...
...

...

1 0 0 0 · · · 0 −1 0

1 0 0 0 · · · 0 0 −1





(JA−1)×JA

.

Then, (Tη)T = (β11 −β22, · · · , β11 −βmm, β11 −β12, · · · , β11 −β1m, · · · , β11 −βm−1,m).

Hence, the hypothesis Had0 is equivalent to Tη = (0, · · · , 0)T. By Graybill (1976),

Chapter VI, the test statistic of a hypothesisHad0 is noncentral F (JA−1,
∑N+I

i=1 ti−JA)

defined by

Fm,ad =
(T η̂)T[T (XTΣ̂−1X)−1TT]−1(T η̂)

Y T[Σ̂−1 − Σ̂−1X(XTΣ̂−1X)−1XTΣ̂−1]Y

∑N+I
i=1 ti − JA

JA − 1
,

where Σ = diag(Σ1, · · · ,ΣN+I) is the overall variance-covariance matrix with matrices

Σi on the diagonal, and Σ̂ is its maximum likelihood estimation. The noncentrality



28

parameter of above F -statistic is

λm,ad = (Tη)T[T (XTΣ−1X)−1TT]−1(Tη) = (Tη)T[T (
N+I∑

i=1

XT
i Σ−1

i Xi)
−1TT]−1(Tη).

Assume that the dataset is a population sample, i.e., I = 0. Under the assump-

tion of large sample size N , we show in Appendix B.3 the following approximation

λm,ad ≈
N(1 − εA)

σ2

[
σ2

gaR
2
AQ + σ2

gdR
4
AQ

]
, (3.7)

where R2
AQ is a general measure of the degree of linkage disequilibrium between marker

A and the QTL Q defined by R2
AQ =

∑m
g=1

∑2
s=1[P (QsAg)−PAg

qs]
2/[PAg

qs] (Hedrick,

1987; Sham et al., 2000). Notice that R2
AQ is the χ2 statistic of the m × 2 table of

haplotype frequencies of the marker A and trait locus Q. Approximation (3.7) shows

that the noncentrality parameter λm,ad is reduced by a factor of 1− εA. If there is no

missing genotype data, i.e., εA = 0, approximation (3.7) is exactly the same as that

of the “genotype effect model” in Fan et al. (2006). In the presence of missing data,

the model developed extends our previous work. In addition, λm,ad is reduced by a

factor of R2
AQ for additive variance σ2

ga, and a factor of R4
AQ for dominance variance

σ2
gd.

For “additive effect model” (3.3), denote ψ = (α1, · · · , αm)T. Let K be a (m −

1) ×m matrix defined by

K =





1 −1 0 0 · · · 0 0 0

1 0 −1 0 · · · 0 0 0

1 0 0 −1 · · · 0 0 0

...
...

...
... · · ·

...
...

...

1 0 0 0 · · · 0 −1 0

1 0 0 0 · · · 0 0 −1





(m−1)×m

.
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Then, (Kψ)T = (α1 − α2, · · · , α1 − αm). Hence, the hypothesis Ha0 is equivalent to

Kψ = (0, · · · , 0)T. By Graybill (1976), Chapter VI, the test statistic of the hypothesis

Ha0 is noncentral F (m− 1,
∑N+I

i=1 ti −m) defined by

Fm,a =
(Kψ̂)T[K(XTΣ̂−1X)−1KT]−1(Kψ̂)

Y T[Σ̂−1 − Σ̂−1X(XTΣ̂−1X)−1XTΣ̂−1]Y

∑N+I
i=1 ti −m

m− 1
.

Here, the model matrix X is built from the “additive effect model” (3.3). The noncen-

trality parameter of above F -statistic is λm,a = (Kψ)T[K(XTΣ−1X)−1KT]−1(Kψ).

Assume that the dataset is a population sample, i.e., I = 0. Under an assumption

of large sample size N , we show in Appendix B.4 the following approximation

λm,a =
1

σ2
(Kψ)T

[
K(XTX)−1KT

]−1

(Kψ) ≈
N(1 − εA)σ2

ga

σ2
R2

AQ. (3.8)

Again, the approximation (3.8) shows that the noncentrality parameter λm,a is re-

duced by a factor of 1 − εA. If there is no missing genotype data, i.e., εA = 0,

approximation (3.8) is exactly the same as that of the “additive effect model” in Fan

et al. (2006). Besides, λm,a is reduced by a factor of R2
AQ for additive variance. The

dominance variance is not present in λm,a.

3.2.3 Mixed Effect Models by Two Markers

In addition to marker A, assume that a second marker B is typed, which has n alleles

denoted by B1, · · · , Bn. Suppose that the marker B is also in HWE. Let the frequency

of allele Bk be PBk
, k = 1, 2, · · · , n. There are JB = n(n + 1)/2 possible genotypes,

which can be listed as B1B1, · · · , BnBn, B1B2, · · · , B1Bn, · · · , Bn−1Bn. Let yij be

the trait value of the j-th pedigree member of the i-th family with genotype GAij at

marker A and genotype GBij at marker B. Such as GAij discussed above, GBij can

be missing. If GBij is missing, we denote it as GBij =?; and if GBij is not missing, we

denote it by GBij 6=?. Let us denote the probability that the genotype GBij is missing

by εB, i.e., P (GBij =?) = εB. Notice that P (GBij 6=?) = 1 − εB. In addition, let
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P (GBij = BkBl|GBij =?) or P (GBij = BkBl|GBij 6=?) be the conditional probability

of genotype BkBl given GBij =? or GBij 6=?. Since the missing mechanism is MCAR,

the probability

P (GBij = BkBl|GBij =?) = P (GBij = BkBl|GBij 6=?)

= P (BkBl) =






P 2
Bk

if k = l

2PBk
PBl

if k 6= l

.

Such as relations (3.4) to define x
(g)
Aij, let us denote the expected number of alleles Bk

given the observed genotype GBij at marker B

x
(k)
Bij = 2 · 1(GBij=BkBk) +

∑

l 6=k

1(GBij=BkBl) + 2PBk
1(GBij=?). (3.9)

The “additive effect model” (13) of Fan et al. (2006) can be extended to

yij = wijγ + α +
m−1∑

g=1

x
(g)
AijαAg +

n−1∑

k=1

x
(k)
BijαBk +Hij + eij, (3.10)

where wij and γ are the same as those in model (3.1), and α, αAg, and αBk are

regression coefficients. To understand that model (3.10) extends model (13) of Fan

et al. (2006), consider the four possible cases as follows.

Case 1: both genotype GAij and GBij are not missing, model (3.10) is similar to

(13) of Fan et al. (2006). In model (3.10), we model the polygenic effect, which is not

modeled in Fan et al. (2006).

Case 2: both genotypes GAij =? and GBij =? are missing, model (3.10) becomes

yij = wijγ + α+ 2
m−1∑

g=1

PAg
αAg + 2

n−1∑

k=1

PBk
αBk +Hij + eij .

Case 3: genotype GAij is not missing and genotype GBij is missing, (3.10) be-
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comes

yij = wijγ + α +
m−1∑

g=1

[
2 · 1(GAij=AgAg) +

∑

h6=g

1(GAij=AgAh)

]
αAg

+2

n−1∑

k=1

PBk
αBk +Hij + eij .

Case 4: genotype GAij is missing and genotype GBij is not missing, (3.10) be-

comes

yij = wijγ + α + 2
m−1∑

g=1

PAg
αAg

+
n−1∑

k=1

[
2 · 1(GBij=BkBk) +

∑

l 6=k

1(GBij=BkBl)

]
αBk +Hij + eij .

To extend the “genotype effect model” (14) of Fan et al. (2006), let us denote

z
(gh)
Aij = −P 2

Ah
1(GAij=AgAg) + PAg

PAh
1(GAij=AgAh) − P 2

Ag
1(GAij=AhAh),

z
(kl)
Bij = −P 2

Bl
1(GBij=BkBk) + PBk

PBl
1(GBij=BkBl) − P 2

Bk
1(GBij=BlBl). (3.11)

If the genotypes GAij and GBij are not missing, the variables x
(g)
Aij, x

(k)
Bij , z

(gh)
Aij and z

(kl)
Bij

are the same as those defined in Fan et al. (2006). If the genotype GAij or GBij

is missing, x
(g)
Aij or x

(k)
Bij is simply the expected number 2PAg

or 2PBk
of alleles Ag

or Bk, and z
(gh)
Aij or z

(kl)
Bij is 0. The reason that z

(gh)
Aij is 0 on GAij =? is as follows:

−P 2
Ah
P (GAij = AgAg|GAij =?) + PAg

PAh
P (GAij = AgAh|GAij =?) − P 2

Ag
P (GAij =

AhAh|GAij =?) = 0; the same reasoning applies to z
(kl)
Bij . The “genotype effect model”

(14) of Fan et al. (2006) can be extended to

yij = wijγ + α+
m−1∑

g=1

x
(g)
AijαAg +

n−1∑

k=1

x
(k)
BijαBk

+
∑

1≤g<h≤m

z
(gh)
Aij δAgh +

∑

1≤k<l≤n

z
(kl)
Bij δBkl +Hij + eij , (3.12)

where δAgh and δBkl are regression coefficients of variables z
(gh)
Aij and z

(kl)
Bij , respectively;

other terms are the same as those of model (3.10).
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In the following, we are going to show that model (3.12) extends model (14) of

Fan et al. (2006). In total, there are four cases as follows.

Case 1: both genotype GAij and GBij are not missing, model (3.12) is similar to

(14) of Fan et al. (2006). Here, we add the polygenic additive effect to the model.

Case 2: both genotypes GAij =? and GBij =? are missing, model (3.12) becomes

yij = wijγ + α+ 2
m−1∑

g=1

PAg
αAg + 2

n−1∑

k=1

PBk
αBk +Hij + eij .

Case 3: genotype GAij is not missing and genotype GBij is missing, (3.12) be-

comes

yij = wijγ + α +

m−1∑

g=1

[
2 · 1(GAij=AgAg) +

∑

h6=g

1(GAij=AgAh)

]
αAg

+2
n−1∑

k=1

PBk
αBk +

∑

1≤g<h≤m

z
(gh)
Aij δAgh +Hij + eij .

Case 4: genotype GAij is missing and genotype GBij is not missing, (3.12) be-

comes

yij = wijγ + α+ 2
m−1∑

g=1

PAg
αAg

+
n−1∑

k=1

[
2 · 1(GBij=BkBk) +

∑

l 6=k

1(GBij=BkBl)

]
αBk +

∑

1≤k<l≤n

z
(kl)
Bij δBkl +Hij + eij .

Denote XAij = (x
(1)
Aij, · · · , x

(m−1)
Aij )T, XBij = (x

(1)
Bij, · · · , x

(n−1)
Bij )T, and X

(ij)
A∪B =

(XT
Aij, X

T
Bij)

τ . Let us denote the additive variance-covariance matrix of the indicator

variables x
(g)
Aij, x

(k)
Bij by

VA = cov(X
(ij)
A∪B, X

(ij)
A∪B) = E(X

(ij)
A∪B(X

(ij)
A∪B)τ ) − EX

(ij)
A∪BE(X

(ij)
A∪B)T.

Similarly, let ZAij = (z
(12)
Aij , · · · , z

(1m)
Aij , z

(23)
Aij , · · · , z

(2m)
Aij , · · · , z

(m−1,m)
Aij )T, ZBij = (z

(12)
Bij ,

· · · , z(1n)
Bij , z

(23)
Bij , · · · , z

(2n)
Bij , · · · , z

(n−1,n)
Bij )T, and Z

(ij)
A∪B = (ZT

Aij, Z
T
Bij)

τ . Let us denote the
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dominance variance-covariance matrix of the indicator variables z
(gh)
Aij , z

(kl)
Bij by VD =

cov(Z
(ij)
A∪B, Z

(ij)
A∪B). The elements of matrices VA and VD are provided in Appendix B.5.

For k = 1, 2, · · · , n, let us denote DBkQ = P (Q1Bk)− q1PBk
, which are measures

of LD between QTL Q and marker B. Here, P (Q1Bk) is the frequency of haplotype

Q1Bk. In Appendix B.5, we show that the regression coefficients of models (3.10) and

(3.12) are





αA1

...

αA(m−1)

αB1

...

αB(n−1)





= (VA/2)−1





DA1Q(1 − εA)

...

DAm−1Q(1 − εA)

DB1Q(1 − εB)

...

DBn−1Q(1 − εB)





αQ;





δA12

...

δA(m−1)m

δB12

...

δB(n−1)n





= V −1
D





[PA2
DA1Q − PA1

DA2Q]2(1 − εA)

...

[PAm−1
DAmQ − PAm

DAm−1Q]2(1 − εA)

[PB2
DB1Q − PB1

DB2Q]2(1 − εB)

...

[PBn−1
DBnQ − PBn

DBn−1Q]2(1 − εB)





δQ. (3.13)

Equations (3.13) show that the parameters of LD (i.e., DAgQ and DBkQ) and gene

effect (i.e., αQ and δQ) are contained in the regression coefficients. Models (3.10) and

(3.12) simultaneously take care of the LD and the effects of the putative trait locus

Q. The gene substitution effect αQ is contained only in αAg, αBk; and the dominance

effect δQ is contained only in δAgh, δBkl. Therefore, VA is called an additive variance-

covariance matrix; and VD is called a dominance variance-covariance matrix. The

model (3.12) orthogonally decomposes genetic effect into summation of additive and
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dominance effects.

Based on equations (3.13), we may use models (3.10) and (3.12) to test the

association between the trait locus Q and the two markers A and B. Assume that

the additive genetic effect is significantly present, but the dominance genetic effect

is not significantly present, i.e., αQ 6= 0 but δQ = 0. To test association between

the markers A & B and the QTL Q, one may test hypotheses HABa0 : αA1 = · · · =

αA(m−1) = αB1 = · · · = αB(n−1) = 0 vs. HABa1: at least one αAg, αBk’s is not equal

to 0. On the other hand, assume that both additive and dominance genetic effects

are significantly present at the putative QTL Q, i.e., αQ 6= 0 and δQ 6= 0. To test

association between the markers A & B and the QTL Q, one may test hypotheses

HABad0 : αA1 = · · · = αA(m−1) = αB1 = · · · = αB(n−1) = δA12 = · · · = δA1m =

· · · = δA(m−1)m = δB12 = · · · = δB1n = · · · = δB(n−1)n = 0 vs. HABad1: at least one

αAg, αBk, δAgh, δBkl is not equal to 0.

Regression Models and F -tests. Based on regression (3.12), one may con-

struct an F -test statistic FAB,ad to test the null hypothesis HABad0 in the same way

to construct Fm,ad or Fm,a (Graybill, 1976, Chapter VI). Under the null hypothesis of

HABad0, FAB,ad is central F (JA + JB − 2,
∑N+I

i=1 ti − JA − JB + 1). Similarly, one may

construct an F -test statistic FAB,a to test the null hypothesis HABa0 based on the

“additive effect model” (3.10). Under the null hypothesis of HABa0, FAB,a is central

F (m+ n− 2,
∑N+I

i=1 ti −m− n+ 1).

Population Sample and Noncentrality Parameter Approximations. As-

sume that there are no covariates, and the dataset is a population sample, i.e.,

I = 0. Suppose the sample size N is large enough that the large sample theory

applies. Denote DAQ = (DA1Q, · · · , DAm−1Q)T and DBQ = (DB1Q, · · · , DBn−1Q)T;

∆AQ =
(
[PA2

DA1Q − PA1
DA2Q]2, · · · , [PAm−1

DAmQ − PAm
DAm−1Q]2

)T

and ∆BQ =
(
[PB2

DB1Q − PB1
DB2Q]2, · · · , [PBn−1

DBnQ − PBn
DBn−1Q]2

)T

. Under the alternative
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hypothesis of HABad1, FAB,ad is noncentral F (JA + JB − 2, N − JA − JB + 1), and it

can be shown that the corresponding noncentrality parameter is approximated by

λABad ≈
N

σ2

[(
DT

AQ(1 − εA), DT
BQ(1 − εB)

)
(VA/2)−1




DAQ(1 − εA)

DBQ(1 − εB)



σ2
ga/(q1q2)

+
(
∆T

AQ(1 − εA),∆T
BQ(1 − εB)

)
V −1

D




∆AQ(1 − εA)

∆BQ(1 − εB)



σ2
gd/(q

2
1q

2
2)

]
.

Under the null hypothesis of HABa0, FAB,a is central F (m+n−2, N−n−m+1). Under

the alternative hypothesis of HABa1, FAB,a is noncentral F (m+n−2, N −m−n+1),

and it can be shown that the corresponding noncentrality parameter is approximated

by

λABa ≈
N

σ2

(
DT

AQ(1 − εA), DT
BQ(1 − εB)

)
(VA/2)−1




DAQ(1 − εA)

DBQ(1 − εB)



σ2
ga/(q1q2).

Pedigree Sample and Noncentrality Parameter Approximations. Con-

sider pedigree data, and assume that there are no covariates. For a relative pair

(1, 2) of individuals 1 and 2 who are noninbred relatives, Table 3 gives the condi-

tional probability P (G1, G2|C) given their allele IBD sharing status. Here, Gj is

genotype of individual j, and C is one event of (IBD = k), k = 0, 1, 2. For exam-

ple, P (AgAg, AgAg|IBD = 0) = P 4
Ag

, P (AgAg, AgAh|IBD = 0) = 2P 3
Ag
PAh

and

P (AgAg, AhAh|IBD = 0) = P 2
Ag
P 2

Ah
. Utilizing the conditional probabilities of Ta-

ble 3, the conditional covariances of variables x
(g)
Aij, x

(k)
Bij, z

(gh)
Aij and z

(kl)
Bij of a relative

pair (1, 2) can be calculated and the results are listed in Table 4. Given (IBD=0),

the covariances are 0 since the two variables are independent and so unrelated (for

instance, cov(x
(g)
Ai1, x

(g)
Ai2|IBD = 0) = 0). Other entries of Table 4 can be calculated,

accordingly. Based on Table 4, it can be seen that cov(X
(i1)
A∪B, X

(i2)
A∪B|IBD = 0) =

cov(Z
(i1)
A∪B, Z

(i2)
A∪B|IBD = 0) = 0 and cov(X

(i1)
A∪B, Z

(i2)
A∪B|IBD = k) = 0, for k = 0, 1, 2.
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Table 3: Conditional probability P (G1, G2|C) of a relative pair (1, 2) given their
allele IBD sharing status. Here, Gj is genotype of individual j, and C is one event
of (IBD = k), k = 0, 1, 2. In the table, we assume g 6= h, g 6= g′, g 6= h′, h 6= g′, h 6=
h′, g′ 6= h′, k 6= l.

Conditional allele IBD sharing status C
Probability IBD=0 IBD=1 IBD=2

P (AgAg, AgAg|C) P 4
Ag

P 3
Ag

P 2
Ag

P (AgAg, AgAh|C) 2PAh
P 3

Ag
PAh

P 2
Ag

0

P (AgAg, AhAh|C) P 2
Ag
P 2

Ah
0 0

P (AgAg, AhAh′|C) 2P 2
Ag
PAh

PAh′
0 0

P (AgAh, AgAh|C) 4P 2
Ag
P 2

Ah
PAg

P 2
Ah

+ P 2
Ag
PAh

2PAg
PAh

P (AgAh, AgAh′|C) 4P 2
Ag
PAh

PAh′
PAg

PAh
PAh′

0

P (AgAh, Ag′Ah′ |C) 4PAg
PAh

PAg′
PAh′

0 0

P (AgAg, BkBk|C) P 2
Ag
P 2

Bk
PAg

PBk
P (AgBk) P (AgBk)

2

P (AgAg, BkBl|C) 2P 2
Ag
PBk

PBl
PAg

PBl
P (AgBk) 2P (AgBk)P (AgBl)

+PAg
PBk

P (AgBl)
P (AgAh, BkBk|C) 2PAg

PAh
P 2

Bk
PAg

PBk
P (AhBk) 2P (AgBk)P (AhBk)

+PAh
PBk

P (AgBk)
P (AgAh, BkBl|C) 4PAg

PAh
PBk

PBl
PAg

PBk
P (AhBl) 2P (AgBk)P (AhBl)

+PAg
PBl

P (AhBk) +2P (AgBl)P (AhBk)
+PAh

PBk
P (AgBl)

+PAh
PBl

P (AgBk)

In addition, we have

cov(X
(i1)
A∪B, X

(i2)
A∪B|IBD = 1)

=
1

2
cov(X

(i1)
A∪B, X

(i2)
A∪B|IBD = 2), cov(Z

(i1)
A∪B, Z

(i2)
A∪B|IBD = 1) = 0.

Let Φ12 be their kinship coefficient of individuals 1 and 2, and ∆712 be the probability

that both alleles shared by the two individuals 1 and 2 are IBD at any locus (Lange,

2002). Then it can be shown that the covariance matrix of variable vectors X
(i1)
A∪B and

Z
(i2)
A∪B is a zero matrix, and

cov(X
(i1)
A∪B, X

(i2)
A∪B) = 2Φ12cov(X

(i1)
A∪B, X

(i2)
A∪B|IBD = 2) = 2Φ12VA2,

cov(Z
(i1)
A∪B, Z

(i2)
A∪B) = ∆712cov(Z

(i1)
A∪B, Z

(i2)
A∪B|IBD = 2) = ∆712VD2, (3.14)
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Table 4: Conditional expectation of a relative pair (1, 2) given their allele IBD sharing
status. In the table, we assume g 6= h, g 6= g′, g 6= h′, h 6= g′, h 6= h′, g′ 6= h′, k 6= l.

Conditional allele IBD sharing status C (IBD)
Expectation 0 1 2

cov(x
(g)
Ai1, x

(g)
Ai2|C) 0 PAg

[1 − PAg
](1 − εA)2 2PAg

[1 − PAg
](1 − εA)2

cov(x
(g)
Ai1, x

(h)
Ai2|C) 0 −PAg

PAh
(1 − εA)2 −2PAg

PAh
(1 − εA)2

cov(z
(gh)
Ai1 , z

(gh)
Ai2 |C) 0 0 P 2

Ag
P 2

Ah
(PAg

+ PAh
)2(1 − εA)2

cov(z
(gh)
Ai1 , z

(gh′)
Ai2 |C) 0 0 [PAg

PAh
PAh′

(1 − εA)]2

cov(z
(gh)
Ai1 , z

(g′h′)
Ai2 |C) 0 0 0

cov(x
(g)
Ai1, z

(gh)
Ai2 |C) 0 0 0

cov(x
(g)
Ai1, z

(g′h′)
Ai2 |C) 0 0 0

cov(x
(g)
Ai1, x

(k)
Bi2|C) 0 (1 − εA)(1 − εB)DAgBk

2(1 − εA)(1 − εB)DAgBk

cov(x
(g)
Ai1, z

(kl)
Bi2|C) 0 0 0

cov(z
(gh)
Ai1 , z

(kl)
Bi2|C) 0 0 E[z

(gh)
Ai1 z

(kl)
Bi1] = E[z

(gh)
Ai2 z

(kl)
Bi2]

where the elements of VA2 = cov(X
(i1)
A∪B, X

(i2)
A∪B|IBD = 2) and VD2 = cov(Z

(i1)
A∪B, Z

(i2)
A∪B|

IBD = 2) are given by the entries of the last column of Table 4.

Nuclear Family Data. Consider I families each has both parents and s offspring.

The total number of individuals is I(s+ 2). Let us list the s+ 1 individuals of each

family as j = 1, 2, 3, · · · , s + 1, where individual 1 is the father and individual 2 is

the mother, and the offspring are listed as j = 3, · · · , s + 2. Suppose that variance-

covariance matrices of the I families are the same, i.e., Σ1 = · · · = ΣI . Denote

Σ−1
i = 1

σ2 (γhj)(s+2)×(s+2), and let b = (γ13 + · · · + γ1,s+2) + (γ23 + · · · + γ2,s+2) +
∑s+2

h=3

∑s+2
j=h+1 γhj. If the number of families I is large enough, we show in Appendix
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B.6 that the noncentrality parameter of statistic FAB,ad is approximated by

λABad ≈
2Iσ2

ga

q1q2σ2

(
DT

AQ(1 − εA), DT
BQ(1 − εB)

)
V −1

A (3.15)

×
( s+2∑

k=1

γkkVA + bVA2

)
V −1

A




DAQ(1 − εA)

DBQ(1 − εB)





+
Iσ2

gd

(q1q2)2σ2

(
∆T

AQ(1 − εA),∆T
BQ(1 − εB)

)
V −1

D

×
( s+2∑

k=1

γkkVD +
s+2∑

k=3

s+2∑

l=k+1

γklVD2/2
)
V −1

D




∆AQ(1 − εA)

∆BQ(1 − εB)



 .

Similarly, the noncentrality parameter of statistic FAB,a is approximated by

λABa ≈
2Iσ2

ga

q1q2σ2

[
DT

AQ(1 − εA), DT
BQ(1 − εB)

]
V −1

A

×
( s+2∑

k=1

γkkVA + bVA2

)
V −1

A




DAQ(1 − εA)

DBQ(1 − εB)



 .

Multi-generation Pedigree Data. Consider I families given in graph A or graph B

of Figure 3 (Figure 1 in Abecasis et al., 2000b; Fan et al., 2005). For each individual

in Figure 3, an ID is assigned. For the grand parents of graph B, both phenotypes

and genotypes are unavailable and so no IDs are assigned. The total number of

individuals is tI, where t = 11 for graph A and t = 18 for graph B of Figure 3,

respectively. Again, assume that variance-covariance matrices of the I families are

the same, i.e., Σ1 = · · · = ΣI . Denote Σ−1
i = 1

σ2 (γhj)t×t. If the number of families I is

large enough, we can show in the same way as Appendix B.6 that the noncentrality
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Figure 3: Multi-generation pedigrees used in power calculations and comparison,
which are taken from Figure 1 of Abecasis et al. (2000b) or Fan et al. (2005). The
number in the box or circle is individual ID.

parameter of statistic FAB,ad is approximated by

λABad ≈
2Iσ2

ga

q1q2σ2

(
DT

AQ(1 − εA), DT
BQ(1 − εB)

)
V −1

A (3.16)

×
( t∑

k=1

γkkVA + b1VA2

)
V −1

A




DAQ(1 − εA)

DBQ(1 − εB)





+
Iσ2

gd

(q1q2)2σ2

(
∆T

AQ(1 − εA),∆T
BQ(1 − εB)

)
V −1

D

×
( t∑

k=1

γkkVD + b2VD2/2
)
V −1

D




∆AQ(1 − εA)

∆BQ(1 − εB)



 ,
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where b1 and b2 are provided in Appendix B.7. The noncentrality parameter of FAB,a

is approximated by

λABa ≈
2Iσ2

ga

q1q2σ2

(
DT

AQ(1 − εA), DT
BQ(1 − εB)

)
V −1

A

×
( t∑

k=1

γkkVA + b1VA2

)
V −1

A




DAQ(1 − εA)

DBQ(1 − εB)



 .

3.3 Type I Error Rates and Power Comparison

3.3.1 Type I Error Rates

Simulation studies are performed to evaluate the robustness of the proposed models.

We evaluate a marker A which is di-allelic, tri-allelic and quadri-allelic, i.e., m =

2, 3 and 4. For di-allelic marker, equal allele frequencies are assumed, i.e., PA1
=

PA2
= 0.5; for tri-allelic marker, the allele frequencies are given by PA1

= PA2
= 0.3

and PA3
= 0.4; and for quadri-allelic marker, equal allele frequencies are assumed,

i.e., PA1
= · · · = PA4

= 0.25. Five test cases are considered in type I error rate

calculation. Table 5 presents parameters of four test cases. Trait values are con-

structed by normal distribution with mean 100 and total variance σ2 = 1 except

for test case of Admixture. Here σ2 = σ2
ga + σ2

Ga + σ2
e is the summation of the

additive major gene effect σ2
ga , the variance of polygenic effect σ2

Ga , and the error

variance σ2
e . In the test cases of Null, Familiality, and Admixture, no major

gene effect is assumed, i.e., σ2
ga = 0. In the test cases of Linkage and Composite,

major gene effect is assumed, and recombination fraction θAQ = 0; in the meantime,

linkage equilibrium is assumed between QTL Q and the marker A. In the test case

of Admixture, population admixture is generated by mixing families equally draw

from one of the two sub-populations C and D. In both sub-populations C and D, no

major gene effect or familial effect is assumed, i.e., σ2
ga = σ2

Ga = 0. However, the



41

Table 5: The parameters of the simulated genetic cases. The total variance is fixed as
σ2 = σ2

ga + σ2
Ga + σ2

e = 1, and σ2
gd = 0. Admixture: no major gene effect or familial

effect σ2
g = σ2

Ga = 0, but with population admixture (see text for explanation).

Test Cases σ2
ga σ2

Ga σ2
e σ2 θAQ q1 DAgQ, g = 1, · · · ,m

Null 0 0 1.0 1.0 0.5 Not Applied Not Applied
Familiality 0 0.5 0.5 1.0 0.5 Not Applied Not Applied
Linkage 0.5 0 0.5 1.0 0 0.5 0

Composite 0.2 0.3 0.5 1.0 0 0.5 0

trait mean of sub-population C is fixed as 1 and the variance is fixed as 1. The trait

mean of sub-population D is fixed as 0 and the variance is fixed as 1. Therefore, the

total variance in the mixing population is σ2 = 1.25. The admixture contributed to

(1 − 0)2/(4 × 1.25) = 0.20 of the total variance.

To calculate the type I error rates of Tables 6 and 7, 1000 datasets are simulated

for each test case. Each dataset contains 50 pedigrees of either graph A or graph B

of Figure 3, respectively. Using the datasets, we fit the model (3.3) and test the null

hypothesis Ha0 : α1 = · · · = αm. Since the QTL Q is in linkage equilibrium with

marker A, an empirical test statistic which is larger than the cutting point at a 0.05

significance level is treated as a false positive. Based on likelihood ratio test, type I

error rates are calculated as the proportions of the 1000 simulation datasets which

give significant result at the 0.05 significant level. The results of type I error rates are

presented in Tables 6 and 7. The results show that the type I error rates are around

the nominal level 0.05. Hence, the model is reasonably robust. In all the four missing

rate cases (εA = 0.05, 0.10, 0.15, 0.20), the type I error rates are reasonable. Hence,

the missingness does not affect the robustness of the model.

In Table 8, we show the type I error rates using tri-nuclear families. Each tri-

nuclear family contains three people, parents and an offspring. Again, 1000 datasets

are simulated for each test case. Each dataset contains 50 tri-nuclear pedigrees.
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Table 6: Type I error rates (%) at a 0.05 significance level of Small 3-generation
pedigree A) based on likelihood ratio tests.

No. of Test Error Rates
Alleles Case εA = 0.05 εA = 0.10 εA = 0.15 εA = 0.20
Di-allele Null 4.2 4.9 4.9 4.6
m = 2 Familiality 3.8 4.3 5.2 4.2

Admixture 4.2 4.5 4.4 4.5
Linkage 5.7 4.8 5.0 5.3

Composite 5.2 4.6 4.9 5.0
Tri-allele Null 4.8 3.9 4.5 3.7
m = 3 Familiality 5.1 5.1 5.4 5.4

Admixture 4.0 3.7 4.2 4.4
Linkage 5.6 3.9 5.0 5.8

Composite 4.5 4.6 5.0 4.9
Quadri Null 4.9 4.8 5.4 4.6
-allele Familiality 4.6 5.2 4.6 5.4
m = 4 Admixture 4.4 3.7 4.4 4.4

Linkage 5.4 5.3 5.7 5.2
Composite 5.4 5.4 5.4 4.8

Two types of calculation are performed: (1) imputing genotypes which are missing

by the proposed method, and keep every individual in the analysis; (2) removing

all individuals from analysis whose genotypes are missing. It can be seen that the

proposed method can help to get correct type I error rates, by imputing genotypes

which are missing, since the type I error rates are around the nominal level 0.05. In

the previous approach, an individual is deleted from analysis once his/her genotype

is missing; it may inflate type I error rates by the results of Table 8, since the type I

error rates are around 0.06.

It worths notice that the calculations are based on tri-nuclear family in Table 8.

The sample size of 50 tri-nuclear families is 150, which is moderate. If the individuals

with missing genotypes are removed from analysis, the sample sizes will be reduced

and this can lead to the inflation of type I error rates. In Table 6, the small three-

generation pedigree contains 11 people (and so a sample of 50 families is 550), and in
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Table 7: Type I error rates (%) at a 0.05 significance level of Large 3-generation
pedigree B) based on likelihood ratio tests.

No. of Test Error Rates
Alleles Case εA = 0.05 εA = 0.10 εA = 0.15 εA = 0.20
Di-allele Null 4.1 4.3 4.0 4.0
m = 2 Familiality 5.4 5.6 5.0 4.7

Admixture 5.4 4.8 4.6 3.5
Linkage 4.5 4.4 4.7 4.4

Composite 5.3 5.1 4.8 5.0
Tri-allele Null 4.8 5.0 5.8 5.0
m = 3 Familiality 5.0 4.8 5.7 5.6

Admixture 3.8 5.4 5.5 5.8
Linkage 5.4 4.9 5.2 5.1

Composite 5.9 5.6 5.6 5.1
Quadri Null 4.3 4.6 5.6 5.2
-allele Familiality 4.3 3.9 4.5 4.6
m = 4 Admixture 4.8 5.2 4.3 5.4

Linkage 5.6 5.8 4.9 4.8
Composite 5.1 5.2 5.4 4.3

Table 7, the large three-generation pedigree contains 18 individuals (and so a sample

of 50 families is 900). Thus, the sample size is already big for the calculations of

Table 6 and 7, and the results are reasonable. In one word, the proposed method can

be useful for moderate-sized sample with missing genotypes.

3.3.2 Power Comparison

Let us denote the heritability by h2, which is defined as h2 = σ2
ga/σ

2 (Falconer and

Mackay, 1996). To make power comparison, we plot power curves of two cases using

the related noncentrality parameter approximation: a dominant mode of inheritance,

a = 1, d = 1, and a recessive mode of inheritance, a = 1, d = −0.5. Figures 4 and

5 show power curve of population samples at 0.01: Figure 4 are based one models

(3.1) and (3.3) using one marker A; Figure 5 are based one models (3.10) and (3.12)

using two markers A and B. The power curves of Figure 4 are plotted against the
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Table 8: Type I error rates (%) at a 0.05 significance level of 50 tri-nuclear families
based on likelihood ratio tests for quadri-allele case, i.e., m = 4.

Test Error Rates
Method Case εA = 0.05 εA = 0.10 εA = 0.15 εA = 0.20

Proposed method: Null 5.3 4.1 4.9 4.6
Imputing all Familiality 5.6 5.3 5.3 4.4

genotypes which Admixture 5.2 5.1 5.1 5.5
are missing Linkage 5.2 5.1 5.2 5.4

Composite 5.5 5.5 4.9 4.7
Previous method: Null 6.4 5.6 6.0 5.6

Removing all Familiality 5.7 5.9 5.8 6.2
individuals with Admixture 5.7 5.8 6.0 6.3

missing genotypes Linkage 6.0 6.0 6.2 6.0
Composite 5.7 6.0 5.8 5.9

heritability h2; for graphs I and II, the marker A has three equal frequency alleles; for

graphs III and IV, the marker A has four frequency alleles; and the related parameters

are given in the legend of the Figure. Two features can be noted from Figure 4: (1)

the power based on “genotype effect model” (3.1) is generally lower than that of the

“additive effect model” (3.3); (2) the power is reasonably high when the heritability h2

is larger than 0.15. The power curves of Figure 5 are plotted against the LD measure

DA1Q; for graphs I and II, there are no missing genotypes, i.e., εA = εB = 0.0; for

graphs III and IV, there are missing genotypes, and εA = εB = 0.25. It is obvious

that missing genotypes lead to power decreases, since the noncentrality parameter

approximations are reduced.

The power curves of Figures 6, 7, and 8 are based on pedigree data: Figure 6

is based on nuclear families in which each family consists of two parents and two

children; Figure 7 is based 30 small 3-generation pedigrees (Graph I, Figure 3); and

Figure 8 is based 30 large 3-generation pedigrees (Graph II, Figure 3). Such as

the population data, the three Figures show that missing genotypes lead to power

decreases. In addition, the power based on “genotype effect model” (3.12) is generally
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Figure 4: Power curve of population sample at 0.01 level based on models (3.1) and
(3.3), where N = 250, εA = 0.1, q1 = 0.5, σ2

Ga = 0.10. For graphs I and II, the marker
A has three alleles and PAi

= 1/3, i = 1, 2, 3, DA1Q = 0.12, DA2Q = DA3Q = −0.06;
for graphs III and IV, the marker A has four alleles, PAi

= 0.25, i = 1, · · · , 4, DA1Q =
−DA2Q = DA3Q = −DA4Q = 0.08; for dominant mode of inheritance of graphs
I and III, a = 1, d = 1; for recessive mode of inheritance of graphs II and IV,
a = 1, d = −0.5.
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Figure 5: Power curve of population sample at 0.01 level based on models (3.10) and
(3.12), where N = 200,m = 2, n = 3, q1 = q2 = PA1

= PA2
= 0.5, PBi

= 1/3, i =
1, 2, 3, DB1Q = DB2Q = 0.06, DA1B1

= DA1B2
= 0.05, σ2

Ga = 0.10, h2 = 0.15. For
graphs I and II, εA = εB = 0.0; for graphs III and IV, εA = εB = 0.25; for dominant
mode of inheritance of graphs I and III, a = 1, d = 1; for recessive mode of inheritance
of graphs II and IV, a = 1, d = −0.5.
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Figure 6: Power curve of 200 nuclear families at 0.01 level based on models (3.10) and
(3.12), where m = n = 2, q1 = PA1

= PB1
= 0.5, DA1B1

= 0.05, DB1Q = 0.06, σ2
Ga =

0.10, h2 = 0.15. Here, each nuclear family has two children. For graphs I and II,
εA = εB = 0; for graphs III and IV, εA = εB = 0.25; for dominant mode of inheritance
of graphs I and III, a = 1, d = 1; for recessive mode of inheritance of graphs II and
IV, a = 1, d = −0.5.
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Figure 7: Power curve of 45 small 3-generation pedigrees (Graph A, Figure 3) at
0.01 level based on models (3.10) and (3.12), where m = n = 2, q1 = PA1

= PB1
=

0.5, DB1Q = 0.08, DA1B1
= 0.05, σ2

Ga = 0.10, h2 = 0.15. For graphs I and II, εA =
εB = 0.0; for graphs III and IV, εA = εB = 0.25; for dominant mode of inheritance
of graphs I and III, a = 1, d = 1; for recessive mode of inheritance of graphs II and
IV, a = 1, d = −0.5.
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Figure 8: Power curve of 30 large 3-generation pedigrees (Graph B, Figure 3) at
0.01 level based on models (3.10) and (3.12), where m = n = 2, q1 = PA1

= PB1
=

0.5, DB1Q = 0.06, DA1B1
= 0.05, σ2

Ga = 0.10, h2 = 0.15. For graphs I and II, εA =
εB = 0.0; for graphs III and IV, εA = εB = 0.25; for dominant mode of inheritance
of graphs I and III, a = 1, d = 1; for recessive mode of inheritance of graphs II and
IV, a = 1, d = −0.5.
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lower than that of the “additive effect model” (3.10).

3.4 Examples

3.4.1 The European ACE Data

The proposed method is applied to analyze angiotensin-1 converting enzyme data

(Farrall et al., 1999; Keavney et al., 1998). The data consist of 83 extended families

with between 4 and 18 members. Circulating ACE levels were measured for 405

individuals. Ten bi-allelic polymorphisms in the ACE gene were genotyped. There is

missing genotype information at markers. Although we can not rigorously show that

the missingness is MCAR, it is roughly correct since there is no systematic pattern in

the missingness; actually, either founder’s or non-founder’s genotypes or both can be

missing in a pedigree. In addition, the missingness is different from marker to marker,

i.e., genotypes of an individual at some markers are missing, and are not missing at

other markers. In our previous study, all individuals with missing genotypes are

deleted, and so the total number of individuals is different from marker to marker

(Fan et al., 2005; refer to column 2 of Table 9). For instance, there are 4 individuals

whose genotype information is missing at marker I/D and the total number N = 401

in the previous study; at marker G2350A, on the other hand, there are more missing

genotype data, and N = 365. In this dissertation research, all 405 individuals are

used in the analysis using the developed variance component models for each marker.

Before fitting the models, multi-point IBD at each marker are calculated by Mer-

lin (Abecasis et al., 2002). Variance component linkage analysis shows that additive

variances are significantly larger than 0, but dominant variances are not significantly

larger than 0 (Abecasis et al., 2000b). Hence, dominant effects can be excluded

from regression equation, and the total variance is modeled as σ2 = σ2
ga + σ2

Ga + σ2
e .

Table 9 shows LD analysis of the ACE gene by individual marker. To make com-
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Table 9: Linkage disequilibrium analysis of the European ACE data by individual
marker. The AbAw’s lod is taken from Table 4 of Abecasis et al. (2000b). The
lod without missing is taken from Table 5, column 4, Fan et al. (2005), which is
calculated by deleting all individuals when their genotypes are missing. The lod with
missing is calculated based on the model developed in this chapter. Abbreviation:
ind. is individuals.

Previous Results lod w/ missing
Marker A # of ind. AbAw’s lod lod w/o missing # of ind.=405
T-5491C 391 9.86 13.91 13.34
A-5466C 392 9.04 14.06 14.25
T-3892C 400 12.49 18.27 17.58
A-240T 401 10.81 13.35 13.66
T-93C 392 10.93 13.00 13.13

T-1237C 377 11.52 20.59 17.94
G2215A 372 14.91 27.01 24.78

I/D 401 15.76 27.37 27.59
G2350A 365 14.40 28.01 26.13

4656(CT)3/2 390 14.22 27.93 27.16

parison with the “AbAw” approach, results of AbAw’s lod are taken from Table 4

of Abecasis et al. (2000b). After fitting the proposed models in this article, lod is

calculated by LRT/(2log10), where LRT = 2(L1−L0), L1 is the log-likelihood under

yij = β + xAijαA + Gij + eij , and L0 is the log-likelihood under yij = β + Gij + eij .

The lod without missing is taken from Table 5, column 4, Fan et al. (2005), which

is calculated by deleting all individuals when their genotypes are missing. The lod

with missing is calculated based on the model developed in this chapter.

The lod scores calculated by the proposed method in this article are similar

to those in our previous study for most markers (column 4 and column 5, Table 9).

Hence, whether the individuals with missing genotypes are removed from the analysis

or not does not influence the conclusion we reached. The results of Table 9 confirm

the finding that the association is strongest around the G2215A, I/D, G2350A and

4656(CT)3/2 polymorphisms (Abecasis et al., 2000b). Therefore, these markers are

likely in complete LD with the trait alleles. In addition, the lod scores based on
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our approach are generally higher than those of the “AbAw” approach. The Lod

scores calculated by the proposed method at three markers, T-1237C, G2215A and

G2350A, show big decreases compared with those of our previous study. This is

most likely due to the fluctuations from the missingness. In our previous study, we

found that allele I at marker I/D is almost always present with allele A at marker

G2350A, and allele D at marker I/D is almost always present with allele G at marker

G2350A (Fan et al., 2005). The frequency of the four haplotypes of these two markers

are as follows: P (IA) = 0.478875, P (IG) = 0.002817, P (DG) = 0.515494, P (DA) =

0.002817. Besides, the measure of LD is 0.2468478 between the markers I/D and

G2350A. The two markers are almost in complete LD with each other. However, the

lod scores of these two markers are different from each other, which is most likely due

to that there are more missing genotypes at marker G2350A.

3.4.2 The Nigeria ACE Data

This dataset consists of 233 Nigerian families with 1694 individuals, and 786 individ-

uals are phenotyped with plasma ACE concentrations. This dataset were collected

through the multi-center International Collaborative Study on Hypertension in Blacks

sampling frame (Cox et al., 2002). The samples were genotyped at 35 markers in fam-

ilies of African ancestry, resulting in significant genetic diversity and a strong ACE

association signal. Since 7 markers have no location information, we only use the

remaining 28 markers in analysis (Table 1, Cox et al., 2002). As with the Oxford

European ACE data, there are missing genotypes for the data. Hence, we analyze

the data using the proposed methods.

Variance component linkage analysis shows that additive variance is significantly

larger than 0, but dominant variance and polygenic variance are not significantly

larger than 0. Hence, the total variance is modeled as σ2 = σ2
ga + σ2

e . After fit-
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Table 10: Linkage disequilibrium analysis of the Nigerian ACE data by individual
marker. The Previous method is to calculate by deleting all individuals when their
genotypes are missing. The Proposed method is to calculate based on the model
developed in Chapter IV. For Proposed method, # of individuals = 786.

Method Previous Proposed
Marker A # of ind. AbAw Lod Lod F-stat Lod F-stat
A11377T 696 4.79 10.41 48.62 10.52 49.74
T11434C 666 0.93 0.51 1.54 0.28 1.13
T16778C 671 0.01 0.42 1.15 0.23 0.94
G16804A 678 1.16 1.19 4.83 0.73 3.24
C17105T 686 0.03 0.25 0.16 0.03 0.00
A17554G 693 * 0.28 0.24 0.06 0.11
A21235G 694 3.81 8.60 40.10 8.40 39.48
D/I-23069 695 3.95 9.33 43.69 9.06 42.68
G23454C 660 3.49 8.66 40.99 7.80 37.25
A23462C 657 4.33 10.18 48.59 9.04 43.39
A23495G 692 13.62 31.73 162.45 31.12 157.16
G24188A 673 2.18 8.55 40.62 8.03 38.01
A24409G 679 0.39 0.95 4.24 0.91 4.07
A24418G 677 0.00 0.18 0.55 0.28 1.12
C28919T 675 0.04 0.06 0.13 0.05 0.06
G28952C 679 * 0.80 3.40 0.47 2.03
T29035C 681 0.55 2.92 13.27 2.87 13.13
C29097T 678 3.87 11.51 55.23 11.46 54.72
C29302T 672 0.01 2.03 9.23 1.92 8.77
29349delT 678 * 1.80 8.10 1.67 7.58
G29373A 673 0.03 0.06 0.03 0.04 0.03
C29809T 675 9.77 24.80 124.65 24.60 122.45
31839insC 652 0.40 0.57 2.24 0.35 1.44

tgccc2/1-31933 654 0.03 0.66 2.63 0.70 3.08
A31958G 654 8.58 31.27 162.64 30.21 154.04
C32128A 651 2.55 6.93 32.39 6.42 30.16
G32178A 667 * 0.18 0.79 0.20 0.76

(CT)3/2-32915 674 1.14 2.05 7.64 1.90 8.63

ting the proposed models in this chapter, lod is calculated by LRT/(2log10), where

LRT = 2(L1 − L0), L1 is the log-likelihood under yij = α + x
(1)
AijαA + eij, and L0

is the log-likelihood under yij = α + eij . The Previous methods are calculated by

deleting all individuals when their genotypes are missing. The Proposed methods
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are calculated based on the model developed in this chapter. Table 10 shows LD

analysis of the ACE gene by individual marker. The most strongly associated poly-

morphisms include A23495G, A31958G, C29809T, C29097T, A11377T, etc, in the

order of lod scores and F -statistics. After identifying the most strongly associated

polymorphism A23495G, we treat it as marker A. The other markers are treated as

marker B, and we fit model yij = α + x
(1)
AijαA + x

(1)
BijαB + eij . Table 11 shows the

results by testing H0 : αB = 0. In addition to marker A = A23495G, Table 11 shows

the most strongly polymorphisms include A31958G, C29809T, A11377T, C29097T,

C32128A, at a significance level 0.001. Based on the results of Tables 10 and 11, we

treat polymorphism A23495G as marker A and polymorphism A31958G as B, and

continue to add more markers in the analysis. Table 12 shows that the polymor-

phism A11377T is the most strongly associated one at a significance level 0.001, in

addition to polymorphisms A = A23495G and B = A31958G. Table 13 show that

no more polymorphism is associated with the the plasma ACE concentrations at a

significance level 0.001, in addition to polymorphisms A = A23495G, B = A31958G

and C = A11377T.

3.5 Discussion

In searching for common genes of complex traits, large samples are needed that are

likely to come only from combining family and population based data. In addition,

sophisticated methods are needed to analyze these combinations. The statistical

and mathematical methods and models must account for missing data, and must

account for environmental covariates which are certain to play a role in complex

diseases. In this research, we have extended previous variance component models

for combined linkage and association mapping of QTL in the presence of missing

genotypes. Under an assumption of MCAR, two regression models, “genotype effect
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Table 11: Linkage disequilibrium analysis of the Nigerian ACE data by two markers.
Regressions are given by: (1) yij = α + eij; (2) yij = α + x

(1)
AijαA + eij; (3) yij = α +

x
(1)
AijαA +x

(1)
BijαB + eij. log-L is log-likelihood. lod=LRT/(2log10) and LRT=2(L1−

L0), where L0 is the log-likelihood under the null hypothesis H0, and L1 is that
under the alternative. For example, 143.320 = 2(−362.844 + 434.504) and 44.618 =
2(−340.535 + 362.844), in the case of A = A23495G,B = A31958G. The results are
calculated based on the proposed models. The number of individual is 786.

Markers Reg. log-L H0 LRT lod p-value
(1) −434.504

A: A23495G (2) −362.844 αA = 0 143.32 31.12 < 0.001
B: A31958G (3) −340.535 αB = 0 44.618 9.689 < 0.001

C29809T (3) −349.093 αB = 0 27.502 5.972 < 0.001
A11377T (3) −350.772 αB = 0 24.144 5.243 < 0.001
C29097T (3) −352.789 αB = 0 20.110 4.367 < 0.001
C32128A (3) −354.131 αB = 0 17.426 3.784 < 0.001

(CT)3/2-32915 (3) −357.719 αB = 0 10.250 2.226 0.001
T29035C (3) −358.159 αB = 0 9.370 2.035 0.002
T16778C (3) −358.557 αB = 0 8.574 1.862 0.003
C28919T (3) −359.106 αB = 0 7.476 1.623 0.006
A24418G (3) −359.604 αB = 0 6.480 1.407 0.011
G24188A (3) −359.793 αB = 0 6.102 1.325 0.014

29349delT (3) −360.239 αB = 0 5.210 1.131 0.022
A21235G (3) −360.511 αB = 0 4.666 1.013 0.031

D/I-23069 (3) −360.515 αB = 0 4.658 1.011 0.031
A23462C (3) −360.607 αB = 0 4.474 0.972 0.034
G28952C (3) −361.29 αB = 0 3.108 0.675 0.078
G23454C (3) −361.39 αB = 0 2.908 0.631 0.088
G29373A (3) −361.703 αB = 0 2.282 0.496 0.131
C17105T (3) −361.802 αB = 0 2.084 0.453 0.149
C29302T (3) −362.167 αB = 0 1.354 0.294 0.245
A24409G (3) −362.449 αB = 0 0.790 0.172 0.374
G32178A (3) −362.559 αB = 0 0.570 0.124 0.450

tgccc2/1-31933 (3) −362.615 αB = 0 0.458 0.099 0.499
G16804A (3) −362.679 αB = 0 0.330 0.072 0.566
A17554G (3) −362.719 αB = 0 0.250 0.054 0.617

31839insC (3) −362.800 αB = 0 0.088 0.019 0.767
T11434C (3) −362.839 αB = 0 0.010 0.002 0.920

model” and “additive effect model”, are proposed to model the association between

the markers and the trait locus. If the marker genotypes are not missing, the model
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Table 12: Linkage disequilibrium analysis of the Nigerian ACE data by three markers.
Regressions are given by: (1) yij = α + eij ; (2) yij = α + x

(1)
AijαA + eij ; (3) yij =

α+ x
(1)
AijαA + x

(1)
BijαB + eij; (4) yij = α+ x

(1)
AijαA + x

(1)
BijαB + x

(1)
CijαC + eij . The results

are calculated based on the proposed models. The notations are the same as Table
11.

Markers Reg. log-L H0 LRT lod p-value
(1) −434.504

A: A23495G (2) −362.844 αA = 0 143.32 31.12 < 0.001
B: A31958G (3) −340.535 αB = 0 44.618 9.689 < 0.001
C: A11377T (4) −334.407 αC = 0 12.256 2.661 < 0.001

C32128A (4) −336.764 αC = 0 7.542 1.638 0.006
T16778C (4) −337.827 αC = 0 5.416 1.176 0.020
delT29349 (4) −337.900 αC = 0 5.270 1.144 0.022

(CT)3/2-32915 (4) −337.946 αC = 0 5.178 1.124 0.023
T29035C (4) −338.158 αC = 0 4.754 1.032 0.029
C29097T (4) −338.475 αC = 0 4.120 0.895 0.042

is exactly the same as those of previous study, i.e., the number of genotypes or alleles

is used as weight to model the effect of the genotypes or alleles in single marker case.

If the marker genotypes are missing, the expected number of genotypes or alleles is

used as weight to model the effect of the genotypes or alleles. The “genotype effect

model” can be used to model the additive and dominance effects simultaneously; the

“additive effect model” only takes care of additive effect. Based on the two models,

F -test statistics are proposed to test association between the QTL and markers. The

noncentrality parameter approximations of F -test statistics are derived to make power

calculation and comparison, which show that the power of the F -tests is reduced due

to the missingness. In addition, likelihood ratio test statistics can be used to test the

association. Under the assumption that the genotype data are MCAR, simulation

studies are performed to calculate the type I error rates to evaluate the robustness of

the proposed models. It is found the type I error rates are reasonable. The method

is applied to analyze the angiotensin-1 converting enzyme data.

In this chapter, the genotypes are assumed to be missing completely at random.
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Table 13: Linkage disequilibrium analysis of the Nigerian ACE data by four markers.
Regressions are given by: (1) yij = α + eij ; (2) yij = α + x

(1)
AijαA + eij ; (3) yij =

α + x
(1)
AijαA + x

(1)
BijαB + eij; (4) yij = α + x

(1)
AijαA + x

(1)
BijαB + x

(1)
CijαC + eij . (5) yij =

α+x
(1)
AijαA +x

(1)
BijαB +x

(1)
CijαC +x

(1)
DijαD + eij . The results are calculated based on the

proposed models. The notations are the same as Table 11.
Markers Reg. log-L H0 LRT lod p-value

(1) −434.504
A: A23495G (2) −362.844 αA = 0 143.32 31.12 < 0.001
B: A31958G (3) −340.535 αB = 0 44.618 9.689 < 0.001
C: A11377T (4) −334.407 αC = 0 12.256 2.661 < 0.001
D: delT29349 (5) −331.276 αD = 0 6.262 1.360 0.012
D: T16778C (5) −332.148 αD = 0 4.518 0.981 0.034
D: (CT)3/2-32915 (5) −332.309 αD = 0 4.196 0.911 0.041
D: C32128A (5) −333.060 αD = 0 2.694 0.585 0.101
D: T29035C (5) −333.242 αD = 0 2.330 0.506 0.127
D: C29097T (5) −334.342 αD = 0 0.130 0.028 0.718

This assumption is roughly true for some study, such as the angiotensin-1 converting

enzyme data. For other studies, the missingness can be systematic, e.g., some or all

of the founder genotypes can be missing (Wang and Elston, 2005). It is unclear how

this will affect the proposed models. In practice, the assumption of MCAR is unlikely

to be true. For instance, consider a tri-nuclear family. Assume that the two parents’

genotypes are 1/2 and 1/1, and the genotype of the offspring is missing. It is easy

to see that the genotype of the offspring can be 1/1 or 2/1 with a probability 0.5

for each genotype. Hence, the right imputing method is to assign a weight of 0.5 for

each of these two genotypes. Besides, other genotypes such as 2/2 should be assigned

a weight of 0. In short, information of genotypes of family members can be used to

infer the missing genotype of another family member. In this way, it is very likely

that the power can be improved. However, it won’t be easy to get neat noncentrality

parameter approximations as the ones we have in the research under an assumption

of MCAR. Instead, simulation study is a possible method for the investigation. We
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leave this issue to be investigated in the future study.

The proposed models can be used to analyzed either single marker or multiple

genotype data. However, the models can only be used to analyze one phenotype. As

the ability to generate more genetics data, both for phenotypes and for genotypes,

increases, additional statistical methods are required to evaluate multiple phenotypes,

multiple genotypes. More research is necessary to extend existing theoretical methods

to new data analytic situations of interest, including analyzing multivariate pheno-

types in a complex disease setting.
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CHAPTER IV

SUMMARY AND FUTURE RESEARCH

4.1 Summary

In this dissertation, we first have studied a semiparametric measurement error prob-

lem in a canonical exponential family framework. A functional method has been de-

veloped for generalized partially linear models with independent normal measurement

error on the latent variable. Based upon the parametric idea of sufficiency scores, we

have constructed unbiased score functions by conditioning on parametric-dependent

sufficient statistics. Therefore, no distribution assumptions are made on the latent

variable. Simulation studies and real data analyses showed that the proposed method

performs better than the naive method. We have also proved asymptotic properties

of the estimators.

Next, in a statistical genetics study, two regression models have been developed to

investigate the impact of missing genotype for a high resolution combined linkage and

association mapping of QTL. Based on the two models, F-test statistics or likelihood

ratio test statistics have been used to test the association between the QTL and

markers. Simulation studies have shown that the proposed method can help to get

correct type I error rate for a moderate size dataset, although it cannot improve

power. The method has been applied to analyze the ACE data.

4.2 Future Research

In Chapter II, we have made an assumption that the variance of measurement error

Σuu is known. The reason for this assumption is for simplicity. The current research

is a starting point for future research when we treat Σuu as another parameter. Given
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replicated measurements, an unbiased estimating equation for Σuu is constructed in

(2.12). This is a natural extension of current research.

In Chapter III, the missing mechanism is assumed as missing completely at ran-

dom (MCAR). In practice, the assumption of MCAR is unlikely to be true. As we

discussed in Section 3.5, information of genotypes of family members can be used to

infer the missing genotype of another family member. It is very likely that the power

can be improved by utilizing the pedigree structure. This is potential area for future

research.
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APPENDIX A

CONDITIONS AND PROOFS IN CHAPTER II

A.1 Regularity Conditions

The regularity conditions given below are based on Claeskens and Carroll (2007) and

Maity, Ma, and Carroll (2007).

(C1) The bandwidth sequence hn → 0 as n→ ∞, in such a way that nhn/log2(n) →

∞ and hn ≥ {log(n)/n}1−2/λ for λ as in condition (C4) such that nh4
n → 0.

(C2) The kernel function K is a symmetric, continuously differentiable pdf on [−1, 1]

taking on the value zero at the boundaries. The design density fz is differentiable

on B = [b1, b2], the derivative is continuous, and infz∈B fz(z) > 0. The function

θ(·, κ) has second continuous derivatives on B and is also twice differentiable

with respect to κ.

(C3) For κ 6= κ1, the Kullback-Leibler distance between Ψ{·, ·, θ(·, κ), κ} and

Ψ{·, ·, θ(·, κ1), κ1} is strictly positive. For every (y, δ), third partial derivatives

of Ψ{y, δ, θ(z), κ} with respect to κ exist and are continuous in κ. The 4th

partial derivative exists for almost all (y, δ). Further, mixed partial derivatives

∂r+s

∂κr∂vs Ψ{y, δ, v, κ)}|v=θ(z), with 0 ≤ r, s ≤ 4, r + s ≤ 4 exist for almost all (y, δ)

and E{supκ supv

∣∣∣ ∂r+s

∂κr∂vs Ψ{y, δ, v, κ)}
∣∣∣
2

} <∞.

(C4) Denote {θ0(z), κ0} as the true function and parameter. There exists a neighbor-

hood N{θ0(z), κ0} such that

max
k=1,2

sup
z∈B

∥∥∥∥∥ sup
(θ,κ)∈N{θ0(z),κ0}

∣∣∣∣
∂k

∂θk
log{Ψ(Y,∆, θ, κ)}

∣∣∣∣

∥∥∥∥∥
λ,z

<∞
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for some λ ∈ (2,∞], where ‖·‖λ,z is the Lλ-norm, conditional on Z = z. Further,

sup
z∈B

Ez

[
sup

(θ,κ)∈N{θ0(z),κ0}

|
∂3

∂θ3
log{Ψ(Y,∆, θ, κ)}|

]
<∞.

A.2 Sketch Proof of Theorem 2.4.3

The calculations given below basically follow those of Carroll et al. (1998), with the

uniformity of the expansion following as in Claeskens and Van Keilegom (2003), see

also Maity et al. (2007).

For given κ = (βT, φ)T and any z0, we let α0 = θ0(z0), α1 = hθ′0(z0). Denote

argument (·, x) = {Yi,∆i(β), x, κ}. Taking a simple Taylor expansion to equation

(2.5) with respect to (α0, α1) gives

0 = n−1
n∑

i=1

Kh(Zi − z0)(1,
Zi − z0

h
)TΨθ(·, α̂0 + α̂1

Zi − z0

h
)

= n−1
n∑

i=1

Kh(Zi − z0)(1,
Zi − z0

h
)TΨθ(·, α0 + α1

Zi − z0

h
) + n−1

n∑

i=1

Kh(Zi − z0)

×(1,
Zi − z0

h
)T(1,

Zi − z0

h
)Ψθθ(·, α0 + α1

Zi − z0

h
)




α̂0 − α0

α̂1 − α1



 + op(n
−1/2).(A.1)

Note that

n−1

n∑

i=1

Kh(Zi − z0)(1,
Zi − z0

h
)T(1,

Zi − z0

h
)Ψθθ(·, α0 + α1

Zi − z0

h
)

p
−→ fz(z0)E[Ψθθ{Y,∆(β), θ(Z), κ}|Z = z0] · I2,
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where I2 is 2 × 2 identity matrix. Further by Taylor series expansion,

n−1
n∑

i=1

Kh(Zi − z0)(1,
Zi − z0

h
)TΨθ(·, α0 + α1

Zi − z0

h
)

= n−1

n∑

i=1

Kh(Zi − z0)(1,
Zi − z0

h
)TΨθ{·, θ0(z0) + θ′0(z0)(Zi − z0)}

= n−1

n∑

i=1

Kh(Zi − z0)(1,
Zi − z0

h
)TΨθ{·, θ0(Zi) −

1

2
θ′′0(z0)(Zi − z0)

2} + op(n
−1/2)

= n−1

n∑

i=1

Kh(Zi − z0)(1,
Zi − z0

h
)T

×[Ψθ{·, θ0(Zi)} −
1

2
θ′′0(z0)(Zi − z0)

2Ψθθ{·, θ0(Zi)}] + op(n
−1/2)

= n−1

n∑

i=1

Kh(Zi − z0)(1,
Zi − z0

h
)TΨθ{·, θ0(Zi)}

−
h2

2
θ′′0(z0)fz(z0)E{Ψθθ(•)|Z = z0}(1, 0)T + op(n

−1/2).

Plug in (A.1) and solve only for the element (α̂0 − α0), we have

θ̂(z0, κ0) − θ0(z0) = α̂0 − α0

=
h2

2
θ′′0(z0) −

n−1
∑n

i=1Kh(Zi − z0)Ψθ(•i)

fz(z0)E{Ψθθ(•)|Z = z0}
+ op(n

−1/2).

Hence Theorem 2.4.3 follows.

A.3 Sketch Proof of Theorem 2.4.2

To prove Theorem 2.4.2 we apply the result in Appendix A.2 and Lemma 2.4.1 to

calculate an expansion of κ̂. Define

Ψ∗
κκ{Y,∆(β), θ̂(Z, κ), κ} =

d

dκ
Ψκ{Y,∆(β), θ̂(Z, κ), κ}

= Ψκ∆(·)
∂∆

∂κ
+ Ψκκ(·) + Ψκθ(·)

∂θ̂(·)

∂κ
.
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Apply Taylor expansion to (2.7) to get

0 = n−1/2

n∑

i=1

Ψκ{Yi,∆i(β̂), θ̂(Zi, κ̂), κ̂}

= n−1/2

n∑

i=1

Ψκ{Yi,∆i(β0), θ̂(Zi, κ0), κ0}

+n−1

n∑

i=1

Ψ∗
κκ{Yi,∆i(β0), θ̂(Zi, κ0), κ0}n

1/2(κ̂− κ0) + op(1). (A.2)

Hence, by Lemma 2.4.1 we have

lim
n→∞

n−1

n∑

i=1

Ψ∗
κκ{Yi,∆i(β0), θ̂(Zi, κ0), κ0} = E[Ψ∗

κκ(•)] = F

So we plug F in (A.2) and apply Taylor expansion again

−Fn1/2(κ̂− κ0)

= n−1/2

n∑

i=1

Ψκ(•i) + n−1/2

n∑

i=1

Ψκθ(•i){θ̂(Zi, κ0) − θ(Zi)} + op(1).

Therefore, by Theorem 2.4.3 we have that

−Fn1/2(κ̂− κ0)

= n−1/2

n∑

i=1

Ψκ(•i) + (n1/2h2/2)n−1

n∑

i=1

Ψκθ(•i)θ
′′
0(Zi) +Bn + op(1).

The second term in the right hand side goes to zero if we assume nh4 → 0. By the

symmetry of kernel Kh(·),

Bn = −n−1/2
n∑

i=1

Ψκθ(•i)
n−1

∑n
j=1Kh(Zj − Zi)Ψθ(•j)

fz(Zi)E{Ψθθ(•)|Z = Zi}

= −n−1/2

n∑

j=1

Ψθ(•j)n
−1

n∑

i=1

Kh(Zi − Zj)Ψκθ(•i)

fz(Zi)E{Ψθθ(•)|Z = Zi}

= −n−1/2
n∑

j=1

Ψθ(•j)
E{Ψκθ(•)|Z = Zj}

E{Ψθθ(•)|Z = Zj}
+ op(1)

= −n−1/2
n∑

j=1

Ψθ(•j)U(Zj) + op(1).

Hence Theorem 2.4.2 follows.
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APPENDIX B

PROOFS IN CHAPTER III

B.1 Regression Coefficients for Genotype Effect Model

Multiplying both sides of the “genotype effect model” (3.1) by 1(GAij=AgAh) and taking

expectation lead to

E(yij1(GAij=AgAh)) = wijγE[1(GAij=AgAh)] + E[1(GAij=AgAh)]βgh

=






(1 − εA)[wijγ + βgg]P
2
Ag

if g = h

(1 − εA)[wijγ + βgh] · 2PAg
PAh

if g 6= h

. (C.1)

Let GQij be genotype of the j-th individual of the i-th family at the trait locus Q.

A true random effect model describing the trait value is yij = wijγ + gij +Hij + eij ,

where

gij =






a GQij = Q1Q1

d GQij = Q1Q2

−a GQij = Q2Q2

.

Since the missing mechanism is MCAR, we have

P (GQij = Q1Q1, GAij = AgAg|GAij 6=?) = [P (Q1Ag)]
2,

P (GQij = Q1Q2, GAij = AgAg|GAij 6=?) = 2P (Q1Ag)P (Q2Ag),

P (GQij = Q2Q2, GAij = AgAg|GAij 6=?) = [P (Q2Ag)]
2.
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Utilizing relations P (Q1Ag) = DAgQ + PAg
q1 and P (Q2Ag) = −DAgQ + PAg

q2 gives

E(yij1(GAij=AgAg)) = wijγE[1(GAij=AgAg)] + E[gij1(GAij=AgAg)]

= wijγP (AgAg|GAij 6=?)P (GAij 6=?)

+E[gij1(GAij=AgAg)|GAij 6=?]P (GAij 6=?)

= (1 − εA)
[
wijγP

2
Ag

+ a[P (Q1Ag)]
2

+d · 2P (Q1Ag)P (Q2Ag) − a[P (Q2Ag]
2
]

= (1 − εA)
[
wijγP

2
Ag

+ µP 2
Ag

+2DAgQαQPAg
− δQD

2
AgQ

]
. (C.2)

Equating equations (C.1) and (C.2), we show the equation (3.5) when g = h. Now

assume that g 6= h. Since the missing mechanism is MCAR, we have

P (GQij = Q1Q1, GAij = AgAh|GAij 6=?) = 2P (Q1Ag)P (Q1Ah);

P (GQij = Q1Q2, GAij = AgAh|GAij 6=?) = 2P (Q1Ag)P (Q2Ah)

+2P (Q1Ah)P (Q2Ag);

P (GQij = Q2Q2, GAij = AgAh|GAij 6=?) = 2P (Q2Ag)P (Q2Ah).
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Utilizing relations P (Q1Ag) = DAgQ+PAg
q1, P (Q2Ag) = −DAgQ+PAg

q2, P (Q1Ah) =

DAhQ + PAh
q1, P (Q2Ah) = −DAhQ + PAh

q2 gives

E(yij1(GAij=AgAh)) = wijγE[1(GAij=AgAh)] + E[g1(GAij=AgAh)]

= wijγP (AgAh|GAij 6=?)P (GAij 6=?)

+E[g1(GAij=AgAh)|GAij 6=?]P (GAij 6=?)

= (1 − εA)
[
wijγ · 2PAg

PAh

+2a
{
P (Q1Ag)P (Q1Ah) − P (Q2Ag)P (Q2Ah)

}

+d
{

2P (Q1Ag)P (Q2Ah) + 2P (Q2Ag)P (Q1Ah)
}]

= (1 − εA)
[
2PAg

PAh
wijγ + 2PAg

PAh
µ

+2αQ

(
DAgQPAh

+DAhQPAg

)
− 2δQDAgQDAhQ

]
. (C.3)

Equating equations (C.1) and (C.3), we show the equation (3.5) when g 6= h.

B.2 Regression Coefficients for Additive Effect Model

In relations (C.1), replacing βgh by αg + αh and taking summation lead to

E(yij1(GAij 6=?)) =
∑

1≤g≤h≤m

E(yij1(GAij=AgAh))

= (1 − εA)
m∑

g=1

m∑

h=1

(
wijγ + αg + αh

)
PAg

PAh

= (1 − εA)
(
wijγ + 2

m∑

g=1

αgPAg

)
.

Since the missing mechanism is MCAR, one has E(yij1(GAij 6=?)) = E(yij|GAij 6=?)(1−

εA) = (1 − εA)Eyij = (1 − εA)
(
wijγ + µ

)
. Thus,

∑m
g=1 αgPAg

= µ/2.

Again, replacing βgh by αg + αh in relations (C.1) and taking summation with
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respect to h lead to

E
[
yij1(GAij=AgAg) +

1

2

∑

h6=g

yij1(GAij=AgAh)

]
= (1 − εA)

m∑

h=1

(
wijγ + αg + αh

)
PAg

PAh

= (1 − εA)PAg

(
wijγ + αg +

m∑

h=1

αhPAh

)

= (1 − εA)PAg

(
wijγ + αg + µ/2

)
. (C.4)

Notice
∑m

g=1DAgQ = 0. Taking summation of relations (C.2) and (C.3) leads to

E
[
yij1(GAij=AgAg) +

1

2

∑

h6=g

yij1(GAij=AgAh)

]

= (1 − εA)PAg

[
wijγ + µ+DAgQαQ/PAg

]
. (C.5)

Equating the right-hand terms of relations (C.4) and (C.5) leads to (3.6).

B.3 Noncentrality Parameter for Genotype Effect Model

Assume that there are no covariates, and the dataset is a population sample. Then

the model matrix of “genotype effect model” (3.1) is

Xi = XT
Ai1 = (x

(11)
Ai1 , · · · , x

(mm)
Ai1 , x

(12)
Ai1 , · · · , x

(1m)
Ai1 , · · · , x

(m−1,m)
Ai1 ),

for i = 1, · · · , N . To show noncentrality parameter approximation (3.7), we first

notice the following relation

E[X1X
T
1 ] = (1 − εA)diag(P 2

A1
, vT) + εA




P 2

A1

v



 (P 2
A1
, vT), (C.6)

where v is a column vector given by

vT =
(
P 2

A2
, · · · , P 2

Am
, 2PA1

PA2
, · · · , 2PA1

PAm
, · · · , 2PAm−1

PAm

)
.
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In addition, diag(P 2
A1
, vT) is a diagonal matrix, whose elements on the diagonal are

given by the elements of (P 2
A1
, vT). We may verify (C.6) by

E[(x
(gh)
A11 )2] = E{1(GA11=AgAh)} + P (AgAh)

2E{1(GA11=?)}

= P (AgAh)(1 − εA) + P (AgAh)
2εA,

and for (g, h) 6= (k, l),

E[x
(gh)
A11x

(kl)
A11] = P (AgAh)P (AkAl)E{1(GA11=?)} = P (AgAh)P (AkAl)εA.

Let us denote

u =
(
P−2

A2
, · · · , P−2

Am
, [2PA1

PA2
]−2, · · · , [2PA1

PAm
]−2, · · · , [2PAm−1

PAm
]−2

)
.

Applying the law of large number and a fact of inverse matrix that (M + abT)−1 =

M−1 − (M−1a)(bTM−1)/(1+ bTM−1a), we can calculate the following approximation

T (XTX)−1TT ≈ T
[
NE

(
X1X

T
1

)]−1

TT

= N−1 · T
[
(1 − εA)diag(P 2

A1
, vT) + εA




P 2

A1

v



 (P 2
A1
, vT)

]−1

T

= [(1 − εA)N ]−1 · T
[
diag(P−2

A1
, uT) − εA





1

...

1




(1, · · · , 1)

]
T

= [(1 − εA)N ]−1 · Tdiag(P−2
A1
, uT)T.

Utilizing above relation, we may show noncentrality parameter approximation (3.7)

in the same way as Appendix III, Fan et al. (2006).

B.4 Noncentrality Parameter for Additive Effect Model

Assume that there are no covariates, and the dataset is a population sample. Then

the model matrix of “additive effect model” (3.3) is Xi = ZT
Ai1 = (x

(1)
Ai1, · · · , x

(m)
Ai1),
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i = 1, · · · , N . To show noncentrality parameter approximation (3.8), we first notice

the following relation

E[ZA11Z
T
A11] = 2(1 − εA)

[
diag(PA1

, · · · , PAm
) +





PA1

...

PAm




(PA1

, · · · , PAm
)
]

+4εA





PA1

...

PAm




(PA1

, · · · , PAm
),

which can be verified by

E[(x
(g)
A11)

2] = 4E{1(GA11=AgAg)} +
∑

h6=g

E{1(GA11=AgAh)} + 4P 2
Ag
E1(GA11=?)

= 2(1 − εA)PAg
[1 + PAg

] + 4P 2
Ag
εA,

and for h 6= g,

E[x
(g)
A11x

(h)
A11] = (1 − εA) · 2PAg

PAh
+ 4PAg

PAh
εA.

Let X = (ZA11, · · · , ZAN1)
T. Applying the law of large number and a fact of inverse

matrix (M + abT)−1 = M−1 − (M−1a)(bTM−1)/(1 + bTM−1a), we can calculate the
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following approximation

K(XTX)−1KT ≈ K
[
NE

(
ZA11Z

T
A11

)]−1

KT

= N−1 ·K
[
2(1 − εA)diag(PA1

, · · · , PAm
)

+2(1 + εA)





PA1

...

PAM




(PA1

, · · · , PAm
)
]−1

K

= [2(1 − εA)N ]−1 ·K
[
diag(P−1

A1
, · · · , P−1

Am
)

−(1 + εA)





1

...

1




(1, · · · , 1)/2

]
K

= [2(1 − εA)N ]−1 ·Kdiag(P−1
A1
, · · · , P−1

Am
)K.

Utilizing above relation, we may show noncentrality parameter approximation (3.8)

in the same way as Appendix IV, Fan et al. (2006).

B.5 Regression Coefficients for Two-Marker Models

For g = 1, 2, · · · ,m, k = 1, · · · , n, let us denote DAgBk
= P (AgBk) − PAg

PBk
, which

are measures of LD between markers A and B. Here, P (AgBk) is frequency of

haplotype AgBk. It can be shown that for g 6= h, k 6= l, h 6= h′, l 6= l′, (g, h) 6=
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(g′, h′), (k, l) 6= (k′, l′),

E{x(g)
Aij} = 2PAg

; E{x(k)
Bij} = 2PBk

; E{z(gh)
Aij } = 0; E{z(kl)

Bij} = 0;

E(x
(g)
Aij)

2 = (1 − εA)(2P 2
Ag

+ 2PAg
) + 4P 2

Ag
εA;

E[x
(g)
Aijx

(h)
Aij] = 2PAg

PAh
(1 − εA) + 4PAg

PAh
εA;

E(x
(k)
Bij)

2 = (1 − εB)(2P 2
Bk

+ 2PBk
) + 4P 2

Bk
εB;

E[x
(k)
Bijx

(l)
Bij] = 2PBk

PBl
(1 − εB) + 4PBk

PBl
εB;

E(z
(gh)
Aij )2 = (1 − εA)P 2

Ag
P 2

Ah
[PAg

+ PAh
]2;

E(z
(kl)
Bij )

2 = (1 − εB)P 2
Bk
P 2

Bl
[PBk

+ PBl
]2;

E[x
(g)
Aijz

(gh)
Aij ] = E[x

(g)
Aijz

(hh′)
Aij ] = E[x

(k)
Bijz

(kl)
Bij ] = E[x

(k)
Bijz

(ll′)
Bij ] = 0

E[x
(g)
Aijz

(kl)
Bij ] = E[x

(k)
Bijz

(gh)
Aij ] = E[z

(gh)
Aij z

(g′h′)
Aij ] = E[z

(kl)
Bij z

(k′l′)
Bij ] = 0;

E[x
(g)
Aijx

(k)
Bij] = 2DAgBk

(1 − εA)(1 − εB) + 4PAg
PBk

, E[z
(gh)
Aij z

(gh′)
Aij ]

= (PAg
PAh

PA′

h
)2(1 − εA);

E[z
(kl)
Bij z

(kl′)
Bij ] = (PBk

PBl
PB′

l
)2(1 − εB);

E[z
(gh)
Aij z

(kl)
Bij ] =

[
PAh

(
PBl

DAgBk
− PBk

DAgBl

)
− PAg

(
PBl

DAhBk
− PBk

DAhBl

)]2

×(1 − εA)(1 − εB);

E[yijx
(g)
Aij] = 2PAg

(wijγ + µ) + 2αQDAgQ(1 − εA);

E[yijx
(k)
Bij] = 2PBk

(wijγ + µ) + 2αQDBkQ(1 − εB);

E[yijz
(gh)
Aij ] = δQ

[
PAg

DAhQ − PAh
DAgQ

]2

(1 − εA);

E[yijz
(kl)
Bij ] = δQ

[
PBk

DBlQ − PBl
DBkQ

]2

(1 − εB). (C.7)

The quantities in (C.7) imply that the elements of VA are given by

cov(x
(g)
Aij, x

(h)
Aij) = −2PAg

PAh
(1 − εA), var(x

(g)
Aij) = 2PAg

(1 − PAg
)(1 − εA),

cov(x
(g)
Aij, x

(k)
Bij) = 2DAgBk

(1 − εA)(1 − εB),

cov(x
(k)
Bij, x

(l)
Bij) = −2PBk

PBl
(1 − εB), var(x

(k)
Bij) = 2PBk

(1 − PBk
)(1 − εB).
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Since EZ
(ij)
A∪B is a vector of zero’s by the quantities in (C.7), it can be shown that VD =

cov(Z
(ij)
A∪B, Z

(ij)
A∪B) = E(Z

(ij)
A∪B(Z

(ij)
A∪B)τ ). Moreover, the quantities in (C.7) imply that

the covariance matrix cov(X
(ij)
A∪B, Z

(ij)
A∪B) is a zero matrix. In addition, the covariances

between the trait value yij and variables x
(g)
Aij, x

(k)
Bij, z

(gh)
Aij and z

(kl)
Bij are

cov(yij, x
(g)
Aij) = 2αQ(1 − εA)DAgQ, cov(yij, x

(k)
Bij) = 2αQ(1 − εB)DBkQ,

cov(yij, z
(gh)
Aij ) = E[yijz

(gh)
Aij ], cov(yij, z

(kl)
Bij ) = E[yijz

(kl)
Bij ].

Taking variance-covariance between yij and x
(g)
Aij, x

(k)
Bij, z

(gh)
Aij , z

(kl)
Bij based on relation

(3.12), we may get the regression coefficients (3.13) of models (3.10) and (3.12).

B.6 Noncentrality Parameter for Nuclear Family

Notice Σ−1
i = 1

σ2 (γhj)(s+2)×(s+2). Let Xi be the model matrix of family i = 1, 2, · · · , I.

Then Xi = (1s+2, XAi, XBi, ZAi, ZBi), where 1s+2 is a (s+2)-dimension column vector

of 1’s and

XAi =





x
(1)
Ai1 · · · x

(m−1)
Ai1

... · · ·
...

x
(1)
Ai,s+2 · · · x

(m−1)
Ai,s+2




; XBi =





x
(1)
Bi1 · · · x

(n−1)
Bi1

... · · ·
...

x
(1)
Bi,s+2 · · · x

(n−1)
Bi,s+2




;

ZAi =





z
(12)
Ai1 · · · z

(m−1,m)
Ai1

... · · ·
...

z
(12)
Ai,s+2 · · · z

(m−1,m)
Ai,s+2




; ZBi =





z
(12)
Bi1 · · · z

(n−1,n)
Bi1

... · · ·
...

z
(12)
Bi,s+2 · · · z

(n−1,n)
Bi,s+2




.

Denote γ =
∑s+2

k=1

∑s+2
l=1 γkl. Applying law of large number leads to an approxi-
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mation as

I∑

i=1

XT
i Σ−1

i Xi/I ≈ (C.8)

1

σ2





γ γ[E(X
(11)
A∪B)]T O1

γE(X
(11)
A∪B)

∑s+2
k=1 γkkVA + bVA2 + γE(X

(11)
A∪B)[E(X

(11)
A∪B)]T O2

O3 O4

∑s+2
k=1 γkkVD +

∑s+2
k=3

∑s+2
l=k+1 γklVD2/2




,

where Oi, i = 1, 2, 3, 4 are zero vectors or matrices, and E(X
(11)
A∪B) = (2PA1

, · · · ,

2PAm−1
, 2PB1

, · · · , 2PBn−1
)T.

Let

S =





0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1





be the test matrix corresponding to hypothesis HABad0, and

φ = (α, αA1, · · · , αA(m−1), αB1, · · · , αB(m−1), δA12, · · · , δA(m−1)m, δB12, · · · , δB(n−1)n)T

be the column vector of regression coefficient of “genotype effect model” (3.12). Uti-

lizing regression coefficients (3.13), we may show (3.15) by plugging approximation

(C.8) into λABad = (Sφ)T[S(
∑I

i=1X
T
i Σ−1

i Xi)
−1ST]−1(Sφ). One may want to notice

that we may use Theorem 8.5.11, Harville (1997), to calculate the inverse of the

right-hand matrix of (C.8).
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B.7 Constants in Noncentrality Parameter Approximation for Pedigree
Data

For pedigrees in graph A of Figure 3, the constants b1 and b2 of λAB,ad in (3.16) are

given by

b1 = [γ15 + (γ17 + · · · + γ1,11)/2] + [γ25 + (γ27 + · · · + γ2,11)/2]

+[γ36 + (γ37 + · · · + γ3,11)/2] + [γ46 + (γ47 + · · · + γ4,11)/2]

+(γ57 + · · · + γ5,11) + (γ67 + · · · + γ6,11) +
11∑

k=7

11∑

l=k+1

γkl,

b2 =
11∑

k=7

11∑

l=k+1

γkl/2.

For pedigrees in graph B of Figure 3, constants b1 and b2 are given by

b1 = γ1,12 + [γ2,12 + (γ2,13 + · · · + γ2,16)/2] + [γ3,12 + · · · + γ3,16]/2

+[γ4,12 + · · · + γ4,16]/2 + [γ5,12/2 + (γ5,13 + · · · + γ5,16)]

+[(γ6,13 + · · · + γ6,16) + (γ6,17 + γ6,18)/2] + [γ7,13 + · · · + γ7,18]/2

+[(γ8,13 + · · · + γ8,16)/2 + (γ8,17 + γ8,18)] + (γ9,17 + γ9,18) + (γ10,17 + γ10,18)/2

+(γ11,17 + γ11,18)/2 + (γ12,13 + · · · + γ12,16)/4 + (γ13,14 + γ13,15 + γ13,16)

+(γ14,15 + γ14,16) + γ15,16 + [γ13,17 + · · · + γ16,17]/4

+[γ13,18 + · · · + γ16,18]/4 + γ17,18,

b2 = [(γ13,14 + γ13,15 + γ13,16) + (γ14,15 + γ14,16) + γ15,16]/2 + γ17,18/2.
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