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ABSTRACT

Extracting the Asymptotic Normalization Coefficients in Neutron Transfer

Reactions to Determine the Reaction Rates for 22Mg(p,γ)23Al and 17F(p,γ)18Ne.

(August 2007)

Tariq Abdalhamed Al-Abdullah, B.S., Yarmouk University;

M.S., Yarmouk University

Chair of Advisory Committee: Dr. Carl A. Gagliardi

The nucleosynthesis of the β+-unstable 18F and 22Na nuclei in oxygen-neon novae is

considered one of the crucial subjects in the field of nuclear astrophysics. They are

produced in thermonuclear runaway processes via radiative proton-capture reactions

and may be ejected into the stellar medium when the sudden outbursts of the envelope

occur. Recent observations with γ-ray telescopes, however, have not detected those

long-lived γ-ray emitters.

The problem is to study the importance of the rates of the 17F(p,γ)18Ne and 22Mg(p,γ)23Al

reactions that may influence the abundances of 18F and 22Na, respectively. To investi-

gate their productions, an indirect technique has been applied to determine these re-

action rates at stellar energies through measurements of the asymptotic normalization

coefficients (ANCs) in the mirror nuclear systems. The ANCs for 18O and 23Ne are

obtained from the neutron transfer reactions 13C(17O, 18O)12C and 13C(22Ne, 23Ne)12C

at 12 MeV/nucleon, respectively. The ANC of 13C, which represents the other vertex

in the transfer reactions, has also been measured to be C2
p1/2

= 2.31± 0.08 fm−1.

The differential cross-sections for the reaction 13C(22Ne, 23Ne)12C because of transi-
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tions from the Jπ = 1
2

−
in 13C to the Jπ = 5

2

+
and 1

2

+
states in 23Ne, have been

detected. Optical model parameters for use in the DWBA calculations were obtained

from measurements of the elastic scatterings 22Ne+13C and 22Ne+12C at the same

energy. The extracted ANCs in 23Ne are transposed to their corresponding values in

23Al. The astrophysical S-factor S1−22(0) was determined to be 961± 105 eVb. The

reaction rate calculated from these results shows that the 22Mg(p,γ)23Al reaction may

reduce the production of 22Na in massive novae M ≈ 1.35 M�.

A similar procedure has been followed in studying the 13C(17O, 18O)12C reaction.

The ANCs related to the Jπ = (0+
1 , 2

+
1 , 4

+
1 , 2

+
2 ) states in 18Ne were determined from

their corresponding values in 18O, then used to calculate S1−17(0) = 2.5± 0.4 keV b.

These results show that the reaction rate of 17F(p,γ)18Ne is dominated by the direct

capture to the 2+
2 and 2+

1 states at astrophysical energies. The calculated reaction

rate is considered to be slow, which leads to an increase in the production of 18F in

oxygen-neon novae.
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CHAPTER I

INTRODUCTION

Exploring the universe is as old as human kind. Four thousand years ago the Baby-

lonians were known for their prediction of the position of the planets, the motion of

the stars, and dates of eclipses. But the first model to describe the dynamics in the

sky was built by Ancient Greeks, and then developed by Ptolemy and Copernicus in

the following centuries. The inquiry about understanding the origin of the universe

and its ultimate destination emerged in the twentieth century when Georges Lemaitre

proposed in 1927 that the universe began with a tremendous explosion known as the

big-bang, where all matter and energy were contained at a point. In 1929, Edwin

Hubble’s observations supported Lemaitre’s theory when he noticed that the spiral

nebulae are not local objects but autonomous groups of stars. He discovered that

each galaxy takes the same amount of time to move from a specific starting point to

its current position. This term of expansion formed the basis of the big-bang nucle-

osynthesis (BBN) of the primordial matter. BBN involves an event that happened at

energies of order few MeV. Therefore, it is naturally essential to make a connection

between cosmology and nuclear and particle physics to study the processes of the

reactions that occur in stellar evolution systems, such as novae and supernovae, and

cause the abundances of more than two thousand nuclei. This dissertation is a re-

port on the determination of two particular nuclear reaction rates, chosen from many

others to interpret the nucleosynthesis of specific nuclei in oxygen-neon nova events.

This dissertation follows the format of the journal Physical Review C.
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A. The Nucleosynthesis of Elements

The framework for understanding the abundances of chemical elements in the stars

and interstellar material is the evolution of the various constituents of the early uni-

verse. The study began with the pioneering work of Gamow and his associates in

1940 [1] when they recognized the significance of the hot big-bang in producing all

the elements in the periodic table. The Gamow model imagined that the early stage

of the matter was a highly degenerate neutron gas. As the pressure decreased due to

the universal expansion, neutrons decayed into protons and electrons. The protons

could then capture neutrons and build-up light then heavier elements. However, this

assumption was invalid. The primeval fireball stage (T = 1012 K) began when the

particles and the high-energy photons in the plasma were in chemical equilibrium.

The presence of energetic leptons, neutrinos and antineutrinos, changed protons and

neutrons into each other via the reactions

νe + p ⇀↽ e+ + n (1.1)

νe + n ⇀↽ e− + p (1.2)

n ⇀↽ e− + p+ νe. (1.3)

At this stage, all nucleonic matter was free and the universe was in baryonic charge

symmetry. The initial number of neutrons per proton in thermal equilibrium is given

by the Saha equation

n

p
≈ exp(−∆mc2/kT ) (1.4)

with ∆mc2 = 1.293 MeV, the mass difference between neutron and proton. As

the universe expanded , the temperature dropped down. When the temperature

decreased to 1011 K, the weak interactions in Eq. (1.1) and (1.2) suddenly switched
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off. At T = 109 K, the photons no longer had sufficient energy to generate new

electron-positron pairs. Hence, the neutron-to-proton ratio fell out of equilibrium.

One second after the big bang a significant fraction of neutrons were left at the

freeze-out temperature, T9 ≈ 7.5 (in units of 109 K) [2]. Substituting in Eq. (1.4), it

follows that the relative amount of neutrons to protons, 13% n and 87% p, is nearly

fixed from there on.

Although the rate for neutrons and protons to collide and form deuterons is rapid,

n+ p→ d+ γ, (1.5)

the low binding energy of 2.22 MeV for the deuteron and their very small density

compared with the density of photons [3] resulted in an instantaneous photodisin-

tegration that prevented nuclear reactions from building-up other nuclei. The BBN

was delayed until the temperature fell to T9 ≈ 1, when further n, p, and d reactions

led to the abundance of light elements 3H, 3He, 4He, and 7Li in the sequence shown

in Fig. 1.

The success of the standard BBN model in presenting an explanation for the abun-

dance of He, in agreement with the observed mass fraction 0.26± 0.04 [4], as well as

the abundance of d [3], provides strong support for this model. On the other hand,

making all the elements during BBN was blocked by the lack of stable nuclei of mass

5 and 8. In addition, the fast decrease of the thermal energies due to the expansion

implied that highly charged nuclei could not overcome their Coulomb repulsion. An

environment of higher densities and longer lifetime were required. Thus, the BBN

scenario does not account for the production of elements beyond 7Li, but the nuclei

already formed are used as tracers in the study of the chemical evolution.
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FIG. 1. The reaction network that leads to the synthesis of light nuclei in standard

BBN.

When the temperature decreased below 5000 K, the atomic nuclei combined with

the electrons to create neutral hydrogen gas. The formation of H2 via the following

reactions cooled the gas clouds to 1000 K and increased the gas density

H− + H → H2 + e− (1.6)

H + e− → H− + γ. (1.7)

Under appropriate conditions [5], fluctuations in the density of the homogeneous

clouds produced a net gravitational force that enabled the clouds to collapse and

condense to form the first generation objects, which are named population III stars

[6]. Those stars may have been quite massive (∼ 100-300 M�) [7] with very high

temperature. Due to their short lifetimes, they might have ended as energetic super-
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nova events, or giant thermonuclear events, which enriched the intergalactic medium

by ejecting all the heavy elements that they previously synthesized in their stellar

interiors.

Since hydrogen is the most abundant element, the main mechanism for the energy-

production in stars comes from converting hydrogen into helium. In population III

stars, the fusion process is dominated by the proton-proton (pp) chain of reactions,

where the basic process to burn the hydrogen is

4p→ 4He + 2β+ + 2ν. (1.8)

The high nuclear binding energy for the reaction, 26.73 MeV, indicates that the chain

must go through a series of steps to produce helium. The process starts with the

spontaneous weak decay of a proton in the field of a second proton

p+ p→ d+ e+ + ν, (1.9)

which is followed by the fast and strong interaction

p+ d→ 3He + γ. (1.10)

Then, depending on the temperature of stars, the conversion process proceeds through

three possible paths to generate 4He isotopes as shown in Fig. 2, where the PPI chain

occurs at the lowest temperature and does not create nuclei heavier than helium.

The remaining two branches generate elements up to beryllium. The total amount

of energy released from any pp chain is 26.73 MeV. The fraction of the energy lost

entirely from the stars for PPI, PPII, and PPIII are 2%, 4%, and 28%, respectively.

The substantial energy output in neutrinos makes the PPIII chain an important

source for the neutrino flux in the main sequence stars [8].
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FIG. 2. A diagram shows the three pp chains of reactions, where the net result is to

produce alpha particles from the fusion of four hydrogen nuclei. 4He act as a

catalyst in PPII and PPIII since the interaction of an α-particle leads to the

production of two.

Once the hydrogen is exhausted in the core of a star, it starts to contract slowly

because the helium core has no source of energy. As a consequence an increase in the

density and temperature of the star allows the He-rich region to fuse hydrogen in the

overlying layers. The resulting thermal pressure wave will expand the outer region

and cool the star at the phase of a red giant branch. The addition of helium from the

shell to the core leads to helium flashes, in which the collapsed core becomes hot and

dense enough to produce nuclear reactions among He-nuclei. During this quiescent

He-burning stage, direct triple α-particle collisions form 12C. If 12C captures another

α-particle, 16O will be produced in one of the most important reactions for stellar

evolution. After H and He, 12C and 16O have the highest concentrations in the

universe. The C/O ratio equals 0.6 [9]. If the temperatures are sufficiently high, the
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α-capture process can keep on producing heavier nuclei in the core of collapsing stars

such as 20Ne, 24Mg and so on, but with a moderate rate to maintain the 12C to 16O

ratio.

B. Thermonuclear Runaways in Oxygen Neon Novae

Half of the observed stars are members of binary systems, which may be composed of

two massive main sequence stars such as a 10 M� primary and its 5 M� companion

[10]. Since the lifetime of the star is shorter when its mass is higher, τ ∝ M−3 [11],

the primary star undergoes two evolution stages that are accompanied by losing mass

either through stellar winds in all directions or through Roche lobe overflows (ROLF).

The Roche lobe is the critical maximum radius that the expanded star can not exceed

without losing mass to its companion. The two ROLFs, which occur due to hydrogen

and helium burning, contaminate the primary’s core with carbon and oxygen nuclei

and reduce the mass of the primary to approximately 1 M�. According to the virial

theorem, when the thermal energy is decreased, the gravitational potential forces the

star to successive contractions until the next thermonuclear runaways (TNR) begin.

Thus, the density and the temperature in the core should increase sufficiently for

carbon to interact with itself and produce neon and sodium ashes

12C + 12C → 23Na + p (1.11)

12C + 12C → 20Ne + α. (1.12)

The nucleosynthesis of nuclei is associated with the mass and evolutionary phases

of the star. The gaseous matter is considered as an ideal gas, which is completely

ionized by the induced pressure after contractions. Electrons are fermions that follow

the Fermi-Dirac statistics, where the Pauli exclusion principle should be satisfied.
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Under high pressure, the electrons are forced to fill all the quantum states up to

the Fermi energy level. An electron degenerate gas is formed to resist the extra

compressibility of the star and stabilize its last volume. A white dwarf (WD) exists

under these circumstances, which is identified as the inert core of a dead star that

has lost its peripheral layers. The mass of a WD is comparable to the solar mass and

can not exceed the Chandrasekhar limit [9], where the maximum MWD that could be

supported by the electron degeneracy is less than 1.4 M�. But because of its high

density, it is approximately the size of the Earth (R = 6378 km). Depending on the

chemical composition and mass, WDs are classified into two main categories. If the

core is made of equivalent concentrations of carbon and oxygen uniformly distributed

throughout the star and MWD ≤ 1 M� [12], the final result is a Carbon-Oxygen

(CO) white dwarf. For massive WD, 1 M� ≤ MWD ≤ 1.4 M�, and when the carbon

in the core is completely converted to neon and oxygen, as mentioned above, an

Oxygen-Neon (ONe) WD will be formed.

At the end of the mass transfer processes from the massive primary to its lighter

companion, a close binary is left with a 1.1-1.4 M� ONe white dwarf and ∼ 6 M�

large main sequence star [10]. When the secondary evolves to a red giant as part of

its life cycle, its matter fills the Roche lobe and starts to transfer and accrete through

the inner Lagrangian point onto the surface of the WD as shown in Fig. 3 [13]. The

impact between the material of the outer layer of the WD and the hydrogen gas that

spirals into it at high velocity mixes them and forms a thin shell on top of the WD.

The strong gravitational field compacts the gas in the envelope, then compresses it

to high density, of the order of 5 × 103 g cm−3 [14], as more material falls in. In

the meantime, the collisions convert the kinetic energy of the gas to radiation that

heats up the envelope to 20 MK. Since ONe WD, where 85% of its mass is considered
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as a degenerate ONe core surrounded by a light CO mantle [10], is unresponsive

to heat, fusing the hydrogen homogenously in the accretion disk is indeed the main

radiation source that sets the stage later for a classical nova outburst. The explosion

is associated with the occurrence of a TNR, in which the fresh hydrogen starts new

chains of reactions to synthesize heavier elements, where the nuclear reactions that

take place are similar to those in the stellar interiors.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3. Simulation of a binary system showing the flow of the material from the Red

Giant through the Roche lobe and its accreting on the surface of the white

dwarf [13].

Unlike normal stars, where the gas expansion is proportional to the increased temper-

ature, the scenario in ONe novae is different. Earlier stages of TNR, T9 ∼ 0.1, proceed

through nuclear reactions that may give crucial indications about the type of nuclei

formed in the accreted disk [15]. During the peak stage of the TNR, T9 ∼ 0.2− 0.4,

the temperature is sufficiently high to dredge up neon seeds from the core of the WD

by convection into the accumulated hydrogen layer. Heavy-element production and

β+-unstable nuclei may occur at this step via radiative proton-capture reactions.

Their subsequent decays inhabit the envelope with a gamma-ray flux. At the late
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stages when the released gamma energy exceeds the Eddington luminosity limit [9], a

sudden explosive outburst will eject the envelope into the stellar medium. This cat-

aclysm occurs when radiation pressure is greater than the gravitational force, where

the material density may reach ρ > 104 gm/cm3 [16]. As a consequence, universal

enrichments of the produced radioactive isotopes in TNR may provide significant

information about the nucleosynthesis of light and intermediate nuclei in the galaxy.

The energy generation and the type of the ejected elements are very sensitive functions

of the temperature of the envelope, the mass of the WD, and the primary composition

of its core. Determination of the abundances of the chemical compositions, which

represent the ejecta, depends on the detection of the ultraviolet, optical, and mainly

infrared (IR) emission-line spectra. IR observations are important to distinguish

between CO and ONe novae. Although both types have similar IR spectra directly

after the outburst, an ONe nova is characterized by strong IR forbidden emission

lines in the range of 2-40 µm [14], which indicate the abundances of heavy elements

up to calcium. Recent studies are exploring the reaction chains that build up several

nuclei in nova events, particularly the CNO and NeNa cycles.

C. CNO and HCNO Cycles

The two main sequences of reactions to fuse hydrogen are the pp-chains and the

carbon-nitrogen-oxygen (CNO) cycle. The pp-chains are the dominating source of

energy in old stars and the sun. In stars more massive than the sun the pp-chains

may still occur, but the CNO cycle is more favorable to convert hydrogen to helium

[17]. The cycle also controls the nuclear reactions at the beginning of TNR in a nova

outburst, where C, N, and O act as catalysts and their concentrations are constant,
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while H nuclei are consumed.

The CNO cycle shown in Fig. 4 starts with the 12C(p,γ)13N reaction that is followed,

depending on the local temperature, by a sequence of β+-decay, proton capture, or

(p, α) steps. The created elements are among those that have the smallest Coulomb

barriers and the highest abundances. Its main mechanism as originally discussed by

Bethe [18] can be summarized in the following loop

12C(p, γ)13N(β+ν)13C(p, γ)14N(p, γ)15O(β+ν)15N(p, α)12C. (1.13)

The net result is the conversion of four protons into one 4He nucleus, similar to Eq.

(1.8). Oxygen plays an important role in developing the cycle. The possibility for

15N to collide with a proton to regain 12C is much greater than capturing a proton

by 15N to produce 16O [19]. However, once 16O is present, a slow leakage out of the

above cycle generates a new path via

15N(p, γ)16O(p, γ)17F(β+ν)17O(p, α)14N. (1.14)

Thus, the combination of the two cycles is known as the CNO bi-cycle. Model cal-

culation shows an overproduction of 13C, 15N, and 17O products in the ejecta [21].

When the temperature increases to T9 ∼ 0.2 in novae, nuclear reactions become so

fast that 13N has enough time to collide with protons to form 14O before it decays to

13C, as shown in Fig. 4. When this occurs, the energy production is limited by the

slower β+-decay lifetimes of 14O and 15O rather than the proton-capture rate of 14N.

This β+-limited branch is known as the hot CNO cycle (HCNO). The cycle enhances

the abundance of 18O since its production relies on the 18O(p,γ)19F/18O(p,α)15N re-

action branching. The competition of these two reactions may either close the cycle

or open it up to proceed through (p,γ) reactions to create 19F and 20Ne. Once the
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FIG. 4. Hydrogen burning in the HCNO cycles, which include proton capture reaction

through the unstable nuclei 13N, 17F, and 18F.

temperature is high enough to produce 20Ne, T9 ∼ 0.4, a one way breakout can occur

from the bottleneck of the HCNO loop to the onset of the rapid proton capture (rp)

process [21].

D. The Ne-Na Cycle

In ONe novae, the possible pathway toward the more energetic rp-process takes place

when the protons have sufficient thermodynamic energies to overcome the Coulomb

barriers of the previously produced elements in the HCNO cycle in order to form

heavier nuclei. Since the proton capture reaction must wait on the weak interaction

of β+-decay before the build up of heavier elements can continue, the nucleosynthesis

of the process may not extend all the way to the proton drip line [9]. Thus, it

is characterized by the competition between the β+-decay and the proton-induced

reactions. A new scenario to produce proton rich nuclei and fuse H into He occurs
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through the NeNa cycle via the sequence

20Ne(p, γ)21Na(β+ν)21Ne(p, γ)22Na(p, γ)23Mg(β+ν)23Na(p, α)20Ne. (1.15)

Even though the NeNa cycle is not an important source for energy production in

comparison with the pp-chains and CNO cycles, its importance lies in the fact that it

synthesizes the elements between 20Ne and 24Mg with high abundances. The smaller

Q-values for the proton capture allow measuring all the reactions in the cycle directly

[22]. If the temperature stays high in the nova outburst, T9 ∼ 0.2-0.4 [23], the NeNa

cycle opens up via the reactions 23Na(p,γ) and 24Mg(p,γ) to generate elements up to

Si in what is known as the MgAl cycle.

E. The Missing Evidence of 22Na

Massive ONe novae are common events in the Galaxy. The theoretical and astrophys-

ical analysis of the spectroscopic lines reveals that their probability to occur accounts

for approximately one-third of all the recently detected novae [14]. The neon con-

centration of these events in comparison with the solar system abundance is larger

by a factor of ∼ 300 [24]. Moreover, the enrichment of 22Ne in the Ne-E meteorites,

which contain grains that might be partially condensed in nova outbursts, provides

other evidence of the preexistence of sodium isotopes, mainly 22Na [25]. Taken all

together, the above observations support the theory that the H-burning sequence of

reactions by means of the NeNa cycle can yield substantial concentrations of 22Na in

ONe novae.

The radioactive 22Na decays to 22Ne via the reaction

22Na → 22Ne + β+ + ν. (1.16)
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The mean lifetime of the reaction is τ = 3.75 yr. The β+-decay populates the short-

lived first excited state in 22Ne and leads to the emission of a 1.275 MeV γ-ray. The

flux of these γ-rays is given by[9]

Fγ,22Na = 4× 10−5

(
Meject

10−5M�

) (
Z22

10−3

) (
D

kpc

)−2

e−t/3.75yr
[
cm−2s−1

]
. (1.17)

It is suggested that for a typical ONe nova, the ejected mass Meject ≈ 10−4M�, and

the fraction of 22Na Z22 ≈ 10−4, which translates to the possibility of observing almost

10−8 M� ejected 22Na per nova event [25]. If the nova is at a distance D ∼ 1 kpc, the

detected γ-ray flux at the earth will be the order of 10−4 cm2 s−1. These predicted

concentrations are within the sensitivity limit of the space-based γ-ray telescopes,

such as Compton Gamma Ray Observatory (CGRO) and INTEGRAL. However,

observations of five ONe novae using CGRO have not found the signature of these

γ-rays and have only been able to set an upper limit for its ejecta, which is below

the theoretical estimations. For example, in Nova Her 1991 (V838 Her), which was

expected to be one of the most favorable for observing, the detected flux limit was

around a factor of three smaller than the level initially predicted by model calculations

[25].

Although the real cause for this contradiction is not clear, the evolution of the

nucleosynthesis in the rp-process may give an explanation for the missing flux of

22Na γ-rays. Depending on the temperature achieved in the burning region, 22Na

is synthesized in novae following two possible ways, either in the cold NeNa cy-

cle: 20Ne(p,γ)21Na(β+ν)21Ne(p,γ)22Na, or in the hot NeNa cycle through the chain

20Ne(p,γ)21Na(p,γ)22Mg (β+ν)22Na, as shown in Fig. 5. Studying the reaction rate

for 21Na(p,γ)22Mg shows that the amount of the 22Na abundance in ONe WD may be

reduced in the hot cycle path [26], where the temperature and density are still high
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FIG. 5. The sequence of reactions in the NeNa cycles. The isotope 21Na will either β

decay into 21Ne to produce the ”cold” cycle, or capture a proton to form 22Mg

in the ”hot” cycle.

enough to permit 21Na burning to proceed more rapidly through the proton capture

reaction. Once 22Mg is produced, two reactions paths are available for it to reduce

the residual 22Na abundance. Either it β+-decays to produce 22Na, which may cap-

ture a proton via the radioactive reaction 22Na(p,γ)23Mg – this reaction is considered

as the main depletion candidate [27] – or the 22Mg is depleted to form 23Al. In the

explosive conditions, a fast and strong 22Mg(p,γ)23Al reaction may play the major

role bypassing the production of 22Na [52].

The nova explosion time scale for a TNR is ∼ 200 s [29]. Despite its low proton

threshold Q-value, 22Mg(p,γ)23Al is so fast that the photodisintegration of 23Al and its

equilibrium may not be reached. Hence, sequential proton captures on 22Mg and 23Al

may lessen the effective lifetimes of 22Mg and its daughter 22Na. The 22Mg(p,γ)23Al

reaction is dominated by direct capture to the ground state (d5/2) in 23Al and resonant
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capture through the 23Al first excited state (s1/2).

F. The Production of 18F

The major sources of γ-ray lines are not only generated from the de-excitation of

the daughter nuclei of β-unstable nuclei, as mentioned above, but also from positron-

electron annihilation in the nova envelope. This annihilation leads to emission of a line

at 511 keV and a continuum below it [20]. It is believed that 13N (τ = 862 sec) and

18F (τ = 158 min) are the main contributors to the production of observable positron

annihilation radiation. Because of its short lifetime, 13N will be consumed faster in

the time scale of the expanding envelope, which may take a few hours. Therefore

the decay of 18F is more important for γ-ray astronomy since its γ-ray photons are

emitted when the envelope starts to be transparent. The largest 511 keV fluxes are

produced in the more massive ONe novae [30], and their yields depend on the nuclear

reactions that create and destroy 18F.

18F is synthesized in the HCNO cycle via two main sequences

16O(p, γ)17F(p, γ)18Ne(β+ν)18F (1.18)

16O(p, γ)17F(β+ν)17O(p, γ)18F. (1.19)

The details are shown in Fig. 4. Its yield is mainly constrained by the destruction

reaction 18F(p,α)15O. The reaction rate for 18F(p,γ)19Ne is 103 times smaller and hence

makes a negligible contribution to 18F destruction. According to the ONe models,

when the temperature in the burning shell reaches T9 ∼ 02, 16,17O concentrations

are decreased by one to two orders of magnitude [31], and hence the main nuclear

activity to produce 18F is driven by the second chain through the dominant reaction
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17O(p,γ)18F. However the uncertainty in this reaction rate, as well as the 18F(p,α) rate,

changes the 18F abundances by factors of ≥ 500 [32]. 17F also may affect the amount

of 17O, increasing its concentration in the envelope. At such a high temperature, a

fast proton capture onto 17F may increase the enrichment of 18Ne by several orders

of magnitude [31]. In this case, the synthesis of 18F through the first path grows to

be more important.

Experimental studies to extract information for 18F are difficult not only because

it has a relatively short lifetime, but also because it is a self-conjugate nucleus

(N=Z). Efforts to determine the production and the destruction of this nucleus

are in progress. If T9 ≥ 0.3 in the envelope, another chain may occur through:

14O(α,p)17F(p,γ)18Ne(β+ν)18F(p,γ)19Ne(p,γ)20Na. As a result, 17F(p,γ)18Ne is an im-

portant nuclear reaction that is interesting to be studied to understand the absence

of 511 keV lines after the explosion. The rate of this reaction may influence the

abundances of 18F, 18Ne, 17F, and 15O, and explain the transition sequence from the

HCNO cycle to the rp-process. This rate will be dominated by direct capture to the

two lowest energy 2+ states in 18Ne [20].

G. Objectives

Although classical novae are frequent events in the Galaxy (∼ 30 yr−1), the mass of

the ejected material is in order of 10−5-10−4 M� per nova, which accounts for less

than 10−3 of the Galactic mass [21]. However, novae are promising sites to produce a

considerable amount of individual nuclei with high relative abundances. Among these

nuclei are the long-lived γ-ray emitters, such as 18F and 22Na. Model calculations

overestimate the observations of the γ-ray lines resulting from their β-decays [21].
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The incentive of this research is to determine the rate of the precursor reactions that

may contribute to the synthesis of 18F and 22Na isotopes. These reaction rates will be

used to elucidate the possibilities of detection and to put constraints on TNR models.

H. Dissertation Outline

The dissertation consists of five chapters. Chapter I presents an introduction about

the principles of nucleosynthesis in several evolutionary systems. This chapter in-

cludes the specific objectives of the research supported by the relevant literature

reviews. Chapter II describes the general definitions of the TNR reaction formalism,

and the extraction procedure of the asymptotic normalization coefficients (ANC) in

peripheral transfer reactions. The importance of the ANC technique to determine

proton capture reaction rates in nova outbursts will be also discussed. The experi-

mental setup of the multipole-dipole-multipole (MDM) spectrometer along with the

Oxford detector and data acquisition system will be introduced in Chapter III. It

also includes the detector calibrations and explicit information concerning the exper-

iments performed. Chapter IV presents a detailed discussion of the data analysis,

and the last chapter provides the final results of the determined reaction rates for

22Mg(p,γ)23Al and 17F(p,γ)18Ne and their impact on ONe novae.
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CHAPTER II

THEORY

Radiative capture reactions play an important role in nova explosions. They liber-

ate energy through several nucleosynthesis processes that also change the chemical

compositions of evolving stars. This chapter presents the theory of determining the

radiative capture rates and describes the method of extracting the ANCs in peripheral

transfer reactions, which are then used to evaluate the capture reaction cross sections

and the reaction rates.

A. Kinematics of Nuclear Reactions

When a projectile a of mass ma interacts nonrelativistically with a target X of mass

mX to produce a nucleus Y and a new particle b, the nuclear reaction is expressed as

a+X → Y + b. (2.1)

The output of the reaction is constrained by several physical conservation laws that

simplify the description of the motion of the particles. The kinetic energy of the

interacting particles in the laboratory system is

E =
1

2
mav

2
a +

1

2
mXv

2
X . (2.2)

Using the definitions of the velocity of the CM and the relative velocities of a and X

−→
V = ma

−→va+mX
−→vX

ma+mX

−→v = −→va −−→vX .
(2.3)
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The corresponding kinetic energy in the center of mass (C.M.) will be

E =
1

2
MV 2 +

1

2
µv2, (2.4)

where M = ma +mX and µ = mamX

ma+mX
are the total and reduced masses, respectively.

The Eq. (2.4) includes the kinetic energy of the C.M., which is a conserved quantity,

plus the kinetic energy in the center-of-mass system, which is responsible for the

interaction. If the target X is stationary before the collision, the kinetic energy in

the C.M. is related to the laboratory system by

E =
mX

M
ELab. (2.5)

B. Reaction Rates

In stellar systems, particles exist in terms of gases. The projectile and the target

a and X from the previous section have densities Na and NX particles per cubic

centimeter, respectively. The rate of nuclear reactions r is defined as the number of

reactions per unit volume per unit time. It depends on the flux Nav of the incident

particles, the reaction cross section σv, and the number of target NX , where v is the

relative velocity. The reaction rate is then given by

r(v) = NaNXσvv. (2.6)

where the cross section σv at a relative velocity v identifies the probability that

the reaction will occur between the colliding particles. Because the velocity is not

constant in stellar environments, its distribution can be described by the function

Φ(v), which is defined such that
∞∫
0

Φ (v) dv = 1. Hence the average reaction rate per
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pair of particles 〈σvv〉 is given by

R = NaNX

∞∫
0

Φ (v) vσ (v) dv. (2.7)

For a nondegenerate gas and nonrelativistic motion of the particles, Φ(v) in a ther-

modynamic equilibrium state is given by the Maxwell-Boltzmann distribution

Φ (v) = 4πv2
( m

2πkT

)3/2

exp

(
−mv

2

2kT

)
. (2.8)

If a and X are both moving with va and vX , respectively, Eq. (2.8) is generalized

to be double folded with both distribution functions Φ(va) and φ(vX). The reaction

rate is then simplified in terms of the C.M., where va and vX are defined in terms of

the relative velocity and the CM velocity. Thus

Φ (va) Φ (vX)
Jacobian→ Φ (v) Φ (V ) =

(4πV 2)
(

ma+mX

2πkT

)3/2
(4πv2)

(
µ

2πkT

)3/2
exp

[
− (ma+mX)V 2

2kT
− µv2

2kT

]
.

(2.9)

Substituting in Eq. (2.4), the average reaction rate per particle pair r
NaNX

will be

〈σvv〉 = 4π
( µ

2πkT

)3/2
∞∫

0

v3σ (v) exp

(
− µv2

2kT

)
dv. (2.10)

Since E = 1
2
µv2, Eq. (2.10) can be written as

〈σvv〉 =

(
8

πµ

)1/2
1

(kT )3/2

∞∫
0

σ (E)E exp

(
− E

kT

)
dE. (2.11)

1. Nonresonant Reactions

A direct nuclear reaction takes place when two nuclear systems make a glancing

contact then immediately separate. As a consequence, the two systems may survive

the collision without changing their internal states (elastic scattering), one or both
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FIG. 6. An illustration of a direct capture reaction, where the transition goes directly

to the final state in the nucleus with the emission of a γ-ray.

systems are left in an excited state (inelastic scattering), or nucleon(s) may transfer

across from one nucleus to the other(transfer reaction). If the a+X goes directly from

the ground states in the entrance channel to the ground state or a specific excited state

in the nucleus Y with the emission of γ-radiation, it will be named as a peripheral

or direct capture reaction, as shown in Fig. 6. Because these reactions occur at

all astrophysical projectile energies with a cross section varying smoothly with the

energy, they are also called nonresonant reactions. Their importance is related to the

tendency of populating the low-lying states of nuclei, and they are studied to give

information about the overlap between the interacting nuclei.

For charged particles, the low-energy cross section σ(E) that leads to a nuclear re-

action depends strongly on the Coulomb barrier penetrability and the de Broglie

wavelength. It is characterized by introducing the astrophysical S-factor, S(E)

σ (E) =
1

E
exp (−2πη)S (E) , (2.12)

where η is the Sommerfeld parameter and is equal to

η =
ZaZXe

2

h̄v
=

31.29

2π
ZaZX

( µ
E

)1/2

. (2.13)
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By substituting Eq. (2.12) in Eq. (2.11), the reaction rate becomes

〈σvv〉 =

(
8

πµ

)1/2
1

(kT )3/2

∞∫
0

S(E) exp

(
− E

kT
− b

E1/2

)
dE, (2.14)

where

b = (2µ)1/2 πe2
ZaZX

h̄
= 0.989ZaZXµ

1/2 [MeV]1/2 . (2.15)

The behavior of the integral in Eq. (2.14) dominates the reaction rate. At low

energies the exp(−bE−1/2) factor becomes very small, while at higher energies the

factor exp(− E
kT

) goes rapidly to zero. The overlap between the tail of the Maxwell-

Boltzmann distribution and the tail of the tunneling probability through the Coulomb

barrier results in a distribution function centered around Eo, as shown in Fig. 7.

Hence, nuclear reactions will take place in a narrow energy band that is known as

Gamow peak, where

Eo = 1.22
(
Z2

aZ
2
XµT

2
6

)1/3
[keV] . (2.16)

Using Eq. (2.15), the maximum value of the integrand is

Imax = exp

(
−3E0

kT

)
. (2.17)

The value of Imax decreases rapidly with increasing charge of the interacting nuclei,

which implies that the nucleosynthesis during the TNR will produce nuclei with the

smallest Coulomb barrier, while heavy nuclei do not contribute significantly to the

energy production. For further simplification, the Gamow peak can be approximated

with a Gaussian function:

exp

(
− E

kT
− b

E1/2

)
= Imax exp

[
−

(
E − Eo

∆/2

)2
]
, (2.18)
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FIG. 7. The energy-dependent functions of the Maxwell-Boltzmann distribution and

the tunneling through the Coulomb barrier are peaked at two opposite do-

mains. The overlap between their tails leads to the Gamow peak centered

around the stellar energy Eo, which is much larger than kT .

where the effective width of the function is

∆ =
4√
3

(EokT )1/2 = 0.749
(
Z2

aZ
2
XµT

5
6

)1/6
[keV] . (2.19)

When the S-factor is a smoothly varying function over stellar energies, its value can

be expanded in a Taylor series around the effective burning energies [33]

Seff (Eo) = S (0)

[
1 +

5

12τ
+
Ṡ (0)

S (0)

(
Eo +

35Eo

12τ

)
+
S̈ (0)

S (0)

(
E2

o +
89E2

o

12τ

)
+ ...

]
,

(2.20)

where

τ = 42.46

(
Z2

aZ
2
X

µ

T6

)1/3

. (2.21)
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Substituting Eq. (2.18) and Eq. (2.20) in Eq. (2.14), the nonresonant reaction rate

is then given by

NA 〈σvv〉 = NA

(
2

µ

)1/2
∆

(kT )3/2
Seff (Eo) exp (−τ)

[
cm3

mole s

]
. (2.22)

2. Reaction Through Narrow Resonances

Unlike nonresonant reactions, reactions through narrow resonance states are two-step

processes. The first one gives the probability that the C.M. energy of the entrance

channel coincides with the energy Er of a quasi-stationary quantum state of the

compound nucleus, while the other process involves a subsequent γ-decay of Er to a

final state at lower energy as shown in Fig. 8. The nuclear reaction depends on the

angular momentum ` of the incident particle that can initiate a specific resonance

state. From the conservation of angular momentum, the condition
−→
Jr =

−→
Ja +

−→
JX +

−→
`

should be satisfied, where Jr is the angular momentum of the resonant state. Also

the parity should be conserved.

FIG. 8. After the projectile is captured by an excited state Er, the state then decays to

a lower level together with emission of γ-radiation. Resonant capture occurs

when the energy Q+ E matches Er.
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The cross section is then given by the product of the maximum possible cross section

and the transmission coefficient taking into account the resonance phenomena. Hence,

its value is obtained by the Breit-Wigner formula [34]

σ (E) =
λ2

4π

2Jr + 1

(2Ja + 1) (2JX + 1)

ΓpΓγ

(E − Er)
2 + (Γ/2)2 . (2.23)

The first part of Eq. (2.23) represents a statistical factor that the combination of
−→
Ja

and
−→
JX results in

−→
Jr , where 2J+1 is the statistical weight of each J . The character-

istics of the decay of the compound states are given by the resonant term, where Γp

and Γγ are the partial widths that determine the rate at which the state captures a

proton then γ-decays in the entrance and the exit channels, respectively. Γ represents

the sum of all the partial widths of all allowed decay channels; Γ = Γp + Γγ.

For a (p, γ) reaction, the gamma width is typically no larger than a few electron

volts. On the other hand, at stellar energies, the small probability for protons to

penetrate the Coulomb barrier reduces Γp to a value that is comparable with Γγ.

Hence the total resonance width is a very narrow spike with width Γ � Er in the

Maxwell-Boltzmann distribution. Hence the Ee−
E
kT term in Eq. (2.11) changes only

slightly over the resonance region. Inserting Eq. (2.23) into Eq. (2.11) at E = Er,

the reaction rate through a narrow resonance is

〈σvv〉 =

(
2π

µkT

)3/2

h̄2ωγ exp

(
−Er

kT

)
, (2.24)

where ω = 2Jr+1
(2Ja+1)(2JX+1)

and γ = ΓpΓγ

Γ
. The product ωγ is called as the resonant

strength. The total width Γ depends strongly on the Coulomb potential. If the

reaction is near the Coulomb barrier, γ will approximately equal to Γγ and hence the

strength of the resonance ωγ ≈ ωΓγ.
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C. Direct Measurements vs Indirect Measurements

Extreme densities and temperatures trigger reactions that may involve nuclei far

from β-stability. Several different kinds of laboratory experiments are carried out

to explore the nucleosynthesis of chemical elements in evolutionary stellar systems.

These experiments are dedicated to measure nuclear reactions, decay mechanisms

for β unstable nuclei, and the probability of nuclear reactions to occur (in terms of

the cross section σ). A favorable way to determine the cross section is to carry out

direct measurements using radioactive beams for short-lived isotopes and radioactive

targets for long-lived isotopes. However, the favored energy region where astrophysical

reactions take place is between tens and hundreds of keV. Thus, the σ values for these

reactions at stellar energies below the Coulomb barrier are extremely small, of the

order of nano and picobarns, and they decrease exponentially with decreasing energy.

In addition, direct reactions in such an environment may involve contributions from

excited states as well as the ground states, which are difficult to measure in the

laboratory if the nuclear structure information is missing, or the energy resolution

of the beam is too poor to distinguish between well-separated states. Moreover, the

short half lives of the radioactive beams and (or) targets complicate the experiments.

Alternatively, indirect experimental methods can provide other approaches to exam-

ine the astrophysical reaction rates using stable beams and (or) targets. The main

indirect methods are Coulomb dissociation [35] , Trojan Horse [36], and measurement

of asymptotic normalization coefficients [37]. These methods give precise information

that facilitates accurate predictions of the rates.
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D. Nuclear Reactions and DWBA Model

Given the possibilities of studying the astrophysical reaction rates with several indi-

rect techniques, it is crucial to have a reliable method for obtaining useful information

from experimental measurements. Direct nuclear reactions are fast interactions with

few degrees of freedom involved, which have been described successfully in quantum

mechanics by applying the distorted wave Born approximation (DWBA). DWBA

gives quantitative as well as qualitative information about the dynamics of the re-

action and nuclear structure. The main physics behind this model premises that

elastic scattering between two colliding nuclei is the most important event to oc-

cur, while other reaction channels can be treated as perturbations. For the reaction

a+X → Y + b, the total wave function Ψ that obeys the Shrödinger equation is

HΨ = EΨ, (2.25)

where Ψ carries information on all open reaction channels, and may be expanded in

terms of a complete set of internal states ψα

Ψ =
∑

α

ξα(~r)ψα (~xα) . (2.26)

The Hamiltonian H can be written in the form of any partition channel, such as

H = Hα + Tα + Vα = Hβ + Tβ + Vβ = ..., where the total hamiltonian for the system

is then the sum of the internal Hamiltonians for the particles a and X, the kinetic

energy of their relative motion, and their mutual interaction. An accurate solution

of Ψ is not known yet, so ξα, which represents the projection of Ψ onto the partition

α, is needed to describe the relative motion of a + X when both nuclei are in their

ground states. ψα is then the product of their plane waves ψaψX . The complete set



29

of the outgoing β channels that result from the initial state α is given by

Ψ(+)
α =

∑
β

ξβ (~r)ψβ (~xβ) . (2.27)

Solving the Shrödinger equation for the specific partition β is written as

(Eβ − Tβ) ξβ (~rβ) = 〈ψβ |Vβ|Ψ(+)
α 〉. (2.28)

Then substituting Eq.(2.27) into Eq.(2.28) gives

(Eβ − Tβ − Uβ) ξβ (~rβ) = 〈ψβ |Wβ|Ψ(+)
α 〉, (2.29)

where Uβ = 〈ψβ |Vβ|ψβ〉, and Wβ represents the residual interaction that is treated

as a perturbation, Wβ = Vβ − Uβ. By assuming that Uβ is the average interaction

potential Vβ over the nuclei in the exit channel, the inhomogeneous part of Eq.(2.29)

can be eliminated because of the small contribution of any excitation or rearrangement

after the collision. Hence, only the diagonal matrix elements are involved in the

prediction of Uβ. Because the interaction is strong, when the incident particles enter

the domain of the nuclear force, their plane wave function will be distorted by the

nuclear potential, and their outgoing wave function will also be distorted by the

effective nuclear potential due to the collision. Thus, as a first order approximation,

ξ
(+)
β is asymptotically equivalent to the distorted wave χ

(+)
β due to Uβ, and Eq.(2.29)

becomes

(Eβ − Tβ − Uβ)χ
(+)
β

(
~kβ, ~rβ

)
= 0, (2.30)

and its general solution is

χ
(+)
β

(
~kβ, ~rβ

)
→ ei~kβ ·~rβ + fβ (θ)

eikβrβ

rβ

, (2.31)

where fβ (θ) refers to the scattering amplitude. So χ(+) in the DWBA consists of
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an incident plane wave and outgoing spherical wave. Eq.(2.30) is usually called the

optical-model Shrödinger equation [38], and its solution depends on the optical po-

tential Uβ, which indeed depends on the energy of the projectile. If this energy is low,

only elastic scattering will take place and Uβ is real. At higher energies, inelastic scat-

tering and nuclear reactions are possible events, which means that part of the elastic

scattering flux is absorbed. Thus, Uβ has to be complex and negative to describe all

the reaction channels accurately.

Since the incoming wave function is also distorted, χ(−), with a condition that when

Uβ → 0, χ
(±)
β are represented by a plane wave ei~k·~r. Getting the solution of the

distorted waves from Eq.(2.30) and its complex conjugate provides the information

needed to evaluate the transition amplitude from α→ β

Iβα '
〈
ei~kβ ·~rβ |Uβ|χ(+)

α

〉
δαβ +

〈
χ

(−)
β ψβ |Wβ|ψαχ

(+)
α

〉
. (2.32)

The first term refers to elastic scattering, and the second term is the DWBA amplitude

of the nuclear reaction IDWBA
βα

.

E. The Optical Potential and Elastic Scattering

The phenomenological optical model gives a simple method to characterize the inter-

action of two nuclei through a potential U (r), where r refers to the distance between

their CM. As mentioned in the previous section, the success of this model relies on

its ability to reproduce the elastic scattering data. Solving the Shrödinger equation,

Eq.(2.30) allows the construction of the asymptotic behavior of the wave function at

distances larger than the interaction radius. Then the parameters of the potential

are adjusted to give the best description of the elastic scattering. The most common
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form of the potential is

U (r) = V (r) + i[W (r) + US (r)] + USO (r) + UC (r) , (2.33)

where V refers to the real part of the potential, which is important for elastic scatter-

ing, while the absorptive potentials are represented by the volume W and the surface

US forms. Including both imaginary forms in U (r) at the same time increases the

number of the parameters that need to be adjusted. Moreover, considering that the

projectile propagates through uniform nuclear matter means that the volume poten-

tial should be involved for all cases, the surface form is often neglected in the analysis

of elastic scattering data. Also, the spin-orbit interaction form, USO, is often not

considered since it is only significant on the surface of the nucleus, in which case

the effect of the polarization depends on which side of the nucleus the projectile is

approaching. The last term of Eq.(2.33) stands for the Coulomb potential and is

usually included whenever the interaction involves charged particles. Hence, only

the optical model parameters (OMP) of the real and absorptive potential need to be

varied systematically to optimize the prediction of the experimental differential cross

section.

To obtain the OMP, the form of the chosen potential U (r) must be short range that

falls rapidly to zero near the surface of the nucleus, while the weak electromagnetic

forces act at very large distances outside the nucleus. The nuclear size, the depth,

and the surface thickness are the main characteristics of the potential. Two different

shapes are frequently used to fit elastic scattering data: the Woods-Saxon potential

and the double folding potential.
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F. The Woods-Saxon Potential

The Woods-Saxon form was introduced [39] to overcome the difficulties of applying a

square well potential with sharp edges, while the distributions of the nuclear charge

and matter fall smoothly to zero beyond the nuclear radius. The Woods-Saxon po-

tential is rather rounded, and represented by

U (r) = − (V fV (r) + iWfW (r)) , (2.34)

where V and W are related to the real and the imaginary well-depth of the potential.

The function fx (r) is the form factor

fx (r) =
1

1 + e
r−R

a

, (2.35)

where a determines the surface diffuseness, and R is the nuclear radius.

At high bombarding energies, all the nuclear interior can participate in absorbing

part of the incoming wave function, so both parts of Eq. (2.34) have the same shape

as shown in Fig. 9. While at low projectile energies, the tightly bound nucleons in

the interior are blocked from responding to the interaction by the Pauli exclusion

principle an the fact that the neighboring orbitals are already filled. Therefore, the

absorbing process will occur through the valence nucleons near the surface. In this

case the imaginary potential is described by the surface potential term of Eq. (2.33)

instead of the volume one, where US ∝ d
dr
fV (r).

In order to fit the elastic scattering data, all six parameters that characterize Eq.

(2.34) should be varied to optimize the potential. The OMP have individual effects

on the calculated differential cross section [40]. Increasing V or R shifts the angular
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FIG. 9. Volume and surface potential derived from Woods-Saxon forms. The shape

of W (r) is similar to V (r) at high energy and peaks near the surface at low

energies.

distribution toward smaller angles, while increasing the diffusivity a reduces the cross

section, especially at larger scattering angles. Increasing W smooths out the angular

distribution by decreasing the height of the maxima and the depths of the minima in

its oscillations.

G. The Double Folding Potential

Another method to analyze scattering data is to use double folding potentials for

OMP. In this model, the potential is obtained by considering the effective nucleon-

nucleon (NN) interaction between the matter distributions of the colliding particles,

where the two body operator is

V =
∑
i,j

vij, (2.36)
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i and j are related to each nucleon in the projectile and the target, respectively. The

potential is then determined by the folding expression

UF (R) =

∫
d~r1

∫
d~r2ρ1 (~r1) ρ2 (~r2) veff

(
~s = ~R + ~r1 − ~r2

)
. (2.37)

ρ (r) is the density distribution of one of the colliding nuclei in the ground state, which

may be calculated in a standard Hartree-Fock procedure [41]. The integrations are

over the coordinates shown in Fig. 10. In the absence of the spin-orbit interaction,

both densities and UF (R) are considered spherical, and the potential is only a function

of the interaction radius R. The double integrations in Eq. (2.37) are over the

nucleons in the projectile as well as in the target. The density distributions ρ are

normalized to give the number of nucleons in each nucleus. ~s = ~R + ~r1 − ~r2 is the

NN separation distance.

 

s
�

R
�

1r
�

2r
�

s
�

R
�

1r
�

2r
�

FIG. 10. The coordinates for the double folding integral, Eq. (2.37)

When the collision takes place over composite nuclei, the folding procedure may be

simplified by using a local density approximation in folding the interaction [42], which

assumes that the interacting nucleons are immersed in uniform nuclear matter with
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a density

ρ (~r) =

[
ρ1

(
~r1 +

~s

2

)
ρ2

(
~r2 −

~s

2

)]1/2

, (2.38)

where ρ (~r) averages the individual single particle densities that are evaluated at half

distance between the two interacting nucleons. It was found that realistic potentials

are obtained from the JLM effective interaction [43].

The JLM interaction is intended to produce a complex optical potential from the

double folding model. In contrast, with many other effective interactions the double

folding procedure is used to describe only the real part of the potential, while the

imaginary OMP are treated phenomenologically with a Woods-Saxon form. The

effective potential depends on the local densities as well as the energy of the incident

particle. The original JLM interaction was extracted for nucleons in infinite nuclear

matter of constant density. Then it was transposed by Bauge to nucleon-nucleon

collisions [44]. We used their effective interactions

veff (ρ,E) =
V (ρ,E) + iW (ρ,E)

ρ
, (2.39)

where V and W are for the NN interaction. The general form for the complex heavy

ion potential in JLM is improved by inserting a smearing function g (s) in Eq. (2.37)

[45], where g has the exponential form

g (s) =
1

t3π3/2
e

(
− s2

t2

)
(2.40)

that tends to δ (s) as the range parameter t → 0. The real and imaginary volume

integrals are not affected by g (s) since the finite range form factors are normalized

to one. Global analysis of elastic scattering data shows that the imaginary radius is

larger than the real radius. The optimum values for the range parameters are tV =
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1.2 fm and tW = 1.75 fm [46], but they can be taken as free parameters as well [45].

For a loosely bound p-shell nucleus, elastic scattering is strongly coupled with neutron

transfer and break up reactions, so the description of the data requires a significant

normalization of the folding potentials

U (r) = NV Vfold (r) + iNWWfold (r) . (2.41)

The elastic scattering data is then fit by adjusting simultaneously four parameters:

the normalization parameters NV and NW , and the range parameters tV and tW .

H. Asymptotic Normalization Coefficients (ANC)

The nuclear structure of the a(b + c) + X → b + Y (X + c) reaction, where c is

the transferred nucleon, is contained in the matrix elements of the overlap function

IDWBA
βα , Eq. (2.32), i. e. it is contained in the overlap between the bound state

wave functions 〈ψa |ψbψc 〉 and 〈ψY |ψXψc 〉 in the transfer reaction, where ψY is the

bound state of particles X and c. These overlaps are determined by a factor named

the spectroscopic factor S that defines the probability for the nucleus a with ψa to

be composed of the nucleon c moving with specific quantum numbers `, j relative to

the nucleus b with ψb. S gives information about the relation between the initial and

final states in the transfer reaction.

To extract information about the nuclei involved in the reaction, normalized single-

particle wave functions are generated for a nucleon binding potential around the core

assuming that they provide a good approximation of the overlap functions. However,

the absolute normalization of S is still uncertain due to the lack of spectroscopic

factor measurements and because the values derived from many nuclear reactions are
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strongly dependent on the geometric parameters of the nucleon binding potentials,

mainly the radius ro and the diffuseness a that are used to determine the single-

particle orbital.

Radiative proton capture reactions in astrophysical environment occur at distances

much larger than the radius of the capturing nucleus and at low binding energies

of the captured particles. For a direct radiative capture, the process takes place

through the tail of the nuclear overlap function. The shape of this tail is completely

determined by the Coulomb potential between the interacting nuclei, so the reaction

is peripheral. Its rate can be estimated with good precision by a single parameter,

explicitly, the ANC that gives the amplitude of this tail [47] [48] .

For the decomposition Y → X + c, the overlap function I of the bound state wave

functions for individual particles is given by

IY
Xc (~r) =

√
Y 〈ψX (ζX)ψc (ζC) |ψY (ζX,ζC , ~rXc)〉 . (2.42)

The wave function of the final nucleus ψY is written as a function of the position of the

nucleon c relative to the C.M. of the remaining nucleons in the core X, ~rXc, and ζ that

stands for the other intrinsic coordinates including spin and isospin variables. The

antisymmetrization factor
√
Y relates to the Y identical nucleons, where each one of

them can be labeled as c. Satisfying the condition of conserving angular momentum,

the above equation may be written in terms of Clebsch-Gordan coefficients as

IY
Xc (~r) =

∑
lY mlY

jY mj
Y

〈JXMXjYmjY
|JYMY 〉 (2.43)

× 〈JcMclYmlY |jYmjY
〉 ilY YlY ,mlY

(r̂) IY
XclY jY

(rXc) ,
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where jYmjY
are the total angular momentum of c and its projection in Y , `Y and

m`Y
are the orbital angular momentum of the relative motion of X and c in the

bound state Y and its projection, and the summation is over all the values of these

quantum numbers that are allowed by angular momentum and parity conservation

in the process Y → X + c. Y`Y ,m`Y
(r̂) are the spherical harmonic functions. The

last component of Eq. (2.43) IY
XclY jY

(rXc) is the radial overlap function, which is

significant to describe the one nucleon transfer reaction.

The square of the norm of the overlap function defines of the spectroscopic factor, S

SXc =

∫ ∣∣IY
Xc (rXc)

∣∣2d~r. (2.44)

The approximation of the overlap function to a single-particle wave function is usually

given by

IY
XclY j (rXc) = S

1/2
XclY jY

ψnY lY jY
(rXc) , (2.45)

where ψnY lY jY
is the normalized bound state wave function of the relative motion of

X and c, and SXclY jY
is the corresponding spectroscopic factor with the appropriate

quantum numbers nY , lY , and jY . To find the overlap function, one has to solve

Eq. (2.43) for an infinite number of coupled integro-differential equations. Since the

spectroscopic factor is a model-dependent number, its value can differ from unity due

to the coupling between any open channel with the two-body channel (Xc)lY jY
. A

single-particle approach is used such that the radial overlap function, Eq. (2.45), can

be approximated by the single-particle overlap function

IY
XclY j ≈ I

(sp)
XclY j =

[
S

(sp)
lY jY

]1/2

ψnY lY jY
(r) , (2.46)

where ψ represents the single-particle bound state wave function (Xc) that is used
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in DWBA to analyze the experimental data. If Eq. (2.45) and Eq. (2.46) are

identical in the nuclear interior and exterior, then S
(sp)
lY jY

and SXclY jY
are identical.

However, for r < R, where both I and ψ have most of their probability, the overlap

function is a many-particle object and its radial dependence may differ from the radial

dependence of the single-particle wave function. On the other hand, for r > R, their

radial dependencies are the same, and they only differ by their overall normalization,

which is given by the ANC. The asymptotic behavior of the of radial overlap function

is

IY
XclY jY

(rXc) → CY
XclY jY

W−η,lY +1/2 (2κXcrXc)

rXc

, (2.47)

where W−η,lY +1/2 (2κXcrXc) is the Whittaker function describing the asymptotic be-

havior of two charged particles interacting by the Coulomb force. κXc =
√

2µXcεXc

is the wave number of the bound state, and µXc is the reduced mass. CY
XclY j is

the asymptotic normalization coefficient. The asymptotic behavior of the normalized

single-particle bound state wave function is

ψXclY jY
(rXc) → bXclY jY

W−η,lY +1/2 (2κXcrXc)

rXc

, (2.48)

where b is the single-particle ANC. By the proper choice of S
(sp)
lY jY

, one can make Eq.

(2.46) exact for r > R. Using Eq. (2.45), the comparison between the last two

equations gives the relation that connects the single-particle spectroscopic factor to

the ANC

S
(sp)
lY jY

=

(
CY

XclY jY

)2

(blY jY
)2 . (2.49)

The experimental cross section in conventional DWBA is parameterized by the prod-
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FIG. 11. The pole diagram describing the transfer reaction of the nucleon c and the

importance of the ANCs for both vertices of the reaction.

uct of the spectroscopic factors of the initial and final channels in the form [49]

dσ

dΩ
=

∑
jY ja

SbclajaSXclY jY
σDW

lajalY jY
, (2.50)

which can be written in terms of the ANCs by using Eq. (2.49)

dσ

dΩ
=

∑
jY ja

(
Ca

bclaja

)2 (
CY

XclY jY

)2 σDW
lajalY jY

b2bclaja
b2XclY jY

. (2.51)

The ANC is a property of the transfer reaction and its value can be extracted exper-

imentally, while b is calculated theoretically. The strong dependence of the DWBA

cross section and b on the geometric parameters of the Woods-Saxon potential, mainly

ro and a, cancel each other, so that the ANC is nearly a model-independent char-

acteristic of the nuclear states. Eq. (2.51) implies that the value of CY
XclY jY

can be

extracted if the ANC Ca
bclaja

of the complementary vertex is known, as shown in Fig.

11.
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The main purpose is to find a relation between the ANC and the peripheral radiative

capture reaction at low energy that leads to a loosely bound final nucleus: A + p→

B+γ. The amplitude of the matrix element of the radiative capture reaction is given

by

MDC ∝
〈
ψB (ζA, ζp;~r)

∣∣∣Ô∣∣∣ ψA (ζA)ψp (ζp)ψ
+
i (~r)

〉
. (2.52)

Ô is the electromagnetic transition operator, and ψ+
i (~r) is the scattering wave func-

tion in the initial state. The greatest interest in nuclear astrophysics is when the

scattering energy goes to zero. The initial scattering wave function is a Coulomb

wave. So any ambiguities associated with the proton-nucleus interaction are elimi-

nated. After integration and summation over the internal degrees of freedom, the

formula for the direct capture cross section is [48]

σDC =
∑
jB

(
CB

AplBjB

)2 σ̃B
lBjB

b2AplBjB

. (2.53)

Thus, the only unknown quantities in the last relation are the ANCs. Once they are

obtained in a peripheral nuclear reaction, they can be used to calculate the direct

capture amplitude and the astrophysical S-factor. The good agreement between the

directly measured astrophysical S-factors compared to those determined using the

ANCs in 16O(3He, d)17F points out that the method is applicable to determine direct

capture reactions to better than 9% [50].

I. The ANCs for 22Mg(p, γ)23Al from 13C(22Ne,23Ne)13C

22Mg plays an important role in the production of 22Na in the hot NeNa cycle. Its

destruction by the radiative proton capture reaction 22Mg(p, γ)23Al must be investi-

gated. The Gamow windows of the reaction for several temperatures in ONe novae

are shown in Fig. 12. Wiescher et al. [51] calculated the reaction rate due to the
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contribution of the direct capture from 22Mg to the ground state of 23Al. Later, the

excitation energy of the first excited state in 23Al was measured [52] and its strength

was estimated from a shell model calculation and the nuclear structure of the mirror

nucleus 23Ne. The ground state in 23Al is 5/2+ and the orbital angular momentum for

a proton to occupy this state is ` = 2. The first excited state in 23Ne has Jπ = 1/2+.

Its analog state in 23Al is predicted as the only resonance important in 22Mg(p, γ)23Al

[51]. Its excitation energy is Ex = 0.528 (20) MeV [53].

Recently, an experimental study of the β decay of a pure sample of 23Al to determine

the absolute branching ratios and ft values to states in 23Mg confirms unambiguously

that the ground state in 23Al is 5/2+ [55]. This result coincides with the measurement

of the magnetic moment of 23Al, which agrees with shell model calculations for Jπ =

5/2+ [56]. Hence, the ground state spin and parity of 23Al are settled. For the

resonant state in 23Al, the γ-ray width, Γγ = 7.2 ± 1.4 × 10−7 eV [57], was obtained

experimentally using Coulomb dissociation of 23Al. This value is compatible with Γγ

= 5.49 × 10−7 eV predicted in Ref. [53] and Γγ = 6 × 10−7 eV estimated in Ref.

[58].

Direct measurements of the 22Mg(p, γ)23Al reaction at stellar energies have not been

reported yet due to several difficulties. It is impossible to make 22Mg
(
t1/2 = 3.86s

)
as a target and difficult to obtain an intense 22Mg beam for direct measurements in

inverse kinematics. In order to avoid these difficulties, the ANC method is proposed

to determine 22Mg(p, γ)23Al reaction rate.

23Al is a weakly-bound proton-rich nucleus close to the drip line. Since the spin

and parity of its ground state and resonance are equivalent with its mirror 23Ne,
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FIG. 12. The Gamow peak for the 22Mg + p reaction at typical ONe temperatures.

Solid lines represent the integrand of Eq. (2.14), while the dashed lines are

the Gaussian approximation used in Eq. (2.18).
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and the wave functions for mirror nuclei are similar, the ANCs can be extracted in

23Ne which is easier to study. Charge symmetry of the nuclear force implies that

the spectroscopic factors for mirror nuclei are the same, and the ratio between their

ANCs is independent of the NN force. The difference in the values of the ANCs is

due to the presence or absence of the Coulomb potential. By studying the relation

between the mirror nuclei within a microscopic cluster model that considers the many

body nature of atomic nuclei and involves the variation in nuclear structure because

of the charge symmetry, Timofeyuk [59] indicates that the spectroscopic factors for

〈23Ne (5/2+) | 22Ne (0+)〉 and 〈23Al (5/2+) | 22Mg (0+)〉 differ by only 2%. Hence, the

proton-capture reaction 22Mg + p → 23Al can be studied with the neutron transfer

reaction 22Ne + n → 23Ne using stable beam and target. The ANCs of the ground

state and the first excited state in 23Ne will be extracted, and then transposed to the

corresponding values for states of 23Al.

The basic relations of this indirect technique, ANCs, can be explained in terms of

the peripheral transfer reaction 13C(22Ne,23Ne)12C, where the 22Ne beam picks up a

loosely bound neutron from the 13C target. The differential cross section for the 23Ne

ejectile will be measured to obtain the ANCs. For this reaction, the differential cross

section values can be related to the DWBA calculations by the product of the square

of the ANCs

dσ

dΩ
= C2

p
1/2

(
13C

)
C2

d5/2

(
23Ne

) σDWBA
1
2
, 5
2

b2p
1/2

(13C) b2d5/2
(23Ne)

. (2.54)

To extract the value of C2
d5/2

(23Ne), the ANC for the complementary vertex that

comes from 13C → 12C + n is explicitly required. Its ANC value or the equivalent

nuclear vertex constant were widely studied [60] and are knowm with uncertainties

less than 6%. Also, the deduced spectroscopic factors from (d, p) and (p, d) reactions
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are mutually consistent to within 15% for incident deuteron energies from 12 to 60

MeV [61].

The nuclear structure of 23Ne is located in the middle of the mass region that has

received significant attention for the aim of giving a microscopic description of several

nuclear phenomena near the beginning of the sd-shell. Several studies were dedicated

to measure the spectroscopic factor for the states in 23Ne, mainly the bound d-wave

and s-wave states. Both pick-up and knock out reactions have been performed in

the form of (p, d) and (d, p) reactions, respectively, then compared with theoretical

expectations. For Jπ = 5/2+, the average value for S extracted experimentally is

0.24± 0.03 [62], which is slightly less than 0.34 from an Oxbash calculation [63]. For

Jπ = 1/2+, the value from different transfer experiments for C2S is 0.37-0.7 in [64],

and the expected value is 0.70± 0.03.

However, the ANCs for the same states in 23Ne had not been measured experimen-

tally prior to this work. Calculations for one-nucleon ANCs in a microscopic cluster

model using two effective NN interactions in the form of Volkov (V2) and Min-

nesota potentials (MN) predicts that the ANC for Jπ = 5/2+ is 0.71 fm−1 or 0.81

fm−1, respectively [59], and their average spectroscopic factor is 0.28. The ANC for

Jπ = 1/2+ has the value of 16.3 fm−1 or 18.5 fm−1 from V2 or MN, respectively, with

a spectroscopic factor of 1.08 [65]. This research presents the first experimental mea-

surements of the ANCs for the ground state and first excited state in 23Ne. Another

self-consistent experiment reported in this dissertation is the study of the exchange

reaction 13C(12C,13C)12C in order to measure C2
p1/2

(13C), which is needed to complete

the above experiment.
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J. Extracting the ANC of 18Ne from Its Mirror 18O

Studying the reaction rate for 17F(p, γ)18Ne in ONe novae is important to understand

the production of the elements in the HCNO cycle, and investigate the missing γ-ray

from the decay of 18F. The Gamow windows of the reaction for several temperatures

in ONe novae are shown in Fig. 13. The rate of this reaction has been determined

by applying several theoretical methods and experimental measurements. Wiescher,

Görres, and Thielmann noticed that the Jπ = 3+ level in 18Ne greatly influences

the thermonuclear reaction rate [66]. Based on a shell model description, the s-wave

proton couples with the 5/2+ ground state of 17F to populate the 3+ level that is

located above the proton threshold, Q = 3.922 MeV. The predicted properties of

the 3+ state from Thomas-Ehrman shift and shell model calculations, applied to

experimentally known 3+ states of the isospin triplet T = 1 analog levels in 18O and

18F nuclei, estimate that the excitation energy of the level in 18Ne has an average value

Ex = 4.51 MeV [66, 67, 68]. Recent experiments have obtained precise information

about the energy of the 3+ level and its total width [69, 70]. The values of the

excitation energy and the Γp are summarized in Table I.

Estimates of the reaction rate show that the resonant capture to the 3+ state domi-

nates the rate only at T9 > 0.5 [71], which is an appropriate temperature for explosive

events such as X-rays bursts and supernovae, while at typical nova temperatures,

T9 ≤ 0.4, the direct capture reaction to the bound states in 18Ne dominates the rate.

However no direct measurements have been reported or performed yet.

The nuclear structure of 18Ne depends on the configurations and the binding energy

of the levels in the mirror nucleus 18O taking into account the Coulomb energies.
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FIG. 13. The Gamow peak for the 17F + p reaction at typical ONe temperatures.

Solid lines represent the integrand of Eq. (2.14), while the dashed lines are

the Gaussian approximation used in Eq. (2.18).
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TABLE I. The Γp width for the resonance 3+ state in 18Ne from several experimental

studies.

Reference Ex [MeV] Γp [keV]

[66] 4.328 5

[67] 4.561 22

[68] 4.642 42

[69] 4.523 18

[70] 4.527 17

Shell model calculations assume a 2s or 1d nucleon coupled to the single particle

5/2+, 1/2+, and 3/2+ levels of 17O and 17F. Comparison of the nuclear structure of

the mirror nuclei for the low-lying states is listed in Table II [68]. Estimating the

nuclear cross section based on the configuration of the state, and using the selection

rules for one nucleon transitions within the shell model calculation, predicts that

the 17F(p, γ)18Ne reaction will be dominated by direct capture to the lowest energy

Jπ = 2+ states, mainly Ex

(
2+

1

)
= 1.887 MeV and Ex

(
2+

2

)
= 3.616 MeV [67].

Using the same arguments as in the previous sections, the ANC technique is con-

sidered as an alternative method to determine the 17F(p, γ)18Ne direct capture rate.

However, analyzing the capture to these levels may be strongly affected by the non-

negligible contribution of resonances, where γ-ray transitions from higher energy levels

may occur. A study of the E1 and M1 contributions to the direct and resonant re-

action rate and their consequences on the astrophysical S-factor is reported in Ref.

[72]. More experimental inspections of resonant components are needed to disentangle

their effects from the direct capture reactions.
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TABLE II. Mirror states in 18Ne and 18O, where all the energies are in keV.

Jπ Ex(
18O) Ex (18Ne)

Expt. Expt. Calc.

0+
1 0 0 -44

2+
1 1982 1887 1877

4+
1 3555 3376 3419

0+
2 3634 3576 3553

2+
2 3920 3616 3574

2+
3 5255 5090 5022

3+
1 5378 4525 4642

Since the spectroscopic factor for mirror nuclei are the same, the ANC method can be

applied to the mirror nucleus 18O to extract the ANCs for the Ex

(
2+

1

)
= 1.982 MeV

and Ex

(
2+

2

)
= 3.920 MeV states. The suggested experiment is the peripheral neutron

transfer reaction 13C(17O,18O)12C. Using a stable beam will improve the accuracy of

the nuclear cross section, and increases the ability to separate the interesting levels

in 18O.

The nuclear structure of 18O has a great theoretical interest in studying shell-model

effective interactions derived from the NN force. In viewing the 18O nucleus as an

17O core surrounded by one neutron in the sd-shell, the energy levels of 18O depend

on the coupling of an s or d neutron to the ground state Jπ = 5/2+ of 17O.
(
d5/2

)2
,(

d5/2s1/2

)
, and

(
d5/2d3/2

)
configurations lead to the population of (J = 0+, 2+, 4+),

(J = 2+, 3+), and (J = 1+, 2+, 3+, 4+) levels in 18O, respectively.
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The energy gap between the d5/2 and d3/2 levels is of the order of 5 MeV. The pairing

energy of two neutrons in the
(
d5/2d3/2

)
configuration is 1.5 MeV, only excited states

at energies higher than 7 MeV will occur [73]. Thus, the low-lying 2+ levels will

have contributions from both
(
d5/2

)2
and

(
d5/2s1/2

)
, while 0+ and 4+ levels result

from a pure
(
d5/2

)2
configuration. Measurements of 17O(p,d)18O [74] found that the

spectroscopic factor for the Ex

(
2+

1

)
is an admixture of

(
d5/2

)2
and

(
d5/2s1/2

)
configu-

rations with the values 0.83 and 0.21, respectively. Similarly, the spectroscopic factors

for Ex

(
2+

2

)
are 0.66 and 0.35 for

(
d5/2

)2
and

(
d5/2s1/2

)
arrangements, respectively.

The results were obtained by fixing the geometric parameters of the Woods-Saxon

potential for the radius, ro = 1.25 fm, and diffuseness, a = 0.65 fm. Varying these

geometries, (ro, a), will change the relative magnitude of the spectroscopic factors for

s1/2 : d5/2 by almost 15%.

The ANCs for peripheral transfer reactions are more useful characteristics of nuclear

states for calculating astrophysical reaction rates than the spectroscopic factors. Their

values for lowest 2+ states in 18O have not been determined. Thus, this research

reports the first measurement of the ANCs of the 1.982 MeV and 3.920 MeV levels

and their relations to the determination of the 17F(p, γ) 18Ne reaction rate. A parallel

measurement was carried out to obtain the ANCs for the low-lying states in 18Ne

by measuring the peripheral proton transfer reaction 14N(17F,18Ne)13C with aim of

populating the first 2+ states [20]. However, no results have been published yet.
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CHAPTER III

EXPERIMENTAL SETUP AND PROCEDURES

A. The Experiments

Three experiments were carried out at the Texas A&M University K500 Supercon-

ducting Cyclotron facility to measure the following neutron transfer reactions:

1. 13C(12C, 13C)12C

2. 13C(22Ne, 23Ne)12C

3. 13C(17O, 18O)12C

In addition to measurements of neutron pick-up from the loosely bound nucleus 13C,

measurements of the elastic scattering cross sections for the incoming and outgoing

channels of each reaction were also performed. In each case, the beam was aligned to

bombard perpendicular to the self-supporting 100 µg/cm3 13C target. The energy of

the beams was carefully selected to ensure that the above reactions are peripheral.

Predicting the cross section of a heavy-ion nuclear reaction can be done with the help

of the T -matrix, which represents the right hand side of Eq. (2.28). It describes

the probability amplitude for the transition from the incident momentum pi to the

final momentum pf , through the action of the potential Vβ. Figure 14 shows the

variation of the T -matrix as a function of the orbital angular momentum ` for a

specific example, 17O + 13C transfer reaction. The maximum value of the matrix at

`o depends on the size of the system and the energy under consideration. The relation

between the beam energy and the impact parameter is given by

b = λ̄(`o + 1/2), (3.1)
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FIG. 14. The dependence of the absolute value of the T -matrix on the orbital angular

momentum `, where the maximum point gives information about the nuclear

radius of the interaction.

where λ̄ relates to the incident wavelength. For 17O + 13C at Elab = 12 MeV/A,

the value of `o is 37, which implies b equals 6.68 fm. The sum of the radii of the

colliding particles R = ro(A
1/3
1 + A

1/3
2 ) is 5.95 fm. Since b > R, this implies that the

interaction between the nuclei will be peripheral. An alternative way to check for the

peripherality is by using the relation between the predicted DWBA calculation and

the single-particle ANCs as in Eq. (2.51). When the reaction is peripheral, the ratio

between them should be independent of the geometries of the Woods-Saxon potential.

For example, plotting the DWBA cross section for 13C(17O, 18O)12C as a function of

the single-particle ANC b(18O), as shown in Fig. 15, shows that their ratio varies by

less than 3% which gives an indication that the reaction is peripheral at this energy. In

addition to these considerations, the energy was also chosen to be above the Coulomb

barrier to avoid the overlap between the amplitudes of the elastic scattering and the

direct exchange reaction, mainly for the case of the 13C(12C, 13C)12C reaction.
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FIG. 15. The reaction 13C(17O, 18O)12C is expected to be peripheral at ELab = 12

MeV/A. The ratio between the maximum value in the DWBA calculations

and the single-particle ANCs for both vertices of the reaction is independent

of the choice of 18O single-particle wave function when ro = 1.1-1.3 fm and

a = 0.5-0.65 fm, while the b value for 13C is fixed.

B. The MDM Spectrometer and the Oxford Detector

After accelerating the ionized beam in the cyclotron, it was transported through the

beam analysis system (BAS) as shown in Fig. 16. The BAS is composed of magnetic

dipoles that bend the beam 175 degrees in two opposite direction 87o and 88o segments

with intermediate horizontal and vertical focusing quadrupoles between the segments.

The BAS is used to clean the beam from the slit scattered particles, to improve and

control the energy and angular resolution of the beam, and to match the dispersion

of the beam from the cyclotron to that of the spectrometer [75].

The 13C target was located at the center of the sliding-seal target chamber of the

multipole-dipole-multipole (MDM) spectrometer [76]. The MDM magnetic spectrom-

eter, which is sitting on a moving table, was used to analyze the reaction products.
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FIG. 16. The K500 Superconducting Cyclotron facility.

The operation of one main dipole magnet provides simplicity and reliability under

experimental conditions. It has a maximum field strength of more than 1 T with

an overall 100o bend and 1.6 m central radius, as shown in Fig. 17. The convex

curvature of the entrance opening of the big magnet body minimizes the image aber-

rations [76]. On the other hand, the concave boundary at the exit opening allows

the incident particles to be normal to the focal plane angle, which is assumed to be

in the xy-plane and particles propagate in z-direction. The median plane that lies in

zx-plane is parallel to the plane of magnetic analysis with a deviation angle θ, while

φ denotes angles in the yz-plane. These two curvatures serve as extra sextupole field

components.

The spectrometer configurations are adjusted by the magnetic fields of the single

dipole and the multipole in front of it for the aim of achieving larger dispersion,

low magnification, and higher mass-energy products. For the measurements reported

here, they are usually set to transport either the elastically scattered beam or the
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nuclei that picked up a neutron from the target. The values of the magnetic elements

were determined by using the RAYTRACE computer code [77]. RAYTRACE tracks

the path of the particles beginning from the output of the target chamber, then

through the MDM magnet to the end of the detection area, taking into account the

geometries of the MDM spectrometer and the magnetic multipole components.

The modified Oxford detector [78] was used to observe the reaction products. The

detector has multi-functional capabilities. It has been used to identify the particles

and measure their positions along the dispersive x-direction. By measuring the direc-

tion of the particles in the xz-plane, we can reconstruct the scattering angle at the

target as a function of the beam deviation in the detector.

The Oxford detector is an ionization chamber [79] with entrance and exit windows

in the external box of the chamber. These windows were made of 25 and 50 µm

thick polyethyelene (Mylar) foil, respectively. Their dimensions are large enough for

the utilization of the full efficiency of the detector. The chamber was filled with

pure isobutane gas at low pressure 30-50 Torr. Isobutane has been chosen due to its

great stopping power and minimal multiple scattering of the ions for a specific energy

loss. Important precautions were considered to reduce the contamination of the gas.

The detector volume was connected to the spectrometer high vacuum system. Once

the pressure went almost to zero, the isobutane was pumped into the chamber. In

order to minimize any further impurities of the gas during the experiment, a low-cost

flow-regulation system was installed to slowly refresh the isobutane in the chamber

without affecting its required pressure value. The energy of the beams was selected

to be sufficient so that the reaction products would lose part of their energy in the

ionizing the gas and the Mylar windows, and stop completely in a NE102A scintillator
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located in the air, about 42 mm behind the exit window.

The inside structure of the detector, as shown in Fig. 18 and Fig. 19, consists of two

electrodes to measure the ion energy loss and four resistive avalanche counters (ACs)

to determine the position of the particles in the focal plane and their deviation angles.

The detector has a multi-wire Frisch grid that is designed to be 10.5 cm above the

cathode to minimize the possibility of multiple scattering positive ions that may pass

through the grid or hit the cathode. Another four small (screening) grids beneath the

ACs were added to shield the lower Frisch grid from escaping positive ions produced

in the ACs’ shells. The voltages are chosen so these grids are transparent to electrons

drifting upward.

A rectangular frame of G10 glass fiber was designed to support the wires of the

grids. Grooves were added to the frame to space the wires uniformly. Each 80

µm Be-Cu wire was straightened and tensioned by hanging weights on both ends,

then epoxy glue was applied to keep it taut and place it dominantly in the groove.

Finally, it was soldered to the attached circuit boards along the edges of the internal

body of the detector for electrical contact. To correct the electric field between

the electrodes, fourteen 80 µm Be-Cu field shaping wires with double banks, 7 mm

separation between each two banks and 7 mm vertical spacing, were added around

all the four sides of the detector. The particles are then identified by measuring

the energy loss in the ionization chamber and measuring the residual energy in the

scintillator.

To measure the position of the particles in the focal plane, four resistive wires (ACs)

were used. The ACs are located at four different depths within the detector, parallel
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FIG. 18. The upper drawing represents a cross section view of the Oxford detector

with its main internal parts. The field shaping wires along the sides of the

detector, the Frisch grid, and the front window covered with Mylar foil are

shown in the bottom left picture. The position of the four ACs, the anode

plates, the connection cables, and the attached circuit boards along the edges

of the detector are shown in the right picture.
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FIG. 19. The electrical circuits that connect the internal parts of the Oxford detector

in order to apply HV and get the signals that will be sent outside the detector

to the amplification system.
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to the focal plane and separated by 16 cm each. The first wire is 2 cm behind the

entrance window. The body (shell) of each AC is 40 cm length and is made of a

rectangular aluminum bar with a U-shaped groove. A 10 µm Ni-Cr wire (anode)

was tensioned and soldered to coaxial connectors at each side of the counter. A

power supply with smoothly increasing voltage was used to avoid the breakage of

wires when high voltages were applied. When a few electrons drifting up penetrate

through the grid into the AC, the applied fields accelerate them toward the center

of the wire. An avalanche is generated in a tiny distance along the wire comparable

to its diameter. The position of the incident electrons along the wire is determined

through charge division. The charge drifts to both ends of the wire, then is collected

by two amplifiers. Since the anode wire has a significant resistance per unit length,

the position of the interaction is determined by dividing the output signal of either

amplifier by the sum of the two. The confinement of the avalanche to a small area

allows good position resolution along the wire. The detector angle is then determined

by tracking the path of the ions using the position signals in two of the four ACs.

C. The Data Acquisition System and Electronics

Collecting the data required monitoring and saving 8 signals from the ends of the

four resistive wires, 2 energy loss (∆E) signals, 2 residual energy (Er) signals from

the scintillator, and 2 signals from the cathode and field shaping wires (sides). All

these signals were processed by preamplifiers and amplifiers, then digitized and sent to

CAMAC ADCs as shown in Fig. 20. The high voltages (HV) applied in the detectors

were optimized empirically depending on the particles and their energies, and the gas

pressure. The applied HV on the wires were around 1 kV.
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A pulser signal was sent to the left and right ends of each wire to match the ampli-

fication gain in the electronics. Then the position signal was determined in the data

analysis software using

P = A
L

L+R
, (3.2)

where L and R are integer numbers resulting from the digital conversion of the analog

signals, and A is the number of the channels in the AD413 ADC. The resolution of

the wires using the pulser peak was 0.4 mm FWHM. The angle deviation of the beam

was measured depending on the information of their position signals and the distance

between them.

The anode plane is made of four adjacent plates. The first three plates were connected

by conductive wires as shown in Fig. 18 to give a ∆E1 signal that covered almost

70% of the detection area, while the last plate near the exit window gave the ∆E2

signal. The two signals were added using a Dual Sum and Invert module. Their

resolutions depended significantly on the energy of the beam and the gas pressure in

the ionization chamber. The HV between the electrode plates was of the order of 700

V. Since the AC bodies are close to the anode plates, any crosstalk problem due to

increasing the HV of the resistive wires was eliminated by inserting 10 nF capacitors

between the ACs and ground. The sides signal was taken to account for the energy

loss of the beam in the region away from the center of the detector and near the

field shaping wires since the cathode and the Frisch grid do not form a complete

Faraday cage [79]. Also the cathode signal was included in the acquisition system to

be coupled with the ∆E signals to get a better resolution. However, we faced noise

problems with these two signals that reduced their benefits, and therefore they were

neglected.
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The particles were stopped by depositing all their residual energies in a 1.3 cm thick

NE102A plastic scintillator. The Er signals were taken from two photomultipliers

(PM). Their circular photocathodes are connected to the left and right sides of the

flat sheet of the scintillator via plexiglass light guides. Negative 1600 V was applied on

each PM as recommended by the manufacturer. The PMs were tested with a strong

radioactive source before being attached to the MDM to check for sources of noise

or any external light leak. Both the left and right dynode signals, which represent

the overall gain of the PM, were sent through the amplification process to an AD811

ADC. The signals were also summed in the hardware system to get a general picture

of the energy deposited in the scintillator. They were used with the ∆E signals for

particle identification.

Because the time response of the scintillation detector is short relative to the ACs,

the anode output pulse of the right PM was used as the electronic logic signal to

activate several operations such as the recording instrument. A constant-fraction

discriminator (CFD) was used to accept all the incoming signals with pulse heights

greater than its threshold, then convert them to logic signals. The threshold was

set above the noise level. The logic signal was then passed on to a coincidence logic

unit, which has another input signal from a CBD 8210 module that was used to veto

events when the data acquisition system was busy. This system, as shown in Fig.

20, included a VME frontend and a backend host computer. The VME frontend

consisted of a VME crate with a Motorola MVME 712/M Ethernet interface module

and the CBD 8210 module. The backend host computer was a Dell 1650 PowerEdge

server that connected with the frontend by an Ethernet cable. When the computer

was not busy processing the events, a trigger pulse from the logic unit was fed to a

fan in/fan out unit to divide the logic signal into several identical signals, then send
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them to a gate generator. The gate generator produced adjustable width gate pulses

to activate the ADCs to read out the signals from the amplifiers. The dead time of

the acquisition system was determined from the ratio between two scalars. The first

one counted the total number of anode pulses by reading directly the output of the

CFD (ungated events), while the other scalar counted the events after being gated.

D. The Preliminary Analysis of the Raw Data

An interactive data analysis manager was developed under Linux using ROOT frame-

works with C++ language. This ROOT macro was the premier platform for the data

analysis, where raw data were monitored and saved simultaneously during the exper-

iment.

Directly after the target chamber, a slit-box was added to the beam line to contain

three different masks. A single-slit mask with one 0.1o opening was used to examine

the energy of the incident beam. This was done by investigating the magnetic rigidity

(Bρ) of the MDM and the acceptance limit of the Oxford detector. The dipole

magnetic field was increased and decreased to points where the PMR signal rate

dropped almost to zero, which indicated that the elastically scattered beam hit the

sides of the front window of the detector. The median value of Bρ between these limits

was then used to determine the beam energy. The second mask has five openings (5-

finger) of δθ = 0.1o, located at -1.54o, -0.77o, 0o, 0.77o, and 1.54o relative to the

central angle of the spectrometer. This mask was used for detector calibration as will

be discussed in the next section. The last mask has a wide opening that restricted

the acceptance of the detector, but increased its efficiency, horizontally to ∆θ = ±2o

and vertically to ∆φ = ±0.5o. Measuring the whole range of the angular distribution
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for the elastic scattering and the transfer reaction required moving the spectrometer

by 2o or 3o at a time to allow for an angle overlap that provided a self-consistency

check of the data at all angles.

An example of the wire signals can be seen in Fig. 21, taken with a 22Ne beam inci-

dent on a gold target, 197Au, when the spectrometer angle was 50. The Rutherford

scattered beam passed through the 5-finger mask and followed five trajectories at

different angles. The left and right pulse heights were inserted in Eq. (3.2) to de-

termine the location of each trajectory in the wire, then combined with the position

information from the other wires to specify the path of the beam in the detector. The

amplitudes of the pulses were also examined to adjust the applied HV on the wires

to avoid loosing signals on the their edges.

Typical examples of the Er and ∆E pulses are shown in Fig. 22, where the 13C

target was bombarded by the 22Ne beam. The results of the reaction passed through

the 4o × 1o mask and the MDM was set at 5o, which allowed measuring the angular

distribution in the range of 3o-7o at once. Filling the histogram of ∆E versus Er in the

ROOT macro identified all the particles that were observed by the detection system.

Running a Monte Carlo simulation assisted in defining the particles that needed to

be studied. The analytical details will be discussed later in Chapter IV.

E. Oxford Detector Calibrations

1. Position Calibration

The position calibration was performed to determine the trajectory of the scattered

or produced particles along the dispersive x-axis and in the focal plane. The main
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objective was to calibrate the position spectrum in Fig. 21 for each of the four

wires. To do that, the beam bombarded a 197Au target with MDM at 5o. The

kinematics of the reaction were determined to obtain the Bρ in the middle region of

the detector. Since the range of Bρ values for the scattered particles to pass through

the detector were specified with the single-slit mask, the 5-finger mask was used to

measure the trajectories of the particles for four different Bρs covering the full length

of the resistive wires. RAYTRACE was used to calculate the corresponding positions

on each of the four resistive wires (in centimeters). Then, the calibration was made

by matching the positions calculated (POSC) by RAYTRACE with the measured

positions (POS) given by Eq. (3.2) as shown in Fig. 23. The positions and angles

of the particles on the first wire were easily separated. Depending on their measured

angles when they crossed the first wire and the separations between the four wires,

their positions on the other wires are determined by

xij = x1j +Ditan(θ1j), (3.3)

where i refers to the second, third, and fourth wires, while 1 is for the first wire. Each

trajectory is represented by j. Before the beginning of each experiment, RAYTRACE

was also used to identify the position of the focal plane, which was used to fix the

optimal distance between the Oxford detector and the MDM in order to keep the

focal plane in the detector, while changing the spectrometer angle.

2. Angle Calibration

The deviation angle of the particles in the detector θd was measured from their posi-

tion in any two of the four wires. To get the angle of the reaction at the target θt in

the analysis of the data, RAYTRACE was used to obtain θt as a function of θd. Un-

like the position calibration, the angle calibration was done using only RAYTRACE.
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FIG. 23. The 22Ne beam scattered on the 197Au target at 5o spectrometer angle and

the 5-finger mask was used. The wires’ figures show the linear correlations

between the POS and POSC to get the position calibration. The bottom

figure shows the trajectories of the scattered particles on each wire for four

Bρ values. The position of the focal plane is clearly on the third wire.
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The calculation of θd was performed at seven θt angles for several beam energies at

the same Bρ in the MDM. A second degree polynomial relation was found between

θd and θt angles for each incident energy as in the following relation:

θt = A+Bθd + Cθ2
d (3.4)

Changing the beam energy in RAYTRACE will change the position x of the particles

in the focal plane, and the parameters A, B, and C are functions of the beam energy,

or simply they are functions of the focal position x. In another words, x depends on

the momentum and deviation angle of the particles after colliding with the target,

so x ≡ f(p, θ). This dependence can be approximated to the first order by a Taylor

series:

x = xo (po, θ0) + (θ − θo)
∂x

∂θ
+ (p− po)

∂x

∂p
(3.5)

The first term is related to po and θo, the values of the momentum and angle directly

after the particles interact with target. The second term gives the magnification of

the outgoing beam in the spectrometer, and it depends on the settings of the MDM

and the z-location of the focal plane. The last term depends on the kinematics of the

reaction. The momentum p of the particles in the detector can be written as p = po(1+

k(θ)δθ). This can be rearranged to use the kinematics factor k (θ) ≡ (1/po) dp/dθ,

which is defined as the fractional variation of momentum with the scattering angle.

The dispersion of the beam in the focal plane (in units of cm/%) is Dx = ∂x
∂p/po

. At the

focal plane, the effects of the magnification and kinematics terms cancel each other.

Therefore, the position x depends only on po and θo, and the constant parameters A,
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B, and C are related to x using:

A = A1 + A2x+ A3x
2

B = B1 +B2x+B3x
2

C = C1 + C2x+ C3x
2

(3.6)

where Ai, Bi, and Ci are the final calibration parameters. An illustration of the

calibration is shown in Fig. 24. The angle calibration was calcualted for each spec-

trometer angle and each outgoing particle that was intended to be studied. Then it

was checked online with the 5-finger mask at several locations of the MDM for any

further adjustments.
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FIG. 24. The figures show a specific case, which represents bombarding the 13C target

with 22Ne beam, where the spectrometer angle was at 5o. The relation be-

tween the angles at the target (θt) and the detected angles at the detector(θd)

was calculated at seven θt angles: 0o, ±0.77o, ±1.54o, and ±2.31o. Then, it

was fit by a polynomial function to obtain the values of A, B, and C. Those

parameters were drawn as functions of the dispersive x-axis in the detector

for several incident energies of the beam to get the final parameters, which

were used for the angle calibration.
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CHAPTER IV

DATA ANALYSIS AND EXTRACTING THE ANCS

A. The Differential Cross Sections

When the flux of incident beam irradiates the surface area of the target, the prob-

ability to observe scattered particles per solid angle unit is proportional with the

differential cross section defined as

dσ

dΩ
=

Scattered flux/Unit of solid angle

Incident flux/Unit of surface
. (4.1)

In order to determine the differential cross sections [in units of b/sr] the definition

from Eq. (4.1) becomes

dσ

dΩ
(θ) =

Y (θ)

NtNFC∆Ω (θ)
, (4.2)

where the yield Y (θ) represents the the number of events of a given type that were

measured in the Oxford detector at a specific scattered angle θ ± 1/2∆θ. ∆Ω (θ)

is the solid angle under which the collected scattered flux was allowed to enter the

MDM and travel to the detection box, and its value depends on the mask that had

been selected in the slits-box. The last components in the dominator of Eq. (4.2) are

the number of target centers Nt (the thickness of the target in atoms/cm2) and NFC

the total number of the incident particles on the target. The beam was stopped in

a Faraday cup, where its collected charge was converted in the beam integrator into

total charge Q and was measured by a scaler, as shown in Fig. 20. NFC was then

determined by dividing this integrated charge Q by the charge of the beam qi (+Ze

in our case as at our energies the beam is fully stripped after passing through the

target).
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Measurements of the thickness of the Au, 12C, and 13C targets were performed online

with two different beams using a double-target method. First, the 22Ne beam at 12

MeV/A bombarded a thin gold target, and the elastic scattering (pure Rutherford)

was measured with the MDM at 5o. The position of the elastic peak along the disper-

sive x-axis in the focal plane of the detector was determined. Then the 13C target was

added in front of the Au target while keeping the spectrometer unchanged and the

new position of the elastic scattering along the x-axis was measured. The measured

difference in positions due to the supplementary energy loss of the 22Ne beam in the

13C target was transformed into energy loss using RAYTRACE. The 13C thickness

was determined from this energy loss using the TRIM code [80].

A similar procedure was followed to determine the thickness of the Au and 12C targets.

The thicknesses were remeasured again online with the 17O beam, then rechecked

offline with a radioactive 228Th α-source. The average thickness of the 13C target is

104± 8 µg/cm2, 12C is 109± 9 µg/cm2, and one of 197Au targets is 219± 17 µg/cm2.

A 7.5% accuracy was assigned to the absolute values of the differential cross sections

due to the precision in determining the thickness of the targets.

Since for high Z targets at our beam energy and small angles the reaction will be

pure Coulomb scattering, the Au target was also used in the experiments to test

the efficiency of the Faraday cup in order to get the correct normalization of the

cross section values. For a specific case, the scattered 17O particles were measured at

spectrometer angles of 4-8 degrees. The yield was then compared with the calculated

Rutherford scattering as shown in Fig. 25 to give a normalization factor of 1.02. This

process was neglected for the experiment that included the 12C beam because the NFC

number was not recorded correctly. On the other hand, the 22Ne beam experiment
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FIG. 25. The elastic scattering of 17O on Au at 204 MeV is compared to the Rutherford

scattering at small laboratory angles. The 1.02 factor between measurements

and calculations indicates that normalizing the data with Faraday cup is

good.

required a Faraday cup normalization factor of 30%.

B. The 13C(12C,13C)12C Experiment

Interactions between the 12C and 13C nuclei with well-established shell structures

have been widely studied. They provide precise and consistent methods to study

single-nucleon transfer reactions, where spectroscopic factors and vertex constants,

or ANCs, are wanted. The 13C(12C,13C)12C reaction has identical entrance and exit

channels, which may lead to an overlap between the elastic scattering and elastic

transfer reactions. The current part of the research investigates the effect of the

overlap when the energy of the incident 12C particles is above the Coulomb barrier.

On the other hand, choosing a transfer reaction with the same initial and final states

reduces the dependence on different spectroscopic factors to the square of one. From
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these transfer data, the ANC of the ground state in 13C can be obtained, then used

in other neutron transfer reactions that involve a 13C target and are performed for

the purpose of ANC measurements.

1. Elastic Scattering Data

The 12C beam at 10.6 MeV/A impinged on the 13C target. The elastic scattering

angular distribution was measured at several spectrometer angles. Overlapping mea-

surements were performed for consistency checks of the data at all angles, as shown

in Fig. 26. Selecting the scattered 12C particles in the ground state from (∆E,E)

and (TargetAngle,position) histograms from the raw data was clear since the contri-

butions from excited states either of the incident or the target nuclei came at lower

energies. However, an additional constraint was added on the data to avoid any back

or side scattering of the particles in the MDM walls or in the ionization chamber.

Therefore, a gate was set on the difference between the detector angle found from

the position in the first and fourth wire and that found using data from the first and

third wire.

The raw data show that the elastic scattering band in the (TargetAngle,position)

histogram, Fig. 27, partly overlaps with other bands of different slopes at very small

angles (below θlab = 5o). Analysis found those bands to be related to very small

amounts of heavy impurities in the 13C target, most likely Ta and Si, along with O.

Since interactions with Ta and Si are pure Rutherford scatterings at very forward

angles, their expected contributions are subtracted from the data to obtain absolute

values of the cross section. The 16O contamination in the target was treated differ-

ently. Figure 27 shows that the elastic scattering of the 12C + 13C band is completely

separated from the 12C + 16O band for laboratory angles larger than 8o. The ratio



77

FIG. 26. The elastic scattering angular distribution measurements of 12C+13C at sev-

eral spectrometer angles. The well-overlapped data points show the repro-

ducibility of the cross section data when the MDM rotated to large angles.

between their bands for the angular range 8o-10o shows that the 12C+16O yield is only

5% of the 12C + 13C scattering. Taking this factor into consideration, the predicted

elastic scattering angular distribution for O is on average 8% of the corresponding

distribution for C, therefore its contribution is neglected. Consequently, the elastic

measurements in the laboratory frame are good from 2o-33o, which is 4o-63o in the

center of mass frame.

The measured elastic scattering cross section is shown in Fig. 28 as the ratio to

the Rutherford cross section. The measurements with the 5-finger mask showed that

the overall resolution in the laboratory scattering angle was ∆θres = 0.23o full width

at half maximum (FWHM) at small angles, and it increased to ∆θres = 0.4o at
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FIG. 27. The impurities in the target are shown in the (θlab,POSC) histogram, which

were identified using RAYTRACE and the kinematics of the reaction. The

analysis found that Ta and Si have almost 1% concentrations in the 13C

target, and they affect extracting the data at laboratory angles less than 4o.

The wide band below -4.3 cm in the POSC-axis may consist of several excited

states in 13C above 5 MeV, but the limited energy resolution increases the

difficulties of identifying the Jπ of those states.

larger angles. This includes a contribution from the angular spread of the beam

of about 0.1o. Therefore, for the analysis, the 4o angular range acceptance of the

Oxford detector due to using the 4o×1o mask was divided into 16 and 8 bins at small

and large angles, respectively. This provided a 1o-2o self-consistent overlap by 4-8

matching bins as illustrated in Fig. 26. Hence in the final results, many data points

represent the average of several measurements.
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2. The Woods-Saxon OMPs

The data are characterized by rapid oscillation in the angular distribution measure-

ments up to θ = 63o. These data have been fitted using the code OPTIMINIX [81]

in a standard optical model analysis with conventional Woods-Saxon volume form

factors as introduced in Eq. (2.33). The number of the data points involved in this

procedure is around N = 110, so the quality of the fit is judged with the reduced χ2

criterion (normalized to N − f , where f is the number of free parameters)

χ2 =
1

N − f

∑
i

(σexp (θi)− σth (θi))
2

(∆σexp (θi))
2 . (4.3)

The contribution of the Coulomb potential generated by a uniform charge distribution

is fixed with a reduced radius rc = 1 fm. The absence of any spin-dependent observ-

ables led us to ignore a spin-orbit term in the potential. The calculations showed that

comparable results came from fitting the data with the volume or surface-localized

terms has no preference, while including both of them complicated the fitting process

with too many parameters. Therefore, only the volume absorption is considered. In

addition, coupling of the ground state to excited states in either one of the colliding

nuclei for the entrance channel 12C+13C was not observed in the data, so it has been

neglected.

Due to the finite angular resolution and binning used in the analysis (0.25o and 0.5o

bins), the calculations show sharper minima with large depths in the angular distribu-

tion than the data. A correction for the predicted cross section values was considered

to smear the calculations and make them comparable with the experimental results.

A ROOT macro code was run to convolute the calculated cross section curves with the
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FIG. 28. The fits of the elastic scattering cross section of 127.2 MeV 12C on 13C in the

forward hemisphere. The solid and dashed curves are the calculations for the

optical potentials that have the smallest χ2 presented in Table III and Table

IV for Woods-Saxon and double folding forms, respectively.
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experimental angular resolutions and binnings relative to each spectrometer angle.

The extracted OMPs from the fits are presented in Table III, where the six adjustable

parameters of the nuclear real and imaginary volume parts of the optical potential

were sufficient to reproduce the elastic scattering in the whole angular range. In this

process, the local minima in the reduced χ2 obtained by varying V in steps were first

identified, then a complete search on all six parameters was run to determine the

best fit. All the sets of parameters shown in Table III give an excellent description

of the data. This reflects the well known ambiguities in the determination of OMP

parameters. The cross section described by the second parameter set in Table III,

which has the smallest χ2, is plotted in Fig. 28. The elastic scattering cross section

was re-calculated using the PTOLEMY [82] to check for consistency between different

codes.

In comparison with the nuclear real parts, the optical potentials in Table III have

a consistent preference of weak imaginary volume parts with the same values of W

for the second and third potentials, while the first potential is almost a factor of

two larger. The other parameters are slightly changed with systematic ratios, where

rV < rW and the diffuseness parameters aV > aW . The root mean square radius of

the real and imaginary potentials are respectively given by

〈
R2

V

〉
=

∞∫
0

V (r)r4dr

/ ∞∫
0

V (r)r2dr (4.4)

〈
R2

W

〉
=

∞∫
0

W (r)r4dr

/ ∞∫
0

W (r)r2dr. (4.5)
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The volume integral per interacting nucleon pair of the real and imaginary part is

J = JV + iJW = − (1/APAT ) 4π

∞∫
0

(V (r) + iW (r)) r2dr, (4.6)

where the V (r) and W (r) formulas are given in Eq. (2.35), and AP (T ) is the mass

number of the projectile (target) nucleus. The values JV are used to check the am-

biguity of the OMPs. A grid search procedure of the real depth of the potential

for V = 50-270 MeV found discrete minima of χ2, as shown in Fig. 29, which are

associated with jumps of ∆JV ' 50-70 MeV fm3 from one family to the next with

almost constant imaginary volume integrals. These OMP families identify the dis-

crete ambiguities. The root mean square (rms) radii for each family were required

to fit both forward- and intermediate-angle cross sections. Applying the same grid

search on the other Woods-Saxon parameters led to a continuous ambiguity, where

JVRV ≈ constant. The absorption seems to be independent of the strength and shape

of the real part of the potential, resulting in a constant total reaction cross section

with an average value of 1453 mb.

Inelastic scattering of the 12C beam to the first excited state of the 13C target, Jπ = 1
2

+

with an excitation energy 3.09 MeV, was also observed in the raw data. The same

Woods-Saxon potential was used to calculate the inelastic angular distribution and

is shown in Fig. 30 to reproduce the data. The fit was made using the the same

reference potential as in the elastic scattering cross section figure, convoluted with

the experimental angular resolution, and normalized to account for the deformation

of the target nucleus. The poor match for the minima of the data in comparison

with the fit is due to low statistics and background in the Oxford detector that may

prevent producing a better angular distribution.
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FIG. 29. A grid search was performed to obtain preliminary OMPs by varying the real

depth of the optical potential and adjusting the other optical parameters.

The minima with small χ2 show the discrete ambiguities of the potential.

The arrows indicate the potentials that were used as initial conditions for

further fitting process to find the best description of the elastic scattering

data.

3. The Double Folding Potential OMPs

The elastic scattering data have been also analyzed using double folding potentials.

The wave functions and the densities for 12C and 13C nuclei were obtained in a

standard spherical Hartree-Fock procedure as discussed in Chapter II and Ref [46].

The main constraint for the calculation was to slightly adjust the parameters of the

surface term in order to reproduce the experimental total binding energy. Then, the

optical potentials were obtained from the calculated nuclear mass densities folded

with the effective JLM(1) interaction to provide simultaneously both the real and

imaginary parts. The fitting procedure started with the standard range parameters

tV = 1.2 fm and tW = 1.75 fm, and the average renormalization parametersNV = 0.37

and NW = 1.0 of Ref [46]. Then those parameters were adjusted using Eq. (2.41) until
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FIG. 30. The Woods-Saxon fit of the inelastic scattering of 12C particles from the first
1
2

+
excited state in the 13C target.

the best description of the elastic scattering data was reached. The OMP families

with the smeared range parameters tV and tW and renormalized strength parameters

NV and NW , which have the smallest χ2, are presented in Table IV, and the fit of the

data with the second parameter set is shown in Fig. 28.

From the study of many elastic scattering reactions that involve break-up in loosely

bound nuclei at energies around 10 MeV/A, Ref. [46] found the average and standard

deviation for NV is 0.37± 0.03. This renormalization is due to the dynamic polariza-

tion contribution to the optical potential, which arises from the effects of coupling to

nonelastic channels [83]. This polarization correction is not included in the folding-

model potential. In contrast, the imaginary part of the optical potential does not

need any renormalization, NW = 0.99± 0.06. This indicates that the imaginary part
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TABLE IV. The best fit optical model parameters for the folding potential with vari-

ous effective interactions, χ2, the total nuclear cross section reaction, and

the rms radii of the real and imaginary parts and their corresponding

volume integrals per pair of interacting nucleons.

Pot NV NW tV tW χ2 σR JV RV JW RW

[fm] [fm] [mb] [MeV fm3] [fm] [MeV fm3] [fm]

1 0.35 0.93 1.64 1.44 4.8 1458 200 4.31 115 4.40

2 0.37 1.08 1.61 1.21 4.5 1442 208 4.29 134 4.29

3 0.42 0.97 1.20 1.75 13.3 1520 236 4.08 119 4.56

of the effective interaction and its density dependence are well calculated in the dou-

ble folding potential. It is clear from Table IV that all the potentials, which give the

most realistic description of the scattering data, have similar volume integrals for the

real part JV ≈ 215 MeV fm3, which are equivalent to the phenomenological potentials

that have small real well depths with an average value around V ≈ 115 MeV. Similar

to the Woods-Saxon ones, the imaginary potentials are independent of the real parts,

predicting a total nuclear reaction cross section 1473 mb, which is very comparable

with the average WS value. Because the calculations were carried out with the use

of spherical Hartree-Fock density distributions, no deformation in the 13C nucleus is

included.

4. The Strong Absorptive Optical Potential

To understand the behavior of the elastic scattering angular distribution in Fig. 28,

the nuclear part of the scattering amplitude can be decomposed into

f (θ) = f+ (θ) + f− (θ) , (4.7)
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where f− (θ) refers to the near-side amplitude, while f+ (θ) is called the far-side

amplitude. They are related to each other by

f− (θ) = f+ (−θ) . (4.8)

The plus (or minus) sign represents the contribution of the subamplitude at θ from

positive (or negative) angles relative to θ. These far/near trajectories are complex.

The dominating imaginary part in 12C+13C collision characterizes the reaction by the

presence of strong absorption, which develops rapidly at the surface of the two nuclei.

This is usually manifested by a decomposition between the far/near-side trajectories,

as shown in Fig. 31. Since they diffract from opposite sides of the target nucleus, their

interference gives rise to a Fraunhofer diffraction that explains the strong oscillations

in the elastic scattering cross section at small- and intermediate-angles. At very

forward angles, the near-side and the Coulomb amplitudes rule the scattering, and

can be described by Fresnel diffraction. In the region where the f+/f− amplitudes are

comparable, the Fraunhofer diffraction type begins to develop, which gives evidence

of the strong absorption. Both amplitudes are equal at θ = 16o. Beyond this angle,

the angular distribution is completely damped by the strong absorption.

However, the features of the nuclear potential can not be easily investigated with

the elastic scattering in the presence of strong absorption, which hides most of the

particles that enter its domain, while the strong repulsive Coulomb potential will

affect the particles further outside. Hence, only a small fraction of the scattered

particle flux provides some details about the nuclear potential. One valuable peace of

information is the radial sensitivity of the selected optical potential, which maps the

effective region of the elastic scattering. Studying this property in 12C+13C elastic

scattering is shown in Fig. 32. The real OMP obtained by the Woods-Saxon form,
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FIG. 31. Woods-Saxon optical model analysis of the elastic scattering for 12C+13C at

127.2 MeV. The far-side, near-side, and their coherent sum cross sections are

shown by dashed, dotted, and solid lines, respectively. The curves are fits

with the second potential presented in Table III.

the parameters of the second potential in Table III, were perturbed systematically

through the potential by the factor [84]

g (R, a, d, r) = {1− 4df (R, a, r) [1− f (R, a, r)]} . (4.9)

Thus the Woods-Saxon form becomes

V (r) = V f (R, a, r) g (R′, a′, d, r) . (4.10)

The employed perturbation cut out a notch in the potential at position r′ with a width

a′ centered at R′, reduced it by a factor d in some localized region, and then returned

it to its original value. Using χ2 to determine the effect of varying the potential, the
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FIG. 32. A Gaussian perturbation on the real potential at a given radius. It shows

that there is a relatively high sensitivity for radial distances at 5-7 fm, inside

the strong absorption radius. χ2
o was determined with the real OMP of the

second potential in Table III, while χ2 was calculated after the perturbation

of the potential.

calculations in Fig. 32 show that sensitivity to the perturbation is peaked at radii

5-7 fm, which is inside the strong absorption radius. This means that the scattering

is highly sensitive to the surface region and the radius of the interaction can be well

determined.

An alternative way to test the radial sensitivity of the optical potential is described

in Fig. 33. Plotting the real part of the Woods-Saxon forms that fit the data we

observe that the potentials are practically identical at radii beyond 5 fm, because the

colliding nuclei experience strong nuclear absorption at a grazing radius larger than

the radius of the real potential, RV . A similar comparison shows that the imaginary

parts of the optical potentials in Table III match beyond 6 fm.
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FIG. 33. The real potentials of Table III overlap at r > 5 fm.

5. The Semiclassical WKB Approximation

The far/near-side interference method does not give any information about the re-

sponse of the nuclear interior, but it decomposes the scattering amplitude into travel-

ing waves. To understand the reaction mechanism of 12C+13C elastic scattering and

the dynamical contribution of the nuclear interior when the incident flux penetrates

the Coulomb barrier, the semiclassical uniform approximation for the scattering am-

plitude of Brink and Takigawa [85] is well adapted. It illustrates the situation when

the incident energy is sufficiently above, as in our case study, or below the Coulomb

barrier, so the WKB approximation can be used. Following the analysis as in Ref.

[45], discarding the absorption term, the effective real potential in the WKB approx-

imation, which is defined by nuclear and centrifugal potentials as

Veff = V (r) +
h̄2λ2

2µr2
, λ = `+

1

2
(4.11)

has three classical turning points: r1, r2, and r3, which are the roots of EC.M. −

Veff = 0. Those points separate the external region from the internal region where
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the attractive nuclear potential dominates. When the imaginary potential, W (r), is

included, the WKB approximation is continued into the complex plane [86], where

r1, r2, and r3 become isolated and complex, the roots of EC.M. − Veff − iW = 0. In

this case r2 moves into the upper half of the complex =r-plane, while r1 and r3 are

in the lower half of the complex plane [85].

In this technique, the S-matrix of the semiclassical scattering is written as

SWKB(`) = SB(`) + SI(`), (4.12)

where SB(`) is the barrier term which identifies the flux reflected from the outermost

point(r = r1), and SI(`) is the internal barrier component that describes the flux

reflected at the innermost turning point (r = r3) and refracted several times between

r2 and r3. The trajectories of the turning points are clarified in Fig. 34 for the

12C+13C reaction at EC.M. = 66 MeV using potential 2 in Table III. For integer

angular momenta, only turning points close to the real axis, <r, are retained and a

typical case with three well isolated turning points is observed for each partial wave,

as the effective potential is sufficiently high to sustain the potential barrier up to a

grazing angular momentum, `g. Removing the imaginary part of the potential, the

points r1,2 become complex conjugates, while r3 is purely real.

The accuracy of the WKB approximation was checked by comparing the barrier

and internal barrier absorption profiles with the exact quantum-mechanical result,

as shown in Fig. 35. Both the barrier/internal-barrier decomposition and quantum

solution have the same results. The internal barrier profile has significant values up to

`g = 25 and is negligible beyond this value. The barrier component resembles a strong

absorption profile and this confirms that part of the incident flux did not penetrate



92

FIG. 34. Trajectories of the complex turning points (solid symbols) r1, r2, and r3 for

the potential 2 shown in Table III at integer angular momenta. Open symbols

denote turning points for the real potential and stars indicate complex poles

of the potential.

into the nuclear interior. The average value for ` ≤ `g is |S(`)| ≈ 10−2. It is clear from

the figure that the barrier and internal barrier components are almost decoupled in

the angular momentum space and therefore they will contribute in different angular

ranges.

Corresponding to the semiclassical scattering function of Eq. (4.12), the scattering

amplitude is decomposed as fWKB = fB + fI . then the barrier and internal barrier

angular distributions are calculated as σB,I = |fB,I |2. The semiclassical cross sections

are compared with the data in Fig. 36. Both the fB and fI are decomposed in their

corresponding F/N side subamplitudes. Clearly, the forward angles are dominated by

the barrier component, and the Fraunhofer diffraction occurs due to the interference

of its F/N sides. The internal barrier component starts to dominate the angular
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FIG. 35. Semiclassical decomposition of the scattering function for the Woods-Saxon

potential of Fig. 34. Barrier (open circles) and internal barrier (triangles)

are shown. The exact S matrix is indicated by small dots. The line is a cubic

spline interpolation of the total semiclassical scattering function for the same

potential.

distribution at angles greater than 80o, but it is negligible before that. Therefore

almost no trace of the refractive effects survive in the measured cross section, and the

scattering is completely absorptive.

6. The 13C(12C,13C)12C Exchange Reaction

The experiment used to extract the angular distribution for the neutron transfer in

the 13C(12C,13C)12C reaction in Fig. 37 is similar to the elastic scattering procedure

described above. The measurements were carried out for spectrometer angles 3o-

18o, which covers 3o-37o of the angular distribution in the C.M. frame. The fields

in the spectrometer were set at each angle to measure 13C. In Fig. 37, the elastic

transition of a neutron from the ground state of the target, Jπ = 1
2

−
, to the ground

state of the ejectile, Jπ = 1
2

−
, was observed and gated for further analysis. The
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FIG. 36. Semiclassical barrier and internal barrier decomposition of the cross section.

Each component is decomposed into far-side (dashed), near-side (dotted)

components, and their coherent sum (solid).
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FIG. 37. The (Angle,POSC) histogram shows the raw data of the 13C(12C,13C)12C

reaction. The gated band selects the elastic transfer reaction to the Jπ = 1
2

−

in 13C. Other inelastic transfer reactions are difficult to extract because of

their low statistics and the limited energy resolution at higher excitation

energies.

expected angular distribution was calculated with the PTOLEMY and FRESCO [87]

DWBA codes. These calculations have been done using the same optical potential

that describes the elastic scattering in the entrance and exit channels, because the

initial and final nuclei are identical. Both DWBA codes give the same expected elastic

transfer angular distribution. The comparison between the data and the calculation

is plotted in Fig. 38 for a specific geometry of the Woods-Saxon neutron-binding

potential, r = 1.25 fm and a = 0.65 fm. The DWBA calculation was normalized to

the data by a spectroscopic factor S = 0.65. The agreement is excellent at forward

angles.
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FIG. 38. The experimental and the calculated angular distribution of the
13C(12C,13C)12C transfer reaction. The points are the experimental data,

while the solid line is the DWBA cross section obtained from PTOLEMY.

The calculation has been done with the second optical potential in Table III.

Even though the spectroscopic factor is strongly dependent on the choice of the optical

model parameters, existing measurements of the angular distribution of p1/2 to p1/2

transitions of 12C(d, p)13C and 13C(p, d)12C neutron-transfer reactions have been per-

formed at several incident energies. Most recent experiments gave an average value, S

is 0.61±0.09 [61], for incident deuteron energies from 12 to 60 MeV. This agrees with

the measured value above, but only for the same DWBA input parameters. Therefore

it gives a good indication about the reliability of the DWBA calculations.

Excitation of the 4.44 MeV 2+ state in 12C or of the 3.09 MeV 1
2

+
state in 13C may con-

tribute to the population of the ground state of 13C in the neutron transfer reaction.
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Coupled-channel calculations are needed to detect the consequences of the inelastic

couplings on the elastic transfer reaction. A study of 12C(d, p)13C and 13C(p, d)12C

reactions beyond the Born approximation for energies between 7 and 60 MeV was

reported in Ref. [88]. It was found that the coupling to the 2+ state changes the

amplitude of the cross section up to 15%, but its effect at higher deuteron energies,

more than 30 MeV, is almost negligible. The coupling to the 1
2

+
state in 13C has a

almost 5% effect on the transfer cross sections at relatively small deuteron energies,

Ed ≤ 30 MeV, and is also negligible at higher energies. Hence, the coupled reaction

channel effects have been neglected in the present calculations of the 13C(12C,13C)12C

exchange reaction.

Measuring the elastic neutron exchange reaction of 13C nuclei at forward angles is

kinematically equivalent to measuring elastically scattered 12C particles at backward

angles in the C.M. frame. The C.M. energy is conserved and the final states of these

two processes are indistinguishable. Therefore their amplitudes may interfere. The

angular distribution for the elastic scattering of 12C on 13C using the data from the

detection of 12C in the forward hemisphere and the data from the detection of 13C

at complementary forward angles in the backward hemisphere are plotted in Fig. 39.

The rise in the cross section at backward angles proves a contributing mechanism that

is different from the potential elastic scattering, so it can be explained solely by the

transfer of a neutron from the target to the projectile. Hence, the two mechanisms

dominate in completely different angular regions with negligible interference within

the measured regions, and we can treat them separately and neglect any interference

between the elastic and exchange amplitudes.
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FIG. 39. The whole angular range θC.M. = 0o-180o of the elastic scattering cross sec-

tion. The data at forward angles indicate the elastically scattered 12C parti-

cles. Those at backward angles were obtained by measuring the recoiling 13C

nuclei at complementary forward angles. The dotted line is the Rutherford

scattering cross section.

7. Extracting the ANC in 13C

Since the entrance and exit channels of the reaction are identical, the same spectro-

scopic factors and ANCs occur at both vertices of Eq. (2.51), which then becomes

dσ

dΩ
= C4

p1/2

(
13C

) σDWBA

b4p1/2

, (4.13)

where the neutron is transferred from the p1/2 state in the 13C target to the p1/2

state in the 13C ejectile. The value of the single particle ANC bp1/2
is defined as in

Eq. (2.48). Since the Sommerfeld parameter is zero for a neutron, the Whittaker

function is replaced by the corresponding Hankel function. The radial behavior of

the single particle bound state neutron wave function rφ(r) in 13C(g.s.) → 12C + n
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FIG. 40. The radial behavior of the single particle radial bound state wave function

rφ(r) in 13C, blue squares, calculated in the Woods-Saxon potential with

a = 0.6 fm and ro = 1.2 fm. The solid line is the tail of rh
(1)
`=1 (iκr) normalized

to the bound state wave function. The ratio between the two functions for

r � R gives the single particle ANC b = 1.72 fm.

is illustrated in Fig. 40. In comparison with the Hankel function, the radial wave

function reaches it asymptotic shape for r > 4.5 fm. Therefore in calculating the

DWBA matrix element, the bound state can be replaced by its asymptotic term.

If the reaction is peripheral, then the value of the ANC extracted from experiment will

be constant over a broad range of single particle well parameters, while the spectro-

scopic factor S is strongly dependent on these parameters. The comparison between

Sp1/2
and C2

p1/2
extracted for single particle potentials with parameters ranging from

ro = 1.1-1.3 fm and a = 0.5-0.65 fm, as a function of the value of the corresponding

single particle ANC b2p1/2
is shown in Fig. 41. For each new geometry the depth of the

single particle potential was adjusted to fit the experimental neutron binding energy.
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FIG. 41. Comparison of the spectroscopic factors (blue diamonds) and of the ANC C2

(red dots) extracted from the exchange reaction for different geometries of

the Woods-Saxon well.

It is obvious from the figure that the spectroscopic factor changes by almost ±30%

about the mean value, while the ANC varies by less than ±2% over the full range.

This is completely understood if the transfer is peripheral and therefore the calcu-

lated cross section σDWBA is to good approximation proportional to (b2)2, leading to

a ratio of σDWBA/b4 which is nearly independent of the individual values of ro and a.

Reversing the reasoning, if this constancy of C2 is observed, it means that only the

asymptotic part of the wave function contributes in the DWBA calculation and the

transfer reaction is peripheral. Moreover, the elastic scattering analyses indicate the

nuclear trajectories are restricted to r greater than ∼ 5 fm. Figure 40 shows that rφ

matches its Hankel function asymptotic form in this region. Another way to check

for the peripherality of the reaction is to localize the transfer strength with partial

waves. The DWBA transition matrix is peaked around ` = 29, which corresponds to

r = 6.64 fm using Eq. (3.1), and has a FWHM of about 10, making this reaction

strongly focused on the surface.
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By normalizing the calculated DWBA cross section to the measured one, the value

of the ANC for the virtual decay 13C(g.s.) → 12C + n is extracted using Eq. (4.13).

The most important angular region to obtain the ANC is at θC.M. < 18o, where

no contributions from multi step processes are involved, or cosθ ∼ 1, and the pole

mechanism, Fig. 11, is dominating. The uncertainties in the value of C2 include the

contribution of the average statistical errors (3%), the normalization of cross section

with the Faraday cup (3%), the measurements of the target thickness (7.5%), the

geometry of the neutron binding potential used in the DWBA calculations (1.5%), the

fit between the measured and the calculated cross sections for several angular ranges

(1.0%), and the normalization of the cross section with different optical potentials in

Table III (1.5%). All these uncertainties are summed to give an overall 9% accuracy

of C4, so the uncertainty in determining C2 is (4.5%) .

As a result from the present experiment the extracted ANC is C2
p1/2

= 2.24±0.11 fm−1.

In Ref. [89] for the same exchange reaction, but at E = 12 MeV, it was reported

that C2 = 2.39 ± 0.09 fm−1. On the other hand, a value for the nuclear vertex

constant |G|2 from the analysis of the elastic scattering 12C+13C, 13C(p, d)12C(g.s.),

12C(d, p)13C(g.s), 13C(d, t)12C, 13C(12C, 13C)12C, and 12C(13C,12C)13C reactions has

an average value of 0.39± 0.02 fm [90]. The vertex constant is related to the ANC by

Gl,j = −π
(
h̄

µc

)
exp

[
i
1

2
π (l + η)

]
Cl,j. (4.14)

Using this equation, the calculated ANC in 13C is taken to be C2
p1/2

= 2.40 ± 0.12

fm−1. Since this value is in good agreement with the value obtained in this experiment

within the uncertainties, a more precise value for the ANC is obtained by calculating

the weighted average of all the measurements. Therefore, the new adopted value is

C2
p1/2

= 2.31± 0.08 fm−1.
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C. The 13C(22Ne,23Ne)12C Experiment

The nuclear reaction 13C(22Ne,23Ne)12C was measured to determine the ANCs for

the ground state and the first excited state in 23Ne, then we transpose them to the

ANCs of the corresponding states in its mirror nucleus 23Al to determine the reaction

rate of 22Mg(p,γ)23Al. This section will follow exactly the same procedure that was

described for the 13C(12C,13C)12C experiment to extract the ANCs. The estimation

of the astrophysical reaction rate will be presented in Chapter V.

1. Elastic Scattering of 22Ne+13C and 22Ne+12C

The elastic scattering was measured by bombarding separately 12C and 13C targets

with a well collimated 22Ne+4 beam at 12 MeV/A. The position calibration of the

Oxford detector was performed online with a Au target, while the angle calibration

was calculated offline with the RAYTRACE code and checked online with the 5-finger

mask for any further adjustments. The elastic scattering of 22Ne+13C was measured

to obtain the OMP for the entrance channel of the nuclear reaction. 22Ne only differs

from 23Ne by one nucleon, so the scattering of 22Ne+12C was studied to get the optical

potential for the exit channel.

The differential cross sections were measured for the angular range 3o-55o in the

C.M. frame. The angular resolution of the detector in the laboratory frame was

∆θres = 0.22o-0.46o at small to large angles, respectively. However, due to the almost

1% contaminations in the target, angles less than 5o degrees were dropped from

the angular distributions. Similar amounts of Ta and Si traces were found in both

targets. The raw data and the online analysis of the elastic scattering of 22Ne+13C

when the spectrometer was at 5o are shown in Fig. 42. Three well separated states for
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the scattered 22Ne particles were identified in the (Angle,POSC) histogram with an

energy resolution less than 300 keV. RAYTRACE was run to determine the position

of the 0+ (0 MeV), 2+ (1.275 MeV), and 4+ (3.358 MeV) states in 22Ne along the

dispersive x-axis in the focal plane of the Oxford detector. The calculations were

compared with the measured positions. The energy calibration of Eexc in MeV versus

the POSC in cm confirms the detection of the elastic and inelastic scatterings in

these states of the 22Ne particles. Gating and projecting the ground state band on

the angle-axis gives the angular distribution of the elastic scattering within the ±2o

range around the central MDM angle. The procedure illustrated in Fig. 42 was also

applied for the 22Ne+12C measurement.

2. Optical Model Potentials

Optical potentials have been determined by a fit with phenomenological Woods-Saxon

shapes. Only the central components have been included in the optical potential, since

spin-orbit couplings and absorptive surface terms have little or no influence on the

cross section. As noted above, the OPTIMINIX fitting code did not produce a good

description of the elastic scattering for 22Ne+13C and 22Ne+12C at forward angles,

where Rutherford scattering dominates, without reducing NFC by almost 30%. Fits

using PTOLEMY, FRESCO, and ECIS [91] gave the same results. The folding-model

potentials using the JLM(1) effective interaction have been also calculated.

Several solutions were found from the analysis. The extracted optical potentials are

listed in Table V. The first family of parameters, Pot. 1, listed in the table for the

22Ne+13C case was obtained by fitting the output results of the JLM with Woods-

Saxon shapes. The JLM parameters were converted to their equivalent Woods-Saxon

parameters and included in the table. The convoluted cross section using the po-
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FIG. 42. The upper left figure shows the (Angle,POSC) histogram for the 22Ne+13C

elastic scattering when the MDM was at 5o. Three separated states were

observed in the histogram in addition to the contaminations in the target. To

identify the states, a calibration using RAYTRACE to obtain the excitation

energy as a function of POSC [cm], left bottom figure, was determined as

shown in the upper right figure. The ground and first excited states in 22Ne

were well populated and their cross section values were analyzed, as in bottom

right figure.
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tentials that have the best fit, or the smallest χ2, for each of the entrance and exit

channels are compared with the data in Fig. 43. The optical parameters obtained for

the two reactions are very comparable and have similar values.

In addition to the measurements of the elastic scattering, inelastic scattering with the

excitation of 22Ne particles to the lowest 2+ (1.275 MeV) and 4+ (3.385 MeV) states

were observed as shown in Fig. 42. The optical potential parameters from Table

V were used to describe the outgoing 22Ne∗(2+)+13C and 22Ne∗(2+)+12C channels.

It was found that the inelastic cross sections were proportional to the square of the

Coulomb deformation parameter β, which is related to the reduced electric transition

probability B (E2) ↑ by the formula

β =
4π

3ZR2
o

√
B (E2) ↑

e2
, (4.15)

where R2
o = R

(
A

1/3
p + A

1/3
t

)
and B (E2) ↑ is the reduced transition probability in

units of e2b2.

Comparison between the experimental and calculated cross sections estimated that

β = 0.560. This value was obtained by adjusting the calculations to give the best fit of

the data in Fig. 44. The PTOLEMY and ECIS codes gave similar results, where β was

either inserted explicitly in the input file, or the central real/imaginary volumes and

Coulomb potential were deformed in the outgoing channel by multiplying their values

with β. It was shown that the experimentally adopted value for β is 0.562 ± 0.012

[92]. The inelastic cross section is at least one order of magnitude smaller than the

elastic scattering cross section. Therefore the deformation of the 22Ne nucleus only

contributes weakly through coupled channels and the calculated elastic scattering

cross section is unchanged.
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3. Strong Absorption Profiles

Typical Fraunhofer oscillations are observed in the elastic scattering, which arise from

strong absorption, as explained in the case before. Decomposition into the far-side and

near-side cross sections is shown in Fig. 45 for 22Ne+13C, where the F/N amplitudes

are equal at θ = 33.5o, and for 22Ne+12C, where the F/N amplitudes are equal at

θ = 37o. Beyond these angles, the far-side components are relatively stronger and

dominate the cross sections. The radial sensitivity of the potential was determined

by a Gaussian spike superimposed on the real potential at a given radius using Eq.

(4.10). Figure 45 shows that the radial sensitivity of the potential is maximized near

6.5 fm, well inside the strong absorption radius of 7.9 fm.

4. WKB Approximation

The semiclassical WKB approximation is applied to study the effects of the nuclear

interior on the reaction mechanism and to distinguish between the refractive and

absorptive processes. Figure 46 shows the power of applying the Brink and Taki-

gawa theory to the elastic scattering of 22Ne+12C. It reproduces almost exactly the

quantum S-matrix using the simple classical concepts of the complex turning points.

For particles such as 22Ne, where many non-elastic channels are available, absorp-

tion is expected to dominate the mechanism and the reaction is favorable for ANC

purposes. However, in this specific reaction, the refractive effects are not completely

hidden. The internal barrier component is small but still significant to produce a rain-

bow effect at large angles. The interference between the barrier and internal barrier

components is near the grazing angular momentum `g = 31. The barrier component

resembles a strong absorption profile beyond `g. The average value for |S(`)| in the

region where ` ≤ `g is approximately 3× 10−3. The decomposition of the scattering
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amplitudes using Eq. 4.12 in Fig. 47 shows the dominance of the barrier component

at forward angles, while the internal barrier starts to be effective at angles larger than

60o. On the other hand, the optical potentials for 22Ne+13C scattering do not have

well separated complex turning points. Therefore the WKB theory was not applied.

5. The Neutron Transfer Reaction

The neutron transfer reaction 13C(22Ne,23Ne)12C has been measured for spectrometer

angles 3o, 5o, 7o, and 10o in the laboratory system, which covers the angular range

3o-32o in the C.M. The neutron transitions from the 1p1/2 orbital in 13C to the 1d5/2

and 2s1/2 orbitals in 23Ne were detected with a good separation between their posi-

tions along the x-axis of the focal plane inside the ionization chamber. The DWBA

descriptions of the transfer reaction cross sections were calculated using PTOLEMY

and FRESCO. The states were considered d5/2 and s1/2, respectively, a neutron sin-

gle particle coupled to the g.s. of 22Ne. The calculations were done using the OMP

obtained from 22Ne+13C scattering for the entrance channel of the reaction, while the

OMP extracted from the scattering of 22Ne+12C were used as inputs for the outgoing

channel. The comparisons between the data and the calculations are plotted in Figs.

48 and 49.

Fits of the DWBA calculations to the data are shown in Fig. 48 when the ground state

of 23Ne is populated and Fig. 49 when the Jπ = 1/2+ first excited state is populated.

A systematic angular phase shift of about 0.2o in the laboratory system was observed

between the data and the DWBA cross sections. Measurements for the transfer

reaction were taken concurrently with 22Ne+13C elastic scattering. Therefore, any

error in the incident beam energy would need to be common. Decreasing the angular

distribution of the elastic scattering data by 0.2o, then attempting to find new optical
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FIG. 43. The angular distributions for the elastic scattering of 22Ne+13C, the top fig-

ure, and 22Ne+12C, the bottom figure. The data were fit with Woods-Saxon

and double folded potentials. The Woods-Saxon fit was calculated using

the optical potential V = 81 MeV of Table V for 22Ne+13C and the optical

potential V = 77 MeV for 22Ne+12C.
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FIG. 44. The top figure shows the inelastic scattering angular distribution of
13C(22Ne,22Ne∗ [Jπ = 2+, E = 1.275 MeV])13C. The solid line curve

was calculated using the optical potential V = 81 MeV of Ta-

ble V with a deformation β = 0.560. The inelastic scattering for
12C(22Ne,22Ne∗[Jπ = 2+, E = 1.275 MeV])12C is shown in the bottom fig-

ure. The solid line curve was calculated using the optical potential V = 77

MeV after being deformed with β.
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FIG. 45. The upper figure shows the Woods-Saxon far-side (dots) and near-side

(dashes) decomposition for 22Ne+13C elastic scattering using the optical po-

tential V = 81 MeV of Table V. The radial sensitivity test on the real poten-

tial as a function of r is shown in the middle figure. The F/N decomposition

for 22Ne+12C scattering using the potential V = 77 MeV is illustrated in the

lower figure.
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potentials that give a good description for both mechanisms simultaneously com-

pletely failed. Moreover, the inelastic scattering cross section data do not have

any phase difference with the calculations, especially at forward angles. The con-

tribution of the excited states to the final result was studied. The cross section of

22Ne+13C
(
Jπ = 1

2

+
, 3.09MeV

)
→ 23Ne+12C leads to an angular distribution that has

Fraunhofer oscillations that are out of phase with the direct g.s. to g.s. transfer reac-

tion, so its contribution is neglected, while the calculated 22Ne (Jπ = 2+, 1.275MeV)+

13C → 23Ne + 12C reaction has an in-phase angular distribution. The calculation of

the coupled-channel Born approximation (CCBA) [93], instead of the DWBA, also

did not succeed in solving the angular shift. The CCBA was done using FRESCO,

where the absolute values of the cross section in the direct transfer reaction are not

constant and depend on the strength of the coupling. Therefore, to keep the results

of the transfer reaction consistent with the elastic and inelastic scatterings, the 0.2o

shift will be counted as a systematic uncertainty in the value of the ANC. A similar

angle shift was seen, but not resolved, for proton transfer from the p-shell to the

sd-shell in the 13C(7Li,6He)14N [94] and 13C(14N, 13C)14N [95] reactions.

6. Extracting the ANCs

The asymptotic normalization coefficients were extracted by inserting the proper

quantum numbers in Eq. (2.51), such as

dσ

dΩ
= C2

p1/2

(
13C

)
C2

d5/2

(
23Ne

) σDWBA

b2p1/2
(13C) b2d5/2

(23Ne)
(4.16)

for the reaction 13C(22Ne,23Ne)12C reaction. The adopted value for the ANC C2
p1/2

(13C)

in the last section was used in this equation. In Fig. 50 the values extracted for the

ANC C2
d5/2

are compared with those of the extracted spectroscopic factor Sd5/2
for

different geometries of the Woods-Saxon neutron binding potential: here ro and a
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FIG. 48. The angular distribution for a neutron transfer to the ground state of 23Ne

from the 13C(22Ne,23Ne)12C reaction.

FIG. 49. Angular distribution for the first excited state of 23Ne from the
13C(22Ne,23Ne∗(1.275 MeV)12C reaction.
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were varied over the ranges 1.1-1.35 fm−1 and 0.5-0.7 fm−1, respectively. Again, for

each geometry the depth of the potential was adjusted to reproduce the experimental

neutron binding energy. The figure shows that the model dependent value of S varies

by almost 45% around its mean value, while the ANC is almost constant, with a vari-

ation of less than 2% over the full range. Hence, the reaction is peripheral. Similar

conclusions can be drawn from the comparison of the excited state ANC C2
s1/2

and

Ss1/2
, as illustrated in Fig. 51.

The ANCs C2
d5/2

and C2
s1/2

were obtained by fitting the calculation to the data up

to θC.M. = 16o. Beyond this angle other multi-step processes may be involved. The

uncertainty in the value of the g.s. C2 includes the (3.5%) from the determination of

the ANC C2
p1/2

(13C) of the other vertex of the reaction, (7.5%) from the measurement

of the target thickness, (2%) from the geometry of the neutron binding potential

used in the DWBA calculation, (1.5%) from calculating the cross section with several

permutations of entrance versus exit optical potentials in Table V, and (3%) statistical

errors. Therefore, the overall uncertainty in determining the C2 is almost 9%. The

systematic uncertainty due to the 0.2o angle shift in the angular distributions was

also calculated. The angles of the transfer reaction cross section were reduced by

0.56o in the C.M. system. A new normalization between the DWBA and the data

cross sections showed that the fit was dramatically improved up to θC.M. = 19o but

the value of C2
d5/2

was decreased by 14%. Similar calculations showed that the C2
s1/2

was changed by almost 20%.

In conclusion, the ANCs in 23Ne are C2
d5/2

= 0.86 ± 0.08 ± 0.124 fm−1 and C2
s1/2

=

18.22±1.82±3.76 fm−1. These values or their corresponding nuclear vertex constants

|G|2 have not previously been measured experimentally. However, as mentioned in
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FIG. 50. The comparison between the spectroscopic factor Sd5/2
(blue triangles) and

the ANC C2
d5/2

(red dots) for the ground state of 23Ne as a function of the

single particle ANC bd5/2
.

FIG. 51. The comparison between the spectroscopic factor Ss1/2
(blue triangles) and

the ANC C2
s1/2

(red dots) for the first excited state of 23Ne as a function of

the single particle ANC bs1/2
. Note that Ss1/2

has been multiplied by 10.
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the second Chapter, the calculated value for C2
d5/2

is 0.71-0.81 fm−1 and for C2
s1/2

is

16.30-18.49 fm−1 as reported in [59] and [65], respectively. The experimental results

are consistent with these calculations.

D. The 13C(17O,18O)12C Experiment

To extract the ANCs for the first two Jπ = 2+ states in 18Ne, which are important to

estimate the reaction rate of 17F(p, γ)18Ne in ONe novae, the 13C(17O,18O)12C reaction

has been measured to determine the ANCs of the mirror states in 18O. Following the

same procedure as in the previous two sections, the analysis of the experimental

results is presented here, while the astrophysical part will be discussed in the next

chapter.

1. Elastic Scattering of 17O+13C and 18O+12C

To obtain the right optical potentials for the entrance and exit channels, the elastic

scattering measurements were successfully carried out with two different beams. First,

the 17O beam at 12 MeV/nucleon impinged on a 13C target. The elastic scattering

angular distribution was measured for the angular range 2o-27o in the laboratory

system. The 4o × 1o wide-opening mask and the 5-finger mask were used for each

spectrometer angle to double-check the absolute values of the cross section and the

quality of the angle calibration. RAYTRACE was used to calculate the position of

the focal plane, mainly at large angles when it was located far in front of the Oxford

detector. The position, or energy, calibration was discussed at the beginning of the

current chapter. Second, following the same steps, a 12C target was bombarded by

an 18O beam with 12 MeV/nucleon total laboratory energy. The elastic scattering

cross section was measured at 4o-22o spectrometer angles, allowing one degree overlap
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FIG. 52. The picture of the raw data for the 18O+12C elastic scattering in the focal

plane, and the projection of the ground and low-lying excited states on the

POSC axis.

between consecutive MDM settings. The quality of the angular resolution, ∆θres, of

the detector in both cases was 0.23o at small angles, then it decreased to 0.40o at larger

angles. An example of the raw data for 18O+12C scattering at 7o is illustrated in Fig.

52. The high purity of the target allowed measurement of the elastic scattering down

to θlab = 2.4o without contamination from heavy elements in the target. In addition

to the elastic scattering, the inelastic scattering for the excited state (Jπ = 5/2−,

3.842 MeV) of 17O, and first (Jπ = 2+, 1.982 MeV), second (Jπ = 4+, 3.554 MeV),

and fourth (Jπ = 2+, 3.920 MeV) excited states of 18O were observed and measured.

The elastic scattering angular distributions for 17O+13C and 18O+12C are shown in

Figs. 53 and 54, respectively.
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FIG. 53. The angular distribution for the elastic scattering of 17O+13C. The data

are well described by the Woods-Saxon and double folding potentials. The

optical potentials related to V = 91 MeV of Table VI are used in PTOLEMY

to get the best fit.

2. Optical Model Potentials

Using the chi square as criterion to get the best fit of the data, five distinct fami-

lies of potentials with standard Woods-Saxon volume form factors were obtained for

17O+13C scattering, and four sets for the 18O+12C case. Their parameters are pre-

sented in Table VI, where again only central potential terms have been included in

the OPTIMINIX code. All of the potentials give relatively small χ2, but only those

with the smallest values for the entrance and exit channels were adopted later in the

DWBA calculations of the neutron transfer reaction, while the others will be used

to determine the uncertainty in the choice of the OMP either in the entrance or exit
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channel. The elastic scattering fits with those potentials are plotted in Fig. 53 and

Fig. 54. The data have also been fitted with the double folding potential using the

JLM effective interaction. The adjusted OMPs give a good description of the data

at all angles. They were converted to their equivalents of the Woods-Saxon form

and included in Table VI. The third and fourth potentials for 17O+13C and the first

potential for 18O+12C were obtained from this conversion.

The quality of the extracted optical potentials was checked by studying the inelastic

scattering data. The position of the detected excited states in 17O and 18O outgoing

particles were reconstructed from the kinematics of the reaction and RAYTRACE.

The angular distributions of the inelastic scattering are shown in Fig. 55. It is clear

from the figure that the inelastic scattering data are also described well with the

phenomenological potentials.

3. Strong Absorptive Optical Potentials

The refractive and absorptive parts of the optical potentials were studied in terms

of the far-side and near-side decomposition of the nuclear scattering amplitude. The

corresponding parameters of the potentials V = 91 MeV and V = 89 MeV were used

for 17O+13C and 18O+12C scattering, respectively, and their f+/f− decompositions

are plotted in Fig. 56, where the dashed line represents the f+ amplitude, the dotted

line the f− amplitude, and the solid line is their coherent interference. The angular

range where both amplitudes are comparable is characterized by a typical Fraunhofer

diffraction pattern with deep destructive interference at θ = 14o for 17O+13C and

θ = 17o for 18O+12C. At large angles, the far-side component dominates the angular

distribution with strongly damped absorption. The radial sensitivity of the OMPs

was tested again by perturbing the real potential around its parameters using Eq.
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FIG. 54. The fits of the elastic scattering of 18O on 12C. The Woods-Saxon form has

been calculated with optical potential V = 89 MeV presented in Table VI.

(4.10). The calculations for both systems show an exceptional spike of the optical

model potential sensitivity at the surface. The radial sensitivity of the potential is

maximized near 6.0 fm, well inside the strong absorption radius of 7.25 fm. This gives

the first indication that the nuclear reaction will be peripheral.

4. Semiclassical Approximation

The semiclassical uniform approximation was used to explore the strong absorption

profile for the elastic scattering of 17O+13C. The complex turning points that represent

the reaction are illustrated in Fig. 57. Those points, which are located near the

singular points of the potential, were obtained by extrapolating the Woods-Saxon

potential to complex r-values. Clearly the interior turning point r3 is well separated
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FIG. 55. The upper figure shows the inelastic scattering of 17O∗+13C, while the lower

one shows the inelastic scattering of 18O∗+12C. The fits of the inelastic scat-

tering data have been calculated with the optical potentials V = 91 MeV for
17O+13C and V = 89 MeV for 18O+12C.
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FIG. 56. Woods-Saxon optical model and radial sensitivity analyses of the elastic scat-

tering for 17O+13C, upper figures, and 18O+12O, lower figures. The far-side

and near-side decomposition and the Gaussian spike superimposed test con-

firm the strong absorption profiles in both scattering channels.



126

from the two turning points r1 and r2 in the barrier region for all values of `. These

isolated points do not play a significant role in the WKB method, but they show

that the semiclassical approximation is quantitatively good for heavy ion scattering.

A comparison between barrier and internal barrier components of the WKB in the

lower part of Fig. 57 shows that they interfere near the grazing angular momentum

`g = 27. Beyond that, the WKB |S`B|-matrix resembles a strong absorption profile

and perfectly reproduces the quantum S-matrix. The average value of |S`| for ` < `g

is of order of 10−4, which indicates a negligible internal, refractive contribution to

the reaction mechanism. The decompositions between the F/N amplitudes for the

barrier and internal barrier and their coherent sum are shown in Fig. 58, where the

barrier amplitudes dominate the measured range of the angular distribution. Hence

the elastic scattering is strongly absorptive.

5. Measuring the Neutron Transfer Reaction

The neutron transfer reaction 13C(17O,18O)12C has been measured in the laboratory

frame for the angular range 2o− 13o, which is equivalent to 5o− 31o in the C.M. The

astrophysically important excited states of 18O, Jπ = 2+
1 , 4+

1 , and 2+
2 , were populated

as shown in Fig. 59. It is clear that studying the first Jπ = 2+
1 (E = 1.982 MeV)

state is straight forward. However, due to the limited experimental energy resolution

likely dominated by kinematic broadening, ∆Eres = 350 keV, it is difficult to obtain

direct information about the Jπ = 4+
1 (E = 3.555 MeV), Jπ = 2+

2 (E = 3.920 MeV)

and Jπ = 1−, E∗ = 4.45 MeV excited states, because there is an overlap between

their peaks.

To disentangle the 2+
2 state from the strongly populated 4+ state, RAYTRACE was

used to determine the expected positions of the low-lying states in 18O along the
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FIG. 57. The upper panel shows the trajectories of the complex turning points for
17O+13C, which are calculated in the semiclassical WKB approximation for

the optical potential V = 91 MeV. Below, the S matrix for the barrier and

internal barrier components as a function of the orbital angular momentum.
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FIG. 58. The semiclassical calculations have been checked by comparing the barrier,

middle panel, and internal barrier, lower panel, components of the elastic

scattering cross section for 17O+13C. The decomposition of the two ampli-

tudes, upper panel, shows the dominance of the barrier contribution at for-

ward angles. Each component is further decomposed into far-side (dashed),

near-side (dotted), and their coherent sum (solid).
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dispersive x-axis in the focal plane of the detector, as illustrated in Fig. 59. Using

the information about the FWHM of the Jπ = 2+
1 peak and the known positions of

the other states in 18O, a multi-Gaussian macro was written to extract the angular

distribution of the inelastic transfer reactions. The spectrum obtained with the 4o×1o

wide-mask was divided into eight 0.5o bins. The measurements at 4o, 6o, and 8o

allowed a self-consistency check of the data for at least two bins. The transition to

the ground state of 18O was also observed, and its ANC is determined in the following

part.

6. Extracting the ANCs

The angular distributions for transfer to the Jπ = 0+
1 , 2+

1 , 4+
1 , and 2+

2 states in 18O,

are shown in Figs. 60-63, respectively. In our transfer calculations, the 2+ states

result from the coupling of 1d5/2 or 2s1/2 neutrons to the 5
2

+
ground state of 17O,

while the 0+
1 and 4+

1 states can only be obtained from adding a 1d5/2 neutron to the

5
2

+
core configuration. Therefore, the angular distribution for each 2+ state is

dσ

dΩ
=
C2

p1/2
(13C)

b2p1/2
(13C)

{
C2

5
2
, 5
2

(
18O

) σDWBA
5
2
, 5
2

b25
2
, 5
2

(18O)
+ C2

5
2
, 1
2

(
18O

) σDWBA
5
2
, 1
2

b25
2
, 1
2

(18O)

}
, (4.17)

while the ANCs for the 0+ and 4+ states are extracted using a relation similar to

Eq. (4.16). To check the peripherality of the reaction, a comparison between the

ANC for the (ds) configuration of the 2+
1 state versus its corresponding spectroscopic

factor for several geometries of the Woods-Saxon potential is illustrated in Fig. 64.

The spectroscopic factor varies by almost 23% around the average, whereas the ANC

varies by less than 4%, which demonstrates that only the asymptotic part of the wave

function contributes in the DWBA calculations and the reaction is peripheral at 12

MeV/A beam energy.
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FIG. 59. The procedure that has been followed to disentangle the 2+
2 state from 4+

state in the current experiment as it is described in the text. The up-

per left panel shows the (Angle,POSC) histogram for the transfer reaction
13C(17O,18O)12C when the MDM was at 6o. RAYTRACE was used to find the

relation between the energy of the excited states in 18O and their predicted

positions in the detector as illustrated in upper right panel. The lower panels

show the expected positions of the 2+
2 and 4+ states, and the multi-Gaussian

fit that was used to extract their angular distributions.
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Uncertainties in the values of the ANCs include 3.5% in the C2
p1/2

(13C) that represents

the other vertex of the reaction, 7.5% in the thickness of the target, and almost 3%

statistical errors. The uncertainties in the selection of the optical potential families,

which represent the entrance and exit channels of the reaction, and the geometry of

the neutron binding potential used in the DWBA calculation are not the same for all

arrangements, but their average values are 2.5% and 3.5%, respectively. The total

uncertainty is around 10%.

For the 2+
1 state, the ANCs were obtained by normalizing the calculated DWBA

angular distributions for the (dd) and (ds) configurations simultaneously to the data

at C.M. angles between 4o and 30o. The resulting ratio of the spectroscopic factors

S(2+
1 ) ` = 0/` = 2 is 0.25, which agrees with the measured ratio 0.2 ± 0.04 reported in

[74] and [96]. Weighing the calculations by χ2 for both configurations simultaneously

gives C2
2+
1

(dd) = 2.06 ± 0.21 fm−1 and C2
2+
1

(ds) = 6.55 ± 0.69 fm−1. Microscopic

cluster model calculations using two effective NN interactions in the form of V2

and MN potentials estimate that C2
2+
1

(dd) = 3.77 and 3.00 fm−1 [97], respectively,

which are slightly larger than the measured value. The same calculations predict that

C2
2+
1

(ds) = 6.15-7.72 fm−1, which agrees well with the experimentally obtained value.

The ANCs for 2+
2 state were obtained using the ratio between the spectroscopic factors

S(2+
2 ) ` = 0/` = 2 measured in a 17O(d, p)18O reaction, 0.53 ± 0.07 [74]. This ratio

was fixed, then the normalizing procedure was performed with one fit parameter that

related to the (dd) configuration as

dσ

dΩ

/
C2

p1/2
(13C)

b2p1/2
(13C)

=
C2

2+
2

(dd)

b2
2+
2

(dd)

{
σDWBA

dd + 0.53σDWBA
ds

}
. (4.18)

Varying the spectroscopic factors ratio by 15% changes the extracted ANCs for the
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(dd) and (ds) configurations by almost 4%. This additional uncertainty is included

in the total accuracy of the final results. Thus, the ANCs are C2
2+
2

(dd) = 0.49± 0.06

fm−1 and C2
2+
2

(ds) = 4.47 ± 0.54 fm−1. The microscopic cluster model calculations

predict a smaller ANC value for the (dd) configuration, around 0.31 fm−1. They

also estimate that C2
2+
2

(ds) ≈ 12 fm−1, which is almost three times larger than the

measured value.

The ANCs for the 2+ states are most important in determining the astrophysical

reaction rate for 17F(p, γ)18Ne in the next Chapter. The ANCs for the 0+ and 4+

states in 18O are C2
0+ (dd) = 7.33 ± 0.67 fm−1 and C2

4+ (dd) = 1.05 ± 0.10 fm−1,

respectively.
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FIG. 60. The angular distribution for the ground state of 18O that resulted from the

neutron transfer reaction 13C(17O,18O)12C. Only the (dd) configuration is

included in the DWBA calculations.

FIG. 61. The cross section values for the first excited state in 18O, Jπ = 2+
1 at 1.982

MeV, which is populated in 13C(17O,18O)12C reaction. The best DWBA fit is

due to the combination of the p1/2 → d5/2 (red dots) and p1/2 → s1/2 (dashed

navy) components.
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FIG. 62. Same as Fig. 60, but for the Jπ = 4+ state in 18O at 3.555 MeV.

FIG. 63. Same as Fig. 61, but for the Jπ = 2+
2 state in 18O at 3.920 MeV.
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FIG. 64. Comparison of the spectroscopic factors (dots) and of the ANCs (stars) ex-

tracted for the p1/2 → s1/2 configuration of the 2+ state at 1.982 MeV as a

function of the single-particle ANC, b2+(ds).
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CHAPTER V

ASTROPHYSICAL REACTION RATES AND CONCLUSIONS

A. The 22Mg(p,γ)23Al Reaction Rate

The ANCs in 23Al were obtained from those measured in 23Ne using their identical

spectroscopic factors:

Snlj(
23Al) = Snlj(

23Ne) =⇒
C2

n`j

b2n`j

(
23Al

)
=
C2

n`j

b2n`j

(
23Ne

)
(5.1)

The single-particle ANCs, b, in 23Al were calculated using Eq. (2.48) for a proton

bound in a Woods-Saxon potential with the same geometry, ro = 1.25 fm and a = 0.65

fm, and the same spin-orbit interaction that were used for a neutron bound in 23Ne.

Only the depth of the central potential was adjusted to reproduce the experimental

proton binding energy in 23Al. The values obtained for the depth of the nuclear

potential by imposing this procedure are similar to the depths of the nuclear potentials

found for 23Ne. This is a very good confirmation of the charge symmetry assumption

made here. The value of b`j strongly depends on the geometrical parameters ro and

a assumed for the potentials. However, the ratio b2`j(
23Al)/b2`j(

23Ne) is independent

of these parameters of the potential that bind the proton or the neutron around its

corresponding core. We find that this ratio is equal to 120.0 for 1d5/2 (the major

component of the Jπ = 5
2

+
ground state), and 401.65 for 2s1/2 (the major component

of the Jπ = 1
2

+
first excited state). Inserting these ratios and the values of the

ANCs in 23Ne, which were obtained in the previous Chapter, into Eq. (5.1), we find

C2
d5/2

(23Al) = (1.25 ± 0.14) × 104 fm−1 and C2
s1/2

(23Al) = (2.94 ± 0.35) × 106 fm−1.

An additional 3% uncertainty is assigned to account for possible charge-symmetry
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breaking effects [100]. This is the first measurement of its kind to extract the ANCs

in 23Al. Their values are used to determine the reaction rate for 22Mg(p, γ)23Al, which

includes contributions from direct capture to the Jπ = 5
2

+
ground state and resonant

capture to the Jπ = 1
2

+
state.

Estimating the direct capture reaction rate starts with the calculation of the astro-

physical S-factor. It was obtained using the RADCAP code [98]. The central depth

of the proton binding nuclear potential Vo was adjusted so that the binding energy

of the ground state Ep in 23Al is reproduced. The newest value of Ep is 145 keV

[55]. The other parameters were fixed in order to maintain the same geometry of the

optical potential. Hence, the S-factor can be obtained from C2
d5/2

using Eq. (2.53).

The bound state wave function was then calculated and used to determine the S-

factor at each energy E for a direct, one-step transition from a continuum state to

the 1d5/2 single particle bound state, using Eq. (2.12). The cross section σpγ was cal-

culated assuming E1 capture only and is proportional to the square of the particular

single particle ANC used b2d5/2
. However, RADCAP assumes that the spectroscopic

factor of the reaction is unity. Therefore, the values obtained must be multiplied

with the spectroscopic factor determined from the data of the transfer experiment

Sd5/2
=

C2
d5/2

b2d5/2

. The dependence of b and the bound state wave function on the geome-

tries of the Woods-Saxon shape factors out, so the value of the ANC C2
d5/2

determines

the astrophysical S-factor. The S-factor calculation was done for the energy range

E = 0.01 to 3.0 MeV, in steps ∆E = 0.02 MeV. The calculated energy dependence

of the S-factor for the direct proton capture reaction 22Mg(p, γ)23Al is illustrated in

Fig. 65, and can be parameterized with a simple polynomial dependence

S(E) = 961 + 541E + 33.4E2, (5.2)



138

FIG. 65. The dependence of the S-factor on the C.M. energy for the 22Mg(p,γ)23Al

reaction. The curve is almost flat at astrophysical stellar energies. Fitting it

with a second degree polynomial function gives S(0) = 961± 105 eV b.

where S is in eVb and E in MeV. The S1−22(0) = 961± 105 eV b. It was reported in

[53] that S1−22(0) = 663 eVb, which is almost 30% less than our value. This is due

to different values of spectroscopic factors and Ep that were used in each calculation.

The central energy of the Gamow peak for p + 22Mg is at Eo = 0.63T
2/3
9 [MeV].

Inserting this equation into Eq. (2.20), I find for the effective S-factor Seff in terms

of T9

Seff (T9) = 961
[
1 + 0.02T

1/3
9 + 0.36T

2/3
9 + 0.05T9 + 0.01T

4/3
9 + 0.01T

5/3
9

]
. (5.3)

Then, substituting this equation and Eq. (2.19) into Eq. (2.22), the direct capture
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FIG. 66. The direct and resonant capture rate contributions to the 22Mg(p,γ)23Al re-

action. The two rates are competitive for temperatures, T9 = 0.2-0.45, in

ONe novae. Otherwise the direct capture dominates the reaction rate.

reaction rate for 22Mg(p, γ)23Al can be evaluated as a function of T9 using

NA 〈σv〉 = 37.78τ 2Seff (T9) e
−τ

[
cm3

mole.s

]
, (5.4)

where τ = 21.92

T
1/3
9

and Seff is in units of [eVb]. The calculated reaction rate is shown

in Fig. 66 as a function of the temperature T9.

In addition to the direct radiative proton capture calculated above, there is a resonant

contribution through the first excited state of 23Al. This resonant contribution to the

reaction rate has been estimated using Eq. (2.24). The measured excitation energy for

Jπ = 1
2

+
in 23Al is 0.528 MeV [53], so the resonance energy, Er = Ex−Sp = 528−145=



140

0.383(27) MeV. The resonant strength is

ωγ =
ΓpΓγ

Γp + Γγ

. (5.5)

Since for this reaction Γp � Γγ, the strength of the resonance is simply equal to Γγ.

It can be calculated for an E2 transition to the ground state of 23Al using [98]

Γγ = 8.13× 10−7E5
γ [MeV] B(E2 ↑)[e2fm4], (5.6)

where B(E2 ↑) = 21 e2fm4 was calculated using RADCAP. The value calculated

from the data of this experiment using the ANCs, or more precisely the spectroscopic

factors of the initial Jπ = 1
2

+
and final Jπ = 5

2

+
states, is Γγ = 3.9± 0.6× 10−7 eV.

This value is slightly smaller than (5.5× 10−7 eV) predicted in [53], but of the same

order of magnitude. Experimental studies of Coulomb dissociation of 23Al at RIKEN

give a similar estimate Γγ = 7.2± 1.4× 10−7 eV [57], while calculations using single-

particle wave functions for the E2 transition predict 6.0× 10−7 eV [55]. It should be

noted that all calculations referred to above use only the single particle parts from

the wave functions of the initial and final state to evaluate the reduced E2 transition

rate. Consequently, the neglect of collective components leads to underestimation

of the B(E2 ↑) and of the partial gamma-width. The experimental value Γγ =

7.2 ± 1.4 × 10−7 eV is used in estimating the reaction rate for the resonant term.

Hence, Eq. (2.24) for 22Mg(p, γ)23Al becomes

NA 〈σv〉 = 1.2× 10−1T
2/3
9 exp

(
−4.41

T9

)
. (5.7)

The estimated resonant reaction rate is shown in Fig. 66. In the range T9 = 0.2-0.4,

which is typical for ONe novae, the direct and resonant terms are comparable, while

for T9 > 0.6 or T9 < 0.2, the direct capture dominates the reaction rate.
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FIG. 67. Comparison between the estimated reaction rate in this work with the pre-

viously determined rates by Caggiano [53] and Wiescher [52]. Our rate is

similar to that of Wiescher, and almost two times larger than the estimate

by Caggiano.

The total reaction rate, which includes the direct and resonant terms, is compared

with previous estimates by Wiescher [52] and Caggiano [53] in Fig. 67. The new

reaction rate is similar to Wiescher’s estimate and is almost two times larger than

Caggiano’s determinations. This difference is mainly due to the binding energy of the

proton in 23Al and the spectroscopic factors, or their equivalent ANCs, that are used

in the reaction rate calculations.

The astrophysical implications of the new reaction rate for the nucleosynthesis of

22Na can be inferred from the work of Caggiano and Wiescher. It was shown in [53]

that the production of 22Na compensates the loss of 22Mg. This leads to a small mass
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fraction increase of 23Al, but it explains less than half of the 22Mg loss. However, the

low Q value of the 22Mg(p,γ)23Al reaction makes the proton capture process balance

with its photodisintegration reaction 23Al(γ,p)22Mg.

The 23Al(p,γ)24Si reaction has been studied to determine the 2p-capture rate on 22Mg

[99] and understand the low production of 23Al. The latter shows that the depletion

of 22Mg is larger by a factor of two than its β-decay to 22Na only when T9 ≈ 0.45 and

the density is in the excess of 104 g/cm3. These conditions may occur in massive novae

such as 1.35 M� ONe WD novae. For 1.25 M�, where T9 ≈ 0.35 and ρ ≈ 102 − 104

g/cm3, the 2p-capture process produces limited amounts of 23Al and 24Si that could

not explain the missing long-lived γ-ray emitter 22Na. Wiescher [52] and José [101]

suggested that the 22Mg(p,γ)23Al reaction is more important in X-ray bursts, where

the extreme temperature and density conditions increase the probability of the proton

capture and reduce the β-decay of 22Mg. Nevertheless, our reaction rate for 22Mg(p,γ)

still has some impact on the nucleosynthesis of 22Na and should be included in the

library of the reaction rates for novae.

B. The Reaction Rate for 17F(p,γ)18Ne

The ANCs of the low-lying states in 18Ne are determined from those of their cor-

responding states in the mirror nucleus 18O, using a procedure identical to the one

explained in the previous section. A slight complication occurs from the fact that

23Al is an even-N, odd-Z nucleus and, therefore, for our purposes its states are de-

scribed as one proton coupled to an even-even core, while 18Ne is an even-Z nucleus,

and its states can have more than one proton orbital involved. Another difference is

that there is more than one proton bound state in 18Ne and direct radiative proton
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capture can proceed via any and all of them. The orbitals we considered relevant

for the 2-proton states in 18Ne are 1d5/2, 2s1/2 and 1d3/2. Because the ground state

of 17F is Jπ = 5/2+ (almost pure 1d5/2), we are always interested only in final state

configurations containing two protons of which one is in the 1d5/2 orbital. Therefore,

the 0+ ground state and the 4+ second excited state at 3.38 MeV can only be made of

(1d5/2)
2
J configurations, but the two 2+ excited states can be made of (1d5/21d5/2)2+

and (1d5/22s1/2)2+ contributions. The ANCs reported below reflect these assumptions

and similarly the calculated astrophysical S-factors.

The ANCs obtained for the four proton bound states in 18Ne from the ANCs of the

corresponding states in the mirror 18O nucleus are listed in Table VII. The binding

energies included in the second column are calculated as BE = Sp − E∗. The ANC

values are smaller than the calculated ANCs predicted in [72] and differ by a factor

of 2-6 with other calculations using the same approach [97].

TABLE VII. The binding energies (B.E.), the proton orbitals, and the ANCs of the

low-lying levels in 18Ne.

Jπ B.E. (MeV) Proton orbital C2
`j (fm−1)

0+
1 3.92 d5/2 10.76±0.97

2+
1 2.04 d5/2 2.17±0.24

s1/2 14.29±1.71

4+
1 0.54 d5/2 2.17±0.22

2+
2 0.31 d5/2 2.69±0.32

s1/2 126.9±16.5
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FIG. 68. The S-factor components of the 17F(p,γ)18Ne reaction. S(0) of the Jπ = 2+
2

state makes the major contribution to the reaction rate, and is almost 50%

larger than the 2+
1 contribution. The other components are one order of

magnitude smaller than the major one. The total S(0) = 2.5± 0.4 keV b.

The astrophysical S-factors calculations for each (`,j) configuration of Table VII were

done depending on their corresponding ANCs. The geometry of the Woods-Saxon

potential were fixed using ro = 1.25 fm and a = 0.65 fm. Since the reaction rate for

17F(p,γ)18Ne in ONe novae is dominated by the direct capture terms, only the E1

electromagnetic transitions are included in the RADCAP calculations. The calculated

S factors as functions of the C.M. energy for the Jπ = 0+
1 , 2+

1 , 4+
1 , and 2+

2 bound

states of 18Ne are plotted in Fig. 68, where S(E) for the 2+
1 and 2+

2 states is the sum of

their (dd) and (ds) components. It should be noted that the (1d5/22s1/2)2+ component

contributes most in the proton capture. This is easy to understand due to the lack of

a centrifugal barrier for the 2s1/2 orbital in the final state which extends further from
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the core into the asymptotic region where the proton capture happens. The figure

shows that the transitions to Jπ = 2+
1,2 dominate the direct capture reaction rate over

the other contributions. The Jπ = 2+
2 state makes the larger contribution at E < 400

keV. The dependence of the total S factor (in keV b) on E (in MeV) is well fit by

S(E) = 2.5− 1.11E + 1.55E2 − 0.31E3. (5.8)

The value of the S factor at zero energy is S(0) = 2.5 ± 0.4 keVb. This value is

in good agreement with S(0) = 2.9 ± 0.4 keV b reported in [67] and is smaller than

S(0) = 3.5 keV b calculated in [72]. Using the central energy of the Gamow peak for

p+ 17F, Eo = 0.52T
2/3
9 MeV, then substituting S(E) in Eq. (2.20), we find

Seff (T9) = 2507
[
1 + 0.02T

1/3
9 − 0.23T

2/3
9 − 0.09T9 + 0.17T

4/3
9 + 0.07T

5/3
9

]
,

where Seff (T9) is in eVb. Then, using τ = 18.03

T
1/3
9

, the estimated direct capture reaction

rate for 17F(p,γ)18Ne is given by

NA 〈σv〉 = 51τ 2Seff (T9) e
−τ

[
cm3

mole · s

]
. (5.9)

The total direct capture rate is plotted in Fig. 69. The uncertainty in the reaction

rate is dominated by the 20% overall uncertainty of the extracted ANCs.

This is the first time to evaluate the direct capture reaction rate of 17F(p,γ)18Ne

through the measurement of the ANCs in the mirror nuclear system. Previous es-

timates by Garcı́a were determined using shell model calculations and spectroscopic

factors measured in the 17O(p, γ) direct capture reaction [67]. On the other hand,

the transitions through the resonance states Jπ =1−1 (Er = 595,Γγ = 1.5 × 10−5),

3+ (Er = 600,Γγ = 2.5 × 10−5), and 0+ (Er = 666,Γγ = 1.0 × 10−5) in 18Ne, where

all the numbers are in units of keV and adopted from Ref. [71], are also important
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FIG. 69. The (black) solid line represents the total rate for the 17F(p,γ)18Ne reaction.

The direct capture reaction, (red) dashed line, is estimated using the ex-

tracted ANCs for the low-lying states in 18Ne and the determined S-factor,

while the (blue) dotted line shows the contribution from the resonant 3+

state in 18Ne. The partial width and the resonant energy of the state were

taken from Bardayan et al. [69].

in understanding the HCNO cycle. The resonant contributions are calculated using

Eq. (2.24). The contribution of the 3+ resonance, which is the major component, is

plotted in Fig. 69 to compare it with the direct capture reaction rate. The present

results show that the thermonuclear reaction rate is dominated by the direct capture

component by a factor up to 104 over the resonant contribution for T9 = 0.2-0.4. The

resonant contribution is more significant for temperatures in excess of T9 ≈ 0.5 that

characterize X-ray bursts or neutron stars.
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The astrophysical implications of our direct capture reaction on the nucleosynthesis of

the HCNO cycle materials can be explained following the approach that is discussed

in Ref. [102] for 1.25 M� and 1.35 M� ONe WD novae. For temperatures less than

T9 = 0.4, two main hypotheses for the 17F(p,γ)18Ne reaction may affect the synthesis

of 18F. If the reaction is fast, 18F will be produced in a large amount in the outer

zone of the WD envelope, where the low temperatures decrease the probability of its

destruction via 18F(p,α)15O, and in small fractions in the lower and hotter zone of

the envelope. If the reaction is slow, more 18F will be produced in the hotter zone

via the 17F(βν)17O(p, γ)18F and 17F(p,γ)18Ne(βν)18F reaction paths. This will lead

to larger amounts of 18F overall, but under the same conditions the high temperature

of the zone speeds up its destruction and increases the abundance of 15O by almost

62% [102]. Therefore, the slow 17F(p,γ)18Ne rate dominates the synthesis of 18F. The

slow rate also allows more production of 17F and its β-decay daughter 17O.

Our direct reaction rate is on average 12% lower than the Garćia [67] and Bardayan

[71] calculations for temperatures less than T9 = 0.4. The ±20% uncertainty covers

the central values of the previous calculations, but it is more important because it is

evaluated from measured values that provide a significant reduction in the uncertainty

of the rate. The astrophysical analysis by Parete-Koon [102] implies that the new rate

of 17F(p,γ)18Ne is slow. This allows more production of 18F to occur in the envelope

and increases the possibility of its observation. As a consequence, the abundance of

18O will be slightly increased.

When the mass of the WD increases from 1.25 M� to 1.35 M�, the temperature of

its inner zone drops from T9 = 0.46 to T9 = 0.01 in less than a minute [102], whereas

it needs five minutes in the case of a 1.25 M� WD. This fast change indicates that
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our rate will produce less 18F and 18O in comparison with Garćia and Bardayan. But

the mass fractions of the production of 17F and 17O will increase.

C. Conclusion

The asymptotic normalization coefficient technique has been used to determine the

reaction rates for 17F(p,γ)18Ne and 22Mg(p,γ)23Al and to investigate their astrophys-

ical consequences on the nucleosynthesis of 18F and 22Na in ONe WD novae. The

experimental difficulties of the direct measurements when radioactive beams or tar-

gets are involved have been avoided by measuring the ANCs in the mirror systems.

Charge symmetry implies that the spectroscopic factors of the pairs of mirror nuclei

{18Ne,18O} and {23Al,23Ne} are the same. Therefore, the stable beam and target ex-

periments 13C(17O, 18O)12C and 13C(22Ne, 23Ne)12C have been performed to extract

the ANCs of the low-lying states in 18O and 23Ne. The results have then been applied

to the corresponding states in 18Ne and 23Al, respectively.

In the procedure described above, the ANC of 13C, which represents the other vertex

in the above neutron transfer experiments, must be known. Therefore, we carried out

the neutron-exchange reaction 13C(12C, 13C)12C to extract the ANC for the ground

state in 13C. This peripheral exchange reaction has been chosen because it has iden-

tical entrance and exit channels. The analysis has been done in the framework of

the phenomenological optical model potential, where the measured elastic scattering

angular distributions have been fit with Woods-Saxon potentials to obtain the optical

model parameters. The OMPs were then used in the DWBA codes to predict the

angular distribution for the transfer of a 1p1/2 neutron to a 1p1/2 orbital. Our ANC

agrees within one sigma with the average of all previous measurements. We combine
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it with them to get C2
p1/2

(13C)=2.31± 0.08 fm−1, the value we use in the analysis of

the other neutron transfer reactions.

We have successfully populated the Jπ = 5
2

+
ground state and the Jπ = 1

2

+
first

excited state of 23Ne in the neutron transfer reaction 13C(22Ne, 23Ne)12C. The ANCs

C2
d5/2

(23Ne) = 0.86± 0.08 fm−1 and C2
s1/2

(23Ne) = 18.2± 1.8 fm−1 are used to deter-

mine their corresponding ANCs in 23Al. The value C2
d5/2

(23Al) = (1.25± 0.14)× 104

fm−1 is involved in determining the S-factor for the 22Mg(p,γ)23Al reaction, which

gives S1−22(0) = 0.961±105 eV b. Then it is used with C2
s1/2

(23Al) = (2.94± 0.35)× 106

fm−1 to determine the partial width of the resonant state. The estimated capture re-

action rate, which is the sum of the direct and resonant contributions, is higher in

this work than in previous estimates, but it compensates only for a small amount of

the lost production of 22Na in ONe novae. It is concluded that the radioactive proton

capture by 22Mg overcomes its β-decay only in massive novae M ≈ 1.35 M�, where

extreme temperature and density conditions may occur.

The elastic scattering for 13C+17O and 18O+12C were successfully performed to ob-

tain the OMPs that give the best description of the input and exit channels of the

13C(17O, 18O)12C reaction. Yields of the four lowest-lying levels of 18O in the neutron

transfer reaction were disentangled. Shell model calculations were taken into account

to determine the right configurations and the ANCs of the Jπ = (0+
1 , 2

+
1 , 4

+
1 , 2

+
2 ) states

in 18O. Then, they were used to obtain their corresponding ANCs in 18Ne to determine

the astrophysical S-factor. We found S1−17(0) = 2.5± 0.4 keVb and showed that the

reaction rate of 17F(p,γ)18Ne is dominated by direct capture to the 2+
2 and 2+

1 states

in 18Ne. This is the first time to evaluate the direct capture reaction using measured

asymptotic normalization coefficients. In comparison with the previous calculations,
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our reaction rate is slower. Models of ONe novae imply that 17F(p,γ)18Ne is the main

process that produces 18F, and its abundance is enhanced in 1.25 M� novae when the

reaction is slow. This supports overabundance observations of 17O and 18O in novae.

It has been shown that estimating reaction rates through measurements of ANCs

in the mirror nuclear systems can be done. Our results agree within uncertainties

with other measured and calculated results. Therefore, they can be inserted into the

nuclear reaction rate library to study their influence on the abundance of the CNO,

NeNa, and MgAl materials in novae.

More secrets and wonders about the nucleosynthesis of elements in the universe will

be revealed with the improvement of the radioactive beam facilities and the future

observations of the international γ-ray astrophysical laboratory. In the meantime,

we keep looking to the sky above us, inspiring how it was made and adorned, and

discovering its beauty.
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