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 ABSTRACT 

Low-Cost Motor Drive Embedded Fault Diagnosis Systems.  

 (August 2007)  

Bilal Akin, B.S., Middle East Technical University, Ankara, Turkey;  

M.S., Middle East Technical University, Ankara, Turkey  

Chair of Advisory Committee: Dr. Hamid A. Toliyat  

 

Electric motors are used widely in industrial manufacturing plants. Bearing faults, 

insulation faults, and rotor faults are the major causes of electric motor failures. Based on 

the line current analysis, this dissertation mainly deals with the low cost incipient fault 

detection of inverter-fed driven motors. Basically,  low order inverter harmonics 

contributions to fault diagnosis, a motor drive embedded condition monitoring method, 

analysis of motor fault signatures in noisy line current, and a few specific applications of 

proposed methods are studied in detail.   

First, the effects of inverter harmonics on motor current fault signatures are 

analyzed in detail. The introduced fault signatures due to harmonics provide additional 

information about the motor faults and enhance the reliability of fault decisions. It is 

theoretically and experimentally shown that the extended fault signatures caused by the 

inverter harmonics are similar and comparable to those generated by the fundamental 

harmonic on the line current. 
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In the next chapter, the reference frame theory is proposed as a powerful toolbox to 

find the exact magnitude and phase quantities of specific fault signatures in real time. The 

faulty motors are experimentally tested both offline, using data acquisition system, and 

online, employing the TMS320F2812 DSP to prove the effectiveness of the proposed tool. 

In addition to reference frame theory, another digital signal processor (DSP)-based phase-

sensitive motor fault signature detection is presented in the following chapter. This method 

has a powerful line current noise suppression capability while detecting the fault 

signatures. It is experimentally shown that the proposed method can determine the 

normalized magnitude and phase information of the fault signatures even in the presence 

of significant noise. 

Finally, a signal processing based fault diagnosis scheme for on-board diagnosis of 

rotor asymmetry at start-up and idle mode is presented. It is quite challenging to obtain 

these regular test conditions for long enough time during daily vehicle operations. In 

addition, automobile vibrations cause a non-uniform air-gap motor operation which 

directly affects the inductances of electric motor and results quite noisy current spectrum. 

The proposed method overcomes the challenges like aforementioned ones simply by 

testing the rotor asymmetry at zero speed.  
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CHAPTER I 

 
 

INTRODUCTION 

 

 

1.1. Electric Motor Faults and Their Diagnosis 

The industry’s dependence on AC machines in critical applications often results 

in very costly shut-downs due to motor failures. Therefore, fault diagnosis and condition 

monitoring have been studied in the recent decade to prevent costly interruptions due to 

motor faults. As a widely applied method, phase current analysis has received much 

attention in search of providing a practical solution to continuous monitoring and 

incipient fault detection [1-4]. Although vibration analysis with accelerometers and 

thermal analysis provides satisfactory results [5-7] in addition to traditional current 

signal analysis, continual low cost protection without the use of extra sensors and 

hardware is always the most attractive method for a greater market share. Furthermore, 

practical issues in industrial facilities where a number of motors run simultaneously 

increase the tendency towards motor current signature analysis due to the shortcomings 

of aforementioned methods1.  

Recently, on-line condition monitoring of electric motors has attracted a great 

attention. On-line systems provide early warning of motor faults which allows for 

adequate warning of imminent failures, diagnosing present maintenance needs, schedule 
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future preventive maintenance and repair work, minimum downtime and optimum 

maintenance schedules. Furthermore, on line diagnosis allows user to have the necessary 

spare parts before the machine is stripped down, thereby reducing outage times. 

Diagnostics results can be integrated into the maintenance policy, therefore the usual 

maintenance at specified intervals can be replaced by a condition-based maintenance [8]. 

In opposite to offline methods, which require interruption of motor operation, online 

methods provide motor diagnostics during motor operation. Among these, some of the 

online motor current analysis do not require additional expensive measurement devices 

or complicated hardware system.   

Line current information of inverter fed motors is readily available for control 

and protection purposes. Thus, the new trend for low cost protection is the motor drive-

integrated fault diagnosis systems without using any external hardware. Although the 

practical problems of utility driven systems fault diagnosis are well known, inverter 

driven systems need further analysis to overcome problems such as high noise floor of 

current spectrum and operating point dependent fault signature frequencies. 

Even though numerous offline fault detection methods are reported using 

complex software and hardware [2-4], the implementation of a low-cost real time 

monitoring has still been a challenge due to the involved computational complexity and 

expensive hardware. In order to achieve low-cost online monitoring, the diagnosis 

algorithms should be simple enough to be executed using industrial microprocessors in 

real time. Since thousands of data are processed, and the number of data is a critical 

parameter for precision, the proposed solutions should avoid storing or buffering data. 
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One of the most commonly used signal-based techniques is the fast Fourier 

transform (FFT) method [1-4], [6]. The main duty of the FFT-radix algorithms is to 

reduce the complexity by decomposing the discrete Fourier transforms (DFTs) into 

smaller DFTs in a recursive manner [9-10]. In order to compute the DFT of discritized 

signals, all signal data should be stored and indexed. In order to obtain high resolution 

and accurate results in inverter driven systems, a large number of data points should be 

buffered due to low signal frequency and high switching frequency constraints. 

Therefore, implementing FFT algorithms in real time using cheap industrial processors 

is a challenging task. 

Inverter driven motor phase currents are influenced by many factors such as 

static and dynamic loading, motor speed transients, etc. Therefore, the phase currents 

and modulated operating point dependent fault signatures are accepted as non-stationary 

signals [11]. However, it is well known that Fourier transform techniques are not 

sufficient to represent non-stationary signals. When a non-stationary signal is 

transformed into the frequency domain, most of the information about the transient 

components of the signal is lost [12-13]. Even the techniques such as short time Fourier 

transform, where a non-stationary signal is divided into short pseudo-stationary 

segments, are not suitable for the analysis of signals with complex time-frequency 

characteristics [11-12]. During the experimental stage, it is reported that the partial use 

of these methods suffers from hardware limitations of low-cost real time monitoring 

systems.  
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In this dissertation, a simple motor drive-integrated fault diagnosis method is 

proposed and implemented using the core microprocessor of the inverter, Texas 

Instruments digital signal processor (DSP) TMS320F2812. As a diagnosis tool, the 

reference frame theory is employed to measure the normalized amplitude of fault related 

harmonics. Instead of checking the whole current spectrum, each time only a few fault 

related harmonics are checked to speed up the process and lower the computational 

burden.  

The rotating frame transformation algorithm is quite simple and short; therefore, 

it is directly embedded into the main motor control subroutine. Because the stator 

frequency and shaft speed are mostly available as drive control parameters, the 

frequency of each fault signature harmonic is updated dynamically using these 

parameters. These updated frequencies are utilized to synchronize the rotating frame 

with fault harmonic vectors to watch the motor condition not only at steady state, but 

also during transients. Furthermore, since each measured data is processed in real time 

instead of buffering, the method does not suffer from memory shortage. The tests under 

non-ideal conditions such as offset, unbalance, etc. proved that they do not affect the 

results. The average of transformed signal into rotating frame converges and settles 

down to a dc level quite fast; therefore the diagnosis process can be finalized in a few 

seconds. 
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1.2. Motor Faults and Detection Techniques 
 
A. Bearing Faults 

 
 
 
 
 
 
 

 

 

 

Fig. 1.1. A typical bearing geometry. 

 

Most of the bearings in industrial facilities run under non-ideal conditions and 

are subject to fatigue, ambient vibration, overloading, misalignment, contamination, 

current fluting, corrosion, and wrong lubrication. These non ideal conditions start 

negligible defects that spread and propagate on the inner raceway, outer raceways and 

rolling elements. After a while the defect becomes significant and generates mechanical 

vibration causing audible noise. Basically, bearing faults can be classified as outer race, 

inner race, ball defect and cage defect, which are the main sources of machine vibration. 

These mechanical vibrations in the air-gap due to bearing faults can be considered as 

slight rotor displacements which result in instant eccentricities. Therefore, the basic fault 

signature frequency equation of line current due to bearing defects is adopted from 

eccentricity literature [2]. 

An Arbitrary  
Point on the Cage 

Bearing Ball 

Inner Race 
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rout 
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Mechanical vibration, infrared or thermal, and acoustic analyses are some of the 

commonly used predictive maintenance methods to monitor the health of the bearings to 

prevent motor failures. Vibration and thermal monitoring require additional sensors or 

transducers to be fitted on the machines. While some large motors may already come 

with vibration and thermal transducers, it is not economically or physically feasible to 

provide the same for smaller machines. Then, the small to medium size motors are 

checked periodically by moving portable equipment from machine to machine in all 

three methods. Some motors used in critical applications such as nuclear reactor cooling 

pump motors may not be easily accessible during reactor operation. The lack of 

continuous monitoring and accessibility are the shortcomings of the aforementioned 

techniques. An alternate approach based on current monitoring has received much 

research attention in search of providing a practical solution to continuous monitoring 

and accessibility problems. Motor current monitoring provides a non-intrusive way to 

continuously monitor motor reliability with minimal additional cost. 

Bearing faults can be classified as outer race, inner race, ball defect and cage 

defect, which are the main sources of machine vibration. These mechanical vibrations in 

the air-gap can be considered as slight rotor displacements which result in instant 

eccentricities. Therefore, the basic fault signature frequency equation of line current due 

to bearing defects is adopted from eccentricity literature [2]. 

Each fault has specific vibration frequency components that are characteristic of 

each defect type which is a function of both bearing geometry and rotor speed [14]. The 

middle point between the outer and inner raceways assumed as the reference point in 
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order to develop mechanical vibration characteristic frequency expressions. Basically, 

the middle point velocity, wx, is the mean of inner and outer race linear velocities as 

given by 

x

outoutinin

x

x
x r

rwrw
r
V

w
2
+

==                      (1.1) 

where rx is the radius of cage, win and wout are the angular velocity of inner and outer 

raceways, rin and rout are the radius of inner and outer raceways, respectively.  The 

respective rotational frequencies are fx, fout and fin, therefore, 

x

outoutinin
x r

rfrf
f

2
+

=            (1.2) 

The outer raceway defect frequency ford is associated to the rate at which the balls 

pass a defect point on the outer race. Obviously, the frequency increases linearly with 

the number of balls, therefore the outer race defect frequency is calculated by 

multiplying the number of balls with the difference of the reference point and the outer 

race frequencies as given by 

)cos1)((
2

2

PD
BDffn

f
r

rfrf
n

ffnf

outin

out
x

outoutinin

outxord

β
−−=

−
+

=

−=

            (1.3) 

where n is the number of balls, β is the contact angle, BD and PD are the ball and pitch 

diameters, respectively. Since the outer race is stationary and the inner race rotates at the 
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same speed as the rotor shaft, the characteristic outer race defect vibration frequency is 

rewritten as   

)cos1(
2

β
PD
BDfnf rmechord −=           (1.4) 

following the same method for inner race, the characteristic inner race defect vibration 

frequency fird can be found as 

)cos1(
2

β
PD
BDfnf rmechird +=           (1.5) 

where frmech is the mechanical rotor speed. 

The mechanical oscillations due to bearing faults change the air-gap symmetry 

and machine inductances like eccentricity faults. The machine inductance variations are 

reflected to the stator current in terms of current harmonics, which are the indicators of 

bearing fault associated with mechanical oscillations in the air-gap. Therefore, the 

bearing fault current harmonic frequencies are given in (1.6) employing the previously 

found mechanical characteristic frequencies.  

vcf mfff ±= 1             (1.6) 

where f1 is the fundamental stator (carrier) frequency, fv is the characteristic mechanical 

vibration (modulation) frequency due to bearing fault and m is an integer. 

A generic condition diagnosis tool based on discriminative energy functions is 

proposed by [15]. These energy functions reveal discriminative frequency-domain 

regions where failures are identified. Schoen [16] implemented an unsupervised, online 

system for induction motor based on motor line current. An amplitude modulation (AM) 
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detector is developed to detect the bearing fault while it is still in an incipient stage of 

development in [17].  In [12], a hidden Markov modeling (HMM) based bearing fault 

detection and fault diagnosis is developed. Yazici [11], proposed an adaptive statistical 

time-frequency method for detection of broken bars and bearing faults in motors using 

stator current. 

B. Stator Faults 

The major function of insulation materials normally is to withstand electric 

stress; however, in many cases it must also endure other stresses such as mechanical, 

environmental etc. Most of the time the insulation has as a prime function the support of 

electric conductors as in the case of electric machines [18]. In a motor the torque is the 

result of the force created by current in the conductor and surrounding magnetic field. 

This shows that insulation must have electrical as well as mechanical properties to 

withstand mechanical stresses [19]. In addition, electromagnetic vibration twice the 

power frequency, differential expansion forces due to the temperature variations 

following load changes, and impact forces due to electrical/mechanical asymmetries are 

also effective in aging process [20]. 

Non uniform temperature distribution in a motor will also cause mechanical 

destruction due to dilation. The manufacturing process itself may constitute a damaging 

or aging action. The electrical insulation must be strong enough in order to withstand the 

mechanical abuse while being wounded and installed in motor. Thus, the mechanical 

stresses are often very severe compared to the subsequent abuse the insulation gets in 

service [19]. 
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Increased temperatures can cause a number of effects. The material may be 

inherently weaker at elevated temperatures and a failure may occur simply because of 

the melting of the material. This can be a very short time failure, because of the short 

length of time required for the temperature to rise to the melting point. On the other 

hand, long term elevated temperature can cause internal chemical effects on material 

[18]. 

Thermal stress is probably the most recognized cause of insulation degradation 

and ultimate failure. The main sources of thermal stress in electric machinery are cupper 

losses, eddy current and stray load losses in the cupper conductors, plus additional losses 

heating due to core losses, windage etc [21]. High temperature causes a chemical 

reaction which makes insulation material brittle. Another problem is sudden temperature 

increase of cupper conductor expand the cupper bars faster than insulation material 

which cause stress on groundwall insulation [18]. 

Another significant effect on insulation aging is partial discharges (PD). Partial 

discharges are small electric sparks that occur within air bubbles in the insulation 

material due to non uniform electric field distribution. Once begun, PD causes 

progressive deterioration of insulating materials, ultimately leading to electrical 

breakdown. On the other hand, motor winding insulation experiences higher voltage 

stresses when used with an inverter than when connected directly to the a.c. mains 

supply. The higher stresses are dependent on the motor cable length and are caused by 

the interaction of the fast rising voltage pulses of the drive and transmission line effects 

in the cable [22, 23]. 
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In addition to causes given above, delaminating discharges, enwinding 

discharges, moisture attacks, abrasive material attacks, chemical decomposition, and 

radiation can also be counted as accelerating effects on aging of insulation [24]. 

Motor / Generator stator insulation failure during machine operation can lead to a 

catastrophic machine failure resulting in a costly outage. Prevention of such an outage is 

a major concern for both the machine manufacturer and user, since it can result in 

significant loss of revenue during the outage as well as repair or replacement cost. In the 

literature [18, 24], PD is taken as a signature of isolation aging which begins within 

voids, cracks, or inclusions within a solid dielectric, at conductor-dielectric interfaces 

within solid or liquid dielectrics, or in bubbles within liquid dielectrics. Once begun, PD 

causes progressive deterioration of insulating materials, ultimately leading to electrical 

breakdown. 

When a partial discharge occurs, the event may be detected as a very small 

change in the current drawn by the sample under test. PD currents are difficult to 

measure because of their small magnitude and short duration [24]. Therefore, PD in a 

motor/ generator before a breakdown does not have significant effect on power system.  

The most serious result of a major fault is which may not only destroy the 

machinery but may spread in the system and cause total failure. The most common type 

of fault which is also the most dangerous one is the breakdowns which may have several 

consequences. A great reduction of the line voltage over a major part of the power 

system will be observed. If an alternator is damaged, this might affect the whole system. 

For example, when a tolerable inter-turn or in-phase fault occurs, the power generation 
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will be unbalanced and the power quality will decrease drastically. Extra harmonics will 

be injected to the whole system. If the alternator fault is not tolerable or it is phase to 

phase fault, then the surge will damage the machine itself and some parts of the system. 

Unlike a motor connected to the utility following a few step-down transformers, the 

generator faults are more risky in terms of permanent damages and costly shutdowns 

depending on the network structure. A motor with tolerable inter-turn short behaves like 

an unbalanced load and disturb the neighboring utility. However, an alternator failure 

affects the whole system where a motor failure has limited affect on the power system. 

In both of the case the power quality of the power system will be degraded.  

In the literature there are several methods for condition monitoring and 

protection of motors/generators. The superiority of these methods depends on the type of 

application, power rating of the machinery, location of the machinery, cost of machine 

itself and sensors etc. [23, 24].  

Monitoring the temperature of the high power motor/generator stator winding, it 

is possible to determine if the winding is at risk of thermal deterioration. This can be 

done either by embedded thermocouples or thermal cameras. In addition, by monitoring 

the temperature, an increase in stator temperature over time under the same operating 

conditions (load, ambient temperature and voltage) can be indication of the cooling 

system failure.  

Ozone (O3) gas generation occurs as a consequence of PD on the stator coil. 

Surface partial discharges are the cause of deterioration from defective slot and end-

winding stress relief coatings, as well as conductive pollution. By monitoring the ozone 
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gas concentration over time, failure mechanisms that give rise to the surface partial 

discharge can be detected [25]. Thus ozone monitoring does not find problems in the 

very early stages of deterioration. Ozone monitoring can be done periodically with 

inexpensive chemical detectors that are thrown away after each use. Otherwise, 

continuous ozone monitoring is now feasible with electronic detectors. 

In addition, phase and ground fault relays are installed in a machine to prevent 

severe machine damage caused by insulation failure [19]. Another effective solution is 

online monitoring of partial discharge that warns the user before a catastrophic damage. 

This can be done either by monitoring differential phase current or using some special 

sensors such as antennae, HV capacitors on the machine terminals, and/or radio 

frequency (RF) current transformers at the machine neutral or on surge capacitor 

grounds, are needed to detect the PD. These sensors are sensitive to the high frequency 

signals from the PD, yet are insensitive to the power frequency voltage and its harmonics 

[24]. 

C. Broken Rotor Bar Fault 

Cage rotors are basically of two types: cast and fabricated. Previously, cast rotors 

were only used in small machines. Today, casting technology can be used even for rotors 

of machines in the range of thousands kW. Almost all squirrel cage motor bars and end 

rings are made of alloys of either aluminum or copper or pure copper. Copper and 

copper alloy rotors are usually of fabricated design. Aluminum rotors are dominantly 

die-cast constructions, with the bars and end rings are being cast in one machine 

operation. Cast rotors, although more rugged than the fabricated type, can hardly be 
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repaired once faults like cracked or broken rotor bars develop in them.  

There a lot of reasons cause rotor bar and end-ring breakage. They can be caused 

by thermal, magnetic, dynamic, environmental, mechanical and residual stresses. 

Normally, the stresses remain within the tolerance bandwidth and the motor operates 

properly fir years. When any of these stresses are above allowable levels, the lifetime of 

motor shortened. 

A broken rotor bar can be considered as rotor asymmetry [8, 14] that cause 

unbalanced currents, torque pulsation and decreased average torque [15]. The electric 

and magnetic asymmetry in induction machine rotors boosts up the left hand side 

sideband of excitation frequency [8]. The broken rotor bar fault signatures frequency 

around the fundamental is modeled as: 

( ) esidebandleft fsf 21_ ±=              (1.7) 

where the left sideband is due to electrical asymmetry and the right sideband is due to 

the speed oscillations. Due to the electrical and mechanical interactions inside the motor, 

the model of fault frequency can be extended as [26]: 

  ( ) esidebandleft fksf 21_ ±= ...3,2,1=k         (1.8) 

 The motor-load inertia also affects the magnitude of these sidebands. Other 

components in the current spectrum are given by [1] 
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k = Harmonic index ( k/p =1,3,5,…) 
s = Per unit slip 
p = Number of fundamental pole pairs 
fe= Supply frequency 

 

In [27], it is shown that broken bar fault can be detected by time and frequency 

domain analysis of induced voltages in search coils placed in the motor. During regular 

operations, a symmetrical stator winding excited at frequency fe induces rotor bar 

currents at sfe frequencies [26].  When an asymmetry is introduced in the rotor structure, 

the backward rotating negative sequence –sfe components start the chain electrical and 

mechanical interactions between rotor and stator of the motor. Initially, stator EMF at 

frequency (1-2s)fe is induced that cause torque and speed ripples. Afterwards, torque and 

speed ripples are reflected to the stator as line current oscillations at frequency (1+2s)fe. 

Next, (1+2s)fe component induces rotor currents at ±3sfe and this chain reaction goes on 

until completely being filtered by the rotor inertia. A parameter estimation based broken 

bar detection is reported in [28].  The harmonics at the stator terminal voltages 

immediately after switching off the motor can al be used as a diagnostic method [29]. 

D. Eccentricity Fault 

 Air gap eccentricity is known as a condition that occurs when there is a non-

uniform distance between the rotor and stator in the air gap. When there is an 

eccentricity in the air gap, varying inductances cause unbalanced magnetic flux with in 

the air gap that creates fault harmonics in the line current which can be identified in the 
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spectrum. There are two types of eccentricity: static and dynamic. When static 

eccentricity occurs, the centerline of the shaft is at a constant offset from center of the 

stator or rotor is misaligned along the stator bore. On the other hand when dynamic 

eccentricity occurs, the centerline of the shaft is at a variable offset from center of the 

stator or minimum air gap revolves with the rotor. If the distance between the stator bore 

and rotor is not equal throughout the entire machine, varying magnetic flux within the air 

gap creates imbalances in the current flow, which can be identified in the current 

spectrum. Improper mounting, loose or missing bolt, misalignment, rotor unbalance 

might be causes of air gap eccentricity.  

 Eccentricity is a quite well-known problem and analytical results supported by 

experiments have already been reported. In the literature, there are several successful 

works reporting diagnosis of eccentricity based on line current measurement studied by 

Nandi, Dorrell, and Debortoli.  

 Unlike bearing faults, it is easier to diagnose eccentricity even for inverter driven 

cases due to their high amplitude of fault signatures with respect to the noise floor in the 

current spectrum. Because both static and dynamic eccentricities tend to coexist in 

practice, only mixed eccentricity is considered in this paper to show the effects of 

inverter harmonics. Magnetic field in the air gap of an eccentric motor is always non-

uniform. Since the flux linkages in the air gap oscillate with synchronous frequency, any 

additional harmonics oscillating at the rotor speed due to non-uniform structure are 

expected to take place at rotating frequency sidebands of the synchronous frequency. 
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Static and dynamic eccentricities can be modeled in the current spectrum as: 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
±

−
±= v

p
snkRff desidebands
)1(        (1.10) 

where  in case of static eccentricity, and 0=dn ..3,2,1=dn  in case of dynamic 

eccentricity (  is known as eccentricity order), f is the fundamental supply frequency, 

R is the number of slots, s is the slip, p is the number of pole pairs, k is an integer, and v 

is the order of the stator time harmonics that are present in the power supply. However, 

if both static and dynamic eccentricities exist together (mixed), low frequency 

components near the fundamental given by [5] 

dn

re fff ±=1           (1.11) 

1.3. Research Objectives 

 The purpose of this research is to analyze fault signature characteristics in the 

current spectrum of inverter driven motors and detect these signatures using readily 

available hardware embedded into motor drive. 

 The first objective of this research is to understand the effects of inverter 

harmonics on motor current fault signatures. These effects are studied in detail to 

enhance the reliability of fault decisions by introducing the new fault signatures. It is 

shown that the fault signatures caused by the inverter harmonics are similar and 

comparable to those generated by the fundamental harmonic on the line current, 

according to the same physical phenomenon. The new findings are mathematically 

modeled and the derivation of these models is given in chapter II. 
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 In the literature, a lot of effective fault diagnosis methods are proposed, however 

implementation of these solutions in real time is mostly impractical using industrial 

microprocessors. Therefore very simple novel schemes are should be proposed for real 

time applications. Existing products in the market are expensive and quite prone to 

negative effects of harsh environment for continuous condition monitoring. Instead, 

simple, low cost, robust and physically small solutions constitute a significant need in 

the market today. Therefore, in this dissertation a digital signal processing based, drive 

embedded solution is focused on to overcome aforementioned problems. The proposed 

method use reference frame theory to detect the fault harmonics in real time using the 

core processor and sensors of motor drive. Consequently, a no cost, fast, robust solution 

is implemented as explained in chapter III. 

 One of the most challenging problems of inverter driven motor line current 

analysis is reported as noise. In general the amplitude of fault signals is very small; 

hence they can easily be masked by the noise modulated on the line current. In order to 

reduce the negative effects of noise, a simple fault detection algorithm solution is 

proposed that run at an operating point where the noise impact on signature detection is 

minimum.   

 It is very important for any vehicle to monitor its vital equipments continuously. 

Therefore, nowadays almost all vehicles are equipped with on-board diagnosis (OBD) 

system. This system has been used for warnings and monitoring critical failures in the 

vehicle such as ignition, battery, oil and gasoline level, engine, brakes, etc. Hybrid 

electric vehicles (HEV) have taken their place in the market today. One of the most 
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critical parts of HEV can be considered as electric motor which is mainly responsible 

from traction and propulsion. Therefore, the condition of electric motor should also be 

tracked on board the vehicle. However, the operating point of the electric motor 

integrated to an HEV continuously changes causing non-stationary current. Second, 

mechanical vibrations due to road vehicle interaction have enormous disadvantage on 

fault analysis. Thus, the best alternative is condition monitoring of electric motor at idle 

mode or start up. A rotor asymmetry of an asynchronous motor case is studied at 

standstill that can easily be adapted to HEV on board diagnosis technology.     

1.4. Conclusion 

In this chapter, a summary of the induction machine faults and their diagnostic 

methods have been presented. The research objectives and outcomes as outlined are 

discussed in the new few chapters.  

 

. 
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CHAPTER II 

 
 

LOW ORDER PWM INVERTER HARMONICS CONTRIBUTION TO THE 

INVERTER FED INDUCTION MOTOR FAULT DIAGNOSIS 

 

 

2.1. Introduction 

In this chapter, the effects of inverter harmonics on motor current fault signatures 

are studied in detail to enhance the reliability of fault decisions by introducing the new 

fault signatures. It is shown that the fault signatures caused by the inverter harmonics are 

similar and comparable to those generated by the fundamental harmonic on the line 

current, according to the same physical phenomenon.  

Unlike utility-driven motor monitoring the current of inverter fed motor speed 

control systems is quite noisy which can mask the fault signatures and cause a wrong 

fault warning. Therefore, the proposed additional fault data is expected to contribute to 

the inverter fed motor fault decision making algorithms positively. 

During the experiments, the new fault signatures due to harmonics are 

investigated for bearing raceway defect, eccentricity and rotor asymmetry cases. It is 

confirmed that the extended bearing fault, eccentricity and broken rotor bar relations 

given in this paper including the effects of electrical harmonic terms match with the 

experimental results. Furthermore, it is observed and reported that the asymmetries on 

the rotor caused by broken rotor bar boost the even harmonics.  These harmonics are 
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assumed to be zero in symmetric systems or low if there is physical imperfections in the 

machine structure. Thus, even harmonics also provide robust indications about the 

asymmetries (due to manufacturing errors, broken or high impedance rotor bar, etc.) 

which support the model and parameter estimation based broken rotor bar detections to 

distinguish homogeneous impedance increase due to temperature effects. In order to 

confirm these claims, bearing fault, eccentricity and broken rotor bar faults are tested 

and the line current spectrum of each faulty motor is compared with a healthy one.     

Even though numerous successful line driven motor fault detection methods are 

reported in the literature, inverter fed driven motor systems still require more attention 

due to high speed switching noise effects on the line current data and closed loop 

controller bandwidths [31, 32]. Different from the motor line current fed directly from 

utility, the inverted fed motor line current includes remarkable EMI noise that adversely 

affects the fault diagnosis due to inherent floor noise which reduces the possibility of 

true fault pattern recognition using line current spectrum. Therefore, one should take into 

consideration as much fault signatures as possible to enhance the reliability of fault 

diagnosis.  

It is well known that adjustable speed motor drives generate sharp-edged 

waveforms at the output voltage, which cause of time harmonics. In this work, it is 

shown that the resultant low order harmonics contribute to the fault diagnosis by 

repeating the same physical interaction between excitation and machine structure 

consecutively like fundamental harmonic. Thus, the harmonic contents, which are 
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normally known as a major side effect of inverter, give rise to extra signatures and turn 

out to be useful in distinguishing faulty current spectrum patterns from healthy ones.  

Although the bearing faults are the most commonly reported type with an 

occurrence of 40%, the diagnosis of these faults are the most challenging even under line 

driven motor case when compared to the other faults, because of the low amplitude fault 

signatures in the current spectrum. However, bearing fault detection of induction motor 

fed by inverters has not been investigated in the literature adequately and there are 

limited resources on the diagnosis and side effects of current spectrum floor noise that 

mask small fault related signals. In this work, in addition to well-known harmonics due 

to bearing failures, new bearing fault signatures excited by low order inverter harmonics 

are investigated theoretically and experimentally for inverter driven motors to enhance 

the overall fault information clarity. Similarly, it is reported that eccentricity and broken 

rotor bar faults introduce extra signatures on the line current by interaction of inverter 

harmonics and modified machine structure which provide useful data for fault detection 

algorithms.        

The aim of this chapter is to develop a theoretical approach and present 

experimental verifications for bearing faults, eccentricity and asymmetry faults including 

low order inverter harmonics and their positive effects for diagnosis purposes. In 

addition, generalized theoretical fault relationships that are supported by experimental 

results for each fault will be presented. Finally, it is claimed and experimentally 

confirmed that the rotor asymmetry give rise to even harmonics of the line current 

spectrum as new fault signatures. 
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2.2. Accelerometer Outputs and Signatures Due to Fundamental Harmonic 

Detection of bearing fault using accelerometer output is more expensive but 

relatively easier than stator current data analysis. In Fig. 2.1, accelerometer results of 

bearing (RU6206) outer race defect are given for two different fault levels. It is obvious 

that the outer race defect signals are located exactly at the multiples of fundamental 

mechanical vibration frequency, fo= 107.9 Hz. The amplitude of the fault signal 

increases relatively with the severity of mechanical fault; therefore, one can easily 

monitor the condition of bearing and classify the fault level by analyzing the vibration 

spectra. In addition to characteristic vibration frequencies, the mean and rms of the 

vibration signal boost up according to the severity of fault. The mean of accelerometer 

output increases from -38 db to -32 db due to the introduced severe fault as shown in 

Fig. 2.1(b).  

The stator current analysis can be realized with readily available current sensors 

integrated into inverters without using expensive external sensors. The main 

disadvantage of current spectrum analysis is the noise that causes uncertainty while 

separating the healthy bearing pattern from the defected. In particular, fast switching 

devices in the inverters generate sharp-edged waveforms with high frequency 

components that generate significant noise content in the motor current and hence 

increase noise floor in current spectrum as shown in Fig. 2.2. 
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Fig. 2.1. Mechanical vibration spectrum of motor with outer race defected 
bearing.  Top to bottom: (a) tolerable fault, (b) severe fault. 

Although the inverter-fed motor stator and rotor faults have been analyzed and 

the initial results are given in the literature [33, 35, 36-39], they still require further 

investigation especially for bearing fault. When focused on bearing faults during the 

project, it is reported that the floor noise level is comparable with bearing fault signature 

amplitude, hence making it very hard to diagnose incipient bearing defects in early 

stages. When compared to the line driven motor test results, the test results of V/f control 

captured from the same test setup under the same conditions still look promising despite 

the higher inverter current spectrum noise floor. Further experimental analysis showed 

that, unlike V/f control, closed loop field oriented control (FOC) current regulators and 

high stator current spectrum floor noise mask the small bearing fault signatures. 
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Apparently, observing the bearing fault of motor driven by field oriented controlled ac 

drive, sensing either voltage or current is not enough without certain changes on FOC 

structure. 

0 250 500 750 1000

-100

50

0

Frequency (Hz)

PS
D

 (d
B)

supplied from mains

inverter fed

 

Fig. 2.2. Comparison of typical motor line current noise content for inverter-fed 
and utlity-fed supplies. 

In Fig. 2.3., a 3-hp induction motor phase current spectrums with healthy and 

outer race defected bearings are given. The mechanical characteristic vibration 

frequency of bearing is approximately 108 Hz and the inverter frequency is set to 59 Hz. 

The experimentally obtained fault signatures due to fundamental harmonic on the current 

spectrum are shown in Figs. 2.3.(a) through (e) at the calculated fault signature 

frequencies according to the relationship given by (2.5). One should notice that the 

current spectrum figures are not normalized and the peak of the fundamental harmonic is 

about -10 db. Even though the amplitude of the harmonic associated with faults are small 

in Figs. 2.3.(a) through (e), unlike FOC driven case, they can be distinguished from 
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noise floor. It is clear from the given test results that the online diagnosis accuracy of 

inverter driven motor bearing faults need further useful fault data due to inherent 

switching noise and EMI which are introduced in the next section.   
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Fig. 2.3. Current spectrum of inverter fed induction motor with healthy and outer race 
defected bearing (for f1=59 Hz). 
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Fig. 2.3. Continued. 
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2.3. Theoretical Approach to Determine Bearing Fault Signatures 

The main difference between the dynamic eccentricity and bearing fault is the 

characteristic of the mechanical oscillation characteristic. Regardless of rotor position, 

an eccentric rotor causes a non-uniform sinusoidal air-gap. However, bearing raceway 

and ball defects cause an 

instance, in case of outer race defect a rolling element pass over the defect and generate 

a force vector periodically. What is measured with the accelerometer is the response of 

instantaneous mechanical impulse in the air-gap [37]. For 

motor to this radial force. Assuming the outer race is stationary, the mechanical impulse 

train can be represented by 

∑
∞

−= Tztatx )()( δ            (2.1) 

where )(t

−∞=z

δ is continuous time impulse, T is the period of impulse train, and a is the 

amplitude of periodic impulse 

ermeance of the air-gap and give rise to current harmonics associated with vibration 

equency. If the permeance oscillates at frequency fosc and the excitation frequency is f1, 

erences [38, 

9] physically show the current harmonic frequencie

for a small level of rotor eccentricity describing the air-gap length as 

train. These mechanical vibrations directly affect the 

p

fr

then the current will be modulated with harmonics at frequency f1 ± fosc. Ref

3 s due to the permeance variations 
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Fourier series expansion of permeance variation due to static eccentricity is 

 0PPg ≈ )        (2.3) 

he air-gap in case of dynamic eccentricity

cos()cos( 0 ϕφϕ PPnP
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nn ′+≈++ ∑
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and the Fourier series expansion of permeance variation due to dynamic eccentricity is 

represented by 
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where

0

r

nrng ∑

ρ is the degree of eccentricity, )1,0(∈ρ , rθ is the angular position of the rotor 

with respect to some stator reference and 0g is the radial air-gap length in the case of a 

uniform air-gap, ϕ is the particular angular position along the stator inner surface, P0 is 

the average air-gap permeance and φ    is the phase delay. However, in case of bearing 

tricity does not occur. Instead of continually ro

rotor, instant mechanical replacements of the rotor occur when the balls pass over the 

efect points. This situation can be generalized as vibrations causing permeance 

variation that is a complex sum of an infinite number of rotating eccentricities [7]. Thus, 

  

 

fault an exact eccen tating off-centered 

d

the air-gap should be rewritten taking these instant eccentricities into consideration 
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and the Fourier series expansion permeance variation due to bearing fault vibration is 
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where wbfk is the frequency of k  vibration due to bearing defect. MMFs due to stator 

current can be shown by 

 )cos(1 wtpAF m ±= ϕ            (2.8) 

where p =mp; m is the number of harmonic, w is the excitation frequency. The stator 

air-gap field, interaction of bearing fault with stator MMFs with respect to the stator can 

be expressed as: See equation (2.9) at the bottom of the page. When the frequency of the 

kth mechanical v

m

ibration and inverter harmonics taken into consideration the above 

equation can be rewritten as: See equation (2.10) at the bottom of the page, where i 

represent the ith inverter harmonic. It is clear from (2.10) that the bearing fault vibrations 

interacts with the inverter harmonics and generate stator current sidebands at frequencies 

corresponding to ibfk . )( ww ±
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 Further experimental studies to confirm (2.10) and the explanations given above 

proved that the frequencies of these current fault signatures can be expressed as the 

extension of general bearing fault in (1.6) given by 

 vcf mfkff ±= 1              (2.11) 

where k is  in . t q i e tr lt ected 

due to inv h ni re n ab .

Table. 2 ur sp m lt at eq cie ue e inverter harmonics 
f1

an teger  The associa ed fre uenc es wh re ex a fau  signatures exp

erter armo cs a  give in T le 2.1  

.1. C rent ectru  fau  sign ure fr uen s d  to th
(for  = 60 Hz) 

 
 m=1 m=1 m=2 m=2 m=3 m=3 m=4 m=4 m=5 m=5 

k=1 168 48 276 156 384 264 372 492 480 600 
k=3 288 72 396 36 504 144 252 612 360 720 
k=5 408 192 516 84 624 24 132 732 240 840 
k=6 468 252 576 144 684 36 72 792 180 900 
k=7 528 312 636 204 744 96 12 852 120 960 

k=12 828 612 936 504 1044 396 288 1152 180 1260 
 

 

 Beside the given mathematical explanations, the physical phenomenon reflected 

otor with bearing ault c n be brief

up using the well known stationary reference frame equations given by (2.12) and (2.13). 
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 If the voltage drops on the stator resistor are neglected, it can be clearly seen 

from the above equations that the flux linkages oscillate at the frequency of fundamental 

ent and harmonics of the inverter. The stator flux linkages can be expressed in 

(2.13) 

s
dqs – dq-axis stator voltages in

i dqs – dq-axis stator currents in stationary reference frame; 

 

 Since the machine inductances are functions of the flux, the fault harmonics 

produced in the air-gap by the bearing defects are reflected as fault harmonics in the self 

and the mutual inductance of the machine. Since the flux linkages oscillate at the 

frequency of fundamental component and harmonics of inverter, it is clear from the 

above equations that any fault harmonics in the inductances at bearing fault 

characteristic frequencies result in current harmonics at sidebands of the fundamental 

and each inverter harmonic frequency as explained in the previous part. 

 

 

 

compon

terms of self and mutual inductances of the machine as 

 
s
drm

s
dss

s
ds iLiL +=λ

         
s
qrm

s
qss

s
qs iLiL +=λ

where 

v  stationary reference frame; 
s

is
dqr – dq-axis rotor currents in stationary reference frame; 

λs
dqs – dq-axis stator flux linkages in stationary reference frame; 

Ls,Lm – stator self inductance and magnetizing inductance. 
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2.4. Experimental Verifications of Fault Signatures Due to Inverter Harmonics 

 As explained in the previous section, the consecutive permeance variations in the 

air-gap due to mechanical vibrations caused by raceway defect reflect their effects on the 

line current under the excitation of each inverter harmonics similar to the fundamental 

harmonic. The experimental results in Fig. 2.4 show the new fault signatures at some of 

the frequencies given in Table I. Some of these signatures that are given rise by inverter 

rmon

ge spectrum as mentioned 

ha ics are comparable with the previously defined bearing fault signatures as shown 

in Fig. 2.3 and are given by (1.6). Thus, one can use these extra fault indicators reliably 

to reinforce the fault claim. The source of the inverter harmonics and associated 

signatures are roughly given below.  

 The well-known inverter harmonics, 6k±1 (i.e. 5, 7, 11, 13...) odd harmonic 

pairs, are the most common low order harmonics on the volta

in the literature abundantly [40, 41]. These odd harmonics generate new fault signatures 

in the current spectrum at frequencies such as f =12 Hz, 192 Hz, 228 Hz etc. A similar 

result is mentioned in [33] where motors are driven with six-step converter and 6k±1 

harmonics reported to be dominant when compared to others. 

 Besides the odd harmonic pairs some of the remarkable signatures other than the 

fundamental are observed due to multiples of third and sixth harmonics commonly 

expected according to Table 2.1 such as f = 288 Hz where (k=3,m=1; k=6,m=6; 

k=12,m=4), f=504 Hz where (k=3,m=3; k=6,m=7; k=12,m=2), etc. Although third 

harmonic is not expected in a Y-connected system, during the experiments remarkable 

third harmonic is noticed as a result of non-ideal machine conditions and imperfections 
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even for healthy machine. The sources of third harmonic and multiples are basically dc 

bus voltage utilization maximization of SVPWM strategy, saturation of iron core, and 

winding harmonic effects. On the other hand, it is known that dead-time effect, non 

idealities and PWM zero state space phasor also give rise to multiples of sixth harmonics 

[42-44]. In two-level three-phase PWM strategies, six voltage states and two zero states 

phasors where all phase legs switched to the same states are used. Generally, zero state 

hasor varies six times in constant time period. Hence, the ratio of “on” and “off” states 

will vary six times in one period, generating sixth harmonics and their multiples of 

which cause new fault signatures at frequencies such as f  = 144 Hz, 468 Hz, 504 Hz as 

shown in Fig. 2.4. 
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Fig. 2.4. Current spectrum of inverter fed induction motor with healthy and outer race 
defected bearing (for f1= 60Hz). 
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Fig. 2.4. Continued. 
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Fig. 2.4. Continued. 
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In order to recognize the faulty bearing pattern using the current spectrum, 

various

2.5. Ec

Today, eccentricity is a quite well-known problem and analytical results 

supported by experiments have already been reported. In the literature, there are several 

successful works that report diagnosis of eccentricity based on line current measurement 

[4-5], [47-48] where a few of which analyze inverter-fed motor case [32]. Unlike bearing 

faults, it is easier to diagnose eccentricity even for inverter driven cases due to their high 

amplitude of fault signatures with respect to the noise floor in the current spectrum.  

Because both static and dynamic eccentricities tend to co-exist in practice, only 

mixed eccentricity is considered in this paper to show the effects of inverter harmonics. 

Magnetic field in the air gap of an eccentric motor is always non-uniform. Since the f

linkages in the air gap oscillate with synchronous frequency, any additional harmonics 

oscillating at the rotor speed due to non-uniform structure are expected to take place at 

ixed 

eccentricity using single-phase line current can be computed using (2.3), (2.5) and (2.8) 

by Nandi [4].  

 methods are proposed in the literature such as: time and frequency domain 

techniques, high order spectral analysis, neural network, model based techniques, and 

statistical analysis [11, 16, 45-46]. The accuracy of these algorithms depends on the 

clarity and quantity of data provided. Therefore, the additional fault signatures correlated 

with the characteristic mechanical vibration and excitation frequencies are expected to 

contribute positively to bearing fault analysis. 

centricity Signatures in Inverter-Fed Motor Line Current Spectrum 

lux 

rotating frequency sidebands of the synchronous frequency. Monitoring m
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The sidebands of the excitation frequency is given as 
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here m is an integer, s is the per unit slip, f1 is the fundamental excitation 

is the mechanical rotation frequency, and p is the number of the poles. When the inverter 

harmonics taken into consideration and substituted with the excitation frequency in (2.8), 

then (2.15) can be rewritten as 

w frequency, fr 
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where i represent the ith inverter harmonic. It is clear from (2.16) that the eccentric air-

         (2.17) 

gap excited by the inverter harmonics result in stator current sidebands at frequencies 

corresponding to )( ir ww ± . When the effects of the inverter harmonics are taken into 

consideration, (2.15) above can be rewritten as 

rtyeccentrici fmfkf .. 1 ±=
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where k is an integer representing inverter harmonics and fr is the rotating frequency. 

These fault signatures due to the inverter harmonics given by (2.17) are observed during 

the experiments as shown in Fig. 2.5. Although not all the introduced signatures by 

inverter are as noticeable as the sidebands of the fundamental, they can be used as extra 

fault information to support the fault decision making algorithms.   
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Fig. 2.5 Current spectrum of inverter fed healthy and eccentric induction motor           
(for f1=60 Hz). 
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Fig. 2.5 Continued.  
 

2.6. Rotor Asymmetry Signatures in Inverter-Fed Motor Line Current Spectrum 

 The electric and magnetic asymmetries in induction m

(d)

achine rotors boost up the 

left hand side sideband of excitation frequency [49]. A broken rotor bar can be 

considered as rotor asymmetry [49, 50] that cause unbalanced currents, torque pulsation 

and decreased average torque [51]. One of the significant challenges in the rotor broken 

bar detection is to distinguish the nearby sidebands especially under low slip operation. 

In this section a new signature is proposed to support the cage fault information provided 

by sidebands to enhance the reliability of the fault decision.  
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 It is obvious that even number harmonics can be detected by a lack of symmetry 

about the x-axis. If the top and bottom half of the waveforms do not look like mirror 

images of each other, the even harmonics are present.  Therefore even harmonic 

coefficients in the Fourier series expansion of symmetrical systems are always zero. A 

typical induction motor stator and rotor are designed to be mechanically and electrically 

symmetric except tolerable manufacturing imperfections. Therefore, only inherent even 

harmonics due to stator and rotor can be observed on the current spectrum of an inverter 

fed healthy machine. When the inverter harmonic content is considered, the quarter-

wave symmetry assumption guarantees that the even harmonics will be zero. If the 

quarter-wave symmetry constraint is relaxed to a half-wave symmetry constraint, then 

the even harmonics are still zero [52, 53]. When a rotor bar is broken the MMF 

waveform cannot stay symmetric with respect to the x-axis due to the asymmetric bar 

current distribution as shown in Fig. 2.6. Eventually, this phenomenon reacts to the 

terminal quantities of stator. 
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Fig. 2.6 (a) Symmetric and (b) asymmetric bar current distributions with respect to the x-
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During the experiments it is recorded that the inherent even harmonics boost up 

remarkably as shown in Fig. 2.7 when the healthy rotor is replaced with the broken bar 

rotor. Since symmetric SVPWM references are characterized by modulated pulses which 

are centered with respect to each PWM period, the observed even harmonics are 

introduced by asymmetry formed on the rotor. In both healthy and broken rotor bar 

cases, the same stator used and the rest of the system run under exactly the same 

conditions to make precise comparison. Hence, the amplified even harmonics are 

additional signatures for the rotor asymmetry which are easily noticeable fault signature 

components supporting broken bar fault detection technique. Even harmonics can also 

be used to support model and parameter estimation-based broken rotor bar diagnosis to 

distinguish parameter variations either because of fault or evenly distributed temperature 

increase. 
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Fig. 2.7 Increase in 2nd, 4th and 6th harmonics due to rotor asymmetry. 
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Furthermore, other widely used approaches for diagnosis of broken rotor bars in 

induction machines are based on the monitoring of the stator current sidebands around 

the fundamental harmonic in the line current [49, 51, 54] and air-gap torque, and speed 

profile of induction machines [26, 55]. It is well known that any electrical or magnetic 

asymmetry in the rotor boosts up the left hand side and speed oscillation boosts up the 

right hand side sideband of the excitation frequency. Indeed, [26] shows that broken bars 

actually give rise to a sequence of such sidebands given by 

Initially, stator EMF at frequency (1-2s)f1 is induced that cause torque and 

speed ripples. Afterwards, torque and speed ripples are reflected to the stator as line 

current oscillations at frequency (1+2s)f1. Next, (1+2s)f1 component induces rotor 

current

1s)21( fkf b ±=   k = 1,2,3...        (2.18) 

where f1 is the fundamental frequency. During regular operations, a symmetrical stator 

winding excited at frequency f1 induces rotor bar currents at sf1 frequencies.  When an 

asymmetry is introduced in the rotor structure, backward rotating negative sequence –sf1 

components start chain electrical and mechanical interactions between rotor and stator of 

the motor. 

s at ±3sf1 and this chain reaction goes on until completely being filtered by the 

rotor inertia. When the motor is driven by PWM inverter rotor currents induced at 

frequency 

  k = 0,1,2…     (2.19) 1)16( fskf currentrotor ±=



 44

The same chain affect mentioned above is repeated for all odd harmonic pairs 

due to induced rotor currents given by (2.19).  In addition, each mechanical and 

electrical oscillations introduced by inverter harmonics will mutually interact with each 

other and the harmonic content of the line current is enriched by the combination of 

these oscillations. On the other hand, the very first impact of the fundamental harmonic 

on each supply harmonics is given by [1] 

1ss)1( f
p
kf b ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
±−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=   =

p
k 1,5,7…     (2.20) 

armonic index and p is the number of pole pair. However, (2.18) does not 

d (2.20) covers asymmetrical signatures 

verter harmonics 

k=1,2,3…,  

where m represents the odd inverter harmonic pairs inducing rotor bar currents and n 

represents the  induced rotor current harmonics. Indeed, in the second term, k alone 

represents the effect of consecutive asymmetry signatures due to fundamental harmonic 

around other odd harmonic pairs.  The nk term represents the odd pair multiples of 

where k is h

cover effects of low order inverter harmonics, an

only due to the impacts of fundamental harmonic around each in

neglecting chain reactions. Therefore, (2.18) is extended to cover odd harmonic pairs as 

given by 

fnksmf ±=          (2.21) 

m=1,5,7…(stator current odd harmonic pairs) ,  

n=1,5,7… (induced rotor current odd harmonic pairs)  

 

1)2(b
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fundamental harmonic including combinations of the mutual interaction between the 

induced backward rotating rotor currents and their consecutive reflections on the stator 

side around the odd harmonic pairs.  

  explains the physical facts 

 

Referring to the same argument mentioned above that

because of asymmetry on the rotor structure, (2.20) is extended using the original index 

terms as 

1p
k

b ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
s)s1( flhf ⎟⎜ ±−⎟⎜=   =

p
k

l=1,3,5… 

h=1,5,7… (induced rotor current odd harmonic pairs) 

where the first term transfers the induced asymmetry signatures to the stator reference 

frames, and the second term represent the frequency of induced rotor currents due to 

rotor asymmetry covering all harmonics and chain reactions. Actually, both (2.21) and 

(2.22), give the same asymmetry signature clusters tracing the different chain paths due 

to different relatio

1,5,7…     (2.22) 

nship configurations and indexing.  The extended equations (2.21) and 

(2.22) were justified experimentally using a 3-hp induction motor with broken bars 

driven by an inverter as shown in Fig. 2.8. The motor is driven under full load at rated 

speed during the experiment with s=0.05. The consecutive impacts of the rotor 

asymmetry around fundamental, 5th, and 7th inverter harmonics due to the induced 

backward rotating rotor currents can be explicitly observed in Figs. 2.8(a) and (b), 

respectively.  
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Fig. 2.8. Rotor asymmetry signatures on inverter driven motor line (a) around 
fundamental, (b) around 5th and 7th harmonics. 

 

Fig. 2.8 (a) shows the sidebands of healthy motor due to the inherent asymmetry and 

asymmetric motor as well. Generally, the first left sideband is taken into consideration to 

onitor the broken rotor bar which can most easily be distinguished from healthy motor 

sidebands [49]. This phenomenon again repeats itself for the odd harmonic pairs. The 

plitude of the first left sidebands around the odd harmonic pairs are reported to be 

B higher than healthy motor sidebands and can be used to monitor the 

broken

 

m

am

approximately 5 d

 bar as additional signature. 
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rent 

mogeneously 

distribu

so be tested on field oriented controlled systems 

with certain changes on closed loop structure to decline the fault signature suppression. 

The precise positive effects of the proposed signatures will also be examined using 

various pattern recognition algorithms. 

2.7. Conclusions 

The additional signatures excited by the inverter harmonics on the stator cur

spectrum have been analytically and experimentally analyzed in detail. It is proved that 

theoretically obtained bearing faults, eccentricity and broken rotor bar fault harmonic 

frequencies can be matched to the experimental stator current harmonics spectrum.   

 After explaining the challenges often encountered in fault diagnosis of adjustable 

speed drive systems, the analytical permeance and the field density oscillations under 

bearing and eccentricity faults are derived. These relationships are used to find the 

signatures of these faults for inverter-fed machines. The analytical results and new 

signatures are modeled in terms of extended fault equations covering impacts of the 

inverter harmonics to enrich the number of fault data.  Furthermore, it is explained and 

experimentally shown that the rotor asymmetry gives rise to even harmonics in the line 

current spectrum, which can be used as signatures of asymmetrical faults. These 

observed even harmonics can also be employed as a useful tool to distinguish the reason 

behind impedance increase, which might either be broken bars or ho

ted temperature effects. Extended broken rotor bar sideband relationship also 

shows the asymmetrical signature around low order inverter harmonics and proposes the 

very first left hand side sideband as the broken rotor bar fault signature.     

The developed equations will al
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CHAPTER III 

 
 

A SIMPLE REAL-TIME FAULT SIGNATURE MONITORING TOOL FOR 

LOW-COST MOTOR DRIVE EMBEDDED DIAGNOSIS SYSTEMS 

 

 

3.1. Introduction 

The topic of phase transformations and reference frame theory constitutes an 

essential aspect of machine analysis and control. In this project, apart from the 

conventional applications, it is reported that the reference frame theory can also be 

successfully applied to fault diagnosis of electric machinery systems as a powerful 

toolbox to find the magnitude and phase quantities of fault signatures. The basic idea is 

to convert the associated fault signature to dc quantity, followed by the computation of 

the signal’s average in the new reference frame to filter out the rest of the signal 

harmonics, i.e. its ac components. Because the rotor and stator fault signature frequencies 

are well-known, the proposed method focuses only on the fault signatures in the current 

spectrum depending on the examined motor fault. Broken rotor bar and eccentricity 

faults are experimentally tested both offline, using data acquisition system, and online, 

employing the TMS320F2812 DSP to prove the effectiveness of the proposed tool. 

  In this chapter, it is theoretically and experimentally shown that the proposed 

method detects the fault harmonics to determine the existence and the severity of 

machine faults. The advantages of this method include the following: 1- there is no need 
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to employ external hardware or a PC running a high level program; 2- the method 

provides instantaneous fault monitoring using a DSP controller in real time; 3- the 

method is embedded into the motor drive, thus readily available drive sensors and the 

core processor are used without employing additional hardware; 4- no need to store 

current data, thus no need for large memory size; 5- very short convergence time 

capability; 6- immune to non-idealities like sensors dc offsets, unbalance etc. ; 7- no need 

for a notch filter to filter out the fundamental harmonic; 8- steady state or stationary 

current signal assumptions are not necessary; 9- a familiar concept for motor control 

engineers; and 10- can be applied to all multi-phase and single phase motors. 

3.2. Reference Frame Theory 

The introduction of reference frame theory in the analysis of electrical machine 

systems has turned out not only to be useful in their control and analysis, but also has 

provided a powerful tool for condition monitoring. By judiciously choosing the reference 

frame, it is possible to monitor any kind of motor faults, whose effects are reflected to 

the line current as shown in the following section. One must note that the rotating 

reference frame module in the software used for fault analysis works separately and 

independently than the one used for motor control, which is synchronized to the 

fundamental harmonic vector. 
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3.2.1. (Fault) Harmonic Analysis of Multi-Phase Systems 

The commonly used transformation is the poly-phase to orthogonal two-phase 

transformation. For the n-phase to two phase case it can be expressed in the arbitrary 

reference frame as: 

 ])].[([][ ....321 nxy fTf θ=           (3.1) 

where  

 ⎥
⎦

⎤
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−−−
−−−
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)1(2/sin(....)2/sin()2/sin(
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nPPP
nPPP

n
T        (3.2) 

The electrical angle between adjacent magnetic axes of the uniformly distributed 

n-phase windings is represented byξ . The harmonic current space vector in the 

stationary reference frame is defined as the complex quantity:  

)()()(ˆ tjititi hhh βααβ +=           (3.3) 

Complex current harmonic vector describes a circular trajectory in the space 

vector plane as shown in Fig. 3.1. Therefore, a multi-phase system in phase variables 

transforms to a circular locus in the equivalent two-axis representation. In Fig. 3.1, the 

radius of the circle around the origin is the peak magnitude of the inspected harmonic 

quantities, and the vector rotation frequency is equal to the angular frequency of phase 

harmonic quantities. Note that the drawings in Fig. 3.1 are exaggerated to explain the 

basic of the theory explicitly, indeed the magnitude of fundamental harmonic is several 

times higher than all line and fault harmonics.  If the new rotating reference frame is 
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defined where the axes are made to rotate at the same rate as the angular frequency of the 

inspected harmonic, a stationary current space vector results, where its orthogonal 

components are dc quantities. The current harmonic space vector in this new reference 

frame is given by 

hj
hhqhdhdq eijiii θ−=+= ˆˆ        (3.4) 

where θh is the phase angle between the stationary reference frame and the reference 

frame synchronized to (fault) harmonic vector. 
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Fig. 3.1. Harmonic space vector with other harmonic vectors in the stationary and 
rotating reference frames. 

 

Assuming the fault harmonic component in a 3-phase system to be a sinusoidal 

waveform, )sin()( ϕθ −= faultfaultha iti  and )3/2sin()( ϕπθ −−= faultfaulthb iti ,  in 

(3.3) can be written in the form of 

αβhî

)( ϕθ −faultj
fault ei− j using (3.1) to (3.3) ignoring 

transformation constant. When this harmonic component is transformed to the reference 

frame at angular rotation faulth θθ =  , the harmonic vector turns out to be dc in this new 

frame as in the form of )( ϕ−j
fault ei . In practice, the phase current is composed of infinite 
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harmonic vectors besides the fault components, where faulth θθ ≠ . In the new reference 

frame, all harmonics other than the inspected one remain as ac. The average of these ac 

harmonics converge to zero and have a negligible effect on the average after a sufficient 

time. In other words, the reference frame synchronized with fault harmonic shifts the 

frequency spectrum of the phase current by frequency of the fault component. The 

rotating frame converts only the associated fault harmonic vector to a stationary vector at 

zero Hertz whose projection on orthogonal base vectors are dc and the averages are non-

zero in time. Thus, when the resultant fault vector modulation is normalized with respect 

to the fundamental vector which is computed at synchronously rotating reference frame, 

the ratio gives the relative magnitude of the fault harmonic as: 
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where idk and iqk are the dq components of phase current in the rotating frame, 1θ  is the 

angular position of the stator reference frame, and  are the relative magnitudes of 

the fundamental and fault harmonic vectors, respectively. In addition to fault harmonic 

magnitude calculation, the phase angle information of associated harmonic vector can 

also be found using the dq components obtained by the proposed technique. The dq 

components of the harmonic vectors decouple depending on the phase angle between 

1I I fault
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rotating frame and the vector as shown in Fig. 3.1. Therefore, the phase angle is 

formulated as: 
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One must note that the notations, indexes and axes of the frames might change 

depending on how they are defined by the user. In the literature there are different 

representations of reference frame theory, but the basics of all are the same. 

3.2.2. (Fault) Harmonic Analysis of a Single Phase 

For further simplification, this method is reduced to a single phase by assuming 

harmonic vector as imaginary or real.  The contribution of single phase analysis has 

lesser computational burden, greater reliability and implementation opportunity even if 

only one sensor reading is available. Since the fault signatures are expected to appear in 

all phases identically, the results are the same as multi-phase analysis case. Although the 

average of rotating frame d-q components will be different from the ones obtained for 

multi-phase, the normalized ratios remain constant. In single-phase case, various 

assumptions are possible for the line current reading as given in Table 3.1. 
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Table 3.1- Single-phase analysis, αβ –axis alternatives 
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In all of the cases, the normalized harmonic magnitude and frequency content 

will be the same, therefore pure real or pure imaginary choices are more efficient in 

terms of computation time. If the fault harmonic is assumed to be 

)()( θ ϕ−= faultfaultha Cositi  and 0)(,)()( == tititi hhah βα  as in the first case of Table 3.1, 

then the normalized magnitude of fault harmonic is calculated with (3.5), (3.13)-(3.15). 

Using Euler’s formula, line harmonic vector in the new reference frame synchronized 

with fault harmonic vector )( faulth θθ =  can be written as: 
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where 
2

ϕie−

is the dc component, 
2

)2( ϕθ −− faultie  is the ac component and ϕ  is the phase 

angle between the rotating reference frame and the current harmonic vector. The 

representation of the vector components are given in Fig. 3.2. 

 

 

Fig. 3.2. Single-phase harmonic current vector components after transformation for two 
different arbitrary cases. 

 

The average of transformed fault vector components on the rotating reference frame is 

calculated as: 
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where N is the number of processed data. In practice, the phase current is composed of 

infinite harmonics including fault component as given in (3.11). 
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The transformed phase current in the rotating frame )( mfaulth θθθ ≠= will be:
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The average of transformed fault vector components on the rotating reference frame is 

calculated as: 
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 which gives the same results as calculated in (3.8)-(3.10). 

 Finally, the normalized ratio with respect to the fundamental can be calculated in 

a similar way given in (3.5) where the magnitude of fundamental is calculated using 

equations (3.8)-(3.10) in synchronously rotating frame. When the αβ-components are 

taken as and )()( titi hah =α )()( titi hah =β  then the dc components in the new frame will 

converge to: 
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where the relative ratio between the fault component and the fundamental remains the 

same as calculated in the previous case and multi-phase case. 

 Typical harmonic vector tracks after single phase transformation are shown in 

Fig. 3.3 where 1θθ =h and signal is composed of 1.0pu 1st harmonic, 0.01pu 3rd, 5th, and 

7th harmonics. It is clear that only 1st harmonic has dc offset and the rest are located 

around zero with zero average values. Therefore, after a few cycles the average of the 

transformed signal magnitude converge the dc offset and the effects of the other ac 

components converge the zero.  
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Fig. 3.3. The harmonic vector (1st, 3rd, 5th, 7th) tracks when θh=θ1 .  

 

3.3. Simulation Results 

The performance of reference frame theory while detecting relative amplitude of 

specified harmonic is tested under various conditions before focusing on the fault 

analysis. Initially, 60 Hz, 3-phase line currents are distorted artificially by injecting 3rd, 

5th, 7th and 11th harmonics as shown in Table 3.2 and Fig. 3.4(a). 

Table 3.2. Injected harmonic content 

 Amplitude Phase 
1st Harmonic 1.00 pu 30o 
3rd Harmonic 0.2 pu -25o 
5th Harmonic 0.1 pu 0o 
7th Harmonic 0.2 pu -45o 
11th Harmonic 0.1 pu 55o 
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In Fig. 3.4 (b), the dq components of transformed signal are given when the 

reference frame is rotating at (f=f5) 5th harmonic frequency. The time average of dq 

components in Fig. 3.4 (b) are shown in Fig. 3.4 (c) which gives the dq axis components 

of 5th harmonic on the rotating reference frame. Since the phase angle of 5th harmonic is 

zero and the fundamental harmonic is 1.0 pu the normalized magnitude of 5th harmonic is 

found to be i5dq=0.1 pu as given in Table 3.2 where i5d=0.1pu and i5q=0 pu. It is clear that 

time average of 5th harmonic settles down at 0.20 seconds which is short enough time for 

real time fault diagnosis analysis.  

0 .025 .05 .075 .1
-1

0

1
(a

)
(b

)

0 .025 .05 .075 .1

-1

0

1

0 .5 1 1.5 2
-0.5

0

0.5

(c
)

0 .5 1 1.5 2
-0.5

0

0.5

(sec)

(d
)

 

0 .025 .05 .075 .1
-2

0

2

(a
)

0 .025 .05 .075 .1
-2

0

2

(b
)

0 .25 .5 .75 1
-0.5

0

0.5

(c
)

0 0.25 0.5 0.75 1.0
-0.5

0

0.5

(sec)

(d
)

 

 Fig. 3.4. (a) Distorted 3-phase line current by injected 
harmonics, (b) dq components when the frame is 

rotating at fh=f5,  (c)time average of dq components 
when frame is rotating at f=f5 (d) time average of dq 

components when frame is rotating at f=f7. 

      Fig.3.5. (a) 3-phase square wave including infinite 
harmonics, (b) dq components when the frame is 
rotating at fh=f3,  (c) average of dq components 
when frame is rotating at f=f3 (d) average of dq 

components when frame is rotating at f=f7. 

 

In Fig. 3.4 (d), the 7th harmonic dq components on rotating frame is plotted when 

the frame frequency is f=f7. Since the phase angle is -450, dq components are decoupled 

equally where i7d=i7q=0.141 pu and i7dq=0.2 pu as expected. This simulation proves that 
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the reference frame theory work effectively to detect normalized harmonic magnitudes 

and phase relations within very short convergence time. In the next section, it will also 

be experimentally shown that this method is very satisfactory to detect line and motor 

fault harmonics in the line current with high accuracy.    
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Fig. 3.6. (a) Single-phase square wave including infinite harmonics, (b) dq components 
when the frame is rotating at fh=f3,  (c) average of dq components when frame is rotating 

at f=f3, (d) average of dq components when frame is rotating at f=f7. 
 

Since square wave is a combination of infinite number of harmonics, a 3-phase 

square-wave generator is used to test the method if it can detect the required harmonics. 

As shown in Fig. 3.5(c) and Fig. 3.5(d), 3rd harmonic and 7th harmonic dq components 

are successfully extracted from the signal using rotating frames. These two simulations 

prove that this method works effectively to find out the normalized harmonic magnitude 

when the input is 3-phase.  The same test is applied to single-phase case and it is noticed 

that it gives the same normalized magnitudes as the 3-phase tests as shown in Fig. 3.6; 
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however, the amplitude of each harmonic is half of the 3-phase results as expected from 

(3.13)-(3.14).  

3.3.1. Offset Errors 

There might be some cases where the motors have to run under non-ideal 

conditions or measurement devices function incorrectly which are highly possible 

especially in the harsh industrial plant environment. Here, the effects of most commonly 

encountered problems on proposed technique are examined.  The first possible errors are 

the line current offset and current sensing system dc errors. As shown in (3.18)-(3.19) 

and Fig. 3.7, the proposed system is totally immune to offset errors both in 3-phase, Fig. 

3.7 (a) and 3.7 (b), and single-phase, Fig. 3.7 (c) and 3.7 (d), harmonic analysis. Assume 

that phase A has an offset error, ξϕθα +−== )cos()()( hhha Ititi  , then in 3-phase 

system the current harmonic vector is written as : 
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In single-phase analysis, the same current harmonic vector is represented by, 
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In both of these cases the offset components turn out to be ac and its average converges 

to zero after a long enough time. Therefore, the offset term does not affect harmonic 

analysis results obtained by the proposed method. 
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Fig. 3.7 (a) Distorted line currents, phase A has 0.2 
pu offset, (b) 3rd harmonic dq components when the 
frame is rotating at fh=f3,  (c) Distorted line current, 

phase A has 0.2pu offset, (d) 3rd harmonic dq 
components when frame is rotating at f=f3. 

 Fig. 3.8 (a) Distorted line currents, phase A has       
  1.5 times higher amplitude, (b) 5th harmonic dq 

components when the frame is rotating at fh=f5,  (c) 
5th harmonic dq components when frame is rotating 

at f=f5  (normalized). 

 

3.3.2. Unbalanced Phase Currents 

It is obvious that single-phase analysis does not have an unbalance problem; thus 

this case is considered for 3-phase analysis. Fortunately, the proposed method is not 

affected when the phase amplitudes are not identical. The most common unbalanced 

stator conditions are unbalanced source voltages and unbalanced loads [8].  In these 

cases, the source voltages might be different as  gcgbga eee =≠  ,  or the 

applied voltages might be different due to a series additional load as: 

gcgbga eee ≠≠

sasgccs

sasgbbs

sasgaas

Ziev

Ziev

Ziev

3
1
3
1
3
2

+=

+=

−=

         (3.20) 

 



 63

where vs is the applied phase voltage and Zs is the additional phase load that cause 

unbalanced load situation in a Y-connected 3-wired system. It is clear that all harmonic 

content will linearly change in each phase including fundamental component under 

above unbalanced conditions. Therefore, the resultant transformed and averaged 

magnitude of each harmonic is different from the balanced condition; however, 

normalized amplitudes remain constant for single phase and 3-phase system analysis. 

When the frame transformation (3.1)-(3.5) is applied to unbalanced system currents it 

will be seen that the averaged magnitude ratio of examined harmonic to fundamental will 

be the same, due to linearly superposed unbalance effect to each harmonic components. 

In Fig. 3.8, phase A is applied 1.5 times higher than the other phases to simulate a typical 

unbalanced 3-phase system. After transformation and averaging, dq components shown 

in Fig. 3.8 (b) are observed as i5d=0.232 pu and i5q=0.02 pu. These components become 

i5d=0.199pu and i5q=0.0174pu as shown in Fig. 3.8 (c) after normalization as expected 

where injected 5th harmonic is 0.2 pu. The simulations prove the proposed method can be 

applied to unbalanced systems to find normalized motor fault signatures reliably. 

3.3.3. Proximity of the Harmonics 

 In some cases like broken bar fault analysis, fault signatures are in the very close 

neighborhood of fundamental harmonic or line harmonics. Therefore the resolution of 

the fault diagnosis tool should be very high to correctly distinguish each harmonic 

component. In order to test the reference frame theory, a number of harmonics are 

injected to the fundamental harmonic, the frequencies of which are close to each other. 

The simulation results prove that the proposed method is highly promising in 

 



 64

differentiating neighboring components as shown in Table 3.3, provided that a sufficient 

number of data is used. 

 

Table 3.3 Analysis of proximate harmonics 
Injected 

Harmonic 
Freq. 

Injected 
Harmonic 
Amplitude 

Normalized 
Component 

ihd (pu) 

Normalized 
Component 

ihq (pu) 

Normalized 
Magnitude 

ihdq (pu) 
54 Hz 0.001 pu -0.00070711 -0.00070711 0.001 
55 Hz  0 < - 100 dB < - 100 dB < - 100 dB 
56 Hz 0.002 pu -0.0011756 -0.001618 0.002 
57 Hz  0 < - 100 dB < - 100 dB < - 100 dB 
58 Hz 0.04 pu -0.02 -0.034641 0.04 
59 Hz  0 < - 100 dB < - 100 dB < - 100 dB 
60 Hz 1.0 pu -0.86603 -0.5 1 
61 Hz  0 < - 100 dB < - 100 dB < - 100 dB 

 

3.3.4. Phase Delay 

 Phase delay between the rotating frame and inspected harmonic or other 

harmonic components do not degrade the results. In Table. 3.2 and Table 3.3 the line 

currents are composed of different harmonics at different frequencies and phase delays. 

In each harmonic inspection, it is reported that the phase differences of injected 

harmonics, including inspected ones, do not affect examined harmonic current vector dq 

components and noise floor. 

3.3.5 Transient State Analysis 

 The most widely used condition monitoring methods focus on the steady-state, 

which assumes that the rotor speed, the fundamental stator frequency and the load are all 

constant. The classical applications of Fourier transform show an averaged frequency 

distribution, and there is no time representation. Fluctuations in the instantaneous 
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frequency and amplitude as a result of machine operation or loading effects are averaged 

out. Accurate detection under transient conditions therefore cannot be easily 

accomplished. Since only one fault harmonic is inspected each time, low computational 

burden provides fast scanning opportunity which is an inevitable criterion for transient 

state analysis. Second, due to the readily available drive control parameters such as stator 

frequency and rotor speed, one can continually update the operating point dependent 

fault signatures frequencies and find the track of normalized magnitude during transients. 

In practice, the steady-state assumption in fault detection analysis is not valid for many 

applications where constant speed cannot always be guaranteed (e.g., in wind generation 

or HEV drive cycles).  
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Fig. 3.9 (a) 1st harmonic and instantaneously computed dq components when phase 
angle is zero, (b) 1st harmonic and instantaneously computed dq components when 

phase angle is π/3, (c) instantaneously computed normalized 3rd harmonic magnitude, 
(d) i1hd vs i1hq.  
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Fig. 3.10 (a) 1st harmonic and instantaneously computed dq components when phase 
angle is zero, (b) 1st harmonic and instantaneously computed dq components when 

phase angle is π/3, (c) instantaneously computed normalized 3rd harmonic magnitude, 
(d)i1hd vs i1hq. 

 

 During the transient performance test, a 0.01 pu 3rd harmonic is injected to 1.0 pu 

1st harmonic.  The frequencies of both 1st and 3rd harmonics increase linearly with 

amplitude in Fig. 3.9 and exponentially in Fig. 3.10. This proportional increase in both 

fundamental and harmonic currents during transient is a consistent assumption with the 

transient model given in [58]. As shown in Fig. 3.9 (c) and Fig. 3.10 (c) the normalized 

magnitude of 3rd harmonic remains constant as injected, although relative amplitude and 

frequencies of harmonics vary. The results of these tests confirm that the inspected 

harmonic can be traced by updating the reference frame angular frequency 

instantaneously, and this method is capable of capturing the harmonic information during 

transient conditions as well. 
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3.4. Offline Experimental Results 

The performance reference frame method is experimentally verified both offline 

and online. In order to implement offline tests, the data acquisition system is used to 

obtain the motor phase currents and a Matlab-based reference frame code is run to detect 

broken rotor bar and eccentricity signatures in the line current spectrum. The eccentric 

motors are mechanically modified to form a mixed eccentricity with 5%, 20.69% DE and 

41.37% SE. Broken bar rotor tests are done using 4/44 and 3/28 bars broken rotors under 

various load conditions at different speeds. These faults are examined while the motor is 

driven from utility and the inverter is controlled by both FOC and V/f algorithms. In the 

first experimental stage, a cluster of faulty motor line current data obtained by the data 

acquisition system are processed using the proposed method and the results are compared 

with the FFT spectrum analyzer outputs.  

3.4.1. Utility Driven Motor Line Current Analysis 

 Initially, utility driven eccentric motor line current is analyzed using the proposed 

method both with 3-phase and single-phase currents. In order to detect the eccentricity 

fault signatures, related fault frequencies are calculated according to (fs±fr) and chosen to 

be the angular frequency of rotating frame where fs=60 Hz and ωr≈1795 rpm. As shown 

in Fig. 3.11(a) and Fig. 3.11(b) both the single phase and 3-phase harmonic analysis 

results are quite close to each other as expected and shown theoretically. Therefore, the 

rest of the experimental results will be given using single-phase harmonic analysis which 

is more reliable for industrial environments and cheaper  
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Fig. 3.11.  Experimentally obtained utility driven eccentric motor line current harmonic 
analysis results, (a) single-phase rotating frame harmonic analysis results, (b) 3-phase 
rotating frame harmonic analysis results, and (c) FFT spectrum analyzer output of the 

line current. 
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to implement. In Fig. 3.11(c) line current spectrum of a utility driven induction motor is 

obtained by FFT spectrum analyzer. The left hand side normalized fault harmonics of 

single-phase and 3-phase analysis at (fs-fr) are found to be -47.95 dB and -48.18 dB, 

respectively using the proposed method. The FFT spectrum analyzer result for the same 

test is -48.74 dB. On the other hand, the right hand side normalized fault harmonics of 

single phase and 3-phase analysis at (fs+fr) are found to be -47.74 dB and -48.29 dB, 

respectively where FFT spectrum analyzer result is -47.69 dB. In brief, Fig. 3.11 

experimentally proves that the difference between rotating frame harmonic analysis 

results and FFT spectrum analyzer results are acceptably negligible for utility driven 

motor case.   
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Fig. 3.12. (a) Experimentally obtained utility driven broken rotor bar motor single phase 
line current rotating frame harmonic analysis result, (b) FFT spectrum analyzer output of 

line current. 
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Fig. 3.12 Continued. 
 

The broken bar test of utility driven motor is done using an induction motor with 

four broken bars under full load where fs=60Hz, ωr≈1720 rpm and fault signatures are 

expected at fs(1±2s) Hertz. Since the fault signatures of broken bar fault are in the 

neighborhood of fundamental harmonic, the normalized magnitude of current spectrum 

is computed in 1 Hz incremental steps to examine the resolution of the rotating frame 

theory. Therefore, the 1 Hz incremental steps are set as the angular frequency of the 

rotating frame. As shown in Fig. 3.12 (a) the harmonic magnitudes closest to the side 

bands are -40.88 dB and -48.70 dB. The calculated fault signature magnitudes are very 

close to FFT spectrum analyzer results given in Fig. 3.12 (b). In real time applications, 

exact excitation frequency and estimated rotor speed are used to obtain more precise 

results; therefore, here, the purpose of 1 Hz incremental steps in Fig. 3.12 (a) are to 

verify and demonstrate the performance of this method when the fault harmonics are 

close to fundamental or to each other. 
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3.4.2. V/f Controlled Inverter Driven Motor Line Current Analysis 

 Secondly, the eccentricity and broken bar fault signatures are examined when the 

motor is driven by a V/f controlled inverter. Unlike the utility driven case, the excitation 

frequency and rotor speed are adjustable when the motor is driven by an inverter, 

therefore the fault signatures dynamically change depending on the stator frequency and 

slip values. Since the stator frequency and slip are mostly used as control parameters in 

the inverter control algorithms, the fault signature frequencies can easily be updated 

using this information. 
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Fig. 3.13. (a) Experimentally obtained V/f controlled inverter driven eccentric motor 
single-phase line current rotating frame harmonic analysis result, (b) FFT spectrum 

analyzer output of line current. 
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In this step, the eccentric motor mentioned in the previous part is driven at 0.66 

pu reference speed under no load where fs=40Hz and ωr≈1180 rpm. As shown in Fig. 

3.13 (a) the left hand side normalized fault harmonics at (fs-fr) Hertz are found to be -

50.45 dB using the single-phase harmonic analysis and the FFT spectrum analyzer result 

is -51.67 dB. On the other hand, the right hand side normalized fault harmonics at (fs+fr) 

Hertz are found to be -48.17 dB using the proposed method, and the FFT spectrum 

analyzer result is -49.92 dB.  
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Fig. 3.14. (a) Experimentally obtained V/f controlled inverter driven broken bar motor 
single-phase line current rotating frame harmonic analysis result, (b) FFT spectrum 

analyzer output of line current. 
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 The broken bar test of V/f controlled inverter driven motor is done using an 

induction motor with four broken bars under full load where fs=60Hz, ωr≈1745 rpm and 

fault signatures are expected at fs(1±2s) Hertz. As shown in Fig. 3.14(b) the side bands of 

the broken bar motor current spectrum are -33.52 dB, -55.84 dB and the single-phase 

rotating frame results are -34.53 dB, -54.84 dB. 

3.4.3. FOC Inverter Driven Motor Line Current Analysis 

 Finally, both the broken bar and eccentricity fault diagnosis tests are repeated 

when the motor is driven by FOC inverter at various speeds under various load 

conditions. In this project, it is reported that the most challenging fault detection is 

encountered when the motor is controlled by FOC. The most significant problem is 

higher noise floor which threatens the small fault signature detection and the other one is 

signature sharing between voltage and current due to the closed loop control. However, 

the remarkable fault signatures are not affected from the noise as shown in Fig. 3.15(b).  
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Fig.3.15 (a) Experimentally obtained FOC controlled inverter driven eccentric motor 
single-phase line current  rotating frame harmonic analysis result, (b) FFT spectrum 

analyzer output of the line current. 
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Fig.3.15 Continued. 
 

 In this test, the reference speed is 0.33 pu and the motor is run under no load. The 

excitation frequency is fs=20.26 Hz and the shaft speed is ωr≈594 rpm. The eccentricity 

indicator side bands are found to be -32.40 dB, -32.39 dB using the proposed method, 

and the observed values from FFT spectrum analyzer are -32.70 dB, -32.26 dB as shown 

in Fig. 3.15. 

 In Fig. 3.16, broken bar test results are given when the motor is run by FOC 

inverter under full load where the reference speed is 0.66 pu and ωr≈1150 rpm. The 

normalized sidebands are computed to be -40.33 dB, -31.72 dB whereas the FFT 

analyzer outputs are -40.09 dB, -30.89 dB. 

 All of the offline experimental results above show that the proposed method 

works effectively to find out the fault signatures with a very high precision.  Since the 

three-phase and single-phase analyses give almost the same results; the single phase 

method is mostly employed during the analysis.  
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Fig. 3.16 (a) Experimentally obtained FOC controlled inverter driven broken bar motor 
single-phase line current rotating frame harmonic analysis result, (b) FFT spectrum 

analyzer output of the line current. 
 

3.4.4. Performance Test under Non-Ideal Conditions  

In the previous sections, it is theoretically proven that the offset and unbalance 

problems do not violate the results obtained by reference frame theory. In this section, 

these claims are verified experimentally. Three-phase line currents of V/f controlled 

motor are used to analyze the sidebands of eccentricity. One of the phase current signals 

is modified by simple signal conditioning to insert 0.2 pu dc offset to phase-A as shown 
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in Fig. 3.17 (a). On the other hand, in order to obtain an unbalanced set of 3-phase 

currents phase-A current is multiplied by 1.5 as shown in Fig. 3.17 (b). In all ideal and 

non ideal cases, it is reported that the normalized left eccentricity sideband is exactly -

50.04 dB and the right sideband is -48.42 dB. Both the theoretical and offline 

experimental tests show robustness and reliability of the proposed method even under 

non ideal conditions, which are run into often in harsh industrial facilities. 
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Fig. 3.17  Experimentally obtained V/f controlled inverter driven eccentric motor 
3-phase line currents, (a) 0.2 pu offset added to phase-A current sensor reading, (b) 

Phase-A current sensor reading modified to obtain unbalanced 3-phase. 
 

3.5. Online Fault Detection Results  

 Similar tests are repeated online using the TMS320F2812 DSP, which is 

employed both for inverter control and fault signature detection. Several experiments are 

realized under various conditions such as different rotor speeds, slip values, load 

conditions, switching frequencies, sampling frequency and the number of data processed.  

 When using DSP core for both control and fault purposes, the fault code is 

embedded into the main control algorithm as a subroutine that processes the 

instantaneously measured current data for both fundamental component and fault 
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signature frequency. The same experiments are also successfully repeated for utility 

driven motors where the DSP is responsible only for fault analysis rather than control 

issues. Although undersampling and oversampling are possible, generally switching 

frequency is accepted to be the sampling frequency of the current data to synchronize the 

fault subroutine with the main control. The number of data is chosen to be the same as 

the sampling frequency, which can be adjusted between 4k and 20k depending on the 

applications. The stator frequency can either be calculated or equated to the reference 

value depending on the control type, and the rotor speed can either be measured using 

encoder or estimated to update the signature frequencies in real time. Though the DSP 

processor of the inverter is used in this project, the very simple algorithm of reference 

frame theory can be implemented using a simpler microcontroller as well.  

3.5.1 V/f Controlled Inverter Driven Motor Line Current Analysis 

The eccentricity and broken bar tests are repeated using TMS320F2812 DSP 

controlled inverter where ωrref = 0.99 pu. The motor is run at no load and at full load for 

eccentricity tests and broken bar tests, respectively. As shown in Fig. 3.18 both the 

eccentricity and broken rotor bar sidebands found by DSP microprocessor are very close 

to ones observed by FFT spectrum analyzer at (fs ± fr) and (1±2s)fs, respectively. The 

time spent to process 5k-20k data and detect these signatures is 1 sec, which is 

sufficiently short for fault monitoring where there is no strict time limitation. Depending 

on the resolution requirements and the system control parameters, execution time might 

be shortened or extended.  

 



 78

0 20 40 60 80 100

-80

-60

-40

-20

0

Hz

d 
b -50.17db -47.22db

(a)

 

0 20 40 60 80 100

-80

-60

-40

-20

0

Hz

d 
b -47.22 db-49.80 db

(b)

 

50 60 70

-80

-60

-40

-20

0

Hz

d 
b 

-37.42 db

-53.32 db

 

Fig. 3.18 Experimentally obtained V/f controlled inverter driven motor single phase 
harmonic analysis result, (a) eccentricity signatures detected by DSP using rotating frame theory, 

(b) FFT spectrum analyzer output of eccentric motor line current, (c) broken bar signatures 
detected by DSP using rotating frame theory, (d) FFT spectrum analyzer output of broken bar 

motor line current. 
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Fig. 3.18 Continued.  

 

3.5.2. FOC Controlled Inverter Driven Motor Line Current Analysis 

In Fig. 3.19, the same experiments are repeated running the motor with closed-

loop field oriented control algorithm at various operating points. The results obtained by 

industry purpose processor and 12-bit ADCs are very close to FFT spectrum analyzer 

outputs which has two DSP core and 16-bit ADC with a sampling rate of 256 kHz. These 

online experimental results confirm that the proposed method can be adapted to the real 

time applications successfully. 
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Fig. 3.19 Experimentally obtained FOC controlled inverter driven motor single 
phase harmonic analysis result, (a) eccentricity signatures detected by DSP using rotating 

frame theory, (b) FFT spectrum analyzer output of eccentric motor line current, (c) 
broken bar signatures detected by DSP using rotating frame theory, (d) FFT spectrum 

analyzer output of broken bar motor line current. 
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Fig. 3.19 Continued. 
 

3.5.3. Instantaneous Fault Monitoring in Time-Frequency Domain and Transient 

Analysis 

A stationary motor line current signal repeats into infinity with the same 

periodicity. However, this assumption is not realistic for most of the industrial 

applications where duty cycle profile of the motor cannot be guaranteed to operate at 

steady state and single operating point. Instead, duty cycle involves various operating 

points at different load and speed combinations for an unknown time period.   

On the other hand, the motor current spectrum analyses done using Fourier 

transform assumes that the current signal is stationary. The Fourier transform performs 

poorly when this is not the case. Furthermore, the Fourier transform gives the frequency 

information of the signal, but it does not tell us when in time these frequency 

components exist. The information provided by the integral corresponds to all time 

instances because the integration is done for all time intervals. It means that no matter 

where in time the frequency appears, it will affect the result of the integration equally. 
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This is why traditional application of Fourier transform is not suitable for non-stationary 

signals. 

As stated earlier, continuous stator frequency and shaft speed information are 

available and are used to update fault signature frequencies at all operating points. The 

updated fault signature frequency is utilized to synchronize the reference frame and 

associated fault vector component of the line current. Therefore, even the motor 

excitation frequency or rotor shaft speed change due to acceleration, deceleration, 

loading, etc. the normalized fault signature magnitude is instantaneously and 

continuously monitored without using additional algorithms. In brief, this advantage 

provides real time tracing of fault signature components in the frequency domain. In Fig. 

3.20 (a) and Fig. 3.20 (b), the right eccentricity sideband magnitude and rotor speed are 

shown, respectively. The dynamic characteristics of right eccentricity sideband at 

transients and different rotor speeds are traced experimentally by DSP processor in real 

time as shown in Fig. 3.20 (a). A similar test is done under load when the motor is driven 

by V/f open loop control at 0.4 pu speed as shown in Fig. 3.20 (c) and Fig. 3.20 (d). In 

Fig. 3.20 (c), the eccentricity right sideband track in real time is shown when the motor is 

loaded while running at no-load and in Fig. 3.20 (d) the phase-A current vector 

magnitude is shown to identify the load characteristics.   
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Fig. 3.20 Experimentally obtained V/f controlled inverter driven motor single 
phase harmonic analysis result (a) normalized eccentricity sideband variation detected by 

DSP using rotating frame theory, (b) motor speed in pu, (c) normalized eccentricity 
sideband variation detected by DSP using rotating frame theory, (d) motor line current in 

Amps. 
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3.6. Conclusions 

This paper has presented the experimental and the analytical validation of the 

reference frame theory application to electrical motor fault diagnosis. The proposed 

method has many advantages over existing fault diagnosis methods using external 

hardware and powerful software tools. The experimental test results are compared with 

FFT spectrum analyzer results to confirm the accuracy of this method.  It is 

experimentally shown that this simple diagnosis algorithm can be embedded in the main 

control subroutine and run by the motor drive processor in real time without affecting 

control performance of the inverter. Therefore, it can even be considered as a no cost 

application, which is highly promising for future fault diagnosis products.  
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CHAPTER IV 

 
 

PHASE SENSITIVE DETECTION OF MOTOR FAULT SIGNATURES IN THE 

PRESENCE OF NOISE 

 

 

4.1. Introduction 

 In this chapter, digital signal processor (DSP)-based phase-sensitive motor fault 

signature detection is presented. The implemented method has a powerful line current 

noise suppression capability while detecting the fault signatures. Because the line current 

of inverter driven motors involve low order harmonics, high frequency switching 

disturbances, and the noise generated by harsh industrial environment; the real-time fault 

analyses yield erroneous or fluctuating fault signatures. This situation becomes a 

significant problem when signal to noise ratio (SNR) of the fault signature is quite low. 

It is theoretically and experimentally shown that the proposed method can determine the 

normalized magnitude and phase information of the fault signatures even in the presence 

of noise, where the noise amplitude is several times higher than the signal itself. 

4.2. Digital Signal Processing in Fault Diagnostics 

Although a great many studies have been done on motor fault analysis, drive 

embedded real time fault analyzers have not taken their place in the market. The main 

features expected from such a product are: low cost, noise immunity, and simple 

algorithms that might be realized in real time on the existing motor drive processor. 
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Now that digital signal processing (DSP) technology is being applied to motor 

drive control, the improved benefits of this processing unit are being realized in more 

applications than ever before such as fault detection. The proposed fault detection 

method is implemented using the inverter existing processor; therefore it does not 

produce any extra computing cost. Control and protection purpose current sensors 

installed in the motor drive provide line current information for real time analysis. 

Therefore, no specialized hardware is required to realize phase sensitive fault detection. 

Furthermore, the most complicated mathematical tool used in the simple detection 

algorithm is the basic trigonometric functions that can be handled either with look-up 

tables or numeric functions. The overall execution time of the fault detection algorithm 

takes a few seconds to obtain high enough resolution. 

A typical normalized fault signature is within the range of    -40 dB to -80 dB; 

hence fault detection is quite prone to the negative effects of noise content in the current 

spectrum. Therefore, noise suppression is a significant requirement for small signature 

detection, which is achieved by a phase sensitive lock-in algorithm in the present work. 

This method simply locks to and measures the particular frequency of interest, ignoring 

all other signals at the input. The eliminated signals might either be at the same 

frequency with different phase angle or at some other frequencies. Fortunately, phase 

sensitive fault detection provides a technique for rejecting both ac and dc noise sources 

while the signal is measured. When the floor noise is high, the inspected small signatures 

will mostly be comparable with the noise content including the components at the same 

frequency. A lock-in detector is capable of measuring small ac signals that are obscured 
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by large amounts of noise. In fact, ac signals can be extracted even when dominated by 

far greater noise.   

The lock-in detector is a phase sensitive demodulator that examines how two 

entities are related. It is generally used to determine the presence of a periodic signal that 

has been buried under noise. The lock-in detector demodulates the frequency of interest. 

Its output is a function of the relative phase angle between the input signal and the 

associated reference signal generated by the processor. Therefore, the lock-in detector is 

used to measure both the relative phase and normalized magnitude of the fault 

signatures. 

One of the most commonly used magnitude measurement techniques is the fast 

Fourier transform (FFT) method [1-4]. The main duty of the FFT-radix algorithms is to 

reduce the complexity by decomposing the discrete Fourier transforms (DFTs) into 

smaller DFTs in a recursive manner [9-10,59]. In order to compute the DFT of 

discritized signals, all signal data should be stored and indexed. Moreover, to obtain high 

resolution and accurate results in inverter driven systems, a large number of data points 

should be buffered due to low signal frequency and high switching frequency 

constraints. Therefore, implementing FFT algorithms in real time using low-cost 

industrial processors is a challenge. Consequently, the proposed method is an excellent 

alternative to the problems addressed above for magnitude detection particularly in noisy 

environment.   
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4.3. Phase Sensitive Detection 

Phase sensitive detection is based on correlation of two signals. In the correlation 

process, the input signal is compared with a reference signal and similarity between 

these signals is determined [9-10, 59]. Given two real valued sequences x(n) and y(n) of 

finite energy, the cross-correlation of x(n) and y(n) is a sequence  defined by, )(lxyr

∑
=

−=
∞→

−=
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kNkxy nynx
N

r )()(
2
1lim)( ll                (4.1) 

where  is called the shift or lag parameter. The special case of (4.1) when x(n)=y(n) is 

called the auto-correlation. It provides a measure of self-similarity between different 

alignments of the signals and is given by,  
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 Similarly, a lock-in detector takes a periodic reference signal and a noisy input 

signal, and then extracts only that part of the output signal whose frequency and phase 

match the reference. To see how the phase sensitive detector works, consider a reference 

signal, Iref, which is a pure sine wave with frequency of wref, 

 )cos()( refrefrefref twItI ϕ+=            (4.3) 

and the noisy fault signal, 

 ∑ +++= )cos()cos()( noisenoisenoisefaultfaultfaultin twItwItI ϕϕ              (4.4) 
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The correlation between these two signals is given by, 
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The generated reference signal frequency is set to be the same as the fault signal 

frequency; therefore some of the terms in (4.5) are converted to dc as given by (4.6). 
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 If the auto-correlation output is low pass filtered simply by averaging, only two 

terms survive, the dc term due to the output of the system, and the noise component with 

frequency near the reference signal. The rest of the noise and low order harmonics 

disappear as shown in (4.7). 
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∑ −+−≈ )cos()cos()( 21_ noisereffaultreffilteredII KKI ϕϕϕϕϕ       (4.7) 

The phase of the noise signal varies randomly. In order to minimize the effects of 

noise content at the same frequency, the phase angle difference between the reference 

signal and the fault signals should be minimized. There are some alternatives to 

maximize the low pass filtered portion of the auto-correlation function. One alternative 

is to track the auto-correlation function and detect the peak point where the phase angles 

of the reference signal and the fault signal are the same. The second and more efficient 

method is examining both the correlation of cosinusoidal and sinusoidal reference 

signals to the same phase angle instantaneously. The arctangent of the correlation ratio 

results the phase angle difference between the reference signal and the fault signal. The 

maximum correlation degree and minimum noise effect are observed when the phase 

angles are equated to each other by simply adjusting the reference signal’s phase angle. 

The similar processes are repeated for the fundamental component to calculate the 

correlation ratio between the fundamental and fault components to find the normalized 

magnitude of the fault signature. 

The characteristic frequencies of the well-known motor faults are given in the 

literature [1-4]. The most commonly reported faults in electric machines are bearing 

faults, eccentricity, broken rotor bar and stator faults. All of these faults are modeled as 

functions of both stator frequency and rotor speed. These two variables are mostly 

observed by drive systems to control the motor effectively. Therefore, the reference 

signals are generated according to the fault equations using the rotor speed and the 

excitation frequency to capture the associated fault signatures precisely. 
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4.4. Simulation Results 

 In order to verify the effectiveness of the proposed method, a typical line current 

is modeled as shown in Fig. 4.1. A few low order harmonics are added to distort the 

fundamental component as in the case of inverter driven motor line current. The total 

harmonic distortion (THD) is about 11%. Apart from the low order harmonics, relatively 

high amplitude white noise is added when compared to the fault signature as shown in 

Fig. 4.1 (a). 
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Fig. 4.1. Simulated  noisy line current. 
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Fig. 4.2. Simulated  (a) injected noise and the inspected fault component, (b) correlation 
degree between the reference signal and the fault component with respect to the phase 

angle of the reference signal. 
 

At first, the phase angle detection is realized in order to filter out the low order 

harmonics including the fundamental component, and to minimize the effect of the noise 

component. The phase angles of the fault component and the fundamental are set to π/6 

and π/2, respectively. The correlation degree between the fault component and the 
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reference signal phase angle are given in Fig. 4.2 (b). As shown in Fig. 4.2 (b), the 

correlation degree increases when the phase angle of the reference signal comes close to 

phase angle of the fault component (π/6). Therefore, the phase angle of the reference 

signal is set at this point during the rest of the analysis. 

 

Table 4.1. Simulation results under noise 

Fault 
Component THD% SNR 

(dB)
Lock-in 
Result 

-40 dB ~11% -14 -39.74 dB 
-40 dB ~15% -14 -40.48 dB 
-40 dB ~10% -20 -39.38 dB 
-40 dB ~14% -20 -40.69 dB 

 

 

Table 4.2. Simulation results of sampling time and number 

PU Fault 
Component 

Sampling
Time 

# of 
Samples 

Lock-in 
Result 

-40 dB 25 25 -40.09 
-40 dB 25 2.5 -39.68 
-40 dB 2.5 25 -39. 70 
-40 dB 2.5 2.5 -39.36 

 

 A number of tests were performed under various conditions to examine the 

precision of the proposed method.  The results are given in Table 4.1 and Table 4.2. 

While defining the signal to noise ratio (SNR) of the signal in Table 4.1, only the fault 

signal and white noise are considered. Although a significant amount of noise and low 

order harmonics are injected to the line current, the -40 dB fault component is 
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successfully filtered out with less than |1dB| error. On the other hand, the effects of 

sampling time and number of data are tested and the results are given in Table 4.2. The 

sampling time is chosen to be close to the typical switching frequency interval of a 

motor drive. Because the proposed method processes each data at real time using the 

inverter processor, the samples are neither buffered in the simulations nor in the 

experiments. Although the precision of lock-in detector increases as the sampling time 

and the number of data increase, under-sampled and fewer data provide sufficient 

precision as shown in Table 4.2. The ratio of the number of data to the switching 

frequency should be set to certain values depending on the duty cycle characteristics of 

the motor. This ratio should be equal or less than unity under dynamically changing duty 

cycle operations to track the dynamic changes accurately. On the other hand, it can be 

set to a value larger than unity to increase the resolution where the duty cycle profile is 

mainly constant. 

4.5. Experimental Results 

 A number of identical induction motors are modified to test the bearing, broken 

rotor bar and eccentricity faults. A conventional test bed is used in order to validate the 

proposed method to detect the stator current fault signature components of the 3-phase 

induction machine. A 3 hp induction motor is loaded by a dc generator and is driven by a 

custom designed Semikron inverter. The inverter control and the online fault diagnosis 

are performed by the 32 bit fixed-point, 150 MHz digital signal processor 

TMS320F2812. A signal conditioning board including the voltage and current sensors is 

designed and connected to the data acquisition board through the voltage amplifiers to 
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scale the magnitude and low-pass filters to set the frequency bandwidth to a correct 

range. In order to obtain raw current-voltage data, a 1.25 MS/s, 16-bit resolution data 

acquisition card is used for offline tests. A 16 bit A/D at 256 kHz SR760 FFT spectrum 

analyzer is used to monitor the real time current and voltage spectrums. 

4.5.1. Offline Experimental Results 

 In order to confirm the precision of the lock-in detector, a motor with bearing 

outer raceway defects is tested. In fact, the most challenging fault detection is reported to 

be in the case of bearing fault due to the very low amplitude of fault signatures. The 

challenges encountered are not only the small bearing fault signatures, but also the 

proximity between the floor noise level and the signature level. Therefore, computation 

of fault signatures becomes quite prone to noise disturbance. The reference signatures 

captured by the 16-bit ADC, 256 kHz sampling frequency FFT analyzer are recorded as 

shown in Fig. 4.3.  The line current data is processed using the lock-in detector at 

maximum correlation degree point. It is reported that the normalized results obtained by 

the lock-in detector are quite satisfactory and close to the reference signatures with a 

very high proximity as given in Table 4.3. 

 

Table 4.3. Normalized comparative experimental results 

Signature Freq. 143.3 Hz 167.5 Hz 383.3 Hz 395.4 Hz 

Healthy FFT* -99.55 dB -94.99 dB -97.80 dB -94.84 dB 

Healthy Lock-in -98.83 dB -96.17 dB -98.44 dB -96.60 dB 

Faulty FFT* -82.72 dB -87.58 dB -84.03 dB -82.95 dB 

Faulty Lock-in -82.93 dB -88.02 dB -84.94 dB -82.78 dB 

       * FFT Analyzer 
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Fig. 4.3. Experimentally obtained normalized outer race bearing fault signatures. 

  

The noise immunity of lock-in detector is tested by injecting white noise to 

experimentally obtained line current at constant low order harmonics THD in each step. 

The outer race fault signature at 143.3 Hz is measured as -82.93 dB by the lock-in 

detector when inherent experimental setup noise is on the line current. The effects of the 

added noise on the lock-in detector findings are given in Table 4.4.  Although the added 
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noise is several times higher than the inspected signature, the lock-in provides quite 

successful results with acceptable errors. 

Table 4.4. Normalized experimental results 

Fault Signature 
(Inherent Noise) 

Amplitude of 
Injected Noise 

Lock-in  
Results 

-82.93 dB -100.00 dB -82.936 dB
-82.93 dB -80.00 dB -82.949 dB
-82.93 dB -60.00 dB -83.072 dB
-82.93 dB -40.00 dB -86.702 dB

 

4.5.2. Online Experimental Results 

 Similar tests are repeated online using the TMS320F2812 DSP, which is 

employed both for inverter control and fault signature detection. When using DSP core 

for both control and fault purposes, the fault code is embedded into the main control 

algorithm as a subroutine that processes the instantaneously measured current data. The 

number of data is chosen to be the same as the sampling frequency, which can be 

adjusted between 4k and 20k depending on the applications. The stator frequency is 

equated to the reference value depending on the control type.  The rotor speed can either 

be measured using the encoder or estimated to update the signature frequencies in real 

time. Because the embedded ADC in TMS320F2812 has 12-bit, the quantization 

constraints prevent sensing signals less than -65 dB. The experiments are carried out by 

testing broken rotor bar and eccentric motors. 
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Fig. 4.4. Experimentally obtained (a) left eccentricity sideband in real time, (b) correlation 
degree between reference signal and the fault component, (c) correlation degree between 

reference signal and the fundamental component.          
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Fig. 4.4. Continued.  
 

 The results obtained in Fig. 4.4 using the DSP with 12-bit ADCs are very close to 

results obtained from the FFT spectrum analyzer that has two DSP core and a 16-bit 

ADC with a sampling rate of 256 kHz. The left sideband signature of an eccentric motor 

is measured to be -39.24 dB and -38.98 dB using the FFT analyzer and the DSP, 

respectively. It is reported that the fault signature magnitude is not remarkably affected 

by the switching frequency of the inverter. Since this measurement is taken when the 

motor is running at the steady state, the ratio of the number of data to the switching 

frequency is mostly taken as unity which provides sufficient resolution. The correlation 

of the fault component and the fundamental component with respect to the reference 

signals generated by the DSP are given in Fig. 4.4 (c) and 4.4 (d). It is possible to obtain 

smoother waveforms simply by processing more data. These online experimental results 

confirm that the proposed method can be adapted to the real time applications 

successfully. 
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In order to realize online lock-in of reference signal and fault signature, a few 

ways are possible. For instance, the phase angle difference between the reference signal 

and the fault signature can be calculated using the arctangent relation of the cross-

correlation and the auto-correlation at each fault signature detection cycle. Next, the 

minimum phase angle difference point is chosen as operating point that maximize the 

correlation and minimize the noise effects. Once this point is detected, the rest of the 

fault diagnosis process can be continued at this point or it can be updated at each phase 

difference zero crossings. 

 As shown in Fig. 4.5 (a), the correlation degree of fault component is set to 

maximum at zero crossing of the phase difference and fixed at this point until the next 

zero crossing. A similar process is repeated for the fundamental component to normalize 

the fault component as shown in Fig 4.5 (b). Despite the decrease in precision, the phase 

angle scanning can be accelerated by increasing the reference signal phase angle 

increments in each drive control cycle. Since the period of phase angle scanning is in the 

range of minute, this method is appropriate for constant duty cycle steady state 

operations.  
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Fig. 4.5 Experimentally obtained (a) phase difference between reference signal 
and fault component, and normalized left eccentricity sideband correlation degree in real 
time, (b) phase difference between reference signal and fault component, and normalized 

left eccentricity sideband correlation degree in real time. 
 

 In order to examine the motors the duty cycles of which are continuously 

fluctuating, an alternative auto-tuning algorithm is developed. Apart from the previous 

method, the phase difference between the reference signal and the fault signature is 
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continuously updated. Thanks to this method, it is possible to track fault signature not 

only at the steady state but during transients as well. Therefore, one can follow the 

dynamic characteristics of fault signatures during acceleration, deceleration and 

loadings. The false error warnings can be minimized employing this method and 

previously determined operating point dependent adaptive threshold. If there are rare 

measurements to be made of a current magnitude that does not change significantly in 

time, it may be acceptable to process as many data as possible to enhance the precision 

of the result. However, if there are multiple measurements to be made particularly during 

transients, the number of processed data should be optimized. Typically, a few drive 

control cycles data processing time is enough at steady state and at most one or half 

cycle will be sufficient during transients. It is reported that less than half a control cycle 

degrades precision significantly. Since the results are normalized, computation time will 

not affect the relative amplitude of the fault signature or the correlation degree.   

 In Fig. 4.6, continuous tracking of the right eccentricity sideband is given. The 

phase lock-in is achieved in each drive control cycle by auto-tuning algorithm. Using the 

phase sensitive detection, the right eccentricity sideband is measured as less than |1| dB 

error when compared to the FFT analyzer results. 
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Fig. 4.6. Experimentally obtained (a) normalized fundamental and right 
eccentricity sideband correlation degree in real time, (b) FFT analyzer output. 

 

 In Fig. 4.7, the real time fault signature tracks are given. In Fig. 4.7 (a), the right 

eccentricity sideband variation is given from no-load to 0.33 pu load using the auto 

tuned phase sensitive lock-in detector. In Fig. 4.7 (b), the broken bar fault right sideband 

variation is given from 0.8 pu to 1.1 pu load. Because the excitation frequency is already 

continuously available in the control algorithm and the rotor frequency is measured or 

estimated, these parameters are used to update the fault signature frequencies given in 
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the appendix in real time at various operating points. These results prove that the 

proposed method has a powerful real time fault signature tracking capability. 
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Fig. 4.7 Experimentally obtained (a) normalized right eccentricity sideband 
correlation degree in real time under no load and 0.33 pu load, (b) normalized broken bar 

fault right sideband correlation degree in real time under 0.8 pu and 1.1 pu load. 
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4.4. Conclusions 

 In this chapter, a simple noise immune real-time fault signature detection tool is 

presented. Since this method can easily be implemented using industries’ general 

purpose microcontrollers without any additional hardware, PC, filters and large size 

memory, it can be adapted to the single and multi phase drive systems. The accuracy of 

the proposed method is tested experimentally and the results are compared to a 

commercial FFT analyzer. Furthermore, the noise suppression capability of this method 

is verified by injecting various amplitude white noises to the line current. All the test 

results confirmed that the phase sensitive lock-in detector is an excellent and promising 

tool for real time drive embedded fault detection systems.    
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CHAPTER V 

 

 

O�-BOARD DIAG�OSIS OF ELECTRIC MOTORS FOR HYBRID ELECTRIC 

VEHICLES  

 

 

5.1. Introduction 

 

The integrity of the electric motors in work and passenger vehicles can best be 

maintained by monitoring its condition frequently on-board the vehicle. In this chapter, a 

signal processing based fault diagnosis scheme for on-board diagnosis of rotor 

asymmetry at start-up and idle mode is presented. Regular rotor asymmetry tests are 

done when the motor is running at certain speed under certain load with stationary 

current signal assumption.  It is quite challenging to obtain these regular test conditions 

for long enough time during daily vehicle operations. In addition, automobile vibrations 

cause a non-uniform air-gap motor operation which directly affects the inductances of 

electric motor and results quite noisy current spectrum. Therefore, examining the 

condition of electric motor integrated to an HEV, regular rotor fault detection methods 

become impractical. The proposed method overcomes the aforementioned problems 

simply by testing the rotor asymmetry at zero speed. This test can be achieved and 

repeated during start-up and idle modes. The proposed method can be implemented at no 

cost basically using the readily available electric motor inverter sensors and 

microprocessing unit.  
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5.2. On Board Fault Diagnosis (OBFD) For Hybrid Electric Vehicles 

 It is very important for any vehicle to monitor its vital equipments continuously. 

Therefore, nowadays almost all vehicles are equipped with on-board diagnosis (OBD) 

system [62]. This system has been used for warnings and monitoring critical failures in 

the vehicle such as ignition, battery, oil and gasoline level, engine, brakes, etc. If a 

problem or malfunction is detected, OBD system set a malfunction indicator light (MIL) 

readily visible to the vehicle operator on the dashboard, to inform the driver that a 

problem existed. When illuminated, it shall display a universally recognizable symbol, 

or a similar phrase for each failure. OBD is a valuable tool that assists in the service and 

repair of vehicles by providing a simple, quick, and effective way to pinpoint problems 

by retrieving vital automobile diagnostics from the OBD systems [63]. 

 According to the U.S. Code of Federal Regulations (CFR), all light-duty 

vehicles, light-duty trucks and complete heavy-duty vehicles weighing 14,000 pounds 

GVWR or less (including MDPVs) must be equipped with an onboard diagnostic (OBD) 

system capable of monitoring all emission-related powertrain systems or components 

during the applicable useful life of the vehicle. A vehicle shall not be equipped with 

more than one general purpose malfunction indicator light for emission-related 

problems; separate specific purpose warning lights (e.g. brake system, fasten seat belt, 

oil pressure, etc.) are permitted [63]. Although CFR’s requirements for OBD are mainly 

related to the environmental protection purposes, safety issue in the vehicles should also 

be considered by using the OBD system. 
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 The Code of Federal Regulations does not state any diagnostics requirements of 

electric machines in HEV. Besides battery which is quite vital electrical component in 

HEV, monitoring the conditions of electric machine is very critical in case of any 

failures such as bearing, rotor and stator faults as shown in Fig 5.1. By diagnosing the 

electric machine faults as early as possible, one can prolong the lifetime of the electric 

machine in HEV by performing maintenance before a catastrophic failure occurs. 

Therefore, emerging hybrid electric vehicle systems require onboard fault diagnosis as 

shown in Fig. 5.2, both to support critical functions of the control system and to provide 

cost effective maintenance. 

Stator Fault
Eccentricity 

Fault Bearing Fault
Broken Bar 

Fault

CHECK

 

Fig. 5.1 Motor fault can be displayed in the hybrid electric vehicle instrumental cluster 

(Lexus GS 450h). 
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 A catastrophic failure in an electric machine might result dangerous situations 

during driving especially in highway. Unless frequently monitored, an incipient fault in 

the machine can be propagated until it totally falls apart. Therefore, an accident 

afterwards might become inevitable. Once the fault diagnostic system makes any kind of 

severe electric motor fault decision, the traction of the vehicle can totally be taken over 

by combustion engine in order to prevent permanent damages and total loss of electric 

motor. Basically, this solution is applicable if HEV is designed based on parallel or 

parallel & series architectures. However, in series configurations, the ICE is directly 

connected to the electric motor [64]. Therefore, in series architectures the proposed 

solution is limited to electric faults and has partial use for mechanical faults such as 

bearing fault.  

 Mechanical vibration of vehicle degrades the fault diagnosis of electric motor 

integrated to the HEV. The vibration causes non uniform air-gap operation, therefore, 

the machine inductance oscillates. Because of this oscillation, the line current becomes 

noisy and the noise floor of current spectrum becomes higher. This noise in the current 

spectrum generated by mechanical vibration degrades the fault signature analysis results. 

Therefore, one of the best alternatives is condition monitoring at zero speed. Either idle 

modes or start up might provide long enough time to process the current data and report 

the condition of electric motor. On the other hand, vibrating nature of vehicle makes the 

use of other vibration sensitive sensors such as accelerometer impractical due to the 

excessive noise at sensor output. Unlike accelerometers, flux sensors etc. which are 

mounted on the electric motor for fault diagnosis, the current sensors are located inside 
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the motor drive unit which is far away from the main source of vibration. Moreover, the 

cost of current sensor is relatively low when compared to the other sensors. Thus, one of 

the best alternative combinations is employing current sensors at zero speed where 

mechanical vibration effect is minimum.  
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Fig. 5.2. Drive embedded fault diagnosis scheme integrated to HEV [65]. 
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5.3. Drive Cycle Analysis for OBFD   

 Drive cycle is typically used by independent emissions testing laboratories to 

validate hybrid electric vehicle economy and emissions. The US EPA city cycle is the 

first 1300s of the Federal Test Procedure, FTP75, regulated cycle charted out in Fig. 5.3. 

Table 5.1 shows the most common drive cycles and their statistics respective of their 

geographical regions [66]. Other than highway mode, traffic flow is uneven, with very 

frequent stop-go events and long idle times as shown in Table 5.1. This is why city 

cycles have low average speed compared to similar performance on the US highway 

cycle. Because of the high percentage of stop time as shown in Table 5.1, the proposed 

OBFD algorithm can often be run to monitor the motor condition where the mechanical  

 

Table 5.1 Standard drive cycles and statistics 

Region Cycle Time Idling (%) Average Speed (kph) 

Asia-Pacific 10-15 mode 32.4 22.7 

Europe NEDC 27.3 32.2 

NA-city EPA-city 19.2 34 

NA-highway EPA-hwy 0.7 77.6 

NA-US06 EPA 7.5 77.2 

Industry Real World 20.6 51 

 

vibration is minimum. Since the current spectrum analyses mostly based on transformed 

signal averaging, the transient state fault signature analysis has high degradation 

potential. As shown in Fig. 5.3, drive cycle is dominated by transients where the motor 

current has non-stationary characteristics. Thus, instead of continuous condition 

monitoring, fault detection can be limited to start up and idle modes in order to enhance 
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the reliability of fault decision warning. Idle stop functionality as shown in urban drive 

cycle in Fig. 5.3, the primary means of which is fuel consumption reduction, turns out to 

be a safe strategy for electric motor fault diagnostics. Every time the vehicle stops at the 

stop sign, traffic lights or bumped in a heavy traffic, the fault monitoring algorithm is 

run. If the stop (zero speed) time is not enough to finalize fault decision which is 

typically a few seconds, then the diagnostic result is neglected and resumed. 
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Fig. 5.3 US FTP75 city drive-cycle and fault detection points during idling.  

5.4. Rotor Asymmetry Detection at Zero Speed 

Broken bars in an induction motor rotor cause field asymmetry which results 

special sidebands at frequencies )21( sf s ±  [60-61]. In real time applications, a number 

of challenges must be considered to detect these sidebands. For example, because these 

signatures directly depend on the slip value, the rotor speed should be measured 
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precisely. Otherwise, without accurate enough speed information, it is not possible to 

distinguish broken bar sidebands from the fundamental component. One alternative 

solution might be to eliminate fundamental component using a notch filter for line driven 

motors. However, this solution is not applicable to adjustable speed drive systems due to 

dynamically changing stator frequency. Furthermore, notch filter might cause sideband 

suppression unless a sufficient loading is not provided during the tests. Another 

alternative is to estimate the rotor speed during the operation which brings extra 

computational burden. However, at low speed range most of the speed estimation 

algorithms cannot provide precise information. Therefore, high speed operation must be 

guaranteed in order to obtain high precision speed value for sensorless broken bar 

detection. 

Next, the motor should be loaded at certain torque value smoothly in order to 

raise these sidebands and separate them from the fundamental component in the current 

spectrum. Smooth and proper loading might not be available for various applications to 

test the rotor asymmetry. The proposed method detects broken bars in real time without 

employing speed sensor and loading systems. Some other external hardware employed 

in previous works [60-61] such as the data acquisition systems, analog filters, and etc. 

are also eliminated.   

The test is implemented at zero speed; therefore there is no need for speed 

measurement or speed estimation. The rotor is locked mechanically or electrically using 

dc braking. Because the injected signal to test the rotor asymmetry is below 10 % of 

rated voltage values, the generated torque during the test is negligible. Thus, broken 
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rotor bar test can be implemented without an additional featured loading system. The 

 term is caused by torque vibrations [26] and cause electromechanical chain 

interaction between the rotor and the stator that result many asymmetrical signatures in 

the spectrum. Therefore, low frequency range is dominated by consecutive asymmetry 

signatures which sophisticate fault analysis as shown in Fig 5.4 (a).  
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Fig. 5.4. Current spectrum of broken bar motor (a) regular test (b) zero speed test. 

Since the slip is maximum when the rotor is stationary, the existing consecutive 

signatures are quite far away from each other as shown in Fig 5.4 (b). Indeed, at zero 
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speed these terms vanish theoretically and the spectrum is quite clean when compared to 

the current spectrum at rated speed and rated torque operation.  

The method presented here focuses on )21( sf s − term. At zero speed s=1, thus 

the term is at frequency of)21( sf s − )( sf− .  Single-phase reference frame analyses do 

not work for negative frequency; therefore three-phase current vectors are transformed to 

complex current space vector. Single-phase real or imaginary current analyses are 

insensitive to vector rotation direction, thus they find superposition of the left sideband 

and the fundamental component at the excitation frequency . In order to compute the 

left sideband and the fundamental components separately, the current space vector fault 

relevant frequencies are examined experimentally.    

)( sf

)( sf− )( sf

In Fig. 5.5 and Fig 5.6, the real time fault signature tracking result is given when the 

motor is injected low voltage at standstill near the rated current. Both the fault signature 

magnitude at  and the fundamental component at  computed simultaneously and 

separately in real time by the DSP in order to obtain the normalized fault signature 

magnitude.  
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Fig. 5.5. Normalized left sideband magnitude of a healthy motor obtained by the DSP in 
real time at standstill (I = 9A, V/Hz =1.0, f=48 Hz), (a) time-frequency domain,            

(b) frequency domain. 
   

 In order to verify the proposed method, a number of experiments implemented 

under various Volts/Hz ratios, line currents, and frequencies. It is reported that, if high 

enough current is supplied around or higher than the rated current, under all conditions 

the healthy and faulty motors can be distinguished easily using the proposed method. In 

Fig. 5.5, fault signature frequencies of a healthy motor are examined when Volts/Hz is 
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set to 1.0 at 48 Hz. In Fig. 5.5 (a), DSP continuously computes and updates the 

normalized left sideband of healthy motor current spectrum in each second. Fig. 5.5 (b) 

depicts an instant magnitude of left sideband component relative to fundamental in 

frequency domain.  
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Fig. 5.6. Normalized left sideband magnitude of a faulty motor obtained by the DSP in 
real time at standstill (I = 9A, V/Hz =1.0, f=48 Hz), (a) time-frequency domain,            

(b) frequency domain. 

A similar test is repeated for the motor which has less than 10 % broken bars on 

the cage and the results are shown in Fig. 5.6 (a) and (b). When Fig 5.5 and Fig. 5.6 are 



 118

compared to each other, it is clearly seen that under the same conditions the left sideband 

is increased by 13 dB which is high enough to distinguish healthy and faulty motors 

from each other.  
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Fig. 5.7. Normalized left sideband magnitude obtained by the DSP in real time vs line 
current (Volts/Hertz = 0.5), (a) 36Hz, (b) 48Hz, (c) 60 Hz (d) 72 Hz. 
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Fig. 5.7. Continued. 

 
 
 In Fig. 5.7, the normalized fault component magnitudes are given at various 

frequencies when the Volts/Hertz ratio is equal to 0.5. The comparative results are as 

promising as the regular (full-load, rated speed) broken bar test. It is reported that the 

difference between the left sideband of healthy and faulty motor fault signatures are very 

close to regular test results. Therefore, the same results can be obtained at standstill 
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without the need for any external hardware just before the motor startup or at idle mode 

in a few seconds.  
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Fig. 5.8. Normalized left sideband magnitude obtained by the DSP in real time vs line 

current (Volts/Hertz = 1.0), (a) 36Hz, (b) 48Hz, (c) 60 Hz. 
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Fig. 5.8. Continued. 
 

  

 The same test is implemented when the v/f ratio is set to 1.0 to examine the effect 

of magnetizing current. It is noticed that the results are close to the ones obtained at two 

different v/f ratio tests as shown in Fig 5.8 and Fig 5.9. Thus, magnetization current level 

has limited effect on the left sideband at standstill and can be ignored as fault analysis 

parameter. 
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Fig. 5.9. Normalized left sideband magnitude obtained by the DSP in real time vs line 
current (Volts/Hertz = 1.0 and 0.5,  f=48Hz). 

 
 

5.5. Conclusions 

 Condition monitoring and fault detection of electric motors in hybrid electric 

vehicles (HEVs) are quite vital for safety and cost-effective maintenance. This chapter 

proposes a simple online on-board fault diagnosis (OBFD) of induction motor for HEVs 

at start-up and idle (standstill) conditions based reference frame theory. The major 

advantages of the method are very fast convergence time, no need to an additional sensor 

or hardware, robust and reliable, speed sensorless implementation, and zero speed 

application making it highly robust against the mechanical vibrations effects. It is 

experimentally shown that the proposed method detects the rotor asymmetry fault 

signatures at start-up and idle mode (zero speed) and determines the severity of the fault. 

The proposed solution can easily be extended to the other faults for a complete motor 

monitoring.   
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CHAPTER VI 

 
 

CONCLUSIONS 

 

 

 In this chapter the research work presented in the earlier chapters are 

summarized. The challenges of inverter driven motor fault diagnosis using line current 

signature brought to attention and the fault signatures due to inverter harmonics are 

modeled. A robust signal processing based real time fault diagnosis algorithm is 

proposed and applied to bearing, eccentricity and broken bar faults. In case of small fault 

signals detection noisy line current, a noise immune algorithm is successfully 

implemented both theoretically and experimentally. Finally, the proposed fault detection 

algorithms are extended for HEV applications to enhance the reliability of passenger and 

work vehicles. 

6.1. Summary of the Research 

 This dissertation is mainly concerned with real time fault diagnosis of inverter 

driven induction motors. A drive embedded fault detection schematic at no cost is 

proposed to capture fault signatures in real time quite rapidly. Inverter harmonics 

advantages and line current noise disadvantages have been investigated in detail.  

 In chapter I, a brief overview of the induction motor faults, their cause and 

detection techniques are explained roughly. Next the state of the art is presented and the 

new trends are indicated based on market demand.  
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 The effects of inverter harmonics on motor current fault signatures are studied in 

detail in chapter II. According to theory and experimentation given in this chapter, the 

fault signatures caused by the inverter harmonics are similar and comparable to those 

generated by the fundamental harmonic of the line current. Unlike the utility-driven 

motor, monitoring the current of the inverter-fed motor is considerably noisy, which can 

mask the fault signatures and render a wrong fault warning. Therefore, the proposed 

additional fault data processing technique is expected to support the inverter-fed motor 

fault decision making algorithms effectively. The theoretically derived bearing fault 

relations are found to match the experimental results. In order to confirm these claims, 

outer race bearing faults are tested and the line current spectrum of the faulty motor is 

compared to the healthy one. 

Next, apart from the conventional applications, it is reported that the reference 

frame theory can also be applied to fault diagnosis of electric machinery systems as a 

powerful toolbox to find the magnitude and phase quantities of fault signatures. The 

reference frame theory and its applications to fault diagnosis are explored in chapter III. 

The core idea is to convert the associated fault signature to a dc quantity, followed by 

calculating the signal average value in the new reference frame to filter out the rest of 

the signal harmonics, i.e. its ac components. Broken rotor bar and rotor eccentricity 

faults are experimentally tested both offline using the data acquisition system, and online 

employing the TMS320F2812 DSP to prove the efficacy of the proposed tool. 

The proposed method has been theoretically and experimentally proven to detect 

the fault harmonics and determine the existence and the severity of machine faults. The 
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advantages of this method include the following: (1) no need to employ external 

hardware or a PC running a high level program; (2) provides instantaneous fault 

monitoring using a DSP controller in real time; (3) embedded into the motor drive; thus, 

readily available drive sensors and the core processor are used without employing 

additional hardware; (4) no need to store machine currents data, and thus no need for 

large memory size; (5) very short convergence time capability; (6) immune to non-

idealities like sensor dc offsets, imbalance, etc. ; (7) no need for a notch filter to filter out 

the fundamental harmonic; (8) steady state or stationary current signal assumptions are 

not necessary; (9) a familiar concept for motor control engineers; and (10) applicable to 

all multi-phase and single phase motors. 

In chapter IV, digital signal processor (DSP)-based phase-sensitive motor fault 

signature detection is presented. The implemented method has a powerful line current 

noise suppression capability while detecting the fault signatures. Because the line current 

of inverter driven motors involve low order harmonics, high frequency switching 

disturbances, and the noise generated by harsh industrial environment; the real-time fault 

analyses yield erroneous or fluctuating fault signatures. This situation becomes a 

significant problem when signal to noise ratio (SNR) of the fault signature is quite low. 

It is theoretically and experimentally shown that the proposed method can determine the 

normalized magnitude and phase information of the fault signatures even in the presence 

of noise, where the noise amplitude is several times higher than the signal itself. 

In chapter V, a signal processing based fault diagnosis scheme for on-board 

diagnosis of rotor asymmetry at start-up and idle mode is presented. Regular rotor 
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asymmetry tests are done when the motor is running at certain speed under certain load 

with stationary current signal assumption.  It is quite challenging to obtain these regular 

test conditions for long enough time during daily vehicle operations. In addition, 

automobile vibrations cause a non-uniform air-gap motor operation which directly 

affects the inductances of electric motor and results quite noisy current spectrum. 

Therefore, examining the condition of electric motor integrated to an HEV, regular rotor 

fault detection methods become impracticable. The proposed method overcomes the 

aforementioned problems simply by testing the rotor asymmetry at zero speed based on 

reference frame theory as mentioned in chapter III. 
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