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ABSTRACT 
 

Effect of Composite Microstructure on Electrical and Mechanical Properties of 

Poly(vinyl acetate) Composites with Carbon Black and Clay. (August 2007) 

Sethu M. Miriyala, B.E., Andhra University, India 

Chair of Advisory Committee:  Dr. Jaime Grunlan 
 
 

 The electrical and mechanical behavior of carbon black filled poly(vinyl acetate) latex-

based and solution-based polymer composites was examined. A set of experiments were 

performed to distinguish composites with a segregated network (emulsion-based) from 

those with random dispersion (solution-based) of the filler. The percolation thresholds 

for the emulsion-based composites were near 1.2 vol% carbon black, while the solution-

based composites were around 8.2 vol% carbon black. This difference is due to the 

segregated network formation, which leads to excluded volume effects in emulsion-

based systems. This excluded volume created by the solid polymer particles forces the 

carbon black particles into conductive pathways at low concentration. In the solution-

based case, fully solvated polymer results in a random dispersion of carbon black. The 

segregated network composite also shows significant improvement in both electrical 

conductivity and storage modulus with low carbon black loading, while the solution-

based composite achieves significant property enhancements at higher carbon black 

loading because of the greater percolation threshold.  The effect of clay in both emulsion 

and solution-based composites with carbon black was also studied by preparing 

composites with three clay concentrations (0.2, 0.4 and 2 wt%). In emulsion-based 
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composites, low clay concentration reduced the percolation threshold from 1.2 vol% to 

0.8 vol% carbon black, but with solution-based composites clay increased the 

percolation threshold from 8.2 vol% to 11.7 vol% carbon black. It is assumed that clay 

helps to force the carbon black particles into the conductive pathways in the emulsion-

based composites. In solution-base composites, clay improves the dispersion of carbon 

black, thereby destroying the carbon black network and reducing conductivity and 

storage modulus. The storage modulus in emulsion-based composites improved with 0.2 

wt% clay but greater clay concentration resulted in a drop in modulus due to porosity 

from excess excluded volume effects. 
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CHAPTER I 

INTRODUCTION 

Electrically conductive polymer composites are useful for a wide range of applications. 

Some examples include electromagnetic shielding [1, 2] (primarily focused on electronics 

packaging [3, 4]), self regulating heaters [5, 6], chemical sensors [7-10], electrostatic 

charge dissipation [11, 12] and super capacitors for charge storage [13, 14]. Despite their 

increasing utility, these composites typically suffer from a poor balance of electrical and 

mechanical behavior. The high levels of filler required to achieve good electrical 

conductivity lead to brittle films [15]. Processing also becomes difficult as the filler 

concentration rises and the final cost increases. Lowering the percolation threshold can be 

an efficient method to get sufficient conductivity and improve the mechanical properties 

[16], but the techniques used to accomplish this often produce mechanically weak 

composites [15, 17]. The primary goal of the present work is to produce carbon black 

filled composites that have a good balance of electrical and mechanical properties by 

lowering the percolation threshold and adding clay as secondary filler.  

 

Thesis Overview 

This introductory chapter provides background for the work described in subsequent 

chapters. Percolation theory is outlined, followed by overviews of clay and carbon black. 

Chapter I ends with a review of the segregated network concept. Chapter II compares 

emulsion and solution based composites with a poly(vinyl acetate) matrix. The materials 

________________ 
The thesis follows the style of Carbon. 
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 used, film preparation and instrumentation used for characterization are discussed in 

detail for both systems. Microstructure, electrical conductivity and storage modulus are 

evaluated. Chapter III is focused on the effect of clay in both PVAc solution and 

emulsion based systems. The electrical conductivity and mechanical properties of both 

systems are compared with each other and compared to those without clay. Chapter IV 

summarizes this work and provides some ideas about future work. 

 

Percolation Theory 

Carbon black has been used for years as a strengthening agent in elastomers [18-22] and 

a pigment in ink systems [18, 20-22]. In addition, it’s electrically conductive nature has 

also made carbon black a widely studied filler for conductive composites [23-27]. As 

carbon black (or any other conductive filler) is added to a polymer matrix, a network 

begins to form and extend large distances. Once this conductive network reaches a 

critical size, on the order of the composite sample size, the two-component material 

makes a transition from insulator to conductor. The critical amount of filler (usually 

expressed as a volume fraction or percent) required to cause this insulator-to-conductor 

transition is known as the percolation threshold. Figure 1(a) shows how the composite 

microstructure changes with carbon black concentration. At the percolation threshold 

(Image 2 in Fig 1(a)), a conductive path stretches across the sample. Composite electrical 

conductivity typically obeys a power law as a function of carbon black concentration 

[28]:  

                                                       σ = σ0 (V – Vc 
)

s  
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where σ is the composite conductivity (S/cm), σ0  is the effective intrinsic conductivity of 

the filler, s is the power law  exponent (usually between 1.5 and 2.5), and Vc is the 

volume fraction of the filler at the percolation threshold. The three schematic images in 

Figure 1(a) correspond to locations on the loading curve shown in Figure 1(b). The step 

rise in electrical conductivity is the percolation threshold. Two well known techniques to 

reduce percolation threshold are forming a segregated network of filler [20-22, 33-36] 

and changing the filler geometry [21, 29-32].  

 

This film is insulating in nature 

One conductive 
path way is reached 
and this is called 
percolation 
threshold 

This is the conducting 
zone with conductivity 
plateaus 

Figure 1. Schematic of electrically conductive polymer composite with changing filler loading (a), 
electrical conductivity as a function of filler loading (b). 
 

 

Composite Conduction Mechanisms 

The four primary conduction mechanisms involved in carbon black filled polymer 

composites are dielectric break down, electron tunneling, capacitance and graphitic 
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conduction [37]. The zones shown in Figure 1 have different combinations of each of 

these mechanisms.  

 

Insulation Zone 

When the carbon black concentration is below the percolation threshold the electrical 

properties of the composite are similar to those of an unfilled polymer. The carbon black 

particles are separated from each other and unable to form a conductive pathway. The 

conduction mechanism in this zone is transport by ionic impurities and space charge that 

results from ionic diffusion through the composite [38].  

 

Percolation Zone 

Once the carbon black concentration has reached the percolation threshold several 

mechanisms of electrical transport are available. At this stage the carbon black particles 

are close enough to create a conductive pathway. Mechanisms like capacitance, tunneling, 

internal field emission or dielectric breakdown may come into play depending upon 

temperature, frequency and electric field strength [38].  

 

Conduction Zone 

Beyond the percolation threshold, the gaps between the conductive carbon black particles 

become so small (0.35 – 1.5 nm) that the mechanisms of electrical conductivity become 

independent of frequency, temperature and field strength. The wave functions begin to 

overlap one another when the gap is less than 1.5 nm leading to high conductivity. If 

more carbon black is added such that the gap between the particles is less than 0.35 nm, 
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graphitic conduction becomes active. Graphitic conduction is a zero band gap situation 

with conductivity tending to rise with temperature as electrons are promoted to the 

conduction band.  

 

Carbon Black Overview 

Carbon black is a low cost, colloidal, amorphous carbon material that has a distorted 

graphite structure [39].  Figure 2 shows the typical carbon black size and structure. 

Applications for carbon black include improving stability, imparting conductive behavior, 

extending the shelf life of rubber with its antioxidant properties and pigmenting [39]. The 

three important characteristics of carbon black, used as a conducting pigment in polymer 

composites, are particle size, structure, and surface chemistry [40-42].  High surface area 

and high porosity are important characteristics of carbon black that ensure good 

networking [43].  As the surface area of the carbon black particles in a polymer 

composite increases, the gaps between the polymer and the conductive aggregates 

becomes less [42].  Carbon black with elongated aggregates, composed primarily of 

particles with extensive branching, is called high structure carbon black [41]. This type of 

carbon black can be prepared by the furnace process, where oil is thermally decomposed 

to form carbon black particles [40].  
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20 nm 100 nm 

(b)  (a) 

Figure 2. SEM image of carbon black with a primary particle size of 20 nm (a) and a schematic of 
networked high structure carbon black (b). 
 

 

Clay Overview  

Hydrous sodium or aluminium phyllosilicates which are typically less than 2 μm in 

diameter are known as clay [44, 45]. Figure 3(a) shows the structure of a typical 

aluminosilicate clay. When clay particles are dispersed in a polymer matrix three types of 

polymer composites can be formed [46], as shown in Figure 3(b). The first type is a 

conventional composite that has clay tactoids with layers aggregated in a face-to-face 

form. Here the clay tactoids are dispersed only as a segregated phase, resulting in poor 

mechanical properties of the composite material. The second type is intercalated 

polymer–clay nanocomposites, which have one or more molecular layers of polymer 

entering the clay layers. The third type is exfoliated polymer–clay nanocomposites. These 

are characterized by low clay content and a separation between clay nanolayers that 

depend on the polymer content of the composites. Exfoliated polymer–clay 

nanocomposites have improved properties because of the homogeneous dispersion of 

clay and large interfacial area between polymer and clay [48-52]. 
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(a) 

(b) 

 

Figure 3. Schematic of structure of a typical clay (a) and common types of clay composites formed (b) [47]. 
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Segregated Networks 

Kusy, when studying electrically conductive mixtures of polymer and metal powders, 

initially coined the term “segregated network” [53]. Segregated networks are formed 

when conductive filler is mixed with a polymer matrix having a phase separated 

microstructure. The conductive filler is given a small volume within the matrix, which 

leads to the formation of a network at low concentration. There are several ways to 

produce segregated network composites. Segregated networks are formed in polymer 

blends if the conductive filler is forced to occupy one of two dissimilar polymers or the 

junction between the two polymers, as shown in Figures 4(a) and (b) [20, 34, 54, 55]. 

Low percolation thresholds are obtained when the conductive filler is dispersed into a 

melt of less favorable polymer, followed by adding a more favorable one later [56]. With 

continuous mixing, the carbon black particles move towards the more favorable polymer 

and the system is cooled prior to the particles passing through this second phase.  These 

types of composites can achieve percolation thresholds as low as 1 vol% (or less) carbon 

black and maximum achievable conductivities range between 0.01 and 0.1 S/cm [57, 58].  

Segregated networks of carbon black with three kinds of polymer blends (HDPE/PP, 

PP/PMMA, and HDPE/PP) were studied by Sumita and coworkers resulting in a 

percolation threshold as low as 0.1 vol % and maximum conductivity of 0.001 S/cm [20]. 

Composites synthesized using semicrystalline polymers also exhibit segregation due to 

the amorphous and crystalline phases acting as separate phases [57, 58]. The conductive 

filler can only occupy the amorphous regions within the polymer matrix, resulting in a 

lower percolation threshold.  
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(b)(a)

(c)

 

Figure 4. Filled polymer blends (black dots are carbon black filler particles immersed in two different 
polymers distinguished by color change with CB only one phase (a) or at the interphase between phases (b). 
Compressed polymer powder with carbon black is also shown (c). 
 
 
Another common segregated network system is made with polymer powder and 

conductive filler [24, 53, and 59]. The powder and the filler material are pressed at 

temperatures near the melting point of the polymer. Figure 4(c) shows the structural 

arrangement of the particles. The percolation threshold is higher than those of polymer 

blends, but the conductivity is similar. Malliaris and Turner [24] used compression 

molding to prepare mixtures of polyethylene (PE) and nickel. Their results showed that 

the percolation threshold decreases as the size ratio of the polymer particles to metal 

powder increases. The electrical and dielectric behavior of carbon black and polyethylene 

systems prepared by compression molding was studied by Yacubowicz and coworkers 
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[59].  They found that the percolation threshold ranges between 0.3 – 0.7 vol % and the 

dielectric constant increases rapidly up to the percolation threshold. Some researchers 

used ceramic particles for segregated network composites [35].  They studied the effects 

of pressure, temperature and particle size ratio on percolation threshold. High 

temperature and pressure increased the maximum conductivity at high loadings, but 

percolation threshold also increased. 

                          

 Polymer emulsions are a third type of segregated system that has been used to create 

networks with antimony tin oxide [60], carbon black [32, 61] and carbon nanotubes [62]. 

These composites can have very low percolation threshold (< 1 vol %) and the maximum 

achievable electrical conductivity is around 1 S/cm, which is better than polymer blends 

and dry powders. Figure 5 shows the formation of a segregated network in a polymer 

emulsion. In contrast to emulsion based composites solution or melt based composites 

have a random dispersion of filler due to the liquid-like state of polymer during 

processing. Figure 6 shows SEM images of emulsion and solution based composites. A 

polymer emulsion is a stable dispersion of microscopic polymer particles in water prior to 

film formation [63]. The solid particles create excluded volume and hence force the filler 

material into the interstitial space between them. This reduces the space for conductive 

filler to form a network and decreases the percolation threshold.  The electrical and 

mechanical behaviors of carbon black-filled poly(vinyl acetate) latex-based polymer 

composites were examined by Grunlan and coworkers [32]. They found that the 

percolation threshold was an order of magnitude less for a latex based composite system 

compared to a water based solution. It was later found that the percolation threshold 
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could be reduced to 0.04 wt% by replacing carbon black with single walled carbon 

nanotubes [64]. 

 

Close packed during 
drying 

Suspension in 
water Polymer 

Carbon Black 
Polymer interdiffusion 

(Coalescence)  

Figure 5. Process of producing a segregated network nanocomposite using a polymer emulsion. 

 

2um 2um (b) (a) 
 

 
Figure 6. FEGSEM freeze-fractured cross-sections of PVAc latex-based (a) and solution-based composites 
(b) containing 2.5 volume% carbon black. 
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CHAPTER II 

COMPARISON OF EMULSION AND SOLUTION-BASED 

POLYMER COMPOSITES 

Attaining the proper balance of mechanical properties and electrical conductivity in 

polymer nanocomposites by lowering the percolation threshold has been studied for years 

[16, 20, 23, 32, 54]. In this chapter, a polymer emulsion is used as the composite starting 

material to reduce the percolation threshold.  This work shows that latex-based 

composites provide low percolation threshold in comparison to solution-based 

composites, but the maximum conductivity is not as high as solution-based composites. A 

general description of the materials and methods is provided. The characterization of the 

polymer composites is discussed in detail pertaining to electrical and mechanical 

properties. The SEM images of films are shown at various carbon black concentrations to 

provide a basis for structure-property comparisons. The effect of drying temperature on 

the formation of segregated networks is also examined.  

 

Materials and Methods 

Materials 

The latex used in this study is a poly (vinyl acetate) (PVAc) emulsion (tradename Vinac 

XX210) supplied by Air Products (Allentown, PA). This latex is 55.5 wt% solids with an 

average particle size around 640 nm (with a broad distribution).  PVAc pellets with a 

molecular weight of 101,600 g/mol were purchased from Acros Organics (Morris Plains, 

NJ) and used in the preparation of the solution-based composites. Dimethylformamide 

(DMF) purchased from Acros Organics was used to dissolve the PVAc pellets. Carbon 
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black (tradename Conductex 7055 Ultra) was supplied by Columbian Chemicals 

(Marietta, GA).  This high structure carbon black has a nitrogen surface area of 55 m²/g, 

primary particle size of 42 nm and a density of 1.89 g/cm³.  

 

Emulsion-Based Composite Film Preparation 

The latex was diluted to 10 wt% solids by adding deionized water, which reduces the 

viscosity. The maximum carbon black loading was then added to the latex and mixed for 

15 minutes with a high speed impeller operated at 3100 rpm. In this study, the carbon 

black concentration was varied from 12 wt% to 1.5 wt%. After stirring, some amount of 

the mixture was taken out to prepare films and an additional amount of diluted PVAc 

emulsion was added to reduce the carbon black concentration to the desired level. This 

process was repeated to create a series of composites with decreasing carbon black 

concentration. Composites were prepared by pouring 10 grams of mixture into 4 in² 

polystyrene molds. The mixtures were then dried at 80° C for two hours followed by one 

day in a vacuum desiccator [65]. Dried composite films were 150-200 μm thick. 

            

Solution-Based Composite Film Preparation 

DMF was chosen to dissolve PVAc pellets due to its high boiling point (150°C) and 

polarity. Carbon black can be dispersed in a DMF-based solution without using an added 

dispersing agent and solvent evaporation is minimal during processing. A 10 wt% PVAc 

solution was prepared by rolling for one day on a cell-production roller apparatus, made 

by BELCO Biotechology (Vineland, NJ), with a rotation speed of 10 rpm. Composite 

mixtures were prepared in the same manner as the latex-based mixtures. For solution 
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based composites, the mixtures were poured into aluminum molds because DMF 

dissolves polystyrene. The films were dried at 120°C to ensure complete evaporation of 

DMF. Dried composite films were 150-200 μm thick. 

  

Composite Characterization 

Electrical conductivity was measured using a home built four-point probe system [66]. 

Current was measured using a multimeter and voltage was recorded using a Lab View 

program [66].  Dynamic mechanical analysis was performed with a Q800 DMA by TA 

Instruments (New Castle, DE). Tests were run at 1 Hz with a strain of 0.1 % and the 

temperature was ramped from -20 – 80 °C at   3°C/min. For all samples, the glass 

transition temperature (Tg) was taken as the peak of the loss modulus curve. The cross 

sections of the composite films were imaged using a Tescan VEGA-II SEM (Cranberry 

Township, PA). The films were soaked in liquid nitrogen and fractured by hand, followed 

by sputter coating with 4 nm of platinum prior to SEM imaging.  
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Results and Discussion 

Composite Microstructure 

Figures 7 and 8 show the SEM images of PVAc/CB emulsion based films dried at 80°C 

and solution based PVAc/CB films dried at 120° C respectively. The emulsion-based 

system creates a network of carbon black particles at very low concentration compared to 

that of the solution-based system. The microstructural images show that segregation 

occurs throughout the thickness of the latex (Fig. 7), while random dispersion of carbon 

black is observed in the solution-based systems (Fig. 8). It can be seen that carbon black 

particles appear as white dots in the images due to their conductivity and small size that 

create sharp features that emit secondary electrons. The emulsion-based system has a 

network structure of carbon black at 1.2 vol% whereas the solution-based system requires 

8.1 vol% carbon black for network formation. It can also be observed that some pores are 

present in the emulsion based system at 6.5 vol% carbon black (Fig. 7(c)), which are not 

present in the solution based system (Fig. 8).  Pores form when the critical pigment 

volume concentration (CPVC) for the system has been exceeded, which is expected at 

17.5 vol% carbon black for solution based systems [32]. The order of magnitude change 

in carbon black concentration required to bring about macroscopic electrical conductivity 

is due to the segregated network in the latex-based composite. A similar conductive 

network can be seen at very high carbon black concentrations in the solution-based 

systems (Fig. 8). The exponential growth of electrical conductivity for these composite 

systems (described in the next sections) is due to the formation and growth of conductive 

filler pathways. Carbon black segregation in the composites with a latex matrix is 

expected to have a much lower percolation threshold than the solution-based system.  
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2um 

2um 

2um 

(a) 

(b) 

(c)  

Figure 7. Freeze-fractured cross-sections of PVAc/CB latex-based composites containing 2.5 (a), 5.2 (b) 
and 6.5 vol% (c) carbon black. 
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Figure 8. Freeze-fractured cross-sections of PVAc/CB solution-based composites containing 2.5 (a), 5.2 
(b), 6.5 (c) and 15 vol% (d) carbon black. 
 
 
Figure 9 shows the effect of temperature on the microstructure of the latex-based films. 

During coalescence, the latex particles deform and individual polymer molecules 

gradually diffuse between them [32]. At higher temperature the latex coalescence is 

improved because latex particles deform more readily and polymer molecules diffuse at 

faster rates. When coalescence is reduced, by lowering drying temperature, the porosity 

in these films increases (Fig. 9(a) and (c)). Boundaries between the latex particles seen in 

films dried at room temperature are completely eliminated at 80°C. This higher drying 

temperature typically improves mechanical properties and maximum electrical 

conductivity, but also raises the percolation threshold [32].  
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2um 2um (a) (b) 

2um 2um (d) (c)  

Figure 9. Freeze-fractured cross-sections of PVAc/CB latex-based films dried at room temperature ((a) and 
(c)) and at 80°C ((b) and (d)). Images (a) and (b) have 2.5 vol% carbon black, while images (c) and (d) 
have 5 vol% carbon black. 
 

Comparison of Emulsion and Solution-Based Composite Conductivity 

Tables 1 and 2 show composition, hickness and conductive behavior of the PVAc 

emulsion-based and solution-based composites, respectively. Figure 10 shows the 

electrical conductivity as a function of carbon black loading for these two systems. The 

weight % carbon black was converted to volume % carbon black by assuming a density 

of 1.19 g/cm³ for PVAc and 1.89 g/cm³ for carbon black. The percolation power law (Eq. 

1) was fit to this data to obtain values for Vc, s and σo that are shown in Figure 10.  The 

percolation threshold is 1.2 vol% carbon black for the emulsion-based system and 8.1 

vol% for the solution-based system. This large difference in the percolation threshold can 

be clearly seen in Figure 10, where the solid curves represent the percolation power law 
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fit to the experimental data. In the case of the solution-based composites, the PVAc is 

dissolved in DMF and may adsorb on the filler particles during film formation. Once the 

film is dried, the thin polymer layer stabilizes the filler suspension and prevents 

aggregation, which reduces particle-to-particle contact. Furthermore, there is no excluded 

volume in these films during drying because the polymer matrix is fully solvated. In the 

suspension-based composites, the polymer matrix is suspended particles that force the 

smaller carbon black particles to occupy their interstices. As the carbon black is forced 

into the interstitial sites during drying, the filler particles form a network at very low 

concentration. Figure 10 also reveals that the maximum possible conductivity achieved 

by the emulsion-based system is lower than that achieved by the solution-based system. 

This limitation for the latex-based composites is due to the excluded volume that creates 

porosity at higher filler concentration and degrades the electrical and mechanical 

properties. 

  

 
Table 1. Electrical properties of the emulsion-based films dried at 80°C.  
 
Carbon 
black 
(wt%) 

Carbon 
black 
(vol%) 

Thickness 
(cm) 

 Sheet 
resistance 
(Ohm) 

Resistivity 
(Ohm·cm) 

Conductivity 
(S/cm) 

2       1.27 0.0168 9329518 156363 0.0000006 
3 1.91 0.0165 43143.1 713.587 0.0014 
4 2.55 0.0174 14763.3 257.177 0.0039 
6 3.86 0.0166 2892.97 47.9075 0.0209 
8 5.19 0.0161 1196.61 19.2415 0.052 
10 6.53 0.0156 734.923 11.4648 0.0872 
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Table 2. Electrical properties of solution-based films dried at 120°C.  
 
Carbon 
black 
(wt%) 

Carbon 
black 
(vol%) 

Thickness 
(cm) 

Sheet 
resistance 
(Ohm) 

Resistivity 
(Ohm·cm) 

Conductivity 
(S/cm) 

25 17.34 0.0212 89.6976 1.898 0.5269 
22.5 15.45 0.018 157.363 2.82624 0.3538 
20 13.6 0.0147 371.879 5.47406 0.1827 
17.5 11.78 0.0173 844.396 14.6418 0.0683 
15 10 0.0148 12613.4 187.183 0.0053 
12.5 8.25 0.0086 1.60000000 1406015 0.00000007 
 
 
 

 
 
 
Figure 10. Electrical conductivity as a function of carbon black concentration for PVAc emulsion and 
solution-based composite systems. 
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Comparison of Emulsion and Solution-Based Composite Modulus 

Storage modulus is similar to elastic modulus at room temperature [80]. Storage modulus 

as a function of temperature for latex based films dried at 80°C is shown in Figure 11. 

From this plot it can be seen that storage modulus increases with carbon black 

concentration. Figure 12 shows storage modulus at 20°C as a function of carbon black 

concentration in latex-based and solution-based films. From this graph it is evident that 

the storage modulus increases sharply for the latex-based composites, but eventually 

drops at higher carbon black concentration. This modulus peak is known as the critical 

pigment volume concentration [32]. At the CPVC the polymer matrix can no longer hold 

all of the filler particles, which results in the formation of voids. The voids behave as null 

modulus filler and the storage modulus decreases beyond this filler level. The CPVC is 

around 5 vol% carbon black.  
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Figure 11. Storage modulus as a function of temperature for PVAc latex-based films with varying carbon 
black concentration. 
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Figure 12. Room temperature storage modulus as a function of carbon black concentration for PVAc 
solution and emulsion-based composites. 
 

For the solution-based composites, Figure 12 shows a more gradual increase in storage 

modulus up to 10 vol%, followed by a sharp increase beyond this concentration. This 

suggests that networking may be influencing the composite modulus. Beyond the 

percolation threshold, which is around 8 vol% for solution-based system, carbon black 

particles become more interconnected. It is believed that the networking between the 

carbon particles enhances the storage modulus. Beyond 18 vol% carbon black there is a 

drop in modulus due to the CPVC being reached. The solution-based CPVC is much 

greater than for the emulsion-based system, which is due to the inability of the polymer 

particles to effectively envelop the filler during film formation. In Figure 12 it can be 

seen that once the percolation threshold is reached the storage modulus in the solution-
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based composites is higher than that of emulsion-based composites. In this case the 

solution based-composites have a high carbon black concentration, but no pore formation 

and hence a strong network exists. Storage modulus as a function of temperature for the 

solution-based composites is shown in Figure 13.  
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Figure 13. Storage modulus as a function of temperature for PVAc solution-based films with varying 
carbon black concentration.  
 

 

Effect of pH on the Electrical Conductivity of Emulsion-Based Films 

The intrinsic pH of the PVAc emulsion and carbon black mixture is 4.64. This pH was 

adjusted to 6.94 and 9.1 to determine the influence of pH on  composite properties. 
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Figure 14 shows that the percolation threshold (Vc in Equation 1) is approximately 0.012 

for all the three pH levels.  
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Figure 14. Electrical conductivity as a function of carbon black concentration for emulsion-based 
composite systems made at varying pH. 
 

Conclusions 

The effect of microstructure on the electrical and thermo-mechanical properties of carbon 

black-filled poly(vinyl acetate) nanocomposites has been studied. SEM images show 

characteristic differences between the microstructure of emulsion and solution based 

films. The difference between the microstructure of emulsion based films dried at room 

temperature and 80°C is also shown.  The emulsion-based films have a percolation 

threshold nearly an order of magnitude less than the solution based films. This disparity 

is due to carbon black particles segregating around the emulsion particles during drying, 
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resulting in a network at low concentration. The percolation threshold of the emulsion 

based system is 1.21 vol% carbon black, while that of solution based system is 8.2 vol%. 

Despite having a greater percolation threshold, the solution-based system has greater 

maximum conductivity than the emulsion-based one due to unrestricted network growth. 

The storage modulus of emulsion-based composites increases by 25% with 5 vol% 

carbon black and then decreases beyond 6.5 vol% carbon black due to the formation of 

pores in the composite. In the solution-based system, the storage modulus is less than the 

emulsion based system until 5 vol% carbon black is reached. Once the percolation 

threshold is reached (at 8.2 vol% carbon black), there is a much sharper increase due to 

the formation of a network structure. A drop in the storage modulus beyond 17.3 vol% 

carbon black is observed as the CPVC is exceeded. From the above discussion, it is clear 

that solution-based films can have higher maximum achievable conductivity and storage 

modulus, but this requires higher filler concentration (>15vol%) to achieve. The 

emulsion-based systems are better overall at low filler concentration (< 5 vol%). 
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CHAPTER III 

EFFECT OF CLAY ON THE MICROSTRUCTURE AND 

PROPERTIES OF EMULSION AND SOLUTION-BASED POLYMER 

COMPOSITES 

 

The influence of carbon black on the electrical conductivity and mechanical properties of 

poly (vinyl acetate) emulsion and solution-based systems was examined in Chapter II. In 

Chapter III, clay is added as secondary filler in an effort to reduce the percolation 

threshold and improve mechanical properties.  It has already been shown that carbon 

black has a low percolation threshold in a PVAc emulsion-based composite due to 

segregated network formation. In the present study, insulating clay (sodium 

montmorillonite) is added to increase the exclusionary volume for carbon black. Clay has 

been successfully used in composites to improve thermal stability [67-70], mechanical 

properties [71-74], and barrier properties [80-82]. These composites have been prepared 

using in situ intercalative polymerization [51, 52, 75-79], exfoliation of the clay in a 

polymer solution [48, 76] and melt-intercalation [48]. Exfoliated nanocomposites have 

higher phase homogeneity compared to intercalated nanocomposites, which is more 

effective for improving composite properties.  

 

Feller and coworkers studied the influence of melt dispersion of intercelated 

montmorillonite on electrical properties of three conductive composites PE/CB, PP/CB 

and poly (ethylene-co-ethyl acrylate)/CB. They found that even a low concentration of 

clay (1.25 vol%) has a significant effect on the electrical conductivity of the composites 
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[48]. Liu and Grunlan demonstrated that clay could be used to reduce the percolation 

threshold and increase the maximum conductivity in a carbon nanotube-filled epoxy [65]. 

In this chapter, the electrical and mechanical properties of PVAc solution and emulsion-

based composites, containing carbon black and clay, are evaluated. The addition of clay 

to the solution-based composites, studied in Chapter II, seems to degrade electrical 

conductivity and modulus due to destruction of the carbon black network. In emulsion-

based composites, a small amount of clay reduces the percolation threshold and increases 

modulus, but these properties are diminished with increasing clay concentration. The 

characterization of these composites is discussed in detail in the sections following the 

description of materials and methods. 

 

Materials and Methods 

Materials 

Carbon black, PVAc latex and PVAc pellets used in this study are described in Chapter II. 

Unmodified natural montmorillonite clay (Cloisite Na , CEC=92.6 meq/100g) was 

provided by Southern Clay Products (Gonzales, TX). When fully exfoliated, this clay has 

a platelet shape that is 1 nm thick and 200 nm in diameter on average. 

+

 

Composite Preparation 

Film preparation with clay has one difference from the film preparation discussed in 

Chapter II. In the case of latex-based films, the clay was sonicated for 10 minutes in 

deionized water at 50 W using a VirTis Virsonic 100 Ultrasonic Cell Disrupter (Gerdiner, 

NY). The sonicated clay solution was then added to the aqueous mixture containing 
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carbon black and polymer. Clay was sonicated in DMF instead of water for solution-

based films. The remaining procedure for film preparation is the same as described in 

Chapter II. In this study, three different series of samples were made with varying clay 

concentration of 0.2, 0.4 and 2 wt% clay. In each of the series, the clay concentration was 

fixed and the carbon black concentration was varied from 1.26 to 5.5 vol%, in the case of 

emulsion-based, and 2.5 to 17.3 vol %, in the case of solution-based composites. 

 

Composite Characterization 

Most of the characterization done, in this study is identical to that described in Chapter II. 

Optical microscopy, performed with a OLYMPUS BX60 (Princeton, NJ) was used to 

visualize the dispersion of clay in the composite. 

 

Results and Discussion 

Emulsion-Based Composites with Clay and Carbon Black 

Composite Microstructure 

Figures 15 shows cross-sectional images of PVAc/CB emulsion-based films with varying 

clay concentration. All of the composites have 1.26 vol% carbon black to allow the 

influence of clay on microstructure to be evaluated. Similarly, Figure 16 has 3.86 vol% 

carbon black and varying clay concentration. These composites show segregation 

throughout their thickness. In Figure 15(a), no clay is present and carbon black has only a 

weak network structure. With the addition of 0.2 wt% clay (Fig. 15(b)), a strong 

segregated network of carbon black is observed. There is no significant change in 

microstructure when the clay concentration is increased to 0.4 wt% (Fig. 15(c)). With 2 
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wt% clay (Fig. 15(d)), the carbon black particles are no longer able to form a network. 

Figure 16 shows even greater microstructural variation when the carbon black 

concentration is increased to 3.8 vol%. In Figures 16(a) and (b), with no clay and with 0.2 

wt% clay the carbon black exhibits a strong segregated network. With 0.4 wt% clay (Fig. 

16 (c)), carbon black aggregation appears weakened relative to the composites with 0 and 

0.2 wt% clay. With the addition of 2 wt% clay (Fig. 16 (d)), the carbon black particles 

appear phase-separated. Therefore, relatively high clay concentration hinders the 

formation of a segregated network in composites with low (Fig.15) and high (Fig 16) 

carbon black concentration. 

(a) 

(c) 

1μm  

1μm  

1μm  

1μm  

(b) 

(d)  

Figure 15. Freeze-fractured cross-sections of PVAc latex-based composites having 1.26 vol% carbon black 
and 0 (a), 0.2 (b), 0.4 (c) and 2 wt% clay (d). 
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Figure 16. Freeze-fractured cross-sections of PVAc latex-based composites having 3.8 vol% carbon black 
with 0  (a), 0.2 (b), 0.4  (c) and 2 wt% clay (d). 
 

 

 The electron microscope images shown in Figures 15 and 16 do not show clay dispersion 

in the matrix, so optical microscope images are shown (Fig. 17) for samples with 0.95 

vol% carbon black at two different clay concentrations, 0.2 and 0.4 wt%. Figures 17(a) 

and (c) show the cross-polarized images, whereas Figures 17(b) and (d) show the bright 

field images. With cross-polarized light, clay appears as white dots dispersed in a black 

matrix. Figure 17(c) is much whiter than Figure 17(a) because more clay is dispersed in 

the matrix. It can also be seen that the clay is well dispersed, which is the reason for a 

better network structure than a sample with no clay at low carbon black concentration. In 
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the bright-field condition (Fig. 17(b) and (d)), both images look identical because only 

carbon black particles are seen as white dots dispersed in a black matrix and both 

composites have the same carbon black concentration. As the clay content is increased to 

2 wt%, the clay particles serve to disrupt carbon black networking, which is evident in 

Figure 15(d).  

 

20μm 20μm 
(b) (a) 

20μm 20μm 
(c) (d)  

Figure 17. Optical microscope images of emulsion-based composites having 0.95 vol% carbon black  and 
0.2 wt% clay ((a) and (b)), 0.95 vol% carbon black and 2 wt% clay ((c) and (d)). Images (a) and (b) are 
taken under the cross-polarized light condition, while images (c) and (d) are taken in the bright-field 
condition.  
 

 

Composite Conductivity 

Tables 3 and 4 summarize composition, thickness and conductive behavior of PVAc 

emulsion-based composites with varying clay and carbon black concentration. Figure 18 
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shows electrical conductivity as a function of carbon black loading for the composites 

with 0, 0.2 and 2 wt% clay. The percolation power law (Eq. 1) was fit to these three 

series to obtain the percolation threshold (Vc). The curves show that with 0.2 wt% clay 

there is a decrease in the percolation threshold from 1.21 to 0.88 vol% carbon black. With 

a clay concentration of 2 wt%, the percolation threshold is nearly the same as the series 

with no clay. These results match expectations based upon the microstructural images 

shown in Figure 15.  

 

 

Table 3. Electrical properties of emulsion based films with 0.2 wt% clay and varying carbon black 
concentration. 
 
Carbon 
black 
(wt%) 

Carbon 
black 
(vol%) 

Thickness 
(cm) 

 Sheet 
resistance 
(Ohm) 

Resistivity 
(Ohm·cm) 

Conductivity 
(S/cm) 

1.5 0.94 0.0166 30000000 503363 0.0000002 
2 1.26 0.0161 322707 5202 0.0002 
3 1.90 0.0162 27312.4 441.3 0.0023 
4 2.5 0.0155 9647.5 151 0.0066 
5 3.20 0.0157 5119.25 79 0.0126 
6 3.86 0.0153 4265.03 65 0.0153 
 
 
 
 
 
Table 4. Electrical properties of emulsion-based films with 2 wt% clay and varying carbon black 
concentration. 
 
Carbon 
black 
(wt%) 

Carbon 
black 
(vol%) 

Thickness 
(cm) 

 Sheet 
resistance 
(Ohm) 

Resistivity 
(Ohm·cm) 

Conductivity 
(S/cm) 

2 1.26 0.0166 20000000 380957 0.0000003 
2.5 1.58 0.027 395115 10668 0.000009 
3 1.90 0.0188 195652 3541 0.0003 
4 2.5 0.0155 43942 659 0.0015 
6 3.86 0.0165 7012 115 0.0086 
8 5.19 0.0171 6962 118 0.0084 
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Figure 18. Electrical conductivity as a function of carbon black concentration for emulsion-based 
composite systems with varying clay concentration. Percolation tresholds are shown as vol% for each series. 
 

Two phenomena may be occurring when clay is added to these carbon black-filled 

composites. First, there may be interactions between clay and carbon black that alter its 

distribution due to exclusionary effects. Figure 19 shows electrical conductivity as a 

function of clay concentration for composites with 1.26 and 3.86 vol% carbon black to 

compare the influence of clay at low and high carbon black concentration. With 1.26 

vol% carbon black there is an increase in conductivity at low clay concentration, which 

later decreases with 2 wt% clay. This behavior can be attributed to decreased interaction 

between the carbon black and the polymer matrix and the association of clay with carbon 

black. Assuming that carbon black particles are attracted to the clay, a better network is 
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formed at low clay content. With an increase in clay content, the carbon black aggregates 

can no longer network as easily. Here the dispersive effect is not balanced by the 

aggregation effect, so the carbon black connectivity decreases with high clay content. In 

the case of high carbon black concentration, conductivity is essentially constant 

regardless of the clay concentration. There is a slight drop with 2 wt% clay, which is due 

to destabilization of carbon black that generates porosity. This is the second phenomena 

associated with the addition of clay. 
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Figure 19. Electrical conductivity as a function of clay concentration for CB-filled, emulsion-based 
composites. 
 
  
 
Composite Modulus 

Storage modulus as a function of temperature, for latex based films with 0.2 wt% clay 

and varying carbon black concentration, is shown in Figure 20. The storage modulus 
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increases with carbon black concentration, which was also shown in Chapter II. In 

addition to greater concentration, the carbon black network grows stronger and enhances 

the modulus. It can also be seen that the glass transition temperature (Tg) increases with 

carbon black concentration, as indicated by the modulus drop occurring at higher 

temperature. Figure 20(b) shows the corresponding loss modulus curve, the peak of 

which marks Tg. The Tg with 1.2 vol% carbon black is 35°C and increases to a value of 

45°C with 3.8 vol%. This enhanced thermal stability is further evidence that the addition 

of a small amount of clay strengthens the carbon black network. 
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(a) 

Figure 20. Storage modulus (a) and loss modulus (b) as a function of temperature for PVAc latex-based 
films with varying carbon black concentration and 0.2 wt% clay.  
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Figure 20. Continued. 
 

Figure 21 compares carbon black-filled composites with and without added clay. With 

2.5 vol % carbon black, the storage modulus at room temperature is greater with the 

addition of 0.2 wt% clay. It was shown in Figure 15 that 0.2 wt% clay improves the 

network structure relative to the same system without clay, for low carbon black 

concentration. A stronger network is expected to exhibit a greater room temperature 

modulus and better modulus retention as temperature is increased, as shown in Figure 21. 
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Figure 21. Storage modulus as a function of temperature for latex-based films with 2.5 vol % carbon black. 

 

Figure 22 shows the influence of clay concentration on the storage modulus of the latex-

based composites containing carbon black. It can be seen that at low carbon black 

concentration, 0.2 wt% clay significantly increases modulus. With 2 wt% clay, composite 

modulus is reduced when any carbon black is added. At low clay concentration, the 

carbon black is more effectively forced into a network, making modulus greater. This is 

primarily an excluded volume effect whose efficacy decreases with increasing carbon 

black concentration. With a larger concentration of clay (2 wt%), the storage modulus is 

reduced, irrespective of carbon black concentration, due to excessive excluded volume 

that causes significant carbon black aggregation and associated porosity (see Fig. 16(d)). 
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This also appears to happen at higher carbon black content, for composites containing 0.2 

wt% clay, as evidenced by the leveling off in storage modulus.  
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Figure 22. Storage modulus as a function of carbon black concentration with 0, 0.2 and 2 wt% clay. 
 

To further explore the complementary influence of carbon black and clay, storage 

modulus as a function of clay concentration is shown in Figure 23 for series with low and 

high carbon black concentration. This graph demonstrates that high clay content (>1 

wt%) produces a reduced storage modulus due to aggregation and pore formation. Low 

clay content increases storage modulus at low carbon black concentration and decreases 

modulus at higher carbon black concentration. The fact that emulsion-based composites 

produce a highly networked microstructure in the absence of clay makes them sensitive 

to relatively small additions of this co-filler.  
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Figure 23. Storage modulus as a function of clay concentration in emulsion-based composites with a 
constant carbon black concentration. 
 

 

Solution-Based Composites with Clay and Carbon Black 

Composite Microstructure 

Figure 24 shows the microstructure of PVAc solution-based composites with 10 vol% 

carbon black and varying clay concentration.  These composites have a random 

dispersion of carbon black particles in the polymer matrix. The addition of clay does not 

appear to alter the random microstructure. With 0.2 wt% clay (Fig. 24(a)), the carbon 

black just begins to form a network (i.e, the carbon black concentration is near the 

percolation threshold at 10 vol%) and this structure looks similar as the clay 

concentration is increased. If anything, the composite is below the percolation threshold 
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at this carbon black concentration with 0.6 and 2 wt% clay. At these higher 

concentrations, the dispersion of the carbon black appears to improve. Unlike the 

emulsion-based systems, the clay is mixed with DMF for solution processing, which 

produces larger tactoids that may enhance carbon black dispersion during mixing. Figure 

25 shows the microstructure of solution-based composites with 17.3 vol% carbon black 

and varying clay concentration. In the absence of clay (Fig. 25(a)), heavy aggregation of 

carbon black is observed, which indicates that the CPVC has been exceeded. This 

gradually changes as the clay is added. Figure 25(b) shows reduced aggregation with the 

addition of 0.2 wt% clay. Further reductions in the porosity and better carbon black 

dispersion are seen with 0.6 (Fig. 25(c)) and 2 wt% clay (Fig. 25(d)). Although there 

appears to be a diminishing benefit to adding more clay, it is interesting to see reduced 

carbon black aggregation with increasing clay content (the opposite effect is seen in 

emulsion-based composites). Improved carbon black dispersion is expected to increase 

the percolation threshold and improve mechanical behavior at higher filler concentration.   
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Figure 24. Freeze-fractured cross-sections of PVAc solution-based films with 10 vol% carbon black and 
0.2 (a), 0.6 (b) and 2 wt% clay (c). 
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Figure 25. Freeze-fractured cross-sections of PVAc/CB solution-based films with 17.3 vol% carbon black 
and 0  (a), 0.2 (b), 0.6 (c) and 2 wt% clay (d).  
 

 

Composite Conductivity 

Figure 26 shows the electrical conductivity of the solution-based composites as a function 

of carbon black concentration with different clay content. Unlike the emulsion-based 

composites, there is no decrease in the percolation threshold with the addition of 0.2 wt% 

clay. With increasing clay, the percolation threshold shifts to higher values, as expected 

from the microstructural images (see Fig. 24 and 25). Carbon black may associate with 

the clay during processing due to the incompatibility of clay with DMF solvent. This 

effectively makes the carbon black behave as larger particles (i.e, DMF-friendly carbon 
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black covers relatively large clay tactoids) that are more easily dispersed and less prone 

to networking.  Tables 5 and 6 summarize thickness and conductivity data for the series 

shown in Figure 26.  

 

Table 5. Electrical properties of solution-based films with 0.2 wt% clay and carbon black concentration.  

Carbon 
black 
(wt%) 

Carbon 
black 
(vol%) 

Thickness 
(cm) 

 Sheet 
resistance 
(Ohm) 

Resistivity 
(Ohm·cm) 

Conductivity 
(S/cm) 

25 17.3 0.0176 166.421 2.92236 0.3422 
22.5 15.5 0.0156 196.588 3.06677 0.3261 
20 13.6 0.0144 460.015 6.62421 0.151 
17.5 11.8 0.0143 3186.11 45.6888 0.0219 
15 10 0.0133 432345 5758.84 0.0002 
12.5 8.2 0.0148 1.5000000 2182803 0.00000005 
 

 

Table 6. Electrical properties of solution-based films with 0.6 wt% clay and carbon black concentration.  

Carbon 
black 
(wt%) 

Carbon 
black 
(vol%) 

Thickness 
(cm) 

 Sheet 
resistance 
(Ohm) 

Resistivity 
(Ohm·cm) 

Conductivity 
(S/cm) 

25 17.3 0.0164 841.49294 13.76682 0.0726
22.5 15.5 0.0161 1573.887 25.37106 0.0394
20 13.6 0.0147 6485.2374 95.46269 0.0105
17.5 11.8 0.0173 21499.986 372.8098 0.0027
15 10 0.0148 73737328 1094262 0.000000009
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Figure 26. Electrical conductivity as a function of carbon black concentration for PVAc solution-based 
composites with varying clay concentration.  
 

 

Figure 27 shows the effect of clay on conductivity for a composite near the percolation 

threshold (10 vol% carbon black) and one with high carbon black concentration (17.3 

vol%). Near the percolation threshold there is a rapid drop in conductivity with increasing 

clay concentration, but this effect is diminished at high carbon black content. As shown 

in Figure 26, the percolation threshold is shifted by 1.5 vol% with the addition of 0.6 

wt% clay and further shifted by 1.8 vol% with the addition of 2 wt% clay.   At high 

carbon black concentration the conductivity drop is more gradual because the carbon 

black content is well beyond percolation.  



 46

-7

-6

-5

-4

-3

-2

-1

0

0 0.5 1 1.5 2 2.5

Clay (wt%)

Lo
g 

C
on

du
ct

iv
ity

 (S
/c

m
)

10 vol% CB
17.3 vol% CB

 

Figure 27. Electrical conductivity as a function of clay concentration for PVAc solution-based composites 
with varying carbon black concentration.  
 

 

Composite Modulus 

Figure 28 shows storage modulus as a function of temperature for PVAc solution-based 

films with varying carbon black concentration and 0.2 wt% clay. Composite modulus at 

20°C increases as the carbon black concentration increases. The increase in storage 

modulus from the addition of 10 vol% carbon black matches the increase when the 

carbon black concentration is raised from 10 to 13.6 vol%. This is due to the fact that the 

percolation threshold of this system is around 10 vol% carbon black, so beyond this 

concentration a growing carbon black network enhances modulus more than disconnected 

filler. The same behavior is observed with all of the clay concentrations.  
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Figure 28. Storage modulus as a function of temperature for  PVAc solution-based composites with 0.2 
wt% clay and varying carbon black content.  
 

 
Figure 29 shows storage modulus as a function of carbon black concentration for PVAc 

solution-based composites with varying clay content. Up to the percolation threshold of 

carbon black alone (~ 10 vol%), all of the composites have nearly the same modulus. At 

8.2 vol%, the pure carbon black series reaches the percolation threshold (based upon 

conductivity measurements) and there is a steeper rise in modulus beyond this 

concentration. In these series the addition of clay reduces the composite modulus due to 

its destruction of the carbon black network. Despite having lower modulus for a given 

carbon black concentration, the modulus rises rapidly for each of the clay series when its 

percolation threshold is reached. From the microstructural images (Fig. 16), it is clear that 
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carbon black is better dispersed (i.e., less networked) with 2 wt% clay compared to 0.2 

wt% clay.  

2300

2500

2700

2900

3100

3300

3500

3700

0 5 10 15 20

Carbon Black (vol%)

St
or

ag
e 

M
od

ul
us

 (M
Pa

)

0 wt% clay
0.2 wt% clay
0.6 wt% clay
2 wt% clay

 

Figure 29. Storage modulus as a function of carbon black concentration for PVAc solution-based films 
with 0, 0.2, 0.6 and 2 wt% clay. 
 
 
Figure 30 shows storage modulus as a function of clay concentration with low and high 

concentration of carbon black. With low carbon black content, the clay has little effect on 

the storage modulus, but at high carbon black content there is a drop in modulus with 

increasing clay concentration. There is no network formation in any of the series at low 

carbon black concentration, which produces little change in modulus due to poor clay 

compatibility with the polymer matrix. The clay exists as large tactoids that are poorly 
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bonded to PVAc. At high carbon black and clay content, the filler has exceeded the 

CPVC, which results in porosity and reduced modulus. 

  

2000

2200

2400

2600

2800

3000

3200

3400

3600

0 0.5 1 1.5 2 2.5

Clay (wt%)

St
or

ag
e 

M
od

ul
us

 (M
Pa

) 6.5 vol% CB
15.5 vol% CB

 

Figure 30. Storage modulus as a function of clay concentration for PVAc solution-based composites with 
low (6.5 vol%) and high (15.5 vol%) carbon black content. 
 

Comparison of Emulsion-Based and Solution-Based Composites with Clay 
 
Composite Microstructure 

Figure 31 compares the microstructure of solution-based and emulsion based composites 

containing 5 vol% carbon black and 0.2 wt% clay. At 5 vol% carbon black, the emulsion-

based composite is above percolation and contains a strong carbon black network. The 

solution-based composite has a random dispersion of carbon black particles due to the 
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lack of excluded volume. Little particle aggregation is observed in this composite 

because the carbon black and clay have enough room to accommodate themselves. 

 

1μm  1μm  
 (a) (b)

Figure 31. Freeze-fractured cross-sections of PVAc with 5 vol% carbon black and 0.2 wt% clay in an 
emulsion-based (a) and solution-based (b) composite.  
 
 
 

Composite Conductivity 

Figure 32 shows electrical conductivity as a function of carbon black concentration for 

these solution and emulsion-based composites with 0.2 wt% clay. There is an order 

magnitude difference in the percolation threshold for these systems. The percolation 

threshold for the emulsion-based system is 0.88 vol% carbon black and 8.1 vol% carbon 

black for the solution-based system. Similar differences between the solution and 

emulsion-based composites were shown in Chapter II (Fig.10) in the absence of clay. 
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Figure 32. Electrical conductivity as a function of carbon black concentration for PVAc emulsion and 
solution-based composites with 0.2 wt% clay. 
 

Composite Modulus 

Figure 33 shows storage modulus as a function of carbon black concentration for the 

emulsion and solution-based composite systems with 0.2 wt% clay. The solution-based 

system achieves a much higher modulus at carbon black concentrations above 10 vol%, 

but the latex-based films show higher modulus at low carbon black concentration because 

they contain a strong carbon black network. Solution-based composites form a network 

near 10 vol%, after which the modulus increases sharply with additional carbon black. 

Emulsion-based films reach the CPVC at 5.5 vol% carbon black due to excluded volume 

effects, which causes the films to become porous and lose modulus. For solution-based 

systems, the CPVC is around 17.5 vol% carbon black.  
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Figure 33. Storage modulus as a function of carbon black concentration for emulsion and solution-based 
composites with 0.2 wt% clay.  
 

Conclusions 

The effect of clay as a co-filler in combination with carbon black, in both solution and 

emulsion-based composites, was explored. Changes in microstructure were shown to 

influence the electrical and mechanical properties of carbon black-filled poly(vinyl 

acetate) with a constant clay concentration. Microstructural images show characteristic 

differences between the emulsion-based films without clay and with increasing clay 

concentration. With 0.2 wt% clay the percolation threshold of the emulsion-based system 

decreased from 1.21 vol% carbon black to 0.88 vol% carbon black. Higher clay 

concentration led to reduced conductivity and the percolation threshold increased to 1.25 
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vol% carbon black. Solution-based films show improved dispersion with increasing clay 

concentration. In most cases, the storage modulus of all the composites was reduced by 

the presence of clay due to destruction of the carbon black network. The modulus of the 

emulsion-based films with low clay concentration has higher modulus than the samples 

with 2 wt% clay. The percolation threshold was progressively raised from 8.19 vol% 

carbon black, with no clay, to 11.7 vol% carbon black with 2 wt% clay. In these films the 

storage modulus did not change much with 0.2 wt% clay, but with higher clay 

concentration there was a drop in the modulus due to loss of the carbon black network. 

Direct comparison of solution and emulsion-based composites show that clay has a good 

effect on the emulsion-based films and generally adverse effects on the solution-based 

films.  
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CHAPTER IV 

SUMMARY AND FUTURE WORK 

 

The primary goal of the present work was to produce carbon black filled composites with 

a good balance of electrical and mechanical properties by lowering the percolation 

threshold and adding clay as secondary filler. Emulsion-based poly(vinyl acetate) 

composites were compared to solution-based systems. A series of experiments were 

performed to better understand the formation of segregated networks and the electrical 

and mechanical properties of the resulting composites. The influence of clay on these 

composites was analyzed in a second set of experiments. 

 

Summary 

Segregated Network vs. Random Dispersion 

The emulsion and solution-based poly(vinyl acetate) composites have similar chemical 

composition and are produced from liquid mixtures. The resulting composites have 

different microstructure and properties. Segregated network composites, made with a 

poly(vinyl acetate) emulsion, show dramatic changes in modulus and conductivity at low 

carbon black loading, while randomly dispersed composites exhibited more gradual 

changes. SEM images of composite cross sections show that carbon black creates a 

network with low concentration due to the excluded volume from the emulsion particles. 

The CB in the solution-processed composites is more uniformly (randomly) dispersed.  

The percolation threshold of the emulsion-based system is 1.21 vol%, which is seven 

times less than the solution-based system. The storage modulus of emulsion-based 
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composites increases by 25% with 5 vol% carbon black and then decreases due to the 

formation of pores in the composite. In the solution-based system, the storage modulus is 

less than the emulsion based system until 5 vol% carbon black is reached. Once the 

percolation threshold is reached (at 8.2 vol% carbon black) there is a much sharper 

increase due to the formation of a network structure. A drop in the storage modulus 

beyond 17.3 vol% carbon black is observed as the CPVC is exceeded.  

 

Influence of Clay on Composite Behavior 

The effect of clay as secondary filler with carbon black in both emulsion and solution-

based composites was analyzed. SEM images show changes in microstructure that alter 

the electrical and mechanical properties of these composites with a constant clay 

concentration. The addition of 0.2 wt% clay to the emulsion-based  composites reduced 

the percolation threshold from 1.21 to 0.88 vol% CB, but 2 wt% clay reduced the 

conductivity and increased the percolation threshold to 1.25 vol% CB. The storage 

modulus of the composites was reduced by the presence of clay due to the disruption of 

the carbon black network. The samples with 0.2 wt% clay have higher modulus than the 

samples with 2 wt% clay. The percolation threshold for the solution-based composites 

was progressively raised from 8.2 vol% (with no clay) to 11.7 vol% carbon black with 2 

wt% clay. The storage modulus in these films did not change much with 0.2 wt% clay, 

but there was a drop in the modulus with 2 wt% clay due to a lack of network formation. 

Overall, clay has a relatively positive influence on emulsion-based composites and an 

adverse effect on solution-based composites.  
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Future Work 

The segregated network concept has been studied for years [20, 53-58] and is one of the 

most effective ways to reduce the percolation threshold of polymer composites. Despite 

its benefits, complexity of processing and lack of mechanical robustness hinders the use 

of segregated network composites for many useful applications. Beginning with an 

emulsion polymer can resolve these problems because the processing is relatively simple, 

requires little energy, and the final composites are mechanically robust. Further research 

is still needed to improve the behavior of these emulsion-based composites. The 

influence of clay on these segregated networks can also be extended. Two ideas for future 

research are suggested:  

• It was observed that emulsion-based systems form segregated networks due to the 

polymer particles, which are not present in the solution-based matrix. The size and 

distribution of these polymer particles is expected to play a very important role in the 

percolation threshold of these composite systems. Changes in maximum electrical 

conductivity and mechanical properties are also expected.  

• Segregated networks made with a polymer emulsion and carbon nanotubes have 

achieved a percolation threshold below 0.05 vol% and maximum conductivity much 

greater than with a carbon black network [63].  These composites were produced 

using chemical stabilizers to disperse the nanotubes in water, but better properties 

may be achieved if they can be dispersed with clay or another rigid co-filler. Clay has 

already been shown to reduce the percolation threshold and increase the maximum 

conductivity in carbon nanotube-filled epoxy [65].  
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