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ABSTRACT

On the Structure of Some Free Products of C*-Algebras. (August 2007)
Nikolay Antonov Ivanov, B.S., University of Sofia

Chair of Advisory Committee: Dr. Kenneth Dykema

The research area of this work is Operator Algebras. Concretelly we study
some free products of C*-algebras. We are concerned with the questions of simplicity,
uniqueness of trace, positive cone of K-theory and some others.

In Chapter I we recall the notions of full and reduced free product of C*-algebras
and give some properties of those.

In Chapter II we prove the existence of a six term exact sequence for the K-
theory of full amalgamated free product C*-algebras A x¢ B, in the case when C' is
an ideal in both C*-algebras A and B.

In Chapter III we find a necessary and sufficient conditions for the simplicity and
uniqueness of trace for reduced free products of finite families of finite dimensional
C*-algebras with specified traces on them.

In Chapter IV we study some reduced free products of C*-algebras with amal-
gamations. We give sufficient conditions for the positive cone of the K, group to be
the largest possible. We also give sufficient conditions for simplicity and uniqueness
of trace.

The research on Operator Algebras was inspired by Quantum Mechanics. The
small contribution we made on free products of C*-algebras helps us to understand

these mathematical objects a little bit better.
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CHAPTER I

INTRODUCTION: DEFINITION AND PROPERTIES OF FREE PRODUCTS

A. Introduction

In [39] Voiculescu indroduced the noncommutative probabilistic theory of freeness
together with the notion of reduced amalgamated free products of C*-algebras (IW*-
algebras). The simplest case is amalgamation over the complex numbers, which was
considered independently by Avitzour in [3]. Since then free probability became an
important branch of operator algebra theory. There are many examples of reduced
amalgamated free products. Some of the most important ones are the reduced C*-
algebras (W*-algebras) of amalgams of countable discrete groups. Many properties
of those mathematical objects have been, and are, studied. In this report we give
small contribution to this research.

One of the important question concerning reduced amalgamated free products is
the question of simplicity which usually goes together with the question of uniqueness
of trace. Avitzour gave a sufficient condition for simplicity and uniqueness of trace of
reduced free products. Avitzour’s work is based on the work of Powers [31], in which
Powers proved that the reduced C*-algebra of the free group on two generators is
simple and has a unique trace. Subsequently Pashke and Salinas in [28] and Choi in
[6] considered other reduced C*-algebras of amalgams of discrete groups. The most
general result for the case of reduced C*-algebras of amalgams of discrete groups,
that generalize Power’s result is due to de la Harpe ([19]).

Another important question about reduced (amalgamated) free products is the

computation of their K-theory. The K-theory of reduced free products of nuclear
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C*-algebras was determined by Germain in [17] in terms of the K-theory of the
underlying C*-algebras. He gave partial results in [18] for the K-theory of some
reduced amalgamated free products. The question of determinig the K-theory of
reduced C*-algebras of amalgams of discrete groups in terms of the K-theory of the
reduced C*-algebras of the underlying groups was resolved completely by Pimsner in
(30].

In [2] Anderson, Blackadar and Haagerup studied the scale and the positive cone
of Kq for the Choi algebras. In [16] Dykema and Rgrdam extended their result to
the case of reduced free products of C*-algebras.

One somewhat related C*-algebra construction is the full amalgamated free prod-
uct of C*-algebaras which we mention and compute the K-theory of a very special
case.

The structure of this report is as follows:

¢ In the next section we will briefly recall the notion of reduced free product of C*-
algebras and give some of its properties. After that we will recall the notion of reduced
amalgamated free product of a family of C*-algebras (introduced by Voiculescu in [39)])
in more details and explain the actual construction. We will also recall the definition
of the full amalgamated free product of C*-algebras.

e In Chapter II we compute the K-theory of the full amalgamated free product
C*-algebas A xp C' in the case when the C*-algebra C' is an ideal in both of the
C*-algebras A and B.

e In Chapter III we give a necessary and sufficient condition for simplicity and
uniqueness of trace of the reduced free product of finite family of finite dimensional
C*-algebras.

e In Chapter IV we give a sufficient condition for simplicity and uniqueness of

trace for the reduced amalgamated free products of C*-algebras. We also give a



sufficient condition for the positive cone of the Kg group to be the largest possible.

B. Definition and Properties of Free Products

We recall the definitions and some of the properties of the reduced free product,
the reduced amalgamated free product and the full amalgamated free product of

C*-algebras. We begin by recalling the definition of freeness ([39]).

Definition B.1. The couple (A, ¢), where A is a unital C*-algebra and ¢ a state is

called a C*-noncommutative probability space or C*-NCPS.

Definition B.2. Let (A,¢) be a C*-NCPS and {A;li € I} be a family of C*-
subalgebras of A, s.t. 14 € A;, Vi € I, where I is an index set. We say that the
family {A;|i € I} is free if ¢(a1...an) = 0, whenever a; € A;; with iy # iy # ... # in
and ¢(a;) = 0, Vj € {1,..n}. A family of subsets {S;li € I} C A is x-free if
{C*(S; U{1a})|i € I} is free.

Let {(A;, ¢;)|i € I} be a family of C*-NCPS such that the GNS representations
of A; associated to ¢; are all faithful. Then there is a unique C*-NCPS (A, ¢) =

I(AZ-, ¢;) with unital embeddings A; < A that has the following properties:

(1
(2) the family {A;|i € I'} is free in (4, ¢)

m %

) ¢

)

(3) A is the C*-algebra generated by JA;
iel

(4)

the GNS representation of A associated to ¢ is faithful.
And also:

(5) If ¢; are all traces then ¢ is a trace too ([39]).
(6) If ¢; are all faithful then ¢ is faithful too ([11]).
In the above situation A is called the reduced free product algebra and ¢ is called

the free product state. Also the construction of the reduced free product is based on



defining a free product Hilbert space, which turns out to be $4 - the GNS Hilbert
space for A, associated to ¢ (GNS stands for Gel'fand, Naimark, Segal).
Now we will recall the construction of reduced amalgamated free products of

C*-algebras of Voiculescu, following closely [39] and [14, §1].

Definition B.3. Suppose that we have unital C*-algebras 1o € B C A and condi-
tional expectation € : A — B. Suppose that we have a family B C A, C A, L € I of
C*-subalgebras of A, all of them containing B. We say that the family {,|. € I} is E-
free if for any elements a,, € A, , k=1,...,n, such that vy # ta,t2 # t3,...ln—1 F Ln
and €(a,, ) =0, we have €(a,a,,---a,,)=0. We say that the elements a, € A,. € I
are €-free if the family {C*(BU{a,})|t € I} is E-free. This includes the case B = C

and & being a state.

Let I be a index set, card(l) > 2. Let B be a unital C*-algebra and for each ¢ € I
we have a unital C*-algebra A,, which contains a copy of B as a unital C*-subalgebra.
We also suppose that for each ¢ € I there is a conditional expectation F, : A, — B,
satisfying

Vae€ A, a#0, 3z € A,, E(x%a"ax) # 0. (1.1)

The reduced amalgamated free product of (A,, E,) is denoted by
(A E) = Lgl(AL, E,).

The construction in the case B # C depends on some knowledge on Hilbert
C*-modules (see Lance’s book [24] for a good exposition).
M, = L*(A,, E,) will denote the right Hilbert B-module obtained from A, by

12 where

separation and completion with respect to the norm |a|| = |[{a,a),]|
(ay,a2)n, = E,(ajaz). Then the linear space L(M,) of all adjointable B-module op-

erators on M, is actually a C*-algebra and we have a representation 7, : A, — L(M,)



defined by Wb(a)(;’ = ad , where by a we denote the element of M,, corresponding
to a € A,. m, is faithful by condition (1.1). Notice that m,|g : B — L(M,) makes
M, a Hilbert B — B-bimodule. In this construction we have the specified element
&, el 1/\,4L € M,. We call the tripple (7,, M,,,) the KSGNS representation of (4,, E,),
ie. (m, M, &) =KSGNS(A,, E,) (KSGNS stands for Kasparov, Steinspring, Gel'fand,
Naimark, Segal).

For every right B-module N one has operators 6,, € L(N) given by 0,,(n) =
z(y,n)n (z,y,n € N). The C*-subalgebra of L(N) that they generate is actually an
ideal of £L(N), which is denoted by IC(V). It is an analogue of the C*-algebra of all
compact operators on a Hilbert space.

Since for every ¢ € I, 0, ¢, € L(M,) is the projection onto the Hilbert B — B-
subbimodule &, B of M, it follows that & B is a complemented submodule of M,.
Therefore if P° = 1 — g, ¢, then 7,(b)P° = P°m,(b) € L(M,) for each b € B. We
define M} X PeM,. If we view & “/ 15 as an element of the Hilbert B — B-bimodule

B, we can define
M =¢(B@ & M; ®@p My, ®p -+ @p M, (1.2)

V172,273 sl —1F L
where ®p means interior tensor product (see [24]). The Hilbert B — B-bimodule M
constructed above is called the free product of {M,,t € I} with respect to vectors
{&,,1 € I} and is denoted by (M, &) = L;kI(ML,fL).
For each ¢ € I set

M) =nDB® @ M ®p M, ®p -+ ®p M, , (1.3)

neN

L1FL2,L2F L3 e sbn—1Fn

L17#L



where 7, ©ry B € B. We define a unitary operator
V,: M, ®p M (1) — M
given on elementary tensors by:

€l @] — ¢,
[(]® )+ ¢, where ¢ € M, C M

El®[G® @G~ G® - ®(,where (; € M,; and ¢ # v1,t1 # to, .., ln—1 # Ln
(]@[G® ®G—(RG R -+, where ( € M, and

GG € M, with ¢ # 11,01 # Lo, ..., ln—1 7 Ln.

Let A\, : A, — L(M) be the x-homomorphism given by A (a) = V,(7,(a) ® 1)V*.
Condition (4.1) implies that A, is injective. Then A is defined as the C*-subalgebra
of L(M), generated by LLEJI)\L(AL), and F : A — B is the conditional expectation,
given by E(a) = (£, a(&))r. Note that if b € B, then A, (b) € L(M) does not depend
on . A(b) gives the left action of B on M. Because of condition (4.1) for each
t € I we have unital embeddings A, — A, which come from the %-homorphisms
A+ A, — L(M). We will denote by 7 the representation 7 : A — L(M) arising
from the reduced amalgamated free product construction. We actually have that
(m, M, &) = KSGNS(A, E).

Set A} = A, Nker(E,). Fora, € A7, (; € M,; with ¢1,...,1, € I,n > 2, and

Lj # Lj+1 we have

p

aQ®G®: G, it o # 0,

MG @ ®G6) = (a(¢) = &l al@)) © O @ Gt (14)

7TL2(<£L17a(<1)>)C2®"'®Cn7 if 1 = l1-



We will omit writing A, and 7, if this leads to no confusion.
Finally let us recall the definition of the full amalgamated free product C*-

algebra.

Definition and Theorem B.4. Let I be an index family, card(I) > 2 and suppose
for each v € I we have a C*-algebra A,. Then:

(I) The full free product C*-algebra of the C*-algrbras {A,|v € I} is the C*-algebra
L;kIAL obtained by separation and completion of the algebraic free product (over C) with
respect to the C*-semi-norm

el = s (g m)@)le € Alge( Y A)),
where the supremum is taken over all x-representations m, : A, — B(H,).
Denote by j, : A, — LzIAL the canonical inclusion.

(1) Let B be a C*-algebra. Suppose that for each v € I A, contains a copy of
B, i.e. there is an injective x-homomorphism i, : B — A,. The full free product of
{A,|t € I} amalgamated over B, LzI(AL’ B), is the quotient of the C*-algebra {A,|. €
I} by the ideal generated by

U 0 i4(b) = jy 0 iy (b)[b € B}
p#q

We will denote the canonical inclusions j, : A, — *I(A” B) in this case too.
Le
The full amalgamated free product *](AL, B) has the following property:
Le

Proposition B.5. Let X be a C*-algebra and let o, : A, — X, + € I be *-
homomorphisms, such that o,, o1,, = «,, o1, for any t1,12 € I. Then there is a

unique x-homomorphism o : * (A,, B) — X which satisfies a, = aoj, for each 1 € I.

*
el
In the case card(/) = 2, i.e. if we have C*-algebras A D C' C B, we will denote

the full amalgamated free product by A x¢ B.



For a good exposition of and many properties of full amalgamated free products

of C*-algebras (pushouts) see[29].



CHAPTER II

ON THE K-THEORY OF FULL FREE PRODUCT C*-ALGEBRAS WITH
AMALGAMATION OVER IDEALS

A. Introduction and Some Definitions

Cuntz conjectured [7, Remark 2] that there is an exact sequence for the K-groups
of the amalgamated free product A *c B, where C' is a C*-subalgebra of both the
C*-algebras A and B of the form:

Ko(C) —— Ko(A) ® Ko(B) —— Ko(A ¢ B)

T l (2.1)

Ky (A*c B) —— K (A) @Ky (B) ——  Ki(C)

For the definition and properties of amalgamated free products (pushouts), see
[29]. Here K, are the usual K-groups (see [5]).

In [7] Cuntz proved the conjecture for the case when C' is a retract in both
A and B i.e. there are *-homomorphisms py : A — C and pg : B — C, s.t.
palc = pele = id|c.

In [18] Germain conjectured the existence of a six term exact sequence, similar to
the upper one for the Kasparov’s K K-groups and proved there that this conjecture
is true for the case, where A and B are separable and relatively K-nuclear to C' (a
notion that he defines there). For the definition and properties of K K-groups, see
Kasparov’s paper [22] also [5].

In [37] Thomsen proved the exactness of the six-term sequence (conjectured by
Germain) for the functors KK (D, *) and KK(x, D), for C' finite and D separable.
In the same paper he proved the exactness of a six-term sequence for the functors

E(x, D) and E(D, ) for the case when D is separable and either C' is nuclear or
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if there are conditional expectations Fy : A — C' and Eg : B — C. Here E is the
Cones-Higson’s E-functor. In all cases A and B have to be separable. For information
on the E-groups, see for example [34].

In this paper we prove that the above six term sequence is exact for the F-theory
of A xc B for the case when C' is an ideal in both A and B, where F is a covariant,
homotopy-invariant, half-exact, stable functor form the category C* of all C*-algebras
to the category Ab of all abelian groups.

We will be interested only in covariant functors. Note that KK(*, D) and E(x, D)
are contravariant and the six term sequence is exact for the cases mentioned above
with all arrows reversed.

We give some definitions.

Definition A.1. A covariant functor F from C* to Ab is called stable if whenever
f:A— AR K is given by f(a) = a ® e, where e is a rank 1 projection in K -
the C*-algebra of the compact operators on a separable Hilbert space, and A is any

C*-algebra, then F(f) : F(A) ~ F(A® K) is an isomorphism.

Definition A.2. A functor F from C* to Ab is called homotopy invariant if
whenever fi, fo : A — B are homotopic x — homomorphisms (in the topology of

pointwise convergence) between C *-algebras A and B, then F(f1) = F(f2).

Definition A.3. A covariant functor F from C* to Ab is called half-exact if when-
ever we have a short exact sequence of C*-algebras 0 — I — A — B — 0, then the

induced sequence in Ab is exact in the middle term: F(I) — F(A) — F(B).

Definition A.4. A functor F from C* to Ab is called additive if whenever fi, fs :
A — B are x-homomorphisms between C*-algebras such that fi(a).f2(b) = 0 for every
a,b € A, then we have F(f1 + f2) = F(f1) + F(f2).
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Examples of covariant, homotopy-invariant, half-exact, stable functors are K(x)
as a functor from C* to Ab, E(D, ) as a functor from SC* - the category of all
separable C*-algebras to Ab, where D is separable (see [34], or [5, chapter 25]) and
also KK(D,* ® E) as a functor from C* to Ab, for D and F nuclear (see [22, §7,
Theorem 2]).

With A x B we will denote the free product of A and B with amalgamation over

the zero C*-algebra.

B. Some Results by Cuntz

We will need the following results:

This theorem is due to Cuntz (see [8]):

Theorem B.1. Let F be a covariant, homotopy-invariant, stable, half-exact functor
and let mqg : A — Ax B and ng : B — A * B be the canonical inclusions. Then

F(m4) @ F(7wp) is an isomorphism.
From [8] we have:

Lemma B.2. Every covariant, stable, half-exact, homotopy invariant functor is ad-
ditive.

Now take a short exact sequence 0 — J 9 A% B — 0. We define Cy =
{(a,b) € A® CB | q(a) = b(0)} to be the cone of ¢, where CB = B® C([0,1)) is the
cone of B and SB = B® C((0,1)) is the suspension of B. Let also S"B = SS" !B
be the n-th suspension of B

We define also e : J — C; by j +— (j,0) and i : SB — C, by b— (0,5). It’s easy
to see that these maps are correctly defined.

Now, using Lemma B.2 and [5, Corollary 21.4.2] we get that F(e) is an isomor-

phism for every stable, half-exact, homotopy invariant functor F.
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This is from [5, Theorem 21.4.3|. See also [22, §7, Lemma 5]:

Theorem B.3. Let F be a covariant, additive, homotopy invariant, half-exact functor
from C* to Ab. Then F(S"x) is a homology theory. In other words if 0 — J ERY/N

B —0is a short exact sequence of C*-algebras we have the long exact sequence:

Here 0 is F(e)™' o F (i) with e and i defined above. Moreover O is a natural map.
Combining [8, Theorem 4.4] and Theorem B.3 we get:

Theorem B.4. For every covariant, stable, half-exact, homotopy invariant functor
F and every short exact sequence of C *-algebras 0 — J L AL B0 the following

s1T term sequence 1S exact:

F() 22 gy 2 g

aT &

F(5q)

F(SB) L% psa) L psy)
Here O is the composition of S0 : S*B — S.J and the Bott isomorphism F(S?B) ~
F(B).
We will crucially need the naturality condition (for 0) from Theorem B.3, so we
will give a proof.

Lemma B.5. The map 8 (9) is a natural map.

Proof. Suppose we have the following commutative diagram of C*-algebras, where

the rows are exact:
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We have to prove that the following diagram commutes:

F(SB) —2— F(J)

F(Sv)l lF(a)
F(SB) —2— F(J)
But this follows from the following commutative diagram:

F () F(e)~*

9:F(SB) F(C,) F(J)

F(Swl F(é)l lF(a)

i e’ —1
o F(SB) 22 ro,) 22 w()
Here 0 is the cannonical map from C; to Cy, which, of course, makes the upper
diagram commutative.

The result for 9 follows from naturality of 0 and naturality of the Bott periodicity
map (see [8, Theorem 4.4]). O

C. Our Notations and Settings

The settings from this section will be used in the consecutive one. Suppose we

are given two exact sequences of C*-algebras (j = 1,2):

0 I -2, 4 -5 B, 0 (2:2)

From this we have the following six term exact sequences (j = 1, 2):

F(i;) F(r;)
—_— ——

F(I) F(4;) F(B))

WJT l% (2.3)

F(SB;) <59 p(sa;) S0 p(sr)

By [29, Theorem 9.3] we have the following exact sequence:

0 I —2 5 Ayx; Ay —2 5 B xBy —— 0 (2.4)




14

and that the following diagrams commute (j = 1,2):

0 J— A4 —= B —0
N =
0 I b A1 X7 A2 L) B1 * BQ —— 0

where s; and ¢; are the cannonical inclusions.
Now applying F to (3.11) we obtain the following diagram with exact rows:

. —— P4, W wB) 2 RS ——

F(Sj)l lF(tj) H (2.6)
S F(A 5 Ay) 29 B(By « By) —2 F(SI) —— ...
It follows from Lemma B.5 that (2.6) commutes, so ¢; = 0 o F(¢;). Therefore

w1+ g =00 (F(t1) + F(t2)). This yields
0 = (p1+p2) o (F(tr) + F(t2))™ (2.7)

Lemma C.1. The following siz-term sequence is exact:

F(p)

F(I) O A 4 A — F(B)) @ F(B,)
W1+W2T l%ﬂ% (28)
F(SB) @ F(SBy) < F(S(A, #1 Ay)) &2 R(s1)

where r = (F(ty) + F(t2)) "' o F(q) and Sr = (F(St;) + F(Sty)) o F(5q).

Proof. This follows immediatelly from (2.7) and the following six-term exact sequence,
corresponding to (3.10):

F() 22 FA s 4) 29 BB+ By)

5T la (2.9)

F(5q) F(5p)
%

F(S(A; %y Ag)) «———  F(SI)
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For O we argue similarly as for 9. O]

D. The Proof of the Main Result

We are now ready to state and prove our main result.

Proposition D.1. If we suppose everything from the previous section, the following
s1T term sequence 1S exact:

F(_[) (F(i1),—F(i2)) F(s1)+F(s2)

F(Al) EB F(AQ) F(Al X7 Ag)

dl |
F(S(A; %1 Ay)) G2 poga ) @ F(sA,) LEFER) F(SI)( |
2.10

where o : F(Ay %7 Ag) — F(S1) is equal to ¢ or, where ¢ : F(B;) ®F(By) — F(SI)
is given by (a1, as) — w1(a1) and B : F(S(A1 %1 Ay)) — F(I) is equal to w|oSr, where
F(SBy) @ F(SBy) — F(I) is given by (a1, as2) — wy(ay).

Proof. We have to show exactness only at terms F(7), F(A;) ®F(A;) and F(A; %7 As)
and the exactness at the other three terms will follow from the same argument, applied
to the functor F(Sx).

(i) Exactness at F(I):

Im(B) = Im(wjor) = w|(Im(r)) = (from the exactness of (2.8)) = w|(Ker(w;+
W) = W ({(@b) | wile) = —w®)}) = {wile) | B,wr(e) = —wr()} = {wr(a) |
wi(a) € Im(wa)} = Im(wy) N Im(wy) = (from the exactness of (2.3)) = Ker(F(iy)) N
Ker(F(iy)) = Ker((F(iy), —F(i2)).

(ii) Exactness at F(A;) & F(Ay):

For i € I we have

(F(s1) + F(s2)) o (F(i1), =F(i2))) (1) = F(s1041)(¢) — F(s2 022) (i) =
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= (from the commutativity of (3.11)) = F(p)(¢) — F(p)(i) = 0.

So Im((F(i1), —F(i2))) C Ker(F(s1) + F(s32)). Suppose (a,b) € F(A;) ® F(A2)
is such that F(s1)(a) + F(s2)(b) = 0. We will show that (a,b) € Im((F(i1), —F(i2)))
and this will prove case (ii).

We have
0=F(qosi)(a)+F(qosy)(b) = (from the commutativity of (3.11)) =

= F(tiom)(a) + F(ty 0 m)(b) = (F(t1) + F(t2))(F(m1)(a), F(m2)(b)).

Since F(t;) + F(t2) is an isomorphism we get F(m)(a) = F(m2)(b) = 0.
The exactness of (2.3) yields elements a',0" € F(I), s.t. F(i1)(a’) = a and F(i)(b') =

b. We compute
0="F(s1)(a) + F(s2)(b) =F(s1041)(a") + F(sg 05)(b) =

= (from the commutativity of (3.11)) =F(p)(a' + V') = d +¥V € Ker(F(p)).

Using the exactness of (2.8) we get
Ker(F(p)) = Im(wy +ws) = wi1(SBy) +wa(SBs2) = (from the exactness of (2.3)) =

= Ker(F(i1)) + Ker(F(iz))(as subgroups of F(I)).

Thus we can write @’ + b = ¢ + ¢ € F(I), where ¢; € Ker(F(i;)).
Now denote ~v ©g ci(= =0 + c3). We have F(i1)(y) = F(i1)(d' — 1) = a +
0 = a and analogously F(is)(y) = F(i2)(=V + ) = —b+0 = —b. So (a,b) €
Im((F(i1), —F(iz))), just what we needed.

(iii) Exactness at F(A; *; As):
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For any a; € F(4;),7 = 1,2 we have
070 (F(51)+F(s2)) (01, 82) = 9,0 (F(tr) +F(t2) 1 oF(g) o (F(s1)+ F(s)) (an, a2) =

= ¢ o (F(t) +F(t)) " 0 F(q) o F(s1)(@1) + ¢ o (F(t) + F(t2)) ™ 0 F(q) o F(s:)(az) =
— (from the commutativity of (3.11)) =
= o (F(11) +F (1)) oF (1) oF(m1)(ar) + 0 o (F(t2) + F(t2)) ™ o F (t2) o F (my) (az) =
= ¢ o (F(t) + F(t2)) ™ o (F(t1) + F(t2))(F(m) (@), F(m)(az)) =

= O} (F(m1)(a1), F(m2)(az)) = w1 (F(m)(a1) = 0,

since ¢y 0F(m;) = 0, which follows from the exactness of (2.3). So Im(F(s1)+F(s2)) C
Ker(a).

Suppose now that ¢ € Ker(a). First we will show that r(¢) € Im(F(m)) &
Im(F(ms)).
From the exactness of (2.8) we see that r(e) € Ker(p; + ¢2), therefore 3(by,by) €
F(B,) @ F(By), s.t. r(e) = (b1,be) and ¢1(by) + @a2(by) = 0. But e € Ker(¢) or)
implies 0 = ¢} or(e) = @ ((b1,b2)) = ¢1(b1), so by € Ker(p1), so also by € Ker(ys).
Since (2.3) is exact then Ja; € F(4;),(j = 1,2), s.t. F(m;)(a;) = bj, so (b1, b)) =
F(m)(a1) + F(m2)(asz).

We will now show that for an element 6 € F(A; x; Ay), 7(0) € Im(F(m)) +
Im(F(ms)) implies 0 € Im(F(s1) + F(sz)). This will yield € € Im(F(s1) + F(s2)),
just what we need.

So suppose (aq,as) € F(A;) @ F(Ay), s.t. r(0) = F(m)(a1) + F(m)(az). Then
F(q)(0) = (F(t1) + F(t2)) o (F(7)(ar), F(m)(az)) =

=F(t1) o F(m)(a1) + F(t2) o F(m2)(az)
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and from the commutativity of (3.11) we get F(q)(0) = F(q)o (F(s1)(a1) +F(s)(as)).
So F(q)(6 — F(s1)(a1) — F(ss)(as)) = 0. Now from the exactness of (2.9) we get 36 €
F(I), s.t. F(p)(8) = 0—F(s1)(a1)—F(s2)(a2) and therefore 6 = [F(p)(8)+F(s1)(ar)]+
[F(s)(as)]. Using that (3.11) is exact gives us F(p)(8) = F(s;)oF(i;)(8) so this means
0 = [F(s1)oF (i1)(0) + F(s1)(ar)] + [F(s2)(az)] = [F(s1) o (F(i1)(6) +a1)] + [F(s2)(az)].

This proves (iii) and the proposition. O
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CHAPTER III

REDUCED FREE PRODUCTS OF FINITE DIMENSIONAL C*-ALGEBRAS

A. Introduction

In this section we give a necessary and sufficient condition for simplicity and
uniqueness of trace of reduced free products of finite family of finite dimensional C*-
algebras. We will use the properties of reduced free products of C*-algebras which
we gave in Chapter 1. Beside the definition and properties of reduced free products

we gave in Chapter I we will use the following lemma:

Lemma A.1 ([16]). Let I be an index set and let (A;, ¢;) be a C*-NCPS (i € I),
where each ¢; is faithful. Let (B,1) be a C*-NCPS with 1 faithful. Let

(A,0) = i;"I(An@)-

Given unital x-homomorphisms, m : A; — B, such that ¢ o m;, = ¢; and
{mi(A;) Yier is free in (B,1)), there is a x-homomorphism, m : A — B such that

T|la, =7 and Yo = ¢.

From now on we will be concerned only with C*-algebras equipped with tracial
states.

We will make use also of the following result due to Avitzour:
Theorem A.2 ([3]). Let
(2, 7) = (A, 74) * (B, 73),

where T4 and Tp are traces and (A, T7a) and (B, Tg) have faithful GNS representations.
Suppose that there are unitaries u,v € A and w € B, such that T4(u) = Ta(v) =

Ta(u*v) =0 and 7p(w) = 0. Then A is simple and has a unique trace T.
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Note: It is clear that uw satisfies 7((uw)") = 0, Vn € Z\{0}. Unitaries with this

property we define below.

B. Statement of the Main Result and Preliminaries

We adopt the following notation:
If Ag, ... , A, are unital C*-algebras equipped with traces 7y, ... , 7, respectively, then

Po p1 Pn
A=A P A P ... 6D A, will mean that the C*-algebra A is isomorphic to the direct
[a) aq Qn

sum of Ay, ... , A,, and is such that A; are supported on the projections p;. Also A
comes with a trace (let’s call it 7) given by the formula 7 = ago + g7 + ... + @, Tn.

Here of course ag, aq, ... , a,, >0and ag+ a3 +... + o, = 1.

Definition B.1. If (A,7) is a C*-NCPS and v € A is a unitary with 7(u") = 0,
Vn € Z\{0}, then we call u a Haar unitary.

If 14 € B C A is a unital abelian C*-subalgebra of A we call B a diffuse abelian
C*-subalgebra of A if T|p is given by an atomless measure on the spectrum of B. We

also call B a unital diffuse abelian C*-algebra.
From [15, Proposition 4.1(i), Proposition 4.3] we can conclude the following:

Proposition B.2. If (B, 1) is a C*-NCPS with B-abelian, then B is diffuse abelian
if and only if B contains a Haar unitary.

1—q

P 1-p q
C*-algebras of the form (C &P 1(} ) * (((ﬁ: @ C) have been described explicitly in

[2] (see also [13]):

Theorem B.3. Let 1 > a = (32 5 and let

1
2

A4n)=(Cao C)sCoC
(A1) =(Co C)+Ca C).
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If a > 3 then
pA(1—q) PAg
A= C @C<[a7b]7MQ<C))€B C )
a—p3 a+pB—1

for some 0 < a < b < 1. Furthermore, in the above picture

t(1—1t) 1-—t
and the faithful trace T is given by the indicated weights on the projections p A (1 —q)
and p A q, together with an atomless measure, whose support is |a, b].
Ifa=p8> % then

A
A={f:]0,b] = My(C)| f is continuous and f(0) is diagonal } ® (ol

oz—i—ﬁ—l7

for some 0 < b < 1. Furthermore, in the above picture

q= @1,
t(1—1t) 1—t

and the faithful trace T is given by the indicated weight on the projection p/Aq, together

with an atomless measure on [0,0].

If a=p0= % then
A={f:]0,1] — My(C)| f is continuous and f(0) and f(1) are diagonal }.

Furthermore in the above picture
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t1—t) 1-—t

and the faithful trace T is given by an atomless measure, whose support is [0, 1].

The question of describing the reduced free product of a finite family of finite
dimensional abelian C*-algebras was studied by Dykema in [12]. He proved the fol-

lowing theorem:

Theorem B.4 ([12]). Let

Qn

q0 q1 dm
(A, ¢) = (AO@C@ ea@) (go@g:@...@ém,

where g > 0 and By > 0 and Ay and By are equipped with traces ¢(po) ' ¢|a,,
(q0)'P|, and Ay and By have diffuse abelian C*-subalgebras, and where n > 1,
m >1 (if ag =0 or By =0, or both, then, of course, we don’t impose any conditions
on Ay or By, or both respectively). Suppose also that dim(A) > 2, dim(B) > 2, and
dim(A) + dim(B) > 5.

Then

pz/\QJ

A= 97:[00 @ @ aﬁ-ﬁz—l

(¢',5)eL+

where Ly = {(4,7)|1 <i<n,1<j<mando;+5; > 1}, and where Ay has a unital,
diffuse abelian sublagebra supported on ropy and another one supported on roq; .

Let Lo ={(i,j)|1 <i<n,1<j<mand a; + §; = 1}.

If Lo is empty then Ao is simple and ¢(ro) ' ¢|a, is the unique trace on Ay.

If Ly is not empty, then for each (i,7) € Lo there is a x-homomorphism 7 jy :

Ay — C such that 7 ;) (rop;) = 1 = 745y (r0g;). Then:
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de
(1) %0 N ker(m)
(ivj)eLO
is simple and nonunital, and ¢(ro) ' P|ay, is the unique trace on Agp.

(2) For each i € {1,..n}, rop; is full in Ao N () ker(m ;).
(i’,j)ELo
il i
(3) For each j € {1,...,m}, roq; is full in Ao () ker(mq ).
(i,j’)ELo
J'#3
One can define von Neumann algebra free products, similarly to reduced free
products of C*-algebras. We will denote by M, the C*-algebra (von Neumann alge-
bra) of n x n matrices with complex coefficients.
Dykema studied the case of von Neumann algebra free products of finite dimen-

sional (von Neumann) algebras:

Theorem B.5 ([9]). Let

Po p1 Pk
A=L(F;)oM,, &..oM,,

@Q aq Qg

and
4o

q1 4
B =L(F,) ®My, & ... ®M,,,
Bo B b

where L(Fy), L(F,) are interpolated free group factors, oy, By > 0, and where dim(A) >
2, dim(B) > 2 and dim(A) + dim(B) > 5. Then for the von Neumann algebra free
product we have:
AxB=LF)e P Mﬁii,g‘),
(ig)eLy T4

where Ly = {(i,7)[1 <i <k, 1 <5 <1, (%) + (%) > 1}, N(i,7) = max(n;, m;),
K J
Yij = N(i,5)* (% + % —1), and fi; < p; A gj.
i J
Note: t can be determined from the other data, which makes sense only if the

interpolated free group factors are all different. We will use only the fact that L(F})

is a factor. For definitions and properties of interpolated free group factors see [32]
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and [10].
In this paper we will extend the result of Theorem B.4 to the case of reduced
free products of finite dimensional C*-algebras with specified traces on them. We will

prove:

Theorem B.6. Let
@,0) = (A @M, & ... @ M,,) * (B &My, & ... © M,,),
ap o ag Bo B1 Bi

where oy, Bp > 0, a5 > 0, fori = 1,..,k and 3; > 0, for j = 1,...,1, and where
d(po)tdla, and d(qo) " d|p, are traces on Ay and By respectivelly. Suppose that
dim(A) > 2, dim(B) > 2, dim(A) + dim(B) > 5, and that both Ay and By contain
unital, diffuse abelian C*-subalgebras (if ag > 0, respectivelly Sy > 0). Then

A= 9{0 ® @ Mﬁii,j’)?

T (geny i

where L, = {(i,7)

o+ D > 1), NG, 5) = maz(ni, my), vy = NG, 5)2(% + 2 - 1),
[ J ? J

fi; < piNgj. There is a unital, diffuse abelian C*-subalgebra of Uy, supported on fp,
and another one, supported on fq.

If Lo = {(4,4)

Lq is not empty, then V(i,7) € Lo, 3my) @ Ro — Mg, ) a unital x-homomorphism,

2+ % = 1}, is empty, then Ay is simple with a unique trace. If
T J

such that 7 ;(fpi) = 75 (fq;) = 1. Then:

(1) Ao wf (\  ker(m( ;) is simple and nonunital, and has a unique trace

(ivj)eLO
¢(f)71¢|%0'
(2) For each i € {1,....,k}, fp; is fullin Ao N () ker(mq ).

(¢',7)€Lo
i
(3) For each j € {1,...,1}, fq; is full in Ao () ker(m jny).
(4,5")€Lo
J'#5
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C. Beginning of the Proof - A Special Case

In order to prove this theorem we will start with a simpler case. We will study first

def (p

Pm
the C*-algebras of the form (A, 7) = 1 @..0 C)x (M, tr,) with 0 < oy < ... < .

a

We chose a set of matrix units for M,, and denote them by {e;;|i,j € {1,...n}} as

usual. Let’s take the (trace zero) permutation unitary

01 0

udéf . . . . 6 Mn.
0 0 1
10 0

We see that Ad(u)(e11) = uepu* = e,y and for 2 < i <n, Ad(u)(e;) = veu* =

€(i-1)(i-1)-

It’s clear that

A= O*<{p17 "'7pm}7 {eii};"l:h U)

Then it is also clear that
A= C*({u'piu™, ..., uipmu_i}?z_ol, {ei iy, u).
We want to show that the family
HC - u'piu™®, ..., ®C - u'ppu ' }2), {C-e11 @ ... &C- ey }}

is free.

We will prove something more general. We denote

de * —_ —kyn—
BY ¢ ({ukplu ko i pnu k}k:(l),{en,...,em}).
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Let [ be an integer and l|n, 1 <! < n (if such [ exists). Let

B O ({{ubpru™, ot pru Y e, o e} {ul YY),

It’s easy to see that

* u l
C*({e1r, ..., enn }, {ul, u* }) =M= @...@M%CMW

~~
l—times

We will adopt the following notation from [13]:

Let (D,¢) be a C*-NCPS and 1p € Dy,....,Dy C D be a family of unital C*-
subalgebras of D, having a common unit 1. We denote by DX {d € Dl|¢(d) = 0}.
We denote by A°(Dg, D3, ..., Dy) the set of all words of the form dids---d; and of
nonzero length, where d; € Dy, for some 1 <i; < k and ¢; # 4441 forany 1 <¢ < j—1.

We have the following

Lemma C.1. If everything is as above, then:

(i) The family {{u*pyu=", . u*p,u="}7=5, {e11, ., enn}} is free in (A, 7). And

more generally if

w € AN(C*(pry ooy Pm)°s sy C’*(u”flplul*”, s u”flpmuk")o, C*(e11y ey €nn)°)s

then T(wu") =0 for all 0 <r <n—1.

(ii) The family {{u*Fpru=, ... uuFp,u™ 10, {en, .., enn, ul, u?, . um1}} s free

in (A, 7). And more generally if
w € N(C* (p1, ooy D)y ooy CF (W pyu ™ T,

C*<€11;~-~76nn7ula-"7un_l)o)a
then T(wu") =0 for all 0 <r <[—1.

Proof. Each letter a € C*({ufpyu=", ..., uFp,,u*}) with 7(a) = 0 can be represented
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as a = uFa/u™" with 7(a/) = 0, and o/ € C*({p1, ..., Pm })-
Case (i):
Each

w € A (C*(p1y ooy D) ooy OF (" ™™, ™ ™), C* (€11, vy €0m)°)

is of one of the four following types:

W= aq1ang Qg Braoy - Qg oty v,y 10 Qg (3.1)
w = Bragr - iy Baizy -+ g, B - Qi (3.2)

w = Bragr -+ gy Bacuzy -+ g, Be1, (3.3)

W= a1y Qg Bray s Qg faasy o v, B, (3.4)

where «;; € C*(uFiipyu®i ... ukiip,uki)° with 0 < kij < n —1, kijj # kijj+1) and
Bi € C* (€11 -y €nn)°.

We consider the following two cases:

(a) We look at ajivjiyy with age € C*({ubepyu=e, ... ukep,u=re})° for c = i, i+1.

We write oj. = ukCa;-Cu_kc with o, € C*({p1,....,pm})° for c = i,i+ 1. So aj;axji1 =

k

) o ki1—kg o) —k

1. Here o; and o, are free from u"+~% in (A, 7) (Notice
that we have k; 41 — k; #0).
(b) We look at ajijﬁj@(j+1)1 with ﬁ € O*<{611, ceey enn})o,

Q1)1 € C’*({ukﬂ'ﬂplu*kﬂl, s ukjﬂpmu*kjﬂ})o’

(0 ki o —k; kj k1o . ki ks _
aji; € C*({u™pru™7, ..., u™puu~"})°. Now we write aj;, = u o Tt and ojp1y1 =

ukj“a’(jﬂ)lu’kj*l with Oz;ij,a’(jﬂ)l € C*({p1, .-, Pm})°. We see that oy, Bja 1y =

ukﬂ'a;iju_kjﬂjukj“oz’(j+1)1u_kj+1. If kj = k;jiq then 7(u=% gukit) = r(ubiru=rig;) =
7(63;) = 0 since 7 is a trace. If k; # kj;q then 7(u=% B;uti+1) = 7(uh+1u=% ;) and

uki+17ki 3, € M, is a linear combination of off-diagonal elements, so 7(u*+1u =" 3;) =
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0 also. Notice that a; and oy, are free from ui B;ukit in (A, 7).

Now we expand all the letters in the word w according to the cases (a) and (b).
We see that we obtain a word, consisting of letters of zero trace, such that every two
consequitive letters come either from C*({p1,...,pm}) or from M,. So 7(w) = 0. It
only remains to look at the case of the word wu” which is the word w, but ending in
u". There are two principally different cases for wu” from the all four possible choices
for w:

In cases (3.1) and (3.2) ay;, = ufa, u™ for some 0 < k < n —1 with o, €
C*({p1, ., pm})°- So the word will end in w*aj; u"~*. If r = k then o;, will be the
last letter with trace zero and everything else will be the same as for w, so the whole
word will have trace 0. If k # r then 7(u"~*) = 0 and w" ™" is free from «j;, so the
word in this case will be of zero trace too.

In cases (3.3) and (3.4) if B,_ju” is the whole word then (;_ju" is a linear
combination of off-diagonal elements of M, and so its trace is 0. If not then
a1y, = uag, yy,, u " with of,_p, € C*({p1,....,pm})°. So the word ends
in
u a(tfl)it_lu*kﬁt_luf Similarly as above we see that 7(u=*3,_,u") = 0 for all values
of k and r. The rest of the word we treat as above and conclude that it’s of zero trace
in this case too.

So in all cases 7(wu”) = 0 just what we had to show.

Case (ii):

As in case (i)

w € AN (C*(p1y ooy Pm)°, ry C’*(ulilplul*l, ey ulilpmulfl)o, C*(e11, - €nns ul, . u"*l)o)
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is of one of the following types:

W= aq1aag Qg Bray - Qg fatisy o g, P10t Qg (3-5)
w = Prag1 -+ iy Bz -+ g, B - Qi (3.6)

w= PBrag - - 0422‘2520631 e 'Oétfut,lﬁtfh (3-7)

W= a1y Qg fragy - Qg Paasy o v, B, (3.8)

where o;; € C*(uFiipiubi, ... uFip,uFi)° with 0 < ki <1 —1 and kij # k(i1); and
B € C*(e11, ony €pm, ul, u?l, o un=h)e.

Similarly as case (i) we consider two cases:

(a) We look at ajivjiyy with aj. € C*({ubepyu=™e, ... ukep,u}), and 0 < k, <
I —1for ¢ =i,i+1. We write ajc = u*aju™" with o/, € C*({p1,...,pm})° for

k; —k

il kit k’oz] u” it Here of; and o, are free

c=1,1+1. It follows ajiajit1 = u i

from uF+17% in (A, 1) (and again ki1 — k; # 0).

(b) We look at aj;, Bja¢11y1 with 8; € C*({enr, ..., €nn }, {ul, u®, ..., u"71})°,
Qg € Cr({ubiripiu=hiv L ubivip, ki)
oy, € C*({ubipru™, . ubip,u})°, where in this case kj, ki € {0,...,1 — 1}.
Again we write aj;; = ukjoz;iju*kf and a1 = ukﬂ'“a’( (uhi+t with aﬂ , L €

J+1) (J+1)

* o — ok A —k; k; / —k;
C*({p1, s Pm})°,- We have oy, Bja (11 = u ol uTh B Ty U

We only need to show that 7(u=% gufi+1) = 0. 7(u™"Bubit1) = r(ubiviu="i3;) =
T(ukf“*kﬂﬂj). The case kj1; = k; is clear. Notice that if k;; # k; then 0 < kj1; —
k; <1—1. Isit clear that u*+1 =% .Span({e1y, ..., enn }) C M, consists of liner combina-
tion of off-diagonal elements. The same is clear for u*+17%i . Span({u!, v, ..., u""'}) C

M,,. It’s not difficult to see then that

w1k -Alg({e11, ..y €nn}, {u u? u" l})
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will consist of linear span of the union of the off-diagonal entries among {e;;|1 < 1,5 <
n} present in u*+17% . Span({eyy, ..., €nn}) and the ones present in

uki+1=ki . Span({u!, u?, ..., u""'}). This shows that u*+1 =% 3; will be also a linear span
of off-diagonal entries in M, and will have trace 0. So 7(u™%g;u*+1) = 0. In this
case also aj; and af;,,, are free from uw=ki Bkt in (A, 7).

We expand all the letters of the word w and see that it is of trace 0 similarly as
in case (i). For the word wu" with 0 < r <1 — 1 we argue similarly as in case (i).
Again there are two principally different cases:

In cases (3.5) and (3.6) au;, = uFo; u™ for some 0 < k < 1 —1 with of;, €
C*({p1, -.,pm})°. So the word will end in w*aj; u™". If r = k then o, will be the
last letter with trace zero and everything else will be the same as for w, so the whole
word will have trace 0. If k # r then 7(u"~*) = 0 and w"~" is free from «j;, so the
word in this case will be of zero trace too.

In cases (3.7) and (3.8) B;_ju” then this is a linear combination of off-diagonal
elements as we showed in case (ii)-(b). If not we write a1y, , = u"af,_,y, u™"

with 0 <k <l—T1and af, ,); € C"({p1,...,pn})°. So the word that we are looking

it—1

at will end in u*

a’(tfl)it_lu*kﬁt_lur. Since 0 < k,r <[ — 1 similarly as in case (ii)-(b)
we see that 7(u=%3,_ju") = 0. We treat the remaining part of the word as above and
conclude that in this case the word has trace 0.

So in all cases 7(wu”) = 0 just what we had to show.

This proves the lemma. O

From properties (5) and (6) of the reduced free product it follows that 7 is a

faithful trace. From Lemma A.1 it follows that

B=(C:-e1®..0C-e,,)* (ni (C-ufpiu™ @ ... C-ufp,u™))

1
k=0
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and that
E=C"({e11, .-, €nn, g, u u?, L ut l}) ( ((C vpute . e C- uk’pmu_k))

> (Ms @ ... & Ma) % (x (C .. @ C)).

1 k=0 a1

n n

Corollary C.2. If everything is as above:
(1) Forbe€ B and 0 < k < n — 1 we have 7(bu¥) = 0, so also 7(u*b) = 0.

(2) Fore € E and 0 < k <1 —1 we have 7(eu®) = 0, so also T(u¥e) = 0.

For (B,7|g) and (E,T|g) we have that H5 C H5 C Ha. If a € A we will denote
by a € $H4 the vector in $4, corresponding to a by the GNS construction. We will

show that

Corollary C.3. If everything is as above:
(1) Wk 9pLur9p for ki # ko, 0 < ky ke <n—1.
(2) uklﬁEJ_quf)E fO’I" k’l 7& kg, 0 S k’l,k’g S {—1.

Proof. (1) Take by, by € B. We have <uk161,uk262> = 7(uF2bybiu=") = 7(bobjul2 1) =
0, by the above Corollary.

(2) Similarly take 1, es € E, s0 (uF1é1, ub2éy) = T(uM2eseiu=1) = 7(egeul2=1) =

0, again by the above Corollary. ]
n—1
Now 94 can be written in the form $H4 = Pu'Hp as a Hilbert space because of
i=0

the Corollary above. Denote by P; the projection P; : H4 — $H4 onto the subspace

u'$Hp. Now it’s also true that A = @u'B as a Banach space. To see this we
i=0

notice that Span{u’B,i = 0,...n — 1} is dense in A, also that u'B, 0 < i <n—1

. —1 1 .
are closed in A. Now take a sequence {) ! u'by;}oe_; converging to an element

a € A (by; € B). Then for each i we have {P; S0 u'b,,i Py }oo_, = {Pjulby, Py},



32

converges (to PjaFy), consequently the sequence {b,,;}5°_; converges to an element
bjin BY0O<j<n—1. S0a=> " u'b. Finally the fact that «"* B NuB = 0, for
i1 # iy follows easily from u$Hp Nu2Hp = 0, for i; # iy and the fact that the trace
7 is faithful. We also have A = nEgBM

Let C' is a C*-algebra and Z;Ois a discrete group with a given action a : ' —
Aut(C) on C. By C' x I' we will denote the reduced crossed product of C' by I'. It
will be clear what group action we take.

Let’s denote by G the multiplicative group, generated by the automorphism
Ad(u) of B. Then G 2 Z,, and by what we proved above 4 = L*(G, H5).

Lemma C4. A2 Bxd

Proof. We have to show that the action of A on $4 ”agrees” with the crossed product

n—1 n—-1 ~
action. Take a = > byu* € A, by € B,k =0,1,...,n — 1 and take £ = > u*b), € Ha,
k=0 k=0
b, € B,k=0,1,...,n—1. Then

n—1n—1 n—1n—1
a(§) = ZZbkukumen = ZZuHm.(u’k’mbkuk*m)b%
k=0m=0 k=0m=0
n—1ln—1 o
5=0 k=0
This shows that the action of A on $4 is the crossed product action. O]

To study simplicity in this situation, we can invoke [26, Theorem 4.2] and [27,

Theorem 6.5, or with the same success, use the following result from [23]:

Theorem C.5 ([23]). Let I" be a discrete group of automorphisms of C*-algebra B. If
B is simple and if each 7y is outer for the multiplier algebra M (8) of B, Vy € T'\{1},

then the reduced crossed product of B by I', B x T', is simple.

An automorphism w of a C*-algebra 98 | contained in a C*-algebra 2l is outer for

2, if there doesn’t exist a unitary w € 2 with the property w = Ad(w).
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A representation 7 of a C*-algebra 2 on a Hilbert space §) is called non-degenerate
if there doesn’t exist a vector £ € §), £ # 0, such that 7(2)¢ = 0.

The idealizer of a C*-algebra 2 in a C*-algebra B (2 C B) is the largest C*-
subalgebra of B in which 2l is an ideal.
We will not give a definition of multiplier algebra of a C*-algebra. Instead we will
give the following property from [1], which we will use (see [1] for more details on

multiplier algebras):

Proposition C.6 ([1]). Each nondegenerate faithful representation m of a C*-algebra
2 extends uniquely to a faithful representation of M (L), and 7(M (L)) is the idealizer

of (L) in its weak closure.

Suppose that we have a faithful representation mof a C* algebra 2l on a Hilbert
space §). If confusion is impossible we will denote by 2 (in $)) the weak closure of
m(2) in B($).

To study uniqueness of trace we invoke a theorem of Bédos from [4].

Let 2 be a simple, unital C*-algebra with a unique trace ¢ and let (g, Hq, I;)
denote the GNS-triple associated to . The trace ¢ is faithful by the simplicity of 2
and 20 is isomorphic to my(A). Let a € Aut(). The trace ¢ is a-invariant by the
uniqueness of . Then « is implemented on $Hy by the unitary operator U, given by
Ua(a) = a(a) - Tg, a € A. Then we denote the extension of a to the weak closure A
(in Hg) of my(A) on B(Hy) by & et Ad(U,). We will say that « is g-outer if & is

outer for 2.

Theorem C.7 ([4]). Suppose U is a simple unital C*-algebra with a unique trace ¢
and that I is a discrete group with a representation a : I' — Aut(2A), such that o, is
p-outer ¥y € I'\{1}. Then the reduced crossed product A x I' is simple with a unique

trace T given by T = @ o E, where E is the canonical conditional expectation from
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A x T onto A.

p1 Pm
Let’s now return to the C*-algebra (A,7) = (C & ... & C) * (M, tr,), with

<%t am
ar < as < ... < a, If BCEFE C A are as in the beginning of this section, then
the representations of B, E and A on $4 are all nondegenerate. Also we have the

following;:

Lemma C.8. The weak closure of B in B($p) and the one in B(H4) are the same

(or B (in $) = B (in H24)). Analoguously, E (in Hg) = E (in H4).

Proof. For b € B C A we have b(u'h) = u'(Ad(u~'b))(h) for h € Hp and 0 < t <
n — 1. Taking a weak limit in B($)3) we obtain the same equation Vb € B (in $p):
b(uth) = u*(Ad(u~t)(b))(h), which shows, of course, that b has a unique extension
to B($4). Conversely if b € B (in $4), then since §p is invariant for B it will be
invariant for b also. So the restriction of b to $Hp is the element we are looking for.
Analoguously if e € F and if h0+ulh1+...+u"*lh%_1 € 9, thenfor0 <t <i—1
we have e(u'(ho+u'hy + ...+ u"'he 1)) = u'(Ad(u~")(e))(ho +u'hy + ...+ u" ' hn_y),
And again for an element € € F (in $5) we see that & has a unique extension to an
element of E (in $4). Conversely an element é € £ (in $,4) has $x as an invariant

subspace, so we can restrict it to $z to obtain an element in E (in Hg). ]
We will state the following theorem from [12], which we will frequently use:

Theorem C.9 ([12]). Let A and B be unital C*-algebras with traces Ty and o

respectively, whose GNS representations are faithful. Let
(Q:? T) = (m7 TQ[) * (%7 T‘B)'

Suppose that B # C and that A has a unital, diffuse abelian C*-subalgebra ®

(1g € ® CA). Then € is simple with a unique trace T.
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Using repeatedly Theorem B.4 we see that

B=(C-e1®...08C-e,) * (ZE;(C uFpiut @ L@ C-uFppu))
D €11 Enn
~ (U s C )+(Co.od,
maz{noam—n+1, 0} % %

where U has a unital, diffuse abelian C*-subalgebra, and where p = jé;uipmu_i.
We will consider the following 3 cases, for a; < as < ... < aup:
@) oy <1— 5.
(A1) ap =1 — 5.
(ITI) o, > 1 — #
We will organize those cases in few lemmas:
(1

Lemma C.10. If A is as above, then for o, <1 — # we have that A is simple with

a unique trace.

Proof. We consider:

(1) ap <1—12.

Then B = U % (?(1:1 S...P e(j:n) with U containing a unital, diffuse abelian C*-
subalgebra (from Theonrem B.4). T]LF‘rom the Theorem C.9 we see that B is simple with
a unique trace.

2)1 -1+ <o, <l-4

€11

Then B = (U @ nam@nJrl) * (((E D..P e&;n ) with U having a unital, diffuse abelian
C*-subalgebra. Using Theore;;l B.4 one nmore time we see that B is simple with a
unique trace in this case also.

We know that A = B x G, where G = (Ad(u)) = Z,. Since B is unital then
the multiplier algebra M (B) coinsides with B. We note also that since B (in )

is isomorphic to B (in $4) to prove that some element of Aut(B) is T-outer it’s



36

enough to prove that this automorphism is outer for B (in $,4) (and it will be outer
for M(B) = B also). Making these observations and using Theorem C.5 and Theorem
C.7 we see that if we prove that Ad(u') is outer for B (in $4), V0 < i < n—1, then it
will follow that A is simple with a unique trace. We will show that Ad(u’) is outer for
B (in $4) (we will write just * for % (in $4) and omit writting $4 - all the closures
will be in B(Hgq)) for the case oy, <1 — 5.

Fix 0 < k < n— 1. Since u*Hp L Hp it follows that u* ¢ B (in $H4). Sup-

pose Jw € B, such that Ad(u*) = Ad(w) on B. Then v*wu™ = www* = w and

k

U w*u*k —k

= ww*w* = w* and this implies that v*, v, w and w* commute, so it

k

follows u"w* commutes with C*(B,u*), so it belongs to its center. If k { n then

C*(B,u*) = A and by Theorem B.5 A (in $4)is a factor, so u*w* is a multiple of 14,
which contradicts the fact u* ¢ B. If k = [ | n, then C*(B,u*) = E and E (in $,4)
> F (in Hg) is a factor too (by Theorem B.5), so this implies again that u*w* is a
multiple of 14 = 1g, so this is a contradiction again and this proves that Ad(u") are

outer for B, V0 < k < n — 1. This concludes the proof. O
(IIT)

Lemma C.11. If A is as above, then for a,, > 1 — # we have A=Ay ® M, ,

n2am—n2+1

where Ag is simple with a unique trace.

P

Proof. In this case B = (U@ C )= ('3<1C11 ®.P

€

3

n

) ), where U has a unital,
Nom—n+

3=

Po e1iAp
diffuse abelian C*-subalgebra. Form Theorem B.4 we see that B = By @&  C @
nam—n—s—g
enn/\D
.o C ) with pp = 1 —e;1 ADp— ... — enn AP, and By being a unital, simple

namfnJr;

and having a unique trace. It’s easy to see that Ad(u) permutes {e;|1 < i < n}

and that Ad(u) permutes {u'p;u~|0 < i < n — 1} for each 1 < j < m. But

n—1

since p = /__\ u'pu" we see that Ad(u)(p) = p. This shows that Ad(u) permutes

=0
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{e;; AN p|l < i < n}. This shows that Ad(pou) is an automorphism of By and that
e11/\p enn/\p

Ad((1 = po)u) is an automorphism of C @..& C . If we denote G; = (Ad(pou))

e11/\p enn/\p

and G = (Ad((1 —po)u)), then we have A= Byx G & ( C &..& C )xGy Now
e11/\p enn/\p

it’s easy to see that ( C @ ...® C )x Gy =C*({enn AD,...,enn AP}, (1 — Po)u) =

[a¥)

(1 = po).C*({e11, -, enn ), u) = M, (because py is a central projection). To study

Ag = By x G we have to consider the automorphisms Ad(pou). From Lemma C.8

we see that

e11/\p enn/\p e11/\p enn/\p

B C ¢..¢& C (in9Hp)=ZByd C &..& C (in Ha).

This implies By (in $p,) = By (in H4,). This is because $H4, = poHa and
B, = poHp (which is clear, since 4, and 9Hp, are direct summands in $H4 and Hp
respectivelly). For some [|n if we denote Ejy = poE then by the same reasoning as

above

E = E() D (1 —ﬁo).C*({en, ...,e,m},ul) = E() D (M% D...D M%)

~
l—times

So we similarly have Ey (in $g,) = Eo (in $4,). We use Theorem B.5 and see
that A = L(F;) ® M,, and that

E=L(Fy)® Mz ®..0 M=),

~
l—times

for some 1 < t,t' < oo. This shows that A, and E, are both factors. Now for
Ad(pou*), 1 < k < n — 1 we can make the same reasoning as in the case (I) to show
that Ad(pou*) are all outer for By, V1 < k < n — 1. Now we use Theorem C.5 and
Theorem C.7 to finish the proof. Notice that the trace of the support projection of

M, e11 AP+ ... + enn A P, is n2ay, —n? + 1. O

(1)
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We already proved that Ad(u*) are outer for B, V1 < k < n— 1. Using Theorem

p € €nn
B4 wesee B=(U® C )= (((131 ® ... ®» C) with U having a unital, diffuse abelian
-1 1 L

n

C*-subalgebra. There are *-homomorphisms m; : B — C, 1 < ¢ < n with m;(p) =
mi(ei;) = 1, and such that By e/ nﬁl ker(mr;) is simple with a unique trace. Now if
1 <k <n-—1, then By Ad(uk)(B;):O: either 0 or By, because By and Ad(u*)(By) are
simple ideals in B. The first possibility is actually impossible, because of dimension
reasons, so this shows that By is invariant for Ad(u*), 1 <k < n — 1. In other words

Ad(u*) € Aut(By). Similarly as in Lemma C.4 it can be shown that
Ao ™ C*(By® Bou® ... ® Bou™ ) = By x {Ad(uF)|0 <k <n—1} C A
Lemma C.12. We have a short split-exact sequence:
0— Ay — AS M, — 0.
Proof. 1t’s clear that we have the short exact sequence

0—-By—B-->C&..5C—0,
N’

n—times

where 7 % (71, ..., Tp). We think 7 to be a map from B to diag(M,,), defined by

m1(b) 0o .. 0
0 ma(b) ... 0
- (b)
0 0 ... m(b)

Now since m;(p) = m;(e;;) = 1 and Ad(u)(e11) = uepu™ = ey, and for 2 <i < n,
Ad(u)(e”) = ueiiu* = e(i_l)(i_l), then i O Ad(u)(e(zﬂ)(lﬂ)) = T; O Ad(u)(]b') =1 for
1 <i<n—1andm,0Ad(u)(e11) = m,0Ad(u)(p) = 1. So since two *-homomorphism

of a C*-algebra, which coinside on a set of generators of the C*-algebra, are identical,
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we have m; 0 Ad(u) = m;41 for 1 <7 <n—1and m, o Ad(u) = 7. Define 7 : A — M,
n—1 n—1

by S bpub — ST w(b)WE (with b, € B), where W € M, is represented by the
k=0 k=0

matrix, which represent u € M,, C A, namely

01 .. 0

W
00 .. 1
10 ..0

We will show that if b € B and 0 < k < n — 1, then w(u*bu=*) = Wkr(b)W=*.
For this it’s enough to show that mw(ubu~!) = Wa(b)/W~!. For the matrix units
{E;j|1 <i,j < n} we have as above WE;W* = E;_1y-1) for 2 <i <n —1 and

WEHW* = Enn So

O 0 m(b) 0 0
- 0 ma(b) 0 — 0  m3(b) 0
0 0 7 () 0 0 m1(b)
m1(Ad(u)(b)) 0 0
_| 0 mAdwe) D = radwo,
0 0 o (Ad(u) (b))

just what we wanted.

Now for b€ B and 0 < k <n — 1 we have

Wkr (5 YWrEW*,
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Alsoif b,b' € B and 0 < k, k' <n — 1, then
(V). (buk)) = 7 (0 (W bu™ V) = 7 (0 (uF bu =))W

= 7(0) 7w (uF bu YW = 2 (0 YWF (D)W F WA = 7 (b )7 (bub).

This proves that that 7 is a x*-homomorphism. Continuity follows from continuity

n—1 )
of m and the Banach space representation A = €p Bu'.
i=0
n—1
Clearly Ag = @ Bou' as a Banach space. It’s also clear by the definition of 7
=0

7

that Ay C ker(7). Since Ag has a Banach space codimension n? in A, and so does
ker(7), then we must have Ay = ker(7).

From the construction of the map 7 we see that 7(e;) = Ej;, since w(ey;) = Ej;
and also 7(u*) = W*. Since {e;|1 <i < n}U{W*|0 <k <n—1} generate M,,, then
we have 7(e;;) = Ej;, so the inclusion map s : M, — A given by E;; — e;; is a right

inverse for 7. ]
From this lemma follows that we can write A = Ay @& M, as a Banach space.

Lemma C.13. If n is a trace on Aq, then the linear functional on A 7, defined by
n(ap ® M) = n(ag) + tr,(M), where ag € Ay and M € M, is a trace and 7 is the

unique extension of ) to a trace on A (of norm 1).

Proof. The functional n can be extended in at most one way to a tracial state on
A, because of the requirement 77(14) = 1, the fact that M,, sits as a subalgebra
in A, and the uniqueness on trace on M. Since 7(14) = 1, to show that 7 is a
trace we need to show that 7 is positive and satisfies the trace property. For the
trace property: If x,y € A then we need to show 7(zy) = n(yz). It is easy to
see, that to prove this it’s enough to prove that if ag € Ay and M € M, then

n(agM) = n(Mag). Since n is linear and ag is a linear combination of 4 positive



41

elements we can think, without loss of generality, that ap > 0. Then ay = ao/ 2a(l]/ ? and

Mal/Q, é/zM € Ay, so since 7 is a trace on Ay, we have n(Mag) = n((Ma(l)/Q)a(l)/Q) =
n(ag*(Mag'®)) = n((ag*M)ag®) = n(ag(ay*M)) = n(agM). This shows that i
satisfies the trace property. It remains to show positivity. Suppose ag & M > 0. We
must show n(ag & M) > 0. Write M = iimijeij and ag = iieiiaoeﬂ Since 7) is
a trace if i # j, then 7(e;a0ej;) = ﬁ(ej;:ejj;(?) = 0, so this shlo:v(x)fjs:shat n(ag ® M) =
i(mT + n(esape;)). Clearly ag @ M > 0 implies V1 < i < n, ez (ag ® M)e; > 0.
ZS:(? to show positivity we only need to show V1 < i < n 7(e;(ag + M)ey;) > 0, given
V1 < i < n,mye; + eiape; > 0. Suppose that for some i, my; < 0. Then it follows
that ejape;; > —myeq, so ejape;; € e;Ape;; is invertible, which implies e; € Ay,

that is not true. So this shows that m; > 0, and mye; > —ejape;. If {e,} is an

approximate unit for Ay, then positivity of 1 implies 1 = ||n|| = lim n(ey). Since 7 is

. 1 2 1
a trace we have lim n(e,e;;) = . Since V7, m“ey/ e”ea/ > —67/ euageue7 , then
R
" = My — 1/2 1/2 > i 1/2 /2
ro(mgeq;) = —— im n(mje;i€e,) = lim n(mme i€ ) 1m 77( €ii0Cii€, )
Y ol

= ll’Iyn 77(67;7;@067;7;67) = n(eiiaoeii).

This finishes the proof of positivity and the proof of the lemma. ]

Remark C.14. We will show below that T|a, is the unique trace on Aqy. Since we
have A = Ag ® Ml,, as a Banach space, then clearly the free product trace T on A is
given by T(ag & M) = 7|a,(ao) + tr,(M), where ag ® M € Ay ®M,, = A. All tracial
positive linear functionals of norm <1 on Ay are of the form t7|a,, where 0 <t < 1.
Then there will be no other traces on A then the family X\ = t7|ay ® trn. To show
that these are traces indeed, we can use the above lemma (it is still true, no mater
that the norm of tTa, can be less than one), or we can represent them as a convex

linear combination Ay = tT + (1 — t)u of the free product trace T and the trace p,
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defined by pu(ag & M) = tr, (M) = tr,(7(ag & M)).

Lemma C.15. By (in $4) = B (in $H4).

el e22+...+enn

ef 1P P e
Proof. Let’s take D = (CeC)x(Ce C ) cC B. Denote Dy “ DN B,
From Theorem B.3 follows that D = {f : [0,b] — Mby|f is continuous and f(0) -

pA(l—eq1)
diagonal} @ C | where 0 < b < 1 and 7|p is given by an atomless measure p on

10
{f :[0,b] — My|f is continuous and f(0) - diagonal }, p is represented by @1,

0 0

1—1¢ t(1—t
and ey is represented by ( ) @ 0. A x-homomorphism, defined
t(1—1) t

on the generators of a C*-algebra can be extended in at most one way to the whole C*-
algebra. This observation, together with my(e11) = m1(p) = 1 and (€90 = ... +€py) =
7(p) = 1 implies that m|p(f S ¢) = f11(0) and m;|p(f &) = ¢ for 2 < i < n—1. This
means that Dy = {f : [0,b] — My|f is continuous and f1;(0) = f12(0) = f21(0) =
0} @ 0. Now we see Dy (in 9p) = My ® L>2([0,b], 1) B0, so then ey; € Dy (in Hp). So
we can find sequence {e,} of self-adjoined elements (functions) of Dy, supported on
e11, weakly converging to e;; on $p and such that {Ei} also converges weakly to ey
on Hp. Then take ai,ay € A. in Ha we have (a1, (2 — e11)as) = 7((€2 — e11)agal) =
7((en — €11)asa} (e, — €11)) < 4flazal||7(e2 — e11) (The last inequality is obtained by
representing asaj as a linear combination of 4 positive elements and using Cauchy-
Bounjakovsky-Schwartz inequality). This shows that e;; € Dy (in $4) C By (in $4).

Analoguously e; € By (in $4), so this shows By = B (in $,). O
It easily follows now that
Corollary C.16. Ay (in $H4) = A (in Ha).

The representation of By on §)4 is faithful and nondegenerate, and we can use
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Proposition C.6, together with Theorem C.5 and the fact that Ad(u*) are outer for

B = By to get:
Lemma C.17. Ay = By % G is simple.

For the uniqueness of trace we need to modify a little the proof Theorem C.7

(which is [4, Theorem 1], stated for "nontwisted” crossed products).
Lemma C.18. Ay = By x G has a unique trace, T|a,-

Proof. Above we already proved that {Ad(u*)|1 < k <n — 1} are 7|p,-outer for B.

Suppose that 7 is a trace on Ag. We will show that 7|4, = n. We consider the
GNS representation of B, associated to 7|p. By repeating the proof of Lemma C.13
we see that By (in $p) = B (in ). The simplicity of By allows us to identify By
with 7, (By). We will also identify By with it’s canonical copy in Ag. Ay is generated
by {by € By} U{u*|0 <k <n—1} and {Ad(u*)|0 < k <n—1} extend to By (in H24),
so also to By (in H5) (= B (in $H24)). Now we can form the von Neumann algebra
crossed product A I By x {Ad(uF)|0 <k <n—1} =2 B x {Ad(Wh)]|0 <k <n—1},
where the weak closures are in $)g. Clearly Ax A (in $4). Denote by 75, the
extension of 7|g, to By (in H4), given by 75,(z) = <x(ﬁ),ﬂ>m. By [36, Chapter
V, Proposition 3.19], 75, is a faithful normal trace on By (in $4). Now from the fact
that By (in $4) is a factor and using [25, Lemma 1] we get that 75, is unique on By
(in 94). By the same argument we have that the extension 74, of 7|4, to Ag (in $H4)
=~ A (in $,) is unique, since Ay (in H4) = A (in H,) is a factor.

We take the unique extension of n to A. We will call it again n for convenience.
We denote by i, the GNS Hilbert space for C, corresponding to n|c (for C' = A,
B, By, Ag). Since n|p, = 7|p, it follows that By (in $j,) = B (in %) and of
course $, = H%. Then similarly as in Lemma C.12 we get that Ay (in §/, ) =

A (in 9y), so $, = 4 (this can be done, since 7|p, = 7|p,). Now again by [36,
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Chapter V, Proposition 3.19] we have that 7(x) = (36(3),{;}% (1, is abuse of

notation - in this case it’s the element, corresponding to 1,4 in $/,) defines a faithful
normal trace on 7/,(A) (in $,). In particular ﬁ]m is a faithful normal trace on
7',(B) (in $',). By uniqueness of 7|, we have 7|g, = 7|z,, so for by € By we have
7(bo) = 7(bo) = n(bo) = (Wa(bo)(1a), 1a)sy, = i(wa(bo))-

Since By is simple, it follows that 74| g, is a *-isomorphism from By onto 7/y(By)
and from [20, Exercise 7.6.7] it follows that 74|, extends to a x-isomorphism from
By (in $4) = B (in $4) onto 7/4(Bo) (in $'y) = /,(B) (in £';). We will denote this

s-isomorphism by 6. We set w & 7/, (u), B < 9Ad(u)o! € Aut(7',(B) (in ).

For by € By we have w)y (bo)w* = 7y (ubou*) = 74 ((Ad(w))(bo)) = B(w(bo)). So by
weak continuity follows 8 = Ad(w) on 7/,(B) (in $’,). Since B (in $4) is a factor and
{Ad(u®)|1 < k < n — 1} are all outer, Kallman’s Theorem ([21, Corollary 1.2]) gives
us that {Ad(u*)|1 < k < n — 1} act freely on B (in $4). Namely if b € B (in $,),
and if V&' € B (in $4), bb' = Ad(u*)(¥)b, then b = 0. Then by the above settings it

is clear that {Ad(w*)|1 <k <n — 1} also act freely on 7/,(B) (in §',).

Since 77 is a faithful normal trace on 7/4(A) (in $/,), then by [36, Chapter V,

Proposition 2.36] there exists a faithful conditional expectation P : 7/,(A) — 7/4(B)
(both weak closures are in $,). Vz € 7 (B) (in /), and V1 < k < n — 1,
Ad(w*)(z)w* = w*z. Applying P we get Ad(w*)(z)(P(w*)) = P(w*)x, so by the
free action of Ad(w*) we get that P(w*) = 0, V1 < k < n — 1. It’s clear that
{7/, (B)} U {w*|l <k < n —1} generates 7/,(A) (in $’,) as a von Neumann alge-
bra. Now we use [35, Proposition 22.2]. It gives us a *-isomorphism ® : 7/,(A) (in
9)) — B x {Ad(uf)|1 <k <n—1} = A (last two weak closures are in $4) with
®(0(x)) = x, € B (in H4), ®(w) = u. So since A (in H4) is a finite factor, so

is 7/, (A) (in $'4), and so it’s trace 7 is unique. Hence, 7 = 7 o ®, and so Vb € B,

and V1 < k < n — 1 we have n(bu®) = (74 (b)7y(u*)) = 7(® (74 (b)) (74 (u¥))) =
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7(®(0(b))P(w*)) = 7(bu*) = 7(bu*). By continuity and linearity of both traces we

get n = 7, just what we want. ]

We conclude this section by proving the following

Proposition C.19. Let

def /DX e
(A,T) == ((CEB ..® C) * (Mn,tTn),

am

where o < ag < ... < . Then:

(1) If ooy, < 1 — #, then A is unital, simple with a unique trace T.

(1) If ay, = 1—#, then we have a short exact sequence 0 — Ag — A — M, — 0,
where A has no central projections, and Ag is nonunital, simple with a unique trace
7| 4, -

f 1-f
(1) If o, > 1—#, then A= Ay @ M, , wherel—f <p,,, and where
n?2—n2a,;  nlam—n2+1

Ag is unital, simple and has a unique trace (n* — nay,) 7|4, -

Let f means the identity projection for cases (I) and (II). Then in all cases for
each of the projections fp, ..., fpm we have a unital, diffuse abelian C*-subalgebra of
A, supported on it.

In all the cases p,, is a full projection in A.

Proof. We have to prove the second part of the proposition, since the first part follows
from Lemma C.10, Lemma C.11, Lemma C.12, Lemma C.17 and Lemma C.18. From
the discussion above we see that in all cases we have fA = fB x {Ad(fuff)|0 <k <
n — 1}, where B and {Ad(fu*)|0 < k <n — 1} are as above. So the existence of the
unital, diffuse abelian C*-sublagebras follows from Theorem B.4, applied to B.

In the case (I) p,, is clearly full, since A is simple. In the case (III) it’s easy to
see that p,, A f # 0 and p,, > (1 — f), so since Ay and M, are simple in this case,
then p,, is full in A. In case (II) it follows from Theorem B.4 that p,, is full in B,

and consequently in A. ]
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D. The General Case

In this section we prove the general case of Theorem B.6, using the result from the
previous section (Proposition C.19). The prove of the general case involves techniques
from [12]. So we will need two technical results from there.

The first one is [12, Proposition 2.8] (see also [9]):

Proposition D.1. Let A = A; ® Ay be a direct sum of unital C*-algebras and let
p=1®0 € A. Suppose ¢4 is a state on A with 0 < « = oa(p) < 1. Let B be a
unital C*-algebra with a state ¢p and let (A, ¢) = (A, ¢a) * (B, ¢p). Let Ay be the

C*-subalgebra of A generated by (0® Ay) +Cp C A, toghether with B. In other words
p p
(1, ¢lay) = (C IAQ) * (B, ¢p).

Then pRAp is generated by pAip and A1 &0 C A, which are free in (p2Up, i(b\pglp).

In other words

1 1 1
(pUp, E¢|pmp) = (pAsp, E¢|p9«llp) * (A, E¢A‘A1)-

Remark D.2. This proposition was proved for the case of von Neumann algebras in

[9]. It is true also in the case of C*-algebras.

The second result is [12, Proposition 2.5 (ii)], which is easy and we give its proof

also:

Proposition D.3. Let A be a C*-algebra. Take h € A h > 0, and let B be the
hereditary subalgebra hAh of A (% means norm closure). Suppose that B is full in

A. Then if B has a unique trace, then A has at most one tracial state.

Proof. 1t's easy to see that Span{xhahy|a,z,y € A} is norm dense in A. If 7 is a

tracial state on A then 7(zhahy) = 7(h'/?ahyzh'/?). Since h'/2ahyxh'/? € B, 7 is
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uniquely determined by 75. O

It is clear that Proposition C.19 agrees with Theorem B.6, so it is a special case.

As a next step we look at a C*-algebra of the form

Po
(M,7) = (Ao & Mml .0 Mmk B <C .0 C) (M., try,),
aO 0’1 le

where Ay comes with a specified trace and has a unital, diffuse abelian C*-subalgebra
with unit pj. Also we suppose that oy > 0,0 <o) < ... <), 0 < a; < ... < qy,
my mk > 2, and elther af > 0or k > 1, or both. Let’s denote po = p0+p1+ A0,
Bd#M%ﬁB @M%Mmﬂggéavﬂh+ + o = 7(po).

o) o,

Let’s have a look at the C*-subalgebras N and N’ of M given by

Po P1

(N, 7|n) = ((CGB(CEB @C) (ML, tr,)

and
P P P, p1
(NJWF46®C@ oCoCo. @Q (M., tr).
o,

We studied the C*-algebras, having the form of N and N’ in the previous section.
A brief description is as follows:

If g, < 1 — #, then N is simple with a unique trace and N’ is also simple
with a unique trace. For each of the projections pj, pi, ..., D}, P1, ..., ;i We have a unital,
diffuse abelian C*-subalgebra of N’, supported on it.

If ag, or ay = 1— #, then N has no central projections, and we have a short exact
sequence 0 — Ny — N — M, — 0, with Ny being simple with a unique trace. More-
over pg or p; respectivelly is full in N. For each of the projections pj, p}, ..., D, D1, -y D
we have a unital, diffuse abelian C*-subalgebra of N’ supported on it.

If ag or oy > 1 — #, then N = ]\qfo @& M,,, with Ny being simple and having a

unique trace.
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We consider 2 cases:

(I) case: oy > .

(1) y <1— 5.

In this case N and N’ are simple and has unique traces, and pq is full in N
and consequently 1), = 1y is contained in (pg)n - the ideal of N, generated by py.
Since (po)n C (po)a it follows that py is full also in M. From Proposition 4.1 we get
poMpo = (Ag ® By) * poNpo. Then from Theorem C.9 follows that pyMpy is simple
and has a unique trace. Since pq is a full projection, Proposition D.3 tells us that M
is simple and 7 is its unique trace. For each of the projections pj, p, ..., Dk, D1, -, i
we have a unital, diffuse abelian C*-subalgebra of M, supported on it, and comming
from N'.

2) =1- 5.

In this case it is also true that for each of the projections py, pl, ..., D, D1, -, i
we have a unital, diffuse abelian C*-subalgebra of M, supported on it, and comming
from N’. Tt is easy to see that M is the linear span of poMpg, poM (1 — po) N (1 — po),
(1 — po)NpoMpo, (1 — po)NpoMpoN(1 — po) and (1 — po)N(1 — py). We know that
we have a *-homomorphism 7 : N — M, such that 7(p;) = 1. Then it is clear that
7(po) = 0, so we can extend 7 to a linear map 7 on M, defining it to equal 0 on
pPoMpo, poM (1 — po)N(1 = po), (1 — po)NpoMpo and (1 — po) NpoMpoN (1 — po). It
is also clear then that 7 will actually be a x-homomorphism. Since ker(7) is simple
in N and py € ker(r), then py is full in ker(7) C N, so by the above representation
of M as a linear span we see that pg is full in ker(7) also. From Proposition D.1
follows that poMpy = (Ag @ By) * (poNpo). Since poNpg has a unital, diffuse abelian
C*-subalgebra with unit py, it follows from Theorem C.9 that pyMpy is simple and
has a unique trace (to make this conclusion we could use Theorem A.2 instead). Now

since poMpy is full and hereditary in ker(7), from Proposition D.3 follows that ker(7)
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is simple and has a unique trace.

(B)a>1— 5.

q 1—q q 1—q

In this case N = n2£\7[102al @ nQaIl\iHZZ—&-l and also N/ = n2£\fz(l)2al D n2aI,\\/—HZ2+1 with N
and N/ being simple with unique traces. For each of the projections ¢py, qpi, - - ., P},
qp1, - - -, qp; we have a unital, diffuse abelian C*-subalgebra of M, supported on it,
and coming from N{.

Since py < ¢ we can write M as a linear span of poMpg, poMpoNo(1 — po),
(1 —po)NopoMpo, (1 —po) NopoMpoNo(1 —po), (1 —po)No(1—pg) and M,,. So we can
write M = 2]&02 @ . MZQ , where M = qgMq D Ny. We know that pg is full in
Ny, s0 as be?ogg \?vle cailna\l)\z_r?tgllMo = 1n, € (Po)ny C (Po)nty, 80 (Po)rt, = Mp. Because
of Proposition D.1, we can write poMopy = (Ao @ Bo) * (poNopo). Since poNopo has
a unital, diffuse abelian C*-subalgebra with unit py, then from Theorem 3.9 (or from
Theorem A.2) it follows that poMypy is simple with a unique trace. Since poMypy is
full and hereditary in My, Proposition D.3 yields that M, is simple with a unique
trace.

(II) ap > .

(1) ap <1— 4.

In this case pg is full in N and also in N’, so 1y, = 1xy € (po)n, which means
po is full in M also. poMpy is a full hereditary C*-subalgebra of M and poMpy =
(Ao® By)*poNpo by Proposition D.1. Since pyNpg has a diffuse abelian C*-subalgebra,
Theorem C.9 (or Theorem A.2) shows that poMp, is simple with a unique trace
and then by Proposition D.3 follows that the same is true for M. For each of the
projections pp, pi, ..., Py, P1, -, 21 We have a unital, diffuse abelian C*-subalgebra of
M, supported on it, comming from N'.

(2) ap > 1— 5.

We have 3 cases:



20

(2) ap >1— 2.

In this case N & Ny @ M, and N’ 2 N} & M,,, where ¢ < ¢, with Ny and N}
being simple and having unique traces. It is easy to see that p), ...,pL, p1,....;1 < ¢,
so for each of the projections pi, ..., p}, D1, ..., i we have a unital, diffuse abelian C*-
subalgebra of N’ supported on it. So those C*-subalgebras live in M also. We have
a unital, diffuse abelian C*-subalgebra of Ay, supported on 1,4,, which yields a unital,
diffuse abelian C*-subalgebra on M, supported on pj. It is clear that py is full in IV, so
as before, 1)y = 1y € (po)n, 80 po is full in M also, so poMpy is a full hereditary C*-
subalgebra of M. From Proposition D.1 we have poMpy = (Ag® By) * (poNopo & M,).
It is easy to see that M,,, for n > 2 contains two tr,-orthogonal zero-trace unitaries.
Since also poNopo has a unital, diffuse abelian C*-subalgebra, supported on 1y, it is
easy to see (using Proposition B.2) that it also contains two 7| Ny-orthogonal, zero-
trace unitaries. Then the conditions of Theorem A.2 are satisfied. This means that
poMpy is simple with a unique trace and Proposition D.3 implies that M is simple
with a unique trace also.

2" aj, >1— #

Let’s denote

. Py P Pl—1 Pr p1 pi
N'=(AdMp, @.. OMy, , ®COCO ... C) x (M, tr,).
046 of O‘;c—l X o1 l

Then N” satisfies the conditions of case (I,3) and so N” = ]\?(’)’ @& M,,. Clearly
Dy Py oo D15 P15 s 1 < ¢, so for each of the projections py, pi, ..., Dk_1,P1s--s DI We
have a unital, diffuse abelian C*-subalgebra of N[/, supported on it. Those C*-
algebras live in M also. From case (I,3) we have that pj is full in N” and as before
1y = 1y» € (p))n» implies that p) is full in M also. From Proposition D.1 follows

that pl Mp) = (pi,Nip, & M,,) * M,,,. Since N/ has a unital, diffuse abelian C*-
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subalgebra, supported on ¢p), then an argument, similar to the one we made in case
(IL, 27), allows to apply Theorem A.2 to get that pj Mpj is simple with a unique trac.
By Proposition D.3 follows that the same is true for M. The unital, diffuse abelian
C*-subalgebra of M, supported on pj, we can get by applying the note after Theorem
A2 to pi Mp), = (p, NiD), & M) * M,,,, .

(2") of and o, <1 — 5.

In this case N = ]670 ®M,,, with Ny being simple and having a unique trace. More-
over N’ has no central projections and for each of the projections py, pi, ..., D}, D1, .., i
we have a unital, diffuse abelian C*-subalgebra of N’, supported on it. So those C*-
subalgebras live in M also. It is clear that pg is full in N, so as before 1); = 1y €
(o) N, 0 po is full in M also, so pgMpy is a full hereditary C*-subalgebra of M. From
Proposition D.1 we have pgMpy = (Ag @ By) * (poNopo & M,,). Since Ag and poNopo
both have unital, diffuse abelian C*-subalgebras, supported on their units, it is easy
to see (using Proposition B.2), that the conditions of Theorem A.2 are satisfied. This
means that poMpg is simple with a unique trace and Proposition D.3 yields that M
is simple with a unique trace also.

We summarize the discussion above in the following

Proposition D.4. Let

dof P I P p1 P
(M, 7) = (Ag @My, @ ... &My, @ C & ... & C) % (M, try),
o o o, M -

wheren > 2, ay >0, ) <ahb < .. <o), oq < ... <y, my,...,mp > 2, and 122100 @0
has a unital, diffuse abelian C*-subalgebra, having py as a unit. Then:

(1) If ay < 1— n—12, then M is unital, simple with a unique trace T.

(I1) If oy = 1—n—12, then we have a short exact sequence 0 — My — M — M, — 0,

where M has no central projections and My is nonunital, simple with a unique trace
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7'|MO.
1 f 1-f
(HI) If g > 1 — =, then M = My, @& M, ,wherel— f <p;, and where
n2—n2q n2o;—n2+1

My is unital, simple and has a unique trace (n? — n’ay) 7| a, -

Let f means the identity projection for cases (I) and (II). Then in all cases for
each of the projections fpy, fDy, s [Pk fP1, -, f1 we have a unital, diffuse abelian
C*-subalgebra of M, supported on it.

In all the cases p; is a full projection in M.

To prove Theorem B.6 we will use Proposition D.4. First let’s check that Propo-

sition D.4 agrees with the conclusion of Theorem B.6. We can write

def ,Po P Pl p1 D @
(M,7) = (Ag ® My, @ ... ® My, ® C D ... ® C) % M,
g o o 1 @ B1

where ¢; = 1y and 3 = 1. Tt is casy to see that Lo = {({,1)|% + -5 = 1} =
{(1,1)|as = 1 — -5}, which is not empty if and only if oy = 1 — =&. Also L, =
{, D)% + &5 > 1} ={(,1)]ay > 1 — %}, and here L, is not empty if and only if
a > 1— n—12 If both L, and Ly are empty, then M is simple with a unique trace.
If Ly is not empty, then clearly L, is empty, so we have no central projections and

a short exact sequence 0 — My — M — M, — 0, with M, being simple with a

unique trace. In this case all nontrivial projections are full in M. If L, is not empty,

q 1—q
then clearly Ly is empty and so M = M, & M, , where M, is simple with
n?—nfa;  n2(S425-1)

a unique trace. p; is full in M.
Proof of Theorem B.6:

Now to prove Theorem B.6 we start with

Po p1 Pk 90 q1 q1
(2A,0) = (Ag® M, ... &M,,) * (By ® M, @ ... ® M,,,),

ao al ag Bo 51 B

where Ay and By have unital, diffuse abelian C*-subalgebras, supported on their units
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(we allow oy = 0 or/and By = 0). The case where ny = ... =np=m; =...=m; =1
is treated in Theorem B.5. The case where oy = 0, K = 1, and n; > 1 was treated in
Proposition D.4. So we can suppose without loss of generality that n, > 2 and either
k > 1 or ag > 0 or both. To prove that the conclusions of Theorem B.6 takes place in
this case we will use induction on card{i|n; > 2} + card{j|m; > 2}, having Theorem

B.5 (card{i|n; > 2} + card{j|m; > 2} = 0) as first step of the induction. We look at

Pe—1 Pk q0 q1 q
(%7¢|%) (AOEBMM D .. @Mnk—l @g)*(go@Mml @@Mmz> C (Qla ¢)
ap a1 ap_1 « 0 B1 B

We suppose that Theorem B.6 is true for (B, ¢|s) and we will prove it for (2, ¢).

This will be the induction step and will prove Theorem B.6.

Denote
LQ[ déf ﬁ] _ 1
R mnf =1
def ﬁ
L3 (G j)li<k—1and %+ P 1y Uk NSk + 25 =1}
n? mJ 2
and similarly
Lg[ def 6] -
+ ( )|7’L2 +—= m] }
and
PG <k -1, andn—+ >1}U{(k])§+_>1}
(2 j ]

Clearly

Ln{l<i<k—-1}=Ln{1<i<k—-1}
and similarly
2n{1<i<k-1}=LPn{1<i<k-1}
Let Ny(i,j) = max(n;,m;), let Ng(i,7) = Nou(i,7),1 <i <k —1, and let
Ng(k,j) =m
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By assumption
g 9ij
% — %0 EB @ MN%(i,j)-
b (i,j)eL? 8ij

We want to show that

f fij
A=A ® P My (3.9)

(gery
We can represent 2 as the span of ppRApg, peApeB(1 — pr), (1 — pr)BpeApk,
(1 — pr)BprApiB(1 — pi.), and (1 — pg)B(1 — pi). From the fact that gy; < pj and
gij <1 —pp,V1 <0 <k —1 we see that pB(1 — p) = peBo(1 — pr), (1 — p)Bpr =

(1—p)Bopr, and (1 —pp)B(1—pi) = (1—pr)Bo(1—pr) @ @ Mpy(,j). All this tells
(i,5)€L®
itk '

us that we can represent 2 as the span of ppApk, PrAPeBo(1 — pr), (1 — pr)BoprApr,

Gij
(1 — i) BoprAprBo(1 — pr), (1 — pe)Bo(l — pr), and P M, ).
(i,j)eL? dij
i#k
In order to show that 2 has the form (4.1), we need to look at ppRp. From

Proposition D.1 we have

g 9kj
Ak = (0 Bpr) * My, = (pBopr © @ Mn(k,j)) * My, .
% (kj)eL® ki

A
Since by assumption ppBop, has a unital, diffuse abelian C*-subalgebra, sup-
ported on 1,, %,p,, We can use Proposition D.4 to determine the form of p;RApy.
Thus piApy:

(i) Is simple with a unique trace if whenever for all 1 < r <[ with N(k,r) =1

we have %z < 1 — L
(677 TLk

(ii) Is an extension 0 — I — ppR/_Apr, — M, — 0if 31 <r <[, with N(k,r) =1,

and %}: =1- n% Moreover [ is simple with a unique trace and has no central
k

projections.



95

(iii) Has the form pRpr = I & M,, , where [ is unital, simple with a

2%k 1
nk(TkT_H'E)

unique trace whenever 31 < r <[ with N(k,r) =1, and ‘Z“—}: >1-— n%
k

By assumption d;; = N(i,7)*(% + % — 1), so when r satisfies the conditions of
i J

case (iii) above, then m, = 1 and

Sker 1 ar+ 6. —1 1 n?
i —1+—2) :ni(—k 5 = & D)
Qy, ny Qg ny QN 1

i
just what we needed to show. Defining
def
o =(1—-( @& [fi))AQ-=( & fiy)),
(’L,j)EL% (z,])ELi
we see that 2 has the form (4.1).
We need to study 24y now. Since clearly g < f, we see that Ap, By = AprgBo =
AgprBo = AeprBo and similarly AprBo = AeprBo. From this and from what we

proved above follows that:

2o is the span of prAopr, (1 — pr)BoprAopr, (3.10)

PeAopeBo(1 — pr), (1 — pr)BoprAopkBo(l — pr), and (1 — pg)Bo(l — pi).

We need to show that for each of the projections fp,, 0 < s < k and fq,
1 <t < I, we have a unital, diffuse abelian C*-subalgebra of 2l,, supported on
it. The ones, supported on fps, 1 < s < k — 1 come from (1 — pg)Bo(1l — pi)
by the induction hypothesis. The one with unit fp; comes from the representation

piApr = (piBpx) * M, and Proposition D.4. For 1 < s <[ we have

- Jas fis Trs

4s2Aqs = qsoqs B @ Ming (i,5) D Ming (k,s) (3.11)
pel . Jis Tks
Bs (z,s)EL%‘_ B Bs

1<i<k—1
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and
99s Iks
QS%QS - QS%OQS S @ MN% (,8) S% MN% (k,s)- (3.12)
ﬂs (3, s)EL %: (z“bs
1<i<k—1

From what we showed above follows that for 1 < ¢ < k — 1 we have ;s = ;4

and fis = gis. If (k,s) ¢ LP, (or ap < 1— ﬁs) then (k,s) ¢ L% and by (3.11)
and (3.12) we see that ggs = fqs and so in 2y we have a unital, diffuse abelian C*-
subalgebra with unit ggs = fgs, which comes from By. If (k,s) € L?, then gg, § f¢s
and since we have a unital, diffuse abelian C*-subalgebra of 2ly, supported on gq,,
comming from By, we need only to find a unital, diffuse abelian C*-subalgebra of
2y, supported on fq, — ggs and its direct sum with the one supported on ggs will
be a unital, diffuse abelian C*-subalgebra of 2y, supported on fg,. But from the
form (3.11) and (3.12) it is clear that fgs — ggs < gks, since from (3.11) and (3.12)
(frs A fo—1)s)@sAqs (frs + .+ fr—1)s) = (G5 oo F9h=1)s) 0B Gs (g1s + .-+ G(h—1)s)-
It is also clear then that fq, — gqs = fgrs < pg, since gqs L grs. We look for this

C*-subalgebra in

fpk fk]

prpr = pops © D My ) = (s Bpi) + M
a* (kj)eLt =2
.

%’(pk%opk@ B Mug k) * My,

o (kj)eL? (Z‘}j
Proposition D.4 gives us a unital, diffuse abelian C*-subalgebra of pi2lopk, sup-
ported on (fpr)grs = foks = fqs — gqs. This proves that we have a unital, diffuse
abelian C*-subalgebra of 2y, supported on fqs.
Now we have to study the ideal structure of 2y, knowing by the induction hy-
pothesis, the form of B. We will use the ”span representation” of g (3.10).

For each (i,j) € Ly we know the existance of *-homomorphisms 7T : By —
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Mpy(ij)- For i # k we can write those as 7T( : By — Mp, ;) and since the

J)

support of Wm?(; is contained in (1 — py), using (3.10), we can extend linearly 7T(”)

to 7r( : Ao — My, (ij), by defining it to be zero on ppRAopr, (1 — pr)BoprAopk,

ij)
PrAopeBo(1—pk), and (1—pg) BoprAoprBo(1—px). Clearly 7T i) 18 2 ke homomorphism
also.
By the induction hypothesis we know that gpy is full in ()  ker(w ’])) C By
e
and by (3.10), and the way we extended 7130.), we see that fpy is full in

N ker(ﬂ( ) C Ap. Then pRAopy is full and hereditary in () ker(w (”)) so by

(i.5)ELE (1.5)eLE
i#k i#k
the Rieffel correspondence from [33], we have that p,%opy, and [ ker( )) have
(i,5)eL
i#k

the same ideal structure.

Above we saw that

IPk Irj
PPy = prUopr & ar MNQl k) = (PeBpr) * My, = (3.13)
ax (ki)eLd 22
9Pk 9kj
=(p k‘Bopkz@ @ Mg (k,4)) * M,
o (kj)eL® 2

R

From Proposition D.4 follows that pi2lopy is not simple if and only if 31 < s < m,
such that (k,s) € L?, ms = 1 with ‘Sk—s =1- %, where 0 = ag + 85 — 1. This means
that O"“J;is_l 1——2, which is equivalent to % —i—a’“ = 1, so this implies (k, s) € L. If
this is the case (4.2), together with Proposition D.4 gives us a x-homomorphism Wghs) :
pr2lopr — M, , such that ker(”fk,sﬂ C prlopy is simple with a unique trace. Using
(3.10) we extend 7r k) linearly to a linear map 7r : Ay — M, , by defining 7r( 5 to
be zero on (1 — pg)BoprAovr, PeAoprBo(l — pk), (1 — k) BopkAoprBo(l — pr), and

(1 —pr)Bo(1 — pg). Similarly as before, W(Q]:SS) turns out to be a *-homomorphism. By
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the Rieffel correspondence of the ideals of ppRlopr, and [ ker(w T )) it is easy to see

(1.5)eLd
i#k
that the simple ideal ker(m, ) C pp2lops corresponds to the ideal () ker( i) C
’ (i)eL]
N ker( )s so (] ker(mw j) is simple. To see that () ker( ;) has a
(i.5)€LE (i.5)eLd (i) €L

i#£k
unique trace we notice that from the construction of W%j) we have ker(ﬂék )) =

i, ker (730 0 ))pk = () ker( )pk (the last equality is true because ppRlopr C
(3,5)eL

N ker( )) Now we argue similarly as in the proof of Proposition D.3, using the
(1.5)ELT

i1#£k
fact that ker(7, ) has a unique trace: Suppose that p is a traceon (] ker(m; ))

’ (4,5)eLy
It is easy to see that Span{zprapry|z,y,a € . QLQI ker(m (”)),a > 0} is dense in
i.j

N ker(m; )) since ker(r(, ) is fullin () ker(m )) Then since prap; > 0 we
(4,4)eLy (i,5)eL
have p(xprapry) = p((prapr)yx) = p((prape) >y (prapy)/?) and since

(prapr)'*yx(prapy)'/? is supported on py, it follows that (prapi)'/*yx(prapr)'/? €

e N ker( 5y )Pk = ker(m;. ), s0 p is uniquely determined by P’ker(wgk ) and hence
(i.d)eL] )

N ker( ;) has a unique trace.
(i.5)€LE

If 1 < s < m with (k,s) € L it follows from what we said above, that
peopr is simple with a unique trace. But since ppopx is full and hereditary in

N ker(m; )) = N ker( (i) it follows that [ ker( (ij)) is simple with a
(i.4) €LY (i) L " (i-) €LY

i#k
unique trace in this case too.

We showed already that fpy is full in () ker(w T )) Now let 1 <r <k —1.

(i.4)EL
z;ék:
We need to show that fp, is full in ) ker( y)- From (3.11) and (3.12) follows
(i.5)eLy

1#£r
that f — g < pix. So fp. = gp, for all 1 < r < k — 1. From the way we constructed

is clear that fp, € ) ker( jy)- 1t is also true that fp, ¢ ker( ') for any
(i,5)eL
1T

Ao
(i)
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1 < j <. So the smallest ideal of 2y, that contains fp,,is [] ker(w ”)) meaning

(i.9)€Ly
£
that we must have (fp.)o, = [) ker( i)
(i)eLE
i#£r

Finally, we need to show that for all 1 < s < [ we have that fq, is full in

N ker( ). Let (i,7) € L3 with @ # k, j # s. Since gq, € ker(r ”)) and
(i.5)eLy

j#s
since (f — g)gs < pg, the way we extended 7r ;) to 7T ) shows that fqs € ker(m ”))

Let (i,s) € L and i # k. Then we know that gq, gé ker(m Z])), which implies
fas ¢ ker(ﬂi »)- Suppose (k,s) € L. Then m, = 1 and (4.2), Proposition D.4, and
the way we extended 7/ (k.5) to 7r os) show that fors = fqgs — gqs is full in pRAopk,
meaning that fg, — gqs, and consequently fqs, is not contained in ker(72° T )) Finally
let j # s, and suppose (k,j) € L§. This means that (k,j) € LT and also that the
trace of ¢; is so big, that (i,s) ¢ L? and (i,s) ¢ Ly for any 1 <4 < k. Then (3.12)
shows that ¢, < g. The way we defined W(Q,?j) using (4.2) and Proposition D.4 shows
us that By C ker(w?,?j)) in this case. This shows ¢ = gq¢s = fqs € ker(ﬁ%j)). All
this tells us that the smallest ideal of 2y, containing fgqs, is [ ker( (”)) and
=
therefore (fqs)a, = [ ker(w (”))

(ij)eLd

J#s
This concludes the proof of Theorem B.6.
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CHAPTER IV

ON THE STRUCTURE OF SOME REDUCED AMALGAMATED FREE
PRODUCT C*-ALGEBRAS

A. Introduction

In this Chapter we give give a sufficient condition for simplicity and uniqueness of
trace for reduced amalgamated free products of C*-algebras. We also give a sufficient
condition for the positive cone of Kg to be the largest possible.

We will use the notation from Chapter I.

For an index set I with card(/) > 2, let B be a unital C*-algebra and suppose
that for each + € I we have a unital C*-algebra A,, which contains a copy of B
as a unital C*-subalgebra. Also suppose that for each ¢« € I there is a conditional

expectation F, : A, — B, satisfying
Vae A, a#0, Jx € A,, E(z"a"ax) # 0. (4.1)
We denote the reduced amalgamated free product of (A,, E,) by

(A E) (A, E,).

e

We will use the following notation which is similar to the notation in [13] used for
the case of amalgamation over the scalars. If everything is as above by A4 ({A%|c € I})
we will denote the set of words of the form ajas---a,, where n > 1 and a; € Afj
with ¢; # ¢j41 for 1 < 7 <n —1. We will not distinguish between two words from
A% ({A?|e € I}) which are equal as elements of A. We will denote Ag({A?|c € I}) =
BUAL({A?]e € I}). By C(A) we will denote the span of words from Ag({A°|c € I}).

Notice that C(A) is norm-dense in A. For a word ajas - - a, € AZ({A%|c € I}), where
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n>1,a; € Afj with ¢; # ¢j41 for 1 < 7 <n — 1 we will consider to be of length n.
Elements of B we will consider to be of length 0.
We will be mainly interested in the case card(l) = 2 and that there exist states

¢, on A, for « = 1,2, such that these states are invariant under FE,, i.e. for t = 1,2

and Va, € A, we have ¢,(a,) = ¢,(E,(a,)). We also require ¢;(b) = ¢o(b) for b € B.
def

¢ pum—
(A1, E1) * (Ag, E5). In such case we will write formally

¢po E, where ¢p = ®1|B = ¢2|p is a well defined E-invariant state on (A, E) =

(Aa Ea ¢) = (Ab Ela ¢l) * (A27 E27 ¢2)7
although the construction of (A, E) does not depend on ¢,,¢t = 1,2.

Remark A.1. Using the same techniques as in [11] it can be shown that if ¢1 and

@9 are faithful traces then ¢ is also a faithful trace.

Define
AL = Span(( A3(4345)) € C(4) (4.2)

k=0
and

AL Span(| JA5(A349)") € C(A), (4.3)
k=0

Define also

A= Span((J(4345)F) € ©(4)
k=1

and
oo

A% = Span((J(4545)%) € C(A).
k=1
Some of the most important examples are those of reduced C*-algebras of amal-

gams of discrete groups. For each discrete group N we have the canonical tracial

state Ty = (- I;)lz(H) on C*(N). For each subgroup S of N we have a canonical
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conditional expectation EY : C*(N) — C#(S) given on elements {\,,n € N} by

T

§ An, ifmnes,
Eg (An) =

0, ifn¢gs.

Let G; D H C G5 be two discrete groups, containing a common subgroup (an
isomorphic copy of H). Then we have (C*(G), ES) = (C*(G1), ES') * (C*(Gy), ES?),
where G = G4 I>!} Gs.

The canonical tracial states 7¢,,¢ = 1,2 and 75 are invariant under Egl, t=1,2

and E§ respectivelly and 7¢ = 7 o ES. Thus we can write formally

(C:(G)’ Eg: TG) - (C:(Gl)’ EIGila 7_G1) * (C:(GQ)’ EIG{27 TG2)'

B. Ko©

We give the results of Germain and Pimsner first.

Theorem B.1 ([17]). Let (A, @) = (A1, ¢1) % (A, ¢o) is the reduced free product (with
amalgamation over C) of the unital, nuclear C*-algebras Ay and Ay with respect to
states ¢ and ¢o. Then we have the following six term exact sequence:

(Ko(i1),—Ko(i2)) Ko (j1)+Ko(j2)

Z ~K,(C) Ko(A1) © Ko(A2)

T J

K]_(A) M K1<A1) EB K]_(AQ) (K1(i1),—K1(32))

where 1, : C — Ay are the the unital x-homorphisms and ji : Ay — A are the unital

embeddings arising from the construction of reduced free product (k=1,2).

Theorem B.2 ([30]). Suppose that G; D H C Gy are countable, discrete groups. Let
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G=G ol Go. Then we have the following six term exact sequence:

(Ko(i1),—Ko(i2))

Ko (j1)+Ko(j2)

Ko(C7(H)) Ko(C7(Gh)) ® Ko(C7(Gr)) Ko(C7(G))

T !

Ky (CH(G)) TR g (0(Gy)) @ Ky (CF(Gy)) TR g (o (H),

where i : CH(H) — CHGy) and ji : CF(Gr) — CHG) are the canonical inclusion

maps (k=1,2).

Now suppose that we have unital C*-algebaras A,, + = 1,2 and B. Suppose
that we have unital inclusions B <— A, and conditional expectations F, : A, — B
that satisfy property (4.1). Suppose also that for « = 1,2 we have tracial states 7,
on A, which satisfy 75 = T1|p = T2|p and which are invariant under E,, i.e 7,(a,) =
7,(E,(a,)) for each a, € A,. Let us denote (A, E,7) et (A1, E1,71) * (Ag, By, 72) and
let j, : A, — A are the inclusion maps, coming from the construction of reduced
amalgamated free products. Suppose that 7 = Tpo F is a faithful tracial state. Let’s

define
I < Ko(j1) (Ko(Ar)) + Ko(j2) (Ko(A2)) C Ko(A).

Then every element in I' can be represented as

([pl]Ko(A) - [Q1]K0(A)) + ([pQ]Ko(A) - [QZ]KO(A))’

where p,, ¢, are projections in some matrix algebras over A, for « = 1,2. By expanding
those matrices and adding zeros we can suppose without loss of generality that p,, q,
are projections from M, (A,) for some n € N for ¢ = 1,2. Therefore every element of

I' can be represented in the form

plo (]10

0 po 0 @
Ko(A) Ko(A)
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where now
p 0 ¢ 0
' and ' € My, (A).
0 po 0 @

We want to obtain a sufficient condition so that all elements v € I' for which
Ko(7)(y) > 0 come from projections, i.e. Im € N and p € M, (A), such that
7 = [PlKo(a) in Ko(A).

By definition the positive cone of Kg(A) is

Ko(A)" = {z € Ko(A)|Fp projection in M, (A) for some n with z = [plk,a)}-
The scale of Kgo(A) is
2(A) = {x € Ko(A)|3Fp projection in A with x = [plkya)}-
Dykema and Rgrdam proved the following:

Theorem B.3 ([16]). Let (A, 7) = (A1, 71) * (Ag, 7o) be the reduced free product of
the unital C*-algebras Ay and Ay with respect to the faithful tracial states T and 7.
Suppose that the Avitzour condition holds, namely there exist unitaries u; € A; and

Ug, uy € Ag, such that 1 (uy) = ma(ug) = m(uh) = m(uju)) = 0. Then we have

N Ko(A)" = {7 € I[Ko(7)(7) > 0} U {0}

and

I N(A) = {y €0 < Ko(r)(y) < 1} U{0,1}.

Notice that Theorem B.1 implies that if A; and Ay are nuclear then I' = Ko (A).
Anderson, Blackadar and Haagerup proved this theorem for the case of A =
C*(Zy, % Z,,) and gave one of the main technical tool for proving Theorem B.3, which

we will use here also:
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Proposition B.4 ([2]). Let 2 be a unital C*-algebra and let ¢ be a faithful state on
2. Suppose that p,q € A are projections that are ¢-free in A. If ¢(p) < ¢(q) then

lp(1 — q)|| < 1 and there is a partial isometry v € A such that vv* = p and v*v < q.
Now we can state and prove our result:

Theorem B.5. Let A, be unital C*-algebras that contain the unital C*-algebra B
as a unital C*-subalgebra, i.e. 14, € B C A, + = 1,2. Suppose that we have
conditional expectations E, : A, — B and tracial states T, on A, for = 1,2 such that
7, =T,0 E, and 11| = To|p. Form the reduced amalgamated free product (A, E,T) =
(A1, By, 1) * (Ag, By, 12). Suppose that 7y and 1o are faithful tracial states. Suppose

that the following two conditions hold:

(

Vby,...,b, € B, with 7(by) =--- =7(b) =0, Im € N and unitaries
Vlls s Vimy Yoty - - - Vo Such that vy, ... vy, € AS, var, ..., Vagm—1) € A3, and:
either v, € A3, Vo, € AS or
vin = lga,, vom € A3, or
vy €AY, Vo, = 1a,,
vin = 1a,, Vo = 1a,, k>2
with E((v11v21012 + - VimVom ) be (V112119 « + - ViV )™) = 0 for k= 1,... 1,

(i.e. there are unitaries that conjugate B © Clp out of B)

\

(4.5)

and

3 unitaries uy € A7, us,uy € A3, with Es(usus’) = 0. (4.6)

Then:
I'NKo(A)" = {y € [[Ko(7)(y) > 0} U {0}. (4.7)
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Proof. All elements of I' have the form (4.4) for some n € N and projections py, q;
from M, (A;) and ps, g2 from M,,(Ay). Denote

p1 0 q 0
v = -
0 po 0 @
Ko(A) Ko(A)
Consider
U 0 0 Us 0
P ? . 2 and
0 UUh 0 po 0 U7U;
def Uy 0O @1 0 U 0
0 U, 0 ¢ 0 U7U;

where Uy = diag(uy,...,u1) € M,(A;) and Uy = diag(us, ..., us) € M,(As).

It is clear that P,Q € My,(A% @ Blg). For T € M,,(A) we will denote by T}; the
ij-entry of T. Now consider the set of elements Sp = {E(F;;) — 7(P;)|1 < 4,5 <
2n} U{E(u Pyui) — 7(ui1 Pijui)|l < 4,5 < 2n} and the set Sg = {E(Qi;) —7(Qi;)|1 <

Applying condition (4.5) to the set Sp we obtain unitaries v;;,i = 1,2, =

(

1 _ o

Vii21V12 - Va(mp—1)Vimp, if Vomp = 1a,, vi1 € A7,
: [¢] (o]

def 212« - Vo(mp-1)VimpVomp Ui, if Vomp € Az; v € Au

. . B
UIV21V12 * * Vo(mp—1)VimpVomptl,  if Vo, € A3, v11 = 14g,.

kU1V21V12 o V2(mp—1)Y1imps if vop = 1a,, i1 = 1a,, k2> 2.

Applying condition (4.5) to the set Sg we obtain unitaries vj;,i = 1,2,j =

1,...,mQ.



Set
.
/ ! /
SO LS R
/ / /
def | Y11V1V12 0
f
Wqo =
/ /
UV Vg - -
/ /
UrVo Vyg -
\

/ /
Vomp—1)Y1mp>

/ / /
V2(mp71)ylmpy2mpul7

/ / /

/ /
Yotmp—1)Y1mp»

e
if v9,,, =

/ o
1A27 Vll G A17

if 1/2m € A3, v, € A,

4 / o !/

3 /
if V5,

= 1A27 Vil = 1A17 k 2 2.

It is easy to see that WpPWp, WoQWg € My, (AL @ Clp).

Now consider the following matrix in My, (A):

wY

U=

2ni+j u/*

_U/Uu
\/%2(12>

where w = exp(2myv/—1/2n) is a primitive 2n-th root of 1.

My, (A%). We will check that U is a unitary matrix:

(UU*),;

Q(U1u )2n(z Dy

E w’kug (urug

E W™l (ugug)

2m+kw ]k(

= (2n)” u’2(u1u2)2"(i’j)u’2*2w(i’j)k

—2nk— ijk(

2)12? 1

2nj—k, I*

Ry Uy =

2n

k=1

2nk+j ul*

U Us) N =

2n

Zw I=0kL (uyug )~ uly = (2n)~ u’Q(muQ)j*iu’Q*Zw(j*i)k = 0ij1a.

Thus U € My, (A) is a unitary.

k=1

== (Sile.
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It is clear that U €

Take T € MQH(AIB D (ClB) Then T = TO + Tl X 1A, with TO € M2n<A}3) and

Ty € My, (C). Tt is easy to see that UToU* € My, (A%). Now if Ty =
for U(T) @ 14)U*

Sij

= (s4)77=1 we have

2n 2n

E E kaU,2 u Us 2nz+k %

k=11=1

2nj—l1, I*

uy trgw ™ b (ugug) uy =

(ti)7j—1 then
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2n  2n

(2n>_lzztklwik_jlul2 <u1u2)2ni+k—2nj—lul2*.

k=1 I1=1
If i # j then 2ni+k —2nj —1 # 0 for any 1 < k,1 < 2n, so in this case s;; € A%.
If © = 7 then:

2n 2n

s = (20) 71D St Vi)l =

k=11=1

2n
2n)™" Y tuw ™ Dub(uyu) s 4 ((20) 7Y ) © La.
k=1

1<k,I<2n
k£l

So 8 = 8l +tro,(T1) ® 14, where s}, € A%. All this means that U(T) ® 14)U* =
T +tron(T1)1 4@ Lagy,, (), With T] € My, (A%), which implies that UTU* € Mo, (A) @
C]-Mgn(A)'

This means that we have
P UWpPWEU* € May(A%) @ Clyg,, (a) (4.8)

and

Q= W UWQQWHU"t; € Mon(Ap) & Clag,, a). (4.9)

It is clear that try, ® E(P') = trg, ® 7(P’) and that try, ® E(Q') = try, ®
7(Q'). Since P" and @)’ are nontrivial projections it is also clear that C*({P’,14})
and C*({Q',14}) are both 2-dimensional. Therefore for any p € C*({P’,14}) and
q € C*({Q',14}) we have try, ® E(p) = tra, @ 7(p) and try, @ E(q) = tra, ® 7(q).
Therefore from (4.8), (4.9) and the definition of freeness it follows that P’ is both
tro, ® E-free and trg, ® 7-free from ’.

Since try, ® 7 is a faithful tracial state (because of faithfulness of 71, 7 and

Remark A.1) and because

tr2n @ 7(P') = (2n) ' Ko(7)(P) > (2n) Ko (7)(Q) = tr2, @ 7(Q'),
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we can apply Proposition B.4 and conclude that there is a projection Q" < P’ and a
partial isometry v with vv* = Q" and v*v = Q". Thus v = [P' — Q"]k,(4) in Ko(A4).

This proves the theorem. O

Corollary B.6. Suppose that Gy 2 H C G9 are countable discrete groups with
H # {1}. Suppose that I3y € G “a I’SGQ with y(H\{1})y"*NH = 0. Suppose also
that K1(C¥(H)) = 0. Then

Ko(C7(G))" = {7 € Ko(C}(G))[Ko(7c) (v) > 0} U {0}.

Proof. Because of the existence of v we see that condition (4.5) of Theorem B.5 is
satisfied. The existence of v implies also that H is not normal in at least one of the
groups (G; or G,. Suppose without loss of generality that H is not normal in G.
Then Index[G; : H| > 2 and Index|Gy : H] > 3 so we can find g; € G;\H and
g2, g € Go\H with gogh™t € G3\H. Then condition (4.6) is satisfied with elements
Uy = Ag,, Uz = Ag, and up = Ay and therefore we can apply Theorem B.5. From
the fact that K;(C;(H)) = 0 and Theorem B.2 it follows that I' = Ko(C/(G)). This

proves the corollary. [

Remark B.7. Condition (4.6) is an analogue of the Avitzour condition for the case
of reduced amalgamated free products. We will use it in the next section to prove

simplicity and uniqueness of trace.

C. Simplicity and Uniqueness of Trace

In this section we will use Power’s idea ([31]) to obtain a sufficient condition for
simplicity and uniqueness of trace for reduced amalgamated free product C*-algebras.

We will make use the following result (due to Avitzour) and its proof:
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Theorem C.1 ([3]). Let A; and Ay be two unital C*-algebras and ¢ respectivelly
@9 states on them with faithfil GNS-representations. Suppose that there are unitaries
u; € A;, 1 = 1,2 such that ¢1 and ¢ are invariant with respect to conjugation by u,
and uy respectivelly and such that ¢;(u;) = 0 for i = 1,2. Suppose also that there is
a unitary uy € Ag, such that ¢a(ub) =0 and ¢o(ubub) = 0. Then:

(1) (A,6) < (A1, 1) * (Az, ¢2) is simple.

(I1) If ¢ is invariant with respect to conjugation by ufy then ¢ is the only state
on A which is invariant with respect to conjugation by uy, ug,uy. If ¢ is not invariant

with respect to conjugation by ul then there is no state on A which is invariant with

respect to conjugation by wuy, usg, ul.

The proof of Theorem C.1 uses a lemma of Choi from [6]. We will need the

following straightforward generalization of this lemma to the case of Hilbert modules:

Lemma C.2. Let H, and Hj be right Hilbert B-modules. Let uy, ..., u, € L(H® H>)
be unitaries such that uju;(Hy) L Hs, whenever i # j. Suppost that b € L(H, & H»)
is such that b(Hy) L Hy. Then ||= Y ufbw;| < 2|[b||/v/n.

k=1

Proof. First assume that

0 O
b = € £<H1 EB HQ)
by b9
If
C1 Co
CcC = € £(H1 @ HQ)
0 0

then for x ® y € H; ® H, we have

c1 Cy T C1T + C2y

bl b2 Y blx + bgy
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Then:

C1T + 2y

= |[{(c1x + c2y) ® (b1x + boy), (12 + c2y) B (x +b2y)) myem, || B =
bll’ + be
B

[[{c17 + oy, 12 + coy) m, + (b + boy, b1 + boy) || B <

[{erz+cay, 1o+ cay) || 5+ (012 +boy, biz+boy) m |5 = i+ 2yl + b1+ bayll

2 2

C1 C T 0 0 T
= +

0 0 Yy bi by Yy
B B
Taking supremum on both sides over all vectors x @y in the unit ball of H; & Hy
we get

2
C1 €9
= lle+ 0l < llell® + [1o1*.
b by

a c

Now wiubuju;(Hs) C ujuib(Hy) = 0. So wjuzbuju; has the form b

0 O
Now || uibuy ||* = lup (X wibuy)ur |* = b+ uiusbuua || < (|6 -+ D uiusbuiw[|* =
i=1 i=1 =2 i=2

16112 + ||> - wsbul||?. Tt follows by induction that || > w;buf||* < n|[b]|?. For the general
=2 i=1

case we represent

0 b 0 0 0 0
b=

bl bQ bl bz b; 0
Then

1> Jwibus|| < 1) Jui :
i=1 i=1 by b b; 0
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0 0 0 0
Vn +/n < 2v/nl|b|.
by by b5 0

]

Untill the end of the section we will assume that we have unital C*-algebras
Ay, Ay that contain the unital C*-algebra B as a unital C*-subalgebra. We will
also assume that we have condiditonal expectations E; : A; — B for i = 1,2 that
have faithful KSGNS-representations (i.e. satisfy condition (4.1)). We now form the
reduced amalgamated free product (A, E) e/ (A1, E1) * (Ag, Ey).

Now we can imitate Avitzour’s proof of Theorem C.1 and prove the following

version for the case of amalgamation:

Proposition C.3. Suppose everything is as above and also suppose that there are
unitaries uy € Ay, ug,uh € Ag with E1(uy) = 0= Ey(uz) = Eo(uy) = E(uguly). Then

if v € AL then 0 € conv{uru*|u € A is a unitary }.

Proof. We will use the notation from section A with I = {1,2}. Let Wy C C(A) be
the span of all words from Ap(Af, A3) that either begin with an element a; € A or
begin with u5b with b € B, or come from B. Let W; C C(A) be the span of all words

from Ap(A7, A3) that begin with an element ay € A3 satisfying Fs(usas) = 0. Denote

H Y r(W)lic M, i=0,1

We have M = Hy @ H; (the orthogonality is with respect to (.,.)as). To show this
notice first that Span(W, U W7) is dense in A. Therefore M = Hy + H;. For every
word wg € Wy and every word w; € Wiwe have E(wjw;) = 0 which is easy to see by
considering the three possible cases for wy. Thus Hy L H; by linearity.

We claim that (uju;)*(H,) C Hy for k # 0.

It is enough to prove that (uju;)*W; C W,
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If k > 0 then (uju;)*W, is spanned by words from A% (AS, A3) starting with 3.
If £ < 0 then take any word w; € Wj. Then w; = asw],where ay € AS satisfies

E(ugas) = 0 and w) € AR (A7, A3) starts with an element of AS. Then

k—1 /

(usur)*wr = (ujug) Fasw] = (wius) ™ uf (usaz)w)

is a word, starting with u? € A. Thus (uju;)*W; C W,
Now ufzul, € A% and also it is clear that (ufzub)(Wy) C Wi by considering the

three possibilities for Wy (notice that E(ubuib) = 0 Vb € B). Now we can use Lemma

C.2 and get
Ly~ 2z
155 > (s wn)* (us wus) (u un) ™ < ==
NS VN
This implies that 0 € conv{uzu*|u € A is a unitary }. O

We will prove the next technical lemma:

Lemma C.4. Suppose that everything is as above and suppose that there are states
¢; on A; for i = 1,2 which are invariant with respect to E;, i = 1,2 and satisfy
O1lp = 6aln(% 05), and construct ¢ < ¢ 0 E.

Suppose that there are two multiplicative sets 14 € A; C A; such that Span(A4;)
is dense in A;, suppose from a; € A; follows Ei(a;), a; — Ei(a;), a; — ¢i(a;) € A;, for
i=1,2 and BNA =BnA, ¥ B

Suppose also that there are two sets of unitaries ) # W; C A; N A? such that
(Wy)* C A; fori=1,2. Let u; € Wi, i = 1,2 and suppose that ¢ is invariant with

respect to conjugation by u; and us.
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Suppose also that the following condition, similar to condition (4.5), holds:

Vby,...,b € B, with ¢(by) =--- = ¢(b;) =0, Im € N and unitaries

Vil -+ Vims V21, -« 5 Vo Such that vig, ... vim € Wi, a1, ..., Vogn—1) € Wa, and:
either vi; € Wy, vo,, € Wy or

vip = la,, vo, € Wy, or

v € Wi, vam = la,,

vin = 1a,, Vo = 1a,, k> 2

with E((V11V21V12 s VlmV2m)bk<V11V21V12 s VlmVQm)*) =0 fork=1,...,1,

(i.e. there are unitaries that conjugate B & Clg out of B)
(4.10)

Suppose finally that there are unitaries wy, € Wi and wy with we = 14 orwy € W,
such that Vb € f)’, Elwll’ e Wi, and wg e Wy if wg € Wy or u)g =1 if wy =1 with
E((w})*(wh) bwiws) = 0.

Then given z € Alg(A; U Ay) with ¢(z) = 0 there exist unitaries o, . . ., ag with

@i € Wit(i mod2) Such that o -+~ afzags -+ oq € A%,

Proof. Until the end of this proof we will use the following settings:

o0

AL Span(| (450 Ay) - [(A5 0 Ay) - (A5 0 Ay)JF € ©(A),
A% Span(( (431 ) - [(43 1 A - (430 ) € C(A),
A2 Span(( 10431 A - (43 1 A € C(A),

k=1

A2 span(| {43 M AL - (431 &) € C(A)

k=1
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We can write © = xg + o1 + o9 + 212 + T91, where zp € Span(B) with ¢(xg) = 0,
z1 € Ay, 2y € A%, 215 € A2 and 5 € A%, We will be alternativelly conjugating
with unitaries from W5 and W5 until we end up with an element of ]\23. So at the start
we call the words from ]&}9 "good words”. When we conjugate a word w; € /~\}3 with
as € Wy we end up with a word asw;aj € ]\23. Now we call the words of AQB "good
words”. If we now take a word wy € [\23 and conjugate it with an element a; € W; we
obtain the word ajwsat € Al so we can call the words from AL ”good words”. We
will show that proceeding in this way, i.e. alternativelly conjugating x with elements
from W; and W5 we can come to an element of - - alzas---ag € ]\23 consisting of a
linear combination of ”good words” from A%. This will prove the lemma.

We have to consider the other 4 possibilies:

(i) Take a word b € B. Suppose that the ”good words” are in A% and we are

going to conjugate b with the element u; € W;y. Then we obtain
urbul = E(uibul) + (u1bu] — E(uibuy))

for which (uibut — E(ubut)) € Ay N A € Ay is a "good word” and the word
E(uibu?) € B satisfies ¢(E(uybut)) = ¢(b). Analoguous conclusion can be drawn
if we suppose that the ”good words” are in /N\}B and we are conjugating with the
element uy € Wh.

(ii) Take a word 71 - 7o, € /~\}92 (vi € AT+(z‘71 mod 2) [ A1+(i_1 mod 2)) and con-
jugate it with a unitary as € Ws thinking that the "good words” are in /N\}g. We

get

A2V1** * Yon-1Y2nGs = 27Y1 * *  Yon—1E(2na3) + aoy1 - - - Yon—1(Y2nas — E(y2,a3)).

The first word is from ]\231 of the same length 2n as the word 7 - - - 2,172, and

the second word is from AQB, i.e. a "good word”. If we supposed that the good words
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were in AQB and we were conjugating with a unitary a; € W, then we would have

aivy - "an—l’hnaz = E(al’Yl)’Yz . '72n7172na>{ + (al’h - E(al%))% e '72n71’}/2na>{

So again we end up with a word from /1%1 of length 2n and a "good word” from
AL
(iii) In a similar way we can treat a word 73« - - Yo 41 € /~\2]31 (vi € A(l)+(z>1 mod 2) 1

A1+(z‘—1 mod 2))- 1f we conjugate with a unitary a; € W, knowing that the ”good

words” are in AL we end up with

as7y27s - '72n+1a§ = E(%%)% - '72n+1a§ + (a272 - E(@%))VS e ‘72n+1a§~

The first word is from A} and of the same length 2n and the second word is
from AQB, i.e. a "good word”. In the same way if the good words were in AzB and we

were conjugating with a unitary a; € W; we would obtain

arvyz - '72n72n+16ﬁ = a172 - '72nE(72n+1aT) +ary2-- '72n(72n+1a1< - E(%ml@))-

The first word is from A} of length 2n and the second word is from Al ie. a
7 good word”.

(iv) Take a word g -+ 72, € AQB (v € A‘f+(i_1 mod 2) [ A1+(z‘—1 mod 2)). 1f the
”good words” are in A}g and if we conjugate this word with the unitary us € Ws, we
get

UoYaYs - - Yon—1V2nls =  E(uaye)ys - Yon—1E(Vanus)+
+(uoye — E(uay2))vs - - Yon—1E(V2nts) + E(uav2)7s - - - Yon—1(Y2nts — E(Y2,u5))+
+(U272 - E(U272))73 e '72n_1(72nu§ - E(muz))-

The last word is in A%, so it is a "good word”. The second word is in A%,

the third is in A} and the first one is in AL but of length 2n — 3. Since ¢ is
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invariant with respect to conjugation by uy we see that 0 = ¢(V2y3+ Yon—172n) =
P(u2v2y3 -+ Yan—1720u3) = G(E(u2y2)v3 - Yon—1E(y2013))-

Similarly if we have a word ~; - - - y2,_1 € ]\113 (i € Acl’+(i_1 mod 2) ﬂle(i,I mod 2))
and if the "good words” are in /VB and if we conjugate with the unitary u, € W; we

will get
Uiv17v2 - - "72n—272n—17ff = E(U171)72 e '72n—2E(72n—1u){)+

+(U1’71—E(U1’Yl))’72 e "Y2n72E(’an71uT)+E(Ul’Yl)”Yz " "727172(727171“4{_E(’yanluT))_F
+(U1’Y1 - E(U171))72 o '7271—2(’7271—1“){ - E(%n—ﬂff))-

Notice that the last word is from AL, so it is a ”good word”. The second word
is from A} and the third one is from A%Z. The first word is from A% but with
length 2n — 3. In this case we also can conclude that 0 = ¢(y172 - - Yon—2Y2n-1) =
(w1172 Yan-2Y2n—1u7) = G(E(uam)yz - - Yon—2E(V2n-1u7)).

From this we can conclude that if we take the word 5 -7, € ]sz and if the
good words” are in AL then (uyus)ys - - - Yon(uiu?) will be the span of some ”good
words”, i.e. belonging to AL, some words from A%, some words from Al?, and the

word from A% with length 2n — 5
E(ui1 E(uey2)ys)Ya - - - Yan—2E(Von—1E(y2nu3)ul) =

= E(u1uay2y3)Va - - - Yon—2E(Von—172nu5u7)

if n > 3. Continuing in the same fashion we see that if [ > n/2, (ujug)'ys - - - Yon (ubu})
will be the span of some ”"good words”, i.e. belonging to /~\,19, some words from
A3, some words from A}, and a word b € B. Actually it is easy to see that b =
E((uyug) s - - - yan (uiut)!) € B since this is the element which projects onto B under

the conditional expectation. Notice that since ¢ is F-invariant and also invariant
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with respect to conjugation by u; and ug then ¢(E((uyus)ys - - - yon (uiui)t)) = 0.
We can now return to the element x = xg + x1 + T2 + 212 + T21. Set the words
from A} to be "good words”. From the observation above we see that if [ is greater
that the length of the longest word appearing in x,, then (ujus)'zs(uju?)! is the span
of some ”"good words” from A B, some words from JN\QBl, some words from ]\},2, and
some words from B, each one of them when evaluated on ¢ gives 0. But considering
cases (i), (ii) and (iii) we can easily conclude that 2" 2 (ujus )z (uju?)! can be written
as ¥’ = 2y + 2| + x, + b, with 25 being a span of words from B and satisfying
¢(2'5) = 0, x being a span of ”good words” from A}g, x5 being a span of words from

A2 and z), being a span of words from AZ.

Let 2y = Zal i, where b; € B and oy; € C. 0 = p(aly) = (ZaZ b)) = > o).

'L 1

Thus @5 = Zai(bi — o(by)) if we set b, = b; — ¢(b;) for i = 1,....n, then b, € B
=1

with ¢(b)) = 0 = ¢(usb;us). So we can apply condition (4.10) to the set of elements

(b, 0 Elugbius), . . ., E(ugblui)} € B. We obtain unitaries vy, ..., v,. Set
(
V1 VUn, ifl/1€W2,l/m€W2
U1 * * * U, if 121 EWl,Vm EWQ,
u =

Ul - - - Upla,  if v € W, v, € Wh,

V1 Uy, if vy € Wa, v, € W

\
Then it is clear that u*zzu € AQB and the "good words” are in AQB. Then
from cases (ii) and (iii) also follows that z” I wra'u can be represented as x” =
a4 2, + x4, where % € A% is a span of "good words” and z7, € A2, 4, € A%,
Let n be the number of words from [\231 and from [\1192 that appear in the span of

2y + x5, We will argue by induction on n to conclude the proof of the lemma.

Let v+ -qa € AR (v; € A3

11 mod2) N Al—l—(i—l mod 2)) 18 @ word from the span of
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27y (The case 23, is completely analoguous.) Set

-1 :
def wlwg(ulug) , if Wy € Wg,

W1<U2U1)l_1U2, if Wy = ].A.

Let’s observe first that if aq -+ -, 81+ (o € /~\}32, then we can write
E(By - BBionag -+ ag) = E(By - BRE(Bion)ag - agy)+

HE(By - By (Bron — E(Bian))ag -~ az) = E(fy - - B E(fian)ag - - o).

It follows by induction that E(G3, - - G4 0faian -+ - agy) € B. Also from
By BaBranag o = By BaE(Bfag)ag - - - cg+

By B3(Biar — B(Ban))as- - an = By B E(Bar)as - au

again by induction follows that 35, - -- 58] a1q - - - gy is the span of words from /~X2B

plus the word E(8 - - - Biffonas - - - agy) € B.
All this implies that @*v; - - -y is a span of "good words” from /~\2B and the

word E(*yy - - - vy € A2, Set b wf E(@*y; - --v21) € B (see the observation above).

Now we choose unitaries w?, w8 as in the statement of the lemma. We have

(W) (W) B (@ -+ - yay )il =

(WB)* (W) B(@* 1 - - -y Jwnwa (ugug ) bl if wy € W,

b

(W1>*E(a*% C Y)Wy (U2U1)l_1

u2wll’, if wy =14.

From this and from the choice of w?,w? (and from case (i)) it is clear that

(W) (W) E(T 1 -+ - yor ) awwy

is a span of "good words”.
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Since by cases (ii) and (iii) follows that when we alternatively conjugate words
from A} and from A% by unitaries from W; and W, the number of such words doesn’t
increase, and since we managed to conjugate the word ~; - - - 79 to a span of "good
words”, the induction on n is concluded.

This proves the lemma. ]
Combining Proposition C.3 and Lemma C.4 we obtain the following

Theorem C.5. Assume that we have unital C*-algebras Ay, As that contain the
unital C*-algebra B as a unital C*-subalgebra. Also assume that there are condidional
expectations E; : A; — B for i = 1,2 that have faithful KSGNS-rapresentations (i.e.
satisfy condition (4.1)) and form the reduced amalgamated free product (A, E) «f
(A, Ey) * (Ag, Ey).

Suppose that there are states ¢; on A; fori = 1,2 which are invariant with respect
to E;, i = 1,2 and satisfy ¢1|p = @\B(déf ¢p). Construct ¢ = ¢po E.

Assume that there are unitaries u; € Ay, ug,uy € Ay with Fi(u1) = 0 = Es(ug) =
Es(uh) = E(ugub). (Or assume that there are unitaries uy,u) € Af, us € A5 with
E(uuf) =0.)

Suppose that there are two multiplicative sets 14 € A; C A; such that Span(A4;)
is dense in A;, suppose from a; € A; follows Ei(a;), a; — Ei(a;), a; — ¢i(a;) € A;, for
i=1,2 and BNA, =BnA, ¥ B.

Suppose also that there are two sets of unitaries § # W; C A; N A¢ such that
(Wy)* C A; fori=1,2. Letv; € W;, i = 1,2 and suppose that ¢ is invariant with

respect to conjugation by vy and vs.
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Suppose that condition (4.10) holds, namely:

Vby,...,b € B, with ¢(by) =--- = ¢(b;) =0, Im € N and unitaries

Vil -+ Vims V21, -« 5 Vo Such that vig, ... vim € Wi, a1, ..., Vogn—1) € Wa, and:
either vi; € Wy, vo,, € Wy or

vip = la,, vo, € Wy, or

v € Wi, vam = la,,

vin = 1a,, Vo = 1a,, k> 2

with E((V11V21V12 s VlmV2m)bk<V11V21V12 s VlmVQm)*) =0 fork=1,...,1,

(i.e. there are unitaries that conjugate B & Clg out of B)

Suppose finally that there are unitaries w; € Wi and wy with wy = 14 orwy € W,
such that Vb € B, Jwb € Wy, and wh € Wy if wy € Wo or wh = 1 if wy = 1 with
E((w3)"(w]) bwiws) = 0.

Then:

(1) If ¢ has a faithful GNS-representation then A is simple.

(2) If ¢ is invariant with respect to conjugation by uy,us,uy (or by uy,ul, us)
and all the unitaries from Wy and Wy, then ¢ is the only tracial state on A, invariant

with respect to conjugation by all those unitaries.

Proof. (1) Suppose I # 0 is an ideal of A. Notice that Alg(A; U A,) is dense in A.
Take a nonzero element x € I. Because E has a faithful KSGNS-representation it
satisfies condition (4.1), i.e. Jy € A such that b = E(y*x*zy) # 0. Notice that
b* = b. Since ¢ has a faithful GNS-representation we can find " € B such that

o((V)*bt') # 0. Then

o((b) y " zyt) = S(E((V) y "z zyb)) = (V) E(y"z"zy)b) = ¢((b')"0b') # 0.
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Then ¢ S((V) 00 )L (V) y* e ayb’ (€ I) is self-adjoined and satisfies ¢(c) =
Find a € Alg(A; UA,) such that ||a —¢|| < e. From Lemma C.4 it follows that we can
find unitaries oy, ..., a, € W3 U Ws such that (o« ap)*(a — éd(a)la)(ag - - apy) €
AL. Then it follows from Proposition C.3 that we can find unitaries Uy,...Uy € A

that are constructed from wy, ug, vy, and the unitaries from Wy U W, and are such that

N

||Z%Ui*(0é1 o) (a — ¢a)la)(on - an)Uil| <e.

i=1

Then

IS U (e ) (a = 6(a) L — e+ La) -+ an)Ui]| <

N
1
> U (ar-- an)(a = d(a)1a — e+ L) (e - ) Ui =
=1
M1
= ~lla = d(a)La — e+ Lull = la = ¢(a)1a — e+ L =
=1

= [l(a=¢) =la =)l <fla—cl| +lla =] <2

N
Therefore ||>°+U (a1 -+ - aun)* (¢ — 1a)(ar - - - o4 Us|| < 3e. Set
i=1

7% ZNU*(al cag) e(ag - an)U; (€ 1),

Thus |d —14]| < 3e. Then if we take € < 3 it would follow that d is invertible,
and therefore I = A.

(2) Take 0 # x € A. Then if we argue as in case (1) we can find unitaries

Uy,...,Uy € conv{u|u is a product of unitaries from Wy U Wy U {uy, ug, ub}} with

”Z Ut (z — ¢(2)10)U;|| < 3e.

If we take a state ¢’ such that ¢ and ¢’ are invariant with respect to conjugation by
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uy, Ug, uy and by all unitaries from W; U Wy then we will have

e > [0/(Y R U (= @) La)UD)] = 3 16 (U7 alh) —o(a)| = 131 (@) — ola)| =

¢ (z) — ¢()].

Since this is true for any € > 0 it follows that ¢’ = ¢. ]

Although the statement of Theorem C.5 looks complicated some applications can
be given. The next proposition is a slight generalization of the de la Harpe’s result

from [19].

Corollary C.6. Suppose that G 2 H C Gy are discrete groups and suppose that
H # {1}. Denote G = G, * Go. Suppose that for any finitely many hy, ..., hy €
H\{1} there is g € G with g~ 'h;g & H for alli = 1,...,m. Then C*(G) is simple

with a unique trace.

Proof. Set A; = C(G;), i = 1,2, B = Cf(H) and A = C}(G). Clearly H is not
normal in at least one of the groups G; or Gy. Without loss of generality suppose
that H is not normal in G;. Then there are g1,¢9; € G1\H and go € Gy\H with
gi(g))™" € Gi\H. Then set u; = Maq1), v, = Mg}), us = Agz). We take A; =
{Xe)|e € Gy}, i=1,2, B={\h)|h € H}. Also W; = A;\B for i = 1,2. Condition
(4.10) is satisfied since for finitely many elements from H\{1} we can find an element
from G that conjugates them away from H. Finally for the last condition of Theorem
C.5 we can set w; = uy, wp = 1 and for A(h) € B we set w}™ = huf. Thus all

requirements of Theorem C.5 are met and this finishes the proof. O]

We give also an application to HNN extensions of discrete groups. We will use
the notion of reduced HNN extensions for C*-algebras introduced by Ueda in [38].

We will use the following settings:
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Let {1} € H C G be countable discrete groups and let § : H — G be an
injective group homomorphism. Thus we have that C*(H) C C*(G) and that we have
a well defined injective *-homomorphism 6 : C*(H) — C*(G). By ES : C¥(G) —
C¥(H) and EéGEH) : C¥G) — CHO(Cr(H)) we will denote the canonical conditional
expectations. By 7¢ we will denote the canonical trace on C*(G). Let A; = C*(G) ®
M5(C), Ay = CH(H) ® M3(C) and B = C:(H) & C:(H). Define the inclusion maps
11:B— Ay and iy : B — Ay as

‘ by 0 _ by 0
Zl(bl @D bg) = y Zg(bl D bg) =
0 6(by) 0 by

and define the conditional expectations F; : Ay — B and E, : Ay — B as

E¢ 0 id 0
El - 7 ; E2 -
G .
0 Eé(H) 0 id

Then let
(A, E) = (Al, El) * (AQ, EQ)

be the reduced amalgamated free product of (A;, F1) and (A, Es) and let
(A, B . u(6)) = (C2(G), B n)(0. ES )

be the reduced HNN extension of C(G) by 0 as in [38]. Also let ip : B — A be the
canonical inclusion.

From [38, Proposition 2.2] follows that A is isomorphic to A ® My(C). Therefore
the questions of simplicity and uniqueness of trace for A and for A are equivalent.

The following corollary of Theorem C.5 is true:

Corollary C.7. In the above settings suppose that H C G and 9~(H) C G. Suppose

also that Yh € H\{1}, In, € N, such that 0" (h) € O(H) and 0™ (h) ¢ O(H). Then
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A (and therefore A also) is simple with a unique trace.

Proof. We will show that all the conditions of Theorem C.5 are met.
First the canonical traces 7; on A;, i = 1,2 satisfy 7,0 E; = 7; for ¢ = 1,2 and
Ti|lg = To|B (déf 7). We have 7 = g0 E.

Define
Ay = Span({A(g) ® eylg € G, 1 <i,j < 2})
and
Ay = Span({A(h) @ ejlh € H, 1 <1i,j <2}),

where e;; for 1 <i,j < 2 are the matrix units for M,(C). Then we have A, NB=
Ay N B(déf B) It is also clear that a; € A; implies E(a;), a; — E(a;),a; — 1i(a;) € A,
for i =1,2.

Choose §; € G\H, g, € G\O(H).

Define the following unitaries from A; N 1211:
Uy = , uf = 5 Uy =
and the following unitary from A, N Ay
Uy =

Set W1 = {ul,u’l,u’l’}, W2 = {UQ}
Set wy = uy, we = 14, and for every b = by & by € B set wll’ = u}. Then
Mg 0 by 0 0 1

B((u4)(by @ bo)ur) = E( )=
0 A@YH || 0 6w | |10
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0 Mgy ')b
_ B (91 )b )= 0.
Mgy o) 0
It remains to check that condition (4.10) holds.

For an element b = by & by € B it is easy to see that
usuybusug = E(usE(uibuy)us) + us(uibu; — E(uibuy))usg

and that

p

071 (b1) @ 0(b2), it by € O(CF(H)), b € CF(H),

9_1(b1> ® 0, if by € 9(C:(H))7 bs ¢ C:(H),
igt o B(ujuibuiug) = ¢

0@ 6(bs), if by ¢ 0(CF(H)), by € CH(H),

00, if by ¢ 0(CH(H)), by & Cr(H).

\

Using induction one can show that for any n € N we have
(uzuy)"b(uruz) ™ — B((uzuy) ~"b(urug)") € A,

Let 6 be the linear map which extends of 8 to C*(G) by 8(A(g)) = 0 for g € G\ H.
Also let 6= be the linear map which extends of 6! to C*(G) by 6-1(A(g)) = 0 for
g € G\A(H). Then:

ip o E((uzuy) "b(uruz)") =

¢

07 (b) @ 0 (ba). 6 by € (B)(C(H)). b € (07N (C (),
CJereoeo. e @), b 7))
000 (b). b ¢ B)(CHH)). b (07 CHH))
00, iy ¢ (0)(CH(H)). b g (07 (C(H))

\

If we set ¢; = A(gy D)(0-1)"(b)A(g1) and o = A(g5 ) (0)" T (ba)A(Gs) the we will



87

have
ip' o Eus(uy) (ujui)"buruz)"uyus) =
0~ co) By, ifcy€b(CHH)), c; €CHH),
6 (ca) @0, if co € 0(CH(H)), ¢1 ¢ CH(H),
E 0@ e, if co ¢ 0(CF(H)), 1 € CH(H),
\0@0, if o ¢ 0(CH(H)), c1 ¢ CH(H).
Now take elements by, ..., b € B with 75(by) = --- = 75(b;) = 0. We can write

b = + by D —au, + by for each k = 1,...,1 with by € Span({A(h)|h € H\{1}}).
Clearly from the statement of the corollary follows that there exists an N € N with
ES(ON (byy)) = 0 for each k = 1,... 1. Therefore for each k = 1,...,l we have

i3t o B (s (u})* (wzus) by (wrua) Vet uz) =

ar @ —ap + ¢,  if e, € CHH),
o D — L, if Ck ¢ C:(H),

where ¢, = MG )0 (b)), k = 1,...1. Now we can find an M € N such
that (§)™(cx) = 0 for all k =1,--- 1. Then for all k = 1,...,I we have

ip o B((uzuy) ™Mz () (uzuy) ™o (urun) M ua(urue) ) = an & —au.

Finally for all k =1,...,1

it o B((u)" (ug) ™) () Bu(ura) s (wr2) M) = 0,

This proves that condition (4.10) holds and thus we can apply Theorem C.5.

This proves the Corollary. [

Remark C.8. By symmetry it is clear that in the corollary the assumption
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"Yh e H\{1}, 3n, € N, such that "~ (h) € 6(H) and 0™ (h) ¢ O(H) "
can be replaced by the assumption

"Jh e H\{1}, 3ny € N, such that ="+ (h) € H and " (h) ¢ H .

Examples of HNN extensions of discrete groups which satisfy the assumption of
this corollary (and which are therefore simple with a unique trace) are the Baumslag-

Solitar groups BS(n,m) for |n| # |m| and |n|, |m| > 2.
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CHAPTER V

CONCLUSION

In this report we made some contribution to the Operator Algebra theory and
in particular to Free Probability. We briefly describe what we achieved and what
further can be researched.

In Chapter I we recalled the notions of full and reduced free product of C*-
algebras and gave some properties of those.

In Chapter II we proved the existence of a six term exact sequence for the K-
theory of full amalgamated free product C*-algebras A x¢ B, in the case when C' is
an ideal in both C*-algebras A and B.

In Chapter III we found a necessary and sufficient conditions for the simplicity
and uniqueness of trace for reduced free products of finite families of finite dimensional
C*-algebras with specified traces on them.

In Chapter IV we studied some reduced free products of C*-algebras with amal-
gamations. We gave sufficient conditions for the positive cone of the K group to be
the largest possible. We also gave sufficient conditions for simplicity and uniqueness
of trace.

It would be interesting to know if reduced free products of C* (W*) algebras
can be used in Physics or some other natural science to explain some phemomena
from the nature. One of the main reason for which the von Neumann Algebras and
C* algebras were developed was to explain some Quantum Mechanical phenomena.

Thus our question is not unreasonable.
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