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ABSTRACT

Essays in Asset Pricing and Portfolio Choice. (August 2007)

Philipp Karl Illeditsch, Dipl. Ing., University of Technology, Vienna;

M.S., Washington University in St. Louis

Chair of Advisory Committee: Dr. Kerry Back

In the first essay, I decompose inflation risk into (i) a part that is correlated with

real returns on the market portfolio and factors that determine investor’s preferences and

investment opportunities and (ii) a residual part. I show that only the first part earns a

risk premium. All nominal Treasury bonds, including the nominal money-market account,

are equally exposed to the residual part except inflation-protected Treasury bonds, which

provide a means to hedge it. Every investor should put 100% of his wealth in the market

portfolio and inflation-protected Treasury bonds and hold a zero-investment portfolio of

nominal Treasury bonds and the nominal money market account.

In the second essay, I solve the dynamic asset allocation problem of finite lived, con-

stant relative risk averse investors who face inflation risk and can invest in cash, nominal

bonds, equity, and inflation-protected bonds when the investment opportunity set is deter-

mined by the expected inflation rate. I estimate the model with nominal bond, inflation,

and stock market data and show that if expected inflation increases, then investors should

substitute inflation-protected bonds for stocks and they should borrow cash to buy long-

term nominal bonds.

In the last essay, I discuss how heterogeneity in preferences among investors with exter-

nal non-addictive habit forming preferences affects the equilibrium nominal term structure

of interest rates in a pure continuous time exchange economy and complete securities mar-

kets. Aggregate real consumption growth and inflation are exogenously specified and con-

tain stochastic components that affect their means and volatilities. There are two classes of
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investors who have external habit forming preferences and different local curvatures of their

utility functions. The effects of time varying risk aversion and different inflation regimes

on the nominal short rate and the nominal market price of risk are explored, and simple

formulas for nominal bonds, real bonds, and inflation risk premia that can be numerically

evaluated using Monte Carlo simulation techniques are provided.
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CHAPTER I

INTRODUCTION

This dissertation consists of three essays. The title of the first essay is “Idiosyncratic

Inflation Risk and Inflation-Protected Bonds”, the title of the second essay is “Inflation

and Asset Allocation”, and the title of the last essays is “The Term Structure of Interest

Rates with Heterogeneous Habit Forming Preferences”.

I.1 Idiosyncratic Inflation Risk and Inflation-Protected Bonds

Inflation can affect real security prices through two channels. First, inflation may affect

the real economy, meaning the real stochastic discount factor and the real cash flows of

positive-net-supply securities. Second, inflation will affect the real cash flows of zero-net-

supply securities such as nominal Treasury bonds. I decompose inflation risk into (i) a

part that is correlated with real returns on the market portfolio and factors that determine

investor’s preferences and investment opportunities and (ii) a residual part. I show that

only the first part earns a risk premium and investors should seek to avoid exposure to the

second part.

I consider an economy with heterogeneous investors who can continuously trade in a

frictionless security market and receive labor income that is spanned by real asset returns.

The market price of residual inflation risk is zero because only the part of inflation risk

that is correlated with factors that determine investor’s preferences and investment op-

portunities and real returns on the market portfolio is priced in equilibrium; i.e. I show

that the ICAPM for real asset returns holds. This is true even when the government is-

sues inflation-protected and nominal Treasury bonds and collects nominal lump-sum tax

payments from investors to cover the interest payments on the Treasuries outstanding.

Moreover, the conclusion that the market price of residual inflation risk is zero does not

require complete markets or identical tax payments among investors.

This dissertation follows the style of Journal of Finance.
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Inflation-protected Treasury bonds provide a means to hedge exposure to residual

inflation risk. All nominal bonds, including the nominal money-market account, are equally

affected by inflation through the second channel described above. I show (i) there is a real

instantaneously risk-free asset consisting of a long position in inflation-protected bonds

and a zero-investment portfolio of nominal bonds and the nominal money market account,

(ii) the portfolios on the instantaneous mean-variance frontier of risky assets consist of

long or short positions in the market portfolio and inflation-protected bonds and zero-

investment portfolios of nominal bonds and the nominal money market account, and (iii)

the portfolios that hedge changes in the investment opportunity set consist of long or

short positions in the market portfolio and inflation-protected bonds and zero-investment

portfolios of nominal bonds and the nominal money market account. These facts imply

directly that (iv) every investor should put 100% of his wealth in the market portfolio and

inflation protected-bonds and hold a zero-investment portfolio of nominal bonds and the

nominal money-market account.

Results (i)-(iv) follow from the equal exposure of nominal bonds and the nominal

money market account to residual inflation risk. This risk cannot be present in the real

locally risk-free asset; thus (i) holds. This risk is not priced; thus, the variance-minimizing

portfolio producing a given expected return has no residual inflation risk, producing result

(ii). The hedging portfolios are the portfolios maximally correlated with the latent state

variables and therefore cannot include residual inflation risk; thus, (iii) holds.

The conclusion that investors in aggregate should hold zero-investment portfolios in

nominal bonds and the nominal money market account follows from equilibrium consid-

erations — market clearing for zero-net-supply securities. However, the conclusion here

is much stronger: every investor, not just the representative investor, should hold zero-

investment portfolio in nominal bonds and the nominal money market account. Moreover,

the zero-investment portfolio in nominal bonds should be interpreted as inclusive of the

investor’s short position in nominal Treasury bonds that corresponds to his position as a

taxpayer and inclusive of his short position in nominal corporate bonds that corresponds to
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his position as a shareholder. In other words, the investor’s allocation to corporate bonds

versus stocks should be the same as a representative investor, and he should hold enough

Treasury bonds to immunize his tax liability.

It is well known since Merton (1971) that the optimal dynamic investment strategy

is to hold a linear combination of (k + 2) mutual funds; two funds to form the optimal

portfolio on the mean-variance frontier and k funds to hedge changes in investor’s pref-

erences and investment opportunities. I show for a broad class of preferences and asset

return distributions that the optimal amount of nominal Treasury bonds and the nominal

money market account invested in each mutual fund is always zero without explicitly solv-

ing for the value function. Moreover, when investors are subject to nominal lump-sum tax

payments that are affine functions of the price level, then they should hold an additional

fund with exactly enough in Treasury bonds to immunize their tax liabilities.

Fischer (1975), Bodie, Kane, and McDonald (1983), and Viard (1993), assuming a

constant investment opportunity set, show that (i) only the part of inflation risk that is

correlated with real stock returns should earn a risk premium if the CAPM for real asset

returns holds (residual inflation risk is unpriced) and (ii) investors should shun nominal

bonds when inflation-protected bonds are available. I show that the second part is no longer

true when the real and nominal short rate is stochastic (the nominal money market account

and nominal bonds, as well as, the real risk-free asset and inflation-protected bonds aren’t

perfect substitutes) because in this case investors hold long/short positions in nominal

bonds that are financed by an equal amount of other nominal bonds and the nominal

money market account when inflation-protected bonds are available. However, I derive

the ICAPM for heterogeneous investors with state dependent preferences and investment

opportunities and confirm the first result when residual inflation risk is defined as the part

of inflation risk that is not only uncorrelated with real stock returns but with real returns

on the market portfolio and factors that determine investor’s preferences and investment

opportunities. Moreover, I show that inflation-protected bonds are used to hedge residual

inflation risk (allow investors to create a real risk-free asset) without assuming that the
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real short rate is constant.

Recent studies on optimal portfolio choice with inflation-protected bonds include

Campbell and Viceira (2001) and Campbell, Chan, and Viceira (2003). Campbell and

Viceira (2001) and Campbell, Chan, and Viceira (2003) solve the discrete-time dynamic

portfolio choice problem of an infinitely-lived investor with Epstein-Zin preferences, who

can invest in equity, nominal bonds, and inflation-protected bonds, using a log linear ap-

proximation and a Gaussian investment opportunity set. While this paper employs different

assumptions and a different solution method – I assume a finite-lived investor, preferences

and investment opportunity sets that are described by an exogenously given state vector

(this excludes Epstein-Zin preferences), and an exogenously given stochastic discount fac-

tor and solve a continuous-time portfolio choice problem) – the principal difference is that

the main portfolio choice results are derived when residual inflation risk is unpriced.

This paper is also related to recent papers of Brennan and Xia (2002) and Sangvinatsos

and Wachter (2005), who discuss dynamic asset allocation decision with inflation risk and

provide closed form solutions. Brennan and Xia (2002) analyze the portfolio problem

of a finite-lived investor with power utility who can invest in the stock market, cash,

and nominal bonds when the conditional distribution of all asset returns is Gaussian.

Sangvinatsos and Wachter (2005) extend their work by adding another state variable to

account for time-varying risk premia and explore the resulting predictability of nominal

bond returns for portfolio choice. My paper differs from these papers in that I add inflation-

indexed bonds to the analysis and consider a broader class of preferences and asset return

distributions. Importantly, the fact that residual inflation risk is not priced allows me

to determine the optimal investment in nominal bonds and the nominal money market

account in each mutual fund without explicitly solving for the value function of the dynamic

portfolio choice problem.

My paper is also related to recent studies of inflation-protected bonds by Bodie (1990),

Gapen and Holden (2005), Hunter and Simon (2005), Kothari and Shanken (2004), Roll

(2004), Brynjolfsson and Fabozzi (1999), Deacon, Derry, and Mirfendereski (2004), and
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Benaben (2005). These studies analyze the mean, variance, and correlation of returns

on nominal bonds, inflation-protected bonds, and stocks and discuss the welfare gains of

adding inflation-protected bonds to standard investment portfolios consisting of nominal

bonds and stocks in a static mean-variance framework. The main conclusion is that adding

inflation-protected bonds increases the welfare of investors because of the low standard

deviation of real returns of inflation-protected bonds and their diversification benefits (the

low correlation between inflation-protected bonds and both nominal bonds and stocks).

However, the gains are usually found to be quite small for U.S. investors because of the

low volatility of inflation risk in the United States.

I.2 Inflation and Asset Allocation

This paper explores the effect of inflation on optimal portfolio choice. The asset classes

considered are stocks, nominal Treasury bonds, inflation-protected Treasury bonds, and a

nominal money market account. Expected inflation is modelled as a latent state variable.

It is assumed that the ICAPM holds for real returns and that all of the above assets other

than stocks are in zero-net supply (hence do not appear in the market portfolio). Optimal

portfolios for a CRRA investor, consisting as usual of the mean-variance efficient portfolio

and hedging portfolios, are computed analytically. The model is calibrated to U.S. data

and the sensitivity of optimal portfolios to expected inflation is determined.

Fama and Schwert (1977), using the short rate as a proxy for expected inflation,

show that neither stocks nor nominal bonds perform well in inflationary environments: An

increase in the short rate lowers the risk premia of stocks and bonds, and may actually

reduce their expected returns. This is contrary to the simple view that stocks are claims

to cash flows that increase on average at the rate of inflation and hence should be good

hedges against inflation. Without using the short rate as a proxy for expected inflation,

this paper confirms that stocks are poor investments in high inflation environments. This

is true even when hedging demands are considered in addition to the locally mean-variance

efficient portfolio. However, I obtain results for nominal bonds that are somewhat at odds
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with Fama and Schwert’s results: The real risk premia of nominal bonds increase with

expected inflation, and optimal asset allocations to nominal bonds increase with expected

inflation. For inflation-protected bonds, I find that real risk premia decline with expected

inflation, yet optimal allocations increase with expected inflation. A rough summary of

the paper’s results for asset allocation is that when expected inflation increases, investors

should substitute inflation-protected bonds for stocks and should borrow at the nominal

risk-free rate to buy nominal bonds.

It may seem paradoxical that the risk premia of inflation-protected bonds decline

with expected inflation but optimal allocations to inflation-protected bonds increase. The

explanation for this result is that in general an investor should hold 100% of his wealth

in stocks and inflation-protected bonds and should hold a zero-investment portfolio in

nominal bonds and the nominal money market account. This serves to avoid exposure to

the part of unanticipated inflation that is uncorrelated to changes in expected inflation.1

The risk premium of inflation-protected bonds and stocks declines with expected inflation,

but the optimal allocation to inflation-protected bonds depends on how much investors

would like to allocate to the real risk-free asset, whereas the optimal allocation to stocks

depends on how much they would like to allocate to the tangency portfolio. The investor

should substitute inflation-protected bonds for stocks when expected inflation increases in

order to increase his allocation to the real risk-free asset and reduce his allocation to the

tangency portfolio.

I find, in contrast to the popular view, that nominal bond portfolios perform well

in inflationary environments. This seems surprising given that the real value of nominal

bonds is eroded by unanticipated inflation risk. The explanation for the good performance

of nominal bonds in inflationary environments is twofold. First, investors can always avoid

unanticipated inflation risk by financing every long/short position in nominal bonds by

shorting/buying an equal amount of other nominal bonds or by borrowing/lending at the

1The zero-investment portfolio in nominal bonds should be interpreted as inclusive of the investor’s
short position in nominal government bonds that corresponds to his position as a taxpayer (see Illeditsch
(2007b)).
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nominal short rate. Second, the real risk premium for nominal bonds is increasing in the

expected inflation rate. This makes nominal bonds not only a very attractive investment

when expected inflation is high but also a good hedge against changes in the investment

opportunity set.

To capture the predictability of excess returns of stocks, inflation-protected bonds, and

nominal bonds, I specify the dynamics of the real stochastic discount factor and the price

level (the dynamics for the nominal stochastic discount factor follow from no arbitrage)

and assume that their drifts and volatility terms are functions of the expected inflation

rate that follows a mean reverting Ornstein-Uhlenbeck process. The real short rate is a

quadratic function and the market price of risk an affine function of the expected infla-

tion rate. The nominal short rate is a quadratic function of the expected inflation rate,

and a simple restriction on the parameter space ensures its positivity. In this case, both

inflation-protected bonds and nominal bonds belong to the class of quadratic Gaussian

term structure models, and hence the local volatilities are affine functions and the risk

premia are quadratic functions of the expected inflation rate. The real stock return has

a constant local volatility, but its risk premium depends on expected inflation because

the market price of risk is an affine function of the expected inflation rate. Hence, the

model belongs to the class of “quadratic asset return” models proposed in Liu (2007), and

portfolio demands for CRRA investors can be computed in closed form.2

Recent studies on optimal dynamic asset allocation with inflation risk include Brennan

and Xia (2002) and Sangvinatsos and Wachter (2005) who provide closed form solutions for

portfolio demands of finite lived investors with constant relative risk aversion preferences.

Brennan and Xia (2002) discuss optimal portfolios when the nominal bond and equity

risk premium is constant and the investment opportunity set is determined by the real

risk-free rate and the expected inflation rate that both follow mean reverting Ornstein-

2I derive a closed form solution for optimal portfolio demands in Section B.2 of Appendix B for the more
general case in which the expected inflation rate is a quadratic function of x and both the local volatility
of real stock returns and inflation is an affine function of x. Moreover, it is straightforward to extend the
model by considering a k dimensional state vector that follows a multivariate Ornstein-Uhlenbeck process
and solving portfolio demands in closed form.
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Uhlenbeck processes. Sangvinatsos and Wachter (2005) extend their analysis by adding

another Gaussian state variable and account for time varying risk premia of nominal bond

returns. My paper differs from these papers along three dimensions: (i) investors can

also invest in inflation-protected bonds which provide a perfect hedge against unexpected

inflation risk, (ii) both the nominal price of a nominal bond and the real price of an

inflation-protected bond belong to the class of quadratic Gaussian term structure models

which ensures positivity of the nominal short rate and nominal bond yields and implies

that not only the risk premia but also the volatilities of nominal and inflation-protected

bonds depend on expected inflation,3 and (iii) the equity risk premium is not constant but

depends on expected inflation which allows me to focus on the effects of expected inflation

risk on optimal bond and stock allocations.

This paper is also related to recent papers of Campbell and Viceira (2001) and Camp-

bell, Chan, and Viceira (2003) who discuss optimal dynamic allocations to cash, nominal

bonds, equity, and inflation-protected bonds with inflation risk. In both papers the au-

thors solve the discrete time, dynamic portfolio choice problem of an infinite-lived investor

with Epstein-Zin preferences using a log linear approximation and a Gaussian investment

opportunity set. Campbell and Viceira (2001) assume that the risk premia of all assets

are constant and Campbell, Chan, and Viceira (2003) assume that all assets returns are

described by a first order VAR in which the nominal Treasury bill rate, the yield spread,

and the dividend-price ratio are state variables. While this paper employs different as-

sumptions and a different solution method (I assume a finite-lived investor and solve a

continuous time portfolio choice problem in closed form), the principal difference is that in

this paper the risk premia of assets depend on expected inflation which allows me to focus

on the effects of expected inflation risk on optimal bond and stock allocations.

3Brandt and Chapman (2002) show that the three-factor quadratic Gaussian term structure model of
Ahn, Dittmar, and Gallant (2002) dominates the three factor essentially affine term structure models of
Duffee (2002) at matching economic moments.
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I.3 The Term Structure of Interest Rates with Heterogeneous Habit Forming

Preferences

This paper discusses the equilibrium term structure of nominal interest rates with het-

erogenous external habit forming preferences and inflation uncertainty. Aggregate real

consumption growth and inflation are exogenously specified and exhibit stochastic means

and volatilities. Heterogeneity in preferences leads to countercyclical variations in aggre-

gate risk aversion and external habits imply that the countercyclicality does not vanish in

the long run. The equilibrium nominal stochastic discount factor is determined in closed

form and the effects of aggregate risk aversion and inflation on the nominal short rate and

the nominal market price of risk are explored.

The predictability of nominal bond returns and the high persistence of changes in

their yields are important features of U.S. Treasury bonds. While there are many sophis-

ticated reduced form models that are successful in explaining these feature, the economic

mechanism behind these empirical stylized facts remains mainly unexplored. Moreover,

the change in monetary policy in 1979, the high inflationary period in the 70’s, and the

ability of the Fed over the last twenty years to keep inflation in check has led to changes in

the dynamics of inflation (it seems that the persistence in inflation has decreased over time

(Kroszner (2007))) and has affected the evolution of the term structure of interest rates.

For instance, unconditional volatilities of changes in yields were decreasing in maturity for

the pre Volcker-Greenspan period but are now hump-shaped, the hump occurring for two

to three year maturities.

In this paper, I relate the evolution of the nominal term structure to a real business

cycle variable and inflation. I consider a pure continuous time exchange economy and

a complete securities market. There are two investors with external non-addictive habit

forming preferences and different constant local curvature of their utility functions. The

assumption that one investor is twice as risk averse as the other leads to a quadratic

consumption sharing rule and closed form solutions for the nominal stochastic discount
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factor. Moreover, I provide simple formulas for nominal bond prices, real bond prices, and

the inflation risk premium that can be numerically evaluted using Monte Carlo simulation

techniques.

This paper is related to Chan and Kogan (2002) who analyze a general equilibrium

exchange economy with a continuum of investors who have also external non-addictive

habit forming preferences and differ with respect to the curvature of the utility function.

While their focus is to explain empirical stylized facts of real stock market returns the main

focus of this paper is to discuss the nominal term structure of interest rates. Moreover, I

consider only two investors (one investor is twice as risk averse as the other) but obtain

closed form solutions for the nominal stochastic discount factor.4

This paper is related to Dumas (1989) and Wang (1996) who consider two investors

with different risk aversion coefficients and discuss the term structure of interest rates

in a production and exchange economy, respectively. This paper differs from their work

along two dimensions. First, while Dumas and Wang do not distinguish between real and

nominal prices, I specify dynamics of real aggregate consumption and inflation and discuss

the term structure of nominal interest rates. Second, they consider time-separable, state

independent utility functions, whereas I consider external habit forming preferences. The

habit feature of the model has the advantage that stocks and bonds can have high risk-

premia premia but at the same time both the level and the volatility of interest rates rates

are low and it ensures stationarity of the economy.

The paper is also related to Campbell and Cochrane (1999), Brandt and Wang (2003),

and Wachter (2006). All these papers exogenously specify the local curvature of a repre-

sentative investor’s utility function and choose the sensitivity function that drives the log

surplus consumption ratio such that (i) the real interest rate is constant as in Campbell

and Cochrane (1999) or (ii) it follows an Ornstein-Uhlenbeck process as in Wachter (2006)

and Brandt and Wang (2003). To study the implications for the nominal term structure

Wachter (2006) assumes that inflation follows an autoregressive homoscedastic process and

4The real stochastic discount factor in Chan and Kogan (2002) is a function of the logarithm of the
shadow price of the social planner’s resource constraint that satisfies an integral equation.
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Brandt and Wang (2003) assume that inflation follows an autoregressive heteroscedastic

process. The main difference is that in this paper the countercyclical variation in aggregate

risk aversion arises endogenously in equilibrium.
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CHAPTER II

IDIOSYNCRATIC INFLATION RISK AND INFLATION-PROTECTED

BONDS

II.1 Asset Prices

Let X denote a k-dimensional vector of state variables (factors) that describe investor’s

preferences and investment opportunity sets and Z a d-dimensional vector of independent

Brownian motions. The dynamics of the state vector are

dX = µX(X) dt + σX(X)′ dZ, (II.1)

in which µX(X) is k-dimensional and σX(X) is d× k-dimensional.1

Prices in the economy are measured in terms of a basket of real goods. Let π denote

the price level, µπ(X) the expected inflation rate, and σπ(X) the d-dimensional volatility

vector of π. The dynamics of the price level are

dπ

π
= µπ(X) dt + σπ(X)′ dZ. (II.2)

Assume there is no arbitrage and therefore there exists a strictly positive stochastic

discount factor M that determines real prices of all assets in the economy. Let r(X) denote

the (shadow) risk-free rate or real short rate and Λ(X) the d-dimensional vector of market

prices of risk. The dynamics of the real stochastic discount factor are

dM

M
= −r(X) dt− Λ(X)′ dZ. (II.3)

The real stochastic discount factor M and the price level π are sufficient to price all assets

in the economy. Let M∗ denote the the nominal stochastic discount factor that is given by

1The covariance matrix of X is not necessarily invertible, e.g. time could be a state variable. An
apostrophe denotes the transpose of a vector or matrix.
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M∗ = M/π. The dynamics of M∗ are

dM∗(π)

M∗(π)
= −r∗(X) dt− (Λ(X) + σπ(X))′ dZ, (II.4)

in which

r∗(X) = r(X) + µπ(X) − Λ(X)′σπ(X) − σπ(X)′σπ(X). (II.5)

The nominal short rate r∗(X) is equal to the sum of the real short rate, the expected

inflation rate, an inflation risk premium, and a Jensen inequality term. The Fisher equation

for the nominal short rate does not hold unless the term −Λ(X)′σπ(X) is zero in which

case the expected real return of the nominal money market account is equal to the real

short rate (see equation (II.11) below).2

Let S denote the real price of the market portfolio with dynamics

dS

S
= µS(X) dt + σS(X)′ dZ, (II.6)

in which µS(X) = r(X) + σS(X)′Λ(X) and σS(X) is d-dimensional. The market port-

folio is the value of the cash flows of all positive-net-supply securities and may consist of

stocks, corporate bonds, real estate, etc, but excludes zero-net-supply securities such as the

nominal money market account, nominal Treasury bonds, and inflation-protected Treasury

bonds.3 The real stochastic discount factor and the cash flows of (positive-net-supply) as-

sets within the market portfolio may be affected by inflation risk, and hence real returns

on the market portfolio may be correlated with inflation.

The state vector X, the market portfolio S, and the consumer price index π form a

2A zero inflation risk premium for the nominal money market account does not imply that the inflation
risk premium for longer holding periods is zero. Specifically, the τ -year inflation risk premium (the expected
real return difference of holding a τ -year nominal zero-coupon bond until maturity and of holding a τ -year
real zero-coupon bond until maturity) is in general not zero if Λ(X)′σπ(X) = 0. It is in general not zero
even if σπ(X) = 0.

3The cash flows of Treasury bonds are offset by corresponding tax liabilities, rendering the net supply
of these cash flows zero.
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Markov system with dynamics













dX

dS/S

dπ/π













=













µX(X)

µS(X)

µπ(X)













dt + σ(X)′ dZ. (II.7)

Without loss of generality, one can take X1 to depend only on the Brownian motion Z1,

X2 to depend only on Z1 and Z2, etc. This means that we can assume d = k + 2 and that

the (d× d)-dimensional, volatility matrix

σ(X) = (σX(X), σS(X), σπ(X)) (II.8)

is upper diagonal. Define Zk+2 which is the additional shock in dπ/π that is uncorrelated

with changes in the state variables and real returns on the market portfolio as residual

inflation risk. The Markov system in equation (II.7) is very general. It allows for perfect

or imperfect correlations of any variables, and it does not impose an affine or any other

structure on the drifts and volatilities.

All bonds considered in this paper are default-free zero-coupon bonds if not explicitly

stated otherwise.4 An inflation-protected bond pays one unit of a basket of real goods at

its maturity date T . A nominal bond pays $1 at its maturity date. Denote real prices of

real (inflation-protected) bonds by P , real prices of nominal bonds by B, and the real value

of the nominal money market account by R. Asterisks indicate nominal prices (S∗ = Sπ,

P ∗ = Pπ, B∗ = Bπ, and R∗ = Rπ).

The real price of an inflation-protected bond and its dynamics are given in the next

proposition. Nominal and real prices of nominal bonds and the nominal money market are

discussed below.

Proposition II.1 (Inflation-protected bonds). The real price of an inflation-protected bond

maturing at T is only a function of the state vector X and time to maturity T − t; i.e.

4The market portfolio may consist of inflation-protected and nominal corporate bonds that are not
necessarily default-free.
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P = P (T − t,X).5 The real return of an inflation-protected bond maturing at T is

dP (T − t,X)

P (T − t,X)
=
(

r(X) + σP (T − t,X)′Λ(X)
)

dt + σP (T − t,X)′ dZ, (II.9)

in which the d-dimensional local real return volatility vector is

σP (T − t,X) = σX(X)PX (T − t,X)/P (T − t,X) (II.10)

and PX(T − t,X) denotes the gradient of P (T − t,X). Moreover, σPk+2(T − t,X) = 0.6

Proof. See Section A.1 of Appendix A.

Real cash flows of inflation-protected bonds are constant, and hence the real return

of inflation-protected bonds may be affected by inflation only through the first channel:

the real stochastic discount factor. Specifically, real returns of inflation-protected bonds

are only exposed to factor risk. This is in stark contrast to assets such as nominal bonds

and the nominal money market account whose real cash flows are affected by inflation risk.

Their real returns are given in the next proposition.

Proposition II.2 (Nominal bonds and the nominal money market account). The nominal

value at time t of a $1 invested in the nominal money market account at time 0 depends

on the path of the state vector X and time t, i.e. R∗ = R∗(t, {X(a), 0 ≤ a ≤ t}). The real

return of the nominal cash or money market account is

dR(R∗, π)

R(R∗, π)
=
(

r(X)− σπ(X)′Λ(X)
)

dt− σπ(X)′ dZ. (II.11)

The nominal price of a nominal bond maturing at T is only a function of the state

vector X and time to maturity T−t; i.e. B∗ = B∗(T−t,X).7 The real return of a nominal

5Assume that real prices of inflation-protected bonds are sufficiently smooth (see Definition A.1 in
Section A.1 of Appendix A).

6I denote with vi the i-th component of the vector v.
7Assume that nominal prices of nominal bonds are sufficiently smooth (see Definition A.1 in Section A.1

of Appendix A).
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bond maturing at T is

dB(T − t,X, π)

B(T − t,X, π)
=
(

r(X) + σB(T − t,X)′Λ(X)
)

dt + σB(T − t,X)′ dZ, (II.12)

in which the d-dimensional local real return volatility vector is

σB(T − t,X) = σX(X)B∗
X (T − t,X)/B∗(T − t,X)− σπ(X) (II.13)

and B∗
X(T − t,X) denotes the gradient of B∗(T − t,X).8 Moreover, σBk+2(T − t,X) =

−σπk+2(X) for all maturities T .

Proof. See Section A.1 of Appendix A.

Nominal bonds are claims on a dollar at maturity and their real returns are therefore

affected by inflation through the second channel (the price level) and may also be affected

by inflation through the first channel (the real stochastic discount factor). Specifically, real

returns of nominal bonds and the nominal money market account are exposed to factor and

residual inflation risk. Moreover, equation (II.11) implies that real returns of the nominal

money market account are perfectly negatively correlated with inflation.

If unanticipated inflation risk is not perfectly correlated with changes in the factors and

the real return on the market portfolio (i.e. σπk+2(X) 6= 0), then the effects of inflation

risk (i) on the real cash flows of positive-net-supply securities such as stocks, corporate

bonds, real estate, etc. can be distinguished from the effects (ii) on the real cash flows of

zero-net-supply securities such as nominal bonds and the nominal money market account.

All assets may be affected by inflation risk through the part of unanticipated inflation

risk that is correlated with changes in the factors and real returns on the market portfolio

but only nominal bonds and the nominal money market account are affected by residual

inflation risk. Specifically, all nominal bonds and the nominal money market account have

exactly the same exposure to this risk source which is −σπk+2(X), as shown in Proposition

8The nominal return of a nominal bond is given in equation (A.6) in Section A.1 of Appendix A.
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II.2. Hence, it is impossible to have a long or short position in a portfolio consisting solely

of nominal bonds and the nominal money market account without having exposure to

residual inflation risk. This risk is not priced and investors should avoid it, as the next two

sections show.

II.2 Equilibrium

Suppose that there are I individuals in the economy that share the same beliefs and can

continuously trade in a frictionless security market. The security market may consist of

stocks, inflation-protected and nominal corporate bonds, real estate, inflation-protected

Treasury bonds, nominal Treasury bonds, a nominal money market account, etc. Each

individual makes investment decisions and consumption choices to maximize

E

[

∫ T i

0
ui(t, ci(t),X(t)) dt + U i(T i,W i(T ),X(T )) | X(0) = x

]

(II.14)

for some horizon T i, utility function ui, and bequest function U i.9 The horizon T i could

be infinite in which case U = 0 or it could be random in which case it is assumed to be

independent of asset returns.

It is assumed that the labor income of every investor is spanned by real asset returns

and hence it can be taken as part of an investor’s initial wealth wi. Moreover, each

individual has to continuously pay the nominal lump-sum tax τ∗i(t) until T i. Real tax

payments are denoted without asterisks (τ∗i(t) = τ i(t)π(t)).

Suppose that for any i there exist a stochastic discount factor process M i(t) such that

investor i’s static budget constraint can be written as10

wi − E

[
∫ T

0
M i(t)τ i(t) dt

]

≥ E

[
∫ T

0
M i(t)ci(t) dt

]

+ E
[

M i(T )W i(T )
]

(II.15)

9The expectation in equation (II.14) is assumed to be finite and u and U are assumed to fulfill the
standard conditions for utility functions (see Karatzas and Shreve (1998)).

10It is in general very hard to show existence of M i(t).
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and each investor’s initial wealth exceeds his tax liability (the left hand side of equation

(II.15) is positive).11 The equilibrium market price of residual inflation risk when τ∗ = 0

and τ∗ 6= 0 is determined in Theorem II.1 and II.2 below.

No Taxes (τ∗ = 0)

I show in the next theorem that the market price of residual inflation risk is zero when

there are no tax liabilities.12

Theorem II.1 (ICAPM). Assume that the nominal money market account, nominal Trea-

sury bonds, and inflation-protected Treasury bonds are in zero-net-supply and investors have

homogeneous beliefs, their endowments are spanned by real asset returns, their initial wealth

(including the present value of future labor income) is strictly positive, and their tax liabil-

ities are zero. Then the market price of residual inflation risk is zero; i.e. Λk+2(X) = 0.

Proof. See Section A.2 of Appendix A.

Intuitively, the value function of the representative investor depends on aggregate

wealth which is equal to the market portfolio and on the state vector that describes changes

in investors’s preferences and investment opportunities. The market portfolio (with dy-

namics given in equation (II.6)) is a value weighted sum of all positive-net-supply securities

and hence excludes assets such as inflation-protected Treasury bonds, nominal Treasury

bonds, and the nominal money market account. Residual inflation risk is by definition

neither correlated with the state vector nor with real returns on the market portfolio and

therefore it is not priced.13

The conclusion that residual inflation risk is not priced does not require complete

markets and homogeneous investors. Specifically, investors can differ with respect to en-

dowments, preferences, and investment horizons.

11I define initial wealth for every investor in Theorem II.1 and Theorem II.2 and show that it always
exceeds an investor’s tax liability.

12See Merton (1973) for more details about the ICAPM.
13The result that residual inflation risk is unpriced does not depend on a firm’s capital structure because

nominal and inflation-protected corporate bonds are part of the market portfolio.
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Taxes (τ∗ 6= 0)

Suppose the investment horizon for every investor is infinite, i.e. T = ∞. Each

individual can invest in a well diversified asset portfolio (consisting of stocks, inflation-

protected and nominal corporate bonds, real estate, etc., but excluding nominal and

inflation-protected Treasury bonds) and two Treasury bonds (a real consol that contin-

uously pays the real constant coupon ν and a nominal consol that continuously pays the

nominal constant coupon κ∗). Let S(t) denote the real ex-dividend price per share of the

asset portfolio and δ∗(t) the continuous nominal dividend payment per unit of time dt.

The total number of shares with price S outstanding is normalized to one. Moreover, de-

note the real price of the real consol by Pν(t) and the real price of the nominal consol by

Bκ(t). The total real return of S(t) is (dS(t) + δ(t) dt)/S(t), the total real return of the

inflation-protected consol is (dPν(t) + ν dt)/Pν(t), and the total real return of the nominal

consol is (dBκ(t)+κ(t)dt)/Bκ(t). Asterisks indicate nominal dividend or coupon payments

(δ∗(t) = δ(t)π(t), ν∗(t) = νπ(t), and κ∗ = κ(t)π(t)).

At any time t the government has one inflation-protected and one nominal consol

outstanding and it collects continuously the nominal lump-sum tax τ∗i(t) = f i · τ∗(t) from

each investor. The constant f i captures the heterogeneity in tax liabilities across investors

and satisfies
∑I

i=1 f i = 1. Assume that aggregate tax payments are used to pay the interest

on both consols; i.e. τ∗(t) = νπ(t) + κ∗(t).

The tax liability of an investor is the present value of his future tax payments. It is

determined in the next lemma.

Lemma II.1 (Individual tax liabilities). The real value of investor i’s tax liability is

Li
τ (t) = f i(Pν(t) + Bκ(t)), ∀ 0 ≤ t <∞. (II.16)

Proof. See Section A.2 of Appendix A.

Lemma II.1 implies that every investor can immunize his tax liability by holding a
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constant share of Treasury consols. Hence, the initial wealth of every investor has to

exceed the cost of this strategy; i.e. wi > f i(Pν(0) + Bκ(0)). I show in the next theorem

that the market price of residual inflation risk is zero.

Theorem II.2 (ICAPM with taxes). Assume that investors have homogeneous beliefs and

their endowments are spanned by real asset returns. Each investor is subject to continuous

lump-sum tax payments f iτ∗(t) and is initially endowed (including the present value of

future labor income) with αi
S0 > 0 shares of the asset portfolio and f i shares of both

the inflation-protected and nominal consol. Moreover, the aggregate tax payment τ∗(t) is

used by the government to pay the interest on their two Treasury consols outstanding (one

inflation-protected and one nominal). Then the market price of residual inflation risk is

zero.

Proof. See Section A.2 of Appendix A.

The two consols outstanding do not appear in the market portfolio because their

positive cash flows are offset by the negative cash flows of investor’s tax liabilities. Residual

inflation risk is by definition not correlated with real returns on the market portfolio and

changes in factors and hence it is not priced.

The conclusion that every investor, not just the representative investor, should hold

exactly enough Treasury bonds to cover his tax liability does not require complete markets

or homogeneous investors. In particular, investors can be subject to different tax payments.

In the remainder of this paper I make the following assumption.

Assumption II.1 (Residual inflation risk). The inflation rate is not spanned by the state

vector and real returns on the market portfolio, i.e. σπk+2(X) 6= 0 (residual inflation

risk is not zero). Moreover, the real market price of residual inflation risk is zero, i.e.

Λk+2(X) = 0.

Assumption II.1 implies that neither the price level nor functions of the price level

can be part of the state vector, but it doesn’t rule out the expected inflation rate and/or
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the volatility of inflation as state variables. Moreover, it is possible that the price level and

functions of it can be correlated with the state variables. It is only being assumed that

they are not perfectly correlated with state variables.

Optimal portfolios when the market price of residual inflation risk is zero are deter-

mined in the next section.

II.3 Dynamic Portfolio Choice

Consider investors who can continuously trade in a frictionless security market and maxi-

mize

E

[
∫ T

0
e−

R t

0
β(X(a)) da u(c(t),X(t)) dt + e−

R T

0
β(X(a)) da U(W (T ),X(T ))

]

(II.17)

for some investment horizon T , subjective discount factor β, utility function u, and bequest

U .14 All investors have strictly positive initial wealth and receive either no labor income

or labor income that is spanned by real asset returns in which case the present value of

future labor income is taken to be part of the initial wealth.15

The following spanning condition is imposed:

Assumption II.2 (Spanning condition). Let X=(U, V ) in which U is spanned by real

returns of inflation-protected bonds and nominal returns of nominal bonds. Either (i) the

market is complete, or (ii) the part of inflation risk that is not spanned by U is orthogonal

to V and to the real return on the market portfolio.

Neither condition (i) nor (ii) of Assumption II.2 implies the other.16 Assumption II.2

14The expectation in equation (II.17) is assumed to be finite and u and U are assumed to fulfill the
standard conditions for utility functions (see Karatzas and Shreve (1998)).

15The case in which investors are subject to lump-sum tax payments is discussed further below.
16It is equivalent to say in Assumption II.2 that U is spanned by real returns of inflation-protected bonds

and real returns of zero-investment portfolios of nominal bonds and the nominal money market account
because the additional exposure of real returns of nominal bonds to (i) residual inflation risk and (ii) to
factor risk (if the factor is correlated with inflation) is offset by borrowing/lending in the nominal money
market account. A formal discussion of the spanning condition is provided in Proposition A.1 in Section
A.3 of Appendix A.
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implies that there is a mimicking portfolio for the real risk-free asset.17 Intuitively, a long

position in inflation-protected bonds avoids exposure to residual inflation risk, which is not

possible with a long or short position in nominal bonds and the nominal money market

account because of their equal exposure to residual inflation risk. On the other hand,

the exposure of the long position in inflation-protected bonds to factor risk (components

of U) can be hedged, because U is spanned by real returns of inflation protected bonds

and real returns of zero investment portfolios of nominal bonds and the nominal money

market account. Moreover, every claim that solely depends on the state vector U can

be perfectly replicated with a portfolio consisting of inflation-protected bonds and zero-

investment portfolios of nominal bonds and the nominal money market account. Hence,

Assumption II.2 implies that the nominal and inflation-protected bond market is complete.

The optimal portfolio of an investor who can trade continuously in the nominal money

market account, the market portfolio, and nominal and inflation-protected bonds, and who

seeks to maximize the utility function in equation (II.14) is given in the next theorem.18

Theorem II.3. Adopt Assumptions II.1 and II.2. Every investor should hold a linear

combination of the real risk-free asset, the tangency portfolio, and hedging portfolios. More-

over,

1. The mimicking portfolio for the real risk-free asset consists of a long position in

inflation-protected bonds and a zero-investment portfolio of nominal bonds and the

nominal money market account.

2. The tangency portfolio consists of long or short positions in the market portfolio and

inflation-protected bonds, and a zero-investment portfolio of nominal bond bonds and

the nominal money market account.

3. The portfolios that hedge changes in the investment opportunity set consist of long

or short positions in the market portfolio and inflation-protected bonds, and zero-

investment portfolios of nominal bonds and the nominal money market account.

17The proof is given in Theorem 1.
18The value function J(·) is defined in equation (A.43) in Section A.3 of Appendix A.
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4. Investors should put 100% of their wealth in the market portfolio and inflation-

protected bonds and hold a zero-investment portfolio of nominal bonds and the nom-

inal money market account.

Proof. See Section A.3 of Appendix A.

A brief description of the proof is as follows. Assumption II.2 implies that there exists

a real risk-free asset and hence by the (k + 2)-fund separation theorem of Merton (1971)

the optimal portfolio is a linear combination of the mimicking portfolio for the real risk-free

asset, the tangency portfolio, and k portfolios that hedge changes in investor’s preferences

and investment opportunities. The tangency portfolio is by definition the portfolio with

maximal local Sharpe ratio and hence the local volatility vector of this portfolio is propor-

tional to the projection of the market price of risk vector onto the asset space. The hedging

portfolios are maximally correlated with the factors and hence determined by projecting

the state vector onto the asset space. But the mimicking portfolio of the real-risk free asset

is locally riskless, the market price of residual inflation risk and its projection onto the

asset space is zero, and the projection of all factors onto the asset space is orthogonal to

residual inflation risk, and hence the total investments in nominal bonds and the nominal

money market account in the mimicking portfolio for the real risk-free asset, the tangency

portfolio, and all hedging portfolios are zero.19

The composition of the mimicking portfolios for the real risk-free asset, the tangency

portfolio, and the hedging portfolios do not depend on the value function. But to obtain

the optimal portfolio (to choose the optimal linear combination of the (k + 2) funds)

it is necessary to determine the sensitivity of marginal utility of wealth to changes in

wealth and to changes in the state variables. Specifically, the optimal point on the local

mean-variance frontier depends on the investor’s attitude towards risk as measured by the

relative risk aversion coefficient γ ≡ −wJww/Jw, whereas the hedging demands depend

on the sensitivity of marginal utility of real wealth to changes in the factors measured by

19The projector onto the asset space is provided in Lemma A.1 in Section A.3 of Appendix A.
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Θ ≡ −JwX/(wJww).20

Taxes

I now discuss optimal portfolios when investors are subject to nominal lump-sum tax

payments. Let τ∗(t) denote the lump-sum tax investors have to pay continuously until T

and L∗
τ (T − t,X) the total nominal tax liability. Specifically,

L∗
τ (T − t, x) = E

[∫ T

t

τ∗(a)M∗(a)/M∗(t) du | X(t) = x

]

(II.18)

The real value of the lump-sum tax payment and the tax liability are τ(t) = τ∗(t)/π(t)

and Lτ (t) = L∗
τ (t)/π(t).

The following condition on tax payments is imposed.21

Assumption II.3 (Tax payments). The nominal lump-sum tax payment is an affine func-

tion of the price level; i.e. τ∗(t) = κ∗ + νπ(t).

Optimal portfolios for investors subject to nominal lump-sum tax payments are given

in the next theorem.

Theorem II.4. Adopt Assumptions II.1, II.2, and II.3. Suppose an investor’s total tax li-

ability does not exceed his initial wealth. Then an investor should hold an inflation-protected

bond that pays continuously the real coupon ν and a nominal bond that continuously pays

the nominal coupon κ∗ to immunize his tax liability and should hold a linear combination

of the real risk-free asset, the tangency portfolio, and hedging portfolios. The compositions

of the real risk-free asset, the tangency portfolio, and all hedging portfolios are given in

Theorem II.3.

Proof. See Section A.3 of Appendix A.

20Illeditsch (2007a) provides closed form solutions for the value function and optimal portfolios when
investors have constant relative risk aversion preferences and asset drifts are quadratic and asset volatilities
are affine functions of the expected inflation rate that follows a mean reverting Ornstein-Uhlenbeck process.
More generally, Liu (2007) solves the dynamic portfolio choice problem of constant relative risk averse
investors (up to the solution of a system of ordinary differential equations) when asset returns are quadratic.

21The nominal tax payment is an affine function of the price level in Section II.2.
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The tax rate τ∗(t) is exogenous and investors can not refuse to pay taxes. Assumption

II.3 implies that investors can always meet their tax obligations by holding nominal and

inflation-protected coupon bonds with real value equal to their tax liabilities.22 The re-

maining wealth is to a 100% invested in inflation-protected bonds and the market portfolio

and a zero investment portfolio in nominal bonds and the nominal money market account.

22Coupon bonds pay typically the coupon plus the face value at maturity. Hence, the position in the nom-
inal and inflation-protected coupon bond (with total coupon payments equal to τ∗(t)) should be interpreted
as inclusive a short position in an inflation-protected and nominal zero-coupon bond.



26

CHAPTER III

INFLATION AND ASSET ALLOCATION

III.1 Investment Opportunities

Let x denote the state variable or factor that describes the investment opportunity set

and Z a three-dimensional vector of independent Brownian motions. The state variable

x follows a mean reverting Ornstein-Uhlenbeck process with mean reversion coefficient κ,

long run mean x̄, and three-dimensional volatility σx.
1 Specifically,

dx = κ (x̄− x) dt + σ′
x dZ. (III.1)

The dynamics of the price level π are

dπ

π
= µπ(x) dt + σ′

π dZ, (III.2)

in which the three-dimensional volatility of inflation is constant and the expected inflation

rate is an affine function of x. Specifically,

µπ(x) = µπ0 + µπxx. (III.3)

Assume that there is no arbitrage and hence there exists a strictly positive stochastic

discount factor M that determines real prices of all assets in the economy. The dynamics

of M are

dM

M
= −r(x) dt− Λ(x)′ dZ, (III.4)

1We will see below that the first component of Z describes all the uncertainty in the factor x and the
second and third component of Z allows for the possibility that real stock returns are locally not perfectly
correlated with the factor and inflation is not perfectly correlated with a linear combination of the factor
and real stock returns.
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in which the (shadow) real risk-free rate or real short rate is a quadratic function of x and

the three dimensional vector of market prices of risk is an affine function of x. Specifically,

r(x) = ρ0 + ρxx + ρxxx2 (III.5)

Λ(x) = λ0 + λxx. (III.6)

Let S denote the real price of a well diversified equity portfolio or a stock market index

with dynamics

dS

S
= µS(x) dt + σ′

S dZ, (III.7)

in which the three-dimensional volatility σS is constant and the expected rate of return is

a quadratic function of x. Specifically,

µS(x) = r(x) + σ′
SΛ(x). (III.8)

The factor x, the real stock price S, and the price level π form a Markov system. Without

loss of generality one can take x to depend only on the Brownian motion Z1, S to depend

only on Z1 and Z2, and π to depend on Z1, Z2, and Z3, and one can assume that x̄ = 0

and σx = (1, 0, 0)′.2 Hence, we can assume without loss of generality that the dynamics of

the Markov system x, S, and π are













dx

dS/S

dπ/π













=













−κx

µS(x)

µπ(x)













dt +













1 0 0

σS1 σS2 0

σπ1 σπ2 σπ3













dZ. (III.9)

The local covariance of the Markov system in equation (III.9) is non singular if neither real

stock returns are perfectly correlated with the factor nor inflation is perfectly correlated

2In other words, there is no loss in generality by considering the Cholesky decomposition of the local
covariance matrix of x, S, and π as the local volatility matrix. Moreover, there always exists an affine
transformation of the latent factor x such that the economies described by x and its affine transformation
are informationally equivalent; i.e. the long run mean and local volatility of x are not identified by the data
(see Proposition B.1 in Section B.1 of Appendix B for a formal proof).
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with a linear combination of real stock returns and the factor; i.e. it is non-singular if and

only if σS2 6= 0 and σπ3 6= 0.

Let P denote the real price of an inflation-protected bond that pays one unit of the

consumption good at its maturity T . All inflation-protected bonds are default-free zero-

coupon bonds. Real prices and returns of inflation-protected bonds are given in the next

proposition.

Proposition III.1. The real price of an inflation-protected bond maturing at T is

P (T − t, x) = ea(T−t)+b(T−t)x+c(T−t)x2

, (III.10)

in which a(T − t), b(T − t), and c(T − t) are deterministic functions of time to maturity

that solve the ordinary differential equations (B.9), (B.10), and (B.11) given in Section

B.1 of Appendix B.

The real return of an inflation-protected bond maturing at T is

dP (T − t, x)

P (T − t, x)
=
(

r(x) + D(T − t, x)e′
1Λ(x)

)

dt + D(T − t, x)e′
1 dZ, (III.11)

in which

D(T − t, x) = b(T − t) + 2c(T − t)x (III.12)

and e1 = (1, 0, 0)′.

Proof. See Section B.1 of Appendix B.

Inflation-protected bonds belong to the class of quadratic Gaussian term structure

models proposed by Ahn, Dittmar, and Gallant (2002) and hence both the volatility and

risk premium of the inflation-protected bond return depends on the state of the economy

x.

Let M∗ = M/π denote the nominal stochastic discount factor, r∗(x) the nominal risk-

free rate or nominal short rate, and Λ∗(x) the nominal market price of risk. The dynamics
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of the nominal stochastic discount factor M∗ are

dM∗

M∗
= −r∗(x) dt− Λ∗(x)′ dZ. (III.13)

The nominal market price of risk is an affine function of x because the volatility of inflation

is constant and the real market price of risk is affine in x. Specifically,

Λ∗(x) = Λ(x) + σπ. (III.14)

The nominal short rate is a quadratic function of x because the real risk-free rate is a

quadratic function of x, both the expected inflation rate and the inflation risk premium

are affine in x, and the local variance of inflation that represents the Jensen inequality

term is constant. Specifically,3

r∗(x) = r(x) + µπ(x)− σ′
πΛ(x)− σ′

πσπ

= δ0 + δxx + δxxx2.

(III.15)

The Fisher equation for the nominal short rate does not hold unless the inflation risk

premium, −σ′
πΛ(x), is zero in which case the expected real rate of return of the nominal

money market account equals the real short rate (see equation (III.20) below). To assure

positivity of the nominal short rate, I impose the parameter restrictions4

δ2
x = 4 δ0 δxx and δxx > 0. (III.16)

Let B denote the real price of a nominal bond maturing at time T and R the real value of

the nominal money market account. All nominal bonds are default-free zero-coupon bonds.

3The coefficients in the nominal short rate equation (III.15) are

δ0 = ρ0 + µπ0 − σπ (λ0 + σπ) , δx = ρx + µπx − σπλx, and δxx = ρxx.

4The nominal short rate is zero if x = −δx/(2δxx) and strictly positive otherwise. However, the proba-
bility of x attaining this value is zero because x has continuous support and hence r∗(x) is strictly positive
almost surely.
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Asterisks denote nominal prices (B∗ = Bπ and R∗ = Rπ). The nominal price of a nominal

bond, which belongs also to the class of quadratic Gaussian term structure models, and

real returns of nominal bonds and the nominal money market account are given in the next

proposition.

Proposition III.2. The nominal price of a nominal bond maturing at T is

B∗(T − t, x) = ea∗(T−t)+b∗(T−t)x+c∗(T−t)x2

, (III.17)

in which a∗(T − t), b∗(T − t), and c∗(T − t) are functions of time to maturity that solve the

ordinary differential equations (B.12), (B.13), and (B.14) given in Section B.1 of Appendix

B.

The real return of a nominal bond with maturity T is

B(T − t, x)

B(T − t, x)
=
(

r(x) + (D∗(T − t, x)e1 − σπ)′Λ(x)
)

dt + (D∗(T − t, x)e1 − σπ)′ dZ,

(III.18)

in which

D∗(T − t, x) = b∗(T − t) + 2c∗(T − t)x (III.19)

and e1 = (1, 0, 0)′.

The real return of the nominal money market account is

dR

R
=
(

r(x)− σ′
πΛ(x)

)

dt− σ′
π dZ. (III.20)

Proof. See Section B.1 of Appendix B.

Real returns of nominal bonds and the nominal money market account are equally

exposed to residual inflation risk (the part of inflation risk that is uncorrelated with changes

in the factor and real stock returns) and to residual stock market risk (the part of real

stock returns that is uncorrelated with changes in the factor). Real returns of the nominal

money market account are perfectly negatively correlated with inflation and hence provide
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no hedge against inflation risk whereas nominal bonds provide a partial hedge against

inflation risk when changes in the factor are correlated with it.

III.2 Dynamic Portfolio Choice

In this section, I derive the optimal dynamic portfolio strategy of finite-lived CRRA in-

vestors who face inflation risk and can continuously trade in the nominal money market

account, nominal bonds, stocks, and inflation-protected bonds. I show in the next proposi-

tion that (i) the nominal money market account, one nominal bond, one inflation-protected

bond, and the stock market are non-redundant assets that complete the market and (ii) the

value function of investors with unit wealth (the value function is homogenous in wealth)

is an exponential quadratic function of the state variable.

Proposition III.3. The nominal money market account, a nominal bond with maturity

TB, the stock market, and an inflation-protected bond with maturity TP are non-redundant

assets that span all the uncertainty in the economy.

Moreover, the value function of a power utility investor is

J(t,W, x) =











1
1−γ

W 1−γ
(

E
[

(M(T )/M(t))
γ−1

γ | x(t) = x
])γ

if γ > 0, γ 6= 1

log(W )− E [log(M(T )/M(t)) | x(t) = x] if γ = 1.

(III.21)

Specifically,

E
[

(M(T )/M(t))
γ−1

γ | x(t) = x
]

= eh0(T−t)+hx(T−t)x+hxx(T−t)x2

, (III.22)

in which hxx(T − t), hx(T − t), and h0(T − t) are functions of the remaining investment

horizon T − t that solve the ordinary differential equations (B.22), (B.23), and (B.24) in

Section B.2 of Appendix B.5

Proof. See Section B.2 of Appendix B.

5The solution for the expectation in the log-utility case is not provided but can be obtained from the
author upon request.



32

The market is complete and thus (i) there exists a mimicking portfolio for the real

risk-free asset, (ii) the Sharpe ratio of the locally mean-variance efficient portfolio is
√

Λ(x)′Λ(x), and (iii) the hedging portfolio is perfectly correlated with the factor. More-

over, three fund separation implies that the optimal portfolio is a linear combination of

(i) the mimicking portfolio for the real risk-free asset, (ii) the tangency portfolio, and (iii)

the hedging portfolio. The weight on these three portfolios depends on an investors risk

aversion and the sensitivity of his marginal value of wealth to changes in the investment

opportunity set.

As is well known (and shown in equation (III.21)), the relative risk aversion of the

value function equals the relative risk aversion of the utility function. Moreover, it is

straightforward to compute the sensitivity of marginal value of wealth to changes in the

investment opportunity set from equation (III.21). Specifically,

−JWX(t,W, x)/(WJWW (t,W, x)) = hx(T − t) + 2hxx(T − t)x. (III.23)

To determine the optimal composition of the three mutual funds I follow Illeditsch (2007b)

and assume that all asset besides stocks are in zero-net supply and the ICAPM for real

stock returns holds. In this case, investors should hold 100% of their wealth in stocks

and inflation-protected bonds and a zero investment portfolio in nominal bonds and the

nominal money market account. Moreover, the investment in nominal bonds and the

nominal money market account in the mutual funds (i)-(iii) named above is always zero.

A brief description of the mutual funds is as follows. The mimicking portfolio for the

real-risk free asset consists of a long position in the inflation-protected bond and a zero

investment portfolio of cash and the nominal bond. Both positions cause only an exposure

to factor risk and thus investing the fraction −D(Tp − t, x)/D∗(TB − t, x) in the nominal

bond and financing this investment by borrowing/lending in the nominal money market

account neutralizes the exposure of the long position in the inflation-protected bond to

factor risk (the local volatility is D(Tp − t, x)) and creates a locally risk-free asset.
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The tangency portfolio is fully invested in equity and consists of a zero investment

portfolio of cash and the nominal bond. Specifically, the fraction invested in stocks is

chosen to create the optimal exposure to residual stock market risk (the part of real stock

returns that is uncorrelated with the factor), whereas the fraction invested in the nominal

bond is chosen to create the optimal exposure to factor risk. The investment in the nominal

bond is financed by borrowing/lending in the nominal money market account to avoid any

exposure to unpriced residual inflation risk.

The hedging portfolio for the factor is a zero-investment portfolio in the nominal bond

and the nominal money market account because any investment in stocks would lead to

an exposure to residual stock market risk and hence would lower the correlation with the

factor.6 Moreover, investing in the nominal bond leads to an exposure to residual inflation

risk and to residual stock market risk (if inflation is correlated with this risk source) which

would lower the correlation of the hedging portfolio with the factor. Hence, any investment

in the nominal bond is offset by borrowing/lending in the nominal money market account.7

A formal proof of the optimal portfolio demand is given in Theorem III.1 below. Let x

denote the realization of the state variable at time t, αS(x) the fraction of wealth invested in

the stock market at time t, αP (x) the fraction of wealth invested in the inflation-protected

bond at time t, αB(t, x) the fraction of wealth invested in the nominal bond at time t, and

αR(t, x) denote the fraction of wealth invested in the nominal money market account at

time t.

Theorem III.1 (Optimal Portfolio Choice). The optimal demand of an investor with

constant relative risk aversion γ > 0 who maximizes expected utility of real wealth at date

T and can trade continuously in a nominal money market account, a nominal bond with

6A mutual fund should have a positive investment. To accomplish this, one can include an investment
in the mimicking portfolio for the real risk-free asset.

7The maturity of the nominal and inflation-protected bond is indeterminate within the model. The
amount invested in the inflation-protected bond does not depend on its maturity because it coincides
with the amount invested in the mimicking portfolio for the real risk-free asset. The exposure of the
inflation-protected bond to factor risk depends on its maturity and hence the nominal bond allocation in
the mimicking portfolio for the real risk-free asset depends on the maturity of both bonds.
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maturity TB, a stock market index, and an inflation protected bond with maturity TP is

αS(x) =
Λ2(x)

γ σS2
αP (x) = 1− αS(x), αR(t, x) = −αB(t, x),

αB(t, x) = − D(TP − t, x)

D∗(TB − t, x)
αP (x) +

Λ1(x)/γ − σS1 αS(x)

D∗(TB − t, x)
+

hx(T − t) + 2hxx(T − t)x

D∗(TB − t, x)

(III.24)

in which hxx(T −t) and hx(T−t) are solutions of the ordinary differential equations (B.22)

and (B.23) in Section B.2 of Appendix B. Moreover, if γ = 1 then hxx(T−t) = hx(T−t) =

0.

Proof. See Section B.2 of Appendix B.

III.3 Model Calibration

I derived in the previous section the optimal portfolio strategy for CRRA investors who

can invest in a nominal money market account, stocks, and nominal and inflation-protected

bonds when the expected real rate of return and the local variance of real returns of all

assets are quadratic functions of the latent factor x. In this section I calibrate the model

to match first and second moments of inflation, stock return, and bond return data and

discuss the implications of changes in expected inflation on real asset returns.8

Data

The data consist of monthly observations of the one-month Treasury bill rate, the five

year zero-coupon Treasury bond, the consumer price index (CPI), and the S&P500 stock

market index excluding dividends from June 1952 to December 2003. All data are available

from CRSP.9 Historical statistics of all four time series are reported in Table III.1.

Parameters

8The econometric identification of the model is based on heuristic arguments. A mathematical rigorous
analysis of the identification problem is beyond the scope of this paper.

9There is not a sufficiently long time series for inflation-protected bonds available in the US.
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Table III.1: Summary Statistics

r∗(x) is the one-month Treasury bill rate, y60(x) is the five year nominal Treasury bond
yield, RS(x) is the return of the S&P500, deflated by the CPI, and i(x) is the inflation rate.
The historical statistics are based on the June 1952 to December 2003 sample period. All
four series are continuously compounded rates and observed at a monthly frequency. Mean
E[·] and standard deviation σ[·] are reported in annual terms. ρ1[·] denotes the one-month
autocorrelation and Corr[·, ·] denotes the contemporaneous one-month correlation.

Statistic Data Statistic Data

E [r∗(x)] 5.04% E [y60(x)] 4.94%
σ [r∗(x)] 0.81% σ [y60(x)] 0.64%
ρ1 [r∗(x)] 95.96% ρ1 [y60(x)] 99%

E [RS(x)] 3.68% E [i(x)] 3.77%
σ [RS(x)] 14.82% σ [i(x)] 1.15%
ρ1 [RS(x)] 4.36% ρ1 [i(x)] 54.04%

Corr [r∗(x), RS(x)] −10.87% Corr [RS(x), i(x)] -21.03%
Corr [r∗(x), i(x)] 53.98%

The economy described in the previous section is completely described by the real

stochastic discount factor in equation (III.4) and the Markov system in equation (III.9).

The dynamics of both the discount factor and the Markov system depend on the 15-

dimensional parameter vector Ψ. Specifically,

Ψ =(κ, ρ0, ρx, ρxx, λ01, λx1, λ02, λx2, µπ0, µπx, σS1, σS2, σπ1, σπ2, σπ3) . (III.25)

Time is measured in months. Let yτ (x) = −1/τ log(B∗(τ, x)) denote the yield of a nominal

zero-coupon bond with τ months to maturity,10 RS(x) = log(S(t+1)/S(t)) the one-month

real (log) stock return, and i(x) = log(π(t + 1)/π(t)) the one-month (log) inflation rate. I

use the one month risk-free rate as a proxy for the nominal risk-free rate, the CPI as proxy

for the price level, and the S&P500 deflated by the CPI as proxy for the real price of a

stock market index. Moreover, I consider the five year nominal Treasury bond yield.11

Rather than analyzing the parameter vector Ψ I consider the vector Ψ∗ in which I

10The positivity of the nominal short rate implies that every nominal bond yield is positive. The proof
is a direct consequence of Jensen’s inequality.

11The joint distribution of r∗, yτ , RS, and i is unknown.
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replace the parameters describing the real term structure ρ0, ρx, ρxx, λ01, and λx1 with the

parameters describing the nominal term structure δ0, δx, δxx, λ∗
01, and λ∗

x1. Specifically,

Ψ∗ = (κ, δ0, δx, δxx, λ∗
01, λ

∗
x1, λ02, λx2, µπ0, µπx, σS1, σS2, σπ1, σπ2, σπ3) . (III.26)

This does not change the identification and estimation problem, because if one knows Ψ∗ it

is straightforward to determine Ψ from equation (III.14) and equation (III.15). However,

it greatly simplifies the analysis, which now can be conducted in two steps: (i) estimate

the first six components of Ψ∗ using the one month Treasury bill and the five year nom-

inal Treasury bond yield, and (ii) use these six estimates to estimate the remaining nine

components of Ψ∗.

Nominal Short Rate

It is straightforward to compute the steady state mean, variance, and autocovariance

for any time lag of the nominal risk-free rate in closed form. Moreover, there exist a

unique solution for κ, δ0, δ2
x, and δxx given the sample estimates for the mean, variance,

and autocovariance of the one-month risk-free rate that fulfills the parameter restriction in

equation (III.16) that ensures positivity of the nominal risk-free rate.12 Assuming that δx

is non-negative does not change the distribution of the nominal risk-free rate and hence I

restrict δx ≥ 0.13 All four parameters are identifiable with this restriction. Their estimates

are reported in Table III.2.

Nominal Bond Yield

The coefficients of nominal bond yields depend only on the first six components of

Ψ∗. The first four parameters were already estimated from the nominal short rate and it is

straightforward to compute the steady mean and the steady state variance of the five year

12A formal proof is provided in Proposition B.2 in Section B.3 of Appendix B.
13It is well known that the sign of δx is not identifiable (see Ahn, Dittmar, and Gallant (2002)).
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nominal Treasury bond yield.14 The resulting two non-linear equations can be numerically

solved for the two parameters λ∗
01 and λ∗

x1. Their estimates are reported in Table III.2. The

monthly five-year nominal Treasury bond yield can never fall below 6.97bp. Moreover, the

one-month autocorrelation implied by the model – with formula given in equation (B.44)

in Section B.3 of Appendix B – is 96%, which is a littler lower than the historical 99% (see

Table III.1).

Table III.2: Estimation Results for the Nominal Term Structure

Parameter estimates for the nominal risk-free rate r∗(x) and the nominal market price of
factor risk Λ∗

1(x) using the one-month Treasury bill rate and the five year nominal Treasury
bond yield for the period June 1952 to December 2003. Time is measured in months.

Parameter Estimate

State variable: dx = −κxdt + (1, 0, 0)′dZ

κ 0.040736

Nominal risk-free rate: r∗(x) = δ0 + δxx + δxxx2

δ0 0.003859
δx 0.000653
δxx 0.000028

Nominal market price of factor risk: Λ∗
1(x) = λ∗

01 + λ∗
x1x

λ∗
01 0.030573

λ∗
x1 −0.036820

Real Stock Returns and Inflation

So far I have identified and estimated the first six components of Ψ∗ from the one-

month Treasury bill and the five year nominal Treasury bond yield. The remaining nine

components are summarized in the parameter vector Φ. Specifically,

Φ = (λ02, λx2, σS1, σS2, σπ1, σπ2, σπ3, µπ0, µπx) . (III.27)

The parameter vector Φ can in principle be identified from the information in real stock

returns, inflation, and the nominal short rate.15 To estimate the parameter vector Φ I use

14For a formal proof see Proposition B.3 in Section B.3 of Appendix B.
15The nominal short rate and the five year nominal bond yield are both quadratic functions of x and
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the simulated method of moments approach of Duffie and Singleton (1993). Specifically,

I simulate the model and determine the mean, standard deviation, and one-month auto-

correlation of real stock returns and inflation as well as the contemporaneous correlation

between (i) real stock returns and inflation, (ii) the nominal risk-free rate and real stock

returns, and (iii) the nominal risk-free rate and inflation. I then compare the simulated

moments to their historical counterparts.16 Specifically, I minimize the sum of squared

relative errors (the ratio between the simulated statistic and the historical statistic minus

one). The estimation results are reported in Table III.3 and Table III.4.

Table III.3: Estimation Results

The first column presents the statistics – mean E[·], standard deviation σ[·], one-month
autocorrelation ρ1[·], and contemporaneous one-month correlation Corr[·, ·] – that are used
to estimate the model. r∗(x) is the one-month Treasury bill rate, RS(x) is the return of the
S&P500, deflated by the CPI, and i(x) is the inflation rate. All four series are continuously
compounded rates and observed at a monthly frequency. The historical statistics presented
in the second column are based on the June 1952 to December 2003 sample period. The
model statistics presented in the third column are based on 60, 000 months of simulated
data. The last column reports the relative error – the ratio between model and historical
statistic minus one. The last row reports the sum of squared relative errors.

Statistic Data Model Relative Error

E[RS] 0.003067 0.003067 0.000005
E[i] 0.003139 0.003139 −0.000021

σ[RS] 0.042775 0.042723 −0.001206
σ[i] 0.003314 0.003313 −0.000005

ρ1[RS] 0.043572 0.041574 −0.045863
ρ1[i] 0.540401 0.479707 −0.112313

Corr[r∗, RS] −0.108682 −0.114242 0.051160
Corr[r∗, i] 0.539778 0.618188 0.145263
Corr[RS, i] −0.210273 −0.211460 0.005645

Sum of (equally weighted) squared errors: 0.03847

hence either variable can be used to estimate the parameters that determine the correlation of both inflation
and real stock returns with the factor x.

16The only free parameter describing the dynamics of the factor x – the mean reversion coefficient κ –
can be estimated from the nominal risk-free rate and hence it is straightforward to simulate the economy
– i.e. to simulate x, Z,

R t

t−1
x(u) du, and

R t

t−1
x(u)2 du. The state variable x is very persistent and hence I

simulate 60, 000 months of data ensure that x is in steady state. Moreover, both integrals are approximated
by dividing each month in ten equidistant intervals, evaluating the integrand at all ten left end points of
the interval, multiplying by 1/10, and summing up – i.e. I simulated a total of 600, 000 realizations of x
and Z.
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Table III.4: Parameter Estimates of the Economy

The model was calibrated to match the historical statistics reported in the second column
of Table III.3. The data for the one month Treasury bill r∗(x), the real return on the
S&P500, deflated by the CPI, RS(x), and inflation i(x) are continuously compounded
rates and observed at a monthly frequency over the sample period June 1952 to December
2003. The simulation is based on 60, 000 observations. Time is measured in months.

State variable: dx = κ(x̄− x)dt + σ′
xdZ

κ x̄ σx

0.040736 0 (1, 0, 0)

Real risk-free rate: r(x) = ρ0 + ρxx + ρxxx
2

ρ0 ρx ρxx

0.00076705 -0.00023611 0.0000276

Market price of risk: Λ(x) = λ0 + λxx
λ0 λx

(0.0321, 0.0661, 0)′ (−0.0368,−0.1139, 0)′

Real stock returns: dS/S = (r(x) + σ′
SΛ(x)) dt + σ′

S dZ
σS (0.0337, 0.0244, 0)′

Expected inflation rate: µπ(x) = µπ0 + µπxx
µπ0 µπx

0.00316829 bp 0.00073891 bp

Realized Inflation: dπ/π = µπ(x) dt + σ′
π dZ

σπ (−0.001485, 0.001799, 0.000016)′
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Parameter Estimates

Time is in months because all data are observed at a monthly frequency. The expected

inflation rate follows a mean reverting Ornstein-Uhlenbeck process with long run mean

µπ0 = 32bp, mean reversion κ = 4.07%, and local volatility µπx = 7bp. Hence, the

unconditional mean and standard deviation of expected inflation is 3.8% p.a. and 0.9%

p.a., respectively. Moreover, the mean reversion coefficient κ = 4.07% implies a half life of

innovations in the expected inflation rate (factor) of 1.4 years. The market price of both

expected inflation and residual stock market risk has a positive unconditional mean and is

decreasing in the expected inflation rate.

The estimates for the local volatility of inflation σπ imply that almost all the variation

in realized inflation comes from innovations to expected inflation and real stock returns.

While I would expect a high correlation between expected and realized inflation, most of the

variation in realized inflation (59%) is due to variations in real stock returns, which seems

too high. Similarly, the estimate of the local volatility of real stock returns σS implies that

66% of the variation in real stock returns comes from innovations in the expected inflation

rate, which also seems a little high.

Summary statistics for the real risk-free rate and the square of the maximal Sharpe

ratio of all real local asset returns are reported in Table III.5. The parameters ρ0, ρx, and

ρxx imply an unconditional mean and standard deviation for the real risk-free rate of 1.3%

p.a. and 0.34% p.a., respectively. Although the expected inflation rate can attain arbitrary

negative values, both the nominal and real risk-free rate are non-negative. Specifically, the

smallest possible value for the real risk-free rate is 0.31% p.a..

Figure III.1 presents the inflation risk premium and the real and nominal risk-free

rate as a function of the expected inflation rate (with domain equal to its long run mean

plus/minus twice its standard deviation.) The nominal risk-free rate is strictly increasing

with the expected inflation rate.17 However, the real risk-free rate is strictly decreasing with

17The nominal risk-free rate is a decreasing function of the expected inflation rate for very negative values
of expected inflation. However, the probability of such realizations of the expected inflation rate is virtually
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Table III.5: The Real Risk-free Rate and the Maximal Sharpe Ratio

The real risk-free rate is given in equation (III.5) and the derivation of the square of
the maximal Sharpe ratio of real local asset returns is based on the real market price of
risk given in equation (III.6). The derivation of the mean E[·], standard deviation, σ[·],
one-month autocorrelation ρ1[·], minimum min[·], and maximum max[·] are based on the
parameter estimates reported in Table III.4. Time is measured in months.

Statistic Model Statistic Model

E [r(x)] 11.06bp E [Λ(x)′Λ(x)] 18.13%
σ [r(x)] 9.56bp σ [Λ(x)′Λ(x)] 25.62%
ρ1 [r(x)] 95.04% ρ1 [Λ(x)′Λ(x)] 92.39%
min [r(x)] 2.63bp min [Λ(x)′Λ(x)] 1.04bp
max [r(x)] ∞ max [Λ(x)′Λ(x)] ∞
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Figure III.1: The Real and Nominal Short Rate

The figure shows the real risk-free rate r(x) (dashed line), the nominal risk-free rate r∗(x)
(solid line), and the inflation risk premium −σ′

πΛ(x) (chain dotted line) as a function of
the expected inflation rate µπ(x). The domain is µπ0 ± 2µπx/

√
2κ.
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the expected inflation rate until it hits its minimum of 2.6 bp and after that it is increasing

with the expected inflation rate. Moreover, changes in both the nominal and real risk-free

rate occur at an increasing rate. The inflation risk premium is linearly increasing in the

expected inflation rate. Moreover, it is negative for low values and positive for high values

of the expected inflation rate.
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Figure III.2: The Real Market Price of Risk and the Maximal Sharpe Ratio

The figure shows the market price of factor risk (dashed line), the market price of residual
stock market risk (dotted line), the market price of residual inflation risk (chain dotted
line), and the maximal Sharpe ratio of real local asset returns (solid line) as a function of
the expected inflation rate µπ(x). The domain is µπ0 ± 2µπx/

√
2κ.

Figure III.2 presents the real market price of risk of all three innovations and the

maximal Sharpe ratio of real local asset returns as a function of the expected inflation

rate. The square of the maximal Sharpe ratio in the economy (Λ(x)′Λ(x)) is a strictly

positive quadratic function of the expected inflation rate that is bounded below by 1 bp.

Both the market price of factor risk Z1 and the market price of residual stock market risk

Z2 are linearly decreasing in the expected inflation rate. Moreover, the maximal Sharpe

ratio is larger the more expected inflation differs from its long run mean.

zero.
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Figure III.3 presents the risk premia and volatilities of inflation-protected bonds and

nominal bonds for different maturities as well as the risk premium of real stock returns and

the sensitivity of marginal values of wealth with respect to the factor as a function of the

expected inflation rate. Nominal returns of nominal bonds are locally perfectly negatively

correlated with expected inflation while real returns of inflation-protected bonds are locally

perfectly positively correlated with expected inflation. However, the local volatilities of

inflation-protected bond and nominal bond returns are decreasing in the expected inflation

rate. The real risk premium of inflation-protected bonds is strictly decreasing with the

expected inflation rate for almost the whole domain. On the other hand, the nominal

risk premium of nominal bonds is strictly increasing with the expected inflation rate. The

real risk premium for real stock returns is strictly decreasing with the expected inflation

rate. This is consistent with Fama and Schwert (1977) who show that stock returns are

negatively related to expected inflation. Moreover, if the expected inflation rate exceeds

4.4% per annum, then the real risk premium for equity becomes negative.

Finally, the sensitivity of the marginal value of wealth with respect to changes in the

investment opportunity set given by hx(T−t)+2hxx(T−t)x is a strictly decreasing function

of the expected inflation rate. Moreover, it starts out to be positive and becomes negative

for high realizations of the expected inflation rate.

III.4 Dynamic Portfolio Strategies

In this section I combine the theoretical results of Section III.1 and III.2 with the estimation

results of Section III.3 and discuss the implications of changes in expected inflation for

optimal portfolio choice. In particular, I analyze dynamic portfolio strategies of investors

with different expectations about future inflation, different investment horizons, different

risk aversion, and different maturities of nominal and inflation-protected bonds.

I have shown in Section III.2 that the optimal portfolio is a linear combination of

the mimicking portfolio for the real risk-free asset, the tangency portfolio, and a hedging

portfolio. Specifically, the mimicking portfolio for the real risk free asset is fully invested
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Figure III.3: Asset Returns and the Marginal Value of Wealth

The figure shows the real risk premium of inflation-protected bonds, nominal bonds, and
equity as well as the local volatility of inflation-protected and nominal bonds as a function
of the expected inflation rate. Moreover, it shows the sensitivity of the marginal value of
wealth with respect to the factor as a function of the expected inflation rate. The domain
is µπ0 ± 2µπx/

√
2κ.
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in the inflation-protected bond, and the tangency portfolio is fully invested in stocks.

Moreover, these portfolios and the hedging portfolio contain zero-investment portfolios of

the nominal bond and cash.

Expected inflation affects optimal portfolio strategies in two ways: (i) it affects the

decision of investors as to how much of their wealth to allocate to the risk-free asset

(the inflation-protected bond) and to the tangency portfolio (stocks) and (ii) it affects

the decision of investors as to how much cash to borrow or lend in order to finance the

investment in the nominal bond. The first decision is much simpler than the second because

it only depends on the risk aversion of the investor and the expected inflation rate while the

second decision also depends on the investment horizon and the maturity of the nominal

and the inflation protected bond.

Figure III.4 plots the optimal portfolio allocations as a function of the expected in-

flation rate when the investment horizon coincides with the maturity of both the nominal

and inflation-protected bond. In the left panel, risk aversion γ = 4 and in the right panel,

risk aversion γ = 10. Moreover, the investment horizon is one-year in the top panel, five

years in the middle panel, and 25 years in the bottom panel. The optimal stock allocation

and hence the optimal fraction of wealth invested in the tangency portfolio is decreasing

in the expected inflation rate because the risk premium of real stock returns is negatively

related to expected inflation. This negative relation follows from the positive local corre-

lation of real stock returns with expected inflation and the fact that the market price of

expected inflation risk (factor risk) and residual stock market risk is a decreasing function

of the expected inflation rate (see Figure III.3 of the previous section). Not surprisingly,

the optimal stock allocation is more sensitive to expected inflation when risk aversion is

lower because less risk averse investors try to time the market more aggressively.

Table III.6 reports optimal portfolio allocations for (i) two different risk aversion co-

efficients, γ = 4 and γ = 10, (ii) four different investment horizons, T = 1, T = 5, T = 10,

and T = 25, (iii) three different values for expected inflation, µπ(x) = 1% p.a., µπ(x) = 4%

p.a., and µπ(x) = 7% p.a., and (iv) four different nominal bond maturities, TB = 1, TB = 5,
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TB = 10, and TB = 25. The maturity of the inflation-protected bond is ten, i.e. TP = 10.

An investor with risk aversion, γ = 4 should put 68% of his wealth in stocks, and an

investor with risk aversion γ = 10 should put 27% of his wealth in stocks if the expected

inflation rate is equal to its long run mean of 4% per annum. The optimal stock allocation

is much higher if the expected inflation rate is one standard deviation lower than its long

run mean; i.e. if it is 1% per annum, because in this case the risk-premium for stocks is

high. Specifically, investors with risk aversion γ = 4 should put 476% of their wealth in

stocks and investors with risk aversion γ = 10 should put 190% of their wealth in stocks.

On the other hand, if the expected inflation rate is one standard deviation higher than

its long run mean; i.e. if it is 7% per annum, then investors with risk aversion γ = 4

should short 341% of their wealth in stocks and investors with risk aversion γ = 10 should

short 136% of their wealth in stocks, because in this case the equity premium is negative.

The huge long (short) positions in stocks if expected inflation is low (high) is financed by

borrowing (lending) in the inflation-protected bond.
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Figure III.4: Dynamic Portfolio Strategies

Shown are the optimal allocations to the nominal money market account, a nominal bond,
stocks and a inflation-protected bond as a function of the expected inflation rate when the
investment horizon coincides with the maturity of both the nominal and inflation-protected
bond. In the left panel, risk aversion γ = 4 and in the right panel, risk aversion γ = 10.
The investment horizon is one-year in the top panel, five years in the middle panel, and 25
years in the bottom panel.
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Table III.6: Dynamic Portfolio Strategies

This table reports optimal portfolio allocations for (i) two different risk aversion coefficients, γ = 4 and γ = 10, (ii) four different
investment horizons, T = 1, T = 5, T = 10, and T = 25, (iii) three different values for expected inflation, µπ(x) = 1% p.a.,
µπ(x) = 4% p.a., and µπ(x) = 7% p.a., and (iv) four different nominal bond maturities, TB = 1, TB = 5, TB = 10, and TB = 25.
The maturity of the inflation-protected bond is ten, i.e. TP = 10. Investment horizon and bond maturities are measured in years.
The allocation in the inflation-protected bond is one minus the allocation in equity. The allocation in the nominal money market
account is minus the allocation in the nominal bond (see Theorem III.1).

Risk aversion
γ = 4 γ = 10

Expected inflation Asset Investment Horizon Investment Horizon
T = 1 T = 5 T = 10 T = 25 T = 1 T = 5 T = 10 T = 25

7% p.a. Equity −3.41 −3.41 −3.41 −3.41 −1.36 −1.36 −1.36 −1.36
1-yr Nominal Bond 3.41 6.03 5.87 5.86 3.05 5.45 5.08 5.02
5-yr Nominal Bond 0.84 1.48 1.44 1.44 0.75 1.34 1.25 1.23
10-yr Nominal Bond 0.55 0.98 0.95 0.95 0.49 0.88 0.82 0.81
25-yr Nominal Bond 0.44 0.78 0.76 0.76 0.39 0.71 0.66 0.65

4% p.a. Equity 0.68 0.68 0.68 0.68 0.27 0.27 0.27 0.27
1-yr Nominal Bond 0.21 −3.54 −3.80 −3.81 1.55 −2.49 −3.22 −3.30
5-yr Nominal Bond 0.05 −0.86 −0.92 −0.93 0.38 −0.61 −0.78 −0.80
10-yr Nominal Bond 0.03 −0.57 −0.61 −0.61 0.25 −0.40 −0.51 −0.53
25-yr Nominal Bond 0.03 −0.45 −0.48 −0.48 0.20 −0.31 −0.41 −0.42

1% p.a. Equity 4.76 4.76 4.76 4.76 1.90 1.90 1.90 1.90
1-yr Nominal Bond −25.66 −41.07 −41.50 −41.51 −9.20 −25.05 −26.44 −26.56
5-yr Nominal Bond −6.17 −9.88 −9.98 −9.98 −2.21 −6.02 −6.36 −6.39
10-yr Nominal Bond −4.00 −6.40 −6.47 −6.47 −1.43 −3.90 −4.12 −4.14
25-yr Nominal Bond −3.09 −4.95 −5.00 −5.00 −1.11 −3.02 −3.19 −3.20
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Table III.6 shows that the optimal nominal bond allocation is quite sensitive to risk

aversion, the investment horizon, and the expected inflation rate. Moreover, it also depends

on which nominal and inflation-protected bond is hold in the investment portfolio. For

instance, an investor with risk aversion γ = 10 and a five year investment horizon who can

invest in equity, the nominal money market account, a ten year nominal bond, and a ten

year inflation-protected bond should (i) should short 390% of his wealth in the nominal

bond if expected inflation is 1% per annum, (ii) short 40% of his wealth in the nominal

bond if expected inflation is 4% per annum, and (iii) should put 88% of his wealth in the

nominal bond if expected inflation is 7% per annum.

Figure III.4 shows that the optimal nominal bond allocation is strictly increasing with

expected inflation (except for the top left panel). Moreover, the increase is more pronounced

for investors with risk aversion γ = 10. The reason for the apparent positive relation

between expected inflation and the optimal nominal bond allocation is not immediately

obvious because the allocation is composed of three parts: (i) the allocation to the nominal

bond in the mimicking portfolio for the real risk-free asset, (ii) the allocation to the nominal

bond in the tangency portfolio, and (iii) the allocation to the nominal bond in the hedging

portfolio. Table III.7 reports the optimal nominal bond allocations in each of these three

categories for (i) two different risk aversion coefficients, γ = 4 and γ = 10, (ii) four different

investment horizons, T = 1, T = 5, T = 10, and T = 25, (iii) three different values for

expected inflation, µπ(x) = 1% p.a., µπ(x) = 4% p.a., and µπ(x) = 7% p.a., and (iv) two

different nominal bond maturities, TB = 1 and TB = 10. The maturity of the inflation-

protected bond is ten, i.e. TP = 10.
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Table III.7: Nominal Bond Allocation

This table reports the optimal nominal bond allocations in (i) the mimicking portfolio for the real risk-free asset (RFA), (ii) the
tangency portfolio (TP), and (iii) the hedging portfolio (HP) for (i) two different risk aversion coefficients, γ = 4 and γ = 10,
(ii) four different investment horizons, T = 1, T = 5, T = 10, and T = 25, (iii) three different values for expected inflation,
µπ(x) = 1% p.a., µπ(x) = 4% p.a., and µπ(x) = 7% p.a., and (iv) two different nominal bond maturities, TB = 1 and TB = 10.
The maturity of the inflation-protected bond is ten, i.e. TP = 10.

Risk aversion
γ = 4 γ = 10

Expected Nominal Portfolio Investment Horizon Investment Horizon
inflation Bond T = 1 T = 5 T = 10 T = 25 T = 1 T = 5 T = 10 T = 25

7% p.a. TB = 1 RFA 5.83 5.83 5.83 5.83 3.13 3.13 3.13 3.13
TP −9.32 −9.32 −9.32 −9.32 −3.73 −3.73 −3.73 −3.73
HP 6.90 9.52 9.35 9.35 3.65 6.05 5.68 5.62

TB = 10 RFA 0.95 0.95 0.95 0.95 0.51 0.51 0.51 0.51
TP −1.51 −1.51 −1.51 −1.51 −0.60 −0.60 −0.60 −0.60
HP 1.12 1.54 1.52 1.51 0.59 0.98 0.92 0.91

4% p.a. TB = 1 RFA 1.11 1.11 1.11 1.11 2.51 2.51 2.51 2.51
TP 1.97 1.97 1.97 1.97 0.79 0.79 0.79 0.79
HP −2.87 −6.62 −6.88 −6.89 −1.75 −5.79 −6.52 −6.60

TB = 10 RFA 0.18 0.18 0.18 0.18 0.40 0.40 0.40 0.40
TP 0.31 0.31 0.31 0.31 0.13 0.13 0.13 0.13
HP −0.46 −1.06 −1.10 −1.10 −0.28 −0.93 −1.04 −1.05

1% p.a. TB = 1 RFA −27.52 −27.52 −27.52 −27.52 −6.62 −6.62 −6.62 −6.62
TP 22.65 22.65 22.65 22.65 9.06 9.06 9.06 9.06
HP −20.79 −36.20 −36.63 −36.65 −11.65 −27.49 −28.89 −29.01

TB = 10 RFA −4.29 −4.29 −4.29 −4.29 −1.03 −1.03 −1.03 −1.03
TP 3.53 3.53 3.53 3.53 1.41 1.41 1.41 1.41
HP −3.24 −5.64 −5.71 −5.71 −1.81 −4.28 −4.50 −4.52
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Real Risk-Free Asset

Intuitively, if investors are long (short) the real risk-free asset, then they should al-

locate a positive (negative) amount to the nominal bond in the mimicking portfolio for

the real risk-free asset because real returns of inflation-protected bonds are locally per-

fectly positively correlated with expected inflation while real returns of nominal bonds are

negatively correlated with expected inflation.

Hedging Demand

Similarly, the allocation to nominal bonds in the hedging portfolio is negative if ex-

pected inflation is low and positive if expected inflation is high because of the negative

local correlation of nominal bonds with expected inflation and the fact that the sensitivity

of the marginal value of wealth to changes in the investment opportunity set is positive

if expected inflation is low and negative if it is high (see Figure III.3)). The intuition for

the nominal bond allocation in the mimicking portfolios for the real risk-free asset and the

hedging portfolio is confirmed by the quantitative results reported in Table III.7.

Tangency Portfolio

On the other hand, the allocation to nominal bonds in the tangency portfolio is neg-

ative for high values of the expected inflation rate and positive for low values. This seems

counterintuitive because nominal bonds are cheap when the expected inflation rate is high

and are expected to increase in value when expected inflation reverts back to its long run

mean. The reason for the results is the large exposure of real stock returns to expected

inflation risk. Specifically, assume that real stock returns are locally uncorrelated with ex-

pected inflation. In this case the nominal bond allocation would increase with the expected

inflation rate, as expected, because the risk premium for nominal bonds is increasing with

the expected inflation rate. However, the high local correlation of real stock returns with

expected inflation and the fact that the state dependent component of the market price
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of residual stock market risk (λx2 = −11%) is significantly more negative than the state

dependent component of the market price of expected inflation risk (λx1 = −4%) implies

that the exposure of equity to expected inflation risk in the tangency portfolio is to high.

Hence, the nominal bond is actually used to reduce this exposure which leads to the coun-

terintuitive result that the allocation to the nominal bond in the tangency portfolio goes

down when expected inflation goes up.
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CHAPTER IV

THE TERM STRUCTURE OF INTEREST RATES WITH

HETEROGENEOUS HABIT FORMING PREFERENCES

IV.1 The Economy

Consider a finite horizon [0, T ] pure exchange economy with a single perishable consumption

good. Let c(t) denote the aggregate consumption or aggregate endowment process, µc(t)

its expected growth rate, and σc(t) its volatility.1 The dynamics of aggregate consumption

are

dc(t)

c(t)
= µc(t) dt + σc(t) dzc(t), (IV.1)

in which zc(t) denotes a one-dimensional Brownian motion.

Real prices are measured in units of the consumption good. Let π(t) denote the

nominal price level, µπ(t) the expected inflation rate, and σπ(t) the volatility of inflation.

The dynamics of the price level are

dπ(t)

π(t)
= µπ(t) dt + σπ(t) dzπ(t), (IV.2)

in which zπ(t) denotes a one-dimensional Brownian motion that may be correlated with

aggregate consumption; i.e. dzc(t)dzπ(t) = ρπc(t) dt.2

Security Market

Consider a frictionless complete security market that operates continuously during the

time interval [0, T ]. Let r(t) denote the real risk-free rate or real short rate and R(t) the

nominal risk-free rate or nominal short rate. All bonds considered in this paper are default-

free zero-coupon bonds. A real bond pays one unit of the consumption good at its maturity

1Bansal and Yaron (2004) consider a model in which aggregate consumption has a persistent time varying
expected growth rate and volatility.

2Real consumption and inflation are contemporaneously negatively correlated in the U.S. (e.g. Brandt
and Wang (2003)).
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and a nominal bond pays one unit of currency at its maturity. The market portfolio is in

positive net supply normalized to one and the nominal money market account, real bonds,

and nominal bonds are in zero net supply.

Preferences

There are two (classes of) agents in the economy that derive all their wealth from in-

vesting in the security market and continuously consume part of the aggregate endowment.

All agents have the same beliefs but may differ with respect to their (strictly positive) ini-

tial wealth and their preferences.3 Specifically, each agent has habit forming preferences

given by

Ui({ci(t)}0≤t≤T ) = E

[∫ T

0
e−βtui(ci(t),X(t)) dt

]

, i = 1, 2, (IV.3)

in which β denotes the common subjective discount factor and X(t) denotes an exogenous

state variable that captures the path dependence of each agent’s preferences and is defined

below.

Each investor has non-addictive (multiplicative) habit forming preferences.4 Specifi-

cally,

ui(ci(t),X(t)) =











1
1−γi

(ci(t)/X(t))1−γi ci > 0

−∞ otherwise.
(IV.4)

The external habit or “catching up with the Joneses” feature of agent’s preferences implies

that a higher standard of leaving has a complementary effect on current consumption

because an increase in X(t) raises marginal utility of consumption. Hence, the relative

risk aversion coefficient of each agent has to be greater or equal than one (γi ≥ 1) to

guarantee that the first derivative of marginal utility with respect to the standard of living

3Initial wealth is treated as a free parameter.
4There are two different definitions of habit forming preferences in the literature: the additive or addic-

tive preferences considered by Campbell and Cochrane (1999) or the non-addictive or multiplicative habit
forming preferences considered by Abel (1990), Abel (1999), or Chan and Kogan (2002). The name non-
addictive habit forming preferences is adopted from Detemple and Zapatero (1991) who provide a general
discussion of equilibrium outcomes in exchange economies with agents that have habit forming preferences.
Campbell, Lo, and MacKinlay (1996) call non-addictive models ratio models and addictive models difference
models.
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is non-negative.5

I follow Chan and Kogan (2002) and assume that the standard of living process X(t)

is a weighted “geometric sum” of past realizations of aggregate consumption.6

log(X(t)) = log(X(0))e−δt + δ

∫ t

0
e−δ(t−a) log(c(a)) da δ > 0. (IV.5)

Define a new state variable, relative (log) consumption, as ω(t) = log(c(t)/X(t)).7 Since

ω(t) is high in good states of the economy and low in bad state of the economy it can be

interpreted as a business cycle variable. Moreover, it is straightforward to verify that ω(t)

follows a mean reverting process. Specifically,

dω(t) = δ(ω̄(t)− ω(t)) dt + σc(t) dzc(t) (IV.6)

with ω̄(t) = (µc(t)− σc(t)
2/2)/δ. The economy will be said to be in a recession if relative

consumption is lower than its long run mean (ω̄(t) > ω(t)) and to be in an expansion if

relative consumption is greater than its long run mean (ω(t) > ω̄(t)).8

The parameter δ describes the dependence of X(t) on the history of aggregate con-

sumption. If δ is large, then shocks to relative consumption are transitory and hence the

standard of living process resembles closely current consumption; i.e. ω(t) ≈ 0. On the

other hand, if δ ≈ 0, then shocks to relative consumption are persistent and hence past

aggregate consumption is heavily weighted by the standard of living process.

5Specifically,
∂2ui(ci, X)

∂ci∂X
= (γi − 1)(ci/X)−γi ≥ 0.

6If δ = 0, then the standard of living process is constant and the pricing results are the same as with
standard additive preferences. Sundaresan (1989) and Constantinides (1990) also define the standard of
living process as a geometric sum of past realizations of aggregate consumption. They consider a slightly
more general specification of the standard of living process.

7The dynamics of log(X(t)) are d log(X(t)) = δω(t) dt.
8Relative consumption is in general not a Markov process.
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IV.2 Equilibrium

In this section I derive closed form solutions for the nominal stochastic discount factor,

discuss the properties for the nominal short rate and the nominal market price of risk, and

provide explicit formulas for nominal bond prices, real bond prices, and the term structure

of inflation risk premia. As standard in the literature the equilibrium is determined in

three steps: (i) the optimal consumption sharing rule is determined, (ii) each efficient

allocation is characterized by a stochastic discount factor process, and (iii) it is shown that

the efficient allocations can be achieved by continuously trading in the security market.9

The efficient allocations are determined by maximizing the utility function of a rep-

resentative agent subject to the resource constraint that aggregate consumption does not

exceed aggregate endowment. Let η(t) denote the shadow price of the resource constraint

and κ ∈ (0, 1) the social weight. The optimization problem can be solved state by state

and hence the value function of the representative agent at each point in time and each

state of the world is10

uκ(c,X) = inf
η

(

sup
{c1,c2}

{κu1(c1,X) + (1− κ)u2(c2,X) − η(c1 + c2 − c)}
)

. (IV.7)

The market is complete and hence the social weight κ is constant. The social weight κ

can be uniquely determined form the initial wealth of agents and hence is treated as a free

parameter.

Let γ1 ≥ 1 denote the constant risk aversion coefficient of the first agent, γ2 the

constant risk aversion of the second agent, and assume that the second agent is twice as

risk averse as the first agent; i.e. γ2 = 2γ1. Moreover, let γ(t) denote the aggregate risk

aversion of the economy, γω(t) the first derivative, and γωω(t) the second derivative of γ(t)

9A detailed discussion of steps (i)-(iii) is provided in Section C.1 of Appendix C. Wang (1996) conducts
a similar equilibrium analysis for two investors with heterogeneous standard time additive preferences
and Chan and Kogan (2002) conduct a similar equilibrium analysis for a continuum of investors with
heterogeneous habit forming preferences.

10I suppress time dependence of all processes for notional convenience.
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with respective to relative consumption ω(t).11 Aggregate risk aversion and its properties

are summarized in the next proposition.

Proposition IV.1 (Aggregate Risk Aversion). Aggregate risk aversion is

γ(t) = γ1

(

1 +
1

√

1 + Keω(t)

)

with K = 4

(

κ

1− κ

)
1

γ1

. (IV.8)

The dynamics of γ(t) are

dγ(t) = γω(t) dω(t) +
1

2
γωω(t) (dω(t))2, (IV.9)

in which γω(t) < 0. Moreover, limκ→1 γ(t) = γ1, limκ→0 γ(t) = γ2, and γ1 ≤ γ(t) ≤ γ2.

Proof. See Section C.1 of Appendix C.

Aggregate risk aversion is countercyclical. In other words, a negative shock to real

consumption growth increases the risk aversion of the economy. This results from endoge-

nous changes in the cross sectional distribution of wealth. Specifically, the less risk averse

investor is more exposed to aggregate consumption risk because he invests a larger portion

of his wealth in risky assets. Hence, a negative shock to aggregate consumption increases

aggregate risk aversion because it has a larger negative impact on the wealth of the less

risk averse agent.

Let m(t) denote the real stochastic discount factor, M(t) = m(t)/π(t) the nominal

stochastic discount factor, and c∗(t) = c(t)π(t) the nominal price of aggregate consumption.

Moreover, let BU (t) denote the real price and B∗
U (t) = π(t)BU (t) the nominal price of a

nominal bond maturing at U .12 Nominal bond prices are given in the next theorem.

11Aggregate risk aversion is equal to the local curvature of the representative investor. Specifically,

γ(t) = −c(t)
uκ

cc(c(t), X(t))

uκ
c (c(t), X(t))

,

in which uκ
c (·) denotes the first derivative and uκ

cc(·) denotes the second derivative of uκ(·) with respect to
aggregate consumption c(t).

12The real discount factor m(t) is determined in Lemma C.2 in Section C.1 of Appendix C.



58

Theorem IV.1 (Nominal bond prices). The nominal price of a nominal bond maturing

at U is

B∗
U (t) = Et [M(U)/M(t)] , ∀ t ≤ U < T (IV.10)

with

M(t) = e−βt ξ(t)

c∗(t)

c∗(0)

ξ(0)
(IV.11)

and

ξ(t) =
2γ2κ2

1− κ

eω(t)

(

√

1 + Λeω(t) − 1
)γ2

. (IV.12)

Proof. See Section C.1 of Appendix C.

There are no closed form solutions for nominal bond prices but the the nominal sto-

chastic discount factor is given in closed form and hence it is straightforward to calculate

nominal bond prices numerically using Monte Carlo simulation techniques.13

The effects of heterogenous habit forming preferences on the nominal stochastic dis-

count factor are discussed below. Let λ(t) denote the real market price of risk and Λ(t)

the nominal market price of risk. The dynamics of the nominal stochastic discount factor

M(t) given in equation (IV.11) are provided in the next corollary.14

Corollary IV.1 (Nominal discount factor dynamics). The dynamics of M(t) are

dM(t)

M(t)
= −R(t) dt − Λ(t) dzM (t), (IV.13)

in which zM (t) denotes a one-dimensional Brownian motion that satisfies Λ(t)dzM (t) =

λ(t)dzc(t) + π(t)dzπ(t).

13See Glasserman (2004) for Monte Carlo simulation techniques.
14Chan and Kogan (2002) provide similar expressions for the real market price of risk and the real risk-free

rate. Moreover, they perform an asymptotic analysis of the equilibrium (around the “log-investor”) and
discuss the properties of the Sharpe ratio, the volatility, and excess returns of the stock market. The reader
is referred to their working paper (Chan and Kogan (2000)) for details about the asymptotic analysis.
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The nominal short rate and the nominal market price of risk are

R(t) = r(t) + µπ(t)− ρπc(t)λ(t)σπ(t)− σπ(t)2 (IV.14)

Λ(t) =
√

λ(t)2 + 2ρπc(t)λ(t)σπ(t) + σπ(t)2. (IV.15)

The real short rate and the real market price of risk are

r(t) = β + δ (ω̄(t) + (γ(t)− 1)(ω̄(t)− ω(t)))− 1

2

(

γ(t)2 − γω(t)
)

σc(t)
2 (IV.16)

λ(t) = σc(t)γ(t). (IV.17)

Proof. See Section C.1 of Appendix C.

Real short rate

In equilibrium real interest rates are determined such that investors in aggregate are

indifferent between consuming today and consuming in the future. Hence, the real short

rate depends on the willingness of the representative investor to substitute consumption

over time and states, and it depends on the conditional distribution of aggregate con-

sumption which is locally uniquely determined by its mean and variance because aggregate

consumption follows a diffusion process.15 The local curvature of the representative in-

vestor’s utility function γ(t) captures both the willingness to substitute consumption over

time and states.16

The real short rate consists of three components: the impatience parameter β, the

intertemporal substitution component δ (ω̄(t) + (γ(t)− 1)(ω̄(t)− ω(t))), and the precau-

tionary savings component (γ(t)2 − γω(t))σc(t)
2/2. The impatience parameter β, the ex-

15Cochrane (2005) discusses the case of homogeneous standard time additive CRRA preferences and i.i.d.
consumption growth.

16This link is broken with Epstein-Zin preferences (Epstein and Zin (1989), Duffie and Epstein (1992a),
Duffie and Epstein (1992b)) ), but it is hard to solve for equilibria in heterogenous economies with Epstein-
Zin preferences. See Dumas, Uppal, and Wang (2000) for a recent contribution in this direction. There
are a lot of other preferences that allow one to break the link between intertemporal substitution and risk
aversion see Backus, Routledge, and Zin (2004) for an overview.
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pected consumption growth rate µc(t) (through the long run mean of relative consumption

ω̄(t)), and the variance of consumption growth have the standard interpretation for the

magnitude of the risk-free rate.

The substitution effect is related to the business cycle of the economy. If the economy

is in a recession (ω̄(t) > ω(t)), then investors are eager to consume today, and hence a

higher interest rate is required to convince them to save. Similarly, if the economy is in

an expansion (ω̄(t) < ω(t)), then investors are willing to give up consumption today and

hence a low interest rate is required to prevent them from saving. Both affects are more

pronounced if aggregate risk aversion is very different from one (γ(t)≫ 1) and the standard

of living process tracks closely most recent aggregate consumption realizations (δ ≫ 0).

The former follows from the fact that investors care more about their habits if γ(t) ≫ 1

and the latter follows from the fact that the standard of living grows faster than aggregate

consumption in an expansion and decreases faster in a recession if δ is large.17

The precautionary savings component depends not only on the level of aggregate risk

aversion but also on its changes with respect to relative consumption when investors differ

with respect to the curvature of the utility function. Specifically, a negative shock to

aggregate consumption raises the risk-free rate because aggregate risk aversion increases

(γω(t) < 0). Intuitively, a negative shock to aggregate consumption leads to a redistribution

of aggregate wealth from the less risk averse agent, who is a net borrower in equilibrium,

to the more risk averse agent, who is a net lender in equilibrium and hence to avoid excess

demand for the real risk-free asset the real short rate has to go down.

Nominal short rate

The nominal short rate R(t) is equal to the sum of the real short rate r(t), the expected

inflation rate µπ(t), an inflation risk premium −ρπc(t)λ(t)σπ(t), and a Jensen inequality

term −σπ(t). The equilibrium behavior of the real short rate is discussed above, expected

inflation is exogenously specified as part of the inflation dynamics that are given in equation

17δω̄(t) = µc(t) − σc(t)
2/2 does not depend on δ.
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(IV.2), and the Jensen inequality adjustment arises because E[1/π] 6= 1/E[π]. Moreover,

the Fisher equation for the nominal short rate does not hold unless inflation is uncorrelated

with real consumption.

I determine the real rate of return on the nominal money market account to analyze

the local inflation risk premium. The inflation risk premium for longer holding periods is

defined and discussed below. Let B0(t) denote the real and B∗
0(t) = B0(t)π(t) the nominal

value of the nominal money market account at time t. Specifically,

B∗
0(t) = B∗

0(0)e
R t

0
R(a) da.

Applying Itô’s lemma to B0(t) leads to the real return of the nominal money market

account. Specifically,

dB0(t)

B0(t)
= (r(t)− ρπc(t)λ(t)σπ(t)) dt− σπ(t) dzπ(t). (IV.18)

Investing in the nominal money market account earns an expected real return in excess

of the real risk-free rate – i.e. a compensation for inflation risk – if investors prefer assets

that pay off when inflation is high over assets that pay of when inflation is low because real

returns on the money market account are perfectly negatively correlated with inflation.

Hence, the inflation risk premium is positive if inflation is negatively correlated with real

consumption and positive if inflation is positively correlated with real consumption.18

Real and nominal market price of risk

Aggregate risk aversion and the volatility of aggregate consumption have the standard

interpretation for the magnitude of the real market price of risk. Moreover, the market

price of risk may be procyclical if the volatility of consumption is highly correlated with

realized consumption. Otherwise, it is countercyclical because aggregate risk aversion is

18See Fischer (1975) for a discussion of the inflation risk premium when the real and nominal short rate
are constant and real stock prices and the price level follow a geometric Brownian motion.
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countercyclical. The nominal market price of risk depends on the real market price of risk,

the volatility of inflation, and the covariance of inflation with real consumption. Moreover,

it is decreasing in the covariance of real consumption with inflation.

Inflation risk premium

Let PU (t) denote the real and P ∗
U (t) = PU (t)π(t) the nominal price of a real (inflation-

protected) bond maturing at U , and Iτ (t) the inflation risk premium for non-negative

holding periods τ . If τ = 0, then the inflation risk premium is the difference between the

expected real rate of return on the nominal money market account and the real short rate.

Specifically, the instantaneous or local inflation risk premium is I0(t) = −ρcπ(t)λ(t)σπ(t).

If τ > 0, then the inflation risk premium is the difference between the expected real

(log) return of a nominal bond with τ years to maturity and a real bond with τ years

to maturity. In other words, the inflation risk premium is the expected real (log) return

difference of holding a nominal bond and a real bond until maturity.19 Specifically,

Iτ (t) = log
(

Pt+τ (t)/B∗
t+τ (t)

)

− Et [log(π(t + τ)/π(t))] . (IV.19)

To determine the inflation risk premium one has to know the price of both bonds and one

has to form an expectation of future inflation rates.

The real price of a real bond is

PU (t) = Et [m(U)/m(t)] , ∀ t ≤ U < T. (IV.20)

There are no closed form solutions for real bond prices but the real stochastic discount

factor is given in closed form. Hence, it is straightforward to determine the nominal price

of a nominal bond, the real price of a real bond, long run expected inflation and hence the

inflation risk premium using Monte Carlo simulation techniques.

19The inflation risk premium is continuous in τ , i.e. limτ→0 Iτ (t) = I0(t).
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Nominal bond yields

Let y
(τ)
B (t) = − 1

τ
log
(

B∗
t+τ (t)

)

denote the log-yield at time t of a nominal zero-coupon

bond with τ years to maturity and y
(τ)
P (t) = − 1

τ
log (Pt+τ (t)) denote the log-yield at time t

of a real zero-coupon bond with τ years to maturity. Every nominal bond yield is the sum

of a real bond yield, an expected inflation rate, and an inflation risk premium. Specifically,

y
(τ)
B (t) = y

(τ)
P (t) +

1

τ
Et [log(π(t + τ)/π(t))] +

1

τ
Iτ (t). (IV.21)
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CHAPTER V

SUMMARY AND CONCLUSIONS

This dissertation consists of three essays. The title of the first essay is “Idiosyncratic

Inflation Risk and Inflation-Protected Bonds”, the title of the second essay is “Inflation

and Asset Allocation”, and the title of the last essays is “The Term Structure of Interest

Rates with Heterogeneous Habit Forming Preferences”.

V.1 Idiosyncratic Inflation Risk and Inflation-Protected Bonds

In the first essay, I decompose inflation risk into (i) a part that is correlated with real returns

on the market portfolio and factors that determine investor’s preferences and investment

opportunities and (ii) a residual part. I show that only the first part earns a risk premium.

Therefore investors should seek to avoid exposure to the second part. All nominal Treasury

bonds, including the nominal money-market account, are equally exposed to the residual

part except inflation-protected Treasury bonds, which provide a means to hedge it. Every

investor should put 100% of his wealth in the market portfolio and inflation-protected

Treasury bonds and hold a zero-investment portfolio of nominal Treasury bonds and the

nominal money market account.

V.2 Inflation and Asset Allocation

In the second essay, I solve the dynamic asset allocation problem of finite lived, constant

relative risk averse investors who face inflation risk and can invest in cash, nominal bonds,

equity, and inflation-protected bonds when the investment opportunity set is determined

by the expected inflation rate. The instantaneous mean and variance of all asset returns

are quadratic functions of the expected inflation rate, and optimal investment strategies

are given in closed form. I estimate the model with nominal bond, inflation, and stock

market data and find that the equity risk premium is negatively related to the expected

inflation rate which is consistent with Fama and Schwert (1977). I show that if expected
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inflation increases, then investors should substitute inflation-protected bonds for stocks,

and they should borrow cash to buy long-term nominal bonds. Moreover, they should buy

(short) nominal bonds when expected inflation is high (low) in order to hedge changes in

the investment opportunity set. The size of these positions is increasing in the investment

horizon.

To discuss the effects of inflation risk on optimal portfolios I specified a one factor

model in which the conditional joint distribution of real returns of stocks, the nominal

money market account, and inflation-protected and nominal bonds depends on the latent

expected inflation rate. While the model is able to fit the correlation of real stock returns

and inflation and both the mean and standard deviation of real stock returns and inflation,

it is unable to simultaneously fit the autocorrelation of real stock returns and inflation and

the correlations between the nominal risk-free rate and real stock returns and inflation (see

Table III.3). In particular, the model does not have enough flexibility to match both the

autocorrelation of inflation and the correlation of inflation with the nominal risk-free rate.

Inflation has a persistent component and a transitory component. The model increases

the persistent inflation component – by increasing µπx – and reduces the transitory inflation

component – by decreasing σπ3 – to fit the high autocorrelation of inflation in the data.

However, increasing the autocorrelation also increases the correlation of inflation with the

nominal risk-free rate which is already too high compared to the data. The situation is

similar, though less severe, with the correlation between real stock returns and the nominal

risk-free rate.

If I underweight the autocorrelation of inflation in the objective function of the es-

timation, then the model would be able to fit all other statistics very well, and residual

inflation risk increases from close to zero to almost 100%. I conclude that residual infla-

tion risk is surprisingly small because the model increases the local correlation of realized

inflation with expected inflation and real stock returns to better match the autocorrelation

of inflation in the data.1

1I also regress inflation rates on changes in different nominal Treasury bond yields and real stock returns
and find that residual inflation risk accounts for more than 90% of the total.
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An increase in the dimension of the state vector may improve the fit of the model

without losing the tractability of the portfolio choice problem (it would be still possible

to obtain optimal portfolio demands in closed form). However, it would increase the

complexity of the estimation problem and more importantly it would be very hard to

distinguish the effects of inflation risk on optimal portfolio choice, which is the main focus

of the paper, from other effects caused by the increase in the dimension of the state vector.

V.3 The Term Structure of Interest Rates with Heterogeneous Habit Forming

Preferences

In the third essay, I derive closed form solution for the nominal stochastic discount factor

in a pure continuous time exchange economy with a complete securities market. Aggre-

gate consumption growth and inflation are exogenously specified and contain stochastic

components that affect their mean and volatility. There are two classes of investors with

external habit forming preferences and different local curvatures of their utility function.

Aggregate risk aversion of the economy is countercyclical and the nominal short rate and

the nominal market price of risk depend on a real business cycle variable, expected infla-

tion, the volatility of inflation, and the local correlation of inflation with real consumption

growth. I show that the inflation risk premium for the nominal money market account is

positive (negative) if inflation is negatively (positively) correlated with real consumption

growth. Moreover, I derive explicit formulas for nominal bonds and decompose the nominal

bond yield in (i) a real bond yield, (ii) an expected inflation rate, and (iii) an inflation risk

premium. Each component can be derived using Monte Carlo simulation techniques.

To empirically discuss the effects of heterogenous habit forming preferences on the

nominal term structure of interest rate on needs to specify the dynamics of real consumption

growth and inflation and estimate the parameters that governs the dynamics. Moreover,

one needs to calibrate the model to asset price data to estimate the subjective discount

factor β, the history dependence of the standard of living governed by the parameter δ, the

risk aversion γ1, and the social weight κ that determines the initial cross sectional wealth
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distribution of agents.
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APPENDIX A

IDIOSYNCRATIC INFLATION RISK AND INFLATION-PROTECTED

BONDS

A.1 Asset Prices

Definition A.1 (D: Sufficiently smooth). A function f(t,X, S, π) is sufficiently smooth if

it is continuously differentiable with respect to time t and all second partial derivatives with

respect to X, S, and π exist and are continuous.

Proof of Proposition II.1 (Inflation-protected bonds). The solution of the stochastic differ-

ential equation (II.3) is

M(T ) = M(t)e−
R T

t (r(X(a))+ 1

2
Λ(X(a))′Λ(X(a))) da−

R T

t
Λ(X(a))′ dZ(a). (A.1)

The state vector X is Markov and therefore the conditional distribution of M(T )/M(t) at

time t only depends on the value of X at time t and time to maturity T − t. Hence, the

real price of an inflation-protected bond at time t given by

P = Et

[

M(T )

M(t)

]

(A.2)

depends only on X and T − t, i.e. P = P (T − t,X).

P (T − t,X) is sufficiently smooth and hence applying Itô’s Lemma to P (T − t,X)

and using the continuous time pricing equation E[dP/P ] − r dt = −E[dP/P dM/M ] for

real assets leads to the local return dynamics in equation (II.9) with σP (T − t,X) given in

equation (II.10).

Proof of Proposition II.2 (Nominal bonds). The nominal value of a $1 invested in the nom-



73

inal money market account at time t is

R∗ = e
R t

0
r∗(X(a)) da (A.3)

and hence depends on the whole path of the nominal short rate. Specifically, R∗ =

R∗(t, {X(a), 0 ≤ a ≤ t}).

Applying Itô’s Lemma to R(t, {X(a) | 0 ≤ a ≤ t}, π) = R∗(t, {X(a) | 0 ≤ a ≤ t})/π

and using equation (II.5) for the nominal short rate leads to the real return dynamics of

R given in equation (II.11).

The solution of the stochastic differential equation (II.4) is

M∗(T ) = M∗(t)e−
R T

t (r∗(X(a))+ 1

2
Λ∗(X(a))′Λ∗(X(a))) da−

R T

t
Λ∗(X(a))′ dZ(a), (A.4)

in which Λ∗(X) = Λ(X) + σπ(X) denotes the nominal market price of risk. The state

vector X is Markov and therefore the conditional distribution of M∗(T )/M∗(t) at time t

only depends on the value of X at time t and time to maturity T − t. Hence, the nominal

price of a nominal bond at time t is given by

B∗ = Et

[

M∗(T )

M∗(t)

]

(A.5)

depends only on X and T − t, i.e. B∗ = B∗(T − t,X).

B∗(T − t,X) is sufficiently smooth and hence applying Itô’s Lemma to B∗(T − t,X)

and using the continuous time pricing equation E[dB∗/B∗]−r∗ dt = −E[dB∗/B∗ dM∗/M∗]

for nominal assets leads to the nominal return dynamics of nominal bonds. Specifically,

dB∗(T − t,X, π)

B∗(T − t,X, π)
=
(

r∗(X) + σ∗
B(T − t,X)′(Λ(X) + σπ(X))

)

dt+σ∗
B(T − t,X)′ dZ (A.6)

with

σ∗
B(T − t,X) =

σX(X)B∗
X (T − t,X)

B∗(T − t,X)
.
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Applying Itô’s Lemma to B(T − t,X, π) = B∗(T − t,X)/π and using the continuous

time pricing equation E[dB/B]− r dt = −E[dB/B dM/M ] for real assets leads to the real

return dynamics of nominal bonds given in equation (II.12).

Moreover, the upper diagonal form of the volatility matrix σX(X) (see equation (II.8))

implies that the last column of σX(X) is zero and hence σPk+2(T−t,X) = 0 and σBk+2(T−

t,X) = −σπk+2(X).

A.2 Equilibrium

In this section I prove Theorem II.1 and Theorem II.2. For i = 1, . . . , I. Optimal consump-

tion of investor i who maximizes (II.14) subject to the static budget constraint (II.15) has

to satisfy the first order condition

ui
c(t, c

i(t),X(t)) = λiM i(t), (A.7)

in which ui
c denotes the partial derivative of ui with respect to consumption and λi denotes

the Lagrange multiplier for the budget constraint (II.15). Let U i
W denote the partial

derivative of U i with respect to wealth. If the investment horizon is finite, then M i(t)

has to satisfy the FOC, U i
W (T,W i(T ),X(T )) = λiM i(T ), and if the investment horizon is

infinite, then it has to satisfy, lim
T→∞

M i(T ) = 0.

Proof of Theorem II.1 (ICAPM). Consider a frictionless security market consisting of N +

1 risky assets, such as stocks, inflation-protected and nominal corporate bonds, real estate,

inflation-protected Treasury bonds, nominal Treasury bonds, a nominal money market

account, etc. There are no tax liabilities and the nominal money market account and

all Treasury bonds are in zero-net-supply. Moreover, assume w.l.o.g. that the number of

shares of each positive-net-supply security outstanding is normalized to one.

For n = 0, 1, ..., N + 1, let S0(t) denote the real price of the nominal money market

account, Sn(t) the real ex-dividend price of risky asset n, δn(t) the real dividend payed by
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asset n, and Yn(t) the dividend reinvested price of risky asset n. If asset n doesn’t pay

dividends (e.g. a nominal zero-coupon bond), then δn(t) ≡ 0. The price of the market

portfolio is

S =
∑

n∈{positive-net-supply securities}

Sn.

Moreover, let dY (t)/Y (t) denote the N -dimensional column vector with (dSn(t) +

δn(t) dt)/Sn(t) as its n-th component. The dynamics of all assets are

dY (t)

Y (t)
= µ(t) dt + σ(t)′dZ(t)

dS0(t)

S0(t)
= µ0(t) dt + σ0(t)

′dZ(t),

(A.8)

in which µ0 is one-dimensional, µ is N -dimensional, σ0 is d-dimensional, and σ is (d×N)-

dimensional.

Let αi
n(t) the fraction of wealth investor i holds in the n-th risky asset at time t, and

αi(t) denote the column vector with n-th component equal to αi
n(t). The remaining wealth

of investor i is put in the nominal money market account; i.e. αi
0(t) = 1− 1′αi(t).1

The intertemporal budget constraint of each investor is

dW i + ci dt = W i
(

(

µ0 + (µ− µ01)′ αi
)

dt +
(

σ0 +
(

σ(t)− σ01
′
)

αi
)′

dZ(t)
)

. (A.9)

The value function of each investor is

J i(t, wi, x) = sup
{αi(a),ci(a)|t≤a≤T}

(

E

[
∫ T

t

ui(a, ci(a),X(a)) da

+ U i(T,W i(T ),X(T )) |W i(t) = wi,X(t) = x
])

.

(A.10)

The envelope condition and the boundary condition of the HJB-equation together with

1
1 denotes the N-dimensional vector of ones.
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the FOC of the static optimization problem in equation (A.7) imply that

λiM i(t) = J i
w(t, wi(t),X(t)) ∀ 0 ≤ t ≤ T, ∀ i = 1, . . . , I, (A.11)

in which J i
w(·) denotes the partial derivative of investor i’s value function w.r.t. his wealth.

Applying Itô’s Lemma to equation (A.11) leads to2

dM i

M i
− E

[

dM i

M i

]

= −Ai
(

dW i − E
[

dW i
])

−
k
∑

l=1

Ψi
l (dXl − E [dXl]) ∀ i, (A.12)

in which Ai = −J i
ww/J i

w denotes absolute risk aversion of consumer i and Ψi
l = −J i

wXl
/J i

w

denotes the sensitivity of the marginal value of wealth with respect to changes in the state

vector.

For i = 1, . . . , I and n = 1, . . . , N . The following pricing equation for asset n has to

hold at an optimum for investor i:

(µn(t)− µ0(t)) dt = −
(

dYn

Yn
− dS0

S0

)

dM i

M i

=

(

dYn

Yn
− dS0

S0

)

(

AidW i +
k
∑

l=1

Ψi
ldXl

) (A.13)

Rearranging terms and summing over all investors leads to

(µn(t)− µ0(t)) dt =

(

dYn

Yn
− dS0

S0

)

(

AdW +
k
∑

l=1

ΨldXl

)

(A.14)

in which W =
∑I

i=1 W i denotes aggregate wealth, A = 1/(
∑I

i=1 1/Ai), and Ψ =
∑I

i=1(A/Ai)Ψi.

Market clearing implies that S = W and hence the market price of residual inflation

risk is zero.

2I abuse notation and denote with E[dX] the drift of the stochastic process X.
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Proof of Lemma II.1. For i = 1, . . . , I. The individual real tax liability of investor i is

Li
τ (t) = Et

[
∫ ∞

t

M i(a)

M i(t)
τ i(a) da

]

= Et

[
∫ ∞

t

M i(a)

M i(t)
f i(ν + κ∗/π(a)) da

]

= f iEt

[
∫ ∞

t

M i(a)

M i(t)
ν da

]

+
f i

π(t)
Et

[
∫ ∞

t

M∗i(a)

M∗i(t)
κ∗ da

]

= f i(Pν(t) + Bκ(t)),

(A.15)

in which M∗i(t) = M i(t)/π(t) is investor i’s nominal stochastic discount factor.

Proof of Theorem II.2 (ICAPM with taxes). For each individual i = 1, . . . , I. Let αi
S(t)

denote the number of shares invested in the asset portfolio at time t, αi
P (t) the number

of shares invested in the inflation-protected consol at time t, αi
B(t) the number of shares

invested in the nominal consol at time t, W i(t) the real wealth at time t, ci(t) real consump-

tion at time t, and Li
τ (t) the real tax liability at time t. Moreover, let W (t) =

∑I
i=1 W i(t)

denote aggregate wealth, c(t) =
∑I

i=1 ci(t) aggregate consumption, and Lτ (t) =
∑I

i=1 Li
τ (t)

the aggregate real tax liability.

Each investor is initially endowed with αi
S(0) = αi

S0 > 0 shares of the asset portfolio

and f i shares of the inflation-protected and nominal consol; i.e. αi
P (0) = αi

B(0) = f i.

Hence, investor i’s initial wealth is equal to

wi = αi
S0S(0) + f i(Pν(0) + Bκ(0)). (A.16)

Lemma II.1 implies that every investor can always immunize his tax liability by holding the

constant share f i in the inflation-protected and nominal consol. This strategy is affordable

for every investor because wi − Li
τ (0) = αi

S0S(0) > 0.

Moreover, Lemma II.1 implies that

Lτ (t) = Pν(t) + Bκ(t) (A.17)
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because
∑I

i=1 f i = 1.

The intertemporal budget constraint of each investor is

dW i = −ci dt − (dLi
τ + τ i dt) + αi

S(dS + δ dt) + αi
P (dPν + ν dt) + αi

B(dBκ + κ dt)

(A.18)

W i(0) = wi − Li
τ (0) (A.19)

In equilibrium markets clear. Specifically,

I
∑

i=1

αi
S(t) = 1,

I
∑

i=1

αi
P (t) = 1,

I
∑

i=1

αi
B(t) = 1, c(t) = δ(t). (A.20)

Summing over all individuals in equations (A.18) and (A.19), and using equations (A.17)

and (A.20) leads to

dW = dS with W (0) = S(0). (A.21)

Hence, aggregate wealth equals the asset or market portfolio; i.e. W (t) = S(t).

The two consols outstanding do not appear in the market portfolio because their

positive cash flows are offset by the negative cash flows of investor’s tax liabilities. Only

the part of inflation risk that is correlated with factors and real stock returns is priced and

hence the market price of residual inflation risk is zero.3

A.3 Dynamic Portfolio Choice

We know that the expected rate of return of every traded asset in a frictionless economy

that allows for continuous trading is equal to the real risk-free rate plus the local volatility

3The derivation of the pricing equation (A.14) is similar to the derivation in the proof of Theorem II.2
and thus omitted.
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of the asset times the market price of risk and hence every continuously traded asset is

uniquely defined by its local volatility vector.4

Define local excess returns of all real assets introduced in Section II.1 as the difference

between the real local return of an asset minus the real local return of the nominal money

market account.5 Specifically, the real local excess return of a nominal zero-coupon bond

maturing at T is6

dBT

BT
− dR

R
= σ′

BT
Λ dt + σ′

BT
dZ. (A.22)

The real local excess return of an inflation-protected zero-coupon bond maturing at T is

dPT

PT
− dR

R
= (σPT

+ σπ)′ Λ dt + (σPT
+ σπ)′ dZ. (A.23)

The real local excess return of the market portfolio is

dS

S
− dR

R
= (σS + σπ)′ Λ dt + (σS + σπ)′ dZ. (A.24)

Let Ω(X) denote the (d × n)-dimensional local real excess return volatility matrix with

n = h + l + 2. Specifically, the first h columns of Ω(X) are real excess returns of nominal

bonds (dB1/B1 − dR/R), . . ., (dBh/Bh − dR/R), the next l + 1 columns are real local

excess returns of inflation-protected bonds (dP1/P1 − dR/R), . . ., (dPl+1/Pl+1 − dR/R),

and the last column is the local volatility vector of the excess return of the market portfolio

(dS/S − dR/R).

Moreover, letM(X) denote the asset return or asset space that consists of n+1 assets:

h nominal bonds, l + 1 inflation-protected bonds, the market portfolio, and the nominal

money market account and E(X) the excess return space consisting of the same assets.

Geometrically, E(X) is an n-dimensional vector space that is spanned by the columns of

4See equation (II.6), Proposition II.1, and Proposition II.2 in Section II.1.
5There is no loss in generality to choose the nominal money market account as reference asset. The

nominal money market (the nominal risk-free rate) is usually chosen as reference asset in the literature.
However, I consider real returns in which case the nominal money market account is in general not risk-free
because of its exposure to inflation risk.

6I sometimes suppress arguments of functions for notional simplicity.
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Ω(X) and M(X) = (−σP (X), E(X)) is an n-dimensional affine space.7 The dimension of

E(X) and hence M(X) is equal to the number of non redundant assets (linearly indepen-

dent columns of Ω(X)). I show in Claim III of Proposition A.1 below that if Assumption

II.1 and Assumption II.2 are true and if returns on the market portfolio are not spanned

by returns of the nominal money market account, nominal bonds, and inflation-protected

bonds, then the number of linearly independent nominal and inflation-protected bonds is

equal to the dimension of U and n = k1 + 2, in which k1 denotes the dimension of U .8

Let W denote the real value of a self financing investment portfolio α ∈ Rn. Specifi-

cally, the first h elements of α denote the fraction of W invested in the h nominal bonds,

the second l + 1 elements denote the fraction of W invested in the l + 1 inflation-protected

bonds, the last element denotes the fraction of W invested in the market portfolio, and

1 − 1′
nα denotes the fraction of W invested in the nominal money market account.9 The

real local return of the portfolio α is uniquely defined by the local return volatility

σW (X) = −σπ(X) + Ω(X)α. (A.25)

Hence, the real local return of W is

dW

W
= (r(X) + σW (X)′Λ(X)) dt + σW (X)′ dZ (A.26)

and the volatility σW (X) is an element of the affine space M(X).

We will see below that the geometric interpretation of any self financing portfolio with

dynamics given in (A.26) as an element ofM(X) is very useful in determining the optimal

investment portfolio. Specifically, I show in the proof of Theorem II.3 that the mimicking

portfolio for the real risk-free asset, the tangency portfolio, and the hedging portfolios are

uniquely determined by the projection of the null vector, the market price of risk Λ(X),

7If the nominal money market account is locally riskless, then E(X) and M(X) coincide.
8If real returns on the market portfolio are spanned by returns of the nominal money market account

and nominal and inflation-protected bonds, then we can exclude the market portfolio as an asset and the
whole analysis that follows holds true with n = k1 + 1.

9
1n denotes the n-dimensional vector of ones.



81

and the local covariance matrix of the state vector σ(X) onto the asset space M(X).

Recall that X = (U, V ) with σX(X) = (σU (X), σV (X)) and let U be k1- and V be

k2-dimensional. If time t is a state variable, then redefine the state vector X as (t,X).

Moreover, exclude any state variable that can be written as a linear combination of other

state variables from the definition of the state vector X. Finally, if S is a state variable

or can be written as a linear combination of some state variables, then the state of the

economy is defined by Y = (X,S). Hence, we can without loss of generality assume that

the local covariance matrix of X and S which is (σX(X), σS(X))′(σX(X), σS(X)) has full

rank.10 Implications of the spanning condition of the economy – Assumption II.2 – are

provided in the next proposition.

Proposition A.1. Let σ⊥
π denote the part of inflation risk that is not spanned by U . Then,

σ⊥
π (X) = (0, . . . , 0, σπk1+1(X), . . . , σπk+2(X))′ . (A.27)

Adopt Assumption II.2. Then the following six claims are true.

Claim I: The part of inflation risk that is not spanned by U is orthogonal to V and

real returns on the market portfolio if and only if

σV (X)′σ⊥
π (X) = σS(X)′σ⊥

π (X) = 0. (A.28)

Claim II: The part of inflation risk that is not spanned by U is orthogonal to V if and

only if it is orthogonal to X.

Claim III: The part of inflation risk that is not spanned by U is orthogonal to X and

real returns on the market portfolio if and only if

σπi = 0 ∀i = k1 + 1, . . . , k + 1. (A.29)

Claim IV: U is spanned by real returns of inflation protected bonds and nominal returns

10If Assumption II.1 holds, then the local covariance matrix of the Markov system given in equation (II.8)
has full rank.
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of nominal bonds if and only if U is spanned by real returns of inflation protected bonds and

real returns of zero-investment portfolios of nominal bonds and the nominal money market

account.

Claim V: If residual inflation risk is not zero, then real returns of inflation-protected

bonds and zero investment portfolios of nominal bonds and the nominal money market

account span U if h + l ≥ k1. Moreover, the dimension of the asset space is equal to

n = k1 + 2.

Claim VI: Neither Condition (i) nor (ii) of Assumption II.2 implies the other.

Proof. It follows directly from the upper diagonal form of the local covariance matrix

of the Markov system σ(X) given in equation (II.8) in Section II.1 that the k1 linearly

independent columns of σU (X) span the vector (σπ1(X), . . . , σπk1
(X), 0, . . . , 0)′. Hence,

the part of inflation risk that is not spanned by U is given in equation (A.27).

Moreover, two stochastic processes are locally uncorrelated if their local volatility

vectors are orthogonal to each other and hence the part of inflation risk that is not spanned

by V and real returns on the market portfolio is orthogonal to V and real returns on the

market portfolio if and only if equation (A.28) holds. This proves Claim I.

Similarly, the upper diagonal form σ(X) and equation (A.27) imply that

σU (X)′σ⊥
π (X) = 0 and hence σV (X)′σ⊥

π (X) = 0 if and only if σX(X)′σ⊥
π (X) = 0. This

proves Claim II.

The “if part” of Claim III follows directly from equation (A.29). For the “only if part”

we rewrite condition (A.28) and drop the zero identities. This leads to



















σV 1k1+1 0 · · · 0

...
. . .

. . .
...

σV k2k1+1
. . . σV k2k 0

σSk1+1 . . . σSk σSk+1



















·



















σπk1+1

...

σπk

σπk+1



















=



















0

...

...

0



















(A.30)

The solution given in equation (A.29) is the trivial solution of the system of linear equation

given in (A.30). The columns of σV (X) and σS(X) are linearly independent implying that
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the coefficient matrix of the system of linear equations in (A.30) is non-singular and hence

the trivial solution is the unique solution. This proves the “only if part“ of Claim III.

The span of nominal returns of nominal bonds (see equation (A.6)) coincides with

real returns of zero investment portfolios of nominal bonds (see equation (II.12)) and the

nominal money market account (see equation (II.11)) because the difference between the

local volatility vector of nominal and real returns of every nominal bond and the nominal

money market account is equal to the volatility vector σπ and hence this difference vanishes

if the total investment in nominal bonds and the nominal money market account is zero.

This proves Claim IV.

Let Ebonds(X) denote the space spanned by real excess returns of l + 1 inflation-

protected and h nominal bonds. The h + l + 1 bonds are linearly independent. Moreover,

elementary column transformations lead to a set of h + l + 1 unit vectors {e1, . . . , eh+l, ed}

which span Ebonds(X).11 From the upper diagonal form of the local covariance matrix of

the Markov system given in equation (II.7) in Section II.1 follows that the local volatility

matrix of U only loads on the first k1 components and hence it is spanned if h + l = k1. If

h+l > k1, then U is still spanned but in this case h+l−k1 bonds are redundant. Moreover,

if real returns on the market portfolio are not spanned by real returns of the nominal money

market account and inflation-protected and nominal bonds, then the dimension of the asset

space is n = k1+2. If they are spanned, then there is no need to add them to the investment

opportunity set and hence we drop the last column of Ω(X) and let n = k1 +1. This proves

Claim V.

I provide two counter examples to prove Claim VI. Let k = 0, σπ1 6= 0, σπ2 6= 0, and

σS1 6= 0. Then, the nominal money market account, the market portfolio, and an inflation-

protected bond (which is in this case the real risk-free asset) complete the market. But

σπ1 6= 0 and hence part (i) of Assumption II.2 is satisfied but part (ii) is violated.

Assume that part (ii) of Assumption II.2 is satisfied and consider a state variable

that is locally not perfectly correlated with real returns on the market portfolio and is not

11ei denotes a d-dimensional vector with i-th component equal to one and remaining components zero.
See Lemma A.1 for details on the basis change.
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spanned by real returns of inflation protected bonds and nominal returns of nominal bonds

– e.g. stochastic volatility of the market portfolio. In this case the market is incomplete

and hence part (ii) of Assumption II.2 is satisfied but part (i) is violated.

Let PM denote the projector onto the asset space M and PE the projector onto the

excess return space E .12 Both projectors are given in the next lemma.

Lemma A.1. [Projector onto the asset space]

The projector onto the asset space M is

PM(X) = −PE⊥(X)σπ(X) + PE(X) (A.31)

with projector on the excess return space E and the orthogonal complement of the excess

return space E⊥ given by13

PE (X) = Ω(X)
(

Ω(X)′Ω(X)
)−1

Ω(X)′,

PE⊥(X) = Id −PE (X),

(A.32)

respectively. Specifically, the projection of the d-dimensional vector v onto M is

PM(X)v = −PE⊥(X)σπ(X) + PE (X)v. (A.33)

Adopt Assumption II.1 and II.2. If the market is complete, then the projector onto E

simplifies to

PE(X) = Id. (A.34)

If the market is incomplete, then the projector simplifies to

PE(X) = PEbonds
(X) + PES

(X), (A.35)

12See Kreyszig (1989) Chapter 3 and Brockwell and Davis (2006) Chapter 2 for properties of Hilbert
spaces and projectors.

13Let Ik denote the k-dimensional unit matrix.
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in which PEbonds
denotes the projector onto the space spanned by the real excess returns

of the h nominal bonds and the l + 1 inflation-protected bonds and PES
(X) denotes the

projector onto the space spanned by the part of real excess returns on the market portfolio

that is uncorrelated with real excess returns of nominal and inflation-protected bonds.14

Specifically,

PEbonds
(X) =













Ik1
0 0

0 0 0

0 0 1













. (A.36)

and

PES
(X) =













0 0 0

0 ρ(X) 0

0 0 0













(A.37)

in which ρ(X) is the (k2 + 1)× (k2 + 1)-dimensional matrix with

ρij(X) =
σSk1+i(X)σSk1+j(X)

vS(X)
1 ≤ i, j ≤ k2 + 1 (A.38)

and

vS(X) =

k2+1
∑

i=1

σSk1+i(X)2. (A.39)

Proof. If the market is complete, then Rd = E and hence PE(X) = Id.

If the market is incomplete, then Claim III of Proposition A.1 implies that the volatility

of inflations is

σπ = (σπ1, . . . , σπk1
, 0, . . . , 0, σπd)

′ . (A.40)

Hence,

14In the special case when real returns of the market portfolio are uncorrelated with real returns of
nominal and inflation protected bond, then ES is spanned by real returns on the market portfolio.
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Ω(X) =















































σ1
B1 . . . σh

B1 σ1
P1 + σπ1 . . . σl+1

P1 + σπ1 σS1 + σπ1

...
. . .

...
...

. . .
...

...

σ1
Bk1

. . . σh
Bk1

σ1
Pk1

+ σπk1
. . . σl+1

Pk1
+ σπk1

σSk1
+ σπk1

0 . . . 0 0 . . . 0 σSk1+1

...
. . .

...
...

. . .
...

...

0 . . . 0 0 . . . 0 σSk

0 . . . 0 0 . . . 0 σSk+1

0 . . . 0 σπd . . . σπd σπd















































,

in which the first block of columns denotes the excess return volatility of the h nominal

bonds, the second block denotes the excess return volatility of the l + 1 inflation-protected

bonds, and the last column denotes the excess return volatility of the market portfolio.

The first block of rows denotes excess return exposure to the first k1 components of Z, the

second block of rows denotes excess return exposure to the next k2 components of Z, the

third row denotes excess return exposure to residual market portfolio risk Zk+1, and the

last row denotes excess return exposure to residual inflation risk Zk+2.

The first n − 1 columns span Ebonds by definition. Moreover, the h nominal bonds

and the l + 1 inflation-protected bonds are non-redundant and hence elementary column

transformations lead to
























Ik1
0 0

0
... σSk1+1

...
...

...

... 0 σSk+1

0 1 0

























. (A.41)

The last column which I define as σ̄S(X) is the part of real returns on the market portfolio

that is not spanned by real returns of inflation-protected bonds and real returns of zero

investment portfolios of nominal bonds and the nominal money market account and hence
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the vector σ̄S(X) spans ES . It is clear from equation (A.41) that Ebonds and ES are orthog-

onal and hence E can be written as direct sum of the two spaces. Hence, the projector

onto E is equal to the projector onto Ebonds plus the projector onto ES .

Moreover, the space Ebonds is spanned by the k1 + 1 unit vectors {e1, . . . , ek1
, ed} and

thus PEbonds
(X) is given in equation (A.36). The projector onto the space ES(X) that is

spanned by the vector σ̄S(X) is

PES
(X) = σ̄S(X)

(

σ̄S(X)′σ̄S(X)
)−1

σ̄S(X)′. (A.42)

Straightforward algebra lead to equation (A.37).

Proof of Theorem II.3. The value function of investors who can continuously trade in the

nominal money market account, h nominal zero-coupon bonds, l + 1 inflation-protected

zero-coupon bonds, and the market portfolio and who seek to maximize the utility function

in equation (II.17) is

J(t,W,X) = sup
{c(s),α(s)|t≤s≤T}

E

[∫ T

t

e−
R b

t
β(X(a)) da u(c(b),X(b)) db

+ e−
R T

t
β(X(a)) da U(W (T ),X(T )) |W (t) = W,X(t) = X

]

.

(A.43)

Assume that the value function satisfies all regularity condition. Hence, the value function

J(t,W,X) solves the HJB equation

sup
c>0,α∈Rn

(AαJ(t,W,X)) = 0, J(T,W (T ),X(T )) = U(W (T ),X(T )), (A.44)

in which the characteristic operator is given by15

AαJ = Jt + J ′
XµX +

(

rW + WσW (α)′Λ− c
)

JW +
1

2
trace

(

JXXσ′
XσX

)

+ σW (α)′σXWJWX +
1

2
σW (α)′σW (α)W 2JWW + u− βJ.

(A.45)

15I sometimes suppress arguments for notional convenience.



88

If the investment horizon is infinite, then the value function does not depend on time t and

hence Jt = 0.

Investors prefer more to less and are strictly risk averse which implies that JW > 0 and

JWW < 0. Hence, the characteristic operator given in equation (A.45) can be rewritten as

AαJ = W 2JWW ·
1

2

∥

∥

∥

∥

σW (α)−
(

1

γ
Λ + σXΘ

)∥

∥

∥

∥

2

+ K, (A.46)

in which γ = −WJWW /JW denotes the relative risk aversion coefficient, Θ = −JWX/(WJWW )

denotes the sensitivity of the marginal utility of real wealth with respect to changes in the

state vector, ‖ · ‖ denotes the Euclidian norm, and K is given by

K = Jt +J ′
XµX +(rW − c)JW +

1

2
trace

(

JXXσ′
XσX

)

− 1

2
W 2JWW

∥

∥

∥

∥

1

γ
Λ + σXΘ

∥

∥

∥

∥

2

+u−βJ

(A.47)

and hence does not depend on the portfolio weight α.

The local volatility of the real wealth portfolio is σW (α) = −σπ +Ωα and W 2JWW < 0

and hence the optimal portfolio demand α∗ of the maximization problem given in equation

(A.44) is

α∗ = argmin
α∈Rn

(

1

2

∥

∥

∥

∥

σW (α) −
(

0 +
1

γ
Λ + σXΘ

)∥

∥

∥

∥

2
)

. (A.48)

Hence, the solution of the quadratic optimization problem in equation (A.48) is given by the

projection of
(

0 + 1
γ
Λ + σXΘ

)

onto the asset spaceM.16 Specifically, (i) the projection of

0 ontoM is the portfolio with minimum distance to the origin – i.e. the minimum variance

portfolio which in this case is equal to the mimicking portfolio of the real risk-free asset

because 0 is spanned by real asset returns (0 ∈ M), (ii) the projection of Λ(X) onto M

is the portfolio with maximum local Sharpe ratio – i.e. the tangency portfolio, and (iii)

the projection of σX(X) ontoM are the portfolios that are maximally correlated with the

state variables – i.e. the hedging portfolios.

Let Λ̂(X) ≡ PM(X)Λ(X) and σ̂X(X) ≡ PM(X)σX (X). The market price of residual

16See Bertsekas, Nedić, and Ozdaglar (2003) chapter 2.2 for applications of the projection theorem to
quadratic optimization problems.
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inflation risk is zero – i.e. Λd(X) = 0 – and the state variables are uncorrelated with

residual inflation risk – i.e. σXd·(X) = 0 – and hence it follows from Lemma A.1 that

Λ̂d(X) = 0 and σ̂Xd·(X) = 0.17 Moreover, real returns of inflation-protected bonds and

the market portfolio are not exposed to residual inflation risk and real returns of nominal

bonds and the nominal money market account have exactly the same exposure to this risk

source and hence the total investment in nominal bonds and the nominal money market

account in (i) the mimicking portfolio for the real risk-free asset, (ii) the tangency portfolio,

and (iii) the hedging portfolio is zero.18

Proof of Theorem II.4. Let w > 0 denote the initial wealth and ŵ = w − Lτ (T − t,X)

the initial wealth reduced by the tax liability. Every investor has to continuously pay the

nominal lump-sum tax payment τ∗(t) given by Assumption II.3. The tax liability in this

case is equal to

L∗
τ (T − t,X) = κ∗Et

[∫ T

t

M∗(a)/M∗(t) da

]

+ δπ(t)Et

[∫ T

t

M(a)/M(t) da

]

= B∗
κ(T − t,X) + P ∗

δ (T − t,X),

(A.51)

in which B∗
κ(T − t,X) denotes the nominal price of a nominal bond that continuously

pays the nominal coupon κ∗ until T and P ∗
δ (T − t,X) denotes the nominal price of an

inflation-protected bond that continuously pays the real coupon δ until T .

Not paying taxes results in an utility realization of minus infinite and hence every in-

vestor should hold a portfolio that covers all future tax payments. The cost of this portfolio

17vi denotes the i-th element of the vector v and Md· denotes the i-th row of the matrix M .
18The optimal demand α∗ given in equation (A.48) is the solution of the system of linear equations

Ω(X)α∗ = σπ(X) +
PE(X)Λ(X)

γ(W,X)
+ PE(X)σX(X)Θ(W,X), (A.49)

with PE(X) given in Lemma A.1. One could get α∗ directly from the first order condition of the HJB
equation. Specifically,

α∗ =
�
Ω(X)′Ω(X)

�−1
Ω(X)′

�
σπ(X) +

Λ(X)

γ(W,X)
+ σX(X)Θ(W,X)

�
. (A.50)

It is straightforward to verify that the solution for equation (A.49) and (A.50) are the same by multiplying
both sides of equation (A.49) with (Ω(X)′Ω(X))

−1
Ω(X)′ and using the general formula for PE(X) given

in equation (A.32).
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is equal to the total tax liability given in equation (A.51). To ensure that all tax payments

are affordable we need to impose ŵ > 0. Hence, investors hold just enough nominal bonds

to cover their tax liabilities and ŵ is invested as there were no tax obligations.
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APPENDIX B

INFLATION AND ASSET ALLOCATION

B.1 Investment Opportunities

I will show below that the real price of an inflation-protected bond, the nominal price of

a nominal bond, and the value function for a power utility investor with unit wealth are

solutions of the Heat Equation (B.1) with solution given in the next lemma.

Lemma B.1 (PDE). Let G(t, x) denote a continuous function from [0, T ] × R into R+

that is differentiable with respect to t, twice differentiable with respect to x and solves the

pde

Gt(t, x) + fGxx(t, x) + (d + ex)Gx(t, x) +
(

a + bx + cx2
)

G(t, x) = 0

G(T, x) = 1 ∀ x,

(B.1)

in which a, b, c, d, e, and f are real constants.

The solution to this pde is

G(t, x) = eα(T−t)+β(T−t)x+γ(T−t)x2

. (B.2)

Let τ ≡ T−t. The functions γ(τ), β(τ), and α(τ) solve the ordinary differential equations1

γ̇(τ) = 4fγ(τ)2 + 2eγ(τ) + c

γ(0) = 0,

(B.3)

β̇(τ) = (4fγ(τ) + e) β(τ) + 2dγ(τ) + b

β(0) = 0,

(B.4)

1It is straightforward to solve the ode’s (B.3)-(B.5) analytically or numerically using the Matlab function
“ode45.m”.



92

and

α̇(τ) = fβ(τ)2 + dβ(τ) + 2fγ(τ) + a

α(0) = 0.

(B.5)

Proof. Take derivatives of G(t, x) given in equation (B.2) with respect to t, x, and twice

x and plug them back into the pde (B.1). The resulting equation has to hold for all t, x,

and x2 and hence setting the coefficients of t, x, and x2 equal to zero leads to the odes

(B.3)-(B.5).

Proof of Proposition III.1 and III.2. The real price of an inflation-protected and the nom-

inal price of a nominal zero-coupon bond maturing at T are

P (T − t, x) = Et [M(T )/M(t)] = EQ

[

−
∫ T

t

r(a) da | x(t) = x

]

B∗(T − t, x) = Et [M∗(T )/M∗(t)] = EQ∗

[

−
∫ T

t

r∗(a) da | x(t) = x

]

,

(B.6)

in which E[·] denotes the expectation under the data generating measure P, EQ[·] denotes

the expectation under the real risk-neutral measure Q, and EQ∗

[·] denotes the expectation

under the nominal risk-neutral measure Q∗. Specifically, the real and nominal risk neutral

measures are defined by

dQ

dP
=

M(T )

M(t)
e
R T

t
r(a) da

dQ∗

dP
=

M∗(T )

M∗(t)
e
R T

t
r∗(a) da.

(B.7)

The real risk-free rate r(x) given in equation (III.5) and the nominal risk-free rate r∗(x)

given in equation (III.15) are quadratic functions of the state vector x.

Let x̄ = 0, σx = (1, 0, 0)′, and σπ(x) = σπ0+σπxx.2 The dynamics of the state variable

2The analysis in the text is restricted to the case σπx = 0.
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under the real risk-neutral measure and the nominal risk-neutral measure are

dx = − (λ01 + (κ + λx1)x) dt + dZQ
1

dx = − (λ01 + σπ01 + (κ + λx1 + σπx1)x) dt + dZQ∗

1

(B.8)

in which ZQ
1 denotes the first component of the Brownian motion Z under the real risk-

neutral measure and ZQ∗

1 denotes the first component of Z under the nominal risk-neutral

measure.

It is straightforward to show that the fundamental pde for the real price of an inflation-

protected zero-coupon bond and the nominal price of a zero-coupon nominal bond has the

same form as the pde in Lemma B.1.3 Specifically, let τ = T − t. Then, the deterministic

functions a(τ), b(τ), and c(τ) in the inflation-protected bond price equation (III.10) solve

the odes

ȧ(τ) =
1

2
b(τ)2 − λ01 b(τ) + c(τ)− ρ0 a(0) = 0 (B.9)

ḃ(τ) = (2c(τ) − (λx1 + κ)) b(τ)− 2λ01c(τ)− ρx b(0) = 0 (B.10)

ċ(τ) = 2c(τ)2 − 2 (λx1 + κ) c(τ)− ρxx c(0) = 0 (B.11)

and the deterministic functions a∗(τ), b∗(τ), and c∗(τ) in the nominal bond price equation

(III.17) solve the odes

ȧ∗(τ) =
1

2
b∗(τ)2 − (λ01 + σπ01) b∗(τ) + c∗(τ)− δ0 a∗(0) = 0 (B.12)

ḃ∗(τ) = (2c∗(τ)− (λx1 + σπx1 + κ)) b∗(τ)− 2(λ01 + σπ01)c
∗(τ)− δx b∗(0) = 0 (B.13)

ċ∗(τ) = 2c∗(τ)2 − 2 (λx1 + σπx1 + κ) c∗(τ)− δxx c∗(0) = 0. (B.14)

Taking the first derivative of the real price of an inflation-protected bond given in equation

(III.10) and the nominal price of a nominal bond given in equation (III.17) with respect

3See Ahn, Dittmar, and Gallant (2002) for details on the derivation of bond prices when the risk-free
rate is a quadratic function of Gaussian state variables.
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to x leads to equation (III.12) and (III.19). Then, applying Itô’s lemma to P , B = B∗/π,

and R = R∗/π leads to the local return dynamics given in equations (III.11), (III.18), and

(III.20).

Proposition B.1. Let y(x) = −a/b + x/b be an affine transformation of the state vector

x with b 6= 0. Then the economy described by the factor x with dynamics

dx = κ(x̄− x) dt + σdZ1 (B.15)

is informationally equivalent to an economy that depends on y(x). Moreover, if b = σ and

a = x̄, then

dy = −κy dt + dZ1. (B.16)

Proof. All functions of the state variable x are either affine or quadratic functions of x.

Let φ(x) = φ0 +φxx denote an affine function of x and θ(x) = θ0 + θxx+ θxxx
2 a quadratic

function of x with φ0, φx, θ0, θx, θxx ∈ R3. Then, the transformations

(φ0, φx)←→ (φ0 + aφx, bφx)

(θ0, θx, θxx)←→ (θ0 + aθx + a2θxx, bθx + 2abθxx, b2θxx),

(B.17)

allow to switch between two different state space representations. Hence, y(x) describes

an economy that is informationally equivalent to the economy described by x. Moreover,

if b = σ and a = x̄, then dy = −κy dt + dZ1.

B.2 Dynamic Asset Allocation

Proof of Proposition III.3 and Theorem III.1. It is straightforward to verify that the four

assets are non-redundant and complete the market. It is also well known that a dynamic

portfolio choice problem can be transformed in a static portfolio choice problem.4 Moreover,

the solution is provided in example 6.6 for the log-utility case and example 6.7 for the power

4See Cox and Huang (1989), Karatzas, Lehoczky, and Shreve (1987), and He and Pearson (1991).
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utility case on pages 104 − 106 in Karatzas and Shreve (1998).

Hence, it remains to determine the expectation in equation (III.22). Consider

F (t, x) = E
[

(M(T )/M(t))
γ−1

γ | x(t) = x
]

. (B.18)

It follows that the function G(t, x) = M(t)
γ−1

γ F (t, x) is a local martingale and hence the

drift of G(t, x) is zero.

Applying Itô’s lemma to G(t, x) and using the fact that G(t, x) is a local martingale

leads to a pde for the function F (t, x). Specifically,

Ft(t, x) +
1

2
σ′

xσxFxx(t, x) +

(

κ(x̄− x) +
1− γ

γ
σ′

xΛ(x)

)

Fx(t, x)

+

(

1− γ

γ
r(x) +

1− γ

2γ2
Λ(x)′Λ(x)

)

F (t, x) = 0 with F (T, x) = 1.

(B.19)

Let σ′
xσx = 1, x̄ = 0, σ′

xΛ(x) = λ01 + λx1x, r(x) = ρ0 + ρxx + ρxxx
2, and Λ(x)′Λ(x) =

l0 + 2lxx + lxxx2 with l0 = λ′
0λ0, lx = λ′

0λx, and l0 = λ′
xλx. It follows that the pde in

equation (B.19) has the same form as the pde in Lemma B.1. Specifically,

a =
1− γ

γ
ρ0 +

1− γ

2γ2
l0 d =

1− γ

γ
λ01

b =
1− γ

γ
ρx +

1− γ

γ2
lx e =

1− γ

γ
λx1 − κ

c =
1− γ

γ
ρxx +

1− γ

2γ2
lxx f =

1

2
.

(B.20)

Let τ = T−t denote the remaining investment horizon. The solution of the pde in equation

(B.19) is

F (τ, x) = eh0(τ)+hx(τ)x+hxx(τ)x2

, (B.21)
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in which hxx(τ), hx(τ), h0(τ) solve the odes

ḣxx(τ) = 2hxx(τ)2 + 2

(

1− γ

γ
λx1 − κ

)

hxx(τ) +
1− γ

γ
ρxx +

1− γ

2γ2
lxx (B.22)

ḣx(τ) =

(

2hxx(τ) +
1− γ

γ
λx1 − κ

)

hx(τ) + 2
1− γ

γ
λ01hxx(τ) +

1− γ

γ
ρx +

1− γ

γ2
lx

(B.23)

ḣ0(τ) =
1

2
hx(τ)2 +

1− γ

γ
λ01 hx(τ) + hxx(τ) +

1− γ

γ
ρ0 +

1− γ

2γ2
l0 (B.24)

with hxx(0) = hx(0) = h0(0) = 0. This proves Proposition III.3.

To derive the optimal demands in Theorem III.1 consider the real wealth dynamics of a

self-financing portfolio α(t, x) = (αB(t, x), αS(t, x), αP (t, x)) with αR(t, x) = 1− 1′
3α(t, x).

Specifically,

dW

W
=
[

r(x) + (−σπ(x) + Ω(t, x)α(t, x))′ Λ(x)
]

dt+(−σπ(x) + Ω(t, x)α(t, x))′ dZ, (B.25)

in which

Ω(t, x) =













D∗(t, x) σS1(x) + σπ1(x) D(t, x) + σπ1(x)

0 σS2(x) + σπ2(x) σπ2(x)

0 σπ3(x) σπ3(x)













. (B.26)

The optimal demand α∗(t, x) can be determined from the FOC of the HJB equation (B.27).

Specifically, the value function J(t,W, x) given in equation (III.21) solves the HJB equation

sup
α∈R3

(AαJ(t,W, x)) = 0, J(T,W (T ), x(T )) =
1

1− γ
W (T )1−γ , (B.27)

in which the characteristic operator is given by5

AαJ = Jt − κxJx +
(

r + (−σπ + Ωα)′ Λ
)

WJW + (−σπ + (1, 0, 0)Ωα) WJWx

+
1

2
(−σπ + Ωα)′ (−σπ + Ωα) W 2JWW +

1

2
Jxx.

(B.28)

5I suppress arguments for notional convenience.
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The FOC leads to

Ω(t, x)′Ω(t, x)α∗(t, x) = Ω(t, x)′
(

σπ(x) + Λ(x)/γ + (hx(t) + 2hxx(t)x)(1, 0, 0)′
)

. (B.29)

The matrix Ω(t, x) is almost surely non singular and hence the optimal demand α∗ given

in equation (III.24) is the solution of the system of linear equations

Ω(t, x)α∗(t, x) = σπ(x) + Λ(x)/γ + (hx(t) + 2hxx(t)x)(1, 0, 0)′ . (B.30)

This proves Theorem III.1.

B.3 Model Calibration

Lemma B.2. Let f(x) = f0 + fxx + fxxx2 be a quadratic function of x which follows the

mean reverting Ornstein-Uhlenbeck process

dx = κ (x̄− x) dt + σ dz, (B.31)

in which z denotes a one dimensional Brownian motion and f0, fx, and fxx are constants.

The steady state mean, variance, and autocovariance of f(x) are given by

E[f(x)] = f0 + fx x̄ + fxx

(

x̄2 + v
)

(B.32)

V[f(x)] = f2
x v + 4fxfxx x̄v + f2

xx

(

4x̄2v + 2v2
)

(B.33)

Cov[f(T ), f(S)] = 2v2f2
xx e−2κ(T−S) + ve−κ(T−S)

(

f2
x + 4fxfxxx̄ + 4f2

xxx̄2
)

(B.34)

in which v = σ2/(2κ) denotes the steady state variance of x.

Proof. The steady state distribution of x is normal with mean x̄ and variance v = σ2/(2κ).

Moreover, the steady state autocorrelation of x(T ) and x(S) is ve−κ(T−S). The mean,

variance, and the autocovariance of f(x(t)) are functions of the first four moments of the

normal distribution (the steady state distribution of x). Tedious algebra leads to results
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given in equations (B.32)-(B.34).

Proposition B.2. The steady state mean, variance, and autocovariance of the nominal

risk-free rate r∗(x) in equation (III.15) are

mr ≡ E[r∗(x)] = δ0 +
δxx

2κ
(B.35)

vr ≡ V[r∗(x)] = 2

(

δxx

2κ

)2

+
δ2
x

2κ
(B.36)

cr ≡ Cov[r∗(t + τ), r∗(x)] = 2 e−2κτ

(

δxx

2κ

)2

+ e−κτ δ2
x

2κ
(B.37)

If mr, vr, and cr are known and the infimum of the nominal risk-free rate is zero, then

there exists a solution for the parameters (κ, δ0, δx, δxx) that is except for the sign of δx

unique. Specifically,

δ0 =
√

m2
r − vr/2 (B.38)

κ = −1

τ
log

(

−δ0 +
√

m2
r + (cr − vr)/2

mr −
√

m2
r − vr/2

)

(B.39)

δxx = 2κ
(

mr −
√

m2
r − vr/2

)

(B.40)

δx = ±
√

4δ0δxx (B.41)

Proof. The first part follows directly from Lemma B.2 with δ0 = f0, δx = fx, δxx = fxx,

x̄ = 0, and σ = 1. The assumption of a zero infimum for the nominal risk-free rate leads

to the additional equation δ2
x = 4δxxδ0 and the restriction δxx > 0. Solving the the four

equations for the four parameters κ, δ0, δx, and δxx and excluding the solutions that are

not feasible leads to the four equations (B.38)-(B.41).

Proposition B.3. The steady state mean, variance, and autocovariance of every nominal
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bond yield yτ (x) are

my = E[yτ (x)] = Ā(τ) + C̄(τ) v (B.42)

vy = V[yτ (x)] = 2v2C̄(τ)2 + vB̄(τ)2 (B.43)

cy = Cov[yτ (t + T ), yτ (x)] = 2v2C̄(τ)2 e−2κT + ve−κT B̄(τ)2, (B.44)

in which v = 1/(2κ), Ā(τ) = −A(τ)/τ , B̄(τ) = −B(τ)/τ , and C̄(τ) = −C(τ)/τ .

Proof. Follows directly from Lemma B.2 with Ā = f0, B̄ = fx, and C̄ = fxx, x̄ = 0, and

σ = 1.
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APPENDIX C

THE TERM STRUCTURE OF INTEREST RATES WITH

HETEROGENEOUS HABIT FORMING PREFERENCES

C.1 Competitive Equilibrium

In this section I solve for the competitive equilibrium and prove Proposition IV.1, Theorem

IV.1, and Corollary IV.1. The competitive equilibrium is determined in three steps: (i) the

optimal consumption sharing rule is determined in Lemma C.1, (ii) each efficient allocation

is supported as an Arrow-Debreu equilibrium that is characterized by a stochastic discount

factor process in Lemma C.2, and (iii) it is shown that the Arrow-Debreu equilibrium can

be achieved by continuously trading in a security market.1

Step 1: Pareto efficient allocations

There are two investors in the economy with utility function U1(·) and U2(·) given in

equation (IV.3). Aggregate consumption is distributed among both agents such that the

resulting consumption allocation is Pareto efficient. Specifically, the social planner assigns

the social weight κ ∈ (0, 1) to the first agent, (1 − κ) to the second agent, and seeks to

maximize

E

[∫ T

0
e−βt {κu1(c1(t),X(t)) + (1− κ)u2(c2(t),X(t))} dt

]

(C.1)

subject to the resource constraint

c1(t) + c2(t) ≤ c(t) ∀ 0 ≤ t ≤ T. (C.2)

The market is complete (see step three below) and therefore the social weight κ is constant

and can be uniquely determined from the initial wealth of both agents.

There are no intertemporal transfers of resources in an exchange economy and each

agent has no control over the standard of living process X(t) and hence the optimization

1See Karatzas and Shreve (1998)’ textbook.
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problem (C.1)-(C.2) can by solved state by state.2 Specifically, the social planner seeks to

maximize

κu1(c1(t),X(t)) + (1− κ)u2(c2(t),X(t)) (C.3)

subject to the resource constraint (C.2). The social weight satisfies 0 < κ < 1 and

u1(c1(t),X(t)) and u2(c2(t),X(t)) are strictly increasing in c1(t) and c2(t), respectively,

and hence the resource constraint (C.2) is binding.

Let η(t) denote the (strictly positive) shadow price of the resource constraint (C.2).

The optimization problem can be written in the form given in equation (IV.7) and the

Pareto efficient allocations when one investor is twice as risk averse as the other (γ2 = 2γ1)

are summarized in the next lemma.3

Lemma C.1. (Pareto optimal allocations)

The optimal consumption sharing rules (ĉ1(t), ĉ2(t)) for each κ ∈ (0, 1) are

ĉ1(t) = c(t)− ĉ2(t), K = 4

(

κ

1− κ

)
1

γ1

ĉ2(t) = c(t)f2(t), f2(t) =
2

1 +
√

1 + Keω(t)

(C.4)

Proof. Let d1 = c1/X, d2 = c2/X, and d = c/X. First order conditions for the social

planner’s optimization problem lead to the equation

d1 =

(

κ

1− κ

) 1

γ1

d2
2. (C.5)

The resource constraint is binding and hence c1(t) = c(t) − c2(t). This implies that d1 =

d−d2. Plugging in for d1 in equation (C.5), solving the resulting quadratic equation for d2,

and ignoring the infeasible (negative) solution leads to the optimal consumption sharing

rule in equation (C.4).

2In the case of internal habit forming preferences or if each agent considers the other agents’ consumption
stream as the standard of living (Catching up with the Joneses), then time separation is no longer possible
because the standard of living process is endogenous now.

3The analysis is similar to Dumas (1989) and Wang (1996) who considers standard time additive CRRA
preferences.
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Step 2: Arrow-Debreu equilibrium

The Pareto efficient consumption allocation (ĉ1(t), ĉ2(t)) given in equation (C.4) can

be supported as an equilibrium consumption allocation in which agents have access to

a complete set of Arrow-Debreu securities.4 The marginal utility of the representative

investor is equal to the shadow price of the resource constraint discounted by the subjective

discount factor β; i.e. it is e−βtη(t). The shadow price η(t) is equal to the first derivative

of the social planner’s value function with respect to aggregate consumption (Envelope

Theorem). The real stochastic discount factor m(t) is the price (in terms of consumption

at time zero c(0)) of an Arrow-Debreu security at time t for a particular state. It is equal

to the discounted, normalized shadow price of the social planner’s budget constraint – i.e.

m(t) = e−βtη(t)/η(0) – and is determined in the next lemma.

Lemma C.2. For each Pareto optimal allocation (ĉ1(t), ĉ2(t)) given in equation (C.4)

with κ ∈ (0, 1) there exists a stochastic discount factor process

m(t) = e−βt ξ(t)

c(t)

c(0)

ξ(0)
, (C.6)

in which

ξ(t) =
2γ2κ2

1− κ

eω(t)

(
√

1 + Λeω(t) − 1
)γ2

. (C.7)

Proof. Substituting the optimal consumption sharing rule (ĉ1(t), ĉ2(t)) given in equation

(C.4) into the value function of the social planner given in equation (IV.7) leads to

uκ(c(t),X(t)) =
κ

1− γ1

(

c(t)− ĉ2(t)

X(t)

)1−γ1

+
1− κ

1− γ2

(

ĉ2(t)

X(t)

)1−γ2

. (C.8)

4See Duffie (1996)’s textbook. An Arrow-Debreu securities pays of one unit of real consumption at a
particular state of the economy and zero otherwise. A set of Arrow-Debreu securities is complete if there
is an Arrow-Debreu security for each state of the economy.
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Differentiating (C.8) with respect to aggregate consumption leads to

η(t) = uκ
c (c(t),X(t))

=
2γ2κ2

1− κ

eω(t)/c(t)
(

√

1 + Λeω(t) − 1
)γ2

.
(C.9)

Multiplying η(t) by e−βt and dividing by η(0) leads to equation (C.6) for the real stochastic

discount factor.

Step 3: Sequential trade equilibrium

It remains to show that the equilibrium characterized by the real stochastic discount

factor process determined in the previous lemma can be supported by an equilibrium in

which investors continuously trade a few securities (see Duffie and Huang (1985)). This

is very hard to show for heterogenous preferences and general dynamics of aggregate con-

sumption growth and inflation. However, it is easy to ensure market completeness by intro-

ducing a sufficient number of zero net supply securities with unit volatility (see Karatzas,

Lehoczky, and Shreve (1990) for a formal discussion of these securities).5

Finally, I show that the social weight κ is constant and can be determined from the

initial wealth distribution. Let W i
0 denote the initial wealth of agent i. The static budget

constraint is

W i
0 = E

[
∫ T

0
m(t)ĉi(t) dt

]

∀i = 1, 2. (C.10)

The social weight κ can be determined from equation (C.10) as a function of the initial

wealth of the first or second agent. This completes step 1− 3 and hence the derivation of

the competitive equilibrium.

In the remainder of the section: I prove Proposition IV.1, Theorem IV.1, and Corollary

IV.1 and I derive the dynamics of the real stochastic discount factor in Proposition C.1.

5Chan and Kogan (2002) make the same argument to ensure market completeness when aggregate
consumption follows a GBM.



104

Proof of Proposition IV.1. Aggregate risk aversion is equal to the local curvature of the

representative investor. Specifically,

γ(t) = −c(t)
uκ

cc(c(t),X(t))

uκ
c (c(t),X(t))

. (C.11)

The first derivative of uκ(c(t),X(t)) with respect to c(t) is given in equation (C.9). Taking

the second derivative of uκ(c(t),X(t)) with respect to c(t), plugging back into equation

(C.11) and tedious algebra leads to

γ(t) = γ1

(

1 +
1

√

1 + Keω(t)

)

with K = 4

(

κ

1− κ

)
1

γ1

. (C.12)

Moreover, limκ→1 K(κ) =∞ and hence limκ→1 γ(t) = γ1. Similarly, limκ→0 K(κ) = 0 and

hence limκ→0 γ(t) = 2γ1 = γ2.

Taking the first and second derivative of γ(t) w.r.t. ω(t) leads to

γω(t) = −γ1

2

Keω(t)

(

1 + Keω(t)
) 3

2

(C.13)

γωω(t) = −γ1

2

Keω(t)

(

1 + Keω(t)
)

5

2

(

1− K

2
eω(t)

)

(C.14)

Aggregate risk aversion is countercyclical because γω(t) < 0. γωω(t) can not be signed

because when ω(t) approaches minus infinity, then γωω(t) < 0 and when ω(t) approaches

plus infinity, then γωω(t) > 0.

Moreover, limω(t)→−∞ γ(t) = γ2 and limω(t)→∞ γ(t) = γ1. This and the fact that γ(t)

is monotonically decreasing in ω(t) implies that γ1 ≤ γ(t) ≤ γ2. Applying Itô’s lemma to

γ(t) given in equation (C.12) leads to the dynamics given in equation (IV.9).

Proof of Theorem IV.1. A nominal zero-coupon bond pays one unit of currency – i.e.



105

1/π(U) units of consumption – at maturity U and hence its real price is

BU (t) = Et

[

m(U)

m(t)

1

π(U)

]

. (C.15)

Multiplying equation (C.15) with π(t) and using M(t) = m(t)/π(t) and B∗
U (t) = BU (t)π(t)

leads to the nominal price of a nominal zero-coupon bond maturing at U given in equa-

tion (IV.10). Equation (IV.11) and (IV.12) follow directly from Lemma C.2 and M(t) =

m(t)/π(t).

Proposition C.1 (Real stochastic discount factor dynamics). The dynamics of m(t) are

dm(t)

m(t)
= −r(t) dt − λ(t) dzc(t). (C.16)

The real short rate and the real market price of risk are

r(t) = β + δ (ω̄(t) + (γ(t)− 1)(ω̄(t)− ω(t)))− 1

2

(

γ(t)2 − γω(t)
)

σc(t)
2 (C.17)

λ(t) = σc(t)γ(t). (C.18)

Proof. The real stochastic discount factor is

m(t) = m(0)e−βtuκ
c (c(t),X(t)) (C.19)

with m(0) = 1. Applying Itô’s lemma to m(t) given in equation (C.19) leads to

dm(t)

m(t)
= −r(t)− λ(t) dzc(t)

with

λ(t) = σc(t)

(

−c(t)
uκ

cc(c(t),X(t))

uκ
c (c(t),X(t))

)

= γ(t)σc(t) (C.20)
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and

r(t) = β + µc(t)

(

−c(t)
uκ

cc(·)
uκ

c (·)

)

+ δω(t)

(

−X(t)
uκ

cX(·)
uκ

c (·)

)

− σc(t)
2

2

(

c(t)2
uκ

ccc(·)
uκ

c (·)

)

.

(C.21)

Let Ω(t) = eω(t). Tedious algebra leads to

−X(t)
ucX(c(t),X(t))

uc(c(t),X(t))
=

(

1 + Ω(t)
uΩΩ(c(t),X(t)

uΩ(c(t),X(t))

)

= 1− γ(t) (C.22)

c2 uccc(c(t),X(t))

uc(c(t),X(t))
= Ω(t)2

uΩΩΩ(c(t),X(t))

uΩ(c(t),X(t))

= γ(t)(1 + γ(t))− Ω(t)γΩ(t).

(C.23)

Plugging back into equation (C.21) and using equation (C.22) and (C.23) leads to

r(t) = β + γ(t)µc(t) + (1− γ(t))δω(t) − {γ(t)(1 + γ(t))− Ω(t)γΩ(t)} σc(t)
2

2
(C.24)

Moreover, γΩ(t)Ω(t) = γω(t) which leads to the real short rate given in equation (IV.16).

Proof of Corollary IV.1. The dynamics of the real stochastic discount factor are given in

equation (C.19) and the dynamics of the price level are given in equation (IV.2). Applying

Itô’s lemma to M(t) = m(t)/π(t) leads to

dM(t)

M(t)
= −R(t) dt − λ(t)dzc(t)− σπ(t) dzπ(t) (C.25)

with R(t) given in equation (IV.14) and λ(t) given in equation (IV.17). Defining a new

Brownian motion that satisfies Λ(t)dzM (t) = λ(t)dzc(t) + σπ(t)dzπ(t) with Λ(t) given in

equation (IV.15) completes the proof.
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