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ABSTRACT

Generalized Score Tests for Missing Covariate Data. (August 2007)
Lei Jin, B.S., Huazhong University of Science & Technology, P. R. China;
M.S., Zhejiang University, P. R. China

Chair of Advisory Committee: Dr. Suojin Wang

In this dissertation, the generalized score tests based on weighted estimating equa-
tions are proposed for missing covariate data. Their properties, including the effects
of nuisance functions on the forms of the test statistics and efficiency of the tests,
are investigated. Different versions of the test statistic are properly defined for vari-
ous parametric and semiparametric settings. Their asymptotic distributions are also
derived. It is shown that when models for the nuisance functions are correct, ap-
propriate test statistics can be obtained via plugging the estimates of the nuisance
functions into the appropriate test statistic for the case that the nuisance functions
are known. Furthermore, the optimal test is obtained using the relative efficiency
measure. As an application of the proposed tests, a formal model validation proce-
dure is developed for generalized linear models in the presence of missing covariates.
The asymptotic distribution of the data driven methods is provided. A simulation
study in both linear and logistic regressions illustrates the applicability and the finite
sample performance of the methodology. Our methods are also employed to analyze

a coronary artery disease diagnostic dataset.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Missing covariate data are very common in many applied areas, especially in the med-
ical and social studies. Study designs are sometimes responsible for missing covariate
data. For example, to obtain an optimal result in a fixed budget epidemiological
study, researchers may employ a two stage study. Within the first stage, information
on the response and some easily obtained variables is collected for all study sub-
jects. During the second stage, information on other covariates is collected only for
a subset of the study subjects depending on the observed attributes in stage one.
The missingness can also be caused by happenstance. For example, respondents in a
household survey may refuse to answer the questions regarding their income. In an in-
dustrial experimental process, some variables are not observed because of mechanical
breakdowns.

A typical missing covariate data problem involves a response variable y, a vector
of covariates (x, z) where the covariate x is not always observed, and a parametric
model describing the relationship between y and (x,z). The parametric model may

be specified by a conditional distribution f(y|x,z;3) or a regression model

E(ylx,z) = g(x,2,8),

The format and style follow that of Biometrics.



where ¢ is a known function and 3 is a p-dimensional parameter. Furthermore, an

estimating equation condition

E{Y(y,x,2,8)|x,z} =0

can be induced from the parametric model, where ¢ is a p-dimensional estimating

function. For example, ¢ could be the score function

_ Ologf(ylx,z; B)
_ 5

¥

To indicate the missingness, we introduce an indicator random variable o, which
equals 1 if x is observed and 0 otherwise. According to Rubin (1976), the data are

missing at random (MAR) if
Pr(6 = 1|y, x,z) = Pr(6 = 1|y, z).

The data are missing completely at random (MCAR) if the missingness does not de-
pend on the data values. Data analysis generally includes parameter estimation, hy-
pothesis tests and the corresponding model validation. The focus of this dissertation
centers on issues of testing composite hypotheses of 3 and formal model validation
for the missing covariate data under the assumption of MAR.

Because standard techniques for statistical inferences usually require full covari-
ate information, one simple way of handling missing covariate data is a complete-case
analysis, which excludes observations with missing values and performs naive statisti-
cal analysis. Despite its convenience with existing statistical packages, the complete-
case analysis discards information from the incomplete cases and may result in sub-
stantial efficiency loss. More importantly, it ignores the possible systematic difference
between the complete cases and incomplete cases, and thus yields misleading results.

Approaches for correctly analyzing missing covariate data may include likelihood



based approaches (Rubin, 1976; Little and Rubin, 2002; Ibrahim, Chen, and Lipsitz,
1999), multiple imputation (Rubin, 1996; Schafer, 1997; Little and Rubin, 2002) and
weighted estimating equation methods (Flanders and Greenland, 1991; Zhao and Lip-
sitz, 1992; Robins, Rotnitzky, and Zhao, 1994; Wang, Wang, Zhao, and Ou, 1997;
Lipsitz, Ibrahim, and Zhao, 1999). Compared with the other approaches, weighted
estimating equation methods can provide consistent results under more flexible as-
sumptions (Lipsitz et al., 1999; the discussion rejoinder in Scharfstein, Rotnitzky, and
Robins, 1999; Van der Laan and Robins, 2003, Ibrahim, Chen, Lipsitz, and Herring,
2005).

Considering n independent observations, Robins et al. (1994) proposed the gen-

eral weighted estimating equations (WEESs)

UBme) = Y w(Bm o)
i=1

" 65 5
i=1 ¢ %

where

7 = m(Yi, 2:) = Pr(0; = 1|y, 2:),

and ¢ is an arbitrary fixed p x 1 function with finite second moments. For statistical
inference in the WEE (1.1) setting, sandwich covariance estimates and Walds-type
tests are widely used in the literature. As an alternative to Wald-type tests, general-
ized score tests (Rotnitzky and Jewell, 1990; Boos, 1992; Commenges and Jacqmin-
Gadda, 1997; Thas and Rayner, 2005) are widely used to test a variety of hypotheses
in a simple and unified way in estimating equation settings. Because of the invariance
properties, the score type statistic and likelihood ratio statistic are often preferred to
Wald statistics in standard parametric models (see Boos, 1992). One primary concern

of this dissertation is the generalized score tests for testing composite hypotheses in



Table 1: Description of Duke Cardiac Catheterization Coronary Artery Disease Di-
agnostic Dataset; 3504 observations and 6 variables, maximum number of missing
values (denoted by N As):1246.

Name Labels Units | NAs
sex Male = 1, Female = 0 0
age Age Year 0

cad.dur | Duration of Symptoms of Coronary Artery Disease 0
choleste Cholesterol mg% | 1246
sigdz Significant Coronary Disease by Cardiac Cath 0
tvdlm | Three Vessel or Left Main Disease by Cardiac Cath 3

the presence of missing covariates based under the WEE (1.1) setting. More specif-
ically, we study the effects of nuisance functions 7 and ¢ and their estimates on the
generalized score statistics, the efficiency issues and applications of the tests.

The following example motivates our study. It is of interest to use correct tools
to analyze the Duke Cardiac Catheterization Coronary Artery Disease Diagnostic
Dataset (Harrell, 2001, Chapter 10). The structure of the dataset is described in
Table 1. The variable cholesterol is not observed among 1246 out of 3504 observations.
Extensive complete-case analysis by Harrell (2001) included parameter estimation,
tests of regression coefficients and the corresponding model validation. Since around
one-third of the observations are incomplete, complete-case analysis might be invalid
or inefficient. While it would be natural to recheck the validation of the logistic
regression previously used for this dataset, to the best of our knowledge there are no
such formal methods in the current literature that deal with this issue.

An assessment of model fit is an important part of any modeling procedure.
In general, it evaluates how well the predicted outcomes coincide with the observed
data. Model evaluation for missing data may include the detection of an incorrect
assumption of missing-data mechanism, omitted important covariates, or inappropri-

ate distributional assumptions. There are a few tests in the literature concerning a



model for the selection probability or missing-data mechanism. Lei and Wang (2001)
developed two test statistics that focus on the validation of the MAR assumption.
Lipsitz, Parzen, Molenberghs, and Ibrahim (2001) proposed a test for bias in WEESs
caused by the missingness that is incorrectly modeled. For testing the adequacy of
the primary regression function, Gonzalez-Manteiga and Pérez-Gonzalez (2006) pro-
posed goodness-of-fit tests for linear models with missing responses under the MAR
assumption. In the theoretical framework of Bayesian posterior predictive checks,
Gelman, Van Mechelen, Verbeke, Heitjan, and Meulders (2005) proposed an informal
missing data model checking method using graphical diagnostics. As is mentioned
for a future research topic in the review paper by Ibrahim et al. (2005), it would be
interesting to explore formal model validation methods in the presence of missing co-
variates. As an application the proposed generalized score tests, we develop a formal
model validation procedure for generalized linear models in the presence of missing

covariates.

1.2 Dissertation Structure

The dissertation is organized as follows. In Chapter II, a comprehensive review for
missing data, weighted estimating equations, generalized score tests, etc. will be dis-
cussed. In Chapter III, we investigate the generalized score tests under the weighted
estimating equation settings. In Chapter IV, we develop goodness-of-fit tests for
generalized linear models when some covariates are partially missing. A simulation
study and its results are presented in Chapter V. In Chapter VI, as an illustration
we reanalyze the dataset discussed above. Some concluding remarks and comments

on future research given in Chapter VII.



CHAPTER II

LITERATURE REVIEW

A main concern of this dissertation is the generalized score tests and their ap-
plications in the presence of missing covariates based on the weighted estimating
equations. We review the missing-data mechanism, missing-data pattern, weighted
estimating equation methods, generalized score tests, model validation methods and

other relevant topics in this chapter.

2.1 Missing-data Mechanism and Pattern

Missing-data mechanism describes the relationship between the missingness and the
values of variables. It is crucial because the properties of missing-data methods
strongly depend on this mechanism. The data are missing completely at random if
the missingness does not depend on the data values. Assumption of MCAR basically
implies that the complete cases are a random subsample of the intended sample, and
thus a complete-case analysis is valid. The data are missing at random if, conditional
on the observed data, the missingness does not depend on the unobserved data.
Clearly, MAR is a weaker assumption than MCAR. In this case of MAR, complete-
case methods may not be valid because the complete cases are no longer a random
sample of the intended sample. If the data are MAR and the missingness does not
depend the response, then a complete-case analysis will lead to valid results. When
neither MCAR nor MAR holds, we say the data are missing not at random (MNAR).
In the likelihood setting, the missing-data mechanism MNAR is termed non-ignorable.

Valid inferences generally require specifying the correct model for the missing-data



mechanism when the missingness is non-ignorable. The assumption of MAR has been
widely used in the literature, as in this dissertation. Our methodology can be directly
applied to MNAR cases if correct models for the selection probability are available,
which generally requires additional information.

Missing-data pattern is another important concept regarding missing data, es-
pecially when there are multiple variables with missing values. It describes which
values are observed and which values are missing in the data matrix. If the data
matrix can be rearranged in such a way that there is a hierarchy of missingness, so
that observing a particular variable for a subject implies that all other variables on
the left-side of this variable are observed, then the missingness is said to be monotone.
Little and Rubin (2002, Chapter I) described various missing-data patterns, includ-
ing univariate nonresponse, multivariate two patterns, general missingness pattern,
etc. Some methods for missing data are restricted to certain special patterns. In this
dissertation, we assume the missing-data pattern is multivariate two patterns, where
x is all missing if 6 = 0. The methodology can be applied to monotone missingness

without difficulty because WEE (1.1) works for monotone missingness pattern.

2.2 Weighted Estimating Equations

2.2.1 Weighted Estimating Fquations

Flanders and Greenland (1991), and Zhao and Lipsitz (1992) proposed an estimator

based on the simple inverse probability weighted estimating equations

n n 5,
US(/Baﬂ-) = Zusi(ﬁ>7ri) = Z{;w(ylaxlazlvﬁ)} =0 (21)

for two-stage studies. Assuming that 7 is known, they showed that the estimator is
consistent for 3 and asymptotically normal distributed. However, it is clear that the

estimator is not efficient because Equation (2.1) has nothing to do with the incomplete



cases.

Robins et al. (1994) introduced weighted estimating equations (1.1) and defined a
class of estimators indexed by ¢ under regularity conditions. For each ¢, the estimator
is the unique solution ,B of Equation (1.1). Note that the solution, the equation and
other relevant quantities depend on the nuisance functions m and ¢. For notational
convenience, we suppress this dependence throughout this dissertation when there
is no confusion. The methods are quite general and can be applied to very large
classes of models, including generalized linear models, proportional hazards model
and nonlinear models. Robins et al. (1994) showed that B are asymptotically normal
and unbiased for 3 when (a) the data are MAR, (b) 7 is bounded away from 0, and
(c) 7 is either known (in a designed study) or estimated via a correct model. The
asymptotic variance of ns (B — 3) can be consistently estimated by the corresponding
sandwich estimator. It is clear that Equation (2.1) is a special case of WEE (1.1).
They pointed out that estimators previously proposed by Horvitz and Thompson
(1952), Breslow and Cain (1988), Flanders and Greenland (1991), and Zhao and
Lipsitz (1992) are asymptotically equivalent to some inefficient estimators in their
class. Misspecification of 7 could lead to a biased estimating equation (1.1), while
the choice of ¢ affects the efficiency of the point estimators. The asymptotic variance

of B and WEE (1.1) is uniquely minimized in the positive definite sense when

¢ = & (yi, 2:) = E{Y(Yi, %4, 24, B)|Yi> 2i }-

In fact, ¢*(y;,2;) is the conditional mean score function. A sketch proof for this
optimum property is given below.

Note that Equation (1.1) can be rewritten as
U(Biﬂ-?gb) = Zw(yhxiaziaﬁ) +Z(; - 1){¢<y17xuzzaﬁ> _¢(yl7zl)}
i=1 i=1 °
= U"(B) +UY(B.7,9). (2.2)



For all 3, (% — D{¥(yi, xi,2i, B) — &(yi,2;)} has mean 0 given (y;,2z;) and thus is

uncorrelated with ¥ (y;, X;,z;, 3). Hence

Var{U(B,7,¢)} = Var{U"(8)} + Var{UM (8,7, ¢)}
(1= W)E{Wi — o(yi, 2i)] [V — &y, 2:)]'}H,

= Var{U(B)} + E]

where ¢; = (i, X;, i, B). It is clear that E[(l;ﬂ)E{Wi — Oy z:)|[Wi — P(yi, 2:)]'H] s
minimized at ¢* in the positive definite sense.

According to Equation (2.2), U(8, 7, ¢) can be decomposed to full data estimat-
ing estimating equations U¥(3) and the noise UM (3, 7, ¢). Because UM (3, 7, ¢) has
mean 0 and is uncorrelated with U¥(3), UM (B, 7, ¢) is just random noise added to
the full data estimating estimating equations due to the missingness and cannot help
in estimation of 3. The variance of UM (3, 7, ¢) is a quantitative measure of the noise
for not having observed all data. The penalty paid for missing data is minimized when
the mean score function ¢* is used for extracting the information in the incomplete
cases.

The estimator based on WEE (2.1) is biased if the selection probability is not
appropriate while the estimator based on WEE (1.1) may not. Scharfstein et al.
(1999) discussed doubly robust estimators based on general WEE (1.1). An estimator
is doubly robust in the sense that it is consistent for 3 if either the model for the
selection probability or the model for the conditional mean score function is correctly
specified. For example, the estimators in Lipsitz et al. (1999) and Rotnitzky, Robins,
and Scharfstein (1998) are doubly robust.

2.2.2  Parametric Setting

In WEE (1.1), the nuisance function 7 is often unknown and thus needs to be es-

timated. On the other hand, the efficient estimator B(m, ¢*) is not feasible because
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the conditional mean score function depends on the unknown conditional distribution
(x]y, z).

Zhao, Lipsitz, and Lew (1996) introduced a joint estimating equation for regres-
sion analysis when some covariates are missing. They posed a logistic regression for

the selection probability,

exp(—a'v;)

(2.3)

™ = ma) = 14 exp(—a'v;)’

W=

where and v; is a vector function of (y;,z;)’s, such as (y;,z})" and (y?). The maximum

i

likelihood equation for the logistic regression is

Ur(a) = Zv {6; — m(a)} = 0.

Assuming that k is a necessary vector of unknown parameter in the model for

@*, their joint estimating equation is

UB,a,K)
0= U¢*(ﬁ,a7n) , (2.4)
Ur(ax)

where Uy (3, o, k) depends on assumptions regarding the conditional moments E(x;|y;, z;),
E(x?|y;, z;), etc. The parameter k in their setting is related to these conditional mo-
ments.

Lipsitz et al. (1999) proposed another joint estimating equations similar to max-
imum likelihood equations for missing covariate data. By assuming the conditional
distribution p(x|z; k), they obtained a joint estimating equation similar to Equation

(2.4) where

"5 0.
Us (B, 00, ) = D[ thye (i, 20, ) + (1

i=1

;Z)E{qu)* (xi,2i, K)|Yi, 2i }]
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and
Yy (%, 2, k) = {Olog p(x|z, k) /OK} .

An EM-type algorithm was proposed to solve the joint estimating equation above.
The estimate & for a is the solution of U, = 0, while the estimates B for 3 and
K for Kk can be obtained by EM-type iterative methods using U, Uy and a = a.
According to Lipsitz et al. (1999), [3 is consistent for B when at least one of the
following is correctly specified: (a) model (2.3) for the selection probability or (b)
the distributional assumptions on f(y|x,z;3) and p(x|z;k). When 7 is correctly

specified, they obtained

On the other hand, when f(y|x,2z;3) and p(x|z; k) are correctly specified, they

showed

E{aU(ﬁa,aa,n)}:O.

As a special case of Lipsitz et al. (1999), Parzen, Lipsitz, [brahim, and Lipshultz
(2002) considered a weighted estimating equation for linear regression with missing
covariate data. They proposed weighted estimating equations with the assumption
that the missing covariates are multivariate normal, which might be incorrect. Via
simulation, they compared their WEEs with the semiparametric efficient WEE with
correct distribution assumption on the missing covariates as well as the maximum
likelihood methods. They concluded that the methods work for many situations and

the efficiency is high.
2.2.8 Semiparametric Setting

It is generally convenient to assume parametric models for the selection probability
and the mean score function ¢*. However, it might be problematic when the para-

metric models (especially the model for the selection probability) are not correct.
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To deal with this problem, Wang et al. (1997) proposed a semiparametric esti-
mate of 3 in regression analysis with missing covariates. They considered the weighted

estimating equation

Us(ﬁ/ﬁ—N) = Z{ﬁNQﬂ(yan;Zz,ﬂ)} - 07
i=1 ’
where
7ATN(V) _ Zi:l 5iKh(V B Vi) (25)

YL K-
K is an sth-order kernel function, h is a proper bandwidth parameter, K(-) =
K(-/h), and v; = (y;,2)’. They concluded that (a) the semiparametric estimator
@ is root-n consistent, though the nonparametric smoother 75 has slower rate than
root-n consistency, and (b) the efficiency of estimating 3 may be gained via estimating
the selection probability.

Wang and Wang (2001) investigated kernel assisted estimators in regression anal-
ysis in the presence of missing covariates. Smoothing techniques are employed in esti-
mating 7 and ¢*. They proposed three kernel assisted semiparametric estimators and
founded the asymptotic equivalence between these estimators. More specifically, the
selection probability is estimated via (2.5) and the conditional mean score function
is estimated by
> i %ﬁi[(h(v — ;)

Cb}k\f(v) = 2?21 Kh(V — Vi) ) (26)

where ¢); = W»(yi, x4, zi,B) and 3 is the solution of UB,7n,¢) =0.

Under the regularity conditions (C'1)—(C5), they showed that

n"iU(B,7n,0) = n2UB, 7, 6%) + Oplpn),

n 2 UA(B,7x, 0%) = Oplpn), (2.7)

where Uy (B, , ¢) = E?:l(l - i_i)(b(yi; z;), and p, = {nh2s + (nh%)_l}%'
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Liang, Wang, Robins, and Carroll (2004) used different nonparametric estimates
for the selection probability in their local weighted estimating equations. They
pointed out that the selection probability can be estimated via many nonparametric
estimators (local polynomial, kernel methods with varying bandwidths, smoothing
and regression splines, and so on) and the results are asymptotically equivalent under

certain conditions similar to (C'1)—(C5).
2.2.4  Comparison with Other Methods

When the likelihood for the complete-data

p(y,x|z; B, k) = f(ylx, z; B)p(x|z; k)

is available, the likelihood based methods (Rubin, 1976; Little and Rubin, 2002;
Ibrahim et al., 1999) can be used for inference via the EM algorithm (Dempster
et al., 1977). If the data are MAR, the likelihood based methods ignoring the missing-
data mechanism is valid (Rubin, 1976). However, an appropriate likelihood is often
difficult to obtain for missing data problems and the results are not robust to model
misspecification.

Multiple imputation is another popular approach for handling missing covariate
data. First, it creates multiple ‘complete’ datasets by making random draws from
the predictive distribution p(x|y,z) of the missing values, which require essentially
the same condition as likelihood based methods. Often multivariate normal models
are used for covariates (x,z) because it is computationally tractable. Second, each of
these ‘complete’ datasets are analyzed using standard methods. Finally, the results
are combined which take uncertainty regarding the imputation into account. Multi-
ple imputation is an attractive choice for missing data problems because of ease of

use. For example, multiple imputation in SAS can be carried out in three simple
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steps. First, the imputation is carried out by PROC MI. Next, standard methods are
employed for complete-case analysis. Finally, the results are combined using PROC
MIANALYZE. However, the predictive distribution p(x|y, z) must be proper to have
consistent estimators and valid tests.

WEEs methods for missing covariate data without making strict parametric as-
sumptions on the distribution of covariates. Without an appropriate assumption on
p(x|z; k), the result is still consistent if the selection probability is correctly specified
or estimated. When p(x|z; k) or other similar assumptions are correctly specified,
the estimate is valid and efficient. Doubly robust estimators based on WEE (1.1)
are preferred to MLE in many cases. If the missingness is non-ignorable, the max-
imum likelihood estimate will generally be inconsistent unless both the model for
the selection probability and the model for the conditional mean score function are
correctly specified. In two stage designs or samples surveys with a known selection
probability, the doubly robust estimator is guaranteed to be consistent. In contrast,
the maximum likelihood estimator may be inconsistent if the parametric model for all
covariates is misspecified. However, for the general missing covariate data involving
both continuous covariates and general missing pattern, the doubly robust estimators

are difficult to obtain.

2.3 Generalized Score Tests

A comprehensive introduction for generalized score tests may be found in Boos (1992),
which discussed the use of score tests in the general estimating equation setting for
fully observed data. In the case of no missingness, WEE (1.1) reduces to U¥(3),
which is given in Equation (2.2) and free of 7 and ¢. Typically, the generalized score

tests are for testing

Hy: By = Byy vs Ha: By # Bao, (2.8)
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where 3, is an r x 1 sub-vector of 3 in Equation (1.1) such that 8 = (3], 35). All
relevant vectors are partitioned accordingly, e.g., U = (U, Uj)" where Uy is (p—7) x 1
and Us is 7 x 1. Boos showed how generalized score statistics arise from Taylor

expansion of the estimating equation. Let 3 be the solution of Equation (1.1) under

Hy. By expanding U, (B) and UQ(B) at the true value 8, and replace agl and ggz
8U1 8U1

their asymptotically equivalent versions E (8 3 )and E (8 3 ), U(B) can be written as
1

0=U\(B) = U(B) + E(ﬁ—&

oU,
9B,

)(Bl - /61) + Rnl:

Us(B) = Ua(B) + E(527)(B1 — B1) + Rz,

where the remainders R,,1, R,z are relatively negligibly small with order O,(1) under
Hy and the partial derivatives above are row vectors. By combining the two equations

above, we have

Us(B) = (A, L)U(B) + Rus, (2.9)

where A = FE (g% VE (%)*1, R,3 is a negligible remainder with order O,(1), and I,
1 1

is the r x r identity matrix. Therefore, Boos obtained one version of generalized score

statistic
Ua(BY {(-A.1)Tu(-ALY} U:(B), (2.10)

where A = A|B, Tv =", w(B)u(B) and Ty = JU|B. The test statistic follows
X2 asymptotically under Hy and regularity conditions.

The efficiency of generalized score tests is another important issue. Tosteson and
Tsiatis (1988) studied three score tests and their relative efficiency in a generalized
linear model with surrogate covariates. We may follow Tosteson and Tsiatis (1988)

to study efficiency issue of generalized score tests in the missing data setting.
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2.4 Model Validation Procedures for Missing Data

In general, an assessment of model fit is an important part of any modeling procedure.
Model evaluation for missing data may include the detection of the an incorrect as-
sumption of missing-data mechanism, omitted important covariates, or inappropriate
distributional assumptions.

There are a few tests in the literature concerning the assumption of missing at
completely random. Chen and Little (1999) proposed a Wald-type test for missing
at completely at random in generalized estimating equations with incomplete data.
Strictly speaking, the proposed test statistic tests whether or not the data and the
missing-data pattern are independent, which does not imply assumption of missing
completely at random exactly. The test statistic follows a x? distribution under H,.
They suggested that the an unadjusted generalized estimating equation is appropriate
when Hj is accepted. They employed an information decomposition and recombina-
tion procedure to construct the Walt-type test statistic.

Qu and Song (2002) proposed a generalized score-type test based on the quadratic
inference for testing whether or not missing data in longitudinal data analysis are
ignorable with regard to quasi likelihood or estimating equations approaches. In
other words, they try to test unbiasedness of unadjusted estimating equations, which
is almost the same null hypothesis as Chen and Little (1999). They used estimating
equations Ugp based on (p + r) x 1 dimensional unbiased function s(y,x,z,3). To
construct the test statistic, they first separated the complete cases and incomplete
cases into two groups. For each group of the data, one of the estimating equations
Ugi and Ugs, such that Uy = (Up,,Ug,)’, can be constructed. They defined the

quadratic inference function as

Q = Uy ViUagr + Ub,yViUge,
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where Vg, and Vg, are consistent covariance estimate for Ug; and Ugs, respectively.
The test statistic is Q(B), where B is the minimizer of the quadratic inference function
(. The statistic Q(B) follows x? asymptotically. Furthermore, they also showed that
the generalized score test is asymptotically equivalent to Chen and Little’s Wald-type
test.

Lei and Wang (2001) developed test statistics for bias of WEE (2.1) in the
presence of missing covariates. Under the assumption that the primary regression
model is correct, the test statistics focus on testing whether or not the data are MAR.
The test statistics were developed based on partitioning the sample into disjoint ¢

groups. For k =1,--- ¢, define
Ty, = Ur(B, %)’y ' Uk(B, 7),

where 7 is the estimated selection probability, Uy is WEE (2.1) which uses the kth
group of data only, and X is a consistent estimator for the asymptotic covariance

matrix of Uy(B,7). The test statistic is
T = mal’lgkgq(Tl, cee ,Tq).

In both parametric and semiparametric setting, they showed that the test statistics
follow an asymptotic Xf, distribution when ¢ = 2. Both the parametric and semipara-
metric tests performed well and similarly when (a) sample size is large enough and
(b) the selection probability is correctly specified. When the parametric model for
the selection probability is not correct, they suggested that the semiparametric test
should be used.

Lipsitz et al. (2001) proposed a test for bias in WEE (2.1) caused by the miss-
ingness of the data that is not modeled correctly. More strictly, the null hypothesis is

WEE and the full data estimates converge in probability to the same parameter. To
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obtain the test statistic, the regression model of y given z was fitted using complete
cases via WEE (2.1) as well as all data, and thus obtain two estimates of 3,, say
Bz,W pp and Bz respectively, where 3, the regression coefficient corresponding to z.

The test statistic is

A A A A A A

(/Bz,WEE - BZ)/[COV(IBZ,WEE - /gz)]_1<:3z,WEE - B.),

which is an approximate XI272 under Hy, where p, is the dimension of covariate z.
Regrading the primary regression function, Gonzélez-Manteiga and Pérez-Gonzalez

(2006) proposed goodness-of-fit tests for a linear regression model with missing re-
sponse only under the MAR assumption. The proposed test statistics are based on
the L, distance between appropriate nonparametric and parametric estimates of the
regression function under Hy. Because the convergence rate of the test statistics to
the asymptotic distribution is slow, they proposed a bootstrap procedure for approx-
imation of the critical values. Under MAR and no covariates are missing, there is no
systematic difference between complete cases and incomplete cases. Therefore, the

complete case analysis is valid.

2.5 Regularity Conditions

The regularity conditions given below are based on Wang et al. (1997) and Wang and

Wang (2001) for kernel assisted estimators.

(C1) The function m(v) is bounded away from 0 for all v in its domain.

(C2) The function m(v) has s continuous and bounded partial derivatives with respect

to the continuous components of v.

(C3) The probability density function p(v) and the conditional probability density

function p(v|d) both have s continuous and bounded partial derivatives with
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respect to the continuous components of v.

(C4) The conditional mean score function E{¢(y,x,z, 3)|y,z} and E{¥(y,x,z, 3)y'’
(y,x,2,3)|y,z} exist and have s continuous and bounded partial derivatives

with respect to the continuous components of v.

(C5) E{Y(y,x,z,B8)V (y,x,2,3)} and E{%w(y, x,7,3)} exits and are positive def-

inite, and #;B,qﬂ(y, X, z, ) exists and is continuous in the parameter space.

The regularity conditions given below are for generalized score statistics.

(C6) The first and second moments of g—g exist and % is continuous in a neighbor-

hood of the true value of 3.

oU; \—1 : 00Uz \—1
(CT7) E(aﬁl) exists, and E(aﬂl) has full row rank.

(C8) Estimating equation U is unbiased and has an unique solution, E{¢(y, x, z, 3)’

(y,x,z,3)} exists and is positive definite.

Note that > gzlgjg is bounded in the domain, since 7(v) is bounded away from
0. Condition (C6) guarantees that g—g = E(g—%) + Op(n2). This means that g—g

and F (g—g) are asymptotically equivalent under condition (C6). Also note that, in

parametric settings, the estimating equation U in (C6)-(C8) is matter for the whole
corresponding joint estimating equation (e.g. U, in 3.6) and 3 is for all parameters

(e.g. 7 in 3.6) in the joint estimating equation.
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CHAPTER III

GENERALIZED SCORE TESTS FOR MISSING COVARIATE DATA

3.1 Introduction

Generalized score methods provide a simple and unified way to test a variety of hy-
potheses in many statistical problems. For example, Rotnitzky and Jewell (1990)
developed a generalized score test for regression coefficients in semiparametric gen-
eralized linear models for cluster correlated data. Boos (1992) discussed generalized
score tests in a general estimating equation setting. Commenges and Jacqmin-Gadda
(1997) derived a general form of the score statistic for the random effect in corre-
lated random effects model. Thas and Rayner (2005) constructed a goodness-of-fit
test using generalized score statistics to test for the zero-inflated Poisson distribution
against general smooth alternatives. In this chapter, we study the generalized score
tests for missing covariate data based on WEE (1.1).

WEE methods have been widely used for missing covariate data without making

strict parametric assumptions. The estimator based on WEE (1.1)

0=U(B,m,¢) = Zui(ﬁaﬂz‘,ﬁb)
=1

= Z{W_¢(ylaxz»zzaﬂ) + (1 - ,ﬂ__)qb(y”ﬂzl)}’
i=1 '

(2
can be doubly robust. In the WEE (1.1) setting, Wald-type tests and sandwich
covariance estimates are widely used in the literature. According to Boos (1992),
the score type statistics are attractive because (a) they only require computation of

the null estimates and (b) they could be invariant to nonlinear transformations of
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the parameters whereas Wald statistics are not. More specifically, we are primarily

concerned with generalized score tests for testing hypothesis (2.8)

Ho: By = By vs Ha: By # Bayo
based on WEE (1.1) in different settings.

3.2 The Case of the Selection Probability 7 Being Known and ¢ Being
Given

Zhao and Lipsitz (1992) concerned statistical inference of two-stage studies using
WEE (2.1), which collects the data in two stages. In the first stage, the covariate
z of n subjects are observed, and at the second stage covariate x is measured on a
subset of the study subjects based on the design selection plan. Then it is reasonable
to assume the selection probability is known for many applications. Recall that ¢ in
WEE (1.1) could be an arbitrary fixed p x 1 function with finite second moments.
Therefore, based on WEE (1.1), a class of generalized score tests indexed by ¢ can
be defined. In this section, we would like to investigate how the nuisance function ¢

affects the generalized score tests when the selection probability is known.
3.2.1 A Class of Generalized Score Tests

Since 7 is known, U(8, 7, ¢) in WEE (1.1) reduces to U(B,¢). Under the current
setting and regularity conditions, an unique solution B of Equation (1.1) can be solved
under Hy. Recall that 8 = (87,35), B, is (p —r) x 1 and B, is r x 1. In addition,
we assume that 3, can be solved using U; given 3,. Following the approach in Boos

(1992) and by regularity condition (C6), we obtain

oUy |, -
o8, 81~ B+ Op(1),

Us(B.6) = Us(B, 6) +E<§—gj><31 B+ 0,(1),

0="0U(B,06) =Ui(B,¢) + E(
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under Hy, where E denotes the expectation with respect to (J;, y;, X;, z;). In the
case that O,(1) is a matrix or vector, O,(1) means that each element of the matrix

or vector is of the order O,(1). Combining the two equations above, we have

U2(57¢) = (_AaI'I‘)U(IB7¢) +OP<1)7 (31)

where A = E(%)E(%)_l, which has the same form A in (2.9) while the meaning
1 1

of E and the equation U are different. Let A = A|B, Ju=> 1 ,wB o8, o)

and Ty = J Ul B Without confusion, we will continue to use A, Jy, ete. for the

quantities evaluated at proper parameters or their estimates under other settings. By

the root-n consistency of B under Hy and (C6),

A=A+0(n7),

).

N

Jv=Jv+0,(n

Under the current setting,

EA— Yy, z) = 1- E(Gilyi, z:)
T, Uy
- 1-T_y (3.2)
T

Therefore, the WEE is unbiased. Hence,

E{U:(B)} =0,

and
Cov{Us(B)} = (—A, L) Tu(—A, L) + O(n?).
By condition (C7), the matrix (—A,I)J v (—A,L) is nonsingular. Therefore, an

appropriate generalized score statistic is defined as

Tos = Ua(B) { (A TV Tu(-A L)} 0(8). (33
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By the Central Limit Theorem, it is clear that Tzs — x? as n — oo under Hy and
regularity conditions. Because ¢ could be different, a class of test statistics indexed
by ¢ can be constructed. From the development above, we know that the asymptotic
null distribution of Tzs does not depend on the choice of ¢. Note that the WEE
(1.1) generally depends on the nuisance functions 7 and ¢, so does Tgg; we write it
as Tgs(m, ¢) symbolically if necessary. When 7 is misspecified, WEE (1.1) could be

biased and Tgs(, ¢) may not be an appropriate test statistic for Hypotheses (2.8).
3.2.2  Relative Efficiency

Recall that the choice of ¢ affects the asymptotic variance of the estimating equation

and the corresponding estimators. When

¢ = ¢ (yi,2:) = E{(yi, X4, 24, B)|Yi, 24},

the asymptotic variance of the B and the WEE (1.1) is uniquely minimized in the
positive definite sense. We believe that some optimality holds for generalized score
tests when ¢ = ¢*(yi, z;).

Consider a sequence of local alternatives ,Bén), such that

(/Bgn) - 520) — A, (3-4)

D=

n

where ||A|| > 0. It is nature to ask if the constrained estimate 3 = (8, By) is still
consistent for B under the local alternative. We have the following lemma:

Lemma 3.2.1. Under the local alternative, the constrained estimate B is root-n con-
sistent for 3.

Proof. Let Bi") be the solution of the estimating equation

~(n) n
Uy (3,7, 85") = 0.
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Since ,Bgn) is the true value of 3,, it is clear that Bﬁ") is root-n consistent for the

B,. In addition, by Equation (3.4),

0o = u(3", 8
oU
= (161 ,[32)+E( -

(n)
S5 (B8 = B) + 0,(1)

~(n) oU; oU; oU,
= U(B8,",8,) + E
1(161 /82) <8,61 6,61 8,32

= DA+ 2.8+ 0,(1),

VE(525) " B(57) (85" — Bay) + 0, (1)

where A E(%Y )_1E(%)(B§n) — Byp). It is clear that Ag) has order Op(n_%).

[3 - P, 90,

Therefore,
By =B +0,(n 1),
and thus the constrained estimate under the local alternative is root-n consistent.
O

Since the constrained estimate B is root-n consistent for 3 under the local alter-

native, we expend U;(8) and Us(B) at 8 = (8, BS™):

aUl ale

(n)
aﬂl 8ﬁ2)(/620 2 )+OP<1)

0=Ui(B) = Ui(B) + E(53-)(By — By) + E(

. oU. oU. n
Ux(B) = Ux(B) + B(52)(By = B1) + E(G552) (B = 85”) + Oy(1).
The first equation above implies that
~ (?U ale n
Bi =81 = —B(5) {Ui(8) + E(z5 ) (B = 85) + Op(1)}.
Plugging it into Us(3), we obtain
U:(B) = (—AL)U(B)+
oU, ovy. .., 0U; (9U2 (n)
= (—AI )U(B)+n_§{ AE(8U1)+E(8U2)})\+O (1)
o 9B, 9B, :

= (=A,L)U(B) + n 2CA + 0,(1), (3.5)
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where C = (—A, I,,)E(a‘?g ). Since A and E(a‘?g ) are both free of ¢ (see the proof of
2 2

Lemma 3.2.2), C is also free of ¢. By Equation (3.5),

E{Us(B)} = n2CA+ O(1),

and
Covi{la(B)} = (—A,L)E(Tv)(—A, L) + O(n?),

under the sequence of alternatives Bgn). Comparing (3.1) and (3.5), we discover
that the mean of U,(3) are asymptotically different while the variance of Us(3) are
asymptotically equivalent under Hy and the local alternative. In fact, the power of
the test comes from the term n~z CA.

As in Tosteson & Tsiatis (1988), the asymptotic relative efficiency of Tg to
Ttg = Tas(m, ¢*) is

ARE(Tgs,Thg) = G/G”

where G and G* are the non-centrality parameters for Ti;g and T¢.g under the sequence
of alternatives 8"
Lemma 3.2.2. When the selection probability m is known and ¢ s given, the asymp-

totic relative efficiency ARE(Tgs, Tég) < 1. The equality holds iff ¢ = ¢* a.e.
Proof. By Equation (3.2),

ou "L 0 Oy, X4, 24, i\ 0 (i, 2
i=1

% op T op
= - ﬁ&/}(yhxi’zi’ﬁ) Oi 'aqﬁ(yiazi)
_ E;{m 98 b E{ (L= oy zi) = 2=)
g 62 aiﬁ(%a Xi, Zg, ﬁ)
= EZ{E 5 }
=1

indicating F (g—g) are free of ¢ for any 8. Consequently, the matrix A in (3.1) does
not depend the choice of ¢. By Equation (2.2),
Tu

E(n

) = E(uu)) = E(Wy") + E[(1 = m)mE{(¢Y — ¢)(¢ — ¢)'ly, 2}
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where ¢ = (y, x,z,3). Obviously, E(%JU) is minimized at ¢ = ¢* = E{Y(y,x,z,3)|y, z}

in the positive definite sense. Hence, we can write
E(Jv) = E(Ty) + D,

where J7; is Jy evaluated at ¢ = ¢* and D is a positive definite matrix when ¢ # ¢*.

The asymptotic non-centrality parameter for Tg is

G - %XC’{KE(jU)K’}*CA

1 _
= 5 NC'[K{E(J})+D}K| e
n
1
= —XNC'(K,+Kp)'CA,
2n

where K = (—A,IL), K; = KE(J[,)K' and Kp = KDK’. The matrix K is also

free of ¢. Because K is full row rank, K; and Kp are nonsingular when ¢ # ¢*. By

Lemma 3.5.1,
{K;+Kp} ' =K' - K (K" + Kj)) 'K

Hence,

1

G = Q—A’C’{KE(J*U)K’}‘IC)\ — Go
n
- G* - G07
where
1

Go = %XC’K;l(K;l + K, ) 'K 'CA
When ¢ # ¢*, it is obvious that (K;' +K}')~! is positive definite, and thus Gy > 0.
It is clear that G = G* when ¢ = ¢*. Then

G* — Gy

ARE(Tgs,Ttg) = o

<1,

completing the proof. O
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The lemma implies that the asymptotic optimal test among all the choices of ¢
is achieved when ¢ = ¢* in the current setting. As we will see later, the asymptotic
relative efficiencies between different generalized score test statistics are given for both
parametric and semiparametric settings, with the conclusion that 7¢.¢ and some other
test statistics achieve the same asymptotic optimality in all these settings. Robins
et al. (1994) showed the asymptotic variance of WEE (1.1) is uniquely minimized in
the positive definite sense when ¢ = ¢*. From the development of the noncentrality
parameter under the local alternative, we find out that the proposed tests keep this

optimum property when ¢ = ¢*.
3.3 Parametric Setting

In many epidemiological studies, data are missing by happenstance rather than design,
and thus the selection probability 7 (y;,z;) in WEE (1.1) is generally unknown and
needs to be estimated. Furthermore, Robin et al. (1994) and Wang et al. (1997)
showed that one can improve the efficiency of the inefficient estimators in their class
by estimating the selection probability even when it is known.

On the other hand, by Lemma (3.2.2), it is intuitive to have ¢* or its estimate
in WEE (1.1) to achieve good power in a generalized score test. Recall that ¢* is the
mean score with respect to the conditional distribution p(x;|y;, z;), which is usually
unknown too. Then additional models may be required to estimate ¢*.

One common approach is to assume parametric models for 7 and ¢*. In this
section, we would like to obtain appropriate generalized score statistics in different
parametric settings, study how parametric estimates of the selection probability and
¢* affect the test statistics and investigate the efficiency issues. In particular, we focus
on the following special settings: (a) both m and ¢* are estimated via parametric

models using joint estimating equation; (b) the selection probability is estimated via
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a parametric model and ¢ is given; and (c) the selection probability is known and ¢*

is estimated via a parametric model.

3.3.1 The Case of m and ¢* Being Estimated Using a Joint Estimating Equation

Zhao et al. (1996) introduced a joint estimating equation for regression analysis and
Lipsitz et al.(1999) proposed proposed another joint estimating equation similar to
the maximum likelihood equation for missing covariate data. They all assumed that
the selection probability follows a logistic regression (2.3)

exp(—a'vi)

mi = mia) = 1+ exp(—a'v;)’

where v; is a vector function of (y;,z;) and « is finite dimensional. Recall that the

maximum likelihood estimate & for ax can be obtained using

Up(a) = Zv {6; — m(a)} = 0.

However, they used different parametric models for ¢*. Zhao et al. (1996) used the as-
sumptions regarding conditional moments and Lipsitz et al. (1999) used assumptions
on the conditional distributions to build the parametric model for ¢*. To include
both settings above and other possible situations in a unified way, we assume that
Uy (B, o, k) is the estimating equation corresponding to a general model for ¢* with
an additional finite dimensional parameter . Therefore, to solve the parameter

T =(8,a,Kk’), we have a general joint estimating equation

Ul(ﬁ7a7’(“’)
Uy (B, a0, K
0=U,8,a,r)=| ' (9, cr) : (3.6)
Ur ()

UZ(Ba «, F‘")

Let # = (3, &/, &)’ be the solution of the joint estimating equation (3.6) under H,.

The estimates 3 and & can be obtained by iterative methods using U, Ug- and o = ax.
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Let 7 = w(&) and ¢* be the corresponding estimate of ¢*. Note that the true value
of kK might be meaningless when the model for ¢* is incorrect. In that situation, we

*

assume that there is a vector k* such that Kk — K* at a root-n rate, and let K* be
the true value of k. Assume that ¢; is the estimating function of U;. When 1 is
continuous with respect to 7 at a neighborhood of the solution for E(¢;) = 0 and
the second moment of 1 exists, such a vector k* exists. In addition, a correct model
for ¢* means that the estimate ngS* is consistent whether the model for the selection
probability is correct or not. For example, a correct model for ¢* in Lipsitz et al.
(1999) requires that the distributional assumptions on f(y;|x;,z;; 3) and p(x;|z;; K)
are correct. Following the ideas in Scharfstein et al. (1999), Zhao et al. (1996) and
Lipsitz et al. (1999), it is easy to see that the estimator based on Equation (3.6) is
doubly robust. The estimate 3 is consistent for 8 under H, when at least one of the
following is correctly specified: (a) the model for the selection probability or (b) the
model for ¢*.

Because it is full parametric setting where nuisance functions © and ¢* are re-
parametrized to finite dimensional nuisance parameters aand k, it seems that the
generalized score statistics in Boos (1992) can be applied easily using U instead of
U in test statistic (2.10). Assuming that B is consistent, the Boos’s test statistic

- 1

Tass = Ua(7) { (-A L) T 0, (-A L)'} Ua(7),

where

oUy OU, OUZ) (GUﬂ)_l

0B, 0k’ da ory’

Un = (U, U, Uy), and 71 = (B4, a,k')". However, two difficulties exist. First,

™

A=K

because the model for the selection probability may not be appropriate, the esti-
mating equation Uy« and U; could be biased. Hence, Tu , may not be a consistent

estimate of covariance matrix of U;. Therefore, it is questionable that Tggp still
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follow x? asymptotically under Hy. Second, even given that this test statistics Tgsp

8U¢* 8U¢*

is appropriate, the sub-matrices E( o3 ) and E(—z-) of the matrix E(%n) could be

0T 1

extremely difficult to calculate because Uy may not have a close form. We obtain
relatively simple and appropriate test statistics in the following.

Before we introduce the test statistic and the main theorem, we would like to
state two lemmas.
Lemma 3.3.1. If a parametric model such as (2.3) is correct for the selection prob-

ability function in the setting using Equation (3.6), then

ou(B,a, k)
E{———2~}=0.
{ 0K }
Because the lemma has nothing to do with Uy-, the proof of the lemma is essential

same as that of Lipsitz et al. (1999).

Lemma 3.3.2. If the model for ¢* is correctly specified in (3.6), then

U (B, a, k)

B{Z00) =0,

When the model for the selection probability is correctly specified, as we will

show in the proof of Theorem 3.3.1, an appropriate generalized score statistic is
- . o -1
Tésp = Ua(7) { (A B 1) T v, (-ABLY}  Un(7), (3.7)

where & = Al B = {AB(%%) ~ E(2%)} (%)™ . B = Bls, Un = (U}.UL. Ug) =
Yo g, Jup = Yo Ug(T)up,(T) and ‘~7UR = Ju,|+. An interesting finding here
is that the test statistic Tfgp is free of Uy and L. Equation (3.7) indicates that
the estimates of m and ¢* have some effect on the generalized score statistics in the

parametric setting. The test statistic Tz is not an appropriate test statistic generally.

~ ~ ~ - -1 ~
Recall that Tgs(m, ¢) = Us(B)’ {(—A, 1) T u(—A, IT)’} Us(B) was developed in the
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last subsection when the selection probability is known and ¢ is given. By Lemma
3.3.2, it is seen that if the model for ¢* is also correctly specified, Tfgp in (3.7) reduces
to
Tos(w,8) = Ua(#) { (~A 1) Tu(-A LY} o()

since B = 0. This implies that T is still an appropriate generalized score statistic
if both 7 and ¢* are estimated using correct parametric models. We now provide the
main theorem:
Theorem 3.3.1. Given the parametric setting based on the joint estimating equation
(3.6) and assuming that the model for the selection probability is correctly specified,
under suitable reqularity conditions and Hy, we have Thgp — X2 in distribution as
n — Q.

Proof. Let 71 = (B,, &', &')’. Under Hy and condition (C6), by expanding U, (F)

at the true value 7, we obtain

0= Un(F) = Un(r) + B2 =)+ 0,(1),
Uy(T) = Us(T) + E(g_gi)(%l —71) + O,(1).

Combining the equations above, we have the following results similar to (3.1):

U O OUs,
UQ(T)_{ P58 o 9a )IJH,IT}UJ(THO,,(U, (3.8)

where

oU,  9Ur  9Uy
aﬁl 0K o

Im E 0B, K

OUx  OUx  OUx
3ﬁ1 oK Rle%

oU; 0 oU;
aﬁl oY
aﬂl 0K oY

OUx
0 0 Yol
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In addition, by Lemma(3.3.1),

Us(T) = {—E(g—gj, 0, %)z;ﬁl,L} Us(T) + O,(1). (3.9)

The inverse matrix is

B(25) 0 ~B(24) " BS)E(%%)

,9,61 3ﬁ1 o o
I, = * * * , (3.10)
0 0 E(%&)t

where *’s above are some constants. The detailed proof of Equation (3.10) is shown

in Section 3.5 (Technical Detail). Therefore, (3.9) can be rewritten as

U(T) = {—A,0,B,L}U;(7)+ O,(1)

= {-A,B, L} Ug(T) + O,(1),

where A was given in (3.1) and B in (3.7).
When the model for the selection probability is correctly specified, it is clear that

Ugr(7T) is an unbiased estimating equation and %J y is a root-n consistent estimate

of the Cov{n2U,(7)}. Then
E{n"tUs(7)} = O(n"%),

and

, 1 e o .
Cov{n :Us(7)} = (A B.1)T v, (-A.B.L) + O(n3).

By the Central Limit Theorem, T — X2 in distribution as n — oo. g

Note that the estimator based on U;(8, a, k) is doubly robust. Therefore, it is
interesting to check if T5¢p has similar robust property. More specifically, we would
like to check if T¢gp is still an appropriate generalized score when the model for the

selection probability is misspecified but the model for ¢* is correctly specified.
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If the model for ¢* is correct, by Lemma (3.3.1), (3.3.2) and expanding U;(T)

at the true value 7 and replacing %(.J,.Jll and g.l({’i by their asymptotically equivalent
versions F (%(,J,;’ll) and F (3—7[{21) under Hy, we obtain
07) = { =BG G2 0T L () + 0,)
1
where
oy, oUy AUy
3ﬁ1 oK o
_ ye Oy Uy
I = B| % % %%
OUx  OUx  OUx
5[31 oK oY
ou  oUy
B, ow O
aﬁl oK o
Uz
0 0 S&
In general, % is not equal 0 when the model for the selection probability is misspec-

ified. With some algebra, we will see that U, (7) is not free of % and Uy-. Therefore,
Tt gp is definitely not appropriate generalized score statistics when the model for the
selection probability is misspecified but the model for ¢* is correctly specified. From

the development above, an appropriate generalized score statistic generally depends

on 88%, ?;Ig’:, d ag—,f which are difficult to obtain in this setting. Therefore, gener-
alized score tests are not very useful when the model for the selection probability is
inappropriate.

It is also interesting to study the asymptotic efficiency of test statistic Tigp
given appropriate assumptions. First, following the the proof of Lemma (3.2.1), we

can show that the constrained estimate 7 = (Bl, By, K, @) is still consistent for T

under the sequence of local alternatives ﬁgn) in (3.4). Therefore, by expanding U (7)
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at the true value 7, we obtain

0= Un(F) = Un(r) + B 2) (1 = m0) + BG4 (B — 65) + O,(0)
Ua(#) = Un(r) + (225, — 1) + B2 8y — B + 0,(1),

0T 6132

and hence

o oUs U, U,
nm) = =BG G ST T fUsr) +

E(aUQ 8U2 8U2 aUJ(T)
08 9B,

Rt }E{ 1(Bay — B) + O,(1),

under the local alternative. From the proof of Theorem 3.3.1, it is easy to see that

{_ (02 s 90,

8,61’ ok Oa )Ijllly:[r} = <_A707B7]:7“)-

Since 0U, /0B, = 0,

Uy(T) = (—=A,0,B,1)U;(7T)+

4.0, BB 8 - ) + 0,01
= (—A,B,L)Ug(7) +
AT B - B) + 0,1, 3.11)

Therefore, it is clear that

oU(r)

58, 1B —B) +0()

BE{Uy(7)} = BE{(—AB,L)Up(T)} + (-A L)E{—
= n2CA+O(1),

and
Covr{Us(7)} = (A, B,L)E(J ;) (=A, B,1,) + O(n?),

By the results above, we can obtain the noncentrality parameters for T¢¢p and results

concerning efficiency. We have the following lemma:
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Lemma 3.3.3. If the models for m and ¢* are correctly specified in the parametric

setting using joint estimating equation (3.6), then

ARE(T¢sp, Tgs) = 1.

Proof. Since both the models for 7 and ¢* are correct, B =0 and

U(r) =U(B,m, ¢"),
Therefore, Equation (3.11) reduces to

Us(T) = (A L)U(B, m ¢%) +

ou(r) (n)
662 }(ﬁ20_ 2 )+Op(1)7

which is asymptotically equivalent to Us(83) under the local alternative when 7 is

(_Aa I’I‘)E{

known and ¢* is given. Therefore, ARE(T{.gp, Ts*) = 1.
3.8.2  The Case of m Being Estimated Parametrically and ¢ Being Given

Recall that ¢* depends on the conditional distribution p(x;|y;, z;), which is unknown
in general. An appropriate model for ¢* usually is complicated. Because of the
simplicity, the weighted estimating equations with ¢ = 0, which was proposed by
Zhao and Lipsitz (1992), are also widely used. We consider one reduced parametric
setting in which the ¢ is given and the selection probability is estimated in this
subsection.

We keep using the assumption that the selection probability follows logistic re-

gression (2.3). We have the joint estimating equation
Ul (/67 «, ¢>
0="Ur(B,a,¢) = Uy () , (3.12)
U2 (/67 «, ¢)
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where ¢ is given. More precisely, ¢ can still be estimated from the data and plugged
in U(B, o, ¢) in this setting, as long as the model for ¢ is free of 3. Therefore, the ¢
can be solved without U(3, &, ¢) and thus no iteration algorithm is necessary. Note
that such a model for ¢ can not be the correct model for ¢*, because the correct
model for ¢* involves 3 in general. Equation Ug(83, a, ¢) actually is Ug(8, ). Let
Tr=(0,a) and 7 = (B/, @)’ be the solution of the equation under Hy. It is clear
that B is root-n consistent if the model for the selection probability is correct.

Under the current setting, an appropriate generalized score statistic is

Tesp = Us(Tr) {(—A, B,I)7u. (—A, B, Ir)’}l Us(71), (3.13)

where A = Al , B = B|#,, and T, = T vgls,-
Theorem 3.3.2. Assuming that the model for the selection probability is correctly
specified in the parametric setting based on Equation (3.12), under suitable regularity
conditions and Hy, Tgsp — Xf . distribution as n — 00.

Proof Let Uy = (UL, UL, Tr1 = (8,,0/) and 75, = (B,,&'). Under Hy, by

expanding Ug(7g) at the true value T, we obtain

Ui, -

0=Ur(Tr) = Uri(Tr) + E( )(Tr1 — Tr1) + Op(1),

87’1{1

Un(r) = Us(ra) + B

TRI)(%Rl —7r1) + Op(1).

Combining the equations above, we have

) oU, U,
) = { -5 ST | Unlra) + 0,(1) (3.14)
where
ou o
Iru = o8, o
0 OUx
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By Lemma (3.5.2),

(257 —E(2%) ' B(3%)E(%%)"

I_l — 8/61 8/31 oo oc
riL oUr\—1 ’
0 E(5&)

Therefore, (3.14) can be rewritten as
U2(%R) - {_A-) B7 IT} UR(TR) + OP<1)
When the model for the selection probability is correctly specified, it is clear that
Ur(Tg) is an unbiased estimating equation. Therefore,
E{n"2U(75)} = O(n"%),
and
1 1 ~  ~ ~ ~ =~ 1
Cov{n 2Us(7r)} = —(—A,B,L1)Jv,.(—A,B,L.) + O(n"2).
n
By the Central Limit Theorem, Tzsp — X2 in distribution as n — oo. U
In practice, ¢ may takes 0 for simplicity. With the additional assumption that
¢ = 0, we have
_ . - _ -1
Tosp = Un(Fr)' |(-A L) { Tv = F} (A LY|  0a(Fr) + O)(n73),  (3.15)
where F = E($2)E(%%)~'E(2Z) and F = F|+,. The proof of the Equation (3.15)

o

is given as following.

Proof. First express the matrix

:711 :7171- 312
‘~7UR = jﬂl t~77r7r jﬂ'? )
321 s~727r :722

where J1; is a (p—7) x (p—7) matrix, and J s is an r X matrix. Since the model for

the selection probability is correct and U, () is the maximum likelihood equations,

oU,

BE(5)

= Cov{U;(a)}

D=

= T +0(n2).
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In addition,

B(0Y = (T T30) + Oy,
In fact,
B = (AR - BB
= (A -L)BGOEGE)

Therefore, Vigp = {(—A, B,I,)Ju,(—A,B, IT)’} can be rewritten as

V*GSP = (_A7 IT)jU(_A’ I”‘)/ + <O7 B7 O)jUR (0) Ba 0)/ + <_A7 07 I'r)jUR (0) Ba 0),

+<07 B) O>!~7UR(_A7 07 I?"),

+<07B70)«:~7UR(—A,0,IT),
= (_Av IT)(\NjU + F)(—A, Ir), — 2(_1&’ IT)]?‘(_A’ Ir)/ + Op(n%)

= (-A.L)(Jv —F)(-A,L) + 0,(n?). (3.16)

Since the matrix Vigp is O,(n), Equation (3.7) holds. O

We may have other appropriate generalized score statistic when ¢ = 0. Let
- - - . —1
Taspo = Ux(Tr)' [(—AJT) {JU - F} (—A, I’r)/i| Uz (Tr)-

We have the following corollary:
Corollary 3.3.1. Assuming that the model for the selection probability is correctly
specified and ¢ = 0 in the parametric setting based on Equation (3.12), under suitable
regularity conditions and Hy, Tgspo — x> in distribution as n — oo.

The corollary implies that Tgpo is an appropriate generalized score statistic
when ¢ = 0 under the current parametric setting. If £ (g—g) is of full row rank, we

can show that

Taspo = Tas(m,0) — Ca,
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where C'a is a positive number.

In addition, we would like to study the asymptotic efficiency of the proposed test
based on Uy in Equation (3.12). Following the the proof of Lemma (3.2.1), it is easy
to see that the constrained estimate 7z = (B,, By, &) is consistent for 75 under the

sequence of local alternatives ﬁg") in (3.4). Therefore, we obtain

0= Uni(#) = Uni(r) + B Gy — ) + BCZRL) 8y — B + 0,(1),
0T R1 083,
Uaa) = Ualr) + Bl ) (P = 7) + E(G2) (B~ A7) + 0,00

by expanding Ur(7r) at the true value 7 under the local alternative. Hence,

) = { =BG ST Untra) +
Uy OUs. OUr(Tr) (n)
(B0 Gz 1} B R 8~ ) + 0,0,

From the proof of Theorem 3.3.2, it is readily to see that

{_E(8U2 oU,

8—181, %)I}E%I’ Ir} - (—A, B, Ir)

Since 0U, /0B, = 0,

UQ(%R) = (—A,B,IT)UR(’TR)‘F

AT 8- B 0,0, (D)

By the equation above, it is easy to obtain the noncentrality parameters for Tgsp and
Taspo. It follows a lemma of asymptotic relative efficiency:

Lemma 3.3.4. Assuming that the model for the selection probability is correctly spec-
ified in the parametric setting based on Equation (3.12) and E(2%) is of full row rank,

we have the asymptotic relative efficiency

ARE(Tgs(W, O), TGSPO) < 1.
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Proof. By Equation (3.17) and asymptotic unbiasedness of Ur(TRg),

E{Us(tr)} = (—A,B,L)E{Ug(Tr)}+
AT By - 87) + 0,00

= n2CA+ O(1),

and

N

Cov{Ux(7Tr))} = (—A,B,L.)Cov{Ugr(Tr)}(—A,B, 1) + O(n2)

= (=A,B,L)E(Ju,)(—A,B,I,) + O(n?),

where A is given in Equation and C in Equation (3.5). Since ¢ = 0, by Equation
(3.16),

Cov{Us(7))} = (—A, L) {E(Tv) — F} (~A, L) + O(n?).
The noncentrality parameter for Tgpg is

Gaspo = %XC’[(—A,IT){E(JU)—F} (—A,L)]"'CA

1
— _A/ ! K, - K —1vy/ v
o C'(K, r)ANC,
where K; = (A, L)E(Jv)(—A, L) and Kp = (—A,L)F(—A,1)". Because E(3%)

is of full row rank, Kz is positive definite and hence
(K;—Kp) ' =K;' = (K; —Kp) {(K; —Kp) ™) + Kp) "} (K, - Kp)
Therefore,
1 Fall —1
Gaspo = —XNCK;'CX—
2n

1
%XC’(KJ —Kp) H{(K; - Kp) ' + Kz} (Ky — Kp) 'CA

= Ggso — Cp,
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where G s is noncentrality parameter for T g(m,0) and Cp = %XC’(K‘]—KF)”{(KJ—
Kr) ™'+ KUKy — Kp) 'CA. Tt is clear that (K; — Kp) H(K; — Kp)™! +
K;'} 71K, — Kp)™! is positive define, and thus Cr > 0. Therefore, Ggspo > Gaso,
completing the proof.

This Lemma indicates that the generalized score test may gain some efficiency
if the selection probability is estimated via a correct parametric model even if the
true selection probability is given. If we know the correct model for the selection
probability, 7 should be estimated to improve the power of the generalized score test.
However, if the model for the selection probability is not correct, then the test would

be invalid.
3.3.3 The Case of m Being Known and ¢* Being Estimated Parametrically

In a two-stage study, it would be safe to use the true selection probability instead of
the estimated one when a correct model for the selection probability is not guaranteed.
As we stated before, using the estimated ¢* may gain efficiency. In this subsection,

we study generalized score tests

Ul(ﬁa"")
0=Ur(B,k) = | U,.B.x) | (3.18)

U2</37 K’)

where 7 is known. Let 77 = (8", k), 71 = (B/, ') be the solution of the equation
under Hy, and ngS* is the estimate of ¢*. Since 7 is given, U(77) is unbiased and B is

root-n consistent for 3. In addition, it is easy to see that

E{(‘?Uéi,n)} _o

Under the current setting, an appropriate generalized score statistic is Tgg (T, é*)

Recall that Tgs(m, ¢) is an appropriate generalized score statistic when the selection
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probability is known and ¢ is given. We have the following theorem:
Theorem 3.3.3. Assuming that the model for w is given in the parametric setting
based on Equation (3.18), under suitable reqularity conditions and Hy, Tgs (7, ¢f*) —
X2 in distribution as n — oo.

Proof. Let Upy = (U7, U})', 71 = (B, ') and 771 = (8,&"). Under Hy, by
expanding Ur(77) at the true value 77, we obtain

oU. .
87-2)<TT1 —711) + Op(1),

O ) 2y — 700) + Oy(1).

ou (3

Combining the equations above and using the fact that F {a—,{ﬁ’)} = 0, we have

0 =Uri(Tr) = Uri(77) + E(

UQ(%T) = UQ(TT) + E(

87’T1

- oU. -
U2(TT) = {_E(a_ﬁza O)IThu IT} UT(TT) + Op(1)7 (319)
1
where
o
o
0B
Tru = 6U¢i AUy
o, on
By Lemma (3.5.2),
E(2%)-t 0
I;%l = 8/61 )
* *

where *’s represent some constants. Therefore, (3.19) can be rewritten as
Us(Tr) ={—A,L}U(Tr) + O,(1).

By the Central Limit Theorem and unbiasedness of U(7r), Tas(m, ¢*) — x2 in distri-
bution as n — oo. U

In this case, Tgs(, @*) is an appropriate test statistic. The theorem indicates
that plugging the estimate of ¢* into WEE(1.1) has no effect on the test statistics when
the selection probability is given. Similarly, we can show that ARE(Tgs(, (/5*), Ttg) <

1. The equation holds when the model for ¢* is correctly specified.
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3.8.4 The Case of (y,z') Being Categorical

In this subsection, we consider the special case that (y,z’) is categorical and from
a finite set. In this case, the parametric settings above may not work because the
logistic model (2.3) for the selection probability is not suitable when v = (y,z’) is
discrete. Without loss of generality, we assume that the first k& elements, v; = (y;, z),
1 =1,---, k, are different from each other. Therefore, these first k£ elements could be

the representatives for all categories. The selection probability can be estimated via

> i 0l (vi =)

ﬁ_<vl) = n ) (320)
23:1 I(vj=v;)
and the conditional mean score ¢* by
~ 7'1— 5@ iaXivz’ia~ IV':V’L'
3 (vi) = Z]—l Y(y B (v; ) (3.21)

>0l (v = i) ’
where 3 is solution of WEE (1.1) under Hy. Because the number of categories is

finite, 7 and (%* are root-n consistent for m and ¢*, respectively. Then we have

U(/B,ﬁ',qg*) = Z{ 7;7:_ i (yzaX17Z’L7B)_¢A)*>}
= U(B,7,¢")
k n
(7%1—7'('1) Z 5A(77Z) _Vz
Ry T 10— 21t

= U(B, ")+ 0y(1), (3.22)

where Ay (V) = (v, %4, 23, B) — U (i, X, 2;, B). By (3.22), it is clear that B is root-n

consistent. Expanding U (B, T, (ﬁ*) at B under Hy, we have

0 - Ul(léaﬁ-u QE*) = Ul(ﬂ’ﬁ7§£*) + E(%)(Bl - ﬂl) + Op(l)a
~ oU,

Us(B,7,0") = Ua(B,7,6") + E(752)(B1 — By) + Op(1).

9B,
Combining the equations above and by Equation (3.22), we have

Us(B,7,0") = (—A,L)U(B,m,¢") + O,(1).
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Therefore, we have the following lemma:
Lemma 3.3.5. If (y,2') is categorical and from a finite set, under reqularity condi-
tions and Hy, Tgs(7, qg*) — X2 in distribution as n — oo.

We would like to study the asymptotic efficiency of the proposed test when

(y,2') is categorical. Under the sequence of local alternatives ,Bé") in (3.4), we expend

(/87 7& ) and UZ(B QAS ) at l6 (/817/85”))

. . ou, ., ~ oUu n
0= U1(B,7,6") = Ur(8.7,6") + El55 ) By = Br) + B(55)(Bon = ") + Oy(1)
Ua(B. 7, 6) = Ua(B,7,67) + E(C2) (B, — By) + E(222)(By — B5) + Oy(1)

9B, 9B,

By Equation (3.22), we have

Us(B, 7, 0*) = (A, L)U(B,7,¢") + 1 2CA+ Oy(1).

Therefore,

~

E{Us(B,7,0")} =n 2CX + O(1),

and
J*

COV{niéUQ(Baﬁ-7$*)}: n —FO(TLi%),

since ¢* is root-n consistent. This implies that the noncentrality parameter is equiv-
alent to G* based on Equation (3.5) at ¢ = ¢*. Therefore, we have the following
lemma:

Lemma 3.3.6. If (y,z') is categorical,

ARE(Tgs(#,0%), Thg) = 1.

When (y,2') is categorical and from a finite set, the proposed generalized score
test obtain the optimal power asymptotically if the selection probability is estimated

via (3.20) and ¢* is estimated via (3.21). If the (y,z’) is discrete and from an infinite

(7"2 i)

set, both Lemma 3.3.5 and 3.3.6 may be invalid because may be unbounded.
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3.8.5 Discussion

When the model for the selection probability is correctly specified, T¢gp is an ap-
propriate generalized score statistic, which is free of Uy and g—% given the estimate
of ¢*. Therefore, the generalized score statistic is easy to calculate in this case. If
the parametric model for ¢* is also correctly specified, Tgg(7, 913) is an appropriate
generalized score statistic and ARE(Tgg(#, ¢), Tt,g) = 1. Therefore, we may use the
difference between T¢.qp and Ts(7, ¢) to informally check whether the model for ¢*
is correct or not. If the model for the selection probability is not correct while the

model for ¢* is correctly specified, an appropriate generalized score statistic generally

ou

depends on Uy and 5,

which are extremely difficult to obtain; it is not feasible
to use the generalized score test in this case. Moreover, ARE(Tgs(7,0), Taspo) < 1
when ¢ = 0. This indicates that the tests may gain some efficiency if the selection

probability is estimated via a correct parametric model even if the true selection

probability is given.
3.4 Semiparametric Setting

It is generally convenient to assume parametric models for the selection probability
and the mean score function ¢*. However, it might be problematic when the para-
metric models (especially the model for the selection probability) are not correct. To
deal with this problem, we may alternatively estimate the nuisance functions non-

parametrically. Assume that the selection probability may be estimated by (2.5)

7ATN<V) _ Z?:l 5iKh(V — Vi)
> Kn(v—wvi)

and ¢* by (2.6) )
A Sy sy (v = Vi)
2imy Ki(v = i)
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where 3 is the solution of U(B, 7y, $) = 0 under Hy and v; = 9(y;, x;,2;, 3). Re-
call that K is an sth-order kernel function, h is a proper bandwidth parameter,
Kn(-) = K(-/h), p, = {nh* + nth)_l}%, and v; = (y;,2}). Let d be the number of
continuous components of v;. As a concrete example, if y; is binary, z; is univariate
and continuous, and K is a 2nd-order kernel function, then d = 1, s = 2 and the
optimal bandwidth is A = O(n~3). In this situation, p, = Op(n"5).

Let the selection probability be estimated via (2.5). Define
Tasn = Uy (B, 7tn, 0)VasUa(B, 7ix, 0) (3.23)

for both ¢ = 0 and ¢ = ¢%, where Vg = (A, L)Sy(—A L), A = A] - and

(B @)’
Sy is any consistent estimate of Cov{U (B, 7, ¢*)} with a converge rate not slower
than O,(np,). Here, without confusion, we continue to use A, Ty, ete. for the
quantities evaluated at properly estimated parameters.

By Equation (2.7) and Equation (2.2),

Cov{Ua(B,7tn,8)} = Cov{ls(B,m,8) + Op(n™2pn)}

= Cov{U"(B)} + Cov{U™(B,7,0)} + O(npn)

for both ¢ = 0 and ¢ = ¢E}‘V Therefore, one possible choice of Sy is

~

vi)on (Vi)'

Y1 = i POy (V) {wz <13*N(Vi)} {1/% O (vi }

N

When ¢ = (;Ab*N, another possible choice of Syis I U, since asymptotic unbiasedness

of UQ(B, v, @). It is easy to see that one version of Trgy is

TGS(ﬁ-N7 é*N) = Ué(B? 7ATN7 ¢E*N> {<_Av IT>jU(_A7 Ir)l}_l UQ(B? ﬁ-Na é*N)

This implies Tgs (7, gzg}‘v) is an appropriate generalized score test statistic when both

7wy and ¢} are proper nonparametric estimates.
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Theorem 3.4.1. Assume that the bandwidths h in (2.5) and (2.6) satisfy nh* —
0 and nh* — oo. Under Hy and suitable reqularity conditions, Tasy — X2 in
distribution as n — 0.

Proof. Since B3 is root-n consistent, by expanding Uy (8) and Us(B) at the true

value 3 and replacing 29 and 222 by their asymptotically equivalent versions E (2%
o op 0B
1 1 1

and E(2YL) under Hy, we obtain

B,
o ) U, . -
0=Ui(B,7n,0) = Ui(B, 7N, ) + E(G_ﬁl)('gl —B1) + 6(1),
Ua(B v, 6) = Ua(B, o, 0) + E(G2)(By — By) + Oyl
1

and thus
U2(B77ATN7¢> = (_A7I7')U(ﬁ7ﬁ-N7¢> + OP<1)
for any fixed ¢. By Equation (2.7), when ¢ is either 0 or (5}*\,, U(B,7n,¢) and

U(B,m,¢*) are asymptotically equivalent. Therefore,

n 2 Ua(B, 7, 0) = (A L) {n 2 U(B,7,0")} + Op(pn)-

Since U(B, m, ¢*) is an unbiased estimating equation and A is root-n consistent,

E{n"2Us(B, 7, )} = Olpn),

and

Covi{n 2Uh(B,7n,0)} = (—A,L)Cov{n 2U(B,7,¢" )}(~A,L) + O(pn)

= (=A,L)Cov{n 2U(8,m,¢")}(~A,L) + O(py).

It is clear that p, — 0 because nh?* — 0 and nh?® — co. It is readily shown that
Tasn — X2 in distribution as n — oo under Hy by the Central Limit Theorem. Ul
In addition, we would like to study the asymptotic efficiency of the proposed

semiparametric test. First we need the following lemma:
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Lemma 3.4.1. Under the local alternative, the semiparametric constrained estimate

B = (B, By) is root-n consistent for 3.

Proof. Let Bin) be the solution of the estimating equation such that

(161 7ﬁ2 ) N7¢):0'

By Equation (2.7) and the fact that 55”) is the true value of (3,, Bﬁ") is root-n
consistent for the 3,.

Under the local alternative,

0 = (161 ) n)aANaqS)
= Ul(léln 7/627ﬁN7¢) +
= Ui(BY”, By, T, 0) +

oUL(B, 7N, @) {aUl(ﬁ,fTN,Gb)}q
06, 9B,

- U1(B§n) + Ag);ﬁzﬂ%m ¢) + O,(1),

aU’l (/67 7ATN7 ¢)

5, (B = Br) + O(1)

a[]1 (/87 ﬁ-Na ¢)
9B,

(85" = Ba) | + Op(1)

n oUuL (P, N, _10U1(P,7 N, n
where A(ﬁ) = { (?ﬁlN ¢)1-1 (aﬂﬁQN 98 — B,,). Therefore,

B = B —|—A(§)+Op(n 2)
5(n) —1
= /61 +Op(n 2)7

and thus the constrained estimate under the local alternative is root-n consistent for
3. O
Since the constrained estimate is consistent for B under the sequence of local

alternatives ,Bgn) in (3.4), by expanding U (B, 7in, @) at the true value 3, we obtain

- 0 oU n
0=Ui(B. 7w, 9) = Ui(B. 7w, ) +E<%><ﬂ =B+ EG5) (B = B5") + O,(1)
8U2 aUZ

Us(B, 7x, &) = Us(B, 7w, 6) + E(222)(By — B1) + E(522)(Bag — BY) + 0,(1),
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and hence

Us(B,7in,8) = (—AL)U(B, 7w, ) +

ou(B) (n)
B, HBao — Bs”) + Oy(1).

(A, L) EY
By Equation (2.7),

UQ(B,'ﬁ'N,Qﬁ) = (_AuIT)U(ﬂ77T7¢)+

8U(B)}(,320 _ I@gn)) + Op(n_%Pn)~

(_Aa IT)E{ 8,82

By the equation above, it is easy to obtain the noncentrality parameters for Tosn
and results of relative efficiency.
Lemma 3.4.2. If the models for m and ¢* are correctly specified in the parametric

setting using joint estimating equation (3.6), then

ARE(Tasy, Thig) = 1.

Proof. Since both the models for m and ¢* are correct, B = 0 and

U(r) =U(B,m,¢"),

Therefore, Equation (3.11) reduces to

Us(#) = (—AL)U(B.7.6%) + (—A, IT>E{%}<ﬂQO B 1 0,1),

which is asymptotically equivalent to Us(83) under the local alternative when  is
known and ¢* is given. Therefore, ARE(T{.qp, Tas*) = 1. O

Lemma 3.4.2 implies that the optimal power can be obtained asymptotically by
using an appropriate nonparametric estimate of 7 and ¢ in WEE (1.1). However, it

is easy to see that Tgn converges to a x? distribution with a rate of O,(p,), which is
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generally slower than that in the parametric setting. When the sample size is small
and an appropriate model for 7 is available, we should use the parametric generalized
score tests rather than the semiparametric generalized score test. On the other hand,
when the sample size is reasonably large, the semiparametric tests are often preferred
to the parametric tests because the semiparametric tests would obtain the optimal
power asymptotically and there is no worry about the model misspecification for the

selection probability.
3.5 Technical Detalil

Lemma 3.5.1. If all necessary inverses exist, then for matrices Q.(p X p), Qp(pxn),

Q.(n x n), and Qq(n x p),

(Qu + QQQa) ™' = Q. + Q' Qu(Qe + QuQ, ' Q) ' QuQ,
Proof. See Mardia, Kent, and Bibby (1979), (page 458). O

Lemma 3.5.2. Given that the 2 x 2 block matrixz is nonsingular, the inverse matrix

-1

Qi Q2 Q' + Q' Q1S 'QuQ;! —Q'QST!
Qa1 Q2 —-S71Qu Q! S

where the quantity S = Qg — Q21 Q' Q12 is called the Schur complement of Q1.
Proof. 1t can be verified directly by checking that the product of the matrix and

its inverse reduces to the identity matrix. U

Proof of Equation (3.10). We have the following partition of the matrix

Hll H12
T = .
0 K a&)



where
E(2YL) 0
Hll = g[’]gl aU and H12 =
B(55) B(%)

Using Lemma 3.5.2 twice, we have

H' -H HE(Z%)™!

I;lll -
o B
where
H—l E(g_gll)_l
1= AUy \ 1 1y OU g N
- B BB B

Plugging Hy}' into Z;;, leads to (3.10).

o1
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CHAPTER IV

GOODNESS OF FIT TESTS FOR GENERALIZED LINEAR MODELS WHEN
SOME COVARIATES ARE PARTTALLY MISSING

4.1 Introduction

First introduced by Nelder and Wedderburn (1972), generalized linear models provide
a unified approach for a broad class of regression models in applied statistics. They

are designed for applications with independent observations having a density:

91' T b 15
f(yi|xi7zi7/617§) = exp {yTg()yg)

where 6; is known as the canonical parameter and ¢ is a scale parameter. The functions

+ c(y, g)} (4.1)

a;(s) are commonly of the form a;(<) = -, where k;’s are known weights. In addition,

the p-dimensional covariate w; = (1,x},z,)" is related to 6; through the link function

e X )

n; = 1(6;) and the linear component

ni = Po+xiB, + 28, = wiBy,
where 3; = (5, 3., 3.)" is a ¢ x 1 vector of regression coefficients and g is a monotone
differentiable function. See McCullagh and Nelder (1989) for more details about the

generalized linear models.

The likelihood equations for 3 are
~db; _
D k(= )wi{yi — 17 (wiB1)} =0,
=
which are generally nonlinear in 3. The parameters can be solved via iteratively

reweighted least squares (IRLS) algorithm. An important component of any mod-

elling procedure is an assessment of model fit, which evaluates how well model-based
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predicted outcomes coincide with the observed data. For fully observed data, the
scaled deviance and Pearson’s chi-square statistic are helpful in assessing the good-
ness of fit of a given generalized linear model. However, these methods may be
problematic when some covariates are partially missing. In this chapter, we propose
an formal model validation procedure for the generalized linear models in the presence

of missing covariates.

4.2 Goodness of Fit Test

We focus on testing the linearity of primary regression model (4.1). In general, the

hypotheses are
Ho: n; = w8, vs Hy: m; # w;3,. (4.2)

Strictly speaking, the alternative depends on the the situations of applications and
settings. The rejection of the null hypothesis implies several possibilities: (a) mis-
specification of the primary regression model, including the linear component and the
link function [; (b) violation in the MAR assumption, or (c¢) a model misspecification
for the selection probability. It is possible to test (b) and (c¢) using the methods
proposed by Lipsitz et al. (2001) or a global test statistic for model (2.3). Though
we do not detect the misspecification of the link function directly, a misspecification
in the the link function will reflect as a misspecification in the linear component.
Let M) be the model under H,. We consider the alternative model M,y with r

more parameters than M. More specifically, model M, has a linear component
ni = w3 + Z [i(Wi)Byi; = Wi + Wiy (4.3)
j=1

where the vector of parameters By,) = (Bgr1, 5 Byur)’s F = {f1, fo, -} is a se-
quence of ®? — R mutually linear independent functions, and u,; = (f1(w;), -+, fr(w;))’,

which is the r-dimensional supplement covariate and may contain missing values if
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0; = 0. Obviously, model M; is nested in model M) if 7 < j. Theoretically, with
a proper choice of the sequence F, such as a certain complete basis in the covariate
space, model M, eventually includes any alternative of interest as r — oo. If the

alternative is (a) a partially linear (or single index) model
Hy: n= ﬂO + xﬁm + Uz(z)a

where v, is a continuous function; or (b) the model Mg only has one univariate co-
variate, then F could be orthonormal polynomials or the cosine system. Orthonormal
polynomials of order greater than 2 may be easily computed recursively by using the
Emerson recurrence formula (Emerson, 1968). Otherwise, both orthonormal poly-
nomials and the cosine system in the high dimensional space are too complex to be
suitable. Therefore, in general we suggest generating supplement covariates based on
space partitioning described in Barnhart and Williamson (1998). First the covariate
space is partitioned into (r+ 1) distinct regions, and then define the r x 1 supplement
covariates w,; = {[;1,---, I;}, where I;;, = 1, m = 1,2,--- r, if w; is in the mth
region, 0 if not. If §; = 0, it might be impossible to determine whether w; is in the
mth region, then the value I;, is missing.

If we are interested in testing certain types of departures from Hj, such as a low
frequency departure, 2-way interaction, etc, it is not difficult to specify a number R
with a proper choice of the sequence F, such that the model M) approximately
captures the departure. Then we can use the generalized score statistic to detect the
departure by testing Byr) = 0 with model Mgy being a plausible alternative. The
power of the test depends on the plausible alternative in two aspects. First, the power
of the test depends on how much the true regression function can be approximated
by model M. If Mgy could not capture the departure well, such as a departure

orthogonal to the space spanned by the linear component of M), then the test has
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low power even the departure is very strong. It is more likely the Mgy well capture
the departure when the R is getting larger. A larger R is desired in this sense.
On the other hand, under Hy and the selection probability is correctly specified,
the test statistic follow a y% distribution. It is clear that critical value increases
when R increases. As a consequence, the test would lose sensitivity to low frequency
departures when R is getting larger. Therefore, we can improve the power of the test
if we use a smaller model M), r < R, which captures the departure well, as the
plausible alternative. In the next section, we will introduce data driven methods to

find an optimal plausible alternative model in the sequence alternatives.

4.3 Data Driven Methods

Model Mgy is often not optimal for the goodness of fit test. It is possible that a
nested model My, r < R, is better than Mgy alone for testing. We use the following
WEEs to obtain TGS(r) for testing B,y =0 (r =1,2,--- , R):

0ik; d@ i
; um)( — 1 1( i/61+u7“i/82(r))) (1_;)¢(yzazz)}

)

Ury (B, T, ¢) =

(4.4)
where B,y = (B}, By))'- Note that we let ¢ in Equation (4.4) to be independent of r
because (a) the observed supplement covariates are transformations of z;, and (b) we
would like to see the role of supplement covariates in the regression models instead
of their effects on the mean score functions. One way to automatically choose r is
to use a data-driven method following the idea in Aerts et al., (1999, 2000). It is to

choose r = 7 that maximizes the penalized score criterion
SIC(r)=Tgs(r)—2r, (r=1,--- | R)
and the data driven test statistic is

Tygs(R) = SIC(7).
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We know that the generalized score statistics defined in the previous chapter all

have the form (72\7_1(72, where UQ and V are the vector and matrix corresponding
to each of the three settings considered in (3.3), (3.7 ) and (3.23). Similarly, for
each generalized score statistic Tg(r) above, we have Tg(r) = UQ(T)V(_T; Ué(r), whose
components are indexed by r. To introduce the asymptotic distribution of Thgs(R),
we define I'y = maz1<,<r(>__, Z¢ — 2r), where Z;’s are a sequence of independent
and identically distributed standard norm random variables. We used 200, 000 runs
simulation for the critical values of the random variable I'p. The critical value is 3.57
when R =5 for a 0.05 significant level test.
Theorem 4.3.1. Assume that the selection probability in WEE (4.4) is either known,
appropriately estimated via a correct parametric model or estimated nonparametrically
via (2.5). Under Hy and regularity conditions, Taas(R) converges to I'r in distribu-
tion.

Proof. Assuming that B(T) is the solution of U (B, 7, ¢) = 0 under Hy for
r=1,---, R, it is clear that B(r+1) = (B/(T), 0). Plugging B(r) into Ugy (B, 7, @), for
r=1,---, R, respectively, it is seen that (a) UQ(T) is the first r x 1 subvector of UQ(R),

and (b) \7(,,) is the upper r x r submatix of \Nf(R), forr=1,---,R.

Write
~ 62(3—1)
Uyr) =
Qr
and
~ V(R—l) a "
Viry = o
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By Lemma 3.5.2, we have

Viry agy
(n) (n)
ag) A
where
Obviously,
where

It is easy to see that

and

=

)

-1

V>0
_ (R—-1) N
0
7—1 ) L/(n)x7—1 7—1 (n)
Vie-namdm Vey ~YE-ndn)
(n) 1(n)x7—1 ’
(r) —ap Vg 1

/(n) )
Wiry = Qr — a(R)V(Rl—l)UQ(R—l)'

COV{W(R), UQ(R_l)}/TL — 0

1
WW(QR) — x? in distribution.
“(r)

Since (Ué( R-1)> Wi R))' is asymptotically normal, UQ( r—1) and W gy are asymptotically

independent. This implies that Tgg(R—1) and Ts(R)—Tgs(R—1) are asymptotically

independent. Using the same argument iteratively, one can show that

Tes(1),Tas(2) — Tas(1), -+, Tas(R) — Tas(R — 1)

are all asymptotically x? distributed and asymptotically independent of each other.

Since Tygs(R) is a continuous function of Tgg(r) for r =1,--- | R, it converges to I'g

in distribution.

O
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CHAPTER V

SIMULATION STUDIES

5.1 Introduction

Simulation studies were performed to investigate the finite sample properties of the
proposed tests, by assessing the adequacy of the asymptotic null distribution of the
test statistics and the power to detect unknown primary model misspecifications.
The generalized score statistics used in the simulations are (a) Fgg for full data;
(b) C'C using complete cases only; (c) Tgs using the known selection probability and
¢ = 0; (d) Tgsp, when the selection probability is estimated by the correct parametric
model (2.3) and ¢ = 0; (e) Tesn, when the selection probability is estimated non-
parametrically via (2.5) and ¢ = 0; and (f) T{,p, when both the selection probability
and ¢ = ¢* are estimated via correct parametric models. Note that Monte Carlo
methods are typically used for estimating the mean score function (see Lipsitz et al.,
1999) in Equation (3.6) when x; contains continuous components. We implemented
Tt.gp in the table on page 65 only, where the mean score function can be estimated
by a direct calculation of the conditional expectation without relying on Monte Carlo
methods since x; is univariate and binary. In each part of the simulation study,
we used the triangular system F = {cos(2rt), sin(2nt), cos(4nt), sin(4nt), -} for
t € (0,1) to generate a plausible alternative My with R = 5 supplement covariates.
We investigated the numerical performance for different choices of R. Our limited
numerical experience suggests that R = 5 is sufficient for low frequency alternatives.

For high frequency alternatives, larger R values would be desired. We used 1,000
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simulation replications for each case considered below. Under Hj and the significance

level a = 5%, a correct rejection ratio should be around 5% with a Monte Carlo

error of 1/0.05 x (1 —0.05)/1000 = 0.007. Under an alterative, a rejection ratio is re-

ported with a Monto Carlo error no large than /0.5 x (1 —0.5)/1000 = 0.016. When
computing Trsy in our simulation study, 7 and ¢* were estimated via a local linear
estimate (by the locfit function in R), which is equivalent and possibly more stable
than the kernel estimation in (2.5) and (2.6), with the bandwidth h = d(100/n) 3,
where d is a constant. We experimented with different d from [0.5,1.2]. The results

are stable, so we chose d = 0.7.

5.2 General Linear Models

In this section, we study the power and type I error of the proposed score tests
for testing adequacy of a general linear model with one or two covariates. We first
stimulated data from the following model with possibly missing univariate covariate

x; and the response variable y;:
Yi = o + Boi + cx} + e, (5.1)

where e;’s are independent error terms. The missingness indicator 9; follows the

logistic regression model
logit{Pr(0; = 1|y;)} = o + a1y?. (5.2)

The hypotheses are
Ho: E(yilzi) = Bo + Bui

against

Hy: E(yilxi) # Bo + Bexi.
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Note that H, is a general alternative. To investigate how robust the tests are under
various situations, we considered two cases for the error terms: (a) e; ~ N(0, 2(1.5 —

7)) and (b) e; ~ Gamma(1,1). The covariate x was generated from $Unif[—1,0] +

(2
%Unif[—l, 1]. True values 3y =0, 8, =2, ap = 1 and oy = 1 were used in generating
y; and 9;. To generate the supplement covariate u for generalized score tests, we

sorted all complete cases to

{(y(1)> $(1))’ T (y(No)’ x(No))}

such that z(;) <z if j <k, where Ny is total number of complete cases. Then the

supplement covariate for the ith observation is

u; = (cos(QWﬁO), sm(27rﬁo), 005(47TF0), sm(47rﬁ0), COS(67TFO))/’

where L; is the position of the i-th observation after sorting. In addition, we used
the weighted estimating equations (1.1) with equal variance assumption to construct
the generalized score statistics for both cases. The sample sizes are n = 100, 300 and
500. The results for Case (a) are given in Table 2 and Figure 1; the results for Case
(b) are given in Table 3.

Under Hy, in Case (a), Fggs, Tas, and Tgsp have rejection rates close to the
nominal level of 5%, the C'C' method has a rejection rate much higher than the nominal
level when the sample size is large, and Ty has a somewhat higher rejection rate
than the nominal level when the sample size is not large and the rejection rate is close
to the nominal level when n is large (n = 500). In Case (b), Fgs, Tas and Tgsp also
have a rejection rate close to the nominal level, while Tggn tends to have a slightly
higher rejection rate when the sample size is small and has a rejection rate close to
the nominal level when n = 300 and 500. Under the alternatives, Tygny has higher
power than Tgs and Tgsp, and the C'C' method has significantly lower power than

others. The proposed test statistics appear to work well in both cases.
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Table 2: Comparisons of generalized score tests for testing adequacy of a simple linear
model. Data were generated from a model with an additional quadratic term and
heteroscedastic normal error. About 64% observations are fully observed.
Method FGS ccC TGS TGSP TGSN TC%SPI TC%SPQ
n c Rejection Rate (%), Test Level 0.05

0.0 4.7 56 4.5 5.8 8.5 8.3 6.2

100 0.5 187 48 6.8 6.5 15.7 6.3 6.1

1.0 67.7 19.8 29.0 27.8 50.4  23.1 27.0

1.5 97.2 61.2 721 728 86.4  66.1 70.7

0.0 4.8 161 59 5.7 8.2 9.3 6.5

300 0.5 75.1 14.0 428 42.7 55.9 29.8 39.4

1.0 100.0 93.0 99.1 99.1 98.9 97.6 99.0

0.0 4.0 316 45 4.2 6.4 8.0 4.7

500 0.5 98.9 375 842 855 88.5 73.5 83.6

0.8 100.0 83.0 99.3 99.4 98.9 97.9 99.2

To investigate the issue of the model misspecification of the selection probability,

we used the following misspecified models for the selection probability:
logit{Pr(d; = 1|y;)} = mo + myy;. (5.3)

and

logit{Pr(0; = 1|y;)} = mo + myyu;, (5.4)

where y, = \/yif y > 0, —/—y otherwise. Intuitively, Model (5.4) is more appropriate
for the selection probability than Model (5.3), though both models are not exactly
correct. We use Thgp; and TSypy to denote the generalized score test statistics
when the selection probability is estimated by the misspecified model (5.3) and (5.4,
respectively. For brevity, we present only the normal error case. In this setting, the
rejection rate of T5gp, is slightly higher than the nominal level under Hy, and its
power is much lower than those of Tgg, Tasp and Tgsy under alternatives. On the
other hand, the test statistic T@S po has almost same performance as Tgg, and Tgsp.

The results are in Table 2 and Figure 2.
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Figure 1: Comparisons of generalized score tests for testing adequacy of a simple
linear model. Data were generated from a model with an additional quadratic term
and heteroscedastic normal error terms. About 64% observations are fully observed.
The sample size is 300.
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Figure 2: The effect of model misspecification in the selection probability on the gen-
eralized score tests. Data were generated from a model with an additional quadratic
term and heteroscedastic normal error terms. About 64% observations are fully ob-
served. The sample size is 100.
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Table 3: Comparisons of generalized score tests for testing adequacy of a simple linear
model. Data were generated from a model with an additional quadratic term and
homoscedastic gamma(1,1) error terms. About 64% observations are fully observed.

Method FGS cc TGS TGSP TGSN

n c Rejection Rate (%), Test Level 0.05
0.0 3.6 3.7 33 4.1 7.1

100 0.5 134 64 8.1 8.4 13.1
1.0 5.1 253 334 328 45.1

1.5 93.0 62.1 753 75.7 83.8

0.0 4.9 47 45 4.6 5.3

300 0.5 459 189 328 32.1 37.5
1.0 989 81.1 95.0 95.3 97.4

0.0 5.1 5.3 4.7 4.9 2.7

500 0.5 71.5 321 56.5 56.4 63.3
0.8 99.1 83.2 96.1 96.2 97.7

To investigate how the estimated mean score function improves the power of
the tests, we considered the situation that ¢* was estimated via a correct parametric
model. The data were generated from the linear model with a univariate binary

covariate x;, a univariate continuous covariate z; and the response variable y;:
2

where the error terms follow identical and independent N(0,1), and §; follows the
logistic model (5.2) with oy = a3 = 1 as before. The covariate z; = —1 + (2i)/n,
x; ~ Bernoulli(p,;), and logit(p,;) = Ko + k.2 True values 5y =0, 5, = 1.0, 5, = 0.2
or 0.8 and k9 = k, = 0 were used. In this case, the supplement covariate for the ith

observation is
w; = (cos(27t;), sin(2wt;), cos(4nt;), sin(4nt;), cos(67t;))’,

where t; = i/n. The results are given in Table 4 and Figure 3.
Under Hj, both non data driven and data driven T,qp have rejection rates close

to the nominal level 5% for both sample sizes of n = 100 and 300. Under the
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Table 4: Comparisons of generalized score tests and their data driven version tests
for testing adequacy of a linear model with covariates x and z. Data were generated
from a model with an additional quadratic term cz?. The error terms follow identical
and independent N(0,1). Around 63% observations are fully observed.

Non data Driven Data Driven
Method FGS ccC TGSP TéSP FGS TGSP TéSP
n | c Rejection Rate (%), Test Level 0.05
B, = 0.2

0.0 46 5.0 6.3 4.1 ] 438 6.8 5.0
100 | 0.5 | 14.8 7.7 87 146 | 240 126 23.5
1.0 | 56.2 243 254 527|744 444 713
00 46 5.0 4.9 41 5.2 5.3 5.2
300 1 0.5|43.2 153 243 41.1 587 329 57.1
1.0]981 76.3 819 97.9]99.3 90.8 100.0
Be =038
00| 46 5.1 6.9 2.0 4.8 6.7 5.3
100 | 0.5 | 14.8 9.2 9.8 141|240 140 23.0
1.0 1 56.2 309 29.3 514|744 478 68.7
00| 46 4.6 2.5 4.0 5.2 5.3 4.6
300 | 0.5 |43.2 21.7 252 398|587 342 543
1.0 98.1 855 84.5 97.3]99.3 92,5 100.0

alternatives, (a) T¢gp is much more powerful than Tisp; (b) the data driven version
of tests is more powerful than their non data driven version tests. This implies that
the tests with an appropriate model for ¢* are much more efficient than the tests with
¢ = 0, the result. When (3, = 0.2, the covariate = is not very useful in the regression
model and the missingness in x caused little information loss. In this case T(.qp has
the power close to that of Fgg. On the other hand, when 3, = 0.8, the missingness
in z led to more information loss. Consequently the power of T¢.¢p is reduced slightly

more from that of Fgg.
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5.3 Logistic Regression

In this part of the simulation study, we considered the proposed tests for testing
adequacy of logistic regression models. The data were generated from the following

models:

Model I:
logit{Pr(y; = 1|z;, )} = Bo + Bos + B2 + ¢,
Model II:

logit{Pr(y; = 1|x;, z:)} = Bo + Boi + Bozi + cxy X 2z,

where y; is a binary response variable, z; and x; are two univariate covariates. The

missing indicator ¢; follows the logistic regression model with covariates y; and z;:
logit{Pr(&; = 1|y;, z:)} = yi(3z7 — 0.4).

For both models, the values of 3 used to generate the data were 5y = 3, = 0 and
B, = 1; the covariate z; was generated from Unif[—1, 1] and z; were equal space points
between —1 and 1. According to applications, the alternative could be a partial linear

model or a general alternative.
5.83.1 Partially Linear Alternatives

Partially linear models are widely used for missing covariate data because of their

flexibilities. In this subsection, we would like to test

Hy: logit{Pr(y;|xs, )} = Bo + Buxi + .2

against its partially linear alternative

H,: logit{ Pr(y;|zi, z:) } = Bo + Boi + f2(2),
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where f, is a smooth function. The data were simulated using the model I and model

II. The supplement covariate for the ith observation is
w; = (cos(27t;), sin(2wt;), cos(4nt;), sin(4nt;), cos(67t;))’,

where t; = i/n. The simulation results based on Model I are given in Table 5 and the
simulation results based on Model II are given in Table 6

The data were simulated form Model I: under H,, Fgg, Tgs and Tggp have
rejection rates close to the nominal level 5% for both sample sizes n = 200 and 500;
the C'C method has a rejection rate of 35% when n = 500, indicating the C'C' method
is severely biased; Tsy has a somewhat high rate of 8.4% when the sample size
n = 200 and a rejection rate close to the nominal level when sample size n = 500,
reflecting the fact that Ti;gn converges to the asymptotic distribution slowly. Under
the alternatives, Ty and Tggp have similar power. The data driven version tests
are also given in Table 5. The data driven procedures have similar rejection rates to
those of the non data driven tests under H,, with the exception of their noticably
higher power under the alternatives.

The data were simulated form Model II: under Hy and H,, Fgg, Tas and Tasp
have rejection rates close to 5% for sample size n = 200 and 500. This indicates the
tests may have no power to detect an interaction departure if the alternative is a
partial linear model. It is not a good idea to use a partial linear alternative if you

would like to detect a general signal.
5.8.2  General Alternatives

Partial alternatives may be inadequate in some applications. In this subsection, we

would like to test

Ho: logit{Pr(yi|z;, z:)} = Bo + Buxi + L2
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against a general alternative
Ha: IOgIt{Pr<yz‘wza Zl)} = fxz(zia Zi):

where f,., is a general bivariate smooth function. To construct the proposed goodness-
of-fit tests, the following partitioning was utilized. The regions of covariate space were

automatically partitioned into 6 parts:

Part [ = {x < ¢4.05,% < ¢2033},
Part Il = {z > ¢4,05,2 < ¢z,0.33},
Part 11 = {2 < ¢4,0.5,720.33 > 2 < 2,066},
Part IV = {2 > ¢,,05,¢:033 > 2 < ¢z066},
Part V = {7 < .05, ¢,066 > 2},

Part VI = {2 > ¢,.05,¢:066 > 2),

where ¢ 11, ¢z 42 are the t; and t5 quantile of the variables x and z, respectively. The
corresponding supplement covariates are 5 x 1 vectors. The results of the simulation
study are given in the Table 7 and Figure 4. Under Hy,, Fgs, Tgs and Tgsp have
rejection rates close to the nominal level 5% for both sample sizes n = 200 and 500;
the C'C method has a rejection rate of 16.1% when n = 200 and has a rejection rate
of 43.1% when n = 500, indicating the C'C' method is severely biased; Tgsy has a
somewhat high rate of 9.1% when the sample size n = 200 and a rejection rate close
to the nominal level when sample size n = 500. Under the alternatives, Tzs and
Tasp have similar power; the power of Tosy is higher than that of Thg and Tosp
while type I error are similar when n = 500. Recall the results in Table 6, using the
same simulated data, the tests almost have no power when the alternative is a partial
linear model while the tests have reasonable power when the alternative is a general

one.
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Table 5: Comparisons of generalized score tests and their data driven version tests
for testing adequacy of a logistic regression against a partial linear alternative. The
responses were generated from a logistic regression model (Model I) with an additional

quadratic term cz? . Around 66% observations are fully observed.

Method FGS cc TGS TGSP

Tasn

c Rejection Rate (%), Test Level 0.05

n = 200
Non data Driven Methods
0.0 4.0 6.4 5.8 4.8 8.4
0.5 11.0 20.0 11.0 8.8 16.8
1.0 29.4 448 23.6 21.2 36.6
2.0 82.8 81.8 64.2 63.8 86.2
Data Driven Methods
0.0 3.0 350 438 3.2 6.0
0.5 144 63.0 11.6 9.2 15.2
1.0 39.2 84.4 26.0 244 40.6
2.0 91.6 98.8 69.6 69.6 91.4
n = 500
Non data Driven Methods
0.0 6.0 35.6 4.8 4.6 5.4
0.5 198 754 170 14.6 19.8
1.0 67.0 97.0 448 41.6 65.4
2.0 100.0 100.0 95.8 95.6 100.0
Data Driven Methods
0.0 54 754 5.0 5.0 5.8
0.5 25.0 976 194 15.6 22.8
1.0 77.2 100.0 52.6 49.8 74.2
2.0 100.0 100.0 97.4 97.0 100.0
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Table 6: Comparisons of generalized score tests (non data driven method) for testing
adequacy of a logistic regression against a partial linear alternative. The responses
were generated from a logistic regression model (Model IT) with an additional inter-
action term ¢ x X z. Around 65% observations are fully observed.

Method FGS cc TGS TGSP TGSN
c Rejection Rate (%), Test Level 0.05

n = 200
0.0 3.6 21.7 5.6 2.5 7.9
1.0 4.5 21.0 5.6 2.5 7.0
2.0 3.6 224 6.0 5.2 7.3

n = 500
0.0 41 609 438 4.0 4.4
1.0 5.2 588 H4 3.8 4.1
2.0 6.4 59.6 5.5 3.8 6.7

Table 7: Comparisons of generalized score tests (data driven) for testing testing
adequacy of a logistic regression against a general alternative. The responses were
generated from a logistic regression model (Model II) with an additional interaction
term cx x z. Around 65% observations are fully observed.

Method FGS ccC TGS TGSP TGSN
c Rejection Rate (%), Test Level 0.05
n = 200
0.0 4.7 16.7 7.5 6.3 9.1
0.5 7.1 276 10.3 8.9 12.5
1.0 14.3 381 14.2 119 15.7
1.5 29.5 522 193 173 27.9
2.0 477 644 270 253 40.8
n = 500
0.0 5.1 43.1 5.0 3.9 4.0
0.5 10.3 694 8.6 5.9 7.7
1.0 34.0 88.3 20.1 159 24.5
1.5 67.8 96.3 40.2 35.0 54.8

2.0 89.7 98.9 62.0 57.6 79.4
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Table 8: Comparisons of the generalized score test, its data driven test and the adap-
tive Neyman test for testing testing adequacy of a simple linear model against a
general alternative when no missingness occurs. Data were generated from a model
with an additional quadratic term cz2. The error terms follow identical and indepen-

dent N(0,1).
Method | Fgps DR Neyman | Fgs DR Neyman | Fgs DR Neyman
N =100 N =300 N =500
c Reject Ratio (%), Test Level 0.05, r =5
0.0 4.7 5.3 5.1 3.9 4.2 3.7 4.9 4.2 5.0

0.2 5.2 6.5 9.9 8.5 10.5 124 13.0 17.7 17.6
0.4 8.1 10.6 15.2 25.5 33.5 34.9 489 61.3 61.0
0.6 12.1 19.6 25.0 55.6 67.0 68.4 86.0  92.8 92.3
0.8 21.0 318 38.9 85.0 91.2 91.1 99.2 999 99.9
1.0 33.3 46.7 53.0 97.0 98.5 98.9 100.0  100.0 100.0

5.4 Comparisons between Tests When No Missingness Occurs

Our proposed test statistics simplify to generalized score statistics in Boos (1992)
and their data driven versions similar to Aerts et al. (2000) when no missingness
occurs. Under some circumstances, there might be some optimal or nearly optimal
goodness-fit-tests, such as the adaptive Neyman test in Fan and Huang (2001) for
testing adequacy of a simple linear model. In this section, we compare the per-
formance between the generalized score test, its data driven test and the adaptive
Neyman test when no missingness occurs, to indirectly gain further understanding of
the performance of our proposed test statistics for missing covariate data.

We simulated the response variable using (5.1) with 5y = 0, 8, = 2, and two types
of error terms (a) N(0,1), (b) N(0,2(1.5—27)). The results are depicted in Tables 8,
9 and Figure 5. In case (a), the adaptive Neyman test has better performance than
the data driven test when n = 100, and almost the same performance as the data
driven test when n = 200, n = 300 and n = 500. However, the adaptive Neyman test

might not be as good as the data driven test with heterogeneity of variance.
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Table 9: Comparisons of the generalized score test, its data driven test and the
adaptive Neyman test for testing testing adequacy of a simple linear model against a
general alternative when no missingness occurs. Data were generated from a model
with an additional quadratic term cz? and heteroscedastic normal error terms.
Method | Fgps DR Neyman | Fgs DR Neyman | Fgs DR  Neyman

N =100 N =300 N =500
c Reject Ratio (%), Test Level 0.05, r =5
0.0 42 4.6 4.3 4.6 0.1 5.1 4.1 5.2 5.6

0.2 5.5 1.7 5.2 176 19.7 8.8 30.1  35.6 11.6
0.4 11.7 16.0 8.0 59.7 645 29.0 89.5 91.1 62.4
0.6 244 31.3 14.8 95.2  96.9 72.1 100.0 100.0 98.5
0.8 446 52.5 26.0 100.0 100.0 97.1 100.0  100.0 100.0

1.0 65.0 728 44.9 100.0  100.0 100.0 100.0  100.0 100.0
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Figure 5: Comparisons of the generalized score test, its data driven test and the
adaptive Neyman test for testing testing adequacy of a simple linear model against a
general alternative when no missingness occurs. Data were generated from a model
with an additional quadratic term cz?. The error terms follow identical and indepen-

dent N(0,1). The sample size is 200.
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CHAPTER VI

AN EXAMPLE OF DATA ANALYSIS

6.1 Introduction

In this chapter, we consider the dataset mentioned in Chapter I, which is from the
Duke University Cardiovascular Disease Databank. The patients were referred to
Duke University Medical Center for chest pain. It was found that 2332 patients have
significant (> 75% diameter narrowing of at least one major coronary artery) coronary
disease (sigdz = 1) by Cardiac Catheterization. Among these 2332 patients, 1129
patients have severe coronary disease (three-vessel or left main disease, tvdlm = 1).
It is very interesting to predict the probability of significant coronary disease and the
probability of severe coronary disease given the information of cholesterol ,age, and
so on. The content of the dataset was described in Chapter 1. As was stated earlier,
it consists of 3504 patients and 6 variables. The covariate cholesterol is not observed
among 1246 out of 3504 observations. Harrell (2001) analyzed the dataset extensively.
However, complete-case analysis was used when the covariate cholesterol is involved
in his analysis. It is well know that complete-case analysis may be misleading if
the missing-data mechanism is not MCAR. In this chapter, we reanalyze the Duke
Cardiac Catheterization Coronary Artery Disease Diagnostic Dataset to illustrate our

methodology.
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Table 10: Fit the missingness on sigdz, age and sigdz*age.

Estimate Std. Error  p-value

(Intercept)  1.862555  0.323827  8.84e-09
sigdz 1.774492  0.425385  3.03e-05
age -0.024721  0.006418  0.000117
sigdz x age -0.031378  0.008087  0.000104

6.2 Data Analysis

We are interested in investigating the relationship between sigdz (y) and covariates
cholesterol (z) and age (z) while one third of cholesterol values are missing. Due
to the missingness, it is crucial to identify the relationship between the missingness
and the values of variable. Assume that the data are MAR, we characterized the

missing-data mechanism by fitting the logistic regression
logit{Pr(0; = 1|y;, z;)} = qwoyi + az2zi + @y X 2.

The results are shown in Table 10. Significant dependence of the missingness on the
data is apparent because all terms above are significant (p-value < 0.001), indicating
that the data are not MCAR and the missingness depends on y; and z;. This suggests
that the previous complete-case analysis (Harrell 2001) might be problematic for this
dataset.

As in Harrell’s (2001) analysis, we assumed a logistic linear regression model
logit{Pr(y; = 1[z;, i)} = Bo + Boi + B2 (6.1)

Because the sample size is relatively large and we don’t have much knowledge about
the selection probability, we used the semiparametric approach in Wang et al. (1997)
to estimate the parameters. The estimate of the parameter 8 = (f, s, 5.)" is the

solution of
3504

Z{ Y (1,2, 2:) (yi — Di) }
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where 7 is the local linear estimate for the selection probability and

R 1
pi = 1+ e~ (Bot+Bezit+Bzzi)’

The estimate of the parameters is
(Bo, Be, ) = (—3.28,0.049,0.0064).

Furthermore, using the semiparametric generalized score statistic Tgny to test each
of the following three null hypotheses: Hy : By =0, Hy: B, =0 and Hy : 3, = 0, we
found that each term is significant (p-value < 0.001). Before we use these results to
explain the relationship between the disease and the covariates age and cholesterol,
it is natural to ask if model (6.1) is adequate. To investigate this issue, let the null

hypothesis Hy be the model in (6.1). Possible alternatives are:

logit{Pr(y; = 1|2, 2:)} = fo + B.zi + fi(ws), (6.2)
logit{Pr(y; = 1]z, 2:)} = Bo + Bui + f2(2:), (6.3)

or
logit{Pr(y; = 1|z, z;)} = g(xs, ), (6.4)

where f1, fo and g are smoothing functions. Alternatives (6.2) and (6.3) are par-
tially linear models, while alternative (6.4) is a general one. The different supplement
covariates should be used for different alternatives. We used the cosine system to gen-
erate plausible alternative models with R = 5 supplement covariates for the partially
linear alternatives. We sorted the observations according to the value of x and z from
smallest to largest, respectively, in order to generate the two supplement covariates
for ith observation for alternatives (6.2) and (6.3). Let L¥ and L be the positions of

the 1th observation after sorting, accordingly. Then

(COS<27ﬁ;>7 3@71(277#0), COS(‘”ﬁZ), Sin<4ﬂ'ﬁi0); COS(67TF2))/
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and
(cos( T ), sin( T~ ), cos( m- ), sin( L ), cos( T )

are the supplement covariates for the ith observation for alternatives (6.2) and (6.3),
respectively, where Ny = 2258 and n = 3504. For alternative (6.4), the corresponding
plausible alternative Mgy, R = 5 was generated based on partitioning the covariate
space into 6 distinct regions. The observed test statistics are 5.77, 16.03 and 33.06
for the three alternatives above, respectively. The asymptotic critical value is 11.07.
Therefore, the conclusion is that the linear relationship described by (6.1) between
the disease and covariates age and cholesterol is not adequate. On the other hand,
partially linear model (6.3) or a fully nonparametric regression (6.4) may be more ad-
equate to describe such a relationship. To further analyze this dataset, it is possible
to apply the methodologies developed in Liang et al. (2004) and Wang, Wang, Gutier-
rez, and Carroll (1998) for partially linear models and fully nonparametric techniques

in generalized linear models, respectively, when some covariates are partially missing.
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CHAPTER VII

SUMMARY AND FUTURE RESEARCH

7.1 Summary

In this dissertation, we have studied the generalized score tests based on WEE (1.1)
with two nuisance functions 7 and ¢ for missing covariate data. Different versions of
the test statistic have been properly defined according to different settings, and their
asymptotic distributions have been derived. The proposed parametric tests appear
to give proper type I error rates and reasonable power for different sample sizes and
obtain the asymptotically optimal power within the class when the parametric models
for m and ¢ are correctly specified, while the proposed semiparametric tests appear to
work well when sample size is sufficiently large. Moreover, the optimal power can also
be obtained asymptotically by using an appropriate nonparametric estimate of 7 using
the simplified WEE with ¢ = 0. As an important application, we have investigated
the model assessment procedures for generalized linear models when some covariates
are partially missing. Our empirical study suggests that, with a proper choice of the
function sequence F and the number of supplement covariates, the tests have good

power in testing certain types of departures from the null models.

7.2 Future Research

As a future research problem, it would be interesting to extend the proposed method-
ology by employing generalized weighted estimating equations for correlated data such

as longitudinal data with missing covariates. It would also be interesting to develop
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generalized score tests for testing overdispersion, correlation and heterogeneity over
mixed effects in the presence of missing covariates.

Another problem is that the asymptotic null distribution seems to be inadequate
for the semiparametric tests when the sample size is not large enough. One possible
remedy for this is to develop bootstrap methods to approximate the critical values
of the null distributions. Another possibility is to investigate the effects of Bartlett

corrections in an attempt to improve the accuracy of approximate null distributions.
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