PREDICTING BID PRICES IN CONSTRUCTION PROJECTS USING NON-PARAMETRIC STATISTICAL MODELS

A Thesis by ROSHAN PAWAR
Submitted to the Office of Graduate Studies of
Texas A\&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

August 2007

Major Subject: Civil Engineering

PREDICTING BID PRICES IN CONSTRUCTION PROJECTS USING NON-PARAMETRIC STATISTICAL MODELS

A Thesis
by
ROSHAN PAWAR

Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

Approved by:
Chair of Committee, Seth Guikema
Committee Members, Ken Reinshmidt
J. Eric Bickel

Head of Department, David Rosowsky

August 2007

Major Subject: Civil Engineering

Abstract

Predicting Bid Prices in Construction Projects Using Non-parametric Statistical Models. (August 2007)

Roshan Pawar, B.E., University of Mumbai
Chair of Advisory Committee: Dr. Seth Guikema

Bidding is a very competitive process in the construction industry; each competitor's business is based on winning or losing these bids. Contractors would like to predict the bids that may be submitted by their competitors. This will help contractors to obtain contracts and increase their business. Unit prices that are estimated for each quantity differ from contractor to contractor. These unit costs are dependent on factors such as historical data used for estimating unit costs, vendor quotes, market surveys, amount of material estimated, number of projects the contractor is working on, equipment rental costs, the amount of equipment owned by the contractor, and the risk averseness of the estimator. These factors are nearly similar when estimators are estimating cost of similar projects. Thus, there is a relationship between the projects that a particular contractor has bid in previous years and the cost the contractor is likely to quote for future projects. This relationship could be used to predict bids that the contractor might quote for future projects. For example, a contractor may use historical data for a certain year for bidding on certain type of projects, the unit prices may be adjusted for size, time and location, but the basis for bidding on projects of similar types is the same. Statistical tools can be used to model the underlying relationship between
the final cost of the project quoted by a contractor to the quantities of materials or amount of tasks performed in a project. There are a number of statistical modeling techniques, but a model used for predicting costs should be flexible enough that it could adjust to depict any underlying pattern.

Data such as amount of work to be performed for a certain line item, material cost index, labor cost index and a unique identifier for each participating contractor is used to predict bids that a contractor might quote for a certain project. To perform the analysis, artificial neural networks and multivariate adaptive regression splines are used. The results obtained from both the techniques are compared, and it is found that multivariate adaptive regression splines are able to predict the cost better than artificial neural networks.

DEDICATION

Dedicated to my parents Suresh and Sharayu Pawar and brother Abhishek Pawar.

ACKNOWLEDGEMENTS

I would like to thank the committee chair Dr. Seth Guikema for providing his assistance throughout the research. I am grateful to Dr. Ken Reinshmidt and Dr. J. Eric Bickel for providing assistance during the research.

I would like to thank all the faculty members of Civil Engineering Department, Dr. Stuart Anderson, Dr. David Ford and Dr. David Trejo for providing me with valuable knowledge. I would also like to thank the Civil Engineering Department staff for their assistance in administrative matters.

I would like to thank Jeremy Coffelt for providing important information on neural networks and multivariate adaptive regression splines.

I would like to thank Hrishikesh Sharma for providing his assistance for coding in MATLAB. I would like to thank William Imbeah, Shridhar Yamijala, Neethi Rajagopalan, Seung Ryong Han and David Wolter from the Guikema Research group for providing their inputs on the thesis.

I would like to thank Ms. Mary Ellen McWhirter and the staff at Salford Systems for providing their assistance with the MARS software.

TABLE OF CONTENTS

Page

ABSTRACT iii
DEDICATION v
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES x

1. INTRODUCTION 1
1.1. Background 4
1.2. Problem statement 7
2. DATA DESCRIPTION 8
3. ARTIFICIAL NEURAL NETWORKS 14
3.1. Introduction 14
3.2. Background 17
3.3. Conclusions for neural network 26
4. MULTIVARIATE ADAPTIVE REGRESSION SPLINES 29
4.1. Introduction 29
4.2. Background 30
4.3. Principal component analysis 33
4.4. Analysis using MARS 40
4.5. Results 43
5. CONCLUSION 49
6. DISCUSSION 51

Page

REFERENCES 55
APPENDIX A 61
APPENDIX B 63
APPENDIX C 93
APPENDIX D 105
APPENDIX E 107
APPENDIX F 110
APPENDIX G 123
VITA 148

LIST OF FIGURES

FIGURE

Page
1 Estimates at various stages of a project life cycle 3
2 Correction of error using target data 15
3 Structural classification of neural networks 18
4 Structure of neural network e.g. [1441] network 21
Actual vs. predicted for artificial neural network with [1221] configuration .. 26
6 Actual vs. predicted for validation set of ANN with [1221] configuration 27
7 Output of neural network with data transformed using principal component analysis 28
8 Variance explained for the whole dataset 37
9 Cumulative variance explained for the whole dataset. 38
10% variance explained for the first 108 principal components 39
11 Cumulative \% variance explained for the first 108 principal components 39
12 Actual vs. predicted for model 5 46
13 Actual and predicted bid prices for projects in validation set of model 5 47
14 Percent variation of predicted values from actual values 47
15 Percent variation of actual from predicted vs. bid costs 48
16 Comparison of best models from MARS and ANN 49
17 Comparison of results for CND 374 52

LIST OF TABLES

TABLE Page
1 A small sample of the input data 9
2 Training and validation set statistic. 11
3 Summary of different iterations for the neural network 25
4 Parameters for different model runs 44
5 MARS results 45
6 Results for CND 374 51
7 Variation of predictions from actual for CND 374 53
8 Cost index for the year 2005 62

1. INTRODUCTION

Estimation of cost is carried out during various phases of construction to assess total project cost or to predict costs that may be incurred during different stages (Hendrickson and Au 1998). There are two types of estimates, as described by Faghri (2000), scratch based estimate and bid based estimate. Scratch based estimate uses information such as price, quantity, equipment, manpower and construction procedure, while bid based estimates use data available from similar projects in the past to predict the cost of the project (Faghri 2000). Hendrickson and Au (1998) has classified cost estimation based on its function into three categories viz., design estimates, bid estimates and control estimates. Design estimates are used by owners or design professionals during various stages of the design phase of the project. At the feasibility phase of the project a screening estimate (or an order of magnitude estimate) is prepared to assess the feasibility of the project, followed by a conceptual estimate which is based on the conceptual design of the facility to make a "go/no go" decision (Hendrickson and Au 1998). A detailed estimate is made when the scope of the work is clearly defined followed by an engineer's estimate based on plans and specifications before the project is set out for bidding (Hendrickson and Au 1998). Bid estimates are prepared by contactors for the purpose of competitive bidding.

This thesis follows the style Journal of Construction Engineering and Management.

The contractor may either use quantity takeoff for this purpose or base their estimate on the work breakdown structure (Hendrickson and Au 1998). The contractor would like to invest a limited amount of effort in preparing an estimate since this effort is worthless if the work is not awarded to him (Hendrickson and Au 1998).

Cost estimates can also be based on information available from historical and prevailing unit prices of materials used in various construction activities carried out throughout the country. However, every construction project is unique, each project differs due to factors such as location, construction practices, material costs, type of materials used, labor costs, engineering and design, schedule, weather changes, taxes, inflation, budget allocations and legal requirements. Due to these variations, estimating cost of the final facility is difficult and suitable adjustments are made to the final cost estimate to incorporate these variations by including location and time adjustments, contingency, and inflation factors. The goal is to estimate the cost with reasonable accuracy by taking into consideration the sources that introduce such variability, but this is seldom possible due to the limited amount of information available on these factors.

Figure 1 shows the types of estimates prepared during the life cycle of a project. The accuracy of an estimate depends on scope definition and accuracy of information available while preparing the estimate. For an order-of-magnitude estimate, the range of accuracy is $+/-30$ to 50%, for factored estimate the range of accuracy is $+/-25$ to 30%, for a control estimate the range of accuracy is $+/-10$ to 15% and for a detailed or definitive estimate the range of accuracy is $+/-<10 \%$ (Oberlender 2000). A statistical model to predict the total cost of a project based on historical data can be developed only
if the projects are similar in scope. In the construction industry, roads, highways, bridges, and such other projects have similar scope of work. Statistical models to predict project costs could be developed for such projects which have fairly similar scope of work for example construction of a bridge measuring certain miles in length.

Figure 1: Estimates at various stages of a project life cycle

Predicting a competitors' bid can help a contractor adjust his bid accordingly to win a contract. Scratch based cost estimation is a tedious and time consuming process which not only requires detailed knowledge of the scope of the project but also the unit
cost for each activity. There is a need for a quick and reliable technique for estimating project costs. If data from previous bids about projects with similar scope of work are available, statistical models may be developed to predict final bid prices. Neural networks are one such tool that can be used in various applications for such predictions. Some of the fields where neural networks are used are predicting sales (Thiesing and Vornberger 1997), forecasting weather (Maqsood et al. 2004), hand written zip code recognition used in US Postal Service (Hassoun 1994), predicting the flow of rivers (Karunanithi et al. 1994) and pattern recognition (Basheer and Hajmeer 2000). Multivariate Adaptive Regression Splines (MARS), developed by Salford Systems, is another powerful statistical tool that is capable of developing adaptive models. The advantage of using MARS is that it is an adaptive tool that uses the data to determine the function to be fitted to segments of data. Cost estimation using historical data by these statistical models could fasten the estimation process. This process of estimating cost is data driven, when extensive data is available this process is both easy and efficient.

1.1. Background

In the construction industry, neural networks have been a topic of research in fields such as structural engineering, structural condition assessment and monitoring, construction scheduling and management, construction cost estimation, resource allocation and scheduling, environmental and water resource engineering, traffic engineering and highway engineering (Adeli 2001). Maru and Nagpal (2004) have applied neural networks to predict creep and shrinkage deflections in reinforced concrete
frames using deflections calculated from an approximate procedure. Artificial neural networks are used in diverse fields for prediction and forecasting using data depicting non-linear behavior. Li et al. (1999) used neural network to extract rules for markup estimation after training the network. Li et al. (1999) developed a neural network to predict the mark-up on estimated project cost which would also provide reasons for selecting the specified mark-up. Factors such as project size, location, market conditions, number of competitors, working cash requirements, overhead rate, contractor's current workload, labor availability and project complexity were used for making a decision for setting up a mark-up percentage from rules extracted from trained neural networks (Li et al. 1999). Adeli and Wu (1998) used a regularization neural network to estimate unit cost for constructing a reinforced concrete pavement. Wilmot and Mei (2005) used neural networks to predict cost escalation in highway construction projects. They used data such as cost of construction materials, labor and equipment along with the characteristics of the contract to predict escalation (Wilmot and Mei 2005). Faghri (2000) used an artificial neural network to estimate transportation project cost with data such as median unit price and the quantity of material used in projects. Neural networks have also been used to forecast escalation in construction cost using historical data available from Engineering News Record (ENR 2005) using parameters such as material, labor and equipment (Sinha and McKim 1997).

Even though a lot of research work is being done in predicting construction cost, it would be useful if it is possible to predict bids submitted by competing contractors. This may inform a contractor of his chances of winning in a competitive bidding
process. If a statistical model can be trained with data from past bids submitted by the competing contractors it may be able to predict the bids those contractors will quote in other projects.

Multivariate adaptive regression splines is a relatively new technique used for modeling data depicting non-linear relationship. Riedi (1997) has used multivariate adaptive regression splines in modeling segmental duration in speech synthesis for predicting natural sounding durations for German language. Leathwick et al. (2005) has used MARS to predict the distribution of New Zealand's freshwater diadromous fish by determining relationship between fish species and different environmental variables. Chou et al. (2004) has used artificial neural network and MARS in developing diagnostic techniques that help in identifying breast cancer using a fine needle aspiration cytology dataset. Loizos and Karlaftis (2006) have used an artificial neural network and multivariate adaptive regression spline models for a comparative analysis of pavement condition assessment. Sephton (2005) has used MARS to find a relationship between changes in inflation and interest rate spread. Using MARS, Sephton (2005) estimated models to link changes in inflation rates over a number of policy horizons. The author concludes that tightening the yield spread will reduce inflation when the horizon of study is three to five years as opposed to a three month period.

1.2. Problem statement

The prediction of total project cost is important to determine the investment that a contractor might have to make in a project. To win a bid, a contractor should have information on the estimated cost of the project as well as the bid prices quoted by competing contractors. The aim of this research is to test different models and find out a model which may predict bid prices that other contractors may quote in certain projects. For this to be possible projects with similar scope and construction conditions are required. Highway construction projects are largely similar due to specifications and regulations in place which standardize their scope. The Tennessee Department of Transportation (TDoT) provides information about quantity for each activity performed for a project and the different tasks to be completed for the project. This information can be used to predict bids. Since the data available from TDoT has a lot of variability a statistical tool that is flexible enough to model the variability should be used to perform the analysis. Artificial neural networks and multivariate adaptive regression splines are two such non-parametric, adaptive statistical tools which are data driven. Comparison between the two models will be done using the same dataset on the basis of predicted values. If a model could predict the bid prices reasonably for each of the subcontractors participating in the bid as well as the bid a contractor should submit there would be considerable saving in time and energy in estimating the total cost of the project.

2. DATA DESCRIPTION

Data for the analysis was obtained from the website of the Tennessee Department of Transportation (TDoT 2006). The data obtained consists of highway projects undertaken by TDoT during the year 2005. The information available on the website includes a brief description of work, location of the projects, a unique identifier for each work item involved (referred to as the line item number), quantity of each line item, unit price quoted for each line item by every contractor participating in the bidding process, name of the contractors bidding for the projects and place and date when the bid was opened. Historical cost indices for the entire year are available from Engineering News Record. TDoT has divided the state of Tennessee into four regions for managing the work in each region. Data from all the four regions was used to build the model. TDoT uses unit price bidding for all their projects. The data collected contains information such as unit prices quoted by each contractor for each line item, the contractors participating in the bidding process for a certain project, amount of task performed for each line item and the total bid price quoted by each contractor. Cost indices for the analysis are obtained from Engineering News Record for each month for the year 2005 (refer: Appendix A).

The data obtained from TDoT was sorted on an Excel spreadsheet to collect together all the line items or tasks used in different projects. A standard list of line items, assigned with a uniform identification number for each line item for all the projects
under consideration, was used to collect and group the data. Table 1 shows the format in which input was provided to the neural network.

Table 1: A small sample of the input data

	Project Number							
Line Item Number	CND004	CND005 CND005 CND005 CND005 CND006 CND006 CND006						
$615-02.05$	0	0	0	0	0	0	0	0
$615-02.12$	2428	0	0	0	0	0	0	0
$615-02.14$	0	0	0	0	0	0	0	0
$615-02.75$	0	0	0	0	0	0	0	0
$615-05$	0	0	0	0	0	0	0	0
615 M 01.03	0	0	0	0	0	0	0	0
615 M 01.10	0	0	0	0	0	0	0	0
$617-01$	0	14951	14951	14951	14951	0	0	0
$617-02$	518	0	0	0	0	598	598	598
$617-05$	0	0	0	0	0	3	3	3
$620-03$	0	0	0	0	0	0	0	0
$620-03.10$	952	0	0	0	0	0	0	0
$620-03.10$	0	0	0	0	0	0	0	0
$620-03.11$	0	0	0	0	0	588	588	588

The first column titled line item number represents a unique number which identifies the line item or task for each project. Projects below $\$ 6$ million were selected for the analysis to reduce computational complexity by reducing the amount of data to be analyzed. The input vector includes quantities for the project, cost indices for the month in which the project was undertaken and a vector that identifies the contractor which bid on the project. The cost indices include construction cost index, which is comprised of common labor and wages per hour, and material cost index which covers fluctuation in the cost of cement, steel and lumber. The vector which identifies various contractors consists of a matrix of binary digits which are unique for each contractor.

The data set comprising of quantities, cost indices and contractor identifiers was then divided into training and validation set. The training set is used to train the model whereas the validation set is used to test the accuracy of the predictions obtained by using inputs from the validation set. A comparison of the predicted values from the testing process and the actual bid prices quoted by the contractors for the data used in the validation set is made to judge the accuracy of the model. The training set comprises of approximately 86% of the observations and the validation set forms the remaining 14%. The split between the training and validation set was selected at random. A random number generator was used to divide the dataset into a training and validation set.

Data was available on the TDoT website in pdf file format, tables were copied from each pdf file onto a spreadsheet. After the data was copied on the spreadsheet the data was filtered to include information that would be used for the analysis. The data was initially sorted according to project numbers, each project included information including date of opening the bid, place where the work is performed, line item number, description of line item, quantity for each line item, contractors who submitted their bid for the project and the amount bid by each contractor. In the next step, a uniform list of line items was used to sort all the activities that were performed in all the projects. Using this list all the projects were collected on a single spreadsheet, if there was an activity performed for a particular line item in a certain project the amount of that activity was included otherwise a zero was used. For example, in Table 1 for project CND004 the line item number 615-02.12 describes a prestressed concrete box beam (42 " x 48 "), this project requires 2428 linear feet of the prestressed concrete box beam, hence the number

2428 is included whereas line item number 620-03 which describes a concrete parapet is not included in the scope of work hence a zero is put in its place.

Table 2 shows statistics of the data that was used for the training and the validation set.

Table 2: Training and validation set statistic

Training set			Validation set		
Mean	$\$$	904,530	Mean	$\$$	583,117
Standard deviation	$\$$	938,844	Standard deviation	$\$$	379,565
Highest bid	$\$ 5,910,119$	Highest bid	$\$ 1,859,722$		
Lowest bid	$\$$	11,489	Lowest bid	$\$$	78,179
Number of projects		214	Number of projects		35
Number of bids		517	Number of bids	80	

A t-test was carried out on the means of the two datasets to compare the difference in means between the two sets. A t-test was conducted using the means and standard deviations listed in Table 2 using the following equation (Montgomery and Runger 2003):

$$
\begin{equation*}
t_{0}^{*}=\frac{\bar{x}_{1}-\bar{x}_{2}-0}{\sqrt{\frac{\bar{\sigma}_{1}^{2}}{n_{1}}+\frac{\bar{\sigma}_{2}^{2}}{n_{1}}}} \tag{2-1}
\end{equation*}
$$

where,
\bar{x}_{1} and \bar{x}_{2} are the means of the training and validation sets respectively
$\bar{\sigma}_{1}$ and $\bar{\sigma}_{2}$ are the standard deviations of the training and validation sets respectively and
n_{1} and n_{2} are the sample sizes of the training and validation sets respectively

The degree of freedom on t_{0}^{*} is calculated from the following equation (Montgomery and Runger 2003):

$$
\begin{equation*}
v=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(s_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(s_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}} \tag{2-2}
\end{equation*}
$$

From equation (2-1), the value of t_{0}^{*} was calculated as 3.541 and the degree of freedom (v) was equal to 117 . Using a significance level of 0.05 and a degree of freedom of 117 , the $t_{0.025,117}$ value is found to be equal to 1.981 from the t-distribution table. Since $t_{0}^{*}=3.541>1.981$, the null hypothesis that the means are equal can be rejected and it can be concluded that the two datasets are drawn from two different populations. This conclusion suggests that a non-parametric model could be used to predict the bid costs using the given data.

The range of data for the training set is from $\$ 11,000$ to $\$ 5.9$ million whereas for the validation set the range of data is from $\$ 78,000$ to $\$ 1.8$ million. The following assumptions are made for simplification of the analysis:

1. The size of the contractors bidding on the projects has no effect on the bids submitted by them. This assumption is made because it is not possible to obtain data regarding the financial standing of the participating contractors in 2005.
2. Contract is awarded to the lowest bidder where information about winning bid is not available. This assumption helps in determining the winning bid.
3. Prices quoted for the materials are in accordance with the specifications provided by TDoT. This assumption is made to ensure that there is uniformity of selection of materials.
4. Contingency, profit, management fee and other overheads are included in the bid. This is assumed because the data does not indicate a separate division for such costs.
5. It is assumed that there are no delays in the projects causing cost increase and the projects have been completed successfully.
6. It is assumed that no contractor has been disqualified from the bidding process due to any reasons, this assumption is necessary because there is no information about contractors that have been disqualified from the bidding process.

3. ARTIFICIAL NEURAL NETWORKS

3.1. Introduction

According to Rumelhart et al. (1986), there are eight components of a parallel distributed processing model such as the neural network. These eight components are the processing units or neurons, the activation function, the output function, the connectivity pattern, the propagation rule, the activation rule, the learning rule and the environment in which the system operates. Neural networks are a series of interconnected artificial neurons which are trained using available data to understand the underlying pattern. They consist of a series of layers with a number of processing elements within each layer. The layers can be divided into input layer, hidden layer and output layer. Information is provided to the network through the input layer, the hidden layer processes the information by applying and adjusting the weights and biases and the output layer gives the output (Karna and Breen 1989). Each layer may have a number of processing units called neurons. The inputs are weighted to determine the amount of influence it has on the output (Karna and Breen 1989), input signals with larger weights influence the neurons to a higher extend. An activation function is then applied to the weighted inputs, to produce an output signal by transforming the input. The input can be a single node or it may be multiple nodes depicting different parameters where each of the input nodes acts as an input to the hidden layer. The hidden layer consists of a number of neurons/nodes which calculate the weighted sum of the input data.

Figure 2 shows how neural network adjusts the weights and biases by comparing the output with the target. The weights are not fixed but they change over time by gaining experience after several iterations (Rumelhart et al. 1986). Artificial neural networks are used in pattern classification, clustering/categorizing, function approximation, predicting, optimization, control and content-addressable memory (Jain et al. 1996).

Figure 2: Correction of error using target data Reference: Demuth H., Beale M., and Hagan M (2006)

Depending upon the type of input data and the output required, there are five types of activation functions used to transform input signal into output viz., linear function, threshold function, sigmoid function, hyperbolic tangent function and radial basis function. The activation functions are described briefly below:

Linear function: The linear function is of the type $f(s)=s$ and is used for linear transformation of the input. This type of activation function is used for data that have a linear relationship.

Threshold function: The threshold function is used to output a value of 1 if the value of the function is above a threshold. For example, if s_{t} is the threshold value then for all $s>$ s_{t}, the neural network will output a value of 1 and for all other values it will output a value of 0 . The equation (3-1) shows the threshold function,

$$
f(s)= \begin{cases}1, & \text { if } s>s_{t} \tag{3-1}\\ 0, & \text { otherwise }\end{cases}
$$

Sigmoid function: The sigmoid function transforms the input into a value between zero and one. A log sigmoid function transforms any value of the input data from + infinity and - infinity to a value between zero and one.

$$
\begin{equation*}
f(s)=\left(\frac{1}{(1+\exp (-s)}\right) \tag{3-2}
\end{equation*}
$$

For the data used in this project a log-sigmoid transfer function is used in the input and intermediate layers and a linear transfer function is used in the output layer. A log-sigmoid activation function is used because it transforms any number into a value between zero and one. The equation for the log-sigmoid function is as shown in below:

$$
\begin{equation*}
O=\frac{1}{\left(1+e^{-X}\right)} \tag{3-3}
\end{equation*}
$$

where,
$O: \quad$ is the log-sigmoid transfer function.
$X: \quad$ is the weighted sum of the inputs from the previous layer to a particular neuron/node obtained from equation (3-3)

3.2. Background

According to Pham and Liu (1995), neural networks can be categorized according to the structure and learning algorithm used. According to structure they have classified neural networks into feedforward networks and recurrent networks. Pham and Liu (1995) have classified neural networks according to the learning algorithm used into supervised learning networks and unsupervised learning networks.

In a feedforward neural network, information flows from one layer to the next from the input layer to the hidden layer and then to the output layer. The flow of information is unidirectional. The neurons in one layer are connected to the neurons in the next layer. As shown in Figure 3, feedforward neural networks are further classified into multi-layer perceptron networks (MLP), learning vector quantization networks (LVQ), cerebellar model articulation control networks (CMAC) and group-method of data handling networks (GMDH) network (Pham and Liu 1995).

Multilayer perceptron networks (MLP): A multilayer perceptron network is a neural network with a number of layers consisting of neurons with sigmoid activation function (Pal and Mitra 1992). In a multilayer perceptron network, the information is not
exchanged within the layer but neurons from one layer are interconnected with neurons of the adjacent layers with weights determining the degree of correlation between the neurons of the adjacent layers (Pal and Mitra 1992). Multilayer perceptrons uses error back-propagation algorithm to train the network. The error back-propagation technique is a two step process, in the forward step constant weights are assigned to the nodes to compute a response, in the backward step the weights and biases are adjusted to reduce the error between the calculated response and the target values (Haykin 1994).

Figure 3: Structural classification of neural networks

Learning vector quantization (LVQ): It is a supervised learning technique in which the input signal is classified into separate classes, these classes are based on similarity in the data structure (Haykin 1994). Vector quantization techniques are used for data compression by utilizing the underlying structure of the input (Haykin 1994).

Cerebellar model articulation control (CMAC): It is a type of supervised learning feedforward network which utilizes fuzzy associative memory (Pham and Liu 1995).

Group method of data handling (GMDH) network: The group method of data handling network has a structure which produces an output which is a linear combination of two inputs (Pham and Liu 1995). For example if the inputs are x_{1} and x_{2} and the output is given by y, then the output is given by (Pham and Liu 1995)

$$
\begin{equation*}
y=w_{0}+w_{1} x_{1}+w_{2} x_{1}^{2}+w_{3} x_{1} x_{2}+w_{4} x_{2}^{2}+w_{5} x_{2} \tag{3-4}
\end{equation*}
$$

The GMDH network increases in size during training because in this type of network the weights are adjusted for each neuron, and at the same time, the numbers of layers are increased until required accuracy is achieved.

Hopfield network: Hopfield networks are a type of recurrent network which accepts binary and bipolar inputs (Pham and Liu 1995). These types of network consist of a single layer of neuron which is connected to each others in a recurrent manner (Pham and Liu 1995).

Elman and Jordan networks: These networks are made up of multiple layers which are similar to the multilayer perceptron except in addition to a hidden layer they have a special layer called context. In an Elman net, this context layer receives feedback from the output layer or from a hidden layer. In a Jordan network, the signal is send back from each neuron in the context layer to itself (Pham and Liu 1995).

Neural networks can also be categorized according to the learning methods used to train the network. The most common learning methods used are supervised learning, reinforcement learning and unsupervised learning. In the supervised learning method, the network is provided with input and output, the network adjusts the weights after comparing the results from the network with the output to minimize the error. In reinforcement learning, the network is not provided with the output but it is informed if the output is a good fit or not (Karna and Breen 1989). In the unsupervised learning method, input is provided to the network which adjusts the weights and segregates the input patterns into clusters with similar characteristics eg., the Kohonen learning algorithm (Pham and Liu 1995).

Using the three parameters viz., quantity for each line item, contractor identity matrix and cost indices, an input layer consisting of a single node was constructed as shown in Figure 4. The number of hidden layers can be varied depending upon the accuracy of the output required. The network is trained using data from the training set. This trained network is then used to simulate an output using the input data of the validation set. The output of this simulated network is a vector of predicted bid prices for the input data of the validation set.

Figure 4: Structure of neural network e.g. [1441] network

The input data was scaled down between zero and one so that it can be used as an input in MATLAB for constructing the network. Scaling down of the dataset was necessary because the inputs for neural network program in MATLAB require that the input be within the range of zero and one. The scaling down was done by subtracting each value with the minimum value of the whole dataset and then dividing this by the difference between the maximum value and the minimum value of the whole dataset.

$$
\begin{equation*}
\text { Changed Value }=\frac{\text { Original value }- \text { Minimum }}{\text { Maximum }- \text { Minimum }} \tag{3-5}
\end{equation*}
$$

Various iterations were performed by changing the number of layers and the number of neurons in each layer. A levenburg-marquardt algorithm was used for training the network. The neural network program in MATLAB uses the levenberg-marquardt algorithm to achieve numerical optimization through nonlinear least squares. The levenberg-marquardt algorithm aims to minimize the least squres error by approximating the Hessian matrix to achieve second order training speed, as follows (Demuth et al. 2006):

$$
\begin{equation*}
H=J^{T} J \tag{3-6}
\end{equation*}
$$

where,
H is the Hessian matrix and
J is the Jacobian matrix of the first derivatives of the errors with respect to the weights and biases (Demuth et al. 2006)

The gradient can be computed using the network error (Demuth et al. 2006)

$$
\begin{equation*}
g=J^{T} e \tag{3-7}
\end{equation*}
$$

where,
J is the first order derivative of the network errors with respect to the biases and weights and e is the vector of errors of the network (Demuth et al. 2006).

According to Demuth et al. (2006), this approximation of the Hessian matrix is similar to the Newton's method (Demuth et al. 2006).

$$
\begin{equation*}
x_{k+1}=x_{k}-\left[J^{T} J+\mu\right]^{-1} J^{T} e \tag{3-8}
\end{equation*}
$$

The algorithm uses the above form to calculate the performance function. When the value of μ is large the equation (3-8) takes the form of a gradient descent approach
whereas if the value of μ is zero the equation (3-8) takes the form of the Newton's method (Demuth et al. 2006). The Hessian matrix approximation using Jacobian transformation is used to arrive at the least squares error faster (Demuth et al. 2006).

In the neural network, the inputs to a node from the previous layer are multiplied by weights and summed as shown in equation (3-9) (Warner and Misra 1996).

$$
\begin{equation*}
O=\frac{1}{\left(1+e^{-X}\right)} \tag{3-9}
\end{equation*}
$$

where,
$X: \quad$ is the weighted sum of the inputs from the previous layer to a particular neuron/node.
$w_{j i}$: are the weights
$x_{i}: \quad$ are the inputs from the previous layer

Since the inputs to the neural network are scaled down between zero and one, the output has to be scaled up to get the predicted bid prices. This process is reverse of the scaling down process which is done by using the equation shown below:

$$
\begin{equation*}
\text { New value }=[\text { Changed value }(\text { Maximum }- \text { Minimum })]+\text { Minimum } \tag{3-10}
\end{equation*}
$$

Using the method described above, a neural network using data from 214 projects was constructed and thirty five projects were used to validate the network. The network was trained using different configurations of the network and different neurons in each layer. The results from different runs of the validation set are as shown in

Appendix B and Table 3. The projects that were used in the training and the validation set are as listed in Appendix C.

The analysis was performed by changing the number of iterations also called epochs and the configuration of the network. The configuration of the network was changed by varying the number of neurons in each layer and/or changing the number of layers. For example, a [lll 121$]$ configuration denotes that it is a three layered network and there are 1,2 and 1 neurons in the input, hidden and the output layer of the network respectively. Table 3 shows a summary of the different iterations performed to analyze the data. Root mean square error and coefficient of determination are the two parameters that are used to compare the models. The root mean square error is mathematically expressed as follows:

$$
\begin{equation*}
R M S E=\sqrt{\frac{1}{n} \sum_{i}^{n}\left(X_{i}-\bar{X}\right)^{2}} \tag{3-11}
\end{equation*}
$$

The coefficient of determination is calculated from the regression sum of squares $\left(S S_{R}\right)$ and the total corrected sum of squares $\left(S S_{T}\right)$. The regression sum of squares is given by

$$
\begin{equation*}
S S_{R}=\sum_{i}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} \tag{3-12}
\end{equation*}
$$

where,

$$
\hat{y}_{i}-\bar{y} \text { are the residuals }
$$

The total corrected sum of squares $\left(S S_{T}\right)$ is the sum of the regression sum of squares and the error sum of squares $\left(S S_{E}\right)$.

$$
\begin{equation*}
S S_{T}=S S_{R}+S S_{E} \tag{3-13}
\end{equation*}
$$

The error sum of square is calculated as follows

$$
\begin{equation*}
S S_{E}=\sum_{i}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \tag{3-14}
\end{equation*}
$$

The coefficient of determination is the ratio of regression sum of square $\left(S S_{R}\right)$ and the total corrected sum of squares $\left(S S_{T}\right)$ ．

$$
\begin{equation*}
R^{2}=\frac{S S_{R}}{S S_{T}} \tag{3-15}
\end{equation*}
$$

The root mean squared error and the coefficient of determination for the validation set，for different configurations of the network and for different epochs are shown in Table 3．The average cost of the projects in the validation set is $\$ 583,117$ ． From the results it can be seen that the root mean squared error is large when compared to the average cost of the projects in the validation set．

Table 3：Summary of different iterations for the neural network

	100 epochs		200 epochs		500 epochs	
Configuration	RMSE （validation）	$\begin{aligned} & \mathrm{R}^{2} \text { for } \\ & \text { actual } \mathrm{lvs.} \\ & \text { fitted } \end{aligned}$	RMSE （validation）	$\begin{gathered} \mathrm{R}^{2} \text { for } \\ \text { actual vs. } \\ \text { fitted } \end{gathered}$	RMSE （validation）	$\begin{gathered} \mathrm{R}^{2} \text { for } \\ \text { actual vs. } \\ \text { fitted } \\ \hline \end{gathered}$
121	\＄803，491	13．86\％	\＄448，536	19．29\％	\＄1，222，548	19．33\％
O 131	\＄827，918	1．54\％	\＄1，156，026	0．91\％	\＄1，214，538	0．85\％
咼 141	\＄1，245，193	35．52\％	\＄1，293，271	31．38\％	\＄1，074，458	31．31\％
云违 151	\＄662，886	7．72\％	\＄2，228，929	2．94\％	\＄431，175	17．89\％
161	\＄920，434	18．05\％	\＄1，232，999	7．46\％	\＄1，090，793	10．94\％
1221	\＄827，494	34．96\％	\＄585，738	15．29\％	\＄998，982	9．45\％
둘 1331	\＄829，406	9．84\％	\＄868，846	12．25\％	\＄775，359	14．01\％
会莫1441	\＄877，938	9．79\％	\＄731，104	25．25\％	\＄877，938	9．79\％
过 1551	\＄886，859	1．23\％	\＄619，733	13．03\％	\＄997，509	5．99\％
1661	\＄886，859	10．72\％	\＄952，016	2．39\％	\＄481，695	13．85\％

3.3. Conclusions for neural network

After performing different iterations, the neural network with a $\left[\begin{array}{llll}1 & 2 & 2 & 1\end{array}\right]$ configuration and 100 epochs produces the best result. It has a coefficient of determination of 0.34 and a root mean squared error of $\$ 827,494$. The plot of actual versus predicted for the neural network with [llll $122 c c c]$ configuration is as shown in Figure 5.

Figure 5: Actual vs. predicted for artificial neural network with [1221] configuration

Figure 6: Actual vs. predicted for validation set of ANN with [1221] configuration

Figure 6 shows the ability of the network to predict most of the values for the project except a few projects. Projects number CND055 (3 and 4), CND284 (52, 53, 54 and 55) and CND334 (62) are over estimated by the neural network and these values skew the root mean square values. The average predicted error for the neural network with [1221] configuration is 141%. Though some of the values are close to the actual, there is a lot of variation in the predicted values. The actual and predicted values for neural network with [1221] configuration are as shown in Appendix D. The usefulness of the model developed by neural network can be judged only after comparing it with the model obtained from MARS.

The data transformed using principal component analysis (explained in the next section) was used to train neural network, the results obtained were not promising.

Figure 7 shows the output of the analysis using dataset transformed by principal component analysis. All the predicted values were similar to each other hence further analysis using data transformed by principal component analysis was not done.

Figure 7: Output of neural network with data transformed using principal component analysis

4. MULTIVARIATE ADAPTIVE REGRESSION SPLINES

4.1. Introduction

Multivariate Adaptive Regression Splines (MARS) is an adaptive modeling process popularized by J. H. Friedman for non-linear relationships. The modeling technique expands product spline basis functions by selecting the number of basis functions, the locations of the knots and the degrees of freedom automatically depending upon the data (Freidman 1995). The aim of the model is to capture the relationship between the dependent variable and the independent variable from the data. According to Leathwick et al. (2005), MARS divides the predictor variables into piece-wise linear segments to describe non-linear relationships between the predictor and the dependent variable.

The MARS software developed by Salford Systems was used and the results were compared with the results obtained from neural network. The MARS software automatically develops and adjusts the model by comparing the target values and the dependent variables supplied as input to the model. This is done by selecting the appropriate variables that contribute to the model fit, determining the degree of interaction between the predictor variables and conducting tests to avoid over fitting to the dataset (MARS 2001). The MARS software has a number of input/output options and is available with a graphical user interface. The data set can be entered in a number of file formats. The problem faced in fitting a model to the dataset is the type of function that will best fit to it. This problem is overcome by MARS by fitting piecewise linear
basis functions to small segments of the dataset. The other advantage of the MARS model is that it is adaptive, meaning that the model chooses the locations of the knot points depending upon several strategies. One such strategy is minimization of the least squares criterion given in equation (4-1) (Friedman and Roosen 1995),

$$
\begin{equation*}
\sum_{i=1}^{N}\left[y_{i}-\sum_{k=0}^{K+q} a_{k} B_{k}^{(q)}(x)\right]^{2} \tag{4-1}
\end{equation*}
$$

where,

$$
\begin{aligned}
& a_{k} \text { represents the coefficient of expansion } \\
& B_{k}^{(q)}(x) \text { are the basis functions that are selected for inclusion in the model } \\
& \text { of order } q
\end{aligned}
$$

4.2. Background

The aim of any regression model is to derive a relationship between the independent variables and the dependent or the predictor variables. A simple linear regression model takes the form given in equation (4-2).

$$
\begin{equation*}
\mathrm{y}_{\mathrm{i}}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots \ldots \ldots \ldots+\beta_{n} x_{n}+\varepsilon \tag{4-2}
\end{equation*}
$$

In equation $4-2$, the β 's are called regression coefficients and ε is the error term. The x 's are the independent variables and the y 's are the dependent variables whose values can be estimated using the predictor also known as independent variables. In a MARS model the range of x values are divided into disjoint regions separated by "knot" points (Friedman and Roosen 1995). According to Friedman and Roosen (1995), a $q^{\text {th }}$
degree polynomial is then fitted separately and locally to these disjoint regions and each of the $q^{\text {th }}$ order polynomials are then adjusted to fit the disjoint regions locally while satisfying the least squares criterion. Thus, the basis functions are used to determine a relationship between the dependent and the independent variables (Friedman and Roosen 1995). The model iteratively decreases the average squared error, shown in equation (43) by attempting to make the predicted values close to the actual values.

$$
\begin{equation*}
m s e=\sum_{i=1}^{n} \frac{\left(y_{i}-\hat{y}_{i}\right)^{2}}{n} \tag{4-3}
\end{equation*}
$$

In equation (4-3), the average sum of squared error term (mse) can be minimized if the values of y_{i} are close to \hat{y}_{i}. This minimization problem is converted into an optimization problem by choosing basis functions of the form $B_{k}^{(q)}(x)$ for each of the disjoint sets between the knot points (Friedman and Roosen 1995). A linear least squares fit is then performed on each of these basis functions (Friedman and Roosen 1995). The expansion in the piece-wise linear basis function are of the form $(x-t)_{+}$and $(t-x)_{+}$, where + signifies that the equation retains positive values (Hastie 2001). This linear basis function is of the form (Friedman and Roosen 1995)

$$
\left(x-t_{k}\right)_{+}^{q} \begin{cases}0 & x \leq t_{k} \tag{4-4}\\ \left(x-t_{k}\right)^{q} & x>t_{k}\end{cases}
$$

Knots are selected adaptively in a forward/backward stepwise selection approach. A large number of knot locations are selected for the dataset during the forward selection and deleted or retained, depending upon the least squares criterion, in the backward selection process. The advantage of the adaptive knot selection process is
that outliers in the independent variables affect the model locally and there is minimal affect on the overall model (Friedman and Roosen 1995).

After the knot locations are selected, the MARS algorithm selects a number of basis functions with the aim to overfit the data. The splines for the disjoint regions separated by knots are tensor products of the splines over the independent variable (Friedman and Roosen 1995). Basis functions are selected locally, depending upon the variable and the contribution of the variable to the overall fit, the basis function is then either retained or deleted to improve the overall fit of the model. The selection of the basis function is a two step process, in the forward stepwise selection a large number of basis functions are selected (Friedman and Roosen 1995). According to Friedman and Roosen (1995), the forward stepwise process is a recursive process and at each step new two basis functions are introduced into the pool of previously entered basis functions. Interactions can be allowed between each of the basis function or for selected variables depending upon the underlying knowledge of the variable. The basis functions selected in the forward step are compared to each other depending upon some lack of fit criterion such as cross-validation. The MARS algorithm uses generalized cross-validation for pruning until the best fit model is obtained. The data used for comparing the lack-of-fit is required to be independent of the training data hence sample reuse techniques such as the cross validation technique or bootstrapping technique is used for comparing the model fit (Friedman and Roosen 1995).

The MARS algorithm implemented by Salford Systems uses the following equation proposed originally by Craven and Wahba for comparing the fit (Friedman 1991)

$$
\begin{equation*}
G C V(M)=\frac{1}{N} \sum_{i=1}^{N}\left[y_{i}-\hat{f}_{M}\left(x_{i}\right)\right]^{2} /\left[1-\frac{C(M)}{N}\right]^{2} \tag{4-5}
\end{equation*}
$$

where,
$M \quad$: number of non constant basis functions
$\hat{f}_{M}\left(x_{i}\right):$ is the model of the M basis function considered for deletion during the backward step
$C(M)$: is the cost complexity of the model and is given by $C(M)=M \cdot(d / 2+1)+1$ and
$d \quad:$ smoothing parameter

The MARS program however accepts a maximum of 8019 variables hence it was necessary to reduce the dataset. To reduce the dataset and at the same time to retain the variability in the original dataset principal component analysis was used which also makes the dataset uncorrelated. Principal component analysis is discussed in the next section.

4.3. Principal component analysis

The data set from TDoT was found to be correlated. Due to computational constraints the amount of data to be analyzed was required to be reduced. Principal
component analysis (PCA) reduces the dataset while retaining most of the variability and at the same time makes the transformed data uncorrelated. Principal component analysis was performed on the whole dataset. Principal component analysis finds orthogonal linear combinations of the original dataset which have the largest variance and at the same time can be used to reduce the dimensionality of the dataset (Fodor 2002). Fodor (2002) has expressed the independent variables as

$$
\begin{equation*}
x=\left(x_{1}, \ldots \ldots \ldots \ldots, x_{p}\right)^{T} \tag{4-6}
\end{equation*}
$$

whose mean values are given by,

$$
\begin{equation*}
E(x)=\mu=\left(\mu_{1}, \ldots \ldots \ldots \ldots, \mu_{p}\right) \tag{4-7}
\end{equation*}
$$

The covariance matrix for the data can be represented as (Fodor 2002),

$$
\begin{equation*}
E_{p \times p}=E\left[(x-\mu)(x-\mu)^{T}\right] \tag{4-8}
\end{equation*}
$$

and its lower dimension or principal components (pc 's) are represented by,

$$
\begin{equation*}
s=\left(s_{1}, \ldots \ldots \ldots . ., s_{k}\right)^{T} \tag{4-9}
\end{equation*}
$$

where $k \leq p$
Let μ_{i} and σ_{i} denote the mean and the standard deviation of the $i^{\text {th }}$ observation, such that $\sigma_{i}=\sqrt{\sum_{(i, i)}}$. The observations are standardized in order to transform the variables with different units to a set of variables that have zero mean and unit standard deviation (Fodor 2002). The sample mean $\left(\hat{\mu}_{i}\right)$ and the standard deviation $\left(\hat{\sigma}_{i}\right)$ are given as (Fodor 2002),

$$
\begin{align*}
& \hat{\mu}_{i}=\frac{1}{n} \sum_{j=1}^{n}\left(x_{i, j}\right) \tag{4-10}\\
& \hat{\sigma}_{i}=\frac{1}{n} \sum_{j=1}^{n}\left(x_{i, j}-\hat{\mu}_{i}\right)^{2} \tag{4-11}
\end{align*}
$$

The data is standardized using the mean and the standard deviation as follows (Fodor 2002):

$$
\begin{equation*}
\frac{\left(x_{i, j}-\hat{\mu}_{i}\right)}{\hat{\sigma}_{i}} \tag{4-12}
\end{equation*}
$$

The principal components are linear combinations of the original variables (Fodor 2002),

$$
\begin{align*}
& s_{i}=w_{i, 1} x_{1}+\ldots \ldots \ldots .+w_{i, p} x_{p} \tag{4-13}\\
& \text { for } i=1, \ldots \ldots, k \text { and } k \leq p \quad \text { or } \\
& s=W x \tag{4-14}
\end{align*}
$$

Principal component analysis arranges the transformed variables in descending order of variance with the first few principal components explaining hopefully most of the variability. Mathematically, Fodor (2002) expresses the first principal component as follows:

$$
\begin{equation*}
s_{1}=x^{T} w_{1} \tag{4-15}
\end{equation*}
$$

where the p dimensional is given by (Fodor 2002)

$$
\begin{equation*}
w_{1}=\left(w_{1,1}+\ldots \ldots \ldots \ldots+w_{1, p}\right)^{T} \tag{4-16}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{1}=\arg \max _{\mid w=1 \|} \operatorname{Var}\left(x^{T} w\right) \tag{4-17}
\end{equation*}
$$

The second principal component explains the second largest variance and is orthogonal to the first principal component (Fodor 2002). Thus a number of principal components are computed which retain the variance of the original data and at the same time reduces the size of the dataset. The data is standardized to have a mean zero and standard deviation of one so that they are comparable even when the variables have different units (Fodor 2002). After the data is standardized the covariance matrix can be given by (Fodor 2002),

$$
\begin{equation*}
\Sigma_{p x p}=\frac{1}{n} X X^{T} \tag{4-18}
\end{equation*}
$$

According to Fodor (2002), \sum can be written using the spectral decomposition theorem as follows:

$$
\begin{equation*}
\Sigma=U \Lambda U^{T} \tag{4-19}
\end{equation*}
$$

where,
$\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots \ldots \ldots . ., \lambda_{p}\right)$ is the diagonal matrix of the eigenvalues such that $\lambda_{p} \geq \ldots \ldots \ldots \geq \lambda_{1}$ and

U is the orthogonal matrix containing the eigenvectors.
The p rows of the $p x n$ matrix S, in the equation below, gives the principal components (Fodor 2002).

$$
\begin{equation*}
S=U^{T} X \tag{4-20}
\end{equation*}
$$

The eigenvalues are the variances and the eigenvectors are the loadings. MATLAB was used to perform the transformation into principal components. Figure 8 shows the variation explained after principal component analysis is performed on the entire dataset. Figure 9 shows the cumulative percentage of variation explained.

Figure 8: Variance explained for the whole dataset

Figure 9: Cumulative variance explained for the whole dataset

Only those principal components that explain 90 percent of the variability are retained for further analysis. The first 108 principal components explain 90 percent of the variability in the whole dataset hence they are used for analyzing using multivariate adaptive regression splines. The components that explain 90 percent of the variability are retained because after this value the percentage variation explained is very small and does not change substantially.

Figure 10: \% variance explained for the first 108 principal components

Figure 11: Cumulative $\%$ variance explained for the first 108 principal components

Figure 10 and Figure 11 shows the plot of percent variation explained and cumulative percent variation explained for the first 108 principal components.

4.4. Analysis using MARS

The dataset used for training and validation using MARS is the same as that used for analysis using artificial neural networks, except the data used for MARS was transformed using principal component analysis and only the first 108 principal components were retained. The same dataset was used so that comparison between the results using the two methods could be made. Several trials were done by fitting different models by changing various parameters, to the training set and then validating the results. The parameters were changed depending upon the results obtained by testing previous models. Models were fitted by changing certain parameters (discussed below) of the program and comparing the results for the validation set using root mean square error and plotting the predicted values against the actual values. The parameters that were varied are speed factor, penalty on added variable, maximum number of basis functions, maximum interactions, records to process, minimum observations between knots and degree of freedom. These parameters are discussed below:

Maximum number of basis functions: MARS initially constructs a number of models in a bid to over fit the data. The number of models to be fitted is dependent on the number of basis functions allowed. It is advised to have the number of basis functions equal to two to four times of the number of predictors (MARS 2001). The number of basis function is a user specified parameter and affects the speed of the MARS run
(MARS 2001). The maximum number of basis functions is varied from 15 to 200 while performing different iterations.

Penalty on added variables: This parameter directs the MARS model to reuse the available variables i.e. MARS will increase the number of knots for the existing variables or increase interaction between the already present variables rather than generating new variables from combination of the variables already present in the model (MARS 2001).

Minimum number of observations between knots: This parameter allows the user to specify the number of data points between adjacent knots. By default, MARS will generate knots at every observed data point. The default setting allows MARS to select knots depending upon the data (MARS 2001). Increasing the distance between the knots will make the model more global in nature rather than being locally adaptive (MARS 2001).

Speed factor: The speed factor can be adjusted on a scale of one through five, five being the fastest. A speed of one makes the model slower but improves the accuracy of the model. At a speed of one, MARS does intensive search of all the basis functions and chooses the one which contributes the most to the least squares criterion or any other criterion used for evaluating model fit.

Records to process: The records to process option specifies the percent of original data that the program can process, if the option is set to zero it will process the entire dataset, if the option is set to a specific number, the program will process the specified number of observations (MARS 2001).

Maximum interactions: This setting allows the user to specify the amount of interaction between the variables of the model. A value of one for the interaction terms makes the model additive, a value of two allows two way interaction and a value of three or more specifies that the model can be a product of one or more basis functions (MARS 2001).

Degree of freedom: The degree of freedom allows the user to impose a penalty to the knot selection process to avoid over fitting the model to the data. Three methods are available to select the degree of freedom they are: setting it to a particular value, determining by x - fold cross-validation and by using a test sample randomly set aside from every $\mathrm{n}^{\text {th }}$ observation. Using the first option the user can set the degree of freedom to a particular number, the default is set to 3.00 but it can be set to as high as 200 (MARS 2001). The second option allows the MARS model to select the degree of freedom by fold cross validation, for example if a value of 10 - fold cross-validation is specified, MARS will compute ten more models to optimize the knot selection process. In the third option, the program will set aside a randomly selected sample after every $\mathrm{n}^{\text {th }}$ observation and estimate the degree of freedom.

4.5. Results

Different models were run by varying the parameters described above. The configurations of the different runs are as shown in Table 4. The parameters were changed depending on results obtained from previous runs. Of the thirteen different models developed, three models showed substantially good results. The results of the different runs are compared using root mean square error and coefficient of determination.

Different models were developed by changing the speed factor, penalty on added variable, maximum basis function, maximum interactions allowed, minimum observations between knots and degree of freedom. The initial model were analyzed using low values for each case, in the first three set of models the number of interactions were changed steadily while keeping the maximum number of basis functions constant. In these three models the penalty on added variable was changed to see if there was any difference in the output. The testing method for determining degree of freedom was kept constant but the value was changed in the third model (Table 4). It was observed that changing the degree of freedom affected the model. Hence, the method of determining degree of freedom was changed in subsequent iterations. It should be noted that changing the method of determining the degree of freedom to " X - cross-validation" gives better results. Other parameters that affected the model significantly are number of maximum basis function and maximum number of interactions. The model prediction improves by increasing the maximum number of basis functions and the number of
interactions. MARS selects the degree of freedom by using a generalized cross validation (GCV) criterion as discussed before. There are three methods used to determine the degrees of freedom and the " x-fold cross validation" method is the most effective method that improves prediction for this dataset.

Table 4: Parameters for different model runs

	Options and Limits						Testing		
								Select met determi degree of f	
Model	Speed factor	Penalty on added variable	Max. basis functions	Max. Interac tions	Records to process	Min. observations between knots	Set to	X - fold Cross validation	Use test sample randomly set aside at every $n^{\text {th }}$ observation
Model 1	4	None	15	1	0	0	3.00	-	-
Model 2	1	Moderate	15	2	0	0	3.00	-	-
Model 3	1	Heavy	15	3	0	2	4.00	-	-
Model 4	1	Heavy	20	10	0	0	-	10	-
Model 5	1	None	100	50	0	0	-	110	-
Model 6	1	None	100	100	0	0	-	10	-
Model 7	1	Heavy	200	200	0	0	-	10	-
Model 8	4	None	50	100	0	0	3.0	-	-
Model 9	1	None	100	100	0	50	-	10	
Model 10	1	Moderate	50	50	0	0	-	-	2
Model 11	1	None	100	100	0	110	-	110	-
Model 12	1	None	110	110	0	0	-	110	-
Model 13	1	None	200	200	0	0	-	500	-

The results from the models developed using the different parameters are as shown in Table 5. Model number 5, 12 and 13 have R-square values of 58.27\%, 42.53\% and 54.17% which are better than the rest of the models. The plot of actual vs. predicted
(Figure 12) shows that the MARS program is able to capture the variability in the data set reasonably well. Model number 5 has the best R -square value of 58.27% while model number 6 has the lowest root mean square error of $\$ 1,342,011$.

Table 5: MARS results

Model \#	RMSE	Coefficient of determination $\left.\mathbf{(R}^{2}\right)$
Model 1	$\$ 2,535,132$	16.78%
Model 2	$\$ 1,555,689$	18.57%
Model 3	$\$ 1,651,545$	23.95%
Model 4	$\$ 1,489,013$	16.68%
Model 5	$\$ 2,157,533$	58.27%
Model 6	$\$ 1,342,011$	13.62%
Model 7	$\$ 1,162,633$	16.94%
Model 8	$\$ 6,258,412$	17.99%
Model 9	$\$ 2,859,332$	14.56%
Model 10	$\$ 1,340,552$	6.67%
Model 11	$\$ 4,593,369$	13.86%
Model 12	$\$ 1,642,966$	42.53%
Model 13	$\$ 2,467,507$	54.17%

Figure 12 and Figure 13 show the plots of the actual and the predicted for the validation set of model 5 . The predicted values for model 5 are close to the actual values for the projects in the validation set. The output from the MARS program for model 5 is attached in Appendix G. The level of accuracy achieved depends on the size of the project, the number of contractors participating in the bidding process, the type of project and the total project cost. The predictions from MARS can be improved by providing more information about the location, the total number of projects performed
by each contractor bidding on the project, the revenue earned by each contractor, the expected duration required to complete the project etc.

Figure 12: Actual vs. predicted for model 5

The average percent variation of the predicted values from the actual is about 43% with the lowest variation of 0.23% and a highest variation of 217.8%. Figure 14 shows the plot of the percent variation of the predicted values against the actual values. Figure 15 shows the percent variation of the actual bid prices from the predicted values plotted against the actual bid prices.

Figure 13: Actual and predicted bid prices for projects in validation set of model 5

Figure 14: Percent variation of predicted values from actual values

Figure 15: Percent variation of actual from predicted vs. bid costs

5. CONCLUSION

Figure 16 shows the comparison of the best models obtained from both the methods i.e. MARS and ANN with the actual values. The values obtained from MARS are closer to the actual values than those obtained from ANN.

Figure 16: Comparison of best models from MARS and ANN

Bid prices for some of the projects are predicted higher than the actual values by the MARS and ANN model. This is a major drawback of both the models because if the predicted values are higher than the actual values quoted by other contractors, the contractor might lose the contract. If all the contractors bidding on a project use this model to predict the bid prices, then every contractor will know what the other contractors are going to quote on the project. This situation is a problem of decision
analysis and game theory. Such a situation is not taken under consideration while developing the model.

After comparing the results from artificial neural networks and multivariate adaptive regression splines, it can be concluded that the MARS model is better than the ANN model for the following reasons:

1) The MARS program requires lesser computational resources whereas ANN requires considerable computational resources.
2) ANN does not provide a functional relationship between the dependent and the independent variables whereas MARS provides a relationship between the basis functions derived from the independent variables and the dependent variable.
3) Since MARS fits sub models to segmented data, outliers do not affect the model globally whereas ANN's are strongly affected by outliers.
4) The MARS model is more stable in terms of prediction i.e. the predictions obtained using the same parameter settings will be fairly similar for several runs, the predictions from ANN are not very stable.
5) ANN does not give useful output when the original dataset is transformed using principal component analysis, this is a major drawback. Principal component analysis reduces the size of the dataset this helps in making the analysis faster and easier to manage when a large amount of data is involved.

6. DISCUSSION

To illustrate the usefulness of the two models, the results from one of the project used in the validation set are discussed below. The project identified as CND374 involves repair of bridges on I-24 over Dodds avenue and Westside drive. The four contractors bidding on the project are General Contractors, Inc., Jamison Construction, LLC., Southern Constructors, Inc. and Williams Restoration \& Waterproofing, Inc. Table 6 summarizes the results of the predicted costs for ANN and MARS. For this project, the predicted values for Jamison Construction LLC and Williams restoration and waterproofing, Inc. are very close to the actual values. Figure 17 and Table 6 compare the results of the two methods with the actual values.

Table 6: Results for CND 374

| Sr.
 No. | Contractors | Actual values | ANN
 $\mathbf{1} \mathbf{1} 2 \mathbf{1}$ Configuration) | MARS
 (Model 5) |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 1 | GENERAL CONSTRUCTORS, INC. | $\$ 613,829.00$ | $\$ 499,075.20$ | $\$ 567,970.00$ |
| 2 | JAMISON CONSTRUCTION, LLC | $\$ 616,392.50$ | $\$ 433,899.07$ | $\$ 587,030.44$ |
| 3 | SOUTHERN CONSTRUCTORS, | $\$ 662,598.00$ | $\$ 466,992.48$ | $\$ 621,167.63$ |
| INC. | $\$ 759,360.25$ | $\$ 450,122.17$ | $\$ 722,332.50$ | |

The comparison between the two models was based on the results from the best models obtained in each of the methods. The neural network model with configuration [1221] and model 5 for MARS was used to compare the predicted values.

Figure 17: Comparison of results for CND 374

One of the contractors could use MARS to predict what other contractors may bid on the project. For example, if Williams Restoration \& Waterproofing, Inc. had information about the bid prices that the other three contractors would quote, the contractor could have adjusted his bid to win the contract. The contractor could then negotiate prices with the suppliers, reduce their profit or utilize some other strategy which would reduce cost of the project. Information about the bid prices quoted by other contractors could also help the contractor determine if bidding on the project is a profitable venture. This decision could be made by the contractor on their expected rate of return on the investment they plan to make on this project.

Table 7 shows the percent variation of the predicted values from the two methods with the actual values for project CND374.

Table 7: Variation of predictions from actual for CND 374

Contractors	Actual - MARS	Variation of MARS results from Actual	Actual - ANN	Variation of ANN results from Actual
GENERAL CONSTRUCTORS, INC.	$\$ 45859.00$	7.47%	$\$ 114753.79$	18.69%
JAMISON CONSTRUCTION, LLC	$\$ 29362.06$	4.76%	$\$ 182493.42$	29.61%
SOUTHERN CONSTRUCTORS, INC.	$\$ 41430.37$	6.25%	$\$ 195605.51$	29.52%
WILLIAMS WATERPROOFING, INC.	$\$ 37027.75$	4.88%	$\$ 309238.08$	40.72%

The above analysis shows the usefulness of the multivariate adaptive regression splines method for predicting bid prices for highway construction project. The MARS method can be used in conjunction to other techniques of cost estimation like a detailed estimate to make decision whether to bid for a project or not.

The model may not be useful when predicting bid prices that may be quoted by a new contractor bidding for a project at TDoT. Future research and model improvement can be done by including more variables in the model. Variables like the amount of equipment owned by the participating contractors, the amount of work performed annually by each contractor, the location where work is being performed, project schedule, fuel cost index and distance of the project site from suppliers would improve the results obtained from the model. Contractors often use their knowledge about
competing contractors to bid on projects such practices introduce correlation between bid costs quoted by each contractors, this correlation could also be included in the analysis to improve results.

REFERENCES

Adeli, H. (2001). "Neural networks in civil engineering: 1989-2001." Computer-Aided Civil and Infrastructure Engineering, 16, 126-142.

Adeli, H., and Wu, M. (1998). "Regularization neural network for construction cost estimation." Journal of Construction Engineering and Management, 124(1), 18-24.

Basheer, I. and Hajmeer, M. (2000), "Artificial neural networks: Fundamentals, computing, design and application." Journal of Microbiological Methods, 43(1), 331.

Chou, S., Lee T., Shao, Y., and Chen, I. (2004), "Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines." Expert Systems with Applications, 27(1), 133-142.

Demuth, H., Beale, M., and Hagan, M. (2006). Neural network toolbox User's guide, Version 5, Natick, Massachusetts.

Engineering News Record (ENR), (2005), <www.enr.com>, (August 31, 2006).

Faghri, A. (2000). "Transportation project cost estimation using artificial neural networks." Journal of Engineering Valuation and Cost Analysis, 2(6), 465-480.

Fodor, I. K. (2002). "A survey of dimension reduction techniques." Technical Report UCRL ID-148494, Lawrence Livermore National Laboratory, University of California, California.

Friedman, J. H. (1991). "Multivariate adaptive regression splines." The Annals of Statistics, 19(1), 1-67.

Friedman, J. H., and Roosen, C. B. (1995). "An introduction to multivariate adaptive regression splines." Statistical methods in medical research, 4(3), 197-217.

Hassoun, M. H. (1994). Fundamentals of artificial neural networks, The MIT Press, Massachusetts.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2001). The elements of statistical learning, data mining, inference and prediction, Springer series in Statistics, New York.

Haykin, S. (1994). Neural networks: A comprehensive foundation, Macmillan, New York.

Hendrickson, C., and Au, T. (1998). Project management for construction, 2nd Ed., Prentice Hall, Pennsylvania.

Jain, A. K., Mao, J., and Mohiuddin, K. M. (1996). "Artificial neural networks: A tutorial." Computer, 29(3), 31-44.

Karna, K. N., and Breen, D. M. (1989). "An artificial neural networks tutorial: Part 1 basics." The international journal of neural networks, 1(1), 4-23.

Karunanithi, N., Grenney, W. J., Whitley, D., and Bovee, K. (1994). "Neural networks for river flow prediction." Journal of Computing in Civil Engineering, 8(2), 201-220.

Leathwick, J. R., Rowe, D., Richardson, J., Elith, J., and Hastie, T. (2005). "Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish." Freshwater Biology, 50(12), 2034-2052.

Li, H., Shen, L. Y., and Love, P. E. D. (1999). "ANN-based mark-up estimation system with self-explanatory capabilities." Journal of Construction Engineering and Management, 125(3), 185-189.

Loizos, A. and Karlaftis, M. G. (2006). "Neural networks and non-parametric statistical models: A comparative analysis in pavement condition analysis." Advances and Applications in Statistics, 6(1), 87-110.

MARS (2001). MARS ${ }^{T M}$ User guide, Salford Systems, San Diego, California.

Maqsood, I, Khan, M. R., and Abraham, A. (2004). "An ensemble of neural networks for weather forecasting", Neural Computing and Applications, 13(2), 112-122.

Maru, S., and Nagpal, A. (2004). "Neural network for creep and shrinkage deflections in reinforced concrete frames." Journal of Computing in Civil Engineering, 18(4), 350359.

Montgomery, D. C. and Runger, G. C. (2003). Applied Statistics and Probability for Engineers, $3{ }^{\text {rd }}$ Ed., John Wiley, New York.

Oberlender, G. D. (2000). Project Management for Engineering and Construction, $2^{\text {nd }}$ Ed., McGraw-Hill, New York.

Pal, S. K., and Mitra, S. (1992) "Multilayer perceptron, fuzzy sets and classification", IEEE Transactions on Neural Networks, 3(5), 683-697.

Pham, D. T., and Liu, X. (1995). Neural networks for identification, prediction and control, Springer-Verlag, New York.

Riedi, M. (1997). "Modeling segmental duration with multivariate adaptive regression splines." Proc., 5th European Conference on Speech Communication and Technology (EUROSPEECH 97), ESCA, Rhodes, Greece, 2627-2630.

Rumelhart, D. E., McClelland, J. L and the PDP research group (1986). Parallel Distribution Processing: Exploration in the microstructure of cognition, Volume 1: Foundations, The MIT Press, Massachusetts.

Sephton, P. (2005). "Forecasting inflation using the term structure and MARS." Applied Economics Letters, 12(4), 199-202.

Sinha, S.K., and McKim, R. A. (1997), "Forecasting construction cost escalation using artificial neural networks." Proc., IEEE ANNIE 1997 Conference on Neural Networks, 829-835

Tennessee Department of Transportation (TDoT) (2006), http://www.tdot.state.tn.us/construction/lettings_previous.htm, (Sept. 27, 2006)

Thiesing, F. M., and Vornberger, O. (1997). "Sales forecasting using neural networks", International Conference on Neural Networks, 4, 2125-2128.

Warner, B., and Misra M. (1996). "Understanding neural networks as statistical tools." The American Statistician, 50(4), 284-293.

Wilmot, C. G., and Mei, B. (2005). "Neural network modeling of highway construction costs", Journal of Construction Engineering and Management, 131(7), 765-771.

APPENDIX A

Cost indices for the year 2005

Table 8: Cost index for the year 2005

Cost index for 2005 base year 1913=100				
	Construction cost	Building cost	Skilled wages	Common wages
JANUARY	7297.24	4112.34	6911.83	15284.21
FEBRUARY	7297.58	4115.73	6925.53	15289.87
MARCH	7308.75	4126.9	6925.53	15289.87
APRIL	7355.38	4167.53	6925.53	15305.66
MAY	7398.03	4188.97	6971.74	15407.63
JUNE	7414.97	4194.65	6981.47	15446.97
JULY	7421.57	4196.87	6997.06	15474.08
AUGUST	7478.51	4209.70	7064.50	15657.50
SEPTEMBER	7540.38	4241.56	7156.97	15828.82
OCTOBER	7562.50	4265.34	7163.96	15831.45
NOVEMBER	7629.95	4311.94	7199.13	15921.45
DECEMBER	7646.87	4328.85	7199.13	15921.45
Reference: www.enr.com (2005)				

APPENDIX B

Results of different runs using different configurations for ANN.

Plots for ANN with 121 configuration and 100 epochs:

Actual vs. predicted plot

Plots for ANN with 131 configuration and 100 epochs:

Actual vs. predicted plot

Actual

Plots for ANN with 141 configuration and 100 epochs:

Plots ANN with 151 configuration and 100 epochs:

Actual vs. predicted plot

Plots for ANN with 161 configuration and 100 epochs:

Actual vs. predicted plot

Plots for ANN with 1331 configuration and 100 epochs:

Actual vs. predicted plot

Plots for ANN with 1441 configuration and 100 epochs:

Actual vs. predicted plot

Plots for ANN with 1551 configuration and 100 epochs:

Actual vs. predicted plot

Plots for ANN with 1661 configuration and 100 epochs:

Actual vs. predicted plot

Plots ANN with 121 configuration and 200 epochs:

Actual vs. predicted plot

Plots for ANN with 131 configuration and 200 epochs:

Actual vs. predicted plot

Plots for ANN with 141 configuration and 200 epochs:

Actual vs. predicted plot

Plots for ANN with 151 configuration and 200 epochs:

Actual vs. predicted plot

Plots for ANN with 161 configuration and 200 epochs:

Actual vs. predicted plot

Plots for ANN with 1221 configuration and 200 epochs:

Actual vs. predicted plot

Plots for ANN with 1331 configuration and 200 epochs:

Actual vs. predicted plot

Plots for ANN with 1441 configuration and 200 epochs:

Actual vs. predicted plot

Plots for ANN with 1551 configuration and 200 epochs:

Actual vs. predicted plot

Plots for ANN with 1661 configuration and 200 epochs:

Actual vs. predicted plot

Plots for ANN with 121 configuration and 500 epochs:

Actual vs. predicted plot

Plots for ANN with 131 configuration and 500 epochs:

Actual vs. predicted plot

Plots for ANN with 141 configuration and 500 epochs:

Actual vs. predicted plot

Plots for ANN with 151 configuration and 500 epochs:

Plots for ANN with 161 configuration and 500 epochs:

Plots for ANN with 1221 configuration and 500 epochs:

Actual vs. predicted plot

Plots for layer ANN with 1331 configuration and 500 epochs:

Actual vs. predicted plot

Plots for ANN with 1441 configuration and 500 epochs:

Actual vs. predicted plot

Plots for ANN with 1551 configuration and 500 epochs:

Actual vs. predicted plot

Plots for ANN with 1661 configuration and 500 epochs:

Actual vs. predicted plot

APPENDIX C

Projects used for the training set.

Project \#	Name of Contractor	Bid price quoted	Project \#	Name of Contractor	Bid price quoted
CND004	HIGHWAYS, INC.	$\$ 2,844,235.69$	CND065	DEMENT CONSTRUCTION CO., LLC	$\$ 903,567.61$
CND005	BELL \& ASSOCIATES CONSTRUCTION, L.P.	$\$ 3,585,329.22$	CND065	MOUNTAIN STATES CONTRACTORS, LLCC	$\$ 1,023,336.77$
CND005	MID-STATE CONSTRUCTION COMPANY, INC.	$\$ 3,926,151.85$	CND066	DEMENT CONSTRUCTION COMPANY	$\$ 986,583.67$
CND005	MOUNTAIN STATES CONTRACTORS, LLC	$\$ 3,794,787.97$	CND066	TENNESSEE ASPHALT COMPANY	$\$ 996,015.48$
CND005	SOUTHERN CONSTRUCTORS, INC.	$\$ 3,413,145.50$	CND069	FORD CONSTRUCTION COMPANY	$\$ 652,850.20$
CND006	GENERAL CONSTRUCTORS, INC.	$\$ 959,691.49$	CND069	FORD CONSTRUCTION COMPANY	$\$ 652,850.20$
CND006	JAMISON CONSTRUCTION, LLC	$\$ 861,767.65$	CND070	APAC-TENNESSEE, INC. (M)	$\$ 1,028,257.00$
CND006	SUMMERS-TAYLOR, INC.	$\$ 1,188,201.30$	CND070	LEHMAN-ROBERTS COMPANY	$\$ 842,100.78$
CND048	LINCOLN PAVING, L.L.C.	$\$ 1,919,209.29$	CND073	SHELBY ELECTRIC COMPANY, INC.	$\$ 156,870.20$
CND049	LOJAC ENTERPRISES, INC.	$\$ 1,192,599.05$	CND073	STANSELL ELECTRIC CO., INC.	$\$ 141,275.40$
CND049	ROGERS GROUP, INC.	$\$ 1,089,595.10$	CND073	WADE ELECTRIC COMPANY, INC.	$\$ 117,496.81$
CND053	CHRIS-HILL CONSTRUCTION CO., LLC	$\$ 281,442.93$	CND074	HIGHWAY MARKINGS, INC.	$\$ 313,355.50$
CND053	DEMENT CONSTRUCTION CO., LLC	$\$ 300,749.65$	CND074	HIGHWAYS, INC.	$\$ 367,024.00$
CND053	MOUNTAIN STATES CONTRACTORS, LLC	$\$ 277,475.40$	CND074	TENNESSEE GUARDRAIL, INC.	$\$ 765,568.00$
CND056	FORD CONSTRUCTION COMPANY	$\$ 3,834,797.48$	CND075	APAC-TENNESSEE, INC. (K)	$\$ 354,817.69$
CND059	DEMENT CONSTRUCTION CO., LLC	$\$ 490,774.80$	CND075	RENFRO CONSTRUCTION CO., INC.	$\$ 336,477.52$
CND059	THOMSON \& THOMSON, INC.	$\$ 480,845.50$	CND075	TENNESSEE ASPHALT COMPANY	$\$ 332,772.33$
CND060	TENNESSEE ASPHALT COMPANY	$\$ 518,173.98$	CND077	APAC-TENNESSEE, INC. (K)	$\$ 1,265,257.65$
CND063	APAC-TENNESSEE, INC. (K)	$\$ 142,650.00$	CND077	RENFRO CONSTRUCTION CO., INC.	$\$ 1,290,828.29$
CND063	LYONS CONSTRUCTION COMPANY, INC.	$\$ 154,705.71$	CND078	APAC-TENNESSEE, INC. (K)	$\$ 293,782.18$
CND063	RENFRO CONSTRUCTION CO., INC.	$\$ 139,760.63$	CND078	CHARLES BLALOCK \& SONS, INC.	$\$ 326,017.66$
CND063	TENNESSEE ASPHALT COMPANY	$\$ 122,887.26$	CND078	RENFRO CONSTRUCTION CO., INC.	$\$ 312,357.34$
CND064	RENFRO CONSTRUCTION CO., INC.	$\$ 187,497.03$			
CND064	TENNESSEE ASPHALT COMPANY	$\$ 186,262.87$			

Project \#	Name of Contractor	Bid price quoted	Project \#	Name of Contractor	Bid price quoted
CND081	APAC-TENNESSEE, INC. (K)	\$ 164,225.93	CND094	HIGHWAYS, INC.	\$ 769,440.00
CND081	CHARLES BLALOCK \& SONS, INC.	\$ 181,879.75	CND094	LOJAC ENTERPRISES, INC.	\$ 698,801.25
CND081	RENFRO CONSTRUCTION CO., INC.	\$ 177,812.77	CND095	APAC-TENNESSEE, INC. (A)	\$ 285,683.00
CND083	RENFRO CONSTRUCTION CO., INC.	\$ 1,415,032.78	CND095	ROGERS GROUP, INC.	\$ 246,248.71
CND083	ROGERS GROUP, INC.	\$ 1,276,057.22	CND095	THOMAS BROTHERS CONSTRUCTION CO., INC.	\$ 274,532.00
CND083	TENNESSEE ASPHALT COMPANY	\$ 1,815,674.63	CND097	C.W. MATTHEWS CONTRACTING CO., INC.	\$ 363,233.35
CND085	STANDARD CONSTRUCTION CO., INC.	\$ 612,422.79	CND097	HIGHWAYS, INC.	\$ 319,632.00
CND086	DEMENT CONSTRUCTION CO., LLC	\$ 251,684.63	CND098	ROGERS GROUP, INC.	\$ 334,590.21
CND086	THOMSON \& THOMSON, INC.	\$ 284,341.95	CND099	ADMAN ELECTRIC INC	\$ 633,069.03
CND088	CHRIS-HILL CONSTRUCTION CO., LLC	\$ 174,428.90	CND099	DAVIS H. ELLIOT COMPANY, INC.	\$ 528,500.00
CND088	DEMENT CONSTRUCTION CO., LLC	\$ 142,577.05	CND099	HOLLEY ELECTRIC CONSTRUCTION CO., INC.	\$ 530,890.23
CND088	THOMSON \& THOMSON, INC.	\$ 146,550.05	CND099	NABCO ELECTRIC COMPANY, INC.	\$ 640,196.70
CND089	CHRIS-HILL CONSTRUCTION CO., LLC	\$ 516,751.99	CND099	STANSELL ELECTRIC CO., INC.	\$ 473,628.36
CND089	DEMENT CONSTRUCTION CO., LLC	\$ 974,703.15	CND101	ROGERS GROUP, INC.	\$ 354,724.55
CND089	GIBSON \& ASSOCIATES INC.	\$ 713,069.00	CND104	DEMENT CONSTRUCTION CO., LLC	\$ 576,059.84
CND089	THOMSON \& THOMSON, INC.	\$ 385,612.12	CND104	MOUNTAIN STATES CONTRACTORS, LLC	\$ 638,487.01
CND090	C.W. MATTHEWS CONTRACTING CO., INC.	\$ 406,478.37	CND104	THOMSON \& THOMSON, INC.	\$ 692,193.37
CND090	RENFRO CONSTRUCTION CO., INC.	\$ 349,600.40	CND104	VOLUNTEER BRIDGE CONSTRUCTION, INC.	\$ 520,830.25
CND092	ROGERS GROUP, INC.	\$ 505,798.48	CND105	DEMENT CONSTRUCTION CO., LLC	\$ 794,080.27
CND092	WRIGHT PAVING CONTRACTORS, INC.	\$ 559,359.01	CND105	FORD CONSTRUCTION COMPANY	\$ 723,305.14
CND093	HIGHWAYS, INC.	\$ 369,880.00	CND105	MOUNTAIN STATES CONTRACTORS, LLC	\$ 864,809.88
CND093	TENNESSEE ASPHALT COMPANY	\$ 350,307.35	CND106	DEMENT CONSTRUCTION CO., LLC	\$ 55,587.50
			CND106	JAMISON CONSTRUCTION, LLC	\$ 95,295.30
			CND106	THOMSON \& THOMSON, INC.	\$ 120,119.80

Project \#	Name of Contractor	Bid price quoted	Project \#	Name of Contractor	Bid price quoted
CND107	FORD CONSTRUCTION COMPANY	\$ 619,968.00	CND130	ROGERS GROUP, INC.	\$ 312,872.10
CND110	BELL \& ASSOCIATES CONSTRUCTION, L.P.	\$ 811,144.60	CND131	APAC-TENNESSEE, INC. (A)	\$ 803,519.20
CND110	CONCRETE STRUCTURES, INC.	\$ 687,054.41	CND133	OGLESBY CONSTRUCTION, INC.	\$ 315,686.74
CND110	DEMENT CONSTRUCTION CO., LLC	\$ 793,547.21	CND133	SUPERIOR PAVEMENT MARKING, INC.	\$ 231,631.92
CND110	MOUNTAIN STATES CONTRACTORS, LLC	\$ 654,709.90	CND133	VOLUNTEER HIGHWAY SUPPLY CO., INC.	\$ 257,299.20
CND112	APAC-TENNESSEE, INC. (K)	\$ 849,690.79	CND135	DEMENT CONSTRUCTION COMPANY	\$ 1,548,289.53
CND112	RENFRO CONSTRUCTION CO., INC.	\$ 941,478.11	CND135	FORD CONSTRUCTION COMPANY	\$ 1,498,907.38
CND112	TENNESSEE ASPHALT COMPANY	\$ 976,374.87	CND135	MOUNTAIN STATES CONTRACTORS, LLC	\$ 1,546,046.75
CND115	GENERAL CONSTRUCTORS, INC.	\$ 557,918.80	CND136	LEHMAN-ROBERTS COMPANY	\$ 957,431.91
CND115	JAMISON CONSTRUCTION, LLC	\$ 839,361.00	CND137	DEMENT CONSTRUCTION COMPANY	\$ 1,035,599.02
CND115	MID-STATE CONSTRUCTION COMPANY, INC.	\$ 784,873.50	CND137	FORD CONSTRUCTION COMPANY	\$1,228,624.38
CND117	GENERAL CONSTRUCTORS, INC.	\$ 435,053.20	CND138	FORD CONSTRUCTION COMPANY	\$ 999,658.94
CND117	JAMISON CONSTRUCTION, LLC	\$ 315,438.00	CND138	FORD CONSTRUCTION COMPANY	\$ 999,658.94
CND117	MOUNTAIN STATES CONTRACTORS, LLC	\$ 393,972.00	CND144	LOJAC ENTERPRISES, INC.	\$1,034,470.10
CND117	SOUTHERN CONSTRUCTORS, INC.	\$ 491,950.00	CND144	MOUNTAIN STATES CONTRACTORS, LLC	\$1,123,711.60
CND118	BLUEGRASS CONTRACTING CORPORATION	\$ 334,828.00	CND147	ROGERS GROUP, INC.	\$ 596,382.00
CND118	CHARLES BLALOCK \& SONS, INC.	\$ 440,097.80	CND148	BLUEGRASS CONTRACTING CORPORATION	\$ 362,639.95
CND118	HINKLE CONTRACTING CORPORATION	\$ 334,630.70	CND148	BROWN BUILDERS, INC.	\$ 396,590.72
CND118	INTERSTATE CONCRETE CONSTRUCTION, LLC	\$ 283,524.00	CND148	MOUNTAIN STATES CONTRACTORS, LLC	\$ 410,775.78
CND118	SIMPSON BRIDGE COMPANY, INC.	\$ 306,195.36	CND159	DEMENT CONSTRUCTION COMPANY	\$2,959,475.63
CND118	SOUTHERN CONSTRUCTORS, INC.	\$ 323,999.80	CND159	FORD CONSTRUCTION COMPANY	\$3,775,192.67
CND127	APAC-TENNESSEE, INC. (K)	\$ 839,391.71	CND160	CIVIL CONSTRUCTORS, INC.	\$4,935,044.50
CND127	RENFRO CONSTRUCTION CO., INC.	\$ 839,447.52	CND160	SESSIONS PAVING COMPANY	\$5,112,023.90
CND127	TENNESSEE ASPHALT COMPANY	\$ 831,359.78			

Project \#	Name of Contractor	Bid price quoted	Project \#	Name of Contractor	Bid price quoted
CND161	BROWN BUILDERS, INC.	$\$ 386,978.40$	CND175	BROWN BUILDERS, INC.	$\$ 485,254.50$
CND161	CIVIL CONSTRUCTORS, INC.	$\$ 374,873.00$	CND175	GENERAL CONSTRUCTORS, INC.	$\$ 377,633.19$
CND161	CONCRETE STRUCTURES, INC.	$\$ 404,247.87$	CND175	MID-STATE CONSTRUCTION COMPANY, INC.	$\$ 506,174.90$
CND161	HINKLE CONTRACTING CORPORATION	$\$ 445,784.30$	CND175	MOUNTAIN STATES CONTRACTORS, LLC	$\$ 684,231.70$
CND161	PUTNAM CONTRACTING SERVICES, LLC.	$\$ 378,619.00$	CND177	DIAMOND SPECIALIZED, INC.	$\$ 124,950.00$
CND161	SESSIONS PAVING COMPANY	$\$ 333,388.05$	CND181	SIMMONS SWEEPING COMPANY	$\$ 416,087.25$
CND163	LAW SIGNS, LLC	$\$ 421,100.00$	CND181	SWEEPING CORPORATION OF AMERICA, INC.	$\$ 430,610.80$
CND163	LOJAC SAFETY, INC.	$\$ 345,582.65$	CND184	SWEEPING CORPORATION OF AMERICA, INC.	$\$ 573,591.20$
CND164	LAW SIGNS, LLC	$\$ 348,825.00$	CND185	SIMMONS SWEEPING COMPANY	$\$ 437,392.50$
CND165	ROGERS GROUP, INC.	$\$ 199,876.18$	CND185	SWEEPING CORPORATION OF AMERICA, INC.	$\$ 452,269.80$
CND168	GREENSTAR, LLC	$\$ 251,556.35$	CND186	SUMMERS-TAYLOR, INC.	$\$ 1,759,540.15$
CND168	MOUNTAIN STATES CONTRACTORS, LLC	$\$ 297,217.50$	CND188	TENNESSEE GUARDRAIL, INC.	$\$ 248,834.00$
CND169	HIGHWAY MARKINGS, INC.	$\$ 168,837.02$	CND189	THOMAS BROTHERS CONSTRUCTION CO., INC.	$\$ 631,951.80$
CND169	INTERSTATE ROAD MANAGEMENT CORP.	$\$ 84,826.30$	CND189	TINSLEY ASPHALT, LLC	$\$ 650,572.25$
CND169	SUPERIOR PAVEMENT MARKING, INC.	$\$ 171,586.84$	CND191	TRAF-MARK, INC.	$\$ 397,302.00$
CND170	LAW SIGNS, LLC	$\$ 437,615.00$	CND192	TENNESSEE GUARDRAIL, INC.	$\$ 491,846.00$
CND172	LAW SIGNS, LLC	$\$ 234,835.00$	CND192	TRAF-MARK, INC.	$\$ 447,422.00$
CND172	LOJAC SAFETY, INC.	$\$ 201,549.08$	CND194	DEMENT CONSTRUCTION COMPANY	$\$ 483,890.56$
CND173	DEMENT CONSTRUCTION COMPANY	$\$ 371,973.40$	CND194	FORD CONSTRUCTION COMPANY	$\$ 562,317.76$
CND174	DEMENT CONSTRUCTION CO., LLC	$\$ 429,461.77$	CND194	DEMENT CONSTRUCTION COMPANY	$\$ 483,890.56$
CND174	FORD CONSTRUCTION COMPANY	$\$ 387,152.65$	CND194	FORD CONSTRUCTION COMPANY	$\$ 562,317.76$
CND174	MOUNTAIN STATES CONTRACTORS, LLC	$\$ 538,212.97$	CND196	BROWN BUILDERS, INC.	$\$ 870,857.91$
			CND196	CONCRETE STRUCTURES, INC.	$\$ 787,763.38$
			CND196	MOUNTAIN STATES CONTRACTORS, LLC	$\$ 910,448.55$

Project \#	Name of Contractor			Bid price quoted	Project \#

Project \#	Name of Contractor	Bid price quoted	Project \#	Name of Contractor	Bid price quoted
CND237	ROGERS GROUP, INC.	\$ 398,343.12	CND255	EUBANK ASPHALT PAVING \& SEALING	\$ 784,062.25
CND239	ROGERS GROUP, INC.	\$ 516,982.59	CND255	LOJAC ENTERPRISES, INC.	\$ 728,329.00
CND240	RENFRO CONSTRUCTION CO., INC.	\$ 407,658.35	CND255	ROGERS GROUP, INC.	\$ 727,801.00
CND240	ROGERS GROUP, INC.	\$ 489,713.85	CND256	EUBANK ASPHALT PAVING \& SEALING	\$ 446,981.31
CND241	ROGERS GROUP, INC.	\$ 334,078.30	CND256	MCINTOSH CONSTRUCTION COMPANY, INC.	\$ 664,754.00
CND243	HIGHWAYS, INC.	\$ 314,830.00	CND256	MOUNTAIN STATES CONTRACTORS, LLC	\$ 498,444.55
CND243	LOJAC ENTERPRISES, INC.	\$ 341,636.00	CND257	LOJAC ENTERPRISES, INC.	\$ 559,699.00
CND245	HIGHWAYS, INC.	\$ 369,990.00	CND259	HOOVER, INC.	\$ 387,603.29
CND245	LOJAC ENTERPRISES, INC.	\$ 388,546.20	CND259	LOJAC ENTERPRISES, INC.	\$ 368,156.00
CND247	HIGHWAYS, INC.	\$ 369,765.00	CND260	LOJAC ENTERPRISES, INC.	\$ 2,728,986.80
CND247	LOJAC ENTERPRISES, INC.	\$ 405,915.00	CND260	MOUNTAIN STATES CONTRACTORS, LLC	\$ 2,323,337.00
CND248	C \& D SAFETY COMPANY, LLC	\$ 348,924.00	CND263	TRAF-MARK, INC.	\$ 197,101.00
CND248	KERR BROS. \& ASSOCIATES, INC.	\$ 240,340.00	CND264	APAC-MISSISSIPPI, INC.	\$ 1,593,988.32
CND249	C \& D SAFETY COMPANY, LLC	\$ 716,470.25	CND264	DEMENT CONSTRUCTION COMPANY	\$ 1,385,021.34
CND249	MOUNTAIN STATES CONTRACTORS, LLC	\$ 859,009.60	CND264	APAC-MISSISSIPPI, INC.	\$ 1,593,988.32
CND249	SESSIONS PAVING COMPANY	\$ 688,311.20	CND264	DEMENT CONSTRUCTION COMPANY	\$ 1,385,021.34
CND250	CUMBERLAND GUARDRAIL, INC.	\$ 289,323.50	CND267	TENNESSEE ASPHALT COMPANY	\$ 482,846.98
CND250	TENNESSEE GUARDRAIL, INC.	\$ 349,340.00	CND267	TENNESSEE ASPHALT COMPANY	\$ 482,846.98
CND250	TRI-STATE GUARDRAIL \& SIGN CO., INC.	\$ 335,998.00	CND268	FORD CONSTRUCTION COMPANY	\$ 465,964.90
CND251	LOJAC ENTERPRISES, INC.	\$ 968,708.75	CND268	FORD CONSTRUCTION COMPANY	\$ 465,964.90
CND251	MOUNTAIN STATES CONTRACTORS, LLC	\$ 995,170.35	CND269	DEMENT CONSTRUCTION COMPANY	\$ 2,094,551.18
CND251	ROGERS GROUP, INC.	\$ 998,330.00	CND269	DEMENT CONSTRUCTION COMPANY	\$ 2,094,551.18
CND253	CONCRETE STRUCTURES, INC.	\$ 544,159.33	CND272	BAKER'S CONSTRUCTION SERVICES, INC.	\$ 498,395.39
CND253	MOUNTAIN STATES CONTRACTORS, LLC	\$ 584,940.00	CND272	SUMMERS-TAYLOR, INC.	\$ 497,268.95
			CND272	WHALEY \& SONS, INC.	\$ 677,192.50

Project \#	Name of Contractor	Bid price quoted	Project \#	Name of Contractor	Bid price quoted
CND273	GENERAL CONSTRUCTORS, INC.	\$ 678,592.29	CND286	EUBANK ASPHALT PAVING \& SEALING	\$ 573,495.45
CND273	JAMISON CONSTRUCTION, LLC	\$ 780,691.10	CND287	HIGHWAYS, INC.	\$ 524,985.00
CND273	MID-STATE CONSTRUCTION COMPANY, INC.	\$ 927,988.38	CND287	TENNESSEE ASPHALT COMPANY	\$ 556,449.50
CND273	MOUNTAIN STATES CONTRACTORS, LLC	\$ 1,022,616.20	CND288	APAC-TENNESSEE, INC. (A)	\$ 325,887.70
CND273	SIMPSON BRIDGE COMPANY, INC.	\$ 927,242.94	CND288	HIGHWAYS, INC.	\$ 259,900.00
CND274	CHRIS-HILL CONSTRUCTION CO., LLC	\$ 583,652.00	CND288	LOJAC ENTERPRISES, INC.	\$ 285,037.50
CND274	DEMENT CONSTRUCTION CO., LLC	\$ 562,311.67	CND289	LINCOLN PAVING, L.L.C.	\$ 1,346,951.08
CND274	FORD CONSTRUCTION COMPANY	\$ 479,419.14	CND289	WRIGHT PAVING CONTRACTORS, INC.	\$ 1,216,024.11
CND274	MOUNTAIN STATES CONTRACTORS, LLC	\$ 638,868.35	CND291	APAC-TENNESSEE, INC. (A)	\$ 336,173.16
CND275	J \& M INCORPORATED	\$ 1,346,373.50	CND291	HIGHWAYS, INC.	\$ 427,620.00
CND275	SIMPSON BRIDGE COMPANY, INC.	\$ 979,832.07	CND291	LOJAC ENTERPRISES, INC.	\$ 388,664.50
CND275	WRIGHT BROTHERS CONSTRUCTION CO., INC.	\$ 1,086,242.10	CND294	INTERSTATE CONCRETE CONSTRUCTION, LLC	\$ 400,039.15
CND276	DEMENT CONSTRUCTION CO., LLC	\$ 1,255,979.18	CND294	SUMMERS-TAYLOR, INC.	\$ 384,825.20
CND276	HIGHWAYS, INC.	\$ 1,149,796.18	CND295	CUMBERLAND GUARDRAIL, INC.	\$ 248,433.20
CND276	MOUNTAIN STATES CONTRACTORS, LLC	\$ 1,066,541.48	CND295	KRD CORPORATION	\$ 285,506.75
CND276	SIMPSON CONSTRUCTION COMPANY, INC.	\$ 1,087,562.28	CND295	TENNESSEE GUARDRAIL, INC.	\$ 297,925.00
CND276	WRIGHT BROTHERS CONSTRUCTION CO., INC.	\$ 1,138,402.60	CND295	TRI-STATE GUARDRAIL \& SIGN CO., INC.	\$ 487,717.50
CND278	HOLLEY ELECTRIC CONSTRUCTION CO., INC.	\$ 19,317.00	CND296	DEMENT CONSTRUCTION COMPANY	\$ 604,340.50
CND278	PROGRESSION ELECTRIC, LLC	\$ 11,489.00	CND296	ROGERS GROUP, INC.	\$ 721,682.00
CND283	HIGHWAYS, INC.	\$ 414,660.00	CND299	TENNESSEE ASPHALT COMPANY	\$ 584,655.18
CND283	LOJAC ENTERPRISES, INC.	\$ 306,234.90	CND303	EUBANK ASPHALT PAVING \& SEALING	\$ 1,238,495.45
CND285	DEMENT CONSTRUCTION COMPANY	\$ 1,299,244.46	CND303	LOJAC ENTERPRISES, INC.	\$ 1,132,807.10
CND285	FORD CONSTRUCTION COMPANY	\$ 1,385,043.25	CND303	ROGERS GROUP, INC.	\$ 1,245,512.00
CND285	DEMENT CONSTRUCTION COMPANY	\$ 1,299,244.46			
CND285	FORD CONSTRUCTION COMPANY	\$ 1,385,043.25			

Project \#	Name of Contractor	Bid price quoted	Project \#	Name of Contractor	Bid price quoted
CND305	APAC-TENNESSEE, INC. (M)	\$ 599,997.05	CND329	DEMENT CONSTRUCTION CO., LLC	\$ 690,196.45
CND305	LEHMAN-ROBERTS COMPANY	\$ 551,706.83	CND329	MID-STATE CONSTRUCTION COMPANY, INC.	\$ 907,065.81
CND305	STANDARD CONSTRUCTION CO., INC.	\$ 569,487.73	CND329	SIMPSON CONSTRUCTION COMPANY, INC.	\$ 824,467.56
CND305	APAC-TENNESSEE, INC. (M)	\$ 599,997.05	CND329	SOUTHERN CONSTRUCTORS, INC.	\$ 1,135,225.00
CND305	LEHMAN-ROBERTS COMPANY	\$ 551,706.83	CND330	APAC-TENNESSEE, INC. (A)	\$ 593,165.58
CND305	STANDARD CONSTRUCTION CO., INC.	\$ 569,487.73	CND330	LYONS CONSTRUCTION COMPANY, INC.	\$ 514,470.29
CND311	S \& W CONTRACTING CO., INC.	\$ 53,473.00	CND330	SUMMERS-TAYLOR, INC.	\$ 492,761.50
CND311	STANSELL ELECTRIC CO., INC.	\$ 50,660.00	CND332	FREISTHLER PAVING, INC.	\$ 266,168.50
CND312	CIVIL CONSTRUCTORS, INC.	\$ 1,326,813.88	CND332	TENNESSEE ASPHALT COMPANY	\$ 307,510.00
CND312	MOUNTAIN STATES CONTRACTORS, LLC	\$ 1,891,495.79	CND340	CHARLES BLALOCK \& SONS, INC.	\$ 491,282.00
CND314	DEMENT CONSTRUCTION COMPANY	\$ 333,687.94	CND343	JAMISON CONSTRUCTION, LLC	\$ 2,228,938.00
CND314	FORD CONSTRUCTION COMPANY	\$ 251,295.00	CND343	SOUTHERN CONSTRUCTORS, INC.	\$ 2,701,682.50
CND315	HILL BROS. EXCAVATING, INC.	\$ 621,495.18	CND346	ROGERS GROUP, INC.	\$ 387,159.76
CND315	MARCUM EXCAVATING	\$ 735,893.50	CND346	WRIGHT PAVING CONTRACTORS, INC.	\$ 439,334.03
CND315	WRIGHT BROTHERS CONSTRUCTION CO., INC.	\$ 646,987.18	CND347	EUBANK ASPHALT PAVING \& SEALING	\$ 519,256.60
CND316	DEMENT CONSTRUCTION COMPANY	\$ 231,757.20	CND348	FORD CONSTRUCTION COMPANY	\$ 1,114,797.24
CND316	DEMENT CONSTRUCTION COMPANY	\$ 231,757.20	CND348	FORD CONSTRUCTION COMPANY	\$ 1,114,797.24
CND320	DEMENT CONSTRUCTION COMPANY	\$ 539,597.15	CND351	RENFRO CONSTRUCTION CO., INC.	\$ 845,435.20
CND320	FORD CONSTRUCTION COMPANY	\$ 370,596.47	CND351	SIMPSON CONSTRUCTION COMPANY, INC.	\$ 695,038.18
CND320	VOLUNTEER BRIDGE CONSTRUCTION, INC.	\$ 450,806.00	CND351	WRIGHT BROTHERS CONSTRUCTION CO., INC.	\$ 773,548.59
CND321	FORD CONSTRUCTION COMPANY	\$ 453,068.30	CND356	TENNESSEE GUARDRAIL, INC.	\$ 4,320,390.00
CND321	FORD CONSTRUCTION COMPANY	\$ 453,068.30	CND357	GERALD DAVID ORR CONTRACTING , INC.	\$ 337,950.00
CND328	GENERAL CONSTRUCTORS, INC.	\$ 421,941.00	CND357	ORR CONTRACTING, INC.	\$ 338,935.00
CND328	JAMISON CONSTRUCTION, LLC	\$ 270,966.00	CND358	CUMBERLAND GUARDRAIL, INC.	\$ 3,591,462.50
CND328	MID-STATE CONSTRUCTION COMPANY, INC.	\$ 183,344.05	CND358	TENNESSEE GUARDRAIL, INC.	\$ 3,963,300.00

Project \#	Name of Contractor	Bid price quoted	Project \#	Name of Contractor	Bid price quoted
CND360	GENERAL CONSTRUCTORS, INC.	\$ 978,505.74	CND378	DEMENT CONSTRUCTION CO., LLC	\$ 910,904.25
CND360	MID-STATE CONSTRUCTION COMPANY, INC.	\$ 1,129,693.11	CND378	MOUNTAIN STATES CONTRACTORS, LLC	\$ 880,326.50
CND360	SOUTHERN CONSTRUCTORS, INC.	\$ 1,999,942.00	CND378	THOMSON \& THOMSON, INC.	\$ 654,431.25
CND361	APEX CONTRACTING, INC OF KY	\$ 197,208.45	CND378	VOLUNTEER BRIDGE CONSTRUCTION, INC.	\$ 631,650.00
CND361	DAVIS H. ELLIOT COMPANY, INC.	\$ 225,008.30	CND379	DEMENT CONSTRUCTION CO., LLC	\$ 538,044.90
CND361	S \& W CONTRACTING CO., INC.	\$ 154,796.32	CND379	FORD CONSTRUCTION COMPANY	\$ 391,038.50
CND361	STANSELL ELECTRIC CO., INC.	\$ 160,227.08	CND380	CHRIS-HILL CONSTRUCTION CO., LLC	\$ 621,388.65
CND365	DAVIS H. ELLIOT COMPANY, INC.	\$ 83,331.00	CND380	DEMENT CONSTRUCTION CO., LLC	\$ 446,008.90
CND365	S \& W CONTRACTING CO., INC.	\$ 81,716.25	CND380	THOMSON \& THOMSON, INC.	\$ 427,670.40
CND365	STANSELL ELECTRIC CO., INC.	\$ 64,692.00	CND384	MID-STATE CONSTRUCTION COMPANY, INC.	\$ 540,431.51
CND370	GENERAL CONSTRUCTORS, INC.	\$ 531,753.38	CND384	SOUTHERN CONSTRUCTORS, INC.	\$ 2,806,087.15
CND370	JAMISON CONSTRUCTION, LLC	\$ 589,418.00	CND415	CBM ENTERPRISES, INC.	\$ 634,267.06
CND370	MID-STATE CONSTRUCTION COMPANY, INC.	\$ 639,677.36	CND415	CIVIL CONSTRUCTORS, INC.	\$ 681,816.20
CND370	SOUTHERN CONSTRUCTORS, INC.	\$ 687,585.00	CND415	JENCO CONSTRUCTION, INC.	\$ 688,677.72
CND372	TENNESSEE GUARDRAIL, INC.	\$ 3,826,860.00	CND415	LOJAC ENTERPRISES, INC.	\$ 686,011.05
CND373	TRI-STATE GUARDRAIL \& SIGN CO., INC.	\$ 2,688,500.00	CND415	ROGERS GROUP, INC.	\$ 766,531.50
CND376	HIGHWAYS, INC.	\$ 807,641.60	CND415	SESSIONS PAVING COMPANY	\$ 698,087.00
CND376	THOMAS BROTHERS CONSTRUCTION CO., INC.	\$ 984,278.00	CND416	DEMENT CONSTRUCTION CO., LLC	\$ 316,929.31
CND377	DEMENT CONSTRUCTION CO., LLC	\$ 943,487.00	CND416	FORD CONSTRUCTION COMPANY	\$ 353,319.06
CND377	JAMISON CONSTRUCTION, LLC	\$ 734,646.48	CND416	MOUNTAIN STATES CONTRACTORS, LLC	\$ 419,591.84
CND377	MOUNTAIN STATES CONTRACTORS, LLC	\$ 950,292.42	CND416	VOLUNTEER BRIDGE CONSTRUCTION, INC.	\$ 348,867.74
CND377	THOMSON \& THOMSON, INC.	\$ 857,578.90	CND419	DEMENT CONSTRUCTION CO., LLC	\$ 286,909.62
CND377	VOLUNTEER BRIDGE CONSTRUCTION, INC.	\$ 811,344.00	CND419	FORD CONSTRUCTION COMPANY	\$ 272,314.00
			CND419	MOUNTAIN STATES CONTRACTORS, LLC	\$ 385,770.59
			CND419	THOMSON \& THOMSON, INC.	\$ 341,909.80

| Project \# | Name of Contractor | Bid price quoted | Project \# | Nid price |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- |
| quoted | | | | |

Project \#	Name of Contractor	Bid price quoted	Project \#	Name of Contractor	Bid price quoted
CND919	COFFEY CONSTRUCTION COMPANY, INC.	\$ 1,696,596.91	CND934	C.W. MATTHEWS CONTRACTING CO., INC.	\$ 498,712.71
CND919	CONSTRUCTION COMPANY	\$ 1,643,422.70	CND936	CIVIL CONSTRUCTORS, INC.	\$ 798,614.30
CND919	CONSTRUCTION COMPANY	\$ 2,136,277.50	CND936	SESSIONS PAVING COMPANY	\$ 741,155.30
CND920	CHARLES BLALOCK \& SONS, INC.	\$ 794,395.55	CND937	APAC-TENNESSEE, INC. (A)	\$ 1,714,250.00
CND922	CHARLES BLALOCK \& SONS, INC.	\$ 2,299,299.99	CND937	SUMMERS-TAYLOR, INC.	\$ 1,457,122.50
CND922	MOUNTAIN STATES CONTRACTORS, LLC	\$ 1,890,671.80	CND939	ERBY CONTRACTORS, INC.	\$ 815,634.01
CND922	SIMPSON CONSTRUCTION COMPANY, INC.	\$ 2,142,060.63	CND939	H. C. LEWIS CONSTRUCTION, INC.	\$ 801,644.85
CND923	CIVIL CONSTRUCTORS, INC.	\$ 1,093,834.10	CND939	SIMPSON CONSTRUCTION COMPANY, INC.	\$ 832,952.62
CND923	HIGHWAYS, INC.	\$ 1,251,083.00	CND948	MOUNTAIN STATES CONTRACTORS, LLC	\$ 3,772,564.11
CND923	HILL BROS. EXCAVATING, INC.	\$ 1,382,080.90	CND948	SIMPSON CONSTRUCTION COMPANY, INC.	\$ 3,780,858.30
CND923	JENCO CONSTRUCTION, INC.	\$ 1,226,574.28	CND949	B \& W EXCAVATION, LLC	\$ 1,270,691.00
CND923	MOUNTAIN STATES CONTRACTORS, LLC	\$ 1,560,539.84	CND949	CIVIL CONSTRUCTORS, INC.	\$ 1,323,751.10
CND923	SESSIONS PAVING COMPANY	\$ 1,074,054.50	CND949	HIGHWAYS, INC.	\$ 1,263,678.00
CND924	OCCI, INC.	\$ 428,000.00	CND949	JENCO CONSTRUCTION, INC.	\$ 1,347,052.17
CND925	FIRST RESPONSE, INC.	\$ 363,925.00	CND949	MOUNTAIN STATES CONTRACTORS, LLC	\$ 2,054,706.89
CND925	ORCHARD FENCE COMPANY	\$ 369,100.00	CND949	PHILLIPS AND JORDAN, INCORPORTATED	\$ 1,445,877.00
CND927	EAST TENNESSEE TURF AND LANDSCAPE	\$ 212,025.00	CND949	SESSIONS PAVING COMPANY	\$ 2,222,192.00
CND927	ORCHARD FENCE COMPANY	\$ 223,100.00			
CND928	DEMENT CONSTRUCTION CO., LLC	\$ 924,167.06			
CND928	FORD CONSTRUCTION COMPANY	\$ 787,130.65			
CND928	MOUNTAIN STATES CONTRACTORS, LLC	\$ 972,653.58			
CND930	THOMAS BROTHERS CONSTRUCTION CO., INC.	\$ 844,253.60			
CND931	DIXIELAND CONTRACTORS, INC.	\$ 201,441.64			
CND931	FERRELL PAVING, INC.	\$ 189,206.83			

APPENDIX D

Output of neural network for [1221] configuration.

Sr. No.	$\begin{gathered} \hline \text { Project } \\ \# \end{gathered}$	Actual Bid Costs	Predicted Bid Costs	Sr. No.	$\begin{gathered} \hline \text { Project } \\ \# \\ \hline \end{gathered}$	Actual Bid Costs	Predicted Bid Costs	$\begin{gathered} \hline \text { Sr. } \\ \text { No. } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Project } \\ \# \end{gathered}$	Actual Bid Costs	Predicted Bid Costs
1	CND009	\$682,000	\$428,917	30	CND146	\$397,551	\$395,101	59	CND318	\$419,929	\$362,860
2	CND009	\$627,289	\$546,607	31	CND146	\$607,280	\$384,226	60	CND318	\$359,853	\$371,133
3	CND055	\$783,320	\$3,128,377	32	CND152	\$699,358	\$796,327	61	CND318	\$453,202	\$357,346
4	CND055	\$754,477	\$3,128,377	33	CND152	\$728,773	\$802,701	62	CND334	\$493,517	\$2,926,535
5	CND057	\$554,129	\$587,307	34	CND162	\$98,612	\$355,288	63	CND352	\$170,948	\$373,087
6	CND057	\$272,363	\$634,073	35	CND162	\$78,179	\$360,930	64	CND352	\$160,196	\$353,825
7	CND057	\$277,659	\$543,389	36	CND162	\$81,206	\$354,016	65	CND374	\$613,829	\$499,075
8	CND076	\$414,125	\$507,930	37	CND193	\$284,896	\$383,305	66	CND374	\$616,392	\$433,899
9	CND076	\$364,617	\$456,352	38	CND193	\$284,896	\$383,305	67	CND374	\$662,598	\$466,992
10	CND084	\$629,043	\$475,360	39	CND211	\$282,282	\$403,799	68	CND374	\$759,360	\$450,122
11	CND096	\$573,456	\$353,970	40	CND211	\$327,140	\$422,041	69	CND381	\$432,697	\$531,361
12	CND096	\$489,790	\$362,629	41	CND211	\$406,367	\$406,827	70	CND381	\$488,066	\$453,951
13	CND096	\$686,410	\$360,247	42	CND223	\$300,425	\$465,989	71	CND381	\$337,904	\$549,909
14	CND102	\$955,381	\$979,301	43	CND223	\$312,445	\$376,526	72	CND381	\$431,139	\$449,312
15	CND109	\$542,058	\$366,868	44	CND226	\$607,589	\$482,406	73	CND417	\$216,576	\$355,706
16	CND109	\$590,354	\$354,592	45	CND242	\$151,605	\$380,174	74	CND417	\$209,310	\$361,188
17	CND116	\$798,420	\$559,135	46	CND242	\$178,766	\$353,363	75	CND417	\$251,342	\$353,363
18	CND116	\$786,930	\$515,040	47	CND252	\$493,652	\$511,974	76	CND421	\$416,849	\$424,582
19	CND116	\$702,622	\$498,819	48	CND258	\$725,934	\$705,466	77	CND421	\$404,867	\$379,616
20	CND128	\$239,008	\$358,442	49	CND258	\$634,845	\$534,287	78	CND908	\$969,543	\$524,467
21	CND128	\$294,030	\$436,505	50	CND282	\$925,094	\$451,660	79	CND908	\$1,568,489	\$572,936
22	CND129	\$489,894	\$493,031	51	CND282	\$781,350	\$585,080	80	CND932	\$409,948	\$355,557
23	CND129	\$445,196	\$536,737	52	CND284	\$1,859,722	\$4,202,236				
24	CND140	\$1,634,599	\$764,358	53	CND284	\$1,847,741	\$4,389,446				
25	CND140	\$1,325,497	\$843,951	54	CND306	\$1,139,495	\$4,443,723				
26	CND140	\$1,389,030	\$859,675	55	CND306	\$1,158,879	\$4,381,200				
27	CND146	\$330,050	\$359,573	56	CND309	\$657,700	\$857,309				
28	CND146	\$295,310	\$363,994	57	CND309	\$740,638	\$863,292				
29	CND146	\$299,797	\$375,496	58	CND309	\$783,562	\$1,005,348				

APPENDIX E

Projects used for the validation set.

| Project \# | Name of Contractor | Bid price
 quoted | Project \# | Name of Contractor | Bid price
 quoted |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CND009 | ROGERS GROUP, INC. | $\$ 682,000.00$ | CND140 | APAC-MISSISSIPPI, INC. | $\$ 1,634,598.62$ |
| CND009 | WRIGHT PAVING CONTRACTORS, INC. | $\$ 627,289.17$ | CND140 | DEMENT CONSTRUCTION COMPANY | $\$ 1,325,497.03$ |
| CND055 | APAC-TENNESSEE, INC. (K) | $\$ 783,320.00$ | CND140 | MOUNTAIN STATES CONTRACTORS, LLC | $\$ 1,389,029.85$ |
| CND055 | RENFRO CONSTRUCTION CO., INC. | $\$ 754,477.50$ | CND146 | CUMBERLAND GUARDRAIL, INC. | $\$ 330,050.62$ |
| CND057 | DEMENT CONSTRUCTION CO., LLC | $\$ 554,129.20$ | CND146 | DIXIELAND CONTRACTORS, INC. | $\$ 295,310.19$ |
| CND057 | FORD CONSTRUCTION COMPANY | $\$ 272,363.00$ | CND146 | LTS CONSTRUCTION, LLC | $\$ 299,797.50$ |
| CND057 | THOMSON \& THOMSON, INC. | $\$ 277,659.30$ | CND146 | TENNESSEE ASPHALT COMPANY | $\$ 397,551.68$ |
| CND076 | APAC-TENNESSEE, INC. (A) | $\$ 414,125.70$ | CND146 | VOLUNTEER BRIDGE CONSTRUCTION, INC. | $\$ 607,280.00$ |
| CND076 | PATTY DRILLING, INC. | $\$ 364,616.95$ | CND152 | HOOVER, INC. | $\$ 699,358.80$ |
| CND084 | SUMMERS-TAYLOR, INC. | $\$ 629,043.00$ | CND152 | LOJAC ENTERPRISES, INC. | $\$ 728,773.50$ |
| CND096 | C.W. MATTHEWS CONTRACTING CO., INC. | $\$ 573,456.09$ | CND162 | ADMAN ELECTRIC INC | $\$ 98,612.17$ |
| CND096 | HIGHWAYS, INC. | $\$ 489,790.00$ | CND162 | S \& W CONTRACTING CO., INC. | $\$ 78,179.45$ |
| CND096 | TALLEY CONSTRUCTION COMPANY, INC. | $\$ 686,410.40$ | CND162 | STANSELL ELECTRIC CO., INC. | $\$ 81,206.40$ |
| CND102 | APAC-TENNESSEE, INC. (A) | $\$ 955,380.95$ | CND193 | STANDARD CONSTRUCTION CO., INC. | $\$ 284,895.95$ |
| CND109 | FERRELL PAVING, INC. | $\$ 542,058.49$ | CND193 | STANDARD CONSTRUCTION CO., INC. | $\$ 284,895.95$ |
| CND109 | WHITE CONTRACTING, INC. | $\$ 590,354.65$ | CND211 | HIGHWAYS, INC. | $\$ 282,282.00$ |
| CND116 | BLUEGRASS CONTRACTING CORPORATION | $\$ 798,420.24$ | CND211 | HILL BROS. EXCAVATING, INC. | $\$ 327,139.97$ |
| CND116 | EATHERLY GROUP, INC. | $\$ 786,930.76$ | CND211 | MARCUM EXCAVATING | $\$ 406,367.50$ |
| CND116 | HIGHWAYS, INC. | $\$ 702,621.95$ | CND223 | APAC-TENNESSEE, INC. (A) | $\$ 300,425.00$ |
| CND128 | RENFRO CONSTRUCTION CO., INC. | $\$ 239,008.40$ | CND223 | CHARLES BLALOCK \& SONS, INC. | $\$ 312,445.70$ |
| CND128 | ROGERS GROUP, INC. | $\$ 294,030.25$ | CND226 | ROGERS GROUP, INC. | $\$ 607,589.20$ |
| CND129 | HIGHWAYS, INC. | $\$ 489,894.00$ | CND242 | RENFRO CONSTRUCTION CO., INC. | $\$ 151,605.79$ |
| CND129 | LOJAC ENTERPRISES, INC. | $\$ 445,196.25$ | CND242 | ROGERS GROUP, INC. | $\$ 178,765.96$ |

Project \#	Name of Contractor		Bid price quoted	Project \#	Name of Contractor		Bid price quoted
CND252	EUBANK ASPHALT PAVING \& SEALING	\$	493,652.00	CND381	CHRIS-HILL CONSTRUCTION CO., LLC	\$	432,697.25
CND258	LOJAC ENTERPRISES, INC.	\$	725,934.60	CND381	DEMENT CONSTRUCTION CO., LLC	\$	488,066.75
CND258	ROGERS GROUP, INC.	\$	634,845.50	CND381	THOMSON \& THOMSON, INC.	\$	337,904.20
CND282	BELL \& ASSOCIATES CONSTRUCTION, L.P.	\$	925,094.90	CND381	W. L. SHARPE CONTRACTING COMPANY, L. P.	\$	431,139.06
CND282	GENERAL CONSTRUCTORS, INC.	\$	781,349.96	CND417	GENERAL CONSTRUCTORS, INC.	\$	216,576.00
CND284	DEMENT CONSTRUCTION COMPANY		1,859,722.45	CND417	JAMISON CONSTRUCTION, LLC	\$	209,310.00
CND284	FORD CONSTRUCTION COMPANY		1,847,741.44	CND417	MID-STATE CONSTRUCTION COMPANY, INC.	\$	251,342.38
CND306	EUBANK ASPHALT PAVING \& SEALING		1,139,495.45	CND421	JAMISON CONSTRUCTION, LLC	\$	416,849.70
CND306	LOJAC ENTERPRISES, INC.		1,158,879.29	CND421	MID-STATE CONSTRUCTION COMPANY, INC.	\$	404,867.10
CND309	CUMBERLAND GUARDRAIL, INC.	\$	657,700.00	CND908	HIGHWAYS, INC.	\$	969,543.00
CND309	TENNESSEE GUARDRAIL, INC.	\$	740,638.00	CND908	LOJAC ENTERPRISES, INC.	\$	1,568,488.70
CND309	TRI-STATE GUARDRAIL \& SIGN CO., INC.	\$	783,562.00	CND932	SUMMERS-TAYLOR, INC.	\$	409,948.20
CND318	CHARLES BLALOCK \& SONS, INC.	\$	419,929.50				
CND318	HINKLE CONTRACTING CORPORATION	\$	359,853.90				
CND318	PHILLIPS AND JORDAN, INCORPORTATED	\$	453,202.00				
CND334	GREENSTAR, LLC	\$	493,517.76				
CND352	S \& W CONTRACTING CO., INC.	\$	170,948.70				
CND352	STANSELL ELECTRIC CO., INC.	\$	160,196.25				
CND374	GENERAL CONSTRUCTORS, INC.	\$	613,829.00				
CND374	JAMISON CONSTRUCTION, LLC	\$	616,392.50				
CND374	SOUTHERN CONSTRUCTORS, INC.		662,598.00				
CND374	WILLIAMS RESTORATION \& WATERPROOFING, IN		759,360.25				

APPENDIX F

Results from Multivariate Adaptive Regression Splines analysis.

MODEL 1: RESULTS

Actual vs. Predicted

$$
\begin{gathered}
y=0.4609 x+405589 \\
R^{2}=0.1678
\end{gathered}
$$

Actual and predicted bid prices

MODEL 2: RESULTS

MODEL 3: RESULTS

$$
\begin{array}{cc}
\text { Actual vs. Predicted } & \mathrm{y}=0.3482 \mathrm{x}+454628 \\
\mathrm{R}^{2}=0.2395
\end{array}
$$

MODEL 4: RESULTS

MODEL 6: RESULTS

Actual and predicted bid prices

MODEL 7: RESULTS

Actual and predicted bid prices

MODEL 8: RESULTS

Actual and predicted bid prices

Projects

MODEL 9: RESULTS

Actual and predicted bid prices

Projects

MODEL 10: RESULTS

Actual and predicted bid prices

MODEL 11: RESULTS

Actual and predicted bid prices

Projects

MODEL 12: RESULTS

Actual and predicted bid prices

MODEL 13: RESULTS

APPENDIX G

Results from the MARS model 5

Model 1: nr. basis func. $=\mathbf{1 4}, \mathbf{G C V}=\mathbf{2 9 7 0 8 6 2 5 0 0 8 9 . 6 8 4 4 5 0 ,}$ eff. params $=\mathbf{2 1 7 . 9 9 9 7 2 5}$
File: train.SAV
Target Variable: V109
Predictor Variables: V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12,
V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V40, V41, V42, V43, V44, V45, V46, V47, V48, V49, V50, V51, V52, V53, V54, V55, V56, V57, V58, V59, V60, V61, V62, V63, V64, V65, V66, V67, V68, V69, V70, V71, V72, V73, V74, V75, V76, V77, V78, V79, V80, V81, V82, V83, V84, V85, V86, V87, V88, V89, V90, V91, V92, V93, V94, V95, V96, V97, V98, V99, V100, V101, V102, V103, V104, V105, V106, V107, V108
Predictor Missings: No variables created for missings

Anova Decomposition

Function	Standard Deviation	Cost of Omission	N
1	350663.785	$4.87162230 \mathrm{E}+011$	
2	154971.292	$3.00680905 \mathrm{E}+011$	
3	281409.506	$4.71261138 \mathrm{E}+011$	
4	185200.917	$3.57699339 \mathrm{E}+011$	
5	233343.526	$3.52453961 \mathrm{E}+011$	
6	411541.519	$3.33011996 \mathrm{E}+011$	
7	212509.020	$3.81635668 \mathrm{E}+011$	
8	229570.837	$4.01336288 \mathrm{E}+011$	
9	213678.605	$3.26721719 \mathrm{E}+011$	
10	305532.581	$4.53068717 \mathrm{E}+011$	
11	618639.215	$4.47758426 \mathrm{E}+011$	
12	187427.122	$3.61303802 \mathrm{E}+011$	
13	118457.863	$3.02994481 \mathrm{E}+011$	

No. of Basis Functions	No. of Effective Parameters	Variables	Variables	Variables	Variables
1	15.500	V 3			
1	15.500	V 4			
1	15.500	V 64			
1	15.500	V 3	V 37		
1	15.500	V 4	V 29		
1	15.500	V 6	V 53		
1	15.500	V 7	V 9		
1	15.500	V 4	V 29	V 44	
1	15.500	V 6	V 35	V 53	
1	31.000	V 3	V 11	V 81	
1	15.500	V 1	V 6	V 53	
15.500	V 4	V 29	V 44	V 70	

Variable Importance

| Variable | Cost of
 Omission | | Importance |
| :--- | ---: | ---: | :--- |$|$

Variable	Cost of Omission	Importance	
V16	$2.97085960 \mathrm{E}+011$	0.000	
V17	$2.97085960 \mathrm{E}+011$	0.000	
V18	$2.97085960 \mathrm{E}+011$	0.000	
V19	$2.97085960 \mathrm{E}+011$	0.000	
V20	$2.97085960 \mathrm{E}+011$	0.000	
V21	$2.97085960 \mathrm{E}+011$	0.000	
V22	$2.97085960 \mathrm{E}+011$	0.000	
V23	$2.97085960 \mathrm{E}+011$	0.000	
V24	$2.97085960 \mathrm{E}+011$	0.000	
V25	$2.97085960 \mathrm{E}+011$	0.000	
V26	$2.97085960 \mathrm{E}+011$	0.000	
V27	$2.97085960 \mathrm{E}+011$	0.000	
V28	$2.97085960 \mathrm{E}+011$	0.000	
V30	$2.97085960 \mathrm{E}+011$	0.000	
V31	$2.97085960 \mathrm{E}+011$	0.000	
V32	$2.97085960 \mathrm{E}+011$	0.000	
V33	$2.97085960 \mathrm{E}+011$	0.000	
V34	$2.97085960 \mathrm{E}+011$	0.000	
V36	$2.97085960 \mathrm{E}+011$	0.000	
V38	$2.97085960 \mathrm{E}+011$	0.000	
V39	$2.97085960 \mathrm{E}+011$	0.000	
V40	$2.97085960 \mathrm{E}+011$	0.000	
V41	$2.97085960 \mathrm{E}+011$	0.000	
V43	$2.97085960 \mathrm{E}+011$	0.000	
V45	$2.97085960 \mathrm{E}+011$	0.000	
V46	$2.97085960 \mathrm{E}+011$	0.000	
V47	$2.97085960 \mathrm{E}+011$	0.000	
V48	$2.97085960 \mathrm{E}+011$	0.000	
V49	$2.97085960 \mathrm{E}+011$	0.000	
V50	$2.97085960 \mathrm{E}+011$	0.000	
V51	$2.97085960 \mathrm{E}+011$	0.000	
V52	$2.97085960 \mathrm{E}+011$	0.000	
V54	$2.97085960 \mathrm{E}+011$	0.000	
V55	$2.97085960 \mathrm{E}+011$	0.000	
V56	$2.97085960 \mathrm{E}+011$	0.000	
V57	$2.97085960 \mathrm{E}+011$	0.000	
V58	$2.97085960 \mathrm{E}+011$	0.000	
V59	$2.97085960 \mathrm{E}+011$	0.000	
V60	$2.97085960 \mathrm{E}+011$	0.000	
V61	$2.97085960 \mathrm{E}+011$	0.000	
V62	$2.97085960 \mathrm{E}+011$	0.000	
V63	$2.97085960 \mathrm{E}+011$	0.000	
V65	$2.97085960 \mathrm{E}+011$	0.000	
V66	$2.97085960 \mathrm{E}+011$	0.000	
V67	$2.97085960 \mathrm{E}+011$	0.000	
V68	$2.97085960 \mathrm{E}+011$	0.000	
V69	$2.97085960 \mathrm{E}+011$	0.000	
V71	$2.97085960 \mathrm{E}+011$	0.000	
V72	$2.97085960 \mathrm{E}+011$	0.000	
V73	$2.97085960 \mathrm{E}+011$	0.000	
V74	$2.97085960 \mathrm{E}+011$	0.000	
V75	$2.97085960 \mathrm{E}+011$	0.000	
V76	$2.97085960 \mathrm{E}+011$	0.000	
V77	$2.97085960 \mathrm{E}+011$	0.000	
V78	$2.97085960 \mathrm{E}+011$	0.000	
V79	$2.97085960 \mathrm{E}+011$	0.000	
V80	$2.97085960 \mathrm{E}+011$	0.000	
V82	$2.97085960 \mathrm{E}+011$	0.000	
V83	$2.97085960 \mathrm{E}+011$	0.000	
V84	$2.97085960 \mathrm{E}+011$	0.000	
V85	$2.97085960 \mathrm{E}+011$	0.000	
V86	$2.97085960 \mathrm{E}+011$	0.000	
V87	$2.97085960 \mathrm{E}+011$	0.000	
V88	$2.97085960 \mathrm{E}+011$	0.000	
V89	$2.97085960 \mathrm{E}+011$	0.000	
V90	$2.97085960 \mathrm{E}+011$	0.000	

Variable	Cost of Omission	Importance	
V91	$2.97085960 \mathrm{E}+011$	0.000	
V92	$2.97085960 \mathrm{E}+011$	0.000	
V93	$2.97085960 \mathrm{E}+011$	0.000	
V94	$2.97085960 \mathrm{E}+011$	0.000	
V95	$2.97085960 \mathrm{E}+011$	0.000	
V96	$2.97085960 \mathrm{E}+011$	0.000	
V97	$2.97085960 \mathrm{E}+011$	0.000	
V98	$2.97085960 \mathrm{E}+011$	0.000	
V99	$2.97085960 \mathrm{E}+011$	0.000	
V100	$2.97085960 \mathrm{E}+011$	0.000	
V101	$2.97085960 \mathrm{E}+011$	0.000	
V102	$2.97085960 \mathrm{E}+011$	0.000	
V103	$2.97085960 \mathrm{E}+011$	0.000	
V104	$2.97085960 \mathrm{E}+011$	0.000	
V105	$2.97085960 \mathrm{E}+011$	0.000	
V106	$2.97085960 \mathrm{E}+011$	0.000	
V107	$2.97085960 \mathrm{E}+011$	0.000	
V108	$2.97085960 \mathrm{E}+011$	0.000	

Final Model

Basis Function	Coefficient	Variable	Parent	Knot
0	347729.313			
1	2160884.75	V3		0.549
4	-161361.938	V4		3.010
6	143573.984	V37	V3	0.114
8	296869.188	V64		-2.442
10	18109.969	V29	V4	6.760
14	9289.705	V44	V29	-0.317
15	7624.673	V70	V44	1.956
22	-231047.984	V6	V53	2.233
23	39573.816	V35	V6	-2.422
25	1140948.38	V81	V11	1.449
26	269260.594	V81	V11	1.449
28	40768.789	V7	V9	0.009
29	27609.434	V1	V6	-12.629
31	345902.313	V42	V81	0.166

Basis Functions

```
BF1 = max(0, V3 - 0.549);
BF2 = max(0, 0.549 - V3);
BF4 = max(0, 3.010 - V4 );
BF6 = max (0, 0.114 - V37) * BF2;
BF8 = max(0, - 2.442 - V64 );
BF10 = max(0, 6.760 - V29 ) * BF4;
BF12 = max(0, - 0.217 - V11 ) * BF1;
BF13 = max(0, V44 + 0.317) * BF10;
BF14 = max(0, - 0.317 - V44 ) * BF10;
BF15 = max(0, V70 - 1.956) * BF13;
BF18 = max(0, 6.319 - V9 );
BF20 = max(0, 0.261 - V53 );
BF22 = max(0, 2.233 - V6 ) * BF20;
BF23 = max(0, V35 + 2.422) * BF22;
BF25 = max(0, V81 - 1.449) * BF12;
BF26 = max(0, 1.449 - V81 ) * BF12;
BF28 = max(0, 0.009 - V7 ) * BF18;
BF29 = max(0, V1 + 12.629) * BF22;
BF31 = max(0, 0.166 - V42 ) * BF26;
Y = 347729.313 + 2160884.750 * BF1 - 161361.938 * BF4
    + 143573.984 * BF6 + 296869.188 * BF8 + 18109.969 * BF10
    + 9289.705 * BF14 + 7624.673 * BF15 - 231047.984 * BF22
```

```
+ 39573.816 * BF23 + 1140948.375 * BF25
+ 269260.594 * BF26 + 40768.789 * BF28
+ 27609.434 * BF29 + 345902.313 * BF31;
model V109 = BF1 BF4 BF6 BF8 BF10 BF14 BF15 BF22 BF23 BF25 BF26 BF28 BF29
BF31
```

Gains Data

Bin	Target Bin Avg.	\% Target in Bin	Cum. \% Target	Cum. \% Pop.	\% Pop	Cases in Bin	Cum. Lift	Lift
1	$3.23188 \mathrm{E}+006$	35.25	35.25	9.86	9.86	51	3.573	3.573
2	$1.39139 \mathrm{E}+006$	15.47	50.72	19.92	10.06	52	2.546	1.538
3	997664.	11.09	61.81	29.98	10.06	52	2.062	1.103
4	772006.	8.42	70.23	39.85	9.86	51	1.763	0.853
5	548664.	6.10	76.33	49.90	10.06	52	1.530	0.607
6	557813.	6.20	82.53	59.96	10.06	52	1.376	0.617
7	490756.	5.35	87.89	69.83	9.86	51	1.259	0.543
8	460156.	5.12	93.00	79.88	10.06	52	1.164	0.509
9	353154.	3.93	96.93	89.94	10.06	52	1.078	0.390
10	276078.	3.07	100.00	100.00	10.06	52	1.000	0.305

Gains

Surface 1: Pure Ordinal


```
>
    MARS VERSION 2.0.0.20 (8192 Variables)
    COPYRIGHT, 1991-1999, SALFORD SYSTEMS, SAN DIEGO, CALIFORNIA, U.S.A.
>LOPTIONS MEANS = YES, PLOTS = YES
>FORMAT = 3/UNDERFLOW
>LOPTIONS MEANS = YES, PLOTS = YES
>FORMAT = 3/UNDERFLOW
>USE 'C:\Mars run 5\train.SAV[spsswin]'
    VARIABLES IN RECT FILE ARE:
\begin{tabular}{rrrrr} 
V1 & V2 & V3 & V4 & V5 \\
V6 & V7 & V8 & V9 & V10 \\
V11 & V12 & V13 & V14 & V15 \\
V16 & V17 & V18 & V19 & V20 \\
V21 & V22 & V23 & V24 & V25 \\
V26 & V27 & V28 & V29 & V30 \\
V31 & V32 & V33 & V34 & V35 \\
V36 & V37 & V38 & V39 & V40 \\
V41 & V42 & V43 & V44 & V45 \\
V46 & V47 & V48 & V49 & V50 \\
V51 & V52 & V53 & V54 & V55 \\
V56 & V57 & V58 & V59 & V60 \\
V61 & V62 & V63 & V64 & V65 \\
V66 & V67 & V68 & V69 & V70 \\
V71 & V72 & V73 & V74 & V75 \\
V76 & V77 & V78 & V79 & V80 \\
V81 & V82 & V83 & V84 & V85 \\
V86 & V87 & V88 & V89 & V90 \\
V91 & V92 & V93 & V94 & V95 \\
V96 & V97 & V98 & V99 & V100 \\
V101 & V102 & V103 & V104 & V105 \\
V106 & V107 & V108 & V109 &
\end{tabular}
C:\Mars run 5\train.SAV[spsswin]: 517 RECORDS.
```

```
>USE "C:\Mars run 5\valid.SAV[spsswin]"
```

>USE "C:\Mars run 5\valid.SAV[spsswin]"
VARIABLES IN RECT FILE ARE:

V1	V2	V3	V4
V6	V7	V8	V9
V11	V12	V13	V14
V16	V17	V18	V19
V21	V22	V23	V24
V26	V27	V28	V29
V31	V32	V33	V34
V36	V37	V38	V25
V41	V42	V43	V39
V46	V47	V48	V35
V51	V52	V53	V44
V56	V57	V58	V49
V61	V62	V63	V54
V66	V67	V68	V59
V71	V72	V73	V64
V76	V77	V78	V69

```
\begin{tabular}{rrrrr} 
V81 & V82 & V83 & V84 & V85 \\
V86 & V87 & V88 & V89 & V90 \\
V91 & V92 & V93 & V94 & V95 \\
V96 & V97 & V98 & V99 & V100 \\
V101 & V102 & V103 & V104 & V105 \\
V106 & V107 & V108 & &
\end{tabular}

C:\Mars run 5\valid.SAV[spsswin]: 80 RECORDS.
>RETRIEVE "C:\Mars run 5\Model5.mdl"
>SAVE "C:\Mars run 5\new2.XLS[xls7]"
>APPLY
Dependent variable: V109 not found on your dataset.
READING DATA, UP TO 8865 RECORDS.
RECORDS READ: 80
RECORDS KEPT IN LEARNING SAMPLE: 80
<a name="0"></a>
LEARNING SAMPLE STATISTICS
==========================
\begin{tabular}{|c|c|c|c|c|}
\hline VARIABLE & MEAN & SD & N & SUM \\
\hline V1 & -0.492 & 1.075 & 80.000 & -39.346 \\
\hline V2 & 1.044 & 0.083 & 80.000 & 83.545 \\
\hline V3 & 0.575 & 0.066 & 80.000 & 45.965 \\
\hline V4 & -0.687 & 0.739 & 80.000 & -54.934 \\
\hline V5 & -0.343 & 0.372 & 80.000 & -27.426 \\
\hline V6 & 0.637 & 0.740 & 80.000 & 50.960 \\
\hline V7 & -1.172 & 8.719 & 80.000 & -93.770 \\
\hline V8 & 0.850 & 4.730 & 80.000 & 68.022 \\
\hline V9 & -0.100 & 2.609 & 80.000 & -7.977 \\
\hline V10 & 0.155 & 1.254 & 80.000 & 12.400 \\
\hline V11 & -0.045 & 1.534 & 80.000 & -3.637 \\
\hline V12 & -0.250 & 1.145 & 80.000 & -20.007 \\
\hline V13 & -0.175 & 1.072 & 80.000 & -13.970 \\
\hline V14 & 0.556 & 2.133 & 80.000 & 44.449 \\
\hline V15 & 0.554 & 1.934 & 80.000 & 44.307 \\
\hline V16 & -0.018 & 1.065 & 80.000 & -1.411 \\
\hline V17 & -0.622 & 0.955 & 80.000 & -49.764 \\
\hline V18 & -0.856 & 0.961 & 80.000 & -68.450 \\
\hline V19 & 0.782 & 0.982 & 80.000 & 62.586 \\
\hline V20 & 0.600 & 1.746 & 80.000 & 48.011 \\
\hline V21 & 0.540 & 1.178 & 80.000 & 43.218 \\
\hline V22 & 0.305 & 6.669 & 80.000 & 24.439 \\
\hline V23 & -1.146 & 7.093 & 80.000 & -91.643 \\
\hline V24 & 1.307 & 4.450 & 80.000 & 104.542 \\
\hline V25 & -0.128 & 1.223 & 80.000 & -10.220 \\
\hline V26 & -0.059 & 2.091 & 80.000 & -4.734 \\
\hline V27 & 0.630 & 1.529 & 80.000 & 50.382 \\
\hline V28 & 0.032 & 2.907 & 80.000 & 2.560 \\
\hline V29 & 0.010 & 2.828 & 80.000 & 0.809 \\
\hline V30 & -0.557 & 2.309 & 80.000 & -44.530 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline V31 & 0.277 & 1.290 & 80.000 & 22.152 \\
\hline V32 & 0.737 & 3.610 & 80.000 & 58.949 \\
\hline V33 & 0.411 & 2.985 & 80.000 & 32.842 \\
\hline V34 & 0.268 & 2.090 & 80.000 & 21.447 \\
\hline V35 & -0.480 & 3.304 & 80.000 & -38.390 \\
\hline V36 & 0.336 & 2.625 & 80.000 & 26.874 \\
\hline V37 & -0.424 & 5.360 & 80.000 & -33.939 \\
\hline V38 & -0.402 & 3.635 & 80.000 & -32.171 \\
\hline V39 & -0.077 & 3.272 & 80.000 & -6.125 \\
\hline V40 & 0.118 & 1.369 & 80.000 & 9.420 \\
\hline V41 & -0.020 & 0.762 & 80.000 & -1.630 \\
\hline V42 & 0.265 & 0.821 & 80.000 & 21.214 \\
\hline V43 & -0.094 & 0.965 & 80.000 & -7.535 \\
\hline V44 & -0.353 & 0.959 & 80.000 & -28.229 \\
\hline V45 & -0.137 & 2.200 & 80.000 & -10.949 \\
\hline V46 & 0.271 & 2.663 & 80.000 & 21.658 \\
\hline V47 & 0.213 & 1.809 & 80.000 & 17.011 \\
\hline V48 & 0.412 & 3.011 & 80.000 & 32.935 \\
\hline V49 & 0.244 & 2.403 & 80.000 & 19.550 \\
\hline V50 & -0.663 & 3.492 & 80.000 & -53.077 \\
\hline V51 & 0.159 & 1.194 & 80.000 & 12.747 \\
\hline V52 & -0.475 & 4.053 & 80.000 & -38.012 \\
\hline V53 & -0.186 & 0.447 & 80.000 & -14.844 \\
\hline V54 & 0.461 & 2.731 & 80.000 & 36.902 \\
\hline V55 & 0.125 & 2.072 & 80.000 & 10.033 \\
\hline V56 & -0.300 & 1.127 & 80.000 & -24.007 \\
\hline V57 & 0.345 & 1.262 & 80.000 & 27.599 \\
\hline V58 & 0.065 & 1.670 & 80.000 & 5.200 \\
\hline V59 & 0.075 & 1.131 & 80.000 & 5.976 \\
\hline V60 & -0.324 & 1.552 & 80.000 & -25.884 \\
\hline V61 & -0.007 & 0.825 & 80.000 & -0.542 \\
\hline V62 & 0.596 & 4.070 & 80.000 & 47.699 \\
\hline V63 & 0.153 & 2.960 & 80.000 & 12.213 \\
\hline V64 & 0.169 & 1.370 & 80.000 & 13.542 \\
\hline V65 & 0.132 & 2.693 & 80.000 & 10.555 \\
\hline V66 & -0.251 & 2.957 & 80.000 & -20.073 \\
\hline V67 & -0.194 & 1.441 & 80.000 & -15.551 \\
\hline V68 & 0.711 & 2.623 & 80.000 & 56.869 \\
\hline V69 & 0.630 & 2.492 & 80.000 & 50.395 \\
\hline V70 & 0.209 & 2.323 & 80.000 & 16.745 \\
\hline V71 & 0.070 & 1.494 & 80.000 & 5.575 \\
\hline V72 & 0.432 & 2.672 & 80.000 & 34.564 \\
\hline V73 & -1.008 & 4.502 & 80.000 & -80.613 \\
\hline V74 & -0.035 & 0.100 & 80.000 & -2.818 \\
\hline V75 & 0.194 & 2.042 & 80.000 & 15.498 \\
\hline V76 & 0.064 & 1.833 & 80.000 & 5.158 \\
\hline V77 & -0.503 & 1.452 & 80.000 & -40.206 \\
\hline V78 & 0.119 & 2.409 & 80.000 & 9.505 \\
\hline V79 & 0.015 & 1.080 & 80.000 & 1.187 \\
\hline V80 & 0.227 & 1.254 & 80.000 & 18.124 \\
\hline V81 & -0.204 & 3.544 & 80.000 & -16.327 \\
\hline V82 & 0.245 & 1.972 & 80.000 & 19.639 \\
\hline V83 & 0.089 & 1.468 & 80.000 & 7.113 \\
\hline V84 & -0.079 & 0.382 & 80.000 & -6.334 \\
\hline V85 & -0.179 & 1.521 & 80.000 & -14.345 \\
\hline V86 & 0.090 & 1.710 & 80.000 & 7.204 \\
\hline V87 & 0.039 & 0.760 & 80.000 & 3.083 \\
\hline
\end{tabular}
\begin{tabular}{rrrrr} 
V88 & -0.119 & 2.128 & 80.000 & -9.495 \\
V89 & 0.367 & 2.121 & 80.000 & 29.323 \\
V90 & -0.533 & 2.573 & 80.000 & -42.635 \\
V91 & 0.430 & 2.314 & 80.000 & 34.429 \\
V92 & 0.423 & 1.474 & 80.000 & 33.852 \\
V93 & 0.020 & 1.613 & 80.000 & 1.615 \\
V94 & 0.132 & 1.607 & 80.000 & 10.551 \\
V95 & -0.436 & 1.724 & 80.000 & -34.909 \\
V96 & 0.121 & 1.621 & 80.000 & 9.703 \\
V97 & 0.073 & 2.596 & 80.000 & 5.875 \\
V98 & -0.173 & 1.309 & 80.000 & -13.871 \\
V99 & -0.090 & 0.772 & 80.000 & -7.205 \\
V100 & 0.152 & 1.028 & 80.000 & 12.141 \\
V101 & 0.317 & 1.945 & 80.000 & 25.351 \\
V102 & 0.720 & 2.895 & 80.000 & 57.620 \\
V103 & -0.319 & 3.339 & 80.000 & -25.496 \\
V104 & 0.312 & 1.626 & 80.000 & 24.978 \\
V105 & -0.302 & 1.648 & 80.000 & -24.136 \\
V106 & -0.683 & 2.088 & 80.000 & -54.627 \\
V107 & -0.067 & 1.793 & 80.000 & -5.397 \\
V108 & 0.081 & 1.639 & 80.000 & 6.510
\end{tabular}

\section*{SAVE FILE CREATED.}

80 RECORDS WRITTEN TO SAVE FILE.
```



```

\section*{PREDICTION STATISTICS}
=====================
Minimum: 25839.816
Maximum: 2131535.250
Mean: 619974.629
Standard Deviation: 386684.505
>USE 'C:\Mars run 5\train.SAV[spsswin]' VARIABLES IN RECT FILE ARE:
\begin{tabular}{rrrr} 
V1 & V2 & V3 & V4 \\
V6 & V7 & V8 & V9 \\
V11 & V12 & V13 & V10 \\
V16 & V17 & V18 & V15 \\
V21 & V22 & V23 & V19 \\
V26 & V27 & V28 & V24 \\
V31 & V32 & V33 & V29 \\
V36 & V37 & V38 & V34 \\
V41 & V42 & V43 & V39 \\
V46 & V47 & V48 & V35 \\
V51 & V52 & V53 & V40 \\
V56 & V57 & V58 & V49 \\
V61 & V62 & V63 & V54 \\
V66 & V67 & V68 & V59 \\
V71 & V72 & V73 & V64 \\
V76 & V77 & V78 & V69 \\
V81 & V82 & V83 & V74 \\
V86 & V87 & V88 & V79 \\
V91 & V92 & V93 & V60 \\
V96 & V97 & V98 & V89
\end{tabular}
\begin{tabular}{lllll} 
V101 & V102 & V103 & V104 & V105 \\
V106 & V107 & V108 & V109 &
\end{tabular}

C:\Mars run 5\train.SAV[spsswin]: 517 RECORDS.
```

>KEEP
>CATEGORY
>LINEAR
>ADDITIVE
>REGRESSION = OLS
>MODEL V109
>KEEP V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, V14, V15,
> V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27, V28,
> V29, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V40, V41,
> V42, V43, V44, V45, V46, V47, V48, V49, V50, V51, V52, V53, V54,
> V55, V56, V57, V58, V59, V60, V61, V62, V63, V64, V65, V66, V67,
> V68, V69, V70, V71, V72, V73, V74, V75, V76, V77, V78, V79, V80,
> V81, V82, V83, V84, V85, V86, V87, V88, V89, V90, V91, V92, V93,
> V94, V95, V96, V97, V98, V99, V100, V101, V102, V103, V104, V105,
> V106, V107, V108
>WEIGHT
>SELECT
>BOPTIONS SPEED = 1, PENALTY = 0.000000, BASIS = 100, INTERACTIONS = 50
>BOPTIONS MINSPAN = 0
>LIMIT DATASET = 0
>KNOT CROSS = 110
>STORE 'C:\Mars run 5\new.mdl'
>ESTIMATE/ALL

```

MARS VERSION 2.0.0.20
READING DATA, UP TO 8865 RECORDS.
RECORDS READ: 517
RECORDS KEPT IN LEARNING SAMPLE: 517
<a name="2"></a>
LEARNING SAMPLE STATISTICS
\begin{tabular}{|c|c|c|c|c|}
\hline VARIABLE & MEAN & SD & N & SUM \\
\hline V109 & 904530.576 & 938844.328 & 517.000 & . \(467642 \mathrm{E}+09\) \\
\hline V1 & 0.076 & 14.188 & 517.000 & 39.346 \\
\hline V2 & -0.162 & 13.603 & 517.000 & -83.545 \\
\hline V3 & -0.089 & 10.637 & 517.000 & -45.964 \\
\hline V4 & 0.106 & 8.639 & 517.000 & 54.933 \\
\hline V5 & 0.053 & 6.905 & 517.000 & 27.425 \\
\hline V6 & -0.099 & 6.069 & 517.000 & -50.959 \\
\hline V7 & 0.181 & 4.065 & 517.000 & 93.770 \\
\hline V8 & -0.132 & 4.940 & 517.000 & -68.021 \\
\hline V9 & 0.015 & 5.049 & 517.000 & 7.977 \\
\hline V10 & -0.024 & 5.044 & 517.000 & -12.400 \\
\hline V11 & 0.007 & 5.018 & 517.000 & 3.637 \\
\hline V12 & 0.039 & 4.971 & 517.000 & 20.007 \\
\hline V13 & 0.027 & 4.958 & 517.000 & 13.970 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline V14 & -0.086 & 4.728 & 517.000 & -44.449 \\
\hline V15 & -0.086 & 4.461 & 517.000 & -44.307 \\
\hline V16 & 0.003 & 4.427 & 517.000 & 1.411 \\
\hline V17 & 0.096 & 4.317 & 517.000 & 49.764 \\
\hline V18 & 0.132 & 4.198 & 517.000 & 68.450 \\
\hline V19 & -0.121 & 4.130 & 517.000 & -62.586 \\
\hline V20 & -0.093 & 3.986 & 517.000 & -48.011 \\
\hline V21 & -0.084 & 3.938 & 517.000 & -43.218 \\
\hline V22 & -0.047 & 2.888 & 517.000 & -24.438 \\
\hline V23 & 0.177 & 2.580 & 517.000 & 91.643 \\
\hline V24 & -0.202 & 3.297 & 517.000 & -104.542 \\
\hline V25 & 0.020 & 3.646 & 517.000 & 10.219 \\
\hline V26 & 0.009 & 3.534 & 517.000 & 4.734 \\
\hline V27 & -0.097 & 3.478 & 517.000 & -50.382 \\
\hline V28 & -0.005 & 3.343 & 517.000 & -2.561 \\
\hline V29 & -0.002 & 3.272 & 517.000 & -0.809 \\
\hline V30 & 0.086 & 3.293 & 517.000 & 44.529 \\
\hline V31 & -0.043 & 3.361 & 517.000 & -22.152 \\
\hline V32 & -0.114 & 3.028 & 517.000 & -58.948 \\
\hline V33 & -0.064 & 3.099 & 517.000 & -32.842 \\
\hline V34 & -0.041 & 3.167 & 517.000 & -21.447 \\
\hline V35 & 0.074 & 2.952 & 517.000 & 38.390 \\
\hline V36 & -0.052 & 3.010 & 517.000 & -26.874 \\
\hline V37 & 0.066 & 2.371 & 517.000 & 33.938 \\
\hline V38 & 0.062 & 2.783 & 517.000 & 32.170 \\
\hline V39 & 0.012 & 2.840 & 517.000 & 6.125 \\
\hline V40 & -0.018 & 3.059 & 517.000 & -9.420 \\
\hline V41 & 0.003 & 3.037 & 517.000 & 1.630 \\
\hline V42 & -0.041 & 2.993 & 517.000 & -21.214 \\
\hline V43 & 0.015 & 2.967 & 517.000 & 7.535 \\
\hline V44 & 0.055 & 2.960 & 517.000 & 28.229 \\
\hline V45 & 0.021 & 2.775 & 517.000 & 10.949 \\
\hline V46 & -0.042 & 2.649 & 517.000 & -21.658 \\
\hline V47 & -0.033 & 2.731 & 517.000 & -17.011 \\
\hline V48 & -0.064 & 2.501 & 517.000 & -32.935 \\
\hline V49 & -0.038 & 2.596 & 517.000 & -19.550 \\
\hline V50 & 0.103 & 2.350 & 517.000 & 53.077 \\
\hline V51 & -0.025 & 2.666 & 517.000 & -12.746 \\
\hline V52 & 0.074 & 2.161 & 517.000 & 38.011 \\
\hline V53 & 0.029 & 2.655 & 517.000 & 14.844 \\
\hline V54 & -0.071 & 2.398 & 517.000 & -36.902 \\
\hline V55 & -0.019 & 2.452 & 517.000 & -10.034 \\
\hline V56 & 0.046 & 2.515 & 517.000 & 24.006 \\
\hline V57 & -0.053 & 2.467 & 517.000 & -27.599 \\
\hline V58 & -0.010 & 2.380 & 517.000 & -5.200 \\
\hline V59 & -0.012 & 2.415 & 517.000 & -5.977 \\
\hline V60 & 0.050 & 2.315 & 517.000 & 25.883 \\
\hline V61 & 0.001 & 2.351 & 517.000 & 0.542 \\
\hline V62 & -0.092 & 1.719 & 517.000 & -47.699 \\
\hline V63 & -0.024 & 2.038 & 517.000 & -12.213 \\
\hline V64 & -0.026 & 2.255 & 517.000 & -13.542 \\
\hline V65 & -0.020 & 2.023 & 517.000 & -10.555 \\
\hline V66 & 0.039 & 1.943 & 517.000 & 20.073 \\
\hline V67 & 0.030 & 2.181 & 517.000 & 15.552 \\
\hline V68 & -0.110 & 1.958 & 517.000 & -56.869 \\
\hline V69 & -0.097 & 1.970 & 517.000 & -50.395 \\
\hline V70 & -0.032 & 1.991 & 517.000 & -16.745 \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
V71 & -0.011 & 2.084 & 517.000 & -5.575 \\
V72 & -0.067 & 1.858 & 517.000 & -34.564 \\
V73 & 0.156 & 1.102 & 517.000 & 80.613 \\
V74 & 0.005 & 2.106 & 517.000 & 2.818 \\
V75 & -0.030 & 1.925 & 517.000 & -15.498 \\
V76 & -0.010 & 1.938 & 517.000 & -5.158 \\
V77 & 0.078 & 1.950 & 517.000 & 40.205 \\
V78 & -0.018 & 1.789 & 517.000 & -9.505 \\
V79 & -0.002 & 1.956 & 517.000 & -1.187 \\
V80 & -0.035 & 1.924 & 517.000 & -18.124 \\
V81 & 0.032 & 1.405 & 517.000 & 16.327 \\
V82 & -0.038 & 1.777 & 517.000 & -19.640 \\
V83 & -0.014 & 1.836 & 517.000 & -7.114 \\
V84 & 0.012 & 1.904 & 517.000 & 6.334 \\
V85 & 0.028 & 1.805 & 517.000 & 14.345 \\
V86 & -0.014 & 1.779 & 517.000 & -7.205 \\
V87 & -0.006 & 1.861 & 517.000 & -3.083 \\
V88 & 0.018 & 1.675 & 517.000 & 9.495 \\
V89 & -0.057 & 1.655 & 517.000 & -29.323 \\
V90 & 0.082 & 1.532 & 517.000 & 42.635 \\
V91 & -0.067 & 1.583 & 517.000 & -34.429 \\
V92 & -0.065 & 1.719 & 517.000 & -33.852 \\
V93 & -0.003 & 1.688 & 517.000 & -1.615 \\
V94 & -0.020 & 1.682 & 517.000 & -10.550 \\
V95 & 0.068 & 1.638 & 517.000 & 34.909 \\
V96 & -0.019 & 1.658 & 517.000 & -9.703 \\
V97 & -0.011 & 1.425 & 517.000 & -5.875 \\
V98 & 0.027 & 1.651 & 517.000 & 13.871 \\
V99 & 0.014 & 1.699 & 517.000 & 7.205 \\
V100 & -0.023 & 1.657 & 517.000 & -12.141 \\
V101 & -0.049 & 1.512 & 517.000 & -25.351 \\
V102 & -0.111 & 1.217 & 517.000 & -57.620 \\
V103 & 0.049 & 1.050 & 517.000 & 25.496 \\
V104 & -0.048 & 1.521 & 517.000 & -24.978 \\
V105 & 0.047 & 1.506 & 517.000 & 24.136 \\
V106 & 0.106 & 1.384 & 517.000 & 54.627 \\
V107 & 0.010 & 1.438 & 517.000 & 5.397 \\
V108 & -0.013 & 1.456 & 517.000 & -6.510 \\
& & & &
\end{tabular}

Ordinal Response
\(\begin{array}{lccc}\text { min } & \text { Q25 } & \text { Q50 } & \text { Q75 } \\ \text { max }\end{array}\)
\(\begin{array}{llllll}V & 11489.000 & 363925.000 & 576059.813 & 1022616.188 & 5910119.500\end{array}\)
Ordinal Predictor Variables: 108
min Q25 Q50 \(\quad\) Q75
\begin{tabular}{|c|c|c|c|c|c|}
\hline V1 & -12.629 & -0.934 & -0.904 & -0.788 & 226.721 \\
\hline V2 & -160.182 & 1.018 & 1.064 & 1.154 & 2.604 \\
\hline V3 & -170.489 & 0.520 & 0.581 & 0.676 & 2.700 \\
\hline V4 & -1.835 & -0.962 & -0.879 & -0.292 & 137.680 \\
\hline V5 & -1.241 & -0.576 & -0.500 & -0.383 & 154.730 \\
\hline V6 & -52.151 & 0.508 & 0.610 & 0.838 & 4.360 \\
\hline V7 & -48.042 & -0.376 & -0.080 & 0.329 & 30.169 \\
\hline V8 & -28.047 & -1.437 & -0.099 & 0.194 & 45.863 \\
\hline V9 & -18.737 & -1.015 & -0.708 & 0.341 & 57.889 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline V10 & -54.017 & -0.236 & -0.047 & 0.303 & 25.866 \\
\hline V11 & -31.593 & -0.668 & -0.227 & -0.006 & 36.890 \\
\hline V12 & -45.189 & -0.326 & -0.184 & 0.099 & 54.147 \\
\hline V13 & -21.711 & -0.301 & 0.061 & 0.243 & 56.553 \\
\hline V14 & -33.067 & -0.093 & 1.227 & 1.675 & 8.297 \\
\hline V15 & -25.782 & -1.202 & 0.855 & 1.434 & 21.154 \\
\hline V16 & -81.506 & -0.174 & 0.211 & 0.653 & 15.558 \\
\hline V17 & -17.495 & -0.832 & -0.585 & 0.392 & 35.997 \\
\hline V18 & -19.100 & -0.990 & -0.688 & 0.082 & 33.895 \\
\hline V19 & -48.288 & -0.008 & 0.408 & 0.836 & 8.934 \\
\hline V20 & -30.863 & -0.368 & 0.425 & 0.814 & 19.921 \\
\hline V21 & -87.483 & -0.018 & 0.148 & 0.296 & 5.589 \\
\hline V22 & -27.023 & -0.160 & 0.432 & 0.648 & 13.930 \\
\hline V23 & -12.602 & -0.250 & 0.788 & 1.069 & 15.588 \\
\hline V24 & -31.903 & -0.316 & -0.005 & 0.238 & 23.304 \\
\hline V25 & -3.066 & -0.515 & -0.346 & -0.016 & 76.745 \\
\hline V26 & -20.835 & -0.395 & -0.165 & 0.768 & 19.717 \\
\hline V27 & -35.702 & -0.621 & 0.369 & 0.649 & 17.243 \\
\hline V28 & -20.694 & -0.191 & 0.156 & 0.488 & 20.756 \\
\hline V29 & -28.265 & -0.747 & -0.127 & 0.937 & 12.581 \\
\hline V30 & -24.230 & -0.313 & 0.064 & 0.648 & 11.295 \\
\hline V31 & -24.847 & -0.578 & 0.133 & 0.498 & 21.149 \\
\hline V32 & -19.564 & -0.825 & -0.077 & 0.216 & 10.971 \\
\hline V33 & -23.735 & -0.862 & 0.613 & 1.159 & 10.961 \\
\hline V34 & -22.562 & -0.079 & 0.237 & 0.832 & 14.676 \\
\hline V35 & -13.759 & -0.293 & 0.316 & 0.611 & 16.828 \\
\hline V36 & -24.208 & -0.499 & 0.272 & 0.473 & 15.365 \\
\hline V37 & -17.857 & -0.022 & 0.234 & 0.614 & 15.963 \\
\hline V38 & -21.322 & -0.183 & 0.109 & 0.332 & 15.101 \\
\hline V39 & -11.014 & -0.628 & -0.322 & 0.115 & 26.440 \\
\hline V40 & -12.314 & -0.643 & -0.188 & 0.530 & 15.949 \\
\hline V41 & -8.346 & -0.383 & -0.096 & 0.168 & 33.637 \\
\hline V42 & -21.351 & -0.397 & 0.095 & 0.515 & 20.260 \\
\hline V43 & -25.853 & -0.446 & -0.106 & 0.361 & 16.431 \\
\hline V44 & -16.941 & -0.713 & -0.342 & 0.391 & 17.831 \\
\hline V45 & -20.025 & -0.144 & 0.078 & 0.286 & 18.939 \\
\hline V46 & -24.144 & -0.318 & -0.085 & 0.236 & 9.213 \\
\hline V47 & -15.681 & -0.397 & 0.219 & 0.594 & 28.081 \\
\hline V48 & -10.983 & -0.771 & -0.079 & 0.599 & 11.845 \\
\hline V49 & -16.753 & -0.299 & 0.028 & 0.323 & 10.913 \\
\hline V50 & -7.261 & -0.391 & -0.135 & 0.130 & 22.921 \\
\hline V51 & -30.167 & -0.263 & 0.138 & 0.775 & 4.534 \\
\hline V52 & -20.329 & -0.200 & 0.024 & 0.394 & 8.856 \\
\hline V53 & -1.236 & -0.169 & -0.039 & 0.032 & 59.804 \\
\hline V54 & -10.179 & -0.498 & -0.076 & 0.204 & 11.212 \\
\hline V55 & -12.980 & -0.421 & 0.058 & 0.508 & 13.994 \\
\hline V56 & -5.643 & -0.348 & 0.013 & 0.252 & 40.000 \\
\hline V57 & -28.058 & -0.407 & -0.038 & 0.585 & 6.868 \\
\hline V58 & -16.066 & -0.331 & 0.092 & 0.480 & 10.732 \\
\hline V59 & -20.383 & -0.345 & 0.075 & 0.341 & 12.215 \\
\hline V60 & -17.787 & -0.350 & -. 404420E-03 & 0.653 & 11.528 \\
\hline V61 & -36.433 & -0.357 & 0.041 & 0.278 & 23.715 \\
\hline V62 & -6.419 & -0.781 & -0.025 & 0.612 & 6.308 \\
\hline V63 & -7.285 & -1.142 & -0.300 & 0.636 & 10.244 \\
\hline V64 & -15.711 & -0.727 & -0.005 & 0.730 & 17.394 \\
\hline V65 & -14.637 & -0.440 & 0.070 & 0.663 & 8.764 \\
\hline V66 & -11.887 & -0.636 & 0.015 & 0.585 & 10.314 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline V67 & -15.363 & -0.361 & -0.078 & 0.480 & 11.754 \\
\hline V68 & -18.450 & -0.319 & 0.054 & 0.387 & 9.835 \\
\hline V69 & -14.839 & -0.550 & -0.129 & 0.406 & 17.008 \\
\hline V70 & -7.322 & -0.809 & -0.188 & 0.493 & 9.047 \\
\hline V71 & -15.153 & -0.648 & -0.041 & 0.476 & 15.615 \\
\hline V72 & -12.631 & -0.374 & -0.073 & 0.274 & 14.142 \\
\hline V73 & -6.644 & -0.113 & 0.139 & 0.403 & 6.510 \\
\hline V74 & -35.246 & -0.020 & -0.002 & 0.031 & 21.774 \\
\hline V75 & -11.761 & -0.486 & 0.105 & 0.654 & 10.466 \\
\hline V76 & -6.546 & -0.781 & -0.356 & 0.399 & 11.535 \\
\hline V77 & -5.349 & -0.340 & -0.015 & 0.328 & 38.629 \\
\hline V78 & -6.438 & -0.723 & -0.225 & 0.503 & 17.513 \\
\hline V79 & -26.793 & -0.198 & 0.121 & 0.309 & 21.097 \\
\hline V80 & -21.557 & -0.316 & 0.042 & 0.422 & 5.023 \\
\hline V81 & -7.174 & -0.427 & -0.048 & 0.296 & 7.094 \\
\hline V82 & -13.802 & -0.425 & -0.021 & 0.417 & 7.024 \\
\hline V83 & -5.534 & -0.615 & -0.080 & 0.422 & 14.123 \\
\hline V84 & -19.825 & -0.084 & 0.035 & 0.143 & 33.966 \\
\hline V85 & -9.131 & -0.476 & -0.083 & 0.284 & 18.620 \\
\hline V86 & -11.434 & -0.350 & 0.037 & 0.280 & 7.562 \\
\hline V87 & -8.795 & -0.212 & -0.003 & 0.137 & 24.107 \\
\hline V88 & -7.691 & -0.481 & 0.042 & 0.583 & 11.436 \\
\hline V89 & -12.224 & -0.565 & -0.136 & 0.309 & 8.957 \\
\hline V90 & -8.330 & -0.220 & 0.038 & 0.384 & 8.747 \\
\hline V91 & -10.883 & -0.311 & -0.002 & 0.332 & 8.270 \\
\hline V92 & -14.548 & -0.290 & 0.037 & 0.298 & 7.047 \\
\hline V93 & -8.055 & -0.312 & -0.038 & 0.304 & 11.099 \\
\hline V94 & -13.285 & -0.413 & 0.033 & 0.266 & 13.317 \\
\hline V95 & -8.868 & -0.393 & 0.010 & 0.447 & 8.249 \\
\hline V96 & -20.240 & -0.233 & 0.019 & 0.226 & 12.234 \\
\hline V97 & -10.801 & -0.429 & -0.013 & 0.334 & 6.831 \\
\hline V98 & -8.415 & -0.280 & -0.003 & 0.376 & 7.489 \\
\hline V99 & -17.396 & -0.287 & -0.021 & 0.192 & 17.179 \\
\hline V100 & -15.907 & -0.383 & -0.017 & 0.264 & 12.866 \\
\hline V101 & -12.058 & -0.455 & -0.047 & 0.460 & 6.920 \\
\hline V102 & -5.629 & -0.402 & -0.042 & 0.298 & 6.655 \\
\hline V103 & -4.796 & -0.310 & 0.039 & 0.357 & 4.979 \\
\hline V104 & -5.153 & -0.514 & -0.061 & 0.396 & 9.879 \\
\hline V105 & -15.802 & -0.295 & 0.051 & 0.370 & 5.342 \\
\hline V106 & -4.190 & -0.312 & -0.010 & 0.333 & 9.164 \\
\hline V107 & -7.665 & -0.394 & 0.004 & 0.324 & 20.019 \\
\hline V108 & -10.560 & -0.394 & 0.012 & 0.497 & 5.927 \\
\hline
\end{tabular}

110-fold cross validation used to estimate DF.

Estimated optimal DF( 12) = 28.147 with (estimated) PSE = .255947E+12 <a name="3"></a>

Forward Stepwise Knot Placement


Model 1 of 33
Estimated optimal model = response mean. Model 2 of 33

Estimated optimal model = response mean. Model 3 of 33

Estimated optimal model \(=\) response mean. Model 4 of 33

Estimated optimal model \(=\) response mean. Model 5 of 33

Estimated optimal model = response mean. Model 6 of 33

Estimated optimal model \(=\) response mean. Model 7 of 33

Estimated optimal model \(=\) response mean. Model 8 of 33

Estimated optimal model \(=\) response mean. Model 9 of 33

Estimated optimal model = response mean.
Model 10 of 33
Model 11 of 33
Model 12 of 33
Model 13 of 33
```

Model 14 of 33
Model 15 of 33
Model 16 of 33
Model 17 of 33
Model }18\mathrm{ of }3
Model }19\mathrm{ of }3
Model 20 of 33
Model }21\mathrm{ of 33
Model 22 of 33
Model 23 of 33
Model 24 of 33
Model }25\mathrm{ of }3
Model 26 of 33
Model }27\mathrm{ of 33
Model 28 of 33
Model }29\mathrm{ of }3
Model 30 of 33
Model 31 of 33
Model 32 of 33
Model 33 of 33
Piecewise Linear GCV = .680085E+12, \#efprms = 16.500


```
    Final Model (After Backward Stepwise Elimination)
    =================================================
\begin{tabular}{|c|c|c|c|c|}
\hline Basis Fun & Coefficient & Variable & Parent & Knot \\
\hline 0 & 347729.313 & & & \\
\hline 1 & 2160884.750 & V3 & & 0.549 \\
\hline 4 & -161361.938 & V4 & & 3.010 \\
\hline 6 & 143573.984 & V37 & V3 & 0.114 \\
\hline 8 & 296869.188 & V64 & & -2.442 \\
\hline 10 & 18109.969 & V29 & V4 & 6.760 \\
\hline 14 & 9289.705 & V44 & V29 & -0.317 \\
\hline 15 & 7624.673 & V70 & V44 & 1.956 \\
\hline 22 & -231047.984 & V6 & V53 & 2.233 \\
\hline 23 & 39573.816 & V35 & V6 & -2.422 \\
\hline 25 & 1140948.375 & V81 & V11 & 1.449 \\
\hline 26 & 269260.594 & V81 & V11 & 1.449 \\
\hline 28 & 40768.789 & V7 & V9 & 0.009 \\
\hline 29 & 27609.438 & V1 & V6 & -12.629 \\
\hline 31 & 345902.313 & V42 & V81 & 0.166 \\
\hline
\end{tabular}

ANOVA Decomposition on 14 Basis Functions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline fun & std. dev. & \multicolumn{2}{|r|}{-gcv \#bsfns} & \multicolumn{2}{|l|}{\#efprms variable} & \\
\hline 1 & 350663.785 & . \(487162 \mathrm{E}+12\) & 1 & 15.500 & V3 & \\
\hline 2 & 154971.292 & . \(300681 E+12\) & 1 & 15.500 & V4 & \\
\hline 3 & 281409.506 & . \(471261 \mathrm{E}+12\) & 1 & 15.500 & V64 & \\
\hline 4 & 185200.917 & . \(357699 \mathrm{E}+12\) & 1 & 15.500 & V3 & V37 \\
\hline 5 & 233343.526 & . \(352454 \mathrm{E}+12\) & 1 & 15.500 & V4 & V29 \\
\hline 6 & 411541.499 & . \(333012 \mathrm{E}+12\) & 1 & 15.500 & V6 & V53 \\
\hline 7 & 212509.000 & . \(381636 \mathrm{E}+12\) & 1 & 15.500 & V7 & V9 \\
\hline \multirow[t]{2}{*}{8} & 229570.837 & . \(401336 \mathrm{E}+12\) & 1 & 15.500 & V4 & V29 \\
\hline & & & & & V44 & \\
\hline \multirow[t]{2}{*}{9} & 213678.595 & . \(326722 \mathrm{E}+12\) & 1 & 15.500 & V6 & V35 \\
\hline & & & & & V53 & \\
\hline \multirow[t]{2}{*}{10} & 305532.581 & . \(453069 \mathrm{E}+12\) & 2 & 31.000 & V3 & V11 \\
\hline & & & & & V81 & \\
\hline \multirow[t]{2}{*}{11} & 618639.215 & . \(447758 \mathrm{E}+12\) & 1 & 15.500 & V1 & V6 \\
\hline & & & & & V53 & \\
\hline \multirow[t]{2}{*}{12} & 187427.133 & . \(361304 \mathrm{E}+12\) & 1 & 15.500 & V4 & V29 \\
\hline & & & & & V44 & V70 \\
\hline \multirow[t]{2}{*}{13} & 118457.863 & . \(302994 \mathrm{E}+12\) & 1 & 15.500 & V3 & V11 \\
\hline & & & & & V42 & V81 \\
\hline
\end{tabular}

Piecewise Cubic Fit on 14 Basis Functions, GCV \(=.741091 \mathrm{E}+12\) <a name="6"></a>

Relative Variable Importance
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Importance & -gcv \\
\hline 3 & V3 & 100.000 & . \(695862 \mathrm{E}+12\) \\
\hline 6 & V6 & 86.178 & . \(593242 \mathrm{E}+12\) \\
\hline 53 & V53 & 86.178 & . \(593242 \mathrm{E}+12\) \\
\hline 64 & V64 & 66.089 & . 471261E+12 \\
\hline 11 & V11 & 64.982 & . \(465477 \mathrm{E}+12\) \\
\hline 81 & V81 & 64.982 & . \(465477 \mathrm{E}+12\) \\
\hline 29 & V29 & 62.524 & . \(452978 \mathrm{E}+12\) \\
\hline 1 & V1 & 61.468 & . \(447758 \mathrm{E}+12\) \\
\hline 44 & V44 & 58.919 & . 435521E+12 \\
\hline 4 & V4 & 54.515 & . \(415598 \mathrm{E}+12\) \\
\hline 7 & V7 & 46.046 & . \(381636 \mathrm{E}+12\) \\
\hline 9 & V9 & 46.046 & . \(381636 \mathrm{E}+12\) \\
\hline 70 & V70 & 40.129 & . \(361304 \mathrm{E}+12\) \\
\hline 37 & V37 & 38.987 & . 357699E+12 \\
\hline 35 & V35 & 27.261 & . 326722E+12 \\
\hline 42 & V42 & 12.172 & . \(302995 \mathrm{E}+12\) \\
\hline 2 & V2 & 0.000 & . 297086E+12 \\
\hline 5 & V5 & 0.000 & . 297086E+12 \\
\hline 8 & V8 & 0.000 & . 297086E+12 \\
\hline 10 & V10 & 0.000 & . 297086E+12 \\
\hline 12 & V12 & 0.000 & . 297086E+12 \\
\hline 13 & V13 & 0.000 & . 297086E+12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 14 & V14 & 0.000 & . \(297086 \mathrm{E}+12\) \\
\hline 15 & V15 & 0.000 & . 297086E+12 \\
\hline 16 & V16 & 0.000 & . 297086E+12 \\
\hline 17 & V17 & 0.000 & . 297086E+12 \\
\hline 18 & V18 & 0.000 & . 297086E+12 \\
\hline 19 & V19 & 0.000 & . 297086E+12 \\
\hline 20 & V20 & 0.000 & . 297086E+12 \\
\hline 21 & V21 & 0.000 & . 297086E+12 \\
\hline 22 & V22 & 0.000 & . 297086E+12 \\
\hline 23 & V23 & 0.000 & . 297086E+12 \\
\hline 24 & V24 & 0.000 & . 297086E+12 \\
\hline 25 & V25 & 0.000 & . 297086E+12 \\
\hline 26 & V26 & 0.000 & . 297086E+12 \\
\hline 27 & V27 & 0.000 & . 297086E+12 \\
\hline 28 & V28 & 0.000 & . 297086E+12 \\
\hline 30 & V30 & 0.000 & . 297086E+12 \\
\hline 31 & V31 & 0.000 & . 297086E+12 \\
\hline 32 & V32 & 0.000 & . 297086E+12 \\
\hline 33 & V33 & 0.000 & . 297086E+12 \\
\hline 34 & V34 & 0.000 & . 297086E+12 \\
\hline 36 & V36 & 0.000 & . 297086E+12 \\
\hline 38 & V38 & 0.000 & . 297086E+12 \\
\hline 39 & V39 & 0.000 & . 297086E+12 \\
\hline 40 & V40 & 0.000 & . 297086E+12 \\
\hline 41 & V41 & 0.000 & . 297086E+12 \\
\hline 43 & V43 & 0.000 & . 297086E+12 \\
\hline 45 & V45 & 0.000 & . 297086E+12 \\
\hline 46 & V46 & 0.000 & . 297086E+12 \\
\hline 47 & V47 & 0.000 & . 297086E+12 \\
\hline 48 & V48 & 0.000 & . 297086E+12 \\
\hline 49 & V49 & 0.000 & . 297086E+12 \\
\hline 50 & V50 & 0.000 & . 297086E+12 \\
\hline 51 & V51 & 0.000 & . 297086E+12 \\
\hline 52 & V52 & 0.000 & . 297086E+12 \\
\hline 54 & V54 & 0.000 & . 297086E+12 \\
\hline 55 & V55 & 0.000 & . 297086E+12 \\
\hline 56 & V56 & 0.000 & . 297086E+12 \\
\hline 57 & V57 & 0.000 & . 297086E+12 \\
\hline 58 & V58 & 0.000 & . 297086E+12 \\
\hline 59 & V59 & 0.000 & . 297086E+12 \\
\hline 60 & V60 & 0.000 & . 297086E+12 \\
\hline 61 & V61 & 0.000 & . 297086E+12 \\
\hline 62 & V62 & 0.000 & . 297086E+12 \\
\hline 63 & V63 & 0.000 & . 297086E+12 \\
\hline 65 & V65 & 0.000 & . 297086E+12 \\
\hline 66 & V66 & 0.000 & . 297086E+12 \\
\hline 67 & V67 & 0.000 & . 297086E+12 \\
\hline 68 & V68 & 0.000 & . 297086E+12 \\
\hline 69 & V69 & 0.000 & . 297086E+12 \\
\hline 71 & V71 & 0.000 & . 297086E+12 \\
\hline 72 & V72 & 0.000 & . 297086E+12 \\
\hline 73 & V73 & 0.000 & . 297086E+12 \\
\hline 74 & V74 & 0.000 & . 297086E+12 \\
\hline 75 & V75 & 0.000 & . 297086E+12 \\
\hline 76 & V76 & 0.000 & . 297086E+12 \\
\hline 77 & V77 & 0.000 & . 297086E+12 \\
\hline 78 & V78 & 0.000 & . 297086E+12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 79 & V79 & 0.000 & . \(297086 \mathrm{E}+12\) \\
\hline 80 & V80 & 0.000 & . 297086E+12 \\
\hline 82 & V82 & 0.000 & . 297086E+12 \\
\hline 83 & V83 & 0.000 & . 297086E+12 \\
\hline 84 & V84 & 0.000 & . 297086E+12 \\
\hline 85 & V85 & 0.000 & . 297086E+12 \\
\hline 86 & V86 & 0.000 & . 297086E+12 \\
\hline 87 & V87 & 0.000 & . 297086E+12 \\
\hline 88 & V88 & 0.000 & . 297086E+12 \\
\hline 89 & V89 & 0.000 & . 297086E+12 \\
\hline 90 & V90 & 0.000 & . 297086E+12 \\
\hline 91 & V91 & 0.000 & . 297086E+12 \\
\hline 92 & V92 & 0.000 & . 297086E+12 \\
\hline 93 & V93 & 0.000 & . 297086E+12 \\
\hline 94 & V94 & 0.000 & . 297086E+12 \\
\hline 95 & V95 & 0.000 & . 297086E+12 \\
\hline 96 & V96 & 0.000 & . 297086E+12 \\
\hline 97 & V97 & 0.000 & . 297086E+12 \\
\hline 98 & V98 & 0.000 & . 297086E+12 \\
\hline 99 & V99 & 0.000 & . 297086E+12 \\
\hline 100 & V100 & 0.000 & . 297086E+12 \\
\hline 101 & V101 & 0.000 & . 297086E+12 \\
\hline 102 & V102 & 0.000 & . 297086E+12 \\
\hline 103 & V103 & 0.000 & . 297086E+12 \\
\hline 104 & V104 & 0.000 & . 297086E+12 \\
\hline 105 & V105 & 0.000 & . 297086E+12 \\
\hline 106 & V106 & 0.000 & . 297086E+12 \\
\hline 107 & V107 & 0.000 & . 297086E+12 \\
\hline 108 & V108 & 0.000 & . 297086E+12 \\
\hline
\end{tabular}

ORDINARY LEAST SQUARES RESULTS
=============================
\begin{tabular}{lr} 
N: 517.000 & R-SQUARED: 0.887 \\
MEAN DEP VAR: 904530.575 & ADJ R-SQUARED: 0.884 \\
& \(=1\)
\end{tabular} UNCENTERED R-SQUARED = R-0 SQUARED: 0.941

```

 Basis Function 31 | 345902.298 43089.400 8.028 .710543E-14
 \#--

```
--

The Following Graphics Are Piecewise Linear

PURE ORDINAL CONTRIBUTION:
CURVE 1: V64 , max \(=0.39391 \mathrm{E}+07\)

17.394
\(-7.434\)
9.118
srf 1: x(
7), \(x(\)
9). \(\max =\)
\(0.96142 \mathrm{E}+07\)
1 curves and 1 surfaces.
<a name="8"></a>

\section*{Basis Functions}
===============
```

BF1 = max(0, V3 - 0.549);
BF2 = max(0, 0.549 - V3);
BF4 = max(0, 3.010 - V4);
BF6 = max(0, 0.114 - V37) * BF2;
BF8 = max(0, - 2.442 - V64);
BF10 = max(0, 6.760 - V29) * BF4;
BF12 = max(0, - 0.217 - V11) * BF1;
BF13 = max(0, V44 + 0.317) * BF10;
BF14 = max(0, - 0.317 - V44) * BF10;
BF15 = max(0, V70 - 1.956) * BF13;
BF18 = max(0, 6.319 - V9);

```
```

BF20 = max(0, 0.261 - V53);
BF22 = max(0, 2.233 - V6) * BF20;
BF23 = max(0, V35 + 2.422) * BF22;
BF25 = max(0, V81 - 1.449) * BF12;
BF26 = max(0, 1.449 - V81) * BF12;
BF28 = max(0, 0.009 - V7) * BF18;
BF29 = max(0, V1 + 12.629) * BF22;
BF31 = max(0, 0.166 - V42) * BF26;
Y = 347729.313 + 2160884.750 * BF1 - 161361.938 * BF4
+ 143573.984 * BF6 + 296869.188 * BF8 + 18109.969 *
BF10
+ 9289.705 * BF14 + 7624.673 * BF15 - 231047.984 * BF22
+ 39573.816 * BF23 + 1140948.375 * BF25
+ 269260.594 * BF26 + 40768.789 * BF28
+ 27609.438 * BF29 + 345902.313 * BF31;
model V109 = BF1 BF4 BF6 BF8 BF10 BF14 BF15 BF22 BF23 BF25 BF26 BF28
BF29
BF31;

```

Current model information saved to binary file: C: \Mars run 5\new.mdl >STORE/CURRENT "C:\Mars run 5\train.mdl"

Current model information saved to binary file: C:\Mars run 5\train.mdl
\(>\)
    VARIABLES IN RECT FILE ARE:
\begin{tabular}{rrrrr} 
V1 & V2 & V3 & V4 & V5 \\
V6 & V7 & V8 & V9 & V10 \\
V11 & V12 & V13 & V14 & V15 \\
V16 & V17 & V18 & V19 & V20 \\
V21 & V22 & V23 & V24 & V25 \\
V26 & V27 & V28 & V29 & V30 \\
V31 & V32 & V33 & V34 & V35 \\
V36 & V37 & V38 & V39 & V40 \\
V41 & V42 & V43 & V44 & V45 \\
V46 & V47 & V48 & V49 & V50 \\
V51 & V52 & V53 & V54 & V55 \\
V56 & V57 & V58 & V59 & V60 \\
V61 & V62 & V63 & V64 & V65 \\
V66 & V67 & V68 & V69 & V70 \\
V71 & V72 & V73 & V74 & V75 \\
V76 & V77 & V78 & V79 & V80 \\
V81 & V82 & V83 & V84 & V85 \\
V86 & V87 & V88 & V89 & V90 \\
V91 & V92 & V93 & V98 & V94 \\
V101 & V102 & V103 & V99 & V95 \\
V106 & V107 & V108 & V104 & V100 \\
& & &
\end{tabular}

C:\Mars run 5\valid.SAV[spsswin]: 80 RECORDS.
```

>RETRIEVE "C:\Mars run 5\new.mdl"
>SAVE "C:\Mars run 5\new.XLS[xls7]"
>APPLY

```

Dependent variable: V109 not found on your dataset.

READING DATA, UP TO 8865 RECORDS.
RECORDS READ: 80
RECORDS KEPT IN LEARNING SAMPLE: 80
<a name="9"></a>
LEARNING SAMPLE STATISTICS
==========================
\begin{tabular}{|c|c|c|c|c|}
\hline VARIABLE & MEAN & SD & N & SUM \\
\hline V1 & -0.492 & 1.075 & 80.000 & -39.346 \\
\hline V2 & 1.044 & 0.083 & 80.000 & 83.545 \\
\hline V3 & 0.575 & 0.066 & 80.000 & 45.965 \\
\hline V4 & -0.687 & 0.739 & 80.000 & -54.934 \\
\hline V5 & -0.343 & 0.372 & 80.000 & -27.426 \\
\hline V6 & 0.637 & 0.740 & 80.000 & 50.960 \\
\hline V7 & -1.172 & 8.719 & 80.000 & -93.770 \\
\hline V8 & 0.850 & 4.730 & 80.000 & 68.022 \\
\hline V9 & -0.100 & 2.609 & 80.000 & -7.977 \\
\hline V10 & 0.155 & 1.254 & 80.000 & 12.400 \\
\hline V11 & -0.045 & 1.534 & 80.000 & -3.637 \\
\hline V12 & -0.250 & 1.145 & 80.000 & -20.007 \\
\hline V13 & -0.175 & 1.072 & 80.000 & -13.970 \\
\hline V14 & 0.556 & 2.133 & 80.000 & 44.449 \\
\hline V15 & 0.554 & 1.934 & 80.000 & 44.307 \\
\hline V16 & -0.018 & 1.065 & 80.000 & -1.411 \\
\hline V17 & -0.622 & 0.955 & 80.000 & -49.764 \\
\hline V18 & -0.856 & 0.961 & 80.000 & -68.450 \\
\hline V19 & 0.782 & 0.982 & 80.000 & 62.586 \\
\hline V20 & 0.600 & 1.746 & 80.000 & 48.011 \\
\hline V21 & 0.540 & 1.178 & 80.000 & 43.218 \\
\hline V22 & 0.305 & 6.669 & 80.000 & 24.439 \\
\hline V23 & -1.146 & 7.093 & 80.000 & -91.643 \\
\hline V24 & 1.307 & 4.450 & 80.000 & 104.542 \\
\hline V25 & -0.128 & 1.223 & 80.000 & -10.220 \\
\hline V26 & -0.059 & 2.091 & 80.000 & -4.734 \\
\hline V27 & 0.630 & 1.529 & 80.000 & 50.382 \\
\hline V28 & 0.032 & 2.907 & 80.000 & 2.560 \\
\hline V29 & 0.010 & 2.828 & 80.000 & 0.809 \\
\hline V30 & -0.557 & 2.309 & 80.000 & -44.530 \\
\hline V31 & 0.277 & 1.290 & 80.000 & 22.152 \\
\hline V32 & 0.737 & 3.610 & 80.000 & 58.949 \\
\hline V33 & 0.411 & 2.985 & 80.000 & 32.842 \\
\hline V34 & 0.268 & 2.090 & 80.000 & 21.447 \\
\hline V35 & -0.480 & 3.304 & 80.000 & -38.390 \\
\hline V36 & 0.336 & 2.625 & 80.000 & 26.874 \\
\hline V37 & -0.424 & 5.360 & 80.000 & -33.939 \\
\hline V38 & -0.402 & 3.635 & 80.000 & -32.171 \\
\hline V39 & -0.077 & 3.272 & 80.000 & -6.125 \\
\hline V40 & 0.118 & 1.369 & 80.000 & 9.420 \\
\hline V41 & -0.020 & 0.762 & 80.000 & -1.630 \\
\hline V42 & 0.265 & 0.821 & 80.000 & 21.214 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline V43 & -0.094 & 0.965 & 80.000 & -7.535 \\
\hline V44 & -0.353 & 0.959 & 80.000 & -28.229 \\
\hline V45 & -0.137 & 2.200 & 80.000 & -10.949 \\
\hline V46 & 0.271 & 2.663 & 80.000 & 21.658 \\
\hline V47 & 0.213 & 1.809 & 80.000 & 17.011 \\
\hline V48 & 0.412 & 3.011 & 80.000 & 32.935 \\
\hline V49 & 0.244 & 2.403 & 80.000 & 19.550 \\
\hline V50 & -0.663 & 3.492 & 80.000 & -53.077 \\
\hline V51 & 0.159 & 1.194 & 80.000 & 12.747 \\
\hline V52 & -0.475 & 4.053 & 80.000 & -38.012 \\
\hline V53 & -0.186 & 0.447 & 80.000 & -14.844 \\
\hline V54 & 0.461 & 2.731 & 80.000 & 36.902 \\
\hline V55 & 0.125 & 2.072 & 80.000 & 10.033 \\
\hline V56 & -0.300 & 1.127 & 80.000 & -24.007 \\
\hline V57 & 0.345 & 1.262 & 80.000 & 27.599 \\
\hline V58 & 0.065 & 1.670 & 80.000 & 5.200 \\
\hline V59 & 0.075 & 1.131 & 80.000 & 5.976 \\
\hline V60 & -0.324 & 1.552 & 80.000 & -25.884 \\
\hline V61 & -0.007 & 0.825 & 80.000 & -0.542 \\
\hline V62 & 0.596 & 4.070 & 80.000 & 47.699 \\
\hline V63 & 0.153 & 2.960 & 80.000 & 12.213 \\
\hline V64 & 0.169 & 1.370 & 80.000 & 13.542 \\
\hline V65 & 0.132 & 2.693 & 80.000 & 10.555 \\
\hline V66 & -0.251 & 2.957 & 80.000 & -20.073 \\
\hline V67 & -0.194 & 1.441 & 80.000 & -15.551 \\
\hline V68 & 0.711 & 2.623 & 80.000 & 56.869 \\
\hline V69 & 0.630 & 2.492 & 80.000 & 50.395 \\
\hline V70 & 0.209 & 2.323 & 80.000 & 16.745 \\
\hline V71 & 0.070 & 1.494 & 80.000 & 5.575 \\
\hline V72 & 0.432 & 2.672 & 80.000 & 34.564 \\
\hline V73 & -1.008 & 4.502 & 80.000 & -80.613 \\
\hline V74 & -0.035 & 0.100 & 80.000 & -2.818 \\
\hline V75 & 0.194 & 2.042 & 80.000 & 15.498 \\
\hline V76 & 0.064 & 1.833 & 80.000 & 5.158 \\
\hline V77 & -0.503 & 1.452 & 80.000 & -40.206 \\
\hline V78 & 0.119 & 2.409 & 80.000 & 9.505 \\
\hline V79 & 0.015 & 1.080 & 80.000 & 1.187 \\
\hline V80 & 0.227 & 1.254 & 80.000 & 18.124 \\
\hline V81 & -0.204 & 3.544 & 80.000 & -16.327 \\
\hline V82 & 0.245 & 1.972 & 80.000 & 19.639 \\
\hline V83 & 0.089 & 1.468 & 80.000 & 7.113 \\
\hline V84 & -0.079 & 0.382 & 80.000 & -6.334 \\
\hline V85 & -0.179 & 1.521 & 80.000 & -14.345 \\
\hline V86 & 0.090 & 1.710 & 80.000 & 7.204 \\
\hline V87 & 0.039 & 0.760 & 80.000 & 3.083 \\
\hline V88 & -0.119 & 2.128 & 80.000 & -9.495 \\
\hline V89 & 0.367 & 2.121 & 80.000 & 29.323 \\
\hline V90 & -0.533 & 2.573 & 80.000 & -42.635 \\
\hline V91 & 0.430 & 2.314 & 80.000 & 34.429 \\
\hline V92 & 0.423 & 1.474 & 80.000 & 33.852 \\
\hline V93 & 0.020 & 1.613 & 80.000 & 1.615 \\
\hline V94 & 0.132 & 1.607 & 80.000 & 10.551 \\
\hline V95 & -0.436 & 1.724 & 80.000 & -34.909 \\
\hline V96 & 0.121 & 1.621 & 80.000 & 9.703 \\
\hline V97 & 0.073 & 2.596 & 80.000 & 5.875 \\
\hline V98 & -0.173 & 1.309 & 80.000 & -13.871 \\
\hline V99 & -0.090 & 0.772 & 80.000 & -7.205 \\
\hline
\end{tabular}
```

V100	0.152	1.028	80.000	12.141
V101	0.317	1.945	80.000	25.351
V102	0.720	2.895	80.000	57.620
V103	-0.319	3.339	80.000	-25.496
V104	0.312	1.626	80.000	24.978
V105	-0.302	1.648	80.000	-24.136
V106	-0.683	2.088	80.000	-54.627
V107	-0.067	1.793	80.000	-5.397
V108	0.081	1.639	80.000	6.510

SAVE FILE CREATED.
80 RECORDS WRITTEN TO SAVE FILE.

PREDICTION STATISTICS
=====================
Minimum: 25839.816
Maximum: 2131535.250
Mean: 619974.629
Standard Deviation: 386684.505
$>$

```

\section*{VITA}

Roshan Pawar received a B.E. in Construction Engineering from M. H. Saboo Siddik College of Engineering, University of Mumbai in 2002. He worked as a Site Engineer before enrolling for a M.S. degree in Civil Engineering with emphasis in Construction Engineering and Management at Texas A\&M University in 2005. He can be reached at his parents' address at:

\author{
Suresh Pawar \\ D/201 Panchvan Complex, I.C. Colony, Borivali (West), Mumbai 400 103, MH, India.
}```

