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ABSTRACT 

Open Source Software Maturity Model Based on Linear Regression and Bayesian 

Analysis. (August 2007) 

Dongmin Zhang, B.S., Tsinghua University, P.R. China; 

M.S., Tsinghua University, P.R. China; 

M.S., University of Nebraska-Lincoln 

Chair of Advisory Committee: Dr. Dick B. Simmons 

Open Source Software (OSS) is widely used and is becoming a significant and 

irreplaceable part of the software engineering community. Today a huge number of OSS 

exist. This becomes a problem if one needs to choose from such a large pool of OSS 

candidates in the same category. An OSS maturity model that facilitates the software 

assessment and helps users to make a decision is needed. A few maturity models have 

been proposed in the past. However, the parameters in the model are assigned not based 

on experimental data but on human experiences, feelings and judgments. These models 

are subjective and can provide only limited guidance for the users at the best. 

This dissertation has proposed a quantitative and objective model which is built 

from the statistical perspective. In this model, seven metrics are chosen as criteria for 

OSS evaluation. A linear multiple-regression model is created to assign a final score 

based on these seven metrics. This final score provides a convenient and objective way 

for the users to make a decision.  The coefficients in the linear multiple-regression model 

are calculated from 43 OSS. From the statistical perspective, these coefficients are 
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considered random variables. The joint distribution of the coefficients is discussed based 

on Bayesian statistics. More importantly, an updating rule is established through 

Bayesian analysis to improve the joint distribution, and thus the objectivity of the 

coefficients in the linear multiple-regression model, according to new incoming data. 

The updating rule provides the model the ability to learn and improve itself continually.    
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CHAPTER I 

 

INTRODUCTION 

 

Software Maturity model is a process model used to assess the level of maturity 

of an organization’s software development process. It helps the developers locate the 

weak points in their software process and helps them to improve it. 

 

I.1 Traditional Software Maturity Model 

 

In 1988 and 1989, Watts Humphrey, from Software Engineering Institute, 

proposed a software process maturity framework [1][2]. His maturity framework 

includes 5 process levels: 

1. “Initial” level. It is also known as Ad Hoc, or even chaotic. At this level, 

software management tools are not uniformly employed in the software process. 

The management team does not realize the benefits of software engineering 

methods and technologies such as project planning, code design and cost 

estimation. 

2. “Repeatable” level. At this level, the organizations follow rigorous management 

procedures: commitment control, cost and schedule control. 
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3. “Defined” level. At this level, the organizations have well-defined software 

process, including activities, plans, resources, constrains and objectives.             

4.  “Managed” level. At this level, software process measurement is introduced and 

applied to each part of the process, and the measurement yields statistical data 

and analysis to help the management of the software process. 

5. “Optimizing” level. Based on the result of measurement and analysis in Managed 

level, improvement can be applied to the software process. 

In the following years, based on the 5-level maturity model, Software 

Engineering Institute (SEI) presented their Capability Maturity Model (CMM) [3] that 

has since become a widely used model for assessing and improving software process. 

This model is based on the traditional software development process that consists of 

planning, cost estimation, scheduling, resources allocation, quality control, process 

management, etc. This model will be described in more details in Chapter II. 

 

I.2 Open Source Software 

 

Open Source Software refers to the software whose source code is available to 

public under certain terms and users have the right to read, modify, and derive from the 

source code. Also, users can distribute the original and modified version of the software 

in source code format and/or in compiled format under the same license as the original 

one. 
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According to the Open Source Definition provided by Open Source Initiative, 

Open Source Software must comply with the following 9 metrics. 

1. Allow free redistribution. There is no restriction on selling and free offering of 

the software. No loyalty and fee should be charged for redistribution. 

2. Open source code. Source code must be publicly available and can be obtained 

free of charge. No fees should be charged on redistribution of the source code.  

3. Allow redistribution of derived work. Modifications of the source code are 

allowed. And the modified version can be redistributed under the same license. 

4. Integrity of Author’s source code. In order to keep a record of who is responsible 

for a particular part of the code, the license must allow distribution of patches 

instead of modified version of the program. 

5. No discrimination against certain people or a group of people. Every person is 

eligible to contribute to the open source software. There should be no restriction 

on who can and who cannot get involved in the software development. 

6. No discrimination against certain field. The program should be used in all fields 

including business and research. 

7. No need for additional license. When the program is distributed, whoever 

receives the program has all the right listed in the license without any additional 

terms. 

8. License is attached to program other than product. Terms are applied to the 

program. It does not matter if the program is part of a product or not. 
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9. License is applied to the program only. The license can be applied to the 

particular program only. It should have no restriction on other programs. 

10. License must not prefer some technology than others. The license must have no 

restriction on how the program will be obtained and how it will be used. 

Open Source Software has these special features. They are quite different from 

those of traditional software. Open Source Software is usually contributed by individual 

contributors. These contributors usually do not stay together physically. Sometimes they 

may live in different countries or even continents. Open Source Software process has no 

scheduling, resource allocation and management involved. No managers assign tasks 

and deadlines to the developers. The individual contributors volunteer their time and 

efforts, and they cooperate in very loosely manner. No hierarchical leadership or formal 

management structure is involved. According to a survey study [4], around 60 percent of 

the Open Source Software contributors and developers are not being paid by any 

company and most of them are motivated by their own personal interest.  

 

I.3 Motivation 

 

The development process of Open Source Software is very different from 

traditional software development process in many ways. It is hard to apply the traditional 

software maturity model directly on Open Source Software development process. We 

need to study and build an Open Source Software maturity model for the following 

reasons: 
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1. The need of an individual user for an evaluation model. As mentioned above, 

Open Source Software is getting more and more attentions and market shares 

today. However, there are so many OSS out there and there seems to be no way 

to tell which one is the best. As a software engineer, the author had some 

personal experiences of choosing from a large pool of OSS, which is a time-

consuming, challenging and confusing process. For example, when several 

desirable candidates with similar functionalities are chosen, it is hard to 

determine which one to use. Since there are no user reviews available, the user 

has to spend a large amount of time on each of the candidates in order to evaluate 

them before the final decision is made. On the other hand, if there were some 

model that could help evaluate all the candidates, the user would have been able 

to get rid of those relatively immature ones quickly and get focused on the 

promising ones. Thus the user would save a lot time and get a better chance to 

choose a good one and save on cost. It is especially dangerous if the users pick a 

wrong one and make it the foundation for software development and after some 

relatively long period realize that they have chosen the wrong one in the first 

place. Users, especially those inexperienced ones, need guidelines or a good OSS 

maturity model to help them make the decision. 

2. Certain needs arise recently. Many government departments and organizations 

have recently expressed their need for OSS maturity model. For example, 

California government has started to consider Open Source Software alternatives, 

and they have realized the importance of maturity model for the OSS selection 
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process [5]. Government of Canada has also voiced its needs for Open Source 

Software. All these governments and organizations need a standard procedure to 

help them choose among OSS with similar functionalities [6]. 

3. OSS maturity model has become a research frontier in the software engineering 

community. Part of open source community has switched its focus to OSS 

maturity model recently. Carnegie Mellon West Center for Open Source 

Investigation, cooperating with Intel, O'Reilly CodeZoo, and SpikeSource, 

proposed Business Readiness Rating as a standard model for rating open source 

software [7]. David A. Wheeler thoroughly explained why we need to build OSS 

maturity model and proposed a model [8]. Navica/Golden proposed Open Source 

Maturity Model [9]. There are many other researcher groups focusing on this 

topic [10][11][12][13][14][15]. The existing work is admirable but needs 

improvements before it can be employed in the real world, which will be 

explained in more details in the next section. 

For all the reasons above, the need for developing a better OSS maturity model is 

truly urgent. The goal of this research project is to propose a user friendly and objective 

OSS maturity model. This model can be used to compare OSS, provide users with a 

quantitative index, assist users to pick up the more mature one, and help them choose 

between different OSS packages. Certain objective criteria will be defined and a 

regression model will be developed to compute the scores for OSS. With this maturity 

model, users need to collect data for each criterion, feed the data into the model, and get 

the maturity score of their OSS candidates.  
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I.4 Organization of the Dissertation 

 

This dissertation is organized as the following. Chapter II gives a brief summary 

of existing software maturity model, including the maturity model for proprietary 

software and Open Source Software, and states current problems in the existing models. 

Chapter III describes the metrics used in the proposed model in this dissertation in 

details, and the reasons to choose these metrics. Chapter IV presents the linear multiple 

regression model, validation of assumptions, and verification of the regression model. 

Chapter V explains Bayesian analysis and the model updating rules based on Bayesian 

analysis, which is the statistical foundation of the research in this dissertation. Finally, 

Chapter VI concludes the work and gives possible future research directions. 
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CHAPTER II 

 

EXISTING SOFTWARE MATURITY MODELS 

 

Existing software maturity models are valuable literatures for developing new 

maturity model. The existing models show the key structure and elements of the 

maturity model. Studying the methods, techniques and procedures of building existing 

models provides inspiration for new models. We first look at the most widely adopted 

Software Maturity Model for proprietary software. Then the common techniques used in 

the area of software modeling are discussed. Starting from Section 3, the existing Open 

Source Software Maturity Models are introduced. Each of them is explained in detail 

and the techniques they use are summarized. The similarities of the models are also 

studied. 

 

II.1  Software Maturity Model for Proprietary Software 

 

The most popular software maturity model for proprietary software is Capability 

Maturity Model (CMM) and Capability Maturity Model Integration (CMMI). CMM was 

developed by Software Engineering Institute (SEI) at Carnegie Mellon University in the 

1980s. It is adopted by a lot of companies, organizations and government projects. 

Capability Maturity Model is a software process model that can be used to assess 

the Maturity Level of an organization. It is a tool that can be used for quality 
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management and is of great help for the organization to improve its process. A process is 

the way in which people utilize certain resources, follow some procedures and apply a 

set of methods to achieve their objectives and produce the final desired results. 

CMM includes Maturity Levels, Key Practice Areas, Goals, Common Features, 

and Key Practices. The layered Maturity Levels are well-defined stages covering the 

evolution from a basic and initial stage to mature software organization. CMM includes 

five Maturity Levels, which are: 

1. Level 1 – Initial 

2. Level 2 – Repeatable 

3. Level 3 – Defined 

4. Level 4 – Managed 

5. Level 5 – Optimizing 

At level 1, initial, the processes are usually designed for a single project. There 

are no certain standards to follow. The project management is in chaos. The success in 

the past is not repeatable in the future. Very experienced and capable people are critical 

to the success of the organization at level 1. Usually, it is easy for the organizations at 

Maturity Level 1 to miss the deadline and consume more resources than their initial 

budget. 

At level 2, repeatable, the processes are repeatable for all the projects. The 

success is also repeatable in the future. The very basic project management is often used. 

A development plan is designed before implementation and the plan is closely followed 

during the entire process of the software development. The organizations use scheduling 
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tools and a resource tracking system to help them stay on time and deliver software 

products without spending beyond their budget. At this level, the organization can repeat 

their success for the previously accomplished tasks. For new tasks the organization may 

repeat their success but under high risks of overflowing budget and late delivery of 

products.  

At level 3, defined, the process is well defined. The organization defined 

standard processes that all of the projects must follow. The standard process may be 

modified in each project according to its special requirements and the modification guide.   

Unlike level 2, at which the processes are quite different from project to project, 

at level 3, all projects define their descriptions and procedures based on the same set of 

standard processes. They are disciplined and vary only based on individual objectives 

and needs. At this level, the organization is qualitative measurable. 

At level 4, managed, quantitative measurement and statistical methods are 

deployed.  Quantitative information is fed to the project management. This provides 

progress tracking and resource control. At this level, the process in an organization is 

quantitatively measured and controlled. It is therefore quantitative measurable. 

At level 5, optimizing, the organization continuously improves the process. 

Organizations use new technologies to help them optimize the process. Quantitative 

improvement objectives are defined and the organization focuses on continuous 

improvements and optimizing the process to achieve its business goals. 

Figure 2.1 shows the 5 levels and the way to improve from one level to the upper 

level. 
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Level 5 

Optimized 

Level 4 

Managed 

Focus on continuous 

process improvement 

Level 3 

Defined 

Quantitative 

measurement 

Level 2 

Repeatable 

Standardized 

processes 

Level 1 

Initial 

Repeatable 

processes 

 

Figure 2.1. Capability Maturity Model five maturity levels evolution 

 

Besides the Maturity Levels described above, Capability Maturity Model defines 

Key Process Areas (KPA) [16] that consists of a group of activities. These activities are 

identified to address the issues for an organization at a certain Maturity Level and ensure 

that the right personnel, resources and other participants get involved. If the 
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organizations perform these activities, they are guaranteed to achieve the goal that is 

important to improve the organization’s maturity.  

CMM defined a set of Key Process Areas for each Maturity Level as shown in 

Table 2.1.  

CMM Goals define a set of status that the organization has to achieve in each 

Key Process Area, thus to identify the improvement and status of the organization at 

each Maturity Level. For example, the goals for Software project planning include  

• Software estimates are well defined and documented for planning and 

tracking. 

• Appropriate personnel or groups agree with the planned activities and 

commitment.  

• The planned activities and commitments are documented. 

 

CMM Common Features are used to organize the practices in each Key Process 

Area and indicate if the practices are effective and repeatable in a lasting way. The 

Common Features include 

• Commitment to perform. 

• Ability to perform. 

• Activities performed. 

• Measurement and analysis. 

• Verifying implementation. 
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Table 2.1. CMM key process areas for each maturity level 

Maturity Level Key Process Areas 

Improve from Level 1 

Initial to Level 2 

Repeatable 

• Software configuration management 

• Software quality assurance 

• Software subcontract management 

• Software project tracking and oversight 

• Software project planning 

• Requirements management 

Improve from Level 2 

Repeatable to Level 3 

Defined 

• Peer reviews 

• Intergroup coordination 

• Software product engineering 

• Integrated software management 

• Training program 

• Organization process definition 

• Organization process focus 

Improve from Level 3 

Defined to Level 4 

Managed 

• Software quality management 

• Quantitative process management 

Improve from Level 4 

Managed to Level 5 

Optimizing 

• Process change management 

• Technology change management 

• Defect prevention 
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The commitment to perform defines the set of actions the organization must 

execute to guarantee the planned activities will happen at the certain stage of the process. 

It may include sub-features, such as policies, responsibilities, and senior management 

sponsorship. 

“Ability to perform” describes the conditions that the organization must meet in 

order to ensure the process be established and completed. The typical sub-features 

include resources, organization structure, delegation, training, and orientation. 

“Activities performed” explains what roles an appropriate personnel or group 

should play and what procedures they should follow to implement the Key Process Area. 

Usually it includes sub-features such as developing plans and procedures, executing the 

work, tracking the progress, and taking necessary actions to help keeping the process on 

track. 

“Measurement and analysis” includes the quantitative measurement of the 

process and analysis of the quantitative measurement data. Sub-features include 

measuring the activities performed and analyzing the measurement results. 

“Verifying implementation” describes the procedures and actions that need to be 

done to make sure the activities comply with the planed and documented process. The 

typical sub-features are the reviews and tests by senior management members, program 

managers and the testing and quality assurance team. 

CMM Key Practices include the infrastructures and practice that are the most 

important for effective implementation and institutionalization for each key area. For 

example, estimating the size of the product is a key practice. 
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Capability Maturity Model Integration (CMMI) [17][18][19][20] is upgrade and 

replacement for Capability Maturity Model. CMMI is also developed by Software 

Engineering Institute (SEI) at Carnegie Mellon University and was first released in 2002. 

Following the transition in software life cycle process, from Waterfall model to Spiral 

Software Life Cycle model, to Natural Milestone Life Cycle model, and to Extreme 

Programming and Agile Programming model, SEI developed CMMI which integrated 

new models, new process areas, modern key practices, and more implementation goals. 

For example, the following are some of the new Key Process Areas that are 

added to each Maturity Level: 

• Newly added Key Process Areas at Level 2: 

o Measurement and analysis 

• Newly added Key Process Areas at Level 3: 

o Requirements development 

o Technical solution 

o Product integration 

o Verification 

o Validation 

o Risk management 

o Decision analysis and resolution 
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II.2  Multiple Regression and Bayesian Analysis Used in COCOMO II 

 

COCOMO II is a cost estimate model and it is one of the most popular Software 

Engineering models used today. It gives an estimate of the manpower needed to develop 

a software project. COCOMO II is an update of COCOMO, which is the acronym for 

“COstructive COst MOdel”. COCOMO was introduced by Barry Boehm in 1981 [21] 

based on a study of 60 software projects developed in a company called TRW 

Incorporated. The software projects studied to build the COCOMO model have sizes 

ranged from 2000 to 10,000 lines of source codes and include a few different 

programming languages from assembly to PL/I. 

 The COCOMO model includes three forms: 

• Basic Model 

• Intermediate Model 

• Detailed Model 

The basic COCOMO model includes the following three equations to estimate 

the costs 

bb

b KLOCaE )(=                                                                                 (2.1) 

bd

bEcD =               (2.2) 

DEP /=                             (2.3) 

where E is the estimated efforts in man-month, 

           KLOC is the size of the software in thousand lines of source code, 

           D is the estimated development time in months, 
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           P is the estimated number of programmers needed to deliver the software, 

          bbbb dcba ,,, are the coefficients and are different for different types of software 

projects in basic COCOMO form, as shown in Table 2.2. 

 

Table 2.2. Coefficients in COCOMO model 

Software Project ab bb cb db 

Organic 2.4 1.05 2.5 0.38 

Semi-detached 3.0 1.12 2.5 0.35 

Embedded 3.6 1.20 2.5 0.32 

 

COCOMO II [22] was released in mid of 1990s and it is the update of COCOMO 

model. COCOMO II published in 1997 is based on multiple regression approach. It has 

five “Scale Factors” and seventeen “Effort Multipliers” [23]. Its mathematical form is 

expressed as Equation (2.4) [24] 

∏
=

+

×
∑

×= =

17

1

01.1

5

1][
i

i

SF

EMSizeAE i

i

               (2.4) 

Where E is the estimated effort, 

A is a constant, 

Size is the size of the software, which is measured by thousand lines of source 

code, 

SF is Scale Factor, 

EM is the effort multiplier cost driver. 
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“Thousand lines of source code” is used to represent the size of the project. Other 

researches suggested other metrics, such as Chuck metric introduced by Simmons et 

al.[25], function points proposed by International Function Point Users Group [26], and 

object points suggested by Banker et al. [27]. 

If we take logarithms on both sides of Equation (2.4), we get a linear equation, as 

shown in Equation (2.5). The coefficients associated with each term are determined by 

the multiple regression method based on 83 data points [24] collected from commercial 

software. 

)lg(...)lg()lg(             

...)lg()lg()lg(01.1)lg(

17231756

231210

EMEMSizeSF

SizeSFSizeSFSizeE

⋅++⋅+⋅⋅+

+⋅⋅+⋅⋅+⋅⋅+=

βββ

ββββ
             (2.5) 

Some counter intuitive results are found in COCOMO II. Therefore Chulani et al. 

proposed to use Bayesian Analysis to calibrate COCOMO II [24][28]. 

This marks the inspiration for the statistical methods used in this dissertation. As 

explained in details in Chapter IV and Chapter V, a multiple regression model is built as 

the Open Source Software Maturity Model and Bayesian Analysis [29][30] is applied to 

update the model. 

 

II.3  Existing Software Maturity Model for Open Source Software 

 

There are a variety of existing models.  Among them are the three major ones, 

which are Open Source Software Maturity Models, Navica/Golden Open Source 

Maturity Model(OSMM), CapGemini Open Source Maturity Model, and Business 
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Readiness Rating. These maturity models have some common criteria and share some 

common methods. Following is the summary for each of these models. 

 

Navica/Golden Open Source Maturity Model (OSMM) 

 

Navica/Golden Open Source Maturity Model was proposed by Bernard Golden 

[9]. It was considered to be the pioneer of Open Source Maturity Model (OSMM).  

Golden provided a template for the maturity assessment, which consists of three 

phases. Phase One: Identify and assess important metrics for Open Source Software 

maturity. Phase Two: Define the weighting factor for each metric picked up in Phase 

One. Phase Three: Compute the final maturity score by summing weighted metrics’ 

scores. 

During phase one, six elements are identified as the key metrics: “Product 

Software”, “Support”, “Documentation”, “Training”, “Product Integrations”, and 

“Professional Services”. Phase One consists of 4 steps. The first step is that users define 

their requirements and identify the key criteria for their needs. This step is very 

important for building the maturity model. The second step is to locate the resources 

either from within the organization or from the OSS community. This might be 

challenging compared with the traditional software development process. Then users 

need to evaluate the maturity of each metric for the OSS.  Finally they assign a number 

as the score for each of the key metrics with experts’ help. 
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Since all criteria are not equally important, in the second phase, users have to 

give each criterion a weighting factor with experts’ help based on their particular needs. 

The more important the metric is, the heavier the weighting factor should be. 

With the scores for key criteria and their weighting factors available, the last 

phase is to put them together and calculate the final numerical maturity score for the 

OSS. 

OSMM provides a template with their suggested weighting factor and potential 

score for each of the metrics. The multiplications of the potential scores with the 

weighting factors sum up to 100. Users need to fill out the actual score for each metric 

and adjust the weighting factors with experts’ help based on their specific requirements. 

 

CapGemini Open Source Maturity Model 

 

CapGemini Open Source Maturity Model was developed to help users to 

determine if OSS fits the requirements of an organization [31].  

This model defines 12 metrics to measure the successfulness of OSS and group 

them into four categories:  

• “Product” 

• “Integration” 

• “Use” 

• “Acceptance” 

Their categories are called “Product Indicator”.  
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“Product” group represents the internal quality of the open source project. It 

includes 5 important metrics: 

• “Age”. It is the time period during which the Open Source Software keeps 

active. The longer the age the less chance that the software will be abandoned 

suddenly. 

• “Selling points”. These are the features that are not provided by existing 

software and address the key weakness of existing software, or they are 

features that are provided with much better quality than their counterparts in 

existing software. Open Source Software with very good selling points could 

quickly gain market share. 

• “Developer community”. The larger the number of people involved in 

software development, the better chance that the software continues to grow 

and get improvement. A community with actively involved developers keeps 

the open source software active. 

• “Human hierarchies”. A project fully controlled by a single person is hard to 

grow. Hierarchical management makes the development, code review, testing 

and support easier to control. Hierarchical management is a wise choice for 

good software development. 

• “Licensing”. Very restrictive license may limit possible future use or 

distribution of the derived work. Choosing the Open Source Software with 

the appropriate license is very important. 
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“Integration” group focuses on the features that make the entire open source 

project or part of it easily integrated with other projects. It includes  

• “Collaboration with other products”. First, a product should have high quality 

and be easy to use. The second step is that the product should be easily used 

in cooperation with other software. PAM (Plugable Authentication Module) 

is a good example that used by a lot of other applications such as rsh, rlogin 

and rcp. How well and easily an Open Source Software can be integrated into 

other software decides if it can be chosen and adopted as a component in the 

software an organization is developing. 

• “Modularity”. After an open source product becomes a successful and widely 

used software project, some people may want to use only part of it based on 

their needs. If the source code is designed and developed in modules 

according to different functionalities and each module has clear and well 

defined interface, each module can be then easily adopted by other projects 

when only that part of the software is desired. Modularity makes the open 

source software become more useful as a integrated product, as well as 

individual functional components. For example, XFree86 was originally 

designed to require the details of video card. In order to make the video card 

work with XFree86, manufactures need to open their video card source code 

which most manufactures are not willing to give up. XFree86 then improved 

its design and become an X server that can take binaries of the video card. 
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After that, XFree86 can work with significantly more video cards and more 

successful software. 

• “Standards”. One service or protocol usually has many standards established 

by different companies or organizations. For example, there are three ways to 

connect to database, direct connection which is supported by only a few 

database, using ODBC which is a standard in Unix/Linux and Windows, and 

OLEDB which is a standard in Windows. Certainly, the one using ODBC is 

preferred. In order to ensure that the software can easily adopt or be adopted 

by other software, it is very important to comply with most commonly used 

standards. 

“Use” group measures how many ways the software provide to support new 

users and existing users. It includes 2 metrics:  

• “Ease of deployment”. When an open source project takes more and more 

market share, more people become interested in the whole product or part of 

it. In this case, the documentation that explains how to deploy the whole 

application and how to interface and contribute to each individual component 

is critical. Such documentation saves new users a lot of time for seeking 

around and enables them to get on the right track more easily. 

• “Support”. When users have problems using the software or request new 

features, they need support from the developers and the user communities. 

“Acceptance” group indicates if the users are satisfied with the open source 

software and if the software is popular. It includes 2 metrics:  
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• “User community”. Some Open Source Software have a big and active user 

community, while others may have relatively small group of users. A big and 

active user community may have important impact on the future of the Open 

Source Software. Open Watcom C++, for instance, is the result of strong 

support of the user community. 

• “Market Penetration”. Market share is an important indicator. Market share 

represents the percentage of the users who adopt a particular software project. 

A higher percentage indicates a higher level of maturity. 

CapGemini Open Source Maturity Model has provided an example score table 

for each of the above indicators. The suggested scoring scheme is based on their 

extensive experience from reviewing and evaluating Open Source projects. 

This model also defined 15 metrics to represent the environmental aspects and 

the current and future demands of the user, such as usability, interfacing, performance, 

reliability, security and so on. 

When users need someone to help them choose an Open Source project, 

CapGemini consultants with extensive Open Source Software assessment experiences 

will then help them to assign a score for each of the metrics defined earlier, assign a 

priority to each metric, and compute the final weighted score for Open Source Software. 
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Business Readiness Rating 

 

Business Readiness Rating was developed by Anthony Wasserman, Murugan Pal, 

and Christopher Chan, from OpenBRR.org in a published whitepaper, in which they 

proposed an “Open and Standard Model for Software Assessment” [7].  

They believe that a good model should include both good and bad characteristics 

of a software product, and should not be biased. It should be easy to understand and easy 

to use. Also, the model should capture the new changes of Open Source software, and 

reflect the changes.  Furthermore the model should generate a consistent score for 

software even from different categories. 

There are four phases when using this model to assess Open Source project.  

• Phase one: “quick assessment”. In this phase, user needs to identify their 

metrics, measure the Open Source software and filter out the ones that don’t 

meet their basic requirements. 

• Phase two: “Target usage assessment”. Business readiness model defined 12 

categories and each category includes a few metrics. In this second phase, 

users need to pick 7 or fewer more important categories and give percentage 

category weights that sum up to 100%. Within each category, users rank 

metrics and assign a percentage weighting factors that sum up to 100% 

according to their importance.  

• Phase three: “Data collection and processing”. Data for each metric in each 

category are collected, assessed and the weighted scores are computed. 
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• Phase four: “Data translation”. The numeric maturity score is computed. 

This model also provides commonly used metrics and their scoring.  

 

II.4  Other Related Work 

 

David Wheeler proposed a procedure to evaluate Open Source Software in [8]. 

His procedure consists of four phases, namely Identify, Read Reviews, Compare, and 

Analyze. In the “Compare” phase, he proposed 13 metrics that users should consider and 

compare. 

In his thesis “Finding Open options: An Open Source Software Evaluation Model 

with a Case Study on Course Management Systems" [10], Karin van den Berg proposed 

an Open Source Software evaluation model. In the model he defined 10 metrics and an 

assessment process. First he established a selection method, which uses 4 of the 10 

metrics and a Linear Weighted Attribute Model to get a quick impression of Open 

Source Software, filter out undesired ones and provide a short list of candidates. From 

the short candidate list, he evaluated each metric, assigned a score and weight, and 

finally used Linear Weighted Attribute Model to calculate the final score. 

There are also some other guidelines for choosing Open Source Software, and 

plenty of improvement work of existing Open Source Software Maturity Model [9] 

[11][32][33]. 
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II.5 Summary of Existing Maturity Models 

 

Existing Open Source Maturity Models share some common characteristics. 

Basically they all provide a template which includes a suggested metrics and their 

weighting factors. An example of such template is shown in Table 2.3. 

 

Table 2.3. Example of maturity assessment template of existing models 

Metrics Maximum 

score 

Real Score Weighing 

factor 

Weighted score 

Number of Lines 

of Code 

10  3  

Support 10  1  

Documentation 10  2  

Integration 10  1  

User Community 10  1  

Market Share 10  1  

Training 10  1  

Total 100  10  
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With the maturity assessment template, users need to define their own criteria 

based on their particular requirements, assess each criterion of the Open Source software, 

and assign scores. As shown in Figure 2.2, users also need to give a weight factor for 

each of the criteria, and compute the final maturity score of Open Source project by 

adding up the weighted scores.  

 

Figure 2.2. User process of computing maturity score based on existing models 

 

Some of the existing Open Source Software Maturity Models provide more 

information to help users fill in the template and compute the final score. But most of 

 

Review all 

candidates 

Pick metrics 

Assign scores to all 

metrics based on 

experts’ suggestions 

Assign weighting 

factor to each metric 

based on experts’ 

suggestions 

Sum up 

weighted scores 
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them require users to assign a reasonable score. Otherwise, users must ask for help from 

the experienced experts. Table 2.4 shows an example of metrics and threshold for each 

score level from [12]. 

 

Table 2.4. Example of metric ranges and scores from [12] 

Metrics 5 – 

Excellent 

4 – Very 

good 

3 –

Acceptable 

2 – Poor 1 – 

Unacceptable 

Number of 

Downloads 

(dow/month) 

5000 or 

more 

2000 – 4999 2000 – 

1999 

500 – 999 0 – 499 

Number of 

Page views 

(pv/month) 

100000 or 

more 

10000 – 

99999 

1000 – 

9999 

100 – 999 0 – 99 

Number of 

back links 

3000 or 

more 

500 – 2999 100 – 499 50 – 99 0 – 49 
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CHAPTER III 

 

NEW MATURITY MODEL 

 

All of the Maturity Models summarized in Chapter II are excellent work and very 

important pioneering work of evaluating the maturity of Open Source Software. They 

share many similarities. All of them require extensive experience in evaluating software 

management effectiveness, attributes of development process and their significance, and 

the product quality. Some of them provide a scoring table that can help users to give a 

score to each of the metrics. 

 

III.1 Limitations in Existing Models 

 

However, there are four major disadvantages of the existing approaches: 

• It leaves too much work to the users. It is very difficult for average users to 

determine what score they should assign to particular Open Source software for a 

particular evaluating item. There is no quantitative standard for them to follow. 

Often they need experts to help them filling in the template, which could be 

expensive for some users. Furthermore sometimes expert help may not be 

available to everyone. 

• The process of criteria assessment tends to be subjective. Usually a score is 

assigned based on some subjective preference that is summarized from the 
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experts’ personal experiences. None of the existing models uses statistical data 

directly. Instead they categorize data based on human experiences. This makes 

assessment process lack of an objective standard.  

• Using categorized data makes the data less informative. For example, Table 3.1 

is part of the scoring standard table given in Business Readiness Rating [7]. From 

Table 3.1, it is clear that if the setup time of the software is 30 minutes to 1 hour, 

the score should be 3. Consider the case when the setup time is 61 minutes. 

Although it is only 1 minute more than 1 hour, the score drops from 3 to 2. If this 

metric happens to be an important one, i.e. it has very high weighting score, then 

1 minute makes huge difference. Are 60 minutes setup time and 61 minutes setup 

time so different? The answer seems to be no. It could even possibly come from 

the variance from experiment to experiment. The setup time in minutes would 

represent the nature of setup time better. The same applies to the number of open 

bugs in the last 6 months for quality indicator and the average volume of 

messages in the last 6 months from the community indicator group in Table 3.1. 

The categorized data loses a lot of and sometime important information in the 

original data. 
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Table 3.1. Scoring table from Business Readiness Rating [7] 

Scoring Categories Metrics Description 

5 - 

Excellent 

4 – 

Very 

good 

3 – 

Accepta-

ble 

2 - Poor 1- 

Unacceptable 

Usability 

 Time 

for 

setup 

prere-

quisites 

for 

install-

ing 

open 

source 

soft-

ware 

 

The 

time/effort 

needed 

to set up a 

system, with 

all pre-

requisites 

satisfied. 

This does 

not 

include OS. 

 

< 10 

minutes 

10 – 30 

minutes 

30 – 1 

hour 

1 - 4 

hours 

> 4 hours 

Quality 

 Number 

of open 

bugs for 

the last 

6 

months 

This 

measures the 

quality of 

product 

usage. 

< 50 

 

 50 - 

100 

 

 100 - 500 

 

 500 - 

1000 

 

> 1000 

 

Community 

 Average 

volume 

of 

general 

mailing 

list 

in the 

last 6 

months 

 

The general 

mailing list 

is the place 

where the 

community 

helps itself. 

 

> 720 

messages 

per 

month 

 

300 - 

720 

msg per 

month 

 

150 - 300 

msg 

per month 

 

30 - 150 

msg per 

month 

 

< 30 msg per 

month 
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• They are empirical formula, which are determined only by experts’ judgments. 

The weighting factors are obtained based on experiences. There are only 

positive weighting factors in existing models.  This means either no negative 

attributes are considered or the negative attributes have to be transformed and 

expressed in a positive manner. These two issues make the existing model either 

incomplete or less informative. These models are very difficult to use for users 

who have little experience.  

 

III.2 New Open Source Software Maturity Model 

 

In order to address these problems in the existing approaches, we need to develop 

a new maturity model. The new model should define criteria which can be readily 

assessed based on objective standards or statistical data. Instead of assigning a score for 

each criterion like most existing models do, the author would like to use some quantities 

in reality to represent the criterion, and provide a set of experimental coefficients that are 

computed by a statistical procedure using data collected from real Open Source Software 

repositories. Figure 3.1 shows the procedures of building the new Open Source Software 

Maturity Model. 
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Define Criteria 

Collect Data 

Introduce the 

Update Rule 

using Bayesian 

Analysis 

Run Linear 

Regression and 

Compute the 

Coefficients 

Apply Update 

Rule with New 

Data 

 

Figure 3.1. The process of building new Open Source Maturity Model 

 

The process of building new Open Source Software Maturity model can be 

summarized as the following. First, criteria for the new Open Source Software Maturity 

Model are defined. The importance of each of the criteria and why it is chosen are 

explained in detail. Second, data is collected from www.freshmeat.net, one of the largest 

Open Source Software repositories. Then, linear regression model is applied to analyze 

the data collected in second step. SPSS, one of arguably the best statistical data analysis 

software, is used to compute the coefficients in the linear regression model. 
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Once the model is built, the tasks left for users when they want to compare 

different Open Source projects are just to collect data and feed the data into the model 

and calculate the final numerical score, as shown in Figure 3.2 

 

Collect Data 

Use the Model to 

Compute Final Numerical 

Score 

 

Figure 3.2. Steps to employ the new model to get final numerical score 

 

 Comparing Figure 3.2 and Figure 2.1, one can see that the new Open Source 

Software Maturity Model is much easier to use. 

 Here we first introduce the evaluation criteria chosen for building the linear 

regression model and the experiment setup of how to collect data from the existing Open 

Source Software repository. 
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III.3 Evaluation Criteria 

 

The existing literature of OSS evaluation provides a good source for the criteria 

defined here. There are several criteria commonly used by existing models. Based on the 

literature review, the criteria are defined as following: 

 

Popularity 

 

The more a software product is used, the better chance that the software is good. 

Unlike proprietary software whose actual usage is measured by counting the number of 

sold copies, there is no single metric representing accurately how widely it is used for 

Open Source Software. Open Source Software is downloaded for free; people who 

download it may not use it. This uncertainty in Open Source Software usage makes it 

very difficult to measure the exact usage of Open Source Software. Therefore for Open 

Source Software, it is sufficient to measure the potential usage of the software. 

Popularity represents the significance of Open Source Software, and in turn represents 

the potential usage. 

Some researchers suggest using the number of downloads [11] to represent the 

potential use. For example, SourceForge provides the number of downloads, the number 

of pages viewed, and the number of hits. These statistics can be used to reveal the 

potential use of the Open Source Software. However, not all repositories provide these 
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statistics. Using number of downloads as the metric makes it highly depend on the 

particular features of the Open Source Software repositories [11]. 

Allessandra Cau et.al. [12] proposed to use the number of backlinks to represent 

the popularity.  In his dissertation, the author chose to measure popularity by PageRank 

[34].  PageRank computes the relative importance of a webpage by summing up the 

weighted links from other webpages to it. PageRank has been defined by Google as the 

following.  

“PageRank relies on the uniquely democratic nature of the web by using its vast 

link structure as an indicator of an individual page's value. In essence, Google interprets 

a link from page A to page B as a vote, by page A, for page B. But, Google looks at 

more than the sheer volume of votes, or links a page receives; it also analyzes the page 

that casts the vote. Votes cast by pages that are themselves "important" weigh more 

heavily and help to make other pages "important".” [35] 

 The higher the PageRank of the software project webpage, the larger the number 

of people who are interested in the software. PageRank is an objective metric to measure 

the popularity of a software project. The PageRank can be obtained through Google’s 

Toolbar PageRank feature, as shown in Figure 3.3. 

 

 

Figure 3.3. Example of PageRank obtained by Google’s Toolbar PageRank checker 
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Activities 

 

Activities of Open Source Software represents how active the developers and 

users are in the particular open source software community. Activities are records of 

what developers have been working on the project and resolutions of users’ requests and 

issue reports. Activities include two types of releases: 

• Snapshot release 

• Stable release 

Usually developers make a release of snapshot in relatively short period of time 

and a stable release in a relatively long period of time. Snapshot often includes bug fixes 

and some progress in a new feature development. A few consecutive snapshot leads to a 

staging release that is called stable release which includes major improvement from the 

previous stable release and bug fixes.  

Both snapshot and stable release include text notes that list all the changes made 

in the release and usually these notes are documented in a file called “ChangeLog”. 

When the number of lines of source code becomes bigger and bigger, more 

activities are needed to fix the bugs in the existing codes. Therefore, the number of 

release activities per month per thousand lines of source code is used as the activities 

criterion, i.e., a normalization process. This metric can help people stay away from 

projects that is abandoned or rarely used.  
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Quality 

 

High quality codes usually have less number of bugs and issues. Bugs are 

reported by users in the community. Some software webpage provides a bug tracking 

tool to help users and developers to keep track of the number of open and closed bugs; 

others might rely on the software mailing list. Users post the bug report on the software 

mailing list, and developers or other users can verify and fix it in the software or reply 

with the workaround methods. 

Code quality can be evaluated by the number of bugs reported during a certain 

period of time. We also need to take into account the total number of messages in the 

same period of time. To get a more reasonable evaluation of the code quality, we can 

normalize the number of bug reports against the number of posts during the same period 

of time.  

 

Support 

 

Support is an indispensable part of a software project. Proprietary software 

projects usually have the technical support department providing support to users 

whenever they have any problems with the software. The support may or may not be 

free of charge. Not every Open Source Software project has devoted people to help users 

handle their problem. When users have problems with the software project, they often 
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send the request or the issue report to the mailing list and waiting for replies to help them 

solve the problem. Support comes from two sources 

• community support 

• professional support 

The community support refers to the support provided by user community. When 

a user has questions or problems about the software, he or she posts a message on the 

software mailing list. Other users who encountered and solved the same or similar 

problems usually reply to the mailing list with his or her solutions. The developers often 

reply to such messages as well if needed. The quality and response time of this type of 

support is not guaranteed. Sometimes the users may not get any response at all. 

The professional support means the support is provided by professionals. For 

instance, if a company wants to adopt an Open Source project or want to provide support 

for it, it may hire professional software developers to provide the support to the users. 

The professional support is often provided in a timely manner and boasts higher quality. 

This type of support is also obtained through the project mailing list. 

To measure the quality of the support, we use the number of messages per month 

and normalize it against the number of thousand lines of source code. 

 

Documentation 

 

Documentation explains what features the software provides and how the 

software should be used. Mature software must be able to deliver high quality 
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documentation along with the source codes. This way users can find the software easy to 

use and avoid wasting time to explore the details in the source code. 

In a software project, there are usually two types of documentation 

• Documentation for end users that explains the features and usage of the software. 

• Documentation for the software developers that comes with the source code and 

explains the parameters and return values of the source code API. 

Often software developers are not willing to spend time to write or update 

documentation for end users, although they keep the development documentation very 

clear and up-to-date. This may lead to the end users’ documentation out of sync with the 

source code and developers’ documentation. Therefore some software projects offer 

separate resources for each type of documentation and keep them consistent with each 

other [11]. 

Documentation comes in two kinds of forms: 

• Delivered with the source code and/or posted on the software project website. 

• Published books as the manual and examples of usage and features. 

It is very often that documentations are published as a book, which means the 

software project has a fair market share and can attract users to pay for the 

documentation. It is difficult to transform the value of a published book into the number 

of lines of documentation. In order to represent the value of both documentation formats, 

we use two metrics to represent the quality of documentation, the number of lines of the 

documentation normalized against the number of lines of the source code and the 

number of published books. 
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Integration 

 

If one open source project is adopted by a number of other Open Source 

Software projects, it usually means this open source project complies with the standards 

[31] and can be easily integrated. This can be considered as the recognition from the 

software community for the high quality of the software project. 

The integration metric is evaluated by the number of projects depending on the 

project being studied. This number is often provided by the Open Source Software 

repositories, such as FreshMeat. 

 

III.4 Experiment Setup 

 

For the multiple linear regression model, the most important step is to collect the 

data from the open source software repositories. The first question to be addressed is the 

amount of data to be collected to build a meaningful model. 

Sample size is a significant factor in the regression algorithm. Apparently better 

results can be achieved with a larger number of data points. However the number of data 

points available is always limited. Furthermore the improvement margin may shrink 

with increasing number of data points. Then the question becomes how to determine the 

appropriate number of data points. Another related issue is the range of the data points. 

A set of data points that covers as much as possible of the sample space is more 

representative and thus a better one.  



 

 

43 

In determining the appropriate number of data points and data range, there are 

several issues to be considered.  

The first one is the underlying physics or mathematics of the model. If enough 

information can be provided on the nature of the model, it would be helpful. For instance, 

if the relation between weight and height of humans is studied, the number of sampling 

points cannot be 10, 100 or even 1000. The data range of height could range from 0 to 

3m. And the data range of weight could range from 0 to 250 kg. However, in the model 

developed in this study, due to the lack of enough information on the underlying physics 

or mathematics of the model, the prior knowledge obtained of the nature of the model is 

limited. This can be understood because the model itself is empirical. 

The second one is the indentifiability of the model. The regression model is called 

identifiable if all the parameters in the model can be determined definitively. In the 

linear regression model adopted in this investigation, there are 7 parameters 

corresponding to the 7 metrics and a constant. The number of sampling points must then 

be 8 at least. However, an identifiable model is not necessarily a convincing model. 

More sampling points are needed to better represent the sampling space. Also the 

number of points is a factor that has an impact on the error in the model.  With 

increasing number of points, the impact of the random error associated with the 

particular software used to build the model is reduced. 

The point of the regression algorithm is to make the standard deviation of the 

model minimum. In the linear model, if the number of sampling points is the same as 

that of the parameters, the fitting curve is expected to go through all the sampling points 
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and the standard deviation is zero. However this does not mean the model is perfect. On 

the contrary, it reflects deficiency. In fact, as the number of sampling points increase, the 

standard deviation will increase accordingly. However, in a good regression model, the 

standard deviation will not increase infinitely with the number of sampling points. 

Rather after some point, the standard deviation tends to converge to a limit. The 

improvement margin decrease rapidly with the number of sampling points increasing. 

Therefore numeric experiments can be conducted to find the pattern of standard 

deviation versus the number of sampling points. If the standard deviation is observed to 

level out, it means the current number of sampling points might be appropriate. 

 

III.5 Model Validation Method 

 

It is a known problem to validate software evaluation models. It is actually very 

difficult to strictly prove a model is valid or not. Most models are validated by case 

studies, such as the famous, wide used COCOMO II [22] software cost estimation model.  

The validation plan for this model is using case studies. A number of open source 

projects will be picked randomly from the open source repository. Data for all the 

criteria will be collected, and the model will be applied to get the point prediction of 

maturity score for these projects. The predicted scores will be compared with the user 

reviews.  
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CHAPTER IV 

 

REGRESSION MODEL 

 

Regression is widely used to statistically relate a variable regarded as a random 

variable, with one or more independent variables, or called predictors. The most 

commonly used, or the simplest regression is the linear regression, in which the 

dependent variable is related to the predictors by a linear function. The linear regression 

model is valid only under certain assumptions. These assumptions ensure that a linear 

regression model can be built and the dependent variable can be predicted by the model. 

The coefficients in the linear regression model are obtained by the least square method. 

In later chapters, it is made clear that these values are but the mean of the coefficients 

since the coefficients can themselves be regarded as random variables. In this Chapter, 

the linear regression model for open source software maturity evaluation is built based 

on 43 baseline software collected from different open source software repositories. After 

the coefficients are found, the linear model is used to predict the final scores of a number 

of new software which are not included in the 43 baseline software. The predicted values 

are then compared with the real user evaluations and they match quite well.    
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IV.1 Assumptions in the Linear Regression Model 

 

There are several assumptions to be made before a linear regression model can be 

built. First of all, it is assumed that the experimental data retrieved from experiments can 

be appropriately related by the assumed mathematical function.  Then there are three 

basic assumptions to be made, which refer to “constant variance”, “independence”, 

“normality”, respectively [36].  

The constant variance assumption means the values of the independent variables 

do not have an effect on the variance of the dependent variable. The residual plots can be 

employed to validate this assumption for a particular regression model. The residual is 

the difference between the predicted value of the dependent variable by the regression 

model and its experimental value. Figure 4.1 gives three commonly seen scenarios of the 

residuals in the linear regression. In the case of multiple regressions, it can be 

alternatively tested by plotting the predicted values against the experimental values. 

 

 

 

 

 

 

                                                                

(a) 

Figure 4.1. Three scenarios for the residuals of a linear regression model 
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(b) 

 

 

 

 

 

 

 

(c) 

Figure 4.1. Continued 

 

Figure 4.1a shows a pattern in which the residual keeps the same with different 

values of y, which is a good indication of constant variance. Figure 4.1b and Figure 4.1c, 

on the other hand, show bad signs of variance change. Only the case in Figure 4.1a can 

be seen as a good linear regression model.  
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The independence assumption indicates the outcome of dependent variable y is 

statistically independent. Or alternatively, it can be said that the residuals of the 

dependent variables are statistically independent. The legitimacy of this assumption can 

be verified, again, by looking at the residual plots. The residuals must be located 

randomly. It should not exhibit any periodic pattern. Otherwise it is an indication of 

autocorrelation and violation of the independency. The independence assumption is most 

likely to be violated in the time series data, where data can be autocorrelated so that the 

linear assumption made in the regression model is no longer valid. There are two types 

of autocorrelation, namely, positive autocorrelation and negative autocorrelation. In the 

positive autocorrelation case, the data shows a periodic pattern. In the negative 

autocorrelation case, the data shows an alternating pattern over time. Figure 4.2 shows 

the two cases of autocorrelation. In statistics, the Durbin-Watson Test is used to check if 

the data has autocorrelation pattern. The Durbin-Watson Test is defined by the following 

index [37].  
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∑
                                                                                             (4.1) 

where, et is time ordered residual at time t, et-1 is time ordered residual at time t-1, n is 

the total number of data points.  

Autocorrelation happens when the process has a certain built-in mechanism. For 

data collected from different users to evaluate the open-source software, it is not likely 

that the autocorrelation would happen. In fact, since the sequence of the data points, each 
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of which represents an open source software, is not important in the analysis, the d value 

obtained from Equation (4.1) would vary with how the data points are ordered. The 

order of the data points, however, is quite a random event. This indicates that 

autocorrelation is certainly not the case in this investigation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. The two cases of autocorrelation 

 

The normality assumption states any of the dependent variables has a normal 

distribution. Or alternatively, for any value of the independent variable, the error of the 

regression model has a normal distribution. To verify this assumption, the histogram of 

the residuals must look reasonably like the bell shape of the normal distribution with a 

mean of zero.   
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The normality assumption, however, can be verified through a quantitative 

procedure, namely the normal plot. In the normal plot, the residuals must be sorted in the 

ascending order. Next the number corresponding to each of the 

residual (3 1) /(3 1)i n− + is calculated, in which i is the index of the residuals and n is the 

total number of data points [38]. Each of these numbers corresponds to a point on the 

standard normal distribution graph such that the area below this point is equal to the 

number. From here, another sequence of points is obtained. Then the sorted residuals are 

plotted against the obtained points. If the plot appears to be a straight line, the normality 

of the dependent variables is confirmed.  

From the above description, it can be understood that all the assumptions cannot 

be verified on a prior basis because there is no error or residual information available 

until the model is established. All these assumptions can only be verified after the 

parameters in the linear regression model are all found and the predicted value of the 

dependent variable can be calculated from the model.  

 

VI.2 The Linear Regression Model 

 

The linear regression model is described by  

1

M

i i

i

y x cβ
=

= +∑
                                                                                                              (4.2) 

In Equation (4.2), βi represents the coefficient to be determined for the ith factor and xi is 

the score for that factor. M is the total number of factors, which is 7 in this case. y 
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represents the final score for a particular software. Assume the number of software 

investigated is N. Equation (4.2) can be written in the matrix form for the pool of 

software. Assume that Y is the 1×N  column vector that contains the total scores for the 

software evaluated. X is the MN ×  matrix whose rows contain the score for each of the 

factors for particular software. B is 1×M  column vector that contains the coefficients. I 

is a column vector with all entries equal to 1. Then Equation (4.2) can be rewritten as 

c+Y = XB I                                                                                                                  (4.3) 

At this point, it is appropriate to combine the constant term and the coefficient 

term. To do this, add an additional column with all its entries to be 1 to the matrix X and 

add c to the B vector. This means matrix X which represents the collected data will 

always have “1” corresponding to the “coefficient” c. The new equation takes the form 

Y = XB                                                                                                                          (4.4) 

The error vector can be expressed as 

= −e Y XB                                                                                                                    (4.5) 

The norm of the error vector is 

( ) ( )Te = − −Y XB Y XB                                                                                                (4.6) 

To make this norm the minimum, take the derivative of it with respect to vector B and 

make it zero. From here, the vector B can be obtained. 

T T-1B = (X X) X Y                                                                                                           (4.7) 

Before the model can be established, there is an important issue to be considered. 

That is the identification of outliers. An experimental data point that significantly 

deviates from the rest of the points is called an outlier. If the least square estimate gives 
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substantially different results after a data point is removed, this point is said to be 

influential. An outlier is not necessarily influential. As shown in Figure 4.3, Data Point 

#1 is an outlier with respect to its x value, but it is not outlying with respect to its y value. 

Furthermore, there are several other data points that have similar y values and their x 

values are in the range. Therefore, Data Points #1 may not be influential. The same 

situation happens to Data Point #2. Data Point #3, however, can be an influential outlier 

since both its x and y values are out of range and it is not consistent with the trend of the 

majority of the data points.  

 

 

 

 

 

 

 

 

 

 

 

 

Besides visual inspection, there are more scientific ways to identify an outlier 

and determine if they are influential. To determine if a point is an outlier with respect to 

Figure 4.3. Identify an outlier 
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its x value, the Leverage Value is used [36]. The Leverage Values are the diagonal 

entries of the Hat Matrix which is defined by 

TT XXXXH 1)( −=                                                                                                          (4.8) 

where matrix X is the same matrix as defined in Equation (4.3), the superscript T stands 

for transpose of the matrix and superscript exponential index -1 stands for inverse of the 

matrix. The leverage value of the ith observation can be shown to be equal to 

T

i

T

iii XXh
1)( −= ΧΧ                                                                                                        (4.9) 

where 
i

X is the vector containing the values of the independent variables in the ith 

observation. It can be shown that the leverage value is always between 0 and 1. A 

leverage value is considered to be large if it is substantially greater than most of the 

other leverage values. At this point, it has to be pointed out that in this study the 

observations of the last two independent variables, Number of Books and Number of 

Projects, are major causes of outliers. For most of the software, the observation of these 

two independent variables is zero, and it is nonzero for just a few software. By intuition, 

this leads to the outlying situation. However, since it is necessary to include the 

influence of these two factors, they are excluded from the outlier evaluation.  

To determine if an observation is an outlier with respect to its y value, the so-

called studentized residual, among other indexes, is used.  The studentized residual [39] 

is defined by 

1

i

ii

e

s h
η =

−
                                                                                                               (4.10) 



 

 

54 

where 
i

e is residual of the ith observation, s is the standardized error of the regression 

model. If the value of studentized residual of one observation is significantly larger than 

that of the other observations, it is regarded as an outlier.  

If it is concluded that an observation is an outlier, it is left to determine its 

influence. Cook’s Distance Measure (CDM) is used to quantify the influence. CDM for 

the ith observation is defined as 

2

( ) ( )T T

i i
i

CDM
ks

− −
=

B B X X B B
                                                                                (4.11) 

where B is coefficient vector obtained including the ith observation and Bi is the 

coefficient vector obtained excluding the ith observation. k is the number of coefficients, 

which is 8 in this study.  If CDMi is large, then the ith observation can be considered as 

influential. The F-distribution is used to indicate if the value of CDM is large. The rule 

of thumb is as the following [40]. If CDMi is larger than ( , )

[.80]

k n k
F

− (20% of the F-

distribution that having k and n-k degrees of freedom), then the ith observation is not 

considered influential. If CDMi is smaller than ( , )

[.50]

k n k
F

− , then the ith observation is 

considered influential. When CDMi falls in between, the influence is considered larger 

when it comes closer to ( , )

[.50]

k n k
F

− . 

From Equation (4.10) and Equation (4.11), it can be seen that the influence of an 

outlier can be only determined after the model is built. Therefore, to determine if an 

observation is an influential outlier, a trial and error procedure has to be followed. This 

is a very tedious procedure. The 43 observations or open source software on which the 

baseline model is based are chosen through this procedure.  
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Another issue that needs to be addressed is the collinearity between the 

parameters. In the linear regression model, the independent variables are supposed to be 

statistically independent [36]. To check this, the correlation coefficients between 

different independent variables must be zero in the mathematical sense or reasonably 

small in the practical sense. Although it is not true that when the independent variables 

are not linearly correlated, they must be statistically independent, the linear correlation 

coefficients at least can be used to check in one way if the statically independence 

assumption is violated.  The Table 4.1 shows the correlation coefficients between the 

independent variables.  From this table, it is seen that the linear correlation between the 

independent variables is weak. 

Table 4.1. The correlation coefficients between the independent variables 

 v1 v2 v3 v4 v5 v6 v7 

v1 1 -0.0448 -0.2548 0.0713 0.1295 0.1684 0.3395 

v2 -0.0448 1 -0.05 0.2783 -0.2066 0.0799 -0.2039 

v3 -0.2548 -0.05 1 -0.1279 -0.03 -0.053 -0.1059 

v4 0.0713 0.2783 -0.1279 1 -0.1246 -0.0167 0.0057 

v5 0.1295 -0.2066 -0.03 -0.1246 1 -0.1987 -0.0103 

v6 0.1684 0.0799 -0.053 -0.0167 -0.1987 1 -0.0357 

v7 0.3395 -0.2039 -0.1059 0.0057 -0.0103 -0.0357 1 

 

The data collected from the 43 open source software are listed in Appendix A. 

From the data, the X matrix and Y vector can be formed and the regression coefficients 
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are found. Table 4.2. shows the values of the coefficients and the corresponding standard 

errors and the 95% confidence intervals.   

 

Table 4.2. The results of linear regression  

Confidence Interval 95% 

 
Coefficient 

Standard 

Error Lower Upper 

c 8.16654586 0.216551788 7.726922357 8.606169362 

Page Rank 0.034405181 0.035832458 -0.038338575 0.107148938 

activities/month/TLOC 0.707593224 0.64868034 -0.609297878 2.024484326 

Number of Bugs / 

Number of Messages -0.282736641 0.167454568 -0.622687487 0.057214204 

Number of 

Messages/TLOC 0.037728903 0.08783903 -0.140593808 0.216051615 

Documents/TLOC 0.003657083 0.002843056 -0.002114626 0.009428793 

Number of BOOKs 0.278552285 0.267614883 -0.264734812 0.821839381 

Number of projects 

depending on this one 0.00890032 0.004769016 -0.000781298 0.018581937 

 

It shall be understood that the relative magnitudes of the coefficients cannot be 

used to characterize the strength of the factors in evaluating the software. For example, 

the coefficient of the factor Documents is two orders of magnitude less than that of the 

factor Activities. This does not mean Documents has less influence on the final score 

than Activities. It is that the number of Documents happens to be large compared with 

the number of Activities normalized against time and software size. The reason for not 
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normalizing values of the factors is that a normalization procedure is inevitably related 

only to the current set of collected data. The current normalization has nothing to do 

with any future incoming data. Therefore, with any incoming data for future 

applications, the normalization has to be modified to include the future data. This causes 

volatility in the model and thus should be avoided. It is also seen that the coefficients are 

positive for all factors except Number of Bugs. This negativity is reasonable. The quality 

of the software shall be regarded higher with fewer bugs reported. The negative 

coefficient is exactly a reflection of this fact.   

 

IV.3 Verification of the Three Assumptions 

 

In this section, the three assumptions in Section IV.1 are examined now that the 

model is established and predicted values and errors can be obtained. In the following 

table, the residuals from the regression model, which is the difference between the 

predicted value of the dependent variables and the corresponding user review score, is 

listed. It can be seen that the maximum percentage of error is within 5%. 

 

Table 4.3. Residual of the regression model 

Software User reviews Predicted Value Residual Percentage(%) 

1 9.1 8.968030217 0.13197 1.4502174 

2 8.61 8.409854873 0.200145 2.32456594 

     



 

 

58 

Table 4.3. Continued 

Software User reviews Predicted Value Residual Percentage(%) 

3 8.73 8.73 5.33E-14 6.1043E-13 

4 8.92 8.511371307 0.408629 4.58103916 

5 8.77 8.549252985 0.220747 2.51706972 

6 8.4 8.172289811 0.22771 2.71083558 

7 8.38 8.366706401 0.013294 0.15863484 

8 8.15 8.13752295 0.012477 0.15309264 

9 7.8 8.316494371 -0.51649 -6.6217227 

10 8.12 8.516585021 -0.39659 -4.884052 

11 8.54 8.622870998 -0.08287 -0.9703864 

12 8.53 8.55758725 -0.02759 -0.3234144 

13 8.52 8.574964502 -0.05496 -0.6451233 

14 8.5 8.31012779 0.189872 2.23379071 

15 8.47 8.4122926 0.057707 0.68131523 

16 8.43 8.367180124 0.06282 0.74519426 

17 8.39 8.441229082 -0.05123 -0.6105969 

18 8.34 8.394689691 -0.05469 -0.6557517 

19 8.26 8.473386431 -0.21339 -2.5833708 

20 8.19 8.425229823 -0.23523 -2.872159 

21 8.83 8.57054552 0.259454 2.93832933 

22 8.79 8.366991779 0.423008 4.81238021 

23 8.75 8.49351553 0.256484 2.93125109 

24 8.68 8.50279298 0.177207 2.04155552 
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Table 4.3. Continued 

Software User reviews Predicted Value Residual Percentage(%) 

25 8.68 8.390230272 0.28977 3.33836093 

26 8.66 8.627377424 0.032623 0.37670411 

27 8.5 8.43210743 0.067893 0.79873612 

28 8.49 8.706087045 -0.21609 -2.5451949 

29 8.46 8.628414988 -0.16841 -1.9907209 

30 8.45 8.540939487 -0.09094 -1.0762069 

31 8.4 8.316379426 0.083621 0.99548302 

32 8.39 8.459808167 -0.06981 -0.8320401 

33 8.33 8.471718195 -0.14172 -1.7012989 

34 8.28 8.408617026 -0.12862 -1.5533457 

35 8.19 8.455843011 -0.26584 -3.2459464 

36 8.19 8.444858249 -0.25486 -3.1118223 

37 8.1 8.436003885 -0.336 -4.1481961 

38 8.09 8.410178514 -0.32018 -3.9577072 

39 7.99 8.210626622 -0.22063 -2.7612844 

40 7.97 8.172043786 -0.20204 -2.5350538 

41 8.78 8.478783117 0.301217 3.43071621 

42 8.69 8.311327038 0.378673 4.35757149 

43 8.66 8.407144281 0.252856 2.919812 

 

First the constant variance assumption is checked. On Figure 4.4, the predicted 

values are plotted against the experimental ones, i.e., the score given by the user reviews. 
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It is seen the data points are distributed along the 45° line. Also the data points lie in a 

parallel band. There is no fanning out or funneling in of the band.  

 

 

Figure 4.4. The distribution of the predicted values against the experimental values 

As stated before, there is no need to verify Assumption 2 since no time sequence 

is involved in this study. Next, Assumption 3 is verified through the normal plot. In 

Figure 4.5, it can be seen that the plot does not deviate from a straight line very much. 

The maximum deviation appears to happen at the end of the line. But the overall 

linearity of the plot is obvious. The linearity correlation coefficient of the curve is 
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0.9941, which is a good indication of the linearity [41]. This verifies the normality 

assumption.   

 

Figure 4.5. Normal plot of the ordered residuals 

 

IV.4 Model Testing 

  

It is realized that the distribution of the coefficients, as indicated by its standard 

error and 95% confidence interval as shown in Table 4.3. leaves room for improvements. 

However, since the objective of this study is to establish an objective and quantitative 

method to evaluate open source software, it is more important to examine the model 
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against new software cases. To do this, the final scores of a list of open source software, 

which are not included when the model is calculated, are obtained through this model 

and the results are compared with those from the user reviews.   

 

Table 4.4. The predicted values from the model and the user review values  

Project Name User Review Prediction Error (%) 

KCachegrind 8.58 8.658 0.913 

Cscope 8.54 8.877 3.951 

OpenMotif Everywhere 8.48 8.409 -0.835 

UPS 8.45 8.520 0.829 

Interverse 8.5 8.310 -2.234 

dircproxy 8.63 8.813 2.116 

 

From Table 4.4, the error of the predicted value from the model is within 5% 

compared with user reviews. This is fairly good prediction. It has to be pointed out that 

the user review scores do not necessarily reflect an objective estimate. Therefore the 

results from the comparison between the predicted value and the user score may vary 

from software to software. To maximize the objectivity, the regression model, or more 

precisely, the coefficients in the model, need to be updated continuously according to 

new available software or data, which is the topic of Chapter V. 
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CHAPTER V 

 

MODEL UPDATING BY BAYESIAN STATISTICAL ANALYSIS 

 

In this chapter, the method to update the regression model according to new 

incoming data is described. As shown in the previous chapter, the coefficients, or more 

appropriately called parameters, in the linear regression model are obtained through least 

square technique. Now it should be explicitly stated that they are only the mean of these 

parameters when they are considered to be random variables. In statistics, this is called a 

point estimate of the parameters. The point estimate always depends on the currently 

available data. To update the model parameters, new data has to be added to the data set 

that is used to obtain the current parameters. This makes the implementation difficult 

because the user who owns the new data does not necessarily have the knowledge of the 

data set used to obtain the current model. All that the user owns is the statistical 

parameters in the current model and the new data. Therefore it is necessary to build an 

updating procedure that depends only on the current model parameters and the new 

incoming data. This can be achieved through Bayesian statistics. In the following 

sections, the concept of Bayesian analysis is introduced and how its application to the 

model developed in the previous chapter is presented.  It begins with the Bayesian 

theorem. Based on the Bayesian theorem, the prior and posterior distribution of the 

coefficients in the linear regression model for single and multi-variable cases are 



 

 

64 

discussed and then an updating rule is established for further updating process on the 

linear regression model. 

 

V.1 Bayesian Theorem 

 

In statistics, there are basically three different approaches in probability estimate, 

namely frequentist, Bayesian and likelihood. In the frequentist approach, it is assumed 

that the experiment on the outcomes of a certain random variable can be performed as 

many times as needed so that the probability can be estimated based on the number 

counts. And it is assumed when the number of times of the experiments being carried out 

approaches infinity, the probability calculated from the number counts converges to the 

“true” likelihood. In the Bayesian approach, an assumed prior distribution of the random 

variable is combined with observed values to generate a posterior distribution [42]. So 

the essential elements in Bayesian approach are prior distribution, observed data and 

posterior distribution. The bridge to connect the prior and posterior distribution is the 

observed data. Alternatively, it can be said that the prior distribution is “updated” 

through the observed data. The likelihood approach takes out the prior element from the 

Bayesian approach so that the parameters are estimated directly from the observed data 

according to the statistical model. Apparently the likelihood approach becomes difficult 

if the user has no knowledge of previous data set.  

Next, the Bayesian inference is introduced following Box and Tiao’s [43] 

description. Assume a random variable y with a probability density function of p(y). The 
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parameters in the model are θ = (θ1, θ2, …… θk). The distribution of θ is p(θ). Then from 

Bayesian rule, the conditional probability density function p(y|θ) and p(θ|y) are related 

by Equation (5.1) 

( | ) ( ) ( , ) ( | ) ( )p p p p p= =y θ θ y θ θ y y                                                                            (5.1) 

The conditional probability density function is then 

( | ) ( )
( | )

( )

p p
p

p
=

y θ θ
θ y

y
                                                                                                 (5.2) 

In Equation (5.2), the probability density function p(y) can be obtained by integrating the 

conditional probability density function p(y|θ), following the total probability rule. If θ is 

a set of continuous random variables, the probability density function p(y) can be 

obtained by  

( ) ( | ) ( )p p p d= ∫y y θ θ θ                                                                                               (5.3) 

When the factor 
1

( )p y
 in Equation (5.2) is replaced by a constant c, the Bayesian 

theorem is derived. 

( | ) ( | ) ( )p cp p=θ y y θ θ                                                                                                 (5.4) 

An examination of Equation (5.4) provides some interesting observations. It 

relates the probability density function p(θ) and p(θ|y). When p(θ) is known, p(θ|y) can 

be calculated through Equation (5.4). This means one’s level of knowledge about the 

distribution of the parameters θ has increased given new information about y. In 

Bayesian statistics, p(θ) is regarded as a prior distribution of the parameters θ and p(θ|y) 

is regarded as a posterior distribution of the parameters θ. In this light, Equation (5.4) 
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provides a method to update the distribution of the parameters. Furthermore, the 

conditional probability density function p(y|θ) can be viewed as a function of θ, given 

new data of y. This function is called likelihood function by Fisher [44]. After this, the 

Bayesian theorem can be written as  

( | ) ( | ) ( )p cL p=θ y θ y θ                                                                                                 (5.5) 

Now the coefficient c can be regarded as a normalization factor to ensure that the 

integration of p(θ|y) over the entire domain is one. This establishes the following 

relation. 

( | ) ( | ) ( )p L p∝θ y θ y θ                                                                                                   (5.6) 

Apparently, this relation can be repeated a number of times and leads to 

2 1 1 2( | ,... , ) ( | ) ( | )... ( | ) ( )
N N

p L L L p∝θ y y y θ y θ y θ y θ                                                   (5.7) 

 

V.2 Updating Normal Distributions by Bayesian Theorem 

 

 In this section, the Bayesian theorem is applied to a one-dimensional Normal 

distribution example raised by Box and Tiao [43]. The purposes are twofold. First this 

demonstrates the updating procedure. Secondly the parameters in the linear regression 

model developed in this study have multivariate Normal distribution. The one-

dimensional distribution example would help to understand the multivariate ones. 

Suppose there are two physicists A and B who are trying to get a more accurate 

estimate of a certain dimensionless physical constant θ. Lack of prior knowledge of what 

distribution of θ, the physicists just assume it has a Normal distribution, i.e., 
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2~ ( , )Nθ θ σ
−

. θ
−

is the mean and σ  is the standard deviation. This means the probability 

density function would be the Normal function as listed in (5.8) 

2 1/ 2 21
( ) (2 ) exp ( )

2
f

θ θ
θ πσ

σ

−

−
 

− = −
 
 

                                                                           (5.8) 

Physicist A, who is more experienced, decides that the mean should be 900 and standard 

deviation should be 20 while Physicist B, who is less experienced, decides that these two 

numbers should be 800 and 80. Apparently B is less certain about the exact value of the 

constant. And his estimate of the constant is smaller than that of Physicist A.  

Assume that through an objective experimental method, an observation is made 

of a value y that has a Normal distribution with mean θ and standard deviation σ0 and 

0 40σ = . The impact of this observation on the physicists estimates of the mean θ can be 

evaluated. The likelihood of the observation of value y, since it has a Normal distribution,  

is  









−−= 2

2

0

)(
2

1
exp)|( yyL θ

σ
θ                                                                                 (5.9) 

According to Equation (5.5), the conditional probability of θ is found as the following. 

2 2

2 2

0

1 1
( | ) ( | ) ( ) exp ( ) ( )

2 2
p cL p c yθ θ θ θ θ θ

σ σ

− 
= = − − − − 

 
y y                               (5.10) 

From Equation (5.10), the mean and standard deviation of the distribution p(θ|y) are  

0 1

0 1

1
( )new w w y

w w
θ θ
− −

= +
+

                                                                                        (5.11a) 
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 0 1

1

new

w w
σ

= +                                                                                                           (5.11b) 

where 0 2

0

1
w

σ
=  and 1 2

1
w

σ
= . 

Now the impact of the observation y on the distribution of θ can be quantified for 

both of the physicists. Figure 5.1a through Figure 5.1d show the prior distribution p(θ) 

and the posterior distribution p(θ|y) with different observation values of y for both 

physicists. Several observations can be made from these figures. First, the difference 

between the two physicists’ posterior estimates is smaller than that between their prior 

estimates. This can be concluded by comparing the means and standard deviations of the 

posterior distributions between Physicist A and B. Secondly, Physicist B seems to have 

learned more from the experiment than Physicist A. This can be seen by comparing the 

difference in the means and standard deviation before and after the experiment.  Thirdly, 

Physicist B is more certain about the distribution of θ after the introducing the observed 

value of y. This can be seen from the fact that the standard deviation of the posterior 

distribution for Physicist B is smaller now.  From these observations, a couple of 

conclusions can be made. First, experiments help to downplay the influence of personal 

experiences on the estimate. Secondly, it suggests that personal experiences are most 

likely result from previous experiments, not unfounded guess. In a word, experiments or 

data will help to maximize objectivity in one’s estimate. This is an important conclusion 

and it is exactly why an updating rule needs to be established to continuously improve 

the linear regression model. 
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Figure 5.1a. The prior distribution of θ according to the two physicists 

 

Figure 5.1b. The posterior distribution of θ according to the two physicists with y = 850 
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Figure 5.1c. The posterior distribution of θ according to the two physicists with y=900 

 

 

Figure 5.1d. The posterior distribution of θ according to the two physicists with y=950 
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Now it is clear that the observed value or new data would help to significantly 

change one’s knowledge about the value of a random variable. This is especially true 

when one’s prior knowledge about the random variable is limited. This reminds one to 

think about the effects of a series of new data on one’s estimate. Take the same example 

and the estimate of Physicist B is updated by a series of new incoming data of 800, 850 

and 900. Figure 5.2 shows the prior and updated distributions. It is observed that the 

uncertainty in the distribution of θ, as indicated by its standard deviation, is reduced with 

each updating action when the observed values move consistently in one direction.  This 

also reminds one that with one or two observations, the impact of prior distribution can 

be large. But when more and more observations become available and if these 

observations are consistent, the impact of prior distribution becomes less so the posterior 

distribution would correctly represent or converge to the “true” distribution reflected by 

all these observations.  
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Figure 5.2. Series of updating on Physicist B’s estimate 

 

It is worth noting that in the previous discussion, the standard deviation of the 

likelihood function is smaller than that of the prior distribution. This is called likelihood 

dominancy [45]. The convergence of the updating distribution to the true distribution 

depends on likelihood dominancy.  In scientific inference, this assumption is a common 

situation. Otherwise, it is meaningless to update the prior distribution with the “less 

certain” data. 
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V.3. Likelihood Dominancy 

 

Likelihood dominancy is an important concept in the science and engineering 

fields, which are mostly empirical and experiment-dependent. Due to its significance in 

this study, some discussions of this concept are necessary. Generally speaking, 

likelihood dominancy means a scientist’s prior knowledge of a parameter is less 

important than the data from experiments. A scientific experiment would not be 

performed unless the data collected from the experiment would be considered more 

accurate. From the discussion in the previous section, it can be observed that likelihood 

is associated with data or experiments. The choice of a prior distribution, however, is 

more subjective and may vary from person to person. Therefore likelihood dominancy is 

actually a requirement of objective modeling. It ensures personal opinions, as reflected 

by the prior, will be gradually eliminated and the model is improved through the 

introduction of experimental data. In the case study of open source software evaluation, 

since there is no underlying mathematics to justify any prior model and all models are 

basically a guess, the successful model is not necessarily a good guess in the first place. 

More important, the model is able to improve itself with new incoming data. This is 

exactly why the parameters in the linear regression model developed in Chapter IV 

needs to be updated by the Bayesian analysis.  

Figure 5.3 shows graphically the dominancy of likelihood. Box and Tiao [43] 

had given a general description, it says “a prior which is dominated by the likelihood is 
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one which does not change very much over the region in which the likelihood is 

appreciable and does not assume large values outside that range”.  

 

Figure 5.3. Likelihood dominancy (Adapted from Box and Tiao [43]) 

 

From Figure 5.3, it is observed that the likelihood dominated prior tends to have 

a uniform distribution over the range the likelihood is appreciable. This property is 

called locally uniform. From Equation (5.5), the posterior distribution for a locally 

uniform prior would be  

( | )
( | )

( | )

L
p

L d
=

∫
θ y

θ y
θ y θ

                                                                                                (5.12) 
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Equation (5.12) means the posterior distribution would be the standardized likelihood. 

The choice of a prior distribution that is locally uniform means little is known a prior. 

Historically this is called Bayes’ postulate. It needs to be pointed out that Bayes’ 

postulate has some fundamental inconsistency in it. This is, however, not a topic that is 

relevant and should be included this study, which emphasizes practical applications 

rather than strict theories [43]. Suffice to say, for the purpose of applications, Bayes’ 

postulate can still be accepted. The situation of “little is known a prior” suggests the 

prior distribution is noninformative and thus be called a noninformative prior 

distribution.  

 

V.4 Noninformative Prior Distribution for Single Variable 

 

Due to its importance in the following sections, noninformative prior distribution 

is further discussed here. It would be easier to first introduce the single parameter case 

and then following the same logic, the multi-parameter model can be established and 

applied to the linear regression model developed in Chapter IV. Here the noninformative 

prior distribution associated with data translated likelihood is demonstrated through the 

normal mean and the normal standard deviation.  
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The Normal mean 

 

Assume 1 2{ , ,... }
n

y y y=Y  is a set of observed outcomes from a Normal 

distribution 2( , )N θ σ with the standard deviation σ known. The likelihood function in 

this case, according to Equation (5.7) is 

2

2
( | , ) exp ( )

2

n
L c yθ σ θ

σ

− 
= − − 

 
Y ,                                                                         (5.13) 

where c is a normalization factor and 
−

y  is the mean of the observed outcomes. 

From Equation (5.13), the likelihood function is graphically represented by a 

Normal curve centered at y
−

. The change in the data will only have an impact on the 

mean y
−

, which in turn causes a translation of the likelihood on the θ axis as 

demonstrated in Figure 5.4 on the next page. Therefore, the statement that little is known 

a prior relative to the data would be the same as to say that one value of θ is equally 

possible as another prior to the acquisition of data. The dash line on the figure represents 

the “ideal” noninformative prior for θ, which keeps uniform from minus infinity to 

infinity. It is important to note that the “ideal” prior is just a wishful delusion. A uniform 

distribution can never exist over an infinite range because its integral over the range has 

to be “1”. Therefore, to say a noninformative prior exists such that it holds for any 

possible value of θ is mathematically wrong. However, such an “ideal” distribution is 

completely unnecessary for the practical purpose because most of the applications in the 

real world have a limited range of θ. The centerline on the figure indicates a “practical” 
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noninformative prior for θ , which is the graph for a normal distribution and it is a good 

approximate noninformative prior. 

The posterior distribution of the Normal mean is still a normal distribution. 

Actually from Equation (5.13), the posterior distribution is obtained as 

 
2

2

2

2
( | , ) ( ) exp ( )

2

n
p y

n

πσ
θ σ θ

σ

− 
= − − 

 
Y                                                               (5.14) 

 

 

Figure 5.4. The normal mean 
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The Normal standard deviation 

 

Similar to the normal mean, a noninformative prior can be found for the normal 

standard deviation. Assume 1 2{ , ,... }
n

y y y=Y  is a set of observed outcomes from a 

Normal distribution 2( , )N θ σ with the mean θ known. The likelihood function, 

according to Equation (5.7), is 

2

2
( | , ) exp

2

ns
L cσ θ

σ

 
= − 

 
Y ,                                                                                       (5.15) 

where 
2

2

1

( )n

i

i

y
s

n

θ

=

−
=∑ . 

The likelihood function for different values of s is shown in Figure 5.5a. From 

the figure, it can be seen that the noninformative prior cannot be locally uniform. 

However, if the logarithm of the standard deviation is considered, the noninformative 

prior becomes locally uniform again and is shown in Figure 5.5b, where the dash line 

represents the locally uniform distribution. The posterior distribution does not have an 

explicit analytical form since the integral does not have analytical solution. However it 

can be put in the form of gamma-function, as shown in the following equation, where Γ  

is the gamma function. 

2 / 2 2

( / 2) 1 2

( )
( | , ) exp

2 ( / 2) 2

n

n

ns ns
p

n
σ θ

σ−

 
= − 

Γ  
Y                                                                   (5.16) 
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Figure 5.5a. Normal standard deviation (Adapted from Box and Tiao [43]) 

 

Figure 5.5b. Logarithm of Normal standard deviation (Adapted from Box and Tiao [43]) 
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From the discussion above, it is clear that the requirement for a little-is-known 

prior distribution can be readily fulfilled in the case of normal mean and normal standard 

deviation. These examples are important because the model incorporating the linear 

regression and Bayes’ updating rule for multi-variable cases can be built by directly 

extending these single variable cases. 

 

V.5 Noninformative Priors for Multiple Variables 

 

Multi-variable distribution with σ
2 
known 

 

Assume that 1 2{ , ,... }
m

y y y=Y  is a set of statistically independent variables that 

have normal distribution with the same variance σ
2
. And the expected value of Y is 

linearly related to n parameters 1 2{ , ,... }
n

θ θ θ=θ , which means 

=Y Xθ ,                                                                                                                    (5.17) 

where X is a m by n constant matrix. Note that Equation (5.17) is actually the linear 

regression model established in Chapter IV. 

If the standard deviation σ is known, the likelihood function is 

2

1
( | , ) exp ( ) ( )

2

T
L cσ

σ

 
= − − − 

 
θ Y Y Xθ Y Xθ                                                        (5.18) 

To facilitate the discussion, the exponential index can be put in another form. 

Assume that matrix X is full-ranked. The exponential index except the 
2

1

2σ
− is then 
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^ ^ ^ ^

( ) ( ) ( ) ( ) ( ) ( )T T T T− − = − − + − −Y Xθ Y Xθ Y Y Y Y θ θ X X θ θ ,                                 (5.19) 

where 
^

1( )T T−=θ X X X Y . Note that 
^

θ is exactly the coefficients obtained through linear 

regression in Chapter IV. Now consider that the first term in Equation (5.19) does not 

involve θ so that it can be removed from the likelihood function, or alternatively put in 

the constant c to form a new constant. For convenience, the symbol c is still used here. 

Then the likelihood function is 

^ ^

2

1
( | , ) exp ( ) ( )

2

T T
L cσ

σ

 
= − − − 

 
θ Y θ θ X X θ θ                                                          (5.20) 

Again, it should be noted that the matrix 
2

1

2

T

σ
X X  is the inverse matrix of the 

covariance matrix mentioned in Chapter IV. For 2n = , 0.03σ = , 1.0c =  and 

0.01 0.02

0.01 0.01

 
=  
 

X , the contour plots of the likelihood functions with different 
^

θ are 

shown in Figure 5.6. From this figure, the likelihood functions are completely 

determined except for their locations before the data on Y becomes available. It is 

obvious that the likelihood function is determined except for its location. Different data 

sets would only translate the likelihood function on the (θ1, θ2) plane. Therefore a 

noninformative prior distribution would be a locally uniform distribution that can be 

expressed as ( | )p cσ ∝θ  where c is a constant. Of course, the “true” locally uniform 

prior distribution can be a two-dimensional normal distribution with a large standard 

deviation so that it can be approximately considered to be “flat” over the studied range. 
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Figure 5.6. Contour plots of likelihood functions for different data sets 

From Bayesian Theorem described in Equation (5.4), the posterior distribution of 

θ is  

^ ^

2 2

det( ) 1
( | , ) exp ( ) ( )

(2 ) 2

T
T T

k

X X
p σ

πσ σ

 
= − − − 

 
θ Y θ θ X X θ θ                                    (5.21) 

Equation (5.21) gives a joint normal distribution of multiple variables. The above 

discussion leads to an important observation. If one is asked to choose a distribution for 

θ without being given any data of Y, then it is natural to assume a noninformative prior 

distribution, or alternatively, a locally uniform distribution. However, once some data on 

Y becomes available, an initial updating process becomes possible. And the result from 
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this initial updating process is a joint normal distribution of θ. Keep in mind that the 

linear regression is also built on the initially available data of Y. From here, it is clear 

that the process to build a linear regression model, as what is described in Chapter IV, is 

also the process to initially update an assumed locally uniform distribution of the 

coefficients in the linear regression model. This is how the Bayesian updating rule can 

be perfectly incorporated with linear regression. This is also the beauty of the 

methodology proposed in this dissertation.  

The objective of studying the Bayesian analysis, however, is not just to verify 

that the initial updating and the linear regression can be perfectly incorporated. More 

importantly, the posterior joint normal distribution can be, again, updated following the 

same methodology if new data is present. In this case, the posterior joint normal 

distribution is treated as a prior distribution and the likelihood function is derived from 

the new data. One will see, in the next section, that after a new round of updating, the 

posterior distribution is, again, a joint normal distribution. Now it is understandable that 

the updating rule developed here leads to an iterative process that can be repeated as 

many times as needed. Each time, it included some new information that is not included 

in the previous model. 

However, before the updating rule on a joint normal distribution can be 

presented, one question can be legitimately asked if one noticed that the previous 

discussion is based on known standard deviation σ. The question is what would happen 

if the standard deviation, σ is also unknown.  
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Multi-variable distribution with σ
2 
unknown 

 

It would be easier to first consider a Normal distribution 2( , )N θ σ , where both θ 

and σ are unknown. From the data 1 2{ , ,... }
m

y y y=Y , the likelihood function, given the 

data Y is 

( )
2

2
1

1
( , | ) exp{ }

2

n
n

i

i

L yθ σ σ θ
σ

−

=

∝ − −∑Y ,                                                                 (5.22) 

In Equation (5.22), the exponential index can be written as, 

 ( )
2 2 2 2 2

1 1

( ) ( ) ( 1) ( )
n n

i i

i i

y y y n y n s n yθ θ θ
− − −

= =

− = − + − = − + −∑ ∑ ,                                  (5.23) 

where 
2

2

1

( )

1

n

i

i

y y
s

n

−

=

−
=

−
∑ . Then the likelihood function is now 

2 2

2 2

( 1) ( )
( , | ) exp{ }

2 2

n n s n y
L

θ
θ σ σ

σ σ

−

− − −
∝ − −Y                                                           (5.24) 

Since the likelihood function would be unchanged after multiplying a constant, 

Equation (5.24) can be further written as 

22 2

2 2

( 1) ( )
( , | ) exp{ }

2 2

n
s n s n y s

L
s

θ
θ σ

σ σ σ

−
−

− −   
∝ − −   
   

Y                                              (5.25) 

Apparently the joint distribution of σ and θ represented by Equation (5.25) is not a 

normal distribution. To seek a noninformative prior distribution, an intuitive way would 

be to plot the likelihood function. Of course, it can be done mathematically and the 

procedure is recorded in many statistical textbooks and will not be recorded here. 
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However, the σ axis should be plotted in the logarithm scale to get a clean picture. To get 

the logarithm scale, Equation (5.25) is changed to 

2

2

( )
( , | ) exp{ exp[ 2(log log )}

2

1
exp{ (log log ) ( )exp[ 2(log log )]}

2

n
s n y

L s
s

n
n s s

θ
θ σ σ

σ

σ σ

−
−

− 
∝ − − − 
 

−
× − − − − −

Y
                                  (5.26)      

Figure 5.7 shows the likelihood function in Equation (5.25) with n =10 and 

different y
−

and s. From this figure, when s is fixed, different y
−

leads to the relocation of 

the contour along the θ axis but the shape of the contour is retained, which suggests a 

noninformative distribution of locally uniform for θ. When y
−

 is fixed, different s leads 

to relocation and a scaling of the contour. This suggests a noninformative distribution for 

σ would not be locally uniform. However, as discussed in V.5.2, the distribution of the 

logarithm of σ is locally uniform. Therefore a noninformative joint distribution for θ and 

σ would be locally uniform. This conclusion can be extended to the multivariate cases 

when θ becomes a vector rather than a scalar.  

( , log )p cθ σ =                                                                                                             (5.27) 
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Figure 5.7. Contour plots of likelihood function with both θ and σ unknown 

 

From here, the multi-variable case can be easily obtained. The likelihood 

function is 

^ ^
2 2

2 2 2

( ) ( ) ( )
( , | ) exp

2 2

n T T
s n k s s

L Y
s

θ σ
σ σ σ

 
− − −   ∝ − − 

  
 

θ θ X X θ θ
,                              (5.28) 

where 
^ ^

2 1
( ) ( )

( )

Ts
n k

= − −
−

Y Y Y Y . Following the same argument as in the single 

variable case, the change in 
^

θ only changes the location of the likelihood function and 
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the change in s rescales the likelihood function. Therefore the noninformative prior can 

be written as 

( , log )p cσ =θ  ,                                                                                                         (5.29a) 

or  

( , ) 1/p σ σ=θ                                                                                                            (5.29b) 

 

V.6 Distribution of coefficients in the linear regression model 

 

Now it is appropriate to go back to the linear regression model developed in 

Chapter IV. Consider the linear model described in Equation (5.15), 

= +Y Xθ ε                                                                                                                   (5.30) 

where ε is the error. Assume that ε has the multivariate Normal distribution with zero 

mean and standard deviation σ, i.e., 2~ (0, )N σε I . I is a 1n × vector that has all entries 

equal to “1”, which means the error terms share the same standard deviation.                                                              

From the discussion in the previous section, the joint prior distribution is locally 

uniform and can be expressed as Equation (5.29b). Therefore the posterior distribution 

of θ and σ given Y is  
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where C0 is a normalization constant. 

From here, the marginal distribution of σ
2
 is  
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2 2 2

( )( | ) ( ) n kp n k sσ χ −= −Y    ,                                                                                      (5.32) 

which is the χ -distribution with the number of degree of freedom n-k. The mean and 

variance of the χ -distribution are 2( ) /( 2)n k s n k− − −  and  

2 4 22( ) /(( 2) ( 4))n k s n k n k− − − − − , respectively [44].   

It is very interesting that the variance of the χ -distribution decreases with 

increasing number of degree of freedom n-k. It is apparent that if n-k goes to infinity, 

which means the number of data points is much larger than the number of coefficients in 

the model, then the probability density function of the χ -distribution will approach to 

the Dirac delta function [46] located at the mean of the distribution. In this case, the 

marginal distribution of θ, will approach a distribution described by the following 

equation.  

^ ^
2 2

0 1 2 2 2

1 ( ) ( ) ( )
( | ) exp

2 2

T T

n

n k s s
p C

sσ σ σ+

 
− − − → − −

 
 

θ θ X X θ θ
θ Y ,                             (5.33) 

with 2 2( ) /( 2)n k s n kσ = − − − , when n k− → ∞ . 

Consider that 2σ is now a constant, the distribution described in Equation (5.33) 

can be rewritten as 

^ ^

1 2

( ) ( )
( | ) exp

2

T T

p C
σ

 
− − → −

 
 

θ θ X X θ θ
θ Y                                                                 (5.34) 

This is a normal distribution centered at 
^

θ , with a variance of 

2 2( ) /( 2)n k s n kσ = − − − . Again C1 is a normalization constant. This is a very 
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important observation. First, it states that the conditional distribution of the coefficient θ 

is approximately a normal distribution when the number of degree of freedom is large 

enough. Actually in their book, Box and Tiao’s [43] stated that “in particular, for large 

number of degrees of freedom, the distribution of θ will be very nearly normal because 

the conditional normal distribution of θ on condition of σ and Y will be averaged only 

over a narrow ‘weight’ distribution”. Mathematically, it has to be infinity. However, in 

practice, infinity can never be reached and it is not necessary to go to infinity. When the 

number of degree of freedom is reasonably large, the conclusion holds. For the 

regression model in this dissertation, s = 0.2293, n-k = 35, the variance of the 

distribution is 1.7e-4, which can be regarded as small so it is reasonable to consider the 

marginal distribution of θ as a normal distribution. 

Secondly, it is a very nice property that the initial updating from the locally 

uniform distribution leads to a normal distribution. The reason is that only a normal 

distribution can be readily updated with new incoming data and leads to a new normal 

distribution. This is very important and it is the beauty of the entire methodology 

because it basically says the updating rule can be repeatedly applied to the model 

without changing the type of distribution, but only the mean and variance of the 

distribution. An iteration process is thus possible.  Following is the detailed discussion. 

The distribution of the coefficient θ, in the baseline linear regression model, 

which is based on the 43 selected software, can be now written as 

^ ^
11 ( ) ( )

( | ) exp
2( 2 ) det( )

T

n
p

π

− 
− Σ − = −

 Σ
 

θ θ θ θ
θ Y                                               (5.35) 
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with 2 1( ) ( ) /( 2)Tn k s n k−Σ = − − −X X  and 
^

1( )T T−=θ X X X Y , both of which can be 

calculated from the collected data. And this distribution is now treated as a prior 

distribution for any future updating. 

Now data from a new software become available. Assume the data can be 

represented by ( , )
new new

Y X . And 
new

Y is the final score of the new software and 
new

X is 

the scores for each item. The likelihood function of the new data, which is actually the 

likelihood of the error from the regression model, is 
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                                                                 (5.36) 

Apply the Bayesian theorem again, the posterior distribution is then 
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where A0 is a normalization constant. While the distribution described in Equation (5.37) 

looks complicated, it is actually a joint normal distribution, again. The reason is that the 

characteristic of a joint normal distribution is the quadratic form in terms of θ. In 

Equation (5.37), 

^ ^
1( ) ( )

2

T −− Σ −θ θ θ θ
 is a quadratic form and 2)( new

T

newy
−

− Xθ  is a 

quadratic form again. The sum of two quadratic forms can always be written as a new 

quadratic form plus a constant. Since the constant can be always moved into the 

normalization constant A0, it means the distribution described in Equation (5.37) has a 

quadratic form in its exponential index and thus is a joint normal distribution. This new 

distribution turns out to be 
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with  

^ ^
1 1 1

2 2

1
( ) ( )

T T T

new
new new newupdated

y

σ σ

− − −
− − −= Σ + +θ X X θ Σ X                                                    (5.39) 

Equation (5.39) is the updating rule being sought.  It relates the old mean of the 

coefficients θ and the new updated mean of the coefficients 
^

updatedθ .  

Still the standard deviation and covariance matrix need to be updated. To update 

the standard deviation, s and η=n-k must be updated first. This is easy. 

2 1
( )

updated new new
s s y y

η

−

= + −                                                                                      (5.40) 

where 
new

y
−

is the estimated total score from the regression model for the new software. 

1
updated

η η= +                                                                                                               (5.41) 

To update Σ, TX X must be updated first.  

new

T

new

T

updated

T XXXXXX +=)(                                                                                    (5.42) 

)2/()()( 12 −−−=∑ −
knskn updated

T

updated XX         (5.43) 

Equation (5.39) through (5.43) establishes the updating rules. It is seen that the original 

data used to build the regression model is not necessarily in the updating process. All 

that is needed is only the statistical parameters in the regression model, represented by 

^

θ , Σ and σ. This is a very nice property since it reduced the amount of necessary 

information. Remember that TX is a 438×  matrix and its number of columns will 



 

 

92 

increase with each updating performance but TX X is always  88×  no matter how many 

times the model is updated. There is no need to maintain a long list of data used for the 

previous updating. Therefore it can be concluded that the proposed updating rule 

provides a convenient and easy-to-implement method.   
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CHAPTER VI 

 

CONCLUSION AND FUTURE WORK 

 

The need for an objective way to assess open source software has become urgent 

as the number of open source software in use becomes increasingly large. The basic idea 

is to provide an objective approach through which the open source software can be 

appropriately evaluated and chosen by average users when they face a huge number of 

choices. This dissertation has proposed a quantitative method to evaluate open source 

software based on linear regression and Bayesian statistical analysis. 

The linear regression model aims at relating the total score of an open source 

software with a number of evaluation metrics. Each of these metrics reflects the property 

or performance of the software in a particular field. Some of the metrics are commonly 

used by existing methods. In this dissertation, there are totally seven metrics chosen to 

represent the strength of an open source software in a certain field. These metrics are 

popularity represented by page rank, activities, quality represented by the number of 

bugs, support represented by the number of messages, documentation represented by the 

number of documentation lines and the number of books, and finally integration 

represented by the number of dependent projects.  The total score and the metrics of a 

particular software can be obtained on popular open source software websites. Given the 

large number of users on these sites, the total score and the metrics can be considered to 

correctly reflect the performance of the software. 
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To build a linear regression model, the collected data need to satisfy some 

assumptions. These assumptions ensure that the model gives reasonable prediction for 

any future application. These assumptions refer to “constant variance”, “independence” 

and “normality”. The data collected for the open source software are put to test against 

these assumptions. It is found that they satisfy these assumptions very well. Therefore 

the linear regression model is plausible. The important issue of outlier removal in linear 

regression model is also presented in this dissertation. The sifting process and the model 

development are intrinsically intertwined so it is actually an integrated trial and error 

process. Through this process, a total number of 43 software are finally chosen to build 

the baseline model. The model is built through SPSS, the popular statistical kit. It is 

found that the coefficients obtained are reasonable. The model is then applied to a 

number of new software to test its accuracy. It is found that the error between the 

predicted score and the user review score is within 5%. It shall be understood that this is 

not to say the model will give close results for any software in the vast selection of open 

source software.  To introduce the influence of new software that is not included in the 

43 selected software, a statistical updating process needs to be developed. 

 The updating process is based on Bayesian analysis. In the Bayesian analysis, the 

prior distribution of a random variable and its posterior distribution are related by the 

likelihood function, which reflects experiment results or simply, data. The coefficients in 

the linear regression model are then treated as random variables that have a certain 

distribution. Before the regression model is built, it is assumed that all coefficients have 

noninformative prior distribution. After the model is built the error is assumed to have 
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normal distribution, the posterior distribution of the coefficients is actually T-

distribution. However, if the number of degrees of freedom, which is the number of data 

points or the number of software used to build regression model subtracted by the 

number of coefficients, is reasonably large. The distribution approaches a normal 

distribution. The mean and the standard deviation can be found through the data used to 

build the regression model.  

The normal distribution of the coefficients can be further updated by future 

incoming data. The posterior distribution or updated distribution is found to be normal 

again. Thus an iteration process is set up and it can be repeated as many times as needed. 

Formulas are given for updating the mean and standard deviation of the coefficients. A 

nice feature of this process is that it does not require previous data on which the current 

model is built. It only needs the statistical parameters of the current model. Thus the 

amount of information is reduced and it makes this method easy to implement. 

There are several things can be done as future work to improve the model in this 

dissertation. First, some of the evaluation metrics can be reconsidered. For instance, the 

number of books, which represents the document metric, is zero for most of the 

software. This polarization reduces the linearity of the intrinsic model thus leads to 

errors in the linear regression. Secondly, on the regression side, other type of regression 

could be tried. As indicated by the standard deviation and 95% confidence interval, the 

linear regression approach is probably not the best way to relate the total score and the 

metrics. Linear regression model is widely used just because it is easy to implement. 

This is exactly why today’s most famous method in open source software evaluation also 
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uses linear regression. From here, it can be seen that the type of model and the 

appropriate choice of metrics are two interactive factors. The relaxation on one leads to 

tightness on the other. That is, if the metrics are allowed to be chosen more freely, the 

model has to be more complicated than a linear model. On the other hand, if the metrics 

are chosen more carefully to accommodate more intrinsic linearity, the linear model will 

be sufficient.   

Finally it needs to be pointed out that the methodology developed in this 

dissertation may have wide range of applications given the popularity of linear 

regression in the science and engineering fields. Developing a new method is exactly the 

primary contribution and purpose of this dissertation. 
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APPENDIX A 

43 OPEN SOURCE SOFTWARE DATA 

 
User 
reviews 

Page 
Rank 
(out of 
10) activities/month/TLOC #BUG/NUM_MSG #MSG/TLOC DOC/TLOC BOOK 

Number of 
projects 
depending 
on this one 

MPlayer 9.1 7 3.72E-03 2.06E-02 0.201671 23.11254 0 53 

Blitz 
JavaSpaces 8.61 6 0.11225 0.545455 0.002004 30.51465 0 0 

Inkscape 8.73 7 0.098146 0.122622 0.062283 1.89709 1 0 

Kannel WAP 
and SMS 
Gateway 8.92 6 0.067198 0.002 0.026282 24.72453 0 0 

MoinMoin 8.77 8 0.096116 0.022244 0.077614 11.70745 0 0 

COID - C++ 
Networking 
Code 
Generator 8.4 3 0.006116 0.470588 0.000195 8.543872 0 0 

SynCE - KDE 8.38 5 0.006758 0.052527 0.095468 9.461633 0 0 

conexus I/O 
Library 8.15 4 0.053483 1 6.32E-05 18.96214 0 1 

Freenet 7.8 6 0.015243 0.438169 0.109582 14.35126 0 0 

mICQ 8.12 5 0.065155 0.00655 0.036559 33.76527 0 1 
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naim 8.54 6 0.140081 0.005938 0.058974 41.07862 0 0 

rssowl 8.53 8 0.011067 0.332335 0.012321 55.08964 0 0 

Licq 8.52 5 0.246419 0.015528 0.133179 16.78769 0 0 

Interverse 8.5 4 0.030904 0.103175 0.014602 3.476649 0 0 

simpleAIM 8.47 5 0.096819 0.20339 0.019993 16.94341 0 0 

afd 8.43 5 0.009459 0.08871 0.000505 12.84566 0 0 

GNU virtual 
private 
ethernet 8.39 5 0.049799 0 0.002014 18.41462 0 0 

Platform 
Independent 
Petri Net 
Editor 8.34 5 0.003052 0.590909 0.001007 60.42849 0 0 

Liferea 8.26 8 0.035485 0.155101 0.059863 13.14833 0 0 

GNU Gadu 8.19 5 0.125705 0.065518 0.070056 3.716409 0 0 

MyDNS 8.83 6 0.024345 0.005568 0.068015 49.04188 0 0 

Druid 8.79 6 0.030119 0.162413 0.040311 4.676394 0 0 

Hierarchical 
NoteBook 8.75 6 0.061532 0.048193 0.037631 24.39246 0 0 

SiteBar 8.68 7 0.020779 0.029543 0.061124 23.72236 0 0 

Tellico 8.68 5 0.014596 0.128378 0.016129 21.06037 0 0 

OTRS 8.66 6 0.17658 0.065225 3.082743 8.63707 0 0 

knoda 8.5 5 0.006964 0.126662 0.025064 33.76304 0 0 

OpenLDAP 8.49 9 0.014726 0.204261 0.002742 12.50034 0 26 
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Firebird .NET 
Data Provider 8.46 6 0.136747 0.067976 0.177125 46.81692 0 0 

building object 
network 
databases 8.45 6 0.229579 0 0.000286 1.504804 0 0 

csvtosql 8.4 4 0.093738 0.371429 0.004374 13.87327 0 0 

CrisoftRicette 8.39 4 0.170343 0.056604 0.009028 13.88297 0 0 

YAZ 8.33 6 0.004609 0.142395 0.012455 19.95244 0 7 

PHP Generic 
Access 
Control List 8.28 6 0.040571 0.122628 0.010587 11.26704 0 0 

DWI -- Data 
With 
Interaction 8.19 5 0.012072 0.02381 0.002366 31.54752 0 0 

jSyncManager 8.19 5 0.033077 0.197183 0.020667 37.69466 0 0 

imgSeek 8.1 6 0.090678 0.297071 0.005889 22.59567 0 0 

FreeTDS 8.09 6 0.039792 0.113381 0.239605 8.767136 0 0 

GTKtalog 7.99 5 0.019688 0.583333 0.001238 6.29093 0 0 

Customer-
Touch CRM 7.97 4 0.046185 0.615385 0.001801 2.493996 0 0 

Xplanet 8.78 7 0.015818 0.13 0.003285 26.48006 0 0 

synergy2 8.69 6 0.204643 0.87892 0.019338 11.2984 0 0 
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rxvt-unicode 8.66 5 0.029635 0.189474 0.006039 27.60297 0 0 
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