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ABSTRACT

Boolean Models for

Genetic Regulatory Networks. (August 2007)

Yufei Xiao, B.S., Zhejiang University;

M.S., University of Virginia

Chair of Advisory Committee: Dr. Edward R. Dougherty

This dissertation attempts to answer some of the vital questions involved in the

genetic regulatory networks: inference, optimization and robustness of the mathe-

matical models. Network inference constitutes one of the central goals of genomic

signal processing. When inferring rule-based Boolean models of genetic regulations,

the same values of predictor genes can correspond to different values of the target gene

because of inconsistencies in the data set. To resolve this issue, a consistency-based

inference method is developed to model a probabilistic genetic regulatory network,

which consists of a family of Boolean networks, each governed by a set of regulatory

functions. The existence of alternative function outputs can be interpreted as the

result of random switches between the constituent networks. This model focuses on

the global behavior of genetic networks and reflects the biological determinism and

stochasticity.

When inferring a network from microarray data, it is often the case that the

sample size is not sufficiently large to infer the network fully, such that it is neces-

sary to perform model selection through an optimization procedure. To this end, the

network connectivity and the physical realization of the regulatory rules should be

taken into consideration. Two algorithms are developed for the purpose. One algo-

rithm finds the minimal realization of the network constrained by the connectivity,

and the other algorithm is mathematically proven to provide the minimally connected
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network constrained by the minimal realization.

Genetic regulatory networks are subject to modeling uncertainties and perturba-

tions, which brings the issue of robustness. From the perspective of network stability,

robustness is desirable; however, from the perspective of intervention to exert in-

fluence on network behavior, it is undesirable. A theory is developed to study the

impact of function perturbations in Boolean networks: It finds the exact number

of affected state transitions and attractors, and predicts the new state transitions

and robust/fragile attractors given a specific perturbation. Based on the theory, one

algorithm is proposed to structurally alter the network to achieve a more favorable

steady-state distribution, and the other is designed to identify function perturbations

that have caused changes in the network behavior, respectively.
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CHAPTER I

INTRODUCTION

A. Genomic Signal Processing

The Genome carries the hereditary information of an organism, and is encoded in

the double-helix DNA molecules in the cells. Genome includes genes and non-coding

DNA sequences. Genes encode the information for producing proteins. The non-

coding DNA sequences, often called the non-coding genes, refer to the DNA sequences

that do not encode any protein, and they either have no known function, or play some

roles in the regulation of other genes. In the remaining text, we will use the term

“genes” for both the protein-coding genes and the non-coding genes.

The size of a genome typically ranges from thousands of DNA base pairs to

several billion. Human genome has about three billion DNA base pairs, and there

are approximately 20, 000 genes. Among them, only a small percentage has been

associated with known functionalities, and the vast majority remains to be studied.

One way to investigate a genetic function is to study its expression (the amount of

mRNAs actively engaged in the transcription of a certain gene, which is an indicator of

gene activity level). Recent high-throughput technologies, such as cDNA microarrays,

have made it possible to obtain large scale measurement of gene expressions. Two

salient goals of functional genomics are [2]:

• Screening for key genes and gene combinations that account for specific cellular

phenotypes (e.g., disease) and revealing the mechanism;

• Using genomic signals to classify disease on a molecular level.

The journal model is IEEE Transactions on Automatic Control.
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Genomic Signal Processing is an emerging inter-disciplinary area that incorpo-

rates engineering methods in the study of the genome. It is characterized by an

important feature: It studies the genome in a systematic manner, by working with

several or even hundreds of genes at one time instead of considering one single gene.

Genomic Signal Processing intends to obtain the information of the relationship be-

tween the genes, to identify the genes that are relevant to certain biological functions,

and to reconstruct some abstract mathematical or engineering models that describe

genetic regulations and make predictions.

As the genes in an organism constantly work together to perform biological func-

tions, and regulations of their activities (such as promotion or suppression) involve

not only genes, but also RNAs and proteins, altogether they form the so called genetic

regulatory networks. Genetic regulatory networks is one of the key issues for genomic

signal processing. First, we need to model the genetic regulatory network so as to

capture the critical dynamics of gene activities, or describe the interactions among

genes, RNAs and proteins that contribute to the regulation of gene expressions. Sec-

ond, we would like to use the model for predictions; for instance, to determine the

expression level of a target gene, we would like to identify a group of genes that are

a good indicator of the activity of the target gene, and establish a mapping (such as

a linear function or a neural network) from the group of genes to the target gene.

Third, we would like to develop intervening schemes that steer a genetic regulatory

network toward a desirable state, which could be applied in the treating of a disease

that is linked with the malfunctioning of genetic regulations.

This dissertation concerns the modeling and optimization of genetic regulatory

networks based on microarray gene expression data. Theory will be developed to

analyze the robustness and sensitivity of the networks subject to perturbation, and

applied to the network intervention and fault identification. Examples will be given
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to illustrate the ideas and proposed procedures, and demonstrate the application of

the methods and theories to real genomic data.

B. Overview of Genetic Regulatory Networks

Genetic regulatory networks refer to “collections of DNA segments in a cell which

interact with each other and with other substances in the cell, thereby governing the

rates at which genes in the network are transcribed into mRNA. Generally speak-

ing, a genetic network not only contains genes, but proteins, transcriptional factors,

mRNAs, etc.”[3]

The design of gene regulatory networks is a key issue in genomic signal processing

[2, 4, 5]. There are numerous mathematical models of genetic regulatory networks,

including differential equations, Bayesian networks, Boolean networks, et al. Mod-

eling can be based on prior biological knowledge, on data obtained from traditional

measuring methods such as northern blots, or on data from high-throughput meth-

ods, such as cDNA microarrays. The present main interest and challenge is inferring

models from microarray gene expression data, sometimes combined with other in-

formation. Gene expression levels are continuous variables, but genes often exhibit

switch-like behavior, thus the expression levels can be quantized at two (−1 and 1,

or 0 and 1) or three (−1,0 and 1) levels.

From gene expression data to genetic regulatory model is a reverse engineering

problem. The biggest challenge is, as a biological system, gene regulatory network

is an open system, subject to latent variables. Any gene regulatory network that

we study is a subnetwork of the whole genome, not free of interactions with factors

outside of subnet. As a result, the gene networks demonstrate both biological de-

terminism and stochasticity. The next challenge is the gene expression data. One
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key interest in this area is on human functional genomics, and due to the complexity

of human genome, the microarray data sets often contain thousands of genes, which

makes modeling very difficult. Also, due to various factors, such as cost, ethics, legal

issues, accessibility, etc, time series data are not always available, thus some impor-

tant properties, such as causality of gene regulations, may not be properly inferred.

Another difficulty is, sample size from human studies is usually small, setting restric-

tions to modeling accuracy. Moreover, to model genetic regulatory networks, it is

important to make measurements under various conditions and perturbations, so as

to reveal as much of the critical dynamics as possible, as already being done in the

studies of some simple organisms (E. Coli, yeast, etc). However, perturbations may

not be implemented in human genetic studies, which poses an ethical problem. For-

tunately, the situation can be partly mitigated by measuring gene expressions from

diverse phenotypes, which is a feasible solution.

Little consent has been reached on what is the best model. There are arguments

on continuous versus discrete models, deterministic versus stochastic models, fine-

scale versus coarse models, etc. The primary reason lies in that, no single model can

fully describe all the facades of gene regulatory activities, which manifest themselves

at multiple levels. Each model can only provide insight into some specific aspects of

the regulatory network, not the whole picture. The secondary reason has to do with

the complexity of each model: According Occam’s Razor, one should choose a model

that is just complex enough to explain the data. Thus different models should be

chosen for different data sets and different purposes.

To evaluate goodness of inference results, we must take into consideration of our

goals and the difference between models: e.g., if we are concerned with the successful

prediction of a target gene, the correctness of causality of gene regulation may not

matter. We must also keep in mind that, a good inference result does not only “fit”
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the data well, but should possess the power to predict new outcomes.

At present, differential equation model is the most accurate when giving the

dynamic detail of expression level changes. Its inference can also be successful, with

a very small curve-fitting error. However, its application is very limited because: it

relies on some highly intensive computational methods (e.g., genetic programming)

to search for parameters, and cannot be applied to large-scale networks; it needs high

quality time-series data for inference, and the timing of sampling is very important;

it needs a fairly good prior knowledge of the gene network, such that the chosen genes

are tightly related to each other.

The most widely applied models are graphic models, including Bayesian net-

works, dynamic Bayesian networks, Boolean networks and probabilistic Boolean net-

works. Bayesian network and dynamic Bayesian network can be used for both con-

tinuous and quantized gene expressions, and can well capture the probabilistic nature

of gene regulations. The former is usually used to model static dependency among

genes, but it rules out the feedback of genes, which is a drawback. The latter can

model dynamic networks, but requires time series expression data. Both require that

the number of samples be not too small, and partial knowledge of some genetic in-

teractions is desirable, otherwise the search space is huge and the results can be

unreliable. Boolean networks and probabilistic Boolean networks are coarse-grained

models, using binary (sometimes tertiary) quantized gene expressions, and describing

regulatory rules by logic functions. They can model both the static and dynamic

networks. Probabilistic Boolean networks are derived from Boolean networks, by

combining the deterministic nature of Boolean networks and probabilistic nature of

Bayesian networks. The advantages of Boolean models are that the gene regulatory

rules are explicit, bearing physical meanings, unlike Bayesian models which are purely

statistical.
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Right now, it is hard to evaluate the soundness of all inferred models, either

due to lack of prior biological knowledge for validation, or because there are seldom

follow-up experiments conducted by biologists to verify a new prediction. However,

some good results are available, either because some inferred relations are previously

reported or a predicted outcome of the network is verified experimentally. In 2003,

Eran Segal et al. [6] inferred module networks in Saccharomyces cerevisiae from

expression data set, with much of the results being validated, and three new novel

predictions are supported by a follow-up microarray experiment. One of the good

results with probabilistic Boolean model is by Huai Li and Ming Zhan [7] in the

study of BCR-ABL and insulin/IGF pathways, which correctly identified the leukemia

drug target and genes important for longevity. One good result on human genetic

networks is achieved by Paula Sebastiani et al. [8], by using Bayesian networks, and

the constructed network can predict the occurrence of stroke in 114 sickle cell anemia

patients with 98.2% accuracy. Another successful work is by Katia Basso, et al.

[9], modeling regulatory networks in human B cells, where in the constructed MYC

subnetwork, 29 of the 56 predicted first neighbors were previously reported.
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CHAPTER II

RULE-BASED MODELS FOR GENETIC REGULATORY NETWORKS∗

It has long been discovered that cells exhibit switch-like behavior in their functional

regulations. For instance, the logical character of gene regulation has been recognized

for some time [11, 12, 13] and the dynamical behavior of Boolean networks can be used

to model many biologically phenomena, such as cellular state dynamics possessing

switch-like behavior, stability, and hysteresis [14]. From almost the inception of

microarray analysis, logical relations among genes have been constructed from the

data [15, 16] and recently the manifestation of logical relations in the continuous

data has been analyzed [17]. Besides the fact that we are concerned in many of our

applications with ON-OFF type behavior, an important practical reason for working

in the binary setting, or at least in the context of a very coarse quantization, is

the exponentially increasing complexity (and therefore data requirement) with finer

quantization. The general question as to whether certain genes, when quantized as

binary switches, can be informative in separating phenotype classes such as tumors

and normal tissue, as well as different stages of tumor development, depends on

the bi-modality of their behavior. The potential for binary discrimination has been

shown for clustering [18] and classification [19]. The former has a good discussion

of binarization. With the use of microarray data, which integrates expression over a

∗ c© 2006 IEEE. Reprinted from IEEE Transactions on Signal Processing, see [10]
for complete publication information.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Texas A&M University’s
products or services. Internal or personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.
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collection of cells, it should be recognized that we are modeling global behavior, not

the activity of individual cells, so that binarization corresponds to global bi-modality.

A. Boolean Networks

Boolean network (BN) is a rule-based model of genetic regulatory networks introduced

by Kauffman [20, 21, 13]. It can be formally denoted as G(U, f) [22], where a set U

consists of n binary-valued nodes x1, x2, · · · , xn that represent n genes in a genetic

regulatory network. Each node takes on one of the two possible values, 1 or 0 (ON

or OFF), to represent the active (expressed) and inactive (not expressed) status of

a gene. There are ki inputs (also known as predictors or parents) to the ith node

reflecting regulatory mechanisms. The value of node xi at a discrete time step t + 1

is determined by its ki input nodes at time t through a Boolean function,

xi(t + 1) = fi(xi1(t), xi2(t), · · · , xiki
(t)), i = 1, 2, · · · , n. (2.1)

The number ki is called the connectivity to node xi and K = maxi ki is the maximum

connectivity of a Boolean network.

The state of the BN is denoted by a binary vector x(t) consisting of the values

all the n nodes at t (t = 0, 1, 2, · · · ), written as x(t) = (x1(t), x2(t), · · · , xn(t)). The

state transition x(t) → x(t + 1) is governed by the n Boolean functions. The n

Boolean functions f1, f2, · · · , fn in the BN constitute a vectorized function f , called

the network function, and f = (f1, f2, · · · , fn). A BN is said to be homogeneous if

its network function does not vary with time and the state transitions are therefore

deterministic. Assuming the Boolean functions are homogeneous (time-invariant)

and the nodes are updated synchronously, we can write the Boolean functions in the

simplified form by dropping t + 1 and t in Equation 2.1. In the remaining text, we



9

refer to BNs as both homogenous and synchronous.

Given a current state x(t), one can obtain the state at the next time step x(t+1)

by evaluating the n Boolean functions. If one allows x(t) to be any one of the 2n pos-

sible states, from 00 · · · 0 to 11 · · · 1, and computes their respective next states, then a

list of 2n one-step state transition pairs can be obtained. The 2n state transitions can

fully characterize a Boolean network’s dynamics. For instance, if a Boolean network

has 3 nodes, its one-step state transitions will have 8 pairs of states, where the first

pair consists of state 000 and its next state, the second pair consists of 001 and its

next state, etc.

Given all the one-step state transitions, a directed graph T (V,E), known as the

state transition diagram, can thus be constructed for the Boolean network. V is a

set of 2n vertices, each vertex being a state of the Boolean network. E is a set of 2n

edges, each pointing from a state to its next state in the pair-wise state transitions.

If a state’s next state is itself, then the edge is a loop.

An important characteristic of a Boolean network is, it possesses attractors.

Starting from any initial state, after a finite number of state transitions, the network

will reach a state or a set of states and remain there. The state or set of states that

the network eventually settles into is called an attractor. The set of all states that

eventually evolve into the same attractor constitutes the basin of attraction (BOA)

for that attractor. A Boolean network may have more than one attractor. Different

basins of attraction are depicted in the state transition diagram as disjoint subgraphs.

An attractor consisting of one single state is called a singleton attractor (where we see

a loop that points from a node to itself in the state transition diagram), and otherwise

it is called an attractor cycle (a closed path in the state transition diagram). When

Boolean networks are used to model genetic regulatory networks, attractors are often

identified with phenotypes [13]. Real biological systems are typically assumed to have
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short attractor cycles, with singleton attractors being of special import.

An example of a state transition diagram with three attractors is shown in Fig. 1,

where the graph is composed of three disjoint subgraphs, T1(V1, E1), T2(V2, E2) and

T3(V3, E3). 110 and 101 are singleton attractors, while 100 and 111 constitute a

cycle. Their respective basins of attraction are V1 = {000, 010, 110}, V2 = {101} and

V3 = {001, 011, 100, 111}.

000 010

110

101

001 011

100

111

T1(V1, E1) T2(V2, E2) T3(V3, E3)

Fig. 1. State transition diagram of a Boolean network with 3 nodes.

B. Probabilistic Genetic Regulatory Networks

As is seen in the last section, Boolean network is a deterministic model. When

stochasticity is introduced and genes are allowed to be quantized at more than two

levels, a probabilistic genetic regulatory network model comes into the picture. A

probabilistic genetic regulatory network Gp(U, F, p, q) is defined on a set of U consisting

of n nodes (genes), x1, x2, · · · , xn, each takeing values in a finite set M that contains

d values (d ≤ 2). The function set F consists of r network functions that govern

the state transitions, F = (f1, f2, · · · , fr). Each network function fj is composed of n
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functions ψj1, ψj2, · · · , ψjn, and the value of the ith gene at time t + 1 is given by

xi(t + 1) = ψji(xi1(t), xi2(t), · · · , xiki
(t)), i = 1, 2, · · · , n. (2.2)

The choice of network function fj is controlled by a selection procedure. Specifically,

at each time point a random decision is made as to whether to switch the network

function for the next transition, and the switch probability is q. If a decision is made to

change the network function, then a new function is chosen from among f1, f2, · · · , fr,

with the corresponding selection probabilities c1, c2, · · · , cn. A final aspect of the

system is that at each time point there is a probability p of any gene changing its value

uniformly randomly to another value in M . Since there are n genes, the probability

of there being a random perturbation at any time point is 1 − (1 − p)n. The state

space S of the network together with the set of network functions, in conjunction with

transitions between the states and network functions, determine a Markov chain, the

states of the Markov chain being of the form (xi, fj). The random perturbation models

random mutations in genes and makes the Markov chain ergodic, meaning that it has

the possibility of reaching any state from another state and that it possesses a steady-

state distribution.

When confined to the binary setting, the preceding description characterizes a

probabilistic Boolean network (PBN). The state space in the probabilistic Boolean

network is a n-dimensional binary vector space S = {0, 1}n, and each network function

consists of a set of r Boolean functions that can be represented by truth tables. The

Boolean setting simplifies the analysis but it is not restrictive since the analysis goes

through for any finite valuation set. One can view a PBN as a collection of Boolean

networks, each defined by a network function fj, with the switch probability q and

the selection probabilities c1, c2, · · · , cn controlling how the PBN switches between

Boolean networks.



12

By definition, the attractors of a PBN are the attractors of its constituent BNs.

When free of random gene flipping (p=0), the network will reach an attractor and

remain there until a random switch of BN forces it to transit to another state outside

of the current attractor. When 0 < q < 1, the PBN is said to be context-sensitive,

since it can switch between its constituent Boolean networks while being able to

remain in a Boolean network for a period of time.
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CHAPTER III

MODELING GENETIC REGULATORY NETWORKS VIA

CONTEXT-SENSITIVE PROBABILISTIC BOOLEAN NETWORKS∗

A. Introduction

The modeling of genetic regulatory networks holds potential for gaining a deep under-

standing of biological processes and for developing effective therapeutic intervention

in human diseases such as cancer. This inevitably entails using computational and

formal methods to understand general principles governing the system under study

and to make useful predictions about system behavior in the presence of known con-

ditions. A number of modeling approaches have been considered. Here we are inter-

ested in graphical models, of which, two of the most studied are Boolean networks

[20, 21, 23, 13, 14, 24] and Bayesian networks [25, 26, 27].

Probabilistic Boolean networks represent an interface between the absolute de-

terminism of Boolean networks and the probabilistic nature of Bayesian networks,

in that they incorporate rule-based uncertainty [22, 28]. This compromise is im-

portant because rule-based dependencies between genes are biologically meaningful,

while mechanisms for handling uncertainty are conceptually and empirically neces-

sary. The binary (Boolean) nature of PBNs has been assumed so as to model ON-OFF

∗ c© 2006 IEEE. Reprinted from IEEE Transactions on Signal Processing, see [10]
for complete publication information.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Texas A&M University’s
products or services. Internal or personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.
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switching behavior, but their structure extends easily to any discrete (multi-valued)

setting, thereby yielding a general framework for probabilistic genetic regulatory net-

works (PGRNs) — in particular, for ternary cDNA data [29, 30]. The dynamics of

these networks can be studied in the probabilistic context of Markov chains, thereby

facilitating steady-state analysis [31]. The dynamical properties of PBNs have been

studied to consider the effect of individual genes on global dynamical network behav-

ior, both from the view of random gene perturbation as well as intervention to elicit

desired network behavior [32, 33]. It has been shown that PBNs offer the potential

to design treatment strategies based on the application of external control variables

to drive network dynamics [34, 35].

A key issue in network modeling is design (inference) of the network from data

[36, 37, 38, 39, 40, 41, 42]. Network connectivity and transition rules must be inferred

from the data, with perhaps the imposition of biological constraints [43]. When build-

ing function-based gene networks from expression data, the functions are typically

derived via some optimization-based criterion. This requires determining, for each

gene g, the genes that will serve as input to the function giving the value of g and the

structure of the function. The basic method proposed for PBNs is based on the coef-

ficient of determination [44, 28], and has been the one most used. Two other methods

have been proposed for PGRN design based on multivariate nonlinear prediction and

Markov chain Monte Carlo predictor design. One utilizes information-theoretic gene

clustering to find input genes and a two-layer perceptron [30], and the other employs

Bayesian gene selection and multinomial probit regression [45].

Except in rare circumstances, the optimal function for a gene will not be a perfect

predictor because there will be inconsistencies in the data. This means that a specific

vector of values for a set of regulatory genes will not necessarily correspond to a

single value of the target gene. Thus, network design is inherently probabilistic. In
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this chapter we wish to model these inconsistencies in a way that reflects context

changes in genomic regulation. The network can be in any of a number of contexts.

Within a context, the network behaves deterministically and the generated data is

consistent. If a regulatory set takes on a specific vector of values, then the target gene

associated with the regulatory set must take on a single value, and this is reflected in

the data.

Overall, we propose an inference procedure for PBNs whose contexts model the

data in such a way that they are consistent for each context, the intent being to

view data inconsistencies as being due to latent variables. Separate sections are

dedicated to data-consistent inference, data-consistent operator design, and data-

consistent PBN design. We follow these with a discussion of the relationship be-

tween standard and data-consistent designs, the role of data filtering, application to

a melanoma-related network, and some concluding remarks.

B. Inference and the Issue of Data Consistency

For the most part, PBN inference has been based on classical binary optimization,

where the predictor variables for each target gene have been selected using the co-

efficient of determination (CoD). The CoD measures the degree to which the best

estimate for the value (transcriptional activity) of a target gene can be improved

using the knowledge of the values of a set of predictor genes, relative to the best

estimate in the absence of any knowledge of the predictors:

CoD =
ε0 − εopt

ε0

. (3.1)

In 3.1, ε0 is the error arising when using the best estimate of the target-gene ex-

pression level given only statistics relating to the target gene itself, without using
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any information concerning other genes, and εopt is the error arising using the best

estimate of the target-gene expression level using the expression levels of a set of

predictor genes. In general, 0 ≤ CoD ≤ 1. If a predictor set can perfectly predict

a target gene, then εopt = 0 and CoD = 1; at the other extreme, if a predictor set

provides no information about the target gene, then εopt = ε0 and CoD = 0.

If we fix ahead the number of predictor genes (referred to as the connectivity)

that can compose a regulatory set for a target gene, then the design method is to

choose the regulatory set with the largest CoD and then define a binary regulatory

function based on the genes in the regulatory set. For instance, suppose genes g1,

g2, and g3 have the highest collective CoD among all triples for predicting gene g.

Let wxyz denote a binary vector of values for (g1, g2, g3, g). If 0001 appears more

often in the data than 0000, then for xyz = 000 the predictor function is defined

by ψ(000) = 1; otherwise, it is defined by ψ(000) = 0 (ties being broken either by

convention or randomly). If both 0000 and 0001 appear in the data, then the data is

inconsistent relative to predicting g via g1, g2, and g3.

Inconsistency means that the data is interpreted in such a way that the predictor

is a random function: the same values of the predictors can yield different values of

the target. This interpretation is problematic under the assumption that biological

regulation is deterministically encoded in the genes. There are possible reasons for

inconsistent data that are not inherent to the network. First, the data could be noisy.

We will not consider this issue here, but plan to address it in a subsequent study

in the context of a noise model, which is the only way to address it in a rigorous

mathematical framework. Second, it could be that the predictor set is incomplete.

For instance we might have 0000 and 0001 in the data for genes g1, g2, g3, and g,

but had we considered genes g0, g1, g2, g3, and g, the observations would have been

00000 and 10001, which would have eliminated the inconsistency in predicting g. In
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practice, we limit the number of predictors owing to the exponentially increasing

data demand as the number of predictors is increased. Here, however, to avoid such

dimensionality inconsistencies, we will assume that all genes other than the target

compose the regulatory set for the target gene. Once the predictor is designed, we

can drop nonessential variables. For instance, if for ψ(wxy) = z, ψ(0xy) = ψ(1xy)

for all xy, then w can be dropped as a predictor gene for z.

In this chapter, we will address an inherent problem that leads to inconsistency.

Consider a network with two contexts, C0 and C1. If the regulatory genes g1, g2, and

g3 form the vector 001 in context C0, then their target gene g must take on a specific

value, say 0, in C0. This uniqueness condition holds for all vectors of values for g1,

g2, and g3. It may well be that in context C1 the regulatory genes take the vector

001 while gene g has value 1, but the data is consistent so long as a single context is

maintained. Unless the contexts are known when data from the network is sampled,

it would appear that the network is not operating consistently. Since the context

is generally not known, an experiment to predict g when g1g2g3 = 001 is likely to

yield n0 and n1 observations of 0 and 1, respectively, meaning that 0010 and 0011

for genes g1, g2, g3 and g have been observed n0 and n1 times in contexts C0 and

C1, respectively. The regulatory function ψ for g would then be defined for 001 by

ψ(001) = 0 if n0 > n1 and ψ(001) = 1 if n1 > n0, with some convention determining

ψ(001) if n1 = n0.

Here we take a different approach. If the data reveal two values for a target

gene for a single vector for the regulatory set, then we will construct the network in

such a way that there are two distinct functions, ψ0 and ψ1, such that ψ0(001) = 0

and ψ1(001) = 1. The two functions represent two different network contexts. The

probabilities of the two functions being selected for regulation will be in agreement

with the context probabilities (in a manner shortly to be defined).
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Conceptually, the regulatory action is viewed as a system with inputs corre-

sponding to the regulating genes for the target gene; however, the system is not fully

described by the input gene values alone, but by these inputs in conjunction with the

context. Biologically, the context is determined by the manner in which the genes are

responding to latent variables external to the model network. Together, the latent

variables act in a manner as to select a network (system) context. One can imagine a

set of input lines entering the overall system, within the system there being a family

of subsystems (contexts), and the system output being a single line whose information

is selected from among the subsystems. This would be the structure of a computer

system whose output is determined by a multiplexor, with the multiplexor’s decision

being determined by a selection input to it. Biologically, only a single subsystem

may be operative at any given time, but mathematically it is irrelevant whether we

assume that a single regulatory function operates in a given selected context or that

all regulatory functions operate and a single output is selected from among these.

From an engineering perspective, we are not concerned with the actual mecha-

nisms of a system, but only the manner in which it transforms input signals to output

signals. A similar statement applies to subsystems. Hence, by definition, a context

is represented by a subsystem, which is itself a collection of mathematical functions.

Since the context is selected by external variables, we cannot know deterministically

when the system is in a certain context, but we can infer the probability of the system

being in a particular context from the data. Our basic criterion for network design is

that the distribution of expected state observations for the system, if it is observed

over a long period of time, agrees with the observed distribution of states for the data.

As for consistency, that holds ipso facto because the system behaves deterministically

so long as it remains in a fixed context (i.e., it is determined by the unique set of

functions defining that context).
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Recalling the definition of a PGRN, one sees that such networks are defined

in accordance with context changes, each context being characterized by a network

function; however, heretofore PGRNs have been defined through the construction of

network functions by choosing several strong predictor functions for each gene and

forming each network function by choosing a strong predictor for each gene. Such

an approach is not in accord with an assumption of data consistency. The inference

methodology discussed in this chapter is in accord with it.

Owing to their significance, it is especially important that attractors are properly

modeled in an inferred PBN. If the switching and perturbation probabilities are very

small, which is typical if the network is sufficiently self-contained not to be subject to

frequent latent-variable effects, then it behaves as a single Boolean network for long

periods of time. As a result, it spends the vast majority of its time in attractors. In

most experimental situations, unless a situation has been created where time-course

gene expression measurements are taken following some stimulus to the system that

drives it out of its steady-state behavior, the typical assumption is that measurements

(or at least almost all of them) are taken in the steady state [29]. This assumption

has two immediate implications for inference. First and most importantly, since data

states are, with probability near one, attractor states, we would like them to be

attractors in the model. According to Proposition 1 (to be seen later in this chapter),

this is fully accomplished with the proposed inference procedure. For small samples, it

is very possible that sampling misses biological attractor states in the data; however,

with large samples the likelihood grows for observing biological attractor states in

the data, and therefore incorporating them in the model. This is precisely what

one would expect in a learning paradigm. As for the converse of the first implication,

while network design can result in non-data states being attractor states in the model,

Propositions 2 and 4 show that in a number of cases a non-data state will not be an
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attractor. In addition, as might be expected in a learning environment, avoiding non-

data states as attractors depends on design generalization beyond that immediately

implied by the data.

1. Operator Design under the Requirement of Data Consistency

Since the key to network design is designing the functions, we begin by treating data

consistency in the more general framework of designing a single Boolean operator on

random inputs. Let S = {x1,x2, · · · ,xm} be the set of m = 2n vectors associated

with the binary-valued observation variables X1, X2, · · · , Xn and let Y be a target

binary random variable to be predicted via X1, X2, · · · , Xn. A data set D composed

of observations of the form (xk, y) is said to be consistent if (xk, 0) and (xk, 1) are

not both in D. Going the other way, a random predictor-target pair (X, Y ) is said

to be consistent with the data set D if D is consistent relative to the observation

pairs resulting from (X, Y ). In such as case, there exists a predictor ψ for Y via X,

defined on S, possessing zero error on the data. ψ is said to be consistent relative to

D. ψ may not be unique, since for any vector xk for which neither (xk, 0) nor (xk, 1)

appears in the data, ψ can be defined arbitrarily.

Consider a random operator Ψ on S. Every realization ψ of Ψ defines a func-

tion on the random vector X, or, equivalently, on the state space S endowed with

the probability measure corresponding to X. If D is any data set generated by ψ,

then, ipso facto, ψ is consistent relative to D. The number of observations in the

data corresponding to any vector xk is related to the probability of xk in S, not ψ.

Specifically, letting ν(xk) denote the number of observations of xk in an arbitrary

data set of size N , then E[ν(xk)] = Nπ(xk), where π(xk) is the probability of xk in

S. In accordance with the empirical distribution of x1,x2, · · · ,xm for D, define the

probability measure πD on S by πD(xk) = νD(xk)/N , where νD(xk) is the number
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of observations of xk in D. Then πD(xk) is an estimate of π(xk). A key to operator

design is the following observation: if ψ0 and ψ1 are two realizations of Ψ and they

agree on all vectors except xi, for which ψ0(x
i) = 0 and ψ1(x

i) = 1, then both pairs

(xi, 0) and (xi, 1) may lie in a data set generated by ψ0 and ψ1, but the data will be

consistent for all xk 6= xi.

Case 1 : Suppose the data set D has the property that there is a single vector, xi,

possessing different Y values, and all other vectors possess a single Y value in D.

Suppose there are νD(xi, 0) and νD(xi, 1) pairs (xi, 0) and (xi, 1), respectively.

Define two functions, ψ0 and ψ1, that agree on all vectors except xi, and are

thereon defined by ψ0(x
i) = 0 and ψ1(x

i) = 1. Let ΨD be a random function

possessing two realizations ψ0 and ψ1. We define the probability structure for

ΨD by

P (ΨD = ψa) =
νD(xi, a)

νD(xi)

with a = 0, 1. ψ0 is consistent relative to the data set Di(0) consisting of the

original data set D with all pairs (xi, 1) removed, and ψ1 is consistent relative

to the data set Di(1) consisting of D with all pairs (xi, 0) removed.

Case 2 : Suppose the data set D has the property that there exist two vectors, xi

and xj, possessing different Y values, and all other vectors possess a single Y

value in D. Let there be νD(xi, 0), νD(xi, 1), νD(xj, 0), and νD(xj, 1) pairs of

(xi, 0), (xi, 1), (xj, 0), and (xj, 1), respectively. Define four functions ψ00, ψ01,

ψ10, and ψ11 that agree on all vectors except xi and xj, and are thereon defined

by ψ00(x
i) = 0, ψ00(x

j) = 0, ψ01(x
i) = 0, ψ01(x

j) = 1, ψ10(x
i) = 1, ψ10(x

j) = 0,

ψ11(x
i) = 1, and ψ11(x

j) = 1. Define the following probability structure for Ψ:

P (ΨD = ψab) =
νD(xi, a)νD(xj, b)

νD(xi)νD(xj)
, (3.2)
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for a, b = 0, 1. For instance, P (ΨD = ψ00) = νD(xi, 0)νD(xj, 0)/νD(xi)νD(xj).

ψab is consistent relative to the data set Dij(ab) consisting of the original data

set D with all pairs (xi, 1− a) and (xj, 1− b) removed.

Case k : The preceding definition and probability structure can be inductively de-

fined for any k vectors possessing different Y values, with all the other vectors

possessing a single Y value. We say that the resulting random function is order-

k consistent relative to the data set D.

We now state the basic theorem for consistent-data operator design.

Theorem 1 If the random function ΨD is order-k consistent relative to the set D,

then (1) when restricted to any of its realizations, ΨD produces consistent data, (2)

the estimate of the expected distribution of the data generated by ΨD using πD in place

of π agrees with the distribution of the data in D, and (3) the latter condition cannot

be accomplished with less than 2k functions, the number of realizations of ΨD.

Proof. We first prove the case 1. For a random data set D of size N generated by

the random function ΨD, let η(xi, 0) and η(xi, 1) be the random variables giving the

number of times xi is 0 and 1, respectively, in D. Since ΨD is designed from the given

data set D and thereafter applied to random data sets, the probability P (ΨD = ψ0)

is fixed upon the design of ΨD and is independent of the probability of observing any

particular state vector in D. Thus,

E[η(xi, 0)] = NP (ΨD(xi) = 0)π(xi)

= Nπ(xi)[P (ΨD = ψ0)P (ψ0(x
i) = 0) + P (ΨD = ψ1)P (ψ1(x

i) = 0)]

= NP (ΨD = ψ0)π(xi)

= N
νD(xi, 0)

νD(xi)
π(xi).
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If we replace π(xi) by its estimate πD(xi) based upon the data set D, then we obtain

the estimate

Ê[η(xi, 0)] = νD(xi, 0). (3.3)

of the expectation E[η(xi, 0)]. Equation 3.3 states that the estimate of the expectation

of the number of times that xi has the label 0, based on the estimate πD equals the

number of times xi has the label 0 in the data. Similarly,

Ê[η(xi, 1)] = νD(xi, 1). (3.4)

For j 6= i, Ê[η(xj, 0)] is either 0 or νD(xj), depending on the common value of ψ0(x
j)

and ψ1(x
j). In sum, when restricted to either ψ0 or ψ1, the random function produces

consistent data, and the expected distribution of the data agrees perfectly with the

empirical distribution πD. Clearly, this could not have been accomplished by a single

realization.

For case 2, for an arbitrary data set D of size N generated by ΨD, let η(xi, 0),

η(xi, 1), η(xj, 0), and η(xj, 1) be random variables giving the number of times xi is

0, xi is 1, xj is 0, and xj is 1, respectively, in D. Then

E[η(xi, 0)] = NP (ΨD(xi) = 0)π(xi)

= Nπ(xi)[P (ΨD = ψ00)P (ψ00(x
i) = 0) + P (ΨD = ψ01)P (ψ01(x

i) = 0)

+ P (ΨD = ψ10)P (ψ10(x
i) = 0) + P (ΨD = ψ11)P (ψ11(x

i) = 0)]

= Nπ(xi)[P (ΨD = ψ00) + P (ΨD = ψ01)]

= Nπ(xi)

(
νD(xi, 0)νD(xj, 0)

νD(xi)νD(xj)
+

νD(xi, 0)νD(xj, 1)

νD(xi)νD(xj)

)
. (3.5)

If we replace π(xi) by its estimate πD(xi) based on the data set D, then we obtain
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the estimate of the expectation E[η(xi, 0)],

Ê[η(xi, 0)] = Nπ(xi, 0)

(
νD(xj, 0)

νD(xj)
+

νD(xj, 1)

νD(xj)

)
= νD(xi, 0). (3.6)

Similarly, Ê[η(xi, 1)] = νD(xi, 1), Ê[η(xj, 0)] = νD(xj, 0), and Ê[η(xj, 1)] = νD(xj, 1).

For l /∈ {i, j}, Ê[η(xl, 0)] is either 0 or νD(xl), depending on the common value of

ψ0(x
l) and ψ1(x

l) for l. In sum, when restricted to either ψ00, ψ01, ψ10, or ψ11, the

estimate of the expected distribution of the data, using the estimate πD, agrees with

the data distribution. This cannot be accomplished with less than four functions.

Indeed, since any function must agree with the single value for vectors other than xi

and xj, were there only three functions, these would be a subset of {ψ00, ψ01, ψ10, ψ11}
and there would still be four equations of the kind in Eq. 3.5. These would require

solution with only three variables of kind P (ΨD = ψab) instead of the four variables

P (Ψ = ψ00), P (Ψ = ψ01), P (ΨD = ψ10), and P (ΨD = ψ11).

The proof for case 2 extends directly to any order k, albeit, with increased

notational complexity.

The third part of the theorem is critical because it says that the constructed

random function solves the problem with which we are concerned in an optimal way

relative to minimizing the number of its realizations. By addressing data inconsis-

tency under the assumption that inconsistencies result from the data arising from a

random function of the state space, optimal operator design becomes one of finding

the realizations of a random function and the probability mass on those realizations

so that the resulting random operator best fits the data relative to the expectation

of its output and does so using a minimal number of randomizations. In effect, we

have presented an algorithm to solve this optimization problem.

To illustrate the design methodology, we consider two predictor variables, X and

Y , the target variable Z, and the data in Table I(a), where count is the number of
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Table I. Data Set and Predictor Functions

(a) Data set

xyz 000 001 010 011 100 101 110 111

Count 4 0 6 6 2 6 0 4

(b) Function for z

xy ψz
00 ψz

01 ψz
10 ψz

11

00 0 0 0 0

01 0 0 1 1

10 0 1 0 1

11 1 1 1 1

(c) Function for y

xz ψy
00 ψy

01 ψy
10 ψy

11

00 0 0 1 1

01 1 1 1 1

10 0 0 0 0

11 0 1 0 1

(d) Function for x

yz ψz
00 ψz

01 ψz
10 ψz

11

00 0 0 1 1

01 1 1 1 1

10 0 0 0 0

11 0 1 0 1



26

times xyz is observed in the data. In the data, the observations 00 and 11 of the

predictor variables are consistent, whereas 01 and 10 of the predictor variables are

inconsistent. Hence, four functions are required to predict Z, as shown in Table I(b).

The selection probabilities are P (Ψ = ψz
00) = 1/8, P (Ψ = ψz

01) = 3/8, P (Ψ = ψz
10) =

1/8, and P (Ψ = ψz
11) = 3/8. Notice what happens if we change the count of 111 to

0. The number of functions remains 4; however, the data does not provide inference

of ψz
ab(11). Therefore, it must be decided by some form of generalization. We will

return to this question in the next chapter.

It is important in understanding Theorem 1 to recognize that the third part of

the theorem refers to the second part, that is, the number of realizations required

to accomplish the distributional requirement is 2k. If we were not concerned with

the expected concordance between the expected distribution of data generated by the

random function ΨD and the distribution of the data in D, then we would need only

two realizations to achieve consistent design. To see this, suppose in D there exist

m vectors, xi1 ,xi2 , · · · ,xim possessing different Y values and for any other vector

x there is a single observed Y value ax. Define ψ0(x
ij) = 0 and ψ1(x

ij) = 1 for

j = 1, 2, · · · , m, and ψ0(x) = ψ1(x) = ax for any other x. These two realizations

can account for all of the inconsistencies; however, the expected distribution of data

generated by ΨD will not be concordant with the data distribution in D.

2. Data-Consistent Design of Probabilistic Boolean Networks

Adaptation of the consistent-data predictor design to PBNs is straightforward, and

the details of algorithm can be found in Appendix A. There are some issues regarding

generalization and attractors that need to be addressed. Consider designing a PBN

from a data set for the set S = {x1,x2, · · · ,xm} of m = 2n binary vectors. For

a PBN, each gene is taken in turn as the target to be predicted via the remaining
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genes by a predictor function. This means that the consistent-data design procedure

is applied to each gene in turn to derive its predictor set. A network function for

the PBN is defined by taking one predictor function for each gene. For a network

with n genes, if there are mk predictors for gene k, then there are m1m2 · · ·mn

network functions. Each network function defines a context of the network in which

the data are consistent. This means that, so long as a network is in the context of a

network function, it will generate consistent data. Each context defines a standard

(constituent) Boolean network. The selection probability of a network function is

the product of the selection probabilities for the individual functions composing the

network function.

To illustrate, for the data of Table I(a), we have three function sets shown in

parts (b), (c), and (d). For both xz and yz, the observations 01 and 10 are consistent,

whereas 00 and 11 are inconsistent. The PBN has 64 network functions determining

the same number of contexts. The number of contexts is determined by the manner

in which inconsistencies appear in the data.

Attractors are important to understanding a PBN. Each context corresponds to

a Boolean network, and by definition the attractors of the PBN are the attractors

of its constituent Boolean networks. Relative to attractors, there is a fundamental

difference between data states and non-data states. Before giving formal definitions,

we consider some possible situations.

For the PBN resulting from the data of Table I(a), consider the data state 000.

It is a singleton attractor for any context {ψx
ab, ψ

y
cd, ψ

z
ef} in which ψx

ab(00) = ψy
cd(00) =

ψz
ef (00) = 0. There are 2 × 2 × 4 = 16 such contexts (out of a total of 64 contexts).

Running through the six data states, we see that each is a singleton attractor for

some number of contexts. On the contrary, consider the non-data state 001. Since

ψx
ab(01) = 1, ψy

cd(01) = 1, and ψz
ef (00) = 0 for any ab, cd, and ef , 001 → 110,
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Table II. Predictor Functions

yz ψx

00 0

01 x

10 x

11 x

xz ψy

00 0

01 x

10 x

11 x

yz ψz

00 0

01 x

10 x

11 x

its complement, in every context. 110 is also a non-data state, and 110 → 001,

its complement, in every context. Hence, {110, 001} is a two-state attractor cycle

in every context. Note that if 110 were a data state, then it would be a singleton

attractor in some contexts and the non-data state 001 would not be an attractor (in

an attractor cycle) in those contexts.

Now, consider a data set in which there is a single data state, say 000. All

predictor-target pairs are consistent relative to the data, and only one function is

required for each gene (Table II). Each function requires three of its four values to

be determined by generalization (arbitrarily relative to the data). The result is a

Boolean network in which 000 is a singleton attractor.

We say that a non-data state x = x1x2 · · · xn is partially mapped by the data if

there exists at least one sub-vector, x1x2 · · · xk−1xk+1 · · · xn, which has been observed

in the data, so that there exists a function ψk for xk for which ψk(x1x2 · · · xk−1xk+1 · · · xn)

has been determined by the data, not by generalization. For the single observation

000 and the Boolean network of Table II, the states 001, 010, and 100 are par-

tially mapped. A non-data state x = x1x2 · · · xn is fully unmapped by the data if

no sub-vector x1x2 · · ·xk−1xk+1 · · ·xn has been observed in the data. For the single

observation 000, the states 011, 101, 110, and 111, are fully unmapped. A non-data

state is fully mapped if all sub-vectors have been observed in the data, which was the
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case for 110 in the data of Table I(a).

Continuing with the single observation 000 and the network of Table II, for

which the non-data states 001, 010, and 100 are partially mapped by the data, the

single network function yields 001 → xx0, 010 → x0x and 100 → 0xx. The actual

transitions depend on the generalization; nevertheless, these partially determined non-

data states are not singleton attractors. The remaining data states, 011, 101, 110,

and 111, are fully unmapped by the data, so that their transitions depend totally on

generalization, which can yield singleton non-data attractors. In this example, 011

becomes a singleton attractor if and only if we define ψx(11) = 0, ψy(01) = 1, and

ψz(01) = 1; 101 becomes a singleton attractor if and only if we define ψx(01) = 1,

ψy(11) = 0, and ψz(10) = 1; 110 becomes a singleton attractor if and only if we define

ψx(10) = 1, ψy(10) = 1, and ψz(11) = 0; and 111 becomes a singleton attractor if

and only if we define ψx(11) = 1, ψy(11) = 1, and ψz(11) = 1. Note that 110 and 111

cannot simultaneously be singleton attractors, nor can 011 and 111 simultaneously

be singleton attractors.

We now provide some formal propositions regarding attractors.

Proposition 1 A data state is a singleton attractor in at least one context.

Proof. If x = x1x2 · · · xn is a data state, then for each gene xk, there is at least one

function, ψk, inferred from the data for which ψk(x1x2 · · · xk−1xk+1 · · · xn) = xk. x is

a singleton attractor for the context {ψ1, ψ2, · · · , ψn}.

Proposition 2 A fully or partially mapped non-data state is not a singleton attractor

in any context.

Proof. If x = x1x2 · · · xn is a fully or partially mapped non-data state, then there ex-

ists a gene xk determined from the data relative to x1x2 · · · xn. Suppose x1x2 · · · xn →
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x1x2 · · ·xn in some context {ψ1, ψ2, · · · , ψn}. Then xk = ψk(x1x2 · · · xk−1xk+1 · · · xn).

Since this relationship has been determined from the data, x1x2 · · · xn must be a data

state, which is a contradiction.

Proposition 3 If a non-data state and its complement are both fully mapped, then

they form a two-state attractor cycle in every context.

Proof. If x = x1x2 · · · xn is fully mapped, then in any context {ψ1, ψ2, · · · , ψn},

x → ψ1(x1x2 · · ·xn)ψ2(x1x3 · · · xn) · · ·ψn(x1x2 · · · xn−1)

It must be that ψk(x1x2 · · ·xk−1xk+1 · · ·xn) = xc
k, since otherwise the fact that

x1x2 · · ·xk−1xk+1 · · ·xn has been observed in the data would mean that x1x2 · · · xn

has been observed in the data, which it has not. Hence x → xc. The same argument

applied to xc shows that {x,xc} is a two-state attractor.

Proposition 4 Generalization can always make a given fully unmapped non-data

state be or not be a singleton attractor.

Proof. If x = x1x2 · · · xn is a fully unmapped non-data state, then there are no data-

determined functions ψk(x1x2 · · ·xk−1xk+1 · · ·xn). To make x an attractor, define

ψk(x1x2 · · · xk−1xk+1 · · · xn) = xk for all k; to make x not a singleton attractor, define

ψk in any other manner.

Any attractor composed solely of non-data states will be called an artificial at-

tractor. As we have noted previously, it may not be possible to make two fully

unmapped non-data states into singleton attractors. According to Proposition 2, ar-

tificial singleton attractors are fully unmapped. Every singleton attractor is either a

data state or an artificial attractor. According to Proposition 3, if a non-data state

and its complement are both fully mapped, then they form an artificial two-state

attractor cycle in every context.
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The state transitions for a PBN produce an ergodic Markov chain possessing a

steady-state distribution. When a PBN is designed from data, the implicit assump-

tion is that the data have been obtained in the steady state. This means that the

state transitions of the designed PBN do not correspond to transitions in biological

time but to synthetic (mathematical) time. Hence, there is no direct correspondence

between transient states of the PBN and data states. There should be, however,

correspondence between steady-state behavior and the data states. Since we expect

network switching to be infrequent in a real system, most of the steady-state mass

should belong to the attractors, and since the data has been drawn from the steady

state, we would expect it to be highly likely that the data states are attractors. In

this sense, Proposition 1 provides strong support for the context-switching model.

Proposition 2 is also encouraging relative to steady-state and data distribution corre-

spondence. Propositions 3, while not encouraging, posits the strong requirement that

a non-data state to be fully mapped. Finally, Proposition 4 only asserts existence

and says nothing about the consequences of a reasonable generalization.

C. Discussion

1. Reflections on Standard and Contextual Inference

Whereas a Boolean network is assured for a single observed data state, two data states

may require a PBN. At the other extreme, only a Boolean network is required for

consistency if the data states are 001, 010, 100, and 111, and all four states would be

singleton attractors. The issue of the number of contexts is related to a deeper issue

of how we have chosen to use the data for inference, not only here but in previous

papers. At its root, the matter concerns learning predictors for a dynamical system

from steady-state data.
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To explain, we consider a three-gene Boolean network with vectors xyz and data

set {000, 001}. If we observe 000 more often than 001, why define the prediction

ψz(00) = 0? After all, in the real system, 000 might transition to another state,

and therefore xy = 00 may predict z being 1. For instance, if in the actual system

000 → 001 , then would it not be better to predict z by ψz(00) = 1? Perhaps it

would be had we dynamical data to indicate so, but we only have steady-state data.

The original use of prediction for gene expression was to measure multivariate gene

interaction [16]: based on the data, if xy = 00 is observed in the steady-state, then

what is the best prediction for z. The prediction methodology is purely statistical and

makes no inference regarding causality. Clearly, if we observe 000 in the data more

often than 001, then the best prediction on observing xy = 00 in a future observation

would be to predict z = 0. This approach has been adopted for network inference, and

represents a kind of generalization because a network involves dynamical behavior.

Nonetheless, under the assumption that the data come from the steady state, and

assuming that when in the steady state the network spends the great majority of its

time in its attractors, when choosing between the singleton attractor 000 (ψz(00) = 0)

and the singleton attractor 001 ( ψz(00) = 1), a majority decision based on the data

indicates the singleton attractor 000. Indeed, if 001 were only observed rarely in the

data, one might conjecture it to be a noisy version of 000 or a transient state of the

form 001 → 000.

The situation becomes more flexible with the use of PBNs. We re-consider the

three-gene situation with data set {000, 001}. At first glance it may appear that

we have three possibilities: (1) 000 and 001 compose an attractor cycle in the same

Boolean network; (2) they are singleton attractors in a single Boolean network; or

(3) they are singleton attractors in different contexts. But the first situation is not

possible because 000 → 001 requires ψz(00) = 1, and 001 → 000 requires ψz(00) = 0.
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As for the second possibility, it involves the choice just discussed. If we choose

ψz(00) = 0, then to have the network remain in an attractor, we must have ψx(00) = 0

and ψy(00) = 0, in which case 000 is an attractor and 001 is a transient state; if we

choose ψz(00) = 1, then to have the network remain in an attractor, we must have

ψx(01) = 0 and ψy(01) = 0, in which case 001 is an attractor and 000 is a transient

state. Thus, we choose ψz(00) based on the majority decision. The third possibility

occurs by using context: 000 and 001 are singleton attractors in different contexts, in

which case we have ψz(00) = 0 in one context and ψz(00) = 1 in the other, with all

conflicts being resolved. Note that this same analysis applies whenever there are two

data points and they differ only for a single gene.

For another situation, consider the data set {000, 111}. The same three apparent

possibilities appear, but now they are all truly possible. We could have the cycle

000 → 111. This would not create a conflict in any predictor definitions: ψx(00) =

ψy(00) = ψz(00) = 1 and ψx(11) = ψy(11) = ψz(11) = 0. They could also form two

singleton attractors in the same Boolean network, with ψx(00) = ψy(00) = ψz(00) = 0

and ψx(11) = ψy(11) = ψz(11) = 1. Lastly, they could be singleton attractors in

different contexts of a PBN. Using either non-contextual or contextual design, they

appear as singleton attractors in a single Boolean network. Were the data actually

reflective of a cycle in a real regulatory system, then the inference would be erroneous.

Because the steady-state data is insufficient to infer dynamics, a learning assumption

has been made (here and in the past) that favors short cycles over long, in this case

favoring singleton attractors. Moreover, the number of contexts is minimized by

assuming them to be singleton attractors in a Boolean network. Note that the same

analysis applies whenever there are two data points and they differ by more than a

single gene.

To help clarify the issue, we define two states to be neighbors if they differ by
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a single gene. A data state is said to be isolated if it has no neighbors in the data

and non-isolated otherwise. If two data states are neighbors, as are 000 and 001,

then they require two contexts to avoid data inconsistency. Since context selection

depends on the data frequencies, the frequencies of 000 and 001 affect the resulting

PBN probabilities. On the other hand, if a data state is isolated, as is the case of

000 for the data set {000, 110, 111}, then it does not generate contexts. This is what

happened in the preceding illustration using the data states 000 and 111. Both are

isolated in the data and therefore there is a single context. When a data state is

isolated, its frequency in the data does not affect the PBN probabilities.

Finally, note that there are many ways that data states can interact when taken

as a group. For instance, a PBN with data set {000, 001, 010, 011} has 4, 4, and 1

functions for x, y, and z, respectively, with a total of 16 contexts. A PBN with data

set {010, 100, 101, 110} has 2, 2, and 2 functions for x, y, and z, respectively, with a

total of 8 contexts.

2. Filtering

We have addressed data inconsistency from the perspective of biological context. The

context problem is inherent to an open system, one that receives inputs from external

variables that affect the system output. We have focused on system design, and as

with all inference procedures, the design precision is affected by noise. Data-consistent

design begins with binary state vectors (profiles), under the assumption of previous

filtering, normalization, and quantization. Generally speaking, it is hard to model

the impact of various noise sources on high-level data analysis algorithms, the cen-

tral problem being the large number of sources of variance inherent in the process of

making these measurements — for instance, using cDNA microarrays. In many sta-

tistical papers, the measured gene expression data are assumed to have multiple noise
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sources: sample preparation, labeling, hybridization, background fluorescence, differ-

ent arrays, fluorescent dyes, and different printing locations. As with any high-level

processing, network design is influenced by lower-level processing. In our case, noisy

observation vectors can negatively affect design because our aim is to have the steady-

state distribution of the designed network agree with the empirical distribution. In

particular, noisy observations can result in spurious contexts.

Relative to data-consistent design, there is a more fundamental issue than ob-

servation noise pertaining to the number of contexts generated by the data, namely,

sample heterogeneity. In many cases microarray data are obtained from heteroge-

neous cell populations, in particular, when tumor samples are analyzed. In fact, the

entire issue of contextual modeling relates to data heterogeneity: the data relating to

a specific set of genes composing a network derive from heterogeneous sources because

each source is conditioned by factors external to the network. This heterogeneity af-

fects model design. If in the case of a Bayesian network the conditional probability

of a gene given its parents is estimated across sample data arising from heteroge-

neous subpopulations, then the conditioning is in effect averaged across different data

sources and the resulting conditional probability does not specifically apply to any

of the subpopulations. The same can be said of PBN (or PGRN) design using co-

efficients of determination computed relative to the full sample. It is precisely our

desire to make PGRN design specific to the subpopulations (contexts) arising from

external latent variables that has motivated data-consistent design. Consequently,

when there is excessive sample heterogeneity there can be an extraordinarily large

number of contexts.

To reduce the large number of contexts arising from excessive data heterogeneity

(or from observation noise) we can filter the data by reducing the binary profiles.

Specifically, if two profiles are very close, we can join them, thereby identifying their
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individual contexts. Since we lack a heterogeneity model it is impossible to optimally

derive this identification filter and we therefore take an intuitive approach, which has

generally been how data filtering has proceeded in the context of microarrays. The

filter is applied in the following manner: (1) if a profile is observed more than once

in the data, then it remains invariant; (2) if a profile appears only once in the data

and it is within Hamming distance 1 of a repeated profile, then it is identified with

the repeated profile; (3) if an unrepeated profile is not within Hamming distance

1 of a repeated profile, then it is left invariant. The details of a profile reduction

algorithm can be found in Appendix B. The idea is straightforward: Singleton profiles

that are almost identical to repeated profiles are assumed to result from either noise

or statistically less important contexts very close to more important contexts. In

practice, one can choose to use or not use the Hamming filter.

D. Application: Melanoma Network

We apply the contextual-design method to a genetic network that has served as a

model to study the external control of genetic regulatory networks, in particular, for

the regulatory avoidance of metastatic melanoma — for instance, in [46], where the

context-sensitive PBN was constructed by the Bayesian connectivity approach.

The ten genes/proteins considered here were first identified in a study concerned

with the feasibility of producing Markovian networks whose stationary distributions

closely reflect the data [29]. The chosen genes/proteins arose from data in a study of

metastatic melanoma [47]. In that study, the abundance of messenger RNA for the

gene WNT5A was found to be highly discriminating between cells with properties typ-

ically associated with high metastatic competence versus those with low metastatic

competence. These findings were validated and expanded in a second study [48].
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In the second study, experimentally increasing the levels of the Wnt5a protein se-

creted by a melanoma cell line via genetic engineering methods directly altered the

metastatic competence of that cell as measured by the standard in vitro assays for

metastasis. A further finding of interest was that an intervention that blocked the

Wnt5a protein from activating its receptor, the use of an antibody that binds Wnt5a

protein, could substantially reduce Wnt5a’s ability to induce a metastatic phenotype.

This suggests a study of control based on interventions that alter the contribution of

the WNT5A gene’s action to biological regulation, since the available data suggest

that disruption of this influence could reduce the chance of a melanoma metastasiz-

ing. The control objective is to externally down-regulate the WNT5A gene, because

WNT5A ceasing to be down-regulated is strongly predictive of the onset of metasta-

sis. Owing to computational issues relating to dynamic programming, in the control

studies only 7 of the original 10 genes/proteins were used; here we use the full set of

10 to demonstrate network design: RET-1, HADHB, MMP-3, S100P, pirin, MART-1,

synuclein, STC2, PHO-C, and WNT5A.

In the original expression study, 31 expression profiles were found for the 10

genes, with some profiles repeated. Table IV lists the 20 distinct profiles, along with

their counts. As discussed previously, when we design a PBN, we must generalize the

unspecified entries in the truth table. Here we do so by majority vote: if half or more

of the entries have value 1, then set all the unspecified entries to 1; otherwise set them

to 0. If we design a PBN based on the 20 profiles without any filtering, the resulting

PBN has 128 contexts. The Hamming-distance filter yields 18 distinct profiles. They

and their counts are shown in Table V. Under the Hamming-distance filter and

majority-vote generalization, the designed PBN has 4 contexts. Table VI lists the

attractors in each context and the data profiles (in decimal form for convenience). As

must be the case, the PBN captures all the data profiles as attractors. There is only
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Table III. Gene/Protein Annotations of Melanoma Data

Gene/protein Pseudoname

RET-1 g1

HADHB g2

MMP-3 g3

S100P g4

pirin g5

MART-1 g6

synuclein g7

STC2 g8

PHO-C g9

WNT5A g10

one spurious attractor point, 702.

E. Conclusion

This chapter provides an inference procedure for probabilistic genetic regulatory net-

works in which the network contains contexts to model the data in such a way that it

is consistent for each context. The intent is to view genomic regulation as determin-

istic (up to gene perturbation), with data inconsistencies due to variables outside the

modeled network. A key aspect of the inference procedure is that every data state

must be an attractor in at least one context, which is consistent with the assumption

that the data states are attractor states for the real biological system. The dynamics,

and therefore the steady-state distribution of the model, depend on generalization.

This is to be expected since the inference problem is an ill-posed inverse problem ow-
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Table IV. Expression Profiles for Melanoma

Profile Genes/proteins

# g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
Count

1 1 0 0 1 1 1 1 1 0 1 2

2 1 1 0 1 1 1 0 0 0 0 1

3 1 0 1 0 1 1 1 1 0 1 1

4 1 0 0 1 1 1 1 1 0 0 2

5 0 1 0 1 1 1 0 0 1 1 1

6 1 0 1 1 1 1 1 1 1 1 1

7 0 1 0 1 1 1 1 1 0 1 1

8 0 1 0 0 1 1 0 0 0 1 2

9 0 0 0 1 1 1 0 0 0 1 1

10 0 1 1 0 1 0 0 0 1 1 1

11 0 1 0 0 1 0 0 0 1 1 1

12 1 0 1 0 1 0 1 0 1 0 1

13 1 0 1 1 1 0 1 1 1 0 2

14 1 0 1 0 0 0 1 1 1 0 8

15 0 0 1 0 1 1 0 0 0 0 1

16 0 0 1 0 0 0 1 1 1 0 1

17 0 1 0 1 0 1 0 0 1 0 1

18 0 1 0 0 1 1 0 0 1 1 1

19 0 0 1 1 0 1 1 0 1 0 1

20 0 0 1 0 0 0 1 0 1 0 1



40

Table V. Filtered Expression Profiles

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 Count
1 0 0 1 1 1 1 1 0 1 2
1 1 0 1 1 1 0 0 0 0 1
1 0 1 0 1 1 1 1 0 1 1
1 0 0 1 1 1 1 1 0 0 2
0 1 0 1 1 1 0 0 1 1 1
1 0 1 1 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1 0 1 1
0 1 0 0 1 1 0 0 0 1 3
0 0 0 1 1 1 0 0 0 1 1
0 1 1 0 1 0 0 0 1 1 1
0 1 0 0 1 0 0 0 1 1 1
1 0 1 0 1 0 1 0 1 0 1
1 0 1 1 1 0 1 1 1 0 2
1 0 1 0 0 0 1 1 1 0 9
0 0 1 0 1 1 0 0 0 0 1
0 1 0 1 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0 1 0 1
0 0 1 0 0 0 1 0 1 0 1

ing to a lack of dynamical data. Hence, generalization concerns the following issue:

given the attractors, what kind of inference can be obtained relative to the dynamics

of the network? The attractors constrain the dynamical behavior, but do not de-

termine it. In particular, they alone do not determine their basin structure. Future

work will concentrate on the critical issue of generalization. Given a set of prior net-

work properties postulated in accord with biological considerations, the aim will be

to construct generalizations that yield networks possessing the desired properties.

Of particular importance is the manner in which generalization affects network

connectivity. Whereas it is often assumed in PBN design that connectivity is limited

and this limitation is imposed on design, the theory in this chapter depends on the

possibility of full connectivity. We refer to this possibility because once the realiza-

tions are determined they can be reduced so that they only involve essential variables,

thereby reducing the connectivity. The degree to which the connectivity is reduced
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Table VI. Attractors of the Melanoma Network

113 138 176 218 305 338 371 381 419 637 654 682Context 1
701 702 750 767 880
113 138 176 218 291 305 338 371 381 637 654 682Context 2
701 702 750 767 880
113 138 176 218 305 338 371 381 419 636 654 682Context 3
701 702 750 767 880
113 138 176 218 291 305 338 371 381 636 654 682Context 4
701 702 750 767 880
113 138 176 218 291 305 338 371 381 419 636 637All Attractors
654 682 701 702 750 767 880
113 138 176 218 291 305 338 371 381 419 636 637Data Profiles
654 682 701 750 767 880

by logic reduction depends on the generalization. Going further, one might at the

outset choose to limit the connectivity. Prior limitation might make data-consistent

design impossible; however, one might try to achieve close-to-data-consistent design,

where the closeness is based on some objective criterion. These considerations lead

to two areas of ongoing research: (1) posing a suitable definition of connectivity min-

imization and developing efficient algorithms to select a generalization minimizing

connectivity, and (2) defining an appropriate probabilistic criterion for approximate

data consistency and developing efficient algorithms to optimize design relative to the

criterion.
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CHAPTER IV

OPTIMIZATION OF THE CONTEXT-SENSITIVE MODEL FOR GENETIC

REGULATORY NETWORKS∗

A. Introduction

When building function-based (rule-based) genetic networks from gene-expression

data, the functions are often derived via some optimization-based criterion, with

perhaps the imposition of biological constraints [43]. This requires determining, for

each gene g, the genes that will serve as input to the function giving the value of g

and the structure of the function. Except in rare circumstances, the optimal function

for a gene will not be a perfect predictor owing to the inconsistencies in the data.

This means that a specific combination of values of the regulatory genes will not

necessarily correspond to a single value of the target gene. Thus, network design is

inherently probabilistic. These inconsistencies can be modeled in a manner reflecting

context changes in regulation, as discussed in the last chapter (also see [10]). The

network can be in any of a number of contexts. Within a context, the network behaves

deterministically and the generated data are consistent.

Chapter III proposed a method for inferring context-sensitive probabilistic Boolean

models for genetic regulatory networks. In this chapter we address two issues arising

∗ c© 2006 IEEE. Reprinted from IEEE Transactions on Circuits and Systems I, see
[49] for complete publication information.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Texas A&M University’s
products or services. Internal or personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.
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with consistency-based model design.

• First, an issue of generalization results from the inference method of the last

chapter: Based strictly on the data, typically there is more than one PBN com-

plying with the same data under the consistency requirement. Thus, we must

find a criterion that enables us to perform a model selection on the candidate

PBNs, thereby giving rise to an optimization problem.

• Second, for both computational and biological reasons, we may wish to constrain

the connectivity optimization; that is, we may wish to restrict the maximum

number of variables allowed in a regulatory function. This may require loosening

the consistency requirement. Thus, there is the question of how to adapt the

network with minimal loss of fidelity.

For the generalization problem, we recognize the connectivity (number of predic-

tors for a target gene) and realization complexity in terms of an optimality measure

for the PBN and two algorithms are proposed. The second algorithm is proven to

be able to find a minimally connected PBN. We treat the constrained connectivity

issue as a rephrased lossy coding problem and design an algorithm that attains the

required connectivity by removing some of the predictors (regulators) of each target

gene in a way that minimizes the probability of error in every regulating function. As

in the last chapter, we remain in a binary setting.

B. Generalization via Optimization Criteria

1. Optimization Criteria: A Motivating Example

When applying the PBN design procedure in Chapter III, the truth tables are usually

incompletely specified by available data, and these ambiguous entries must be assigned
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values according to some protocol. This is called generalization issue. Addressing

this issue is essential because it affects the structure and final expression of Boolean

functions of the designed PBN.

Example 1 Suppose gene Z is potentially regulated by genes W , X and Y , and

the relationships in Table VII are inferred from gene expression data. This table is

Table VII. Truth Table for Example 1

Row number W X Y Z

0 0 0 0 1

1 0 0 1 1

2 0 1 0 0

3 0 1 1 ×
4 1 0 0 0

5 1 0 1 0

6 1 1 0 ×
7 1 1 1 1

incompletely specified, since entries marked with × (meaning “don’t-care”) cannot be

inferred from available information, and generalization is needed. If we assign 0 to ×
in row 3 and 1 to × in row 6, then the Boolean function will be

Z = f1(W,X) = W̄ X̄ + WX,

which reads “((not W ) and (not X)) or (W and X)”. If both ×’s are assigned 1,

then we obtain the Boolean function

Z = f2(W,X, Y ) = W̄ X̄ + W̄XY + WX.
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It can be seen that the former generalization involves less variables, and requires less

logic gates. ¤

This example suggests that we can look for a generalization that achieves a

minimally interconnected PBN, with the simplest logic rules. In other words, for each

gene, we would like its predictors to be as few as possible with a simple prediction

rule; hence the PBN is minimally connected, and the realization of Boolean functions

is minimized. The significance of minimizing connectivity is not limited to its own

sake, but also reflects the biological propensity for low connectivity.

2. Preliminary Knowledge

There are many ways to describe a Boolean function via logic gates. Here, we adopt

the standard sum of products (SOP) form, which can be implemented with two-level

Boolean logic circuits consisting solely of AND and OR gates (besides NOT gates

whenever necessary), where AND gates are used only in the first level, and OR gates

are used only in the second level. Therefore, we have the following objective in mind

when generalizing a PBN:

Objective 1 Generalization for Gene Networks

1. Achieve a minimally connected network;

2. Seek the simplest sum-of-products Boolean realizations.

Notice that a simplest SOP Boolean realization may not be one that has minimal

variables, and vice versa. For instance, WX+Y versus WX+W̄ X̄. Thus in achieving

the objective, it is a matter of balancing goal (1) and goal (2). One can either give

goal (2) a higher priority by seeking a simplest SOP realization with as few variables
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as possible or give goal (1) a higher priority by achieving minimal variables first and

finding a simplest SOP realization based on the minimal variables.

Since we are often faced with a small sample of data, there can be a considerable

number of “don’t cares” in the truth tables. Taking account of only the number

of genes and contexts, the sheer multitude of possible ways to generalize will be

intimidating. To address the generalization problem, we employ a Boolean function

minimization technique tailored to the case of incompletely specified truth tables.

Given any completely fixed truth table, an initial Boolean function in SOP form can

be obtained by the following steps:

1. Pick out every combination of input variables that yields output 1.

2. Represent each combination (called a minterm) as a product (logic AND) of

input variables or their complements. If an input variable X value is 1, use the

variable itself; otherwise, use its inverse X̄.

3. Write the Boolean function as a sum (logic OR) of all minterms.

A Boolean function obtained directly from a truth table (without any simplifi-

cation) in SOP form is often written as a sum using binary string representations

of the minterms. For instance, f(W,X, Y ) = WXȲ + WXY can be written as

f(W,X, Y ) = 110 + 111. It can also be expressed as a sum of row numbers of the

minterms, i.e., each minterm is represented by a decimal number converted from its

binary string, so that f(W,X, Y ) =
∑

(6, 7).

After finding an initial Boolean function, one can often simplify its expression by

applying the following logic rules repeatedly: (1) X · 1 = 1 ·X = X; (2) X + X̄ = 1;

and (3) WX +WY = W (X +Y ). During simplification, if a variable vanishes, it will

be replaced by − in binary string representation. The following definitions provide

the nomenclature for Boolean function minimization.
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Definition 1 [50] A Boolean expression ϕ is said to imply another Boolean expres-

sion ψ, designated as ϕ ⇒ ψ, if, when ϕ and ψ are considered as functions, ψ has

the value 1 at least at every combination at which ϕ has the value 1.

Definition 2 [51, 50] Let ξ be product of literals (a literal is a variable or its com-

plement) and ψ be a Boolean function. If ξ ⇒ ψ, then ξ is said to be an implicant of

ψ.

Definition 3 [50] A product of literals ξ is a prime implicant of ψ if ξ ⇒ ψ and if

deleting any literal from ξ results in a new product term that does not imply ψ.

The following theorem suggests that, to find the minimal expression of a Boolean

function, it suffices to look for its smallest set of prime implicants.

Theorem 2 [50] Any minimal sum-of-products expression of a Boolean function ψ

is equivalent to a sum of prime implicants of ψ.

3. Optimization Algorithms

Simplification of a Boolean function can be achieved via the Quine-McCluskey (Q-

M) method [52, 53], which is a tabular algorithm for Boolean reduction that can be

adapted to deal with incompletely specified truth tables. The Q-M method lists all

the minterms and applies the adjacency rule repeatedly to combine qualified minterm

pairs. After finding every prime implicant (PI) of the Boolean function, it then tab-

ulates the results to search for a smallest set of PIs that covers the Boolean function.

Since the objective is to find a generalization resulting in the simplest Boolean func-

tion (in SOP form), we are not only concerned with minimization given a (fixed)

truth table, but also optimization upon an incompletely specified truth table, with

uncertain outputs (“don’t-cares”). This can be achieved by a slight variation of the
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original Q-M method, allowing don’t-cares along with minterms, but excluding them

when searching for the minimum set of prime implicants.

a. Algorithm 1

Algorithm 1 PBN Generalization via Modified Quine-McCluskey Mini-

mization

1. Construct truth tables of the PBN from sample data, leaving undetermined en-

tries as ×’s. In each table, pick out all minterms and don’t-cares and group

them according to the number of 1’s (the index) in each term, e.g. the index of

01101 is 3. Put them in ascending order of index in table Tj, initially setting

j := 1;

2. In the group of index i, for each term, find all its partners in the adjacent group

of index i + 1 such that each partner differs from it by one digit only (i.e., 0

and 1 respectively). Combine them to form a new term in which the formerly

different digit is replaced by −, e.g, 01001 (index = 2) combines with 01011

(index = 3) to form 010−1 (index = 2); while 01−10 (index = 2) combines

with 01−11 (index = 3) to form 01−1− (index = 2). Put the newly formed

terms into table Tj+1. If a term has no partner at all, put itself to Tj+1;

3. Let i := i + 1 and repeat step 2 until end of table Tj;

4. Let j := j + 1 and repeat the above process until no further combination is pos-

sible. The final table Tf now contains all generalized prime implicants (GPIs).

They are GPIs but not real PIs, because some of them actually imply don’t-cares

in the truth table, not the original 1s.

5. Construct a two-dimensional prime implicant table P, where each column cor-

responds to a minterm (but not don’t-care), and each row corresponds to an
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initial generalized prime implicant. Mark the (i, j) position of P by ∗ if the ith

GPI implies the jth minterm. Delete rows (GPIs) without ∗. The remaining

rows are PIs.

6. If a column in P has only one ∗, then the corresponding row is identified as an

essential prime implicant (EPI). Find all EPIs and include them in the set of

minimum prime implicants Ξ. Put the variables contained in the EPIs to set V.

Then remove all EPIs and corresponding minterms (i.e., columns with single ∗)
from P.

7. Find a row with the maximum number of ∗’s, denoting this number s. Search

all rows that contain s ∗’s and pick the PI that adds the least number

of new variables to V. Include this PI in Ξ and update the variable set V.

Remove this row and its corresponding columns from P.

8. Repeat the above step until there is no ∗ in P. Now, Ξ is the minimum set of

PIs and the variables contained in V form the minimum predictor set.

Remark 1 Standard Boolean minimization focuses on a minimal realization rather

than connectivity. Our modification (the highlighted part) favors a realization with

lower connectivity when two or more realizations are equally simple.

Example 2 This example illustrates the above algorithm step by step. Consider the

partially specified truth table of Table VII. Construct the following initial reduction

table (the numbers in the parentheses denote the decimal numbers corresponding to

the minterms or don’t-cares):



50

Indices Minterms

0 000 (0)

1 001 (1)

2 011 (3)

110 (6)

3 111 (7)

Minterms (0) and (1) can merge to form an implicant 00−, (1) and (3) can be

merged to implicant 0−1, (3) and (7) can merge to −11, and (6) and (7) can merge

to 11−. Thus we have the second reduction table (below, left). Since no further

reduction can be done to this table, we construct a table (below, right) for finding the

minimal set of prime implicants, where the rows correspond to prime implicants, and

the columns correspond to minterms (but not don’t-cares).

Indices Minterms

0 00− (0, 1)

1 0−1 (1, 3)

2 −11 (3, 7)

11− (6, 7)

(0) (1) (7)

(0, 1) ∗ ∗
(1, 3) ∗
(3, 7) ∗
(6, 7) ∗

Note that only (0), (1) and (7) are real minterms, so any prime implicant involv-

ing only the don’t-cares [(3) and (6)] will not appear. First we identify prime implicant

(0, 1) to be the only EPI, and it contains variables W , X. That leaves minterm (7)

open. Both (3, 7) and (6, 7) cover (7), but the latter does not add extra variables while

the former does (variable Y ). So we select (6, 7). Now all the minterms are covered

and we have successfully found the minimal prime cover. Therefore, the generalized

function should be f(W,X, Y ) =
∑

((0, 1), (6, 7)) =
∑

(00−, 11−) = W̄ X̄ + WX.
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Notice the highlighted part of Algorithm 1 is a necessary modification to the stan-

dard Boolean minimization technique, for without it, prime implicant (3, 7) could

have been selected in place of (6, 7) and the function would have been f(W,X, Y ) =
∑

((0, 1), (3, 7)) =
∑

(00−,−11) = W̄ X̄ + XY, which is a minimal SOP realization,

but not an optimal solution in terms of minimal predictors. ¤

b. Algorithm 2

In spite of the improvement made, Algorithm 1 favors minimal SOP realization more

than minimal connectivity. If a minimal connectivity is more preferable, we may use

the following alternative “prune-and-minimize” algorithm. The idea is to find through

exhaustive search a smallest predictor set and the corresponding pruned truth table,

then perform Algorithm 1 to obtain a minimal realization with regard to the smallest

predictor set.

Algorithm 2 Prune-and-Minimize

1. Construct the original truth tables of the PBN.

2. For each truth table, suppose the set of variables are V, with cardinality |V| = k.

3. Let m = 1. If there exists a subset Vm = {v1, · · · , vm} ⊂ V such that for all

rows in the truth table which have the same values of v1, · · · , vm, the function

values do not contain both 0 and 1 (it is all right to have don’t-cares), then Vm

is a minimal predictor set. Prune the truth table accordingly. In determining

the function value of the pruned truth table, if in the original table, under the

same v1, · · · , vm, the function values are all don’t-cares, then the corresponding

function value in the pruned table will also be don’t-care. Otherwise, if the

original function values under the same v1, · · · , vm contain at least one 0 (or 1,
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but not both), then the pruned function value will be 0 (or 1, accordingly). If

there does not exist such a subset Vm, then let m := m+1 and repeat the search.

4. After pruning all the truth tables, perform Algorithm 1 (with the following modi-

fication) to find minimal SOP realizations of Boolean functions, thus completing

the generalization of the PBN.

5. Modification: change highlighted part in Algorithm 1 to: Search all rows that

contain s ∗’s and pick the PI with least variables.

Proposition 5 A PBN designed by the procedure in Algorithm 2 has (a) the mini-

mum connectivity, and (b) the minimal SOP realizations on the found predictor sets.

Proof. The exhaustive search on the predictor set with lowest cardinality guarantees

(a). As to (b), once a smallest predictor set is found and the truth table pruned,

Algorithm 2 uses Algorithm 1, which always selects with priority the prime implicant

which covers as many minterms as possible. Thus, the realization found will have

the least number of products (incurring the smallest number of “OR” gates). The

modification in Algorithm 2 chooses the prime implicants with least variables (thus

shortest product), so that the number of “AND” gates is also minimal. Therefore,

the SOP realization on the found predictor set must be minimal.

From a general computational perspective, Algorithm 1 has the same level of

computational complexity as the Q-M algorithm. However, for a fixed number of

variables, the more sparsely specified the truth table, the more time it takes to per-

form Q-M algorithm. For a large-scale gene network with n genes, since the number of

samples N ¿ 2n, the resulting functions will be extremely sparsely specified. There-

fore, we recommend its application on PBNs of no more than 15 genes. Algorithm

2 may handle a larger gene network because it reduces predictors of any gene from

n− 1 down to n∗ before Boolean minimization, and in practical problems the genetic
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regulatory network usually has low connectivity, typically n∗ ≤ 5. The time used for

searching n∗ variables is well compensated by performing Boolean minimization on

less variables, which is confirmed in the melanoma example, Section 1. This is the

main advantage of Algorithm 2.

C. Constrained Connectivity Optimization

1. Algorithm

In this section we consider the constrained optimization problem in which an up-

per limit is set on the maximum number of predictors allowed in a PBN, i.e., we

restrict the connectivity to be no more than a prescribed integer κ∗ in the entire

network. Under the constraint, the resultant PBN may no longer reflect the original

data with complete information; instead, there is a tradeoff between information ca-

pacity and network connectivity. From previous discussion, we are able to find the

smallest predictor sets (called full predictor sets) for genes within the network such

that consistency is satisfied. We make the following assumption.

Assumption Under the constraint on maximum allowed connectivity, the suboptimal

predictor set is a subset of the full predictor set.

Under this assumption, the constrained-connectivity optimization problem can

be interpreted as a lossy coding problem: we are to transmit a random row of a truth

table by a fixed code length. The truth table contains k + 1 binary variables, where

x = (x1, · · · , xk) is the input vector, and y is the output variable. For the lth row,

the values of the input and output variables are denoted by xl = (xl
1, · · · , xl

k) and

yl, respectively. Each row of truth table can be encoded into a string of k + 1 bits

and this coding will be lossless. When code length is limited to κ∗ + 1 with κ∗ < k,

however, we must select a subset of κ∗ input variables from x1, · · · , xk so that the
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code will convey as much correct information as possible so that the original truth

table can be recovered from received shortened codes with the least error.

Suppose the Boolean function of the original truth table is f(x1, · · · , xk), which in

the case of reduced input variables has become f ′(xn1 , · · · , xnκ∗ ), with {xn1 , · · · , xnκ∗}
being a subset of {x1, · · · , xk}. As a result, for the lth row of original truth table,

f ′(xl
n1

, · · · , xl
nκ∗ ) may or may not equal yl. More generally, if a weight wl is assigned

to the lth row, then we can define the cost function concerning chosen reduced inputs

xn = (xn1 , · · · , xnκ∗ ) to be the expected (i.e. the weighted average of) probability of

error, Pe, written as

J = E[Pe] =
2k−1∑

l=0

If ′(xl
n)6=yl(xl

n)wl,

where wl satisfies
∑2k−1

l=0 wl = 1.

This idea can naturally be extended to the constrained-connectivity-optimization

problem for PBNs. Consider the ith context in a PBN, supposing gene gj has κij

predictors. By forcing connectivity to be no more than κ∗ (κ∗ < κij), κij − κ∗

predictors have to be dropped, and doing so will create discrepancies when predicting

gi. We desire the best κ∗ predictors out of the original κij such that the target gene can

be predicted with the least probability of error. If we assume that all combinations of

values for the predictor genes are equally likely, then the following algorithm suffices.

Algorithm 3 Constrained Connectivity Optimization

1. Apply Algorithm 2 to obtain a minimally connected n-gene PBN, which has r

contexts. For the ith context and jth gene, the optimal predictor set is V ij, and

its cardinality |Vij| = κij. Set i := 1, j := 1.

2. If κij ≤ κ∗, there is nothing to be done. Otherwise, if κij > κ∗, choose a subset

V(k)
ij ⊂ Vij with |V(k)

ij | = κ∗, k = 1, · · · ,
(

κij

κ∗
)

. Variables in V(k)
ij can take on
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2κ∗ different combinations of values, ranging from 00 · · · 0 to 11 · · · 1. For the

lth combination they take, those remaining variables (not included in V(k)
ij ) can

have 2κij−κ∗ different combinations, from which one can count the times that

the function value (i.e., target gene gj) is 1 or 0 in the truth table, and denote

them by t
(k)
1,ijl and t

(k)
0,ijl , respectively (the sum of the two equaling 2κij−κ∗). Let

t
(k)
ijl := min(t

(k)
1,ijl, t

(k)
0,ijl). Compute t

(k)
ij =

∑2κ∗

l=1 t
(k)
ijl , and the probability of error

for V(k)
ij ,

ε
(k)
ij =

t
(k)
ij

2κij
.

3. Compute ε
(k)
ij for all subsets V(k)

ij , k : 1 ≤ k ≤ (
κij

κ∗
)
, and let

ε∗ij := min
k

ε
(k)
ij , k∗ij := argmin

k
ε
(k)
ij .

Then V∗ij := V(k∗ij)
ij is the suboptimal predictor set for gene gj in context i.

4. Repeat for all genes and all contexts. Redefine the Boolean functions according

to suboptimal predictor sets.

2. Example

This algorithm is illustrated in the following example.

Example 3 In one context of some PBN, g1 is determined by g2, g3, g4 via the Boolean

function

g1 = ψ1(g2, g3, g4) = g2g3 + g2g4. (4.1)

Find the best two genes which can predict g1 with the least probability of error, sup-

posing all the combinations of predictor values are equally probable. Table VIII is the

truth table for Boolean function (4.1). In rows 4 and 5, g2, g3 = 1, 0, while g1 outputs

0 and 1 in rows 4 and 5, respectively. When g2, g3 = 0, 0 (or 0, 1, or 1, 1), g1 outputs
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Table VIII. Truth Table for Function (4.1)

Row number g2 g3 g4 g1

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 0

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

the same value for g4 = 0 and g4 = 1. Thus, the probability of error with predictor

set {g2, g3} is 1/8 = 0.125. In rows 1 and 5, when g3, g4 = 0, 1, while g1 outputs 0

and 1 in rows 1 and 5, respectively. Similar observations apply for rows 2 and 6, as

well as for rows 3 and 7. Therefore, the error probability with predictor set {g3, g4}
is 3/8 = 0.375.

When using two variables to predict g1, the minimum probability of error (0.125)

is achieved by either {g2, g3} or {g2, g4}. Consequently, by using a subset of predictors,

we lose fidelity of the original Boolean function. Here, the new Boolean function

disagrees with the old one by 12.5%. ¤

D. Applications

1. Melanoma Network

We demonstrate the application of Algorithms 1 and 2 on the melanoma network

considered in Chapter III.
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The original data set for the study of metastatic melanoma [47] consists of 31

expression profiles for 10 genes and proteins: RET-1, HADHB, MMP-3, S100P, pirin,

MART-1, synuclein, STC2, PHO-C and WNT5A (see Tables III and IV). Consider

designing a 10-gene PBN from the data set given in the following table, which has

resulted from applying the Hamming filter with distance H = 2, and in which, for

convenience, the gene/protein names are replaced by the labels g1 through g10:

g1g2g3 · · · g9g10 Count

1 0 0 1 1 1 1 1 0 1 5

1 1 0 1 1 1 0 0 0 0 1

1 0 0 1 1 1 1 1 0 0 2

0 1 0 0 1 1 0 0 0 1 6

0 1 1 0 1 0 0 0 1 1 1

1 0 1 1 1 0 1 1 1 0 3

1 0 1 0 0 0 1 1 1 0 10

0 0 1 0 1 1 0 0 0 0 1

0 1 0 1 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0 1 0 1

For each gene/protein, the possible predictors are the remaining 9 genes/proteins,

which means the connectivity is up to 9. After obtaining an initial 2-context PBN

(with partially specified Boolean functions) from the consistency based design method

in Chapter III, we must generalize the network. If no optimization is done and we

generalize it by majority vote (if at least half of the specified entries in a truth table

have value 1, then set all the don’t-cares to 1; otherwise set them to 0), then the

connectivity is 9 for each gene. If we apply Algorithm 1, then the connectivity is

much lower (see Table IX). Note that for g1 through g9, each has only one function
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(i.e., same function in both contexts), while g10 has two functions (different function

for each context). Note that, for g2, Algorithm 1 with the highlighted improvement

(bold-faced text in Step 7) gives a smaller predictor set than without (marked by ∗),
even though both require the same number of AND and OR gates. Table X gives

Table IX. Ten-Gene PBN Generalized through Algorithm 1

Gene/Protein Connectivity Predictor set Boolean function

g1 3 g4, g8, g9 g8 + g4ḡ9

g2 3 g3, g6, g7 ḡ3ḡ7 + ḡ6ḡ7

g2(∗) 4(∗) g1, g3, g6, g7 (∗) ḡ1ḡ6 + ḡ3ḡ7 (∗)
g3 3 g1, g2, g6 ḡ1ḡ2 + ḡ6

g4 2 g1, g5 g1g5 + ḡ1ḡ5

g5 4 g4, g6, g9, g10 ḡ9 + g10 + g4ḡ6

g6 3 g1, g2, g3 ḡ1ḡ2 + ḡ3

g7 3 g2, g5, g8 ḡ2ḡ5 + g8

g8 2 g1, g2 g1ḡ2

g9 2 g5, g6 ḡ5 + ḡ6

g10 (function 1) 3 g2, g3, g4 ḡ2ḡ3 + g2ḡ4

g10 (function 2) 2 g2, g4 g2ḡ4

the results obtained through Algorithm 2. The highlighted part shows the difference

with Table IX.

Let us compare g1 in both tables, where the latter has lower connectivity, while

the former has a simpler realization. The reason lies in the different emphases of

the two algorithms. Since we have more interest in achieving a lowest connectivity,

the result of the latter algorithm is still preferred. Comparing g5 in both tables,

both Boolean functions need an equal total number of AND and OR gates, while
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Table X. Ten-Gene PBN Generalized through Algorithm 2

Gene/Protein Connectivity Predictor set Boolean function

g1 2 g4,g5 g4g5 + ḡ4ḡ5

g2 3 g3, g6, g7 ḡ3ḡ7 + ḡ6ḡ7

g3 3 g1, g2, g6 ḡ1ḡ2 + ḡ6

g4 2 g1, g5 g1g5 + ḡ1ḡ5

g5 2 g1, g4 g1g4 + ḡ1ḡ4

g6 3 g1, g2, g3 ḡ1ḡ2 + ḡ3

g7 3 g1, g2,g4 g1ḡ2 + ḡ2g4

g8 2 g1, g2 g1ḡ2

g9 2 g5, g6 ḡ5 + ḡ6

g10 (function 1) 3 g2, g3, g4 ḡ2ḡ3 + g2ḡ4

g10 (function 2) 2 g2, g4 g2ḡ4

the latter has lower connectivity. Comparing the results on g7, the latter algorithm

seems to lose its lead because it gives a worse realization than the former algorithm.

However, as a minimal predictor set is not unique, the predictor sets obtained by the

two algorithms are both the smallest. Thus the latter algorithm still finds the best

possible Boolean realization on the found predictor set, although it does not compete

with the realization on another minimal predictor set. If one is keen on finding the

very best realization on all minimal predictor sets, this can be done by comparing

minimal realizations on all minimal predictor sets and choosing the best.

The latter algorithm takes a much shorter time (less than 6 seconds with MAT-

LAB 6.5) than the former (more than 1 hour with MATLAB 6.5), perhaps contrary

to intuition. The reason is that there are far more don’t-cares than specified values

in this case, as a result of which the reduction process in Boolean minimization is
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Fig. 2. Glioma network in reference [1].

time-consuming. Thus one is better off pruning the variables first. Moreover, the

exhaustive search method will discard a predictor set when the first sign of failure

emerges (both 0 and 1 show up in function values where v1, · · · , vm are the same), and

will complete the mission immediately when the first satisfying set Vm is encountered.

These are time-saving measures.

2. Glioma Network

Consider the following data set containing 14 genes and proteins (listed in Table XI)

chosen from the glioma data used in [1]. The sample size is 26.

From the glioma data in Table XII, a context-sensitive PBN is designed with g1

having 2 functions, g14 having 4 functions, and the others having 1 function each.

The Prune-and-Minimize algorithm is applied to generalize the PBN and the results

are listed in Table XIII.
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Table XI. Gene/Protein Annotations of Glioma Data

Gene/protein Pseudoname

c-rel proto-oncogene protein g1

(CCK4); transmembrane receptor PTK7 g2

GNB1; transducin beta 2 subunit 2 g3

GNB1; transducin beta 1 g4

NKEFB; TSA; TDPX1 g5

(MAP kinase 1; MAPK1; PRKM1); (ERK2) g6

NDKB; NME2; PUF; NM23B g7

GRB2; ASH g8

FSHR g9

DSG2; HDGC g10

(GDF1)+UOG-1 g11

(RAI;RNH); g12

VEGF g13

FGF7; KGF g14

It can be seen that for the 14-node network, the connectivity of each gene ranges

from 1 to 5. Now let us compare the results to the network of [1] (see Fig. 3 on

p. 1245 of the reference), shown in Fig. 2. Note that the construction of network

Fig. 2 used influence to define the strength of connections between nodes (not shown

here, but shown in Fig. 3 of [1]). It was not constructed by considering coefficient of

determination or context-sensitive design, and not intended to discover the prediction

relationship. Therefore, the network in Fig. 2 was designed in an entirely different

framework from the PBN shown in Table XIII.
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Table XII. Glioma Data Preprocessed with Hamming Distance Filter

Profile Genes/proteins

# g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14
Count

1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1

2 1 0 1 1 0 1 0 1 0 0 1 1 0 1 1

3 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1

4 1 0 1 1 1 1 1 1 0 0 0 0 0 1 9

5 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1

6 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1

7 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1

8 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1

9 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1

10 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1

11 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1

12 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1

13 1 0 0 0 1 1 0 0 1 1 0 0 0 0 5

14 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1

In spite of the differences, the similarities between Fig. 2 and our network (Ta-

ble XIII) are apparent. For instance, in Table XIII, g2, g8 and g9 form a tight

relationship, such that each one is predicted by the other two. Such relationship is

also present in Fig. 2, in which there are bi-directional links between g2 and g8, a

direct link from g9 to g8, and an indirect link from g9 to g2 through g14. Also look

at the relationship between g3 and g4, or the relationship between g11 and g12, both

in Table XIII, and they are well reflected in Fig. 2. Table XIII shows g13 can be
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predicted by g2, g8 and g10, which partly coincides with Fig. 2. However, the result

in Table XIII regarding the predictors of g1 is very different from Fig. 2. Moreover,

among the predictors for g14 in Table XIII, only g8 (present in 3 functions out of the

total 4 in the table) is related to g14 in Fig. 2 by being downstream of g14, while other

predictors show no strong relations in Fig. 2.

E. Conclusion

We have addressed generalization in consistency-based PBN design by considering the

connectivity and realization complexity in terms of an optimality measure, and have

developed two algorithms in this framework, the second guaranteed to produce a PBN

with minimum connectivity and the minimal SOP realizations on the predictor sets.

Next, we have treated constrained connectivity as a rephrased lossy coding problem

and designed an algorithm that attains the required connectivity by removing some

of the predictors of each target gene in a way that minimizes the probability of

error in every regulating Boolean function. Future work will include the development

of generalization and constrained connectivity optimization methods that take into

consideration the effect on the network steady-state distribution.
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Table XIII. Glioma PBN Generalized through the Prune-and-Minimize

Algorithm

Gene/protein Connectivity Predictor set Boolean function

g1 (function 1) 5 g2, g5, g8, g10, g11 g10 + ḡ8g11 + ḡ2ḡ5 + ḡ2ḡ11 + g2g11

g1 (function 2) 5 g2, g5, g8, g10, g14 g10 + g5g14 + g5ḡ8 + g2g8 + ḡ2ḡ5ḡ14

g2 2 g8, g9 ḡ8ḡ9 + g8g9

g3 1 g4 g4

g4 1 g3 g3

g5 2 g3, g7 ḡ3 + g7

g6 1 g2 g2

g7 2 g3, g5 g3g5

g8 2 g2, g9 ḡ2ḡ9 + g2g9

g9 2 g2, g8 ḡ2ḡ8 + g2g8

g10 4 g1, g7, g8, g13 g8g13 + g1ḡ7ḡ8

g11 1 g12 g12

g12 1 g11 g11

g13 3 g2, g8, g10 g2ḡ8 + g8g10

g14 (function 1) 3 g5, g10, g11 ḡ5ḡ10 + g5ḡ10ḡ11 + g5g10g11

g14 (function 2) 3 g1, g5, g8 ḡ5g8 + g1g8

g14 (function 3) 4 g1, g2, g5, g8 g1ḡ2g5g8 + ḡ1ḡ2ḡ5

g14 (function 4) 3 g1, g5, g8 ḡ1ḡ5g8
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CHAPTER V

THE IMPACT OF PERTURBATIONS IN THE BOOLEAN MODELS OF

GENETIC REGULATORY NETWORKS∗

A. Introduction

A network is said to be robust relative to a certain network characteristic if a small

change in network structure does not significantly affect the characteristic. In the

case of a Boolean network, which is a rule-based binary network, a key form of

robustness is with respect to how a small change in a regulatory rule, say the flip of

one value in its truth table, affects the steady state of the network. Robustness is a

double-edged sword. For instance, BNs are used to model gene regulation, with gene

expressions being quantized as 0 and 1 to represent not expressed and expressed states,

respectively, and gene regulation is described by Boolean logic. Because network

inference is inherently ill-posed on account of measurement error and the impact

of latent variables, which are either immeasurable or simply not included in the

model (whose influence nevertheless still exists), model robustness is desirable for

inference so that slightly differently inferred networks will exhibit similar fundamental

characteristics. On the other hand, if the goal is to intervene in the network, for

instance, to modify its long-term behavior so as to drive it away from undesirable

states, say, metastasis in cancer, then robustness is undesirable because it impedes

intervention. This chapter addresses the robustness of Boolean networks relative to

small perturbations of the regulatory rules.

The objective of this study is comprised of two aspects:

∗ c© The Author 2007. Reprinted, with permission of the Oxford University Press,
from Bioinformatics, see [54] for complete publication information.
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• Provide a theory to analytically predict the consequences of function pertur-

bations in a Boolean network, including the impacts on state transitions and

steady-state properties (mainly attractors).

• Apply the analytical theory to intervene or control Boolean networks to obtain

desirable properties.

Given that Boolean networks are often used to model genetic regulation, the preced-

ing two aspects will help gain insight into gene regulatory network modeling in the

following ways:

• By helping to analyze the influences of modeling uncertainty and latent vari-

ables, since these two common phenomena can often be formulated as changed

Boolean functions, thereby falling into the function perturbation category.

• By aiding in the design of intervention methods to control gene regulation for

the purpose of altering steady-state cell behavior.

• By providing the means to identify the regulatory perturbations underlying

observed changes in gene behavior.

This study is motivated by the fact that these issues have not been treated thoroughly

in the literature: (1) previous works usually concern state perturbation, which is tem-

porary in nature, instead of function perturbation; (2) many works study ensembles

of BNs by exploring their overall (statistical) behavior, but do no consider the effect

on a specific BN; (3) many works do not mention attractors, and these characterize

the long-term properties of BNs, which in the context of gene regulatory networks

represent phenotypic properties. A review of the existing literature on BN robustness

is provided below.



67

There exist two kinds of variations with respect to a BN: perturbation of the

states and perturbation of the functions (the regulatory rules). The first kind of

perturbation is temporary and entails a reset of the network state to a new state.

Such a perturbation does not alter the structure of the BN and has no influence on

its steady-state properties; however, it does affect the network dynamics by replacing

the original time trajectory with a new trajectory. Since a BN possesses one or more

attractors, and each attractor has its basin of attraction (consisting of the states that

will eventually transit to this attractor), after a perturbation of the state, the new

trajectory may converge to the original trajectory and reach the same attractor, or it

may go to another basin of attraction and reach a different attractor. If it is preferable

to reach the original attractor after the perturbation, then it is desirable that the BN

be stable or dynamically robust, meaning that it has a tendency to resist disturbance

of the state and converge to its original trajectory.

The second kind of perturbation, namely, perturbation of the functions, has a

more fundamental impact on the BN and has been less studied. The network steady-

state distribution may undergo a permanent transformation: the basins of attraction

for some attractors will enlarge, shrink or shift; some attractors will disappear; and

new attractors may be created. Therefore, starting from the same initial state, the

new trajectory may or may not reach the original attractor. Understanding the im-

pact of function perturbation on steady-state properties is important for application.

As noted, depending on the context, robustness may or may not be desirable: the

robustness of an attractor and its basin of attraction is desirable if we would like to

preserve them.

State perturbations affect the network dynamics, not the steady-state properties.

This issue has been well-studied, often via the ensemble behavior of a large number of

random synchronous BNs (all the functions in the BN are updated simultaneously at
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each time step). One study shows that a natural class of robust networks is composed

of scale-free networks, in which a small (but significant) fraction of the elements are

highly connected and the majority of the elements are poorly connected [55]. Another

demonstrates the robustness of BNs whose functions belong to certain Post classes

[56]. The conclusions in [55] and [56] are based on the ensemble behavior of random

Boolean networks. A different approach explores the robustness of annealed (the

connections and functions will change at each time step) Boolean networks through

the bias-map, which is a mapping bt → bt+1, bt being the probability of a gene being

1 at time step t [57]. It introduces the concept of a stabilizing Boolean function

and relates it to network stability (dynamic robustness). It shows that many Post

and canalizing functions are stabilizing functions, which agrees with [55] and [56].

Another perspective is to define robustness as the expected probability of a single

flipped input altering the output of a Boolean function over a distribution for K-

input functions and averaged over all the nodes of the network [58]. Flipping the

function input is a form of state perturbation and the robustness measure concerns

the ensemble behavior of random Boolean networks. The conclusion is that Boolean

networks with canalizing functions are stable (the robustness measure is less than 1).

Robustness to noise is treated in [59], where the function output has a probability

of flipping its value, and the first crossing time is defined as the time needed for

two time trajectories with different initial states to cross. The paper concludes that,

for two categories of random Boolean networks (in the chaotic and ordered phases),

whether the initial states belong to the same basin of attraction or not, the average

first crossing time over a large number of networks behaves robustly.

In the above cited studies, only state perturbations are considered. As a state

perturbation affects the network in a temporary manner, meaning that only the net-

work dynamics are affected, we naturally would like to pursue a further issue, namely,
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how a perturbation of the functions in the network will influence the attractors and

the long-term behaviors of the network. The effect of function perturbation is less

studied in the literature. One of such studies is based on the ensemble performance

of a large number of random Boolean networks: In [60], network stability is mea-

sured by the overlap of state space transitions of the original BN and the one-bit

mutant BN resulting from a perturbation of a Boolean function through a one-bit

change to its truth table. The authors discover that adding a redundant node can

boost the robustness of one-bit mutant Boolean networks. Here, although function

perturbation is studied, emphasis on the network attractors is lacking. Another work,

contributed by [61], studies a different kind of perturbation: updating the functions

in an asynchronous setting. The effect of asynchronous updates of the functions on

the dynamics of Boolean-type models for the Drosophila melanogaster segment po-

larity genes is considered and different asynchronous update schemes are tested. One

model is found to be robust to changes in the initial state and robust to the update

variability; certain restrictions (a minimal prepattern) on the update scheme must be

satisfied to ensure convergence to the desired wild-type steady state. Owing to the

nature of asynchronous networks, the attractor robustness is not treated in the sense

that attractors exactly constitute the steady state in a synchronous Boolean network.

Here we study the effect of function perturbation on the attractors in a homoge-

nous synchronous BN, meaning that the Boolean functions are updated simultane-

ously and the functions do not change over time. Our analysis is applicable to any

individual BN instead of being targeted at the ensemble performance of a type of BNs

such as in [55, 58], or a particular BN such as in [61]. Therefore, the methods and

results in this chapter are more general. We do not define a robust measure; rather,

we explore the exact consequences of function perturbations and show how they can

be utilized for analysis and synthesis. We focus on function perturbation in the form
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of a one-bit change of the truth table and explore its impact on the attractors. We

address both the robustness and flexibility issues, and show that the latter can be

useful for intervention in Boolean networks. Since state transitions completely char-

acterize the network dynamics and define a BN’s attractors and basins of attraction,

we propose to pursue our objective through the following issues: (1) Impact on state

transitions; (2) Impact on attractors, namely, which attractors will be invariant to

the perturbations and which non-attractor states will become new attractors; and (3)

Applications, including intervention (given a BN, design an intervention strategy to

achieve a certain objective through function perturbation) and perturbation identi-

fication (given the observed state transitions of a BN and the state transitions after

function perturbation, identify the perturbation).

B. Robustness Analysis of Function Perturbation

1. Problem Formulation

Recall from Chapter II that a (homogeneous and synchronous) Boolean network can

be represented as G(U, f), where U = {x1, x2, · · · , xn}, f) = (f1, f2, · · · , fn). The

value of node xi at time t + 1 can be predicted by its ki input nodes at time t by

Equation 2.1, or in the following simplified form

xi = fi(xi1, xi2, ..., xiki
), 1 ≤ i ≤ n.

An input variable to some function is said to be a fictitious if its value being one

or another has no effect on the function output; otherwise, it is called an essential

variable. We will use the notations fi(x1, x2, · · · , xn) and fi(xi1, xi2, ..., xiki
) inter-

changeably, with the former using all the variables (some of which are fictitious) and

the latter specifying only the essential variables.
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The state of the Boolean network at time t is denoted as x(t) and a specific

state can be written as an n-dimensional binary vector (a1, a2, · · · , an), where ai ∈
{0, 1}, 1 ≤ i ≤ n, or written as a1a2 · · · an in a compact form. Since the state space

of an n-node Boolean network is S = {0, 1}n = {00 · · · 0, 00 · · · 1, · · · , 11 · · · 1}, a list

of the one-step successor states of every state in S can thus be constructed, which

is generally called the state transition rules or state transitions. For instance, if a

Boolean network has 3 nodes, its one-step state transition rules will consist of 8

states, which are the successors of states 000, 001, · · · , 110, 111, respectively.

The long-term behavior of a Boolean network is characterized by its attractors.

An attractor can either be a singleton attractor or an attractor cycle, depending on

the number of states it contains. The attractors in BNs modeling biological networks

are typically associated with phenotypes and tend to be short [13], with biological

stability contributing to singleton attractors. For instance, singleton attractors have

been associated with phenotypes such as cell proliferation and apoptosis [14]. Our

basic results will be stated for singleton attractors, for which the analysis leads to

tractable propositions, and we will then show how they can be extended to multiple-

state attractor cycles, albeit, with increased complexity.

A Boolean function can be represented by a truth table shown below.

Row label xi1xi2 · · · xiki
fi(·)

1 00 · · · 0 fi(00 · · · 0)

2 00 · · · 1 fi(00 · · · 1)

...
...

...

2ki 11 · · · 1 fi(11 · · · 1)

If the function fi depends on ki input variables xi1, xi2, · · · , xiki
, then the evaluated

input vector on row j (1 ≤ j ≤ 2ki) of the truth table is denoted by ai
j, with

ai
j ∈ {0, 1}ki . For instance, in the truth table above, ai

2 = 00 · · · 1.
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The state transition s → w depends on the vector function f = (f1, f2, · · · , fn).

Restricting our attention to fi means considering the ith mapping s → wi. Since

fi depends on (xi1, xi2, · · · , xiki
), the mapping depends on (si1, si2, · · · , siki

) only. If

u 6= s but (ui1, ui2, · · · , uiki
) = (si1, si2, · · · , siki

), then u and s both map to wi under

fi. If we let Ini(s) = (si1, si2, · · · , siki
) denote the input vector for function fi as it

operates on state s, then Ini(u) = Ini(s) implies fi(u) = fi(s). For instance, if n = 5,

s = 01001, u = 00011, and xi1xi2 · · · xiki
= x1x3x5, then Ini(u) = Ini(s) = 001 and

fi(u) = fi(s) = fi(001).

In a Boolean network, a one-bit perturbation occurs when one chooses a function

fi and makes a one-bit change of its truth table by flipping the value on the jth entry

(1 ≤ j ≤ 2ki), that is, change 0 to 1 or change 1 to 0. We denote the new function

by f
(j)
i , so that the one-bit perturbation on row j takes the form fi → f

(j)
i , where

f
(j)
i (ai

j) = 1 − fi(a
i
j). Since single-node flips play a key role in our analysis, we

introduce the following notation: if s = (s1, s2, · · · , sn), then s(i) = (s1, · · · , si−1, 1−
si, si+1, · · · , sn).

2. Theoretical Results on One-Bit Function Perturbation

We begin with a proposition and corollaries describing the basic effects of a single

one-bit perturbation on the state transitions of a Boolean network.

Proposition 6 The state transition s → w is affected by the one-bit perturbation

fi → f
(j)
i if and only if Ini(s) = ai

j. If the state transition is affected, then the new

state transition will be s → w(i).

Proof. The first statement follows at once from the fact the ith mapping transition

s →wi depends only on Ini(s) and this is affected by the perturbation if and only

if Ini(s) = ai
j. Next, suppose the transition is affected by the perturbation. Then,
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absent perturbation, the ith mapping is given by s → fi(Ini(s)) = fi(a
i
j) = wi; with

perturbation, the ith mapping is s → f
(j)
i (Ini(s)) = f

(j)
i (ai

j) = 1 − fi(a
i
j) = 1 − wi.

Since the other n− 1 mappings remain unchanged, following the perturbation, state

s will transit to w(i).

Corollary 1 If |ai
j| = ki, then the one-bit perturbation fi → f

(j)
i will result in 2n−ki

changed state transitions in the state transition diagram. This is equivalent to 2n−ki

altered edges in the state transition diagram.

Proof. According to the preceding proposition, the transition of a state s is affected

by the perturbation fi → f
(j)
i if and only if Ini(s) = ai

j. Among the 2n states s,

Ini(s) = ai
j for exactly 2n−ki of them.

Corollary 2 (Invariant singleton attractor) Suppose state s is a singleton at-

tractor. It will no longer be a singleton attractor following the one-bit perturbation

fi → f
(j)
i if and only if Ini(s) = ai

j.

Proof. According to the proposition, subsequent to the perturbation, s → s(i) if

Ini(s) = ai
j, in which case it is no longer a singleton attractor, and s → s if Ini(s) 6= ai

j,

in which case it remains a singleton attractor.

Corollary 3 (Emerging singleton attractor) A non-singleton-attractor state s

becomes a singleton attractor as a result of the one-bit perturbation fi → f
(j)
i if

and only if the following are true: (1) Ini(s) = ai
j, and (2) absent the perturbation,

s → s(i).

A natural question arises when a desirable singleton attractor s is lost on account

of a one-bit perturbation: Can a second perturbation restore it? If the perturbation

fi → f
(j)
i causes s to no longer be a singleton attractor, then the new transition of s
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must be s → s(i). According to the previous corollary, s will again become a singleton

attractor as a result of the one-bit perturbation fk → f
(l)
k if and only if Ink(s) = ak

l ,

and, absent the perturbation, s → s(k). From the second condition, since we know

that s → s(i), we must have k = i. Hence, from the first condition we must have

Ini(s) = ai
l, but from the fact that s has been affected by the perturbation fi → f

(j)
i ,

we know that Ini(s) = ai
j. Hence, s is restored to being a singleton attractor by

the same one-bit perturbation fi → f
(j)
i that caused it to cease being a singleton

attractor, and no other. This means that the original Boolean network is restored.

According to Corollary 2, a singleton attractor s is no longer a singleton attractor

following a one-bit perturbation fi → f
(j)
i if Ini(s) = ai

j, but could it remain an

attractor state as part of an attractor cycle following perturbation? Indeed it could.

Consider the following situation for 3 nodes: 000 is a singleton attractor, 001 → 010

and 010 → 000, so that 001 and 010 are in the basin of 000. The three functions

are defined by f1(x2, x3) = 0 for all x2, x3; f2(x1, x3) = 0 for all x1, x3 except for

f2(0, 1) = 1; and f3(x2, x3) = 0 for all x2, x3. Consider the one-bit perturbation f3 →
f

(00)
3 . Following the perturbation, the third function becomes f

(00)
3 (x2, x3) = 0 for all

x2, x3, except for f
(00)
3 (0, 0) = 1. This leads to the following transitions, 000 → 001,

001 → 010, and 010 → 000, and hence the attractor cycle 000 → 001 → 010 → 000.

Thus, our care in stating the results is not unwarranted.

From the preceding example, we see that a one-bit perturbation can result in a

singleton attractor becoming a member in a multiple-state attractor cycle. On the

other hand, it should be clear from Proposition 6 that a one-bit perturbation can af-

fect a multiple-state attractor cycle. Suppose s1 → s2 → · · · → sm → s1 is an m-state

attractor cycle. It follows from Proposition 6 that this cycle will be affected by the

one-bit perturbation fi → f
(j)
i if and only if ai

j ∈ {Ini(s1), Ini(s2), ..., Ini(sm)}. By be-

ing affected, we mean that exact cycle is not an attractor cycle following perturbation.
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For instance, suppose ai
j = Ini(s1). Then, following perturbation, s1 → s

(i)
2 6= s2. Of

course, s1 might still be an attractor state as part of some other attractor cycle.

Corollary 1 puts an upper bound on the number of singleton attractors that

can be lost owing to a one-bit perturbation fi → f
(j)
i , namely, min{2n−ki , N}, where

|ai
j| = ki and N is the number of singleton attractors. Taking a network view, the

total number of singleton attractors lost is bounded by

min{2n

n∑
i=1

2−ki , N} ≤ min{n2n−kmin , N}

where kmin is the minimum connectivity among the nodes. Increased connectivity

provides greater robustness relative to the loss of singleton attractors via one-bit

perturbations.

Thus far, except for considering a second perturbation to restore a singleton at-

tractor lost on account of a one-bit perturbation, we have focused on single one-bit

perturbations. Increasing the number of one-bit perturbations increases the com-

plexity of the problem; indeed, any Boolean network on the same variables can be

obtained from any other via a sufficiently long sequence of one-bit perturbations. If

we consider two one-bit perturbations, then there are two cases: (1) the same function

is changed and a flip occurs on two rows; and (2) two functions are changed. The

two cases can be expressed as: (1) fi → f
(j)
i and f

(j)
i → f

(j,l)
i , j 6= l; (2) fi → f

(j)
i

and fk → f
(l)
k , i 6= k. To extend Proposition 6 to two one-bit perturbations, we let

w(i,k) denote the state obtained from w by flipping the ith and kth nodes. We state

separate extensions for the two cases: (1) The state transition s → w is affected by

the two-bit perturbation fi → f
(j,l)
i , j 6= l, if and only if Ini(s) ∈ {ai

j, a
i
l}, and if it

is affected, then s → w(i). (2) The state transition s → w is affected by the two

one-bit perturbations fi → f
(j)
i and fk → f

(l)
k (i 6= k), if and only if Ini(s) = ai

j or
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Ink(s) = ak
l , and if it is affected, then s → w(i) when Ini(s) = ai

j and Ink(s) 6= ak
l ,

s → w(k) when Ink(s) = ak
l and Ini(s) 6= ai

j, and s → w(i,k) when Ini(s) = ai
j and

Ink(s) = ak
l .

3. Extension to Two-Bit Function Perturbation

The corollaries of Proposition 6 are extended to the two one-bit perturbations as

follows.

Corollary 4 Supposing two one-bit perturbations take place in the Boolean network,

consider the following two cases.

Case (a): fi → f
(j,l)
i (i.e., fi is perturbed on rows j and l, j 6= l) will result in

2n−ki+1 changed state transitions.

Case (b): fi → f
(l1)
i and fj → f

(l2)
j (i 6= j), assuming |ai

l1
| = ki, |aj

l2
| = kj, and

fi and fj have kij input variables in common. If each of the kij variables takes the

same value in ai
l1

and in aj
l2
, then there will be 2n−ki + 2n−kj − 2n−ki−kj+kij changed

state transitions; otherwise, there will be 2n−ki + 2n−kj changed state transitions.

Corollary 5 (Invariant singleton attractor) Suppose state s is a singleton at-

tractor. It will no longer be a singleton attractor following the two-bit perturbation

fi → f
(j,l)
i if and only if Ini(s) = ai

j or ai
l. s will cease to be a singleton attrac-

tor following the two one-bit perturbations fi → f
(l1)
i and fj → f

(l2)
j if and only if

Ini(s) = ai
l1

or Inj(s) = aj
l2
.

Corollary 6 (Emerging singleton attractor) A non-singleton-attractor state s

becomes a singleton attractor as a result of the two-bit perturbation fi → f
(j,l)
i if and

only if the following is true: Ini(s) = ai
j or ai

l, and absent the perturbation, s → s(i).

s will become a singleton attractor following the two one-bit perturbations fi →
f

(l1)
i and fj → f

(l2)
j if and only if one of the following is true:
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(1) Ini(s) = ai
l1

and Inj(s) = aj
l2
, and absent the perturbation, s → s(i,j);

(2) Ini(s) = ai
l1

and Inj(s) 6= aj
l2
, and absent the perturbation, s → s(i);

(3) Ini(s) 6= ai
l1

and Inj(s) = aj
l2
, and absent the perturbation, s → s(j).

From the extension of Proposition 6 and its corollaries to two one-bit perturba-

tions, it is clear how to extend them to more than two one-bit perturbations, albeit,

with an increased number of cases.

C. Algorithms

1. Network Intervention

One objective of network modeling is to use the model to design intervention strategies

for affecting the dynamic evolution of the network. The methods apply whether

or not a network possesses a steady-state distribution. We will point out whether

the steady-state distribution is affected if it exists. Such intervention studies have

focused on three general approaches: state perturbation, optimal control, and function

perturbation.

With state perturbation, the state of the network is reset to an initial state and

the network is allowed to evolve from there, the point being that the new trajectory

will visit more desirable states [32]. The network structure is not changed. If the

network possesses a steady-state distribution, then that distribution is not changed.

For optimal control, there exist one or more controllable variables that affect the

transition probabilities of the network and these can be used to desirably affect its

dynamic evolution [62]. The network structure is not changed. If the network pos-

sesses a steady-state distribution and the control is applied over a finite time horizon

and then stopped, then the steady-state distribution is not changed [62, 46]; however,

if the control is applied over infinite time (forever), then the steady-state distribution
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is changed to one whose mass is more concentrated in favorable states [63]. For in-

stance, based upon a study finding that blocking the Wnt5a protein from activating

its receptor could substantially reduce Wnt5a’s ability to induce a metastatic phe-

notype [48], optimal control theory has been been applied to an expression-based

network including the WNT5A gene in such a manner as to down-regulate WNT5A

[62, 46, 63], the objective being to decrease the likelihood of metastasis.

In the case of function perturbation, one or more Boolean functions are changed

to desirably alter the network. The network structure is changed [33]. If the network

possesses a steady-state distribution, then that distribution is changed.

These applications have been in the context of probabilistic Boolean networks;

however, since Boolean networks are a special case of probabilistic Boolean networks,

the results apply at once. For instance, complexity issues relating to optimal control

have been studied in the context of Boolean networks [64]. If a BN possesses random

node flips, so that at any time point there is a positive probability of any node flipping

from 0 to 1 or from 1 to 0, then it possesses a steady-state distribution. The classical

deterministic BNs are free of such random node flips [13]. Thus, unless there is a

single attractor cycle, there does not exist a steady-state distribution.

Before formally providing the procedure to control the stationary probabilities in

a PBN via function perturbation, we revisit a problem considered in [33] to motivate

and illustrate the methodology. In the Discussion section we will apply the procedure

to alter a WNT5A network in order to decrease the likelihood of metastasis.

Given two sets of states, perhaps representing two different cellular functional

states or phenotypes, the general problem is to specify some optimization criterion

regarding the stationary probabilities of the states and to discover some multiple per-

turbation of a single function that best achieves the optimization. The analysis is for

a probabilistic Boolean network. These have been discussed in many places, including
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review papers, so we leave their precise mathematical formulation to the literature

[22]. Let us simply state that the analysis in [33] corresponds to an instantaneously

random PBN, which means that at each time point each node function is randomly

chosen from a set of possible functions and at each time point there is a probability

p that a node value can be flipped. Each set of selected functions corresponds to

a single Boolean network, so that probabilistically, each of these corresponds to a

realization of the network.

In the example considered in [33], the PBN consists of three nodes, x1, x2 and

x3. Two functions correspond to x1, with probabilities 0.6 and 0.4 respectively; node

x2 has a single function, and node x3 also has two functions, with equal likelihood.

Table XIV (see [33], pp. 436, Table 1) lists the functions and their selection probabil-

ities (cij), and Fig. 3 (see [33], pp. 437, Fig. 1) shows the state transition diagram of

the PBN when free of random node flips. Thus the PBN has 2×1×2 = 4 constituent

Boolean networks (Table XV). The probability of a node flip is p = 0.01, in which

case the stationary probabilities of the two singleton attractors are π(000) = 0.0752

and π(111) = 0.7310. The intervention objective is to use function perturbation to

make both new stationary probabilities, µ(000) and µ(111), close to 0.4, which means

minimizing the error criterion |µ(000)− 0.4|+ |µ(111)− 0.4|, while maintaining their

total stationary mass. This corresponds to the objective of reducing the stationary

probability of the undesirable state 111 while increasing the stationary probability of

the desirable state 000 (see [33] for a detailed discussion).

The state transition diagrams absent node perturbation (p = 0) for the four

individual BNs are shown in Fig. 4. Let BOA{x1x2x3} denote the basin of attraction

of x1x2x3 and |BOA{x1x2x3}| denote its size. It can be seen that in both BN1 and

BN3, |BOA{000}| = 1 and |BOA{111}| = 7. In BN2, |BOA{000}| = |BOA{111}| =
1 and in BN4, |BOA{000}| = 2 and |BOA{111}| = 1. Since the sum of the stationary
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Table XIV. Definition of Functions in the PBN

x1x2x3 f11 f12 f21 f31 f32

000 0 0 0 0 0

001 1 1 1 0 0

010 1 1 1 0 0

011 1 0 0 1 0

100 0 0 1 0 0

101 1 1 1 1 0

110 1 1 0 1 0

111 1 1 1 1 1

cij 0.6 0.4 1 0.5 0.5

Table XV. The Four Components of PBN

Network i Network function fi Probability Pi

BN1 (f11, f21, f31) 0.3

BN2 (f11, f21, f32) 0.3

BN3 (f12, f21, f31) 0.2

BN4 (f12, f21, f32) 0.2
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P2 + P4
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Fig. 3. State transition diagram of the PBN (probability of state perturbation p = 0).

probabilities of 000 and 111 must not change, we need to increase the BOA of 000 and

decrease the BOA of 111. Since function f21 is used in all four BNs, its perturbation

will result in changes in all BNs. On the other hand, if we perturb any of the other

four functions, only two BNs will be affected. So we prefer not to perturb f21 unless

necessary. Recalling Corollary 1, in this example, n = ki = 3 and 2n−ki = 1, so

perturbing one row of a function truth table will affect only one state transition.

First, consider BN1 and BN3. Can we increase the BOA of 000 by finding

any state whose successor state differs from 000 by only 1-bit (preferably on the

1st and 3rd bit)? The answer is 011 of BN3. However, even if we make a one-bit

perturbation of function f31 to let 011 → 000 in BN3, |BOA{000}| will increase

by only 1. This perturbation also affects BN1 (011 → 100), but has no effect on

BOA{000} or BOA{111}. Thus we give up this attempt.

Now consider BN2 and BN4. Can we increase |BOA{000}| by a one-bit function

perturbation (preferably not f21)? One possibility is to change the state transition

110 → 100 to 110 → 000 in BN2 and BN4, i.e., perturb f11 or f12. Another possibility

is to change the state transition 100 → 010 to 100 → 011 in BN4, namely perturb

f32 to f
(5)
32 . Consider the following choices:
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000 001 110 101 111

100 010 011

(a) BN1

000 001 110 101 111

100 010011

(b) BN2

000 001 110 101 111

100010011

(c) BN3

000 001 110 101 111

011 100 010

(d) BN4

Fig. 4. State transition diagram of the 4 BNs (probability of state perturbation p = 0).
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Choice 1: Perturb f11 to f
(7)
11 where a11

7 = 110. As a consequence, in BN1,

110 → 001 and |BOA{111}| decreases to 3; in BN2, 110 → 000, and |BOA{000}|
increases to 7. This is a possible candidate.

Choice 2: Perturb f12 to f
(7)
12 . As a consequence, in BN3, 110 → 001 and

|BOA{111}| decreases to 2; in BN4, 110 → 000 and |BOA{000}| increases to 7. This

is a possible candidate.

Choice 3: Perturb f32 to f
(5)
32 , where a32

5 = 100. As a consequence, in BN4,

100 → 011 and |BOA{000}| increases to 7; in BN2, 100 → 011, which does not

affect BOA{111} or BOA{000}. Since BN1 and BN3 adopt f31 rather than f32,

they are unaffected. Overall, this perturbation only increases |BOA{000}| in BN4,

without affecting BOA{111}. Thus, it cannot achieve the desired goal, which requires

increasing |BOA{000}| and decreasing |BOA{111}|. This choice is ruled out.

Simulations show that choice 1 yields stationary probabilities µ(000) = 0.6 and

µ(111) = 0.25. Choice 2 yields µ(000) = 0.43 and µ(111) = 0.41, which are close

to the goal. Hence, we adopt choice 2. Compare our solution to that of [33], where

the function f12 is perturbed from 0, 1, 1, 0, 0, 1, 1, 1 to 0, 0, 0, 1, 0, 1, 0, 1 (4-bit per-

turbation, on rows 2, 3, 4, and 7), and the resulting stationary probabilities are

µ(000) = 0.4068 and µ(111) = 0.4128. The solution of [33] is obtained by exhaustive

search of all possible 1280 function perturbations (allowing one function to be per-

turbed by any number of flips in its truth table). Our solution is close to optimal

with only a single-bit perturbation and it does not require an exhaustive search.

Using the preceding example as a guide, we have the following general procedure

for optimizing the stationary probabilities in BNs or PBNs. Here we assume one-bit

perturbation only.

1. Recognize the goal of optimization and formulate the error criterion. In the
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preceding example, the goal is to have equal stationary probability mass for

the target states 000 and 111, while the sum of the probability masses remains

unchanged. The error criterion is |µ(000)− 0.4|+ |µ(111)− 0.4|. Therefore, we

must increase the probability mass of 000 and decrease that of 111 at the same

time.

2. Determine the priority of perturbation for the functions. For instance, in a

PBN, if some of the functions are common in two or more constituent BNs, it is

preferred to perturb a function that affects as few BNs as possible. For another

example, in a BN, it is more favorable to perturb a function that results in fewer

changes in the state transitions.

3. Plot the state transition diagrams. Analyze the BOAs of the target states by

taking into consideration the BOA sizes and the probabilities of BNs (in the case

of a PBN). To increase the BOA of a target state s by a one-bit perturbation,

find a candidate state outside BOA{s} whose next state differs from a state

within BOA{s} by only one-bit. Find all such candidates. To decrease the

BOA of a target state s by a one-bit perturbation, find a candidate state in

BOA{s} whose next state differs from a state outside BOA{s} by only one-bit.

Notice that in a PBN, perturbation of one function can result in changes in two

or more constituent BNs.

4. List all the options of perturbation, from the highest priority to the lowest. For

each option, draw new state transition diagrams and analyze the BOAs of the

target states again. Throw away the options that are far from the goal. Notice

that the steady-state probability mass of an attractor state is mainly affected

by the size of its BOA, but also has to do with the BOA structure and the node

flipping probability p. Therefore the BOA sizes can be used to estimate (but
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are not deterministic of) the probability masses of the target states.

5. For the remaining options, make computations either by simulation or by direct

computation through Markov chain analysis (see [32] for details), and pick the

option that is closest to the goal. If two or more options are equally good, pick

the one with the highest priority (e.g., perturbed function is present in the least

number of BNs, or carries the least weight in a pre-defined importance rank,

etc).

2. Identifying Function Perturbations

Suppose we have knowledge of the state transitions of a Boolean network. Imagine a

perturbation occurs in the Boolean model unbeknownst to us except that we observe

the new state transitions. By comparing the state transitions before and after pertur-

bation, we may ask two questions: (1) Which Boolean function is perturbed? (2) On

which row of the truth table is the perturbation? These are identification problems,

useful in diagnosing changes in gene regulatory networks, such as changes caused by

a disease, radiation therapy, drug treatment, etc.

We now present a general procedure for identifying function perturbations in a

Boolean network:

1. Find out perturbed function(s).

Let the list of state transition of the original Boolean network be given by

s0, s1, · · · , s2n , these being the successor states of 00 · · · 0, 00 · · · 1, · · · , 11 · · · 1,

respectively. The list of state transitions of the perturbed Boolean network

is denoted by s′0, s
′
1, · · · , s′2n . According to Proposition 6, if a state transition

is affected by a one-bit perturbation on Boolean function fi, then the new
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successor state differs from the old by the value of node xi. Thus, by comparing

the two lists, one can tell which function(s) is(are) perturbed.

2. Locate the flipped entries of the perturbed function(s).

For the simple case of a one-bit perturbation in one function fi, recall from

Corollary 1 that 2n−ki states will have changed successors. Moreover, those

states share the same value on nodes xi1, · · · , xiki
. Assume the differences be-

tween the state transition rules before and after perturbation are given by the

states sd1, sd2, · · · , sdmi
versus the states s′d1, s

′
d2, · · · , s′dmi

and ki is unknown.

We can find ki by computing ki = n − log2 mi. Knowing that those states are

the successor states of (d1)2, (d2)2, · · · , (dmi)2, which are the length-n binary

representations of decimal numbers d1, d2, · · · , dmi (e.g, for a 3-node Boolean

network, (6)2 = 110), we may compare the states (d1)2, (d2)2, · · · , (dmi)2 to

find the common bits in order to identify the parent nodes of xi, which are

xi1, · · · , xiki
. Moreover, if

Ini((d1)2) = Ini((d2)2) · · · = Ini((dmi)2) = (u1, · · · , uki
) = ai

j,

then we can conclude that the perturbation on fi takes place on the jth row of

its truth table.

3. For the case of two-bit perturbations, we can refer to Corollaries 4, 5 and 6 for

a similar analysis. Likewise, we can treat more complex perturbations, albeit

with increased difficulty.

D. Applications

In this section we will apply the intervetion pocedure to beneficially control the gene

WNT5A in a network releted to melanoma and to indentify a function perturbation
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in a Drosophila melanogaster segmentation polarity gene network.

1. Intervention in a WNT5A Network

We consider a Boolean network taken from a context-sensitive PBN model for a

WNT5A network constructed for an intervention study [46]. The original PBN model

was inferred from the data collected in a metastatic melanoma study [47] which

found that that the abundance of the messenger RNA of the WNT5A gene was

highly discriminating between cells with properties typically associated with high

and low metastatic competence. A subsequent study [48] validated and expanded

this finding by experimentally increasing the levels of the Wnt5a protein secreted

by a melanoma cell line, as a result of which the metastatic competence of the cell

line was directly altered. It was also found that through an intervention blocking

the Wnt5a protein from activating its receptor, Wnt5a’s ability to induce metastasis

can be substantially reduced. These results suggest that using an intervention to

down-regulate the WNT5A gene can lower the chance of metastasis in a cell line.

In [46] seven genes, WNT5A, pirin, S100P, RET1, HADHB and STC2, were se-

lected for inference and intervention in a melanoma network. The objective was to

exert a control variable for a finite time to steer the network dynamics towards desir-

able states, those for which WNT5A = 0, not highly expressed. Their method uses an

external control to change the state transitions temporarily instead of changing the

network structure. In our study, we will use a different approach and permanently

alter the network structure by a minimal amount of function perturbation.

To study the chosen Boolean network, we relabel the seven genes, WNT5A,

pirin, etc., as x1, x2, · · · , x7. The functions are defined in Table XVI, where under

the heading “function values” each item is a binary string whose ith bit represents

the function value on the ith row of the truth table. For instance,in the last row the
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Table XVI. Definition of a WNT5A Boolean Network

Function Input variables Function values

f1 x6 10

f2 x2, x4, x6 00010111

f3 x3, x4, x7 10101010

f4 x4, x6, x7 00001111

f5 x2, x5, x7 10101111

f6 x2, x3, x4 01110111

f7 x2, x7 1101

entry 1101 means that for the inputs 00, 01, 10, 11, the function outputs are 1, 1, 0, 1,

respectively.

This BN has four attractors 0101111, 0110110, 0111110 and 1000001. Their BOA

sizes are 48, 4, 16 and 60, respectively. The last attractor s = 1000001 is undesirable,

because WNT5A gene is up-regulated. Moreover, s has a large BOA (consisting

of nearly 50% of the total number of states), so the possibility of reaching it is

high. Our objective is to eliminate this attractor or minimize its BOA if elimination

is impossible, that is, min|BOA{s}|. We will achieve this goal through function

perturbations, with two constraints: (1) to perturb as few bits in the functions as

possible; (2) to affect as few state transitions as possible.

For constraint (2), recall that the number of affected state transitions by one-bit

perturbation equals 2n−ki , and it is preferable to choose from the following functions

for perturbation: f2, f3, f4, f5, and f6. As a result, 16 state transitions (1/8 of the

total) will be affected.

To eliminate attractor s, we will choose from the above five functions for one-bit

perturbation and follow the steps below.
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(i) In an effort to eliminate attractor s by a one-bit perturbation of a function,

we wish to change the state transition from s → s to s → u, such that u

differs from s by exactly one bit. Since the 5 preferred functions to perturb are

given, the candidate states will be u1 = 1100001, u2 = 1010001, u3 = 1001001,

u4 = 1000101 and u5 = 1000011.

(ii) Consider the following 5 options.

Option 1 : Change the state transition to s → u1. Noticing In2(s) = 000, we can

achieve it through perturbation f2 → f
(1)
2 . By applying the theoretical

results, we can easily find that after the perturbation, the other 3 attractors

are unaffected, and that now s → 1100001 ↔ 1000101. It can be seen that

a new attractor cycle is formed, and its constituent states have x1=1, which

is undesirable.

Option 2 : Change the state transition to s → u2. This can be done through

f3 → f
(2)
3 . As a result, the other three attractors remain the same, and

a new attractor cycle, {1000011, 0010001}, will be formed, and the first

constituent state is undesirable (x1=1).

Option 3 : Change the state transition to s → u3. This can be done through

f4 → f
(2)
4 . As a result, the other 3 attractors are still the same, while s

disappears. This is a viable option.

Option 4 : Change the state transition to s → u4 by f5 → f
(2)
5 . The result is a new

undesirable attractor cycle, {s, 1000101}, while the other 3 attractors do

not change.

Option 5 : Change the state transition to s → u5 by f6 → f
(2)
6 . The result is a new

attractor 0000011, while the other 3 attractors do not change. This is also



90

a viable option.

(iii) Both Option 3 and Option 5 can eliminate the undesirable attractor without

creating a new undesirable one; however, Option 3 does not create any new

attractor, while Option 5 creates a new attractor 0000011. By comparison,

Option 3 has less impact on the original network, so it is the better solution.

By following the outlined procedure, we are able to eliminate the undesirable attrac-

tor associated with high competence of cellular metastasis with a one-bit function

perturbation, with no other attractors affected or any new attractor created. More-

over, the perturbation is chosen so that a minimum number of state transitions will

be affected. All of these are achieved without exhaustive search, and without any

complex computation.

2. Perturbation Identification in a Drosophila melanogaster Segmentation Polarity

Gene Network

We will now apply the perturbation identification strategy to a Drosophila melanogaster

segmentation polarity gene network [65]. Consider a Boolean network described by

equation (4) of [65]. There are 8 nodes (genes), wg1, wg2, wg3, wg4, PTC1, PTC2,

PTC3 and PTC3. The functions are defined as follows,

wg1 = wg1 · wg2 · wg4,

wg2 = wg2 · wg1 · wg3,

wg3 = wg1 + wg3,

wg4 = wg2 + wg4,

PTC1 = wg2 · wg4 + PTC1 · wg1 · wg3,
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PTC2 = wg1 · wg3 + PTC2 · wg2 · wg4,

PTC3 = 1,

PTC4 = 1.

This network has 10 singleton attractors, 00001111 (15), 00010111 (23), 00011111

(31), 00101011 (43), 00101111 (47), 00110011 (51), 01010111 (87), 01011111 (95),

10101011 (171), 10101111 (175) (see [65], Fig. 6). In the parentheses following each

attractor are the corresponding decimal numbers.

Among the attractors, 23 and 31 lead to a wild-type pattern and a variant of

a wild-type pattern, respectively. 43 and 47 lead to patterns without parasegment.

Those patterns are well-known experimentally. 87 and 95 lead to patterns similar to

wild-types, and 171 and 175 lead to patterns similar to non-parasegment patterns,

but these patterns are not observed experimentally. Assume the network is modified

so that the attractors 87, 95, 171 and 175 disappear, leaving 6 attractors. Under

the modification, suppose state 87 ∈ BOA{23}, 95 ∈ BOA{31}, 171 ∈ BOA{43},
and 175 ∈ BOA{47}, each reaching its attractor in one step. Suppose we have no

knowledge about other changes in the network. Based on the partial knowledge, can

we find out how the network is modified?

States 87 (01010111) and 23 (00010111) differ by the 2nd bit. States 95 (01011111)

and 31 (00011111) also differ by the 2nd bit. States 171 and 43 differ by the 1st bit.

States 175 and 47 differ by the 1st bit too. According to Proposition 6, perturba-

tions occur on the function for gene wg2 and on the function for gene wg1. The

former function has genes wg1, wg2 and wg3 as inputs, and in both states 87 and

95, (wg1, wg2, wg3) = 010 = a2
3, so the 3rd row of the truth table is flipped. The

latter function has genes wg1, wg2 and wg4 as inputs, and in both states 171 and 175,

(wg1, wg2, wg4) = 100 = a1
5, so the 5th row of the truth table is flipped. The new
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definitions for the two functions are:

wg1 =





wg1 · wg2 · wg4, if (wg1, wg2, wg4) 6= 100,

1− wg1 · wg2 · wg4, if (wg1, wg2, wg4) = 100,

wg2 =





wg2 · wg1 · wg3, if (wg1, wg2, wg3) 6= 010,

1− wg2 · wg1 · wg3, if (wg1, wg2, wg3) = 010.

Simulation results of the new Boolean network with the above modifications agree

with our conclusion.

To make the above identification, we do not require complete knowledge of the

state transitions. This is because even a 1-bit difference in a single function can result

in 2n−ki changes in state transitions, and when n > ki, there is a lot of redundant

information.

E. Conclusion

This chapter provides several analytical results concerning the perturbation of func-

tions in a Boolean network, and in doing so extends previous work on network sta-

bility in a new direction: the effect of structural perturbation on network stability

and long-term behavior. It shows how to apply the analytical results to control the

stationary probabilities of states in a PBN and has applied the method to intervene

in a WNT5A network to avoid high competence metastatic cellular states. It shows

to to use the analytical results to identify function perturbations when changes in

network behavior are observed and has applied this method to identify structural

changes made in a drosophila polarity gene network. The application procedures do

not require exhaustive searches or complex computation.
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CHAPTER VI

SUMMARY

In this dissertation, the following three issues in genetic regulatory networks are

studied:

• Inferring probabilistic Boolean models for genetic regulatory networks from the

gene expression profiles;

• Optimizing the structure of genetic regulatory network models based on some

constraints;

• Analyzing the impact of function perturbations in the Boolean models of genetic

regulatory networks, in terms of both the system dynamics and the long-term

behavior.

In the first issue, when inferring the rule-based models (Boolean networks) from

gene expression profiles, the optimal predictor function for a target gene is usually not

perfect owing to the inconsistencies in the data set, such that even for the same combi-

nation of input values, the output can be different. Therefore, a consistency-based in-

ference method is developed to design a context-sensitive probabilistic Boolean model,

which consists of a family of Boolean networks (known as contexts), each governed

by a set of deterministic regulatory functions. The existence of alternative function

outputs can be interpreted as the result of random switches between the contexts,

while within each context, a function output is uniquely defined.

For the second issue, when the consistency-based inference method is applied, it

is often the case that the sample size is not sufficiently large to infer the network fully,

such that there are multiple models that all agree with the data under the data con-

sistency requirement. Therefore it is necessary to generalize, that is, to select models,
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preferably through an optimization criterion. To this end, the connectivity and the

physical realization of the regulatory rules are taken into consideration, and algo-

rithms are developed to achieve unique models that are featured by low connectivity

and simplified physical (logic) realization.

When it comes to the robustness of Boolean models subject to function perturba-

tions, it should be noted that this issue serves as a middle layer between the inference

of genetic regulatory network model and the application of intervention/control in

the model. A robust genetic regulatory network model means it is resistant to small

perturbations in the network, which is important in the maintenance of key biological

functions; however, the opposite of robustness, namely adaptability, can be desirable

when the network adapts itself to deal with environmental changes or drug interven-

tions, so as to achieve an advantage in evolution or survival. The impact of function

perturbations in genetic regulatory networks is studied in the context of Boolean

models, and theoretical results are developed to facilitate a formal analysis on the

network state transitions and attractors. Moreover, the theoretical results can be

applied to design effective intervention strategies to change the network long-term

behavior, or to identify perturbations in the network function, which are potentially

useful in genetic network control and diagnosis of genetic malfunction.
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APPENDIX A

SUMMARY OF CONSISTENCY-BASED GENETIC REGULATORY NETWORK

DESIGN ALGORITHM∗

Assume there are n genes in the genetic regulatory network, each taking a value from

the set {0, 1}. Denote the n dimensional binary vector space as S = {0, 1}n.

Algorithm 4 Consistency-based PBN Design

Step 1 Let the data set be G = {x1,x2, · · · ,xn′} ⊆ S (n′ ≤ 2n) which contains n′

distinctive gene expression profiles (a profile may occur multiple times but only

one copy is included in G) of genes g1, · · · , gn. The frequency (or number of

copies) of profile xk is denoted by ν(xk).

Step 2 Without loss of generality, let gn be the target gene. Suppose there exist l

pairs of data, xk10 ,xk11 , · · · ,xkl0 ,xkl1, such that the data in each pair differ only

on the value of target gene, namely,

xkh0 = [xkh1, · · · , xkh(n−1), 0],

and

xkh1 = [xkh1, · · · , xkh(n−1), 1],

(h = 1, · · · , l). Then m = 2l functions can be defined for gn, namely,

gn = φj(g1, · · · , gn−1), j = 1, · · · ,m.

∗ c© 2006 IEEE. Reprinted, with permission, from IEEE Transactions on Signal
Processing, see [10] for complete publication information.
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Each function is assigned a probability

P{φj} =
l∏

h=1

phb,

where phb = ν(xkhb)/[ν(xkh0) + ν(xkh1)], b = 0 if φj is consistent with xkh0 ,

b = 1 if it is consistent with xkh1, and P{φ1} + · · · + P{φm} = 1. Apart from

the l pairs, φj is consistent with the remaining data in G. If l = 0, then only

one function is defined and it is consistent with all data in G.

Step 3 Apply Step 2 to each gene in turn. If there are m1,m2, · · · ,mn functions

for genes g1, g2, · · · , gn respectively, then by choosing a function for each gene

and making all possible combinations, we obtain m1m2 · · ·mn network functions

and associated selection probabilities. Therefore, there are r = m1m2 · · ·mn

contexts.

As seen from the algorithm, the size of (the truth table of) a Boolean functions is

determined by 2n, and there are altogether
∑n

i=1 mi Boolean functions. Therefore the

complexity of the contextual design is O(2n
∑n

i=1 mi); it is noteworthy that
∑n

i=1 mi

depends primarily on the relations among data, but cannot be solely accounted for

by either the number of genes n or data set size n′ alone.
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APPENDIX B

A PROFILE REDUCTION ALGORITHM∗

To reduce the number of contexts arising from excessive data heterogeneity or from

observation noise, we propose a filtering method based on Hamming-distance between

the profiles in the data set. Recall that the Hamming distance is the number of

different bits between two equal-length binary strings.

Algorithm 5 Profile Reduction

1. Given a batch of n-gene (binary) expression profiles, split them into a single-

copied data group G1 and a multiple-copied data group G2. Set i := 1, j :=

1, k := 1.

2. Select the i-th profile ρ1i from group G1 and compare it with the j-th profile ρ2j

in G2. If their Hamming distance does not exceed k, merge ρ1i into ρ2j, i.e.,

delete ρ1i and increase the number of copies of profile ρ2j by 1. If ρ1i does not

merge with ρ2j, let j := j + 1, and repeat until either ρ1i is deleted or the end

of G2 is reached.

3. Let i := i + 1, and repeat step 2 until the end of G1.

4. Let k := k +1, if k is less than or equal to a prescribed value K (K ≥ 1), repeat

steps 2 and 3.

Selection of K in the algorithm is a heuristic decision and contingent on n. The

reason for introducing the loop k = 1, · · · , K is that we always merge a profile to its

nearer neighbor with higher priority.

∗ c© 2006 IEEE. Reprinted, with permission, from IEEE Transactions on Circuits
and Systems I, see [49] for complete publication information.
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