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ABSTRACT

Generalized Score Tests for Missing Covariate Data. (August 2007)

Lei Jin, B.S., Huazhong University of Science & Technology, P. R. China;

M.S., Zhejiang University, P. R. China

Chair of Advisory Committee: Dr. Suojin Wang

In this dissertation, the generalized score tests based on weighted estimating equa-

tions are proposed for missing covariate data. Their properties, including the effects

of nuisance functions on the forms of the test statistics and efficiency of the tests,

are investigated. Different versions of the test statistic are properly defined for vari-

ous parametric and semiparametric settings. Their asymptotic distributions are also

derived. It is shown that when models for the nuisance functions are correct, ap-

propriate test statistics can be obtained via plugging the estimates of the nuisance

functions into the appropriate test statistic for the case that the nuisance functions

are known. Furthermore, the optimal test is obtained using the relative efficiency

measure. As an application of the proposed tests, a formal model validation proce-

dure is developed for generalized linear models in the presence of missing covariates.

The asymptotic distribution of the data driven methods is provided. A simulation

study in both linear and logistic regressions illustrates the applicability and the finite

sample performance of the methodology. Our methods are also employed to analyze

a coronary artery disease diagnostic dataset.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Missing covariate data are very common in many applied areas, especially in the med-

ical and social studies. Study designs are sometimes responsible for missing covariate

data. For example, to obtain an optimal result in a fixed budget epidemiological

study, researchers may employ a two stage study. Within the first stage, information

on the response and some easily obtained variables is collected for all study sub-

jects. During the second stage, information on other covariates is collected only for

a subset of the study subjects depending on the observed attributes in stage one.

The missingness can also be caused by happenstance. For example, respondents in a

household survey may refuse to answer the questions regarding their income. In an in-

dustrial experimental process, some variables are not observed because of mechanical

breakdowns.

A typical missing covariate data problem involves a response variable y, a vector

of covariates (x, z) where the covariate x is not always observed, and a parametric

model describing the relationship between y and (x, z). The parametric model may

be specified by a conditional distribution f(y|x, z; β) or a regression model

E(y|x, z) = g(x, z,β),

The format and style follow that of Biometrics.
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where g is a known function and β is a p-dimensional parameter. Furthermore, an

estimating equation condition

E{ψ(y,x, z,β)|x, z} = 0

can be induced from the parametric model, where ψ is a p-dimensional estimating

function. For example, ψ could be the score function

ψ =
∂logf(y|x, z; β)

∂β
.

To indicate the missingness, we introduce an indicator random variable δ, which

equals 1 if x is observed and 0 otherwise. According to Rubin (1976), the data are

missing at random (MAR) if

Pr(δ = 1|y,x, z) = Pr(δ = 1|y, z).

The data are missing completely at random (MCAR) if the missingness does not de-

pend on the data values. Data analysis generally includes parameter estimation, hy-

pothesis tests and the corresponding model validation. The focus of this dissertation

centers on issues of testing composite hypotheses of β and formal model validation

for the missing covariate data under the assumption of MAR.

Because standard techniques for statistical inferences usually require full covari-

ate information, one simple way of handling missing covariate data is a complete-case

analysis, which excludes observations with missing values and performs naive statisti-

cal analysis. Despite its convenience with existing statistical packages, the complete-

case analysis discards information from the incomplete cases and may result in sub-

stantial efficiency loss. More importantly, it ignores the possible systematic difference

between the complete cases and incomplete cases, and thus yields misleading results.

Approaches for correctly analyzing missing covariate data may include likelihood
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based approaches (Rubin, 1976; Little and Rubin, 2002; Ibrahim, Chen, and Lipsitz,

1999), multiple imputation (Rubin, 1996; Schafer, 1997; Little and Rubin, 2002) and

weighted estimating equation methods (Flanders and Greenland, 1991; Zhao and Lip-

sitz, 1992; Robins, Rotnitzky, and Zhao, 1994; Wang, Wang, Zhao, and Ou, 1997;

Lipsitz, Ibrahim, and Zhao, 1999). Compared with the other approaches, weighted

estimating equation methods can provide consistent results under more flexible as-

sumptions (Lipsitz et al., 1999; the discussion rejoinder in Scharfstein, Rotnitzky, and

Robins, 1999; Van der Laan and Robins, 2003, Ibrahim, Chen, Lipsitz, and Herring,

2005).

Considering n independent observations, Robins et al. (1994) proposed the gen-

eral weighted estimating equations (WEEs)

U(β, π, φ) =
n∑
i=1

ui(β, πi, φ)

=
n∑
i=1

{ δi
πi
ψ(yi,xi, zi,β) + (1− δi

πi
)φ(yi, zi)} = 0, (1.1)

where

πi = π(yi, zi) = Pr(δi = 1|yi, zi),

and φ is an arbitrary fixed p× 1 function with finite second moments. For statistical

inference in the WEE (1.1) setting, sandwich covariance estimates and Walds-type

tests are widely used in the literature. As an alternative to Wald-type tests, general-

ized score tests (Rotnitzky and Jewell, 1990; Boos, 1992; Commenges and Jacqmin-

Gadda, 1997; Thas and Rayner, 2005) are widely used to test a variety of hypotheses

in a simple and unified way in estimating equation settings. Because of the invariance

properties, the score type statistic and likelihood ratio statistic are often preferred to

Wald statistics in standard parametric models (see Boos, 1992). One primary concern

of this dissertation is the generalized score tests for testing composite hypotheses in
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Table 1: Description of Duke Cardiac Catheterization Coronary Artery Disease Di-
agnostic Dataset; 3504 observations and 6 variables, maximum number of missing
values (denoted by NAs):1246.

Name Labels Units NAs
sex Male = 1, Female = 0 0
age Age Year 0

cad.dur Duration of Symptoms of Coronary Artery Disease 0
choleste Cholesterol mg% 1246
sigdz Significant Coronary Disease by Cardiac Cath 0
tvdlm Three Vessel or Left Main Disease by Cardiac Cath 3

the presence of missing covariates based under the WEE (1.1) setting. More specif-

ically, we study the effects of nuisance functions π and φ and their estimates on the

generalized score statistics, the efficiency issues and applications of the tests.

The following example motivates our study. It is of interest to use correct tools

to analyze the Duke Cardiac Catheterization Coronary Artery Disease Diagnostic

Dataset (Harrell, 2001, Chapter 10). The structure of the dataset is described in

Table 1. The variable cholesterol is not observed among 1246 out of 3504 observations.

Extensive complete-case analysis by Harrell (2001) included parameter estimation,

tests of regression coefficients and the corresponding model validation. Since around

one-third of the observations are incomplete, complete-case analysis might be invalid

or inefficient. While it would be natural to recheck the validation of the logistic

regression previously used for this dataset, to the best of our knowledge there are no

such formal methods in the current literature that deal with this issue.

An assessment of model fit is an important part of any modeling procedure.

In general, it evaluates how well the predicted outcomes coincide with the observed

data. Model evaluation for missing data may include the detection of an incorrect

assumption of missing-data mechanism, omitted important covariates, or inappropri-

ate distributional assumptions. There are a few tests in the literature concerning a
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model for the selection probability or missing-data mechanism. Lei and Wang (2001)

developed two test statistics that focus on the validation of the MAR assumption.

Lipsitz, Parzen, Molenberghs, and Ibrahim (2001) proposed a test for bias in WEEs

caused by the missingness that is incorrectly modeled. For testing the adequacy of

the primary regression function, González-Manteiga and Pérez-González (2006) pro-

posed goodness-of-fit tests for linear models with missing responses under the MAR

assumption. In the theoretical framework of Bayesian posterior predictive checks,

Gelman, Van Mechelen, Verbeke, Heitjan, and Meulders (2005) proposed an informal

missing data model checking method using graphical diagnostics. As is mentioned

for a future research topic in the review paper by Ibrahim et al. (2005), it would be

interesting to explore formal model validation methods in the presence of missing co-

variates. As an application the proposed generalized score tests, we develop a formal

model validation procedure for generalized linear models in the presence of missing

covariates.

1.2 Dissertation Structure

The dissertation is organized as follows. In Chapter II, a comprehensive review for

missing data, weighted estimating equations, generalized score tests, etc. will be dis-

cussed. In Chapter III, we investigate the generalized score tests under the weighted

estimating equation settings. In Chapter IV, we develop goodness-of-fit tests for

generalized linear models when some covariates are partially missing. A simulation

study and its results are presented in Chapter V. In Chapter VI, as an illustration

we reanalyze the dataset discussed above. Some concluding remarks and comments

on future research given in Chapter VII.
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CHAPTER II

LITERATURE REVIEW

A main concern of this dissertation is the generalized score tests and their ap-

plications in the presence of missing covariates based on the weighted estimating

equations. We review the missing-data mechanism, missing-data pattern, weighted

estimating equation methods, generalized score tests, model validation methods and

other relevant topics in this chapter.

2.1 Missing-data Mechanism and Pattern

Missing-data mechanism describes the relationship between the missingness and the

values of variables. It is crucial because the properties of missing-data methods

strongly depend on this mechanism. The data are missing completely at random if

the missingness does not depend on the data values. Assumption of MCAR basically

implies that the complete cases are a random subsample of the intended sample, and

thus a complete-case analysis is valid. The data are missing at random if, conditional

on the observed data, the missingness does not depend on the unobserved data.

Clearly, MAR is a weaker assumption than MCAR. In this case of MAR, complete-

case methods may not be valid because the complete cases are no longer a random

sample of the intended sample. If the data are MAR and the missingness does not

depend the response, then a complete-case analysis will lead to valid results. When

neither MCAR nor MAR holds, we say the data are missing not at random (MNAR).

In the likelihood setting, the missing-data mechanism MNAR is termed non-ignorable.

Valid inferences generally require specifying the correct model for the missing-data
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mechanism when the missingness is non-ignorable. The assumption of MAR has been

widely used in the literature, as in this dissertation. Our methodology can be directly

applied to MNAR cases if correct models for the selection probability are available,

which generally requires additional information.

Missing-data pattern is another important concept regarding missing data, es-

pecially when there are multiple variables with missing values. It describes which

values are observed and which values are missing in the data matrix. If the data

matrix can be rearranged in such a way that there is a hierarchy of missingness, so

that observing a particular variable for a subject implies that all other variables on

the left-side of this variable are observed, then the missingness is said to be monotone.

Little and Rubin (2002, Chapter I) described various missing-data patterns, includ-

ing univariate nonresponse, multivariate two patterns, general missingness pattern,

etc. Some methods for missing data are restricted to certain special patterns. In this

dissertation, we assume the missing-data pattern is multivariate two patterns, where

x is all missing if δ = 0. The methodology can be applied to monotone missingness

without difficulty because WEE (1.1) works for monotone missingness pattern.

2.2 Weighted Estimating Equations

2.2.1 Weighted Estimating Equations

Flanders and Greenland (1991), and Zhao and Lipsitz (1992) proposed an estimator

based on the simple inverse probability weighted estimating equations

Us(β, π) =
n∑
i=1

usi(β, πi) =
n∑
i=1

{ δi
πi
ψ(yi,xi, zi,β)} = 0 (2.1)

for two-stage studies. Assuming that π is known, they showed that the estimator is

consistent for β and asymptotically normal distributed. However, it is clear that the

estimator is not efficient because Equation (2.1) has nothing to do with the incomplete
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cases.

Robins et al. (1994) introduced weighted estimating equations (1.1) and defined a

class of estimators indexed by φ under regularity conditions. For each φ, the estimator

is the unique solution β̂ of Equation (1.1). Note that the solution, the equation and

other relevant quantities depend on the nuisance functions π and φ. For notational

convenience, we suppress this dependence throughout this dissertation when there

is no confusion. The methods are quite general and can be applied to very large

classes of models, including generalized linear models, proportional hazards model

and nonlinear models. Robins et al. (1994) showed that β̂ are asymptotically normal

and unbiased for β when (a) the data are MAR, (b) π is bounded away from 0, and

(c) π is either known (in a designed study) or estimated via a correct model. The

asymptotic variance of n
1
2 (β̂−β) can be consistently estimated by the corresponding

sandwich estimator. It is clear that Equation (2.1) is a special case of WEE (1.1).

They pointed out that estimators previously proposed by Horvitz and Thompson

(1952), Breslow and Cain (1988), Flanders and Greenland (1991), and Zhao and

Lipsitz (1992) are asymptotically equivalent to some inefficient estimators in their

class. Misspecification of π could lead to a biased estimating equation (1.1), while

the choice of φ affects the efficiency of the point estimators. The asymptotic variance

of β̂ and WEE (1.1) is uniquely minimized in the positive definite sense when

φ = φ∗(yi, zi) = E{ψ(yi,xi, zi,β)|yi, zi}.

In fact, φ∗(yi, zi) is the conditional mean score function. A sketch proof for this

optimum property is given below.

Note that Equation (1.1) can be rewritten as

U(β, π, φ) =
n∑
i=1

ψ(yi,xi, zi,β) +
n∑
i=1

(
δi
πi
− 1){ψ(yi,xi, zi,β)− φ(yi, zi)}

= UF (β) + UM(β, π, φ). (2.2)



9

For all β, ( δi
πi
− 1){ψ(yi,xi, zi,β) − φ(yi, zi)} has mean 0 given (yi, zi) and thus is

uncorrelated with ψ(yi,xi, zi,β). Hence

Var{U(β, π, φ)} = Var{UF (β)}+ Var{UM(β, π, φ)}

= Var{UF (β)}+ E[
(1− π)

π
E{[ψi − φ(yi, zi)][ψi − φ(yi, zi)]

′}],

where φi = ψ(yi,xi, zi,β). It is clear that E[ (1−π)
π
E{[ψi−φ(yi, zi)][ψi−φ(yi, zi)]

′}] is

minimized at φ∗ in the positive definite sense.

According to Equation (2.2), U(β, π, φ) can be decomposed to full data estimat-

ing estimating equations UF (β) and the noise UM(β, π, φ). Because UM(β, π, φ) has

mean 0 and is uncorrelated with UF (β), UM(β, π, φ) is just random noise added to

the full data estimating estimating equations due to the missingness and cannot help

in estimation of β. The variance of UM(β, π, φ) is a quantitative measure of the noise

for not having observed all data. The penalty paid for missing data is minimized when

the mean score function φ∗ is used for extracting the information in the incomplete

cases.

The estimator based on WEE (2.1) is biased if the selection probability is not

appropriate while the estimator based on WEE (1.1) may not. Scharfstein et al.

(1999) discussed doubly robust estimators based on general WEE (1.1). An estimator

is doubly robust in the sense that it is consistent for β if either the model for the

selection probability or the model for the conditional mean score function is correctly

specified. For example, the estimators in Lipsitz et al. (1999) and Rotnitzky, Robins,

and Scharfstein (1998) are doubly robust.

2.2.2 Parametric Setting

In WEE (1.1), the nuisance function π is often unknown and thus needs to be es-

timated. On the other hand, the efficient estimator β(π, φ∗) is not feasible because
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the conditional mean score function depends on the unknown conditional distribution

(x|y, z).

Zhao, Lipsitz, and Lew (1996) introduced a joint estimating equation for regres-

sion analysis when some covariates are missing. They posed a logistic regression for

the selection probability,

πi = πi(α) =
exp(−α′vi)

1 + exp(−α′vi)
, (2.3)

where and vi is a vector function of (yi, zi)’s, such as (yi, z
′
i)
′ and (y

1
3
i ). The maximum

likelihood equation for the logistic regression is

Uπ(α) =
n∑
i=1

vi {δi − πi(α)} = 0.

Assuming that κ is a necessary vector of unknown parameter in the model for

φ∗, their joint estimating equation is

0 =


U(β,α,κ)

Uφ∗(β,α,κ)

Uπ(α)

 , (2.4)

where Uφ∗(β,α,κ) depends on assumptions regarding the conditional moments E(xi|yi, zi),

E(x2
i |yi, zi), etc. The parameter κ in their setting is related to these conditional mo-

ments.

Lipsitz et al. (1999) proposed another joint estimating equations similar to max-

imum likelihood equations for missing covariate data. By assuming the conditional

distribution p(x|z; κ), they obtained a joint estimating equation similar to Equation

(2.4) where

Uφ∗(β,α,κ) =
n∑
i=1

[
δi
πi
ψφ∗(xi, zi,κ) + (1− δi

πi
)E{ψφ∗(xi, zi,κ)|yi, zi}]
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and

ψφ∗(x, z,κ) = {∂ log p(x|z,κ)/∂κ}′.

An EM-type algorithm was proposed to solve the joint estimating equation above.

The estimate α̂ for α is the solution of Uπ = 0, while the estimates β̂ for β and

κ̂ for κ can be obtained by EM-type iterative methods using U , Uφ∗ and α = α̂.

According to Lipsitz et al. (1999), β̂ is consistent for β when at least one of the

following is correctly specified: (a) model (2.3) for the selection probability or (b)

the distributional assumptions on f(y|x, z; β) and p(x|z; κ). When π is correctly

specified, they obtained

E{∂U(β,α,κ)

∂κ
} = 0.

On the other hand, when f(y|x, z; β) and p(x|z; κ) are correctly specified, they

showed

E{∂U(β,α,κ)

∂α
} = 0.

As a special case of Lipsitz et al. (1999), Parzen, Lipsitz, Ibrahim, and Lipshultz

(2002) considered a weighted estimating equation for linear regression with missing

covariate data. They proposed weighted estimating equations with the assumption

that the missing covariates are multivariate normal, which might be incorrect. Via

simulation, they compared their WEEs with the semiparametric efficient WEE with

correct distribution assumption on the missing covariates as well as the maximum

likelihood methods. They concluded that the methods work for many situations and

the efficiency is high.

2.2.3 Semiparametric Setting

It is generally convenient to assume parametric models for the selection probability

and the mean score function φ∗. However, it might be problematic when the para-

metric models (especially the model for the selection probability) are not correct.
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To deal with this problem, Wang et al. (1997) proposed a semiparametric esti-

mate of β in regression analysis with missing covariates. They considered the weighted

estimating equation

Us(β, π̂N) =
n∑
i=1

{ δi
π̂Ni

ψ(yi,xi, zi,β)} = 0,

where

π̂N(v) =

∑n
i=1 δiKh(v− vi)∑n
i=1Kh(v− vi)

, (2.5)

K is an sth-order kernel function, h is a proper bandwidth parameter, Kh(·) =

K(·/h), and vi = (yi, z
′
i)
′. They concluded that (a) the semiparametric estimator

β̂ is root-n consistent, though the nonparametric smoother π̂N has slower rate than

root-n consistency, and (b) the efficiency of estimating β may be gained via estimating

the selection probability.

Wang and Wang (2001) investigated kernel assisted estimators in regression anal-

ysis in the presence of missing covariates. Smoothing techniques are employed in esti-

mating π and φ∗. They proposed three kernel assisted semiparametric estimators and

founded the asymptotic equivalence between these estimators. More specifically, the

selection probability is estimated via (2.5) and the conditional mean score function

is estimated by

φ̂∗N(v) =

∑n
i=1

δi
π̂N (vi)

ψ̂iKh(v− vi)∑n
i=1Kh(v− vi)

, (2.6)

where ψ̂i = ψ(yi,xi, zi, β̂) and β̂ is the solution of U(β, π̂N , φ) = 0.

Under the regularity conditions (C1)−(C5), they showed that

n−
1
2U(β, π̂N , 0) = n−

1
2U(β, π, φ∗) +Op(ρn),

n−
1
2UA(β, π̂N , φ̂

∗
N) = Op(ρn), (2.7)

where UA(β, π, φ) =
∑n

i=1(1−
δi
πi

)φ(yi, zi), and ρn =
{
nh2s + (nh2d)−1

} 1
2 .
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Liang, Wang, Robins, and Carroll (2004) used different nonparametric estimates

for the selection probability in their local weighted estimating equations. They

pointed out that the selection probability can be estimated via many nonparametric

estimators (local polynomial, kernel methods with varying bandwidths, smoothing

and regression splines, and so on) and the results are asymptotically equivalent under

certain conditions similar to (C1)−(C5).

2.2.4 Comparison with Other Methods

When the likelihood for the complete-data

p(y,x|z; β,κ) = f(y|x, z; β)p(x|z; κ)

is available, the likelihood based methods (Rubin, 1976; Little and Rubin, 2002;

Ibrahim et al., 1999) can be used for inference via the EM algorithm (Dempster

et al., 1977). If the data are MAR, the likelihood based methods ignoring the missing-

data mechanism is valid (Rubin, 1976). However, an appropriate likelihood is often

difficult to obtain for missing data problems and the results are not robust to model

misspecification.

Multiple imputation is another popular approach for handling missing covariate

data. First, it creates multiple ‘complete’ datasets by making random draws from

the predictive distribution p(x|y, z) of the missing values, which require essentially

the same condition as likelihood based methods. Often multivariate normal models

are used for covariates (x,z) because it is computationally tractable. Second, each of

these ‘complete’ datasets are analyzed using standard methods. Finally, the results

are combined which take uncertainty regarding the imputation into account. Multi-

ple imputation is an attractive choice for missing data problems because of ease of

use. For example, multiple imputation in SAS can be carried out in three simple
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steps. First, the imputation is carried out by PROC MI. Next, standard methods are

employed for complete-case analysis. Finally, the results are combined using PROC

MIANALYZE. However, the predictive distribution p(x|y, z) must be proper to have

consistent estimators and valid tests.

WEEs methods for missing covariate data without making strict parametric as-

sumptions on the distribution of covariates. Without an appropriate assumption on

p(x|z; κ), the result is still consistent if the selection probability is correctly specified

or estimated. When p(x|z; κ) or other similar assumptions are correctly specified,

the estimate is valid and efficient. Doubly robust estimators based on WEE (1.1)

are preferred to MLE in many cases. If the missingness is non-ignorable, the max-

imum likelihood estimate will generally be inconsistent unless both the model for

the selection probability and the model for the conditional mean score function are

correctly specified. In two stage designs or samples surveys with a known selection

probability, the doubly robust estimator is guaranteed to be consistent. In contrast,

the maximum likelihood estimator may be inconsistent if the parametric model for all

covariates is misspecified. However, for the general missing covariate data involving

both continuous covariates and general missing pattern, the doubly robust estimators

are difficult to obtain.

2.3 Generalized Score Tests

A comprehensive introduction for generalized score tests may be found in Boos (1992),

which discussed the use of score tests in the general estimating equation setting for

fully observed data. In the case of no missingness, WEE (1.1) reduces to UF (β),

which is given in Equation (2.2) and free of π and φ. Typically, the generalized score

tests are for testing

H0: β2 = β20 vs Ha: β2 6= β20, (2.8)
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where β2 is an r × 1 sub-vector of β in Equation (1.1) such that β = (β′
1,β

′
2)

′. All

relevant vectors are partitioned accordingly, e.g., U = (U ′
1, U

′
2)

′ where U1 is (p−r)×1

and U2 is r × 1. Boos showed how generalized score statistics arise from Taylor

expansion of the estimating equation. Let β̃ be the solution of Equation (1.1) under

H0. By expanding U1(β̃) and U2(β̃) at the true value β, and replace ∂U1

∂β1

and ∂U2

∂β1

by

their asymptotically equivalent versions E( ∂U1

∂β1

) and E( ∂U1

∂β2

), U(β̃) can be written as

0 = U1(β̃) = U1(β) + E(
∂U1

∂β1

)(β̃1 − β1) +Rn1,

U2(β̃) = U2(β) + E(
∂U2

∂β1

)(β̃1 − β1) +Rn2,

where the remainders Rn1, Rn2 are relatively negligibly small with order Op(1) under

H0 and the partial derivatives above are row vectors. By combining the two equations

above, we have

U2(β̃) = (−A, Ir)U(β) +Rn3, (2.9)

where A = E( ∂U2

∂β1

)E( ∂U1

∂β1

)−1, Rn3 is a negligible remainder with order Op(1), and Ir

is the r×r identity matrix. Therefore, Boos obtained one version of generalized score

statistic

U2(β̃)′
{

(−Ã, Ir)J̃ U(−Ã, Ir)
′
}−1

U2(β̃), (2.10)

where Ã = A| ˜β, J U =
∑n

i=1 ui(β)u′
i(β) and J̃ U = J U | ˜β. The test statistic follows

χ2
r asymptotically under H0 and regularity conditions.

The efficiency of generalized score tests is another important issue. Tosteson and

Tsiatis (1988) studied three score tests and their relative efficiency in a generalized

linear model with surrogate covariates. We may follow Tosteson and Tsiatis (1988)

to study efficiency issue of generalized score tests in the missing data setting.
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2.4 Model Validation Procedures for Missing Data

In general, an assessment of model fit is an important part of any modeling procedure.

Model evaluation for missing data may include the detection of the an incorrect as-

sumption of missing-data mechanism, omitted important covariates, or inappropriate

distributional assumptions.

There are a few tests in the literature concerning the assumption of missing at

completely random. Chen and Little (1999) proposed a Wald-type test for missing

at completely at random in generalized estimating equations with incomplete data.

Strictly speaking, the proposed test statistic tests whether or not the data and the

missing-data pattern are independent, which does not imply assumption of missing

completely at random exactly. The test statistic follows a χ2 distribution under H0.

They suggested that the an unadjusted generalized estimating equation is appropriate

when H0 is accepted. They employed an information decomposition and recombina-

tion procedure to construct the Walt-type test statistic.

Qu and Song (2002) proposed a generalized score-type test based on the quadratic

inference for testing whether or not missing data in longitudinal data analysis are

ignorable with regard to quasi likelihood or estimating equations approaches. In

other words, they try to test unbiasedness of unadjusted estimating equations, which

is almost the same null hypothesis as Chen and Little (1999). They used estimating

equations UQ based on (p + r) × 1 dimensional unbiased function s(y,x, z,β). To

construct the test statistic, they first separated the complete cases and incomplete

cases into two groups. For each group of the data, one of the estimating equations

UQ1 and UQ2, such that UQ = (U ′
Q1, U

′
Q2)

′, can be constructed. They defined the

quadratic inference function as

Q = U ′
Q1V

−1
Q1UQ1 + U ′

Q2V
−1
Q2UQ2,
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where VQ1 and VQ1 are consistent covariance estimate for UQ1 and UQ2, respectively.

The test statistic is Q(β̂), where β̂ is the minimizer of the quadratic inference function

Q. The statistic Q(β̂) follows χ2
r asymptotically. Furthermore, they also showed that

the generalized score test is asymptotically equivalent to Chen and Little’s Wald-type

test.

Lei and Wang (2001) developed test statistics for bias of WEE (2.1) in the

presence of missing covariates. Under the assumption that the primary regression

model is correct, the test statistics focus on testing whether or not the data are MAR.

The test statistics were developed based on partitioning the sample into disjoint q

groups. For k = 1, · · · , q, define

Tk = Uk(β̂, π̂)′Σ−1
k Uk(β̂, π̂),

where π̂ is the estimated selection probability, Uk is WEE (2.1) which uses the kth

group of data only, and Σk is a consistent estimator for the asymptotic covariance

matrix of Uk(β̂, π̂). The test statistic is

T = max1≤k≤q(T1, · · · , Tq).

In both parametric and semiparametric setting, they showed that the test statistics

follow an asymptotic χ2
p distribution when q = 2. Both the parametric and semipara-

metric tests performed well and similarly when (a) sample size is large enough and

(b) the selection probability is correctly specified. When the parametric model for

the selection probability is not correct, they suggested that the semiparametric test

should be used.

Lipsitz et al. (2001) proposed a test for bias in WEE (2.1) caused by the miss-

ingness of the data that is not modeled correctly. More strictly, the null hypothesis is

WEE and the full data estimates converge in probability to the same parameter. To
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obtain the test statistic, the regression model of y given z was fitted using complete

cases via WEE (2.1) as well as all data, and thus obtain two estimates of βz, say

β̂z,WEE and β̂z respectively, where βz the regression coefficient corresponding to z.

The test statistic is

(β̂z,WEE − β̂z)
′[Cov(β̂z,WEE − β̂z)]

−1(β̂z,WEE − β̂z),

which is an approximate χ2
pz

under H0, where pz is the dimension of covariate z.

Regrading the primary regression function, González-Manteiga and Pérez-González

(2006) proposed goodness-of-fit tests for a linear regression model with missing re-

sponse only under the MAR assumption. The proposed test statistics are based on

the L2 distance between appropriate nonparametric and parametric estimates of the

regression function under H0. Because the convergence rate of the test statistics to

the asymptotic distribution is slow, they proposed a bootstrap procedure for approx-

imation of the critical values. Under MAR and no covariates are missing, there is no

systematic difference between complete cases and incomplete cases. Therefore, the

complete case analysis is valid.

2.5 Regularity Conditions

The regularity conditions given below are based on Wang et al. (1997) and Wang and

Wang (2001) for kernel assisted estimators.

(C1) The function π(v) is bounded away from 0 for all v in its domain.

(C2) The function π(v) has s continuous and bounded partial derivatives with respect

to the continuous components of v.

(C3) The probability density function p(v) and the conditional probability density

function p(v|δ) both have s continuous and bounded partial derivatives with
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respect to the continuous components of v.

(C4) The conditional mean score function E{ψ(y,x, z,β)|y, z} and E{ψ(y,x, z,β)ψ′

(y,x, z,β)|y, z} exist and have s continuous and bounded partial derivatives

with respect to the continuous components of v.

(C5) E{ψ(y,x, z,β)ψ′(y,x, z,β)} and E{ ∂

∂β
ψ(y,x, z,β)} exits and are positive def-

inite, and ∂2

∂β∂β′ψ(y,x, z,β) exists and is continuous in the parameter space.

The regularity conditions given below are for generalized score statistics.

(C6) The first and second moments of ∂ψ

∂β
exist and ∂ψ

∂β
is continuous in a neighbor-

hood of the true value of β.

(C7) E( ∂U1

∂β1

)−1 exists, and E( ∂U2

∂β1

)−1 has full row rank.

(C8) Estimating equation U is unbiased and has an unique solution, E{ψ(y,x, z,β)ψ′

(y,x, z,β)} exists and is positive definite.

Note that p(v|δ=0)
p(v|δ=1)

is bounded in the domain, since π(v) is bounded away from

0. Condition (C6) guarantees that ∂U

∂β
= E( ∂U

∂β
) + Op(n

1
2 ). This means that ∂U

∂β

and E( ∂U
∂β

) are asymptotically equivalent under condition (C6). Also note that, in

parametric settings, the estimating equation U in (C6)-(C8) is matter for the whole

corresponding joint estimating equation (e.g. UJ in 3.6) and β is for all parameters

(e.g. τ in 3.6) in the joint estimating equation.
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CHAPTER III

GENERALIZED SCORE TESTS FOR MISSING COVARIATE DATA

3.1 Introduction

Generalized score methods provide a simple and unified way to test a variety of hy-

potheses in many statistical problems. For example, Rotnitzky and Jewell (1990)

developed a generalized score test for regression coefficients in semiparametric gen-

eralized linear models for cluster correlated data. Boos (1992) discussed generalized

score tests in a general estimating equation setting. Commenges and Jacqmin-Gadda

(1997) derived a general form of the score statistic for the random effect in corre-

lated random effects model. Thas and Rayner (2005) constructed a goodness-of-fit

test using generalized score statistics to test for the zero-inflated Poisson distribution

against general smooth alternatives. In this chapter, we study the generalized score

tests for missing covariate data based on WEE (1.1).

WEE methods have been widely used for missing covariate data without making

strict parametric assumptions. The estimator based on WEE (1.1)

0 = U(β, π, φ) =
n∑
i=1

ui(β, πi, φ)

=
n∑
i=1

{ δi
πi
ψ(yi,xi, zi,β) + (1− δi

πi
)φ(yi, zi)},

can be doubly robust. In the WEE (1.1) setting, Wald-type tests and sandwich

covariance estimates are widely used in the literature. According to Boos (1992),

the score type statistics are attractive because (a) they only require computation of

the null estimates and (b) they could be invariant to nonlinear transformations of
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the parameters whereas Wald statistics are not. More specifically, we are primarily

concerned with generalized score tests for testing hypothesis (2.8)

H0: β2 = β20 vs Ha: β2 6= β20

based on WEE (1.1) in different settings.

3.2 The Case of the Selection Probability π Being Known and φ Being
Given

Zhao and Lipsitz (1992) concerned statistical inference of two-stage studies using

WEE (2.1), which collects the data in two stages. In the first stage, the covariate

z of n subjects are observed, and at the second stage covariate x is measured on a

subset of the study subjects based on the design selection plan. Then it is reasonable

to assume the selection probability is known for many applications. Recall that φ in

WEE (1.1) could be an arbitrary fixed p × 1 function with finite second moments.

Therefore, based on WEE (1.1), a class of generalized score tests indexed by φ can

be defined. In this section, we would like to investigate how the nuisance function φ

affects the generalized score tests when the selection probability is known.

3.2.1 A Class of Generalized Score Tests

Since π is known, U(β, π, φ) in WEE (1.1) reduces to U(β, φ). Under the current

setting and regularity conditions, an unique solution β̃ of Equation (1.1) can be solved

under H0. Recall that β = (β′
1,β

′
2)

′, β1 is (p − r) × 1 and β2 is r × 1. In addition,

we assume that β1 can be solved using U1 given β2. Following the approach in Boos

(1992) and by regularity condition (C6), we obtain

0 = U1(β̃, φ) = U1(β, φ) + E(
∂U1

∂β1

)(β̃1 − β1) +Op(1),

U2(β̃, φ) = U2(β, φ) + E(
∂U2

∂β1

)(β̃1 − β1) +Op(1),
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under H0, where E denotes the expectation with respect to (δi, yi, xi, zi). In the

case that Op(1) is a matrix or vector, Op(1) means that each element of the matrix

or vector is of the order Op(1). Combining the two equations above, we have

U2(β̃, φ) = (−A, Ir)U(β, φ) +Op(1), (3.1)

where A = E( ∂U2

∂β1

)E( ∂U1

∂β1

)−1, which has the same form A in (2.9) while the meaning

ofE and the equation U are different. Let Ã = A| ˜β, J U =
∑n

i=1 ui(β, π, φ)u′
i(β, π, φ)

and J̃ U = J U | ˜β. Without confusion, we will continue to use Ã, J̃ U , etc. for the

quantities evaluated at proper parameters or their estimates under other settings. By

the root-n consistency of β̃ under H0 and (C6),

A = Ã +O(n−
1
2 ),

J U = J̃ U +Op(n
1
2 ).

Under the current setting,

E(1− δi
πi
|yi, zi) = 1− E(δi|yi, zi)

πi

= 1− πi
πi

= 0. (3.2)

Therefore, the WEE is unbiased. Hence,

E{U2(β̃)} = 0,

and

Cov{U2(β̃)} = (−A, Ir)J U(−A, Ir)
′ +O(n

1
2 ).

By condition (C7), the matrix (−A, Ir)J U(−A, Ir)
′ is nonsingular. Therefore, an

appropriate generalized score statistic is defined as

TGS = U2(β̃)′
{

(−Ã, Ir)J̃ U(−Ã, Ir)
′
}−1

U2(β̃). (3.3)
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By the Central Limit Theorem, it is clear that TGS → χ2
r as n → ∞ under H0 and

regularity conditions. Because φ could be different, a class of test statistics indexed

by φ can be constructed. From the development above, we know that the asymptotic

null distribution of TGS does not depend on the choice of φ. Note that the WEE

(1.1) generally depends on the nuisance functions π and φ, so does TGS; we write it

as TGS(π, φ) symbolically if necessary. When π is misspecified, WEE (1.1) could be

biased and TGS(π, φ) may not be an appropriate test statistic for Hypotheses (2.8).

3.2.2 Relative Efficiency

Recall that the choice of φ affects the asymptotic variance of the estimating equation

and the corresponding estimators. When

φ = φ∗(yi, zi) = E{ψ(yi,xi, zi,β)|yi, zi},

the asymptotic variance of the β̂ and the WEE (1.1) is uniquely minimized in the

positive definite sense. We believe that some optimality holds for generalized score

tests when φ = φ∗(yi, zi).

Consider a sequence of local alternatives β
(n)
2 , such that

n
1
2 (β

(n)
2 − β20) → λ, (3.4)

where ||λ|| > 0. It is nature to ask if the constrained estimate β̃ = (β̃1,β20) is still

consistent for β under the local alternative. We have the following lemma:

Lemma 3.2.1. Under the local alternative, the constrained estimate β̃ is root-n con-

sistent for β.

Proof. Let β̃
(n)

1 be the solution of the estimating equation

U1(β̃
(n)

1 ,β
(n)
2 ) = 0.
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Since β
(n)
2 is the true value of β2, it is clear that β̃

(n)

1 is root-n consistent for the

β1. In addition, by Equation (3.4),

0 = U1(β̃
(n)

1 ,β
(n)
2 )

= U1(β̃
(n)

1 ,β2) + E(
∂U1

∂β2

)(β
(n)
2 − β20) +Op(1)

= U1(β̃
(n)

1 ,β2) + E(
∂U1

∂β1

)E(
∂U1

∂β1

)−1E(
∂U1

∂β2

)(β
(n)
2 − β20) +Op(1)

= U1(β̃
(n)

1 + ∆
(n)

β
,β2) +Op(1),

where ∆
(n)

β
= E( ∂U1

∂β1

)−1E( ∂U1

∂β2

)(β
(n)
2 − β20). It is clear that ∆

(n)

β
has order Op(n

− 1
2 ).

Therefore,

β̃1 = β̃
(n)

1 +Op(n
− 1

2 ),

and thus the constrained estimate under the local alternative is root-n consistent.

�

Since the constrained estimate β̃ is root-n consistent for β under the local alter-

native, we expend U1(β̃) and U2(β̃) at β = (β1,β
(n)
2 ):

0 = U1(β̃) = U1(β) + E(
∂U1

∂β1

)(β̃1 − β1) + E(
∂U1

∂β2

)(β20 − β
(n)
2 ) +Op(1)

U2(β̃) = U2(β) + E(
∂U2

∂β1

)(β̃1 − β1) + E(
∂U2

∂β2

)(β20 − β
(n)
2 ) +Op(1).

The first equation above implies that

β̃1 − β1 = −E(
∂U1

∂β1

)−1{U1(β) + E(
∂U1

∂β2

)(β20 − β
(n)
2 ) +Op(1)}.

Plugging it into U2(β̃), we obtain

U2(β̃) = (−A, Ir)U(β) +

{−E(
∂U2

∂β1

)E(
∂U1

∂β1

)−1E(
∂U1

∂β2

) + E(
∂U2

∂β2

)}(β20 − β
(n)
2 ) +Op(1)

= (−A, Ir)U(β) + n−
1
2{−AE(

∂U1

∂β2

) + E(
∂U2

∂β2

)}λ +Op(1)

= (−A, Ir)U(β) + n−
1
2Cλ +Op(1), (3.5)
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where C = (−A, Ir)E( ∂U

∂β2

). Since A and E( ∂U

∂β2

) are both free of φ (see the proof of

Lemma 3.2.2), C is also free of φ. By Equation (3.5),

E{U2(β̃)} = n−
1
2Cλ +O(1),

and

Cov{U2(β̃)} = (−A, Ir)E(J U)(−A, Ir)
′ +O(n

1
2 ),

under the sequence of alternatives β
(n)
2 . Comparing (3.1) and (3.5), we discover

that the mean of U2(β̃) are asymptotically different while the variance of U2(β̃) are

asymptotically equivalent under H0 and the local alternative. In fact, the power of

the test comes from the term n−
1
2Cλ.

As in Tosteson & Tsiatis (1988), the asymptotic relative efficiency of TGS to

T ∗
GS = TGS(π, φ

∗) is

ARE(TGS, T
∗
GS) = G/G∗

whereG andG∗ are the non-centrality parameters for TGS and T ∗
GS under the sequence

of alternatives β
(n)
2 .

Lemma 3.2.2. When the selection probability π is known and φ is given, the asymp-

totic relative efficiency ARE(TGS, T
∗
GS) ≤ 1. The equality holds iff φ = φ∗ a.e.

Proof. By Equation (3.2),

E(
∂U

∂β
) = E

n∑
i=1

{ δi
πi

∂ψ(yi,xi, zi,β)

∂β
+ (1− δi

πi
)
∂φ(yi, zi)

∂β
}

= E

n∑
i=1

{ δi
πi

∂ψ(yi,xi, zi,β)

∂β
}+ Eyz{E(1− δi

πi
|yi, zi)

∂φ(yi, zi)

∂β
}

= E
n∑
i=1

{ δi
πi

∂ψ(yi,xi, zi,β)

∂β
}

indicating E( ∂U
∂β

) are free of φ for any β. Consequently, the matrix A in (3.1) does

not depend the choice of φ. By Equation (2.2),

E(
J U

n
) = E(u1u

′
1) = E(ψψ′) + E[(1− π)πE{(ψ − φ)(ψ − φ)′|y, z}
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where ψ = ψ(y,x, z,β). Obviously, E( 1
n
J U) is minimized at φ = φ∗ = E{ψ(y,x, z,β)|y, z}

in the positive definite sense. Hence, we can write

E(J U) = E(J ∗
U) + D,

where J ∗
U is J U evaluated at φ = φ∗ and D is a positive definite matrix when φ 6= φ∗.

The asymptotic non-centrality parameter for TGS is

G =
1

2n
λ′C′{KE(J U)K′}−1Cλ

=
1

2n
λ′C′ [K{E(J ∗

U) + D}K′]
−1

Cλ

=
1

2n
λ′C′(KJ + KD)−1Cλ,

where K = (−A, Ir), KJ = KE(J ∗
U)K′ and KD = KDK′. The matrix K is also

free of φ. Because K is full row rank, KJ and KD are nonsingular when φ 6= φ∗. By

Lemma 3.5.1,

{KJ + KD}−1 = K−1
J −K−1

J (K−1
J + K−1

D )−1K−1
J .

Hence,

G =
1

2n
λ′C′{KE(J ∗

U)K′}−1Cλ−G0

= G∗ −G0,

where

G0 =
1

2n
λ′C′K−1

J (K−1
J + K−1

D )−1K−1
J Cλ.

When φ 6= φ∗, it is obvious that (K−1
J +K−1

D )−1 is positive definite, and thus G0 > 0.

It is clear that G = G∗ when φ = φ∗. Then

ARE(TGS, T
∗
GS) =

G∗ −G0

G∗ < 1,

completing the proof. �
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The lemma implies that the asymptotic optimal test among all the choices of φ

is achieved when φ = φ∗ in the current setting. As we will see later, the asymptotic

relative efficiencies between different generalized score test statistics are given for both

parametric and semiparametric settings, with the conclusion that T ∗
GS and some other

test statistics achieve the same asymptotic optimality in all these settings. Robins

et al. (1994) showed the asymptotic variance of WEE (1.1) is uniquely minimized in

the positive definite sense when φ = φ∗. From the development of the noncentrality

parameter under the local alternative, we find out that the proposed tests keep this

optimum property when φ = φ∗.

3.3 Parametric Setting

In many epidemiological studies, data are missing by happenstance rather than design,

and thus the selection probability π(yi, zi) in WEE (1.1) is generally unknown and

needs to be estimated. Furthermore, Robin et al. (1994) and Wang et al. (1997)

showed that one can improve the efficiency of the inefficient estimators in their class

by estimating the selection probability even when it is known.

On the other hand, by Lemma (3.2.2), it is intuitive to have φ∗ or its estimate

in WEE (1.1) to achieve good power in a generalized score test. Recall that φ∗ is the

mean score with respect to the conditional distribution p(xi|yi, zi), which is usually

unknown too. Then additional models may be required to estimate φ∗.

One common approach is to assume parametric models for π and φ∗. In this

section, we would like to obtain appropriate generalized score statistics in different

parametric settings, study how parametric estimates of the selection probability and

φ∗ affect the test statistics and investigate the efficiency issues. In particular, we focus

on the following special settings: (a) both π and φ∗ are estimated via parametric

models using joint estimating equation; (b) the selection probability is estimated via
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a parametric model and φ is given; and (c) the selection probability is known and φ∗

is estimated via a parametric model.

3.3.1 The Case of π and φ∗ Being Estimated Using a Joint Estimating Equation

Zhao et al. (1996) introduced a joint estimating equation for regression analysis and

Lipsitz et al.(1999) proposed proposed another joint estimating equation similar to

the maximum likelihood equation for missing covariate data. They all assumed that

the selection probability follows a logistic regression (2.3)

πi = πi(α) =
exp(−α′vi)

1 + exp(−α′vi)
,

where vi is a vector function of (yi, zi) and α is finite dimensional. Recall that the

maximum likelihood estimate α̃ for α can be obtained using

Uπ(α) =
n∑
i=1

vi {δi − πi(α)} = 0.

However, they used different parametric models for φ∗. Zhao et al. (1996) used the as-

sumptions regarding conditional moments and Lipsitz et al. (1999) used assumptions

on the conditional distributions to build the parametric model for φ∗. To include

both settings above and other possible situations in a unified way, we assume that

Uφ∗(β,α,κ) is the estimating equation corresponding to a general model for φ∗ with

an additional finite dimensional parameter κ. Therefore, to solve the parameter

τ = (β′,α′,κ′)′, we have a general joint estimating equation

0 = UJ(β,α,κ) =



U1(β,α,κ)

Uφ∗(β,α,κ)

Uπ(α)

U2(β,α,κ)


. (3.6)

Let τ̃ = (β̃
′
, α̃′, κ̃′)′ be the solution of the joint estimating equation (3.6) under H0.

The estimates β̃ and κ̃ can be obtained by iterative methods using U , Uφ∗ and α = α̃.
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Let π̂ = π(α̃) and φ̂∗ be the corresponding estimate of φ∗. Note that the true value

of κ might be meaningless when the model for φ∗ is incorrect. In that situation, we

assume that there is a vector κ∗ such that κ̃ → κ∗ at a root-n rate, and let κ∗ be

the true value of κ. Assume that ψJ is the estimating function of UJ . When ψJ is

continuous with respect to τ at a neighborhood of the solution for E(ψJ) = 0 and

the second moment of ψJ exists, such a vector κ∗ exists. In addition, a correct model

for φ∗ means that the estimate φ̂∗ is consistent whether the model for the selection

probability is correct or not. For example, a correct model for φ∗ in Lipsitz et al.

(1999) requires that the distributional assumptions on f(yi|xi, zi; β) and p(xi|zi; κ)

are correct. Following the ideas in Scharfstein et al. (1999), Zhao et al. (1996) and

Lipsitz et al. (1999), it is easy to see that the estimator based on Equation (3.6) is

doubly robust. The estimate β̃ is consistent for β under H0 when at least one of the

following is correctly specified: (a) the model for the selection probability or (b) the

model for φ∗.

Because it is full parametric setting where nuisance functions π and φ∗ are re-

parametrized to finite dimensional nuisance parameters αand κ, it seems that the

generalized score statistics in Boos (1992) can be applied easily using UJ instead of

U in test statistic (2.10). Assuming that β̃ is consistent, the Boos’s test statistic

TGSB = U2(τ̃ )′
{

(− ˜̃A, Ir)J̃ UJ
(− ˜̃A, Ir)

′
}−1

U2(τ̃ ),

where

˜̃A = −E(
∂U2

∂β1

,
∂U2

∂κ
,
∂U2

∂α
)E(

∂UJ1

∂τ 1

)−1,

UJ1 = (U ′
1, U

′
φ∗ , U

′
π)

′, and τ 1 = (β1,α
′,κ′)′. However, two difficulties exist. First,

because the model for the selection probability may not be appropriate, the esti-

mating equation Uφ∗ and UJ could be biased. Hence, J̃ UJ
may not be a consistent

estimate of covariance matrix of UJ . Therefore, it is questionable that TGSB still
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follow χ2
r asymptotically under H0. Second, even given that this test statistics TGSB

is appropriate, the sub-matrices E(
∂Uφ∗

∂β
) and E(

∂Uφ∗

∂κ ) of the matrix E(∂UJ1

∂τ 1
) could be

extremely difficult to calculate because Uφ∗ may not have a close form. We obtain

relatively simple and appropriate test statistics in the following.

Before we introduce the test statistic and the main theorem, we would like to

state two lemmas.

Lemma 3.3.1. If a parametric model such as (2.3) is correct for the selection prob-

ability function in the setting using Equation (3.6), then

E{∂U(β,α,κ)

∂κ
} = 0.

Because the lemma has nothing to do with Uφ∗ , the proof of the lemma is essential

same as that of Lipsitz et al. (1999).

Lemma 3.3.2. If the model for φ∗ is correctly specified in (3.6), then

E{∂U(β,α,κ)

∂α
} = 0.

When the model for the selection probability is correctly specified, as we will

show in the proof of Theorem 3.3.1, an appropriate generalized score statistic is

T ∗
GSP = U2(τ̃ )′

{
(−Ã, B̃, Ir)J̃ UR

(−Ã, B̃, Ir)
′
}−1

U2(τ̃ ), (3.7)

where Ã = A|τ̃ , B = {AE(∂U1

∂α )−E(∂U2

∂α )}E(∂Uπ

∂α )−1 , B̃ = B|τ̃ , UR = (U ′
1, U

′
π, U

′
2)

′ =∑n
i=1 uRi, J UR

=
∑n

i=1 uRi(τ )u′
Ri(τ ) and J̃ UR

= J UR
|τ̃ . An interesting finding here

is that the test statistic T ∗
GSP is free of Uφ∗ and ∂U

∂κ . Equation (3.7) indicates that

the estimates of π and φ∗ have some effect on the generalized score statistics in the

parametric setting. The test statistic TGS is not an appropriate test statistic generally.

Recall that TGS(π, φ) = U2(β̃)′
{

(−Ã, Ir)J̃ U(−Ã, Ir)
′
}−1

U2(β̃) was developed in the
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last subsection when the selection probability is known and φ is given. By Lemma

3.3.2, it is seen that if the model for φ∗ is also correctly specified, T ∗
GSP in (3.7) reduces

to

TGS(π̂, φ̂
∗) = U2(τ̃ )′

{
(−Ã, Ir)J̃ U(−Ã, Ir)

′
}−1

U2(τ̃ )

since B = 0. This implies that TGS is still an appropriate generalized score statistic

if both π and φ∗ are estimated using correct parametric models. We now provide the

main theorem:

Theorem 3.3.1. Given the parametric setting based on the joint estimating equation

(3.6) and assuming that the model for the selection probability is correctly specified,

under suitable regularity conditions and H0, we have T ∗
GSP → χ2

r in distribution as

n→∞.

Proof. Let τ̃ 1 = (β̃1, α̃
′, κ̃′)′. Under H0 and condition (C6), by expanding UJ(τ̃ )

at the true value τ , we obtain

0 = UJ1(τ̃ ) = UJ1(τ ) + E(
∂UJ1

∂τ 1

)(τ̃ 1 − τ 1) +Op(1),

U2(τ̃ ) = U2(τ ) + E(
∂U2

∂τ 1

)(τ̃ 1 − τ 1) +Op(1).

Combining the equations above, we have the following results similar to (3.1):

U2(τ̃ ) =

{
−E(

∂U2

∂β1

,
∂U2

∂κ
,
∂U2

∂α
)I−1

J11, Ir

}
UJ(τ ) +Op(1), (3.8)

where

IJ11 = E


∂U1

∂β1

∂U1

∂κ
∂U1

∂α
∂Uφ∗

∂β1

∂Uφ∗

∂κ
∂Uφ∗

∂α

∂Uπ

∂β1

∂Uπ

∂κ
∂Uπ

∂α



= E


∂U1

∂β1

0 ∂U1

∂α
∂Uφ∗

∂β1

∂Uφ∗

∂κ
∂Uφ∗

∂α

0 0 ∂Uπ

∂α

 .
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In addition, by Lemma(3.3.1),

U2(τ̃ ) =

{
−E(

∂U2

∂β1

,0,
∂U2

∂α
)I−1

J11, Ir

}
UJ(τ ) +Op(1). (3.9)

The inverse matrix is

I−1
J11 =


E( ∂U1

∂β1

)−1 0 −E( ∂U1

∂β1

)−1E(∂U1

∂α )E(∂Uπ

∂α )−1

∗ ∗ ∗

0 0 E(∂Uπ

∂α )−1

 , (3.10)

where ∗’s above are some constants. The detailed proof of Equation (3.10) is shown

in Section 3.5 (Technical Detail). Therefore, (3.9) can be rewritten as

U2(τ̃ ) = {−A,0,B, Ir}UJ(τ ) +Op(1)

= {−A,B, Ir}UR(τ ) +Op(1),

where A was given in (3.1) and B in (3.7).

When the model for the selection probability is correctly specified, it is clear that

UR(τ ) is an unbiased estimating equation and 1
n
J̃ U is a root-n consistent estimate

of the Cov{n− 1
2UJ(τ )}. Then

E{n−
1
2U2(τ̃ )} = O(n−

1
2 ),

and

Cov{n−
1
2U2(τ̃ )} =

1

n
(−Ã, B̃, Ir)J̃ UR

(−Ã, B̃, Ir)
′ +O(n−

1
2 ).

By the Central Limit Theorem, T ∗
GSP → χ2

r in distribution as n→∞. �

Note that the estimator based on UJ(β,α,κ) is doubly robust. Therefore, it is

interesting to check if T ∗
GSP has similar robust property. More specifically, we would

like to check if T ∗
GSP is still an appropriate generalized score when the model for the

selection probability is misspecified but the model for φ∗ is correctly specified.
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If the model for φ∗ is correct, by Lemma (3.3.1), (3.3.2) and expanding UJ(τ̃ )

at the true value τ and replacing ∂UJ1

∂τ 1
and ∂U2

∂τ 1
by their asymptotically equivalent

versions E(∂UJ1

∂τ 1
) and E( ∂U2

∂τ 1
) under H0, we obtain

U2(τ̃ ) =

{
−E(

∂U2

∂β1

,
∂U2

∂κ
,0)I−1

J11, Ir

}
UJ(τ ) +Op(1),

where

IJ11 = E


∂U1

∂β1

∂U1

∂κ
∂U1

∂α
∂Uφ∗

∂β1

∂Uφ∗

∂κ
∂Uφ∗

∂α

∂Uπ

∂β1

∂Uπ

∂κ
∂Uπ

∂α



= E


∂U1

∂β1

∂U1

∂κ 0

∂Uφ∗

∂β1

∂Uφ∗

∂κ
∂Uφ∗

∂α

0 0 ∂Uπ

∂α

 .

In general, ∂U1

∂κ is not equal 0 when the model for the selection probability is misspec-

ified. With some algebra, we will see that U2(τ̃ ) is not free of ∂U1

∂κ and Uφ∗ . Therefore,

T ∗
GSP is definitely not appropriate generalized score statistics when the model for the

selection probability is misspecified but the model for φ∗ is correctly specified. From

the development above, an appropriate generalized score statistic generally depends

on ∂U1

∂κ ,
∂Uφ∗

∂β1

, and
∂Uφ∗

∂κ which are difficult to obtain in this setting. Therefore, gener-

alized score tests are not very useful when the model for the selection probability is

inappropriate.

It is also interesting to study the asymptotic efficiency of test statistic T ∗
GSP

given appropriate assumptions. First, following the the proof of Lemma (3.2.1), we

can show that the constrained estimate τ̃ = (β̃1,β20, κ̃, α̃) is still consistent for τ

under the sequence of local alternatives β
(n)
2 in (3.4). Therefore, by expanding UJ(τ̃ )
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at the true value τ , we obtain

0 = UJ1(τ̃ ) = UJ1(τ ) + E(
∂UJ1

∂τ 1

)(τ̃ 1 − τ 1) + E(
∂UJ1

∂β2

)(β20 − β
(n)
2 ) +Op(1),

U2(τ̃ ) = U2(τ ) + E(
∂U2

∂τ 1

)(τ̃ 1 − τ 1) + E(
∂U2

∂β2

)(β20 − β
(n)
2 ) +Op(1),

and hence

U2(τ̃ ) =

{
−E(

∂U2

∂β1

,
∂U2

∂κ
,
∂U2

∂α
)I−1

J11, Ir

}
UJ(τ ) +{

−E(
∂U2

∂β1

,
∂U2

∂κ
,
∂U2

∂α
)I−1

J11, Ir

}
E{∂UJ(τ )

∂β2

}(β20 − β
(n)
2 ) +Op(1),

under the local alternative. From the proof of Theorem 3.3.1, it is easy to see that{
−E(

∂U2

∂β1

,
∂U2

∂κ
,
∂U2

∂α
)I−1

J11, Ir

}
= (−A,0,B, Ir).

Since ∂Uπ/∂β2 = 0,

U2(τ̃ ) = (−A,0,B, Ir)UJ(τ ) +

(−A,0,B, Ir)E{
∂UJ(τ )

∂β2

}(β20 − β
(n)
2 ) +Op(1)

= (−A,B, Ir)UR(τ ) +

(−A, Ir)E{
∂U(τ )

∂β2

}(β20 − β
(n)
2 ) +Op(1). (3.11)

Therefore, it is clear that

E{U2(τ̃ )} = E{(−A,B, Ir)UR(τ )}+ (−A, Ir)E{
∂U(τ )

∂β2

}(β20 − β
(n)
2 ) +O(1)

= n−
1
2Cλ +O(1),

and

Cov{U2(τ̃ )} = (−A,B, Ir)E(J UR
)(−A,B, Ir)

′ +O(n
1
2 ).

By the results above, we can obtain the noncentrality parameters for T ∗
GSP and results

concerning efficiency. We have the following lemma:
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Lemma 3.3.3. If the models for π and φ∗ are correctly specified in the parametric

setting using joint estimating equation (3.6), then

ARE(T ∗
GSP , T

∗
GS) = 1.

Proof. Since both the models for π and φ∗ are correct, B = 0 and

U(τ ) = U(β, π, φ∗),

Therefore, Equation (3.11) reduces to

U2(τ̃ ) = (−A, Ir)U(β, π, φ∗) +

(−A, Ir)E{
∂U(τ )

∂β2

}(β20 − β
(n)
2 ) +Op(1),

which is asymptotically equivalent to U2(β̃) under the local alternative when π is

known and φ∗ is given. Therefore, ARE(T ∗
GSP , TGS∗) = 1.

3.3.2 The Case of π Being Estimated Parametrically and φ Being Given

Recall that φ∗ depends on the conditional distribution p(xi|yi, zi), which is unknown

in general. An appropriate model for φ∗ usually is complicated. Because of the

simplicity, the weighted estimating equations with φ = 0, which was proposed by

Zhao and Lipsitz (1992), are also widely used. We consider one reduced parametric

setting in which the φ is given and the selection probability is estimated in this

subsection.

We keep using the assumption that the selection probability follows logistic re-

gression (2.3). We have the joint estimating equation

0 = UR(β,α, φ) =


U1(β,α, φ)

Uπ(α)

U2(β,α, φ)

 , (3.12)
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where φ is given. More precisely, φ can still be estimated from the data and plugged

in U(β,α, φ) in this setting, as long as the model for φ is free of β. Therefore, the φ

can be solved without U(β,α, φ) and thus no iteration algorithm is necessary. Note

that such a model for φ can not be the correct model for φ∗, because the correct

model for φ∗ involves β in general. Equation UR(β,α, φ) actually is UR(β,α). Let

τR = (β′,α′)′ and τ̃R = (β̃
′
, α̃′)′ be the solution of the equation under H0. It is clear

that β̃ is root-n consistent if the model for the selection probability is correct.

Under the current setting, an appropriate generalized score statistic is

TGSP = U2(τ̃R)′
{

(−Ã, B̃, Ir)J̃ UR
(−Ã, B̃, Ir)

′
}−1

U2(τ̃R), (3.13)

where Ã = A|τ̃ R
, B̃ = B|τ̃ R

, and J̃ UR
= J UR

|τ̃ R
.

Theorem 3.3.2. Assuming that the model for the selection probability is correctly

specified in the parametric setting based on Equation (3.12), under suitable regularity

conditions and H0, TGSP → χ2
r in distribution as n→∞.

Proof. Let UR1 = (U ′
1, U

′
π)

′, τR1 = (β′
1,α

′)′ and τ̃R1 = (β̃
′
1, α̃

′)′. Under H0, by

expanding UR(τ̃R) at the true value τR, we obtain

0 = UR1(τ̃R) = UR1(τR) + E(
∂UR1

∂τR1

)(τ̃R1 − τR1) +Op(1),

U2(τ̃R) = U2(τR) + E(
∂U2

∂τR1

)(τ̃R1 − τR1) +Op(1).

Combining the equations above, we have

U2(τ̃R) =

{
−E(

∂U2

∂β1

,
∂U2

∂α
)I−1

R11, Ir

}
UR(τR) +Op(1), (3.14)

where

IR11 =

 ∂U1

∂β1

∂U1

∂α

0 ∂Uπ

∂α

 .
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By Lemma (3.5.2),

I−1
R11 =

 E( ∂U1

∂β1

)−1 −E( ∂U1

∂β1

)−1E(∂U1

∂α )E(∂Uπ

∂α )−1

0 E(∂Uπ

∂α )−1

 ,

Therefore, (3.14) can be rewritten as

U2(τ̃R) = {−A,B, Ir}UR(τR) +Op(1).

When the model for the selection probability is correctly specified, it is clear that

UR(τR) is an unbiased estimating equation. Therefore,

E{n−
1
2U2(τ̃R)} = O(n−

1
2 ),

and

Cov{n−
1
2U2(τ̃R)} =

1

n
(−Ã, B̃, Ir)J̃ UR

(−Ã, B̃, Ir)
′ +O(n−

1
2 ).

By the Central Limit Theorem, TGSP → χ2
r in distribution as n→∞. �

In practice, φ may takes 0 for simplicity. With the additional assumption that

φ = 0, we have

TGSP = U2(τ̃R)′
[
(−Ã, Ir)

{
J̃ U − F̃

}
(−Ã, Ir)

′
]−1

U2(τ̃R) +Op(n
− 1

2 ), (3.15)

where F = E( ∂U
∂α)E(∂Uπ

∂α )−1E( ∂U
∂α)′ and F̃ = F|τ̃ R

. The proof of the Equation (3.15)

is given as following.

Proof. First express the matrix

J̃ UR
=


J̃ 11 J̃ 1π J̃ 12

J̃ π1 J̃ ππ J̃ π2

J̃ 21 J̃ 2π J̃ 22

 ,
where J̃ 11 is a (p−r)×(p−r) matrix, and J̃ 22 is an r×r matrix. Since the model for

the selection probability is correct and Uπ(α) is the maximum likelihood equations,

E(
∂Uπ
∂α

) = Cov{Uπ(α)}

= J̃ ππ +O(n
1
2 ).
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In addition,

E(
∂U

∂α
)′ = (J̃ ′

1π, J̃
′
2π) +Op(n

1
2 ).

In fact,

B = {AE(
∂U1

∂α
)− E(

∂U2

∂α
)}E(

∂Uπ
∂α

)−1

= (A,−Ir)E(
∂U

∂α
)E(

∂Uπ
∂α

)−1.

Therefore, Ṽ∗
GSP =

{
(−Ã, B̃, Ir)J̃ UR

(−Ã, B̃, Ir)
′
}

can be rewritten as

Ṽ∗
GSP = (−Ã, Ir)J̃ U(−Ã, Ir)

′ + (0, B̃,0)J̃ UR
(0, B̃,0)′ + (−Ã,0, Ir)J̃ UR

(0, B̃,0)′

+(0, B̃,0)J̃ UR
(−Ã,0, Ir)

′

= (−Ã, Ir)(J̃ U + F̃)(−Ã, Ir)
′ + (−Ã,0, Ir)J̃ UR

(0, B̃,0)′

+(0, B̃,0)J̃ UR
(−Ã,0, Ir)

′

= (−Ã, Ir)(J̃ U + F̃)(−Ã, Ir)
′ − 2(−Ã, Ir)F̃(−Ã, Ir)

′ +Op(n
1
2 )

= (−Ã, Ir)(J̃ U − F̃)(−Ã, Ir)
′ +Op(n

1
2 ). (3.16)

Since the matrix Ṽ∗
GSP is Op(n), Equation (3.7) holds. �

We may have other appropriate generalized score statistic when φ = 0. Let

TGSP0 = U2(τ̃R)′
[
(−Ã, Ir)

{
J̃ U − F̃

}
(−Ã, Ir)

′
]−1

U2(τ̃R).

We have the following corollary:

Corollary 3.3.1. Assuming that the model for the selection probability is correctly

specified and φ = 0 in the parametric setting based on Equation (3.12), under suitable

regularity conditions and H0, TGSP0 → χ2
r in distribution as n→∞.

The corollary implies that TGSP0 is an appropriate generalized score statistic

when φ = 0 under the current parametric setting. If E( ∂U
∂α) is of full row rank, we

can show that

TGSP0 = TGS(π, 0)− C∆,
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where C∆ is a positive number.

In addition, we would like to study the asymptotic efficiency of the proposed test

based on UR in Equation (3.12). Following the the proof of Lemma (3.2.1), it is easy

to see that the constrained estimate τ̃R = (β̃1,β20, α̃) is consistent for τR under the

sequence of local alternatives β
(n)
2 in (3.4). Therefore, we obtain

0 = UR1(τ̃R) = UR1(τR) + E(
∂UR1

∂τR1

)(τ̃R1 − τR1) + E(
∂UR1

∂β2

)(β20 − β
(n)
2 ) +Op(1),

U2(τ̃R) = U2(τR) + E(
∂U2

∂τR1

)(τ̃R1 − τR1) + E(
∂U2

∂β2

)(β20 − β
(n)
2 ) +Op(1)

by expanding UR(τ̃R) at the true value τR under the local alternative. Hence,

U2(τ̃R) =

{
−E(

∂U2

∂β1

,
∂U2

∂α
)I−1

R11, Ir

}
UR(τR) +{

−E(
∂U2

∂β1

,
∂U2

∂α
)I−1

R11, Ir

}
E{∂UR(τR)

∂β2

}(β20 − β
(n)
2 ) +Op(1).

From the proof of Theorem 3.3.2, it is readily to see that{
−E(

∂U2

∂β1

,
∂U2

∂α
)I−1

R11, Ir

}
= (−A,B, Ir).

Since ∂Uπ/∂β2 = 0,

U2(τ̃R) = (−A,B, Ir)UR(τR) +

(−A, Ir)E{
∂U(τR)

∂β2

}(β20 − β
(n)
2 ) +Op(1). (3.17)

By the equation above, it is easy to obtain the noncentrality parameters for TGSP and

TGSP0. It follows a lemma of asymptotic relative efficiency:

Lemma 3.3.4. Assuming that the model for the selection probability is correctly spec-

ified in the parametric setting based on Equation (3.12) and E( ∂U
∂α) is of full row rank,

we have the asymptotic relative efficiency

ARE(TGS(π, 0), TGSP0) < 1.
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Proof. By Equation (3.17) and asymptotic unbiasedness of UR(τR),

E{U2(τ̃R)} = (−A,B, Ir)E{UR(τR)}+

(−A, Ir)E{
∂U(τR)

∂β2

}(β20 − β
(n)
2 ) +Op(1)

= n−
1
2Cλ +O(1),

and

Cov{U2(τ̃R))} = (−A,B, Ir)Cov{UR(τR)}(−A,B, Ir)
′ +O(n

1
2 )

= (−A,B, Ir)E(J UR
)(−A,B, Ir) +O(n

1
2 ),

where λ is given in Equation and C in Equation (3.5). Since φ = 0, by Equation

(3.16),

Cov{U2(τ̃R))} = (−Ã, Ir) {E(J U)− F} (−Ã, Ir)
′ +O(n

1
2 ).

The noncentrality parameter for TGSP0 is

GGSP0 =
1

2n
λ′C′[(−A, Ir) {E(J U)− F} (−A, Ir)

′]−1Cλ

=
1

2n
λ′C′(KJ −KF )−1λ′C′,

where KJ = (−A, Ir)E(J U)(−A, Ir)
′ and KF = (−A, Ir)F(−A, Ir)

′. BecauseE( ∂U
∂α)

is of full row rank, KF is positive definite and hence

(KJ −KF )−1 = K−1
J − (KJ −KF )−1{(KJ −KF )−1) + KF )−1}−1(KJ −KF )−1.

Therefore,

GGSP0 =
1

2n
λ′C′K−1

J Cλ−
1

2n
λ′C′(KJ −KF )−1{(KJ −KF )−1 + K−1

F }
−1(KJ −KF )−1Cλ

= GGS0 − CF ,
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whereGGS0 is noncentrality parameter for TGS(π, 0) and CF = 1
2n

λ′C′(KJ−KF )−1{(KJ−

KF )−1 + K−1
F }−1(KJ − KF )−1Cλ. It is clear that (KJ − KF )−1{(KJ − KF )−1 +

K−1
F }−1(KJ −KF )−1 is positive define, and thus CF > 0. Therefore, GGSP0 > GGS0,

completing the proof.

This Lemma indicates that the generalized score test may gain some efficiency

if the selection probability is estimated via a correct parametric model even if the

true selection probability is given. If we know the correct model for the selection

probability, π should be estimated to improve the power of the generalized score test.

However, if the model for the selection probability is not correct, then the test would

be invalid.

3.3.3 The Case of π Being Known and φ∗ Being Estimated Parametrically

In a two-stage study, it would be safe to use the true selection probability instead of

the estimated one when a correct model for the selection probability is not guaranteed.

As we stated before, using the estimated φ∗ may gain efficiency. In this subsection,

we study generalized score tests

0 = UT (β,κ) =


U1(β,κ)

Uφ∗(β,κ)

U2(β,κ)

 , (3.18)

where π is known. Let τ T = (β′,κ′)′, τ̃ T = (β̃
′
, κ̃′)′ be the solution of the equation

under H0, and φ̂∗ is the estimate of φ∗. Since π is given, U(τ T ) is unbiased and β̃ is

root-n consistent for β. In addition, it is easy to see that

E{∂U(β,κ)

∂κ
} = 0.

Under the current setting, an appropriate generalized score statistic is TGS(π, φ̂
∗).

Recall that TGS(π, φ) is an appropriate generalized score statistic when the selection
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probability is known and φ is given. We have the following theorem:

Theorem 3.3.3. Assuming that the model for π is given in the parametric setting

based on Equation (3.18), under suitable regularity conditions and H0, TGS(π, φ̂
∗) →

χ2
r in distribution as n→∞.

Proof. Let UT1 = (U ′
1, U

′
φ)

′, τ T1 = (β′
1,κ

′)′ and τ̃ T1 = (β̃
′
1, κ̃

′)′. Under H0, by

expanding UT (τ̃ T ) at the true value τ T , we obtain

0 = UT1(τ̃ T ) = UT1(τ T ) + E(
∂UT1

∂τ T1

)(τ̃ T1 − τ T1) +Op(1),

U2(τ̃ T ) = U2(τ T ) + E(
∂U2

∂τ T1

)(τ̃ T1 − τ T1) +Op(1).

Combining the equations above and using the fact that E{∂U(β,κ)

∂κ } = 0, we have

U2(τ̃ T ) =

{
−E(

∂U2

∂β1

,0)I−1
T11, Ir

}
UT (τ T ) +Op(1), (3.19)

where

IT11 =

 ∂U1

∂β1

0

∂Uφ∗

∂β1

∂Uφ∗

∂κ

 .

By Lemma (3.5.2),

I−1
T11 =

 E( ∂U1

∂β1

)−1 0

∗ ∗

 ,

where ∗’s represent some constants. Therefore, (3.19) can be rewritten as

U2(τ̃ T ) = {−A, Ir}U(τ T ) +Op(1).

By the Central Limit Theorem and unbiasedness of U(τ T ), TGS(π, φ̂
∗) → χ2

r in distri-

bution as n→∞. �

In this case, TGS(π, φ̂
∗) is an appropriate test statistic. The theorem indicates

that plugging the estimate of φ∗ into WEE(1.1) has no effect on the test statistics when

the selection probability is given. Similarly, we can show thatARE(TGS(π, φ̂
∗), T ∗

GS) ≤

1. The equation holds when the model for φ∗ is correctly specified.
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3.3.4 The Case of (y, z′) Being Categorical

In this subsection, we consider the special case that (y, z′) is categorical and from

a finite set. In this case, the parametric settings above may not work because the

logistic model (2.3) for the selection probability is not suitable when v = (y, z′) is

discrete. Without loss of generality, we assume that the first k elements, vi = (yi, z
′
i),

i = 1, · · · , k, are different from each other. Therefore, these first k elements could be

the representatives for all categories. The selection probability can be estimated via

π̂(vi) =

∑n
j=1 δiI(vj = vi)∑n
j=1 I(vj = vi)

, (3.20)

and the conditional mean score φ∗ by

φ̂∗(vi) =

∑n
j=1 δiψ(yi,xi, zi, β̃)I(vj = vi)∑n

j=1δiI(vj = vi)
, (3.21)

where β̃ is solution of WEE (1.1) under H0. Because the number of categories is

finite, π̂ and φ̂∗ are root-n consistent for π and φ∗, respectively. Then we have

U(β, π̂, φ̂∗) = U(β, π, φ̂∗)−
n∑
i=1

{δi(π̂i − πi)

π̂iπi
(ψ(yi,xi, zi, β̃)− φ̂∗)}

= U(β, π, φ̂∗)

+
k∑
i=1

[
(π̂i − πi)

π̂iπi
{
∑n

j=1 δi∆i(ψ)I(vj = vi)∑n
j=1δiI(vj = vi)

n∑
j=1

I(vj = vi)}

]
= U(β, π, φ̂∗) +Op(1), (3.22)

where ∆i(ψ) = ψ(yi,xi, zi,β)− ψ(yi,xi, zi, β̃). By (3.22), it is clear that β̃ is root-n

consistent. Expanding U(β̃, π̂, φ̂∗) at β under H0, we have

0 = U1(β̃, π̂, φ̂
∗) = U1(β, π̂, φ̂

∗) + E(
∂U1

∂β1

)(β̃1 − β1) +Op(1),

U2(β̃, π̂, φ̂
∗) = U2(β, π̂, φ̂

∗) + E(
∂U2

∂β1

)(β̃1 − β1) +Op(1).

Combining the equations above and by Equation (3.22), we have

U2(β̃, π̂, φ̂
∗) = (−A, Ir)U(β, π, φ̂∗) +Op(1).
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Therefore, we have the following lemma:

Lemma 3.3.5. If (y, z′) is categorical and from a finite set, under regularity condi-

tions and H0, TGS(π̂, φ̂
∗) → χ2

r in distribution as n→∞.

We would like to study the asymptotic efficiency of the proposed test when

(y, z′) is categorical. Under the sequence of local alternatives β
(n)
2 in (3.4), we expend

U1(β̃, π̂, φ̂
∗) and U2(β̃, π̂, φ̂

∗) at β = (β1,β
(n)
2 ):

0 = U1(β̃, π̂, φ̂
∗) = U1(β, π̂, φ̂

∗) + E(
∂U1

∂β1

)(β̃1 − β1) + E(
∂U1

∂β2

)(β20 − β
(n)
2 ) +Op(1)

U2(β̃, π̂, φ̂
∗) = U2(β, π̂, φ̂

∗) + E(
∂U2

∂β1

)(β̃1 − β1) + E(
∂U2

∂β2

)(β20 − β
(n)
2 ) +Op(1).

By Equation (3.22), we have

U2(β̃, π̂, φ̂
∗) = (−A, Ir)U(β, π, φ̂∗) + n−

1
2Cλ +Op(1).

Therefore,

E{U2(β̃, π̂, φ̂
∗)} = n−

1
2Cλ +O(1),

and

Cov{n−
1
2U2(β̃, π̂, φ̂

∗)} =
J ∗

n
+O(n−

1
2 ),

since φ̂∗ is root-n consistent. This implies that the noncentrality parameter is equiv-

alent to G∗ based on Equation (3.5) at φ = φ∗. Therefore, we have the following

lemma:

Lemma 3.3.6. If (y, z′) is categorical,

ARE(TGS(π̂, φ̂
∗), T ∗

GS) = 1.

When (y, z′) is categorical and from a finite set, the proposed generalized score

test obtain the optimal power asymptotically if the selection probability is estimated

via (3.20) and φ∗ is estimated via (3.21). If the (y, z′) is discrete and from an infinite

set, both Lemma 3.3.5 and 3.3.6 may be invalid because (π̂i−πi)
π̂iπi

may be unbounded.
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3.3.5 Discussion

When the model for the selection probability is correctly specified, T ∗
GSP is an ap-

propriate generalized score statistic, which is free of Uφ∗ and ∂U
∂κ given the estimate

of φ∗. Therefore, the generalized score statistic is easy to calculate in this case. If

the parametric model for φ∗ is also correctly specified, TGS(π̂, φ̂) is an appropriate

generalized score statistic and ARE(TGS(π̂, φ̂), T ∗
GS) = 1. Therefore, we may use the

difference between T ∗
GSP and TGS(π̂, φ̂) to informally check whether the model for φ∗

is correct or not. If the model for the selection probability is not correct while the

model for φ∗ is correctly specified, an appropriate generalized score statistic generally

depends on Uφ∗ and ∂U
∂κ , which are extremely difficult to obtain; it is not feasible

to use the generalized score test in this case. Moreover, ARE(TGS(π, 0), TGSP0) < 1

when φ = 0. This indicates that the tests may gain some efficiency if the selection

probability is estimated via a correct parametric model even if the true selection

probability is given.

3.4 Semiparametric Setting

It is generally convenient to assume parametric models for the selection probability

and the mean score function φ∗. However, it might be problematic when the para-

metric models (especially the model for the selection probability) are not correct. To

deal with this problem, we may alternatively estimate the nuisance functions non-

parametrically. Assume that the selection probability may be estimated by (2.5)

π̂N(v) =

∑n
i=1 δiKh(v − vi)∑n
i=1Kh(v − vi)

,

and φ∗ by (2.6)

φ̂∗N(v) =

∑n
i=1

δi
π̂N (vi)

ψ̃iKh(v − vi)∑n
i=1Kh(v − vi)

.
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where β̃ is the solution of U(β, π̂N , φ) = 0 under H0 and ψ̃i = ψ(yi,xi, zi, β̃). Re-

call that K is an sth-order kernel function, h is a proper bandwidth parameter,

Kh(·) = K(·/h), ρn =
{
nh2s + (nh2d)−1

} 1
2 , and vi = (yi, z

′
i)
′. Let d be the number of

continuous components of vi. As a concrete example, if yi is binary, zi is univariate

and continuous, and K is a 2nd-order kernel function, then d = 1, s = 2 and the

optimal bandwidth is h = O(n−
1
3 ). In this situation, ρn = Op(n

− 1
6 ).

Let the selection probability be estimated via (2.5). Define

TGSN = U ′
2(β̃, π̂N , φ)Ṽ−1

GSU2(β̃, π̂N , φ) (3.23)

for both φ = 0 and φ = φ̂∗N , where ṼGS = (−Ã, Ir)Σ̂N(−Ã, Ir)
′, Ã = A|

(
˜β,π̂N ,φ)

, and

Σ̂N is any consistent estimate of Cov{U(β, π, φ∗)} with a converge rate not slower

than Op(nρn). Here, without confusion, we continue to use Ã, J̃ U , etc. for the

quantities evaluated at properly estimated parameters.

By Equation (2.7) and Equation (2.2),

Cov{U2(β̃, π̂N , φ)} = Cov{U2(β̃, π, φ) +Op(n
− 1

2ρn)}

= Cov{UF (β)}+ Cov{UM(β, π, φ)}+O(nρn)

for both φ = 0 and φ = φ̂∗N . Therefore, one possible choice of Σ̂N is

Σ̂N1 =
n∑
i=1

δi
π̂2
N(vi)

{
ψ̃i − φ̂∗N(vi)

}{
ψ̃i − φ̂∗N(vi)

}′
+

n∑
i=1

δi
π̂N(vi)

φ̂∗N(vi)φ̂
∗
N(vi)

′.

When φ = φ̂∗N , another possible choice of Σ̂N is J̃ U , since asymptotic unbiasedness

of U2(β̃, π̂N , φ). It is easy to see that one version of TGSN is

TGS(π̂N , φ̂
∗
N) = U ′

2(β̃, π̂N , φ̂
∗
N)

{
(−Ã, Ir)J̃ U(−Ã, Ir)

′
}−1

U2(β̃, π̂N , φ̂
∗
N).

This implies TGS(π̂N , φ̂
∗
N) is an appropriate generalized score test statistic when both

π̂N and φ̂∗N are proper nonparametric estimates.
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Theorem 3.4.1. Assume that the bandwidths h in (2.5) and (2.6) satisfy nh2s →

0 and nh2d → ∞. Under H0 and suitable regularity conditions, TGSN → χ2
r in

distribution as n→∞.

Proof. Since β̃ is root-n consistent, by expanding U1(β̃) and U2(β̃) at the true

value β and replacing ∂U1

∂β1

and ∂U2

∂β1

by their asymptotically equivalent versions E( ∂U1

∂β1

)

and E( ∂U1

∂β2

) under H0, we obtain

0 = U1(β̃, π̂N , φ) = U1(β, π̂N , φ) + E(
∂U1

∂β1

)(β̃1 − β1) +Op(1),

U2(β̃, π̂N , φ) = U2(β, π̂N , φ) + E(
∂U2

∂β1

)(β̃1 − β1) +Op(1),

and thus

U2(β̃, π̂N , φ) = (−A, Ir)U(β, π̂N , φ) +Op(1)

for any fixed φ. By Equation (2.7), when φ is either 0 or φ̂∗N , U(β, π̂N , φ) and

U(β, π, φ∗) are asymptotically equivalent. Therefore,

n−
1
2U2(β̃, π̂N , φ) = (−A, Ir){n−

1
2U(β, π, φ∗)}+Op(ρn).

Since U(β, π, φ∗) is an unbiased estimating equation and Ã is root-n consistent,

E{n−
1
2U2(β̃, π̂N , φ)} = O(ρn),

and

Cov{n−
1
2U2(β̃, π̂N , φ)} = (−A, Ir)Cov{n−

1
2U(β, π, φ∗)}(−A, Ir)

′ +O(ρn)

= (−Ã, Ir)Cov{n−
1
2U(β, π, φ∗)}(−Ã, Ir)

′ +O(ρn).

It is clear that ρn → 0 because nh2s → 0 and nh2d → ∞. It is readily shown that

TGSN → χ2
r in distribution as n→∞ under H0 by the Central Limit Theorem. �

In addition, we would like to study the asymptotic efficiency of the proposed

semiparametric test. First we need the following lemma:
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Lemma 3.4.1. Under the local alternative, the semiparametric constrained estimate

β̃ = (β̃1,β20)
′ is root-n consistent for β.

Proof. Let β̃
(n)

1 be the solution of the estimating equation such that

U1(β̃
(n)

1 ,β
(n)
2 , π̂N , φ) = 0.

By Equation (2.7) and the fact that β
(n)
2 is the true value of β2, β̃

(n)

1 is root-n

consistent for the β1.

Under the local alternative,

0 = U1(β̃
(n)

1 ,β
(n)
2 , π̂N , φ)

= U1(β̃
(n)

1 ,β2, π̂N , φ) +
∂U1(β, π̂N , φ)

∂β2

(β
(n)
2 − β20) +Op(1)

= U1(β̃
(n)

1 ,β2, π̂N , φ) +

∂U1(β, π̂N , φ)

∂β1

[
{∂U1(β, π̂N , φ)

∂β1

}−1∂U1(β, π̂N , φ)

∂β2

(β
(n)
2 − β20)

]
+Op(1)

= U1(β̃
(n)

1 + ∆
(n)

β
,β2, π̂N , φ) +Op(1),

where ∆
(n)

β
= {∂U1(β,π̂N ,φ)

∂β1

}−1 ∂U1(β,π̂N ,φ)

∂β2

(β
(n)
2 − β20). Therefore,

β̃1 = β̃
(n)

1 + ∆
(n)

β
+Op(n

− 1
2 )

= β̃
(n)

1 +Op(n
− 1

2 ),

and thus the constrained estimate under the local alternative is root-n consistent for

β. �

Since the constrained estimate is consistent for β under the sequence of local

alternatives β
(n)
2 in (3.4), by expanding U(β̃, π̂N , φ) at the true value β, we obtain

0 = U1(β̃, π̂N , φ) = U1(β, π̂N , φ) + E(
∂U1

∂β1

)(β̃1 − β1) + E(
∂U1

∂β2

)(β20 − β
(n)
2 ) +Op(1),

U2(β̃, π̂N , φ) = U2(β, π̂N , φ) + E(
∂U2

∂β1

)(β̃1 − β1) + E(
∂U2

∂β2

)(β20 − β
(n)
2 ) +Op(1),
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and hence

U2(β̃, π̂N , φ) = (−A, Ir)U(β, π̂N , φ) +

(−A, Ir)E{
∂U(β)

∂β2

}(β20 − β
(n)
2 ) +Op(1).

By Equation (2.7),

U2(β̃, π̂N , φ) = (−A, Ir)U(β, π, φ) +

(−A, Ir)E{
∂U(β)

∂β2

}(β20 − β
(n)
2 ) +Op(n

− 1
2ρn).

By the equation above, it is easy to obtain the noncentrality parameters for TGSN

and results of relative efficiency.

Lemma 3.4.2. If the models for π and φ∗ are correctly specified in the parametric

setting using joint estimating equation (3.6), then

ARE(TGSN , T
∗
GS) = 1.

Proof. Since both the models for π and φ∗ are correct, B = 0 and

U(τ ) = U(β, π, φ∗),

Therefore, Equation (3.11) reduces to

U2(τ̃ ) = (−A, Ir)U(β, π, φ∗) + (−A, Ir)E{
∂U(τ )

∂β2

}(β20 − β
(n)
2 ) +Op(1),

which is asymptotically equivalent to U2(β̃) under the local alternative when π is

known and φ∗ is given. Therefore, ARE(T ∗
GSP , TGS∗) = 1. �

Lemma 3.4.2 implies that the optimal power can be obtained asymptotically by

using an appropriate nonparametric estimate of π and φ in WEE (1.1). However, it

is easy to see that TGSN converges to a χ2
r distribution with a rate of Op(ρn), which is
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generally slower than that in the parametric setting. When the sample size is small

and an appropriate model for π is available, we should use the parametric generalized

score tests rather than the semiparametric generalized score test. On the other hand,

when the sample size is reasonably large, the semiparametric tests are often preferred

to the parametric tests because the semiparametric tests would obtain the optimal

power asymptotically and there is no worry about the model misspecification for the

selection probability.

3.5 Technical Detail

Lemma 3.5.1. If all necessary inverses exist, then for matrices Qa(p×p), Qb(p×n),

Qc(n× n), and Qd(n× p),

(Qa + QbQcQd)
−1 = Q−1

a + Q−1
a Qb(Qc + QdQ

−1
a Qb)

−1QdQ
−1
a .

Proof. See Mardia, Kent, and Bibby (1979), (page 458). �

Lemma 3.5.2. Given that the 2× 2 block matrix is nonsingular, the inverse matrix Q11 Q12

Q21 Q22


−1

=

 Q−1
11 + Q−1

11 Q12S
−1Q21Q

−1
11 −Q−1

11 Q12S
−1

−S−1Q21Q
−1
11 S−1

 ,
where the quantity S = Q22 −Q21Q

−1
11 Q12 is called the Schur complement of Q11.

Proof. It can be verified directly by checking that the product of the matrix and

its inverse reduces to the identity matrix. �

Proof of Equation (3.10). We have the following partition of the matrix

IJ11 =

 H11 H12

0 E(∂Uπ

∂α )

 ,
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where

H11 =

 E( ∂U1

∂β1

) 0

E(
∂Uφ∗

∂β1

) E(
∂Uφ∗

∂κ )

 and H12 =

 E(∂U1

∂α )

E(
∂Uφ∗

∂α )

 .

Using Lemma 3.5.2 twice, we have

I−1
J11 =

 H−1
11 −H−1

11 H12E(∂Uπ

∂α )−1

0 E(∂Uπ

∂α )−1

 ,

where

H−1
11 =

 E( ∂U1

∂β1

)−1 0

−E(
∂Uφ∗

∂κ )−1E(
∂Uφ∗

∂β1

)E( ∂U1

∂β1

)−1 E(
∂Uφ∗

∂κ )−1

 .

Plugging H−1
11 into I−1

J11 leads to (3.10). �
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CHAPTER IV

GOODNESS OF FIT TESTS FOR GENERALIZED LINEAR MODELS WHEN

SOME COVARIATES ARE PARTIALLY MISSING

4.1 Introduction

First introduced by Nelder and Wedderburn (1972), generalized linear models provide

a unified approach for a broad class of regression models in applied statistics. They

are designed for applications with independent observations having a density:

f(yi|xi, zi,β1, ς) = exp

{
θiyi − b(yi, ς)

ai(ς)
+ c(y, ς)

}
(4.1)

where θi is known as the canonical parameter and ς is a scale parameter. The functions

ai(ς) are commonly of the form ai(ς) = ς
ki

, where ki’s are known weights. In addition,

the p-dimensional covariate wi = (1,x′
i, z

′
i)
′ is related to θi through the link function

ηi = l(θi) and the linear component

ηi = β0 + xiβx + ziβz = wiβ1,

where β1 = (β0,β
′
x,β

′
z)

′ is a q×1 vector of regression coefficients and g is a monotone

differentiable function. See McCullagh and Nelder (1989) for more details about the

generalized linear models.

The likelihood equations for β are
n∑
i=1

ki(
dθi
ηi

)w′
i{yi − l−1(wiβ1)} = 0,

which are generally nonlinear in β. The parameters can be solved via iteratively

reweighted least squares (IRLS) algorithm. An important component of any mod-

elling procedure is an assessment of model fit, which evaluates how well model-based
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predicted outcomes coincide with the observed data. For fully observed data, the

scaled deviance and Pearson’s chi-square statistic are helpful in assessing the good-

ness of fit of a given generalized linear model. However, these methods may be

problematic when some covariates are partially missing. In this chapter, we propose

an formal model validation procedure for the generalized linear models in the presence

of missing covariates.

4.2 Goodness of Fit Test

We focus on testing the linearity of primary regression model (4.1). In general, the

hypotheses are

H0: ηi = wiβ1 vs Ha: ηi 6= wiβ1. (4.2)

Strictly speaking, the alternative depends on the the situations of applications and

settings. The rejection of the null hypothesis implies several possibilities: (a) mis-

specification of the primary regression model, including the linear component and the

link function l; (b) violation in the MAR assumption, or (c) a model misspecification

for the selection probability. It is possible to test (b) and (c) using the methods

proposed by Lipsitz et al. (2001) or a global test statistic for model (2.3). Though

we do not detect the misspecification of the link function directly, a misspecification

in the the link function will reflect as a misspecification in the linear component.

Let M(0) be the model under H0. We consider the alternative model M(r) with r

more parameters than M(0). More specifically, model M(r) has a linear component

ηi = wiβ1 +
r∑
j=1

fj(wi)βq+j = wiβ1 + uriβ2(r), (4.3)

where the vector of parameters β2(r) = (βq+1, · · · , βq+r)′, F = {f1, f2, · · · } is a se-

quence of <q → <mutually linear independent functions, and uri = (f1(wi), · · · , fr(wi))
′,

which is the r-dimensional supplement covariate and may contain missing values if
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δi = 0. Obviously, model M(i) is nested in model M(j) if i < j. Theoretically, with

a proper choice of the sequence F , such as a certain complete basis in the covariate

space, model M(r) eventually includes any alternative of interest as r → ∞. If the

alternative is (a) a partially linear (or single index) model

Ha: η = β0 + xβx + vz(z),

where vz is a continuous function; or (b) the model M(0) only has one univariate co-

variate, then F could be orthonormal polynomials or the cosine system. Orthonormal

polynomials of order greater than 2 may be easily computed recursively by using the

Emerson recurrence formula (Emerson, 1968). Otherwise, both orthonormal poly-

nomials and the cosine system in the high dimensional space are too complex to be

suitable. Therefore, in general we suggest generating supplement covariates based on

space partitioning described in Barnhart and Williamson (1998). First the covariate

space is partitioned into (r+1) distinct regions, and then define the r×1 supplement

covariates uri = {Ii1, · · · , Iir}, where Iim = 1, m = 1, 2, · · · , r, if wi is in the mth

region, 0 if not. If δi = 0, it might be impossible to determine whether wi is in the

mth region, then the value Iim is missing.

If we are interested in testing certain types of departures from H0, such as a low

frequency departure, 2-way interaction, etc, it is not difficult to specify a number R

with a proper choice of the sequence F , such that the model M(R) approximately

captures the departure. Then we can use the generalized score statistic to detect the

departure by testing β2(R) = 0 with model M(R) being a plausible alternative. The

power of the test depends on the plausible alternative in two aspects. First, the power

of the test depends on how much the true regression function can be approximated

by model M(R). If M(R) could not capture the departure well, such as a departure

orthogonal to the space spanned by the linear component of M(R), then the test has
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low power even the departure is very strong. It is more likely the M(R) well capture

the departure when the R is getting larger. A larger R is desired in this sense.

On the other hand, under H0 and the selection probability is correctly specified,

the test statistic follow a χ2
R distribution. It is clear that critical value increases

when R increases. As a consequence, the test would lose sensitivity to low frequency

departures when R is getting larger. Therefore, we can improve the power of the test

if we use a smaller model M(r), r ≤ R, which captures the departure well, as the

plausible alternative. In the next section, we will introduce data driven methods to

find an optimal plausible alternative model in the sequence alternatives.

4.3 Data Driven Methods

Model M(R) is often not optimal for the goodness of fit test. It is possible that a

nested model M(r), r ≤ R, is better than M(R) alone for testing. We use the following

WEEs to obtain TGS(r) for testing β2(r) = 0 (r = 1, 2, · · · , R):

U(r)(β(r), π, φ) =
n∑
i=1

{δiki
πi

(
dθi
ηi

)(w′
i,u

′
ri)

′(yi− l−1(wiβ1+uriβ2(r)))+(1− δi
πi

)φ(yi, zi)},

(4.4)

where β(r) = (β′
1,β

′
2(r))

′. Note that we let φ in Equation (4.4) to be independent of r

because (a) the observed supplement covariates are transformations of zi, and (b) we

would like to see the role of supplement covariates in the regression models instead

of their effects on the mean score functions. One way to automatically choose r is

to use a data-driven method following the idea in Aerts et al., (1999, 2000). It is to

choose r = r̂ that maximizes the penalized score criterion

SIC(r) = TGS(r)− 2r, (r = 1, · · · , R)

and the data driven test statistic is

TMGS(R) = SIC(r̂).
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We know that the generalized score statistics defined in the previous chapter all

have the form Ũ2Ṽ
−1Ũ2, where Ũ2 and Ṽ are the vector and matrix corresponding

to each of the three settings considered in (3.3), (3.7 ) and (3.23). Similarly, for

each generalized score statistic TGS(r) above, we have TGS(r) = Ũ2(r)Ṽ
−1
(r)Ũ

′
2(r), whose

components are indexed by r. To introduce the asymptotic distribution of TMGS(R),

we define ΓR = max1≤r≤R(
∑r

k=1 Z
2
k − 2r), where Zi’s are a sequence of independent

and identically distributed standard norm random variables. We used 200, 000 runs

simulation for the critical values of the random variable ΓR. The critical value is 3.57

when R = 5 for a 0.05 significant level test.

Theorem 4.3.1. Assume that the selection probability in WEE (4.4) is either known,

appropriately estimated via a correct parametric model or estimated nonparametrically

via (2.5). Under H0 and regularity conditions, TMGS(R) converges to ΓR in distribu-

tion.

Proof. Assuming that β̃(r) is the solution of U(r)(β(r), π, φ) = 0 under H0 for

r = 1, · · · , R, it is clear that β̃(r+1) = (β̃
′
(r), 0)′. Plugging β̃(r) into U(r)(β(r), π, φ), for

r = 1, · · · , R, respectively, it is seen that (a) Ũ2(r) is the first r× 1 subvector of Ũ2(R),

and (b) Ṽ(r) is the upper r × r submatix of Ṽ(R), for r = 1, · · · , R.

Write

Ũ2(R) =

 Ũ2(R−1)

QR


and

Ṽ(R) =

 Ṽ(R−1) a
(n)
(R)

a
′(n)
(R) d

(n)
(R)

 .
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By Lemma 3.5.2, we have Ṽ(R−1) a
(n)
(R)

a
′(n)
(R) d

(n)
(R)


−1

=

 Ṽ−1
(R−1) 0

0 0

 +

1

c
(n)
(R)

 Ṽ−1
(R−1)a

(n)
(R)a

′(n)
(R)Ṽ

−1
(R−1) −Ṽ−1

(R−1)a
(n)
(R)

−a
′(n)
(R)Ṽ

−1
(R−1) 1

 ,

where

c
(n)
(R) = d

(n)
(R) − a

′(n)
(R)Ṽ

−1
(R−1)a

(n)
(R).

Obviously,

TGS(R) = TGS(R− 1) +
1

c
(n)
(R)

W 2
(R),

where

W(R) = QR − a
′(n)
(R)Ṽ

−1
(R−1)Ũ2(R−1).

It is easy to see that

Cov{W(R), Ũ2(R−1)}/n→ 0

and

1

c
(n)
(R)

W 2
(R) → χ2

1 in distribution.

Since (Ũ ′
2(R−1),W(R))

′ is asymptotically normal, Ũ2(R−1) and W(R) are asymptotically

independent. This implies that TGS(R−1) and TGS(R)−TGS(R−1) are asymptotically

independent. Using the same argument iteratively, one can show that

TGS(1), TGS(2)− TGS(1), · · · , TGS(R)− TGS(R− 1)

are all asymptotically χ2
1 distributed and asymptotically independent of each other.

Since TMGS(R) is a continuous function of TGS(r) for r = 1, · · · , R, it converges to ΓR

in distribution. �
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CHAPTER V

SIMULATION STUDIES

5.1 Introduction

Simulation studies were performed to investigate the finite sample properties of the

proposed tests, by assessing the adequacy of the asymptotic null distribution of the

test statistics and the power to detect unknown primary model misspecifications.

The generalized score statistics used in the simulations are (a) FGS for full data;

(b) CC using complete cases only; (c) TGS using the known selection probability and

φ = 0; (d) TGSP , when the selection probability is estimated by the correct parametric

model (2.3) and φ = 0; (e) TGSN , when the selection probability is estimated non-

parametrically via (2.5) and φ = 0; and (f) T ∗
GSP , when both the selection probability

and φ = φ∗ are estimated via correct parametric models. Note that Monte Carlo

methods are typically used for estimating the mean score function (see Lipsitz et al.,

1999) in Equation (3.6) when xi contains continuous components. We implemented

T ∗
GSP in the table on page 65 only, where the mean score function can be estimated

by a direct calculation of the conditional expectation without relying on Monte Carlo

methods since xi is univariate and binary. In each part of the simulation study,

we used the triangular system F = {cos(2πt), sin(2πt), cos(4πt), sin(4πt), · · · } for

t ∈ (0, 1) to generate a plausible alternative M(R) with R = 5 supplement covariates.

We investigated the numerical performance for different choices of R. Our limited

numerical experience suggests that R = 5 is sufficient for low frequency alternatives.

For high frequency alternatives, larger R values would be desired. We used 1,000
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simulation replications for each case considered below. Under H0 and the significance

level α = 5%, a correct rejection ratio should be around 5% with a Monte Carlo

error of
√

0.05× (1− 0.05)/1000 = 0.007. Under an alterative, a rejection ratio is re-

ported with a Monto Carlo error no large than
√

0.5× (1− 0.5)/1000 = 0.016. When

computing TGSN in our simulation study, π and φ∗ were estimated via a local linear

estimate (by the locfit function in R), which is equivalent and possibly more stable

than the kernel estimation in (2.5) and (2.6), with the bandwidth h = d(100/n)−
1
3 ,

where d is a constant. We experimented with different d from [0.5, 1.2]. The results

are stable, so we chose d = 0.7.

5.2 General Linear Models

In this section, we study the power and type I error of the proposed score tests

for testing adequacy of a general linear model with one or two covariates. We first

stimulated data from the following model with possibly missing univariate covariate

xi and the response variable yi:

yi = β0 + βxxi + cx2
i + ei, (5.1)

where ei’s are independent error terms. The missingness indicator δi follows the

logistic regression model

logit{Pr(δi = 1|yi)} = α0 + α1y
1
3
i . (5.2)

The hypotheses are

H0: E(yi|xi) = β0 + βxxi

against

Ha: E(yi|xi) 6= β0 + βxxi.



60

Note that Ha is a general alternative. To investigate how robust the tests are under

various situations, we considered two cases for the error terms: (a) ei ∼ N(0, 2
3
(1.5−

x2
i )) and (b) ei ∼ Gamma(1, 1). The covariate x was generated from 1

3
Unif[−1, 0] +

2
3
Unif[−1, 1]. True values β0 = 0, βx = 2, α0 = 1 and α1 = 1 were used in generating

yi and δi. To generate the supplement covariate u for generalized score tests, we

sorted all complete cases to

{(y(1), x(1)), · · · , (y(N0), x(N0))}

such that x(j) ≤ x(k) if j < k, where N0 is total number of complete cases. Then the

supplement covariate for the ith observation is

ui = (cos(2π
Li
N0

), sin(2π
Li
N0

), cos(4π
Li
N0

), sin(4π
Li
N0

), cos(6π
Li
N0

))′,

where Li is the position of the i-th observation after sorting. In addition, we used

the weighted estimating equations (1.1) with equal variance assumption to construct

the generalized score statistics for both cases. The sample sizes are n = 100, 300 and

500. The results for Case (a) are given in Table 2 and Figure 1; the results for Case

(b) are given in Table 3.

Under H0, in Case (a), FGS, TGS, and TGSP have rejection rates close to the

nominal level of 5%, the CC method has a rejection rate much higher than the nominal

level when the sample size is large, and TGSN has a somewhat higher rejection rate

than the nominal level when the sample size is not large and the rejection rate is close

to the nominal level when n is large (n = 500). In Case (b), FGS, TGS and TGSP also

have a rejection rate close to the nominal level, while TGSN tends to have a slightly

higher rejection rate when the sample size is small and has a rejection rate close to

the nominal level when n = 300 and 500. Under the alternatives, TGSN has higher

power than TGS and TGSP , and the CC method has significantly lower power than

others. The proposed test statistics appear to work well in both cases.
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Table 2: Comparisons of generalized score tests for testing adequacy of a simple linear
model. Data were generated from a model with an additional quadratic term and
heteroscedastic normal error. About 64% observations are fully observed.

Method FGS CC TGS TGSP TGSN T∆
GSP1 T∆

GSP2

n c Rejection Rate (%), Test Level 0.05
0.0 4.7 5.6 4.5 5.8 8.5 8.3 6.2

100 0.5 18.7 4.8 6.8 6.5 15.7 6.3 6.1
1.0 67.7 19.8 29.0 27.8 50.4 23.1 27.0
1.5 97.2 61.2 72.1 72.8 86.4 66.1 70.7
0.0 4.8 16.1 5.9 5.7 8.2 9.3 6.5

300 0.5 75.1 14.0 42.8 42.7 55.9 29.8 39.4
1.0 100.0 93.0 99.1 99.1 98.9 97.6 99.0
0.0 4.0 31.6 4.5 4.2 6.4 8.0 4.7

500 0.5 98.9 37.5 84.2 85.5 88.5 73.5 83.6
0.8 100.0 83.0 99.3 99.4 98.9 97.9 99.2

To investigate the issue of the model misspecification of the selection probability,

we used the following misspecified models for the selection probability:

logit{Pr(δi = 1|yi)} = m0 +myyi. (5.3)

and

logit{Pr(δi = 1|yi)} = m0 +myyti, (5.4)

where yt =
√
y if y > 0, −

√
−y otherwise. Intuitively, Model (5.4) is more appropriate

for the selection probability than Model (5.3), though both models are not exactly

correct. We use T∆
GSP1 and T∆

GSP2 to denote the generalized score test statistics

when the selection probability is estimated by the misspecified model (5.3) and (5.4,

respectively. For brevity, we present only the normal error case. In this setting, the

rejection rate of T∆
GSP1 is slightly higher than the nominal level under H0, and its

power is much lower than those of TGS, TGSP and TGSN under alternatives. On the

other hand, the test statistic T∆
GSP2 has almost same performance as TGS, and TGSP .

The results are in Table 2 and Figure 2.
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Figure 1: Comparisons of generalized score tests for testing adequacy of a simple
linear model. Data were generated from a model with an additional quadratic term
and heteroscedastic normal error terms. About 64% observations are fully observed.
The sample size is 300.
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Figure 2: The effect of model misspecification in the selection probability on the gen-
eralized score tests. Data were generated from a model with an additional quadratic
term and heteroscedastic normal error terms. About 64% observations are fully ob-
served. The sample size is 100.
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Table 3: Comparisons of generalized score tests for testing adequacy of a simple linear
model. Data were generated from a model with an additional quadratic term and
homoscedastic gamma(1, 1) error terms. About 64% observations are fully observed.

Method FGS CC TGS TGSP TGSN
n c Rejection Rate (%), Test Level 0.05

0.0 3.6 3.7 3.3 4.1 7.1
100 0.5 13.4 6.4 8.1 8.4 13.1

1.0 55.1 25.3 33.4 32.8 45.1
1.5 93.0 62.1 75.3 75.7 83.8
0.0 4.9 4.7 4.5 4.6 5.3

300 0.5 45.9 18.9 32.8 32.1 37.5
1.0 98.9 81.1 95.0 95.3 97.4
0.0 5.1 5.3 4.7 4.9 5.7

500 0.5 71.5 32.1 56.5 56.4 63.3
0.8 99.1 83.2 96.1 96.2 97.7

To investigate how the estimated mean score function improves the power of

the tests, we considered the situation that φ∗ was estimated via a correct parametric

model. The data were generated from the linear model with a univariate binary

covariate xi, a univariate continuous covariate zi and the response variable yi:

yi = β0 + βxxi + βzzi + cz2
i + ei. (5.5)

where the error terms follow identical and independent N(0, 1), and δi follows the

logistic model (5.2) with α0 = α1 = 1 as before. The covariate zi = −1 + (2i)/n,

xi ∼ Bernoulli(pxi), and logit(pxi) = κ0 +κzzi. True values β0 = 0, βz = 1.0, βx = 0.2

or 0.8 and κ0 = κz = 0 were used. In this case, the supplement covariate for the ith

observation is

ui = (cos(2πti), sin(2πti), cos(4πti), sin(4πti), cos(6πti))
′,

where ti = i/n. The results are given in Table 4 and Figure 3.

Under H0, both non data driven and data driven T ∗
GSP have rejection rates close

to the nominal level 5% for both sample sizes of n = 100 and 300. Under the
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Table 4: Comparisons of generalized score tests and their data driven version tests
for testing adequacy of a linear model with covariates x and z. Data were generated
from a model with an additional quadratic term cz2. The error terms follow identical
and independent N(0, 1). Around 63% observations are fully observed.

Non data Driven Data Driven
Method FGS CC TGSP T ∗

GSP FGS TGSP T ∗
GSP

n c Rejection Rate (%), Test Level 0.05
βx = 0.2

0.0 4.6 5.0 6.3 4.1 4.8 6.8 5.0
100 0.5 14.8 7.7 8.7 14.6 24.0 12.6 23.5

1.0 56.2 24.3 25.4 52.7 74.4 44.4 71.3
0.0 4.6 5.0 4.9 4.1 5.2 5.3 5.2

300 0.5 43.2 15.3 24.3 41.1 58.7 32.9 57.1
1.0 98.1 76.3 81.9 97.9 99.3 90.8 100.0

βx = 0.8
0.0 4.6 5.1 6.9 5.0 4.8 6.7 5.3

100 0.5 14.8 9.2 9.8 14.1 24.0 14.0 23.0
1.0 56.2 30.9 29.3 51.4 74.4 47.8 68.7
0.0 4.6 4.6 5.5 4.0 5.2 5.3 4.6

300 0.5 43.2 21.7 25.2 39.8 58.7 34.2 54.3
1.0 98.1 85.5 84.5 97.3 99.3 92.5 100.0

alternatives, (a) T ∗
GSP is much more powerful than TGSP ; (b) the data driven version

of tests is more powerful than their non data driven version tests. This implies that

the tests with an appropriate model for φ∗ are much more efficient than the tests with

φ = 0, the result. When βx = 0.2, the covariate x is not very useful in the regression

model and the missingness in x caused little information loss. In this case T ∗
GSP has

the power close to that of FGS. On the other hand, when βx = 0.8, the missingness

in x led to more information loss. Consequently the power of T ∗
GSP is reduced slightly

more from that of FGS.
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5.3 Logistic Regression

In this part of the simulation study, we considered the proposed tests for testing

adequacy of logistic regression models. The data were generated from the following

models:

Model I:

logit{Pr(yi = 1|xi, zi)} = β0 + βxxi + βzzi + cz2
i ,

Model II:

logit{Pr(yi = 1|xi, zi)} = β0 + βxxi + βzzi + cxi × zi,

where yi is a binary response variable, zi and xi are two univariate covariates. The

missing indicator δi follows the logistic regression model with covariates yi and zi:

logit{Pr(δi = 1|yi, zi)} = yi(3z
2
i − 0.4).

For both models, the values of β used to generate the data were β0 = βx = 0 and

βz = 1; the covariate xi was generated from Unif[−1, 1] and zi were equal space points

between −1 and 1. According to applications, the alternative could be a partial linear

model or a general alternative.

5.3.1 Partially Linear Alternatives

Partially linear models are widely used for missing covariate data because of their

flexibilities. In this subsection, we would like to test

H0: logit{Pr(yi|xi, zi)} = β0 + βxxi + βzzi

against its partially linear alternative

Ha: logit{Pr(yi|xi, zi)} = β0 + βxxi + fz(zi),
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where fz is a smooth function. The data were simulated using the model I and model

II. The supplement covariate for the ith observation is

ui = (cos(2πti), sin(2πti), cos(4πti), sin(4πti), cos(6πti))
′,

where ti = i/n. The simulation results based on Model I are given in Table 5 and the

simulation results based on Model II are given in Table 6

The data were simulated form Model I: under H0, FGS, TGS and TGSP have

rejection rates close to the nominal level 5% for both sample sizes n = 200 and 500;

the CC method has a rejection rate of 35% when n = 500, indicating the CC method

is severely biased; TGSN has a somewhat high rate of 8.4% when the sample size

n = 200 and a rejection rate close to the nominal level when sample size n = 500,

reflecting the fact that TGSN converges to the asymptotic distribution slowly. Under

the alternatives, TGS and TGSP have similar power. The data driven version tests

are also given in Table 5. The data driven procedures have similar rejection rates to

those of the non data driven tests under H0, with the exception of their noticably

higher power under the alternatives.

The data were simulated form Model II: under H0 and Ha, FGS, TGS and TGSP

have rejection rates close to 5% for sample size n = 200 and 500. This indicates the

tests may have no power to detect an interaction departure if the alternative is a

partial linear model. It is not a good idea to use a partial linear alternative if you

would like to detect a general signal.

5.3.2 General Alternatives

Partial alternatives may be inadequate in some applications. In this subsection, we

would like to test

H0: logit{Pr(yi|xi, zi)} = β0 + βxxi + βzzi
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against a general alternative

Ha: logit{Pr(yi|xi, zi)} = fxz(xi, zi),

where fxz is a general bivariate smooth function. To construct the proposed goodness-

of-fit tests, the following partitioning was utilized. The regions of covariate space were

automatically partitioned into 6 parts:

Part I = {x < qx,0.5, z < qz,0.33},

Part II = {x ≥ qx,0.5, z < qz,0.33},

Part III = {x < qx,0.5, qz,0.33 ≥ z < qz,0.66},

Part IV = {x ≥ qx,0.5, qz,0.33 ≥ z < qz,0.66},

Part V = {x < qx,0.5, qz,0.66 ≥ z},

Part VI = {x ≥ qx,0.5, qz,0.66 ≥ z),

where qx,t1, qx,t2 are the t1 and t2 quantile of the variables x and z, respectively. The

corresponding supplement covariates are 5× 1 vectors. The results of the simulation

study are given in the Table 7 and Figure 4. Under H0, FGS, TGS and TGSP have

rejection rates close to the nominal level 5% for both sample sizes n = 200 and 500;

the CC method has a rejection rate of 16.1% when n = 200 and has a rejection rate

of 43.1% when n = 500, indicating the CC method is severely biased; TGSN has a

somewhat high rate of 9.1% when the sample size n = 200 and a rejection rate close

to the nominal level when sample size n = 500. Under the alternatives, TGS and

TGSP have similar power; the power of TGSN is higher than that of TGS and TGSP

while type I error are similar when n = 500. Recall the results in Table 6, using the

same simulated data, the tests almost have no power when the alternative is a partial

linear model while the tests have reasonable power when the alternative is a general

one.
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Table 5: Comparisons of generalized score tests and their data driven version tests
for testing adequacy of a logistic regression against a partial linear alternative. The
responses were generated from a logistic regression model (Model I) with an additional
quadratic term cz2 . Around 66% observations are fully observed.

Method FGS CC TGS TGSP TGSN
c Rejection Rate (%), Test Level 0.05

n = 200
Non data Driven Methods

0.0 4.0 6.4 5.8 4.8 8.4
0.5 11.0 20.0 11.0 8.8 16.8
1.0 29.4 44.8 23.6 21.2 36.6
2.0 82.8 81.8 64.2 63.8 86.2

Data Driven Methods
0.0 3.0 35.0 4.8 3.2 6.0
0.5 14.4 63.0 11.6 9.2 15.2
1.0 39.2 84.4 26.0 24.4 40.6
2.0 91.6 98.8 69.6 69.6 91.4

n = 500
Non data Driven Methods

0.0 6.0 35.6 4.8 4.6 5.4
0.5 19.8 75.4 17.0 14.6 19.8
1.0 67.0 97.0 44.8 41.6 65.4
2.0 100.0 100.0 95.8 95.6 100.0

Data Driven Methods
0.0 5.4 75.4 5.0 5.0 5.8
0.5 25.0 97.6 19.4 15.6 22.8
1.0 77.2 100.0 52.6 49.8 74.2
2.0 100.0 100.0 97.4 97.0 100.0
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Table 6: Comparisons of generalized score tests (non data driven method) for testing
adequacy of a logistic regression against a partial linear alternative. The responses
were generated from a logistic regression model (Model II) with an additional inter-
action term c x× z. Around 65% observations are fully observed.

Method FGS CC TGS TGSP TGSN
c Rejection Rate (%), Test Level 0.05

n = 200
0.0 3.6 21.7 5.6 5.5 7.9
1.0 4.5 21.0 5.6 5.5 7.0
2.0 3.6 22.4 6.0 5.2 7.3

n = 500
0.0 4.1 60.9 4.8 4.0 4.4
1.0 5.2 58.8 5.4 3.8 4.1
2.0 6.4 59.6 5.5 3.8 6.7

Table 7: Comparisons of generalized score tests (data driven) for testing testing
adequacy of a logistic regression against a general alternative. The responses were
generated from a logistic regression model (Model II) with an additional interaction
term cx× z. Around 65% observations are fully observed.

Method FGS CC TGS TGSP TGSN
c Rejection Rate (%), Test Level 0.05

n = 200
0.0 4.7 16.7 7.5 6.3 9.1
0.5 7.1 27.6 10.3 8.9 12.5
1.0 14.3 38.1 14.2 11.9 15.7
1.5 29.5 52.2 19.3 17.3 27.9
2.0 47.7 64.4 27.0 25.3 40.8

n = 500
0.0 5.1 43.1 5.0 3.9 4.0
0.5 10.3 69.4 8.6 5.5 7.7
1.0 34.0 88.3 20.1 15.9 24.5
1.5 67.8 96.3 40.2 35.0 54.8
2.0 89.7 98.9 62.0 57.6 79.4
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Table 8: Comparisons of the generalized score test, its data driven test and the adap-
tive Neyman test for testing testing adequacy of a simple linear model against a
general alternative when no missingness occurs. Data were generated from a model
with an additional quadratic term cz2. The error terms follow identical and indepen-
dent N(0, 1).
Method FGS DR Neyman FGS DR Neyman FGS DR Neyman

N = 100 N = 300 N = 500

c Reject Ratio (%), Test Level 0.05, r = 5
0.0 4.7 5.3 5.1 3.9 4.2 3.7 4.9 4.2 5.0
0.2 5.2 6.5 9.9 8.5 10.5 12.4 13.0 17.7 17.6
0.4 8.1 10.6 15.2 25.5 33.5 34.9 48.9 61.3 61.0
0.6 12.1 19.6 25.0 55.6 67.0 68.4 86.5 92.8 92.3
0.8 21.0 31.8 38.9 85.0 91.2 91.1 99.2 99.9 99.9
1.0 33.3 46.7 53.0 97.0 98.5 98.9 100.0 100.0 100.0

5.4 Comparisons between Tests When No Missingness Occurs

Our proposed test statistics simplify to generalized score statistics in Boos (1992)

and their data driven versions similar to Aerts et al. (2000) when no missingness

occurs. Under some circumstances, there might be some optimal or nearly optimal

goodness-fit-tests, such as the adaptive Neyman test in Fan and Huang (2001) for

testing adequacy of a simple linear model. In this section, we compare the per-

formance between the generalized score test, its data driven test and the adaptive

Neyman test when no missingness occurs, to indirectly gain further understanding of

the performance of our proposed test statistics for missing covariate data.

We simulated the response variable using (5.1) with β0 = 0, βx = 2, and two types

of error terms (a) N(0, 1), (b) N(0, 2
3
(1.5−x2

i )). The results are depicted in Tables 8,

9 and Figure 5. In case (a), the adaptive Neyman test has better performance than

the data driven test when n = 100, and almost the same performance as the data

driven test when n = 200, n = 300 and n = 500. However, the adaptive Neyman test

might not be as good as the data driven test with heterogeneity of variance.
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Table 9: Comparisons of the generalized score test, its data driven test and the
adaptive Neyman test for testing testing adequacy of a simple linear model against a
general alternative when no missingness occurs. Data were generated from a model
with an additional quadratic term cz2 and heteroscedastic normal error terms.
Method FGS DR Neyman FGS DR Neyman FGS DR Neyman

N = 100 N = 300 N = 500

c Reject Ratio (%), Test Level 0.05, r = 5
0.0 4.2 4.6 4.3 4.6 5.1 5.1 4.1 5.2 5.6
0.2 5.5 7.7 5.2 17.6 19.7 8.8 30.1 35.6 11.6
0.4 11.7 16.0 8.0 59.7 64.5 29.0 89.5 91.1 62.4
0.6 24.4 31.3 14.8 95.2 96.9 72.1 100.0 100.0 98.5
0.8 44.6 52.5 26.0 100.0 100.0 97.1 100.0 100.0 100.0
1.0 65.0 72.8 44.9 100.0 100.0 100.0 100.0 100.0 100.0
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Figure 5: Comparisons of the generalized score test, its data driven test and the
adaptive Neyman test for testing testing adequacy of a simple linear model against a
general alternative when no missingness occurs. Data were generated from a model
with an additional quadratic term cz2. The error terms follow identical and indepen-
dent N(0, 1). The sample size is 200.
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CHAPTER VI

AN EXAMPLE OF DATA ANALYSIS

6.1 Introduction

In this chapter, we consider the dataset mentioned in Chapter I, which is from the

Duke University Cardiovascular Disease Databank. The patients were referred to

Duke University Medical Center for chest pain. It was found that 2332 patients have

significant (≥ 75% diameter narrowing of at least one major coronary artery) coronary

disease (sigdz = 1) by Cardiac Catheterization. Among these 2332 patients, 1129

patients have severe coronary disease (three-vessel or left main disease, tvdlm = 1).

It is very interesting to predict the probability of significant coronary disease and the

probability of severe coronary disease given the information of cholesterol ,age, and

so on. The content of the dataset was described in Chapter I. As was stated earlier,

it consists of 3504 patients and 6 variables. The covariate cholesterol is not observed

among 1246 out of 3504 observations. Harrell (2001) analyzed the dataset extensively.

However, complete-case analysis was used when the covariate cholesterol is involved

in his analysis. It is well know that complete-case analysis may be misleading if

the missing-data mechanism is not MCAR. In this chapter, we reanalyze the Duke

Cardiac Catheterization Coronary Artery Disease Diagnostic Dataset to illustrate our

methodology.
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Table 10: Fit the missingness on sigdz, age and sigdz*age.

Estimate Std. Error p-value
(Intercept) 1.862555 0.323827 8.84e-09

sigdz 1.774492 0.425385 3.03e-05
age -0.024721 0.006418 0.000117

sigdz × age -0.031378 0.008087 0.000104

6.2 Data Analysis

We are interested in investigating the relationship between sigdz (y) and covariates

cholesterol (x) and age (z) while one third of cholesterol values are missing. Due

to the missingness, it is crucial to identify the relationship between the missingness

and the values of variable. Assume that the data are MAR, we characterized the

missing-data mechanism by fitting the logistic regression

logit{Pr(δi = 1|yi, zi)} = α0yi + αzzi + αyzyi × zi.

The results are shown in Table 10. Significant dependence of the missingness on the

data is apparent because all terms above are significant (p-value < 0.001), indicating

that the data are not MCAR and the missingness depends on yi and zi. This suggests

that the previous complete-case analysis (Harrell 2001) might be problematic for this

dataset.

As in Harrell’s (2001) analysis, we assumed a logistic linear regression model

logit{Pr(yi = 1|xi, zi)} = β0 + βxxi + βzzi. (6.1)

Because the sample size is relatively large and we don’t have much knowledge about

the selection probability, we used the semiparametric approach in Wang et al. (1997)

to estimate the parameters. The estimate of the parameter β = (β0, βx, βz)
′ is the

solution of

Us(β, π̂) =
3504∑
i=1

{ δi
π̂i

(1, xi, zi)
′(yi − p̂i)},
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where π̂ is the local linear estimate for the selection probability and

p̂i =
1

1 + e−(β0+βxxi+βzzi)
.

The estimate of the parameters is

(β̂0, β̂x, β̂z) = (−3.28, 0.049, 0.0064).

Furthermore, using the semiparametric generalized score statistic TGSN to test each

of the following three null hypotheses: H0 : β0 = 0, H0 : βx = 0 and H0 : βz = 0, we

found that each term is significant (p-value < 0.001). Before we use these results to

explain the relationship between the disease and the covariates age and cholesterol,

it is natural to ask if model (6.1) is adequate. To investigate this issue, let the null

hypothesis H0 be the model in (6.1). Possible alternatives are:

logit{Pr(yi = 1|xi, zi)} = β0 + βzzi + f1(xi), (6.2)

logit{Pr(yi = 1|xi, zi)} = β0 + βxxi + f2(zi), (6.3)

or

logit{Pr(yi = 1|xi, zi)} = g(xi, zi), (6.4)

where f1, f2 and g are smoothing functions. Alternatives (6.2) and (6.3) are par-

tially linear models, while alternative (6.4) is a general one. The different supplement

covariates should be used for different alternatives. We used the cosine system to gen-

erate plausible alternative models with R = 5 supplement covariates for the partially

linear alternatives. We sorted the observations according to the value of x and z from

smallest to largest, respectively, in order to generate the two supplement covariates

for ith observation for alternatives (6.2) and (6.3). Let Lxi and Lzi be the positions of

the ith observation after sorting, accordingly. Then

(cos(2π
Lxi
N0

), sin(2π
Lxi
N0

), cos(4π
Lxi
N0

), sin(4π
Lxi
N0

), cos(6π
Lxi
N0

))′
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and

(cos(2π
Lzi
n

), sin(2π
Lzi
n

), cos(4π
Lzi
n

), sin(4π
Lzi
n

), cos(6π
Lzi
n

))′

are the supplement covariates for the ith observation for alternatives (6.2) and (6.3),

respectively, where N0 = 2258 and n = 3504. For alternative (6.4), the corresponding

plausible alternative M(R), R = 5 was generated based on partitioning the covariate

space into 6 distinct regions. The observed test statistics are 5.77, 16.03 and 33.06

for the three alternatives above, respectively. The asymptotic critical value is 11.07.

Therefore, the conclusion is that the linear relationship described by (6.1) between

the disease and covariates age and cholesterol is not adequate. On the other hand,

partially linear model (6.3) or a fully nonparametric regression (6.4) may be more ad-

equate to describe such a relationship. To further analyze this dataset, it is possible

to apply the methodologies developed in Liang et al. (2004) and Wang, Wang, Gutier-

rez, and Carroll (1998) for partially linear models and fully nonparametric techniques

in generalized linear models, respectively, when some covariates are partially missing.
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CHAPTER VII

SUMMARY AND FUTURE RESEARCH

7.1 Summary

In this dissertation, we have studied the generalized score tests based on WEE (1.1)

with two nuisance functions π and φ for missing covariate data. Different versions of

the test statistic have been properly defined according to different settings, and their

asymptotic distributions have been derived. The proposed parametric tests appear

to give proper type I error rates and reasonable power for different sample sizes and

obtain the asymptotically optimal power within the class when the parametric models

for π and φ are correctly specified, while the proposed semiparametric tests appear to

work well when sample size is sufficiently large. Moreover, the optimal power can also

be obtained asymptotically by using an appropriate nonparametric estimate of π using

the simplified WEE with φ = 0. As an important application, we have investigated

the model assessment procedures for generalized linear models when some covariates

are partially missing. Our empirical study suggests that, with a proper choice of the

function sequence F and the number of supplement covariates, the tests have good

power in testing certain types of departures from the null models.

7.2 Future Research

As a future research problem, it would be interesting to extend the proposed method-

ology by employing generalized weighted estimating equations for correlated data such

as longitudinal data with missing covariates. It would also be interesting to develop
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generalized score tests for testing overdispersion, correlation and heterogeneity over

mixed effects in the presence of missing covariates.

Another problem is that the asymptotic null distribution seems to be inadequate

for the semiparametric tests when the sample size is not large enough. One possible

remedy for this is to develop bootstrap methods to approximate the critical values

of the null distributions. Another possibility is to investigate the effects of Bartlett

corrections in an attempt to improve the accuracy of approximate null distributions.
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