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ABSTRACT

Modeling and Control of

Genetic Regulatory Networks. (August 2007)

Ranadip Pal, B.Tech., Indian Institute of Technology, Kharagpur;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Aniruddha Datta

In recent years, there has been considerable interest in thearea of Genomic Signal Process-

ing, which is the engineering discipline that studies the processing of genomic signals.

Signal processing approaches, such as detection, prediction and classification, have been

used in the recent past to construct genetic regulatory networks capable of modeling ge-

netic behavior. One of the objectives of network modeling isto use the network to design

different intervention approaches for affecting the time evolution of the gene activity pro-

file of the network. More specifically, one is interested in intervening to help the network

avoid undesirable states such as those associated with a disease.

This dissertation considers the inference of genetic regulatory networks in the context

of Boolean and Probabilistic Boolean Networks along with the subsequent optimal con-

trol of these networks. Algorithms to infer Boolean Networkswith prescribed attractor

structure and Probabilistic Boolean Networks matching the steady state data are devel-

oped. Based on the time duration of application of the controlpolicy, two forms of optimal

control strategies are designed: (i) Finite horizon control to desirably affect the dynamic

evolution of the network over a finite number of time steps and(ii) Infinite horizon control

to alter the steady-state distribution of the network. The dissertation also examines the ro-

bustness of the intervention strategies to uncertainties in the state transition probabilities of

the network.

The network generation algorithms presented in this dissertation can be used to gener-
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ate synthetic networks to test proposed inference algorithms, for both Boolean and proba-

bilistic Boolean networks. This dissertation extends earlier results on intervention in instan-

taneously random PBNs without perturbation to context-sensitive PBNs with perturbation.

The results show that the expected cost with control is much lower than without control.

Furthermore, we showed that the stationary policies obtained using infinite horizon for-

mulation can be used to shift the steady state distribution from undesirable to desirable

states. Finally, through analytical derivation and simulation studies, we demonstrated that

the stationary infinite horizon optimal control policies proposed in this dissertation are quite

robust with respect to network uncertainty.
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CHAPTER I

INTRODUCTION

The sequencing of various genomes over the last decade has given a remarkable boost to

genomic studies. The improved understanding of the genomesof various organisms, along

with advances in microarray technology, have provided us with enormous opportunities

for the mathematical modeling of biological networks. There are two major objectives

for modeling of genetic regulatory networks: (i) first, to better understand the intergene

interactions and relationships on a holistic level, thereby facilitating the diagnosis of dis-

ease; and (ii) second, to design and analyze therapeutic intervention strategies for shifting

the state of a diseased network from an undesirable locationto a desirable one. The first

objective falls within the scope of the field known asSystems Biologywhile the second

objective falls within the scope of the field known asSystems Medicine. Systems medicine

approaches that make use of genome based systems engineering fall within the scope of

the field known asTranslational Genomics. The dissertation mainly focuses on problems

that arise in Translational Genomics.

In order to set the stage for introducing the problems, we next present a broad overview

of the steps involved in the modeling and control of genetic networks. These steps are

shown in Fig. 1. The first step consists of data extraction, which basically involves signal

acquisition, the signals in this case being the expression levels of various genes of interest.

The next step denoted byA1 involves the discretization of these gene expression levels.

Obviously, this step is not required if we are interested in arriving at a analog or contin-

uous state model. On the other hand, this step would be crucial for discrete models such

The journal model isIEEE Transactions on Automatic Control.
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Fig. 1. Basic Steps Involved in Modeling and Control of GeneticNetworks. (A) Extraction

of gene expression data (A1) Discretization of the Data (B) Selection of genes to

build the network (C) Generation of network from the available data and prior bio-

logical knowledge (D) Intervention in the network with the objective of moving the

network from undesirable to desirable states.
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as Boolean Networks (BNs) [1, 2, 3], Probabilistic Boolean Networks (PBNs) [4, 5] and

Bayesian Networks [6], all of which have been proposed as models for genetic regulatory

networks. The next step denoted by B involves the selection of a small set of genes to

be used in constructing the genetic regulatory network. This step is necessary because of

at least two reasons: (i) first, building a network of thousands of genes would require an

inordinately large amount of data for inference purposes, not to mention the computational

intractability of the resulting network; and (ii) second, while modeling a particular biologi-

cal pathway only a few genes may be playing an important role.Having selected the genes,

the next step is the actual construction of the network, and anumber of approaches can be

used to carry out such construction [7, 8, 9].

Since systems biology is focussed on understanding the detailed molecular interac-

tions that contribute to the functioning of a cell, a geneticregulatory network designed

for facilitating such an understanding must necessarily mimic the actual biological interac-

tions in as much detail as possible. On the other hand, in translational genomics the focus

is on developing therapeutic interventions, and the network used for this purpose can be a

coarse representation of the biological phenomena occurring at the molecular level as long

as it has the capability to faithfully capture the overall effects of intervention that are man-

ifested at the phenotypic (observational) level. Such a coarse model can then be used to

develop and evaluate suitable (control) strategies for therapeutic intervention. Probabilistic

Boolean Networks (PBNs), which constitute one class of coarsemodels, will be used in

this dissertation as the network model of choice.

The focus of this dissertation is on parts C and D of Figure 1. We address four impor-

tant issues arising in translational genomics.

Dynamical modeling of gene regulation via network models constitutes a key problem

for genomics. The long-run characteristics of a dynamical system are critical and their de-

termination is a primary aspect of system analysis. In the other direction, system synthesis
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involves constructing a network possessing a given set of properties. This constitutes the

inverse problem. Generally, the inverse problem is ill-posed, meaning there will be many

networks, or perhaps none, possessing the desired properties. Relative to long-run behav-

ior, we may wish to construct networks possessing a desirable steady-state distribution.

One of the goals of this dissertation is to address the long-run inverse problem pertaining

to Boolean networks (BNs) and Probabilistic Boolean Networks (PBNs). The long-run be-

havior of a BN is characterized by its attractors. The rest of the state transition diagram

is partitioned into level sets, the j-th level set being composed of all states that transition

to one of the attractor states in exactly j transitions. We present two algorithms for the

attractor inverse problem. The attractors are specified, and the sizes of the predictor sets

and the number of levels are constrained. Algorithm complexity and performance are an-

alyzed. The algorithmic solutions have immediate application. Under the assumption that

sampling is from the steady state, a basic criterion for checking the validity of a designed

network is that there should be concordance between the attractor states of the model and

the data states. This criterion can be used to test a design algorithm: randomly select a set

of states to be used as data states; generate a BN possessing the selected states as attractors,

perhaps with some added requirements such as constraints onthe number of predictors and

the level structure; apply the design algorithm; and check the concordance between the

attractor states of the designed network and the data states.

From a translational perspective, the ultimate objective of genetic regulatory network

modeling is to use the network to design different approaches for affecting network dynam-

ics in such a way as to avoid undesirable phenotypes, for instance, cancer. To date, inter-

vention studies using PBNs have used three different approaches: (i) resetting the state of

the PBN, as necessary, to a more desirable initial state and letting the network evolve from

there [10]; (ii) changing the steady-state (long-run) behavior of the network by minimally

altering its rule-based structure [11]; and (iii) manipulating external (control) variables that
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alter the transition probabilities of the network and can, therefore, be used to desirably

affect its dynamic evolution [12]. In this dissertation, weextend the control-theoretic ap-

proach in two important directions. First, whereas the original control-theoretic approach

has been developed in the framework ofinstantaneously randomPBNs, here we design

optimal intervention forcontext-sensitivePBNs [13]. This extension is significant because

the latter class more closely models small biological subnetworks whose logical behavior is

affected by conditions external to the network. Second, theearlier finite horizon results are

extended to the infinite horizon case in an effort to alter thesteady-state behaviour of the

genetic regulatory network. Moreover, the stationary policies obtained in case of infinite

horizon control are much easier to implement than a policy that changes with time.

Finally, we study the robustness of the infinite horizon intervention and examine how

uncertainties in the transition probability matrix of the uncontrolled PBN show up in the

steady-state distribution of the controlled PBN. Since the steady-state distribution of a PBN

is thought to characterize the phenotype, our studies essentially seek to examine the effect

of network uncertainty on the phenotype that would result from the application of inter-

vention strategies. Through analytical derivation and simulation studies, we demonstrate

that the stationary infinite horizon optimal control policies proposed are quite robust with

respect to network uncertainty.

The dissertation is organized as follows. Chapter II provides a review of Genetic Reg-

ulatory Networks. In Chapter III, we design algorithms for generating Boolean Networks

and Probabilistic Boolean Networks from Steady State Data. The first part of Chapter IV

deals with the design of optimal intervention strategy for context-sensitive PBNs to desir-

ably affect the dynamic evolution of the network over a finitenumber of time steps. The

second part of the chapter formulates and solves the optimalinfinite-horizon control prob-

lem for PBNs to alter the stationary distribution of the network. Chapter V examines the

robustness of the stationary policies to uncertainties in the state transition probabilities of
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the PBNs. Finally, Chapter VI contains some concluding remarks. For clarity of presenta-

tion, some of the technical details are relegated to the appendices.
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CHAPTER II

MODELING OF GENETIC REGULATORY NETWORKS

A central focus of genomic research concerns understandingthe manner in which cells ex-

ecute and control the enormous number of operations required for normal function and the

ways in which cellular systems fail in disease. In biological systems, decisions are reached

by methods that are exceedingly parallel and extraordinarily integrated, as even a cursory

examination of the wealth of controls associated with the intermediary metabolism network

demonstrates. Feedback and damping are routine even for themost common of activities,

cell cycling, where it seems that most proliferative signals are also apoptosis priming sig-

nals as well, and the final response to the signal results fromsuccessful negotiation of a

large number of checkpoints, which themselves involve further extensive cross checks of

cellular conditions.

Traditional biochemical and genetic characterizations ofgenes do not facilitate rapid

sifting of these possibilities to identify the genes involved in different processes or the con-

trol mechanisms employed. Of course, when methods do exist to focus genetic and bio-

chemical characterization procedures on a smaller number of genes likely to be involved

in a process, progress in finding the relevant interactions and controls can be substantial.

The earliest understandings of the mechanics of cellular gene control were derived in large

measure from studies of just such a case, metabolism in simple cells. In metabolism, it

is possible to use biochemistry to identify stepwise modifications of the metabolic inter-

mediates and genetic complementation tests to identify thegenes responsible for catalysis

of these steps, and those genes and cis-regulator1 elements involved in control of their

1A cis-regulatoris a DNA sequence that controls the transcription of a related gene.
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expression. Standard methods of characterization guided by some knowledge of the con-

nections could thus be used to identify process components and controls. Starting from the

basic outline of the process, molecular biologists and biochemists have been able to build

up a very detailed view of the processes and regulatory interactions operating within the

metabolic domain.

In contrast, for most cellular processes, general methods to implicate likely partici-

pants and to suggest control relationships have not emergedfrom classical (often correlation-

based) approaches. The resulting inability to produce overall schemata for most cellular

processes has meant that gene function has been, for the mostpart, determined in a piece-

meal fashion. Once a gene is suspected of involvement in a particular process, research

focuses on the role of that gene in a very narrow context. Thistypically results in the

full breadth of important roles for well-known, highly characterized genes being slowly

discovered. A particularly good example of this is the relatively recent appreciation that

oncogenes such as Myc can stimulate apoptosis in addition toproliferation. Because tran-

scriptional control is accomplished by a complex method that interprets a variety of inputs,

the development of analytical tools that detect multivariate influences on decision-making

present in complex genetic networks is essential. Modelingand analysis of gene regulation

can substantially help to unravel the mechanisms underlying gene regulation and to under-

stand gene function [14, 15, 16]. This, in turn, can have a profound effect on developing

techniques for drug testing and therapeutic intervention for effective treatment of disease

[17].

A. Nonlinear Dynamical Modeling of Gene Networks

Two salient aspects of a genetic regulatory system must be modeled and analyzed. One

is the topology (connectivity structure) and the other is the set of interactions between the
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elements, the latter determining the dynamical behavior ofthe system. Exploration of the

relationship between topology and dynamics may lead to valuable conclusions about the

structure, behavior, and properties of genetic regulatorysystems [18, 19].

Numerous mathematical and computational methods have beenproposed for construc-

tion of formal models of genetic interactions. Generally, these models share certain char-

acteristics: (1) they representsystemsin that they characterize an interacting group of com-

ponents forming a whole, can be viewed as a process that results in a transformation of

signals, and generate outputs in response to input stimuli;(2) they aredynamicalin that

they capture the time-varying quality of the physical process under study and can change

their own behavior over time; and (3) they can be considered to be generallynonlinear,

in that the interactions within the system yield behavior that is more complicated than the

sum of the behaviors of the agents.

The preceding characteristics are representative of nonlinear dynamical systems. These

are composed of states, input and output signals, transition operators between states, and

output operators. In their abstract form, they are very general. More mathematical structure

is provided for particular application settings. For instance, in computer science they can

be structured into the form of dataflow graphical networks that model asynchronous distrib-

uted computation, a model that is very close to genomic regulatory models. Indeed, most

attempts to model gene regulatory networks fall within the scope of nonlinear dynamical

systems, including probabilistic graphical models, such as Bayesian networks [20, 6, 21];

neural networks [22, 23]; and differential equations [24];see [25] for a review. Based on

long experience in electrical and computer engineering, and more recent evidence from

genomics itself, nonlinear dynamical systems appear to provide the appropriate framework

to support the modeling of genomic systems. To build a model for a specific application re-

quires abstracting from the specifics of the problem, and thebreadth of nonlinear dynamical

systems facilitates modeling within their framework.
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Many concepts relevant to genomic regulation have been characterized from the per-

spectives of mathematical theory, estimation of model parameters, and application para-

digms. We mention a few.Structural stabilityconcerns the persistent behavior of a system

under perturbation. It captures the idea of behavior that isnot destroyed by small changes

to the system. This is certainly a property of real genetic networks, since the cell must be

able to maintain homeostasis2 in the face of external perturbations and stimuli.Uncertainty

relative to model behavior and knowledge acquisition has been extensively explored. In-

formation theory, traditionally used for communications technology applications, is well

suited to study uncertainty measures, quantified through the use of probability theory.Dis-

tributed controlis common for complex systems, which have the property that no single

agent is singularly in control of the system behavior; rather, control is dispersed among

all agents, with varying levels of influence. This is the current view of genetic regulatory

networks. To significantly change the global behavior of a system in a desired manner via

external control, it is necessary to consider the effects holistically. This property is consis-

tent with the inherent global stability of genetic networksin the presence of small changes

to the system. This issue is addressed within control theory, where a central problem is

controllability: how to select inputs so that the state of the system takes a desired value

after some period of time. This is precisely the kind of issuethat must be addressed for

treatment of cancer and other genetically related diseases. In sum, nonlinear dynamical

systems provide a framework for modeling and studying gene regulatory networks.

A key question concerns which model one should use. Model selection depends on the

kind and amount of data available and the goals of the modeling and analysis. This choice

involves classical engineering trade-offs. Should a modelbe fine, with many parameters

to capture detailed low-level phenomena, such as protein concentrations and kinetics of

2Homeostatis is the ability of living systems to maintain internal equilibrium by adapt-
ing their physiology.
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reactions, but thereby requiring a great deal of data for inference; or should it becoarse,

with fewer parameters and lower complexity, thus being limited to capturing high-level

phenomena, such as whether a gene is ON or OFF at a given time, but thereby having the

advantage of requiring much smaller amounts of data [26]. Ultimately, model selection

needs to obey the principle of Occam’s razor; model complexity should be sufficient to

faithfully explain the data but not be greater. From a pragmatic engineering perspective, this

is interpreted to mean that the model should be as simple as possible to sufficiently solve

the problem at hand. In the context of a functional network, complexity is determined by

the number of nodes, the connectivity between the nodes, thecomplexity of the functional

relations, and the quantization.

B. Boolean Networks (BNs)

This section focuses on the original deterministic versionof the Boolean model. The more

recently proposed stochastic extension will be presented in Section C. The Boolean model

is archetypical of logical functional models and many of theissues that arise with it arise

in other regulatory network models. A key issue in this dissertation is intervention in gene

regulatory networks and this has mainly been considered in the context of a probabilistic

generalization of the Boolean model.

1. Boolean Model

The regulatory model that has perhaps received the most attention is the Boolean network

model [1, 2, 27]. The model has been studied both in biology and physics. In the Boolean

model, gene expression is quantized to two levels: ON and OFF. The expression level

(state) of each gene is functionally related to the expression states of other genes using

logical rules. Although binarization provides very coarsequantization, we note that it is
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commonplace to describe genetic behavior in binary logicallanguage, such ason andoff,

up-regulatedanddown-regulated, andresponsiveandnon-responsive. In the context of

expression microarrays, consideration of differential expression leads to the categories of

low-expressedandhigh-expressed, thereby leading to binary networks, or to the categories

of low-expressed, high-expressed, andinvariant, thereby leading to ternary valued networks

that are treated in much the same way as binary networks and often referred to as Boolean

networks.

Successful application of the Boolean model requires the inclusion of genes whose

behavior is essentially binary (bi-modal). It has been demonstrated in the context of mi-

croarrays that there can be sufficiently many switch-like genes so that binary quantization

can be successfully utilized for clustering [28] and classification [29]. From the perspec-

tive of logical prediction, numerous Boolean relations havebeen observed in the NCI 60

Anti-Cancer Drug Screen cell lines [30]. Some examples are

MRC1 = V SNL1 ∨ HTR2C

SCY A7 = CASR ∧ MU5SAC (2.1)

Moreover, using classical methods there is ample evidence demonstrating inherent logi-

cal genomic decision making [31, 32]. Figure 2 shows a biologically studied regulatory

pathway and its corresponding Boolean representation. A full description of the biological

model is given in [5]; here we restrict ourselves to noting that for cells to move into the

S phase, cdk2 and cyclin E work together to phosphorylate theRb protein and inactivate

it, thereby releasing cells into the S phase, and that misregulation can result in unregulated

cell growth.

A Boolean networkis defined by a set of nodes,V = {x1, x2,. . . , xn} and a list of
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genes.

genes,

(Huang,

of

net-

functional

cdk7

cyclin H

cdk2

cyclin E

CAK

p21/WAF1

Rb

DNA synthesis

cell

cdk7

cyclin H

cyclin E

p21/WAF1

Rb

cdk2

Fig. 2. Regulation of the Rb Protein in the Cell Cycle:(a) Biological Model; (b) Boolean

Representation.
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Boolean functions,F = {f1, f2,. . . , fn}. Eachxk represents the state (expression) of a

gene,gk, wherexk = 1 or xk = 0, depending on whether the gene is expressed or not

expressed. The Boolean functions represent the rules of regulatory interaction between the

genes. Network dynamics result from a synchronous clock with timest = 0, 1, 2,. . . . The

value of genegk at timet + 1 is determined by

xk(t + 1) = fk(xk1, xk2, . . ., xk,m(k)) (2.2)

where the nodes in the argument offk form theregulatory setfor xk (genegk). The num-

bers of genes in the regulatory sets define theconnectivityof the network, with maximum

connectivity often limited. At time pointt, the state vector

x(t) = (x1(t), x2(t), . . ., xn(t)) (2.3)

is called thegene activity profile(GAP). The functions together with the regulatory sets

determine the network wiring. An example BN of 3 genes is shownin Figure. 3 along with

the Truth Table. The states are shown as binary numbers.

A Boolean network is a very coarse model; nonetheless, it facilitates understanding of

the generic properties of global network dynamics [3, 33], and its simplicity mitigates data

requirements for inference.

Attractors play a key role in Boolean networks. Given a starting state, within a finite

number of steps, the network will transition into a cycle of states, called anattractor,

and absent perturbation will continue to cycle thereafter.Each attractor is a subset of a

basincomposed of those states that lead to the attractor if chosenas starting states. The

basins form a partition of the state space for the network. Non-attractor states are transient.

They are visited at most once on any network trajectory. Figure 4 provides a transition-

flow schematic for a Boolean network containing six genes, with states 0 = 000000, 1 =
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Boolean Network

100001 110

010

000

111

011

101
Truth Table

x
1

x
2

x
3

f1 f2 f3

0 0 0 1 1 1

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 1 1 1

1 0 0 0 1 0

1 0 1 0 0 1

1 1 0 1 1 1

1 1 1 0 1 0

Fig. 3. Boolean Network and Corresponding Truth Table.

000001,. . . , 63 = 111111. There are three singleton attractors, 32, 41, and 55. There are

four transient levels, where a state in levelk transitions to an attractor ink time points.

The attractors of a Boolean network characterize the long-run behavior of the network

and have been conjectured by Kauffman to be indicative of thecell type and phenotypic

behavior of the cell [3]. Real biological systems are typically assumed to have short at-

tractor cycles, with singleton attractors being of specialimportance. For instance, it has

been suggested that apoptosis and cell differentiation correspond to some singleton attrac-

tors and their basins, while cell proliferation corresponds to a cyclic attractor along with its

associated basin [33]. Changes in the Boolean functions, via mutations or rearrangements,

can lead to a rewiring in which attractors appear that are associated with tumorigenesis.



16

32 41 55

0 4 9 16 20 23 25 36 48 52 57

7 10 11 13 14 15 26 27 29 30 31 39 42 43 45 46 47 58 59 61 62 63

1 3 5 17 19 21 33 35 37 49 51 53

2 6 8 12 18 22 24 28 34 38 40 44 50 54 56 60

Attractor Level

Level 1

Level 2

Level 3

Level 4

Fig. 4. A Boolean Network with Three Singleton Attractors andFour Transient Levels.

This is likely to lead to a cancerous phenotype unless the corresponding basins are shrunk

via new-rewiring, so that the cellular state is not driven toa tumorigenic phenotype, or, if

already in a tumorigenic attractor, the cell is forced to a different state by flipping one or

more genes. The objective of cancer therapy would be to use drugs to do one or both of the

above.

2. BN Representation

The binaryn-digit state vectorx(t) can be mapped to positive integersz(t) so that as

x(t) ranges from00 · · · 0 to 11 · · · 1, z(t) goes from0 to 2n − 1. Here we employ the

decimal representationz(t) and the setS = {0, 1, 2, · · · , 2n−1} constitutes the state space

for the Boolean network. Furthermore, eachz(t) can be uniquely represented by a basis
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vectorw(t) ∈ R2n

, wherew(t) = ez(t), e.g. if z(t) = 0, thenw(t) = [1, 0, 0, . . .]. Then,

as discussed in [5], the evolution of the vectorw(t) proceeds according to the difference

equation

w(t + 1) = w(t)A (2.4)

whereA is a2n × 2n matrix having only one non-zero entry (equal to one) in each row.

3. Coefficient of Determination

By viewing gene status across different conditions, say, viamicroarrays, it is possible to

establish relationships between genes that show variable status across the conditions. Ow-

ing to limited replications, we assume that gene expressiondata are quantized based on

some statistical analysis of the raw data. One way to establish multivariate relationships

among genes is to quantify how the estimate for the expression status of a particulartarget

genecan be improved by knowledge of the status of some otherpredictor genes. This is

formalized via thecoefficient of determination(CoD) [34], which is defined by

CoD =
ε0 − εopt

ε0

(2.5)

whereε0 is the error of the best numerical predictor of the target gene in the absence

of observation andεopt is the error of the optimal predictor of the target gene basedon

the predictor genes. This nonlinear form of the CoD is essentially a nonlinear, multivari-

ate generalization of the familiar goodness of fit measure inlinear regression. The CoD

measures the degree to which the best estimate for the transcriptional activity of a target

gene can be improved using the knowledge of the transcriptional activity of some predictor

genes, relative to the best estimate in the absence of any knowledge of the transcriptional

activity of the predictors. The CoD is a number between 0 and 1,a higher value indicating

a tighter relationship.
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Figure 5 shows a CoD diagram for the target gene p53 and predictor genes p21 and

MDM2, in which the CoDs have been estimated in the context of a study involving stress

response [35]. We see that the individual CoDs for p21 and MDM2are 0.227 and 0.259,

respectively, but when used jointly, the CoD for the predictor set{p21, MDM2} increases

to 0.452. Biologically, it is known that p53 is influential butnot determinative of the up reg-

ulation of both p21 and MDM2, and hence it is not surprising that some level of prediction

of p53 should be possible by a combination of these two genes.Note that the prediction of

p53 by p21 and MDM2 apparently results from the regulation ofp53 on them, not the other

way around. Going the other way, the same study found the CoD for p53 predicting p21

to be 0.473. The increased predictability of p53 using both MDM2 and p21 is expected

because increasing the size of the predictor set cannot result in a decrease in CoD. The

extent of the increase can be revealing. In Fig. 5, MDM2 and p21 have very similar CoDs

relative to p53 and there is a significant increase when they are used in combination. On

the other hand, it may be that very little, if any, predictability is gained by using predictors

in combination. Moreover, it may be that the individual predictors have CoDs very close

(or equal) to 0, but when used in combination the joint CoD is 1.This kind of situation

shows that it is risky to assume that a predictorg1 and targetg0 are unrelated because the

CoD of g1 predictingg0 is very low. This situation is akin to that in classification where

a feature may be poor if used alone but may be good if used in combination with other

features. The issue in both settings is the danger ofmarginal analysis– drawing conclu-

sions about variables from marginal relations instead of joint (multivariate) relations. The

complex nonlinear distributed regulation ubiquitous in biological systems makes marginal

analysis highly risky.
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p21 p53

MDM2

0.227 0.452

0.259

Fig. 5. CoD Diagram for p21 and MDM2 Predicting p53.

C. Probabilistic Boolean Networks (PBNs)

Given a target gene, several predictor sets may provide equally good estimates of its tran-

scriptional activity, as measured by the CoD. Moreover, one may rank several predictor sets

via their CoDs. Such a ranking provides a quantitative measure to determine the relative

ability of each predictor set to improve the estimate of the transcriptional activity of the

particular target gene. While attempting to infer inter-gene relationships, it makes sense

to not put all our faith in one predictor set; instead, for a particular target gene, a better

approach is to consider a number of predictor sets with high CoDs. Considering each re-

tained predictor set to be indicative of the transcriptional activity of the target gene with a

probability proportional to its CoD represents feature selection for gene prediction.

Having inferred inter-gene relationships in some manner, this information can be used

to model the evolution of the gene activity profile over time.It is unlikely that the determin-

ism of the Boolean-network model will be concordant with the data. One could pick the
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predictor set with the highest measure of predictability, but as remarked previously in the

case of the CoD, there are usually a number of almost equally performing predictor sets,

and for them we will have only estimates from the data. By associating several predic-

tor sets with each target gene, it is not possible to obtain with certainty the transcriptional

status of the target gene at the next time point; however, onecan compute the probability

that the target gene will be transcriptionally active at time t + 1 based on the gene activity

profile at timet. The time evolution of the gene activity profile then defines astochastic

dynamical system. Since the gene activity profile at a particular time point depends only

on the profile at the immediately preceding time point, the dynamical system is Markovian.

Such systems can be studied in the established framework of Markov Chains and Markov

Decision Processes. These ideas are mathematically formalized in probabilistic Boolean

networks(PBNs) [5, 4]. In a PBN, the transcriptional activity of each gene at a given time

point is a Boolean function of the transcriptional activity of the elements of its predictor

sets at the previous time point. The choice of Boolean function and associated predictor set

can vary randomly from one time point to another. For instance, when using the CoD, the

choice of Boolean function and predictor set can depend on CoD-based selection probabil-

ities associated with the different predictor sets. This kind of probabilistic generalization of

a Boolean network, in which the Boolean function is randomly selected at each time point,

defines aninstantaneously random PBN.

Instead of simply assigning Boolean functions at each time point, one can take the

perspective that the data come from distinct sources, each representing acontextof the

cell. From this viewpoint, the data derive from a family of deterministic networks and,

were we able to separate the samples according to the contexts from which they have been

derived, then there would in fact be CoDs with value 1, indicating deterministic biochem-

ical activity for the wiring of a particular constituent network. Under this perspective, the

only reason that it is not possible to find predictor sets withCoD equal (or very close to)
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1 is because they represent averages across the various cellular contexts. This perspective

results in the view that a PBN is a collection of Boolean networks in which one constituent

network governs gene activity for a random period of time before another randomly cho-

sen constituent network takes over, possibly in response tosome random event, such as

an external stimulus or genes not included in the model network. Since the latter is not

part of the model, network switching is random. This model defines acontext-sensitive

PBN. The probabilistic nature of the constituent choice reflects the fact that the system is

open, not closed, the idea being that network changes resultfrom the genes responding to

latentvariables external to the model network. The context-sensitive model reduces to the

instantaneously random model by having network switching at every time point.

Much of the theory and application of PBNs applies directly tothe more general case

which need not possess binary quantization and which are also called PBNs, owing to the

multi-valued logical nature of functional relations for finite quantization. A particularly

important case is ternary quantization, where expression levels take on the values +1 (up-

regulated),−1 (down-regulated), and 0 (invariant).

A PBN is composed of a set ofn genes,x1, x2,. . . ,xn, each taking values in a finite set

V (containingd values), and a set of vector-valuednetwork functions, f1, f2,. . .fr, governing

the state transitions of the genes. To every nodexi, there corresponds a set

Fi = {f
(i)
j }j=1,...,l(i), (2.6)

where eachf (i)
j is a possible function, called apredictor, determining the value of genexi

and l(i) is the number of possible functions assigned to genexi. Each network function

is of the formfk = (f
(1)
k1

, f
(2)
k2

, . . . , f
(n)
kn

), for k = 1, . . . , r, 1 ≤ ki ≤ l(i) and where

f
(i)
ki

∈ Fi(i = 1, 2, . . . , n). Each vector functionfk : {0, 1}n → {0, 1}n acts as a transition

function (mapping) representing a possible realization ofthe entire PBN. Thus, given the

value of all genes,(x1, . . . , xn), fk(x1, x2,. . . ,xn)=(x′
1, x′

2,. . . ,x′
n) gives us the state of the
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genes after one step of the network given by the realizationfk.

The choice of which network functionfj to apply is governed by a selection procedure.

At each time point a random decision is made as to whether to switch the network function

for the next transition, with a probabilityq of a change being a system parameter. If a

decision is made to change the network function, then a new function is chosen from among

f1, f2,. . . , fr, with the probability of choosingfk being the selection probabilityck.

Now, let F=(f (1), f (2), . . . , f (n)) be a random vector taking values inF1 × F2 . . . ×

Fn. That is,F can take on all possible realizations of the PBN. Then, the probability that

predictorf (i)
j is used to predict genei (1 ≤ j ≤ l(i)) is equal to

c
(i)
j = P{f (i) = f

(i)
j } =

∑

k:f
(i)
ki

=f
(i)
j

P{F = fk}. (2.7)

Sincec
(i)
j are probabilities , they must satisfy

l(i)
∑

j=1

c
(i)
j = 1. (2.8)

It is not necessary that the selection of Boolean functions composing a specific net-

work be independent. This means that it is not necessarily the case that

P{f (i) = f
(i)
j , f (l) = f

(l)
k } = P{f (i) = f

(i)
j }.P{f (l) = f

(l)
k }. (2.9)

A PBN is said to be independent if the random variablesf (1), f (2), . . . , f (n) are indepen-

dent. In the dependent case, product expansions such as the one given in Eq. 2.9, as well as

ones involving more functions, require conditional probabilities. If the PBN is independent,

then there areL =
∏n

i=1 l(i) realizations (constituent Boolean networks). Moreover, for an

independent PBN, if thekth network is obtained by selectingf (i)
ir

for genei , i = 1, 2, . . . , n,

1 ≤ ir ≤ l(i), then the selection probabilityck is given byck =
∏n

i=1 c
(i)
ir

.

A PBN with perturbation can be defined by there being a probability p of any gene
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changing its value uniformly randomly to another value inV at any instant of time. Whereas

a network switch corresponds to a change in a latent variablecausing a structural change in

the functions governing the network, for instance, in the case of a gene outside the network

model that participates in the regulation of a gene in the model, a random perturbation cor-

responds to a transient value flip that leaves the network wiring unchanged, as in the case

of activation or inactivation owing to external stimuli such as mutagens, heat stress, etc.

[3].

The state spaceS of the network together with the set of network functions, incon-

junction with transitions between the states and network functions, determine a Markov

chain, the states of the Markov chain being of the form (xi, fj). If there is random perturba-

tion, then the Markov chain is ergodic, meaning that it has the possibility of reaching any

state from another state and that its stationary distribution becomes a steady-state distribu-

tion. In the special case whenq = 1, a network function is randomly chosen at each time

point and the Markov chain consists only of the PBN states.

For a PBN, characterization of its long-run behavior is described via the Markov chain

it defines. In particular, an instantaneously random PBN has equivalence classes of com-

municating states analogous to the basins of attraction forBoolean networks, and if there is

perturbation, which we will always suppose, then the Markovchain is ergodic, which then

guarantees the existence of a global steady-state distribution. In general, whether the PBN

is instantaneously random or context-sensitive, by definition its attractors consist of the at-

tractors of its constituent Boolean networks. Two events canremove a network from an

attractor cycleC: (1) a perturbation can send it to a different state, and assuming the con-

stituent network remains unchanged and there are no furtherperturbations for a sufficient

time, then it will return toC if the perturbation leaves it in the basin ofC or it will transition

to a different attractor cycle of the same constituent network if the perturbation sends it to

a different basin; (2) a network switch will put it in the basin of an attractor cycle for the
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new constituent network and it will transition to the attractor cycle for that basin so long as

the constituent network remains unchanged and there are no further perturbations for a suf-

ficient time. Whereas the attractor cycles of a Boolean networkare mutually disjoint, the

attractor cycles of a PBN can intersect because different cycles can correspond to different

constituent Boolean networks. Assuming that the switching and perturbation probabilities

are very small, a PBN spends most of its time in its attractors.The probabilities of PBN

attractors have been analytically characterized [36].

1. PBN Representation

In case of PBNs, we have a stochastic counterpart of Eq. 2.4 given by

w(t + 1) = w(t)A (2.10)

wherew(t) denotes the probability distribution vector at timet, i.e. wi(t} = Pr {z(t) = i}

andA denotes the probability transition matrix.

D. Network Inference

For genetic regulatory networks to be of practical benefit, there must be methods to design

them based on experimental data. We confront three impediments: (1) model complexity,

(2) limited data, and (3) lack of appropriate time-course data to model dynamics. Numerous

approaches to thenetwork inference problemhave been proposed in the literature, many

based on gene-expression microarray data. Here, we briefly outline some of the proposed

methods for PBNs and the rationale behind each of them (there also having been substantial

study of inferring Boolean networks [4, 37]).

As first proposed, the inference of the PBN is carried out usingthe CoD [5]. For

each gene in the network, a number of high CoD predictor sets are found and these high-
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CoD predictor sets determine the evolution of the activity status of that particular gene.

Furthermore, the selection probability of each predictor set for a target gene is assumed

to be the ratio of the CoD of that predictor set to the sum of the CoDs of all predictor

sets used for that target gene. This approach makes intuitive sense since it is reasonable

to assign the selection probability of each predictor set ina PBN to be proportional to its

predictive worth as quantified by the CoD.

A second approach to PBN construction uses mutual information clustering and re-

versible -jump Markov-chain-Monte-Carlo predictor design[38]. First, mutual- information-

minimization clustering is used to determine the number of possible parent gene sets and

the input sets of gene variables corresponding to each gene.Thereafter, each (predictor)

function from the possible parent gene sets to each target gene is modeled by a simple

neural network consisting of a linear term and a nonlinear term, and a reversible-jump

Markov-chain-Monte-Carlo (MCMC) technique is used to calculate the model order and

the parameters. Finally, the selection probability for each predictor set is calculated using

the ratio of the CoDs.

In most expression studies, there is some degree of previousknowledge regarding

genes that play a role in the phenotypes of interest, for instance, p53 in unregulated pro-

liferation. To take advantage of this knowledge, and to obtain networks relating to genes

of interest, it has been proposed to construct networks in the context of directed graphs

by starting with a seed consisting of one or more genes believed to participate in a mean-

ingful subnetwork [7]. Given the seed, a network is grown by iteratively adjoining new

genes that are sufficiently interactive with genes in the growing network in a manner that

enhances subnetwork autonomy. The proposed algorithm has been applied using both the

CoD and the Boolean-function influence [5], which measures interaction between genes.

The algorithm has the benefit of producing a collection of small tightly knit autonomous

subnetworks as opposed to one massive network with a large number of genes. Such small
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subnetworks are more amenable to modeling and simulation studies, and when properly

seeded are more likely to capture a small set of genes that maybe maintaining a specific

core regulatory mechanism.

A key issue in network design arises because much of the currently available gene-

expression data comes to us fromsteady-statephenotypic behavior and does not capture

any temporal history. Consequently, the process of inferring a PBN, which is a dynam-

ical system, from steady-state data is a severelyill-posed inverse problem. Steady-state

behavior constrains the dynamical behavior of the network but does not determine it and,

therefore, building a dynamical model from steady-state data is a kind of overfitting. It is

for this reason that a designed network should be viewed as providing a regulatory structure

that is consistent with the observed steady-state behavior. Also, it is possible that several

networks may emerge as candidates for explaining the steady-state data. Under the assump-

tion that we are sampling from the steady-state, a key criterion for checking the validity of

a designed network is that much of its steady state mass lies in the states observed in the

sample data because it is expected that the data states consist mostly of attractor states [39].

A number of recent papers have focused on network inference keeping in mind that

most of the data states correspond to steady-state behavior. In one of these, a fully Bayesian

approach has been proposed that emphasizes network topology [9]. The method computes

the possible parent sets of each gene, the corresponding predictors and the associated prob-

abilities based on a neural-network model, using a reversible jump MCMC technique; and

an MCMC method is employed to search the network configurations to find those with

the highest Bayesian scores to construct the PBNs. This methodhas been applied to a

melanoma cell line data set. The steady-state distributionof the resulting model contains

attractors that are either identical or very similar to the states observed in the data, and many

of the attractors are singletons, which mimics the biological propensity to stably occupy a

given state. Furthermore, the connectivity rules for the most optimally generated networks
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constituting the PBN were found to be remarkably similar, as would be expected for a

network operating on a distributed basis, with strong interactions between the components.

If we consider network inference from the general perspective of an ill-posed inverse

problem, then one can formalize inference by postulating criteria that constitute a solution

space in which a designed network must lie. For this we propose two kinds of criteria [40]:

• Constraint criteriaare composed of restrictions on the form of the network, suchas

biological and complexity constraints.

• Operational criteriaare composed of relations that must be satisfied between the

model and the data.

Examples of constraint criteria include limits on connectivity and attractor cycles. One ex-

ample of an operational criterion is some degree of concordance between sample and model

CoDs, and another is the requirement that data states are attractor states in the model. The

inverse problem may still be ill-posed with such criteria, but all solutions in the resulting

space can be considered satisfactory relative to the requirements imposed by the criteria.

We will implement this kind of approach in the next section byfinding constituent Boolean

networks satisfying constraints such as limited attractorstructure, transient time, and con-

nectivity [8].

In addition to the ongoing effort to infer PBNs, there has beena continuing effort

to infer Bayesian and dynamic Bayesian networks (DBNs) [6, 41, 42]. A Bayesian net-

work is essentially a compact graphical representation of a joint probability distribution

[43, 44, 45]. This representation takes the form of a directed acyclic graph in which the

nodes of the graph represent random variables and the directed edges, or lack thereof,

represent conditional dependencies, or independencies. The network also includes con-

ditional probability distributions for each of the random variables. In the case of genetic
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networks, the values of the nodes can correspond to gene-expression levels or other mea-

surable events, including external conditions. There is a precisely characterized relation

between certain DBNs and PBNs in the sense that they can represent the same joint dis-

tribution over their corresponding variables [46]. PBNs aremore specific in the sense that

the mapping between PBNs and DBNs is many-to-one, so that a DBN does not specify a

specific PBN.
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CHAPTER III

GENERATING BOOLEAN NETWORKS WITH A PRESCRIBED ATTRACTOR

STRUCTURE∗

A. BN Generation

The dynamical modeling of gene regulation via network models constitutes a fundamental

problem for genomics. In any dynamical system the long-run characteristics of the system

are critical and determining these characteristics is a primary aspect of system analysis. In

the other direction, and typically more difficult, is systemsynthesis: construct a network

possessing a given set of properties. This constitutes theinverse problem. Generally, the

inverse problem is ill-posed, meaning there will be many networks, or perhaps none, pos-

sessing the desired properties. Relative to long-run behavior, we may have a desirable sta-

tionary distribution and wish to construct networks possessing that stationary distribution.

Here we are concerned about a long-run inverse problem pertaining toBoolean networks.

Boolean networks compose a class of discrete models where theexpression levels

of each gene are assumed to have two possible values only: up-regulated (ON) or down-

regulated (OFF). Such a model cannot capture the underlyingcontinuous and stochastic

biochemical nature of protein production and gene regulation; however, one often encoun-

ters genes that are essentially ON or OFF throughout a given biochemical pathway. The

switch-like regulatory function of those genes determinestheir role in regulation and their

activity is well-represented by a coarse-grain model like aBoolean network. This, together

with the relative simplicity of the dynamical system described by a Boolean network ex-

∗Part of this chapter is reprinted, with permission, from ”Generating Boolean networks
with a prescribed attractor structure”, R. Pal, I. Ivanov, A.Datta, M. L. Bittner, and E. R.
Dougherty,Bioinformatics, vol. 21, pp. 40214025, 2005
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plains why such networks have attracted significant attention from the research community

– for instance, [1, 2, 3, 33, 4]. The dynamics of different classes of Boolean networks

have been extensively studied from the ensemble point of view [3]. Statistical properties of

the attractor structure, the connectivity, and the evolution of an ensemble of Boolean net-

works provide important insights about the genetic regulatory network modeled by those

networks.

Given the relative simplicity of the model, the rich dynamical behavior that can be

observed in different classes of Boolean networks, and the biologically sound interpreta-

tion of the attractor structure and the connectivity, a significant effort has been directed in

designing such networks from real gene expression data. Much of this effort has concerned

the strength of prediction among genes [4, 7] and the relatedissue of optimal connectivity

[38, 9]. The inverse problem with respect to attractors is related to design from steady-

state data, and therefore the algorithmic solution to that inverse problem proposed in this

dissertation has immediate application.

As explained in Section 1, a Boolean network (BN)B = (V, F ) onn genes is defined

by a set of nodes/genesV = {x1, ..., xn}, xi ∈ {0, 1}, i = 1, ..., n, and a vector of Boolean

predictor functionsF = (f1, ..., fn), fi : {0, 1}n → {0, 1}, i = 1, ..., n. Each nodexi

represents the state/expression of the genexi, wherexi = 0 means that the genei is OFF

andxi = 1 means that the genei is ON. The functionfi is thepredictor functionfor that

gene. Updating the states of all of the genes inB is done synchronously at every time step

according to their predictor functions. A subsetWi ⊆ V is called thepredictor setfor

the genexi if the restrictionfi|Wi
of the predictor functionfi equalsfi. It is clear from

this definition that the cardinality of the setWi is related to the number of edges incident

with the vertexxi in the directed graphΓ = (V,E), where an edge(xi, xj) ∈ E indicates

that genexi is one of the factors determining the value of the genexj. W = (W1, ...,Wn)

is called thepredictor setfor the Boolean network. Astatein B is a vector(x1, ..., xn)
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of gene values. We shall always assume that the states ofB are interpreted as binary

numbers, and are ordered accordingly. Thus, there areN = 2n states in a Boolean network

on n genes, and they are enumerated as0, 1, 2, ..., N − 1. There is aN × n truth table

associated with and equivalent toB, where the rows correspond to the states inB and the

columns contain the corresponding values for the predictorfunctions. The truth table of B

induces a directed graph̃Γ = (Ṽ , Ẽ) with the states inB as the set̃V of its vertices, and

with edges(si, sj) ∈ Ẽ connecting the statesi with the statesj if F (si) = sj. It is clear

that the truth table associated with B determinesΓ̃ and vice versa.Γ̃ is called thestate

transition diagramof B, andΓ̃ is calledcompatiblewith W if the truth table induced by

Γ̃ hasW as the predictor set for the Boolean network associated with that truth table. The

state transition diagram represents the dynamics of the network.

The long-run behavior of a Boolean network is straightforward to describe. Given an

initial state, the network will eventually enter a set of states through which it will repeatedly

cycle forever. Each such set is called anattractor cycleand the states within the family

of attractor cycles are calledattractor states. The rest of the state transition diagram is

partitioned intolevel sets, where the level setlj is composed of all of the states of the

network that transition to one of the attractor states in exactly j transitions. One can think of

the set of attractor states as the level setl0. Then non-attractor states compose the transient

states of the network. The transient states are partitionedaccording to the attractor cycles

because each transient state begins a sequence of transitions that eventually ends up in a

unique attractor cycle. The attractor cycles are mutually disjoint. The class of the partition

corresponding to an attractor cycle is called thebasinof the cycle. Given any transient

state, it belongs to a unique basin and unique level.

A state transition diagram constitutes a single-rooted tree if it possesses exactly one

singleton attractor (a single-state attractor cycle): thenetwork reaches its attractor cycle

via the tree. If it possessesk singleton attractors, then it is composed ofk single-rooted
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trees and is called ak-forest: the network reaches an attractor state via one of the single-

rooted trees. From the perspective of modeling gene regulation, the attractor cycles of

a Boolean network are especially important because they are presumed to provide a rep-

resentation/approximation of phenotypes. Singleton attractors are especially important.

First, gene regulation should be modeled by Boolean networksin an ordered regime and a

Boolean network that functions in an ordered regime has shortattractor cycles, often sin-

gleton attractors [3]. Second, the presence of long cycles in the cell dynamics will lead to

an entropy increase, which is exactly the opposite of the biological state stability and deter-

minism that characterize living systems. In this chapter, we present two algorithms for the

attractor inverse problem under the assumption of singleton attractor states. Complexity

and performance of the two proposed algorithms are discussed.

Besides being of mathematical interest relative to understanding the nature of Boolean

networks that lead to certain attractor structures, the attractor inverse problem is very im-

portant to network inference from state data, in particular, gene expression data. Most

microarray-based gene-expression studies do not involve controlled temporal experimental

data; rather, it is assumed that data result from sampling from the steady state. Under the

Boolean-network model, this means that the data come from theattractors. If one considers

a more general Boolean-type model, such as a Boolean network with random perturbations

or a probabilistic Boolean network, the dynamical system represented by the network is an

ergodic Markov chain and there exists a steady-state distribution; nevertheless, under mild

stability assumptions that reflect biological state stability, most of the steady-state probabil-

ity mass is concentrated in the attractors and it is expectedthat most data correspondingly

come from the attractors [36].

Thus, under the assumption that we are sampling from the steady state, a key criterion

for checking the validity of a designed network is that much of its steady-state mass lies

in the states observed in the sample [39]. In the case of Boolean networks, this means that
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there should be close concordance between the attractor states of the model and the data

states. Such a criterion can be used to test a design algorithm [9]: randomly select a set of

states to be used as data states; generate a Boolean network possessing the selected states

as attractors, perhaps with some added requirements such asconstraints on connectivity

and the level structure; apply the design algorithm; and check the concordance between

the attractor states of the designed network and the states used as data. This can be done

repeatedly for different data states and constraints. The algorithms provided next can be

used to generate the Boolean networks in this scenario. Owingto the concentration of mass

in the attractors of probabilistic Boolean networks and the fact that a PBN can be viewed as

a collection of Boolean networks, the procedure can be applied to PBNs by generating the

constituent Boolean networks. The PBNs so synthesized can be used to design intervention

strategies where the only available gene expression data for network design comes from the

steady-state phenotypic behavior.

It is important to keep in mind that the inverse problem, attractors to network, is a

one-to-many mapping, and there may be a multitude of networks possessing a given at-

tractor structure. In the other direction, if the problem isconstrained, say by the number

of predictors permitted, there may be no solution. Generally speaking, steady-state behav-

ior restricts the dynamical behavior, but does not determine it. In particular, for Boolean

networks it does not determine the basin structure. Thus, while we might obtain good in-

ference regarding the attractors, we may obtain poor inference relative to their probabilities

relative to random initializations (or to random perturbations in more general networks).

This is because if the basin of an attractor is small, it is less likely to catch a random ini-

tialization than if it is large. When sampling from the steadystate, the data attractors with

small basins are less likely to appear (and may not appear at all), whereas those with large

basins may appear numerous times. A key advantage of checking a design algorithm with

generated synthetic networks is that the levels and basins of a synthetic network are known
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and therefore one can better evaluate algorithm performance.

In the following sections we present two algorithms for solving this inverse problem

under the assumption of singleton attractor states in the designed network. As with any

other algorithmic solution to a design problem, the important issues of complexity and per-

formance of the proposed two algorithms are discussed. The problem we address can be

formulated in the following manner. Given a setV consisting ofn nodes (genes), a family

of n subsetsW1,W2, ...,Wn of V with cardinalities not less thanm and not bigger thanM ,

0 < m ≤ M , a setA containingk states, and two positive integersld ≤ lu, accordingly

construct a Boolean network with node setV , having predictor setW = (W1,W2, ...,Wn),

possessing only singleton attractors, and these consisting precisely of the states inA, and

containing betweenld and lu level sets. The requirement on the predictor set means that

the state transition diagram of the designed network must becompatible withW . There

may exist none or many compatible networks. The algorithms are typically initiated by

specifying a minimum and maximum number of predictors for each gene, randomly se-

lecting W1,W2, ...,Wn subject to the specified maximum and minimum, and randomly

selectingk attractor states. In this way, one can utilize the algorithms to search for Boolean

networks constrained by the connectivity of the network. For instance, if|Wi| ≤ M for

i = 1, 2, ..., n, then the algorithms find networks with connectivity bounded byM – if any

exist with the required attractor structure.

The problem can be reformulated as a search problem in the following way: In the

space of allk-forestsΓ̃ for a Boolean network onn genes, and with the number of their

level sets ranging betweenld and lu, find at least one which is compatible with a given

(randomly generated) predictor setW , where the cardinality of eachWi ranges betweenm

andM .
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1. Size of the Search Space

Under the assumption that we are sampling from the steady state, biological state stability

means that most of the steady-state probability mass is concentrated in the attractors and

that real-world attractors are most likely to be singleton attractor cycles consisting of a

single state. A state transition diagram constitutes a single-rooted tree if it possesses exactly

one singleton attractor (a single-state attractor cycle):the network reaches its attractor via

the tree. If it possessesk singleton attractors, then it is composed ofk single-rooted trees

and is called ak-forest: the network reaches an attractor state via one of the single-rooted

trees. In this section we examine the size of the search stateunder the assumption of

singleton attractors. To simplify the formulas, it is assumed thatm = 1 andld = 1. One

can easily make the necessary changes in the general case.

There areA = An,M =
∑M

i=1

(

n

i

)

possible predictor setsWi for each genexi, i =

1, ..., n. Thus, there areAn possible predictor setsW to select from when searching for a

compatible state transition diagram̃Γ. The different choices for̃Γ depend on the number of

attractor states and on the level set structure of the state transition diagram. There are
(

N

k

)

possible ways of selecting thek singleton attractors for̃Γ . The remainingNk = N − k

non-attractor states will form the level sets ofΓ̃ . There aren(li+1)
n(li) ways for connecting

any two successive level setsli andli+1 with n(li) andn(li+1) states in them, respectively.

Therefore, the number of possible ways to structure the level sets forΓ̃ with no more than

L level sets is

Λ = ΛL,k,n =

∑L

i=1

∑

i
Nk!

n(l1)!...n(li)!
kn(l1)n(l1)

n(l2)...n(li−1)
n(li) (3.1)

where
∑

i is a summation over all of the different choices of the positive integersn(l1),...,
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n(li) such that
∑i

j=1 n(lj) = Nk. Combining this with the choices for selecting attractor

states, and with the choices for selecting predictor sets, yields the size of the search space,

S = Sn,m,k = An

(

N

k

)

Λ (3.2)

To appreciate the size of the search space, consider an example of a very small BN, where

n = 4, m = 4, k = 4, and the state transition diagram has exactly4 levels. The computa-

tions show thatS ≥ 1017.

The following theorem extends a well known result [47], about 1 -trees, or single

rooted trees.

Theorem 1. The cardinality of the collection of all forests onN vertices is(N + 1)N−1.

Proof: In the proof we can assume without loss of generality that thevertices of each

k-forest are labeled using the integers from{1, 2, ..., N}. First we prove that there is a bi-

jection between the collectionFk of all k-forests,k-a fixed nonnegative integer less thanN

, and the collectionBk of triples(ωk, Ak, r), r ∈ Ak, where the setAk ∈ Ak-the collection

of all k element subsets of{1, ..., N} , andωk ∈ ΩNk
-the collection of all sequences of

lengthN − k − 1 integers formed using the integersi ∈ {1, ..., N}. Define the mapping

λ : Fk → ΩNk
×Ak × {1, ..., N}

(A) In particular, given ak-forestF , the first component ofλ(F ) is generated recursively

in the following way:

Seti = 1

1. Search for the leaf inF with the smallest labelvi.

2. Remove the edge(vi, v) from F .

3. Set thei-th element ofωk to v i.e. setωk,i = v.

4. Seti = i + 1.
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5. If i < N − k start from 1 again, otherwise set the third component ofλ(F ) = r

where(vr, r) is the only remaining edge inF .

In the above procedure a root of a tree formingF is not considered to be a leaf after

removal of the tree stemming from it. The second component ofλ(F ) simply lists

all of the roots ofF . It is obvious that after repeating the above procedureN − k− 1

times we will end up with only the roots ofk − 1 of the trees formingF plus the

remaining leafvr connected tor. Notice that the linear order of the set{1, ..., N}

implies that the mappingλ is well defined.

(B) Next we start with a triple(ωk, Ak, r), r ∈ Ak , and show that there is ak-forestF ,

such thatλ(F ) = (ωk, Ak, r). Indeed, one can set thek roots ofF to be the elements

of Ak, and after that one can apply the following procedure generating the rest of

F : Setj = 1. Form the setBk = {1, ..., N} \ Ak . Createk roots forF using the

elements inAk.

(a) Find the smallest elementi ∈ Bk that is not equal toωk,l, l = j, j + 1, ..., N −

k − 1.

(b) Form an edge(i, ωk,j) in F .

(c) SetBk = Bk \ i and setj = j + 1

(d) If j > N − k − 1 connect the only element ofBk to r and then stop, otherwise

start from (a) again.

Since at every stepj we remove fromBk elements not present inωk starting from

thej-th position on, none of the elements ofBk can participate in a cycle. Therefore,

the resulting graph is ak -forest with its roots the elements inAk.
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(C) Finally, given two differentk-forestsF1 andF2 we claim thatλ(F1) 6= λ(F2), where

the equality between two points in the spaceΩNk
×Ak ×{1, ..., N} is defined in the

obvious way. Clearlyλ(F1) 6= λ(F2) if F1 andF2 have different sets of roots. If

bothk-forests have the same set of roots, then they must differ in at least one edge.

If now, we assume to the contrary thatλ(F1) = λ(F2) that means that the only way

F1 can differ fromF2 is if there is at least one edge inF1 not present inF2 or vice

versa. At the same time the equality of the components ofλ(F1) andλ(F2) means

that the procedure in part (A) removes consecutively exactly the same edges from

F1 and fromF2 which in its turn implies that the twok-forests have the same set of

edges, which contradicts our assumption aboutF1 andF2 being different from each

other.

(A), (B) and (C) together show that the mappingλ is, indeed, a bijection fromFk to

Bk. Thus, the problem of counting all of thek-forests,k = 1, ..., N , onN vertices,

reduces to counting the elements of∪N
k=1Bk. One should notice that the mappingλ

is not defined fork = N but this is the trivial case whereBk has just one member,

namely theN -forest where each vertex in the graph happens to be a root forone

of theN trees composing the forest. There are
(

N

k

)

ways of selecting an element of

Ak ∈ A, k ways of selectingr ∈ Ak, andNn−k−1 of sequences inΩNk
. Therefore,

for each fixedk, the cardinality ofBk is
(

N

k

)

kNN−k−1, and since the setsBk, k =

1, ..., N are pair wise disjoint, the cardinality of∪N
k=1Bk is

∑N

k=1

(

N

k

)

kNN−k−1 = (N + 1)N−1.

The following two examples illustrate the procedures described in part (A) and part

(B) of the proof ofTheorem 1.

Example 3.1: Suppose we are given the state transition diagram in Figure6. If one applies

the procedure from part (A), then one will produce the triple(ω2, A2, 2), whereω2 =
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4, 6, 1, 4, 1, 2, 4, 7, 9; A2 = {2, 7}, and where the edges(3, 4), (5, 6), (6, 1), (8, 4), (10, 1),

(11, 4), (4, 7), and(12, 9) have been consecutively removed from the 2-forest in Figure6.

Fig. 6. State Transition Diagram for Example 3.1 .

Example 3.2: Suppose we are given the triple(ω3, A3, 1) whereω3 = 3, 10, 12, 2, 5, 5, 2, 5;

and whereA3 = {1, 5, 9}. If one applies the procedure from part (B), then the following

edges will be generated in the order they are listed:(4, 3), (3, 10), (6, 12), (7, 2), (8, 5),

(10, 5), (11, 2), (2, 5), and(12, 1). Thus, the3-forest in Figure 7 will be generated.

No restrictions are imposed on the structure of the level sets. Consequently the theo-

rem provides us with an upper bound for the term
(

N

k

)

Λ appearing in equation (2). While

this upper bound is by no means tight, it is much tighter in comparison to the number

of all possible directed graphs onN vertices,NN . One can easily see that the ratio

(N + 1)N−1/NN is asymptotically equal toe/N . SinceN = 2n, the probability mass

decreases exponentially relative to the number of genesn . This shows that a brute force

search for an acceptable BN by randomly filling in a BN truth table has very little chance

of success. Therefore, if one wants to efficiently generate aBN with the desired character-
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Fig. 7. State Transition Diagram for Example 3.2 .

istics, one has to incorporate information from the state transition diagram, as well as the

information about the predictor set of the network, into thealgorithm.

2. Design of Efficient Algorithms

We present two algorithms to generate Boolean networks givenattractor and connectiv-

ity information. The first algorithm works directly with thetruth table, incorporating at

the same time the information about the attractor set, as well as the information about the

predictor set of the BN. There is no control over the level set structure, and the transition di-

agram generated by the algorithm has to be checked for the presence of cycles. We present

the algorithms for the case of singleton attractors and provide the adaptation for multiple-

state cyclic attractors in Appendix A.
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a. Algorithm 1

STEP1: Randomly generate a set ofk attractor states. If STEP1 has been repeated more

than a pre-specified number of times terminate the algorithm.

STEP2: Randomly pick up a predictor setW , where eachWi has not less thanm and not

more thanM elements. If STEP2 has been repeated more than a pre-specified number of

times go back to STEP1.

STEP3: Check if the selected attractor set is compatible withW , i.e., only the attractor set

of the state transition diagram is checked for compatibility againstW . If the attractor set is

not compatible withW go back to STEP2, otherwise continue to STEP4.

STEP4: Fill in the entries of the truth table that correspondto the attractors generated in

STEP1. Using the predictor setW randomly fill in the remaining entries of the truth table.

If STEP4 has been repeated more than a pre-specified number oftimes go back to STEP2.

STEP5: Search for cycles of any length in the state transition diagramΓ̃ that is associated

with the truth table generated in STEP4. If a cycle is found goback to STEP4, otherwise

continue to STEP6.

STEP6: IfΓ̃ has less thanl or more thanL level sets go back to STEP4, otherwise continue

to STEP7.

STEP7: Save the generated BN and terminate the algorithm.

The second algorithm employs a state transition diagramΓ̃ that satisfies the design goals

about attractor structure and level-set structure, and checks if the truth table associated with

Γ̃ has a predictor setW satisfying the design goals.
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b. Algorithm 2

STEP1: Randomly generate a state transition diagramΓ̃ that satisfies the design goals

about the attractor structure and level set structure. If STEP1 has been repeated more than

a pre-specified number of times terminate the algorithm.

STEP2: Fill in the truth table using̃Γ.

STEP3: If there is at least oneWi in the predictor setW given by the truth table that has

less thanm or more thanM elements go back to STEP1, otherwise continue to STEP4.

STEP4: Save the generated BN and terminate the algorithm.

The following examples provide walk-through illustrations to show how algorithm 1

and 2 works in the particular case of 3 genes.

Example 3.3(Algorithm 1): Suppose thatk = 2, m = 1, M = 2, l = 1, andL = 5.

Next, suppose that the states 000 and 011 are generated by STEP1. STEP2: Suppose

W is generated whereW1 = {x2, x3}, W2 = {x1, x3}, W3 = {x1, x2}. STEP3: Table

I shows that the attractors generated in STEP1 are compatible with W . The remaining

entriesa1, ..., a6 in the truth table are filled in randomly in the next step of thealgorithm.

One can notice certain patterns in the entries in each one of the three columns of the table.

These reflect the structure of the predictor setW , and reduce the number of the possible

ways to randomly fill in the missing entries during the next step of the algorithm. On the

other hand, if the attractors generated in STEP1 were000 and100, then for the predictor

function of the first genex1, we must havef1(0, 0) = 0, while from the second attractor,

we getf1(0, 0) = 1, which is a contradiction. Therefore that attractor set is not compatible

with the setW generated in STEP2.

STEP4: Here we randomly fill in the remaining entries of the truth table. Suppose that this

producesa1 = 0, a2 = 0, a3 = 1, a4 = 0, a5 = 0, a6 = 1. This selection produces the
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following transitions in the state transition diagram:0 → 0; 1 → 2; 2 → 1; 3 → 3; 4 →

2; 5 → 0; 6 → 3; 7 → 1, where we have used the decimal representation of the states. It

is clear that during STEP5 of the algorithm the cycle1 → 2; 2 → 1 will be discovered,

which will cause the BN generated by the present truth table tobe discarded, and we will

be returned to STEP4.

On the other hand if we hada1 = 0, a2 = 1, a3 = 1, a4 = 0, a5 = 0, a6 = 1 produced in

STEP4, then the transitions in the state transition diagramwould be0 → 0; 1 → 2; 2 →

5; 3 → 3; 4 → 2; 5 → 0; 6 → 7; 7 → 1. Since the only cycles here are those within the

attractor set, STEP5 of the algorithm will take us to STEP6. STEP6 will detect that there

are 5 level sets, and this will take us to STEP7.

TABLE I

TRUTH TABLE FOR EXAMPLE 3.3

x1 x2 x3 f1 f2 f3

0 0 0 0 0 0

0 0 1 a1 1 0

0 1 0 a2 0 1

0 1 1 0 1 1

1 0 0 0 a3 a4

1 0 1 a1 a5 a4

1 1 0 a2 a3 a6

1 1 1 0 a5 a6
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Example 3.4(Algorithm 2): Suppose thatk = 2, m = 1, M = 2, l = 1 andL = 3.

Next, suppose that the transition diagram shown in Figure 8 was randomly generated in

STEP1.

The truth table resulting from STEP2 is shown in Table II.

STEP3: It is clear from this truth table thatW1 = {x1, x2, x3}, and since it has more

thanM = 2 elements the algorithm returns to STEP1. On the other hand ifthe transition

diagram shown in Figure 9 was generated in STEP1, then STEP2 would produce the truth

table shown in Table III.

Now eachWi; i = 1, 2, 3 has no more thanm = 2 elements, and the algorithm success-

fully terminates producing a BN with the truth table shown in Table III and state transition

diagram from Figure 9.

Fig. 8. First State Transition Diagram for Example 3.4 .

3. Comparison between the Two Algorithms

Several simulations were carried out to evaluate the performance of the two algorithms.

Table IV shows the performance of Algorithm 1 for the case ofn = 6, 2 ≤ k ≤ 4, m = 1,

l = 1, andL = 26−1. The number of maximum repetitions of STEP1, STEP2, and STEP4
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Fig. 9. Second State Transition Diagram for Example 3.4 .

were set to 10, 20 and 500 respectively. The total execution time for this simulation was

13123.875 seconds or roughly 3.5 hrs on a 2.4 GHz P4 Intel XeonProcessor.

Table V shows the performance of Algorithm 1 for the case ofn = 10, 1 ≤ k ≤ 6,

m = 1, l = 1, andL = 210 − 1. The number of maximum repetitions of STEP1, STEP2,

and STEP4 were set to 10, 15 and 1000 respectively. The execution time for this simulation

was 58842.5 seconds or around 16 hours on an identical machine.

The significant increase in the run time for the case of10 genes can be attributed to two

major factors: first, the NP-completeness nature of the cycle search performed in STEP5;

and second, the low probability mass ofk-forests in the space of all directed graphs, as was

already discussed in Section 2. Table VI shows the performance of Algorithm 2 for the

casen = 3, 1 ≤ k ≤ 2, m = 1, M = 2, l = 2, andL = 5. There were 1000 BNs generated

in STEP1 and the simulation time was 4.01 seconds. One can notice the low frequency of

successfully generated BN even for such a small number of genes. The simulation for the

casen = 6, 2 ≤ k ≤ 4, m = 1, M = 5, l = 4, andL = 15 confirms that observation:

the algorithm did not generate any BN during the first3 × 106 iterations. It took 78329.2
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TABLE II

FIRST TRUTH TABLE FOR EXAMPLE 3.4

Gene Values f1 f2 f3

0 0 0 0 0 1

0 0 1 0 0 1

0 1 0 1 0 0

0 1 1 0 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 1 0

1 1 1 0 0 1

seconds or approximately 21hrs to run this many iterations.

The reason for such a huge difference in the performance of the two algorithms is the

fact that the state transition diagrams generated by Algorithm 1 have a very small proba-

bility mass in the space of allk-forests,k = 1, ..., N on N vertices. One can easily see

that when each gene predictor setWi is required to have exactlym elements, the number

of possible state transition diagrams generated by Algorithm 1 is
(

n

m

)n
N2m

. Using Theo-

rem 1 one can obtain an estimate of the probability mass of thestate transition diagrams

generated by Algorithm 1 within the space of allk-forests,k = 1, ..., N :

(

n

m

)n
N2m

(N + 1)N−1
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TABLE III

SECOND TRUTH TABLE FOR EXAMPLE 3.4

Gene Values f1 f2 f3

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 1 1 1

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 1 0 0

1 1 1 0 0 0

For the casen = 6, m = 5 this ratio is approximately1.7911 × 10−52.

B. Design of Probabilistic Boolean Networks

The algorithms produce many distinct networks satisfying agiven set of constraints. The

presence of multiple solutions allows for optimization procedures when designing PBNs

from microarray data. In this section, we describe a procedure for designing a PBN from

microarray data. The sizes of the basins are used to select BNsfrom a group of generated

networks and to combine them in a PBN whose steady-state distribution closely matches

the observed frequency distribution of the data. The assumption that these data correspond

to the steady-state of the underlying gene regulatory system provides a reference point of



48

TABLE IV

SIMULATIONS FOR ALGORITHM1 WITH 6 GENES

n M BNs saved at STEP7BNs searched in STEP5

6 1 1267 7670

6 2 1375 10160

6 3 2396 19124

6 4 1399 27590

6 5 1960 35060

6 6 1704 37550

how closely the dynamics of a generated PBN approximate the data. The designed PBN

should have these data points as attractors – and no other attractors because there is no

reason in the data for having other attractors. We focus on singleton attractors.

The design procedure begins by selecting a random numberN1 between2 and5, and

then randomly selectingN1 distinct states as singleton attractors from the original data

according to the data frequency distribution. Repeating this procedure10 times yields10

TABLE V

SIMULATION FOR ALGORITHM1 WITH 10 GENES

n M BNs saved at STEP7BNs searched in STEP5

10 9 80 30090
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TABLE VI

SIMULATIONS FOR ALGORITHM 2 WITH 3 GENES

n M BNs saved at STEP4

3 1 5

3 2 43

sets,A1, A2, ..., A10, of singleton attractors, withAi possessingNi attractors,2 ≤ Ni ≤ 5

andi = 1, 2....10. After that, algorithm 1 is employed to generate100 Boolean Networks,

Bi1,Bi2, ...,Bi,100, for each of the10 attractor sets. The generated networks have state

transition diagrams satisfying two additional constraints. First, the number of their level

sets range from2 to 10. This constraint manifests the understanding that in the underlying

gene regulatory network the steady-state/fixed points of the system are not achieved with

too few or too many consecutive transitions. The second constraint is that all gene predictor

sets have between1 and3 genes, the number being randomly set.

The BNs generated for each one of the10 attractor sets are then used as a sample space

for the selection of a PBN whose steady-state distribution matches closely the frequency

distribution of the data in the mean-square error (MSE) sense. One BN from each group of

100 BNs is randomly selected, and the basin size of each singletonattractor is calculated.

These numbers are used as estimates of the steady-state probabilities of the corresponding

attractors (keeping in mind that very little time is spent intransient states and that random

perturbations and switching randomly put the network in different basins). For example,

if the Boolean networkBij has attractor statesaij
1 , a

ij
2 ... a

ij
Nij

with corresponding basin

sizesSij
1 , Sij

2 ... Sij
Nij

, respectively, then our estimate of the steady-state probability for
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the attractroraij
l is given byπij(a

ij
l ) = Sij

l /
∑Nij

k=1 Sij
k . One can take the average of

these estimates of the steady-state probabilities of the singleton attractoraij
l over the10

BNs comprising the PBN as an estimate of the steady-state probability of that attractor

in the PBN. If a particular singleton attractor is not presentin a constituent BN, then its

contribution to the steady-state probability is set to0.

Continuing in this fashion, one obtains an estimate of the steady-state probabilities of

each one of the data states used in the generation of a PBN. Let us denote these states by

b1,b2, .....bm and their corresponding estimated steady-state probabilities byπ1, π2...., πm.

The procedure calculates the MSE betweenπ1, π2...., πm and f1, f2, ..., fm, wherefi is

the relative frequency ofbi in the sample. The designed PBN is selected as the one that

minimizes the MSE among a randomly selected subset of10000 PBNs from the set of all

possible PBNs that can be generated using the BNs produced by algorithm 1 for the selected

attractor sets. We settle on10000 PBNs because an exhaustive search is prohibitive, there

being a total of10010 possible PBNs.

1. Melanoma PBN Design

The gene-expression profiles used in this study result from the study of 31 malignant

melanoma samples [48]. For the study, messenger RNA was isolated directly from melanoma

biopsies, and fluorescent cDNA from the message was preparedand hybridized to a mi-

croarray containing probes for 8150 cDNAs (representing 6971 unique genes). The 7 genes

WNT5A, pirin, S100P, RET1, MART1, HADHB and STC2 used here for the model were

chosen from a set of 587 genes from the data set that have been subjected to an analy-

sis of their ability to cross predict each other’s state in a multivariate setting [39]. The

gene-expression profiles were binarized to arrive at 31 binary vectors with 7 columns cor-

responding to the selected 7 genes. The frequency distribution of the 18 distinct binary data

vectors is shown in Figure 10. The assumption that these datacorrespond to the steady-
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state of the underlying gene regulatory system implies thatthose and only those 18 distinct

data vectors should appear as attractors in the generated PBN. This condition is guaranteed

by the design procedure.

Figure 10 shows the portion of histogram (the data states only) of the steady-state

distribution (after a long run) of the designed PBN, withq = 0.001 andp = 0.001, and

of the frequency distribution of the data states. The steady-state distribution of the PBN

closely matches (in the MSE sense) the frequency distribution observed in the data.
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Fig. 10. Histogram for Original and Generated PBN [8].
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CHAPTER IV

CONTROL OF PROBABILISTIC BOOLEAN NETWORKS∗

From a translational perspective, the ultimate objective of genetic regulatory network

modeling is to use the network to design different approaches for affecting network dynam-

ics in such a way as to avoid undesirable phenotypes, for instance, cancer. In this chapter

we present results on intervention in the context ofProbabilistic Boolean Networks(PBNs).

Given a PBN, the transition from one state to the next takes place in accordance with cer-

tain transition probabilities and their dynamics, and hence intervention, can be studied in

the context of homogeneous Markov chains with finite state spaces.

A major goal of functional genomics is to screen for genes that determine specific cel-

lular phenotypes (disease) and model their activity in sucha way that normal and abnormal

behavior can be differentiated. The pragmatic manifestation of this goal is the development

of therapies based on the disruption or mitigation of aberrant gene function contributing to

the pathology of a disease. Mitigation would be accomplished by the use of drugs to act on

the gene products. Engineering therapeutic tools involvessynthesizing nonlinear dynam-

ical networks, analyzing these networks to characterize gene regulation, and developing

intervention strategies to modify dynamical behavior. Forinstance, changes in network

connectivity or functional relationships among the genes in a network, via mutations or re-

arrangements, can lead to steady-state behavior associated with tumorigenesis, and this is

likely to lead to a cancerous phenotype unless corrective therapeutic intervention is applied.

∗Parts of this chapter are reprinted, with permission, from (i) ”Intervention in con-
text sensitive probabilistic Boolean networks”, R. Pal, A. Datta, M. L. Bittner, and E. R.
Dougherty,Bioinformatics, vol. 21, pp. 12111218, 2005 and (ii)c©2006 IEEE. Reprinted,
with permission, from ”Optimal Infinite Horizon Control for Probabilistic Boolean Net-
works”, Pal, R., Datta, A. and E. R. Dougherty,IEEE Transactions on Signal Processing,
2006, Vol. 54, no. 6, 2375:2387
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To date, intervention studies using PBNs have used three different approaches: (i)

resetting the state of the PBN, as necessary, to a more desirable initial state and letting the

network evolve from there [10]; (ii) changing the steady-state (long-run) behavior of the

network by minimally altering its rule-based structure [11]; and (iii) manipulating external

(control) variables that alter the transition probabilities of the network and can, therefore, be

used to desirably affect its dynamic evolution [12]. In thischapter, we extend the control-

theoretic approach in two important directions. First, whereas the original control-theoretic

approach has been developed in the framework ofinstantaneously randomPBNs, here we

design optimal intervention forcontext-sensitivePBNs [13]. This extension is significant

because the latter class more closely models small biological subnetworks whose logical

behavior is affected by conditions outside the genes represented in the model network.

Second, the earlier finite horizon results are extended to the infinite horizon case in an

effort to alter the steady-state behaviour of the genetic regulatory network. Moreover, the

stationary policies obtained in case of infinite horizon control are much easier to implement

than a policy that changes with time.

Probabilistic Boolean networks can be used for studying the dynamic behavior of

gene regulatory networks. Once a probability distributionvector has been specified for

the initial state, the probability distribution vector evolves according to Eq. 2.10. From

this perspective PBNs aredescriptivein nature. There is no mechanism for controlling

the evolution of the probability distribution vector. For treatment or intervention purposes,

we are interested in working with PBNs in aprescriptivefashion, where the transition

probabilities of the associated Markov chain depend on certain external variables, whose

values can be chosen to make the probability distribution vector evolve in some desirable

manner.

The use of such external variables makes sense from a biological perspective. For

instance, in the case of diseases like cancer, external treatment inputs such as radiation,
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chemotherapy, etc. may be employed to move the state probability distribution vector away

from one associated with uncontrolled cell proliferation or markedly reduced apoptosis.

The variables could also include genes that serve as external master-regulators for all the

genes in the network. To be consistent with the binary natureof the expression status of

individual genes in a PBN, we will assume that these variables(control inputs) can take on

only the binary values 0 or 1. The values of the individual control inputs can be changed

from one time step to another in an effort to make the network behave in a desirable fashion.

A. Finite-Horizon Control in Context-Sensitive PBNs

Let L denote the number of BNs constituting the context-sensitivePBN andp denote the

probability that the value of any particular gene undergoesa random perturbation andq

denote the probability that the network function switches at any given time point.

For a context-sensitive PBN, the statez(t) at time t could be originating from any

one of theL possible networks. In order to keep track of the network emitting a particular

state let us redefine the states by incorporating the networknumber inside the state label.

Since we haveL different BNs forming the PBN, the total number of states becomes2nL

and let us label these states asS0, S1, · · · , S2nL−1 where for eachk = 1, 2, · · · , L, states

S2n(k−1), S2n(k−1)+1, ..., S2nk−1 belong to networkk. EquivalentlyS2n(k−1)+i corresponds

to zki
wherezki

is the decimal representation of theith state in the networkk. Let the

redefined state at timet be denoted byw(t).

1. Transition Probabilities of Context-Sensitive PBNs

We now derive expressions for the transition probabilitiesin a context-sensitive PBN sub-

ject to perturbations by recognizing that the following mutually exclusive events can occur

at any time pointt:
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(1) The current network function is applied, the PBN transitions accordingly, and the

network function remains the same for the next transition.

(2) The current network function is applied, the PBN transitions accordingly, and a

new network function is selected for the next transition.

(3) There is a random perturbation and the network function remains the same for the

next transition.

(4) There is a random perturbation and a new network functionis selected for the next

transition.

Assuming that the individual genes perturb independently,and lettingmod(v, w) de-

note the remainder left over whenv is divided byw, we consider two cases for determining

the transition probability of going from statea to stateb:

Case 1. [a/2n] = [b/2n], meaning2n(k − 1) ≤ a, b ≤ 2nk − 1 for the samek. This

corresponds to the events (1) and (3) above and the transition probabilities are given by

Pr(w(t + 1) = b|w(t) = a) = (1 − q)(1 − p)nfk,a,b + (1 − q)(1 − p)n−hphs(h) (4.1)

whereh is the Hamming Distance betweenmod(a, 2n) andmod(b, 2n), i.e. the num-

ber of genes which differ between the two states,

fk,a,b =











1 if a transitions tob in a single step in networkk

0 otherwise

and

s(h) =











0 if h = 0

1 otherwise

The first term in Eq. (4.1) corresponds to event (1) above, where1−q is the probability that
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the network selection does not change,(1 − p)n is the probability that none of then genes

undergoes a perturbation, we assume that network selectionand random gene perturbation

are independent events, andfk,a,b = 1 if that particular transition is possible in thekth

Boolean network. The second term corresponds to event (3), whereh genes have to be

perturbed to go from statea to stateb.

Case 2. 2n(k1 − 1) ≤ a ≤ 2nk1 − 1 and2n(k2 − 1) ≤ b ≤ 2nk2 − 1, wherek1 6= k2. This

corresponds to events (2) and (4) above and the transition probabilities are given by

Pr(w(t+1) = b|w(t) = a) = q
ck2

∑L

i=1,i6=k1
ci

(1−p)nfk1,a,b+q
ck2

∑L

i=1,i6=k1
ci

(1−p)n−hphs(h).

(4.2)

If we define

g(a, b) =











1 if [a/2n] − [b/2n] = 0

0 otherwise

then a unified transition probability expression encompassing the two cases is given by

Pr(w(t + 1) = b|w(t) = a) =

[(1 − q)(1 − p)nfk,a,b + (1 − q)(1 − p)n−hphs(h)]g(a, b)

+[q
ck2

∑L

i=1,i6=k1
ci

(1 − p)nfk1,a,b + q
ck2

∑L

i=1,i6=k1
ci

(1 − p)n−hphs(h)](1 − g(a, b)). (4.3)

By letting a andb range over all integers from0 to 2nL − 1 and using Eq. (4.3), we can

determine all the entries of the2nL × 2nL matrix of transition probabilities.

In practice, it will likely be impossible to detect the Boolean network from which the

current gene activity profile is being emitted. In most cases, we will only have knowledge

of the states of the genes. To handle such situations, we can derive an expression for the

transition probability from states2 to states1, where these states run from0 to 2n − 1 and
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reflect only the expression status of then-gene state vector:

Pr[z(t + 1) = s1|z(t) = s2]

=
k

∑

i=1

Pr[z(t + 1) = s1, s2 belongs to networki|z(t) = s2]

=
k

∑

i=1

Pr[z(t + 1) = s1|z(t) = s2, s2 belongs to networki]

.P r[s2 belongs to networki]

=
k

∑

i=1

Pr[z(t + 1) = s1|w(t) = s2 + 2n(i − 1)].ci

=
k

∑

i=1

k
∑

j=1

ci.P r[w(t + 1) = s1 + 2n(j − 1)|w(t) = s2 + 2n(i − 1)] (4.4)

wheres1 ands2 run from0 to 2n − 1. Note that here states1 is equivalent to the distinct

statess1, s1 + 2n, .....s1 + (L − 1)2n in the previous2nL formulation. Similarlys2 here is

equivalent tos2, s2 + 2n, .....s2 + (L− 1)2n in the earlier formulation. By lettings1 ands2

range from0 to 2n − 1 and using Eq. (4.4), we can derive the2n × 2n transition probability

matrixA corresponding to the averaged context-sensitive PBN.
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Substituting Eq. 4.3 into Eq. 4.4 yields

Pr[z(t + 1) = s1|z(t) = s2] =
L

∑

k1=1

ck1

[

(1 − q)(1 − p)nfk1,s2,s1 + (1 − q)(1 − p)n−hphs(h)

+q
L

∑

k2=1,k2 6=k1

ck2
∑L

l=1,l 6=k1
cl

(1 − p)nfk1,s2,s1 +

q
L

∑

k2=1,k2 6=k1

ck2
∑L

l=1,l 6=k1
cl

(1 − p)n−hphs(h)
]

= (1 − p)n
{

L
∑

k1=1

ck1

(

(1 − q)fk1,s2,s1 + q

∑L

k2=1,k2 6=k1
ck2

∑L

l=1,l 6=k1
cl

fk1,s2,s1 +

(1 − q)

(

p

1 − p

)h

s(h) + q

∑L

k2=1,k2 6=k1
ck2

∑L

l=1,l 6=k1
cl

(

p

1 − p

)h

s(h)
)}

= (1 − p)n
{

L
∑

k1=1

ck1

(

fk1,s2,s1 +

(

p

1 − p

)h

s(h)

)

}

= (1 − p)n
{

L
∑

k1=1

ck1fk1,s2,s1

}

+ (1 − p)n

(

p

1 − p

)h

s(h) (4.5)

Let us denote byB1, B2, · · · , BL, the transition matrices of the individual Boolean Net-

works. ThenBv, v ∈ [1, ...., L] represent deterministic transition matrices and hence each

Bv has a single non-zero entry of1 in each row. The second term of Eq. 4.5 is independent

of the constituent Boolean Networks or their selection probabilities and depends only on

the perturbation probabilityp, number of genesn and the hamming distance between states

h (which can be determined whenn is known). Consequently, the probability transition

matrixP of the averagedcontext-sensitivePBN composed ofk Boolean Networks is of the

form

P = (1 − p)n

L
∑

v=1

cvBv + Dn,p (4.6)
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where the entries ofBv are generated from the first term in Eq. 4.5 andDn,p represents the

entries corresponding to the second term of Eq. 4.5.

Furthermore, the matrixDn,p has the form

Dn,p = (1 − p)n



































0 p

1−p

p

1−p
( p

1−p
)2 · · · ( p

1−p
)n

p

1−p
0 ( p

1−p
)2 p

1−p
· · · ( p

1−p
)n−1

.. .. .. .. · · · ..

.. .. .. .. · · · ..

.. .. .. .. · · · ..

( p

1−p
)n ( p

1−p
)n−1 ( p

1−p
)n−1 ( p

1−p
)n−2 · · · 0



































.

The individual2n × 2n terms ofDn,p for i = 0, 1, ...., 2n − 1 andj = 0, 1, ...., 2n − 1

are

Dn,p(i, j) = Dn,p(j, i) = (1 − p)n











0 if i = j

( p

1−p
)h(i,j) otherwise

whereh(i, j) = no. of bits different in the binary representation ofi andj.

2. Optimal Control of Context-Sensitive PBNs

In this section, we consider the problem of external controlin a context-sensitive PBN.

Towards this end, suppose that a PBN withn genes hasm control inputs,u1, u2, · · · , um,

each of which can take on only the binary values0 or 1. Then at any timet, the row vector

u(t)
∆
= [u1(t), u2(t), · · · , um(t)] describes the complete status of all the control inputs.

u(t) can take on all binary values from[0, 0, · · · , 0] to [1, 1, · · · , 1]. One can equivalently

represent the control input status using the decimal number

v(t) =
m

∑

i=1

2m−iui(t). (4.7)
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As u(t) takes on binary values from[0, 0 · · · , 0] to [1, 1, · · · , 1], the variablev(t) ranges

from 0 to 2m−1. We can equivalently usev(t) as an indicator of the complete control input

status of the PBN at timet.

If a control action is applied, then the transition probability expressions will change.

Suppose that our control action consists of forcibly altering the value of a single gene,g,

from 0 to 1 or from 1 to 0. Thus,m = 1 here. Then the new transition probabilities with

control, denoted byPrc1, are given by

Prc1(w(t + 1) = b|w(t) = a) = Pr(w(t + 1) = b|w(t) = a + 2n−g)func(a)

+Pr(w(t + 1) = b | w(t) = a − 2n−g)(1 − func(a)) (4.8)

where

func(a) =











1 if state of geneg is 0 for a

0 if state of geneg is 1 for a

and the transition probabilities,Pr, without control are given by Eq. (4.3).

Here,a andb range over0 through2nL − 1. As shown in Chapter II, we can reduce

the dimension of the state space by replacing thew’s in Eq. (4.8) byz’s and using Eq. (4.4)

to determine the transition probabilities without the control action:

Prc1(z(t + 1) = b|z(t) = a) =

Pr(z(t + 1) = b|z(t) = a + 2n−g)func(a)+

Pr(z(t + 1) = b|z(t) = a − 2n−g)(1 − func(a))

(4.9)

By lettinga andb vary over0 to 2n−1 and making use of Eq. (4.9), we can determine

the2n × 2n matrixA(v(t)) of control-dependent transition probabilities.
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In the rest of this section, we formulate and solve the control problem assuming2n

states and the availability of full state information. The same development can be carried

out for the2nL state formulation if we simultaneously have the gene state information and

the network labels. As shown in [12], the one-step evolutionof the probability distribution

vector in the case of a PBN containing2n states with control inputs takes place according

to the equation:

pd(t + 1) = pd(t)A(v(t)) (4.10)

wherepd(t) is the2n dimensional state probability distribution vector andA(v(t)) is the

2n×2n matrix of control-dependent transition probabilities determined by Eq. (4.9). Since

the transition probability matrix is a function of the control input v(t), the evolution of

the probability distribution vector of the PBN with control now depends not only on the

initial distribution vector but also on the values of the control input at different time steps.

Furthermore, intuitively it appears possible to make the states of the network evolve in a

desirable fashion by appropriately choosing the control input at each time step.

These ideas have been formalized in [12] to arrive at the following finite horizon opti-

mization problem. Given an initial statez0:

min
µ0,µ1,··· ,µM−1

E

[

M−1
∑

t=0

Ct(zt, µt(zt)) + CM(zM)

]

(4.11)

subject toPr(z(t + 1) = j|z(t) = i, v(t)), given by Eq. (4.9), where

• M represents the treatment/intervention window;

• µt : [0, 1, 2, · · · , 2n − 1] → [0, 1, 2, · · · , 2m − 1],

t = 0, 1, 2, · · · ,M − 1 are functions mapping the state space into the control space;

• Ct(zt, vt) is the one step cost of applying the controlvt at statezt;
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• andCM(zM) is the terminal cost associated with the statezM .

As discussed in [12], the consideration of such an optimization problem can be nat-

urally motivated in the context of cancer treatment applications where one must choose

between a number of alternative treatments to be applied over a finite horizon of time.

Once input from biologists/clinicians has been used to select an appropriate cost function

and an appropriate treatment window, the control problem isessentially reduced to that of

controlling a Markov Chain over a finite horizon.

The dynamic programming solution to Eq. (4.11) is given by:

JM(zM) = CM(zM) (4.12)

Jt(zt) =

min
vt∈{0,1,··· ,2m−1}

[

Ct(zt, vt) +
2n−1
∑

j=0

Pr(zt|j, vt).Jt+1(j)

]

t = 0, 1, · · · ,M − 1.

(4.13)

[49, 12]. If v∗
t = µ∗

t (zt) minimizes the right hand side of Eq. (4.13) for eachzt andt, then

the control lawπ∗ =
{

µ∗
0, µ

∗
1, · · · , µ∗

N−1

}

is optimal.

The optimal control problem, Eq. (4.11), and its solution, Eqs. (4.12) and (4.13), are

from a very general setting; however, in our case, the class of allowable controls is severely

constrained since our control action consists of forcibly altering the expression status of

only asinglegene. This limited control objective is dictated primarilyby limitations on the

kind of interventions that appear to be within the realm of biological possibility.
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3. Selecting the Control Gene

Given a particular target gene, there may be several genes that are good predictors for

it. Among a set of predictors for a particular gene, some of them may have more impact

on the value of the target gene than others. For instance, in cancer studies it has been

shown that p53 has a more profound effect on the cell cycle regulator gene WAF1/p21 than

other predictors of WAF1, such as AP2 or BRCA1 [50]. In view of this, one can define the

influenceof the variablexj on the Boolean functionf [5]. To do so, letD be the probability

mass distribution over the states of a Boolean network and let∂f(x)
∂xj

be the partial derivative

of the Boolean functionf with respect to the argumentxj. Then the influence ofxj onf is

defined by

Ij(f) = ED[
∂f(x)

∂xj

] = Pr{
∂f(x)

∂xj

= 1} =

Pr{f(x) 6= f(x(j))}

(4.14)

wherex(j) is the same asx except that thejth component is toggled. In this dissertation,

we will assume that the distributionD is uniform.

The main idea behind the influence definition is to quantify the amount by which the

genexj affects the value of the functionf . If the value of the functionf changes on

toggling the value of genexj for most gene activity profilesx, then the influence of thejth

gene onf is high. For the case of PBNs, letFi be the set of predictors for genexi with

corresponding probabilitiesc(i)
1 , ....., c

(i)
l(i). Let Ik(f

(i)
j ) be the influence of variablexk on the

predictorf (i)
j . Then the influence of genexk on genexi is given by [5]

Ik(xi) =

l(i)
∑

j=1

c
(i)
j Ik(f

(i)
j ) (4.15)
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We can use theinfluenceto select the control gene. For example, suppose we have

treatmentsd1, d2...., dr that can affect genesg1, g2......gr, respectively. Biological or eco-

nomic considerations may constrain us to use only one treatment at a time. Then we can use

the gene that has the highest influence on the target genegt. The influence can be directly

calculated from the PBN as given by the previous formula or it can be approximated from

the observed gene activity profiles. The hope is that by selecting a gene with high influence

as the control gene, we will be able to carry out a more cost-effective intervention. The

simulation results presented in the next section show that such an expectation is met.

4. Melanoma Application

In this section, we apply the results of the previous sectionto a context-sensitive PBN de-

rived from gene expression data collected in a study of metastatic melanoma [48]. In this

study, the abundance of mRNA for the gene WNT5A was found to be highly discrimi-

nating between cells with properties typically associatedwith high versus low metastatic

competence. These findings were validated and expanded in a second study in which ex-

perimentally increasing the levels of the Wnt5a protein secreted by a melanoma cell line

via genetic engineering methods directly altered the metastatic competence of that cell as

measured by the standardin vitro assays for metastasis [51]. Furthermore, it was found

that an intervention that blocked the Wnt5a protein from activating its receptor, the use

of an antibody that binds the Wnt5a protein, could substantially reduce Wnt5a’s ability to

induce a metastatic phenotype. This suggests that a reasonable control strategy would be

to use an intervention that reduces the WNT5A gene’s action inaffecting biological regu-

lation, since the available data suggests that disruption of this influence could reduce the

chance of a melanoma metastasizing, a desirable outcome. Instantaneously random PBNs

derived from the same expression data have been used in [12, 52] for demonstrating earlier

intervention strategies.
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Here, we consider a 7 gene network containing the genes WNT5A,pirin, S100P,

RET1, MART1, HADHB and STC2. To obtain the PBN, we have used the Bayesian

connectivity-based approach of [9] to construct four highly probable Boolean networks

that are used as the constituent Boolean networks in the PBN, with their selection proba-

bilities based on their Bayesian scores. The four generated Boolean networks are shown

in Figs. 11, 12 ,13, and 14, where the states are labeled from0 to 127 = 27 − 1. Each

constituent network is assumed to be derived from steady-state gene-expression data, and

the attractor states and the level sets are shown in the figures. Observe that in each of these

networks, the state enters an attractor cycle in a small number of steps (at most nine), which

is consistent with what is expected in real networks [9].

The control strategy of the previous section has been applied to the designed PBN

with pirin chosen as the control gene andp = q = 0.01. Figure 15 shows the expected cost

for a finite horizon problem of length5 originating from each of the128 states. In these

simulations, the problem formulation for2n states has been used. The cost of control is

assumed to be0.5 and the states are assigned a terminal penalty of5 if WNT5A is 1 and

0 if WNT5A is 0. The control objective is to down-regulate the WNT5A gene. From Fig.

15, it is clear that the expected cost with control is much lower than that without control,

which agrees with our objective. If the length of the controlhorizon is increased, then Fig.

16 shows that all the initial states start yielding almost the same expected cost. This may

be due to the fact that the maximum level of the constituent networks is9 and the Markov

chain is ergodic. If, on the other hand, the2nL formulation is used, then the expected costs

for different initial states become almost equal after a larger number of time steps (data not

shown). This is possibly due to the fact that no averaging is used in that formulation.

Next we consider the relationship between the influence of a control gene and its

effectiveness in carrying out the intervention. The influences of the other six genes on

WNT5a are as follows: pirin= 1, S100P= 0.75, RET1= 0, MART1 = 0, HADHB = 1,
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Fig. 11. Network 1 [13].

and STC2= 1. The influence has been calculated from the influences of the genes in the

four constituent Boolean networks, assuming equal probabilities for each network. These

influence values (GI) are tabulated alongside the control genes (CG) in Table VII. The

perturbation probabilityp is not taken into account for the influence calculations because

it has a very low value. If the starting gene activity profile is pirin = 0, S100P= 0, RET1

= 0, MART1 = 0, HADHB = 1, STC2= 0, and WNT5A= 1, then the expected costs

for finite horizon control problems of lengths (Ln) 5 and 30 are shown in Table VII. Here,
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Ec1 represents the expected cost when the2n state formulation is used,Ec2 represents the

expected cost when the2nL state formulation is used, the suffixwc denotes with control,

and the suffixwoc denotes without control. The table shows that the expected cost is

much lower (0.35 and0.39) when the high-influence genes pirin and HADHB are used,

as compared to the expected cost (0.56) obtained when the low-influence gene MART1 is

used to control the network.

B. Infinite Horizon Control for Context-Sensitive PBNs: ProblemFormulation

In this section, we formulate and solve the infinite horizon control problem for context-

sensitive PBNs. The problem formulation and results summarized in the last section for

the finite horizon case serve to motivate the developments here. Consider the finite horizon
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Fig. 13. Network 3 [13].

cost function being minimized in (4.11) and suppose that thecontrol horizon characterized

by M is made larger and larger and in the limit we would like for it to tend to infinity. In

trying to do so, we immediately encounter a number of potential obstacles that did not arise

in the finite horizon case.

First, in the finite horizon case, since there is a terminal state which is being separately

penalized, the cost per stagegt(zt, ut) is assumed to only depend on the control applied

and the current state. In the infinite horizon problem, the control horizon is infinite and,

therefore there is no terminal state or its associated terminal penalty. Consequently, for the

infinite horizon case, the cost per stage should depend on theorigin i, the destinationj and

the applied control inputu. In other words,gt(i, u) of the finite horizon problem should

now be replaced bỹg(i, u, j) so that the per stage cost takes into account the origin, the
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Fig. 14. Network 4 [13].

destination and the control.1

Second, in the finite horizon problem, the summation in (4.11) is a finite one and so

the quantity being minimized is finite. If we let the control horizon go to infinity, there

is a possibility that the summation of the one stage costs maygo to infinity (for all con-

trols) leading to an ill-posed optimization problem. To make the optimization problem well

posed, the cost considered in (4.11) has to be modified beforeletting the lengthM of the

control horizon tend to infinity. We will consider two such modifications that have been

1Note that while finite horizon control problems in the literature allow for cost-per-
stage functions that vary from one stage to another, infinitehorizon control problems in
the literature have typically been derived assuming that the same cost per stage function
is used for all stages. For PBNs (both context-sensitive and otherwise), this is not of any
consequence since all of our earlier finite horizon results also used the same cost per stage
function for all stages.
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extensively studied in the literature.

In the first case, we assume that the cost per stageg̃(i, u, j) is bounded∀ i, j ∈ S and

u ∈ C and adiscounting factorα ∈ (0, 1) is introduced in the cost to make sure that the

limit of the finite sums converges as the horizon length goes to infinity. More specifically,

our objective is to find a policyπ = {µ0, µ1......}, whereµt : S → C, t = 0, 1...., that

minimizes the cost function2

Jπ(z0) = lim
M→∞

E{
M−1
∑

t=0

αtg̃(zt, µt(zt), wt)}, (4.16)

2Note that a Markov Chain can be modeled byzt+1 = wt [49]. Hence the destination
state is the same as the disturbance.
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TABLE VII

EXPECTEDCOST TABLE [13]

CG GI Ln Ec1wc Ec1woc Ec2wc Ec2woc

pirin 1 30 .355352 .5784 .566017 .949586

mart1 0 30 .568611 .5784 .743938 .949586

hadhb 1 30 .398291 .5784 .300602 .949586

stc2 1 30 .413105 .5784 .569817 .949586

pirin 1 5 .652455 .974544 .396288 .61994

mart1 0 5 .963684 .974544 .53374 .61994

hadhb 1 5 .762097 .974544 .304567 .61994

stc2 1 5 .830185 .974544 .398155 .61994

where the cost per stagẽg : S × C × D → < is given. This problem is referred to in the

literature as the problem ofminimizing the total cost over an infinite number of stages with

discounted and bounded cost per stage. In the general formulation, the inclusion ofα in

the cost captures the fact that costs incurred at a later timeare less significant. In the case

of cancer treatment,α < 1 signifies that the condition of the patient in the initial stages of

treatment is more important than the condition at a later stage, or in other words, the reward

for improving the condition of the patient in the present is more significant than the reward

obtained from similar improvement at a later stage. This approach is reasonable if we keep

in mind the expected life-span of the patient.

In the second case, one avoids the problem of a possibly infinite total cost by consid-
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ering theaverage cost per stagewhich is defined by

Jπ(z0) = lim
M→∞

1

M
E{

M−1
∑

t=0

g̃(zt, µt(zt), wt)}. (4.17)

In this formulation, a control policyπ = {µ0, µ1, · · · } is chosen to minimize the above

cost and the problem is referred to as theaverage cost per stage problem. Minimization

of the total cost is feasible ifJπ(z0) is finite for at least some admissible policiesπ and

some admissible statesz0. If we consider no discounting, i.e. adiscount factorof 1, and

there is no zero-cost absorbing state (which is the case in context-sensitive PBNs with

perturbation), then the total cost will frequently go to∞. Hence theaverage cost per stage
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formulation is essential when we are interested in the condition of the patient in the long

run and equal importance is given to the patient’s conditionin all stages.

For reasons already discussed, the cost per stageg̃(zt, ut, wt) depends onzt, ut and

wt. However, since in Eqns (4.16) and (4.17), the cost is obtained only after taking the

expectation with respect to the disturbances, it is possible to replacẽg(zt, ut, wt) by an

equivalent cost per stage that does not depend on the disturbancew. This amounts to using

the expected cost per stage in all calculations. More specifically, if g̃(i, u, j) is the cost of

usingu at statei and moving to statej, we use as cost per stage the expected costg(i, u)

given by [49]:

g(i, u) =
2n−1
∑

j=0

pij(u)g̃(i, u, j). (4.18)

Now, the cost̃g(i, u, j) of moving from statei to statej under controlu may depend on

the starting statei. However, in the case of PBNs, we have no obvious basis for assigning

different costs based on different initial states. Accordingly, we assume that the penalty

g̃(i, u, j) is independent of the starting statei and its value is based on the control effort

and the terminal statej. The penalty is high if the end state is a bad state regardlessof the

starting state, and vice-versa. Henceg̃(i, u, j) = g̃(u, j) and Eq. (4.18) becomes

g(i, u) =
2n−1
∑

j=0

pij(u)g̃(u, j). (4.19)

We are now ready to present the solutions to the infinite horizon optimal control problems in

the two cases where the performance indices are (i) total cost with discounted and bounded

cost per stage; and (ii) average cost per stage. In either case, we denote byΠ the set of

all admissiblepoliciesπ, i.e., the set of all sequences of functionsπ = µ0, µ1, .... with

µt(z) : S → C, t = 0, 1, ...... The optimal cost functionJ∗ is defined by

J∗(z) = min
π∈Π

Jπ(z), z ∈ S. (4.20)
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A stationary policyis an admissible policy of the formπ = µ, µ, ...., and its corre-

sponding cost function is denoted byJµ. We say that the stationary policyπ = µ, µ.... is

optimal if Jµ(z) = J∗(z) for all statesz.

1. Optimal Control Solution: Total Cost with Discounted and Bounded Cost per Stage

In this section, we solve the problem of minimizing the cost (4.16) under the assump-

tion that the cost per stagẽg(i, u, w) is bounded, i.e. ∃ B > 0 such that̃g satisfies

|g̃(z, u, w)| ≤ B, for all (z, u, w) ∈ S × C × D. In the case of context-sensitive PBNs,

this assumption holds since the expected cost,g(i, u), for statei is given by Eq. (4.19),
∑2n−1

j=0 pij(u) = 1, and g̃(u, j) is bounded since the control and disturbance spaces are

finite.

Observe that if we setgM(zM) = 0 ∀ zM ∈ S andgt(zt, ut) = αtg(zt, ut) in the finite

horizon problem of Eq. (4.11) and letM → ∞, then we obtain the infinite horizon cost

function considered in Eq. (4.16). Thus it seems reasonablethat the finite horizon solution

described by Eqs. (4.12) and (4.13) in the last section couldprovide a basis for arriving at

the solution of the optimization problem (4.20) whereJπ is given by Eq. (4.16). A formal

derivation of this connection is given in [49]. Here we simply state the result and present

an intuitive justification for it.

Towards this end, note that Eq. (4.13) in the dynamic programming algorithm basi-

cally describes how the optimal costJt+1 propagates backwards in time to the optimal cost

Jt in the finite horizon problem (4.11). For the cost function considered in Eq. (4.16), it is

clear that the costJt+1 must be discounted by the factorα while being propagated to the

previous stage. Consequently, for the optimal control problem of this section, Eq. (4.13)

will have to be replaced by

Jt(i) = min
u∈C

[

g(i, u) + α
2n−1
∑

j=0

pij(u)Jt+1(j)

]

. (4.21)
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The above equation motivates the introduction of the following two mappings:

For any cost functionJ : S → <, define the mappingTJ : S → < by

(TJ)(i) = min
u∈C

[g(i, u) + α
2n−1
∑

j=0

pij(u)J(j)], i ∈ S. (4.22)

Note thatTJ is the optimal cost function for the one-stage (finite horizon) problem that has

stage costg and terminal costαJ .

Similarly for any cost functionJ : S → < and control functionµ : S → C, define the

mappingTµJ : S → < by

(TµJ)(i) = g(i, µ(i)) + α

2n−1
∑

j=0

pij(µ(i))J(j), i ∈ S. (4.23)

TµJ can be viewed as the cost function associated with the policyµ for the one-stage

problem that has stage cost functiong and terminal costαJ . Since the mappingsT and

Tµ map functionsJ : S → < into new functions mappingS to <, one can define the

composition ofT with itself andTµ with itself as follows:

(T kJ)(i) = (T (T k−1J))(i), i ∈ S, k = 1, 2, · · · , (4.24)

(T 0J)(i) = J(i), i ∈ S, (4.25)

and

(T k
µJ)(i) = (Tµ(T k−1

µ J))(i), i ∈ S, k = 1, 2, · · · , (4.26)

(T 0
µJ)(i) = J(i), i ∈ S. (4.27)

The mappingsT andTµ play an important role in the solution of the optimal control

problem of this section. Specifically, it can be shown that (i) the optimal cost function

J∗ is the unique fixed point of the mapT ; (ii) the iterationJt+1 = TJt converges toJ∗

as t → ∞; and (iii) the mappingTµ can be used to characterize the conditions under
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which a given stationary policyµ is optimal. These ideas are formalized in the following

three theorems adapted from [49]. To make the dissertation self-contained, the proofs are

included in the Appendix B.

Theorem B.1. Convergence of the discounted-cost algorithm: For any bounded cost func-

tion J : S → <, the optimal cost functionJ∗ satisfies

J∗(i) = lim
M→∞

(TMJ)(i), for all i ∈ S. (4.28)

Theorem B.2. Bellman’s Equation: The optimal cost functionJ∗ satisfies

J∗(i) = min
u∈C

[g(i, u) + α

2n−1
∑

j=0

pij(u)J∗(j))], for all i ∈ S. (4.29)

or, equivalently,J∗ = TJ∗. Furthermore,J∗ is the unique solution of this equation within

the class of bounded functions.

Theorem B.3. Necessary and Sufficient Condition for Optimality: A stationary policyµ

is optimal if and only ifµ(i) attains the minimum in Bellman’s equation (4.29) for each

i ∈ S; i.e.,

TJ∗ = TµJ
∗ (4.30)

The three theorems above provide the basis for coming up withcomputational algo-

rithms for determining the optimal policy. Theorem B.2 asserts that the optimal cost func-

tion satisfies Bellman’s equation while Theorem B.1 states that the optimal cost function

can be iteratively determined by running the recursion

Jt+1 = TJt, t = 0, 1, 2, · · · (4.31)

for any bounded initial cost functionJ0 : S → <. Since this iteration is guaranteed to

converge toJ∗, one can keep on running this iteration until some stopping criterion is

reached. The resulting policy is a stationary one which, by Theorem B.3, must be optimal.



77

The iteration described in (4.31) above is referred to as theValue Iterationprocedure since,

at every stage we are iterating on the values of the cost function and the optimal policy

simply falls out as a by product when the iteration convergesto the optimal value of the

cost function.

An alternative approach for solving the optimal control problem of this section is

referred to asPolicy Iteration. Before presenting this approach, we introduce the following

matrix and vector notations.

J =



















J(0)

.

.

J(2n − 1)



















,

Jµ =



















Jµ(0)

.

.

Jµ(2n − 1)



















,

TJ =



















(TJ)(0)

.

.

(TJ)(2n − 1)



















,

TµJ =



















(TµJ)(0)

.

.

(TµJ)(2n − 1)



















.

The transition probability matrix corresponding to the stationary policyµ is represented as
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Pµ =



















p00(µ(0)) ... p0,2n−1(µ(0))

. . .

. . .

p2n−1,0(µ(2n − 1)) ... p2n−1,2n−1(µ(2n − 1))



















andgµ represents the cost vector

gµ =



















g(0, µ(0))

.

.

g(2n − 1, µ(2n − 1))



















.

Using the above notation, it is clear that for any stationarypolicy µ, (4.23) can be rewritten

as

TµJ = gµ + αPµJ.

Furthermore, it can be shown (reasoning similar to proof of Theorem B.2 given in the

Appendix B) that the costJµ corresponding to the policyµ satisfies

Jµ = gµ + αPµJµ

or

[I − αPµ]Jµ = gµ. (4.32)

Equation (4.32) above is a system of linear equations that can be solved to calculate the

costJµ corresponding to a given stationary policyµ. In the policy iteration algorithm, one

starts with a given stationary policy, evaluates the corresponding cost using (4.32) and tries

to find a policy that yields a smaller cost. The process is terminated when we arrive at a

fixed point of the mappingT . We next formally present the steps involved in the policy

iteration algorithm.
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Step 1: (Initialization) An initial policyµ0 is selected.

Step 2: (Policy Evaluation) Given a stationary policyµk, we compute the correspond-

ing cost functionJµk from the linear system of equations

(I − αPµk)Jµk = gµk . (4.33)

Pµk is the probability transition matrix obtained using control policy µk.

Step 3: (Policy Improvement) An improved (in terms of the cost J) stationary policy

µk+1 satisfyingTµk+1Jµk = TJµk is obtained.

The iterations are stopped ifJµk = TJµk , else we return to Step 2 and repeat the

process.

2. Optimal Control Solution: Average Cost per Stage

In this section, we solve the problem of minimizing the cost (4.17). In this case, there is

no discounting i.e.α = 1 and we are interested in determining the policy that minimizes

the limit of JM

M
asM → ∞ whereJM is the optimal finite horizon cost over an interval of

lengthM . The same reasoning used in the last section can be used to derive the counterparts

of Eqns. (4.21),(4.22) and (4.23) which for this case become

Jt(i) = min
u∈C

[g(i, u) +
2n−1
∑

j=0

pij(u)Jt+1(j)], i ∈ S. (4.34)

(TJ)(i) = min
u∈C

[g(i, u) +
2n−1
∑

j=0

pij(u)J(j)], i ∈ S. (4.35)

(TµJ)(i) = g(i, µ(i)) +
2n−1
∑

j=0

pij(µ(i))J(j), i ∈ S. (4.36)
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However in this case, the value iteration

Jt+1(i) = TJt(i) (4.37)

considered in the last section cannot be directly used since, in the absence of the discounting

factor, it may diverge to infinity. Thus calculating the average cost by takinglimM→∞
JM

M

is not feasible.

Instead we consider adifferential costht which is obtained by subtracting a fixed

component ofJt sayJt(n1) from each element ofJt i.e.

ht(i) = Jt(i) − Jt(n1) ∀i ∈ S. (4.38)

Clearly ht(n1) = 0. Also defininge = [1, 1, ...., 1]T , the above relationship can be

rewritten as

ht = Jt − Jt(n1)e (4.39)

Similarly

ht+1 = Jt+1 − Jt+1(n1)e (4.40)

Now substituting forJt andJt+1 into Eq. (4.37), we have

ht+1 + Jt+1(n1)e = T (ht + Jt(n1)e) (4.41)

=⇒ ht+1 + Jt+1(n1)e = Tht + Jt(n1)e

=⇒ ht+1 = Tht − (Jt+1(n1)e − Jt(n1)e) (4.42)
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From Eq. (4.37),

Jt+1(n1) = T (Jt)(n1)

= T (ht + Jt(n1)e)(n1) from Eq.(4.39)

= Tht(n1) + Jt(n1).

(4.43)

Hence, it follows that

Jt+1(n1)e − Jt(n1)e = Tht(n1)e

so that Eq. (4.42) yields

ht+1 = Tht − (Tht)(n1)e (4.44)

as thevalue iteration algorithmfor the differential cost.

We next state two theorems adapted from [49] which form the basis for the solution to

the average cost per stage optimal control problem. The proofs are given in Appendix B.

The first theorem formalizes something which appears to be intuitively reasonable – since

theaverageoptimal cost is calculated over aninfinitehorizon, its value should be indepen-

dent of the starting state. Note also that the required assumption about the ergodicity of the

Markov Chain is satisfied by the context-sensitive PBNs considered in this chapter.

Theorem B.4. For ergodic Markov Chains, the optimal average cost per stageis indepen-

dent of the initial state.

The next theorem formalizes the fact that if the value iteration (4.44) for the differential

cost converges to some vectorh, i.e. (Th)(n1)e + h = Th thenTh(n1) is the optimal

average cost per stage (which is the same for all initial states).
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Theorem B.5. If a scalarλ and a2n-dimensional vectorh satisfy

λ + h(i) = min
u∈C

[g(i, u) +
2n−1
∑

j=0

pij(u)h(j)], i ∈ S, (4.45)

or equivalently,λe + h = Th, wheree is the unitary vector[1111...1]T andh = [h(0), h(1)

.... h(2n − 1)]T , thenλ is the optimal average cost per stageJ∗(i) for all i, i.e.

λ = min
π

Jπ(i) = J∗(i), i ∈ S, (4.46)

Furthermore, ifµ∗(i) attains the minimum in Eq. (4.45) for eachi, then the stationary

policyµ∗ is optimal, i.e.,Jµ∗(i) = λ for all i ∈ S.

We note that for the average cost per stage problem, Eq. (4.45) plays the same role as

Bellman’s Equation (4.29) in the solution of the problem of the last section. Consequently,

we can immediately arrive at the followingpolicy iterationalgorithm for this case :

Step 1: (Initialization) An initial policyµ0 is selected.

Step 2: (Policy Evaluation) Given a stationary policyµk, we obtain the corresponding

average and differential costsλk andhk(i) satisfying

λk + hk(i) = g(i, µk(i)) +
2n−1
∑

j=0

pij(µ
k(i))hk(j), i ∈ S. (4.47)

This linear system of equations can be solved utilizing the fact thathk(n1) = 0, where

n1 ∈ S is any particular reference state.

Step 3: (Policy Improvement) An improved stationary policyµk+1 satisfying

g(i, µk+1(i)) +
2n−1
∑

j=0

pij(µ
k+1(i))hk(j) = min

u∈C
[g(i, u) +

2n−1
∑

j=0

pij(u)hk(j)], (4.48)

or equivalently,Tµk+1hk = Thk, is obtained.

The iterations are stopped ifµk+1 = µk, else we return to Step 2 and repeat the process.
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3. Melanoma Application

In this section, we apply the results of the previous sectionto a context-sensitive PBN

derived from the same gene expression data used earler. Finite Horizon Control on instan-

taneously random and context-sensitive PBNs derived from this expression data have been

used in [12, 52, 13](see also Section IV.A.4 in this dissertation) for demonstrating earlier

intervention strategies.

We consider a 7 gene network containing the genes WNT5A, pirin, S100P, RET1,

MART1, HADHB and STC2. To obtain the PBN, we have used the algorithms described

in [8] to construct four Boolean networks to use as the constituent Boolean networks in the

PBN. Each constituent network is assumed to be derived from steady-state gene-expression

data (a common assumption – see [8]). The states are ordered as WNT5A, pirin, S100P,

RET1, MART1, HADHB and STC2, with WNT5A as the most significant bit (MSB) and

STC2 as the least significant bit (LSB).

The control strategies of the previous sections have been applied to the designed PBN

with pirin chosen as the control gene (u = 1 signifying the state of pirin is reversed and

u = 0 signifying no intervention) andp = q = 0.01.

The cost of control is assumed to be1 and the states are assigned penalties as follows:

g̃(u, j) =



































5 if u = 0 and WNT5A is1 for statej

6 if u = 1 and WNT5A is1 for statej

1 if u = 1 and WNT5A is0 for statej

0 if u = 0 and WNT5A is0 for statej

The penalty assignment is based on the fact that for infinite-horizon problems, there is no

terminal penalty; instead, the cost per stageg contains the penalties of each state. Since our

objective is to down-regulate the WNT5A gene, a higher penalty is assigned for destination

states having WNT5a up-regulated. Also for a given WNT5A status for the destination
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state, a higher penalty is assigned when the control is active versus when it is not.

a. Discounted Cost Problem

Fig. 17 shows the Total Cost for the discounted cost function with bounded cost per stage

originating from each of the128 states after the iterations have converged, with the discount

factorα chosen to be0.9.
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Fig. 17. Total Cost Originating from the Different Initial States [53].

The control objective is to down-regulate the WNT5A gene. From Fig. 17, it is

clear that the Total Cost with an optimal stationary policy ismuch lower than that without

control, which agrees with our objective. Fig. 18 shows the stationary policy obtained from

the solution of the discounted cost problem. Fig. 19 shows the average total cost per state

for each iteration. The stationary policy has been obtainedusing value iteration and policy

iteration. The starting policy for the policy iterations wasµ = 0, 0, 0.... , i.e. no control, and
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hence the initial cost for the policy iteration is the same asthe eventual total uncontrolled

cost (Fig. 19). We should note that the policy iteration provides us the optimal policy in

a small number of steps as compared to value iteration. Moreover, as the collection of

stationary policies is finite (in this particular case, it is2128), the policy iteration is bound

to give us an optimal stationary policy in a finite number of steps, whereas value iteration

may converge in an infinite number of steps. On the other hand,the problem with policy

iteration is solving the system of linear equations(I − αPµk)Jµk = gµk , which becomes

very complicated as the number of states increases.
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Fig. 18. Stationary Policy Obtained Using Discounted Cost Formulation [53].

Fig. 20 shows the steady-state distributions of the PBN usingthe obtained stationary

policy (Fig. 18) and Fig. 21 shows the original PBN steady state for comparison. We

should note that the states from0 to 63 have WNT5A0 and hence are desirable states, as

compared to states64 to 127 that have WNT5A1 and hence are undesirable. The steady-

state distribution Figures 20 and 21 show that the stationary policy has enabled us to shift

the probability mass from the bad states to states with lowermetastatic competence. For ex-
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Fig. 19. Average Cost per State Using Discounted Total Cost [53].

ample, state65 (WNT5A is 1) has a high probability mass (0.15) in the original steady state

but stationary control has reduced its steady-state mass to0.04. Similarly, the probability

mass of state63 (desirable state) is high when using the stationary policy.To numerically

quantify the change, we multiply the stationary distribution with the cost vector. For the

original PBN the cost vector is0 for states0 to 63 and5 for states64 to 127. For the station-

ary policy the cost vector is̃g(µ(z), z), z ∈ [0, 1, 2, .....127]. The value for the stationary

policy using discounted cost formulation is1.7465 as compared to2.9830 for no control.

b. Average Cost per Stage Problem

In this section we use the average-cost-per-stage formulation to design our optimal station-

ary policy. Both the value iteration and policy iteration algorithms are used to calculate the

optimal policy. The optimal policy obtained using the two iteration methods are the same.
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Fig. 20. Steady State Using Discounted Cost Stationary Policy [53].

This policy is shown in Fig. 22. The average cost,λ, for the optimal policy of Fig. 22 is

1.746302, whereas the average cost for the uncontrolled policy is2.9829707. We have used

the same cost of control and penalties as used for the discounted cost simulations. The evo-

lution of λ with each iteration for the two methods are shown in Fig. 23. The steady-state

distribution is shown in Fig. 24 and is very similar to the steady-state distribution obtained

using the previous total-cost formulation. Comparison of Figs. 21 and 24 indicates that

application of the stationary policy has been successful inshifting the steady-state distribu-

tion from undesirable to desirable states. The numerical value for the multiplication of the

steady-state distribution with the cost vector is1.7463 for the stationary policy, whereas for

the uncontrolled PBN it is2.9830.
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Fig. 21. Original Steady State [53].
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Fig. 22. Stationary Policy Obtained Using Average Cost Formulation [53].
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Fig. 24. Steady State Using Average Cost Stationary Policy [53].
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CHAPTER V

ROBUSTNESS OF INTERVENTION STRATEGIES

If we revisit Fig. 1, it is clear that errors made during data extraction, discretization, gene

selection and network generation will all propagate downstream and impact the actual suc-

cess of the designed intervention strategy. Indeed, if the designed intervention approach

is to have any hope of succeeding in practice, its outcome must possess some degree of

“robustness” or insensitivity to the errors that will invariably propagate down to the inter-

vention design stage from steps further upstream. The studyof the effect on intervention

outcome of the errors propagating from the different upstream steps is an important open

problem in translational genomics. In this chapter, we focus on a special subproblem where

it is assumed that the combined effect of the errors propagating from the different stages

manifests itself as uncertainty in the transition probabilities of the network, and the robust-

ness of the intervention strategies is to be studied with respect to this uncertainty. With

respect to Fig. 1, this corresponds to determining how the uncertainties in Step C impact

the outcome of the intervention strategy designed in Step D.Besides error propagation,

uncertainties arise due to the inverse problem of system identification being an ill-posed

problem.

The intervention approach proposed in Chapter IV Section B isof particular relevance

for translational genomics since it seeks to shift the steady-state mass of the PBN from

undesirable states to desirable ones. Since it is believed that the steady-state behaviour of a

PBN is indicative of the phenotype [3], it is likely that alterations in the steady-state behav-

iour of the PBN would translate into changes at the phenotypiclevel. Moreover, the scheme

of Section B makes use of stationary policies which are more easily impementable. In

Chapter IV SectionB.3, we used gene expression data from melanoma studies to demon-
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strate the feasibility of altering the steady-state distribution of a PBN in desirable ways.

However, such alteration in steady-state behaviour was achieved under the assumption that

the transition probability matrix of the PBN is known. Such anassumption will not be sat-

isfied for reasons that we have already articulated. Instead, while the intervention strategy

would have to be designed based on an estimated network with atransition probability ma-

trix P , in practice it would be applied to the actual network whose transition probabilityP̃

differs fromP . The goal of this chapter is to examine how, for a given intervention policy,

the mismatch betweenP andP̃ affects the steady-state distribution of thecontrolledPBN.

A. Perturbations for the Steady-State Distribution of a Controlled PBN

Before trying to derive any perturbation bounds, let us make asimple observation con-

cerning the probability transition matrix of a controlled PBN. Note that the only kind of

interventions that have been proposed to date in the literature [11, 10, 12, 52, 13, 54, 53]

are restricted to flipping the expression status of one or more control genes. For such inter-

vention strategies, it is always possible to relate the transition probability matrices of the

controlled and uncontrolled PBNs, via a linear transformation, as we explain next.

Let P denote the estimated probability transition matrix corresponding to the PBN of

interest and suppose this PBN hasm binary control inputsa1, a2 · · · am whereai refers to

the status of theith control gene withai = 1 signifying that theith control gene is to be

flipped. If we apply a stationary policy, i.e. a policy dependent only on the current state and

not on the time, to the Markov ChainP , the rows of the controlled transition probability

matrix Pc will be a collection of selected rows fromP . This is due to the fact that the

flipping of genes actually forces the Markov Chain to start from another initial state. To

clearly understand this, let us look at a concrete example.

Example A.1. Suppose we have a network with7 genes, three of which, namely genes
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1, 2 and 3 are control genes. This means thatm = 3 here. Suppose that the stationary

policy for state0000001 (corresponding to the decimal number1) is 101, i.e. flip gene 1,

leave gene 2 as is, and flip gene 3. This implies that if we are currently at state0000001,

application of the stationary policy will reinitialize the state to1010001 (corresponding to

the decimal number81). Therefore, in the controlled transition probability matrix Pc, the

transition probabilities of going from state1 to each of the other states will be the same

as the transition probabilities of going from state81 to each of those states in the original

uncontrolled network with transition probability matrixP .

From the above example, it is clear that when the class of allowed interventions is

restricted to the flipping of genes, the application of a stationary policy converts the uncon-

trolled transition probability matrixP to a controlled transition probability matrixPc where

Pc andP are related byPc = TP andT represents a matrix which has only one non-zero

entry of 1 in each row. If the stationary policy is of no control, then clearly T = I, the

identity matrix.

Let π andπc denote the stationary distribution vectors correspondingto the transition

matricesP andPc respectively. Since the probability transition matrixP has been esti-

mated from data, there can be some errors in estimation. LetP̃ denote the actual transition

matrix of the genetic network and let̃Pc denote the controlled transition probability matrix

that results from the application of the stationary policyT on P̃ . Let π̃ andπ̃c denote the

stationary distributions of̃P andP̃c respectively. Our goal is to study the changeπ̃c − πc

based on the knowledge ofP and some characterization of the estimation errorE
∆
= P −P̃ .

Let us summarize the notation and relationships introducedso far:

(i) πP = π

(ii) π̃P̃ = π̃

(iii) πcPc = πc
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(iv) π̃cP̃c = π̃c

(v) E = P − P̃

(vi) Ec
∆
= Pc − P̃c .

For two Markov Chains with transition probabilitiesP andP̃ and sharing a common

state space, the difference between the two stationary distributions can be bounded by

|π − π̃|q ≤ K‖E‖∞ whereq = 1 or∞ andK > 0 are some constants and|π − π̃|q refers

to theqth norm of the vectorπ − π̃ and‖E‖∞ denotes the∞ norm of the error matrixE

which is equivalent to the maximum row sum ofE. The constantsK are usually referred

to ascondition numbersand several of them have been studied in the literature. Obviously,

some of the condition numbers will yield tighter bounds thanthe others and [55] gives

a nice comparison of the available bounds. Initial studies of steady-state distributions of

PBNs using condition numbers were carried out in [10] but steady-state distributions under

control were not considered in that reference. Here, we willprove a theorem for a particular

condition number studied by Seneta [56]. For a given transition probability matrixP , this

condition number called theergodicity coefficientτ1(P ) is defined by

τ1(P ) = sup
|xT |1=1

xT
1n=0

|xT P |1 (5.1)

where1n denotes then-dimensional column vector having all entries equal to one.As

shown in Appendix C, equivalent definitions are

τ1(P ) =
1

2
max

i,j

n
∑

s=1

|pis − pjs| (5.2)

andτ1(P ) = 1 − min
i,j

n
∑

s=1

min(pis, pjs) (5.3)

wherepij refers to theith row andjth column entry of matrixP . These two definitions

are more useful for the purpose of computational evaluation. In [56], the ergodicity coef-
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ficient was used to obtain a bound on the perturbation in the steady-state distribution due

to perturbations in the transition probability matrix. More specifically, it was shown that if

τ1(P ) 6= 1, then

|π − π̃|1 ≤
1

1 − τ1(P )
‖E‖∞. (5.4)

Here, we will use the above result to obtain an analytical bound on the perturbations in the

controlledsteady-state distributions that could result from perturbations in the uncontrolled

probability transition matrix.

1. Analytical Result Involving the Ergodicity Coefficient

Theorem A.2. LetP andP̃ be two compatible probability transition matrices withτ1(P ) 6=

1. Then

|πc − π̃c|1 ≤
1

1 − τ1(P )
‖E‖∞. (5.5)

Proof. The proof is accomplished by showing

(i) if τ1(P ) 6= 1 then 1
1−τ1(Pc)

≤ 1
1−τ1(P )

i.e. τ1(Pc) ≤ τ1(P ) ; and

(ii) ‖Ec‖∞ ≤ ‖E‖∞.

From our earlier discussion, for the class of interventionsthat have been used for PBNs, we

can writePc = TP whereT is a stochastic matrix with each row containing only a single

non-zero entry of1. According to [57],

τ1(P1P2) ≤ τ1(P1)τ1(P2). (5.6)

Thus, in our caseτ1(Pc) ≤ τ1(T )τ1(P ). From Eq. 5.3, it is clear that ergodicity coefficient

of a stochastic matrix is less than or equal to1 and hence

τ1(Pc) ≤ τ1(P ). (5.7)
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Thus from Eq. 5.4, it follows that

|πc − π̃c|1 ≤
1

1 − τ1(P )
‖Ec‖∞. (5.8)

To prove the second part, we consider

Ec = Pc − P̃c (5.9)

= TP − T P̃ (5.10)

= T (P − P̃ ) (5.11)

= TE (5.12)

In view of Eq. 5.12, it follows that the rows ofEc are selected from the rows ofE and

hence‖Ec‖∞ (maximum absolute row sum ofEc) ≤ ‖E‖∞. Thus, from Eq. 5.8, it follows

that Eq. 5.5 holds, and this completes the proof.

There are other available perturbation bounds in the literature and some of them are

tighter than the ergodicity coefficient bound. The reason for emphasizing the ergodicity

coefficient bound here is that the kind of analytical result proved in the above theorem can

be derived only for this bound. We will show with the help of simulations that the most

effective perturbation bound (to be defined shortly) for thesteady-state distribution of the

controlled probability transition matrix can sometimes begreater than the corresponding

perturbation bound for the steady-state distribution of the original uncontrolled probability

transition matrix. The inequality in Eq. 5.7 implies that ifthe Markov Chain corresponding

to an uncontrolled genetic network has a small ergodicity coefficient bound, then the corre-

sponding controlled Markov Chain will also have an ergodicity coefficient that is bounded

by the same bound. Consequently, if a stationary policy is designed from an estimated

Markov Chain that is “close” to the actual one for the network,then this policy when ap-

plied to the actual network will produce results that are close to the desired outcome, as far
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as the steady-state behaviour is concerned.

As already mentioned, there are several condition numbers other than the ergodicity

coefficient that can be found in the literature. These perturbation bounds are mostly stated

in terms of thefundamental matrixor thegroup inverseof A := I − P . The fundamental

matrix of the Markov Chain with transition probability matrix P is defined by

Z = (A + eπT )−1 (5.13)

wheree = [1 1 1 · · · 1]T . The group inverse of A is the unique square matrixA# satisfying

the relationships

AA#A = A,A#AA# = A#, andAA# = A#A. (5.14)

The currently available condition numbers for bounding the1 and∞ norms of the pertur-

bations in the steady-state distributions are [55]:

k1 = ||Z||∞ q = 1 (5.15)

k2 = ||A#||∞ q = 1 (5.16)

k3 =
maxj(a

#
jj−mini a

#
ij)

2
q = ∞ (5.17)

k4 = maxi,j |a
#
ij | q = ∞ (5.18)

k5 = 1
1−τ1(P )

q = 1 (5.19)

k6 = τ1(A
#) = τ1(Z) q = 1 (5.20)

k7 =
minj ||A

−1
(j)

||∞

2
q = ∞. (5.21)

Here the boundk5 involves the ergodicity coefficient.
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2. Simulation Studies for Different Perturbation Bounds

Some of the large transition matrices encountered in genomics tend to be sparse and the

perturbation boundk5 based on the ergodicity coefficient is not very sharp for them. Ac-

cordingly, we will first report some simulation results for perturbation bounds using smaller

networks of 4 genes (i.e. networks having24 = 16 states). For generating the networks for

these simulations we have used the data from melanoma cell lines which were previously

used in several papers e.g. [12, 52, 13, 53]. The 7 gene networks considered in those ref-

erences were reduced to 4 gene networks using the reduction mapping algorithm given in

[58].

For the simulations we generated a number of PBNs consisting of 4 genes and cal-

culated their perturbation bounds. The PBNs were then operated upon by a random sta-

tionary policy matrixT and the new perturbation bounds were calculated. In all the cases,

the perturbation boundk5 was found to be smaller for the controlled transition matrices as

compared to that for the original uncontrolled transition matrix. In Figure 25, we show the

ergodicity coefficient perturbation bounds (k5) of the original uncontrolled PBNs as gray

bars for 10 different generated PBNs. The blue stars represent the ergodicity coefficient

perturbation bounds forTP whereT is a randomly generated stationary policy matrix.

As shown in [55], the perturbation boundk3 is one of the tighest bounds. Figure 26

shows the perturbation boundk3 for different simulations. From Figure 26, it is clear that

in this case, the perturbation bound for some randomly generated stationary policy ma-

trices (TP ) can exceed the corresponding bound for the original uncontrolled probability

transition matrix (P ), although this situation is not very common.

The simulation studies for validating a number of control approaches that we pro-

posed earlier were performed on a network of 7 genes containing WNT5A. To maintain

uniformity, we built PBNs for the same 7 genes and Fig. 27 showsthe perturbation bound
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Fig. 25. Perturbation Boundk5 for 10 Different PBNs (represented as bars) and the Stars

Represent Perturbation Bounds for Random Stationary PoliciesApplied to the

PBNs.

Fig. 26. Perturbation Boundk3 for 10 Different PBNs (represented as bars) and the Stars

Represent Perturbation Bounds for Random Stationary PoliciesApplied to the

PBNs.
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k3 for a particular set of 80 simulations. The bars represent the perturbation bounds for

the uncontrolled transition matrixP and the stars represent the perturbation bounds for the

controlled transition matrixTP . The stationary policy corresponding toT represents the

same objective as in [53], i.e. down-regulating the gene WNT5A and using a discounted

cost infinite horizon approach. We should note that the perturbation boundsk3 for the un-

controlled PBN with transition probability matrixP and the controlled PBN with transition

probability matrixTP are quite similar. We performed a number of other simulations and

all of them led to the same conclusions.

Fig. 27. Perturbation Boundk3 for 80 Different PBNs (represented as bars) and the Stars

Represent Perturbation Bounds for Stationary Policies Applied to the PBNs. Here

the Number of Genes Is 7.

The reason behind highlighting these perturbation bounds is that they give us a mea-

sure of the maximum change in the steady-state distributions. If for instance, the estimated

transition matrix (P ) of a gene regulatory network has a small perturbation boundk5, then

we can rest assured that the steady-state (π̃c) of the actual gene regulatory network (P̃ ) con-

trolled by a stationary policyT will be close to the steady-state (πc) of the gene regulatory

network (P ) controlled by the same stationary policyT . Thus for intervention strategies

where the steady-state distribution is a measure of the effectiveness of the intervention, the

perturbation bounds can provide a good estimate of the outcome of the control strategy. In
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the case of a PBN whose perturbation boundk5 is high, the perturbation boundk3 can be

used to give us some idea of the uncertainty involved. As shown by simulations, the dif-

ference between the values ofk3 for the original uncontrolled probability transition matrix

P and the controlled probability transition matrixTP is quite small, and for this reason

the uncertainty in the steady-state distribution after application of the stationary policy will

be approximately the same as the uncertainty in the steady-state distribution of the original

uncontrolled PBN.

Furthermore, the perturbation bounds can be used as a kind ofmeasure for network

selection. In general, genetic networks are quite stable or, in other words, robust to small

perturbations. Hence a transition probability matrix representing a genetic network should

necessarily be robust to perturbations and the alteration in its steady state for small changes

in the transition probabilities should be minimal. In this context, it is appropriate to mention

that in the field of genomics, it is still not clear as to what metric should be used to carry

out network selection. The available data in genomics studies are quite limited and this

can give rise to a number of possible networks that fit the data. The selection among these

different networks is a very important issue and some initial approaches for doing this have

been proposed in the literature, e.g. [8, 58]. The perturbation bound combined with other

metrics could provide yet an alternative approach for doingso.
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CHAPTER VI

CONCLUSIONS

This dissertation attempts to formulate the treatment of genetic diseases from the systems

and control theoretic point of view. Four significant contributions in the context of infer-

ence and control of Boolean and Probabilistic Boolean networks are provided. In chapter

III, we provided algorithms for inference of Boolean Networks from steady-state data. In

pattern recognition, it is important to constrain the solution space when making inferences

from limited data. We have applied that principle to Boolean networks by making as-

sumptions on the dynamical structure of the network, assumptions that can be made in

accordance with biological understanding. Since the algorithms generate networks in the

constrained solution space, they can be used to provide synthetic networks to test proposed

inference algorithms, for both Boolean and probabilistic Boolean networks. Two impor-

tant points should be noted. First, the algorithms, both programmed in C, can easily be

parallelized for supercomputer implementation to synthesize larger networks under the as-

sumption that larger data sets will become available. Second, while this report has focused

on binary-valued networks, there is nothing inherently binary in the algorithms and they

can be directly applied to more finely quantized networks, albeit, at the cost of much larger

solution spaces.

Chapter IV extends earlier results on intervention in instantaneously random PBNs

without perturbation to context-sensitive PBNs with perturbation. The extension is sig-

nificant because the latter class more closely models small biological subnetworks whose

logical behavior is affected by conditions outside the genes represented in the model net-

work. The results show that the expected cost with control ismuch lower than without

control. In addition, the results indicate that we can achieve a much better control outcome
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if a gene with high influence is selected as the control gene.

In Chapter IV Section B, we formulated the optimal infinite-horizon control problem

and its solution for context-sensitive PBNs. The stationarypolicies obtained are much

easier to implement than a policy that changes with time. Depending on which is more

vital to us: current condition of the patient or the condition over a long length of time,

we can utilize the discounted-cost or average-cost formulation. The melanoma application

shows that we can shift the stationary distribution towardsstates with lower metastatic

competence using the stationary control policy.

Finally, we have studied the robustness of the infinite horizon intervention and exam-

ined how uncertainties in the transition probability matrix of the uncontrolled PBN show

up in the steady-state distribution of the controlled PBN. Since the steady-state distribution

of a PBN is thought to characterize the phenotype, our studiesessentially seek to examine

the effect of network uncertainty on the phenotype that would result from the application of

intervention strategies. Through analytical derivation and simulation studies, we demon-

strated that the stationary infinite horizon optimal control policies proposed in Chapter IV

are quite robust with respect to network uncertainty. The intervention strategies for PBNs

that have been proposed thus far are all limited to flipping the expression status of one or

more genes in the network, and this is dictated by what interventions are implementable

with the currently available biological techniques. This limited class of interventions en-

sures that the controlled probability transition matrix isrelated to the uncontrolled prob-

ability transition matrix via a linear transformation, andthis is what made it possible to

establish the robustness results.
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APPENDIX A

BN algorithm adaptation for multiple-state cyclic attractors

Algorithm 1 extension

STEP1: Randomly generate a set ofk attractor states and their connections1. If the con-

nections generate an attractor cycle with length> Max Cycle Length, then repeat STEP1.

If STEP1 has been repeated more than a pre-specified number oftimes, then terminate the

algorithm.

STEP2: Randomly pick up a predictor setW , where eachWi has not less thanm and not

more thanM elements. If STEP2 has been repeated more than a pre-specified number of

times go back to STEP1.

STEP3: Check if the selected attractor set is compatible withW , i.e. the attractor set

transitions2 of the state transition diagram are checked for compatibility againstW . If

the attractor set is not compatible withW , then go back to STEP2; otherwise continue to

STEP4.

1If Max Cycle Length is given to be 1, then we connect each attractor to itself. Other-
wise we include random connections between attractors. Letthe random attractors selected
bea1, a2, a3 anda4. If Max Cycle Length is 1, then the connections area1 → a1, a2 → a2,
a3 → a3, a4 → a4. Otherwise, there are 4 attractors and hence we choose a random
permutation of numbers 1 to 4. Say the random permutation is 1,3, 2 and 4. Then the
connections between the attractorsa1, a2, a3 anda4 will be a1 → a1, a2 → a3, a3 → a2,
a4 → a4 (Figure 28). If the random permutation is 4, 3, 1 and 2, then the transitions
between the attractors will bea1 → a4, a2 → a3, a3 → a1, a4 → a2.

2For the first random permutation 1 , 3, 2 , 4, the transitions are a1 → a1, a2 → a3,
a3 → a2, a4 → a4; for the random permutation 4, 3, 1, 2 the transitions area1 → a4,
a2 → a3, a3 → a1, a4 → a2.
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STEP4: Fill in the entries of the truth table that correspondto the attractor set transitions

generated in STEP1. Using the predictor setW , randomly fill in the remaining entries of

the truth table. If STEP4 has been repeated more than a pre-specified number of times go

back to STEP2.

STEP5: Search for cycles of length> Max Cycle Length in the state transition diagramΓ̃

that is associated with the truth table generated in STEP4. If a cycle is found, then go back

to STEP4; otherwise continue to STEP6.

STEP6: IfΓ̃ has less thanl or more thanL level sets, go back to STEP4; otherwise continue

to STEP7.

STEP7: Save the generated BN and terminate the algorithm.

Fig. 28. Connections among Attractors.

Algorithm 2 extension

STEP1: Randomly generate a state transition diagramΓ̃ that satisfies the design goals

about the attractor structure3 and level set structure. If STEP1 has been repeated more than

a pre-specified number of times, then terminate the algorithm.

STEP2: Fill in the truth table using̃Γ.

3When attractor cycles of length≤ Max Cycle Length are allowed, then connections
between attractors are permited and only those state transition diagram are selected for the
subsequent steps whose cycle lengths are≤ Max Cycle Length.
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STEP3: If there is at least oneWi in the predictor setW given by the truth table that has less

thanm or more thanM , then elements go back to STEP1; otherwise continue to STEP4.

STEP4: Save the generated BN and terminate the algorithm.
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APPENDIX B

Proof of Theorem B.1

We want to show that

J∗(z) = lim
M→∞

(TMJ)(z), for all z ∈ S

Now

Jπ(z0) = lim
M→∞

E{
M−1
∑

t=0

αtg(zt, µt(zt))}

= E{

K−1
∑

t=0

αtg(zt, µt(zt))}

+ lim
M→∞

E{
M−1
∑

t=K

αtg(zt, µt(zt))}.

Using|g(z, u)| ≤ B, we obtain

| lim
M→∞

E{
M−1
∑

t=K

αtg(zt, µt(zt))}| ≤ B
∞

∑

t=K

αt =
αKB

1 − α

Using these relations, we can write the inequalities

Jπ(z0) −
αKB

1 − α
− αK max

z∈S
|J(z)|

≤ E[αKJ(zK) +
K−1
∑

t=0

αtg(zt, µt(zt))]

≤ Jπ(z0) +
αKB

1 − α
+ αK max

z∈S
|J(z)| (B.1)
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Minimization overπ gives us

J∗(z0) −
αKB

1 − α
− αK max

z∈S
|J(z)| (B.2)

≤ (TKJ)(z0)

≤ J∗(z0) +
αKB

1 − α
+ αK max

z∈S
|J(z)|

If we take the limit asK → ∞ and utilize the fact thatα < 1, the result follows.

Proof of Theorem B.2

From Eq. (B.2), we have for allz ∈ S andM

J∗(z) −
αMB

1 − α
≤ (TMJ0)(z) ≤ J∗(z) +

αMB

1 − α

whereJ0 is the zero function [J0(z) = 0 for all z ∈ S]. Applying the mappingT to this

relation and using the Monotonicity property of mappingT , we obtain for allz ∈ S andM

(TJ∗)(z) −
αM+1B

1 − α
≤ (TM+1J0)(z) ≤ (TJ∗)(z) +

αM+1B

1 − α

Since(TM+1J0)(z) converges toJ∗(z) (from convergence of DP algorithm), by taking

the limit asM → ∞ in the previous inequality, we obtainJ∗ = TJ∗. Uniqueness of

the solution can be proved as follows: ifJ is bounded and satisfiesJ = TJ , thenJ =

limM→∞ TMJ and by Convergence of DP algorithm, we haveJ = J∗ .

Proof of Theorem B.3

If TJ∗ = TµJ
∗, then using Bellman’s equation (J∗ = TJ∗), we haveJ∗ = TµJ

∗, so by

the uniqueness property of optimal solution , we obtainJ∗ = Jµ; i.e.,µ is optimal. On the

other hand, if the stationary policyµ is optimal, we haveJ∗ = Jµ, which yieldsJ∗ = TµJ
∗.

Combining this with Bellman’s equation (J∗ = TJ∗), we obtainTJ∗ = TµJ
∗.



115

Proof of Theorem B.4

First, let us assume some reference staters is recurrent for the optimal stationary policyπ.

Then the average cost from statei ( ∈ communicating class containingrs), defined by

Jπ(z0 = i) = lim
M→∞

1

M
E{

M−1
∑

t=0

g(zt, µt(zt))}

can be written as

Jπ(z0 = i) = lim
M→∞

1

M
[E{

ri−1
∑

t=0

g(zt, µt(zt))} +
M−1
∑

t=ri

g(zt, µt(zt))}],

whereri is the smallest integer such thatzri
=rs. Recurrence of the staters guarantees the

finiteness ofri. Hence, whenM → ∞, the first term becomes negligible and we have

Jπ(z0 = i) = Jπ(z0 = rs)

thereby showing that the optimal average cost per stage is independent of the starting state.

Next, if the application of the Stationary policy breaks up the states into separate com-

municating classes (C1,..Cs) then each communicating class will have some average cost

(co1, ...cos). The optimal stationary policy will always drive the states to that communi-

cating class which has the lowest average cost. Hence for theoptimal stationary policy,

we can always find a staters which will be approachable from all other states in a finite

number of time steps. This staters can be used in the preceding arguments to show that

the optimal average cost per stage is independent of the starting state, even in this case.

Proof of Theorem B.5

Let π = {µ0, µ1....} be any admissible policy and letM be a positive Integer. By the

proposition of Eq. (4.45),h satisfies,λe + h = Th. Therefore,TµM−1
h ≥ Th = λe + h.

By applyingTµM−2
to both sides of this relation, and by using the monotonicityof TµM−2

,
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we haveTµM−2
TµM−1

h ≥ TµM−2
(λe + h) = λe + TµM−2

h ≥ 2λe + h.

Continuing in the same manner, we finally obtain

Tµ0Tµ1 ....TµM−1
h ≥ Mλe + h (B.3)

with equality if eachµt, t = 0, 1, ...,M − 1, attains the minimum in Eq. (4.45).

Tµ0Tµ1 ....TµM−1
h(i) is equal to theM -stage cost corresponding to initial statei, policy

µ0, µ1, ....µM−1, and terminal cost functionh; i.e.,

Tµ0Tµ1 ....TµM−1
h(i) = E{h(zM) +

M−1
∑

t=0

g(zt, µt(zt))|z0 = i, π} (B.4)

Using this relation in Eq. (B.3) and dividing byM , we obtain for alli ∈ S

1

M
E{h(zM)|z0 = i, π} +

1

M
E{

M−1
∑

t=0

g(zt, µt(zt))|z0 = i, π} ≥ λ +
1

M
h(i). (B.5)

If we look back at Eq. (4.17), then we realise that the second term in the above

equation is in fact the average cost per stage i.e.Jπ(i) for largeM . By taking the limit

asM → ∞, we haveJπ(i) ≥ λ, i=1,....,n, with equality ifµt(i), t = 0, 1, ... attains the

minimum in Eq. (4.45) for eachi. Henceλ is the optimal average cost per stage and by

Theorem B.4,λ is the same for every initial statei.
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APPENDIX C

Derivation of Alternative Expressions for the Ergodicity Coefficient

Theorem .3.

sup
|xT |1=1
xT

1n=0

|xT P |1 =
1

2
max

i,j

n
∑

s=1

|pis − pjs| = 1 − min
i,j

n
∑

s=1

min(pis, pjs).

Proof. First of all, we will show thatsup|xT |1=1

xT
1n=0

|xT P |1 can achieve the value1
2
maxi,j

∑n

s=1|pis − pjs|. Let the maximum on the right hand side be achieved for indices i′ andj′.

ChoosexT = [0, ..0, 1/2, 0, ..0,−1/2, 0, ..0], where all the entries ofx are zero except for

x(i′) = 1/2 andx(j′) = −1/2. Clearly,x satisfies the constraintsxT
1n = 0 and|xT |1 = 1,

and for thisx, we have|xT P |1 = 1
2

∑n

s=1|pi′s − pj′s|. Hence,

sup
|xT |1=1

xT
1n=0

|xT P |1 ≥
1

2
max

i,j

n
∑

s=1

|pis − pjs|. (C.1)

The second part of the proof will consist of showing thatsup|xT |1=1

xT
1n=0

|xT P |1 ≤

1
2
maxi,j

∑n

s=1|pis − pjs|. To that end, for anyx ∈ Rn, defineI+ = {i : xi ≥ 0},

I− = {i : xi < 0}, u+ =
∑

i∈I+
|xi|, u− =

∑

i∈I−
|xi|.

As xT
1n = 0 and|xT |1 = 1, it follows thatu+ = 1/2 andu− = 1/2.
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Now |xT P |1 =
n

∑

j=1

|
n

∑

i=1

xipij|

=
n

∑

j=1

|{
∑

i∈I+

xipij −
∑

k∈I−

|xk|pkj}|

=
n

∑

j=1

|{
1

2
(2

∑

k∈I−

|xk|)
∑

i∈I+

2xipij −
1

2
(2

∑

i∈I+

xi)
∑

k∈I−

2|xk|pkj} |

( sinceu+ = u− = 1/2)

=
n

∑

j=1

|{
∑

k∈I−

∑

i∈I+

4|xk|xi

1

2
pij −

∑

k∈I−

∑

i∈I+

4|xk|xi

1

2
pkj}|

=
n

∑

j=1

|{4
∑

k∈I−

∑

i∈I+

|xk|xi

1

2
(pij − pkj)}|

≤
∑

k∈I−

∑

i∈I+

|xk|

1/2

xi

1/2

1

2

n
∑

j=1

|pij − pkj|

≤
1

2
max

i,k

n
∑

j=1

|pij − pkj| (C.2)

(since
∑

i∈I+

|xi| = 1/2 and
∑

i∈I−

|xi| = 1/2).

From Eqs. C.1 and C.2, it follows thatsup|xT |1=1
xT

1n=0

|xT P |1 = 1
2
maxi,j

∑n

s=1|pis − pjs|.
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To prove the next equality, let us focus on the term1
2
maxi,j

∑n

s=1|pis − pjs|.

Now
1

2
max

i,j

n
∑

s=1

|pis − pjs| =
1

2
max

i,j

n
∑

s=1

(pis + pjs − 2 min(pis, pjs))

=
1

2
(max

i,j
{

n
∑

s=1

pis +
n

∑

s=1

pjs − 2
n

∑

s=1

min(pis, pjs)})

=
1

2
max

i,j
{1 + 1 − 2

n
∑

s=1

min(pis, pjs)}

= 1 + max
i,j

{−
n

∑

s=1

min(pis, pjs)}

= 1 − min
i,j

n
∑

s=1

min(pis, pjs).

This completes the proof.
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