
LARGE-SCALE ANALYSIS OF PHYLOGENETIC SEARCH BEHAVIOR

A Thesis

by

HYUN JUNG PARK

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2007

Major Subject: Computer Science

LARGE-SCALE ANALYSIS OF PHYLOGENETIC SEARCH BEHAVIOR

A Thesis

by

HYUN JUNG PARK

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Tiffani L. Williams
Committee Members, Sing-Hoi Sze

Jim Woolley
Head of Department, Valerie E. Taylor

August 2007

Major Subject: Computer Science

iii

ABSTRACT

Large-Scale Analysis of Phylogenetic Search Behavior. (August 2007)

Hyun Jung Park, B.S., Yonsei University, Korea

Chair of Advisory Committee: Dr.Tiffani L. Williams

Phylogenetic analysis is used in all branches of biology by inferring evolutionary

trees. Applications include designing more effective drugs, tracing the transmission of

deadly viruses, and guiding conservation and biodiversity efforts. Most analyses rely

on effective heuristics for obtaining accurate trees. However, relatively little work has

been done to analyze quantitatively the behavior of phylogenetic heuristics in tree

space. This is important, because a better understanding of local search behavior

can facilitate the design of better heuristics, which ultimately leads to more accurate

depictions of the true evolutionary relationships.

In order to access and analyze the tree search space, we implement an effec-

tive local search heuristic. Having an effective heuristic that can open the space is

important, since no search heuristic in this field can effectively provide data collec-

tion control. So we have implemented and estimated a search heuristic, Simple Local

Search or SLS, that works reasonably well in the space.

Our investigations led to several interesting observations about the behavior of a

search heuristic and the tree search space. We studied the correlation of tree features

of search path trees, where tree features refer to the parsimony score, the Robinson-

Foulds distance and the homoplasy measure. Most importantly from the results,

parsimony score was highly correlated with Robinson-Foulds distance only in trees

that lie on the search path to a local optimum. We also note that the scores of

neighborhoods along search paths improve together, as a local search progresses.

iv

Correlations of tree features of search path trees are particularly useful in char-

acterizing and controlling a search path. This paper proposes one possible stopping

criterion to maximize the tree search results while minimizing computational time

tested on three biological datasets using the correlation between the parsimony score

and the RF distance value of search path trees. Also, the observation that scores of

a neighborhood on a search path improve together gives us a significant amount of

flexibility in selecting the next pivot of a search without losing performance.

Eventually, our long-term goal is developing an effective search heuristic that

can deal with large scale tree space in reasonable time. Improved knowledge about

the tree search space and the search heuristic can provide a reasonable starting point

toward the goal.

v

To my soul mate Soyeon and family for their love and encouragement.

vi

ACKNOWLEDGMENTS

I would like to express my thanks and gratitude to Dr. Tiffani L. Williams for

her research guidance, patience and understanding and for sharing her knowledge and

experience, as well as for serving as my advisor. Additionally, I would like to thank

Dr. Jim Woolley and Dr. Sing-Hoi Sze for their knowledge and advice as committee

members. I also wish to thank Dr. William J. Murphy and Dr. Matt Yoder for

providing me with the biological datasets used in this study.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II BACKGROUND . 6

A. Maximum Parsimony . 6

B. Branch Swapping Operations 7

C. Robinson-Foulds Distance 8

III RELATED WORK . 11

IV EXPERIMENTAL METHODOLOGY 13

A. Biological Datasets . 13

B. Starting Trees . 13

C. Implementation and Platform 14

V HEURISTIC MEASUREMENT 15

A. Introduction . 15

1. Simple Local Search 15

a. Data Structure 15

b. Accelerating Score Calculation 16

c. Removing Duplicated Rearrangements 18

2. Measuring Performance 18

3. SLS Competitors . 21

B. Results . 22

1. The Impact of Scoring Techniques 22

2. Scoring and Neighborhood Performance 24

3. Hill-climbing Performance 24

4. Topological Performance 26

C. Conclusions . 27

VI CORRELATION INSIDE THE LOCAL SEARCH SPACE . . . 31

A. Introduction . 31

1. Search Path Trees . 31

2. Goodness of Fit . 32

viii

CHAPTER Page

3. Measuring the Correlation between Trees 33

B. Results . 35

1. Fitness-Distance . 35

2. Fitness-Homoplasy . 36

3. Homoplasy-Distance 37

4. Neighborhood Fitness 38

C. Conclusions . 39

VII APPLYING THE CORRELATION TO THE SPACE 44

A. Introduction . 44

1. Random Neighbor Selection 44

2. Robinson-Foulds Distance with the Best Tree in

the Search . 45

B. Results . 45

1. Random Neighbor Selection 45

2. Robinson-Foulds Distance with the Best Tree in

the Search . 46

C. Conclusions . 49

VIII CONCLUSION AND FUTURE WORK 52

REFERENCES . 55

VITA . 59

ix

LIST OF TABLES

TABLE Page

I The fitness distance correlation coefficients (rFD) for all three datasets. 36

II The fitness homoplasy correlation coefficients (rFH) for all three

datasets. 40

III The homoplasy distance correlation coefficients (rHD) for all three

datasets. 40

IV Total number of search path trees for the datasets under study. . . . 42

x

LIST OF FIGURES

FIGURE Page

1 An evolutionary tree for five taxa (Taxa A, Taxa B, Taxa C, Taxa D,

Taxa E) is given, in which alphabet in {} represents DNA se-

quence assigned to taxa or internal nodes at the site marked red

and e i represents an edge ID that shows an evolutionary relation-

ships between two nodes. Parsimony score at this site of this tree

is 1, since one evolutionary change happens at edge (e 7). The

actual parsimony score should be obtained by summing up all sites. . 7

2 Examples of rearrangements. Alphabet nodes could represent ter-

minal nodes or subtrees. 9

3 An example of RF distance calculation between T1 and T2. Each

tree has the same set of taxa (A,B,C,D,E) with a different evo-

lutionary relationship. They don’t share any bipartition, and

this makes both |Σ(T1) − Σ(T2)| and |Σ(T2) − Σ(T1)| as 2. So,

dRF (T1, T2) = |Σ(T1)−Σ(T2)|+|Σ(T2)−Σ(T1)|
2

= |2|+|2|
2

= 2. 10

4 A conceptual phylogenetic tree and the data structure represen-

tation the tree in SLS. 16

5 A rooted representation of a TBR rearrangement, where score

update goes up from two triangle nodes (a) and an example of

TBR move that generates a duplicated case (b) 20

6 Comparison of performance between speedup techniques for scor-

ing the same number of neighbors on Dataset #3 (174 taxa). Dif-

ferences are plotted in log(time) scale, and speedup is measured

over a straightforward algorithm that has no speedup technique. . . . 23

7 Neighborhood performance on Dataset #1 (44 taxa). The num-

ber of informative (Inf) and uninformative sites (Unf) is 8,004

and 9,024, respectively. Inf + Unf denotes the performance of a

method based on scoring the entire sequence. Performance based

on scoring only the informative sites is denoted Inf . We note

that libcov is unable to generate an NNI neighborhood. 24

xi

FIGURE Page

8 Neighborhood performance on Dataset #2 (60 taxa). The num-

ber of informative (Inf) and uninformative sites (Unf) is 946

and 1,054, respectively. Inf + Unf denotes the performance of a

method based on scoring the entire sequence. Performance based

on scoring only the informative sites is denoted Inf . We note

that libcov is unable to generate an NNI neighborhood. 25

9 Neighborhood performance on Dataset #3 (174 taxa). The num-

ber of informative (Inf) and uninformative sites (Unf) is 912

and 955, respectively. Inf + Unf denotes the performance of a

method based on scoring the entire sequence. Performance based

on scoring only the informative sites is denoted Inf . We note

that libcov is unable to generate an NNI neighborhood. 26

10 Hill-climbing performance of SLS, PAUP*, and Phylip on Dataset

#1 (44 taxa). PAUP* established the best score of 43,085 for this

dataset. 27

11 Hill-climbing performance of SLS, PAUP*, and Phylip on Dataset

#2 (60 taxa). PAUP* established the best score of 8,701 for this

dataset. 28

12 Hill-climbing performance of SLS, PAUP*, and Phylip on Dataset

#3 (174 taxa). SLS established the best score of 7,442 for this

dataset. 29

13 Heatmaps depicting the topological performance of the heuristics

on our smallest (Dataset #1) and largest (Dataset #3) datasets.

For each heuristic, we measure its RF rate to the best-known tree.

Moreover, each heatmap shows the average RF rate between the

trees found by every pair of heuristics. Here, the color scale ranges

from dark (closely related trees) to light (distantly related trees). . . 30

14 A depiction of the trees (t1, t2, . . . , tm) visited by the SLS algo-

rithm on its way to reaching a final tree (e.g., local optimum). t1
represents the starting tree and tm is final tree (local optimum)

found. Here, each tree ti along the search path is the neighbor

selected from tree ti−1’s neighborhood. 32

xii

FIGURE Page

15 Fitness distance correlation for Dataset#1 (44 taxa). (a) The

fitness (MP score) and RF rate relative to the best-known tree

of trees selected along the path to the local optimum under a

TBR neighborhood. Here, r = 0.89, where r is the correlation

coefficient value. (b) Trees along the path to the local optimal

solution within 1% of the best score. (c) 10,000 random trees

with a r of 0.48. For better display, we added a minimal amount

of randomness to x-axis so that all points wouldn’t be aligned into

one line. 37

16 Fitness distance correlation for Dataset #2 (60 taxa). (a) The

fitness (MP score) and RF rate relative to the best-known tree

of trees selected along the path to the local optimum under a

SPR neighborhood. Here, r = 0.93, where r is the correlation

coefficient value. (b) Trees along the path to the local optimal

solution within 1% of the best score. (c) 10,000 random trees

with a r of 0.28. For better display, we added a minimal amount

of randomness to x-axis so that all points wouldn’t be aligned into

one line. 38

17 Fitness distance correlation for Dataset #3 (174 taxa). (a) The

fitness (MP score) and RF rate relative to the best-known tree

of trees selected along the path to the local optimum under a

SPR neighborhood. Here, r = 0.96, where r is the correlation

coefficient value. (b) Trees along the path to the local optimal

solution within 1% of the best score. (c) 10,000 random trees

with a r of 0.21. For better display, we added a minimal amount

of randomness to x-axis so that all points wouldn’t be aligned into

one line. 39

18 Fitness homoplasy correlation for Dataset#3 (174 taxa). (a) The

fitness (MP score) and RF rate relative to the best-known tree of

trees selected along the path to the local optimum under a TBR

neighborhood. Here, rFH = −1.00. (b) 10,000 random trees with

a rFH = −0.97. 41

xiii

FIGURE Page

19 Homoplasy distance correlation for Dataset #3 (174 taxa). (a)

The fitness (MP score) and RF rate relative to the best-known

tree of trees selected along the path to the local optimum under a

TBR neighborhood. Here, rHD = −0.98. (b) 10,000 random trees

with rHD = −0.20. For better display, we added a little bit of

randomness to x-axis so that all points wouldn’t be aligned into

one line. 42

20 Fitness (MP score) distribution of SPR neighborhoods on Dataset

#3 (174 taxa). Each histogram depicts the MP scores of all neigh-

bors at 20% intervals of the search for best trees. For each interval,

all tree scores from the neighborhood of the current tree is shown

for all five runs. We could not take TBR, because TBR neigh-

bors for Dataset #3 are so numerous that current data processing

technique cannot handle them directly. 43

21 The performance of the SLS algorithm when random neighbors

are selected. Our original SLS algorithm (r = 0%), always chooses

the first improving neighbor for its next move on the search path.

However, for r ≥ 1, there is an r% chance that the next tree (ti+1)

on the search path is selected randomly from the TBR neighbor-

hood of ti (i.e., Nβ(ti)). Each box plot represents the distribution

of five runs of the SLS heuristic for each r value. 47

22 A closer look at the performance of the random neighbor selec-

tion experiments from Figure 21. Here, each plot show the per-

formance of our SLS algorithm with r varying between 0% and

5%. 48

23 The running time required for the SLS heuristic with different

values of r. Each data point is the average of five runs. 49

24 rFD are estimated with search path trees at each search progress

on all dataset (a) and the best-tree-so-far at each search progress

is compared with the best-tree-overall to see how the search goes. . . 50

25 Distribution of RF rate values of search path trees with their

parsimony scores at various points in the search. rFD at each

progress is given on the top of each figure. 51

1

CHAPTER I

INTRODUCTION

Phylogenetics is concerned with inferring the genealogical relationships between a

group of organisms (or taxa). These evolutionary relationships are typically depicted

in a binary tree, where leaves represent the organisms of interest and edges repre-

sent the evolutionary relationships. The objective of phylogeny reconstruction is to

produce a phylogenetic tree describing the evolutionary relationships between the or-

ganisms. But the problem is that there are so many possible trees in the search space

that we cannot exhaustively navigate in order to find out the true tree. In parsimony

criteria, this difficulty is converted into finding out the most parsimonious tree, and

it’s called the Maximum Parsimony problem. In order to address the problem, phy-

logenetic inference relies on effective heuristics for obtaining good-scoring trees. For

now, a number of good heuristic have been suggested, but it is not enough, since

any heuristic doesn’t come from deep understanding about the search space or search

path. The knowledge about the search space is important, because, the search basi-

cally takes place within this search space. More specifically, the understanding about

the search space allows us to design a better heuristic that navigates the search space

effectively, taking a full advantage of it.

Now, what is the effective navigation in the space? An effective navigation is the

one that exploits more promising trees during a search. This statement drives three

practical questions, what is a promising tree, how can we identify this from others

in the space; and how can we make use of the knowledge? Local search heuristics

lowers the score of the current path tree until a local optimum is achieved. So, from

The journal model is IEEE Transactions on Automatic Control.

2

the standpoint of a local optimum, search path trees are promising, since a series of

path trees guide the search to the optimum. Eventually the final questions left for

this paper to address are:

1. What characteristics do search path trees have? What does that mean? and

why are they important?

2. How can the knowledge about search path trees contribute to making effective

navigation?

In order to study quantitatively the behavior of local search heuristic related to

search path trees, we first have to gather as much information as possible from search

path trees of a local search heuristic. However, we are not allowed to capture all

the information we need from PAUP*, since it has been commercially treated. Also,

present open-source phylogenetic software such as Phylip [9] show that it performs

poorly in comparison to PAUP* and that a reasonable search path cannot be guar-

anteed. In this regard, this study starts with developing a new local search heuristic

that reasonably works and provides us with the data collecting capability. To verify

the performance of our local search heuristic (Simple Local Search or SLS), we want

to compare with other major heuristics such as PAUP* [32], Phylip [9], and libcov [3].

However, it is not precise that heuristic is estimated only with their output and time,

since internal components of heuristics are so interconnected and data dependent that

it is hard to tell the consistent performance from a few instances. Basically, a local

search heuristic is composed of two essential parts, branch swapping and tree scoring

basic blocks. We will compare the performance of our algorithm to three approaches

by each basic block. Results from these estimations clearly show that Simple Local

Search outperforms other open-source search heuristics both in time and in score from

basic block level up to overall perspective. Based on this observation, SLS is allowed

3

to have further investigation in that it can build a good search path in the search

space.

After verifying SLS, we are going to address the first question arising from the

previous paragraph, ‘What characteristics do search path trees have?’ and ‘why

are they important?’ Knowing the characteristics of search path trees is important,

because this knowledge can initiate the design of better heuristics that will utilize

search path trees more effectively. Our SLS heuristic is a hill-climbing (or local

search) heuristic that greedily selects trees based on their MP score until a local

optimum is reached. By controls SLS provides, we can collect a variety of data

regarding the choices that SLS makes during a search, and examine the behavior of

a collection of various data. In this study, we collect the data related to the topology

and homoplasy information of search path trees. Also, we gather the information

about their neighbors, especially MP scores of neighbors. Related to this collected

data, we extend the previous question into a number of ones listed below about the

behavior of local search path trees.

1. How are MP scores distributed in a neighborhood of search path trees as a

search proceeds?

2. What is the correlation between MP scores of search path trees and their topo-

logical accuracy?

3. How does the “fit” of the data increase or decrease as the search progresses

toward a local optimum?

The last part of this paper attempts to address the question, ‘How can the

knowledge about search path trees affect the performance of a local search heuristic?’

Above all, two characteristics of search path trees observed from the previous exper-

iment should be mentioned. The first observation is that scores of neighbors are also

4

improving together as the search proceeds. That means there are more than one can-

didate tree in the neighborhood for the progression. So, we are interested in the effect

of choosing another candidate tree as the next pivot rather than improving with the

first tree. This question is given below more in detail. We are also interested in the

application of the correlation coefficient between topological accuracy and parsimony

score that had been discovered also from previous section. This observation is very

interesting in that it shows whether the goals of a phylogenetic heuristic (i.e., find-

ing the optimal-scoring tree) correspond to the actual goal of phylogenetics, which is

depicting accurate relationships between organisms (i.e., topological accuracy). How-

ever, we want to extend this notion of correlation for more practical use by raising

the following questions:

1. How much effort should be consumed in picking the next neighbor in a heuristic?

2. Is the performance of a search impacted if some of the neighbors are selected

randomly?

3. How does the correlation coefficient between MP scores and their topological

accuracy transform during the progression of a search?

This paper says the importance of background knowledge about the tree space

itself and search path trees in the space. We know there are various types of trees and

each tree has various types of features, but we vaguely know how they are distributed

and what it means. The distribution of rFH states that fitness and homoplasy of

all trees in the space are highly correlated. On the contrary, from the perspective

of rFD and rDH , correlatedness is not always given, only search path trees present

this correlation. The first benefit of this knowledge is to understand the behavior of

search path trees and the tree space. Local search heuristic has a direction that all

local search paths commonly imply. MP search takes the path enhancing topological

5

accuracy as well as reducing parsimony score. We also note that tree space consists of

trees that have parsimony scores highly correlated with homoplasy values. Another

contribution is the more practical one related to the questions we have raised. Search

heuristic can significantly reduce the effort for generating and estimating neighbors

using the observation that many neighbors are good. This is significant, because

actually it took a lot of time for search heuristic to select the next pivot. Also

we note that search heuristic can also be controlled by rFD, since this estimate is

consistently preserved throughout the search. In most cases of large-scale heuristic

search that are extremely time-consuming, sometimes experiments are halted without

any reasonable inference for the progression that the search made, because there has

been no stopping criteria. But rFD provides one way to estimate the status of the

search.

6

CHAPTER II

BACKGROUND

A. Maximum Parsimony

Maximum parsimony (MP) is an optimization problem for inferring the evolutionary

history of different taxa, in which it is assumed that each of the taxa in the input is

represented by a string over some alphabet. The symbols in the alphabet can represent

nucleotides (in which case, the input are DNA or RNA sequences), or amino-acids (in

which case the input are protein sequences), or may even include discrete characters

for morphological properties. It is also assumed that the strings are put into a multiple

alignment, so that they all have the same length. Maximum parsimony then seeks a

tree, along with inferred ancestral sequences, so as to minimize the total number of

evolutionary events (counting only point mutations).

Formally, given two sequences a and b of the same length, the Hamming distance

between them is defined as |{i : ai 6= bi}| and denoted as H(a, b). Let T be a tree

whose nodes are labeled by sequences of length k, and let H(e) denote the Hamming

distance of the sequences at each endpoint of edge e. The parsimony length of the

tree T is
∑

e∈E(T) H(e). From the given example in Fig. 1,
∑

e∈E(T) H(e) is 1, because

the edge (e 3) is the only place that has the evolutionary change (H(e 3) = 1). The

MP problem seeks the tree T with the minimum length; this is the same as seeking

the tree with the smallest number of point mutations for the data. MP is an NP-hard

problem like ML(Maximum Likelihood), another major optimization problem used to

reconstruct phylogeny reconstruction [11], [4], but the problem of assigning sequences

to internal nodes of a fixed leaf-labelled tree is polynomial [10].

7

Taxa DNA sequence
Taxa_A: TAGT...
Taxa_B: GAGT...
Taxa_C: ACCT...
Taxa_D: CATA...
Taxa_E: TTTA...

{T} {T} {T}

{T}

Taxa_A Taxa_B Taxa_C

{A} {A}

{T}

{T}

Taxa_D Taxa_E

parsimony
score = 1

{A}

e_2e_1

e_3

e_4

e_5 e_6

e_7

(a). DNA sequences (b). An evolutionary tree

Fig. 1. An evolutionary tree for five taxa (Taxa A, Taxa B, Taxa C, Taxa D, Taxa E)

is given, in which alphabet in {} represents DNA sequence assigned to taxa or

internal nodes at the site marked red and e i represents an edge ID that shows

an evolutionary relationships between two nodes. Parsimony score at this site

of this tree is 1, since one evolutionary change happens at edge (e 7). The

actual parsimony score should be obtained by summing up all sites.

B. Branch Swapping Operations

To find the tree T with the minimum length, an MP search navigates the exponentially-

sized tree space by moving from one point in tree space to another solution point.

Here, each new solution point is created by rearranging the branches of a tree in some

way. Below, we describe the three most popular branch-swapping operations with ex-

ample moves in Fig. 2, even though some recent methods have used ECR coupled

with TBR and see significant improvements both in speed and accuracy [13].

The nearest-neighbor interchange (NNI) operation swaps two adjacent branches

on the tree. In other words, it erases an interior edge on the tree, and the two branches

connected to it at each end (so that a total of five branches are erased). Afterwards,

four subtrees are disconnected from each other. Four subtrees can be hooked together

into a tree in three possible ways, where one of the trees is the original one. For a tree

8

T with n taxa, 2(n − 3) neighbors can be examined for each tree [1]. Local searches

based strictly on NNI operations perform poorly in comparison to their SPR and

TBR counterparts.

A subtree pruning and regrafting (SPR) move consists of removing an edge from

the tree with a subtree attached to it. The subtree is then reinserted into the re-

maining tree in all possible places, each of which inserts a node into a branch of the

remaining tree. Since there are n exterior edges and n−3 interior edges on an unrooted

binary tree, the total number of solutions in the neighborhood is 2(n − 3)(2n − 7).

In a tree-bisection and reconnection (TBR) move, an interior branch is broken,

and the two resulting fragments of the tree are considered as separate trees. All

possible connections are made between a branch of one and a branch of the other. If

there are n1 and n2 species in the subtrees, there will be (2n1 − 3)(2n2 − 3) trees in

a TBR neighborhood, or there are at most (2n − 3)(n − 3)2 trees as neighbors of a

tree that has n taxa in it.

C. Robinson-Foulds Distance

In our experiments, we compare trees found by our SLS algorithm to the best-known

trees for the data under consideration or the best tree up to the point of a search

progress. We use the Robinson-Foulds (RF) distance to measure the topological dis-

tance between trees. The RF distance between two trees is the number of bipartitions

that differ between them. It is useful to represent evolutionary trees in terms of bi-

partitions. Removing an edge e from a tree separates the leaves on one side from the

leaves on the other. The division of the leaves into two subsets is the bipartition Bi

associated with edge ei. Let Σ(T) be the set of bipartitions defined by all edges in

9

CB

A D

AB

C D

CB

A D

(a) Nearest Neighbor Interchange (NNI)

A F

B E
C

F D

A F

B E
C

F D

A F

B E

DFC

(b) Subtree pruning and regrafting (SPR)

A F

B E
C

F D

A F

B E
C

F D

A F

B E

CFD

(c) Tree bisection and Reconnection (TBR)

Fig. 2. Examples of rearrangements. Alphabet nodes could represent terminal nodes

or subtrees.

tree T . The RF distance between trees T1 and T2 is defined as

dRF (T1, T2) =
|Σ(T1) − Σ(T2)| + |Σ(T2) − Σ(T1)|

2

From the example in Fig. 3, the set Σ(T1) has {A, D | C, E, B} and {A, D, C | E, B},

and Σ(T2) has {A, C | E, D, B} and {A, C, E | D, B} as their components. So, both

|Σ(T1)−Σ(T2)| and |Σ(T2)−Σ(T1)| are 2, since they don’t share any bipartition. So

in this case, dRF (T1, T2) would be 2. In our experiment, we will plot the RF rate,

which is obtained by normalizing the RF distance by the number of internal edges

and multiplying by 100. (Assuming n is the number of taxa, there are n − 3 internal

edges in a binary tree). Thus, the RF rate varies between 0% and 100%.

10

T1

D A

C B

E

(a). Σ(T1) = {{A, D | C, E, B},{A, D, C | E, B}}

T2

C A

E B

D

(b). Σ(T2) = {{A, C | E, D, B},{A, C, E | D, B}}

Fig. 3. An example of RF distance calculation between T1 and T2. Each tree has

the same set of taxa (A,B,C,D,E) with a different evolutionary relationship.

They don’t share any bipartition, and this makes both |Σ(T1) − Σ(T2)| and

|Σ(T2) − Σ(T1)| as 2. So, dRF (T1, T2) = |Σ(T1)−Σ(T2)|+|Σ(T2)−Σ(T1)|
2

= |2|+|2|
2

= 2.

11

CHAPTER III

RELATED WORK

There have been similar studies identifying or classifying phylogenetic trees. Hendy

et al. [16] discussed two methods of defining classes of trees. They formally defined

a family of trees as “all trees within a fixed distance of a fixed tree T”, where the

distance between trees is measured by some tree-comparison metric. Hendy et al.

also used complete-linkage cluster analysis, based upon the partition metric, to define

clusters of trees. Maddison [22] explored another means of partitioning a collection

of trees, based upon the lengths of trees and the number of branch rearrangements

by which trees differ. He defines an island as a collection of trees less than or equal

to a specified length that are topologically similar to one another. An island is a

collection of interconnected short (parsimonious) trees that is separated from other

islands by longer trees. Two trees are considered connected if they differ by a single

rearrangement of branches.

Also, Stockham, Wang, and Warnow [30] present an alternative approach by

using clustering algorithms on the set of candidate trees. They propose bicriterion

problems, in particular using the concept of information loss, and new consensus trees

called characteristic trees that minimize the information loss. Hillis, Heath, and St.

John [18] explore the use of multidimensional scaling (MDS) of tree-to-tree pairwise

distances to visualize the relationships among sets of phylogenetic trees. They found

their technique to be useful for exploring “tree islands” (sets of topologically related

trees among larger sets of near-optimal trees), for comparing sets of trees obtained

from bootstrapping and Bayesian sampling, for comparing trees obtained from the

analysis of several different genes, and for comparing multiple Bayesian analysis.

Several researchers have explored the question of analyzing a collection of trees

12

found by a phylogenetic search. But, we note that the research presented in this paper

differs in four fundamental ways: (i) we are handling extremely large collections of

trees, (ii) we limit our concern only to search path trees, not every trees in the space,

(iii) but at the same time, we do not limit our search to the best-scoring trees, we

look at all trees on the path; and (iv) the motivation for our work is understanding

search behavior as a first step to design a better heuristics.

13

CHAPTER IV

EXPERIMENTAL METHODOLOGY

A. Biological Datasets

We used the following biological datasets as input to all our experiments.

1. A 44 taxa dataset (17,028 sites) of placental mammals that includes 19 nu-

clear and 3 mitochondrial gene sequences for 42 placental and 2 marsupial out-

groups [24]. In our experiments, both SLS and PAUP* established a best score

of 43,085.

2. A 60 taxa dataset (2,000 sites) of ensign wasps composed of three genes (28S ri-

bosomal RNA (rRNA), 16S rRNA, and cytochrome oxidase I (COI)) [5]. PAUP*

established a best score of 8,701 on this dataset.

3. A 174 taxa dataset (1,867 sites) of insects and their close relatives for the

nuclear small subunit ribosomal RNA (SSU rRNA) gene (18S). The sequences

were manually aligned according to the secondary structure of the molecule [14].

For this dataset, SLS established a best MP score of 7,440.

B. Starting Trees

A heuristic creates a random sequence addition (RSA) to create the initial starting

tree for the search. To construct a RSA tree, we randomize the ordering of the

sequences in the dataset. Afterwards, the first three taxa are used to create an

unrooted binary tree, T . The fourth taxon is added to the internal edge of T that

results in the best MP score. This process continues until all taxa have been added

to the tree. Starting trees can also be based on neighbor-joining (NJ) [28] or by

14

generating a starting tree randomly. In our experiment, all methods were provided

with the same set of starting trees to compare their search fairly. Both SLS and

PAUP* can be provided with user trees. However, Phylip doesn’t have this capability.

So, we created the random sequence addition starting trees in Phylip. We modified

Phylip so that it would output the starting tree that it generated. Afterwards, we

fed those trees to PAUP*, libcov, and SLS heuristics.

C. Implementation and Platform

Our SLS algorithm is implemented in C++. Our implementation took advantage of

the libcov [3] phylogenetic software package to handle reading data matrices. How-

ever, we wrote our own branch-swapping routines as well as developed an algorithm

for calculating the MP score more efficiently. We used the Hash-RF algorithm to

compute the RF distances between trees [31]. All experiments were run on an Intel

Pentium D platform with 3.0GHz dual-core processors and a total of 2GB of memory.

15

CHAPTER V

HEURISTIC MEASUREMENT

A. Introduction

Here we implement and verify our local search heuristic, SLS for further study. First,

we describe which data structure SLS uses in the implementation and how it works.

And then, in order to verify the heuristic precisely, we discuss performance in local

search heuristic and how it can be estimated more quantitatively. Also, we can take

another viewpoint about the performance of search heuristic topologically. A topo-

logical investigation identifies how the result trees of heuristics are related between

each other, since topological distance is calculated in pairs. By this, we want to make

sure that SLS reasonably performs both in score and in time, and results of SLS are

close to PAUP*. In addition, we also hope that these quantitative evaluation brings

us the conceptual guideline for selecting the appropriate methodology when we have

to have a search.

1. Simple Local Search

Simple Local Search is simple, but has a couple of effective techniques for improving

scoring and traversing. Those are introduced here and investigated in the Results

section piece by piece.

a. Data Structure

In SLS, data structure of a tree is composed of one root and a list of nodes connected

by their topology relationship with pointers such that the parent node points to two

descendents, which we call leftChild and rightChild. This is shown briefly at Fig. 4 (b)

16

{..A..} {..A..} {..G..}

{..A..}

{..G..}

Human Frog Lizard

(e_3)
(e_4)

(e_1) (e_2)

A

0

A

0

A

0

G

1

score:

sequence

leftChild rightChild

parent

G

0

parent

(a) a phylogenetic tree (b) a data representation in SLS

Fig. 4. A conceptual phylogenetic tree and the data structure representation the tree

in SLS.

as a data structure for a phylogenetic tree of Fig. 4 (a). Also, two descendent nodes

point to their parent node by the pointer called parent. When being initialized, a tree

has only root in the list of nodes, and nodes are added up according to their topological

relationship in the tree. Leaf nodes in the list have DNA sequence assigned to an

organism, and interior nodes have inferred sequences suggested from its descendents.

The tree has a parsimony score derived from all organisms the tree has.

b. Accelerating Score Calculation

To improve the performance of SLS, we have employed two speedup techniques sug-

gested by Ronquist [26].

The first technique is referred to as making shortcut. Normally, parsimony score

is calculated while going up from each terminal node to the root node of the tree.

However, while navigating rearrangement neighbors such as NNI, SPR or TBR neigh-

bors, all the nodes don’t always have to be updated. Usually, in the case of rooted

implementation, the actual difference of the current tree, Tnew, in score from the pre-

vious tree, Tsrc, starts from two nodes. The one is None, a node that has been taken

17

out and be attached to the new place as a result of a rearrangement, and the other

is Nsibling, a node that was a sibling node of None before clipping. In Fig. 5 (a), two

nodes that start the score update process are marked as red triangles. So, when we

try to attain the parsimony score of a tree after a rearrangement, the score should

be updated only from None and Nsibling up to the root of the tree. These paths from

None and Nsibling up to the root is called the shortcut. [26]

The second technique is bit-wise calculation. Parsimony score is defined as the

sum of the total number of changes of states between parents and their children

across all sites. Straightforwardly, this can be implemented using a sequence of set

operations such as ∩ and ∪. However, from the implementation perspective, those

operations are easily converted into similar operations in bit-wise environment such

as the bit-wise operation & or | with minor manipulation. This conversion will save

significant amount of calculation time, in that a bit-wise operation can handle large

units of data in each clock cycle [26]. A scoring algorithm applying two techniques

described above is given in the Algorithm 1 with comments on the line where speedups

are used.

18

c. Removing Duplicated Rearrangements

In the middle of a search, rearrangement can be defined by two nodes in a tree. Basi-

cally, a rearrangement derived from two nodes should be unique under the condition

that the tree is unrooted, and that there are only terminal nodes. However, from

the implementation standpoint, an unrooted tree is difficult to maintain. So, SLS

assumes that trees are rooted, and tries to match results of SLS these with unrooted

cases when they are analyzed. Under this situation, it is possible that some rear-

rangements in SLS are duplicated, which substantially impairs the performance of

search heuristic. SLS avoids duplicated rearrangements by filtering out moves that

will cause duplication. A rooted representation of the TBR rearrangement of the tree

of Fig. 2 (c) is given in Fig. 5 (a), and one of the moves that make the same topology

is given in Fig. 5 (b).

2. Measuring Performance

Performance studies evaluating the performance of MP heuristics have generally cen-

tered on two issues: speed and topological accuracy. Studies that explore speed have

examined how quickly each heuristic can solve MP (or reach the current best known

score) for specific real biological datasets (see [15, 27] for examples of such studies).

Generally, an MP heuristic consists of two main components, a scoring mechanism

and an algorithm for traversing neighbors using branch swaps, but with PAUP*, it is

difficult to separate the two components. So, the two blocks will be taken together

and evaluated. The scoring basic block of SLS employs two speed-up techniques;

bit-wise calculation and making a shortcut for score updating. This experiment will

present the impact of each technique on the overall performance of the heuristic.

Also, neighbor traversing block of SLS detects and removes duplicated cases of re-

19

Algorithm 1 parsimony score with speedups(Tnew , Tsrc, Nchild, Nsibling)

Require: Tnew, the tree acquired from Tsrc by one rearrangement started from two

node Nchild, Nsibling.

{score update only on the shortcut from Nchild up to the root}

Nscore = Nchild.

Nleft = Nscore → leftChild

Nright = Nscore → rightChild

Nscore → parsimony score = Nleft → parsimony score

Nscore → parsimony score += Nright → parsimony score

while Nscore != Tnew → root do

seq left = Nleft → sequence

seq right = Nright → sequence

seq intersection = seq right&seq left {bitwise calculation &}

if seq intersection.count() == 0 then

Nscore → sequence = seq left | seq right {bitwise calculation |}

Nscore → parsimony score += 1

else

Nscore → sequence = seq left&seq right. {bitwise calculation &}

end ifNscore = Nscore → parent

end while

{score update only on the shortcut from Nsibling up to the root}

Nscore = Nsibling

Nleft = Nscore → leftChild

Nright = Nscore → rightChild

Nscore → parsimony score = Nleft → parsimony score

Nscore → parsimony score += Nright → parsimony score

while Nscore != Tnew → root do

seq left = Nleft → sequence

seq right = Nright → sequence

seq intersection = seq right&seq left {bitwise calculation &}

if seq intersection.count() == 0 then

Nscore → sequence = seq left | seq right {bitwise calculation |}

Nscore → parsimony score += 1

else

Nscore → sequence = seq left&seq right. {bitwise calculation &}

end ifNscore = Nscore → parent

end while

20

A B

E F C

G D

A B

E F C

G D

B

D

A

G C

E F

(a) A rooted TBR

B

E F C

G D

A B

E F C

G D

A B

E F C

G D

A

(b) A duplicated TBR

Fig. 5. A rooted representation of a TBR rearrangement, where score update goes up

from two triangle nodes (a) and an example of TBR move that generates a

duplicated case (b)

arrangements so that neighbors are effectively traversed. Putting those basic blocks

together, local search heuristics try to reach the local optimum as soon as possible.

So, our study will also show the output of various local search heuristic with the time

consumed for the search and scores of the local optimum they have reached.

Assessing the topological accuracy of an inferred tree on a real dataset is difficult

to estimate because the true tree cannot be known precisely. Alternatively, simula-

tions are usually used for the estimations of topological accuracy. Simulation studies

have been highly influential, and have suggested that good MP heuristics can produce

reasonable estimates of trees, with acceptably low RF error rates (bounded by 10% or

so) with respect to the true tree (see [17]). However our calculation requires neither

21

the model nor simulated tree, since our calculation takes both resultant trees from

different heuristics, and checks how far they are topologically apart from each other.

3. SLS Competitors

We compare the performance of SLS to three different local search heuristics—

PAUP* [32], Phylip [9], and libcov [3]. Both Phylip and libcov are publicly available

open-source packages that can be used to infer MP trees. PAUP* is a very popu-

lar package for phylogenetic analysis. It is commercially-available for a modest fee.

Below, we show the main settings of the search parameters used in this study.

• PAUP*: We ran a fast heuristic search in PAUP* in which we save only

one tree. The starting tree was provided to PAUP* manually (it’s a random

sequence addition tree from Phylip) and PAUP* was run with three different

branch swapping algorithms. Hence, PAUP*(β) reflects PAUP* local search run

with a β neighborhood, where β ∈ {NNI, SPR, TBR}. We use the PAUP*4.0b10

commands for the PAUP(TBR) heuristic.

set criterion=parsimony increase=no maxtrees=1;

condense collapse=no;

hsearch start=current multrees=no swap=tbr;

The commands for PAUP(NNI) and PAUP(SPR) heuristics are defined simi-

larly.

• Phylip: We use the following Phylip ver 3.65 commands.

Search for best trees? Yes Search option? More thorough search

Number of trees to save? [1, 100, 10000] Randomize input order of

sequences? Yes

22

We varied the number of trees to save from 100 to 104, but there was no impact

on performance for the datasets used in this study.

• libcov: Besides Phylip, the other open-source software package we used was

libcov, which is a C++ library designed to manipulate protein structures, se-

quence alignments, and phylogenetic trees. For our purposes, we use the branch

swapping modules and parsimony scoring routine to compose a local search

heuristic, which follows the logic of our SLS implementation. As in SLS, there

are no search parameters to set explicitly.

B. Results

Basically, what a local search heuristic does is to retrieve a local optimum (or a good-

scoring tree) in a certain amount of time. This can be easily considered to be the

performance. But to be more precise, heuristic should be estimated by each basic

block. Here we cannot divide scoring block and neighborhood traversing block in

PAUP* execution, so performance will be monitored with two blocks together. The

first part of experiment evaluates time spent for traversing neighbors and scoring

them by different scoring techniques, and the second part by different heuristics. I

also present the overall performance of heuristics in hill-climbing performance section.

Topological approach for the performance evaluation presents heuristics’ identifica-

tions in an interesting way.

1. The Impact of Scoring Techniques

MP local search heuristics operate by successively exploring the neighborhood of a

current solution and moving to one of its neighbors based on their scores. So, scoring

takes part in all decision-making processes, and this basic block is one of the most

23

1 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

10
5

10
6

number of neighbors (%)

tim
e

in
 s

ec
 (

lo
g)

None
Prelim
Bitwise
Bitwise+Prelim

1 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

number of neighbors (%)

sp
ee

du
p

ov
er

 N
on

e
(lo

g)

Bitwise+Prelim
Bitwise
Prelim

(a) performance (b) speedup

Fig. 6. Comparison of performance between speedup techniques for scoring the same

number of neighbors on Dataset #3 (174 taxa). Differences are plotted in

log(time) scale, and speedup is measured over a straightforward algorithm that

has no speedup technique.

essential basic blocks that decide the performance of local search heuristic. Here, two

different kinds of scoring techniques are employed by SLS, shortcut and bit-wise [26].

Fig. 6 (a) shows the number of neighbors plotted on the x-axis and time taken for the

process on the y-axis. Time is estimated for processing the same number of neighbors

from the same starting tree of Dataset #3 by two different techniques separately and

together. This figure shows the time in log scale. According to the Fig. 6, both bit-

wise and shortcut techniques are much faster than a straightforward implementation.

In particular, the bit-wise scoring technique is a little more effective than shortcut.

However, it produces by far the best performance when they are combined. Fig. 6

(b) makes this point more clearly. The combined strategy increases the speed around

thousand times, while each individual technique is around ten times better than the

basic case.

24

0 10 20 30 40 50 60 70 80 90
10

−5

10
−3

10
−1

tree rearrangements

av
g.

 ti
m

e
(lo

g
se

c)

SLS(Inf+Unf)
GLS(Inf)
PAUP(Inf)

0 1000 2000 3000 4000 5000 6000 7000
10

−5

10
−3

10
−1

10
1

10
3

10
5

tree rearrangements

av
g.

 ti
m

e
(lo

g
se

c)

LIBCOV(Inf+Unf)

SLS(Inf+Unf)

SLS(Inf)

PAUP(Inf)

0 0.5 1 1.5 2 2.5
x 10

4

10
−5

10
−3

10
−1

10
1

10
3

10
5

tree rearrangements

av
g.

 ti
m

e
(lo

g
se

c)

LIBCOV(Inf+Unf)

SLS(Inf+Unf)

SLS(Inf)

PAUP(Inf)

(a) NNI neighbors (b) SPR neighbors (c) TBR neighbors

Fig. 7. Neighborhood performance on Dataset #1 (44 taxa). The number of infor-

mative (Inf) and uninformative sites (Unf) is 8,004 and 9,024, respectively.

Inf + Unf denotes the performance of a method based on scoring the entire

sequence. Performance based on scoring only the informative sites is denoted

Inf . We note that libcov is unable to generate an NNI neighborhood.

2. Scoring and Neighborhood Performance

This section attempts to state how much time each heuristic spend for scoring and

traversing the same number of neighbors. Figs. 7, 8, 9 shows the time for retrieving all

neighbors of a particular tree for Dataset #1, #2, #3, respectively. As in the previous

section, x-axis represents the number of neighbors retrieved, and y-axis represents the

time for retrieving that number of trees in log scale. Since the inside of PAUP* is

hidden, PAUP*’s time is taken only at the starting and the ending point, while other

heuristics are measured at intermediate points. In SPR, SLS retrieves the exact

number of neighbors to PAUP* by taking more time. However, libcov takes much

more time. This trend gets more clear in the TBR case in that libcov take about ten

thousand times longer than SLS for the same number of neighbors.

3. Hill-climbing Performance

Simply put, an MP heuristic is a search heuristic looking for the tree that has a lower

score. This “hill-climbing” process is controlled by a search strategy with two basic

25

0 20 40 60 80 100 120
10

−5

10
−3

10
−1

tree rearrangements

av
g.

 ti
m

e
(lo

g
se

c)

SLS(Inf+Unf)
SLS(Inf)
PAUP(Inf)

0 2000 4000 6000 8000 10000 12000 14000

10
−5

10
−3

10
−1

10
1

10
3

tree rearrangements

av
g.

 ti
m

e
(lo

g
se

c)

LIBCOV(Inf+Unf)

SLS(Inf+Unf)

SLS(Inf)

PAUP(Inf)

0 1 2 3 4 5 6
x 10

4

10
−5

10
−3

10
−1

10
1

10
3

tree rearrangements

av
g.

 ti
m

e
in

 s
ec

 (
lo

g)

LIBCOV(Inf+Unf)

SLS(Inf+Unf)

SLS(Inf)

PAUP(Inf)

(a) NNI neighbors (b) SPR neighbors (c) TBR neighbors

Fig. 8. Neighborhood performance on Dataset #2 (60 taxa). The number of infor-

mative (Inf) and uninformative sites (Unf) is 946 and 1,054, respectively.

Inf + Unf denotes the performance of a method based on scoring the entire

sequence. Performance based on scoring only the informative sites is denoted

Inf . We note that libcov is unable to generate an NNI neighborhood.

blocks mentioned above. SLS has the first-improvement and the best-improvement

search strategy. The best-improvement strategy visits all neighbors and moves on to

the best neighbors among them, while the first-improvement strategy moves to the

first occurrence of a better tree than the current one. We present only the result of

the first-improvement search strategy, because the first-improvement always outper-

forms the best-improvement. Fig. 10 (a) shows time taken by search on Dataset #1

on the x-axis and the final score from each MP heuristic on the y-axis, and the right

figure presents the same result in terms of the number of rearrangements taken dur-

ing search process. More specifically, NNI results from the heuristic SLS and PAUP*

are separated from others, but they are closer to each other than others from other

rearrangements. This is obvious in that the NNI search space is smaller than other

search spaces. SPR and TBR results are mingled together. When considering the

time criteria, PAUP* always outperforms SLS. However in terms of the number of

rearrangements in Fig. 10 (b), PAUP* is not always better than SLS. This implies

that if we have better implementation about our idea in SLS, we can improve the

26

0 50 100 150 200 250 300 350
10

−5

10
−3

10
−1

tree rearrangements

av
g.

 ti
m

e
(lo

g
se

c)

SLS(Inf+Unf)

SLS(Inf)

PAUP(Inf)

0 2 4 6 8 10 12
x 10

4

10
−5

10
−3

10
−1

10
1

tree rearrangements

av
g.

 ti
m

e
(lo

g
se

c)

SLS(Inf+Unf)

SLS(Inf)

PAUP(Inf)

0 1 2 3 4 5 6 7
x 10

5

10
−5

10
−3

10
−1

10
1

tree rearrangements

av
g.

 ti
m

e
(lo

g
se

c)

SLS(Inf+Unf)

SLS(Inf)

PAUP(Inf)

(a) NNI neighbors (b) SPR neighbors (c) TBR neighbors

Fig. 9. Neighborhood performance on Dataset #3 (174 taxa). The number of in-

formative (Inf) and uninformative sites (Unf) is 912 and 955, respectively.

Inf + Unf denotes the performance of a method based on scoring the entire

sequence. Performance based on scoring only the informative sites is denoted

Inf . We note that libcov is unable to generate an NNI neighborhood.

performance of SLS more closely to or even better than that of PAUP*. This trend

is true for both Dataset #2 and #3, and we can check it in Figs. 11 and 12. The

performance of Phylip is consistently lower not only in time but also in the number of

rearrangements. Given that libcov and Phylip are among the few open-source imple-

mentations of MP heuristic, SLS is the only open-source implementation comparable

to PAUP*, a widely used commercial program for MP.

4. Topological Performance

We use the Robinson-Foulds (RF) distance to measure the topological distance be-

tween trees. Fig. 13 shows resultant trees from a different viewpoint, RF distance

between two trees. Each heuristic has five runs, and each run begins from the same

starting tree across heuristics. The values of RF distances are averaged over five runs

and displayed in a heatmap. This figure illustrates the kind of relationship resultant

trees from different heuristic have in terms of topological manner. SPR and TBR

results whether they’re from SLS or PAUP* are clearly grouped together in topo-

27

10
−1

10
0

10
1

10
2

10
310

−2

10
−1

10
0

10
1

avg. seconds (log)

%
 a

bo
ve

 b
es

t s
co

re
 (

lo
g)

SLS(SPR)

SLS(TBR)

SLS(NNI)

PAUP(SPR)

PAUP(TBR)

PAUP(NNI)
PHYLIP

10
2

10
3

10
4

10
5

10
610

−2

10
−1

10
0

10
1

avg. rearrangements

%
 a

bo
ve

 b
es

t s
co

re
 (

lo
g)

SLS(SPR)

SLS(TBR)

SLS(NNI)

PAUP(SPR)

PAUP(TBR)

PAUP(NNI)

PHYLIP

(a) performance in time (b) performance in rearrangements

Fig. 10. Hill-climbing performance of SLS, PAUP*, and Phylip on Dataset #1 (44

taxa). PAUP* established the best score of 43,085 for this dataset.

logical distance. The distance between SPR and TBR is similar to distance within

SPR neighbors themselves or within TBR neighbors themselves. On the contrary,

NNI rearrangements between themselves are not as close as SPR or TBR rearrange-

ments. This means that the NNI search does not guarantee sufficient diversity to

bring different starting points to a close area. The Phylip results are highly closer

between themselves, but they are far away from others. In conclusion, the Phylip

search operates uniquely, NNI does not navigate the space sufficiently, and SPR and

TBR results from PAUP* and SLS are very similar to each other.

C. Conclusions

Regarding scoring, it is clear that speedup techniques such as bit-wise and shortcut

play an important role in improving heuristic performance. Performance is maximized

when two techniques are applied together as is shown in Fig. 6. The shortcut reduces

the number of nodes to be updated, and the bitwise score calculation does not interfere

or affect with the shortcut, since they work in different hierarchies. For this reason,

28

10
−2

10
−1

10
0

10
1

10
210

−2

10
−1

10
0

10
1

avg. seconds (log)

%
 a

bo
ve

 b
es

t s
co

re
 (

lo
g)

SLS(SPR)

SLS(TBR)

SLS(NNI)

PAUP(SPR)

PAUP(TBR)

PAUP(NNI)

PHYLIP

10
2

10
3

10
4

10
5

10
610

−2

10
−1

10
0

10
1

avg. rearrangements

%
 a

bo
ve

 b
es

t s
co

re
 (

lo
g)

SLS(SPR)

SLS(TBR)

SLS(NNI)

PAUP(SPR)

PAUP(TBR)

PAUP(NNI)
PHYLIP

(a) performance in time (b) performance in rearrangements

Fig. 11. Hill-climbing performance of SLS, PAUP*, and Phylip on Dataset #2 (60

taxa). PAUP* established the best score of 8,701 for this dataset.

the effect is multiplied when they are together. When it comes to a search inside

tree space, two decisions should be made, which rearrangement scheme and which

heuristic are to be used. When it comes to the selection of a rearrangement scheme,

each rearrangement has a unique score and topological relationship. So we have to

consider these factors in order to meet our purpose most effectively, when we try

to employ a rearrangement scheme for navigating our dataset. Normally, NNI is

fast but not precise in finding good trees, while SPR and TBR results are grouped

together, and both are good. Another important question for an efficient search is

which heuristic we have to use. In order to get the correct answer, heuristic should

be quantified or measured by the unit of building block. In this study, we measure

the time for retrieving their neighbors and scoring them together, because they are

the most essential steps in MP heuristic. In our experiment, difference of this value

between PAUP* and SLS can partly account for the gap of the overall performance

between them. Other than this difference, the direction of searching can be said to

be similar in a topological sense in that RF distance between PAUP* and SLS is so

29

10
−2

10
0

10
2

10
410

−2

10
−1

10
0

10
1

10
2

avg. seconds (log)

%
 a

bo
ve

 b
es

t s
co

re
 (

lo
g)

SLS(SPR)

SLS(TBR)

SLS(NNI)

PAUP(SPR)
PAUP(TBR)

PAUP(NNI)
PHYLIP

10
2

10
3

10
4

10
5

10
610

−2

10
−1

10
0

10
1

avg. rearrangements

%
 a

bo
ve

 b
es

t s
co

re
 (

lo
g)

SLS(SPR)

SLS(TBR)

SLS(NNI)

PAUP(SPR)

PAUP(TBR)

PAUP(NNI)
PHYLIP

(a) performance in time (b) performance in rearrangements

Fig. 12. Hill-climbing performance of SLS, PAUP*, and Phylip on Dataset #3 (174

taxa). SLS established the best score of 7,442 for this dataset.

close. So, based on the limitation that we cannot look inside of PAUP*, SLS is an

efficient and reasonable heuristic for MP problems, especially for trying to capture

events inside search processes, even though there still is a room for improvements.

All later experiments will therefore use SLS.

30

P
H

Y
LI

P

P
A

U
P

(N
N

I)

S
LS

(N
N

I)

P
A

U
P

(S
P

R
)

P
A

U
P

(T
B

R
)

S
LS

(S
P

R
)

S
LS

(T
B

R
)

B
E

S
T

T

R
E

E
S

0

10

20

30

40

50

60

70

80

90

PHYLIP

PAUP(NNI)

SLS(NNI)

PAUP(SPR)

PAUP(TBR)

SLS(SPR)

SLS(TBR)

avg.
RF
rate
(%)

B
E

S
T

T

R
E

E
S

P
H

Y
L

IP

P
A

U
P

(N
N

I)

S
L

S
(N

N
I)

P
A

U
P

(S
P

R
)

P
A

U
P

(T
B

R
)

S
L

S
(S

P
R

)

S
L

S
(T

B
R

)

0

10

20

30

40

50

60

70

80

90

PHYLIP

PAUP(NNI)

SLS(NNI)

PAUP(SPR)

PAUP(TBR)

SLS(SPR)

SLS(TBR)

avg.
RF
rate
(%)

(a) Dataset #1 (44 taxa) (b) Dataset #3 (174 taxa)

Fig. 13. Heatmaps depicting the topological performance of the heuristics on our small-

est (Dataset #1) and largest (Dataset #3) datasets. For each heuristic, we

measure its RF rate to the best-known tree. Moreover, each heatmap shows

the average RF rate between the trees found by every pair of heuristics. Here,

the color scale ranges from dark (closely related trees) to light (distantly re-

lated trees).

31

CHAPTER VI

CORRELATION INSIDE THE LOCAL SEARCH SPACE

A. Introduction

Based on the information that SLS has captured during the local search procedures,

we analyze the characteristics of the search path trees to distinguish them from others

in the space. In order to describe the status of search path trees formally, we define

search path tree and correlation measures.

1. Search Path Trees

We think of search path trees in the search history as promising trees that the search

heuristic should focus on. The search history of a phylogenetic heuristic is the set

of neighbors selected along the search path to the best tree. Fig. 14 conceptually

describes how SLS search progresses. Let β represent the type of move used in a

neighborhood. Hence, β ∈ {NNI, SPR, TBR}. Pβ denotes the search path trees

consisting of selecting the first-improving neighbor from a β neighborhood. The

sequence of trees encountered along the search path using a β operation is defined as

follows.

Pβ = (t1, . . . , tm).

For a path Pβ, the search examines tree ti before tree tj, where 0 ≤ i < j ≤ m.

There are m trees on the search path, Pβ, where t1 represents the initial (or starting)

tree, and tm is the final tree (e.g., local optimum). Thus, Pβ represents the historical

record of the phylogenetic search, and they will be usually estimated in experiments.

Since TBR searches cover a superset of trees from both NNI and SPR [12], we take

TBR neighbors as β.

32

...
Starting
 tree

...

Neighbors

...
...

Local
optima

Search Progress

t1

t2

t3 tm

Fig. 14. A depiction of the trees (t1, t2, . . . , tm) visited by the SLS algorithm on its

way to reaching a final tree (e.g., local optimum). t1 represents the starting

tree and tm is final tree (local optimum) found. Here, each tree ti along the

search path is the neighbor selected from tree ti−1’s neighborhood.

2. Goodness of Fit

A character is any observable part, or attribute, of an organism. In a molecular

sequence, the total number of characters is equal to the sequence length. The basic

premise of parsimony is that taxa which share a common feature (or character) do

so because they inherited that feature from a common ancestor. When conflicts with

that assumption occur, then homoplasy occurs. Homoplasies are regarded as extra

steps or hypotheses that are required to explain the data.

Three parameters are used to help define indices for quantifying the amount of

homoplasy contained in a tree.

• s : length (number of steps) required by the character on the tree being evalu-

ated;

• m : minimum amount of change that the character may show on any conceivable

tree; and

• g : maximum possible amount of change that a character could possibly require

on any conceivable tree (i.e., the length of the character on a star topology).

The consistency index [21] for a single character, c, equals m/s. Thus, if a particular

33

tree explains the data as well as any tree possibly could, c = 1. The retention index,

r, is defined as (g − s)/(g − m). Thus, when a characters fits the data as poorly as

possible, its retention index will be 0. Hence, the retention index [6] measures the

amount of homoplasy which is locally informative in a dataset. Later, Farris proposed

new indices, rescaled consistency index [7]. Farris recommends using r as a factor for

scaling c between 0 and 1, defining the rescaled consistency index as the product of

r and c (=rc). So we measure the amount of homoplasy with rescaled consistency

index in our experiments.

Generally, there are two sources of homoplasy. Mis-coding of characters or mis-

takes in making a homoplasy statement can raise this problem, or parallelisms and

reversals actually are real phenomena in nature. Then, what does this concept have

to do with the parsimony score which is our main criteria for search? There have

been many studies of the relationship between homoplasy and parsimony score. This

controversy can be summaried into one question ‘Must homoplasy be rare for parsi-

mony to be justified?’ As the answer for this question, Steve Farris said “No” [20],

Joe Felsenstein said “Yes” [8], and Elliott Sober said “Maybe” [29]. Then, let’s see

how our dataset behaves as MP score decreases in terms of the goodness of fit, and

determine how parsimony score and the fit of data relate to each other.

3. Measuring the Correlation between Trees

We try to determine the characteristics of space and trees using correlation measures.

We compute the correlation between tree characteristics based on a measure proposed

by Jones and Forrest for genetic algorithms [19]. Their measure computed the corre-

lation between the fitness and Hamming distance between n individual solutions in a

population. We extend their measure for use in a phylogenetic search. In particular,

consider a set X = {x1, x2, . . . , xn} and a corresponding set Y = {y1, y2, . . . , yn} of

34

n solutions (or trees). We compute the correlation coefficient, rXY , between the two

sets X and Y as

rXY =
cXY

σXσY

, where

cXY =
1

n

n∑

i=1

(xi − x̄)(yi − ȳ)

is the covariance of X and Y , and σX , σY , x̄, and ȳ are the standard deviations and

means of X and Y , respectively.

The set of tree characteristics of interest that make up the sets X and Y are the

parsimony score, the Robinson-Foulds (RF) distance, and the amount of homoplasy

contained in a tree. Since there are three possible combinations of these character-

istics, we study the performance of a phylogenetic search using the following three

correlation coefficients:

• rFD: fitness distance (FD) correlation coefficient

• rHD: homoplasy distance (HD) correlation coefficient

• rFH : fitness homoplasy (FH) correlation coefficient

F = {f1, f2, . . . , fn} represents the fitness (parsimony scores) of the trees. D =

{d1, d2, . . . , dn} is the set of n RF distances to the nearest best-known tree. Finally,

H = {h1, h2, . . . , hn} is the amount of homoplasy present in the trees. (Of the three

correlation equations, we note that the fitness distance correlation is the most closely

related to the measure of Jones and Forrest.) A strongly positive (or negative) r

coefficient, −1 ≤ r ≤ 1, indicates that the solution quality gives good guidance

when searching for global optima. r values close to zero indicate no clear correlation

between the two sets. Hence, the interpretation is that the smaller the deviation,

that is, the better the solution, the closer we get to the global optima, on average.

35

In calculting distance value using RF distance, we compare trees found by our

SLS algorithm to the best-known trees for the data under consideration. However,

the best-known trees are not always available. So, in the next experiment, we will

extend the concept of rFD in order to address more practical problems.

B. Results

Our main objective here is to study the behavior of local search heuristics such as

SLS for maximum parsimony. Of particular interest to us are: (i) the correlation

between path tree scores and their RF distance from the best-known tree; (ii) the fit

of the data to better-scoring trees; (iii) the correlation between path tree RF distances

and their homoplasy estimates; and (iv) the distribution of search tree scores within

the neighborhood of the current solution on the path. These questions are all about

search path trees or the landscape around them.

1. Fitness-Distance

Figures 15, 16 and 17 show the correlation between MP scores and their topological

distance from the best-known tree for Datasets #1,#2 and #3, respectively. The

exact rFD values for all cases are given in Table I. Each data point in Figs. 15, 16

and 17 represents the MP score (in terms of the percentage above the best-known

score) in x-axis and its RF distance from the best-known tree for that dataset in

y-axis. Lower values denote lower parsimony scores and better topological accuracy.

Figures 15 (a), 16 (a) and 17 (a) clearly show that the MP score and RF distances

from the best tree are highly correlated. In other words, the results imply that as the

tree solutions are getting closer to the optimal tree, the topological accuracy of the

trees improve. Figures 15 (b), 16 (b) and 17 (b) provide a closer look at the level of

36

Table I. The fitness distance correlation coefficients (rFD) for all three datasets.

Fitness distance (rFD)

PNNI PSPR PTBR PRAND

Dataset #1 (44 taxa) 0.84 0.81 0.89 0.41

Dataset #2 (60 taxa) 0.82 0.92 0.95 0.28

Dataset #3 (174 taxa) 0.94 0.96 0.98 0.21

accuracy needed in the MP scores to reach the desired level of topological accuracy.

However, Figure 15 (c), 16 (c) and Figure 17 (c) provide evidence that for a random

search there is very little correlation between MP scores and distance.

2. Fitness-Homoplasy

Fig. 18 shows the correlation between MP scores and their RC values for Dataset #3.

The exact rFH values are given in Table II. Search path trees are plotted by their

homoplasy values quantified by rescaled consistency index value in x-axis and MP

scores normalized with the best score in y-axis. Since SLS performs a hill-climbing

search, the actual search progresses from right to left in the direction that MP score

is decreased. But from the Table II and figure 18, we note that a random walk also

has a high correlation coefficient value (-0.97). This correlation gives us no significant

information, because our purpose in here was to distinguish search path trees from

others using this correlation. In other words, rFH cannot identify search path trees,

since the measure shows a consistent trend across all trees even in random trees in

the space.

37

5 10 15 20 25 30 35
0

1

2

3

4

5

%
 a

bo
ve

 b
es

t s
co

re

RF rate(%) to best tree
5 10 15 20 25 30

10
−3

10
−2

10
−1

10
0

%
 a

bo
ve

 b
es

t s
co

re
 (

lo
g)

RF rate(%) to best tree
45 46 47 48 49 50 51

22

24

26

28

30

32

34

%
 a

bo
ve

 b
es

t s
co

re

RF rate(%) to best tree

(a) search path trees (b) trees within 1% of best score (c) random trees

Fig. 15. Fitness distance correlation for Dataset#1 (44 taxa). (a) The fitness (MP

score) and RF rate relative to the best-known tree of trees selected along the

path to the local optimum under a TBR neighborhood. Here, r = 0.89, where

r is the correlation coefficient value. (b) Trees along the path to the local

optimal solution within 1% of the best score. (c) 10,000 random trees with a

r of 0.48. For better display, we added a minimal amount of randomness to

x-axis so that all points wouldn’t be aligned into one line.

3. Homoplasy-Distance

Fig. 19 displays the correlation between homoplasy values and distance values of

search path trees for Dataset #3, and Table III shows the actual rHD values for the

dataset. In the figure, the x-axis represents the RF rate values of search path trees

from five search runs of search, and the y-axis represents the RC values from the same

set of trees. From the previous observation that MP scores of search path trees are

highly correlated with RF rate values, we can say search progresses from right to left

in this figure. The result that RC and RF are highly correlated is predictable, since

the behavior of RC values always match to that of MP scores. And of course, random

trees shown in Fig. 19 have little correlation.

38

10 15 20 25 30 35 40 45
0

2

4

6

8

10

%
 a

bo
ve

 b
es

t s
co

re

RF rate(%) to best tree
10 15 20 25 30

10
−2

10
−1

10
0

%
 a

bo
ve

 b
es

t s
co

re
 (

lo
g)

RF rate(%) to best tree
47 47.5 48 48.5 49 49.5 50 50.5

22

23

24

25

26

27

28

29

30

%
 a

bo
ve

 b
es

t s
co

re

RF rate(%) to best tree

(a) search path trees (b) trees within 1% of best score (c) random trees

Fig. 16. Fitness distance correlation for Dataset #2 (60 taxa). (a) The fitness (MP

score) and RF rate relative to the best-known tree of trees selected along the

path to the local optimum under a SPR neighborhood. Here, r = 0.93, where

r is the correlation coefficient value. (b) Trees along the path to the local

optimal solution within 1% of the best score. (c) 10,000 random trees with a

r of 0.28. For better display, we added a minimal amount of randomness to

x-axis so that all points wouldn’t be aligned into one line.

4. Neighborhood Fitness

Figure 20 shows the distribution of MP scores within the TBR neighborhood of the

current solution. For example, the bottom histogram represents the TBR neighbor-

hood of each of the five starting trees (0% search progress). The next interval (20%

search progress), shows that the TBR neighborhood at this point has improved dra-

matically over the starting tree neighborhoods. As the search progresses, not only

is the current MP score improved, but the tree scores in the surrounding neighbor-

hood are improved as well. Furthermore, the range of the neighboring MP scores are

becoming smaller. Our SLS approach uses the first-improvement strategy to select

a neighbor. Thus the algorithm does not waste time searching for the best scoring

tree in the entire neighborhood (best-improvement strategy). In fact, our runs with

the best-improvement strategy produced worse scores and took much more time to

terminate at a local optima (not shown). Overall, this result shows that the greedy

39

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

%
 a

bo
ve

 b
es

t s
co

re

RF rate(%) to best tree
0 5 10 15 20

10
−2

10
−1

10
0

%
 a

bo
ve

 b
es

t s
co

re
 (

lo
g)

RF rate(%) to best tree
47 47.5 48 48.5 49 49.5 50 50.5

22

23

24

25

26

27

28

29

30

%
 a

bo
ve

 b
es

t s
co

re

RF rate(%) to best tree

(a) search path trees (b) trees within 1% of best score (c) random trees

Fig. 17. Fitness distance correlation for Dataset #3 (174 taxa). (a) The fitness (MP

score) and RF rate relative to the best-known tree of trees selected along the

path to the local optimum under a SPR neighborhood. Here, r = 0.96, where

r is the correlation coefficient value. (b) Trees along the path to the local

optimal solution within 1% of the best score. (c) 10,000 random trees with a

r of 0.21. For better display, we added a minimal amount of randomness to

x-axis so that all points wouldn’t be aligned into one line.

method using first-improvement is reasonable compared with the best improvement

method since the score of the trees in the neighborhood is improved along with the

score of the current tree.

C. Conclusions

In order to understand the behavior of local search heuristics, we investigate into

the search path tree of SLS using moderately-sized datasets. For our experiments,

Table C shows the number of trees on the search path or the length of search path

for the various neighborhoods using our SLS algorithm.

Our experiments with SLS path trees show that there is a strong positive corre-

lation between MP scores and topological distance. And we show that better-scoring

trees fit the data better with increased RC values. At first, those two observations

look similar in meaning. However, interestingly, what they imply is totally different.

40

Table II. The fitness homoplasy correlation coefficients (rFH) for all three datasets.

Fitness homoplasy (rFH)

PNNI PSPR PTBR PRAND

Dataset #1 (44 taxa) -1.00 -0.98 -1.00 -1.00

Dataset #2 (60 taxa) -0.99 -1.00 -1.00 -0.98

Dataset #3 (174 taxa) -1.00 -1.00 -1.00 -0.97

Table III. The homoplasy distance correlation coefficients (rHD) for all three datasets.

Homoplasy distance (rHD)

PNNI PSPR PTBR PRAND

Dataset #1 (44 taxa) -0.84 -0.81 -0.90 -0.42

Dataset #2 (60 taxa) -0.82 -0.92 -0.95 -0.28

Dataset #3 (174 taxa) -0.94 -0.97 -0.98 -0.20

The measure rFD,rHD shows high correlation only with search path trees, while rFH

is always correlated for all trees in the space. Given that our purpose was to separate

search path trees from other trees, only rFD and rHD are meaningful to us. The strong

correlation shown at rFD is between the MP scores and the RF distances of search

path trees. Calculating RF rate requires the best tree for the calculation. Therefore,

RF rate quantifies how close the current tree might be located from the best tree. In

the sense that a lower parsimony score is preferred in the local search, this orientation

of RF matches the purpose of the search, and this correspondence of the direction of

calculation makes them work together with correlated. However, rFH deals with a

little different situation. Unlike the RF calculation, MP and RC are calculated from

41

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22
0

5

10

15

20

25

%
 a

bo
ve

 b
es

t s
co

re

Rescaled Consistency Index
0.008 0.01 0.012 0.014 0.016 0.018 0.02

115

120

125

130

%
 a

bo
ve

 b
es

t s
co

re

Rescaled Consistency Index

(a) search path trees (b) random trees

Fig. 18. Fitness homoplasy correlation for Dataset#3 (174 taxa). (a) The fitness (MP

score) and RF rate relative to the best-known tree of trees selected along the

path to the local optimum under a TBR neighborhood. Here, rFH = −1.00.

(b) 10,000 random trees with a rFH = −0.97.

what is available, not using the best tree in their calculation. In particular, both

calculations commonly use the topology of tree as a tool for quantification. So, the

values of MP and RC have to be related with each other, whether or not the tree under

consideration is on the path. In addition, we investigate the neighborhood of search

path trees. Since our local search heuristic is greedy, it is natural that parsimony

scores improve as the search progresses toward a local optima. More enlightening,

however, is that neighborhood scores surrounding the current best tree improve as

well. As much as it helps us to understand about the first-improvement strategy as

mentioned above, it will lead to more valuable application in the next chapter.

42

0 5 10 15 20 25 30 35 40
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

RF rate (%) to best tree

R
es

ca
le

d
C

on
si

st
en

cy
 In

de
x

48.8 49 49.2 49.4 49.6 49.8 50 50.2
0.008

0.01

0.012

0.014

0.016

0.018

0.02

RF rate (%) to best tree

R
es

ca
le

d
C

on
si

st
en

cy
 In

de
x

(a) search path trees (b) random trees

Fig. 19. Homoplasy distance correlation for Dataset #3 (174 taxa). (a) The fitness

(MP score) and RF rate relative to the best-known tree of trees selected

along the path to the local optimum under a TBR neighborhood. Here,

rHD = −0.98. (b) 10,000 random trees with rHD = −0.20. For better display,

we added a little bit of randomness to x-axis so that all points wouldn’t be

aligned into one line.

Table IV. Total number of search path trees for the datasets under study.

Number of search path trees

|PNNI | |PSPR| |PTBR| |PRAND|

Dataset #1 (44 taxa) 166 224 265 10,000

Dataset #2 (60 taxa) 276 778 792 10,000

Dataset #3 (174 taxa) 748 1,698 1,870 10,000

43

0 5 10 15 20 25 30
0

1

2
x 10

4

% above best score

0

1

2
x 10

4

0

1

2
x 10

4

0

1

2
x 10

4

0

1

2
x 10

4

0

1

2
x 10

4

fr
eq

ue
nc

y

0 %

20 %

40 %

60 %

80 %

100%

Fig. 20. Fitness (MP score) distribution of SPR neighborhoods on Dataset #3 (174

taxa). Each histogram depicts the MP scores of all neighbors at 20% inter-

vals of the search for best trees. For each interval, all tree scores from the

neighborhood of the current tree is shown for all five runs. We could not take

TBR, because TBR neighbors for Dataset #3 are so numerous that current

data processing technique cannot handle them directly.

44

CHAPTER VII

APPLYING THE CORRELATION TO THE SPACE

A. Introduction

From the beginning, we have been interested in developing a new technique that

exploits search path trees effectively. For that, we have investigated the behavior

of path trees from various directions so as to distinguish them from normal trees

in the space. Now, it is the time to apply the knowledge in order to answer the

second question, ‘How can we make use of this knowledge to improve a heuristic?’

We demonstrate how the knowledge about the space help developing a new heuristic.

1. Random Neighbor Selection

Local search heuristics move through tree space by selecting a single solution from

a set of neighboring trees. Since most local search heuristics operate in a greedy

fashion, each new tree selected on the path is always better than the previous one.

However, we have no idea about how critical it is for a local search that a neighbor be

greedily selected. So in our experiments, we introduce some amount of randomness

to the search. At a given rate of time during a search, SLS search selects its next

tree randomly, and reports what score the search finally has reached. Clearly, this

application is related to the previous observation that the score of neighborhood is

improving together during the progression of search. This observation tells us that

there is not only the neighbor that guides the search to better score. So, we want to

see how picking another neighbor affects the search performance.

45

2. Robinson-Foulds Distance with the Best Tree in the Search

As described earlier, RF(Robinson-Foulds) distance defines the distance between two

trees. The initial purpose of this calculation was to check the distance of the current

tree from the true tree. Given that it is impossible to know the true evolutionary

history for a set of organisms, a reasonable substitute is to use the best-scoring tree

found by any phylogenetic method as the best-tree-overall. The other possible target

tree is the best-tree-so-far in that a phylogenetic heuristic may not always have access

to the best overall tree—especially if the dataset of interest has been newly created.

However, every heuristic will have access to its best-tree-so-far, which changes as the

phylogenetic search makes improving moves based on fitness in its attempt to find

the optimally-scoring tree. Thus, our study examines the behavior of our topological

measure on biological datasets using both the best-tree-so-far as well as the best-tree-

overall as target trees.

B. Results

1. Random Neighbor Selection

The previous studies demonstrated that as SLS improves upon the tree ti, its neigh-

bors improve as well. Local search heuristic invests significant amount of time for

selecting a good neighbor. We were curious as to how sensitive the search is regard-

ing selecting a neighbor. That is, what is the impact of randomly selecting a neighbor

from NTBR(ti)? Such a strategy would allow the search to potentially diversify its

population of neighboring solutions, which in turn, could lead to better (or worse)

tree scores.

Fig. 21 shows the performance of the SLS algorithm when a random neighbor

is selected r% of the time. Here, r = 0% represents our standard first improvement

46

algorithm, each tree on the search path is based on the first neighbor that improves

upon the current score. For r ≥ 1, there is an r% chance that the next tree (ti+1)

on the search path is selected randomly from Nβ(ti). (In case a local optimum is not

reached, our r experiments used a search path limit of 1,000 trees so that the search

would terminate. However, all of our experiments terminated on a local optimum.)

In Fig. 21, the SLS runs with 1 ≤ r ≤ 5%, result in median values that are

similar to SLS runs with no randomly selected neighbors (r = 0%). As r approaches

10%, the search cannot recover as the scores it finds are much further away from the

best score. Similar trends occur in Datasets #2 and #3. Fig. 22 provides a closer

look at the random neighbor selection experiments for 0 ≤ r ≤ 5. Our experiments

show that r constrained to this range allows the search to make significant progress

toward the best-scoring trees through tree space. We note that the best score for

Dataset #2 was established by SLS with r = 5%.

Finally, Fig. 23 takes a look at the increased (or decreased) time in log that

is required to terminate by our SLS heuristic when random neighbors are selected.

When r ≤ 5, random neighbor selection has a negative impact on performance in

terms of running time. That is, the search needs more time to recover from the

random selection. At around r = 6%, the search time is significantly decreased for all

datasets. Since random selection is a very inexpensive operation, the search completes

very quickly. For example, our largest dataset, r = 3, requires approximately 2.5

hours. However, r = 10, results in a search that finishes in 17 minutes.

2. Robinson-Foulds Distance with the Best Tree in the Search

So far, the fitness-distance coefficient (rFD) requires the access to the best (or optimal)

solution. In phylogenetics, for datasets that have been heavily studied such as the

rbcL500 (a.k.a. Zilla data) [15, 25] this is not necessarily a problem. Moreover, on the

47

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

%
 a

b
o

ve
 b

es
t

sc
o

re

r (%)
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

%
 a

b
o

ve
 b

es
t

sc
o

re

r (%)
0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

%
 a

b
o

ve
 b

es
t

sc
o

re

r (%)

(a) Dataset #1 (44 taxa) (b) Dataset #2 (60 taxa) (c) Dataset #3 (174 taxa)

Fig. 21. The performance of the SLS algorithm when random neighbors are selected.

Our original SLS algorithm (r = 0%), always chooses the first improving

neighbor for its next move on the search path. However, for r ≥ 1, there is an

r% chance that the next tree (ti+1) on the search path is selected randomly

from the TBR neighborhood of ti (i.e., Nβ(ti)). Each box plot represents the

distribution of five runs of the SLS heuristic for each r value.

datasets used in this study, we have used numerous software packages (e.g., PAUP*

and Phylip) to establish the best-tree-overall. It is highly likely that better trees do

exist in tree space for these datasets. However, suppose we do not have access to a

reliable best-tree-overall? How can the rFD correlation coefficient be of use in this

situation?

As a phylogenetic heuristic progresses through the search landscape, it will always

have access to the best-tree-so-far. In other words, if a search has been running for

time t, the search can return the fitness of the best-scoring tree that we have for a

particular time point. Our next experiment looks at the rFD coefficient of the search

at different time intervals (0%, 20%, . . . , 100%) of the search. The 0% time interval

(or search progress) represents the starting trees. By Equation 1, this represents tree

t0 in the search path. The 20% time interval represents tree at 0.20 · m, where m is

the length of the search path. The remaining tree interval points are found similarly.

Fig. 24 (a) shows the rFD values based on different search intervals of a TBR

48

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

%
 a

b
o

ve
 b

es
t

sc
o

re

r (%)
0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

%
 a

b
o

ve
 b

es
t

sc
o

re

r (%)
0 1 2 3 4 5

0

1

2

3

4

5

6

7

%
 a

b
o

ve
 b

es
t

sc
o

re

r (%)

(a) Dataset #1 (44 taxa) (b) Dataset #2 (60 taxa) (c) Dataset #3 (174 taxa)

Fig. 22. A closer look at the performance of the random neighbor selection experiments

from Figure 21. Here, each plot show the performance of our SLS algorithm

with r varying between 0% and 5%.

neighborhood. For example, to compute the rFD values at 20% search progress, only

trees labeled from t0 to t0.20·m are used in the calculation. Furthermore, the RF

distance between each of these trees is compared to the best-tree-so-far, that is the

best-tree found within the 0% to 20% time interval.

rFD values in Fig. 24 (a) decrease in the beginning and increase again at the

40% search mark. The initial rFD values are high since there are not many points

involved in the calculation. However, after 40% search progress, the rFD value steadily

increases showing a high positive correlation. Fig. 25 shows the scatter plots for the

rFD values for Dataset #3 at 0%, 20%, 40%, 60%, 80%, and 100% search progress.

According to Fig. 24 (a), the rFD values are strongly correlated by 80% search

completion. If the search were to stop early, what would be effect on the topological

accuracy of the search as it relates to the best-tree-overall. Fig. 24 (b) shows the

results. For each point, the RF distance between the best-tree-so-far at p% search

progress is compared with the best-tree-overall. Clearly, at 80% search progress for

the two smallest datasets, there is minimal (if any) loss in topological accuracy. Fur-

thermore, there is a savings of 20% in overall computational time.

49

0 1 2 3 4 5 6 7 8 9 10
10

2

10
3

10
4

r (%)

se
co

nd
s(

lo
g) Dataset #1(44 taxa)

Dataset #2(60 taxa)

Dataset #3(174 taxa)

Fig. 23. The running time required for the SLS heuristic with different values of r.

Each data point is the average of five runs.

C. Conclusions

The design of better phylogenetic heuristics can be initiated by analyzing the behavior

of local searches. For example, by knowing that there are several good, but competing

solutions within a neighborhood, a variety of different neighbor selection strategies

(such as simulated annealing) are worthy of further investigation—especially in the

context of investigating their behavior based on the analysis techniques presented

here. This observation also provides evidence why search strategies such as parsi-

mony ratchet [25], which takes backwards moves by reweighting the characters in the

dataset, has been a highly successful search strategy. According to the result here,

the search is quite robust to a small percentage of random neighbor selections. Using

this robustness, search can diversify its population of neighboring solutions. Also, we

extended the correlation coefficient called rFD that was developed before. Based on

a variety of different biological datasets, our previous results showed that improve-

ments in fitness are strongly correlated (rFD > 0.8) with topological distance to the

50

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Search Progress (%)

r F
D

Dataset #1 (44 taxa)

Dataset #2 (60 taxa)

Dataset #3 (174 taxa)

0 20 40 60 80 100
10

20

30

40

50

60

70

80

90

Search Progress (%)

R
F

 w
ith

 th
e

be
st

−
tr

ee
−

ov
er

al
l

Dataset #1 (44 taxa)

Dataset #2 (60 taxa)

Dataset #3 (174 taxa)

(a) rFD at different search intervals (b) RF rate to best-tree-overall

Fig. 24. rFD are estimated with search path trees at each search progress on all dataset

(a) and the best-tree-so-far at each search progress is compared with the

best-tree-overall to see how the search goes.

best-tree-overall. Here we investigated the use of the rFD coefficient if the best overall

tree is not available. Every run of a phylogenetic search can produce a best-tree-so-

far. By monitoring the search at different time intervals, we also found that the rFD

coefficient shows strong positive correlation. Hence, the rFD value is robust in that it

does not need access to the best-tree-overall. As the search gets closer to terminating

at a local optimum, the rFD value increases accordingly. Hence, rFD values could be

used as a stopping criterion to determine when a search should stop. For Datasets

#1 and #2, it would be safe to stop early (at the 80% search progress point) without

any penalties in topological accuracy. Futhermore, a saving of 20% in computation

time is saved without any corresponding loss in accuracy.

51

0 10 20 30 40 50 60 70 80
7400

7600

7800

8000

8200

8400

8600

8800

9000

9200

9400

P
ar

si
m

on
y

S
co

re

RF rate (%)

r
FD

 = 0.69

0 10 20 30 40 50 60 70 80
7400

7600

7800

8000

8200

8400

8600

8800

9000

9200

9400

P
ar

si
m

on
y

S
co

re

RF rate (%)

r
FD

 = 0.46

0 10 20 30 40 50 60 70 80
7400

7600

7800

8000

8200

8400

8600

8800

9000

9200

9400

P
ar

si
m

on
y

S
co

re

RF rate (%)

r
FD

 = 0.59

(a) 0% search progress (b) 20% search progress (c) 40% search progress

0 10 20 30 40 50 60 70 80
7400

7600

7800

8000

8200

8400

8600

8800

9000

9200

9400

P
ar

si
m

on
y

S
co

re

RF rate (%)

r
FD

 = 0.82

0 10 20 30 40 50 60 70 80
7400

7600

7800

8000

8200

8400

8600

8800

9000

9200

9400

P
ar

si
m

on
y

S
co

re

RF rate (%)

r
FD

 = 0.91

0 10 20 30 40 50 60 70 80
7400

7600

7800

8000

8200

8400

8600

8800

9000

9200

9400

P
ar

si
m

on
y

S
co

re

RF rate (%)

r
FD

 = 0.96

(a) 60% search progress (b) 80% search progress (c) 100% search progress

Fig. 25. Distribution of RF rate values of search path trees with their parsimony scores

at various points in the search. rFD at each progress is given on the top of

each figure.

52

CHAPTER VIII

CONCLUSION AND FUTURE WORK

The task of knowing the true evolutionary history of all organisms can be converted

into determining the structure of the Tree of Life in our community. But, it is

impossible to exhaustively traverse the tree space to solve this problem. As a result,

phylogenetic heuristic attempts to find the optimal-scoring tree in this exponentially-

sized tree space. However, no heuristic in use can actually do this in reasonable time.

So, we are in need of a more powerful heuristic, and we believe this should start from

knowing the landscape of the space more thoroughly and in detail. We first focused

to the search space. Deep understanding about the search space is essential in that

all the possible trees reside there. In particular, we will look at promising trees in the

space, search path trees in this paper.

Heuristic measurement clearly shows that SLS is the only appropriate and avail-

able local search heuristic for the purpose of our study in that it performs effectively

and provides data collecting control. In terms of performance measurement, we go

beyond just checking the score and search time of the final results. We break heuris-

tics into basic blocks, and evaluate each of them separately. Lastly, we identify the

relationship between each heuristic in topological sense. All these tests confirm that

further research can be conducted with SLS. In addition, we present the impact of

two speedup techniques used in SLS by profiling them. Based on this profiling and

SLS software that is available upon request from the author, techniques for search

heuristic can be investigated and tested further.

To analyze the search path trees, SLS retrieves trees on good local search paths

and their associated information. For the question ‘What characteristic do search path

trees have?’, we take them into account with interesting concepts such as rFD, rFH and

53

rHD. As we have investigated their behavior in the previous chapter, their behaviors

are not always obvious and straightforward. They are all correlated, but some of them

are significant, and others are not. We will extract usefulness from those observations

and apply them for more practical purposes. A particularly useful observation is that

the neighborhood of search path trees improves, in terms of parsimony score, as the

search progresses. We go toward the next question with these interesting observations.

The final question we addressed was ‘How can the knowledge about search path

trees contribute to making more effective navigation?’. For this, we considered two

results from the previous chapter with a little manipulation. The first experiment

selected the next pivot randomly at given r percent of time. This experiment clearly

showed that some percentage of random neighbor selection would help diversifying

its population of neighboring solutions. Second, we have updated rFD updated from

the previous chapter so that the calculation would be with the best-tree-so-far. This

measure indicated how far the search progressed, because the trend in value remained

consistent across all data.

In all our experiments, search path trees were investigated in order to know the

behavior of local search heuristic, and random trees represent the tree space. Using

these data, we can present two main contributions to the community. The first con-

tribution is a deep understanding about the search space and local search heuristics

in the space. Using our data, we determined that phylogenetic trees that are parsi-

monious always have less homoplasy throughout the space whether or not they are

on a search path. On the other hand, the topological estimate was highly correlated

with parsimony score only in search path trees. This result can be interpreted that

the MP search heuristic refines its score while simultaneously approaching the best

tree topologically simultaneously. As another contribution, this paper shows how the

knowledge affect the performance of search heuristic. The knowledge about score

54

distribution of neighborhood allows a heuristic not to have to spend as much time

as it used to need, because there are many other options for the next progression in

terms of the next pivot. Also, the knowledge about the correlation coefficient rFD

can tell where the search is at. Stated earlier, it doesn’t provide any actual heuristic,

but it provides one good starting point for more powerful and stable heuristic.

In the future, we plan to improve the performance (in terms of running time)

of our SLS implementation and make it publicly available to the systematics com-

munity. From Figs. 10 and 12, SLS is slower than PAUP*, but has fewer number

of rearrangements. This points out that SLS can be improved if implementation is

optimized. So, improvement of SLS by optimizing code should be performed. Also

not only for making further reliable and efficient heuristic but also for experimenting

a delicate setup with the heuristic, we will open SLS source code and provide the

chance to manipulate SLS according to their need.

Also, we will further investigate the value of rFD and rDH by examining larger

datasets and additional phylogenetic heuristics. So far, we have analyzed the behavior

of local search by looking at search path trees from SLS. But for moderately-sized

datasets (> 250 taxa), more powerful approaches such as Parsimony Ratchet [25],

Recursive-Iterative DCM3 [27], and TNT [15] are more commonly used because of

their performance. By replacing the local search heuristic blocks with blocks from

SLS, we can collect information going on in heuristics, and analyze them. This will

provide a foundation for understanding (and appreciating) how these more powerful

approaches operate.

55

REFERENCES

[1] B. Allen and M. Steel. “Subtree transfer operations and their induced metrics

on evolutionary trees.” Ann Comb., vol. 5, pp. 1-13, 2001.

[2] D. A. Bader, B. M. E. Moret, and L. Vawter. “Industrial applications of high-

performance computing for phylogeny reconstruction.” In Proceedings of SPIE

Commercial Applications for High-Performance Computing, vol. 4528, pp. 159-

168, Aug. 2001.

[3] D. Butt, A. Roger, and C. Blouin. “libcov: A C++ bioinformatic library to ma-

nipulate protein structures, sequence alignments and phylogeny.” BMC Bioinfo-

matics, vol. 6, pp. 138-139, 2005.

[4] B. Chor and T. Tuller. “Maximum likelihood of evolutionary trees is hard.” In

Proc. 9th Ann. Int. Conf. on Computational Molecular Biology (RECOMB 0́5),

pp. 296-310. Cambridge, 2005.

[5] Andrew R. Deans and Joseph J. Gillespie and Matthe J. Yoder. “An evaluation

of ensign wasp classification (Hymenoptera: evanildae) based on molecular data

and insights from ribosomal RNA secondary structure.” Syst. Ento., vol. 31, pp.

517-528, 2006.

[6] J. S. Farris. “The retention index and homoplasy excess.” Systematic Zoology,

vol. 38, pp. 406-407, 1989.

[7] J. S. Farris. “The retention index and rescaled consistency index.” Cladistics,

vol. 5, pp. 417-419, 1989.

[8] J. Felsenstein. “Parsimony in systematics: biological and statistical issues.”

Annu. Rev. Ecol. Syst., vol. 14, pp. 313-333, 1983.

56

[9] J. Felsenstein. “Phylogenetic inference package (PHYLIP), version 3.2.” Cladis-

tics, vol. 5, pp. 164-166, 1989.

[10] W. M. Fitch. “Toward defining the course of evolution: minimal change for a

specific tree topology.” Syst. Zool., vol. 20, pp. 406-416, 1971.

[11] L. R. Foulds and R. L. Graham. “The Steiner problem in phylogeny is NP-

complete.” Advances in Applied Mathematics, vol. 3, pp. 43-49, 1982.

[12] G. Ganapathy, V. Ramachandran, and T. Warnow. “Better hill-climbing strate-

gies for parsimony.” In Proceedings 3nd Int’l Workshop Algorithms in Bioin-

formatics (WABI’03), volume 2812 of Lecture Notes in Computer Science, pp.

245-258, Springer-Verlag, 2003.

[13] G. Ganapathy, V. Ramachandran, and T. Warnow. “On contract-and-refine-

transformations between phylogenetic trees.” In Proc. 15th ACM-SIAM Sympo-

sium on Discrete Algorithms (SODA), pp. 900-909, Philadelphia, PA, 2004.

[14] J. Gillespie, C. McKenna, M. Yoder, R. Gutell, J. Johnston, J. Kathirithamby,

and A. Cognato. “Assessing the odd secondary structural properties of nuclear

small subunit ribosomal RNA sequences (18s) of the twisted-wing parasites (In-

secta: strepsiptera).” Insect Mol. Biol., vol. 15, pp. 625-643, 2005.

[15] P. Goloboff. “Analyzing large data sets in reasonable times: solutions for com-

posite optima.” Cladistics, vol. 15, pp. 415-428, 1999.

[16] M. Hendy, M. Steel, D. Penny and I. Henderson. ”Families of trees and consen-

sus.” In H. Bock, editor, Classification and Related Methods of Data Analysis,

pp. 355-362. Amsterdam, The Netherlands, Elsevier, 1988.

[17] D. Hillis. “Inferring complex phylogenies.” Nature, vol. 383, pp. 130-131, 1996.

57

[18] D. Hillis. “Analysis and visualization of tree space.” Syst. Biol., vol. 54, no. 3,

pp. 471-482.

[19] T. Jones and S. Forrest. “Fitness distance correlation as a measure of problem

difficulty for genetic algorithms.” In L. Eshelman, editor, Proceedings of the Sixth

International Conference on Genetic Algorithms, pp. 184-192, San Francisco,

CA, 1995.

[20] M. V. Kallersjo, A. Albert and J. S. Farris. “Homoplasy increases phylogenetic

structure.” Cladistics, vol. 15, pp. 91-93, 1999.

[21] A. G. Kluge and J. S. Farris. “Quantitative phyletics and the evolution of anu-

rans.” Systematic Zoology, vol. 18, pp. 1-32, 1969.

[22] D. Maddison. “The discovery and importance of multiple islands of most pari-

monious trees.” Syst. Bio., vol. 42, no. 2, pp. 200-210.

[23] M. L. Metzker, and D. P. Mindell, X.-M. Liu, R. G. Ptak, R. A. Gibbs, and D.

M. Hillis. “Molecular evidence of HIV-1 transmission in a criminal case.” PNAS,

vol. 99, no. 2, pp. 14292-14297, 2002.

[24] W. J. Murphy, E. Eizirik, S. J. O’Brien, O. Madsen, M. Scally, C. J. Douady, E.

Teeling, O. A. Ryder, M. J. Stanhope, W. W. de Jong, and M. S. Springer. “Res-

olution of the early placental mammal radiation using Bayesian phylogenetics.”

Science, vol. 294, pp. 2348-2351, 2001.

[25] K. C. Nixon. “The parsimony ratchet, a new method for rapid parsimony anal-

ysis.” Cladistics, vol. 15, pp. 407-414, 1999.

[26] F. Ronquist. “Fast fitch-parsimony algorithms for large data sets.” Cladistics,

vol. 14, no. 4, pp. 387-400, 1998.

58

[27] U. Roshan, B. M. E. Moret, T. L. Williams, and T. Warnow. “Rec-I-DCM3:

a fast algorithmic techniques for reconstructing large phylogenetic Trees.” In

Proc. IEEE Computer Society Bioinformatics Conference (CSB 2004), pp. 98-

109. IEEE Press, 2004.

[28] N. Saitou and M. Nei, “The neighbor-joining method: A new method for recon-

structing phylogenetic trees.” Mol. Biol. Evol., vol. 4, pp. 406-425, 1987.

[29] E. Sober, “Parsimony in systematics: Philosophical issue.” Ann. Rev. Ecol. Syst.,

vol. 14, pp. 335-357, 1983.

[30] C. Stockham, L. S. Wang, and T. Warnow, “Statistically based postprocessing

of phylogenetic analysis by clustering.” In Proceedings of 10th Int’l Conf. on

Intelligent Systems for Molecular Biology (ISMB’02), pp. 285-293, 2002.

[31] S.-J. Sul and T. L. Williams. “A randomized algorithm for comparing sets

of phylogenetic trees.” In Proc. Fifth Asia Pacific Bioinformatics Conference

(APBC’07), pp. 256-260, 2007.

[32] D. L. Swofford. “PAUP*: Phylogenetic Analysis Using Parsimony (and Other

Methods), Version 4.0.”, Underland, MA: Sinauer, 2002.

[33] T. L. Yates, J. Salazar-Bravo, and J. W. Dragoo. 2004, “The importance of the

tree of life to society”, In J. Cracraft and M. J. Donoghue, (eds.) Assembling the

Tree of Life, pp. 7-17, Cambridge, UK, Oxford University Press, 2004.

59

VITA

Hyun Jung Park

Education

• Master of Science, Computer Science, Texas A&M University, 2007

• Bachelor of Science, Computer Science, Yonsei University,

South Korea, 2002

Contact Address

• Permanent mailing address : 301 Harvey R. Bright Building College Station,

TX 77843-3112

• E-mail : justpark@tamu.edu, justpark78@gmail.com

