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ABSTRACT 

Buckling Analysis of Singly Curved Shallow Bi-layered Arch under Concentrated 

Loading. (August 2007) 

Mahesh  Sonawane, B.E., Government College of Engineering, Pune 

 

Chair of Advisory Committee: Dr. Jyhwen Wang 

 

 
 

Bi-layered materials are a reduced weight derivative of the sandwich structure and are 

comprised of one thin skin face reinforced by a thick layer of low density material. Bi-

layered materials are characterized by high flexural stiffness and are a viable alternative 

to conventional sandwich materials in applications where the functional requirements 

can be met without the second face sheet of the sandwich. For structural applications bi-

layered materials are required to have oil canning and buckling resistance. This work 

addresses the buckling of shallow bi-layered arches using numerical and analytical 

approaches. A numerical, finite element model is developed to simulate the buckling 

phenomenon and the results were compared with known experimental data. An 

analytical model was developed using the energy method analysis and the buckling load 

was predicted from the minimum energy criterion.  

 

Comparison of the numerical and analytical results yielded fairly good agreement. An 

imperfection analysis conducted by means of the numerical model indicated that the load 

carrying capacity of bi-layered structures is reduced by up to 40% due to the presence of 
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material and geometric imperfections. A parametric study conducted using the analytical 

model has been described to setup design guidelines for shallow bi-layered arches. It 

was found that the use of bi-layered structures can result in weight reduction of around 

70% when compared with equivalent single layered structure. 
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NOMENCLATURE 

c  Foam thickness 

f  Width of arch 

r  Radial distance between any point in the section and the neutral axis, 
s

R R−  

t  Face sheet thickness 

, ,u v w  Displacements in the axial, tangential and radial directions respectively 

b
w  Displacements due to bending 

s
w  Displacements due to shear 

E  Modulus of elasticity of face sheet 

G  Modulus of rigidity of core 

H  Total energy 

eff
L  Effective length of column 

P  Concentrated load at the center of the arch 

R  Radius of the neutral axis 

s
R  Radius at any point in cross section 

S  Span of the arch 

U  Strain energy 

b
U  Strain energy due to local bending strain in face sheet 

m
U  Strain energy due to membrane strain in face sheet 

s
U  Strain energy due to shear strain in the foam,  
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V  Potential energy 

Vc  Volume of the core 

Vf  Volume of the face sheet 

β  Included angle of the arch 

b
ε  Local bending strain in the face sheet 

rr
ε  Normal strains in the radial direction in the face sheet 

ss
ε  Membrane strains in the face sheet 

ra
γ  Shear strains in the ra  plane 

rs
γ  Shear strains in the rs  plane 

sa
γ  Shear strains in the sa  plane 

λ  Shear co-efficient which is a measure of strain 

θ  Angle up to any given section 

χ  Geometrical arch parameter, 2 /R tχ β=  
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1. INTRODUCTION 

Modern industries are constantly facing the new challenges of conserving the natural 

resources. This calls for innovation in different aspects of the design process. Innovative 

designs such as use of modern light weight composite materials are the need of the hour 

and such concepts are fast replacing the conventional materials in different fields. 

(Purdue webpage, 2007) 

1.1 Sandwich structures 

One of the technological developments of the last century is the sandwich structure. A 

sandwich structure can be defined as a structure comprised of two thin skin faces 

separated by a thick layer or core of low density material (Allen, 1969). The technology 

of sandwich structures and materials has developed a great deal in the recent years and 

the use of sandwich structures and materials in a variety of products has increased 

significantly. Sandwich structures represent a special form of laminated composite 

materials, where a relatively thick, lightweight and compliant core material separates 

thin stiff and strong face sheets. The faces are usually made of laminated polymeric 

based composite materials whereas the core is generally made from polymeric foam, 

honeycomb material or a corrugated sheet of metal. A structure of this kind results in a 

material of very high stiffness to weight ratios. Figure 1.1 shows a sandwich cross 

section with 2 face sheets of thickness t  and a core of thickness c . (Allen, 1969) 

 

This thesis follows the style of International Journal of Solids and Structures. 
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          Figure 1.1: Sandwich structure  

 

 

 

In a sandwich construction the core has several vital functions. These have been 

identified by Allen (1969) in his book and can be enlisted a follows: 

1. The core must be stiff enough in the direction perpendicular to the faces to 

ensure that the faces remain the correct distance apart. 

2. It must be stiff enough in shear so that the faces don’t slide over each other when 

the panel bends. With a very weak core the sandwich will merely behave like two 

independent beams. 

3. The core must be sufficiently stiff to hold the two face sheets flat and inhibit 

local buckling, also known as wrinkling, under the action of compressive stresses 

parallel to sandwich. 

The adhesive is another important component and it should not be flexible enough to 

allow significant relative movement between the faces and core. The core of sandwich 

panel can be of different types. Aircraft structures invariably employ metal face with 
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honeycomb or corrugated cores (Allen, 1969). The honeycomb is a matrix formed from 

strips of thin aluminum alloy or steel foil. The corrugated core is a fluted metal attached 

alternately to the upper and lower face. Figures 1.2 –1.4 show the different types of 

sandwich cores.  

 

 

 

 

 

 

 

Figure 1.2: Sandwich panel with corrugated core 
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Figure 1.3: Sandwich panel with expanded plastic core 

 

 

 

 

 

Figure 1.4: Sandwich panel with honeycomb core 
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1.2 Bi-layered materials 

A bi-layered structure is a reduced weight derivative of the sandwich structure and is 

comprised of one thin skin face reinforced by a thick layer of low density material. 

Sandwich panels have been used for weight reduction in aerospace industry. Automotive 

body structures are different from aircraft structures and are typically manufactured by 

converting flat blanks into complex three dimensional shapes using sheet forming 

operations. Due to core failure (collapsing) in the forming operations, previous efforts in 

forming metal-foam-metal sandwich sheet failed to produce successful results.  

 

A bi-layered panel manufactured using hydro-forming techniques can be a very viable 

alternative to sandwich panels. Molding of foam into a designed cavity and adhesive 

bonding of the molded foam onto the matching (deformed) sheet metal is a direct way of 

making light-weight closure panels. As flat bi-layered blanks can be produced 

economically, a significantly different, but low-cost, approach to produce the shaped 

panel is through forming of flat bi-layered blanks. Thus a bi-layered material has an 

advantage of manufacturability by a forming process where a sandwich material fails, in 

addition to its inherent structural characteristic of being lighter than a sandwich material. 

(Corona, 2006) 

 

Bi-layered materials can find applications into a variety of products. It is a good 

alternative for designs where high stiffness is a requirement and all the functional 

requirements can be met without using the second skin or face sheet of a sandwich 
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material. One example of such applications is a car door panel or the hood which are 

subjected to loading from only one side i.e. the exterior. A bi-layered panel can offer 

significant weight reduction over an equivalent single layer panel in this application.  

Another example where a bi-layered panel can be employed is a refrigerator door. Here 

the face sheet of a bi-layered material can form the exterior surface and the foam can 

serve as an insulating media on the inner side in addition to strengthening the outer 

panel.  

 

In real life applications all structures are subjected to a variety of loadings. Different 

applications have different requirements which could require high strength or high 

stiffness. For bi-layered structures using a thin sheet metal face the stiffness 

requirements are more prominent and dominate the lateral displacements of the 

structure. Insufficient structural stiffness can lead to two different failure phenomenons. 

Column buckling can be defined as a loss of axial capacity due to gross lateral deflection 

of a slender element, generated by a compressive load (Unistates Webpage, April 2007). 

Buckling is related to the stiffness and the slenderness ratio of the structure. An example 

of a structure likely to buckle is a strut under axial compressive loading as shown in 

Figure 1.5. (Pytel and Singer, 1987) 
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Figure 1.5: Column buckling under axial loading  

 

 

 

Another phenomenon similar to column buckling is Oil Canning or snap through 

buckling. It is a moderate deformation or buckling of sheet material, particularly 

common with flat sheet metal surfaces. This terminology also refers to the popping 

sound made when pressure is applied to the deformed sheet forcing the deformation in 

the opposite direction. (U.S. Department of Transportation – FHWA, 2007). Though not 

a permanent deformation, oil canning deformation is a very important phenomenon in 

certain applications like automotive hoods and doors where the customer may perceive 

the temporary deflection as a poor vehicle quality or a weak design. The oil canning 

phenomenon is shown in Figure 1.6. 
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Figure 1.6: Oil canning 

 

 

Buckling resistance of a panel is defined by the limiting load that a panel can carry 

without undergoing sudden large deflections. Singly curved structures are simple arches 

or a curved beam structures having one direction of curvature. Shallow arches can be 

defined as an arch with a small rise to span ratio. Skvortsov and Bozhevolnaya (1997) 

have used this criterion for classifying an arch as shallow or non-shallow by considering 

the 2 2/h S  ratio, if 2 2/ 1h S <<<  the arch can be said to be shallow.  Dimensions h  and 

S  are as shown in Figure 1.7. Bradford et al. (2002) classified arches as shallow if the 

included angle is less than90o . Symmetric buckling (Figure 1.8) for an arch is the mode 

of buckling in which the buckled shape remains symmetric with the plane of symmetry 

of the initial configuration of the arch. 
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Figure 1.7: Shallow arch 

 

 

 

 

 

Figure 1.8: Symmetric snap through buckling mode 

 

 

1.3 Research objective 

Lateral buckling is one of the critical failure modes for sandwich as well as for bi-

layered materials. Under a normal working life cycle a panel or general structure built 

using a bi-layer construction may be subjected to a variety of loading.  Accurate 

prediction of the panel deformation and buckling limits is essential for obtaining a 

reliable and optimal structural design. One of the biggest challenges in using the curved 



 10 

sandwich panel or a bi-layer panel is predicting the load carrying capacity of these 

structures.  

 

The aim of this research is to investigate the load deformation response and estimate the 

limiting buckling load of the symmetric-snap through buckling mode of a singly curved 

shallow bi-layered arch structure under a concentrated load at the center. The 

configuration of the problem is schematically shown in Figure 1.9. The objective of this 

research is to find an approximation of the limiting buckle load and to define pre-

buckling deformation. A numeric parametric study to evaluate the response of the arch 

under a range of geometric parameters was conducted.  

 

 

 

 

Figure 1.9: Bi-layered arch under concentrated load 
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1.4 Proposed work 

The details of the bi-layered arch buckling problem analyzed here can be summarized as 

follows: 

1) Structure: Singly curved bi-layered arch 

2) Materials: Metal for the face sheet and foam as the reinforcing thick layer 

3) Boundary conditions: Clamped or pinned on the two ends 

4) Loading condition: Concentrated load at the point of symmetry 

 

In this research, two different techniques, an analytical model and a numerical analysis 

are employed analyze the pre-buckling deformation and find a good approximation of 

the limiting buckling loads.  Finite element simulation using ABAQUS software will be 

used for numerical analysis. Buckling analysis can be run in ABAQUS using two 

different methods (ABAQUS Users manual, 2007): 

 

Eigen value analysis:  ABAQUS/Standard contains a capability for estimating elastic 

buckling by Eigen value extraction. This estimation is typically useful for long slender 

structures, where the pre-buckling response is almost linear. 

 

Riks method: This is a more powerful algorithm and predicts good results for unstable 

problems where during periods of the response, the load and/or the displacement may 

decrease as the solution evolves. It is a tool to solve geometrically nonlinear static 

problems involving buckling or collapse behavior, where the load-displacement response 
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shows a negative stiffness and the structure must release strain energy to remain in 

equilibrium. The problem can include non-linear material and boundary conditions.  

 

This research work will employ the Riks method algorithm to find the buckling load. For 

computational efficiency the symmetry of the problem will be exploited and plane strain 

elements will be used to reduce the 3D model to a 2D model. 

 

Analytical solution for a buckling problem is fairly complicated. Previous works on 

analytical solutions of single layered and sandwich arches have developed very complex 

results by solving the governing equilibrium equations. It is proposed here to develop a 

model that will predict the buckling load for bi-layer arch by using the energy method. 

Energy method is a very useful approach for complex stability analysis and it is believed 

that this approach should give a fair approximation to the desired result. (Gjelsvik and 

Bodner, 1962) 

1.5 Expected contribution  

Work has been done in areas of buckling of single layer arches as well as sandwich 

arches. This research is expected to contribute in an unexplored field of bi-layered 

structures. A finite element model and an approximate analytical solution for predicting 

the buckling load of a bi-layer arch structure will be the outcome of this work. The finite 

element model will be useful in mapping the displacement and stress-strain field in the 

bi-layered structure in addition to fulfilling the main purpose of predicting the buckling 

load. The analytical model will provide an understanding of this structural behavior and 
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relate it with various geometric parameters and material properties. The research results 

are expected to have broad applications in different industries. 
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2. LITERATURE REVIEW 

Stability analysis has been the area of interest of many researchers. Large steel columns 

and arches or curved beams have been of special interest in this field because of their 

large scale use in critical engineering structures. In recent years the research in sandwich 

structures has gained momentum because of their increased application in different 

fields. Sandwich materials are known to have a high stiffness to weight ratio because of 

their inherent structure, however a good knowledge of their behavior under the subjected 

loading and boundary conditions is necessary before they can be put into practical 

application through an optimal design. Research in the area of sandwich columns with in 

plane compressive loading has made huge strides but very little has been written about 

curved sandwich panels or arches under lateral loading. In this section the work done in 

the areas of sandwich columns, plates, stability of arches along with literature pertaining 

to the sandwich theory and stability theory will be reviewed. 

 2.1 Stability theory 

Timoshenko (1936) has presented extensive literature on stability of different elastic 

members. His book treats different stability problems like axially compressed bars, thin 

plates under compression, rings under compression, lateral buckling of beams, axial 

compression of cylindrical shells. The book treats the problem of curved bar under 

uniform lateral pressure, however no mention is found of the problem of a curved bar 

under concentrated loading. Similar work in the area of structural stability is found in 

Bazant (1989) and Alfutov (1999). An excellent understanding of the concept of stability 
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has been presented by Gregory (1967) in his book which mainly deals with the stability 

of framed structures. Simple illustrations like “cup and ball system” and “rod and spring 

system” have been presented in his work. Solutions to these stability problems have been 

demonstrated using the energy method and the Rayleigh method. The book covers the 

problem of axially loaded columns but does not treat any problem related to stability of 

curved beams and shells. 

 

Another book on stability by Dym (1974) has introduced the concept of stability, 

stability theorems, and theorem of minimum potential energy. The von Karman theory 

of plates has been explained meticulously. Problems of buckling and post buckling of 

elastic columns, buckling of rectangular plates and circular plates have been presented in 

his work. Equations for shallow arches and closed form solution to the problem of 

stability of shallow arches are found in his work.  

 

Modern day analytical methods like the variational principles of elasticity and the finite 

element method have been presented by Shames and Dym (1985). Solutions of various 

elasticity problems using energy method have been illustrated. They have addressed the 

elastic stability problems of columns and plates using the energy method. Finally, using 

the variational principles as a foundation they have introduced finite element solutions to 

some of the problems addressed in the book.  
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Rajasekaran and Padmanabhan (1989) in their work on curved beams have derived 

governing equations based on the large displacement theory for solving curved beam 

problems. They have used the principle of virtual work to establish the governing 

equations. The formulation is independent of the deformed member and thus has 

widespread application. 

 

A more recent work by Gambhir (2004) in his book has addressed stability problems of 

key structural elements like columns, beams, rigid frames, thin plates, arches, rings and 

shells. The text covers basic principles of mechanics. Equations of equilibrium, 

fundamental principle of work and strain energy, energy theorems have been dealt with 

in his work. Different methods to obtain a solution like the trial function method, 

Galerkin method, finite difference method and numerical integration are illustrated with 

simple examples. The book does not consider any problem involving sandwich 

structures. The problem of a singly curved arch loaded with a uniform pressure on the 

lateral surface is covered. 

2.2 Sandwich theory 

Detailed work in the area of theoretical analysis of sandwich beams, plates and struts has 

been done by Plantema (1966), Allen (1969) and Zenkert (1995). Plantema (1966) has 

covered different problems of bending and buckling of sandwich struts, columns and 

plates under in-plane loading. Beam theory applicable to sandwich structures has been 

presented in his work. Buckling problems of   sandwich columns, plates under axial 

compressive loading have been solved using the energy method. Theory of sandwich 
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panels has been presented meticulously followed by various design formulas pertaining 

to the design of sandwich beams and struts. Allen (1969) and Zenkert (1995) have 

presented similar work in the area of sandwich panels. Design guidelines for sandwich 

beams and columns, beam theory for a sandwich structure and the governing equilibrium 

equations are found in their work. 

 

Using the theory from Allen (1969), Heder (1991) has compared the buckling load of 

sandwich panel obtained by analytical method and finite element analysis. Approximate 

buckling loads for panels with different boundary conditions have been derived using an 

energy method analysis. Different combinations of end conditions like simply supported 

edges and clamped edges are used while the panel is under axial compression loading. 

Buckling coefficients and buckling loads were derived for four different boundary 

conditions. 

 

More thorough work on sandwich panel buckling has been done by Mahfuz, Islam, 

Saha, Carlsson and Shaikh (2005) in their analytical, experimental and finite element 

study to investigate the effect of core density and core sheet de-bonding on buckling of 

sandwich panel. The configuration considered was a sandwich column loaded axially 

and having pinned ends. The experimental work involved tests conducted with various 

foam densities and also with implanted de-lamination between the core and the face 

sheet. The intent was to investigate the effect of core density, and the effect of core–skin 

de bonds on the overall buckling behavior of the sandwich. Analytical and finite element 
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calculations were also performed to support the experimental observations. They 

observed that core density has direct influence on the global buckling of the sandwich 

panel, while embedded de-lamination seem to have minimal effect on both global as 

well as local buckling. The analytical calculations considered a modification to the 

Euler’s load to take into account the shear deformation of the core. 

2.3 Research in arch buckling 

Langhaar, Boresi and Carver (1954) have presented an analysis of buckling of single 

layered circular rings and arches based on energy theory of buckling. The hoop strain 

formula, which is expressed in terms of the displacement of the centroidal axis, was used 

for deriving the strain energy equation. They solved the problem of a semicircular arch 

loaded by a concentrated load at its center. Experiments were conducted by using 

aluminum alloy strip arches and loading them in small increments with dead weight until 

buckling occurred. The experimental loads were in good agreement with the results 

obtained from their analysis.  

 

A method to study the nonlinear buckling of single layered shallow cylindrical shells 

was presented by Stack-Taikidis (1972). Their study is concerned with the buckling of a 

thin shallow cylindrical shell under uniform lateral pressure, with boundaries fixed along 

the generatrix and simply supported along the directrix. The general nonlinear theory 

with respect to strains and the Kirchoff-Love approximations as applied to shallow shells 

were used for the mathematical formulation of the problem. The governing equations are 

expressed in terms of a stress function and the normal displacement. They have used the 
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Kantorovitch method to transform the nonlinear partial differential equations to a system 

of ordinary differential equations. A finite difference scheme was applied to transform 

the latter system to a system of matrix equations. An incremental technique was used to 

linearize the system using a computer program written in Fortran IV. The solution 

determines the variation of a dimensionless deflection parameter with respect to a 

pressure parameter. The study is valid for a single layer arch and there is no verification 

of results by using an alternative method. 

 

Significant contribution to the field of analytical modeling of arch stability has been 

made by Gjelsvik and Bodner (1962). They have presented a critical analysis 

demonstrating the significance of energy criteria for snap through buckling. A rigorous 

experimental and theoretical analysis of single layered shallow arch buckling is 

presented in their work. They have investigated a simple mechanical model of two 

hinged bars supported by a spring to explain the concept of snap buckling. Concepts of 

upper bound and lower bound loads have been explained using this model. Analysis of a 

clamped circular arch under concentrated load is presented using the energy criteria. 

They carried out experiments on elastic snap through buckling of clamped arches. The 

objective of the experimental study was to obtain the complete load deflection curves for 

different geometries and the unstable regions in these curves. Comparison of the results 

from the two techniques showed a good agreement between the experimental load and 

the lower bound of the energy load. 
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Schreyer and Masur (1966) have taken forward the work done by Gjelsvik and Bodner 

(1962) and studied the buckling of single layered shallow arches. They found the exact 

solutions of the non-linear equilibrium equations for the clamped circular shallow arches 

with a detailed analysis of various buckling criteria. They have concentrated their efforts 

on the problem of the arch subjected to uniform pressure. The load deflection curve is 

obtained and they showed that for this problem both symmetric and asymmetric 

buckling criteria may govern. The validity of results in either case depends on the 

steepness of the arch. They have also dealt with the problem of a shallow arch loaded 

with a central concentrated load but the problem is not thoroughly analyzed and they cite 

the work of Gjelsvik and Bodner (1962) in that area. For the problem of concentrated 

load it is shown that a symmetric buckling criterion governs the problem for all degrees 

of steepness.  

 

The effect of the linearization of the pre-buckling state on the determined instability 

loads has been analyzed by Kerr and Soifer (1969).  They studied this effect on an elastic 

system with two degrees of freedom and on single layered shallow arch loaded with 

lateral uniformly distributed load. They compared the instability loads firstly obtained by 

an exact solution of a non-linear formulation and secondly by perturbation analysis using 

the linear pre-buckled state. It has been stated that for problems involving non-trivial 

state of stress in the pre-buckled state the linearized formulation must be used with 

caution because the instability may take place after the system has deformed 
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considerably. The problems in this category involve buckling of symmetric arches under 

a concentrated load at the vertex, rings and shells under non-uniform lateral pressure. 

 

Dickie and Broughton (1971) have studied the symmetric and unsymmetrical single 

layered arches subjected to radial loading. They have used the energy method analysis 

developed by Gjelsvik and Bodner and applied the methodology to a various boundary 

conditions and loading conditions. Concentrated loading, uniformly distributed loading 

and non-uniformly distributed radial loading have been considered in their analysis. 

They also carried out experiments using a dead weight apparatus. Loads were applied 

until the arch snapped due to buckling and the radial deflections recorded at various 

points. The experimental and analytical results showed good agreement. 

 

The problem of buckling and post buckling behavior of single layered shallow arches, 

pinned and clamped, and subject to uniform pressure  was analyzed by Dym (1973). The 

main objective of the study was asymmetric bifurcation. Thus even though the study is 

concerned with shallow arches, the arches considered are steep enough so that 

bifurcation occurred prior to symmetric snap through. Important results from this study 

are that a) asymmetric bifurcation pressures have been determined by an Eigen value 

analysis based on a linear pre-buckling state b) such bifurcations, when the arch is steep 

enough so that the they occur prior to symmetric buckling, are always unstable.  
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Knight and Carron (1997) studied the structural response of several elastic single layered 

circular arches with asymmetric and symmetric boundary conditions. The effect of the 

arch end conditions and the subtending angle on the elastic collapse behavior was 

determined and described. Fixed and clamped end conditions with point load at the 

symmetry of the arch were considered in the study. The arch geometry considered was 

up to a subtended angle of 210 degrees.   They briefly described a formulation for an 

assumed-stress hybrid beam element that exploits the co-rotational approach for solving 

large deflection problems. The study is mainly valid for non-shallow arches and the 

response, from the onset of loading, exhibited a nonlinear behavior.  

 

Dealing with contemporary shape memory alloys (SMA) Hyo Jik Lee and Jung Ju Lee 

(2000) performed numerical analyses on the buckling and post-buckling behavior of 

laminated composite shells with embedded SMA wires. These analyses using an 

ABAQUS code were conducted to investigate the effect of embedded SMA wires on the 

characteristics of buckling and post-buckling caused by external and thermal loads. The 

end conditions were simply supported and clamped.  

 

Bradford, Uy and Pi (2002) investigated analytically in-plane elastic stability of single 

layered arches with a symmetric cross section and subjected to a central concentrated 

load. They have proposed a criterion that demarcates shallow and non-shallow arches. 

The analysis uses a virtual work formulation to establish both - the non-linear 

equilibrium conditions and the buckling equilibrium equations for shallow arches. 
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Analytical solutions for anti-symmetric bifurcation buckling and symmetric snap-

through buckling loads of shallow arches subjected to this loading were obtained. 

Approximations for the symmetric buckling load of shallow arches and non-shallow 

fixed arch and for the anti-symmetric buckling load of non-shallow pin-ended arches 

were obtained.  

2.4 Sandwich arches 

Load-deformation behavior and global stability of shallow singly curved sandwich 

panels subjected to lateral loading was studied by Skvortsov and Bozhevolnaya (1997). 

They performed a stability analysis for a simply-supported sandwich panel of constant 

curvature and loaded by uniform pressure. A model for the load-deformation response of 

a shallow singly-curved sandwich panel is developed on the basis of Reissner plate 

theory. For arbitrary initial panel geometry and lateral load distribution, the load 

deflection relations are derived in the form of two implicit equations. Explicit equations 

describing the deformation behavior of symmetric sandwich panels subjected to 

symmetric loading are also presented. The boundary conditions on both the ends in 

simply supported. Structural and buckling parameters which depend on the panel 

geometry and material properties were introduced. These parameters allow the buckling 

behavior of shallow sandwich panels to be predicted. The ideas behind the analysis and 

the solution technique are illustrated by a numerical example. The critical pressure is 

derived in terms of the structural buckling parameters and hence a direct relation 

between the geometry and this load is not found. The analysis is valid for a sandwich 

structure and there is no applicability of the results to a bi-layered structure. 
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Skvortsov and Bozhevolnaya (2001) further extended the work done by Skvortsov and 

Bozhevolnaya (1997) by studying the global behavior of a curved panel of arbitrary 

initial profile and general boundary conditions under any kind of distributed loading that 

can be described in terms of an infinite series expansion. Shallow singly curved 

sandwich panel with lateral loading is considered in the analysis. General boundary 

conditions are considered, i.e. boundary conditions simply supported and clamped are 

considered on all four edges of the arch. These represent more realistic conditions 

encountered in practical applications. Governing equations based on Timoshenko- 

Reissner plate theory are derived for these boundary conditions.  Numerical analysis is 

carried out and the load deflection response is plotted. 

 

In the area of finite element modeling Rose, Moore, Knight, Jr., Rankin (2002) did a 

comparative study of various modeling approaches for predicting the buckling behavior 

of sandwich panels using a sandwich panel with anisotropic faces and thick core. They 

used the STAGS non-linear finite element code for their numerical simulations. The 

results from various approaches of modeling were compared with the conventional 

analytical solutions for the overall buckling mode as well as the load buckling modes 

such as wrinkling. They concluded that the specialty sandwich element formulation as 

implemented in STAGS is a very effective and accurate modeling approach for 

predicting the sandwich behavior. 
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Bull and Hallstrom (2004) studied curved sandwich beams subjected to opening bending 

moment. They introduced face–core debonds of varying sizes at the compressively 

loaded face sheet and investigated the structural integrity. Analytical and finite element 

models are compared in order to identify the governing failure modes of the beams. A 

simple expression is presented as a tool for getting a quick estimate of the severity of an 

interface crack in a curved sandwich beam. Five different configurations of beams were 

tested experimentally in a custom made bending rig. They also mention that the failure 

mode for a curved beam as the radii increases is governed more and more by the regular 

straight beam theory. 

 

In a rigorous finite element analysis of sandwich beams Lyckegaard and Ole (2006) 

studied the buckling behavior of a straight sandwich beam joined with a curved 

sandwich beam. They have created two models, one using a finite element model and 

other using a higher order sandwich theory.  The structure was loaded on the straight 

beam section and the behavior of the panel in pure bending condition was investigated. 

The finite element model was created using ANSYS. Beam elements were used to model 

the sandwich faces whereas the core was modeled using the 2D solid elements.  The 

results from the two models did not compare well necessitating some more research in 

this area. 

2.5 Summary 

The main objective of the work done in the field of stability analysis, described above, 

has been the study of the load deflection response of the structure. Some of them deal 
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with predicting the deformed shape of these structures under a given set of loading and 

boundary conditions. The major work done in the areas of stability analysis of sandwich 

structures and arches, described above has been broadly summarized in Table 2.1.  

 

Table 2-1 Summary of the literature review 

Structure Loading Conditions Technique 

Single Layer Arches 
Uniform lateral pressure / 

Concentrated load 
Experimental / Analytical 

Sandwich Plates / Columns Axial Compression Experimental / Analytical 

Sandwich Arches Uniform lateral pressure Analytical / Numerical 

Bi-layered Arches Proposed research 
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3. NUMERICAL MODEL 

Finite element analysis is a computer simulation technique used in engineering analysis. 

This research will make use of the ABAQUS finite element analysis package for the 

stability analysis of the bi-layered arch structure. Two different methodologies exist for 

the buckling and post buckling problems 1) Eigenvalue prediction 2) Riks algorithm: 

 

1) Eigenvalue buckling prediction  

ABAQUS/Standard contains a capability for estimating elastic buckling by eigenvalue 

extraction. This estimation is typically useful for stiff structures, where the pre-buckling 

response is almost linear. The buckling load estimate is obtained as a multiplier of the 

pattern of perturbation loads, which are added to a set of base state loads. The base state 

of the structure may have resulted from any type of response history, including nonlinear 

effects. It represents the initial state to which the perturbation loads are added. The 

response to the perturbation loads must be linear up to the estimated buckling load 

values for the eigenvalue estimates to be reasonable. (ABAQUS Theory Manual, 2007) 

 

2) Modified Riks algorithm 

It is often necessary to obtain nonlinear static equilibrium solutions for unstable 

problems, where the load-displacement response can exhibit the type of behavior as 

shown in Figure 3.1 that is, during periods of the response, the load and/or the 
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displacement may decrease as the solution evolves. The modified Riks method is an 

algorithm that allows effective solution of such cases. 

 

 

 

 

Figure 3.1: Typical unstable static response 

 

 

In this algorithm, it is assumed that the loading is proportional that is, that all load 

magnitudes vary with a single scalar parameter. In addition, the response is assumed to 

be reasonably smooth, meaning that sudden bifurcations do not occur. The essence of the 

method is that the solution is viewed as the discovery of a single equilibrium path in a 

space defined by the nodal variables and the loading parameter. Development of the 

solution requires this path be traversed as far as required.  
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3.1 Finite element model for a single layer arch  

Developing an appropriate finite element technique is of critical importance to obtain 

reliable results. Before embarking upon the task of building a complex model of a bi-

layered arch it is advisable to develop model for a single layer arch subjected to similar 

loading and boundary conditions. Numerous analytical as well as experimental results 

are available for the problem of buckling of a single layer circular arch under a lateral 

concentrated load. This provides an opportunity to verify the finite element model by 

comparing the FEA results with the available results. Once the technique is validated 

similar model of a bi-layered arch can be built by incorporating a second layer, changing 

the geometrical parameters in the model and maintaining the established simulation 

parameters and syntax. Thus the objective of the study in this section is to establish 

different parameters of the finite element model by solving a simple problem of buckling 

of a single layer arch under concentrated lateral loading. 

 

Dickie and Broughton (1971) have demonstrated the use of the strain energy model to 

find an exact solution as well as a series approximation to the problem of a buckling of 

clamped arches under uniform distributed load and a point load. They have proved the 

technique by comparing the results with experimental data. The solutions are found to be 

in close agreement with the experimental data. A part of the experiments conducted by 

them is simulated here. This data is being used for verification purpose. These results 

will be compared with those from the finite element technique by creating a model to the 

specification given in Table 3.1. In the Table geometric arch parameter ( 2 /R tχ β= ) is a 
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dimensionless parameter of the arch. The details of the FEA model can be found in 

Appendix A. 

 

Table 3-1 Arch properties 

Geometric arch 

parameter 2( / )R tχ β=  

Young’s 

Modulus, E 

( 2N/mm ) 

β (degrees) R (mm) f (mm) t (mm) 

73.08 2895.79 30.00 2540.00 25.40 9.52 

54.81 2895.79 30.00 2540.00 25.40 12.70 

 

3.1a Single layer arch with fixed end conditions 

The configuration of the arch after the snap is shown in Figure 3.2. This Figure is a plot 

of the von Mises stresses in the arch. The finite element simulation is run for both the 

arch geometries given in Table 3.1. Buckling load for the arches is found by measuring 

the normal reaction at the end. This reaction is plotted against the vertical displacement 

of the point of application of the load.  Figure 3.2 shows the deformed configuration of 

the single layer arch and the von Mises stress field. This load deflection curve for the 

two geometries is shown in Figure 3.3 and Figure 3.4. The critical load is the first 

maximum since the point of application of load. The load increases until the arch snaps, 

following which there is a decrease in the load. 

 

 



 31 

 

Figure 3.2: Buckled configuration of the single layer arch 
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 Figure 3.3: Load deflection curve of arch with 54.81 arch parameter 
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Figure 3.4: Load deflection curve for arch with 73.08 arch parameter 

 

 

Table 3.2 shows the comparison of the results obtained by the three methods for the 

Clamped ends boundary condition. The results are in good agreement with the 

experimental and the analytical technique with the difference being within 5% when 

compared with either technique. Thus this sufficiently establishes the fact that the FEA 

analysis is giving reliable results. 
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Table 3-2 Clamped arch 

Geometric 

arch 

parameter 

Results from Dickie, 

Broughton (1971) 

FEA 

results 
Error in % 

χ  
seriesW  theoryW  ExpW  

FEA
W  

ExpW -

seriesW  

FEA
W -

seriesW  

73.08 45.91 45.02 42.82 46.13 -5.00 2.45 

54.81 106.38 105.50 95.35 104.31 -10.00 -1.9 

 

3.1b Pinned end boundary condition for single layer arch 

Next task is to verify the results using the pinned ends boundary condition. Previously 

developed model of the single layer arch with thickness 12.70 mm was modified to 

impose the pin ended boundary conditions. Pinned ends boundary condition was 

imposed and all other parameters were kept unchanged from the previous model. The 

results obtained from this analysis have been illustrated below. The critical load is found 

by using a similar procedure as explained for the clamped arch. Figure 3.5 shows the 

load deflection curve of the single layer arch with pinned boundary conditions. 
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Figure 3.5: Load deflection curve for 54.81 arch parameter pinned arch 

 

 

 

Note that the loads reported here are exact maximum values as obtained from the 

ABAQUS report module. The series of values obtained from different time steps are 

then plotted against the displacement to obtain the plots shown in Figures 3.3, 3.4, 3.5.  

 

The results from the FEA are in good agreement with the analytically and 

experimentally obtained loads.  From the Euler’s load for a column buckling under 

compressive loading it is known that that the buckling load under fixed or clamped end 

boundary condition is greater than that in the case of a pinned end boundary condition. 

The results for the pinned arch shown in Table 3.3 and the clamped arch follow this 

trend.   
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Table 3-3 Pinned arch 

Geometric 

arch 

parameter 

Results from Dickie, 

Broughton (1971) 

FEA 

results 
Error in % 

χ  
seriesW  Exact

W  ExpW  
FEA

W  
ExpW -

Exact
W  

seriesW -

FEA
W  

Exact
W -

FEA
W  

54.81 97.56 84.75 86.96 96.23 3 1.35 12.35 

 

3.1c Buckling of 10 degree and 15 degree single layer arches 

The single layer FEA model was further verified with experimental results from the 

unpublished work of Corona (2006). The arch specifications are shown in Table 3.4. 

 

Table 3-4 Experimental specimen geometry of Corona (2006) 

R (mm) θ  (° ) t (mm) 

343.40 15 1.01 

511.81 10 1.01 

 

Figure 3.6 shows the load deflection curves for the experiment and the FEA for the two 

arches. The experimental and FEA results compared in Table 3.5 are in close agreement 

with the FEA prediction being higher than the experimental results. This provides 

sufficient confidence in the finite element model developed for the point load buckling. 
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Thus this model can be updated by incorporating the necessary changes to form a bi-

layered arch model. 
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Figure 3.6: Comparison of experimental and FEA load deflection curves 

 

 

Table 3-5 Comparison of single layered arch results 

Configuration FEA Experimental FEA-Expt 

10°  Arch 26.08 26.98 3.40% 

15°  Arch 39.24 37.21 -3.52% 
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3.2 Bi-layered arch experimental investigation 

In this research the response of a bi-layer panel has been investigated using an analytical 

solution and numerical simulations using the ABAQUS FEA package. Experiments have 

not been conducted to measure the response. However some experimental results are 

available from Corona’s (2006) unpublished work on buckling of a bi-layer arch. The 

objective of this study is to compare these experimental results with finite element 

simulation results for a similar model.  

3.2a Experimental setup  

This experimental work was done to study the influence of foam support on the stiffness 

and buckling of shallow arches. The specimens were shallow circular arches made of 

2024-T3 aluminum sheet, with thickness of 1.01 mm ( )t , supported by a foam layer that 

was 12.70 mm ( )c thick.  In this study, the foam was Rohacell 71. The arches were 

tested in the configuration shown schematically in Figure 3.7.  A special loading fixture 

was constructed to allow testing of arches of different depths, represented by the angle θ.   

The fixture was mounted on a screw-driven testing machine. The detailed experimental 

setup is shown in Figure 3.7. 

3.2b Specimen preparation 

The specimens were constructed by first cutting 12.7 mm wide strips of 2024-T3, 

aluminum sheet of 1.01 mm thickness.  The sheets were subsequently rolled to achieve 

the desired curvature.  The Rohacell 71 foam was then cut to the right shape and 

dimensions from a board using a band saw and a pattern that had been printed on paper.  
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Subsequently, the aluminum sheet and the foam were bonded with an epoxy adhesive 

using a vacuum bag method.   

 

 

 

 

Figure 3.7: Experimental setup (Courtesy Dr. Corona) 

 

3.2c Experimental procedure 

The central point load P was applied through a steel cylinder as in Fig. 3.7.  Loading was 

conducted in a displacement control manner until the specimens failed or the load 

deflection response achieved a load maximum.  The load was measured using a load cell 

and the mid-span deflection (δ) with the same displacement transducer used in the 

previous testing.  All specimens tested had a span S of 177.8 mm. The data available 
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from the experimental model was analyzed and the values of radius were deduced from 

the span and included angle using the following relation: 

2 sin( / 2)S R β= ×                    (3.1) 

The geometrical and the material specifications of the specimens are given in Tables 3.6 

and 3.7 respectively. Figure 3.6 shows the load deflection curves for the 10 degree and 

15 degree bi-layered arches obtained form the experiments. 

 

Table 3-6 Geometry of experimental specimen  

R (mm) / 2β  (° ) t (mm) c (mm) 

343.40 15 1.01 12.70 

511.81 10 1.01 12.70 

 

 

Table 3-7 Material properties of experimental specimen 

2( / )
Al

E N mm  Al
υ  2( / )

Rh
E N mm  Rh

υ  

68947.57 0.3 90.32 0.35 
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Figure 3.8: Experimental load deflection curves (Corona, 2006) 

 

3.3 Bi-layered arch FEA model 

Using the model of the single layer arch as the base the bi-layered arch was modeled by 

adding another layer of as the reinforcing foam. HyperMesh program was used to create 

the geometry of this bi-layered arch and for meshing. HyperMesh is a high-performance 

finite element pre and postprocessor for finite element solvers and allows for highly 

interactive and visual environment. The mesh generation is immensely simplified 

through its use and enhances the efficiency of the modeling process.  

 

A linear isotropic model was selected for modeling the Rohacell 71 foam. Experimental 

data available from Corona (2006) is one of the bases of this model. Material properties 
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available from this experimental investigation were used while modeling the material. 

The buckling investigation in this research deals with the pre-buckling response of the 

bi-layered arch structure under quasi-static loading condition. The Elastic modulus and 

Poissons ratio values of 90.32 2/N mm  and 0.35 respectively obtained from the 

experimental investigation were used in the analysis.   

 

The foam was modeled using the plane strain elements CPE8 from ABAQUS. The 

initial simulation trials were taken by using general purpose 3D continuum elements for 

the foam. Subsequent trials with using the plane strain elements produced results very 

close to those from the 3D elements. The plane strain elements were used for all the 

following simulations as these are considerably computational efficient when compared 

to 3D elements. CPE8 elements were chosen from the plane strain element library. These 

are 8 node bi-quadratic elements with 9 integration points. The bi-quadratic elements are 

more suitable for the arch model as these can approximate the curvature more 

accurately.  The elements of foam were grouped together in a set and the material 

properties of the foam were applied to this set. The interface between the foam and the 

face sheet was modeled to be perfectly bonded by sharing the nodes between the face 

sheet elements and the core elements on the interface. Rest of the parameters of the 

boundary conditions, loading condition and the Riks algorithm were same as the single 

layer model and were directly incorporated into this model. Mesh sensitivity analysis 

was done to select the element size or the mesh density. The details of this analysis have 

been presented in the Appendix B. 
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In the experimental investigation the bi-layered arch specimen was clamped at the ends 

over a length of 1 inch in the tangential direction. To facilitate proper clamping a metal 

layer of 1 inch length was glued on the foam on the bottom side.  To represent the actual 

boundary conditions implemented in the experimental setup the bi-layered arch was 

modeled to the actual length of the specimen and clamped boundary condition was 

imposed on the end nodes and the nodes on the top and bottom surfaces over a length on 

1 inch in the tangential direction. 

3.3a Finite element simulation results 

Using the geometrical and material parameters given in Tables 3.7 and 3.8 finite element 

models were created for the arches with 10 degrees and 15 degrees included angle. A 

symmetric half model was created for the 15 degree arch whereas a full model was 

created for the 10 degree arch in addition to its symmetric model. This full scale model 

was created to ensure the correctness of the symmetric models. The initial FEA model 

created using the experimental data predicted a higher stiffness when compared with the 

experimental data. However a closer examination of the experimental setup suggested 

the pinned boundaries to be implemented at the extreme end point of the arches which is 

at a larger span than given in the experimental data. Subsequent finite element 

simulations were conducted with due consideration to these actual boundary conditions. 
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The buckling load is obtained by plotting the load measured as a reaction at the clamped 

end against the deflection of the mid point of the arch. The load increases gradually with 

displacement up to a certain point and then there is a sudden decrease as the arch snaps. 

The first maximum is taken as the buckling load for the first mode. Figure 3.10 is a 

typical plot of load against the arc length obtained from ABAQUS. The arc length 

provides a measure of the point at which the arch snaps. This value of the arc length can 

be referred to when monitoring the value of stresses and strains at the point of snap.  

Figures 3.9 and 3.10 show the deformed shape of the 10 degree arch full model and 15 

degree arch half model respectively. This image is taken at the point of snap. It maps the 

strain field in the arch by plotting the logarithmic strain (LE11) in the plane of the arch 

in direction ‘1’. The maximum value of the logarithmic strain LE11 at the point of snap 

is 0.047 for the 10 degree angle arch. The corresponding value for the 15 degree angle 

arch is 0.077.  

 

 

 

 

 

 

 

 

 



 44 

 

 

 

 

 

Figure 3.9: Logarithmic strain field in 10 degree arch 

 

 

 

Figure 3.10: Logarithmic strain field in 15 degree bi-layered arch 
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Figures 3.11 and 3.12 show the load deflection curve and the critical buckling load for 

the two arches. 
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Figure 3.11: Load vs deflection for 10 degree bi-layered arch 
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Figure 3.12: Load vs deflection for 15 degree bi-layered arch 
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Figure 3.13: Experimental results 

 

Figure 3.13 shows the comparison between the FEA and the experimental plots. When 

compared with the finite element analysis results we can see in the experimental curve 

that there is a sharp drop in the load from the maximum, where as in the FEA there is a 

gradual transition at the point of snap.  

 

Table 3-8 Comparison of bi-layered arch buckling loads 

Geometry 10 Deg Arch 15 Deg Arch 

Experimental buckling load (N) 109.46 150.63 

FEA buckling load (N) 131.90 218.86 
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3.4 Observations and discussion 

The discrepancy between the analytical solution and the experimental results is often 

observed in stability analysis. A reason for this has been cited by Gjelsvik and Bodner 

(1962) from the work done by T. von Karman and Tsein. This discrepancy is said to be 

because of the existence of a post buckling stable equilibrium state. This state is at a load 

considerably lower than that predicted by classical buckling analysis. This is considered 

as the lowest load at which buckling is possible. The upper buckling load is the critical 

load at the point of snap through. The post buckling equilibrium state and the lower 

value of buckling load is shown in Figure 3.14. This leads to the possibility that the arch 

jumps to this equilibrium state at loads less than the linear buckling state. One doubt in 

this theory is how the transition from the initial state to buckled state took place. To 

support this argument Von Karman, Dunn and Tsein have suggested that the transition 

could be connected with the geometrical imperfections of the specimen, some dynamic 

disturbance or possibly with unsymmetrical deformations that are not considered in the 

analysis. 

 

Dym (1973) in his analysis has shown that the unsymmetrical buckling mode is not 

possible for the problem of the arch loaded with a concentrated load at the center. Thus 

the third reasoning can be neglected however still the possibility of geometrical 

imperfection in the arch or a dynamic disturbance may cause the load predicted by the 

experimental result to be lower than that predicted by FEA. Thus the presence of a 

disturbance in the experimental setup can trigger the jump to the post buckling 
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equilibrium state without recording the snap through or the upper buckling loading in the 

experiment. 

 

 

 

 

 

Figure 3.14: Typical load deflection curve for systems that exhibit snap buckling 

 

 

The buckling load predicted by the FEA simulations is significantly higher than those 

obtained by experimental method. This can be attributed to the fact that during the 

experiments it was observed that the failure of the specimen occurred due to sudden 

fracture of the foam. This explains a sudden drop in the load and a sharp change in trend 

in the load deflection curve. Corona (2006) has stated that foams with more ductility 
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than Rohacell 71 but with similar stiffness would have been able to carry even higher 

loads before buckling. The FEA model doesn’t account for the foam failure the 

discrepancy in the stiffness of the 10 degree model is more prominent because of the 

cracking of the foam near the clamped end very early during the experiment. This is 

quite evident from the experimental load deflection curve as the slope of this curve 

changes radically after a small deflection. 
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4. ANALYTICAL SOLUTION 

Analytical models of a problem are one of the tools to obtain the solution. Analytical 

models have an advantage that they provide a deep insight into the behavior of the 

elements involved. It provides a clear picture of the interdependence of various 

parameters and helps in correlating the behavior with specific material and geometric 

properties. Thus a good model can provide a reasonable solution, good understanding of 

the response and further help in establishing design guidelines for the problem under 

consideration. However creating such models requires a thorough understanding of the 

problem and the solutions can be very complex. Formulating an analytical model 

requires that some assumptions be made to simplify the problem, and the accuracy of the 

solution depends on the validity of these assumptions. While formulating a problem 

various methodologies of analysis can be adopted. For stability analysis Gambhir (2004) 

has classified the approaches into two categories:  

 

1) Equilibrium approach:  

In this approach the equilibrium configuration of the system is considered. The objective 

is to predict the values of the loads for which a perfect system admits additional close 

equilibrium states referred as modes. Modes are equilibrium states with different 

deformation patterns (Gambhir, 2004). The problem is formulated by equating the 

destabilizing forces with the restoring forces and the destabilizing moments with the 

restoring moments. This method is generally applied for simple beam problems. Here 
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the total deflection is expressed as a sum of partial deflections – deflection due to 

bending and deflections due to shear (
b s

w w w= + ). This necessitates the application of 

the compatibility conditions at the interface of the two layers. Appendix C illustrates the 

use of this approach for a simply supported column buckling. For more complicated 

problems the energy method is applied. 

 

2) Energy approach: 

The energy approach is based on the principle of minimum potential energy which states 

that a conservative system is in a configuration of stable equilibrium, if and only if, the 

value of potential energy s relative minimum. A conservative system is one in which the 

virtual work vanishes for a virtual displacement that carries the system around any 

closed path. A conservative system is in equilibrium when the energy stored is equal to 

the work done by external loads (Gambhir, 2004). The critical load is predicted using 

this criterion.  

 

Another approach similar to the energy method is the virtual work principle.  The 

theorem states that “If the displacements corresponding to the exact solution to the 

problem, with the stresses satisfying the equations of equilibrium, is perturbed by adding 

arbitrary virtual displacements, then the work done by the external forces along these 

virtual displacements equals the work done by the stresses along the corresponding 

virtual strains” or 
e i

W Wδ δ= , where W  represents the work done. The equilibrium 
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conditions can be established from this relation. Solving these governing equilibrium 

equation leads to the desired results. 

4.1 The energy analysis of arch buckling 

In this research the energy method will be applied to the stability analysis of the arch. 

The energy analysis is a very effective tool for complex problems. Figure 4.1 shows the 

geometry of the bi-layered arch. The radial direction is along the r  axis, tangential along 

s   axis and the width of the arch is along a  axis. 

 

 

 

 

 

Figure 4.1: Geometrical parameters of the arch 
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The energy analysis model is based on the following approximations made to simplify 

the problem: 

1) The faces are treated as thin elastic panels that follow Bernoulli assumptions. 

2) The foam of thickness c is fully bonded with the faces.  

3) The foam is considered to be a 2-D elastic medium with resistance to shear and 

radial stresses. In-plane (circumferential) stress in the foam is neglected. The 

explanation for this is as follows. Modern sandwich structures are made of very 

stiff faces (metallic or composite materials) and low strength honeycomb or foam 

cores. In this case of the foam is isotropic, the modulus of elasticity of the foam 

is three orders smaller than the modulus of the faces, while the thickness of the 

foam is about one order thicker than thickness of the faces. This justifies neglect 

of the flexural rigidity of the foam with respect to those of the faces, which, in 

other words, means disregard of the in-plane rigidity of the foam (Plantema, 

1966).  

4) The arch is shallow i.e. the initial mid-surface slope and curvature are small 

5) The materials of foam and faces are isotropic. 

6) All initial deflections in the pre-buckling state are small. 

7) Displacement, strains and stresses in the direction perpendicular to the panel ( a  

direction) are neglected 

8) The kinematic relations of the foam are those of small deformations and 

therefore they are linear. Note that no a priori assumptions on the deformation 
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fields through the thickness of the foam are made. (Bozhevolnaya and  Frostig, 

2001) 

 

The face sheet is very thin so the radial strain in the face sheet can be neglected 

( 0
rr

ε = ). For the face sheet the shear strains and hence the shear strain energy can be 

ignored ( 0)
rs

γ = because the faces are in effect solid beams of rectangular cross section 

which are shallow in proportion to their spans. Plane strain condition is assumed here 

which implies, 0
aa sa ra

ε γ γ= = = , for the foam as well as the face sheet. By symmetry 

there are no shear stresses in the ra  and the sa   plane for the foam as well as the face 

sheet ( 0)
ra sa

γ γ= = . The normal stresses in the foam in the radial and tangential 

direction are negligible because the foam is assumed to be antiplane ( 0
ss rr

ε ε= = ).  

 

An antiplane foam is an idealized foam in which the modulus of elasticity in planes 

parallel to the faces is zero but the shear modulus in planes perpendicular to the faces is 

finite. By this definition 0
c

E =  and the antiplane foam makes no contribution to the 

bending stiffness of the beam. The strain energy due to direct stress and strain in the 

radial direction can be neglected because the transverse load intensity is assumed to be 

small and partly because the foam is assumed to be stiff in the radial direction (as in a 

honeycomb) (Allen 1969).  
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4.1a Kinematic considerations 

Refer Figure 4.2 of short length ds of a bi-layered beam. It shows the section before and 

after deformation. A line in the cross section normal to the centerline is shown by 

points abcd . Without shear the line would have assumed position ' ' ' 'a b c d and remained 

normal to the deformed centerline. If the foam undergoes shear the new position will be 

" " ' "a b c d . 

 

Let v  be the  tangential displacement and w  the radial displacement. In the following 

analysis the subscripts have been avoided wherever possible. It will be clear from the 

context that any quantity such as E  and G  belong to the face and  foam respectively. 

Let us denote angle " 'd c e by ( / )dw dsλ  where λ is a coefficient which may have any 

value between +1 and /t c− . The value of λ  is material and geometry dependent. The 

value λ = +1 applies when 0
rs

γ = , in this case the arch bends as a composite beam, 

without shear deformation. The other extreme is /t cλ = −  when the foam is very 

flexible in shear. 
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Figure 4.2: General deformation of short section of the bi-layered arch 

 

Refer Figure .4.3 for the foam with negligible shear stiffness. The line ab rotates through 

an angle /dw ds to a new position ' 'a b . The point f in the mid-plane does not have any 

displacement in the tangential direction. Since ' / 2( / )dd t dw ds= the angle 'dcd is equal 

to / ( / )t c dw ds . This angle is equal to " ( / )d ce dw dsλ= in Figure 4.2 but in the opposite 

sense. This gives /t cλ = − . (Allen, 1969) 
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Figure 4.3: Deformation for foam with negligible core shear stiffness 

 

4.1b Displacements in the foam and face sheet 

The displacement ( v ) in the tangential direction of various points in the cross section 

can be found from the geometry of the deformed configuration " " ' "a b c d . The 

equations for the displacements are as follows: 

 

The tangential displacement in the foam ( " "b d ) is given as 

dw
v r

ds
λ= −                 (4.1) 

 where 
s

r R R= − , for 
2 2

c c
r− ≤ ≤  

The tangential displacement in the face ( " "a b ) is given as 
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2 2

c dw c dw
v r

ds ds
λ

 
= − − 

 
   

where h t c= + , for  
2 2

h c
r− ≤ ≤  

(1 )
2

c dw
v r

ds
λ

 
= − − + 

 
            (4.2) 

At the mid-plane of the face, 
2

c t
r

+
= − , substituting this value of r in equation (4.2) 

gives 

(1 )
2 2

c c t dw
v

ds
λ

+ 
= − − − 

 
 

1
( )

2

dw
c t

ds
λ= +         (4.3) 

The above equations have setup the displacement field in the deformed configuration. 

These will now form the basis for defining the strain field in the bi-layered cross section.  

4.1c Strains in the foam and the face sheet 

Shear strain in the foam is given by 

sr

dw dv

ds dr
γ = +             (4.4) 

Substituting  
dw

v r
ds

λ= −  from equation (4.1) in equation (4.4) for the foam,  

(1 )
sr

dw

ds
γ λ= −               (4.5) 

All other strains in the foam are neglected as explained in Section 4.1. 

Membrane strain in the face sheet is given by 
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2
1

2
ss

dv w dw

ds R ds
ε

 
= − +  

 
          (4.6) 

Gjelsvik and Bonder (1962) in their research on arch buckling have shown that the 

membrane strain has to be constant for tangential equilibrium. Bradford et al. (2002) too 

has presented a similar argument. They however were not concerned with the term 

/dv ds as the tangential displacement v at the arch centerline was zero in their case. 

Substituting for the mid-plane tangential displacement from equation (4.3) 

22

2

1 1
( )

2 2
ss

d w w dw
c t

ds R ds
ε λ

 
= + − +  

 
         (4.7) 

4.1d Strain energy of the foam and the face sheet 

The strain energy of the foam and the face sheet are to be considered individually and 

each is a function of the strain in the respective element.  

2

2
s sr

Vc

G
U dVγ= ∫               (4.8) 

2

2
m ss

Vf

E
U dVε= ∫            (4.9) 

2

2
b b

Vf

E
U dVε= ∫          (4.10) 

Substituting from (4.5) in (4.8) 

2

2(1 )
2

s

Vc

G dw
U dsdxdr

Rd
λ

θ

 
= −  

 
∫∫∫                  

 

22

2

0

(1 )

2
s

Gfc dw
U d

R d

β
λ

θ
θ

−  
=  

 
∫                    (4.11) 
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Substituting from (4.7) in (4.9) 

2
22

2

1 1
( )

2 2 2
m

Vf

E d w w dw
U c t dsdadr

ds R ds
λ

   
= + − +  

   
∫∫∫  

2
22

2 2

0

1 1
( )

2 2 2
m

Etf d w w dw
U c t d

R d R Rd

β

θ

λ θ
θ θ

=

     
= + − +           

∫     (4.12) 

2
3 2

4 2

0
24

B

Et f d w
U d

R d

β

θ
θ

 
=  

 
∫         (4.13) 

4.1e Potential energy of the applied load 

As can be seen from Figure 4.4 the centerline of the arch deflects under the effect of the 

applied load, P. 

 

 

 

Figure 4.4: Displacement of P by w 

 

 

 

As the arch deflects the change in potential energy of the load is given by 

2

|V Pw β
θ =

= −          (4.14) 
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4.1f Total energy (H) 

The total energy of the system is the sum of the strain energies and potential energy of 

the load 

m B s
H U U U V= + + +                  (4.15) 

2
2 22

2 2

0

1 1
( )

2 2 2

Etf d w w dw
H c t d

R d R Rd

β

θ

λ θ
θ θ

=

     
 = + − +          
∫ +

2
3 2

4 2

0
24

Et f d w
d

R d

β

θ
θ

 
 
 
∫  

+

22

2

0

(1 )

2

Gfc dw
d

R d

β
λ

θ
θ

−  
 
 

∫
2

|Pw β
θ =

−                 (4.16) 

 

4.2 Method of solution 

The total energy of the system has been expressed in terms of the geometric properties, 

material properties, deflections and the applied loads. There are different methods of 

solving this equation which have been methodically enlisted by Gambhir (2004). These 

are 1) The method of trial functions 2) Galerkin method 3) Finite difference method 4) 

Numerical integration. The trial function method has been adopted here, according to 

which we need to assume a function that will represent the deformed shape of the arch. 

The trial function presents an advantage that the boundary conditions are implemented 

automatically as the selected function needs to satisfy all the boundary conditions.  

4.2a Assumed solution 

The deformed shape can be approximated by using an infinite sine series as  
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1

sin
n

n

n
w a

πθ

β

∞

=

 
=  

 
∑         (4.17) 

However the objective of the present research work is to evaluate the buckling load in 

the first mode. This simplifies the problem because a two term solution can be used to 

represent the deformed shape of the first buckling mode. A simple two term solution can 

be represented as: 

1 1 2 2( / ) ( / )w a f a fθ β θ β= +                                                                            (4.18) 

1f  and 2f  are functions of ( / )θ β  and 1f  should be symmetric and 2f should be anti-

symmetric in the span of the arch (Gjelsvik and Bodner, 1962). For the pinned ended 

boundary conditions we will select the assumed solution to be 

1 2

2
sin sinw a a

πθ πθ

β β

   
= +   

   
                  (4.19) 

The boundary conditions for a pin ended arch are given by 

0w =  at 0θ = and θ β=                    (4.20) 

" 0w =  at 0θ = and θ β=                    (4.21) 

It can be easily shown that the equation (4.19) satisfies these boundary conditions.  

Figure (4.5) is a plot of the function (4.22) which is given by equation: 

2
0.2sin 0.05sin

30 30

x x
w

π π   
= +   

   
 for 0 30x≤ ≤ .      (4.22) 

The assumed function has to represent the deformed shape and Figure (4.5) demonstrates 

that the functions of the form (4.17) represent the anticipated deflected shape of the arch 

under central concentrated loading.  
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Figure 4.5: Plot of function (4.22)  

 

 

Next step is to substitute the assumed solution satisfying all boundary conditions in the 

energy equations and minimizing the equation with respect to its variables. 

4.2b Solution  

Substituting for w  from equation (4.19) in equation (4.16) and due to the integration 

results given by equation (4.23), 

2

0

sin
2

n
d

β
πθ β

θ
β

 
= 

 
∫  

2

0

cos
2

n
d

β
πθ β

θ
β

 
= 

 
∫  

0

2
sin d

β
πθ β

θ
β π

 
= 

 
∫          (4.23) 

0

2
sin sin 0d

β
πθ πθ

θ
β β

   
=   

   
∫  
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0

2
cos cos 0d

β
πθ πθ

θ
β β

   
=   

   
∫          

we can rewrite the total energy ( H ) as  

2
2 2

2 2 2
2 2

2 2
1 1 1

1 1 2 1
( )

2 2 2 2 2
n n n

n n n

Etf n n
H c t a a a

R R n R

π β β π β
λ

β π β= = =

         
= + − − +                   

∑ ∑ ∑ +

43 2
2

4
124 2

n

n

Et f n
a

R

π β

β=

  
     
∑ +

22 2
2

1

1

2 2
n

n

Gfc n
a

R

λ π β

β=

  − 
         
∑

2

1

n

n

P a
=

− ∑     (4.24) 

 

For symmetric snap through buckling mode the anti-symmetric term has to be zero to 

predict a symmetrically deformed shape. This simplifies the above equation. Substituting 

2 0a =  leads to 

4 2 4 4 2 2 3 4 3 22 2
2 1 1 1 1 1
14 2 2 4 4 3 2 4 4 3 2

4 ( ) ( )( )

2 16 2 16 8

a a c t a c t a aEtf c t
H a

R R R R R R

π λ π λ π πβ λ β π

β π β π β β π β

   + ++ 
= + + + − −  

   
43 2

1

424 2

Et fa

R

β π

β

 
 
 

+ 

222

1 1

2 2

Gfca

R

λ π β

β

 − 
   
   

1Pa−       (4.25) 

 

The total energy of the system given by equation (4.24) is a function of the unknown 

amplitude λ  and 1a . For equilibrium it is necessary that the energy should be stationary 

with respect to λ  and 1a . Therefore, 

0
H

λ

∂
=

∂
                     (4.26) 

1

0
H

a

∂
=

∂
                     (4.27) 
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Equation (4.26) gives the value of λ  as  

 

2

2 2

2

2 2

1

2

t G

R R Et

c G

R Et

π

β
λ

π

β

− +

=

+

        (4.28) 

Implementing the differentiation and equating to zero yields load P  we get 

4 3 4 2 2 4 2 22 2

1 1 1 1 1
14 2 2 4 4 3 2 4 4 3 2

8 2( ) 3( ) 3( )

2 8 4 8

a a c t a c t a aEtf c t
P a

R R R R R R

π λ π λ π πβ λ π

β π β π β β π β

   + ++ 
= + + + − −  

   

 

 +

43

1

424

Et fa

R

β π

β

 
 
 

+ 

22

1 1

2

Gfc a

R

β λ π

β

 − 
   
   

      (4.29) 

 

Equation (4.29) provides a good understanding of the dependence of the critical buckling 

load on various arch parameters. This model can be further used to conduct a parametric 

study of the arch behavior under different parameters. 

4.3 Numerical example 

Here a shallow bi-layered arch consisting of Rohacell 71 foam and aluminum faces is 

considered. The problem is the same as that illustrated in the experimental study in 

Section 3. The material properties and geometric properties are defined in Tables 4.1 and 

4.2 respectively. 

Table 4-1: Material properties 

( )
Al

E psi  
Al

υ  ( )
Rh

E psi  
Rh

υ  

710  0.3 13100 0.35 
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Table 4-2: Geometric properties 

R (mm) / 2β  (° ) t (mm) c (mm) 

511.81 10 1.01 12.70 

342.90 15 1.01 12.70 

 

It should be noted that there is a difference in boundary conditions for the problem in 

section (3.3a) and this section. Pinned boundary conditions are used in this section where 

as the experiment had end clamped boundary conditions. Figure 4.6 shows the 

comparison of the load deflection curves obtained from the analytical and the numerical 

technique for the same model.  
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Figure 4.6: Comparison of analytical and FEA load deflection curve 
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It is observed that the curve from the analytical model shows a trend similar to that of 

the FEA model. The stiffness predicted by the analytical model is lower than that given 

by the FEA. The critical load predicted is 12.3 % lower than the FEA prediction. 

4.4 Discussion 

The analysis done here gives a conservative prediction of the critical buckling load since 

a non-linear term is used in the strain equation. Buckling loads traditionally obtained 

from classical buckling theory have given an overestimation of the critical load 

(Bradford, Uy, Pi, 2002).  

 

From the comparison of the results it is observed that the analytical solution predicts a 

load that is 12% lower than that predicted by the FEA. This discrepancy can be partly 

attributed to the formulation used by the two methodologies.  The FEA uses the Riks 

method which assumes proportional loading whereas the analytical solution uses the 

energy method formulation. This method calculates the critical load from the energy 

criterion, which predicts a critical load value called the energy load. This load is a 

conservative estimate of the buckling load because for snap buckling the energy load is a 

lower bound (Gjelsvik and Bodner, 1962). 

 

Other factors contributing to the discrepancy between the analytical and FEA results are 

the assumptions made in the analytical model. The assumption of anti-plane foam in the 

analytical model sets the modulus of elasticity of the core to zero ( 0
c

E = ). However the 
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FEA model does not ignore the effect of
c

E . Ignoring 
c

E  is one of the reasons that lead 

to a lower load prediction by the analytical model. To verify this fact the numerical 

simulations were done by reducing 
c

E  and selecting a Poisson’s ratio such that the shear 

modulus remains the same. The results from this simulation predicted a critical buckling 

load that was within 7% of the analytical load. Figure 4.7 shows the results for the 15 

degree arch with the material properties adjusted to simulate the antiplane foam. 
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Figure 4.7:  Load deflection curves for 15 degree bi-layered arch 

 

The trial function assumed for solving the energy equation is in the simplest form – a 

two term solution and eventually reduced to a single term for the symmetric problem. 

This was done to keep the final solution simple. However to approximate the deformed 
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shape of the arch very accurately large numbers of terms are needed to be considered, 

ideally an infinite term solution is expected to give the closest approximation. 
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5. IMPERFECTION ANALYSIS AND PARAMETRIC STUDY 

The behavior of shallow bi-layered arch under a central concentrated load was 

investigated in Sections 3 and 4. The main objective of this study was to determine the 

critical buckling load in symmetric snap through mode. It will be of great significance to 

study the effect of different parameters involved on the results obtained from the 

numerical and analytical models. Results from the numerical model (Section 3) when 

compared with the experimental data showed a discrepancy. One of the reasons for this, 

identified previously was the foam failure during the experimental investigation. Other 

factors to be considered are the imperfections in the experimental specimen. In the 

following study, the numerical model will be applied to analyze the effects of complex 

factors like geometrical imperfections, material non-homogeneity on the critical 

buckling load.  

5.1 Imperfection analysis 

The analytical model is based on the assumptions of homogeneous isotropic materials 

and perfect geometry. Thus the model cannot be employed for a more complex analysis 

like study of material non-homogeneity, manufacturing defects in the dimensions of the 

arch or imperfectly bonded  layers of the core and face sheets. The FEA model can 

handle these kinds of complexities and can be effectively employed for this purpose. The 

objective of the following investigation is to study the effects of various possible 

imperfections on the load carrying capacity of the bi-layered arch. 
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5.1a Material imperfections 

Material imperfections are caused due to defective manufacturing processes or due to 

lack of care in specimen preparation. Examples of imperfections are air or solid 

inclusions, non-uniform material density or imperfect bonding. As a result of the 

imperfection the material properties do not remain homogeneous through out the section. 

This hampers the materials ability to support the designated load. The effect is more 

pronounced in stability analysis as it can lead to an unwanted perturbation. In this 

analysis the effect of the material non-homogeneity on the critical load of the bi-layered 

arches is investigated.  

 

Case I: Material non-homogeneity at an arbitrary location 

Here the material non-homogeneity is defined at a location close to the center of the half 

arch. This location was arbitrarily chosen. The elements in this section were assigned a 

Modulus of elasticity ( E ) that was 10% less than the original material property. Figure 

5.1 shows the location of the imperfection for this case. 

 

 

 

 

Figure 5.1: Material imperfection at the center of the half arch 
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Case II: Material non-homogeneity at maximum strain location in the foam 

The maximum strain in the foam was found to be at the point exactly below the point of 

loading i.e. the center of the arch and at the point in the section farthest away from the 

neutral axis. In this case the material imperfection was introduced at this location. Figure 

5.2 shows the location of the imperfection for this case. 

 

 

 

 

 

Figure 5.2: Material imperfection at the maximum strain location 

 

 

 

It should be noted that the volume of the imperfection and the Modulus of elasticity (E) 

are the same for both cases. The arch used in this analysis is the same as described by 

Corona (2006). The arch properties have been defined previously in Section 3. 

 

5.1b Material imperfections results 

Figure 5.3 shows the load deflection curve and the critical load for the two cases of 

imperfections and the ideal curve when the material is without any defects. The 
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comparison in Table 5.1 shows that the location of the imperfection has a huge bearing 

on the effect it has on the load carrying capacity of the structure. The load carrying 

capacity deteriorates immensely if the imperfections are located at the point of 

maximum strain. This draws attention to the fact that care must be taken while 

manufacturing of bi-layered materials to obtain a good performance. 

 

Table 5-1: Comparison of critical buckling load 

Case Critical Buckling load (N) Error 

Ideal 300.38 -- 

Case I 279.15 -7.06 % 

Case II 178.39 -40.66 % 
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Figure 5.3: Load deflection curve for different cases 
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5.1c Geometric imperfections 

Geometric imperfections are induced when the dimensions of the structure differ from 

the original design. These include certain straight segments or multiple radii instead of a 

singly curved structure. In this analysis a geometric imperfection has been introduced in 

the foam. The imperfection is shown in Figure 5.4. Figure 5.5 shows the load deflection 

curve for the arch with and without the imperfection. The results have been compared in 

Table 5.2. 

 

 

 

 

 

Figure 5.4: Induced geometric imperfection in foam 

 

 

Table 5-2: Comparison 

Case Critical Buckling load (N) Error 

Ideal 300.38 -- 

With geometric imperfection 248.79 -17.19 % 
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Figure 5.5: Load deflection curve for different cases 

 

 

 

These results from the investigation of geometric and material imperfections show that 

these can have significant effect on the load carrying capacity of the structures. It has 

been shown that the presence of defects in the foam can be detrimental as the critical 

load comes down by a massive 40 %. These results also explain some of the 

discrepancies between the experimental, and the analytical and numerical results, as 

these effects can be seen only in the experimental investigation. This also emphasizes on 

the importance of good specimen preparation techniques in experimental analysis. 
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5.2 Parametric study 

The objective of the following study is to evaluate the variation of the critical buckling 

load with changing arch parameters using the analytical model. MATLAB codes were 

used for repeated calculation of the critical buckling load (P) from equation (4.20).  In 

each code the parameter of interest was varied keeping other parameters constant. This 

study was conducted for more than one set of given conditions to check for the 

consistency of the trend. 

5.2a Effect of foam thickness to face sheet thickness ratio, (c/t) 

In this study keeping all the geometric and material properties same, the ratio of 

thickness of the core to the thickness of the face sheet (c/t) is varied to study the change 

in critical load with the changing ratio. Fig 5.6 shows the plot of critical load versus the 

c/t ratio for two different cases. On expected lines the, the critical buckling load 

increases with the increase in this ratio. This increase in critical load however is less 

prominent at lower ratios. The thickness of the core starts assuming a greater importance 

at higher thicknesses. 
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Figure 5.6: Variation of critical load with c/t ratio 

 

 

5.2b Effect of radius, (R) 

In this study keeping all the geometric and material properties the radius of the arch (R) 

is varied to study the change in critical load with the changing radius. Figure 5.7 shows 

the variation of critical load with the radius of the arch. Three different cases of included 

angle are shown in the figure. The trend shows that for a given included angle increase 

in the arch radius will reduce the load carrying capacity of the arch. This can be 

attributed to the fact that the shallow arch will approximate a flat panel as the radius 

tends towards infinity and the reaction force to support the lateral loads proportionally 

decreases. 
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Figure 5.7: Variation of critical load with R 

 

 

 

5.2c Effect of included angle, ( β ) 

In this study keeping all the geometric and material properties the included angle of the 

arch ( β ) is varied to study the change in critical load with the changing angle. Figure 

5.8 represents the trend of critical load with increasing subtended angle for three 

different radii. The formulation used here is valid only for shallow arches and hence this 

study considers included angles only up to 90 degrees which fall into our definition of 

shallow arches. The trend shows that for a given radius the load carrying capacity 

increase almost linearly with the included angle. 
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Figure 5.8: Variation of critical load with included angle 

 

 

 

5.2d Constant spans 

In this study the span (S) and the material properties are maintained constant and the 

included angle ( β ) and the radius of the arch is varied accordingly to study the change 

in critical load. Figure 5.9 shows the trend of critical load when the span of the arch is 

maintained constant against the included angle. As seen from the figure the plots of load 

versus the included angle for a given span tops out at an included angle of 90 degrees 

(1.57 radians) for a constant span. 
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Figure 5.9: Variation of critical load with included angle and constant spans 

 

 

 

5.2e Load deflection response 

 

Figure 5.10: Different load deflection response 
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Figure 5.10 shows the load deflection responses for arches with different degree of 

shallowness. For arches with very small included angle it is observed that snap buckling 

doesn’t occur because the arch extension takes place immediately after a very small 

deflection. 

5.2f Weight reduction study 

In the following analysis the weight reduction potential of bi-layered structures is 

demonstrated by replacing a single layer arch structure by an equivalent bi-layered 

structure options. The problem under study is the problem analyzed by Corona (2006) 

the results for which have been shown in section (3.1c). Bi-layered arch structures with 

different c/t ratio and having the same load carrying capacity as the single layered were 

designed. Figure 5.11 shows the plot of weight of the structures for different ratios. The 

terms in the bracket are the face sheet thickness ( t ) and the percentage reduction in 

weight respectively. The percentage value is with respect to the weight of the single later 

arch. 
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Figure 5.11: Weight vs. (c/t) for different design options 

 

 

The parametric study conducted here provides insight into the arch behavior when 

different parameters are changed. It can be applied to establish guidelines for designing 

shallow bi-layered arches. 
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6. CONCLUSION 

This research presented work on stability analysis on bi-layered materials. The objective 

was to investigate the buckling of shallow bi-layered arch under a central concentrated 

load and find an approximation to the critical buckling load. A numerical technique and 

an analytical technique were used to solve the problem. 

 

The numerical technique was implemented using the ABAQUS FEA package. The FEA 

model was developed initially for a single layer arch and then a bi-layered arch. 

Numerous simulations were run to verify the correctness of the model  

 

Energy method analysis was implemented to determine the critical buckling load 

analytically. The equations were solved using a trial function method. The analytical 

model was developed with small deflection theory and thus it is expected to provide a 

good approximation of the pre-buckling state and the critical buckling load. Though the 

initial objective was to study the pre-buckling behavior determination of the point of loss 

of stability the trend of the solution beyond the critical load was satisfactory. From the 

load deflection curves it is observed that when the load deflection plot is extended 

beyond the critical point the trend of this curve is of a typical symmetric snap through 

buckling curve.  The constant increment of the load in the post buckling zone is on 

expected lines because as the arch deflects beyond the point of the line joining the two 

end points i.e. as it become concave. The load rises as it is no longer in compression and 
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the extension of the arch takes place. The accuracy of the points of inflection in the post 

buckling state as predicted by this model can be a point of further investigation. 

 

The results from the analytical solution and the FEA model were in good agreement. The 

difference was observed to be around 12 %. The results predicted from the FEA were 

higher than that by the analytical model.  The models were further verified by comparing 

the results with the experimental data available from Corona (2006). The results for the 

single layer arch buckling under a similar loading and boundary conditions were 

thoroughly investigated and compared with the experimental data. These results were in 

very close agreement. 

 

Parametric study was conducted to investigate the effects of various arch parameters on 

the behavior of the arch. These can be used as guidelines for the design of the shallow 

bi-layered arches. The effect of geometric and material imperfection on the performance 

of the arch was analyzed. The results clearly showed that these can have significant 

detrimental effect on the structural performance.  

 

In practical applications the real life structures are not perfect. Imperfection can be 

caused because of different reasons like inhomogeneous materials, geometric 

imperfections or imperfect bonding. Such imperfections can affect the stability of the 

structure and lead to premature collapse at loads significantly lower than the predicted 

load. The analytical model presented in this analysis is incapable of taking into account 
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the structural or material imperfections and predicting the consequential failure points.  

However the numerical model was used to investigate the effects of imperfections. 

6.1 Future potential  

The model developed here is for a simple bi-layered structure arch in which the material 

properties are isotropic and the arch is singly curved. However, this energy model for the 

arch can form a base for an analysis of a more complex bi-layered structure – structures 

having anisotropic properties. This can be done by adding more strain energy terms to 

the energy equation and using the relevant material properties for each term. The model 

can be further updated to analyze the buckling behavior of a sandwich arch under similar 

loading and boundary conditions. Additional strain energy due to the presence of the 

second face sheet needs to be considered for this analysis. Thus the model built herein is 

quite flexible and has further scope for enhancement.  

 

The solution was obtained by using a simple two term solution. The accuracy of the 

solution can be improved by using more terms for the solution. This will require an 

implementation of a numerical technique using the Newton-Raphson method to solve the 

set of resulting non-linear simultaneous equations. 

 

Very little data is available about stability analysis of a bi-layered arch and the buckling 

loads. This has left a void about the actual physical behavior of this structure under the 

given loading and boundary conditions. This presents an opportunity for conducting 
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experiments on bi-layered arch buckling. The experimental data can be used to validate 

the analytic and the FEA techniques. 

 

The numerical model can be made more complex by modeling the adhesive layer 

between the foam and the face sheet. The existing model can be used for this purpose. 

This model will be a useful tool when comparing the results with experimental data as it 

can account for practical phenomenon like imperfectly bonded foam and face sheet or 

adhesive failure.  

 

.  
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APPENDIX A 

DETAILS OF THE FEA MODEL 

A finite element model can predict good results if it can replicate the actual physical 

model as close as possible. This requires setting up various aspects of the model. The 

various aspects of the finite element model which need to be established are as follows, 

a) Boundary conditions 

b) Loading conditions  

c) Element type  

d) Riks method input parameters 

 

FEA Model 

 

 

Figure A.1: Schematic 

 

Schematically the problem configuration can be represented as shown in Figure A.1. The 

shallow circular arch is pinned at the two ends and loaded at the point of symmetry. The 

boundary conditions are also symmetric, i.e. both ends have similar (pinned) boundary 

condition. Exploiting this symmetry of the structure only half of the arch can be 
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modeled. This would not have been possible had one of the boundary conditions been 

pinned and other clamped. Figure A.2 shows the schematic half model of the arch.  

 

 

Figure A.2: Schematic of half arch exploiting the symmetry of the model 

When only the half arch is modeled the physical boundary conditions cannot be applied 

directly. The modified boundary conditions are explained later in the boundary 

conditions section. One of the fundamental assumptions in solving this problem is the 

plane strain condition (Refer Section 6). Thus we can take advantage of the plane strain 

condition and model the arch as a 2 dimensional entity. The results will vary linearly 

with the depth of the arch in the x direction. The symmetry of the model and plane strain 

condition adds two simplifications to the model. This will help keep the number of 

elements required to model the geometry to bare minimum and make it computationally 

efficient. 

 

Boundary conditions 

For the clamped ends the 3 degrees of freedom of displacements and the 3 degrees of 

freedom of rotation are constrained. This can be implemented by using the 

“ENCASTRE” boundary condition from ABAQUS.  
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The required inputs for this keyword are  

� Node number or Node set of boundary nodes 

However since only the half arch is being modeled here the clamped boundary condition 

will appear only on one of the end. The boundary condition at the loaded end is different 

from clamped to implement the symmetry model. As seen in Figure 3.4 the point of 

symmetry under the load P/2 is free to move in the radial direction. However its 

displacement in the tangential direction has to be constrained. The cross section has to be 

constrained to rotate about the x direction. This can be explained from the fact that the 

presence of the other half structure of the arch would have imposed these inherent 

constraints on the movement of this end of the arch. These end conditions can be 

implemented by imposing the “XSYMM” boundary condition from ABAQUS. Thus 

schematically the physical model of the half arch would be as shown in Figure A.3. 

 

 

 

 

Figure A.3: Schematic of the symmetrical model 
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Pinned End boundary condition 

One major difference between the clamped end and pinned end boundary condition is 

that the cross section is free to rotate in the later case where as in the former it is 

constrained to rotate. The pinned end condition is implemented by constraining the 3 

degrees of freedom of displacement and the 2 degrees of freedom of rotation about the y 

and the z axes. 

 

Loading conditions 

The arch is loaded by a concentrated load at the center. A concentrated loading condition 

has been established by using the “CLOAD” keyword from ABAQUS. The required 

input for this keyword are  

� The node number of the point of action of the load 

� Degree of freedom 

� Load magnitude 

 

Element type 

Plane-strain elements CPE4, CPE6 and CPE 8 available in ABAQUS give rise to results 

very close to those generated by otherwise adopting 3-D continuum elements. Since 

plane-strain elements are less computationally expensive than 3-D elements, they were 

utilized here. 
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Nonlinear quasi-static analysis 

The stability analysis was done using the modified Riks algorithm. The analysis step 

required to implement this method is “STATIC RIKS”. The input parameters required to 

implement this step are 

1. Initial increment in arc length along the static equilibrium path in scaled load-

displacement space, 
in

l∆ . If this entry is zero or is not specified, a default value 

that is equal to the total arc length of the step is assumed. 

2. Total arc length scale factor associated with this step,
period

l . If this entry is zero 

or is not specified, a default value of 1.0 is assumed. 

3. Minimum arc length increment, minl∆ . If this entry is zero, a default value of the 

smaller of the suggested initial arc length or 10
–5

 times the total arc length is 

assumed. 

4. Maximum arc length increment, maxl∆ . If this value is not specified, no upper 

limit is imposed. 

5. Maximum value of the load proportionality factor, 
end

λ . This value is used to 

terminate the step when the load exceeds a certain magnitude. 

6. Node number at which the finishing displacement value is being monitored. 

7. Degree of freedom being monitored. 

8. Value of the total displacement (or rotation) at the node and degree of freedom 

that, if crossed during an increment, ends the step at the current increment. 



 95 

APPENDIX B 

MESH SENSITIVITY ANALYSIS 

Mesh sensitivity analysis is presented in the following study to determine the optimum 

element density. 

Importance of element size 

Another parameter of the finite element model which hasn’t been dealt with till now is 

the element size. The results from a finite element analysis depend on the number of 

factors. One of the parameter that can affect the results significantly is the mesh. In the 

finite element method the domain is represented as a collection of a finite number of sub 

domains. This is the process of discretization of the domain into smaller units called 

elements. The collection of these elements is what we refer to as the finite element mesh. 

In the mesh the elements are connected to one another at the nodes. The results vary 

drastically on the type of element. In fact choosing the right kind of elements for a given 

problem is of fundamental importance for the success of any finite element model. 

However once the right kind of element is chosen for the given problem the importance 

of the mesh density takes over. The element size or the mesh density can affect the result 

in different ways. The reason for this can be attributed to the manner in which the 

process of finite element problem solution works. Discretization of the domain into as 

many sub domains as possible provides the part solutions at more number of locations 

and hence the whole solution will approximate the real model more closely. Thus an 

infinitely divided domain will give the closest answer. However in practical applications 
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it is not possible to divide the domain into infinite elements and the best possible option 

is to have a large number of elements to get a good answer. But there has to be a limit set 

on this number and how small the element should be or on the element density value. 

This is because for practical problems in stress analysis the solution is complex and the 

computational time is high. The computational time and the memory required to store 

the generated data increases directly with the number of element.  

 

Mesh sensitivity analysis 

The objective of the following study is to gauge the effect of mesh density or the 

element size on the results obtained for the buckling problem of bi-layered arch. As 

stated in the discussion above the results are expected to improve with the fineness of the 

mesh, but the point of interest is optimization of the resources without compromising the 

quality if the results.  

A model of a shallow bi-layered arch is made with Aluminum for the face sheet and 

Rohacell as the foam and with the following specifications: 

 

Table B.1: Geometry 

R (mm) β  (° ) t (mm) C (mm) 

100 60 1 8 
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Table B.2: Material properties 

 2( / )
Al

E N mm   Al
υ  2( / )

Rh
E N mm  Rh

υ  

73001 0.3 1700 0.35 

 

Boundary condition: Fixed end boundary condition is applied on both the ends of the 

arch 

 

Procedure / Methodology 

A number of simulations were run using the same model. The mesh density was varied 

keeping rest of the simulation parameters same. Starting with a coarse mesh of element 

size 5 the element size was reduced with each subsequent simulation. Simulation runs 

were taken for element sizes of 5, 2.5, 1.5, 1, ½ and 1/3. For the first 4 cases only the 

foam was modeled with multiple layers of elements, whereas the face sheet was 

represented by a single layer of elements. From the fifth simulation ie element size ½ 

onwards even the face sheet was represented by multiple element layers. Effort was 

made to keep the elements as close to the perfect square so that the mesh remains 

uniform. This was done using the element size option instead of the element density 

option in Hypermesh.  

 

The result of interest in this study was the buckling load of the sandwich arch. The 

reaction force at the supports is plotted against the displacement of point of loading. 

Figure 7B.1 shows the load deflection curve for the six different cases mentioned above. 
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The first maximum of each curve represents the critical buckling load for that particular 

case. It is observed that for a coarse mesh ie element size 5 shown by Series 1 the load 

values is quite high as compared to successive smaller element sizes. The buckling load 

decreases with each simulation as the mesh density is increased progressively. This 

observation is on expected lines because we anticipate the structure stiffness to reduce 

with smaller element sizes or with the mesh getting finer.  

 

The change in the result is significant for the first three series. However after this the 

solution starts converging and the percentage change in the value of load is not 

significant. As seen from the Table 7B.3 there is only 1 % change in the value between 

element size 1/3 and ¼. The computation time for mesh as in series 7 is significantly 

higher and the memory allocation for this task is also enormous. This makes it apparent 

that the mesh configuration reaches its optimum state at element size 1/3 and there is no 

significant gain in terms of the quality of the result by refining the mesh beyond this 

point. As explained earlier this mesh configuration with element size 1/3 includes the 

core modeled as multiple element layers of element size 1 and the face sheet modeled by 

using element size 1/3. Thus from these observation it is incurred that the element size of 

‘1’ will provide sufficient accuracy and it will be used for further analysis. 
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Figure B.1: Load deflection curves for different mesh sizes 

 

Table B.3: Comparison of critical loads 

Series Element Critical load (N) % 

1 5 10587 -- 

2 2.5 4590 56.64 

3 1.5 3274 28.65 

4 1 2779 15.12 

5 1/2 3019 -8.61 

6 1/3 3110 -3.01 

7 1/4 3141 -1.00 
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APPENDIX C 

EQUILIBRIUM APPROACH 

The problem of in-plane buckling of a sandwich column has been used here to 

demonstrate the application of the equilibrium approach to solve the stability problems. 

 

 

Figure C.1: Simply supported column 

Figure C.1 shows a simply supported columns under axial compression and the 

equilibrium diagram of a small section of length dx in the column the equation of 

equilibrium can be written as follows 

     M Pw= −           (C.1) 

     'Q Pw=           (C.2) 

Substituting these values in the governing equation gives 

    2" 0w a w+ =          (C.3) 
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Where 

     2

(1 / )

P
a

B P S
=

−
         (C.4) 

The solution of this equation is given by 

     1 2sin cosw C ax C ax= +         (C.5) 

The boundary conditions are that 0w = at 0 &x x L= = . This gives 2 0C = and the 

stability criteria as sin 0aL = . The buckling load corresponds to values /a n Lπ= . 

Critical buckling load is given by 
2 2 2

2 2 2

/

1 /

n B L
P

n B L S

π

π
=

+
 

This example demonstrated the use of equilibrium approach to solve buckling problems. 
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APPENDIX D 

ABAQUS PROGRAMS 

The ABAQUS programs used in the numerical analysis are presented in this section. The 

node and element definition have been omitted from the original programs. 

Program I: The following is the program for a single layer arch buckling problem 

described in section 3.1 for the arch with thickness 12.7 mm 

=============================================================== 

** ABAQUS Input Deck Generated by HyperMesh Version  : 6.0 

** Generated using HyperMesh-Abaqus Template Version : 6.0 

**   Template:  ABAQUS/STANDARD 2D 

*NODE 

         1,   0.0  ,  0.0             

         2,   -32.153  ,  120.0           

         3,   0.0            ,  120.0           

         ……. 

*ELEMENT,TYPE=CPE4,ELSET=al 

         1,         8,       313,       314,         7 

         2,         7,       314,         5,         6 

         3,       313,       306,       307,       314 

         …………… 

*solid section,elset=al, material=aluminum 
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1 

*Nset, nset=loadingnode 

6 

*nset,nset=symm1 

4,5,6 

*Nset, nset=fix1 

157 

*Material, name=aluminum 

*Elastic 

420000, 0.35 

*Boundary 

symm1, XSYMM 

*Boundary 

fix1, pinned 

*Step,nlgeom 

*Static, riks 

0.01,0.2,,,,loadingnode,2,-5 

*Cload 

loadingnode, 2, -10.0 

*Restart, write, frequency=1 

*Output, field, variable=PRESELECT 

*Output, history, variable=PRESELECT 
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*Output, history 

*Node Output, nset=fix1 

RF2 

*Node Output, nset=loadingnode 

U2 

*End Step 

=============================================================== 

  

Problem 2: The following is the program for a bi-layered layer arch buckling problem 

described in section 3.3 for the arch with 15 degree included angle.  

 

** ABAQUS Input Deck Generated by HyperMesh Version  : 7.0 

** Generated using HyperMesh-Abaqus Template Version : 7.0 

**   Template:  ABAQUS/STANDARD 2D 

*NODE 

** Node definitions 

*ELEMENT,TYPE=CPE4,ELSET=al 

** Face sheet element definition 

*ELEMENT,TYPE=CPE4,ELSET=fm 

**Foam element definition 

*solid section,elset=al, material=aluminum 

0.5 
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*solid section,elset=fm, material=foam 

0.5 

*Nset, nset=loadingnode 

310 

*nset,nset=symm1 

310,59,58,57,56,55,54 

*Nset, nset=fix1 

360,109,110,111,112,113,4 

*elset, elset=symmel 

22 

*Material, name=aluminum 

*Elastic 

10000000, 0.35 

*Material, name=foam 

*Elastic 

13100,0.3 

*Boundary 

symm1, XSYMM 

*Boundary 

fix1, ENCASTRE 

*Step,nlgeom 

*Static, riks 
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0.01,0.2,,,,loadingnode,2,-0.7 

*Cload 

loadingnode, 2, -10.0 

*Restart, write, frequency=1 

*Output, field, variable=PRESELECT 

*Output, history, variable=PRESELECT 

*Output, history 

*Node Output, nset=fix1 

RF2 

*Node Output, nset=loadingnode 

U2 

*Node Output, nset=symm1 

RF1 

*End Step 
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