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ABSTRACT 

 

Modeling Performance of Horizontal, Undulating, and Multilateral Wells. 

(August 2007) 

Rungtip Kamkom, B.Eng., King Mongkut’s University of Technology Thonburi; 

M.S., New York Institute of Technology; 

M.S., University of Texas at Austin 

Chair of Advisory Committee:  Dr. Ding Zhu 
 
 

Horizontal, undulating, and multilateral wells are relatively new alternatives in field 

development because they can increase the productivity per well and reduce the cost of 

field development. Because the feasibility of these wells may not be valid in some 

reservoirs, well performance should be verified before making decisions. Undulation is 

usually associated to horizontal wells with some degrees. Existing inflow performance 

models do not account for the undulation of the well, which can cause significant error 

and economic loss. Moreover, some of the inflow models ignore pressure drop along the 

lateral, which is definitely not true in high production and long lateral wells.   

  The inflow performance models of horizontal, undulating, and multilateral wells 

are developed in this study. The models can be divided into two main categories: the 

closed form model and the line source model. The closed form model applies for 

relatively low vertical permeability formations for the single-phase system and two-

phase system. The model is flexible and easy to apply with reasonable accuracy. The 

line source model does not have any restrictions with permeability. The model applies 

for single-phase system. The model is very accurate and easy to use. Both models can be 

applied to various well trajectories with realizable accuracy. As a result of this study, the 

well performance of unconventional well trajectories can be predicted and optimized.  
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CHAPTER I 

INTRODUCTION 

1.1 Background 
Horizontal wells, undulating wells, and multilateral wells are relatively new technologies 

in oil and gas field developments. Their main advantages include increasing the 

productivity per well, accessing the unconventional resources, and reducing the number 

of well needed and thereby reducing the cost of field development. However, because 

the complexity involves both reservoirs and well structures, and also because of the 

higher cost of drilling and completion of these wells, well performance should be studied 

carefully before making decisions. Well performance models are very essential in many 

activities such as well design, production optimization, field development, and reservoir 

management. A reliable and accurate inflow performance model is very crucial for these 

tasks. 

 The methodologies used to analyze well productivity are divided in two main 

approaches: numerical simulation and analytical solution. The numerical method usually 

requires intensive input data to describe the reservoir/well system, and is a time-

consuming procedure. Refined grids are usually needed to capture the well trajectory and 

well location, particularly for complex well structures. In most numerical simulation 

models, the wellbore pressure drop is neglected. For complex well applications, the 

wellbore pressure drop often becomes a critical factor for well performance. The models 

may provide misleading information when the wellbore pressure drop is not considered. 

 Analytical well performance models have been developed for vertical wells, 

horizontal wells, and slanted wells. With some assumptions, these models present 

explicit relationships between a flow rate and a wellbore flowing pressure. The models 

are much easier to apply compared with numerical models. Wellbore pressure drop can 

be included by coupling inflow models with wellbore flow models.   However, the actual  
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reservoir and well structures in reality are usually much more complex than the 

assumptions made in the closed form models. The closed form models may have some 

errors, and sometimes the error can be significant. For example, most horizontal well 

models assume that the horizontal wellbore is perfectly horizontal. Actual horizontal 

wells are not perfectly horizontal as a result of a lack of sufficient drilling control or 

varying formation structures. Using horizontal well models to evaluate the performance 

of intensive undulating well may result in significant deviation. 

 The main purpose of this dissertation is to predict and optimize the well 

performance of unconventional well structures including horizontal wells, undulating 

wells, and multilateral wells. It also presents models and effective procedures to evaluate 

well performance. The new procedures reduce the limitation of the existing model and 

make the model more practical. For instance, well trajectories can be undulated and 

reservoir boundary conditions can be steady-state condition, pseudo-steady-state 

condition or mixed boundary condition. As a result of this dissertation, the accuracy of 

performance models of horizontal wells, undulating wells, and multilateral wells is 

improved and the models will be more applicable in various well trajectories. Moreover, 

this research presents the methodology to account for two-phase inflow performance in 

horizontal wells, undulating wells, and multilateral wells which eliminate the limitations 

of available models. 

 

1.2 Literature Review 

Many closed form models of horizontal wells have been published to evaluate the well 

performance. These models are usually based on either a steady-state condition or 

pseudosteady-state condition. The models under the steady-state condition were 

presented for ellipsoidal or box-shaped reservoirs. There are two well-known models for 

ellipsoid drainage volume. The first model is Joshi’s model1 and the second model is 

Economides model2. Joshi presented his model in 1988. He divided the three-

dimensional flow problem into two two-dimensional problems to obtain the horizontal 

performance model. For a box-shaped reservoir, the models were presented by Bulter3 
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and Furui4. Although their models are derived by different methods, these models are 

very similar. Butler’s model was obtained by applying the superposition principle and 

the image technique. On the other hand, Furui’s model was based on the finite element 

model. Both of these models assume no-flow boundary at the top and the bottom of the 

formation, the z-direction, and constant pressure in the x-direction. For Butler’s model, 

the model predicts the productivity of fully penetrated well and the well can be off center 

in the z-direction. In 2003, Furui presented a closed form model for fully penetrated 

horizontal well. He divided the flow to a horizontal well into two regimes, a radial flow 

region near the wellbore and a linear flow region away from the wellbore. The well is 

located in the center of the reservoir. A widely used model under the pseudosteady-state 

condition is Babu and Odeh’s model5.  Babu and Odeh presented the horizontal well 

productivity model in a box-shaped reservoir. The only limitation in their model is that 

the well has to be parallel to the y-axis. All of the above models are limited to a perfectly 

horizontal well and a single-phase reservoir.  

 In general horizontal well models do not account for the undulating effect of well 

trajectories which is not the case in reality. Normally, a horizontal well is not perfectly 

horizontal. Almost every well has a certain degree of undulation in wellbore trajectory. 

Many studies6-8 show that the undulating effect should be considered, especially when 

the degree of undulation is intensive. Goktas and Ertekin6 showed that the pressure 

responses of wells with intensive undulation deviate from the responses of horizontal 

wells. They also noted that the pressure drop along the wellbore in high production well 

should be considered in order to improve the accuracy of the evaluation of well 

performance. Additionally, the study of Al-Mohannadi7 et al. confirmed that when the 

degree of undulation is not severe, the pressure responses of the undulating well agree 

very well with those of the horizontal well. On the other hand, when the well is 

extremely undulating, the effective well length is significantly longer than that from the 

straight wellbore length, which results in the pressure responses of undulating wells to 

differ from the pressure responses of horizontal wells. Azar-Nejad et al.8 also showed 

that applying the horizontal well model to an undulating well may create significant 



4 

 

error. These previous studies showed that the wellbore performance model of an 

intensive undulating well is necessary for evaluating the well performance.   

 

1.3 Objectives 

 The objective of this study is to develop systematic analytical well performance 

models that can be used   

• To predict the well performance of horizontal wells, undulating wells, and 

multilateral wells in anisotropic formations under different boundary condition 

for single-phase oil, single-phase gas and two-phase oil and gas reservoir. 

• To study the effects of well structure on well performance and productivity. 

• To optimize well design for maximum well performance in different reservoir 

conditions. 

 

1.4 Organization of the Dissertation 

 The dissertation is divided into six chapters. Chapter I outlines the dissertation 

with the research background, the literature review, and the objectives. The dissertation 

outline gives a brief overview of the dissertation. The literature review provides the 

status of the research that is available relating to this subject. The objectives list the 

intent and the organization of the dissertation. 

 In Chapter II, the horizontal well performance models are reviewed and 

summarized in a systematic way. The intent of this chapter is to review the available 

horizontal well models for different flow systems under varieties of reservoir boundary 

conditions. The models were for single-phase oil, single-phase gas, and two-phase oil 

and gas reservoirs. For each fluid flow system, the models were investigated for steady-

state and pseudosteady-state condition. A method to account for the pressure effect along 

the wellbore is presented.  

 Chapter III presents the methodology used to apply the line source solution to 

estimate the inflow performance of a variety of well trajectories in a single-phase 
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reservoir. The reservoir is considered homogeneous and it can be either isotropic or 

anisotropic. The initial boundary condition is constant pressure in the reservoir. The 

outer boundary condition can be steady-state, pseudosteady state or mixed. For the inner 

boundary condition, uniform flux, infinite conductivity or finite conductivity can be 

used.  

 Chapter IV introduces models for undulating well performance. Two approaches 

are discussed for performance of undulating wells. The first model is an analytical 

approach that applies a modified vertical well model along with a slanted skin model, 

and a shape factor. The application using the line source solution to model on undulating 

well is presented. After that the undulating well performance obtained by the closed 

form model is compared with that obtained using the line source model. 

 Chapter V discusses multilateral well performance. The first section presents the 

methodology used for a horizontal well model along with assumptions to evaluate 

multilateral well performance for single-phase and two-phase reservoirs. The second 

section shows the procedure for applying the line source solution to model multilateral 

well performance. This application can predict the performance of any type of 

multilateral well trajectories. 

 The last chapter, Chapter VI, presents conclusions and recommendations from 

the research.  
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CHAPTER II 

CLOSED FORM MODELS FOR HORIZONTAL WELLS 
 
Many horizontal well models1-5, 9-10 have been published under different boundary 

condition assumptions. In general, these assumptions define the applications of models. 

In order to apply models properly, these assumptions should be understood clearly. In 

this chapter, we review horizontal well performance models and modify the horizontal 

performance model under steady-state condition for single-phase oil wells. We also 

present gas inflow performance models for horizontal wells under steady-state and 

pseudosteady-state conditions. Then the models are summarized in the systematic table 

for horizontal well performance. In addition to the coupling model of wellbore 

performance and wellbore flow, the effect of wellbore pressure drop on horizontal well 

performance is also addressed.  

 

2.1 Single-Phase Oil Wells 

Although there have been horizontal well models presented for undersaturated oil 

reservoirs1-5, the applications of these models are different depending on reservoir 

boundary conditions. The distinctions of each model should be clarified so each model 

can be used properly.  

 

2.1.1 Transient Flow Equation 

The transient flow in a horizontal well is divided into 4 periods, early time radial flow, 

intermediate time linear flow, late time radial flow, and late time linear flow. Some 

periods may not occur in some cases. For example, if the ratio of well length to drainage 

area is very low, intermediate time linear flow may not occur because the horizontal well 

acts like a point sink, thus, the flow will be late time radial flow instead9.  
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 The early time radial flow occurs before the flow reach both top and bottom 

boundaries. After the top and the bottom boundaries have been encountered, the flow 

becomes intermediate time linear flow unless the well length is relatively short 

comparing with drainage area. The late time radial flow occurs if the drainage area is 

relatively large comparing with the well length. Finally, after all boundaries have been 

reached, the flow is in the late time linear flow. Goode and Thambynayagam10 presented 

the transient flow models of horizontal wells in 1987. The original work was done for a 

well test purpose. The models are based on uniform production along horizontal wells. 

The models were presented for both drawdown test and build up test. Their model has 

been used widely to analyze the pressure transient in horizontal wells. In 1994, Yildiz 

and Ozkan11 presented the pressure transient model for non-uniform production along 

horizontal wells. The model is useful in many applications, one of them is when the 

damage skin varies along a horizontal well, and the productivity index is not a constant. 

With fully appreciation of the value of transient flow models, well testing, and other 

applications, for longer term production, we focus on the models at steady-state and 

pseudosteady-state conditions in this study.  

 

2.1.2 Steady-State Condition 

Joshi published the first horizontal well performance model in SPE literature 1988, and 

the model is still commonly used today in the industry. After Joshi’s work, several 

models were developed to improve the method of estimating production rate for 

horizontal wells under the steady-state condition. The model developed by Furui et al. 

assumes that the flow regime of a horizontal well can be divided into two parts, the 

radial flow part around the wellbore, and the liner flow part away from the wellbore. The 

total pressure drop is the sum of the pressure drops in these two regions. The concept is 

demonstrated in Fig. 2.1. This model can be coupled with a wellbore pressure drop 

model to estimate the pressure drop along horizontal wells, which have been proven to 

be the important issue in horizontal well production. Furui et al.’s model describes the 

relationship between flow rate and pressure drawdown as shown in Eq. 2.1 
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where keq is defined as VH kk .  

 

Fig. 2.1 Geometry model for steady-state flow equation. 
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 One weakness of this model is that the model only applies for fully penetrating 

horizontal wells. In other words, the wellbore length is set equal to the drainage length in 

the model. This greatly limits the model applications since horizontal wells are rarely 

drilled fully penetrating. When implement the model to estimate the production rate, the 

reservoir beyond the wellbore length is assumed to be non-producing, which results in 

underestimating well performance of partial penetrating wells. 

 To improve the model, we modify Furui et al.’s model by adding a partial 

penetrated skin factor to account for partial penetration. A partial penetrated skin factor 

calculation for horizontal wells in a box-shaped reservoir was presented by Babu and 

Odeh’s model. Directly adapting the partial penetration skin factor, the steady-state flow 

equation with the modification for partially penetrating wells can be expressed as 
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where, sR is partial penetrated skin factor and b is the reservoir drainage dimension along 

the horizontal well direction. We realize that Babu and Odeh’s model was developed for 

pseudosteady-state condition. In order to add the skin to the inflow equation under 

steady-state condition, we need to validate the approach first.  The modified Furui et 

al.’s model is compared with the line source model (Appendix A) for steady-state flow. 

The comparison  for horizontal well under a wide range of parameters is shown in  

Fig. 2.2.  
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Fig. 2.2 Validation modified Furui’s model with line source solution. 

 

 The comparison shows that the productivity index obtained by the line source 

model is almost the same as the productivity index obtained by the modified Furui et 

al.’s model (Eq. 2.2), indicating that in general the modified Furui et al.’s model can be 

used to predict the horizontal well for non-fully penetrating wells under steady-state 

condition.  

 It is noticed that for certain conditions, the results from the modified Furui et 

al.’s model deviate from the line source model at high productivity index. After 

analyzing the condition that the deviation occurs, we recognize that the deviation mainly 

relates to the length of horizontal wells and anisotropic ratios. Thus, we compare the 

productivity index calculated by the line source model with that by Eq. 2.2 at different 

anisotropic ratios and different well lengths; the results are shown in Fig. 2.3. 

 Fig. 2.3 shows that when a reservoir is anisotropic, Eq. 2.2 can be used to 

estimate the performance of partial penetrating horizontal wells with fair accuracy, but 

when a reservoir is isotropic (kH = kV), Eq. 2.2 deviates from the line source model. In 

addition, we also see that when the well is much shorter than the reservoir size, the 
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modified Furui et al.’s model creates error in productivity calculation. If a well 

penetrates 80% through isotropic reservoir, the different between the line source model 

and the closed form model with partial penetrated skin is less than 5%. The study shows 

that for the well at least 50% penetrates through the reservoir the error is less than 10% 

for isotropic reservoir.  
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Fig. 2.3 Sensitivity study on well length and anisotropic ratio on partial penetrating well 

model. 

 

2.1.3 Pseudosteady-State Condition 

For pseudosteady-state flow, the most commonly used model was presented by Babu 

and Odeh. The horizontal well is placed parallel to one of the reservoir boundaries. The 

model was derived from the line source solution of single-phase oil diffusivity equation 

 
t
p

k
c

p t

∂
∂=∇

µφ2  (2.3) 
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The line source solution of Eq. 2.3 as a result of a uniform constant flow rate, qo, into a 

horizontal well is 
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where tcφµα = and, 
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Babu and Odeh showed that Eq. 2.4 can be simplified to a closed form model of inflow 

performance relationship of horizontal wells, 
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In Eq. 2.8, the shape factor, ln(CH), accounts for the position of horizontal wells. The 

partial penetration skin factor, sR, accounts for partially penetrating horizontal wells. The 

pseudosteady-state model for single-phase oil horizontal well is flexible and easy to use 

because the well can be located anywhere as long as the well is parallel to the boundary 

of the reservoir and the well can be either fully or partially penetrating wells. With 

material balance, we can generate production history. The model will be used as the base 

to develop the pseudosteady-state equations for gas wells and two-phase flow wells in 

this chapter. 
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2.2 Single-Phase Gas Wells 

Although many horizontal well performance models have been published over a decade, 

most of these models only apply for single-phase oil reservoirs. To obtain the horizontal 

well performance in gas reservoirs, we need to consider the strong dependency of gas 

properties, density, viscosity and compressibility, to reservoir pressures and temperature. 

This dependency changes the diffusivity equation from a linear equation to a non-linear 

relationship. To solve the equation analytically, we can replace the pressure in 

diffusivity equation with a pseudo-pressure function12 to unify the diffusivity of gas and 

liquid. When the reservoir pressure is relatively high, the pseudo-pressure can also be 

replaced by the difference of squared pressure13. Here we derive the inflow equation for 

horizontal gas wells under steady-state condition, and discuss the equation for 

pseudosteady-state flow with analogical approach.  

 

2.2.1 Steady-State Condition 

Under steady-state condition, the flow in porous media can be directly solved by the 

Darcy’s law because a pressure is constant at the boundary. For oil wells, Furui showed 

that the flow of the horizontal well can be calculated by adding the radial pressure drop 

around the wellbore region and the linear pressure drop on the outer region.4 The radial 

flow was identified from distance r = rw to r = rt ( ( ) 22hrt = ) and the linear flow is 

from 2hx =  to the outer reservoir boundary or x = yb shown in Fig. 2.1.  

for radial flow, Darcy’s law states, 

 
r
pkA

q
∂
∂= µ  (2.9) 

To convert the gas flow rate at the standard condition we introduce the gas formation 

volume factor to Eq. 2.9 and then we have  
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q
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g ∂
∂= µ  (2.10) 

From the definition of gas formation volume factor and the Real Gas law, we have 

 
p
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Then substituting Eq. 2.11 into Eq. 2.10  
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For radial flow, the flow area A is rLπ2 , then Eq. 2.12 becomes 
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p
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 (2.13) 

Integrate Eq. 2.13 from r = rw to r = ( ) 22h  

 
( )


 ∂=
 ∂
rtp

wfp gsc

scsc
h

wr

g p
z

p
p

zT
r

rLk
Tq

µπ 2
22

 (2.14) 

With the definition of pseudo-pressure9, 
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basep g
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z
p

)p(m µ2  (2.15) 

Then the integral term on the right hand side of Eq. 2.14  

 ( ) ( )wfrt
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z
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Substituting Eq. 2.16 into Eq. 2.14 and integrating the left hand side of Eq. 2.14 give 
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Eq. 2.17 can be rearranged to 
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For the linear flow, the Darcy’s equation is 
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Using the definition of Bg (Eq. 2.11), we have 
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For linear flow hLA = , we write Eq. 2.20 as 
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Since we only consider the linear flow from one side of the drainage area, we divide the 

gas flow rate by two. Then we can write Eq. 2.21 as 
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Integrate Eq. 2.22 for the linear flow region from x = h/2 to x = yb, 
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 (2.23) 

Considering the integral term on the right hand side of Eq. 2.23 
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Substituting Eq. 2.24 into Eq. 2.23 and integrating the left hand side of Eq. 2.23 give 
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Rearranging Eq. 2.25  
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The pseudo-pressure difference as a result of uniform flow into a fully penetrating 

horizontal well under steady-state flow is equal to the summation of Eq. 2.18 and Eq. 

2.26. 
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We can rewrite Eq. 2.27 as 
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The damage skin factor, s, and the partial penetrated skin factor, sR, can be add to Eq. 

2.28 as discussed before, and we can write the gas inflow model for horizontal wells as, 
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For the oil field unit, Eq. 2.29 becomes 
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If pressure and temperature at standard condition is 14.7 psi and 520°R respectively, we 

then have in the oil field unit, 
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 For gas wells, the flow velocity is usually much higher than that in oil wells, 

especially near the wellbore. This high velocity causes additional pressure drop known 

as non-Darcy flow effect. This additional pressure drop is a function of flow rate, and its 

effect can be added to gas well inflow performance models by a Non-Darcy flow 

coefficient. The Non-Darcy coefficient, D, is obtained from lab experimental data or 

from correlations. A correlation for Non-Darcy flow for horizontal gas well14 is
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where, the turbulent factor for undamaged and damaged zones, β and βd, are estimated 

by 
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Including the non-Darcy flow effect, Eq. 2.31 now is 
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Eq. 2.35 is the inflow model for horizontal gas well at steady-state flow condition for 

isotropic reservoirs. For anisotropic reservoirs, the inflow model is  
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2.2.2 Pseudosteady-State Condition 

The horizontal well performance under pseudosteady-state condition for gas wells can be 

derived similar to the horizontal well performance under pseudosteady-state condition 

for oil wells with the same initial and boundary conditions. The pseudo equation for oil 

wells by Babu and Odeh is shown in Eq. 2.4. For oil wells, we solve the diffusivity 

equation for pressure, p. For gas wells, we solve the diffusivity equation for pseudo-

pressure, m(p), as shown for steady-state flow. For pseudosteady-state flow, we develop 

a squared pressure equation instead of pseudo-pressure equation. With appropriately 

constant changing, the equation can be further expressed in pseudo- pressure. 

 From previous section, the pseudosteady-state inflow equation for horizontal oil 

wells (Eq. 2.4) can be expressed for gas wells with corresponding fluid properties,   

 ( ) τα
µ

dxdSSS
L

qB
p o

t x

x
zyx

ggg

 
�
�

	


�

�
=∆

0

2

1

 (2.37) 

Substituting Eq. 2.11 into Eq. 2.37 we have  
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Because we solve Eq. 2.38 under isothermal system, we can use Bg that is evaluated at 

an average pressure,  
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The average pressure used in Eq. 2.39 can be estimated in different ways. The simplest 

one is to assume a linear distribution of pressure in the formation between the wellbore 

and the drainage boundary, the average pressure can be calculated by 
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2
wfi pp

p
+

=  (2.40) 

Substituting Eq. 2.40 into Eq. 2.39 and rearranging, 
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Easily, Eq. 2.41 can be rewritten as 
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Sx, Sy, and Sz are presented in Eq. 2.5 to Eq. 2.7 respectively. If we assume the geometry 

terms in the above equation, Sx, Sy, and Sz are independent to pressure, comparing Eq. 

2.41 with Eq. 2.4 and Eq. 2.8, the solution of Eq. 2.41 can be written as, 
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In oil field unit, the gas rate is in Mscf/day. We can convert STB/day to Mscf/day by 
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Substituting the constant in Eq. 2.44 into Eq. 2.43 gives 
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If the standard pressure is 14.7 psi and the standard temperature is 520°R. Eq. 2.45 

becomes 
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Then we add non-Darcy flow effect to Eq. 2.46 and the equation becomes 
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Eq. 2.47 is the inflow performance model of horizontal gas wells under pseudosteady-

state condition. This equation can be used to predict the performance of a horizontal gas 

well in a close box-shaped reservoir. Analogically to the discussion for the steady-state 

gas flow equation, Eq. 2.47 can be expressed in the pseudo-pressure term as (add 

equation) 
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 The closed form model for gas well IPR (Eq. 2.48) gives the agreed results when 

the bottomhole flow pressure, pwf, is not too low compared with the numerical 

simulation results. Fig. 2.4 shows a comparison between these results. From the plots, 

we can see that the analytical results slightly deviate at high flow rate or at low flowing 

bottomhole pressures. For example, at 10% recovery factor and a reservoir pressure of 

5152 psi, if the well is produced at 3500 psi drawdown, the closed form model gives 

14% difference comparing with the simulation result at the same condition. However, 

when the drawdown is below 1400 psi, the closed form model and the simulation model 

predict the same production performance. At 20% recovery factor and a reservoir 

pressure of 4023 psi, the analytical results match the simulation results when the 

pressure drawdown is below 1200 psi.  
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Fig. 2.4 Horizontal gas well performance. 

 

2.3 Two-Phase Reservoirs 

For two-phase flow wells, horizontal well performance is predicted by using 

correlations. The closed form model for two-phase flow is very difficult to derive 

because of the complexity of the relative permeability. One of the two-phase inflow 

correlations, which has been used successfully to estimate the inflow performance of 

two-phase vertical wells is Vogel’s correlation15. The same idea will be used to estimate 

the two-phase inflow performance of horizontal wells with some modifications. The 

main modification uses a horizontal well model to calculate the maximum flow 

potential. For horizontal well, the maximum flow potential is estimated as, 

For ( )bR pp <  

 
81.

Jp
q R
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for ( )bR pp >  and ( )bwf pp <   
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After we know the maximum flow potential of horizontal wells, we can apply this 

number to the correlation to estimate the two-phase flow performance of horizontal 

wells. 

 

2.4 Systematic Table for Horizontal Well Inflow Performance  

In this section we create a systematic table of horizontal wellbore performance models. 

The horizontal well performance table is shown in Table 2.1.  

 

Table 2.1 Horizontal well performance models in different boundary conditions and 

fluid systems 

Reservoir 

Conditions 
Transient Flow Steady-State  Pseudosteady-State 

Oil Reservoirs Available Available Available 

Gas Reservoirs - Available Available 

Two-Phase reservoir - - Available 

 

 

2.5 Wellbore Pressure Drop 

The wellbore pressure in horizontal wells is one of the important factors in well 

performance evaluation. Usually the pressure drop in horizontal wellbores is mainly 

from hydrostatic pressure drop. Although in general we do not consider the hydrostatic 
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pressure in horizontal wells, the pressure drop along a horizontal wellbore can be high 

because of the frictional pressure drop term. The frictional pressure drop along the 

wellbore depends mainly on the flow rate, the length of the well, and the wellbore 

diameter. Thus for a long horizontal well with high flow rate and/or small wellbore 

diameter, the pressure drop along the wellbore can be significant and will affect the 

performance of horizontal wells.  

 

2.5.1 Coupled Model 

The wellbore pressure drop along horizontal wells is evaluated by coupling the wellbore 

performance model with the wellbore pressure drop model. To couple these models, we 

need to divide the well and the reservoir into several segments as shown Fig. 2.5. Then, 

we estimate the productivity index, J, of each segment. After we know the productivity 

index in every segment, we start the calculation from the toe segment or segment 

number N.  

  

  

Fig. 2.5 Reservoir and wellbore geometry for coupling process. 

 

Toe Heel 
Flow Direction 

N-1  N  1  2 

 JN 

 pwf,N 
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 In order to determine the flow rate into the segment N, we have to assume the 

wellbore pressure in the segment N, pwf,N. Then the flow rate into the segment N is 

obtained by multiplying the productivity of this segment, JN, with the pressure 

drawdown of this segment, (pr-pwf,N), as shown in Fig. 2.6.  

 

 

Fig. 2.6 Coupling wellbore performance model with wellbore pressure drop model. 

 

 The productivity of single-phase oil is estimated by using Eq. 2.8. For single-

phase gas we compute the flow rate from Eq. 2.48. For two-phase system, we calculate 

the maximum flow potential and apply the correlation to evaluate the flow rate into 

segment N. After that, we estimate the wellbore pressure in segment N-1 by applying the 

wellbore pressure drop model to evaluate the pressure drop between the segments and 

subtract this pressure drop from the wellbore pressure in segment N, shown as, 

 N,NN,wfN,wf ppp 11 −− ∆−=  (2.52) 

 Next, we calculate the flow into segment N-1 from the productivity index and the 

wellbore pressure of segment N-1. After we know the inflow into segment N-1, we 

compute the wellbore pressure of the segment N-2 by applying the wellbore pressure 

drop model as shown Fig. 2.6. Then we repeat this procedure from the toe segment to the 

heel segment to obtain pressure profile and flow rate profile along the horizontal well.  

  pwf,N 

  JN 

  pwf,N-1 
qN  

  pwf,N-2 

  JN-1   JN-2 

qN+qN-1  
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2.5.2 Effect of Wellbore Pressure Drop 

The wellbore pressure can affect the performance of horizontal wells. From the couple 

model, we know that the pressure profile relates to the inflow distribution along the 

wellbore. If the wellbore pressure drop is high, the wellbore pressure decreases rapidly 

from the toe to the heel. The lower the wellbore pressure, the higher the pressure 

drawdown. If the productivity index of every segment is the same, the flow rate will 

increase from the toe to the heel. When the wellbore pressure drop is comparable to the 

reservoir drawdown, it will affect the production distribution of horizontal wells. For 

example, at high pressure drop, the wellbore pressure at the toe will be higher than the 

pressure at the heel. The pressure drawdown at the toe will be lower, thus, we may not 

be able to produce from the toe as much as we produce from the heel. 

 A study of wellbore pressure drop in horizontal well performance is necessary to 

optimize horizontal well production16. For single-phase flow, the frictional pressure drop 

is estimated by 
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If we convert the unit in Eq. 2.53 to oil field unit shown as, 
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To compare the wellbore pressure drop with the pressure drawdown of a horizontal well, 

we divide Eq. 2.56 with the reservoir drawdown,  
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Combining the constant, we have 
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The Reynolds number in oil field units is written as 

 µ
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Substituting Eq. 2.59 into Eq. 2.58 gives 
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If we define the reservoir geometry factor as 
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Then Eq. 2.60 becomes 
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Since the unit of permeability is in length square, we can define a horizontal 

dimensionless term as, 
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With this horizontal dimensionless number, the pressure ratio becomes 
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 HRef
dd

f NNf.
p
p 131069741 −×=

∆
∆

 (2.64) 

 

Using the above equation, we can identify the conditions that wellbore pressure drop is 

significant and should be considered when predict well performance. The calculation is 

illustrated by the following example. Assume a horizontal well is located in the middle 

of a close box-shaped reservoir. The well length is 3500 ft with 0.25 ft wellbore radius. 

The reservoir width is 2000 ft, the reservoir length is 3500 ft, and the reservoir thickness 

is 80 ft. The oil density is 45.58 lb/ft3 and oil viscosity is 1.16 cp. Wellbore roughness is 

0.001. The reservoir is single-phase oil reservoir. We can study the effect of the wellbore 

pressure drop of this well by applying Eq. 2.64. The results are shown in Table 2.2.  

 

Table 2.2 The ratio of the wellbore pressure drop to the pressure drawdown 

kH kV �pdd q 
Couple Model, 

�pf/�pdd 

Pressure Ratio Model, 

�pf/�pdd 

25 2.5 200 2779 0.006 0.005 

50 5 200 5573 0.022 0.020 

100 1 200 5078 0.017 0.015 

100 5 200 8989 0.051 0.048 

100 10 200 11261 0.078 0.073 

100 10 400 22464 0.146 0.139 

  

 

 The table shows that at the high flow rate, the pressure ratio is high. Comparing 

the pressure ratio obtained by the couple model with the pressure ratio obtained by Eq. 

2.64 shows that Eq. 2.64 can be used to approximate the ratio of wellbore pressure drop 

to the drawdown pressure with reasonable results. This model should be used to 

calculate first. If the pressure ratio is high, meaning that the wellbore pressure drop will 

affect the wellbore performance, then the coupling model should be used for more detail 
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and accurate result. Moreover, to optimize horizontal well performance, we can use Eq. 

2.64 to minimize the effect of wellbore pressure drop. From the horizontal dimensionless 

term, Eq. 2.63, the effect of wellbore pressure on flow rate distribution can be minimized 

by increasing the wellbore diameter in cases of high flow rate wells or high permeability 

reservoirs. 

 

2.6 Summary 

In this chapter, we study analytical horizontal well inflow performance models under 

different boundary conditions and fluid systems. The study covers the horizontal well 

performance for single-phase oil wells, for single-phase gas wells, and for two-phase 

flow wells under both steady-state condition and pseudosteady-state condition. For oil 

reservoirs, we modify a fully-penetrating horizontal well inflow performance model 

under steady-state condition to extend the application to partial penetrating wells. For 

gas reservoirs, we present the horizontal well performance model for gas wells under 

both steady-state and pseudosteady-state condition. After we study these horizontal well 

models, we create the systematic table that summarizes the horizontal well models. The 

wellbore pressure drop is also considered in this chapter by coupling the well 

performance with the wellbore pressure drop model. We also present the pressure ratio 

equation that can be used to monitor the effect of the wellbore pressure drop in single-

phase oil horizontal. This equation is useful in understanding and optimizing horizontal 

well performance.  
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CHAPTER III 

LINE SOURCE MODEL  
 
Line source solutions have been used to solve petroleum engineering problems for a long 

time. The model is adapted from point source solutions of heat conduction problems. 

The line source solution of 3D problems is obtained by multiplying three 1D point 

solutions and integrating in time and along the source. To this point, the equation is too 

complicated and usually a numerical approach is used to obtain solutions.17-19 We 

present an analytical line source solution for 2D wellbore in this chapter. The model 

developed here can be applied to a variety of wellbore trajectories including horizontal 

wells, slanted wells, undulating wells, and multilateral wells. In the first part of the 

chapter, we derive the analytical line source solution, and then we apply the line source 

solution to predict the well performance of different well trajectories. We also discuss 

the effect of inner boundary conditions on the flow rate and wellbore pressure profiles 

along the wellbore. Finally, we conduct the sensitivity study of different parameters on 

the flow rate distributions along the wellbore. 

 

3.1 Mathematic Model 

The diffusivity equation of a single-phase incompressible fluid is written as, 
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For an isotropic medium, we can write the diffusivity in the 3D direction as 
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If the porous medium is anisotropic, then the diffusivity equation becomes 
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To solve the flow in an anisotropic reservoir, we transform the anisotropic equation to an 

isotropic format through the coordinate transformation. The permeability in Eq. 3.4 is 

replaced by the equivalent permeability keq. The coordinate transformations are, 
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Substituting Eq. 3.5 – Eq. 3.8 into Eq. 3.4, we have 
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Before the transformation, the isobar in the system is elliptical away from the wellbore. 

With this transformation, the isobar away from the wellbore becomes circular, but the 

isobar around the wellbore is changed to elliptical as shown in Fig. 3.1. The concept of 

equivalent wellbore radius is used to solve this problem. The correct equivalent radius 

can be calculated from the arithmetic average of the major and minor axis of the elliptic 

wellbore radius.20 The equivalent wellbore radius21 is  



31 

 

 

Fig. 3.1 Isobar around the wellbore in anisotropic reservoir. 
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where, 
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yx

z

kk

k+=  (3.13) 

where, � is the inclination of the well to the vertical axis and � is azimuth of the well as 

shown in Fig. 3.2. Now an anisotropic medium is transformed to an isotropic medium. 

Transformed Anisotropic Isobar Anisotropic Isobar 

z    z’ 

   x’    x 
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Thus we can solve the flow equation of an anisotropic medium the same way as we 

solve that of an isotropic medium. The diffusivity equation is written as  
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Fig. 3.2 Schematic of wellbore transformation for anisotropic reservoir. 17 

 

3.2 Sink/Source Technique  

The flow equation of the diffusivity equation can be solved by the sink/source technique. 

Because the diffusivity equation is in the same format as the heat conduction problems, 

we can directly apply the sink/source technique to solve the flow in porous media. The 

solution from this technique applies to different state in the flow period, both transient 

flow and stabilized flow. The boundary condition of the reservoir is constant pressure, 

no-flow boundary or mixed, which makes the model practical to a wide range of flow 

problems in petroleum engineering. In this section, we present the derivation of the 

  Z 

X 

 Y 

� 

� 

a 

h 

b 



33 

 

analytical line source solution for 2D wellbore. The solution can be used to predict well 

performance of various well trajectories. 

 

3.2.1 Instantaneous Point Source    

The instantaneous Green’s function in infinite slab reservoir was presented by 

Gringarten and Ramey22 in 1973. This function can be applied to different flow 

problems in petroleum engineering. The geometries of the source function are shown in 

Fig. 3.3 and Green’s functions for different boundary conditions in infinite slab 

reservoirs are shown in Table 3.1. 

 

 

Fig. 3.3 Instantaneous Green’s function.22 

No-flow boundary condition 

at x = 0 and x = a 

xo 

x = 0 x = a 

Constant pressure boundary condition 

at x = 0 and x = a 
xo 

x = 0 x = a 

Mixed boundary condition 

no-flow boundary at x = 0 

and constant pressure at x = a 

 

xo 

x = 0 x = a 

Closed boundary Transparent boundary 
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Table 3.1 Instantaneous Green’s functions in 1D infinite slab reservoir 

Boundary conditions Instantaneous Green’s functions 
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where,  tcφµα = .  

  

 By Newman’s rule, the instantaneous Green’s function in a 3D domain can be 

obtained by multiplying the instantaneous Green’s function in each direction. In other 

words, the product of the three 1D solutions is the solution of the 3D problem.23 For 

instance, the pressure drop as a results of a constant production, q, at a position (x0, y0, 

z0) in a homogeneous box-shaped reservoir measured at a position (x, y, z) is readily 

calculated by  

 ( ) ( )zyx
ooo

init SSS
L

qB
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�

	


�

�=− α
µ

 (3.15) 

 The boundary conditions of the reservoir can be any boundary conditions 

depending on the instantaneous Green’s functions, Sx, Sy, Sz defined in Table 3.1. Fig. 

3.4 shows the geometry of the source and the reservoir. 
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Fig. 3.4 Instantaneous point source in a box-shaped reservoir. 

  

 From all type of boundary conditions, one special case is that the reservoir is 

completely bounded or no-flow across the reservoir boundary, and Sx, Sy, and Sz in this 

case are  
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If the reservoir is sealed at the top and the bottom boundaries and has a constant pressure 

at the horizontal direction, the Sx, Sy, and Sz will be 
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3.2.2 Continuous Point Source Solution 

After we obtain the instantaneous point source solution under defined boundary 

conditions, we integrate the instantaneous point source over a time interval to attain the 

continuous point source solution. The pressure drop at point (x, y, z) as a result of the 

continuous production or injection at point (x0, y0, z0) in a homogenous box-shaped 

reservoir as shown in Fig. 3.4 is estimated by  
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The Sx, Sy, and Sz in Eq. 3.22 can be any combinations of the instantaneous Green’s 

function depending on the interested boundary conditions. 

 

3.2.3 Continuous Line Source Solution for 2D Wellbore 

The continuous line source solution is calculated by integrating the continuous point 

source solution along the line. For the line source that have the initial position at 

(x0,y01,z01) and the end point at (x0,y02,z02), the solution of the continuous line source can 

be written as, 

 ( ) ( ) dLdSSS
L

qB
t,z,y,xpp

)z,y(

)z,y(

t

zyx
ooo

init τα
µ


 
 �
�

	


�

�=−
0202

0101 0
 (3.23) 

 If the source is a straight line, then the source trajectory can be represented by a 

linear equation written as, 
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 ĉym̂z += 00  (3.24) 

where m̂  is the slope of the line and ĉ  is the interception shown in Fig. 3.5. 

 

 

Fig. 3.5 Schematic of a straight wellbore trajectory. 

 

The length of the line, ŝ , is calculated by 
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0202

0101

 (3.25) 

We can write the length of the line as 
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Since (dz/dy) is a slope of the linear function, Eq. 3.26 becomes 
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Combining Eq. 3.27 and Eq. 3.25, we have 
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Substituting Eq. 3.28 into Eq. 3.23, we have 
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If the line source produces at a constant rate, qo, and the slope of the line source is 

constant, Eq. 3.30 becomes, 
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For a homogeneous close box-shaped reservoir, the source functions are 
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With individual source function, the pressure in 3D domain is calculated by substituting 

Eq. 3.31-Eq. 3.33 into Eq. 3.30 and integrating Eq. 3.30. The solution is 
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At late time or stabilized flow, the exponential terms in Eq. 3.34 becomes zero and Eq. 

3.34 reduces to 
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 Eq. 3.34 is the analytical line source solution for any time periods and Eq. 3.35 is 

the analytical line source solution at late time. The direction of the line source in both 

equations can change in the y-direction and in the z-direction. We can use these 

equations predict the horizontal well performance, inclined well performance or vertical 

well performance. By using this model along with superposition technique, we can 

predict the performance of undulating wells as well, and that will be discussed in 

Chapter IV. 

 

3.3 Line Source Application 

The line source solution is applicable to estimate the well performance. In this section 

we present the application of using the continuous line source to evaluate well 

performance. Since the diameter of a wellbore is much smaller than the dimension of 

reservoirs, using line source to represent a wellbore is reasonable. 

 To calculate the well performance, an inner boundary condition is necessary. The 

inner boundary condition defines the pattern of the fluid flow into the wellbore, which 

can be uniform flux, infinite conductivity, or finite conductivity. For the uniform flux 

boundary condition, the inflow distribution along the wellbore is uniform. The infinite 

conductivity boundary condition has the uniform pressure (no pressure drop) along the 

wellbore. The finite conductivity boundary condition allows wellbore pressure drop, and 
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the solution is obtained by coupling the line source solution with the wellbore pressure 

drop model presented in Chapter II.  

 After we defined the inner boundary condition, the well performance is 

calculated by specifying the wellbore pressure at the heel or specifying the total 

production at the surface. If the reservoir is isotropic, the wellbore pressure is evaluated 

at the wellbore radius. For an anisotropic reservoir, we compute the equivalent wellbore 

radius shown by Eq. 3.10 and the wellbore pressure is evaluated at the equivalent 

wellbore radius. 

 

 

Fig. 3.6 Line source well modeling. 

 

3.3.1 Horizontal Wells 

Using the line source solution to calculate a horizontal well performance, we first define 

inner boundary condition. Then to count for wellbore pressure change, we divide the 

wellbore into N segments. Each segment connects to each other by applying the 
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superposition in space. By using this technique, a set of linear equation is generated and 

solved to predict the well performance. The pressure drop causes by a constant 

production flow rate, q1, into segment 1 is evaluated on the well circumstance at the 

middle of every well segment, which marked as CP for the first segment in Fig. 3.7. For 

each segment, we have a set of N linear equations for pressure respond to the flow. With 

N segments, there are N set of N linear equations. 

 

 

Fig. 3.7 Line source horizontal well modeling. 

   

  If we have a closed box-shaped reservoir, the performance of a horizontal well is 

evaluated by Eq. 3.35 for late time period. For a perfectly horizontal well, the slope, m̂ , 

and a constant, ĉ , are zero and the solution of Eq. 3.30 becomes 
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 (3.36) 

We observe that our line source solution reduces to the same results as the line source 

solution for a horizontal well presented by Babu and Odeh (Appendix B) validating our 
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line source model. For stabilized flow under pseudosteady-state condition, the average 

reservoir pressure can be written as 

 
tp

po
initR cV
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pp −=−  (3.37) 

Considering the drainage volume, then 
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Because  tocφµα =  we substitute � into Eq. 3.36 and we obtain 
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Substituting Eq. 3.39 into Eq. 3.36, we have 
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On the right hand side of Eq. 3.40 under pseudosteady-state condition, the first and the 

second term becomes zero and Eq. 3.40 becomes 
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In oil field unit, Eq. 3.41 becomes 
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where toc. φµα 73158=  

 The pressure drop as a result of each wellbore segment produces at a constant 

rate is calculated by Eq. 3.42  

 ( ) )j,i(Fqt,z,y,xpp jR =−  (3.43) 

where F(i,j) in Eq. 3.43 represents the right hand side of Eq. 3.42 for a constant 

production rate. The pressure measured at segment i as a result of the production, qj, at 

segment j is evaluated by multiplying qj with F(i,j) as shown in Eq. 3.43. For the entire 

wellbore (N segment), we obtain a set of linear equation shown as,  
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where, qj is a constant flow rate flow into segment j and �pj is the pressure drop 

calculated at segment j as a result of the production into every segment. The total 

production from the entire wellbore is calculated by 
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 total

n

j
j qq =�

=1
 (3.45) 

where qtotal is the total production for every segment, or the maximum flow rate if the 

well constraint is constant production rate. By using the above method, we can calculate 

the horizontal well performance in uniform flux boundary condition, infinite boundary 

condition, and finite boundary condition. The well is predicted by either a constant flow 

rate constraint or a constant wellbore pressure constraint.  

 The inflow distribution along the wellbore depends on the inner boundary 

conditions. Each inner boundary condition implies the different well and reservoir 

combination. The finite conductivity inner boundary condition should be used when the 

flow rate is high and the infinite inner boundary condition can be applied in low flow 

rate well. An example of horizontal well performance under different inner boundary 

condition is presented here by using the input data in Table 3.2. The horizontal well is 

located in the middle of a box-shaped reservoir, as shown in Fig. 3.7.  

 The well is controlled by a constant wellbore pressure at 3000 psi. First the well 

is divided into 16 segments. Then we start from the toe segment or segment 16 by 

calculating the pressure drop at the middle of the well segment on the wellbore 

circumstance of every segment as a result of a constant flow rate, q16, flowing into the 

toe segment by using Eq. 3.42. After this calculation, we will have 16 F(i,j)  terms (one 

term per segment). For segment 16 we can write F(i,j) as F(i,16). Then we move to the 

next segment which is segment 15 and repeat the same procedure but for this segment 

we evaluate the pressure drop as a result of a constant flow, q15, flowing into segment 15 

which gives another 16 F(i,15). We continue this calculation to the heel segment or 

segment 1. At this point we will obtain totally 16 x 16 F(i,j) terms. Then we use the 

superposition principle in space to connect the wellbore segments. From superposition 

principle, we acquire a set of linear equations. The series of linear equations can be 

written as Eq. 3.46. Then we solve this linear system by defining the inner boundary 

condition 
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Table 3.2 Well and reservoir data 

Parameters Data 

Reservoir width, ft 2000 

Reservoir length, ft 5000 

Reservoir thickness, ft 100 

Reservoir pressure, psi 4000 

Horizontal permeability, md 100 

Vertical permeability, md 10 

Well length, ft 3000 

Wellbore radius, ft 0.25 

Oil formation volume factor, res bbl/STB 1 

Oil viscosity, cp 1 

Wellbore pressure, psi 3000 
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 For uniform flux boundary condition, we solve Eq. 3.46 by setting the flow rate 

into each segment to be the same ( 16qq totali = ), where i is the index of segments. Then 

we solve Eq. 3.45 and obtain the pressure at each segment (pi = 3000 psi). Since the well 

is controlled by a constant 3000 psi wellbore pressure at the heel, p1 = 3000 psi. We 

iterate by changing the total flow rate until we obtain p1 = 3000 psi for the uniform flux 

boundary condition. If the inner boundary condition is infinite boundary condition, we 

set the wellbore pressure in every segment to be 3000 psi, and then calculate the flow 
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rate into each segment (qi). For finite inner boundary condition, we have to couple the 

wellbore pressure drop model with Eq. 3.45 to solve for the pressure distribution. 

 The wellbore pressure distribution along the wellbore for uniform flux inner 

boundary condition is shown in Fig. 3.8. The figure shows that wellbore pressure varies 

along the wellbore because the productivity along the well is not constant. The 

productivity of horizontal wells is high when the wells are located at the middle of 

reservoirs because the effect of boundary is minimized. The same phenomenon applies 

to this case which makes the middle portion of the well have high productivity. In order 

to make the flow distribution uniform, the drawdown pressure of the high productivity 

index portion have to be low, which results in the wellbore pressure profile in w-shape. 

However, in general this pressure profile cannot physically happen during the wellbore 

flow which implies that the inflow into horizontal wells is usually not uniform. Since the 

well is controlled by a constant wellbore pressure at 3000 psi, the uniform flow rate is 

about 19.3 STB/D/ft. 

 For the infinite conductivity inner boundary condition, the wellbore pressure is 

constant at 3000 psi along the well and the productivity index is varied along the 

wellbore as shown in Fig. 3.9. The figure also shows that the flow rate is high at the 

middle of the well. With the same drawdown, the middle part produces the highest flow 

rate which makes the flow rate distribution in w-shape. Under uniform wellbore 

pressure, the flow rate along the well bore is about 18.6 STB/D/ft. The flow rate per feet 

of the uniform flux inner boundary condition is slightly higher than that of uniform 

wellbore pressure. The different is less than 4 %.  

 We notice that when we use uniform flux as an inner boundary condition the 

wellbore pressure distribution is in w-shape, but for infinite boundary condition or 

uniform wellbore pressure, the flow rate distribution is a w-shape distribution. 

Therefore, the inner boundary condition defined well pressure and flow rate distribution 

and it should be handled carefully. 
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 Fig. 3.8 Wellbore pressure profile of uniform flux boundary condition. 
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Fig. 3.9  Productivity index profile of infinite conductivity boundary condition. 
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 For the finite conductivity boundary condition, we first evaluate the well 

performance under infinite conductivity boundary condition. Then we couple the model 

with the wellbore pressure drop model presented in Chapter II. Since the well is 

controlled by a constant wellbore pressure at 3000 psi, we have to iterate the coupling 

model until we obtain the wellbore pressure at the heel segment equal to 3000 psi. 

Assuming the roughness of the wellbore is 0.01, tubing diameter is 0.5 ft, and the density 

of the oil is 50 lb/ft3. The pressure profile under finite conductivity condition is shown in  

Fig. 3.10. Since the well is perfectly horizontal, the pressure decreases from the toe to 

the heel as a result of the frictional pressure drop. The pressure drop increase as the flow 

rate increase from the toe to the heel. The total pressure drop along the wellbore is about 

75 psi. Fig. 3.11 shows the productivity index profile along the wellbore. The flow rate 

profile under the finite conductivity inner boundary condition is different from that 

under infinite conductivity inner boundary condition because of the wellbore pressure 

drop. 
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Fig. 3.10 Pressure profile under finite conductivity inner boundary condition. 
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  To understand the flow rate distribution along horizontal wells, we set up case 

studies by varying some important parameters such as anisotropic ratio, the length of the 

well and the reservoir thickness. The reservoir and well data for this study are shown in 

Table 3.2. The well is controlled by a wellbore pressure constraint at 3000 psi and the 

inner boundary condition is infinite conductivity boundary condition. 
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Fig. 3.11 Productivity index profile of the finite conductivity inner boundary condition. 

  

 First we study the effect of anisotropic ratio on the flow rate profile. The 

anisotropic ratios are set to be 0.01, 0.1, and 1. Fig. 3.12 shows the flow rate profile of 

the horizontal well in different anisotropic ratio reservoirs. We notice that the w-shape is 

flattened as the anisotropic ratio decreases. However, the distribution shape still has w-

shape. The low productivity from low vertical permeability formation smoothes the 

shape of the distribution.  
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Fig. 3.12 The effect of anisotropic ratio on the productivity index profile. 

 

 Next, we study the effect of the well length.  Fig. 3.13 shows the flow rate profile 

of the well with 1000 ft length placed at the middle of the reservoir. From Fig. 3.13, we 

can see that the flow rate profile of the well is a u-shape, clearly different from the flow 

rate profile of the well with 3000 ft long which has w-shape, as shown in Fig. 3.12. 

Since when the wellbore is relatively short comparing to the reservoir dimension, the toe 

and the heel of the well exposes to the reservoir at both ends of the well, receiving more 

inflow from the reservoir, which results in high production at the ends of the well. On 

the other hand, w-shape distribution happens when the well length is relative long 

comparing with the reservoir length. Therefore, the flow distribution of a horizontal well 

depends on the ratio of the length of a horizontal well to the reservoir length. 
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Fig. 3.13 Productivity index profile along 1000 ft wellbore. 

  

 The effect of reservoir thickness on the flow distribution along the well is shown 

as Fig. 3.14. The reservoir thicknesses are 25, 50, and 100 ft. The figure shows that the 

flow distribution along the wellbore of different reservoir thickness is almost the same 

for the 50 ft reservoir thickness and 100 ft reservoir thickness. However, the flow 

distribution is flattened for 25 ft reservoir thickness. For thin reservoir, the productivity 

index is low and it reduces the scale of w-shape. 
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Fig. 3.14 The effect of the reservoir thickness on the productivity index profile. 

  

 In conclusion, the flow rate distribution along horizontal well depends on the 

ratio of the well length to the reservoir length. If this ratio is low or the well is short 

comparing with the reservoir length, the flow distribution is in u-shape. If the well is 

relatively long, then the flow distribution is in w-shape. The w-shape will be flat if the 

anisotropic ratio is extremely low or the reservoir is very thin. 

 

3.3.2 Slanted Wells 

The line source solution of 2D wellbore can be used to model slanted wells through Eq. 

3.30. After we know the outer boundary condition, we can apply the appropriate source 

function to the Eq. 3.30. Then we divide the well into N segments and apply the 

superposition in space to connect wellbore segments. Fig. 3.15 shows the well and 

reservoir geometry for a slanted well by using the line source model. For a slanted well 

located in a close box-shape reservoir, Eq. 3.34 and Eq. 3.35 are employed to evaluate 

the slanted well performance. 
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Fig. 3.15 Line source model for a slanted well. 

 

The average reservoir pressure for stabilized flow in a sealed reservoir is calculated by 

Eq. 3.37. Substituting Eq. 3.39 into Eq. 3.35, we have 
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ĉym̂l

sin
h
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Considering the first parenthesis on the right hand side of Eq. 3.47, we have  
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Because ( ) ( ) Lyym̂ =−+ 12
21 , Eq. 3.48 becomes zero and we can write Eq. 3.47 as, 
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ĉym̂blhmy
sin

ππ

π

ππ

π 1111

 (3.49) 

 

 



63 

 

We can write Eq. 3.49 in oil field unit as  
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 (3.50) 

where tocφµα 73.158= . By using Eq. 3.50, a slanted well performance can be evaluated. 

The inclined angle is calculated by 

 ( )m̂tan 1−=θ  (3.51) 

The line source model, Eq.3.50, is validated by comparing with a closed form model of 

slanted well presented by Besson21 as shown in Fig. 3.16. The comparison shows that the 

productivity index obtained by the line source model agrees very well with that by the 

closed form model, which confirms that Eq. 3.49 can be used to calculate slanted well 

performance.  

  The slanted well performance is studied by using the data in Table 3.2. The 

slanted well fully penetrates from the top and the bottom of a box-shaped reservoir. The 

geometry of the slanted well is shown in Fig. 3.17. The flow rate profile and wellbore 

pressure profile are studied under different inner boundary condition.  
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Fig. 3.16 Comparison line source model with closed form model for a slanted well. 

 

 

Fig. 3.17 The geometry of the slanted well. 
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 First, we calculate the slanted well performance under the uniform flux inner 

boundary condition. When the well is assumed to have uniform flux as an inner 

boundary condition, the wellbore pressure will be varied along the wellbore. Fig. 3.18 

shows the wellbore pressure profile along the slanted well under the uniform flux inner 

boundary condition. The profile shows that the wellbore pressure is the highest at the 

middle and lowest at the both ends of the wellbore. Since the top and the bottom of the 

well are close to the boundaries, the productivity at these locations is lower than other 

parts. High pressure drawdown is required to keep the well produces under uniform flux 

condition. However, usually the flow cannot occur under this wellbore pressure. In other 

words, the wellbore pressure profile under uniform flux implies that the inflow into the 

slanted well cannot be uniform. 
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Fig. 3.18 Wellbore pressure profile under uniform flux boundary condition. 

 

 Next, we study the well performance under infinite conductivity boundary 

condition. Under this condition the productivity index is varied along the wellbore as 

shown in Fig. 3.19. Since the productivity is high at the middle and it decreases toward 
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the both ends, the flow rate is low at the tips of the well and increases toward the center 

of the well as a results of uniform wellbore pressure or constant pressure drawdown. We 

can see that when the wellbore produces under uniform flux, the highest wellbore 

pressure is at the middle. On the other hand, when the well produces at uniform wellbore 

pressure, the highest flow rate is at the middle. Both of them imply that the productivity 

is highest at the middle part because this part has least boundary effect. 
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Fig. 3.19 Productivity index profile under infinite conductivity boundary condition. 

  

 If finite conductivity boundary condition is assumed, first we have to evaluate the 

well performance under infinite conductivity to obtain the wellbore inflow performance 

or flow rate into the wellbore. Then we couple the well inflow performance with the 

wellbore pressure drop to account for pressure drop along the wellbore. The wellbore 

pressure profile under finite conductivity inner boundary condition is shown in Fig. 3.20. 

It presents that the pressure decreases from the low-end to the high-end of the well. The 

pressure drop is caused by both frictional pressure drop and potential pressure drop. 

Since the wellbore pressure decreases from the bottom to the top of the well, the 
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pressure drawdown increases the same direction. The productivity index distribution is 

shown in Fig. 3.21. Because of the increasing pressure drawdown toward the top of the 

well, the flow rate is higher at the left side on Fig. 3.21. 
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Fig. 3.20 Wellbore pressure profile under finite conductivity boundary condition. 
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Fig. 3.21 Productivity index profile under finite conductivity boundary condition. 

 

3.4 Summary 

We present the line source solution for 2D wellbore in this chapter. The line source 

solution is very flexible and easy to use. The well trajectory can change in the y-

direction and the z-direction, which allows the model to predict the performance of 

different types of wellbore trajectories. The model developed based on analytical 

approach, thus eliminates the numerical error from numerical process.  By using this 

method, we can evaluate the wellbore performance under varieties of combinations of 

boundary conditions. The pressure drop along the wellbore can be accounted by 

coupling the line source model with the wellbore pressure drop model. Flow rate 

distribution and wellbore pressure distribution along wellbore can be investigated by the 

model. 
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CHAPTER IV 

UNDULATING WELL PERFORMANCE 

4.1 Introduction of Undulating Wells 
Undulating wells are the wells that are not perfectly horizontal. We can divide 

undulating wells into two main categories, intentionally undulation and unintentionally 

undulation. In general, the unintentional undulating wells have various inclined angles. 

On the other hand, the intentional undulating wells have consistent angles. 

 

4.1.1 Intentional Undulating Wells 

Undulating wells are relatively new in reservoir development. The advantage of 

undulating wells is that they overcome some limitations of horizontal wells. When the 

vertical permeability of a formation is too low for horizontal wells to be economically 

attractive, undulating wells reduce the dependency of vertical permeability and can be 

used to produce from such a formation. When multiple thin layers involve in the 

formation, undulating wellbore can access these layers. If the formation is relatively 

thick, undulating wellbores have more formation contact area and can produce more 

effective than horizontal wells. Wellbores are designed with certain deviation angles to 

maximize production rate in different applications. However, the advantages of 

undulating wells are not always guaranteed especially for two-phase flow wells because 

of the complexity of wellbore structures and formation properties. The wellbore flow 

should be studied carefully when undulating wells are designed.  

 

4.1.2 Unintentional Undulating Wells 

Unintentional undulation occurs from drilling control or formation structure. Because of 

the difficulty in controlling directional drilling, undulation usually happens in horizontal 

wells. In fact, horizontal wells in the field are not perfectly horizontal. Undulating effect 

can cause problems in well completion and production. For example, if some parts of the 
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well are drilled too close to water-oil contact or gas-oil contact, these will cause early 

water-coning or gas-coning and decrease the well production. Another problem is 

unstable production at the surface because of slug flow. This problem will be discussed 

in section 4.4 

 We present two undulating well performance models, the closed form model and 

the line source model. Both methods can be used to evaluate well performance for 

single-phase and homogeneous reservoirs. The closed form model applies for two-phase 

system under some certain conditions. 

 

4.2 Closed Form Model for Undulating Wells 

For the undulating wells used in relatively low vertical permeability, we develop an 

analytical method to predict well performance. If we simply use a horizontal model, 

most likely we will underestimate the well performance since most horizontal well relies 

on vertical permeability to produce unlike undulating wells. 

 

4.2.1 Model Description 

We define an undulating well as a horizontal well that consists of uphill sections and 

downhill sections along the wellbore. The well trajectory can be defined by an inclined 

angle, �w, and a well height, hw. Fig. 4.1 shows the physical well model used in this 

dissertation. One cycle is consisted of an uphill section and a downhill section. To 

develop a model for well performance, we assume that each cycle has the same height 

(hw is a constant). An undulating well is divided into several sections, and the section 

number depends on number of well cycles. If an undulating well has n cycles, the 

drainage volume will be divided to 2n sections. In general, it is believed that undulating 

wells are predicted closer to horizontal wells, and the performance can be calculated by 

horizontal well models. However, if the undulating well is designed for relatively low 

vertical permeability formation, the dominant streamlines would be in the horizontal 

direction, as shown in Fig. 4.2.  
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Fig. 4.1 Reservoir and well drainage region for a 2-cycle undulating well. 

 

 

 

Fig. 4.2 Flow geometry of undulating well in low vertical permeability reservoir. 

 

 No-flow image boundaries can be assumed between sections. Fig. 4.3 presents 

the flow streamline in horizontal wells (Fig. 4.3a) and vertical wells (Fig. 4.3b). 

Comparing the flow streamlines in the undulating wells, Fig. 4.2, with that in horizontal 

Flow direction 
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wells and vertical wells, it shows that the flow streamlines of an undulating well in a 

relatively low vertical permeability reservoir resemble to those of vertical wells. Thus, 

we will use vertical well models to predict undulating well performance in relatively low 

vertical permeability reservoirs with some modifications. 

 

 

 

Fig. 4.3 Flow streams of horizontal wells and vertical wells. 

 

The first modification for undulating well model is to account for the inclination of the 

wellbore. The inclination results in higher reservoir contact area than vertical wells, and 

a slanted skin, s�, is used to account for increasing reservoir contact area in undulating 

well. The second major modification for undulating well model is the approach to 

calculate wellbore pressure drop. The wellbore pressure drop can be calculated by 

dividing the wellbore in each section into many horizontal layers (notice, not vertical 

sections, as we do for horizontal wells in Chapter II) as shown in Fig. 4.4. Because the 
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A-A View 

A-A View 
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well positions in each layer are different, a shape factor is used to count for the well 

segment location. The shape factor changes following the position of the segment along 

the wellbore. For the well that does not fully penetrating on the top and the bottom 

layers, we can use a partial penetrated skin factor to account for partially penetrating 

well segments in the wellbore. 

 

 

Fig. 4.4 Well and reservoir modeling for closed form model. 

 

4.2.2 Equation Formulation 

After we understand the flow streamlines behavior of undulating wells in relatively low 

vertical permeability reservoirs, we formulate the analytical inflow performance to 

estimate the well performance. The closed form model of inflow performance for 

undulating wells is 

 

Flow direction 
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where, 

 A = drainage area 

 ln(CA)  = shape factor 

 s�  = slanted skin factor 

 sp = partial penetrated skin factor 

 s  = damage skin factor.  

Eq. 4.1 can be applied to each section in Fig. 4.4. For each segment, the drainage area 

varies depending on the inclined angle and the well height.  

 Because the position of the wellbore in each horizontal layer changes along the 

wellbore, the appropriate shape factor is required for the change. Earlougher23 published 

a shape factor model for rectangular drainage area and his model has been used widely 

in the industry. However, his shape factor is only available for some certain ratio of the 

width and the length of the rectangular drainage area and the well has to be placed in 

some specific positions in the drainage area. To make the model flexible, we use 

Yaxley’s model24 to calculate the shape factor. This model is very flexible. The well can 

be in any positions in the rectangular drainage area and there is no limitation on the ratio 

of the width and the length of the rectangular drainage area. The comparison Yaxley’s 

shape factor with Earlougher’s shape factor is shown in Table 4.1 . We can see that the 

comparison shows excellent agreement. The Yaxley’s shape factor model is 
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If the distance between the well and the nearest side of rectangular boundary is less than 

the width of the reservoir, Eq. 4.3 becomes zero. Fig. 4.5 shows the parameter 

definitions and geometries used in the shape factor calculation. 

 

Table 4.1 Comparison of shape factor from Earlougher’s model and Yaxley’s model 

Drainage Area Earlougher Shape Factor Yaxley Shape Factor 

 
2.56 2.56 

 

1.51 1.54 

   

1.51 1.51 

 

0.731 0.733 
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Fig. 4.5 Geometry of the parameters for shape factor model. 

 

 The increasing of reservoir contact area in undulating wells is accounted by 

applying a slanted skin factor into the productivity model. The most well known slanted 

skin model is Cinco-ley’s model25. However, Cinco-ley’s model has been analyzed by 

many authors and the analysis shows that Cinco-ley’s model should be modified when it 

is applied to anisotropic reservoirs. Even with the modification for anisotropic 

formations, this Cinco-ley’s model can only be used at certain range of inclination (�w < 

15°). To overcome the limitation, Besson21 introduced a new slanted skin model in 

anisotropic formation and his model applies for inclination angle from 0 – 90°. Slanted 

skin factor model is written as,  
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ai = the distance between well and the nearest side of rectangular (ft) 

bi = the distance between well and the nearest end boundary of rectangular (ft) 

di = the distance between well and the furthest end boundary of rectangular (ft) 
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where, h is vertical direction length of the well and hm is the measured length of the well.  

 Since the model assumes there is no-flow between the layers, the reservoir 

drainage volume will be smaller than the original reservoir drainage volume when a well 

height is lower than the reservoir thickness. A partial penetrated skin can be used to 

account for partial penetrated layers. Papatzacos26 presented a partial penetrated skin 

models as, 
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where, 
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Fig. 4.6 Geometry and notation for partial penetrated skin calculation. 

 

By applying this model, we can describe undulating well performance. The shape factor, 

the slanted skin factor, and the partial penetrated skin factor are calculated by Eq. 4.2, 

Eq. 4.9, and Eq. 4.12 respectively. An example is presented here, the well structure is 

shown in Fig. 4.4. The data in Table 4.2 is used to evaluate the well performance by the 

closed form model.  

 Before the productivity index is computed, the well and reservoir are divided into 

2 uphill and 2 downhill sections. Then, the productivity index is calculation for the toe 

section. The well has a 5° inclination angle with 150 ft cycle height. The horizontal 

length for one section can be calculated from 
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The well has 2 cycles or 4 section so that the horizontal length (LH) of the well is  

  ft..bcurve_of_numberL tionsecH 036858511714222 =××=××=  

The reservoir length is 7500 and the horizontal well length is 6858.03 ft. The reservoir 

lengths for uphill and downhill section are 1714.51 ft (bsection). The well is at the center 

of the reservoir so the reservoir length for the heel and toe section can be calculated as 

the follows 
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Table 4.2 Parameters used in undulating well performance 

Parameters Data 

Reservoir width, ft 3200 

Reservoir length, ft 7500 

Reservoir thickness, ft 150 

Horizontal permeability, md 15 

Vertical permeability, md 0.3 

Cycle number 2 

Well height, ft 150 

Inclined angle, degree 5 

Wellbore radius, ft 0.25 

Damage skin 0 

Oil formation volume factor, res bbl/STB 1 

Oil viscosity, cp 1 
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Following the definition of bi, which is the distance between the well and the nearest end 

of rectangular boundary, and di, which is the distance between the well and the furthest 

end of rectangular boundary, bi is always less than di. For this case, bi is 492.44 ft and di 

is 1546.05 ft. If we divide each section into 5 layers, the thickness of each layer is 30 ft. 

For the toe section of the first layer is calculated the shape factor by Eq. 4.2-Eq. 4.8 

shown below, 
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Because the well is in the center of the reservoir and bD is 0.5, we obtain  
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The well is fully penetrating so we do not have to calculate the partial penetrated skin. 

The productivity of this layer is calculated by  
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The productivity index of the next layer is determined by the same procedure. The 

pressure drop along the well can be calculated by coupling the inflow model with the 
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wellbore pressure drop model as shown in Chapter II. Fig. 4.7 and Fig. 4.8 show the 

productivity index profiles and wellbore pressure profile along the undulating well 

respectively. Fig. 4.7 reveals that the top and the bottom segments of the well have lower 

productivity than the middle segments have because of the boundary effect. The total 

productivity index of the undulating well is 13.6 (STB/D)/psi. Fig. 4.8 shows that the 

wellbore pressure profile reflects the wellbore trajectory because the potential pressure 

drop dominates the total pressure drop over the frictional pressure drop in the wellbore.  
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Fig. 4.7 Productivity index profile from closed form model. 
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Fig. 4.8 Wellbore pressure profile from closed form model. 

 

4.2.3 Field Application 

The closed form model was used to predict the performance of an undulating well 

designed for Cosmopolitan project. Cosmopolitan project is in Cook Inlet field in 

Alaska, USA. The initial oil in place is over 800 million barrel of oil and the oil gravity 

is about 24-27 API. Oil viscosity is about 7 cp. The previous studies show that the 

permeability of the formation depends on the drawdown and vertical permeability is 

much lower than horizontal permeability. Undulating wells are planed to drill in the field 

since high productivity wells are required to make the project economically attractive. In 

general, horizontal well is one option to increase well productivity. However, horizontal 

well is usually a good candidate for high vertical permeability formation and/or in thin 

bed of reservoir. Since Hemlock formation has low vertical permeability, undulating 

wells are interested and might be more effective than horizontal wells. To make a 

decision, the well performance of undulating is evaluated by the closed form model. Fig. 

4.9 shows the evaluation result of undulating well in Hemlock formation.  
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  The comparison among the analytical undulating well models, the analytical 

horizontal well model and the reservoir simulation model shows that the undulating well 

model gives comparable results with simulation results. On the other hand, the results 

from the analytical horizontal well underestimate the performance of undulating well. If 

we use analytical horizontal well model with modified vertical permeability to be the 

same as horizontal permeability, the model overestimates the performance of undulating 

well. Therefore, to evaluate the undulating well performance, the analytical undulating 

well model should be used for more accurate results. 

 

 

Fig. 4.9 Undulating well evaluation. 

 

4.3 Line Source Model 

For more accurate results, the performance of undulating wells can be modeled by the 

line source solution described in Chapter III. It needs to point out that analytical 
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approach assumes that vertical permeability does not contribute to the well productivity. 

This assumption may not be valid, especially when undulating is unintentional 

undulation. It may involve significant error when the anisotropic ratio of a formation is 

relatively high. To apply the line source approach, the well is divided into several 

segments. On each segment, it is assumed that the inclined angle is constant. The 

inclined angle can be different among segments. The wellbore segments are connected 

using the superposition principle. From this method, we generate a set of linear equation, 

as presented in Chapter III. Then, the undulating well performance is evaluated by the 

line source solution. For the closed box-shaped reservoir, we can use the slanted well 

model in Chapter III to calculate the performance of each segment in undulating well 

model. The slanted well performance at stabilized flow or late time in oil field unit is 
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where toc73.158 φµα = . The line source model for undulating wells is shown in Fig. 

4.10. From the figure, we use Eq. 4.18 to evaluate the well performance of each 

segment. Then, we solve the linear equations by using either wellbore pressure or flow 

rate constraint.  

 Using the line source model, we can calculate the well productivity of undulating 

wells. The data in Table 4.2 shown in section 4.2 are used in this example. The 

productivity index distribution and the wellbore pressure distribution of the undulating 

wells are shown in Fig. 4.11 and Fig. 4.12 respectively similar to the results from the 

analytical method. The productivity index is low at the top and bottom segments since 

the well segments are close to the reservoir boundary. The total productivity index of the 

undulating well is 14.5 (STB/D)/psi. Since the potential pressure drop is much higher 

than the frictional pressure drop, the wellbore pressure profile reflects the well 

trajectory. 

 

 

Fig. 4.10 Undulating well trajectory in a box-shaped reservoir. 
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Fig. 4.11 Productivity profile from the line source model. 
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Fig. 4.12 Wellbore pressure profile from line source model. 
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4.4 Model Comparison 

The productivity index profile and the wellbore pressure profile of the undulating well in 

Table 4.2 obtained by the closed form model are compared with the ones obtained by the 

line source method. The comparison of the productivity profile is shown in Fig. 4.13. It 

reveals that the productivity index obtained by the closed form model is slightly lower 

than that obtained by the line source model. The total productivity index from closed 

form model is 13.6 STB/D/psi and the total productivity index from the line source 

model is 14.5 STB/D/psi. The difference is about 6%. The wellbore pressure profile 

along the undulating well is shown in Fig. 4.14. Both wellbore pressure profiles reflect 

the wellbore trajectory. Since the productivity index obtained by the closed form model 

is slightly lower that that obtained by the line source model, the flow rate from the 

closed form model is lower than that from the line source model. Therefore the wellbore 

pressure profile from the closed form model is slightly higher than that from the line 

source model. The most significant advantage of the line source approach is that the 

model does not assume non-vertical permeability (streamline is horizontal), but the 

closed form model is simple and easy to be applied. 

 

4.5 Wellbore Pressure Drop 

The wellbore pressure drop in undulating wells is critical to well performance especially 

in two-phase flow systems. Slug flow; which causes unstable production, and may result 

in the damages to the wellbore and the surface facility, can be occurred when the well is 

produced at a low flow rate. In two-phase flow system, liquid usually flows along the 

bottom part of the well and gas flows at the top part of the wellbore. For undulating 

wells, the liquid tends to accumulate at the bottom of the downward part and blocks the 

flow in the wellbore. The well can flow again when the gas behind the liquid builds up 

enough pressure to push the liquid through the well. Therefore, the wellbore pressure 

distribution is very sensitive to the well trajectory in undulating wells.  
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Fig. 4.13 Comparison the productivity profile from closed form model with line source 

model. 
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Fig. 4.14 Wellbore profile from closed form model and line source model.  
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 Well design is the key to prevent slug flow problem in undulating wells. Because 

slug flow happens at low rate, we do not have to worry about this problem for high 

production wells. When the flow rate is low, the wellbore pressure profile reflects the 

well trajectory. The potential pressure drop is higher than the frictional pressure drop. 

On the other hand, at high flow rate the friction pressure may balance the potential 

pressure drop so that the wellbore pressure decreases from the toe to the heel. To 

minimize the potential pressure, we can decrease the height of the well. Fig. 4.15 shows 

the wellbore pressure profile under different wellbore pressure constraints. One well 

produces at constant wellbore pressure of 3000 psi at the heel, and another well produces 

at constant pressure of 200 psi at the heel. Since the flow rate of the first well is low, the 

wellbore pressure profile reflects the well trajectory. Conversely at high flow rate, the 

wellbore pressure profile shows that the wellbore pressure decreases from the toe to the 

heel, with a much lower pressure at the heel. 
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Fig. 4.15 Wellbore pressure profiles at different production conditions. 
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To study the effect of well trajectory on pressure distribution for the well and reservoir 

data in Table 4.2, we can alter the well trajectory by decreasing the well height from 150 

ft to 100 ft and 75 ft with the same 5° of inclination. The well with the height of 100 ft 

has 3 cycles and the well with 75 ft has 4 cycles. All three well trajectories have the 

same measurement length. The productivity per foot profiles and wellbore pressure 

profile of the 3-cycle trajectory well are shown in Fig. 4.16 and Fig. 4.17 respectively 

and the productivity profile and wellbore pressure profile of the 4-cycle well trajectory 

are presented in Fig. 4.18 and Fig. 4.19 respectively.  
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Fig. 4.16 Well productivity profile of the 3-cycle well trajectory. 
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Fig. 4.17 Wellbore pressure profile of the 3-cycle well trajectory. 
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Fig. 4.18 Well productivity profile of the 4-cycle well trajectory. 
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Fig. 4.19 Wellbore pressure profile of the 4-cycle well trajectory. 

 

 From Fig. 4.16 and Fig. 4.18, the productivity profile is almost uniform.  The 

well is placed in the middle of the reservoir and away from the reservoir boundary. 

Therefore, these well do not affect by the reservoir boundary. Fig. 4.20 shows the 

pressure profiles of 2, 3 and 4 cycles of undulating. Form Fig. 4.20, we observe that the 

lower the well height, the lower the fluctuation in the pressure profile. To minimize the 

chance of slug-flow in the wellbore, reducing the fluctuation in the wellbore pressure 

profile results in a smoother production of the well, and also reduces the slug flow in 

undulating wells. 
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Fig. 4.20 Comparison wellbore pressure profiles of different well trajectories. 

  

To optimize the wellbore performance, we compare the well productivity of each type of 

the well trajectory. The total productivity index for each well is presented in Table 4.3 

and the well productivity profile is shown in Fig. 4.21.  

 

Table 4.3 Well productivity data of different well trajectories 

Well trajectory Well height, ft Well productivity index, STB/D/psi 

4-cycle 75 15.8 

3-cycle 100 15.6 

2-cycle 150 14.5 

Horizontal well - 12.4 
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Fig. 4.21 Well productivity of different well trajectories. 

  

 The comparison shows that the productivity index of 4-cycle well is the highest 

yield flow rate for the well. Moreover, the fluctuation of the wellbore pressure profile is 

the lowest. The stable production in undulating well is a self-controlled problem when 

the height of undulating well decreases, the production rate increases, and the possibility 

of slug flow decreases.  

 However, decreasing the well height does not always increase the well 

productivity. For the extremely low vertical permeability formation, we can assume that 

the flow in the vertical direction is zero. In this case, the drainage volume depends on the 

well height. Thus the well productivity increases as the well height increase as shown in 

Table 4.4. The productivity of different well trajectories is calculated by using the input 

data in Table 4.2 with 0.00001 md vertical permeability. The results show that 2-cycle 

well trajectory, which the well height is the same as the reservoir thickness, has the 

highest productivity.  

 

 



97 

 

Table 4.4 Well productivity of different well trajectories in the extremely low vertical 

permeability formation 

Well trajectory Well height, ft Well productivity index, STB/D/psi 

4-cycle 75 6.75 

3-cycle 100 7.48 

2-cycle 150 8.25 

Horizontal well - 0.17 

 

 

4.6 Summary 

Two undulating well performance models are presented in this chapter. The first model 

is a closed form model which can predict the performance of undulating wells in 

relatively low vertical permeability formation. The closed form model applies to both 

single-phase and two-phase flow system in homogeneous reservoirs. The reservoir can 

be either isotropic or anisotropic. The model is easy to use with reasonable accuracy. 

The second model is the line source model. Although the line source only applies for 

single-phase flow system, this model can predict the undulating well performance in any 

vertical permeability conditions in homogeneous reservoirs. Because wellbore pressure 

drop is one of the major concerns in undulating well, our study shows that the undulating 

models can be used to optimize the undulating performance by increasing the 

productivity of the wells and decreasing the fluctuation of wellbore pressure along the 

wellbore.   
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CHAPTER V 

MULTILATERAL WELL PERFORMANCE 
 
In this chapter, we present multilateral well performance models. We first present the 

closed form model to evaluate multilateral well performance in single-phase and two-

phase systems. Then we present the methodology to model multilateral well by using 

line source solution. After that we conduct the sensitivity study of different parameters 

on two-phase model. The cross flow phenomenon in multilateral wells is also discussed 

in this chapter. 

 

5.1 Introduction 

Multilateral wells are defined as the well that has at least two laterals connected to the 

same main wellbore. The production from each lateral can be commingled at the main 

wellbore to increase the productivity per well or it can be produced separately. For the 

well that the production non-commingles at the main wellbore, the well performance can 

be evaluated the same as a horizontal well performance. On the other hand, the 

evaluation of the multilateral well performance that the production from each lateral is 

commingled in the main wellbore is more complex than that of a single horizontal well. 

The pressure in the main wellbore has to meet the flow condition of each lateral 

connected to the junction. Otherwise, the production from one lateral can flow into other 

laterals, and causes low productivity in multilateral wells. To prevent this problem, the 

performance of multilateral wells is necessary. The well deliverability model of 

multilateral wells presents as the relationship of well head pressure and the total 

production from the wells, as well as production from each lateral. 

 

5.2 Closed Form Model of Two-Phase Multilateral Wells 

A closed form model of multilateral wells was presented by Zhu et al.27 in 2002.  The  
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model can be applied to single-phase oil reservoirs. This single-phase closed form model 

for multilateral well deliverability was developed to evaluate and optimize well 

performance. Instead of generating the relationship between wellbore pressure and flow 

rate, for multilateral wells, the relationship of surface pressure versus lateral total flow 

rates was established to describe well deliverability. The well performance was coupled 

with wellbore pressure drop model. The previous study showed that multilateral well 

performance strongly depends on the pressure distribution in the well system especially 

for commingled production. Sometimes fluid from one lateral may flow into other 

laterals instead of flowing to the surface (crossflow), which greatly reduces the surface 

production.  

 Based on the horizontal well introduced in Chapter II and the single-phase 

multilateral well model, the deliverability models of multilateral wells for other fluid 

systems rather than single-phase oil well is readily developed. We introduce two-phase 

correlation for two-phase system of multilateral well performance, and gas well model 

for multilateral wells in gas formations. 

 

5.2.1 Model Assumptions 

In order to apply the closed form model to predict multilateral well performance, we 

have to make some assumptions. These assumptions are, 

• Each lateral produces from different reservoir and the reservoir compartments are 

isolated from each other.  

• The laterals are assumed to be horizontal such that gravity effect is neglected. 

• Inflow effect on wellbore pressure drop is comparatively small and negligible. 

• Each lateral is connected to the main wellbore by a build section which has no 

contact with reservoir (non-producing). 

  

5.2.2 Model Description 

To calculate well deliverability, we divide each lateral into several segments as shown in  
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Fig. 5.1. Pressure and flow rate are solved from the wellbore inflow performance model 

and the wellbore pressure drop model simultaneously over each segment as described in 

Chapter II. By applying the first and second assumptions (isolated reservoir and 

perfectly horizontal wellbore), we can evaluate the wellbore performance model by the 

horizontal performance model. For two-phase flows, we use the modified Vogel’s 

correlation to evaluate the wellbore performance presented in Chapter II. With the third 

assumption, we apply the pressure drop correlation for fluid flowing in a pipe to 

calculate the pressure drop along the wellbore. Since the build sections are non-

producing, according to the fourth assumption, we can calculate the pressure drop along 

the build sections by the pressure drop correlations. Because the junction connects each 

lateral to the main wellbore, we have to match the pressure from each lateral in the main 

wellbore to meet the flow condition. This process required iteration. Once the 

equilibrium condition at the junction is established, we calculate the pressure drop along 

the main wellbore by using the correlation28 to obtain the surface pressure.  

 

 
 

Fig. 5.1 Schematic of physical closed form model. 

Toe Section  Heel Section 
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5.2.3 Calculation Procedure 

The model consists of two main parts. The first part is producing part or the lateral part. 

In this part we couple the well performance model with the pressure drop model. The 

second part is non-producing part or the junction and the main wellbore parts. The 

junction and the main wellbore are non-producing part so we can calculate the pressure 

profile along these sections by using a pressure calculation methods. One important step 

in the well deliverability calculation for multilateral wells is to find an equilibrium 

pressure at junction. The proper pressure at the junction allows all of the laterals in the 

system to produce, and this requires the iteration. Once a flow condition is established, 

surface pressure is easily evaluated by pressure drop correlation. A multilateral well 

deliverability curve can be generated by changing a different drawdown pressure and 

repeating the calculation. The procedure is summarized as  

1. Dividing reservoir and well into several segments (Fig. 5.1) and 

calculating the productivity index of each segment in the bottom-most 

lateral from the inflow performance model. (Section 2.2 for gas and 

Section 2.3 for two-phase system) 

2. Assuming the wellbore pressure for the toe segment and multiplying the 

pressure drawdown to the productivity index of the toe segment to obtain 

the flow rate for this segment. (Section 2.5) 

3. Calculating the wellbore pressure drop over this segment and obtain the 

new flowing bottomhole pressure and drawdown for the next segment. 

(Section 2.5) 

4. Calculating the flow rate for the next segment with the new drawdown. 

(Section 2.5) 

5. Repeating Steps 3 and 4 until reach the heel segment. 

6. Calculating the pressure drop in the build section to obtain the pressure at 

Junction 1. 
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7. Moving upwards and repeating Steps 1-4 for Lateral 2 and calculating the 

pressure drop in build section 2 to obtain the pressure at Junction 1 for 

Lateral 2 

8. Comparing two junction pressure from Lateral 1 and Lateral 2, if they are 

different, repeating Step 7 with different flowing bottomhole pressure 

until the junction pressure from two laterals agree. 

9. Moving upwards and repeating the calculation for all laterals. 

10. Calculating the pressure drop between the top-most junction and the 

surface. 

This procedure can be repeated to generate a curve on deliverability plot for multilateral 

wells by changing the wellbore pressure at the lower lateral.  

 

5.2.4 Comparison of Single-Phase Model with Two-Phase Model 

Normally, the single-phase models are used to predict well performance for multilateral 

wells regardless of reservoir pressures. When the reservoir pressure is below bubble-

point pressure, single-phase model deviates from the predicted flow condition. This is 

very critical in multilateral wells because the production from different lateral is 

sensitive to the pressure distribution in the wellbore system. Mis-predicted pressure 

distribution can cause significant error in flow rate distribution. In this section, we 

compare the results of production rate in a single-phase model and a two-phase model. 

In the single-phase model, original Babu and Odeh’s model was used for wellbore 

performance, Ouyang’s model29 was used to calculate wellbore pressure drop, and the 

procedure in section 5.2.3 was applied for the calculation procedure. For the two-phase 

model, we applied the modified Vogel’s correlation to calculate the wellbore 

performance and Begg and Brill’s correlation to evaluate the pressure drop along the 

wellbore with the same procedure presented in the previous section. A two-lateral well is 

used in the comparison. The reservoir, well, and fluid information are presented in Table 

5.1 and the well trajectory is shown in Fig. 5.2. 
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Table 5.1 Reservoir, lateral and fluid property data of dual lateral well 

 

 

 

 

Fig. 5.2 Dual lateral well. 

Reservoir and Lateral Data Properties 
1 2 

Length, ft 3400 2800 
Width, ft 2000 2000 
Height, ft 80 58 

kx, md 375 225 
ky, md 375 225 
kz, md 38 23 
pR, psi 3200 2800 
Lw, ft 3000 2400 

rw, inch 1.8 1.8 
s 10 10 

Gas Gravity 0.7 0.7 
Oil Gravity (API°) 25 25 

GOR (Scf/STB) 1200 1000 

Main wellbore 

TVL = 2500 ft 

MDL = 2500 ft 

Build section 2 

TVL = 2500 ft 

MDL = 2800 ft 

Build section 1 

TVL = 3000 ft 

MDL = 3400 ft 

Lateral 1 

Lateral length = 3000 ft 

Lateral 2 

Lateral length = 2400 ft 
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 We first compare the wellbore pressure distribution and flow rate distribution 

along both laterals generated by the single-phase model and the two-phase model. Next, 

we study the wellbore pressure distribution by fixing the wellbore pressure at the heel of 

the laterals. Fig. 5.3 presents the pressure distribution along the two laterals. 
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Fig. 5.3 Wellbore pressure distribution along the wellbore. 

 

It shows clearly on Fig. 5.3 that for a giving wellbore pressure at the heel, the two-phase 

model predicts higher wellbore pressure distribution along the lateral for both laterals 

than the single-phase model does. The figure shows that the pressure drop along the 

laterals estimated by two-phase model is higher than that predicted by the single-phase 

model though the single-phase model predicted higher production rate than the two-

phase model. This is because of a higher frictional pressure drop caused by the gas flow 

with much higher velocity in the laterals. As a result of higher wellbore pressure 

predicted by the two-phase model, the drawdown pressure of the two-phase model is 

smaller than that from single-phase model resulting a lower flow rate. 



105 

 

 Fig. 5.4 shows the inflow distribution along lateral 1 and lateral 2. This 

distribution is important information for well control and well optimization. From the 

figure, we can see that the single-phase model predict higher oil inflow rate than the 

two-phase model since the single-phase model predicts higher pressure drawdown than 

the two-phase model. Moreover, the single-phase model does not account for relative 

permeability so the well productivity index predicted by the single-phase model is higher 

than that by the two-phase model. In general, the single-phase model will overestimate 

the well performance of multilateral well when the reservoir pressure and/or when the 

wellbore pressure is below the bubble point pressure.  
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Fig. 5.4 Inflow rate distribution along the lateral. 

 

 The well deliverability of multilateral well is presented by plotting the wellhead 

pressure versus the total production rate of the well. The well deliverability is shown in 

Fig. 5.5. The figure shows that the well deliverability obtained by two-phase model is 

different from that by the single-phase model. The difference increases when the well is 

operated at low wellhead pressure. At low wellhead pressure, wellbore pressure is low 
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but gas flow rate is high. Therefore the difference between the two-phase model and the 

single-phase model is more pronounced at low wellhead pressure. From the figure we 

can see that if the single-phase inflow is used for two-phase system, the oil flow rate can 

be overestimate. The error in this case is about 10%. 
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Fig. 5.5 Comparing multilateral well deliverability from single-phase model with two-phase 

model. 

 

5.3 Line Source Model 

Line source model can be used to model multilateral well performance. The models are 

available for single-phase reservoir only. Although the line source model do not apply 

for two-phase system, this model can be used to estimate the multilateral well 

performance when laterals are not perfectly horizontal or when build sections have 

communication with reservoirs (considering as a producing part). Each lateral can 

produce from the same reservoir or from different reservoirs. 
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5.3.1 Calculation Procedure 

The line source solution is used to model multilateral well. We divide multilateral wells 

into two main parts, producing part and non-producing part. We only apply the line 

source model to the producing part. Then, we calculate the inflow along the part and 

couple with the wellbore pressure drop model to account for the pressure drop along the 

wellbore (finite conductivity inner boundary condition). For non-producing part we 

apply the pressure drop model to calculate the pressure drop along this part. The 

procedure can be summarized as, 

1. Dividing the well into producing part and non-producing part. 

2. For producing-part, we divide the producing part into several segments by 

assuming each segment can be represented by a linear equation (Eq. 

3.25). 

3. Applying Eq. 3.30 to calculate the pressure drop at the middle of well 

circumstance of each segment as a result of the production into individual 

segment. The source solution can be any combination depending on 

reservoir boundaries. If the reservoir is sealed, Eq. 3.34, Eq. 3.35 can be 

used for every segment. 

4. After complete the calculation in Step 3, a set of linear function is created 

as Eq. 3.44. 

5. The well can be controlled by either the wellbore pressure or the 

maximum flow rate. Then we can solve the set of linear equation created 

in step 4.  

6. The flow rate is flow through non-producing part and we can use this 

flow rate to calculate pressure drop along the non-production part to 

obtain the pressure at the surface. 

 

We repeat this procedure by changing the well constraint in Step 5 to obtain a 

relationship between the well flow rate and wellhead pressure. Then, we can obtain the 

well deliverability of multilateral wells. 
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5.4 Parametric Study  

Crossflow is one of the main causes of low productivity in multilateral wells. Crossflow 

in multilateral wells is defined as the flow rate produced from one lateral flowing into 

other laterals. Crossflow can occur either from the lower lateral to the top lateral or from 

top lateral to the lower lateral. However, we can prevent this problem by correctly 

predicting and controlling the pressure and flow rate in the well system. 

 

5.4.1 Effects of Gas Oil Ratio 

Gas oil ratio (GOR) is very essential in two-phase flow calculation because it controls 

the amount of free gas in the well. As the ratio of oil and gas changes, the pressure drop 

inside wellbore will change. More importantly, the flow regime of two-phase flow in the 

wellbore may vary with GOR, and this will significantly affect the pressure drop in the 

laterals, build section and the main wellbore. We studied the effects of GOR on well 

deliverability and flow rate distribution. The total flow rates versus the wellhead 

pressure for different GOR are shown in Fig. 5.6 with GOR varied from 500 SCF/STB 

to 1800 SCF/STB. The figure shows that the slope or the derivative of the wellhead 

pressure with respect to the total flow rate increases as GOR increases. The slope 

represents how quick the flow rate increases when lower the wellhead pressure. The 

lower the GOR, the smaller the slope; and thereafter, the faster increase in the flow rate. 

As a result, at low wellhead pressure, the high GOR well produces less oil, but at high 

wellhead pressure, the high GOR well will produce more oil. 
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Fig. 5.6 Effect of GOR on well deliverability. 

 

5.4.2 Effect of Oil Gravity 

Oil gravity is one of the important parameters that affect the well deliverability.  We 

studied the effect of oil gravity on the multilateral well performance by varying the oil 

gravity from 15 API to 35 API. From Fig. 5.7, the oil gravity changes the well 

deliverability dramatically. At low oil gravity, the total production rate is much lower 

than the production rate at high oil gravity. For example, at 8900 psi wellhead pressure 

the total production of 35 API case is about 40,000 STB/Day and the total production 

rate of 15 API case is about 20,000 STB/Day. In other words, the total production of 35 

API case is approximately double of the total production of 15 API case because at low 

oil gravity, oil viscosity is high. Since well productivity index is inversely proportional 

to the viscosity of the fluid, the lower the oil gravity, the lower the well productivity 

index.  
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Fig. 5.7 Effect of oil gravity on well deliverability. 
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CHAPTER VI 

CONCLUSIONS  
 
Complex wells (horizontal wells, undulating wells, and multilateral wells) have been 

used widely today in the oil and gas industry to develop conventional and 

unconventional fields. In general, these wells offer high productivity. However, 

predicting well performance becomes much more difficult compared with conventional 

vertical wells because of the complexity of well structures. In order to evaluate well 

performance, we need new robust models. This dissertation presents well performance 

models of horizontal wells, undulating wells, and multilateral wells. The models are 

divided into two main categories, the closed form model and the line source model. 

These models can be used to generate inflow performance relationships, study parameter 

sensitivity, and optimize well designs. 

 This study modifies and summarizes the systematic analytical equations for 

horizontal wells in single-phase oil, single-phase gas, and two-phase oil and gas 

formations for steady-state and pseudosteady-state boundary condition. It also presents 

the line source solution of 2D wellbore for horizontal wells, inclined wells, and 

undulating wells. The effects of important parameters, such as permeability, well 

structures, and reservoir conditions, on well productivity are discussed. Wellbore 

pressure distribution is addressed in detail in this study because of its critical role in 

complex well performance. Based on the study, we can present the following 

conclusions and recommendations. 

 

6.1 Conclusions 

  The conclusions can be summarized as following. 

1. The systematic table of horizontal well inflow performance models is created to 

summarize the models. The models are categorized by the fluid systems and 
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boundary conditions. Each model should be used appropriately to obtain accurate 

results. 

2. A line source model of 2D well structures is presented and tested. The well 

trajectory can change in two directions which makes the model very practical. 

The model applies for vertical wells, horizontal wells and inclined wells for 

single-phase system and homogeneous formations.  

3. The study of flow distribution and pressure distribution in horizontal wells shows 

that the productivity distribution along horizontal well has w-shape when the 

well length is relatively long comparing with the reservoir length. When the well 

length is relatively short comparing with the reservoir length, the productivity 

distribution becomes u-shape. 

4. The closed form model of undulating wells in relatively low vertical permeability 

formation is presented and tested. The model applies for both single-phase and 

two-phase systems. This model can be used to evaluate undulating well 

performance with reasonable results when vertical permeability is very low and 

the flow is dominated by horizontal permeability. The developed undulating 

model overcomes the problem of underestimated production performance by the 

horizontal well model, and avoids missing the economic value of develop low 

vertical permeability reservoir with undulating wells. 

5. A line source model of undulating wells is presented. This model applied for 

single-phase system in homogeneous reservoirs. The model can be used to 

predict the undulating well performance under different boundary conditions 

including steady-steady condition, pseudosteady-state condition and mixed-

boundary condition. In addition to the flexibility and accuracy of the model 

comparing with the analytical undulating well model, it can be used for both 

intentional and unintentional undulating well structures. 

6. Wellbore pressure and fluid distribution are extremely important in undulating 

wells, especially in two-phase systems. If the well structure is not designed 
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carefully, unstable production may occur. Using the developed models can help 

to optimize undulating well performance. 

7. The closed form model used for predicting two-phase flow in multilateral well is 

presented. The model is fast and easy to use. It also applies for the multilateral 

wells that each lateral produces from different reservoirs and each reservoir does 

not connect to each other. Incorporating with a wellbore hydrodynamic model, 

production at the surface from a commingled multilateral well can be optimized  

 

6.2 Recommendations 

 Based on the results of this study, it is recommended that 

1. A comprehensive two-phase well flow model should be integrated to the line 

source model for accurate prediction of slugging in undulating wells. This 

will explain the necessary of drilling control in well trajectory. 

2. A 3D line source model needs to be developed to relax the assumption of 

well structures in horizontal and undulating wells. 
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NOMENCLATURE 

Symbol   Description 

 A   drainage area 

 a   reservoir width 

 B   formation volume factor 

b   reservoir length 

D   wellbore diameter 

h   reservoir thickness 

 ff   friction factor with wall flux 

J   productivity index 

 k   permeability 

L   well length 

ReN   Reynolds number 

 p   pressure  

 q   flow rate 

 r   radius 

 s   skin factor 

T   temperature 

Greek 

ε   relative pipe roughness 

Φ   flow potential  

φ   porosity 

θ   wellbore inclination 

µ   viscosity 

ρ   density 
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τ   time   

Subscripts 

0   damaged 

d   damaged 

g   gas 

I   inflow 

o   oil 

R   reservoir 

w   wellbore 

wf   wellbore flowing 

x   x-direction 

y   y-direction 

z   z-direction 
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APPENDIX A 

STEADY STATE HORIZONTAL WELL MODEL 
 
The horizontal well model under steady-state condition is derived in this appendix. The 

diffusivity of single-phase incompressible fluid is solved by the instantaneous 

source/sink function in a homogeneous box-shaped reservoir. The formation is either 

isotropic or anisotropic. The initial boundary condition is constant pressure in the 

reservoir and the boundary condition in the X-direction is constant pressure boundary 

and no-flow boundary in the Y- and Z- direction. The inner boundary condition is 

uniform flux along the reservoir. 

  The line source represents a horizontal well and the well can be located anywhere 

in the reservoir parallel to the Y-axis. Assuming the source or the horizontal well is 

located at (x0, y0, z0). The toe and the heel are at (x0, y1, z0) and (x0, y2, z0) respectively. 

The pressure drop at any locations in the reservoir is estimated by  
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First, we start from integrate along a horizontal well 
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Rewriting Eq. A-6 
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Considering the integral term on the right hand side in Eq. A-7 
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Eq. A-8 becomes 
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We can rewritten Eq. A-7 as, 



121 

 

  ( )
��

�
�
�

��

�
�
�

��

�
�
�

�
�
�

	





�

�
−�=


∞

= 2

22
0

1
0

2

1

2
1

a

kn
exp

a
xn

sin
a

xn
sin

abh
dySSS x

n

y

y
xyx α

τπππ
 

  
��

�
�
�

��

�
�
�

�
�

	


�

�
−�+

∞

= 2

22
0

1
21

h

kl
exp

h
zl

cos
h
zl

cos z

l α
τπππ

 

  ( )
�
�

�

�
�

�

�

�
�
�

�
�
�

�

�
�
�

�
�
�

�

�
�
�

	





�

�
−�

�
�

	


�

� −
+−

∞

= 2

22

1

12

12
2

b

km
exp

m
b
ym

sin
b
ym

sin
b

ym
cos

b
yy y

m α
τπ

πππ

π   

   (A-10) 

Then, we multiply the right hand side of Eq. A-10 
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To obtain the continuous line source solution, we integrate over time interval 
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After integrating Eq. A-12, we have 
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Eq. A-13 can be written as 

  ( ) ( )

�
�
�

��
�

�
�−

=
 


∞

=
2

0

1
2

12
2

0
0

2

1

21
n

a
xn

sin
a

xn
sin

k

yya
abh

ddySSS n

x

t y

y
xyx

ππ

π
ατ  

  
�
�

�

�

�
�

�

�

�
�
�

	





�

�
−−

2

22

1
a

kn
exp x

α
τπ

 

  
( )

� �

�
�
�

�
�
�
�

�
+

−
+

∞

=

∞

=1 1

2

2

2

2

00

2
124

l n xz

a

kn

h

kl
h
zl

cos
h
zl

cos
a
xn

sin
a

xn
sinyy

ππππ

π
α

  

  
�
�

�

�

�
�

�

�

�
�
�

	





�

�

�
�
�

�
�
�
�

�
+�

�
�

�
�
�
�

�
−−

2

2

2

22

1
a

kn

h

kl
exp xz

α
τπ

  



124 

 

  � �

�
�

�

�

�
�

�

�
+

�
�

�
�
�

� −
+

∞

=

∞

=1 1

2

2

2

2

120

3

4
m n

xy

a

kn

b

km
m

b
ym

sin
b
ym

sin
b

ym
cos

a
xn

sin
a

xn
sin

b
πππππ

π
α

 

  �
�

�

�

�
�

�

�

�
�

�

	






�

�

�
�

�

�

�
�

�

�
+�

�
�

�
�
�
�

�
−−

2

2

2

22

1
a

kn

b

km
exp xy

α
τπ

 

  � � �

�
�

�

�

�
�

�

�
++

+
∞

=

∞

=

∞

=1 1 1

2

2

2

2

2

2

00

3

8
l m n

xzy

a

kn

h

kl

b

km
m

b
ym

cos
h
zl

cos
h
zl

cos
a
xn

sin
a

xn
sinb

πππππ

π
α

    

  
��

�
�

�

�
�

�

�

�
�

�

�

�
�

�

	






�

�

�
�

�

�

�
�

�

�
++�

�
�

�
�
�
�

�
−−�

�

	


�

� −
2

2

2

2

2

22
12 1

a

kn

h

kl

b

km
exp

b
ym

sin
b
ym

sin xzy

α
τπππ

 (A-14) 

Substituting Eq. A-14 into Eq. A-1 gives 
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 (A-15) 

Eq. A-15 can be used to evaluate the flow performance of a fully or partially penetrating 

horizontal well under steady-state condition with uniform flux, q, along the well. At late 

time, the exponential term becomes zero. We rewrite Eq. A-15 as 
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  For a fully penetrated well, the third and the finally terms on the right hand side 

of Eq. A-16 becomes zero.  Therefore, a fully penetrating horizontal well can be 

presented as, 
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APPENDIX B 

PSEUDOSTEADY STATE HORIZONTAL WELL MODEL 
 
In this appendix, we derive the horizontal well performance under pseudosteady state 

condition. The model is introduced by Babu and Odeh in 1989 based on the use of the 

instantaneous Green’s function. This model is available for a single-phase and 

incompressible fluid in a box-shaped reservoir and the well is parallel to the Y-axis. The 

location of the well can be anywhere in the homogenous reservoir. The reservoir can be 

either an isotropic or an anisotropic reservoir.  

  The line source represents the wellbore located parallel to the Y-axis. The heel of 

the well locates at (x0, y1, z0) and the toe of the well locates at (x0, y2, z0). The pressure 

drop as a result of a constant production into the well is calculated by Eq. B-1. 
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  tcφµα =  (B-5) 

First, we start from integrate along a horizontal well from y1 to y2. 
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Rewriting Eq. B-6, we have 

  ( )
��

�
�
�

��

�
�
�

��

�
�
�

�
�
�

	





�

�
−�+=


∞

= 2

22
0

1
0

2

1

21
1

a

kn
exp

a
xn

cos
a

xn
cos

abh
dySSS x

n

y

y
xyx α

τπππ
 

  
��

�
�
�

��

�
�
�

�
�

	


�

�
−�+

∞

= 2

22
0

1
21

h

kl
exp

h
zl

cos
h
zl

cos z

l α
τπππ

 

  
��

�
�
�



��

�
�
�

��

�
�
�

�
�
�

	





�

�
−�+

∞

=
0

2

1
2

22
0

1
21 dy

b

km
exp

b
ym

cos
b

ym
cos

y

y

y

m α
τπππ  (B-7) 

Considering the integral term on the right hand side of Eq. B-7 
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Rewriting Eq. B-8 as 
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Substituting Eq. B-9 into Eq. B-6 
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Then, we multiply the right hand side of Eq. B-10 
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 (B-11) 

To obtain the continuous line source solution, we integrate over the time interval. 
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Rewriting Eq. B-12  
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Eq. B-13 becomes 
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 (B-14) 

Since (y2-y1) = L and we can substitute equation (B-14) into equation (B-1), we rewritten 

equation (B-1) as, 
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 (B-15) 

At late time, the exponential term becomes zero and Eq. B-15 becomes 
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