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ABSTRACT

Modeling and Control of
Genetic Regulatory Networks. (August 2007)
Ranadip Pal, B.Tech., Indian Institute of Technology, Khatag
M.S., Texas A&M University

Chair of Advisory Committee: Dr. Aniruddha Datta

In recent years, there has been considerable interest ar¢heof Genomic Signal Process-
ing, which is the engineering discipline that studies thecpssing of genomic signals.
Signal processing approaches, such as detection, paedatid classification, have been
used in the recent past to construct genetic regulatoryaorksicapable of modeling ge-
netic behavior. One of the objectives of network modelintpisse the network to design
different intervention approaches for affecting the timeletion of the gene activity pro-
file of the network. More specifically, one is interested itemening to help the network
avoid undesirable states such as those associated withasdis

This dissertation considers the inference of genetic eggoy networks in the context
of Boolean and Probabilistic Boolean Networks along with thlesequent optimal con-
trol of these networks. Algorithms to infer Boolean Networidth prescribed attractor
structure and Probabilistic Boolean Networks matching teady state data are devel-
oped. Based on the time duration of application of the compinbty, two forms of optimal
control strategies are designed: (i) Finite horizon cdrtvalesirably affect the dynamic
evolution of the network over a finite number of time steps @mndinfinite horizon control
to alter the steady-state distribution of the network. Tisseftation also examines the ro-
bustness of the intervention strategies to uncertaimi#sa state transition probabilities of
the network.

The network generation algorithms presented in this disen can be used to gener-



ate synthetic networks to test proposed inference algositior both Boolean and proba-
bilistic Boolean networks. This dissertation extends ear&sults on intervention in instan-
taneously random PBNs without perturbation to contextitiea$®BNs with perturbation.
The results show that the expected cost with control is maaled than without control.
Furthermore, we showed that the stationary policies obthimsing infinite horizon for-
mulation can be used to shift the steady state distributiom fundesirable to desirable
states. Finally, through analytical derivation and siriatastudies, we demonstrated that
the stationary infinite horizon optimal control policie®posed in this dissertation are quite

robust with respect to network uncertainty.
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CHAPTER |

INTRODUCTION

The sequencing of various genomes over the last decadeveasairemarkable boost to
genomic studies. The improved understanding of the genomesious organisms, along
with advances in microarray technology, have provided ul whormous opportunities
for the mathematical modeling of biological networks. Téhare two major objectives
for modeling of genetic regulatory networks: (i) first, tottee understand the intergene
interactions and relationships on a holistic level, thgrigeilitating the diagnosis of dis-
ease; and (ii) second, to design and analyze therapeutivanttion strategies for shifting
the state of a diseased network from an undesirable loctdiandesirable one. The first
objective falls within the scope of the field known &gstems Biologwhile the second
objective falls within the scope of the field known&gstems Medicin&ystems medicine
approaches that make use of genome based systems engjrfeénmithin the scope of
the field known agranslational GenomicsThe dissertation mainly focuses on problems
that arise in Translational Genomics.

In order to set the stage for introducing the problems, wé pr@sent a broad overview
of the steps involved in the modeling and control of genedtworks. These steps are
shown in Fig. 1. The first step consists of data extractionichvbasically involves signal
acquisition, the signals in this case being the expressi#ld of various genes of interest.
The next step denoted by, involves the discretization of these gene expressiondevel
Obviously, this step is not required if we are interestedriiving at a analog or contin-

uous state model. On the other hand, this step would be tifocidiscrete models such

The journal model iSEEE Transactions on Automatic Control.
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Fig. 1. Basic Steps Involved in Modeling and Control of GenBligtworks. (A) Extraction
of gene expression datal() Discretization of the Data (B) Selection of genes to
build the network (C) Generation of network from the avaatata and prior bio-
logical knowledge (D) Intervention in the network with thiejective of moving the
network from undesirable to desirable states.



as Boolean Networks (BNs) [1, 2, 3], Probabilistic Boolean Neks (PBNs) [4, 5] and
Bayesian Networks [6], all of which have been proposed as taddegenetic regulatory
networks. The next step denoted by B involves the selectica simall set of genes to
be used in constructing the genetic regulatory networks §hep is necessary because of
at least two reasons: (i) first, building a network of thoutsaof genes would require an
inordinately large amount of data for inference purposestaimention the computational
intractability of the resulting network; and (ii) secondhile modeling a particular biologi-
cal pathway only a few genes may be playing an important iddeing selected the genes,
the next step is the actual construction of the network, amginaber of approaches can be
used to carry out such construction [7, 8, 9].

Since systems biology is focussed on understanding théetktaolecular interac-
tions that contribute to the functioning of a cell, a geneéigulatory network designed
for facilitating such an understanding must necessarityimthe actual biological interac-
tions in as much detail as possible. On the other hand, isladonal genomics the focus
is on developing therapeutic interventions, and the ndtwsed for this purpose can be a
coarse representation of the biological phenomena ooguatithe molecular level as long
as it has the capability to faithfully capture the overaléets of intervention that are man-
ifested at the phenotypic (observational) level. Such assomodel can then be used to
develop and evaluate suitable (control) strategies faagheutic intervention. Probabilistic
Boolean Networks (PBNs), which constitute one class of coarseels, will be used in
this dissertation as the network model of choice.

The focus of this dissertation is on parts C and D of Figure &.adtress four impor-
tant issues arising in translational genomics.

Dynamical modeling of gene regulation via network modelsstitutes a key problem
for genomics. The long-run characteristics of a dynamigsiesn are critical and their de-

termination is a primary aspect of system analysis. In theradirection, system synthesis



involves constructing a network possessing a given setagegties. This constitutes the
inverse problem. Generally, the inverse problem is illgghsmeaning there will be many
networks, or perhaps none, possessing the desired pexperelative to long-run behav-
ior, we may wish to construct networks possessing a desirstielady-state distribution.
One of the goals of this dissertation is to address the longnaverse problem pertaining
to Boolean networks (BNs) and Probabilistic Boolean NetwoR&Ns). The long-run be-
havior of a BN is characterized by its attractors. The reshefdtate transition diagram
is partitioned into level sets, the j-th level set being cosgd of all states that transition
to one of the attractor states in exactly j transitions. Wesent two algorithms for the
attractor inverse problem. The attractors are specified tlad sizes of the predictor sets
and the number of levels are constrained. Algorithm comfjend performance are an-
alyzed. The algorithmic solutions have immediate appbcatUnder the assumption that
sampling is from the steady state, a basic criterion for kimgcthe validity of a designed
network is that there should be concordance between treetatrstates of the model and
the data states. This criterion can be used to test a degigrittim: randomly select a set
of states to be used as data states; generate a BN possessetetited states as attractors,
perhaps with some added requirements such as constraitits oumber of predictors and
the level structure; apply the design algorithm; and chéekdoncordance between the
attractor states of the designed network and the data states

From a translational perspective, the ultimate objectivgemetic regulatory network
modeling is to use the network to design different approadhieaffecting network dynam-
ics in such a way as to avoid undesirable phenotypes, fanost cancer. To date, inter-
vention studies using PBNs have used three different appesaci) resetting the state of
the PBN, as necessary, to a more desirable initial state &iyléhe network evolve from
there [10]; (ii) changing the steady-state (long-run) wédreof the network by minimally

altering its rule-based structure [11]; and (iii) maniging external (control) variables that



alter the transition probabilities of the network and cdreréfore, be used to desirably
affect its dynamic evolution [12]. In this dissertation, eetend the control-theoretic ap-
proach in two important directions. First, whereas theinabcontrol-theoretic approach
has been developed in the frameworkimétantaneously randorRBNs, here we design
optimal intervention foccontext-sensitiv®BNSs [13]. This extension is significant because
the latter class more closely models small biological stweoks whose logical behavior is
affected by conditions external to the network. Secondeturger finite horizon results are
extended to the infinite horizon case in an effort to altersteady-state behaviour of the
genetic regulatory network. Moreover, the stationaryge$ obtained in case of infinite
horizon control are much easier to implement than a poliay ¢thanges with time.

Finally, we study the robustness of the infinite horizonnwation and examine how
uncertainties in the transition probability matrix of thecontrolled PBN show up in the
steady-state distribution of the controlled PBN. Since thady-state distribution of a PBN
is thought to characterize the phenotype, our studies galgiseek to examine the effect
of network uncertainty on the phenotype that would reswalinfithe application of inter-
vention strategies. Through analytical derivation anduation studies, we demonstrate
that the stationary infinite horizon optimal control podisiproposed are quite robust with
respect to network uncertainty.

The dissertation is organized as follows. Chapter Il pravialeeview of Genetic Reg-
ulatory Networks. In Chapter Ill, we design algorithms fongeating Boolean Networks
and Probabilistic Boolean Networks from Steady State Dalee first part of Chapter IV
deals with the design of optimal intervention strategy fontext-sensitive PBNs to desir-
ably affect the dynamic evolution of the network over a fimtenber of time steps. The
second part of the chapter formulates and solves the opitiaite-horizon control prob-
lem for PBNSs to alter the stationary distribution of the natvoChapter V examines the

robustness of the stationary policies to uncertaintiehénstate transition probabilities of



the PBNs. Finally, Chapter VI contains some concluding resafor clarity of presenta-

tion, some of the technical details are relegated to therappes.



CHAPTER I

MODELING OF GENETIC REGULATORY NETWORKS

A central focus of genomic research concerns understatidéwganner in which cells ex-
ecute and control the enormous number of operations refjiarenormal function and the
ways in which cellular systems fail in disease. In biolog&astems, decisions are reached
by methods that are exceedingly parallel and extraordynianegrated, as even a cursory
examination of the wealth of controls associated with thermediary metabolism network
demonstrates. Feedback and damping are routine even foradsiecommon of activities,
cell cycling, where it seems that most proliferative sigrae also apoptosis priming sig-
nals as well, and the final response to the signal results snacoessful negotiation of a
large number of checkpoints, which themselves involvehirextensive cross checks of
cellular conditions.

Traditional biochemical and genetic characterizationgesfes do not facilitate rapid
sifting of these possibilities to identify the genes invaxhin different processes or the con-
trol mechanisms employed. Of course, when methods do exisicus genetic and bio-
chemical characterization procedures on a smaller nunfogerees likely to be involved
in a process, progress in finding the relevant interactioniscantrols can be substantial.
The earliest understandings of the mechanics of cellulae gentrol were derived in large
measure from studies of just such a case, metabolism in sioglls. In metabolism, it
is possible to use biochemistry to identify stepwise modifans of the metabolic inter-
mediates and genetic complementation tests to identifgéimes responsible for catalysis

of these steps, and those genes and cis-regtilatements involved in control of their

A cis-regulatoris a DNA sequence that controls the transcription of a rdlgane.



expression. Standard methods of characterization guigesbime knowledge of the con-
nections could thus be used to identify process componendtsantrols. Starting from the

basic outline of the process, molecular biologists andh®austs have been able to build
up a very detailed view of the processes and regulatoryaotens operating within the

metabolic domain.

In contrast, for most cellular processes, general methmdslicate likely partici-
pants and to suggest control relationships have not emé@actlassical (often correlation-
based) approaches. The resulting inability to produceadvechemata for most cellular
processes has meant that gene function has been, for thepargsdetermined in a piece-
meal fashion. Once a gene is suspected of involvement intecylar process, research
focuses on the role of that gene in a very narrow context. Tygpeally results in the
full breadth of important roles for well-known, highly cleaterized genes being slowly
discovered. A particularly good example of this is the ey recent appreciation that
oncogenes such as Myc can stimulate apoptosis in additiprotideration. Because tran-
scriptional control is accomplished by a complex methodititarprets a variety of inputs,
the development of analytical tools that detect multivariafluences on decision-making
present in complex genetic networks is essential. Modeimyanalysis of gene regulation
can substantially help to unravel the mechanisms underlyéme regulation and to under-
stand gene function [14, 15, 16]. This, in turn, can have dopred effect on developing
techniques for drug testing and therapeutic interventasreffective treatment of disease

[17].

A. Nonlinear Dynamical Modeling of Gene Networks

Two salient aspects of a genetic regulatory system must eled and analyzed. One

is the topology (connectivity structure) and the other esdbt of interactions between the



elements, the latter determining the dynamical behavith@fystem. Exploration of the
relationship between topology and dynamics may lead toadéuconclusions about the
structure, behavior, and properties of genetic reguladgsyems [18, 19].

Numerous mathematical and computational methods havepgsepased for construc-
tion of formal models of genetic interactions. Generaliyggse models share certain char-
acteristics: (1) they represesytstemdn that they characterize an interacting group of com-
ponents forming a whole, can be viewed as a process thatgesid transformation of
signals, and generate outputs in response to input stif®)lithey aredynamicalin that
they capture the time-varying quality of the physical psscander study and can change
their own behavior over time; and (3) they can be considevduketgenerallynonlinear,
in that the interactions within the system yield behaviattls more complicated than the
sum of the behaviors of the agents.

The preceding characteristics are representative ofmegnlidynamical systems. These
are composed of states, input and output signals, tranfperators between states, and
output operators. In their abstract form, they are very ggn®ore mathematical structure
is provided for particular application settings. For im&t@, in computer science they can
be structured into the form of dataflow graphical networled thodel asynchronous distrib-
uted computation, a model that is very close to genomic e¢gry models. Indeed, most
attempts to model gene regulatory networks fall within tbepg of nonlinear dynamical
systems, including probabilistic graphical models, suslBayesian networks [20, 6, 21];
neural networks [22, 23]; and differential equations [ZHe [25] for a review. Based on
long experience in electrical and computer engineering, rmore recent evidence from
genomics itself, nonlinear dynamical systems appear tagedhe appropriate framework
to support the modeling of genomic systems. To build a manted Epecific application re-
quires abstracting from the specifics of the problem, an@teadth of nonlinear dynamical

systems facilitates modeling within their framework.
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Many concepts relevant to genomic regulation have beeractaaized from the per-
spectives of mathematical theory, estimation of model ipatars, and application para-
digms. We mention a fewstructural stabilityconcerns the persistent behavior of a system
under perturbation. It captures the idea of behavior thabigdestroyed by small changes
to the system. This is certainly a property of real genetievoeks, since the cell must be
able to maintain homeostasis the face of external perturbations and stimUlhcertainty
relative to model behavior and knowledge acquisition hanlextensively explored. In-
formation theory, traditionally used for communicatioestinology applications, is well
suited to study uncertainty measures, quantified througlisle of probability theoryDis-
tributed controlis common for complex systems, which have the property tbatingle
agent is singularly in control of the system behavior; rgtieentrol is dispersed among
all agents, with varying levels of influence. This is the eutrview of genetic regulatory
networks. To significantly change the global behavior of steay in a desired manner via
external control, it is necessary to consider the effeclistiaally. This property is consis-
tent with the inherent global stability of genetic netwonkshe presence of small changes
to the system. This issue is addressed within control thewngre a central problem is
controllability: how to select inputs so that the state of the system takesieedevalue
after some period of time. This is precisely the kind of isthet must be addressed for
treatment of cancer and other genetically related disedsesum, nonlinear dynamical
systems provide a framework for modeling and studying gegalatory networks.

A key question concerns which model one should use. Modetseh depends on the
kind and amount of data available and the goals of the maglelml analysis. This choice
involves classical engineering trade-offs. Should a mbedine, with many parameters
to capture detailed low-level phenomena, such as proteiwerdrations and kinetics of

2Homeostatis is the ability of living systems to maintaireimal equilibrium by adapt-
ing their physiology.
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reactions, but thereby requiring a great deal of data farerice; or should it beoarse
with fewer parameters and lower complexity, thus beingtkahito capturing high-level
phenomena, such as whether a gene is ON or OFF at a given ttneoeby having the
advantage of requiring much smaller amounts of data [26}imakely, model selection
needs to obey the principle of Occam’s razor; model complestiould be sufficient to
faithfully explain the data but not be greater. From a pragmeangineering perspective, this
is interpreted to mean that the model should be as simple sslpe to sufficiently solve
the problem at hand. In the context of a functional netwodkmplexity is determined by
the number of nodes, the connectivity between the nodesgotiglexity of the functional

relations, and the quantization.

B. Boolean Networks (BNSs)

This section focuses on the original deterministic versibthe Boolean model. The more
recently proposed stochastic extension will be presemt&kction C. The Boolean model
is archetypical of logical functional models and many of iggies that arise with it arise
in other regulatory network models. A key issue in this ditsg®n is intervention in gene
regulatory networks and this has mainly been considerelddrcontext of a probabilistic

generalization of the Boolean model.

1. Boolean Model

The regulatory model that has perhaps received the mostiatias the Boolean network
model [1, 2, 27]. The model has been studied both in biologly@ysics. In the Boolean
model, gene expression is quantized to two levels: ON and OR€& expression level
(state) of each gene is functionally related to the expoessiates of other genes using

logical rules. Although binarization provides very coagg@ntization, we note that it is
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commonplace to describe genetic behavior in binary lodarajuage, such am andoff,
up-regulatedand down-regulated and responsiveand non-responsive In the context of
expression microarrays, consideration of differentigiression leads to the categories of
low-expressedndhigh-expressedhereby leading to binary networks, or to the categories
of low-expressedigh-expressedndinvariant, thereby leading to ternary valued networks
that are treated in much the same way as binary networks &l i@gfferred to as Boolean
networks.

Successful application of the Boolean model requires thieisian of genes whose
behavior is essentially binary (bi-modal). It has been destrated in the context of mi-
croarrays that there can be sufficiently many switch-likeegeso that binary quantization
can be successfully utilized for clustering [28] and clasation [29]. From the perspec-
tive of logical prediction, numerous Boolean relations hagen observed in the NCI 60

Anti-Cancer Drug Screen cell lines [30]. Some examples are

MRC1=VSNL1V HTR2C

SCY A7 = CASR A MU5SAC (2.1)

Moreover, using classical methods there is ample eviderogodstrating inherent logi-
cal genomic decision making [31, 32]. Figure 2 shows a bicklty studied regulatory

pathway and its corresponding Boolean representation.|Aléskcription of the biological

model is given in [5]; here we restrict ourselves to notingttfor cells to move into the

S phase, cdk2 and cyclin E work together to phosphorylat&ktherotein and inactivate
it, thereby releasing cells into the S phase, and that mitaggn can result in unregulated
cell growth.

A Boolean networks defined by a set of node¥, = {x1, xs,..., x,} and a list of
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DNA synthesis

cdk? cdk2
cyclin H
cyclin E Rb
p21/WAF1 {>c

Fig. 2. Regulation of the Rb Protein in the Cell Cycle:(a) BiolagiModel; (b) Boolean
Representation.
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Boolean functionsF = {fi, fa,..., fn}. Eachx; represents the state (expression) of a
gene,gx, Wherex;, = 1 or z;, = 0, depending on whether the gene is expressed or not
expressed. The Boolean functions represent the rules dateguinteraction between the
genes. Network dynamics result from a synchronous clock tiitest =0, 1, 2,.... The

value of geney, at timet + 1 is determined by

xk(t—l— 1) = fk(xkl,xkg,...,ka(k)) (22)

where the nodes in the argumentfpfform theregulatory sefor x; (geneg,). The num-
bers of genes in the regulatory sets definedbenectivityof the network, with maximum

connectivity often limited. At time point, the state vector

x(t) = (x1(t), z2(t), ..., zn(t)) (2.3)

is called thegene activity profilg§GAP). The functions together with the regulatory sets
determine the network wiring. An example BN of 3 genes is shimwsigure. 3 along with
the Truth Table. The states are shown as binary numbers.

A Boolean network is a very coarse model; nonetheless, iititeis understanding of
the generic properties of global network dynamics [3, 384 &s simplicity mitigates data
requirements for inference.

Attractors play a key role in Boolean networks. Given a stgritate, within a finite
number of steps, the network will transition into a cycle tdtss, called armttractor,
and absent perturbation will continue to cycle thereafteach attractor is a subset of a
basincomposed of those states that lead to the attractor if ch@searting states. The
basins form a partition of the state space for the networln-altractor states are transient.
They are visited at most once on any network trajectory. féiguprovides a transition-

flow schematic for a Boolean network containing six genedh sfates 0 = 000000, 1 =
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Boolean Network

Truth Table
X\ | X | X fi | S
0 0 0 1 1 1
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 1 1
1 0 0 0 1 0
1 0 1 0 0 1
1 1 0 1 1 1
1 1 1 0 1 0

Fig. 3. Boolean Network and Corresponding Truth Table.

000001,..., 63 =111111. There are three singleton ati®cd@, 41, and 55. There are
four transient levels, where a state in lekdlansitions to an attractor ilntime points.

The attractors of a Boolean network characterize the longsalnavior of the network
and have been conjectured by Kauffman to be indicative otéletype and phenotypic
behavior of the cell [3]. Real biological systems are tygicassumed to have short at-
tractor cycles, with singleton attractors being of speciglortance. For instance, it has
been suggested that apoptosis and cell differentiatioregspond to some singleton attrac-
tors and their basins, while cell proliferation correspotaa cyclic attractor along with its
associated basin [33]. Changes in the Boolean functions, wtatians or rearrangements,

can lead to a rewiring in which attractors appear that arecst®ed with tumorigenesis.
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Attractor Level

Level 1

Level 2

Level 3

Level 4

Fig. 4. A Boolean Network with Three Singleton Attractors &uwdir Transient Levels.

This is likely to lead to a cancerous phenotype unless theesponding basins are shrunk
via new-rewiring, so that the cellular state is not driverattumorigenic phenotype, or, if
already in a tumorigenic attractor, the cell is forced toféedent state by flipping one or
more genes. The objective of cancer therapy would be to uggsdo do one or both of the

above.

2. BN Representation

The binaryn-digit state vectorz(t) can be mapped to positive integer@) so that as
x(t) ranges from00---0 to 11---1, z(¢) goes from0 to 2" — 1. Here we employ the
decimal representatiot{t) and the set = {0, 1,2, --- , 2" — 1} constitutes the state space

for the Boolean network. Furthermore, eagh) can be uniquely represented by a basis
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vectorw(t) € R*", wherew(t) = e,), e.9. ifz(t) = 0, thenw(t) = [1,0,0,...]. Then,
as discussed in [5], the evolution of the vectait) proceeds according to the difference
equation

w(t+1) =w(t)A (2.4)

whereA is a2 x 2™ matrix having only one non-zero entry (equal to one) in eagh r

3. Coefficient of Determination

By viewing gene status across different conditions, saymi@oarrays, it is possible to
establish relationships between genes that show varitdilessacross the conditions. Ow-
ing to limited replications, we assume that gene expressaia are quantized based on
some statistical analysis of the raw data. One way to estabtiultivariate relationships
among genes is to quantify how the estimate for the expnessatus of a particulaarget
genecan be improved by knowledge of the status of some qthedlictor genes This is

formalized via thecoefficient of determinatiofCoD) [34], which is defined by

CoD = 20— Fort (2.5)
€0

whereg, is the error of the best numerical predictor of the targetegenthe absence
of observation and,,; is the error of the optimal predictor of the target gene based
the predictor genes. This nonlinear form of the CoD is esalyt nonlinear, multivari-

ate generalization of the familiar goodness of fit measureaar regression. The CoD
measures the degree to which the best estimate for the tigtistal activity of a target

gene can be improved using the knowledge of the transoni@itectivity of some predictor
genes, relative to the best estimate in the absence of anyléahge of the transcriptional
activity of the predictors. The CoD is a number between 0 aradhigher value indicating

a tighter relationship.
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Figure 5 shows a CoD diagram for the target gene p53 and poedjehes p21 and
MDMZ2, in which the CoDs have been estimated in the context dfidysinvolving stress
response [35]. We see that the individual CoDs for p21 and M2k420.227 and 0.259,
respectively, but when used jointly, the CoD for the predisit{p21, MDM2} increases
to 0.452. Biologically, it is known that p53 is influential butt determinative of the up reg-
ulation of both p21 and MDM2, and hence it is not surprisirgt some level of prediction
of p53 should be possible by a combination of these two geévete that the prediction of
p53 by p21 and MDM2 apparently results from the regulatiop# on them, not the other
way around. Going the other way, the same study found the Cop5® predicting p21
to be 0.473. The increased predictability of p53 using bodM2 and p21 is expected
because increasing the size of the predictor set canndt resai decrease in CoD. The
extent of the increase can be revealing. In Fig. 5, MDM2 arfdip/e very similar CoDs
relative to p53 and there is a significant increase when theyised in combination. On
the other hand, it may be that very little, if any, predicli&pis gained by using predictors
in combination. Moreover, it may be that the individual potors have CoDs very close
(or equal) to 0, but when used in combination the joint CoD isThis kind of situation
shows that it is risky to assume that a predigipand targey, are unrelated because the
CoD of ¢g; predictingg is very low. This situation is akin to that in classificatiomeve
a feature may be poor if used alone but may be good if used irbication with other
features. The issue in both settings is the dangenarfginal analysis- drawing conclu-
sions about variables from marginal relations instead iof jonultivariate) relations. The
complex nonlinear distributed regulation ubiquitous iolbgical systems makes marginal

analysis highly risky.
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0.259
MDM?2

0.227 k‘ 0.452
> p33

Fig. 5. CoD Diagram for p21 and MDM2 Predicting p53.

C. Probabilistic Boolean Networks (PBNSs)

Given a target gene, several predictor sets may providdlgqood estimates of its tran-
scriptional activity, as measured by the CoD. Moreover, oag rank several predictor sets
via their CoDs. Such a ranking provides a quantitative meagudetermine the relative
ability of each predictor set to improve the estimate of tla@gcriptional activity of the
particular target gene. While attempting to infer inter-gealationships, it makes sense
to not put all our faith in one predictor set; instead, for atipalar target gene, a better
approach is to consider a number of predictor sets with higpsC&onsidering each re-
tained predictor set to be indicative of the transcripti@wivity of the target gene with a
probability proportional to its CoD represents feature ct@&a for gene prediction.

Having inferred inter-gene relationships in some manhés,ibformation can be used
to model the evolution of the gene activity profile over tirttes unlikely that the determin-

ism of the Boolean-network model will be concordant with tla¢éad One could pick the
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predictor set with the highest measure of predictability, &5 remarked previously in the
case of the CoD, there are usually a number of almost equatfgrp@ng predictor sets,
and for them we will have only estimates from the data. By aasiog several predic-
tor sets with each target gene, it is not possible to obtaih eartainty the transcriptional
status of the target gene at the next time point; howevercanecompute the probability
that the target gene will be transcriptionally active ateint 1 based on the gene activity
profile at timet. The time evolution of the gene activity profile then definetachastic
dynamical system. Since the gene activity profile at a pagrctime point depends only
on the profile at the immediately preceding time point, theadgical system is Markovian.
Such systems can be studied in the established frameworlkadédM Chains and Markov
Decision Processes. These ideas are mathematically iaadah probabilistic Boolean
networks(PBNs) [5, 4]. In a PBN, the transcriptional activity of each geha given time
point is a Boolean function of the transcriptional activitijtbe elements of its predictor
sets at the previous time point. The choice of Boolean funciitd associated predictor set
can vary randomly from one time point to another. For instaméhen using the CoD, the
choice of Boolean function and predictor set can depend on kaded selection probabil-
ities associated with the different predictor sets. Thigllof probabilistic generalization of
a Boolean network, in which the Boolean function is randomlgaed at each time point,
defines annstantaneously random PBN

Instead of simply assigning Boolean functions at each timatpone can take the
perspective that the data come from distinct sources, egmiesenting aontextof the
cell. From this viewpoint, the data derive from a family ofteleninistic networks and,
were we able to separate the samples according to the ceftext which they have been
derived, then there would in fact be CoDs with value 1, indingatleterministic biochem-
ical activity for the wiring of a particular constituent meirk. Under this perspective, the

only reason that it is not possible to find predictor sets Wit equal (or very close to)
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1 is because they represent averages across the variauarcetintexts. This perspective
results in the view that a PBN is a collection of Boolean netwankwhich one constituent
network governs gene activity for a random period of timeobefanother randomly cho-
sen constituent network takes over, possibly in responserte random event, such as
an external stimulus or genes not included in the model mtw8ince the latter is not
part of the model, network switching is random. This moddlraes acontext-sensitive
PBN The probabilistic nature of the constituent choice reflelse fact that the system is
open, not closed, the idea being that network changes ffesnitthe genes responding to
latentvariables external to the model network. The context-sieesnodel reduces to the
instantaneously random model by having network switchirgyary time point.

Much of the theory and application of PBNs applies directlyhi® more general case
which need not possess binary quantization and which apecalfed PBNs, owing to the
multi-valued logical nature of functional relations forifan quantization. A particularly
important case is ternary quantization, where expressiegld take on the values +1 (up-
regulated)—1 (down-regulated), and O (invariant).

A PBN is composed of a set efgenesy, x»,. . .,z,, €ach taking values in a finite set
V' (containingd values), and a set of vector-valueetwork functions, f,,. . .f,., governing

the state transitions of the genes. To every nogéhere corresponds a set

Fy={f"Y o a0 (2.6)

where eacb”j(i) is a possible function, called@edictor, determining the value of gene
andl(i) is the number of possible functions assigned to geneEach network function
is of the formf, = (£, 2, ... i), fork = 1,...,r, 1 < k; < I(i) and where
f,if) € F;(i = 1,2,...,n). Each vector functiofi, : {0,1}" — {0, 1}" acts as a transition
function (mapping) representing a possible realizatiothefentire PBN. Thus, given the

value of all genes(zy, . .., x,), fr(z1, z2,. .., 2,)=(x}, 2%,...,2)) gives us the state of the
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genes after one step of the network given by the realizdtion

The choice of which network functidn to apply is governed by a selection procedure.
At each time point a random decision is made as to whetheritolsthe network function
for the next transition, with a probability of a change being a system parameter. If a
decision is made to change the network function, then a neetifun is chosen from among
f1, f2,..., ., with the probability of choosing, being the selection probability..

Now, let F=(f1), f@ . f™) be a random vector taking values i x I ... x
F,. That is,F can take on all possible realizations of the PBN. Then, thealiity that

predictorfj(i) is used to predict geng(1 < j < (7)) is equal to

=P =f"y= > P{F=f}. (2.7)

k:sz>:f](i)

Sincec§.i) are probabilities , they must satisfy

d =1 (2.8)

It is not necessary that the selection of Boolean functiomspasing a specific net-

work be independent. This means that it is not necessaslgaise that

PO = 10,50 = 1%y = P9 = £71.PL0 = 17y, (2.9)

A PBN is said to be independent if the random variabiés ... £ are indepen-
dent. In the dependent case, product expansions such asdlggven in Eq. 2.9, as well as
ones involving more functions, require conditional prabaés. If the PBN is independent,
then there aré = [[;"_, I(¢) realizations (constituent Boolean networks). Moreoverafo
independent PBN, if the'" network is obtained by selectirfgi) forgene ,i=1,2,...,n,

1 <, < (i), then the selection probability, is given byc;, = ], cf)

A PBN with perturbation can be defined by there being a prolbgabilof any gene



23

changing its value uniformly randomly to another valu&iat any instant of time. Whereas
a network switch corresponds to a change in a latent varcghlsing a structural change in
the functions governing the network, for instance, in theeoaf a gene outside the network
model that participates in the regulation of a gene in theeh@random perturbation cor-
responds to a transient value flip that leaves the networkgvirnchanged, as in the case
of activation or inactivation owing to external stimuli $uas mutagens, heat stress, etc.
[3].

The state spac# of the network together with the set of network functions¢cam-
junction with transitions between the states and networictions, determine a Markov
chain, the states of the Markov chain being of the foxfmf(). If there is random perturba-
tion, then the Markov chain is ergodic, meaning that it haspbssibility of reaching any
state from another state and that its stationary distobutiecomes a steady-state distribu-
tion. In the special case when= 1, a network function is randomly chosen at each time
point and the Markov chain consists only of the PBN states.

For a PBN, characterization of its long-run behavior is dégctvia the Markov chain
it defines. In particular, an instantaneously random PBN has/alence classes of com-
municating states analogous to the basins of attractioBdotean networks, and if there is
perturbation, which we will always suppose, then the Mar&loain is ergodic, which then
guarantees the existence of a global steady-state distrbun general, whether the PBN
is instantaneously random or context-sensitive, by defimits attractors consist of the at-
tractors of its constituent Boolean networks. Two eventsreamove a network from an
attractor cycle”: (1) a perturbation can send it to a different state, andrasspthe con-
stituent network remains unchanged and there are no fypdréurbations for a sufficient
time, then it will return ta”' if the perturbation leaves it in the basin@for it will transition
to a different attractor cycle of the same constituent ngtifdhe perturbation sends it to

a different basin; (2) a network switch will put it in the bagif an attractor cycle for the
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new constituent network and it will transition to the attaaycle for that basin so long as
the constituent network remains unchanged and there argthef perturbations for a suf-
ficient time. Whereas the attractor cycles of a Boolean netaogkmutually disjoint, the
attractor cycles of a PBN can intersect because differedésyan correspond to different
constituent Boolean networks. Assuming that the switchimdy@erturbation probabilities
are very small, a PBN spends most of its time in its attractdle probabilities of PBN

attractors have been analytically characterized [36].

1. PBN Representation

In case of PBNs, we have a stochastic counterpart of Eq. 2eh diy
w(t+1) =w(t)A (2.10)

wherew(t) denotes the probability distribution vector at timée. w;(t} = Pr{z(t) =i}

and A denotes the probability transition matrix.

D. Network Inference

For genetic regulatory networks to be of practical bendferé must be methods to design
them based on experimental data. We confront three impedsmél) model complexity,
(2) limited data, and (3) lack of appropriate time-coursadamodel dynamics. Numerous
approaches to theetwork inference problerave been proposed in the literature, many
based on gene-expression microarray data. Here, we brigfip® some of the proposed
methods for PBNs and the rationale behind each of them (tterédaving been substantial
study of inferring Boolean networks [4, 37]).

As first proposed, the inference of the PBN is carried out ustiegCoD [5]. For

each gene in the network, a number of high CoD predictor setfoand and these high-
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CoD predictor sets determine the evolution of the activigtust of that particular gene.
Furthermore, the selection probability of each predictirfer a target gene is assumed
to be the ratio of the CoD of that predictor set to the sum of th®<of all predictor
sets used for that target gene. This approach makes istsiginse since it is reasonable
to assign the selection probability of each predictor set FBN to be proportional to its
predictive worth as quantified by the CoD.

A second approach to PBN construction uses mutual informafiestering and re-
versible -jump Markov-chain-Monte-Carlo predictor dedig8]. First, mutual- information-
minimization clustering is used to determine the numberasfsible parent gene sets and
the input sets of gene variables corresponding to each gemereafter, each (predictor)
function from the possible parent gene sets to each target igemodeled by a simple
neural network consisting of a linear term and a nonlineemteand a reversible-jump
Markov-chain-Monte-Carlo (MCMC) technique is used to caltaitdne model order and
the parameters. Finally, the selection probability forrepiedictor set is calculated using
the ratio of the CoDs.

In most expression studies, there is some degree of prekionsledge regarding
genes that play a role in the phenotypes of interest, foants, p53 in unregulated pro-
liferation. To take advantage of this knowledge, and to inbt@tworks relating to genes
of interest, it has been proposed to construct networksenctmtext of directed graphs
by starting with a seed consisting of one or more genes legligy participate in a mean-
ingful subnetwork [7]. Given the seed, a network is grown teyatively adjoining new
genes that are sufficiently interactive with genes in thevgrg network in a manner that
enhances subnetwork autonomy. The proposed algorithmdeasdpplied using both the
CoD and the Boolean-function influence [5], which measuresraation between genes.
The algorithm has the benefit of producing a collection of Istightly knit autonomous

subnetworks as opposed to one massive network with a largeenof genes. Such small
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subnetworks are more amenable to modeling and simulati@hest, and when properly
seeded are more likely to capture a small set of genes thabmayaintaining a specific
core regulatory mechanism.

A key issue in network design arises because much of thertiyravailable gene-
expression data comes to us frateady-statgphenotypic behavior and does not capture
any temporal history. Consequently, the process of infgrarPBN, which is a dynam-
ical system, from steady-state data is a seveilkfyosed inverse problemSteady-state
behavior constrains the dynamical behavior of the netwatkdlbes not determine it and,
therefore, building a dynamical model from steady-stata daa kind of overfitting. It is
for this reason that a designed network should be viewedmsdng a regulatory structure
that is consistent with the observed steady-state behaAlso, it is possible that several
networks may emerge as candidates for explaining the st&tatly data. Under the assump-
tion that we are sampling from the steady-state, a key witdor checking the validity of
a designed network is that much of its steady state massiligeistates observed in the
sample data because it is expected that the data statestaonstly of attractor states [39].

A number of recent papers have focused on network infereaepiikg in mind that
most of the data states correspond to steady-state behlamiore of these, a fully Bayesian
approach has been proposed that emphasizes network tgg8lodhe method computes
the possible parent sets of each gene, the correspondidigtors and the associated prob-
abilities based on a neural-network model, using a reviergionp MCMC technique; and
an MCMC method is employed to search the network configuratiorfind those with
the highest Bayesian scores to construct the PBNs. This méthedbeen applied to a
melanoma cell line data set. The steady-state distributfidhe resulting model contains
attractors that are either identical or very similar to ttagess observed in the data, and many
of the attractors are singletons, which mimics the biolabpropensity to stably occupy a

given state. Furthermore, the connectivity rules for thestoptimally generated networks
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constituting the PBN were found to be remarkably similar, asi be expected for a

network operating on a distributed basis, with strong axt@ons between the components.
If we consider network inference from the general perspedf an ill-posed inverse

problem, then one can formalize inference by postulatiitgrea that constitute a solution

space in which a designed network must lie. For this we pm@pwe kinds of criteria [40]:

e Constraint criteriaare composed of restrictions on the form of the network, ssch

biological and complexity constraints.

e Operational criteriaare composed of relations that must be satisfied between the

model and the data.

Examples of constraint criteria include limits on connéttiand attractor cycles. One ex-
ample of an operational criterion is some degree of concmelbetween sample and model
CoDs, and another is the requirement that data states aetattstates in the model. The
inverse problem may still be ill-posed with such criteriaf bll solutions in the resulting
space can be considered satisfactory relative to the mgeimts imposed by the criteria.
We will implement this kind of approach in the next sectiorfibgiing constituent Boolean
networks satisfying constraints such as limited attrastarcture, transient time, and con-
nectivity [8].

In addition to the ongoing effort to infer PBNs, there has baerontinuing effort
to infer Bayesian and dynamic Bayesian networks (DBNSs) [6, 2], A Bayesian net-
work is essentially a compact graphical representation of d jmiobability distribution
[43, 44, 45]. This representation takes the form of a digketeyclic graph in which the
nodes of the graph represent random variables and the efiretiges, or lack thereof,
represent conditional dependencies, or independencikes. n@&twork also includes con-

ditional probability distributions for each of the random@riables. In the case of genetic
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networks, the values of the nodes can correspond to gemes=spn levels or other mea-
surable events, including external conditions. There isegipely characterized relation
between certain DBNs and PBNSs in the sense that they can rapthsesame joint dis-
tribution over their corresponding variables [46]. PBNs e specific in the sense that
the mapping between PBNs and DBNSs is many-to-one, so that a DBBI mlat specify a

specific PBN.
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CHAPTER IlI

GENERATING BOOLEAN NETWORKS WITH A PRESCRIBED ATTRACTOR
STRUCTURE

A. BN Generation

The dynamical modeling of gene regulation via network medehstitutes a fundamental
problem for genomics. In any dynamical system the long-haracteristics of the system
are critical and determining these characteristics ismgmy aspect of system analysis. In
the other direction, and typically more difficult, is systegnthesis: construct a network
possessing a given set of properties. This constitutegtaeese problem Generally, the
inverse problem is ill-posed, meaning there will be manywoeks, or perhaps none, pos-
sessing the desired properties. Relative to long-run behave may have a desirable sta-
tionary distribution and wish to construct networks possesthat stationary distribution.
Here we are concerned about a long-run inverse problemipiedgao Boolean networks
Boolean networks compose a class of discrete models wherexpiression levels
of each gene are assumed to have two possible values onkegufated (ON) or down-
regulated (OFF). Such a model cannot capture the undergongnuous and stochastic
biochemical nature of protein production and gene reguiatiowever, one often encoun-
ters genes that are essentially ON or OFF throughout a giveiémical pathway. The
switch-like regulatory function of those genes determitnes role in regulation and their
activity is well-represented by a coarse-grain model lilBoalean network. This, together
with the relative simplicity of the dynamical system dekbed by a Boolean network ex-
*Part of this chapter is reprinted, with permission, from @eting Boolean networks

with a prescribed attractor structure”, R. Pal, I. lvanovDatta, M. L. Bittner, and E. R.
DoughertyBioinformatics vol. 21, pp. 40214025, 2005
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plains why such networks have attracted significant attaritom the research community
— for instance, [1, 2, 3, 33, 4]. The dynamics of differentsskes of Boolean networks
have been extensively studied from the ensemble point of Mg Statistical properties of

the attractor structure, the connectivity, and the evofubf an ensemble of Boolean net-
works provide important insights about the genetic regujahetwork modeled by those
networks.

Given the relative simplicity of the model, the rich dynaalibehavior that can be
observed in different classes of Boolean networks, and thledically sound interpreta-
tion of the attractor structure and the connectivity, a icgmt effort has been directed in
designing such networks from real gene expression datah Mihis effort has concerned
the strength of prediction among genes [4, 7] and the relasek of optimal connectivity
[38, 9]. The inverse problem with respect to attractors lategel to design from steady-
state data, and therefore the algorithmic solution to thgrise problem proposed in this
dissertation has immediate application.

As explained in Section 1, a Boolean network (BB)= (V, F') onn genes is defined
by a set of nodes/gen&s= {4, ...,x,}, x; € {0,1},7 =1, ...,n, and a vector of Boolean
predictor functionsF' = (fi,..., fn), fi : {0,1}" — {0,1}, ¢ = 1,...,n. Each noder;
represents the state/expression of the genesherexr; = 0 means that the gends OFF
andz; = 1 means that the gends ON. The functionf; is thepredictor functionfor that
gene. Updating the states of all of the gene®iis done synchronously at every time step
according to their predictor functions. A subs$€t C V is called thepredictor setfor
the gener; if the restriction f;y, of the predictor functiony; equalsf;. It is clear from
this definition that the cardinality of the sBf; is related to the number of edges incident
with the vertexz; in the directed graplh = (V, E), where an edgér;, z;) € E indicates
that gener; is one of the factors determining the value of the gepeV = (W, ..., W,,)

is called thepredictor setfor the Boolean network. Atatein B is a vector(xy, ..., ;)
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of gene values. We shall always assume that the statés arfe interpreted as binary
numbers, and are ordered accordingly. Thus, theré&/ate2" states in a Boolean network
onn genes, and they are enumeratedas 2, ..., N — 1. There is aV x n truth table
associated with and equivalent &y where the rows correspond to the state®iand the
columns contain the corresponding values for the predfatwetions. The truth table of B
induces a directed gragh= (V, F) with the states in3 as the set’ of its vertices, and
with edges(s;, s;) € E connecting the state with the states; if F(s;) = s;. Itis clear
that the truth table associated with B determifieand vice versal is called thestate
transition diagramof B, andT is calledcompatiblewith 7 if the truth table induced by
I" hasIV as the predictor set for the Boolean network associated athttuth table. The
state transition diagram represents the dynamics of thveonlet

The long-run behavior of a Boolean network is straightfodvar describe. Given an
initial state, the network will eventually enter a set otetathrough which it will repeatedly
cycle forever. Each such set is called @&tractor cycleand the states within the family
of attractor cycles are calleattractor states The rest of the state transition diagram is
partitioned intolevel sets where the level sel; is composed of all of the states of the
network that transition to one of the attractor states irctya transitions. One can think of
the set of attractor states as the levellgeThen non-attractor states compose the transient
states of the network. The transient states are partitiasedrding to the attractor cycles
because each transient state begins a sequence of tnasmsitat eventually ends up in a
unique attractor cycle. The attractor cycles are mutuaijooht. The class of the partition
corresponding to an attractor cycle is called Hasinof the cycle. Given any transient
state, it belongs to a unique basin and unique level.

A state transition diagram constitutes a single-rootee ifré possesses exactly one
singleton attractor (a single-state attractor cycle): nb&vork reaches its attractor cycle

via the tree. If it possesséssingleton attractors, then it is composedkasingle-rooted



32

trees and is called &-forest the network reaches an attractor state via one of the single
rooted trees. From the perspective of modeling gene regalathe attractor cycles of
a Boolean network are especially important because theyrasaimed to provide a rep-
resentation/approximation of phenotypes. Singletoraetitrs are especially important.
First, gene regulation should be modeled by Boolean networ&s ordered regime and a
Boolean network that functions in an ordered regime has stiweictor cycles, often sin-
gleton attractors [3]. Second, the presence of long cyalélsd cell dynamics will lead to
an entropy increase, which is exactly the opposite of thiobical state stability and deter-
minism that characterize living systems. In this chapterpnesent two algorithms for the
attractor inverse problem under the assumption of singlattractor states. Complexity
and performance of the two proposed algorithms are disdusse

Besides being of mathematical interest relative to undedstg the nature of Boolean
networks that lead to certain attractor structures, thactir inverse problem is very im-
portant to network inference from state data, in particulg@ne expression data. Most
microarray-based gene-expression studies do not involvealled temporal experimental
data; rather, it is assumed that data result from samplmm the steady state. Under the
Boolean-network model, this means that the data come fromttteectors. If one considers
a more general Boolean-type model, such as a Boolean netwtirkamdom perturbations
or a probabilistic Boolean network, the dynamical systemasgnted by the network is an
ergodic Markov chain and there exists a steady-state lalision; nevertheless, under mild
stability assumptions that reflect biological state stgbinost of the steady-state probabil-
ity mass is concentrated in the attractors and it is expdbegdnost data correspondingly
come from the attractors [36].

Thus, under the assumption that we are sampling from the\sttate, a key criterion
for checking the validity of a designed network is that muéht® steady-state mass lies

in the states observed in the sample [39]. In the case of Booletavorks, this means that
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there should be close concordance between the attractes sththe model and the data
states. Such a criterion can be used to test a design algd@ih randomly select a set of
states to be used as data states; generate a Boolean netwsésgiag the selected states
as attractors, perhaps with some added requirements sumnaiaints on connectivity
and the level structure; apply the design algorithm; andkliee concordance between
the attractor states of the designed network and the statgbas data. This can be done
repeatedly for different data states and constraints. Tdmithms provided next can be
used to generate the Boolean networks in this scenario. Qwithg concentration of mass
in the attractors of probabilistic Boolean networks and #ot fhat a PBN can be viewed as
a collection of Boolean networks, the procedure can be appi€®BNs by generating the
constituent Boolean networks. The PBNs so synthesized casdoto design intervention
strategies where the only available gene expression dat@faork design comes from the
steady-state phenotypic behavior.

It is important to keep in mind that the inverse problem,aatiors to network, is a
one-to-many mapping, and there may be a multitude of nesvpdssessing a given at-
tractor structure. In the other direction, if the problentanstrained, say by the number
of predictors permitted, there may be no solution. Gengggleaking, steady-state behav-
ior restricts the dynamical behavior, but does not deteentinin particular, for Boolean
networks it does not determine the basin structure. Thusewle might obtain good in-
ference regarding the attractors, we may obtain poor intereelative to their probabilities
relative to random initializations (or to random perturbas in more general networks).
This is because if the basin of an attractor is small, it is lé®ly to catch a random ini-
tialization than if it is large. When sampling from the steatigte, the data attractors with
small basins are less likely to appear (and may not appedlj,atlereas those with large
basins may appear numerous times. A key advantage of clyegldesign algorithm with

generated synthetic networks is that the levels and basmsymthetic network are known
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and therefore one can better evaluate algorithm perforenanc

In the following sections we present two algorithms for gwivthis inverse problem
under the assumption of singleton attractor states in tsgyded network. As with any
other algorithmic solution to a design problem, the impatrtasues of complexity and per-
formance of the proposed two algorithms are discussed. Tdt#em we address can be
formulated in the following manner. Given a sétconsisting ofn nodes (genes), a family
of n subsetdV, Ws, ..., W,, of VV with cardinalities not less than and not bigger thai/,

0 < m < M, a setA containingk states, and two positive integdis< [, accordingly
construct a Boolean network with node $gthaving predictor sét/ = (W, W, ..., W),
possessing only singleton attractors, and these corgsigtatisely of the states iA, and
containing betweery and/, level sets. The requirement on the predictor set means that
the state transition diagram of the designed network musiobgpatible withi¥. There
may exist none or many compatible networks. The algorithrastypically initiated by
specifying a minimum and maximum number of predictors farhegene, randomly se-
lecting Wy, W, ..., W,, subject to the specified maximum and minimum, and randomly
selectingk attractor states. In this way, one can utilize the algorghosearch for Boolean
networks constrained by the connectivity of the networkr iRetance, if|{\V;| < M for

i =1,2,...,n, then the algorithms find networks with connectivity bouthtby N/ — if any
exist with the required attractor structure.

The problem can be reformulated as a search problem in tleviob way: In the
space of alli-forestsI” for a Boolean network on genes, and with the number of their
level sets ranging betwedp and/,,, find at least one which is compatible with a given
(randomly generated) predictor 3&t, where the cardinality of eadli; ranges betweem

and M.
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1. Size of the Search Space

Under the assumption that we are sampling from the steathy, tialogical state stability
means that most of the steady-state probability mass isectrated in the attractors and
that real-world attractors are most likely to be singlettmaator cycles consisting of a
single state. A state transition diagram constitutes desirgpted tree if it possesses exactly
one singleton attractor (a single-state attractor cydhe):network reaches its attractor via
the tree. If it possessdssingleton attractors, then it is composedkadingle-rooted trees
and is called &-forest the network reaches an attractor state via one of the siogked
trees. In this section we examine the size of the search gtater the assumption of
singleton attractors. To simplify the formulas, it is assahthat = 1 andl; = 1. One
can easily make the necessary changes in the general case.

There ared = A,y = Zﬁl (’;) possible predictor setd’; for each gene:;, i =
1,...,n. Thus, there arel™ possible predictor sefd” to select from when searching for a
compatible state transition diagrdm The different choices fdr depend on the number of
attractor states and on the level set structure of the statsition diagram. There a@’ )
possible ways of selecting thesingleton attractors foF . The remainingV, = N — k
non-attractor states will form the level setsiof There aren (1,1 )"(:) ways for connecting
any two successive level séfsandl; . ; with n(l;) andn(l;;) states in them, respectively.
Therefore, the number of possible ways to structure thd &sts forl’ with no more than

L level sets is

A= AL,k,n -

S Y ek n (1)) (1)) (3.1)

where) . is a summation over all of the different choices of the pesithtegers:((;),...,
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n(l;) such thath.:1 n(l;) = Ni. Combining this with the choices for selecting attractor

states, and with the choices for selecting predictor setkjg/the size of the search space,

N
S = Sy sy = A ( k)A (3.2)

To appreciate the size of the search space, consider an kxahgvery small BN, where
n = 4, m = 4, k = 4, and the state transition diagram has exattlgvels. The computa-
tions show thats > 10'7.

The following theorem extends a well known result [47], abbutrees, or single
rooted trees.
Theorem 1. The cardinality of the collection of all forests dvi vertices is(N + 1)V 1.
Proof: In the proof we can assume without loss of generality thatvédréices of each
k-forest are labeled using the integers fréim2, ..., N'}. First we prove that there is a bi-
jection between the collectiaf; of all k-forests k-a fixed nonnegative integer less than
, and the collectiomB;, of triples (wy, Ax,7), r € Ax, Where the sefl, € A,-the collection
of all k element subsets dfl,..., N} , andw, € Qy,-the collection of all sequences of

length N — k& — 1 integers formed using the integers {1, ..., N'}. Define the mapping
A Fi — QNk X Ak X {1,...,N}

(A) In particular, given &-forestF, the first component of(F') is generated recursively
in the following way:
Set; =1
1. Search for the leaf i’ with the smallest label,.
2. Remove the edge;, v) from F.
3. Setthe-th element ofv, tov i.e. setwy; = v.

4. Seti =i+ 1.
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5. Ifi < N — k start from 1 again, otherwise set the third component(éf) = r

where(v,., r) is the only remaining edge if.

In the above procedure a root of a tree formifigs not considered to be a leaf after
removal of the tree stemming from it. The second componeni 6% simply lists
all of the roots ofF'. It is obvious that after repeating the above procedure k — 1
times we will end up with only the roots df — 1 of the trees formingr’ plus the
remaining leafv, connected to. Notice that the linear order of the sgt, ..., N}

implies that the mapping is well defined.

(B) Next we start with a tripldwy,, Ag,r), r € A, , and show that there isfaforest F,
such that\(F') = (wg, A, 7). Indeed, one can set tiheroots of /' to be the elements
of Ay, and after that one can apply the following procedure geimgrahe rest of
F: Setj = 1. Form the seB, = {1,..., N} \ A . Createk roots for F' using the

elements in4,,.

(a) Find the smallest element B that is not equal tavy;, [ =j,j+1,..., N —
k—1.

(b) Form an edgéi,wy ;) in F.

(c) SetB, =B \iandset =7+ 1

(d) If j > N — k — 1 connect the only element @&, to » and then stop, otherwise

start from (a) again.

Since at every step we remove fromB,, elements not present i, starting from
the j-th position on, none of the elementsBf can participate in a cycle. Therefore,

the resulting graph is A -forest with its roots the elements iy,.
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(C) Finally, given two different-forestsF; and F, we claim that\(F}) # A\(F»), where
the equality between two points in the sp&te, x Ay x {1,..., N} is defined in the
obvious way. Clearly\(Fy) # A\(F,) if F; and F, have different sets of roots. If
both k-forests have the same set of roots, then they must diffetr leaat one edge.
If now, we assume to the contrary thetF;) = A(F3) that means that the only way
Fy can differ fromF; is if there is at least one edge i) not present inF; or vice
versa. At the same time the equality of the components(6f) and \(F>) means
that the procedure in part (A) removes consecutively exab# same edges from
Fi; and fromF; which in its turn implies that the twi-forests have the same set of
edges, which contradicts our assumption akiguand F;, being different from each

other.

(A), (B) and (C) together show that the mappikggs, indeed, a bijection fronf;, to
Bi.. Thus, the problem of counting all of theforests,k = 1, ..., N, on N vertices,
reduces to counting the elementsigf ; B;. One should notice that the mappiig
is not defined fork = N but this is the trivial case whet8, has just one member,
namely theN -forest where each vertex in the graph happens to be a roatni®r
of the N trees composing the forest. There @e)ways of selecting an element of
Ay € A, k ways of selecting € A, andN"~*~1 of sequences ifdy,. Therefore,
for each fixedk, the cardinality of3;, is (],f)k:NN*’H, and since the sefS;, k =

1,..., N are pair wise disjoint, the cardinality of)_, B;, is

S (MENN=F=1 = (N + 1)N-1,

The following two examples illustrate the procedures dbsdrin part (A) and part
(B) of the proof ofTheorem 1
Example 3.1: Suppose we are given the state transition diagram in Figiuifeone applies

the procedure from part (A), then one will produce the trifilg, A,,2), wherew, =
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4,6,1,4,1,2,4,7,9; Ay = {2, 7}, and where the edg€8,4), (5,6), (6,1), (8,4), (10, 1),

(11,4), (4,7), and(12,9) have been consecutively removed from the 2-forest in Figure

Fig. 6. State Transition Diagram for Example 3.1 .

Example 3.2: Suppose we are given the trigles, Az, 1) wherews = 3,10, 12,2, 5,5, 2, 5;
and whered; = {1,5,9}. If one applies the procedure from part (B), then the follayin
edges will be generated in the order they are listed3), (3, 10), (6,12), (7,2), (8,5),
(10,5), (11,2), (2,5), and(12, 1). Thus, the3-forest in Figure 7 will be generated.

No restrictions are imposed on the structure of the level S8bnsequently the theo-
rem provides us with an upper bound for the te@ﬁ/\ appearing in equation (2). While
this upper bound is by no means tight, it is much tighter in parison to the number
of all possible directed graphs aN vertices, NV. One can easily see that the ratio
(N + 1)N-I/NV is asymptotically equal te/N. Since N = 2", the probability mass
decreases exponentially relative to the number of gene¥his shows that a brute force
search for an acceptable BN by randomly filling in a BN truth ¢édihs very little chance

of success. Therefore, if one wants to efficiently gener&bl avith the desired character-
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Fig. 7. State Transition Diagram for Example 3.2 .

istics, one has to incorporate information from the staadition diagram, as well as the

information about the predictor set of the network, intodkgorithm.

2. Design of Efficient Algorithms

We present two algorithms to generate Boolean networks gateeactor and connectiv-
ity information. The first algorithm works directly with thteuth table, incorporating at
the same time the information about the attractor set, alsas¢he information about the
predictor set of the BN. There is no control over the level Betture, and the transition di-
agram generated by the algorithm has to be checked for tkere of cycles. We present
the algorithms for the case of singleton attractors andigeothe adaptation for multiple-

state cyclic attractors in Appendix A.
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a. Algorithm 1

STEP1: Randomly generate a setkohttractor states. If STEP1 has been repeated more
than a pre-specified number of times terminate the algorithm

STEP2: Randomly pick up a predictor $&t, where eachV; has not less tham and not
more thanM elements. If STEP2 has been repeated more than a pre-spextifigber of
times go back to STEPL1.

STEP3: Check if the selected attractor set is compatible With.e., only the attractor set
of the state transition diagram is checked for compatibdgainstl’. If the attractor set is
not compatible witH?” go back to STEP2, otherwise continue to STEP4.

STEPA4: Fill in the entries of the truth table that corresptmthe attractors generated in
STEP1. Using the predictor sBt randomly fill in the remaining entries of the truth table.
If STEP4 has been repeated more than a pre-specified numtieresfgo back to STEP2.
STEP5: Search for cycles of any length in the state tramsitiagraml’ that is associated
with the truth table generated in STEPA4. If a cycle is foundgok to STEP4, otherwise
continue to STEPG6.

STEPS6: IfT has less thahor more tharL level sets go back to STEP4, otherwise continue
to STEP7.

STEP7: Save the generated BN and terminate the algorithm.

The second algorithm employs a state transition diagraimat satisfies the design goals
about attractor structure and level-set structure, andkshiéthe truth table associated with

I has a predictor sét” satisfying the design goals.



42

b. Algorithm 2

STEP1: Randomly generate a state transition diagrathat satisfies the design goals
about the attractor structure and level set structure. ERRI'has been repeated more than
a pre-specified number of times terminate the algorithm.

STEP2: Fill in the truth table usinb.

STEP3: If there is at least on&; in the predictor setV’ given by the truth table that has
less thanm or more thanV/ elements go back to STEP1, otherwise continue to STEP4.

STEP4: Save the generated BN and terminate the algorithm.

The following examples provide walk-through illustratooto show how algorithm 1
and 2 works in the particular case of 3 genes.
Example 3.3(Algorithm 1): Suppose that = 2, m = 1, M = 2, = 1, andL = 5.
Next, suppose that the states 000 and 011 are generated BRISTETEP2: Suppose
W is generated wher@, = {x9, 23}, Wy = {z1, 23}, W5 = {x1,22}. STEP3: Table
| shows that the attractors generated in STEP1 are comgatiith 11/7. The remaining
entriesay, ..., ag in the truth table are filled in randomly in the next step of #hgorithm.
One can notice certain patterns in the entries in each orfeedhtee columns of the table.
These reflect the structure of the predictor B&tand reduce the number of the possible
ways to randomly fill in the missing entries during the negfpstf the algorithm. On the
other hand, if the attractors generated in STEP1 webteand 100, then for the predictor
function of the first gene;;, we must have;(0,0) = 0, while from the second attractor,
we getf;(0,0) = 1, which is a contradiction. Therefore that attractor sebisaompatible
with the seti’ generated in STEP2.
STEP4: Here we randomly fill in the remaining entries of thehttable. Suppose that this

producesy; = 0,a, = 0,a3 = 1,a4 = 0,a5 = 0,a6 = 1. This selection produces the
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following transitions in the state transition diagrahm— 0;1 — 2;2 — 1;3 — 3;4 —
2;5 — 0;6 — 3;7 — 1, where we have used the decimal representation of the states
is clear that during STEP5 of the algorithm the cytle~ 2;2 — 1 will be discovered,
which will cause the BN generated by the present truth tabkeetdiscarded, and we will
be returned to STEP4.

On the other hand if we hath = 0,a, = 1,a3 = 1,a4 = 0,a5 = 0,a¢ = 1 produced in
STEP4, then the transitions in the state transition diags@ud be0 — 0;1 — 2;2 —

53 — 3;4 — 2;5 — 0;6 — 7;7 — 1. Since the only cycles here are those within the
attractor set, STEP5 of the algorithm will take us to STEPBER6 will detect that there

are 5 level sets, and this will take us to STEP?7.

TABLE |

TRUTH TABLE FOR EXAMPLE 3.3

Ty X2 T3 fl f2 f3

000 0| 0O
001 |au |10
010 |ay| O] 1
011 |[0|1 1

100 0 as | Qq

101 a; | s | Qg

110 |ase | as | ag

111 0 as | g
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Example 3.4(Algorithm 2): Supposetha@t=2,m =1, M =2,/ =1andL = 3.

Next, suppose that the transition diagram shown in Figurea8 rendomly generated in
STEP1.

The truth table resulting from STEPZ2 is shown in Table II.

STEPS3: It is clear from this truth table théit; = {z,z,, 23}, and since it has more
than M = 2 elements the algorithm returns to STEP1. On the other hathe ifransition
diagram shown in Figure 9 was generated in STEP1, then STERBRIwroduce the truth
table shown in Table IIl.

Now eachlV;; i = 1,2,3 has no more tham = 2 elements, and the algorithm success-
fully terminates producing a BN with the truth table shown ablEe Il and state transition

diagram from Figure 9.

&

5—ED

Fig. 8. First State Transition Diagram for Example 3.4 .

3. Comparison between the Two Algorithms

Several simulations were carried out to evaluate the padace of the two algorithms.
Table IV shows the performance of Algorithm 1 for the caseef 6,2 < k < 4,m =1,

[ =1, andL = 2°—1. The number of maximum repetitions of STEP1, STEP2, and 9TEP
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Fig. 9. Second State Transition Diagram for Example 3.4 .

were set to 10, 20 and 500 respectively. The total execuitioa for this simulation was
13123.875 seconds or roughly 3.5 hrs on a 2.4 GHz P4 Intel Reocessor.

Table V shows the performance of Algorithm 1 for the case of 10, 1 < k£ < 6,
m = 1,1 =1,andL = 2!Y — 1. The number of maximum repetitions of STEP1, STEP2,
and STEP4 were setto 10, 15 and 1000 respectively. The éxec¢ume for this simulation
was 58842.5 seconds or around 16 hours on an identical neachin

The significant increase in the run time for the cas&)ajenes can be attributed to two
major factors: first, the NP-completeness nature of theecgebrch performed in STEPS5;
and second, the low probability masskeforests in the space of all directed graphs, as was
already discussed in Section 2. Table VI shows the perfocean Algorithm 2 for the
casen =3,1<k<2,m=1,M =2,l=2,andL = 5. There were 1000 BNs generated
in STEP1 and the simulation time was 4.01 seconds. One caerbée low frequency of
successfully generated BN even for such a small number ofsgéitee simulation for the
casen = 6,2 < k<4, m=1, M = 5,1 =4, andL = 15 confirms that observation:

the algorithm did not generate any BN during the first 10° iterations. It took 78329.2
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TABLE Il

FIRST TRUTH TABLE FOR EXAMPLE 3.4

Gene Values fi | fo | f3
000 0|01
001 0101
010 1/0/|0
011 0|10
100 1100
101 0/0]0
110 010
111 0|01

seconds or approximately 21hrs to run this many iterations.

The reason for such a huge difference in the performanceedfnth algorithms is the
fact that the state transition diagrams generated by Algoril have a very small proba-
bility mass in the space of all-forests,k = 1,..., N on N vertices. One can easily see
that when each gene predictor $€f is required to have exactly. elements, the number
of possible state transition diagrams generated by Algarit is(Z)”N2m. Using Theo-
rem 1 one can obtain an estimate of the probability mass osttite transition diagrams
generated by Algorithm 1 within the space of iforestsk =1, ..., N:

()"
(N +1)N-1
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TABLE Il

SECOND TRUTH TABLE FOR EXAMPLE 3.4

Gene Values fi | fo | f3
000 1/0|0
001 0/0]0
010 111
011 0|11
100 1100
101 0/0]0
110 100
111 0|00

For the case. = 6, m = 5 this ratio is approximately.7911 x 10~°2,

B. Design of Probabilistic Boolean Networks

The algorithms produce many distinct networks satisfyirggvan set of constraints. The
presence of multiple solutions allows for optimization ggdures when designing PBNs
from microarray data. In this section, we describe a promefr designing a PBN from
microarray data. The sizes of the basins are used to selectrBiNsa group of generated
networks and to combine them in a PBN whose steady-statébdistn closely matches
the observed frequency distribution of the data. The assomfhat these data correspond

to the steady-state of the underlying gene regulatory syst@vides a reference point of
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TABLE IV

SIMULATIONS FOR ALGORITHM1 WITH 6 GENES

n| M | BNs saved at STEP[/BNs searched in STEPS
6|1 1267 7670
6| 2 1375 10160
6|3 2396 19124
6| 4 1399 27590
6|5 1960 35060
6|6 1704 37550

how closely the dynamics of a generated PBN approximate ttee ddoe designed PBN
should have these data points as attractors — and no oth&ctats because there is no
reason in the data for having other attractors. We focusrayiesion attractors.

The design procedure begins by selecting a random nunipbetweer2 and5, and
then randomly selecting/; distinct states as singleton attractors from the origirsthd

according to the data frequency distribution. Repeating phocedurd 0 times yields10

TABLE V

SIMULATION FOR ALGORITHM1 WITH 10 GENES

n | M | BNs saved at STEPBNs searched in STEPH

10| 9 80 30090
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TABLE VI

SIMULATIONS FOR ALGORITHM 2 WITH 3 GENES

n| M | BNs saved at STEP4

3|1 5

3|2 43

sets,A;, As, ..., Ajg, Of singleton attractors, withl; possessingy; attractors2 < N; < 5

and: = 1,2....10. After that, algorithm 1 is employed to generat® Boolean Networks,
Bi1, Biz, ..., Bi 100, for each of thel0 attractor sets. The generated networks have state
transition diagrams satisfying two additional constrainfirst, the number of their level
sets range fror2 to 10. This constraint manifests the understanding that in titetyping
gene regulatory network the steady-state/fixed points@fttstem are not achieved with
too few or too many consecutive transitions. The secondtansis that all gene predictor
sets have betweenand3 genes, the number being randomly set.

The BNs generated for each one of tleattractor sets are then used as a sample space
for the selection of a PBN whose steady-state distributiotches closely the frequency
distribution of the data in the mean-square error (MSE)se@se BN from each group of
100 BNs is randomly selected, and the basin size of each singégtactor is calculated.
These numbers are used as estimates of the steady-stadbipti@s of the corresponding
attractors (keeping in mind that very little time is spentremsient states and that random
perturbations and switching randomly put the network ifiedént basins). For example,
if the Boolean network3;; has attractor states/, a3 ... ay,_ with corresponding basin

sizesSy’, 5 ... Sy, respectively, then our estimate of the steady-state pitityafor
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the attractroral’ is given bym;;(a”?) = S7/3 "% S . One can take the average of
these estimates of the steady-state probabilities of tigdeton attractoafj over thel0
BNs comprising the PBN as an estimate of the steady-state Iptiypaf that attractor
in the PBN. If a particular singleton attractor is not presena constituent BN, then its
contribution to the steady-state probability is sef.to

Continuing in this fashion, one obtains an estimate of thedstestate probabilities of
each one of the data states used in the generation of a PBNsldetnote these states by
by, bs, .....b,, and their corresponding estimated steady-state probebilyr;, m...., 7,,.
The procedure calculates the MSE betweenrs...., 7, and f1, f, ..., fm, Where f; is
the relative frequency db; in the sample. The designed PBN is selected as the one that
minimizes the MSE among a randomly selected subs&b@i0 PBNs from the set of all
possible PBNs that can be generated using the BNs producegditiain 1 for the selected
attractor sets. We settle d0000 PBNs because an exhaustive search is prohibitive, there

being a total ofl00'° possible PBNs.

1. Melanoma PBN Design

The gene-expression profiles used in this study result floenstudy of 31 malignant
melanoma samples [48]. For the study, messenger RNA wasddalaectly from melanoma
biopsies, and fluorescent cDNA from the message was prepacktybridized to a mi-
croarray containing probes for 8150 cDNAs (representinglathique genes). The 7 genes
WNT5A, pirin, S100P, RET1, MART1, HADHB and STC2 used here fa& thodel were
chosen from a set of 587 genes from the data set that have bbgtted to an analy-
sis of their ability to cross predict each other’s state in @tivariate setting [39]. The
gene-expression profiles were binarized to arrive at 31rpiwmectors with 7 columns cor-
responding to the selected 7 genes. The frequency distnibot the 18 distinct binary data

vectors is shown in Figure 10. The assumption that theseadataspond to the steady-
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state of the underlying gene regulatory system impliesttiegte and only those 18 distinct
data vectors should appear as attractors in the generatediPiEN\condition is guaranteed
by the design procedure.

Figure 10 shows the portion of histogram (the data stateg) afithe steady-state
distribution (after a long run) of the designed PBN, wjth= 0.001 andp = 0.001, and
of the frequency distribution of the data states. The stesae distribution of the PBN

closely matches (in the MSE sense) the frequency distabuibserved in the data.

0351
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Fig. 10. Histogram for Original and Generated PBN [8].
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CHAPTER IV

CONTROL OF PROBABILISTIC BOOLEAN NETWORKS

From a translational perspective, the ultimate objectivgemetic regulatory network
modeling is to use the network to design different approadtieaffecting network dynam-
ics in such a way as to avoid undesirable phenotypes, faanast cancer. In this chapter
we present results on intervention in the conteX®@ababilistic Boolean NetworkBBNS).
Given a PBN, the transition from one state to the next takeseglaaccordance with cer-
tain transition probabilities and their dynamics, and leeimtervention, can be studied in
the context of homogeneous Markov chains with finite statéeap.

A major goal of functional genomics is to screen for genesdigermine specific cel-
lular phenotypes (disease) and model their activity in sualay that normal and abnormal
behavior can be differentiated. The pragmatic manifestadf this goal is the development
of therapies based on the disruption or mitigation of almergane function contributing to
the pathology of a disease. Mitigation would be accomptidhethe use of drugs to act on
the gene products. Engineering therapeutic tools invadyashesizing nonlinear dynam-
ical networks, analyzing these networks to characterizee gegulation, and developing
intervention strategies to modify dynamical behavior. Famtance, changes in network
connectivity or functional relationships among the gemes metwork, via mutations or re-
arrangements, can lead to steady-state behavior assbeaigitetumorigenesis, and this is
likely to lead to a cancerous phenotype unless correcteatieutic intervention is applied.

*Parts of this chapter are reprinted, with permission, fromilgtervention in con-
text sensitive probabilistic Boolean networks”, R. Pal, AttBaM. L. Bittner, and E. R.
DoughertyBioinformatics vol. 21, pp. 12111218, 2005 and ({92006 IEEE. Reprinted,
with permission, from "Optimal Infinite Horizon Control forr@babilistic Boolean Net-

works”, Pal, R., Datta, A. and E. R. Dougherti#EE Transactions on Signal Processjng
2006, Vol. 54, no. 6, 2375:2387



53

To date, intervention studies using PBNs have used threereiift approaches: (i)
resetting the state of the PBN, as necessary, to a more desmdial state and letting the
network evolve from there [10]; (ii) changing the steadgtst(long-run) behavior of the
network by minimally altering its rule-based structure]fldnd (iii) manipulating external
(control) variables that alter the transition probatgktof the network and can, therefore, be
used to desirably affect its dynamic evolution [12]. In tbieapter, we extend the control-
theoretic approach in two important directions. First, vefas the original control-theoretic
approach has been developed in the framewoiksibintaneously randofBNs, here we
design optimal intervention fazontext-sensitiv®BNs [13]. This extension is significant
because the latter class more closely models small bi@dbgitnetworks whose logical
behavior is affected by conditions outside the genes repted in the model network.
Second, the earlier finite horizon results are extendedéartfinite horizon case in an
effort to alter the steady-state behaviour of the genegalegory network. Moreover, the
stationary policies obtained in case of infinite horizontoorare much easier to implement
than a policy that changes with time.

Probabilistic Boolean networks can be used for studying theachic behavior of
gene regulatory networks. Once a probability distribut@ator has been specified for
the initial state, the probability distribution vector éwes according to Eq. 2.10. From
this perspective PBNs amdescriptivein nature. There is no mechanism for controlling
the evolution of the probability distribution vector. Foeatment or intervention purposes,
we are interested in working with PBNs inpaiescriptivefashion, where the transition
probabilities of the associated Markov chain depend orameexternal variables, whose
values can be chosen to make the probability distributiartoreevolve in some desirable
manner.

The use of such external variables makes sense from a lgalgggerspective. For

instance, in the case of diseases like cancer, externamed inputs such as radiation,
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chemotherapy, etc. may be employed to move the state piipdistribution vector away
from one associated with uncontrolled cell proliferatiannearkedly reduced apoptosis.
The variables could also include genes that serve as ekteaster-regulators for all the
genes in the network. To be consistent with the binary natfitbe expression status of
individual genes in a PBN, we will assume that these variaolestrol inputd can take on
only the binary values 0 or 1. The values of the individualtoalnnputs can be changed

from one time step to another in an effort to make the netwehale in a desirable fashion.

A. Finite-Horizon Control in Context-Sensitive PBNs

Let L denote the number of BNs constituting the context-sensRiBBl andp denote the
probability that the value of any particular gene undergmeandom perturbation and
denote the probability that the network function switchiesrgy given time point.

For a context-sensitive PBN, the statg) at time¢ could be originating from any
one of theL possible networks. In order to keep track of the network &mgjta particular
state let us redefine the states by incorporating the netmamniber inside the state label.
Since we havd. different BNs forming the PBN, the total number of states bezsii L
and let us label these states&s Si, - - - , Sonr—1 Where for eachk = 1,2,--- , L, states
Son(k—1)s S2n(k—1)+1, ---» S2nk—1 DElONG to networks. EquivalentlySy.._1y1; corresponds
to z;, wherez,, is the decimal representation of thth state in the network. Let the

redefined state at timebe denoted byv(?).

1. Transition Probabilities of Context-Sensitive PBNs

We now derive expressions for the transition probabilitnea context-sensitive PBN sub-
ject to perturbations by recognizing that the following oalty exclusive events can occur

at any time point:
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(1) The current network function is applied, the PBN transisi accordingly, and the
network function remains the same for the next transition.

(2) The current network function is applied, the PBN traonsisi accordingly, and a
new network function is selected for the next transition.

(3) There is a random perturbation and the network funconains the same for the
next transition.

(4) There is a random perturbation and a new network fundsiselected for the next
transition.

Assuming that the individual genes perturb independeatiy, lettingmod(v, w) de-
note the remainder left over wherns divided byw, we consider two cases for determining

the transition probability of going from stateto stateb:

Case 1 [a/2"] = [b/2"], meaning2"(k — 1) < a,b < 2"k — 1 for the samek. This

corresponds to the events (1) and (3) above and the tranpitababilities are given by
Pr(w(t +1) = blw(t) = a) = (1 = ¢)(1 = p)" frap + (1 = @) (1 = p)" "p"s(h) (4.1)

whereh is the Hamming Distance betweeid(a, 2") andmod(b, 2"), i.e. the num-

ber of genes which differ between the two states,

; 1 if a transitions ta in a single step in network
k,a,b —

0 otherwise

and

0 ifh=0
s(h) =

1 otherwise

The firstterm in Eq. (4.1) corresponds to event (1) aboveyahe g is the probability that
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the network selection does not changes- p)” is the probability that none of thegenes
undergoes a perturbation, we assume that network selestsbrandom gene perturbation
are independent events, arig,, = 1 if that particular transition is possible in thigh
Boolean network. The second term corresponds to event (3reshgenes have to be
perturbed to go from stateto stateb.

Case22"(k; —1) <a < 2"y —1and2"(ky — 1) < b < 2"ky — 1, wherek; # ko. This

corresponds to events (2) and (4) above and the transitarapilities are given by

C C
Pr(w(t+1) = bw(t) = a) = g2 (1-p)" fiy a2 (1—p)" "p"s(h).
2 it ity Ci Dit gk Ci
(4.2)

If we define

g(a,b) = Lif [a/2°] = [b/2"] = 0
0 otherwise

then a unified transition probability expression encomipgshe two cases is given by

Pr(w(t+1) =blw(t) =a) =

[(1=q)(1 = )" frap + (1 —q)(1 = p)""p"s(h)]g(a,b)

C 2 n C 2 n—
g (1= )" fryan + =2 (1 — )" p"s(B)](1 — g(a, ). (4.3)
Zi:l,isﬁh Ci Zi:l,i;ﬁkl Ci

By letting a andb range over all integers fronto 2" L — 1 and using Eq. (4.3), we can
determine all the entries of tl¥ [ x 2™ L. matrix of transition probabilities.

In practice, it will likely be impossible to detect the Boateaetwork from which the
current gene activity profile is being emitted. In most caseswill only have knowledge
of the states of the genes. To handle such situations, weeararecn expression for the

transition probability from state, to states;, where these states run fraimo 2" — 1 and
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reflect only the expression status of tiigene state vector:

k
= Z Pr[z(t + 1) = s1, so belongs to network|z(t) = ss]
=1

k
=Y Prlz(t+ 1) = s1|2(t) = 55, s, belongs to network
=1
.Pr[s, belongs to network

= ST Prle(t+1) = sifw(t) = 52+ 2°( — 1)].c;

i=1

=3 D aPriw(t+1) = s+ 2" - Diw(t) = s2+2"(i — 1)) (4.4)

i=1 j=1

wheres; ands, run from0 to 2" — 1. Note that here statg is equivalent to the distinct
statess;, sy + 2", .....s1 + (L — 1)2" in the previou®™ L formulation. Similarlys, here is
equivalent tosg, so + 27, .....s5 + (L — 1)2™ in the earlier formulation. By letting; ands,
range fron0 to 2" — 1 and using Eq. (4.4), we can derive tkiex 2" transition probability

matrix A corresponding to the averaged context-sensitive PBN.



Substituting Eq. 4.3 into Eq. 4.4 yields

Prls(t + 1) = s1]2(t) = s2] =
L
> o [(1 — @)1 = P)" frrsmsr + (1 —q)(1 — p)""p"s(h)
k=1
L C
J— k n
T4 Z L : (1 - p) fk1,82,81 +
ko=1,kok1 Zz:u;&kl i
L

Chky n—h_h
q —— (1 —p)""p"s(h)
Z ZZL:I,l;ékl G ]

ko=1,ka#£k
L ZL C
" ko=1,ko£k; Ok
= (1 _p> { Z Chy <<1 - Q)fk‘hS?vSl +4q 2L1 h
P’ Zz:u;ﬁkl G

10 (525) s (1) o)

—(1-p"{ e (f + (1%9) s<h>)}

fk1,sg,51 +
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k1=1
L D h
- X b} + - (2] ) (45)
k1=1
Let us denote by3y, By, - - - , By, the transition matrices of the individual Boolean Net-

form

L
P=(1-p)"Y ¢B,+D"

v=1

works. ThenB,, v € [1, ...., L] represent deterministic transition matrices and hencle eac
B, has a single non-zero entry bfn each row. The second term of Eq. 4.5 is independent
of the constituent Boolean Networks or their selection pbdliees and depends only on
the perturbation probability, number of genes and the hamming distance between states
h (which can be determined whenis known). Consequently, the probability transition

matrix P of the averagedontext-sensitiveBN composed ot Boolean Networks is of the

(4.6)
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where the entries aB, are generated from the first term in Eq. 4.5 dnt¥ represents the
entries corresponding to the second term of Eq. 4.5.

Furthermore, the matri©®™? has the form

0 > > (%) (5)"
0 (& & ()
Dn,p:(l_p)n
R e e O e

The individual2™ x 2™ terms of D™? fori =0,1,....,2" —landj =0,1,....,2" — 1
are
0 ifi=j

D™ (i, j) = D™P(j,i) = (1 —p)" N
(%)) otherwise

whereh(i, j) = no. of bits different in the binary representation @ind.

2. Optimal Control of Context-Sensitive PBNs

In this section, we consider the problem of external contra context-sensitive PBN.
Towards this end, suppose that a PBN witjenes hasn control inputsuq, us, - - -, U,
each of which can take on only the binary valOex 1. Then at any time, the row vector
u(t) 2 [ug (), ua(t), - -, un(t)] describes the complete status of all the control inputs.
u(t) can take on all binary values frof®,0,--- ,0] to[1,1,---,1]. One can equivalently

represent the control input status using the decimal number

m

v(t) =) 2" (t). (4.7)

i=1
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As u(t) takes on binary values frof,0---,0] to [1,1,--- , 1], the variablev(t) ranges
from0to 2™ — 1. We can equivalently usgt) as an indicator of the complete control input
status of the PBN at time

If a control action is applied, then the transition probiépigxpressions will change.
Suppose that our control action consists of forcibly aftgihe value of a single gene,
from0to 1 or from1to 0. Thus,m = 1 here. Then the new transition probabilities with

control, denoted by’rc1, are given by

Prcl(w(t+ 1) =blw(t) =a) = Pr(w(t+1)=>blw(t)=a+2""7) func(a)

+Pr(wt+1)=b | w(t)=a—2"79)(1— func(a)) (4.8)

where

1 if state of gengy is 0 for a
func(a) =
0 if state of gengyis 1 fora
and the transition probabilitie$}r, without control are given by Eq. (4.3).
Here,a andb range ovel through2" L — 1. As shown in Chapter Il, we can reduce
the dimension of the state space by replacingdtisan Eq. (4.8) byz's and using Eq. (4.4)

to determine the transition probabilities without the cohaction:

Prcl(z(t+1) =blz(t) = a) =
Pr(z(t +1) = bz(t) = a + 2"79) func(a)+ (4.9)
Pr(z(t+1) =b|2(t) = a —2"79)(1 — func(a))
By lettinga andb vary over0 to 2" — 1 and making use of Eq. (4.9), we can determine

the2™ x 2™ matrix A(v(t)) of control-dependent transition probabilities.
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In the rest of this section, we formulate and solve the céoproblem assumin@™
states and the availability of full state information. Tlere development can be carried
out for the2" L state formulation if we simultaneously have the gene stdtgrmation and
the network labels. As shown in [12], the one-step evolutibthe probability distribution
vector in the case of a PBN containifg states with control inputs takes place according

to the equation:

pd(t +1) = pd(t) A(v(t)) (4.10)

wherepd(t) is the2" dimensional state probability distribution vector aA(t)) is the
2" x 2" matrix of control-dependent transition probabilitiesatatined by Eq. (4.9). Since
the transition probability matrix is a function of the casitinput v(¢), the evolution of
the probability distribution vector of the PBN with contrabw depends not only on the
initial distribution vector but also on the values of the tohinput at different time steps.
Furthermore, intuitively it appears possible to make tla¢est of the network evolve in a
desirable fashion by appropriately choosing the contqaliirat each time step.

These ideas have been formalized in [12] to arrive at thevotig finite horizon opti-

mization problem. Given an initial statg:

M-1
min E Z Ci(zg, e (2)) + Crr(2ar) (4.12)

HOHL5 M —1

t=0
subject toPr(z(t + 1) = j|z(t) = i,v(t)), given by Eq. (4.9), where
e M represents the treatment/intervention window;

o 1;:[0,1,2,--- .20 — 1] —[0,1,2, -+ ,2m — 1],

t=0,1,2,--- M — 1 are functions mapping the state space into the control space

e Cy(z,v) is the one step cost of applying the contrpht state;;
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e andC)(zy) is the terminal cost associated with the stafe

As discussed in [12], the consideration of such an optinaagbroblem can be nat-
urally motivated in the context of cancer treatment apfilbices where one must choose
between a number of alternative treatments to be applied avmite horizon of time.
Once input from biologists/clinicians has been used tocsele appropriate cost function
and an appropriate treatment window, the control probleessentially reduced to that of
controlling a Markov Chain over a finite horizon.

The dynamic programming solution to Eq. (4.11) is given by:

Jt(zt) =
on_1
vte{o,{?igm—l} Ct(ztavt> + jgo PT(ZtU,Ut)-JtH(j) (4-13)

t=0,1,---,M—1.

[49, 12]. If v} = u7(z) minimizes the right hand side of Eq. (4.13) for eaglandt, then
the control lawr* = { g, 413, -+, wiy_, } is optimal.

The optimal control problem, Eg. (4.11), and its solutiogsE(4.12) and (4.13), are
from a very general setting; however, in our case, the claakawvable controls is severely
constrained since our control action consists of forcibdtgrang the expression status of
only asinglegene. This limited control objective is dictated primably limitations on the

kind of interventions that appear to be within the realm oldygical possibility.
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3. Selecting the Control Gene

Given a particular target gene, there may be several gela¢sath good predictors for
it. Among a set of predictors for a particular gene, some efrthmay have more impact
on the value of the target gene than others. For instancegnnet studies it has been
shown that p53 has a more profound effect on the cell cycl@lagy gene WAF1/p21 than
other predictors of WAF1, such as AP2 or BRCAL [50]. In view oftline can define the
influenceof the variabler; on the Boolean functioyf [5]. To do so, letD be the probability
mass distribution over the states of a Boolean network ar?gélf]’étbe the partial derivative
of the Boolean functiorf with respect to the argument. Then the influence of; on f is

defined by

0f(x)
al'j

= Pr{2f <1y -

Pr{f(z) # f(zV)}

j(f) = ED[
(4.14)

wherezY) is the same as except that thgth component is toggled. In this dissertation,
we will assume that the distributiab is uniform.

The main idea behind the influence definition is to quantifydmount by which the
genex; affects the value of the functiofi. If the value of the functionf changes on
toggling the value of gene; for most gene activity profiles, then the influence of thgh
gene onf is high. For the case of PBNs, It be the set of predictors for geng with
corresponding probabilities”, ....., 01(8) Let;(f”) be the influence of variable, on the

predictorfj(i). Then the influence of geng. on gener; is given by [5]

Li(w) = > &) (4.15)
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We can use thenfluenceto select the control gene. For example, suppose we have
treatmentsi,, ds...., d, that can affect geneg, ¢-......g,, respectively. Biological or eco-
nomic considerations may constrain us to use only one teg#tat a time. Then we can use
the gene that has the highest influence on the target gefide influence can be directly
calculated from the PBN as given by the previous formula oaiit lbe approximated from
the observed gene activity profiles. The hope is that by 8etea gene with high influence
as the control gene, we will be able to carry out a more cdstife intervention. The

simulation results presented in the next section show tiet an expectation is met.

4. Melanoma Application

In this section, we apply the results of the previous sedtica context-sensitive PBN de-
rived from gene expression data collected in a study of rtetasnelanoma [48]. In this
study, the abundance of mRNA for the gene WNT5A was found to gklhidiscrimi-
nating between cells with properties typically associatéth high versus low metastatic
competence. These findings were validated and expandedecoad study in which ex-
perimentally increasing the levels of the Wnt5a protein estect by a melanoma cell line
via genetic engineering methods directly altered the netiascompetence of that cell as
measured by the standaird vitro assays for metastasis [51]. Furthermore, it was found
that an intervention that blocked the Wnt5a protein fromvatitng its receptor, the use
of an antibody that binds the Wnt5a protein, could substiyntieduce Wnt5a’s ability to
induce a metastatic phenotype. This suggests that a rddsarantrol strategy would be
to use an intervention that reduces the WNT5A gene’s acti@if@cting biological regu-
lation, since the available data suggests that disruptidghi® influence could reduce the
chance of a melanoma metastasizing, a desirable outcostantaneously random PBNs
derived from the same expression data have been used inJ[lfdrslemonstrating earlier

intervention strategies.
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Here, we consider a 7 gene network containing the genes WNpb#, S100P,
RET1, MART1, HADHB and STC2. To obtain the PBN, we have used theeBian
connectivity-based approach of [9] to construct four hygbtobable Boolean networks
that are used as the constituent Boolean networks in the PBN thair selection proba-
bilities based on their Bayesian scores. The four generateteBio networks are shown
in Figs. 11, 12,13, and 14, where the states are labeled frtoni27 = 27 — 1. Each
constituent network is assumed to be derived from steaatg-gene-expression data, and
the attractor states and the level sets are shown in the sighieserve that in each of these
networks, the state enters an attractor cycle in a small pupftsteps (at most nine), which
is consistent with what is expected in real networks [9].

The control strategy of the previous section has been appdiehe designed PBN
with pirin chosen as the control gene gné ¢ = 0.01. Figure 15 shows the expected cost
for a finite horizon problem of length originating from each of thé28 states. In these
simulations, the problem formulation f@r states has been used. The cost of control is
assumed to bé.5 and the states are assigned a terminal penalfyib¥WNT5A is 1 and
0 if WNT5A is 0. The control objective is to down-regulate the WNT5A genanikFig.
15, it is clear that the expected cost with control is muchdothan that without control,
which agrees with our objective. If the length of the controfizon is increased, then Fig.
16 shows that all the initial states start yielding almost $ame expected cost. This may
be due to the fact that the maximum level of the constituetworks is9 and the Markov
chain is ergodic. If, on the other hand, @ig. formulation is used, then the expected costs
for different initial states become almost equal after ggdanumber of time steps (data not
shown). This is possibly due to the fact that no averagingésiun that formulation.

Next we consider the relationship between the influence obrdarcl gene and its
effectiveness in carrying out the intervention. The infices of the other six genes on

WNT5a are as follows: pirie= 1, SI00P= 0.75, RET1= 0, MART1 = 0, HADHB = 1,
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Fig. 11. Network 1 [13].

and STC2= 1. The influence has been calculated from the influences ofé¢hegyin the
four constituent Boolean networks, assuming equal proitiakifor each network. These
influence values() are tabulated alongside the control gen€s:{ in Table VII. The
perturbation probability is not taken into account for the influence calculations bsea
it has a very low value. If the starting gene activity profaepirin= 0, S100P= 0, RET1
= 0, MART1 = 0, HADHB = 1, STC2= 0, and WNT5A= 1, then the expected costs

for finite horizon control problems of lengths (Ln) 5 and 3@ ahown in Table VII. Here,
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Fig. 12. Network 2 [13].

Ecl represents the expected cost whenXhetate formulation is used;c2 represents the
expected cost when th¥ [ state formulation is used, the suffix: denotes with control,
and the suffixwoc denotes without control. The table shows that the expeotstl is
much lower (.35 and 0.39) when the high-influence genes pirin and HADHB are used,
as compared to the expected cdsb() obtained when the low-influence gene MART1 is

used to control the network.

B. Infinite Horizon Control for Context-Sensitive PBNs: ProblEnormulation

In this section, we formulate and solve the infinite horizomtcol problem for context-
sensitive PBNs. The problem formulation and results sunzedrin the last section for

the finite horizon case serve to motivate the developmemés @onsider the finite horizon
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Fig. 13. Network 3 [13].

cost function being minimized in (4.11) and suppose thattrrol horizon characterized
by M is made larger and larger and in the limit we would like foroiténd to infinity. In
trying to do so, we immediately encounter a number of poaénbstacles that did not arise
in the finite horizon case.

First, in the finite horizon case, since there is a termiraksivhich is being separately
penalized, the cost per staggz;, u,) is assumed to only depend on the control applied
and the current state. In the infinite horizon problem, thetrad horizon is infinite and,
therefore there is no terminal state or its associated talrpenalty. Consequently, for the
infinite horizon case, the cost per stage should depend arritia 7, the destination and
the applied control input. In other wordsg;(i,u) of the finite horizon problem should

now be replaced by(i, u, j) so that the per stage cost takes into account the origin, the
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Fig. 14. Network 4 [13].

destination and the contrél.

Second, in the finite horizon problem, the summation in (B4 & finite one and so
the quantity being minimized is finite. If we let the contrairtzon go to infinity, there
is a possibility that the summation of the one stage costs goay infinity (for all con-
trols) leading to an ill-posed optimization problem. To raadlke optimization problem well
posed, the cost considered in (4.11) has to be modified bkftireg the length\/ of the
control horizon tend to infinity. We will consider two such difications that have been

'Note that while finite horizon control problems in the liten@ allow for cost-per-
stage functions that vary from one stage to another, infimitgzon control problems in
the literature have typically been derived assuming thatsdime cost per stage function
is used for all stages. For PBNs (both context-sensitive dnereise), this is not of any

consequence since all of our earlier finite horizon resusts ased the same cost per stage
function for all stages.
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Fig. 15. Expected Cost for a Finite Horizon Problem of Leng@riginating from the Dif-
ferent Initial States [13].

extensively studied in the literature.

In the first case, we assume that the cost per sjége, j) is boundedv i, j € S and
u € C and adiscounting factorx € (0, 1) is introduced in the cost to make sure that the
limit of the finite sums converges as the horizon length goesfinity. More specifically,
our objective is to find a policyr = {uo, p1......}, wherey, : S — C, ¢t = 0,1...., that

minimizes the cost functién

M—1
JTI’(ZO) = lim E{Z oztfj(zt?ut(zt),wt)}, (4.16)
t=0

M—oo

2Note that a Markov Chain can be modeleddyy; = w, [49]. Hence the destination
state is the same as the disturbance.
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TABLE VI

EXPECTEDCOST TABLE [13]

CG | GI |Ln| Eclwe | Eclwoc | Ec2we | Ec2woc
pirin | 1 | 30| .355352| .5784 | .566017| .949586
martl| O | 30 | .568611| .5784 | .743938| .949586
hadhb| 1 | 30| .398291| .5784 | .300602| .949586
stc2 | 1 | 30| .413105| .5784 | .569817| .949586
pirin | 1 | 5 | .652455| .974544| .396288| .61994
martl| O | 5 |.963684| .974544| 53374 | .61994
hadhb| 1 | 5 |.762097| .974544| .304567| .61994
stc2 | 1 | 5 |.830185| .974544| .398155| .61994

where the cost per stage: S x C' x D — R is given. This problem is referred to in the
literature as the problem ofinimizing the total cost over an infinite number of stagekh wit
discounted and bounded cost per stagjethe general formulation, the inclusion afin
the cost captures the fact that costs incurred at a lateramaéess significant. In the case
of cancer treatmenty < 1 signifies that the condition of the patient in the initialgea of
treatment is more important than the condition at a lateyestar in other words, the reward
for improving the condition of the patient in the present @rensignificant than the reward
obtained from similar improvement at a later stage. Thig@ggh is reasonable if we keep
in mind the expected life-span of the patient.

In the second case, one avoids the problem of a possiblytatioiial cost by consid-
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Fig. 16. Expected Cost for a Finite Horizon Problem of LengthCxiginating from the
Different Initial States [13].

ering theaverage cost per stagehich is defined by

M-1
Je(a) = Jim 7 (e 0 w0} (4.17)
In this formulation, a control policyr = {0, pt1,- -+ } is chosen to minimize the above
cost and the problem is referred to as #werage cost per stage problerivinimization
of the total cost is feasible if.(z) is finite for at least some admissible policiesand
some admissible stateg. If we consider no discounting, i.e.daiscount factorof 1, and
there is no zero-cost absorbing state (which is the casentexpsensitive PBNs with

perturbation), then the total cost will frequently goxta Hence theaverage cost per stage
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formulation is essential when we are interested in the ¢mmdof the patient in the long
run and equal importance is given to the patient’s conditical stages.

For reasons already discussed, the cost per stageu;, w;) depends ony, u, and
w;. However, since in Eqns (4.16) and (4.17), the cost is obthionly after taking the
expectation with respect to the disturbances, it is posdiblreplacej(z;, u;, w;) by an
equivalent cost per stage that does not depend on the disttelr. This amounts to using
the expected cost per stage in all calculations. More spatifi if (i, u, j) is the cost of
usingu at statei and moving to statg, we use as cost per stage the expected g@st:)

given by [49]:

2n—1
g(i,u) = pi(u)g(i, u, j). (4.18)

7=0
Now, the costj(, u, j) of moving from state to state; under controlu may depend on
the starting staté However, in the case of PBNs, we have no obvious basis fayrasgj
different costs based on different initial states. Accogllf, we assume that the penalty
g(i,u, 7) is independent of the starting statand its value is based on the control effort
and the terminal statg The penalty is high if the end state is a bad state regardfabe

starting state, and vice-versa. Hergé v, j) = g(u, j) and Eq. (4.18) becomes

2m—1

mm=2mwmw (4.19)

We are now ready to present the solutions to the infinite bargptimal control problems in
the two cases where the performance indices are (i) totalndtisdiscounted and bounded
cost per stage; and (ii) average cost per stage. In eithet easdenote byl the set of
all admissiblepolicies, i.e., the set of all sequences of functians= g, j1, .... with

p(z): S —=Ct=0,1,.. The optimal cost functioo™ is defined by

J*(2) = min J(2),z € S. (4.20)

well
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A stationary policyis an admissible policy of the form = u, u, ...., and its corre-
sponding cost function is denoted by. We say that the stationary poliey=, ;.

optimal if J,(2) = J*(z) for all states:.

1. Optimal Control Solution: Total Cost with Discounted and Boed Cost per Stage

In this section, we solve the problem of minimizing the caktLl§) under the assump-
tion that the cost per staggi, u,w) is bounded, i.e. 3 B > 0 such thatj satisfies
|g(z,u,w)| < B, forall (z,u,w) € S x C x D. Inthe case of context-sensitive PBNSs,
this assumption holds since the expected cgStu), for state: is given by Eq. (4.19),
> pis(u) = 1, andj(u, j) is bounded since the control and disturbance spaces are
finite.

Observe that if we sety;(zy7) =0V 2y € S andg,(z, us) = a'g(z, ue) in the finite
horizon problem of Eqg. (4.11) and lI8f — oo, then we obtain the infinite horizon cost
function considered in Eq. (4.16). Thus it seems reasorihbtehe finite horizon solution
described by Eqgs. (4.12) and (4.13) in the last section conddide a basis for arriving at
the solution of the optimization problem (4.20) wheleis given by Eq. (4.16). A formal
derivation of this connection is given in [49]. Here we signptate the result and present
an intuitive justification for it.

Towards this end, note that Eq. (4.13) in the dynamic prognarg algorithm basi-
cally describes how the optimal cost. ; propagates backwards in time to the optimal cost
Jy in the finite horizon problem (4.11). For the cost functiomsidered in Eq. (4.16), itis
clear that the cosf,,; must be discounted by the factarwhile being propagated to the
previous stage. Consequently, for the optimal control obof this section, Eq. (4.13)

will have to be replaced by

2" -1

Ji(i) = min |g(i,u) + « Z pij(w)Jes1(4) ] - (4.22)

ueC
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The above equation motivates the introduction of the falh@awo mappings:

For any cost functiory : S — R, define the mappin@'J : S — R by

(T)(0) = minlgli.n) +a 3 (G, 1 €5 .22)

Note thatl'J is the optimal cost function for the one-stage (finite hamjgoroblem that has
stage cosy and terminal costvJ.
Similarly for any cost functior/ : S — R and control function: : S — C, define the
mapping?},J : S — R by
2" —1
(T )(0) = g(i, (@) + @ Y py(u(i)J(5), i € S. (4.23)
§=0
T,J can be viewed as the cost function associated with the pplfoy the one-stage
problem that has stage cost functigrand terminal costv.J. Since the mapping$ and
» map functionsJ : S — # into new functions mapping to &, one can define the

composition ofl” with itself and7), with itself as follows:

(TF ) @) = (T(T* ) (0),i€ S, k=1,2,---, (4.24)
(T°J)(i) = J(3), i € S, (4.25)
and
(T (@) = (T(Ty ' D)), i €S, k=1,2,--- (4.26)
(T J)(i) = J(i), i € S. (4.27)

The mappingd” and7), play an important role in the solution of the optimal control
problem of this section. Specifically, it can be shown thatl{e optimal cost function
J* is the unique fixed point of the m&pg; (ii) the iterationJ;,; = T'J; converges to/*

ast — oo; and (iii) the mappingl}, can be used to characterize the conditions under
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which a given stationary policy is optimal. These ideas are formalized in the following
three theorems adapted from [49]. To make the dissertaéithrtantained, the proofs are

included in the Appendix B.
Theorem B.1. Convergence of the discounted-cost algorithfor any bounded cost func-

tion J : S — R, the optimal cost functiod™ satisfies

J*(i) = lim (T™J)(i),foralli € S. (4.28)

M—oo

Theorem B.2. Bellman’s Equation The optimal cost functiod™ satisfies

Jﬂw:$%M@m+a§:mﬂwaMJmmueS. (4.29)
j=0

or, equivalentlyJ* = T'J*. Furthermore,J* is the unique solution of this equation within

the class of bounded functions.

Theorem B.3. Necessary and Sufficient Condition for OptimalityA stationary policyu
is optimal if and only ifu(i) attains the minimum in Bellman’s equation (4.29) for each
ieS;ie.,

TJ =T,J* (4.30)

The three theorems above provide the basis for coming upaaitiputational algo-
rithms for determining the optimal policy. Theorem B.2 ats#rat the optimal cost func-
tion satisfies Bellman’s equation while Theorem B.1 statesttieoptimal cost function

can be iteratively determined by running the recursion
Jt+1 == TJt, t= O, 1, 2, e (431)

for any bounded initial cost functiod, : S — R. Since this iteration is guaranteed to
converge toJ*, one can keep on running this iteration until some stoppiiigreon is

reached. The resulting policy is a stationary one which, bgorem B.3, must be optimal.
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The iteration described in (4.31) above is referred to a¥#hee Iterationprocedure since,
at every stage we are iterating on the values of the costiumeind the optimal policy
simply falls out as a by product when the iteration convetgethe optimal value of the
cost function.

An alternative approach for solving the optimal control lgem of this section is
referred to a®olicy Iteration Before presenting this approach, we introduce the follgwin

matrix and vector notations.

J(0)
J = ,
J(2m 1)
Ju(0)
Ju = :
J, (27 = 1)
(T'7)(0)
TJ = ' ,
(T)(2" = 1)
(T,,7)(0)
T,J =

(T,J)(2" = 1)

The transition probability matrix corresponding to theistaary policyu is represented as
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poo(£(0)) po2n—1(1(0))

porn—10(u(2" = 1)) .. pan_ygn_1(p(2" — 1))

andg, represents the cost vector

9(0, 11(0))

Iu

Using the above notation, it is clear that for any statior@olycy 1, (4.23) can be rewritten
as

T,J =g, +aP,J.

Furthermore, it can be shown (reasoning similar to proof leédrem B.2 given in the

Appendix B) that the cosf,, corresponding to the poligy satisfies
Ju = gu +aP,J,

or

I —aP,)J, = g, (4.32)

Equation (4.32) above is a system of linear equations thabeasolved to calculate the
costJ, corresponding to a given stationary policyIn the policy iteration algorithm, one
starts with a given stationary policy, evaluates the cpoading cost using (4.32) and tries
to find a policy that yields a smaller cost. The process is iteted when we arrive at a
fixed point of the mapping’. We next formally present the steps involved in the policy

iteration algorithm.
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Step 1: (Initialization) An initial policy: is selected.
Step 2: (Policy Evaluation) Given a stationary poli¢y we compute the correspond-

ing cost function/,» from the linear system of equations
(I - OZPMk)(]“k = Guk- (433)

P, is the probability transition matrix obtained using cohpolicy ;.*.

Step 3: (Policy Improvement) An improved (in terms of thetcdsstationary policy
pF ! satisfyingT ) x+1J,» = T'J,« is obtained.

The iterations are stopped ., = T.J,, else we return to Step 2 and repeat the

process.

2. Optimal Control Solution: Average Cost per Stage

In this section, we solve the problem of minimizing the c@sii{). In this case, there is
no discounting i.ea = 1 and we are interested in determining the policy that mingsiz
the limit of % asM — oo whereJ), is the optimal finite horizon cost over an interval of
lengthM . The same reasoning used in the last section can be useduttiercounterparts

of Eqns. (4.21),(4.22) and (4.23) which for this case become

2" -1
Ji(i) = {Lnelg g(i,u) + Z pij(w)Jir1(g)], 0 € S. (4.34)
2" —1
(T7)(i) = minfg(i, u) + ;0 pij(w)J(j)],i € S. (4.35)
2" —1

(T J)(i) = g(i, (i) + Z pij (1 €8 (4.36)
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However in this case, the value iteration

considered in the last section cannot be directly used simtige absence of the discounting
factor, it may diverge to infinity. Thus calculating the aage cost by takingim,; .. %
IS not feasible.

Instead we consider differential costh; which is obtained by subtracting a fixed

component of/, sayJ;(n,) from each element of; i.e.

Clearly hy(ny) = 0. Also defininge = [1,1,....,1]7, the above relationship can be
rewritten as

ht = Jt - Jt(nl)e (439)

Similarly
hipr = Jip1 — Jepr(ny)e (4.40)

Now substituting forJ, and.J, . into Eq. (4.37), we have

ht+1 + Jt+1 (nl)e = T(ht + Jt<n1)€) (441)
- ht+1 + Jt+1(n1)6 = Tht + Jt<n1)€

= hiyr = Thy — (Jpa(ni)e — Ji(ny)e) (4.42)
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From Eq. (4.37),

Jia(n) = T(J)(n1)
= T(ht+ Ji(n1)e)(ny) from Eq(4.39)
= Tht(nl) + Jt(nl).

(4.43)
Hence, it follows that
Jiv1(ng)e — Jy(ng)e = Thy(nq)e
so that Eq. (4.42) yields
hivr = Thy — (Thy)(m)e (4.44)

as thevalue iteration algorithnfor the differential cost.

We next state two theorems adapted from [49] which form ttsestfar the solution to
the average cost per stage optimal control problem. Thefgpare given in Appendix B.
The first theorem formalizes something which appears to togtiely reasonable — since
theaverageoptimal cost is calculated over amfinite horizon, its value should be indepen-
dent of the starting state. Note also that the required gssomabout the ergodicity of the

Markov Chain is satisfied by the context-sensitive PBNs camsitlin this chapter.

Theorem B.4. For ergodic Markov Chains, the optimal average cost per stagedepen-

dent of the initial state.

The next theorem formalizes the fact that if the value itere4.44) for the differential
cost converges to some vectori.e. (Th)(ni)e + h = Th thenTh(n,) is the optimal

average cost per stage (which is the same for all initiaésjat
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Theorem B.5. If a scalar A and a2"-dimensional vectoh satisfy

A+ h(i) = min[g(i,u) + Y py(w)h()], i € S, (4.45)
§=0

or equivalently)e + h = Th, wheree is the unitary vectof1111...1]7 andh = [h(0), h(1)

... h(2" — 1)]7, then)\ is the optimal average cost per stag#(i) for all 4, i.e.
A =min J, (i) = J*(i),i € S, (4.46)

Furthermore, ifu*(¢) attains the minimum in Eq. (4.45) for eachthen the stationary

policy p* is optimal, i.e..J,- (i) = A forall i € S.

We note that for the average cost per stage problem, Eq.)(@lds the same role as
Bellman’s Equation (4.29) in the solution of the problem & thst section. Consequently,
we can immediately arrive at the followingplicy iterationalgorithm for this case :

Step 1: (Initialization) An initial policy: is selected.

Step 2: (Policy Evaluation) Given a stationary poli¢y we obtain the corresponding

average and differential cost§ andh* (i) satisfying

2n—1

N ) = g, 15@) + D piy (W (@)RE() i € S. (447)

This linear system of equations can be solved utilizing #we thath* (n,) = 0, where
ny € S is any particular reference state.
Step 3: (Policy Improvement) An improved stationary poli¢y ! satisfying

2" —1 271

90, 1 H@) + D (T EDANG) = minlg(iw) + 3 py(wh ()], (4.48)

j=0
or equivalently,T,+1h* = Th*, is obtained.

The iterations are stoppedif! = /¥, else we return to Step 2 and repeat the process.
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3. Melanoma Application

In this section, we apply the results of the previous sectia context-sensitive PBN
derived from the same gene expression data used earldae Hioiizon Control on instan-
taneously random and context-sensitive PBNs derived frasrettpression data have been
used in [12, 52, 13](see also Section IV.A.4 in this dissemtg for demonstrating earlier
intervention strategies.

We consider a 7 gene network containing the genes WNT5A,, 8100P, RET1,
MART1, HADHB and STC2. To obtain the PBN, we have used the algars described
in [8] to construct four Boolean networks to use as the carestit Boolean networks in the
PBN. Each constituent network is assumed to be derived freatgtstate gene-expression
data (a common assumption — see [8]). The states are ordeMtNaA5SA, pirin, S100P,
RET1, MART1, HADHB and STC2, with WNT5A as the most significarit (MSB) and
STC2 as the least significant bit (LSB).

The control strategies of the previous sections have begredpo the designed PBN
with pirin chosen as the control gene € 1 signifying the state of pirin is reversed and
u = 0 signifying no intervention) angd = ¢ = 0.01.

The cost of control is assumed to band the states are assigned penalties as follows:

5 if u =0and WNT5A isl for statej

o 6 if u=1and WNT5A isl for statej
g(u, j) =
1 if u=1and WNT5A is0 for state;j

\ 0 if u=0and WNT5A is0 for statej

The penalty assignment is based on the fact that for infimotézon problems, there is no
terminal penalty; instead, the cost per stagentains the penalties of each state. Since our
objective is to down-regulate the WNT5A gene, a higher pgnglissigned for destination

states having WNT5a up-regulated. Also for a given WNT5A stdtu the destination
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state, a higher penalty is assigned when the control iseagévsus when it is not.

a. Discounted Cost Problem

Fig. 17 shows the Total Cost for the discounted cost functith lounded cost per stage

originating from each of th&28 states after the iterations have converged, with the digcou

factora chosen to bé®.9.
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Fig. 17. Total Cost Originating from the Different Initial&ges [53].

The control objective is to down-regulate the WNT5A gene. nfrileig. 17, it is
clear that the Total Cost with an optimal stationary policynsch lower than that without
control, which agrees with our objective. Fig. 18 shows théanary policy obtained from
the solution of the discounted cost problem. Fig. 19 showsatlerage total cost per state
for each iteration. The stationary policy has been obtairsag value iteration and policy

iteration. The starting policy for the policy iterationssya= 0,0, 0.... , i.e. no control, and
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hence the initial cost for the policy iteration is the saméhaseventual total uncontrolled
cost (Fig. 19). We should note that the policy iteration juieg us the optimal policy in
a small number of steps as compared to value iteration. Mereas the collection of
stationary policies is finite (in this particular case, i2i8%), the policy iteration is bound
to give us an optimal stationary policy in a finite number @fpst, whereas value iteration
may converge in an infinite number of steps. On the other hiedproblem with policy
iteration is solving the system of linear equatiqtis— aP,«).J,« = g,», which becomes

very complicated as the number of states increases.

- Discounted Cost Stationary Control Policy

Control

State Number

Fig. 18. Stationary Policy Obtained Using Discounted Cosirfetation [53].

Fig. 20 shows the steady-state distributions of the PBN usiagbtained stationary
policy (Fig. 18) and Fig. 21 shows the original PBN steadyesfat comparison. We
should note that the states franto 63 have WNT5A0 and hence are desirable states, as
compared to statesl to 127 that have WNT5AL and hence are undesirable. The steady-
state distribution Figures 20 and 21 show that the statjopalicy has enabled us to shift

the probability mass from the bad states to states with lowetastatic competence. For ex-
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Fig. 19. Average Cost per State Using Discounted Total Co$t [53

ample, staté5 (WNT5A is 1) has a high probability mas8.(5) in the original steady state
but stationary control has reduced its steady-state mas840 Similarly, the probability
mass of staté3 (desirable state) is high when using the stationary polioynumerically
guantify the change, we multiply the stationary distribatwith the cost vector. For the
original PBN the cost vector &for states) to 63 and5 for state$4 to 127. For the station-
ary policy the cost vector i§(u(2), z), z € [0,1,2,.....127]. The value for the stationary

policy using discounted cost formulationlis465 as compared td.9830 for no control.

b. Average Cost per Stage Problem

In this section we use the average-cost-per-stage forionlet design our optimal station-
ary policy. Both the value iteration and policy iteration@ighms are used to calculate the

optimal policy. The optimal policy obtained using the twerdtion methods are the same.
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Fig. 20. Steady State Using Discounted Cost Stationary Y[R].

This policy is shown in Fig. 22. The average costfor the optimal policy of Fig. 22 is
1.746302, whereas the average cost for the uncontrolled polieydig29707. We have used
the same cost of control and penalties as used for the dismbaast simulations. The evo-
lution of A with each iteration for the two methods are shown in Fig. 23 $teady-state
distribution is shown in Fig. 24 and is very similar to theagte-state distribution obtained
using the previous total-cost formulation. Comparison @sFi21 and 24 indicates that
application of the stationary policy has been successfsihifting the steady-state distribu-
tion from undesirable to desirable states. The numeridabv@r the multiplication of the
steady-state distribution with the cost vectot.ig163 for the stationary policy, whereas for

the uncontrolled PBN it i2.9830.
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CHAPTER V

ROBUSTNESS OF INTERVENTION STRATEGIES

If we revisit Fig. 1, it is clear that errors made during dat&action, discretization, gene
selection and network generation will all propagate dovaash and impact the actual suc-
cess of the designed intervention strategy. Indeed, if gsigded intervention approach
is to have any hope of succeeding in practice, its outcome passess some degree of
“robustness” or insensitivity to the errors that will iniasly propagate down to the inter-
vention design stage from steps further upstream. The sifithe effect on intervention
outcome of the errors propagating from the different upstrsteps is an important open
problem in translational genomics. In this chapter, we $omoia special subproblem where
it is assumed that the combined effect of the errors propagéiom the different stages
manifests itself as uncertainty in the transition probaéd of the network, and the robust-
ness of the intervention strategies is to be studied withaetsto this uncertainty. With
respect to Fig. 1, this corresponds to determining how tleemainties in Step C impact
the outcome of the intervention strategy designed in SteBd3ides error propagation,
uncertainties arise due to the inverse problem of systemtifa&tion being an ill-posed
problem.

The intervention approach proposed in Chapter IV SectiondB=rticular relevance
for translational genomics since it seeks to shift the stesidte mass of the PBN from
undesirable states to desirable ones. Since it is belidéadhe steady-state behaviour of a
PBN is indicative of the phenotype [3], it is likely that akions in the steady-state behav-
iour of the PBN would translate into changes at the phenotggal. Moreover, the scheme
of Section B makes use of stationary policies which are mamlyeimpementable. In

Chapter IV SectiomB3.3, we used gene expression data from melanoma studies to demon
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strate the feasibility of altering the steady-state distion of a PBN in desirable ways.
However, such alteration in steady-state behaviour wagwaath under the assumption that
the transition probability matrix of the PBN is known. Suchamsumption will not be sat-
isfied for reasons that we have already articulated. Instghile the intervention strategy
would have to be designed based on an estimated network wahsition probability ma-
trix P, in practice it would be applied to the actual network whaaedition probability?
differs from P. The goal of this chapter is to examine how, for a given irgation policy,

the mismatch betweeR and P affects the steady-state distribution of t@ntrolledPBN.

A. Perturbations for the Steady-State Distribution of a Galled PBN

Before trying to derive any perturbation bounds, let us makéargle observation con-
cerning the probability transition matrix of a controlle8IR. Note that the only kind of
interventions that have been proposed to date in the litexdfiil, 10, 12, 52, 13, 54, 53]
are restricted to flipping the expression status of one oeroontrol genes. For such inter-
vention strategies, it is always possible to relate thesitemm probability matrices of the
controlled and uncontrolled PBNs, via a linear transfororgtas we explain next.

Let P denote the estimated probability transition matrix cquogsling to the PBN of
interest and suppose this PBN hasinary control inputs.y, as - - - a,, wherea; refers to
the status of théth control gene withu; = 1 signifying that theith control gene is to be
flipped. If we apply a stationary policy, i.e. a policy depentionly on the current state and
not on the time, to the Markov ChaiR, the rows of the controlled transition probability
matrix . will be a collection of selected rows fromR. This is due to the fact that the
flipping of genes actually forces the Markov Chain to startrfranother initial state. To

clearly understand this, let us look at a concrete example.

Example A.1. Suppose we have a network witlgenes, three of which, namely genes
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1, 2 and 3 are control genes. This means that= 3 here. Suppose that the stationary
policy for stateD000001 (corresponding to the decimal numbgris 101, i.e. flip gene 1,
leave gene 2 as is, and flip gene 3. This implies that if we arently at stateD000001,
application of the stationary policy will reinitialize theéate to1010001 (corresponding to
the decimal numbes1). Therefore, in the controlled transition probability miat P., the
transition probabilities of going from stateto each of the other states will be the same
as the transition probabilities of going from steié to each of those states in the original

uncontrolled network with transition probability matrik.

From the above example, it is clear that when the class oivatlointerventions is
restricted to the flipping of genes, the application of astetry policy converts the uncon-
trolled transition probability matri¥’ to a controlled transition probability matrik. where
P.andP are related byP. = T'P andT represents a matrix which has only one non-zero
entry of 1 in each row. If the stationary policy is of no control, theeadly T = I, the
identity matrix.

Let 7 andn,. denote the stationary distribution vectors correspontbriye transition
matricesP and P, respectively. Since the probability transition matfxhas been esti-
mated from data, there can be some errors in estimation? ldemnote the actual transition
matrix of the genetic network and & denote the controlled transition probability matrix
that results from the application of the stationary polieyn P. Let# and#, denote the
stationary distributions of and P. respectively. Our goal is to study the charige— .
based on the knowledge 6fand some characterization of the estimation efiGt P—P.

Let us summarize the notation and relationships introdsoedr:
(i) tP=m
(i) 7P =7

(i) m.P.=m.
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(iv) 7P, =7,
(v E=P—-P
vi) E.2P.—P,.

For two Markov Chains with transition probabilitiésand P and sharing a common
state space, the difference between the two stationarsibdisons can be bounded by
|m — 7|, < K||E||- Whereqg =1 0orco andK > 0 are some constants afid— 7|, refers
to theqth norm of the vectorr — 7 and|| F|| . denotes theo norm of the error matrixy
which is equivalent to the maximum row sum Bf The constanté are usually referred
to ascondition numberand several of them have been studied in the literature.aDbly,
some of the condition numbers will yield tighter bounds titla@ others and [55] gives
a nice comparison of the available bounds. Initial studiest@ady-state distributions of
PBNSs using condition numbers were carried out in [10] butdstestate distributions under
control were not considered in that reference. Here, wepnaNe a theorem for a particular
condition number studied by Seneta [56]. For a given traamsjirobability matrixP, this
condition number called thergodicity coefficient; (P) is defined by

m(P)= sup |z7P| (5.1)
i
where1,, denotes the:-dimensional column vector having all entries equal to oAs.

shown in Appendix C, equivalent definitions are

1 n
Tl(P) = 5%%}{2“?15 _pjs| (52)
o s=1
andn(P) = 1-— mianin(pis,pjs) (5.3)
i.j

s=1
wherep;; refers to theith row and;th column entry of matrix?. These two definitions

are more useful for the purpose of computational evaluatinf56], the ergodicity coef-
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ficient was used to obtain a bound on the perturbation in #dgtstate distribution due
to perturbations in the transition probability matrix. Mapecifically, it was shown that if
71(P) # 1, then

1
A< —
TS )

1 E]oo- (5.4)
Here, we will use the above result to obtain an analyticahidloon the perturbations in the
controlledsteady-state distributions that could result from pesdtidms in the uncontrolled

probability transition matrix.

1. Analytical Result Involving the Ergodicity Coefficient

Theorem A.2. Let P and P be two compatible probability transition matrices with P)

1. Then
1
1—7'1(P)

|7Tc - 7~Tc|1 S

£l (5.5)
Proof. The proof is accomplished by showing

(i) if 7(P) # 1then—1 < =L ie.n(P) < n(P); and

(i) (| Eelloo < || E]]oo-

From our earlier discussion, for the class of interventibia$ have been used for PBNs, we
can write P, = T'P whereT' is a stochastic matrix with each row containing only a single

non-zero entry of. According to [57],
Tl(Plpg) STl(Pl)Tl(PQ). (56)

Thus, in our case, (P.) < 7 (T)m(P). From Eg. 5.3, itis clear that ergodicity coefficient

of a stochastic matrix is less than or equal @nd hence

n(P.) < n(P). (5.7)
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Thus from Eq. 5.4, it follows that

7o — 7oy < %MHECHOO. (5.8)
To prove the second part, we consider
E, = P.—P, (5.9)
= TP-TP (5.10)
= T(P-P) (5.11)
-~ TE (5.12)

In view of Eq. 5.12, it follows that the rows of.. are selected from the rows &f and
hencel| E. || .. (maximum absolute row sum @f.) < || E'||~. Thus, from Eq. 5.8, it follows

that Eq. 5.5 holds, and this completes the proof. O

There are other available perturbation bounds in the tileeaand some of them are
tighter than the ergodicity coefficient bound. The reasanefophasizing the ergodicity
coefficient bound here is that the kind of analytical restdtvpd in the above theorem can
be derived only for this bound. We will show with the help aisilations that the most
effective perturbation bound (to be defined shortly) for sheady-state distribution of the
controlled probability transition matrix can sometimesdveater than the corresponding
perturbation bound for the steady-state distribution efahiginal uncontrolled probability
transition matrix. The inequality in Eg. 5.7 implies thattie Markov Chain corresponding
to an uncontrolled genetic network has a small ergodicigffe@ent bound, then the corre-
sponding controlled Markov Chain will also have an ergoglicibefficient that is bounded
by the same bound. Consequently, if a stationary policy isggded from an estimated
Markov Chain that is “close” to the actual one for the netwdhien this policy when ap-

plied to the actual network will produce results that areselto the desired outcome, as far
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as the steady-state behaviour is concerned.

As already mentioned, there are several condition numhkbes than the ergodicity
coefficient that can be found in the literature. These pbdition bounds are mostly stated
in terms of thefundamental matrior thegroup inverseof A := I — P. The fundamental

matrix of the Markov Chain with transition probability matrP is defined by
Z=(A+er")™? (5.13)

wheree = [1 11 ---1]7. The group inverse of A is the unique square matrixsatisfying

the relationships
AATA = A, AT AA" = A¥ andAA" = A7 A. (5.14)

The currently available condition numbers for bounding tl@doo norms of the pertur-

bations in the steady-state distributions are [55]:

ki = 1Z]|o g=1 (5.15)
ky = || A#|]oo qg=1 (5.16)
maz;(a?—min; a?)

ks = i €S g =00 (5.17)
ky = max;; ]a??] q =00 (5.18)
ke = m(A*)=n(Z2) ¢=1 (5.20)
PR B

7= — q = 00. (5.21)

Here the bound; involves the ergodicity coefficient.
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2. Simulation Studies for Different Perturbation Bounds

Some of the large transition matrices encountered in ges®itend to be sparse and the
perturbation bound; based on the ergodicity coefficient is not very sharp for thé&wer
cordingly, we will first report some simulation results farpurbation bounds using smaller
networks of 4 genes (i.e. networks havizfg= 16 states). For generating the networks for
these simulations we have used the data from melanomaroedl Which were previously
used in several papers e.g. [12, 52, 13, 53]. The 7 gene netwonsidered in those ref-
erences were reduced to 4 gene networks using the reducéipping algorithm given in
[58].

For the simulations we generated a number of PBNs consistidggenes and cal-
culated their perturbation bounds. The PBNs were then ogebrgion by a random sta-
tionary policy matrixI’ and the new perturbation bounds were calculated. In allases;
the perturbation bounkl was found to be smaller for the controlled transition masias
compared to that for the original uncontrolled transitioatnx. In Figure 25, we show the
ergodicity coefficient perturbation bounds) of the original uncontrolled PBNs as gray
bars for 10 different generated PBNs. The blue stars représerergodicity coefficient
perturbation bounds fof P whereT' is a randomly generated stationary policy matrix.

As shown in [55], the perturbation bourid is one of the tighest bounds. Figure 26
shows the perturbation bourd for different simulations. From Figure 26, it is clear that
in this case, the perturbation bound for some randomly geeeérstationary policy ma-
trices (I'P) can exceed the corresponding bound for the original umcthed probability
transition matrix f), although this situation is not very common.

The simulation studies for validating a number of contropraaches that we pro-
posed earlier were performed on a network of 7 genes contaMWINT5A. To maintain

uniformity, we built PBNs for the same 7 genes and Fig. 27 shbegerturbation bound
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Fig. 25. Perturbation Bounkk for 10 Different PBNs (represented as bars) and the Stars
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ks for a particular set of 80 simulations. The bars represemfptrturbation bounds for
the uncontrolled transition matriX and the stars represent the perturbation bounds for the
controlled transition matriX"P. The stationary policy corresponding Torepresents the
same objective as in [53], i.e. down-regulating the gene WA&@Bd using a discounted
cost infinite horizon approach. We should note that the peation bounds:; for the un-
controlled PBN with transition probability matrik and the controlled PBN with transition
probability matrix7’ P are quite similar. We performed a number of other simulatiand

all of them led to the same conclusions.
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Fig. 27. Perturbation Bounkk for 80 Different PBNs (represented as bars) and the Stars
Represent Perturbation Bounds for Stationary Policies &gl the PBNs. Here
the Number of Genes Is 7.

The reason behind highlighting these perturbation bousitisat they give us a mea-
sure of the maximum change in the steady-state distribsitibfior instance, the estimated
transition matrix ) of a gene regulatory network has a small perturbation bdgnthen
we can rest assured that the steady-stafeof the actual gene regulatory networR)(con-
trolled by a stationary polic§” will be close to the steady-state. j of the gene regulatory
network (P) controlled by the same stationary poli¢y. Thus for intervention strategies
where the steady-state distribution is a measure of thetefmess of the intervention, the

perturbation bounds can provide a good estimate of the méad the control strategy. In
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the case of a PBN whose perturbation bodgds high, the perturbation bourig can be
used to give us some idea of the uncertainty involved. As shioyvsimulations, the dif-
ference between the values/gffor the original uncontrolled probability transition miatr
P and the controlled probability transition matrixP is quite small, and for this reason
the uncertainty in the steady-state distribution aftediappon of the stationary policy will
be approximately the same as the uncertainty in the stetatky-distribution of the original
uncontrolled PBN.

Furthermore, the perturbation bounds can be used as a kimgasure for network
selection. In general, genetic networks are quite stablaather words, robust to small
perturbations. Hence a transition probability matrix esggmting a genetic network should
necessarily be robust to perturbations and the alteratigs steady state for small changes
in the transition probabilities should be minimal. In thostext, it is appropriate to mention
that in the field of genomics, it is still not clear as to whattrieeshould be used to carry
out network selection. The available data in genomics studre quite limited and this
can give rise to a number of possible networks that fit the. déta selection among these
different networks is a very important issue and some irajigproaches for doing this have
been proposed in the literature, e.g. [8, 58]. The pertishdiound combined with other

metrics could provide yet an alternative approach for deimg
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CHAPTER VI

CONCLUSIONS

This dissertation attempts to formulate the treatment okte diseases from the systems
and control theoretic point of view. Four significant cobrions in the context of infer-
ence and control of Boolean and Probabilistic Boolean netsvark provided. In chapter
I, we provided algorithms for inference of Boolean Netwsifkom steady-state data. In
pattern recognition, it is important to constrain the soluspace when making inferences
from limited data. We have applied that principle to Booleatworks by making as-
sumptions on the dynamical structure of the network, assomgpthat can be made in
accordance with biological understanding. Since the #lyos generate networks in the
constrained solution space, they can be used to provideetymhetworks to test proposed
inference algorithms, for both Boolean and probabilistic Ban networks. Two impor-
tant points should be noted. First, the algorithms, botlgammed in C, can easily be
parallelized for supercomputer implementation to syriteelsrger networks under the as-
sumption that larger data sets will become available. S&awmhile this report has focused
on binary-valued networks, there is nothing inherentlyabynin the algorithms and they
can be directly applied to more finely quantized networkseid| at the cost of much larger
solution spaces.

Chapter IV extends earlier results on intervention in instaeously random PBNs
without perturbation to context-sensitive PBNs with pdrairon. The extension is sig-
nificant because the latter class more closely models snaddigical subnetworks whose
logical behavior is affected by conditions outside the gempresented in the model net-
work. The results show that the expected cost with controhish lower than without

control. In addition, the results indicate that we can agh@&much better control outcome
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if a gene with high influence is selected as the control gene.

In Chapter IV Section B, we formulated the optimal infinitedazon control problem
and its solution for context-sensitive PBNs. The statioraolicies obtained are much
easier to implement than a policy that changes with time. eddmg on which is more
vital to us: current condition of the patient or the conditiover a long length of time,
we can utilize the discounted-cost or average-cost forimuaThe melanoma application
shows that we can shift the stationary distribution towastdges with lower metastatic
competence using the stationary control policy.

Finally, we have studied the robustness of the infinite lworintervention and exam-
ined how uncertainties in the transition probability mawf the uncontrolled PBN show
up in the steady-state distribution of the controlled PBMc8ithe steady-state distribution
of a PBN is thought to characterize the phenotype, our stediesntially seek to examine
the effect of network uncertainty on the phenotype that woesult from the application of
intervention strategies. Through analytical derivation gimulation studies, we demon-
strated that the stationary infinite horizon optimal colhpalicies proposed in Chapter 1V
are quite robust with respect to network uncertainty. Theriention strategies for PBNs
that have been proposed thus far are all limited to flippiregetkpression status of one or
more genes in the network, and this is dictated by what ietg@iens are implementable
with the currently available biological techniques. Thimited class of interventions en-
sures that the controlled probability transition matrixesated to the uncontrolled prob-
ability transition matrix via a linear transformation, atids is what made it possible to

establish the robustness results.
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APPENDIX A

BN algorithm adaptation for multiple-state cyclic attrasto

Algorithm 1 extension

STEP1: Randomly generate a setkadttractor states and their connectidnsf the con-
nections generate an attractor cycle with lengtMax Cycle Length, then repeat STEPL1.
If STEP1 has been repeated more than a pre-specified numtierest then terminate the
algorithm.

STEP2: Randomly pick up a predictor $&t, where eachV; has not less tham and not
more thanM elements. If STEP2 has been repeated more than a pre-speuifigber of
times go back to STEPL1.

STEP3: Check if the selected attractor set is compatible Withi.e. the attractor set
transitions? of the state transition diagram are checked for compaiibdgainstiV. If
the attractor set is not compatible withi, then go back to STEP2; otherwise continue to

STEPA4.

LIf Max Cycle Length is given to be 1, then we connect each atirdo itself. Other-
wise we include random connections between attractorgheeaindom attractors selected
bea,, as, as anday. If Max Cycle Length is 1, then the connections afe— ay, a; — ao,
as — as, ay — a4. Otherwise, there are 4 attractors and hence we choose amand
permutation of numbers 1 to 4. Say the random permutation,8 2 and 4. Then the
connections between the attractaisas, az anday will be a; — ay, as — as, ag — ao,
ay — a4 (Figure 28). If the random permutation is 4, 3, 1 and 2, thentthnsitions
between the attractors will bg — a4, ay — as, az — a1, ay — as.

2For the first random permutation 1, 3, 2, 4, the transitioesesar— a;, as — as,
az — as, ay — ay, for the random permutation 4, 3, 1, 2 the transitionsa@are— ay,
Gy — a3z, Az — ai, G4 — 2.
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STEPA4: Fill in the entries of the truth table that corresptmthe attractor set transitions
generated in STEP1. Using the predictori8ét randomly fill in the remaining entries of
the truth table. If STEP4 has been repeated more than a pogfisd number of times go
back to STEP2.

STEPS5: Search for cycles of lengthMax Cycle Length in the state transition diagrém
that is associated with the truth table generated in STHR¥dc\cle is found, then go back
to STEP4; otherwise continue to STEPG.

STEPSG: Ifl" has less thahor more tharl level sets, go back to STEP4; otherwise continue
to STEP7.

STEP7: Save the generated BN and terminate the algorithm.
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Fig. 28. Connections among Attractors.

Algorithm 2 extension
STEP1: Randomly generate a state transition diagrathat satisfies the design goals
about the attractor structut@nd level set structure. If STEP1 has been repeated more than
a pre-specified number of times, then terminate the alguarith
STEP2: Fill in the truth table using.

3When attractor cycles of lengthi Max Cycle Length are allowed, then connections

between attractors are permited and only those statetiandiagram are selected for the
subsequent steps whose cycle lengthsaMax Cycle Length.
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STEP3: Ifthere is at least of€; in the predictor seitl” given by the truth table that has less
thanm or more thanV/, then elements go back to STEP1; otherwise continue to STEP4

STEP4: Save the generated BN and terminate the algorithm.



APPENDIX B

Proof of Theorem B.1
We want to show that
J*(z) = A}im (TMJ)(z),forall z € S

Now

Je(z0) = A}iinooE{iatg(ztaMt(zt»}

K-1
= E{Z a'g(zi, p(z))}
t=0
M-1
+ lim B > alg(z, m(z)}-
t=K
Using|g(z,u)| < B, we obtain
M-1 [e's) O[KB
: t t __
| lim E{Y alglan (=)} < BY o' = 7
t=K =K
Using these relations, we can write the inequalities
o®B K
Jo(z0) = 1 —a¥max|J(z)
K-1
< Elo®J(zk) + Z o g(ze, pe(2))]
t=0
oXB
< o D K
< Ji(z0) + & + I?éa;(\J(ZM
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(B.1)
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Minimization overr gives us

* OéKB K
J(z0) = T— — o max|J(z)] (B.2)
< (T*J)(z0)
o B
< * K
< J(zo)+—1_a+oz rileagdj(z)]

If we take the limit as’ — oo and utilize the fact that < 1, the result follows.

Proof of Theorem B.2

From Eq. (B.2), we have for all € S andM

oM B oM B

J*(z) — < (TMJy)(2) < J*(2) +

11—« l—«a
where.J, is the zero function.Jy(z) = 0 for all z € S]. Applying the mappind!” to this

relation and using the Monotonicity property of mappifigwve obtain for all: € .S andM

OéM+1B aM+1B

(T77)(2) = < (T" D) (2) < (TT7)(2) +

l—«a 11—«

Since (T™*1Jy)(2) converges taJ*(z) (from convergence of DP algorithm), by taking
the limit asM — oo in the previous inequality, we obtaii* = T'J*. Uniqueness of
the solution can be proved as follows: .ifis bounded and satisfies = 7'J, thenJ =

lim;_o, TM.J and by Convergence of DP algorithm, we halve- J* .

Proof of Theorem B.3

If TJ* = T,,J*, then using Bellman’s equatiow{ = 7'J*), we haveJ* = T,J*, so by
the unigueness property of optimal solution , we obt&in= J,; i.e., ; is optimal. On the
other hand, if the stationary poligyis optimal, we have/* = J,,, which yieldsJ* = T}, J*.
Combining this with Bellman'’s equatio{ = 7'J*), we obtainl'J* = T,J*.
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Proof of Theorem B.4

First, let us assume some reference statis recurrent for the optimal stationary poligy
Then the average cost from statec communicating class containing), defined by

Ir(eo =)= Jim yrP(Y gt ()}

can be written as

1

T =) = Jim (B gm0} + 3 om0

t=r;
wherer; is the smallest integer such that=rs. Recurrence of the state guarantees the

finiteness of;. Hence, when/ — oo, the first term becomes negligible and we have
Jo(z0 = 1) = Jo(29 = 75)

thereby showing that the optimal average cost per stagdépendent of the starting state.
Next, if the application of the Stationary policy breaks bp states into separate com-

municating classesf,..C;) then each communicating class will have some average cost

(coq,...cos). The optimal stationary policy will always drive the st&at® that communi-

cating class which has the lowest average cost. Hence favgtimal stationary policy,

we can always find a state which will be approachable from all other states in a finite

number of time steps. This state can be used in the preceding arguments to show that

the optimal average cost per stage is independent of thengtatate, even in this case.

Proof of Theorem B.5

Let 7 = {uo, p1....} be any admissible policy and Iéf be a positive Integer. By the
proposition of Eq. (4.45), satisfies\e + h = T'h. ThereforeT},,, \h > Th = Xe + h.

By applying7,,, , to both sides of this relation, and by using the monotoniefty,,,, .,
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T,

KM —1

we haveT,

KM —2

h>T,, ,(Ae+h)=Xr+T,, ,h>2 e+ h.

Continuing in the same manner, we finally obtain

T,

Ho

Ty Ty h > Mhe+h (B.3)

preee L -

with equality if eachu, t = 0,1,..., M — 1, attains the minimum in Eq. (4.45).
Ty Ty, ... T, h(i) is equal to theM -stage cost corresponding to initial statepolicy

MM -—-1

Lo, f1, ----Mrr—1, @and terminal cost functioh; i.e.,

M-1

o Ty o Ty 1(0) = E{h(zar) + Y 9(z1 al21))|20 = i, ) (B.4)

t=0

Using this relation in Eq. (B.3) and dividing by, we obtain for all; € S

M-1

L B{h(ale0 = i,m} + %E{Z oeem()z0 = ix} = At 2-h(i). (B.5)

If we look back at Eq. (4.17), then we realise that the secench tin the above
equation is in fact the average cost per stage Jg:) for large /. By taking the limit
asM — oo, we haveJ.(i) > A, i=1,....,n, with equality ifu,(7), ¢ = 0,1, ... attains the
minimum in Eq. (4.45) for each Hencel is the optimal average cost per stage and by

Theorem B.4 ) is the same for every initial state
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APPENDIX C

Derivation of Alternative Expressions for the Ergodicityefftcient
Theorem .3.

| S%l‘lp 1 2" P|, = %Hﬁx > Ipis — pjsl =1— rrgijnz min(pis, pjs)-
T 1= os=1 os=1
z71,,=0

Proof. First of all, we will show thatsup,r,_, |#" P|; can achieve the valugmax; ;
> |pis — pjs|. Let the maximum on thex?ilgnﬁtohand side be achieved for irsdicand;’.
Chooser? = [0,..0,1/2,0,..0,—1/2,0, ..0], where all the entries of are zero except for
z(i') = 1/2 andx(j’) = —1/2. Clearly,z satisfies the constraints'1,, = 0 and|z”|, = 1,
and for thisz, we havelz” P|; = £ 3" |pys — pjrs|. Hence,

n

1
T
sup |zr° Pl; > — max is — Dis|- C.1
\:pT\lzll 1> 5 ma Szl\p Pjs| (C.1)
zT1,=0

The second part of the proof will consist of showing that |, _, 2T P|; <
zT1,=0

tmax;; > |pis — pjs|. To that end, for any: € R", definel, = {i : z; > 0},

I ={i:z; <0} uy = Zie[+|xi|’ U- = e |zil-

Asz'1, = 0and|z"]; = 1, it follows thatu, = 1/2 andu_ = 1/2.
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NOW|.§CTP|1 = Z|Z$Zplj’

j=1 i=1
= D D wwi — Y larlpig
j=1 iely kel
= Y ) S 2wy - 2@ w0 Y 2l |
2 2
Jj=1 kel_ iely iely kel_

(sinceu; =u_ =1/2)

= Z\{Z Z4‘$k‘$i%pzj - Z 24\%!33%2%}’

j=1 kel icly kel_iel,

=Yy |£Ek|l‘i%(pz‘j — Pij)

j=1  kel_iel;

|eg| z; 1 -
< hadid} il o m
SIS 1/21/22Z|pu Pij|
kel_ el j=1
1 n
< 5“}7%X2|pij—pkj| (C.2)
]:

(since Y |zi| =1/2and Y |z = 1/2).

iel, iel_

From Egs. C.1 and C.2, it follows thatp ,r|,_, |27 P|, = %maxi,j S pis — pjs)-

z71,=0
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To prove the next equality, let us focus on the térmax; ; Y7, [pis — pjs|-

1 & 1 - -

s=1 s=1
1 n n n .
= é(ng%x{zpzs + ijs -2 Z mln(pisapjs)})
’ s=1 s=1 s=1

1 n
= 3 rrﬁx{l +1- zzmin<pisapjs>}

s=1

= 1+ max{— Z min(p;s, Pjs) }
s=1

1,J

= 11— niijnzmin(pimpjs)-

s=1

This completes the proof.
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