

ALGORITHM AND INTELLIGENT TUTORING SYSTEM DESIGN FOR

LADDER LOGIC PROGRAMMING

A Thesis

by

YUAN-TENG CHENG

Submitted to the Office of Graduate Studies

of Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2007

Major Subject: Computer Science

ALGORITHM AND INTELLIGENT TUTORING SYSTEM DESIGN FOR

LADDER LOGIC PROGRAMMING

A Thesis

by

YUAN-TENG CHENG

Submitted to the Office of Graduate Studies

of Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Co-Chairs of Committee, Sheng-Jen "Tony" Hsieh
 Dezhen Song
Committee Member, Sing-Hoi Sze
Head of Department, Valerie E. Taylor

August 2007

Major Subject: Computer Science

 iii

ABSTRACT

Algorithm and Intelligent Tutoring System Design for Ladder Logic Programming.

(August 2007)

Yuan-Teng Cheng, B.S., National Tsing Hua University

Co-Chairs of Advisory Committee: Dr. Sheng-Jen "Tony" Hsieh
 Dr. Dezhen Song

 With the help of the internet, teaching is not constrained in the traditional classroom

pedagogy; the instructors can put the course material on the website and allow the

students go on to the course webpage as an alternative way to learn the domain

knowledge. The problem here is how to design a web-based system that is intelligent and

adaptive enough to teach the students domain knowledge in Programmable Logic

Controller (PLC).

 In my research, I proposed a system architecture which combines the pre-test,

cased-based reasoning (i.e., heuristic functions), tutorials and tests of the domain

concepts, and post-test (i.e., including pre-exam and post-exam) to customize students’

needs according to their knowledge levels and help them learn the PLC concepts

effectively.

 I have developed an intelligent tutoring system which is mainly based on the

feedback and learning preference of the users’ questionnaires. It includes many pictures,

colorful diagrams, and interesting animations (i.e., switch control of the user’s rung

configuration) to attract the users’ attention.

 iv

 From the model simulation results, a knowledge proficiency effect occurs on

problem-solving time. If the students are more knowledgeable about PLC concepts, they

will take less time to complete problems than those who are not as proficient.

Additionally, from the system experiments, the results indicate that the learning

algorithm in this system is robust enough to pinpoint the most accurate error pattern (i.e.,

almost 90 percent accuracy of mapping to the most similar error pattern), and the

adaptive system will have a higher accuracy of discerning the error patterns which are

close to the answers of the PLC problems when the databases have more built-in error

patterns.

The participant evaluation indicates that after using this system, the users will learn

how to solve the problems and have a much better performance than before. After

evaluating the tutoring system, we also ask the participants to submit the survey

(feedback), which will be taken into serious consideration in our future work.

 v

DEDICATION

To my family

 vi

ACKNOWLEDGMENTS

 I would like to thank my committee chair, Dr. Hsieh, co-chair, Dr. Song, and my

committee member, Dr. Sze, for their guidance and support throughout the course of this

research.

 Thanks also to my friends and colleagues and the department faculty and staff for

making my time at Texas A&M University a great experience.

 Finally, thanks to my parents and my brother for their encouragement.

 vii

NOMENCLATURE

BN Bayesian Network

CBR Case-Based Reasoning

CTU Count Up

CU Count Up Enable Bit

DAG Directed Acyclic Graph

DBN Dynamic Bayesian Networks

DN Done Bit

EN Enable Bit

ITS Intelligent Tutoring System

JPD Joint Probability Distribution

KB Knowledge Base

NO Normally Open switch

NC Normally Closed switch

NCSR Normally Closed Spring Return switch

NOSR Normally Open Spring Return switch

OOP Object-Oriented Programming

OTE Output Energize

PLC Programmable Logic Controller

RES Count Reset Bit

SM Student Model

SVM Support Vector Machine

 viii

TM Tutor Model

TON Timer On-Delay

TOF Timer Off-Delay

TT Timing Bit

UI User Interface

VPLC Virtual Programmable Logic Controller

XIC Examine if Closed

XIO Examine if Open

 ix

TABLE OF CONTENTS

 Page

ABSTRACT …………………………………………………..…………………. … iii

DEDICATION ……………………………………………………………………... v

ACKNOWLEDGMENTS.………………………………………………………….. vi

NOMENCLATURE…….………………………………………………………….. vii

TABLE OF CONTENTS ………………………………………………………….. ix

LIST OF FIGURES ……….……………………………………………………….. xi

LIST OF TABLES ….…….……………………………………………………….. xiii

CHAPTER

I INTRODUCTION ……………………………………………………………. 1

1.1 Motives ……………………………………………………………….. 1
1.2 Research Objectives………………………………………………….. 2
1.3 Format of this Investigation…………………………………………... 2

II LITERATURE REVIEW……………………………………………………. 3

 2.1 Introduction……………………………………………………………. 3
 2.2 Curriculum Sequencing………………………………………………... 5
 2.3 Adaptive Collaboration Support……………………………………….. 6
 2.4 Case-Based Reasoning…………………………………………………. 6
 2.5 Ontology Extraction……………………………………………………. 6

2.6 Semantic Web………………………………………………………….. 7
2.7 Dynamic Bayesian Networks………………………………………….. 7
2.8 Classification and Clustering………………………………………….. 10
2.9 Genetic Algorithms…………………………………………………….. 11
2.10 Summary……………………………………………………………… 11

III METHODOLOGY………………………….. 14

 3.1 Introduction…………………………………………………………….. 14
3.2 Assumptions…………….. …………….. …………………………… 14

 x

CHAPTER Page

3.3 Learning Algorithm……………………………………………………. 15
3.4 Proposed System………………………………………………………. 21

IV SYSTEM IMPLEMENTATION…….. 32

4.1 System Programming and Environment Setting………………………. 32
4.2 Introduction to Programming Logic Diagrams………….. …………… 33
4.3 User Configuration Mapping………….. …………………….. ……… 37
4.4 System Layout Snapshot. …………………….. ……………………… 40

V EVALUATION AND RESULTS…………………………………………….. 42

5.1 Introduction…………………………………………………………….. 42
5.2 Simulation Experiments and Results………………………………….. 42
5.3 Summary………………………………………………………………. 64

VI SUMMARY AND CONCLUSIONS………………………………………... 65

6.1 Summary………………………………………………………………. 65
6.2 Conclusion and Future Work………………………………………….. 66

REFERENCES……………………………………………………………………….. 68

APPENDIX…………………………………………………………………………… 72

VITA………...……………………………………………………………………….. 73

 xi

LIST OF FIGURES

FIGURE Page

2.1 Primitive framework of Intelligent Tutoring System………………………. 4

2.2 Intelligent Tutoring System framework with an adaptive model…………... 5

2.3 An illustrative simple Bayesian Network…………………………………… 8

2.4 Dynamic Bayesian Network changes with time……………………………. 9

3.1 Learning algorithm of Intelligent Tutoring System…………………………. 16

3.2 Heuristic functions…………………………………………………………... 17

3.3 An example of rung configurations…………………………………………. 19

3.4 Proposed system architecture……………………………………………….. 22

3.5 Student learning preference distribution……………………………………. 23

3.6 Directed acyclic graph, where white circles means concepts and yellow
 rectangles represent 10 Flash PLC problems, respectively.………………… 27

3.7 System flowchart……………………………………………………………. 29

4.1 Programming tools and program execution flow………………………….... 32

4.2 An example of the rung configuration………………………………………. 36

4.3 System working area setting of one of the hidden rungs……………………. 37

4.4 Before coordinate recalculation of one of the hidden rungs………………… 38

4.5 After coordinate recalculation of one of the hidden rungs………………….. 38

4.6 Path enable/disable determination of one of the hidden rungs……………… 39

4.7 System snapshot of the experiment window………………………………… 41

5.1 Mapping accuracy based on different number of heuristic functions…........ 52

5.2 System adaptivity based on different databases…………………………..… 55

 xii

FIGURE Page

5.3 User performance before and after the system experiment…………………. 57

5.4 State diagram of the change of problems for a professional student (i.e.,
80% chance pass for each problem at the first time)………………………... 59

5.5 Student experiment time of all 10 problems………………………..………. 60

5.6 Triangle distribution of Problem1…………….…………………………….. 62

5.7 System simulation time based on students who have different knowledge
 proficiency………………………………………………………………….. 63

 xiii

LIST OF TABLES

TABLE Page

2.1 Comparative study of different approaches…………………………………. 12

3.1 Calculation of heuristic functions H(n)………………………………………20

3.2 Predefined student knowledge level and concepts classification…………… 25

4.1 Detail explanation of PLC software components…………………………… 34

4.2 Detail explanation of PLC hardware components…………………………... 35

5.1 Error patterns of Problem1…………………………………………….…..... 44

5.2 Matching patterns and accuracy measurements of Problem1…..……….….. 48

5.3 Use different number of heuristic functions to find the average mapping
accuracy……………………………………………………………………... 51

5.4 Use HF5 to measure the average accuracy based on different databases…… 54

5.5 User test score before and after the system experiment………………….….. 57

5.6 Triangle distribution and its parameters for all 10 problems……….…..…… 62

 1

CHAPTER I

INTRODUCTION

1.1 Motives

Although traditional classroom teaching is undoubtedly the best way for students to

learn, limited lecture time prevents teachers from using the preferred one-on-one

instructional format. With the widespread use of computers in society, almost everyone

can access the internet to search and learn. This allows instructors to put class materials

on websites, and helps students strengthen or clarify their concepts, especially through

such web-based systems, Intelligent Tutoring Systems (ITSs).

There are many ITSs spread around the world which aim to teach students domain

knowledge in some specific applications. However, most of these tutoring applications

lack interactive ability (i.e., the rules for generating the teaching path are embedded and

unchanged overtime). An intelligent system should have the adaptive ability to learn and

become increasing robust as time goes on.

The thesis follows the style of Expert Systems with Applications.

 2

1.2 Research Objectives

From recent research of intelligent tutoring systems (Woolf & Murray, 1994; Eliot

& Woolf, 1995; Beck, Stern, & Woolf, 1997; Beck & Woolf, 1998; Cassin, Eliot, Lesser,

Rawlins, & Woolf, 2004; Woolf, 2004), we know that machine learning as well as

optimized and customized pedagogical teaching for students is the direction in which

next-generation intelligent systems development is headed. Here, based on the ongoing

direction, we want to develop a web-based tutoring system with machine learning

algorithms which will result in the generation of efficient and personalized pedagogical

strategies, and put our experimental emphasis on the Programmable Logic Controller

(PLC) application.

1.3 Format of this Investigation

 This chapter describes the motives and research objectives of this study. In Chapter

II, we review eight research areas which relate to the solution of this problem:

Curriculum Sequencing, Adaptive Collaboration Support, Case-Based Reasoning,

Ontology Extraction, Semantic Web, Dynamic Bayesian Networks, Classification and

Clustering, and Genetic Algorithms. Chapter III describes the algorithm to solve this

problem and also gives an illustrative example, and also mentions about the system

architecture and execution processes. In Chapter IV, the system implementation is

explained and the demonstration of logic diagram control is shown in the snapshot of the

system interface. Chapter V describes the participant evaluation and results. Finally, the

summary and conclusion of this research are presented in Chapter VI.

 3

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

From the survey paper (Petrushin, 1995; Tsiriga & Virvou, 2004; Su, Chen, & Yih,

2006), we know that the goal of intelligent tutoring systems is to help students gain an

in-depth knowledge of certain kinds of domains. Students learn and test their knowledge

through refined guiding processes/tutorials and evaluation questions of ITSs. The

systems generate the concept questions from the knowledge base in which the students

show interest, organize the questions by using the Tutor Model (TM), and then present

them to the students through the User Interface (UI). The whole retrieval and generation

cycle is the core idea of intelligent tutoring systems.

 In order to enhance students’ learning, many teachers and researchers devote much

time to the development of web-based tutoring systems that allow instructors to

incorporate their class slides and handouts into it. ITSs are composed of User Interface

(UI), Student Model (SM), Tutoring Model (TM) and Knowledge Base (KB). The

relations between these models are shown in Figure 2.1.

 4

Figure 2.1 Primitive framework of Intelligent Tutoring System.

 However, this framework is static. Every student using this system experiences the

same learning steps and same recommended instructions every time. This system cannot

provide a learning model that is well-suited to the specific needs of individual students.

Hence, in recent years, almost all research publications in this area focus on how to

develop adaptive models (i.e., the Student Model or even the Tutoring Model will learn

and update their database), and personalized models (i.e., generating the most suitable

Student Model for specific students), for the intelligent tutoring system (see Figure 2.2).

 There are many trivial details in these publications; thus in the following

subsections, we summarize the main methods prevalent in this research area, put them

into different categories according to their main differences, and briefly describe their

contributions.

Student
Model

Knowledge
Base

Interface

Model
Tutor
Model

 5

Figure 2.2 Intelligent Tutoring System framework with an adaptive model.

2.2 Curriculum Sequencing

 Curriculum Sequencing (Beck & Woolf, 1998; Brusilovsky, 1999) is the latest topic

researchers have used for finding the optimal path of a specific problem for the current

user. From Figure 2.1, we can see that the tutoring sequence is constructed by the Tutor

Model first, and then presented on the User Interface to guide the student through the

problem solving. However, traditional static ITSs cannot dynamically generate the

optimal learning path for the current user, and this sometimes frustrates the user when

he/she wants to re-experience this same topic. In order to raise the user’s satisfaction,

one could also use the Curriculum Sequencing method. When the user initially logs in to

this system, he/she must finish a pre-test (i.e., some simple questions presented to the

user to identify the user’s knowledge in this domain). Then Curriculum Sequencing tries

to find the best learning path for this user from the current knowledge base.

Student
Model

Tutor
Model

U
ser Interface

Knowledge
Base

Adaptive
Model

 6

2.3 Adaptive Collaboration Support

 Collaboration Support (Brusilovsky, 1999; Tsiriga & Virvou, 2004; Zhou, Wu, &

Zhang, 2005) means that once the ITS system is unable to give the current user the

correct solution, the user can search for the solution among the remote partners. After

the user receives the solution, the Student Model and Tutor Model update the database to

include the exceptional or alternative solution. This approach is also called Adaptive

Collaboration Support.

2.4 Case-Based Reasoning

The goal of Case-Based Reasoning (CBR) (Mitrovic & Djordjevic-Kajan, 1995;

Sindi, 2005) is to find the most similar existing case for the current student, adapt this

case to meet the student's situation, and then update the case models in the database. The

main problem here is how to discern the most similar case for the current user. To find

this case, one may use approximation algorithms such as the k-nearest neighbor

algorithm (Tsiriga & Virvou, 2004), which aims to find the sum of the minimum square

differences among the current user and the existent user models, and the rule-based

classification algorithms (Akhras, 2005; Granic & Glavinic, 2005), which use

comprehensive built-in rules to identify the user queries or corresponding reactions.

2.5 Ontology Extraction

Ontology Extraction (Petrushin, 1995; Cassin, Eliot, Lesser, Rawlins, & Woolf,

2004; Devedzic, 2003; Bredeche, Shi, & Zucker, 2006) is a two-phase method used to

 7

build an abstraction tree for different ITS applications. The first phase is to extract the

topics or core skeleton from the raw data. After extracting the main topics of the current

application, the next step is to build the temporal relationships (i.e., causal relations)

among them. When the ontology structure requires an update, we need to use other

strategies to infer the change of relationships and then update them.

2.6 Semantic Web

Semantic Web (Devedzic, 2003; Tao, & Li, 2004; Su, Chen, & Yih, 2006) is also

called the Next-Generation Tutoring Scheme. This kind of paper implements the

ontology concepts mentioned above using the XML documents, and represents or deals

with the concepts in terms of tree structure through the ease of XML's semantics.

2.7 Dynamic Bayesian Networks

Another more applicable and general way to model a student’s action is by using

the Bayesian Network (BN) (Yoo, Li, & Pettey, 2005). Bayesian Network is a directed

acyclic graph (DAG) represented by BN=(V,E), where V is the nodes in this network,

and E is the directed edges, see Figure 2.3. The edge between two nodes indicates the

causal relation between them. When the directed edge 1e goes from one concept node

1n to another concept node 2n . Then this means 1n should be met before 2n

happens.

 8

Figure 2.3 An illustrative simple Bayesian Network.

Because the probability of reaching a current node depends only on its parent, the

probabilities of the interested nodes can be calculated through the Joint Probability

Distribution (JPD), and can be represented as

∏
=

=
n

i
iin nParentnPnnnP

1
21))(|(),...,,(

In ITS systems, this means that the current student's learning state is influenced by

his previous state and current system's suggestions. However, this graph is static and

cannot change with the student’s learning states (i.e., add or remove some concepts into

the student’s learning configuration). In order to tackle this problem, we must take the

change over time into consideration, as suggested in Dynamic Bayesian Networks

(DBN). The main idea of DBN is that the causal edges will update as time goes by. In

addition to dealing with the relations among nodes, we must also consider the states in

the next time 1+it and current time it (see Figure 2.4).

n5

n4

n1

e3

e2

n3

n2

e1

e5

e4

 9

Figure 2.4 Dynamic Bayesian Network changes with time.

 There are some variations of the (Dynamic) Bayesian Network; for example,

Dynamic Feedback and Multi-layered Inferencing Student Model in the following

subsections.

2.7.1 Dynamic Feedback

This strategy talks about how to relate an incorrect student action to a correct action

based on real-time comparisons between the current student and the expert actions.

2.7.2 Multi-layered Inferencing Student Model

This model comes from Woolf’s research (Woolf & Murray, 1994). Each layer

contains a set of symbolic values, and takes inputs (the prerequisite knowledge) of lower

layer and output (known or unknown binary value of this concept) to upper layer, where

each layer represents the required concept of the domain.

n5

n4

n1

e3

e2

n3

n2

e1

e5

e4

n5

n4

n1

e3

e2

n3

n2

e1

e5

e4

ti ti+1

 10

2.8 Classification and Clustering

 There are many clustering algorithms (Legaspi, 2002; Vos, 2002; Wickramasinghe

& Alahakoon, 2004; Helmy & Shahab, 2006) designed to classify the students’ raw data.

We can then use the classifier to judge whether or not the student knows some concept.

Here, we just mention two most popular methods – Regression Model (i.e., for linear

cases) and Support Vector Machine (SVM) (i.e., for non-linear cases).

2.8.1 Regression Model

 The simplest system model in ITS is called the regression model (Beck, Stern, &

Woolf, 1997). The authors use the regression model to identify whether a student

overestimates or underestimates himself/herself through the self-explanation of his/her

own ability and proficiency. The Regression equation used to approximate the student's

action from his/her current action (A), expert's suggestion (B), and parameter adjustment

(c), is

Student Performance = a*A + b*B + c

where parameter a and b is the weight of A and B, respectively.

2.8.2 Support Vector Machine

 The state-of-the-art method to classify the raw data into different clusters or groups

is the Support Vector Machine (SVM) algorithm (Haydemar, Cecilio, & Andreu, 2002).

SVM transforms the complicated multi-dimensional raw data vectors into hyperplane

(feature space) to simplify and classify it, and then map it back to original dimensions.

The classification curve is not like the linear regression model (the simplest case of

 11

SVM). The shape may be irregular and this method is often used when encountering

large amount of raw data.

2.9 Genetic Algorithms

 The reason why we need Genetic Algorithms (GA) (Chen, Hong, & Chang, 2006)

is due to its evolutionary advantage. The authors use GA to generate the personalized

and optimal learning path much like the Curriculum Sequencing mentioned in Section

3.1. The evolution of GA here depends on their proposed Fitness Function. This function

considers the concept relation degree and the difficulty parameter of the courseware at

the same time, and then finds the summation of the weights of these two factors. The

more relevant the concept relation degree is, the higher the value of the Fitness Function.

2.10 Summary

 The main differences between the strategies above are summarized in Table 2.1.

From this table, we can see that adaptive system model, personalized learning path,

relational concept tree structure, and object-reusable property are the main trends for the

development of next-generation intelligent tutoring systems.

 - 12 -

Table 2.1 Comparative study of different approaches. *The field indicated by “×”
means the method has this feature.

Characteristics

Current Methods

Adaptive

Model

Efficient

Learning Path

Tree/Graph

Structure

Causal

Relation

Reusable

Objects

Curriculum Sequencing × × ×

Adaptive Collaboration Support ×

Case-Based Reasoning × ×

Ontology Extraction × × × ×

Semantic Web × × ×

Dynamic Bayesian Networks × × ×

Classification and Clustering ×

Genetic Algorithm × ×

Proposed Method × × × × ×

 13

In this study, based on the applied application (PLC), we proposed a new intelligent

tutoring system architecture which incorporates the above structures and includes new

features. For example, we built the concept tree structure (domain ontology), and

identified the relations among the concepts to let the tutoring system know current

required concepts and efficiently jump to the problems in the student’s classification

level.

In addition, we proposed a strategy to keep making the database increasingly

complete by storing experiment participants’ configurations and concepts into it.

Moreover, we used Macromedia Flash MX, PHP 5, Java, and JavaScript to do the

programming. The communication between the client and the server is through the

Apache server, and the system uses Microsoft Access 97 database to store all the

participants’ information.

Also, in our system implementation, we used the Object-Oriented Programming

(OOP) design style to create the objects once and included them for all subsequent

program development, thus saving memory space and reducing server execution time.

 14

CHAPTER III

METHODOLOGY

3.1 Introduction

 In the previous chapter, we reviewed research related to possible solution areas for

the research questions defined in Section 1.1 and introduced future perspectives which

we will cover in this investigation. These areas include the adaptive model, tree structure,

and reusable objects. Specifically, in this chapter we will apply the learning algorithm to

solve the research problem and give an illustrative example to explain our proposed

method. The complete system architecture and its interface design will be explained in

the next chapter.

3.2 Assumptions

Before we talk about our proposed algorithm, it is important to mention the

assumptions first. One of our assumptions is that we build some collaborative user

records into the database. These records also known as patterns are used for finding the

most similar or matching pattern to the current user’s rung configuration. For each

problem in our domain, there are different numbers of built-in patterns for it.

In addition to the built-in user patterns, when talking about the intelligent tutoring

system as follows, we made another two assumptions. First, the ITS knows all the

required concepts for this Programmable Logic Controller domain already; second, the

ITS knows which concepts need which subconcepts.

 15

3.3 Learning Algorithm

 Figure 3.1 shows our learning algorithm for the intelligent tutoring system. The

current user’s rung configuration is taken as the input, and then the system stores this

configuration into the database. Before mapping this configuration with the existing

patterns, the system will recalculate the coordinates of each component in this

configuration and then compare this recalculated configuration with the answers. If the

configuration is the same as one of the answers, the student will be congratulated and

will move on to the next problem. If the configuration is wrong, the system will use

heuristic functions to discern the most similar patterns and guide the student to solve

his/her errors step-by-step, for example, by providing tutorials and tests of the error

concepts and highlighting the error locations of the current configuration with pink

color.

When he/she chooses one of the error concepts to go into the tutorial to learn it (and

then test it), the system will store this concept combined with the current configuration

into the database. The system database will become increasingly complete by recording

students’ rung configurations and error concepts they made. The more complete the

database becomes, the more accurate matching pattern the system can find.

 16

Figure 3.1 Learning algorithm of Intelligent Tutoring System.

Input: User Rung Configuration.

Mapping Algorithm:
i. Create/Modify User Configuration.
ii. Store User’s first Configuration into database.
iii. Recalculate the Coordinates of User Configuration.
iv. Map User Configuration with Answer Patterns:

If User Configuration matches with Answer Pattern
Then

Go to Step v.
Else
 1. Matching User Configuration with Error Patterns using

Heuristic Functions)(nH .
2. Tutorials and Tests: Insert current user’s error into

Database.
3. Go to Step i.

v. Stop.

 17

3.3.1 Heuristic Functions

In our current work, we develop heuristic functions to map the current student’s

error sequences with existing error patterns in the Knowledge Base. Based on the

Programmable Logic Controller application, our developed heuristic functions are listed

in Figure 3.2.

:_Re)(1 Componentdundantnh = -1 (1)
DifferenceLengthRungDifferenceLengthRungnh __:__)(2 −= (2)

=)(3 nh Matching_Component_and_Examined_Bit: +1 (3)
:_)(4 ComponentMisplacednh = -|Position_Diff_of_Component| (4)

=)(5 nh Misplaced_Examined_Bit: -|Position_Diff_of_Examined_Bit| (5)

∑
=

=
5

1

)()(
i

i nhnH (6)

Figure 3.2 Heuristic functions.

 In this figure, Equation (1) means that if there is any redundant component in the

current configuration (i.e., wrong examined bit or selected logic), one will be subtracted

from the total score. Equation (2) compares the current configuration with the answer

patterns, and if there is any length difference between each rung, the total score will also

be subtracted by the total difference of the rung length. Equation (3) tries to discern the

same examined bit and logic of components when comparing the answers. The total

score will increase by one if the function finds one matching component in the current

configuration. Equation (4) and (5) discern the matching components and examined bits

that are misplaced, and the total score will decrease by the sum of these misplaced

 18

components (i.e., each misplaced component or misplaced examined bit will lead to a

decrease of one). Our accumulative heuristic function H(n) is listed as equation (6).

3.3.2 An Illustrative Example

The following is an example of how to apply our heuristic functions to the rung

configurations of Programmable Logic Controller (PLC) application, and mapping the

current user’s wrong rung configuration to one of the existing rung patterns in the ITS

database.

Figure 3.3 shows the built-in PLC rung configurations and mapping sequences

(tuples) in the database. The coordinates in the mapping sequences are based on the scan

sequence of the user’s rung configuration (i.e., from left to right first and then top to

down).

Table 3.1 shows the calculation of the utility (total score) of our proposed heuristic

functions. The utility is derived from the sum of five different heuristic functions. From

the result shown in Table 3.1, we can see that the current student’s error rung

configuration maps to Rung 3 (i.e., the utility of Rung 3 is the highest).

 19

Rung Configuration in PLC Mapping Sequence in the Database

 I:000/01 I:000/02 I:000/03 O:000/02
Rung 1: |------]/[--------] [---------] [-------()-----| {<XIO,1,1>, <XIC,2,1>,

<XIC,3,1>, <OTE,4,1>,
 O:000/02 <OTE,2,2> }
 -----()------

 I:000/03 I:000/02 I:000/01 O:000/02
Rung 2: |-----]/[--------] [----------] [----------()-----| {<XIO,1,1>, <XIC,2,1>,

<XIC,3,1>, <OTE,4,1>,
O:000/02 <XIO,2,2>}

 ----]/[-----

 I:000/01 O:000/02 I:000/03
Rung 3: |-----]/[-------()--------] [--------------| {<XIO,1,1>, < OTE,2,1>,

<XIC,3,1>}

 I:000/01 O:000/02
Rung 4: |--------]/[---------()--------------------| {<XIO,1,1>, < OTE,2,1>,

<XIO,1,2>}
 I:000/03
 ------]/[----

Current Student’s error rung configuration:

 I:000/01 I:000/03 O:000/02
Rung : |----- ()----------][----------]/[--------| {<OUT,1,1>, <XIC,2,1>,

<XIO,3,1>}

Figure 3.3 An example of rung configurations.

20

Table 3.1 Calculation of heuristic functions H(n).

Rung # Redundant
Component

Length
Difference

Matching Component and
Examined Bit

Misplaced
Logic Component

Misplaced
Examined Bit

H(n)

1 -2 -|3-4|= -1 +1 -|1-4| - |2-2| - |3-1|
= -5

-|1-1| - |2-3| - |3-4|
= -2

-9

2 -2 -|3-4|= -1 +1 -|1-4| - |2-2| - |3-1|
= -5

-|1-3| - |2-1| - |3-4|
= -4

-11

3 0 -|3-3|= 0 +1 -|1-2| - |2-1| - |3-1|
= -4

-|1-1| - |2-3| - |3-2|
= -2

-5*

4 -1 -|3-2|= -1 0 -|1-2| - |2-0| - |3-1|
= -5

-|1-1| - |2-1| - |3-2|
= -2

-9

21

3.4 Proposed System

3.4.1 System Architecture

After extensively examining the pros and cons of intelligent tutoring systems in

Chapter II, we want to propose our system architecture as an effective means of

achieving the research objectives listed in Chapter I. Our overall system architecture is

shown in Figure 3.4, and the detail relations between the components of the architecture

are described in the following sections.

3.4.2 User Interface

When it comes to student learning, we cannot put all the concentration on the

backend system development. The user interface is also important; it should be designed

in a manner that attracts students’ interest, and should encourage students’ long-term

retention of the concepts through the vivid animations of the user interface. Thus, the

layout of the user interface is given much consideration here. A learning style

questionnaire was conducted prior to the design of the ITS prototype. Figure 3.5 shows

the learning preference distribution of 12 participants who voluntarily took this

questionnaire. The X-axis of the distribution indicates the preference for visualized

learning or verbal learning. A higher X-axis index means the student prefers more verbal

and less visualized tutoring. A lower X-axis index means the student prefers less verbal

and more visualized tutoring. From this bar chart distribution, we can see that the

students desire more visualized pictures and diagrams when they are learning some

domain knowledge.

22

Figure 3.4 Proposed system architecture.

Pre-test

Student Model

Tutor Model

Post-test
U

ser Interface

Go to specific problem
based on student’s
knowledge level

Classify student’s
knowledge level

Questions
Database

Randomly selected test questions

Log in
Required Background
Knowledge & Problem Goal

Problem Overview
&

Experiment Instructions

Problem
Experiment

Answers
Database

Check Answer

most similar /
matching
error pattern

Error Patterns
Database

no Heuristic
Function

Edit

Tutorial of selected

Error Message Insert user’s first pattern into DB

Show Error Messages of matching

Error Pattern

Tutorial

Test

no

yes

of each knowledge level

Tutorial & Test
Database Check Answer

Loading tutorials

23

Learning Preference Distr ibution

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11

Visual vs. Verbal

nu
m

be
r

of
 s

tu
de

nt
s

Figure 3.5 Student learning preference distribution.

Our current modified ITS is designed according to the system evaluation feedback

and learning style of the voluntary participants and is much more friendly and

understandable than our prototype design. In addition to pictorial illustration of problems,

we also include the animations of switch control of Virtual Programmable Logic

Controller (VPLC) to help students easily discover solutions for the problems.

3.4.3 Pre-test

Instead of making the assumption that every student does not know the concepts in

this PLC domain, we prefer to offer a dynamic pre-test to learn and classify the students

into different levels – beginner, intermediate, or professional – in the beginning. The

questions of the pre-test will be generated one by one, and the generation of each

question is based on the answer of the previous question the students answer. The

difficulty of the questions asked are in accordance with the level in which they are

categorized, and are randomly drawn to test the student’s knowledge. The student will be

24

tested beginning with the simplest concept about PLC, and then the system will

gradually adjust the concept difficulty to determine the extent of the student’s

knowledge. In our testing procedure, the student will be asked questions of the next

difficulty level if and only if he/she answers two questions correctly in a row.

3.4.4 Problem Selection

 In our evaluation system, we develop ten problems, named from Problem1 to

Problem10, to help students become familiar with the possible situations in which they

might apply the PLC concepts. These ten problems are carefully selected from

commonly used PLC experiment laboratories, and classified into three different levels

based on the difficulties of solving them. In our system classification, Problem1 and

Problem2 belong to knowledge level one – beginner level. Problem3 to Problem5 belong

to the second knowledge level – intermediate. The third knowledge level –

professional – includes Problem6 to Problem10. The required concepts of each problem

are listed in Table 3.2. Each concept in this table will be explained in Section 4.2 where

we will talk about the introduction to ladder diagram programming.

25

Table 3.2 Predefined student knowledge level and concepts classification.

 Classified Problems Required Concepts for each Problem
Problem1 XIC, XIO, OTE, NO, NCSR, NOSR, Examined Bit, Parallel/Serial Structure Knowledge Level 1

Problem2 XIC, XIO, OTE, NO, NCSR, NOSR, Examined Bit, Parallel/Serial Structure

Problem3 XIC, XIO, OTE, NO, NCSR, NOSR, Examined Bit, Parallel/Serial Structure,
Lock/Unlock switch

Problem4 XIC, XIO, OTE, NO, NCSR, NOSR, Examined Bit, Parallel/Serial Structure,
Seal State

Knowledge Level 2

Problem5 XIC, XIO, OTE, NO, NCSR, NOSR, Examined Bit, Parallel/Serial Structure,
Seal State, Closed Circuit

Problem6 XIC, XIO, OTE, NO, NCSR, NOSR, Examined Bit, Parallel/Serial Structure,
Seal State, Closed Circuit, EN bit, DN bit, Preset value, Accum value, Timer
Base, TON, TOF, CTU

Problem7 XIC, XIO, OTE, NO, NCSR, NOSR, Examined Bit, Parallel/Serial Structure,
Seal State, Closed Circuit, EN bit, DN bit, Preset value, Accum value, Timer
Base, TON, TOF, CTU

Problem8 XIC, XIO, OTE, NO, NCSR, NOSR, Examined Bit, Parallel/Serial Structure,
Seal State, Closed Circuit, EN bit, DN bit, Preset value, Accum value, Timer
Base, TON, TOF, CTU

Problem9 XIC, XIO, OTE, NO, NCSR, NOSR, Examined Bit, Parallel/Serial Structure,
Seal State, Closed Circuit, EN bit, DN bit, Preset value, Accum value, Timer
Base, TON, TOF, CTU

Knowledge Level 3

Problem10 XIC, XIO, OTE, NO, NCSR, NOSR, Examined Bit, Parallel/Serial Structure,
Seal State, Closed Circuit, EN bit, DN bit, Preset value, Accum value, Timer
Base, TON, TOF, CTU

26

The relations among the concepts used in these ten problems are shown in Figure

3.6 as a Directed Acyclic Graph (DAG). The required concepts for testing these 10 Flash

problems are displayed in this network where the difficulty of the concepts grows with

the number of the levels. Furthermore, the directed edge from one node (A) to another

node (B) means that before doing B, A must be learned first. The system will bring the

student to different problems based on his/her pre-test result, and then will go through

the subsequent problems until the student finishes the last problem (Problem10).

 The figure also indicates that there are three knowledge levels – beginner,

intermediate, and professional – in the ITS design. We can see that Problem1 and

Problem2 belong to the beginner level (Knowledge Level 1), Problem3 to Problem5

belong to intermediate level (Knowledge Level 2), and Problem6 to Problem10 are in

the professional level (Knowledge Level 3). The classifications of these 10 problems are

totally based on the difficulties of the domain concepts. When the student moves from

the current level to the next level, the problems in the next level will contain more

concepts and are harder than those in the current level.

27

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

Figure 3.6 Directed acyclic graph, where white circles means concepts and yellow
rectangles represent 10 Flash PLC problems, respectively.

XIC XIO OTE

Basic

Examined Bit Parallel structure Serial structure

#1 #2

#3 #4

#9

#6 #7

#8 #10

DN
EN

Preset

Accum

CTU Timer Base

TON TOF

Seal state

Lock/Unlock

#5

Closed circuit

beginner

intermediate

professional

(Hardware Knowledge) (Logics Knowledge)

28

3.4.5 User Sequence Generation

 After the student reads the statement of each problem, he/she will try to manipulate

the toolbox to create some rung configuration in the working area. Then, the system will

send this configuration from the client side to the server side and store this configuration

into the database. The transfer of the configuration into the records in the database is

based on the location, or coordinate, of each component. The coordinate mapping and

detail system interface will be explained further in Chapter IV. In the sections below, the

comparison and mapping of different configurations are mainly based on the coordinate

of each component.

3.4.6 Answer Comparison

 Sections 3.4.6 to 3.4.9 are explained by the system flowchart shown in Figure 3.7.

After the student completes the current problem’s configuration, the system will

compare this configuration with each of the answers in the database. This comparison

includes the location, logic, and examined bit of each component in this configuration. If

components in the current configuration are totally matched with the components in one

of the possible answer patterns, the system will congratulate the student and bring

him/her to the next problem. If the current user configuration is incorrect, the system

will compare this configuration with existing error patterns in the database using

heuristic functions.

29

Figure 3.7 System flowchart.

yes 1. Matching correct sequence.
2. Go to similar/harder
question.

matching with correct
sequences in DB

no

Using Heuristic function
H(n) to match with error
sequences in DB

yes

Based on the possible concept
errors of the matching error
sequence, go to selected error
concept.

no

Jump to the tutorial of this
concept/misconception.

Test this concept/misconception

yes

no

1. Insert current error sequence into DB.
2. Record this error.

next

Post-test

exit

next

next

30

3.4.7 Mapping with Heuristic Functions

 In order to discern the most similar or matching student pattern related to the

current user’s configuration, we embed heuristic functions inside the Student Model to

approximate the error pattern that has the closest similarity. Once the most similar error

pattern is identified, the incorrect or misunderstood concepts of that error pattern will be

shown to the user. The user will then have a better understanding of what concepts

he/she is not clear about.

 Once the student runs the program to execute his/her rung configuration, the system

will insert his/her configuration into the Error Patterns table in Microsoft Access 97

database first, and then keep recording the concepts he/she chooses to learn during the

problem experiment stage. The Error Patterns table will have growing error patterns and

will have higher accuracy pinpointing the errors for the coming users’ rung

configurations.

3.4.8 Tutorials and Tests

 Based on the displayed error concepts mentioned in section 3.4.7, the student will

choose any of his/her misunderstood concepts. The Tutor Model will then bring up the

tutorials of the selected error concept, teach the student the concept carefully and

comprehensively, and then generate some test questions to evaluate the student’s

understanding of this concept. Once the student has learned the concept by passing the

concept test questions, the system will bring the student back to the original problem to

let the student do the experiment again.

31

3.4.9 Pre-exam and Post-exam

 In order to evaluate the performance of our developed ITS, we mounted our

tutoring system on the server, and allow everyone who can access the internet to test it.

The participants are voluntary for this system evaluation and are anonymous.

Before the participants use the ITS to increase their understanding of PLC concepts,

we let them take the paper exam (pre-exam) first. The problems in this exam will test the

participants’ knowledge about PLC concepts on which they will be tutored in this ITS.

After the participants finish all the problems in the ITS including tutoring and

debugging of these problems provided by the intelligent system, we give the participants

another paper exam (post-exam). Each problem has the same required concepts as the

problems in the original pre-exam, but has different problem designs that asking the

same question in a different way in an effort to test their knowledge level again. We then

grade this post-exam and compare the test grade of the post-exam with the pre-exam to

determine how much the student learned from this intelligent tutoring system. In our

current results, we found three participants to do the system evaluation.

32

CHAPTER IV

SYSTEM IMPLEMENTATION

4.1 System Programming and Environment Setting

 In our system implementation, we use PHP 5 Scripting language, Macromedia

Flash 2004 ActionScript language, Java, JavaScript, Apache 2 Server, and Microsoft

Access 97 database (see Figure 4.1) to build the intelligent system. The complete

hierarchical function list is shown in the Appendix. Once the student gets into the

experiment window, does some drag-and-drop actions to finish his/her configuration,

and then runs the program, the system will send the configuration stream from the client

side to the server side. Then, the PHP scripts behind the Apache server will execute the

required calculations and comparisons to store/retrieve data from the Access 97 database.

The results will then be sent back to the client side.

Figure 4.1 Programming tools and program execution flow.

Server Side

Flash ActionScript

JavaScript

Client Side

Apache 2
Server

Microsoft
Access 97

internet PHP5
Scripts

Store & Retrieve
data

33

 During summer 2006, we developed a VPLC system that contains 10 Flash

problems. For each of these 10 problems, there is first a problem statement and operation

instructions, and then the students will do the drag-and-drop operations to complete the

rung configuration. In this system, when the student makes some errors, the ITS just

provides related feedback that tells what and where errors might exist and then leaves

the errors for the student to solve. In our current work, we try to implement the heuristic

functions to map the current user’s error pattern with existing error patterns in the

Student Model. Then, based on the most similar/matching error pattern, we guide the

current student through his errors based on the errors in the matching pattern.

4.2 Introduction to Programming Logic Diagrams

4.2.1 Ladder Diagram Introduction

 Given the problem statement, the goal of ladder diagrams is to assign the rung

configuration I/O ports and logic components to meet the requirements of the problem

statement. If there is some problem with the configuration, the user will need to re-edit

and verify the program.

4.2.2 Included Ladder Diagram Concepts

 In our thesis research, we extract the most important and commonly used logic

components in the PLC problems and put them into our intelligent tutoring system.

These logics include Examine if Closed (XIC), Examine if Open (XIO), Output Energize

(OTE), Timer On-Delay (TON), Timer Off-Delay (TOF), and Count Up (CTU); these

are all explained in Tables 4.1 and 4.2.

34

Table 4.1 Detail explanation of PLC software components.

Enable Bit (EN) EN bit is set when rung conditions are true, and remains set until rung
conditions go false.

Timing Bit (TT) TT bit is set when rung conditions are true, and is reset when run conditions
go false or when the DN bit is set.

Done Bit (DN) DN bit is set when accumulated value is equal to or greater than the preset
value. The DN bit is reset when rung conditions go false.

Count Up Enable Bit (CU) CU bit is set when rung conditions are true, and remain set until rung
conditions go false.

Examined Bit

Count Reset Bit (RES) Use a RES instruction to reset a timer or counter.
-----] [----- Examine if Closed (XIC).

Use the XIC instruction in your ladder program to determine if a bit is On.
-----] / [----- Examine if Open (XIO).

Use an XIO instruction in your ladder program to determine if a bit is Off.
-----()----- Output Energize (OTE).

Use an OTE instruction in your ladder program to turn On a bit when rung
conditions are evaluated as true.

TON

------ PR 3600 -----
AC 0

Timer On-Delay (TON).
Use the TON instruction to delay the turning on or off of an output.

TOF

----- PR 7000 -----
AC 0

Timer Off-Delay (TOF).
Use the TOF instruction to delay turning on or off an output.

Logic

CTU

----- PR 5 -----
AC 0

Count Up (CTU).
The CTU is an instruction that counts false-to-true rung transitions.

35

Table 4.2 Detail explanation of PLC hardware components.

Normally Open (NO).
The NO switch enables the input pin when it is closed, and disables it when it
is open.

Normally Closed (NC).
The NC switch enables the input pin when it is closed, and disables it when it
is open.

Normally Closed Spring Return (NCSR).
Similar to NO switch, NCSR switch enables the input pin when it is released,
and disables it when it is pressed.

Switch

Normally Open Spring Return (NOSR).
Opposite to the NCSR switch, NOSR switch enables the input pin when it is
pressed, and disables it when it is released.

36

4.2.3 An Example of the Rung Configuration

 An example of one simple rung configuration is shown in Figure 4.2. The way the

system scans the rung configuration is from left to right and then top to down, and the

enable/disable status of each location is identified through the selected examined bit and

logic component. In order to make the location enabled, both the selected examined bit

and selected logic component should be correct. Should any one of them be incorrect, it

will disable the location. The example configuration also includes a parallel structure –

SW6 component – which provides another path to enable the logic component behind it,

in this case, Fan.

Figure 4.2 An example of the rung configuration. In this rung configuration, L1 and L2

represent lights, and SW6 represents switch #6.

 L1 L2 Fan
I:000/01 I:000/02 O:000/02

-----------] [---------------] [-------------------()----------------

 SW6
 I:000/03
 ------] [---------------------------

37

4.3 User Configuration Mapping

 After introducing a simple rung example in Section 4.2.3, now we look deeper into

the implementation strategy of our system. Sections 4.3.1 to 4.3.3 detail the explanation

of our implementation strategy, including coordinate mapping, coordinate recalculation,

and path enable/disable determination.

4.3.1 Coordinate Mapping

 Our backend design of the working area is composed of five hidden complicated

rung structures, one of which is shown in Figure 4.3. Each hidden rung structure has an

identical shape but different location indices. Each hidden rung structure contains 20

locations, and each location is assigned a unique (X, Y) value. These unique (X,Y)

values are used to remember the ordering of each location and also for the coordinate

recalculation.

Figure 4.3 System working area setting of one of the hidden rungs.

------ ------- --

-- - - -- --- --- -- ---- --------- -- --------

-- -- -- -- --- --- -- ---- --------- -----------

1,1 2,1 3,1 4,1 5,1 6,1

1,2 2,2 3,2 4,2 5,2 6,2

1,3 2,3 3,3 4,3 5,3 6,3

38

4.3.2 Coordinate Recalculation

 Suppose the user has finished his/her rung setting. The system will use the (X,Y)

values to rearrange the placement of the existent locations; it will remove the

blank/hidden locations, and also reassign the (X,Y) values to these locations (see Figure

4.4 and 4.5).

Figure 4.4 Before coordinate recalculation of one of the hidden rungs. Suppose the gray

areas represent the logics and examined bits configured by the user.

Figure 4.5 After coordinate recalculation of one of the hidden rungs.

------ ------- --

-- --

1,1 2,1 3,1

2,2

------ ------- --

-- - - -- --- --- -- ---- --------- -- --------

-- -- -- -- --- --- -- ---- --------- -----------

1,1 2,1 3,1 4,1 5,1 6,1

1,2 2,2 3,2 4,2 5,2 6,2

1,3 2,3 3,3 4,3 5,3 6,3

39

4.3.3 Path Enable/Disable Determination

 After the coordinate recalculation process, the system will then display the

enable/disable status of each component. For the components that are not output logics,

such as XIC and XIO, the enable/disable status of them is determined by their examined

bits and logic components, for instance, the (1,1), (2,1), and (2,2) locations in Figure 4.6.

For other components, in this case, the (3,1) location in Figure 4.6, the enable/disable

status of them is based on the components before it on the path. For example, if we want

the (3,1) location to be enabled, the locations in the red path – (1,1) and (2,1) – or the

green path – (1,1) and (2,2) – should both be enabled.

Figure 4.6 Path enable/disable determination of one of the hidden rungs.

------ ------- --

 -- --

1,1 2,1 3,1

2,2

40

4.4 System Layout Snapshot

Our system snapshot of the main page is shown in Figure 4.7. We divide this figure

into different parts with each enclosed in a red rectangle, and explain the function of

each of them as follows. The placement of each area is from the feedback of the

evaluation participants. Area A shows our virtual design of the Programmable Logic

Controller. The left-hand side of it includes the input pins and the control switches; the

right-hand side of it includes the output pins and output devices (i.e., fans in this system

snapshot). Area B gives a quick review of the problem statement and also instructions on

how to manipulate the toolbox shown in Area E. Area D lists all buttons that will be

used to configure the user’s setting. The user will use the toolbox to complete his/her

configuration in Area F, and then click the Run button in Area D to test his/her

configuration. When executing the user’s rung configuration, the ITS system will do

some calculations and comparisons to discern the answer or matching error pattern. To

help the user identify mistakes in the user configuration, the system will present possible

physical errors by highlighting rectangles shown in Area F, and giving suggestions for

related concepts that the user might not know and might help the user to solve the errors

in Area C.

41

Figure 4.7 System snapshot of the experiment window.

A

B

C

E F

D

42

CHAPTER V

EVALUATION AND RESULTS

5.1 Introduction

For the system evaluation, we put the web-based system on the public internet, and

allow users all over the world to access the system and learn the domain knowledge from

it. We then evaluated our system’s performance through an analysis of participating

users’ learning progress, including such factors as learning time for each problem and

posterior questionnaire after participants finish their work. We also developed our

simulation model to simulate the relationship of students’ proficiency and

problem-solving time described in Section 5.2.4. The justification of robustness of the

learning algorithm and system adaptivity is also demonstrated through the experiments

described in Sections 5.2.1 and 5.2.2.

Our expected result is that this web-based system will help students quickly and

efficiently learn the PLC concepts and give them an enormous feeling of satisfaction.

5.2 Simulation Experiments and Results

 For our system evaluations, we design experiments and evaluation that include the

learning algorithm robustness testing, and system adaptivity testing, participant

evaluation, and system model simulation; each of which will be explained in the

following four sub-sections.

5.2.1 Heuristic Function Accuracy

 The objective of our second experiment is to test the accuracy of different number

43

of heuristic functions. Our hypothesis is that there is a function effect on matching the

accuracy of error patterns, and by applying different combinations of our proposed

heuristic functions, we can get diverse accuracy measurements.

Our method is to classify possible user configurations based on the error concepts

first and then randomly generate trial user configurations for each classified combination

of error concept(s). We use these randomly generated trial user configurations to run

different combinations of heuristic functions to determine the mapping result. Table 5.1

enumerates all possible combinations of error concepts required to solve Problem1 and

also gives corresponding rung configurations to these concepts; Table 5.2 shows

matching patterns and mapping results of randomly generated trial user configurations

for the combinations of error concepts for Problem1.

Table 5.3 shows the results of our experiment, where HF1 means the simplest

heuristic function, and HF5 represents the most complete one. Each of the calculated

results in the table derives from the ratio of matching patterns to all trial user

configurations. Figure 5.1 visualizes the data in Table 5.3. From this figure, we can see

that HF5 has the best accuracy for each problem, almost 90 percent accuracy on average.

That is, with the increasing number of proposed heuristic functions, the mapping result

will become more and more accurate.

44

Table 5.1 Error patterns of Problem1.

index

Combinations
of

Error Concepts

Error Patterns for this Concept

Pattern Name

1 XIC I:000/01 O:000/02
|-----------] / [----------------------------()-------------|
 | I:000/03 |
 ---------] / [--------

User0101

2 XIO I:000/01 O:000/02
|-----------] [----------------------------()-------------|
 | I:000/03 |
 ---------] [-------

User0102

3 OTE I:000/01 O:000/02
|-----------] [----------------------------] [-------------|
 | I:000/03 |
 ---------] / [--------

User0103

4 Examined Bit I:000/03 O:000/02
|-----------] [----------------------------()-------------|
 | I:000/03 |
 ---------] / [--------

User0104

5 Parallel/Serial
Structure

 I:000/01 I:000/03 O:000/02
|-----------] [--------------------] / [---------------()-------------|

User0105

6 XIC + XIO I:000/01 O:000/02
|-----------()----------------------------()-------------|
 | I:000/03 |
 ---------()--------

User0106

45

Table 5.1 Continued.

index
Combinations

of
Error Concepts

Error Patterns for this Concept

Pattern Name

7 XIC + OTE I:000/01 O:000/02
|-----------] / [----------------------------] / [-------------|
 | I:000/03 |
 ---------] / [--------

User0107

8 XIC +
 Examined Bit

 I:000/03 O:000/02
|-----------] / [----------------------------()-------------|
 | I:000/03 |
 ---------] / [--------

User0108

9 XIC +
Parallel/Serial

Structure

 I:000/01 I:000/03 O:000/02
|-----------] / [-----------------] / [-----------------()-------------|

User0109

10 XIO + OTE I:000/01 O:000/02
|-----------] [----------------------------] [-------------|
 | I:000/03 |
 ---------] [--------

User0110

11 XIO +
Examined Bit

 I:000/03 O:000/02
|-----------] [----------------------------()-------------|
 | I:000/03 |
 ---------] [--------

User0111

12 XIO +
Parallel/Serial

Structure

 I:000/01 I:000/03 O:000/02
|-----------] [-----------------] [-----------------()-------------|

User0112

13 OTE +
Examined Bit

 I:000/03 O:000/02
|-----------] [----------------------------] [-------------|
 | I:000/03 |
 ---------] / [--------

User0113

46

Table 5.1 Continued.

index
Combinations

of
Error Concepts

Error Patterns for this Concept

Pattern Name

14 OTE +
Parallel/Serial

Structure

 I:000/01 I:000/03 O:000/02
|-----------] [-----------------] / [-----------------] [-------------|

User0114

15 XIC + XIO +
Examined Bit

 I:000/03 O:000/02
|-----------()---------------------------- ()-------------|
 | I:000/03 |
 ---------()--------

User0115

16 XIC + XIO +
Parallel/Serial

Structure

 I:000/01 I:000/03 O:000/02
|-----------()----------------- ()----------------- ()-------------|

User0116

17 XIC + OTE +
Examined Bit

 I:000/03 O:000/02
|-----------] / [----------------------------] / [-------------|
 | I:000/03 |
 ---------] / [--------

User0117

18 XIC + OTE +
Parallel/Serial

Structure

 I:000/01 I:000/03 O:000/02
|-----------] / [-----------------] / [-----------------] / [-------------|

User0118

19 XIO + OTE +
Examined Bit

 I:000/03 O:000/02
|-----------] [----------------------------] [-------------|
 | I:000/03 |
 ---------] [--------

User0119

47

Table 5.1 Continued.

index
Combinations

of
Error Concepts

Error Patterns for this Concept

Pattern Name

20 XIO + OTE +
Parallel/Serial

Structure

 I:000/01 I:000/03 O:000/02
|-----------] [-----------------] [-------------------] [-------------|

User0120

21 XIC + XIO +
Examined Bit +
Parallel/Serial

Structure

 I:000/03 I:000/03 O:000/02
|-----------()----------------- ()------------------- ()-------------|

User0121

22 XIO + OTE +
Examined Bit +
Parallel/Serial

Structure

 I:000/03 I:000/03 O:000/02
|-----------] [-----------------] [-------------------] [-------------|

User0122

23 XIC + OTE +
Examined Bit +
Parallel/Serial

Structure

 I:000/03 I:000/03 O:000/02
|-----------] / [-----------------] / [-------------------] / [-------------|

User0123

48

Table 5.2 Matching patterns and accuracy measurements of Problem1.
Matching Pattern / Accuracy Index Combinations of Error Concepts

HF1 HF2 HF3 HF4 HF5
User0101 User0101 User0101 User0106 User0106 1 XIC

+ + + + +
User0102 User0102 User0102 User0106 User0106 2 XIO

+ + + + +
User0103 User0103 User0103 User0103 User0103 3 OTE

+ + + + +
User0104 User0104 User0104 User0118 User0115 4 Examined Bit

+ + + - +
User0101 User0101 User0101 User0106 User0115 5 Parallel/Serial Structure

- - - - -
User0106 User0106 User0106 User0106 User0115 6 XIC + XIO

+ + + + +
User0107 User0107 User0107 User0107 User0117 7 XIC + OTE

+ + + + +
User0105 User0106 User0106 User0101 User0109 8 XIC +

 Examined Bit - + + + +
User0107 User0107 User0106 User0109 User0123 9 XIC + Parallel/Serial Structure

- - - + +
User0110 User0110 User0110 User0110 User0119 10 XIO + OTE

- - - - +

49

Table 5.2 Continued.
Matching Pattern / Accuracy Index Combinations of Error Concepts

HF1 HF2 HF3 HF4 HF5
User0103 User0103 User0106 User0102 User0112 11 XIO +

Examined Bit - - + + +
User0112 User0110 User0110 User0106 User0122 12 XIO + Parallel/Serial Structure

+ + + + +
User0107 User0107 User0107 User0114 User0117 13 OTE +

Examined Bit - - - - +
User0120 User0120 User0103 User0110 User0122 14 OTE + Parallel/Serial Structure

+ + - - +
User0106 User0106 User0106 User0106 User0116 15 XIC + XIO + Examined Bit

- - - - -
User0106 User0106 User0116 User0116 User0121 16 XIC + XIO + Parallel/Serial

Structure - - + + +
User0107 User0107 User0107 User0117 User0117 17 XIC + OTE + Examined Bit

- - - + +
User0107 User0118 User0118 User0118 User0123 18 XIC + OTE + Parallel/Serial

Structure - + + + +
User0110 User0110 User0110 User0110 User0119 19 XIO + OTE + Examined Bit

- - - - +
User0103 User0103 User0120 User0120 User0122 20 XIO + OTE + Parallel/Serial

Structure - - + + +
User0106 User0106 User0106 User0116 User0116 21 XIC + XIO + Examined Bit +

Parallel/Serial Structure - - - + +

50

Table 5.2 Continued.
Matching Pattern / Accuracy Index Combinations of Error Concepts

HF1 HF2 HF3 HF4 HF5
User0110 User0103 User0120 User0120 User0122 22 XIO + OTE + Examined Bit +

Parallel/Serial Structure - - + + +
User0107 User0107 User0107 User0118 User0123 23 XIC + OTE + Examined Bit +

Parallel/Serial Structure - - - - +
Matching Patterns/Total Tests 8/23 10/23 13/23 15/23 21/23
Floating-point representation .35 .44 .57 .65 .91

51

Table 5.3 Use different number of heuristic functions to find the average mapping accuracy. Each of the calculated results in
the table derives from the ratio of matching patterns to all trial user configurations.

Average Accuracy Number of
Error Patterns HF1 HF2 HF3 HF4 HF5

Problem1 23 .35 .44 .57 .65 .91
Problem2 23 .32 .47 .63 .60 .88
Problem3 23 .38 .52 .66 .64 .92
Problem4 36 .27 .37 .53 .73 .82
Problem5 36 .31 .39 .49 .76 .90
Problem6 14 .36 .43 .56 .71 .83
Problem7 14 .24 .46 .48 .69 .86
Problem8 28 .34 .44 .53 .64 .85
Problem9 27 .29 .53 .56 .75 .88

Problem10 14 .18 .36 .51 .77 .84

52

Mapping Accuracy of Heuristic Functions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

Different Heuristic Functions

A
ve

ra
ge

 A
cc

ur
ac

y
of

 E
ac

h
H

eu
ri

st
ic

 F
un

ct
io

n
Problem1

Problem2

Problem3

Problem4

Problem5

Problem6

Problem7

Problem8

Problem9

Problem10

Figure 5.1 Mapping accuracy based on different number of heuristic functions. Indices of X-axis represent how many heuristic

functions are applied for all 10 problem’s accuracy measure (i.e., HF1 to HF5, from left to right).

53

5.2.2 System Adaptivity

 The objective of our last experiment analysis is to test system adaptivity. In order to

evaluate this properly, we create three databases that contain different numbers of error

patterns – DB1, DB2 and DB3 – and use the most complete heuristic function, HF5, to

test the accuracy difference among these databases. In our experiment setting, DB3

contains the most error patterns, DB2 removes one-third of the error patterns in DB3,

and DB1 removes half of the error patterns in DB2. The procedures to develop these

three databases are listed as follows

1. Enumerate all possible combinations of error concepts for each problem.

2. Carefully design patterns for these combinations of error concepts.

3. Insert these patterns into the databases as built-in error patterns.

4. Carefully design trial user patterns for these combinations of error

concepts.

5. Use the web-based tutoring system to test the heuristic function mapping

accuracy of these trial user patterns.

From Table 5.4, we can see that each problem has different numbers of error

patterns in DB1, DB2 and DB3, and the system will find increasingly similar error

patterns when the databases contain more error patterns. Figure 5.2 demonstrates a

graphic display of the data in Table 5.4. From this figure, we can see that for each

problem, the mapping accuracy becomes more precise with the increasing number of

error patterns. The indices on the X-axis, from left to right, indicate DB1, DB2 and DB3,

respectively.

54

Table 5.4 Use HF5 to measure the average accuracy based on different databases. Each of the calculated results derives from
the average of 10 user configurations.

Number of Error Patterns / Average Accuracy
DB1 DB2 DB3

8 16 23 Problem1
.52 .74 .91
8 16 23 Problem2

.56 .68 .88
8 16 23 Problem3

.48 .65 .92
12 24 36 Problem4
.59 .67 .82
12 24 36 Problem5
.38 .76 .90
4 8 14 Problem6

.46 .79 .83
4 8 14 Problem7

.49 .72 .86
9 18 28 Problem8

.53 .69 .85
9 18 27 Problem9

.41 .81 .88
4 8 14 Problem10

.47 .71 .84

55

Accuracy Distribution of different databases

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

Different Databases

A
ve

ra
ge

 A
cc

ur
ac

y

Problem1

Problem2

Problem3

Problem4

Problem5

Problem6

Problem7

Problem8

Problem9

Problem10

Figure 5.2 System adaptivity based on different databases. Database 3 (DB3) has the most complete error patterns, Database 2

(DB2) removes one-third of the error patterns in DB3, and Database 1 (DB1) removes half of the error patterns in DB2.

56

5.2.3 Participant Evaluation

 In the participant evaluation, we give the participants a pre-exam of 10 problems

before they do the system experiment, and we then grade their answers. After they

evaluate the system and complete all 10 problems, we let them take the paper exam

again (post-exam), the problems of which cover the same required concepts as the

problems in the original exam (pre-exam). The objective of the post-exam is to test the

users’ understanding of the PLC concepts, and thus give us a performance measurement

of our developed tutoring system.

Table 5.5 shows the learning performance of the evaluating participants. From the

table, we can see that before using the tutoring system, the participants have knowledge

proficiency between 0.5 and 0.7 (i.e., test scores are 52, 58, and 76). After the students

use the tutoring system, it will help the students solve the 10 problems and learn all the

required concepts. Figure 5.3 shows a graphic display of Table 5.5. We can see that the

system improved the users’ understanding of PLC domain knowledge.

57

Table 5.5 User test score before and after the system experiment.
User1 User2 User3

Before After Before After Before After
Problem1 10 10 8 10 8 10
Problem2 6 10 8 10 10 10
Problem3 6 10 8 10 0 10
Problem4 8 10 2 10 10 10
Problem5 10 10 10 10 10 10
Problem6 4 10 10 10 10 10
Problem7 8 10 10 10 10 10
Problem8 0 10 6 10 0 10
Problem9 0 10 4 10 0 10

Problem10 0 10 10 10 0 10
Total Score 52 100 76 100 58 100

User Test Score

0

20

40

60
80

100

120

1 2 3

identity of users

T
es

t S
co

re

Before system experiment

After system experiment

Figure 5.3 User performance before and after the system experiment.

58

5.2.4 Model Simulation

The objective of this model simulation is to show that different levels of knowledge

proficiency affect the problem-solving time. The system simulation model is shown in

Figure 5.4. This model expresses the relations among these 10 problems. The nodes

represent the problems and the edges represent the user’s proficiency in passing or

failing the problems. The user will be classified into one of the three knowledge levels

from the result of the pre-test node, and begins with the problems of that level. If the

user successfully completes one problem, the system will bring him/her to the next

problem which will be harder; if he/she fails, the system will keep him/her staying at the

same problem for further concept tutoring. The parameters of the edges will vary in

accordance with the user’s learning progress. In our model simulation experiment, when

the user fails, we increase the edge value (probability) of passing the problem by 0.1

each time, and then the edge value will finally reach the upper limit (1.0) if the user

keeps trapping in the same problem too many times.

Once the student gets into the Done node in the simulation model, that means

he/she has finished all ten problems or has learned all PLC concepts and solved all of the

experimented problems. Before doing the model simulation, we ask the participants to

evaluate the system, and we collect the real experiment time for each problem (see

Figure 5.5). When the participants use the system, we ask them to finish each problem

individually and as fast as possible. The goal of this is to eliminate some unnecessary

factors that might distort the problem-solving time, such as the student taking a nap or

talking to other people during the system experiment.

59

Figure 5.4 State diagram of the change of problems for a professional student (i.e., 80%
chance pass for each problem at the first time).

Student ID

Knowledge Level 1
(0.1)

Knowledge Level 2
(0.1)

Knowledge Level 3
(0.8)

User

Problem2

Problem3

Problem4

Problem5

Problem6

Problem7

Problem8

Problem9

Problem10

Done

0.8

0.8
0.8

0.8

0.8 0.8

0.8

0.8

0.8

0.8

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

pretest

0.2

60

Time to Solve each Problem

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Problem Index

Pr
ob

le
m

-S
ol

vi
ng

 T
im

e
(m

in
ut

es
)

User1

User2

User3

Figure 5.5 Student experiment time of all 10 problems.

61

Because we have only found three voluntary participants to do the system

experiment at this time, we use triangle distributions to simulate the execution time of

each problem. Table 5.6 shows the triangle distributions of these ten problems, and the

parameters of each triangle distribution are derived from the participants’ real

experiment time (see Figure 5.5). The second parameter of each of the triangle

distribution is derived from the mode of participants’ problem-solving time. Since we

only found three participants to collect their evaluation data (i.e., only have three values

for each problem and each of these values is suitable for being the mode), we take the

middle one of these three values to be the mode.

Figure 5.6 illustrates the triangle distribution of Problem1. The three points from

left to right in the X-axis indicate the increasing problem experiment time given in Table

5.6. Figure 5.7 shows the results of simulation students who have different proficiency

levels, and indicates that there are 1000 simulation students in each proficiency level in

our experiment. From this figure, we can see that the user will have less experiment time

if he/she has higher knowledge proficiency. The system simulation program will take

longer time to exit the simulation process when the proficiency of the user is lower.

62

Table 5.6 Triangle distribution and its parameters for all 10 problems.

 Distribution and Parameters (minutes)
Problem1 Triangle_Distribution (4.38, 5, 5.3)
Problem 2 Triangle_Distribution (6.22, 7.85, 10.88)
Problem 3 Triangle_Distribution (12.6, 13.74, 15.57)
Problem 4 Triangle_Distribution (12.58, 12.94, 13.69)
Problem 5 Triangle_Distribution (13.49, 14.1, 29.99)
Problem 6 Triangle_Distribution (9.96, 10.56, 13.25)
Problem 7 Triangle_Distribution (8.59, 10.35, 14.8)
Problem 8 Triangle_Distribution (6.36, 11.63, 12.4)
Problem 9 Triangle_Distribution (10.71, 13.74, 22.39)
Problem 10 Triangle_Distribution (4.83, 5.92, 8.25)

Figure 5.6 Triangle distribution of Problem1.

Tutor

Probability density function

4.38 5 5.3

User2.17

Problem-Solving Time

63

Time span on system versus Knowledge proficiency

203.83

414.29

339.13
280.79

235.96
175.46

156.15 138.40 126.10

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

7.00E+02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Student Proficiency

A
ve

ra
ge

 S
im

ul
at

io
n

T
im

e
(m

in
ut

es
)

Figure 5.7 System simulation time based on students who have different knowledge proficiency. The average simulation time

of each student proficiency level is from the average of 1000 students’ simulation time.

64

5.3 Summary

 In section 5.2, we carefully designed the experiments to justify the robustness and

adaptivity of our proposed system. From the model simulation results, it is easy to see

that there is a knowledge proficiency effect on problem-solving time. If the students are

more knowledgeable about PLC concepts, they will take less time to complete problems

than those who are not as proficient.

Additionally, the system experiments results show that the learning algorithm in

this system is robust enough to pinpoint the most accurate error pattern (almost 90

percent accuracy of mapping to the most similar error pattern), and the adaptive system

will have a higher accuracy of finding increasingly similar error patterns when the

database has more built-in error patterns. Last but not least, the participant evaluation

indicates that after using this system, the students will learn how to solve the problems

and have a much better performance than before.

 From the evaluation participants’ pre-exam before the system experiment, we know

that students’ proficiency levels are normally located between 0.5 and 0.7. This means

that students will take a reasonable amount of time to finish these 10 problems as

indicated by the simulation time of Figure 5.7, and the system experiment time increases

when student proficiency decreases.

65

CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summary

In our research, we first compared different development strategies of intelligent

tutoring systems before getting our hands dirty. Our research problem here is how to

design a web-based system that is intelligent and adaptive enough to teach the students

domain knowledge in Programmable Logic Controller (PLC).

 In order to solve this research problem, we proposed a system architecture which

combines the pre-test, cased-based reasoning (i.e., heuristic functions), tutorials and tests,

and post-test to customize the system to meet students’ needs according to their

knowledge level, and help them learn the PLC concepts effectively.

 We have developed an intelligent tutoring system which is mainly based on the

feedback and learning preference of voluntary participants. It includes many pictures,

colorful diagrams, and interesting animations to attract students’ attention.

Our research method uses the case-based reasoning (CBR) methodology to build

the adaptive intelligent tutoring system. The system will become more complete as the

number of built-in user patterns increases. The system utilizes our proposed heuristic

functions in order to match the current user configuration to one of the built-in error

patterns. We designed and tested various combinations of heuristic functions to discern

the fittest one. The total utility score calculated from these combined heuristic functions

is used to determine which user pattern is most similar to the current one. The current

system user will try to fix his/her errors step by step with the guidance of the matching

66

error pattern. The system will bring up the mistakes/errors of this matching error pattern

and show them to the current user, who will then use this to modify his/her current error

configuration. The system also provides detailed tutorials and tests of each concept, so

the user can choose any displayed error concept with which he/she is not familiar or does

not understand. The friendly system user interface will retain the current user’s

configuration and allow him/her to keep modifying and re-testing it to approach correct

answer.

 From the model simulation results, we can see that there is a knowledge proficiency

effect on problem-solving time. If the students are more knowledgeable about PLC

concepts, they will take less time to complete problems than those who are not as

proficient. Additionally, the system experiments results show that the learning algorithm

in this system is robust enough to pinpoint the most accurate error pattern (almost 90

percent accuracy of mapping to the most similar error pattern), and the adaptive system

will have a higher accuracy of finding increasingly similar error patterns when the

database has more built-in error patterns. Last but not least, the participant evaluation

indicates that after using this system, the users will learn how to solve the problems and

have a much better performance than before.

6.2 Conclusion and Future Work

Although we made every effort to create a system as intelligent and independent as

possible, there are some preconditions of the system. Because our research focuses on

the specific domain of Programmable Logic Controller (PLC), we assume the system

67

knows all the required concepts in this PLC domain, and it also knows the ontology

relationship among these concepts. This ontology will change when the domain varies.

Another assumption is that we will put some user/error patterns into the database as the

built-in patterns in advance. The disadvantage of this is that, for the users in the early

stage of the system experiment, they might not get accurate and definite assistance from

the system. Although we enumerated all possible combinations of the error concepts for

each problem in order to discern the best solution, this is still room for improvement.

Our future work will include the improvement of our proposed heuristic functions to

deal efficiently with more complicated rung configurations through such means as

assigning different weights to different heuristic functions, and make the system working

area more flexible by using more drag-and-drop widgets and more user instructions. We

will also try to help the students who have low knowledge proficiency and learning

performance learn all the concepts and help them gain the ability to solve these problems.

Another possible direction of our research includes the transformation from the

schematic structures to the tree structures; this will release our assumptions that the ITS

needs to know all the domain concepts and the relations among them in advance.

68

REFERENCES

Akhras, F. N. (2005). Modelling the context of learning interactions in intelligent

learning environments. Modeling and Using Context: 5th International and

Interdisciplinary Conference, (Vol. 3554) (pp. 1–14). LNCS, Berlin: Springer.

Beck, J., Stern, M., & Woolf, B. P. (1997). Cooperative Student Models. In: B. Boulay

and R. Mizoguchi (eds.). Artificial Intelligence in Education, Amsterdam, IOS

Press.

Beck, J. E., & Woolf, B. P. (1998). Using a Learning Agent with a Student Model.

Proceedings of the 4th International Conference on Intelligent Tutoring Systems,

(Vol. 1452) (pp. 6–15). LNCS, Berlin: Springer.

Bredeche, N., Shi, Z., & Zucker, J. (2006). Perceptual learning and abstraction in

machine learning: An application to autonomous robotics. IEEE Transactions on

Systems, Man and Cybernetics Part C: Applications and Reviews, 36, 172–181.

Brusilovsky, P. (1999). Adaptive and Intelligent Technologies for Web-based Education.

Kunstliche Intelligenz, 13, 19–25.

Cassin, P., Eliot, C., Lesser, V., Rawlins, K., & Woolf, B. (2004). Ontology extraction

for educational knowledge bases. Agent-Mediated Knowledge Management -

International Symposium, (Vol. 2926) (pp. 297–309). LNCS, Berlin: Springer.

Chen, C. M., Hong, C. M., & Chang, M. H. (2006). Personalized Learning Path

Generation Scheme Utilizing Genetic Algorithm for Web-based Learning. WSEAS

Transactions on Information Science and Applications, 3(1), 88-95.

69

Devedzic, V. B. (2003). Key issues in next-generation web-based education. IEEE

Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews,

33, 339–349.

Eliot, C., & Woolf, B. P. (1995). An adaptive student centered curriculum for an

intelligent training system. User Modeling and User-Adapted Instruction, 5, 67–86.

Granic, A., & Glavinic, V. (2005). Adaptive Systems and Interaction: The Design of

Personalized Interaction in Computer-based Education. Computational

Cybernetics, IEEE 3rd International Conference, Piscataway, NJ: IEEE Computer

Society, (pp. 291–296).

Haydemar, N., Cecilio, A., & Andreu, C. (2002). Rule extraction from support vector

machines. In: M. Verleysen (ed.). 10th Eurorean Symposium on Artificial Neural

Networks, Bruges, Belgium, (pp.107-112).

Helmy, T., & Shahab, S. A. (2006). Machine Learning-Based Adaptive Load Balancing

Framework for Distributed Object Computing. Advances in Grid and Pervasive

Computing - First International Conference, (Vol. 3947) (pp. 488–497). LNCS,

Berlin: Springer.

Legaspi, R. S., & Sison, R. C. (2002). A Machine Learning Framework for an Expert

Tutor Construction. Proceedings of the International Conference on Computers in

Education, Washington, DC: IEEE Computer Society, (pp. 670–674).

Mitrovic, A., & Djordjevic-Kajan, S. (1995). Interactive Reconstructive Student

Modeling: A Machine-Learning Approach. International Journal of

Human-Computer Interaction, 7, 385.

70

Petrushin, V. A. (1995). Intelligent tutoring systems: Architecture and methods of

implementation. A survey. Journal of Computer and Systems Sciences International,

33, 117–139.

Su, C. T., Chen, L. S., & Yih, Y. (2006). Knowledge acquisition through information

granulation for imbalanced data. Expert Systems with Applications, 31, 531–541.

Sindi, H. F. (2005). A machine learning approach for intelligent tutoring systems.

WSEAS Transactions on Systems, 4, 1053–1057.

Tao, L., & Li, Y. L. (2004). A synthetic intelligent system for web information mining.

Proceedings of 2004 International Conference on Machine Learning and

Cybernetics, New York, NY: IEEE Computer Society, (pp. 1357–1360).

Tsiriga, V., & Virvou, M. (2004). A framework for the initialization of student models in

web-based intelligent tutoring systems. User Modelling and User-Adapted

Interaction, 14, 289–316.

Vos, H. (2002). Optimal rules for deciding on instructional routes in intelligent tutoring

systems. International Journal of Continuing Engineering Education and Life-Long

Learning, 12, 135–148.

Wickramasinghe, L. K., & Alahakoon, L. D. (2004). Adaptive agent architecture

inspired by human behavior. Proceedings - IEEE/WIC/ACM International

Conference on Intelligent Agent Systems, IAT 2004, Los Alamitos, CA: IEEE

Computer Society, (pp. 450–453).

71

Woolf, B. P. (2004). Reasoning about teaching and learning. Lecture Notes in Artificial

Intelligence (Subseries of Lecture Notes in Computer Science), v 3040, Current

Topics in Artificial Intelligence, (pp. 1–15).

Woolf, B. P., & Murray, T. (1994). Using Machine Learning to Advise a Student Model.

In: J.E. Greer and G.I. McCalla (eds.). Student Modeling: the Key to Individualized

Knowledge-based Instruction. Berlin: Springer.

Yoo, J., Li, C., & Pettey, C. (2005). Adaptive teaching strategy for online learning.

International Conference on Intelligent User Interfaces, New York, NY: ACM, (pp.

266–268).

Zhou, X., Wu, D., & Zhang, J. (2005). Multi-agents designed for Web-based cooperative

tutoring. Natural Language Processing and Knowledge Engineering, Proceedings

of IEEE International Conference, Piscataway, NJ: IEEE Computer Society, (pp.

479–482).

72

APPENDIX

hierarchy list of functions
|
|_____ XIC_XIO_EnableOrNot_BasedOnInputPin()
| |
| |_____ Switch_no()
| | |_____ UserPattern_Index_9_noI00000enabled()
| | |_____ UserPattern_Index_9_noI00000disabled()
| | |_____ UserPattern_Index_9_noI00001enabled()
| | |_____ UserPattern_Index_9_noI00001disabled()
| | |_____ UserPattern_Index_9_noI00004enabled()
| | |_____ UserPattern_Index_9_noI00004disabled()
| |_____ Switch_ncsr()
| | |_____ UserPattern_Index_9_ncsrI00003enabled()
| | |_____ UserPattern_Index_9_ncsrI00003disabled()
| |_____ Switch_nosr()
| |_____ UserPattern_Index_9_nosrI00000enabled()
| |_____ UserPattern_Index_9_nosrI00000disabled()
| |_____ UserPattern_Index_9_nosrI00002enabled()
| |_____ UserPattern_Index_9_nosrI00002disabled()
| |_____ UserPattern_Index_9_nosrI00004enabled()
| |_____ UserPattern_Index_9_nosrI00004disabled()
| |_____ UserPattern_Index_9_nosrI00006enabled()
| |_____ UserPattern_Index_9_nosrI00006disabled()
|
|_____ XIC_XIO_EnableOrNot_BasedOnExamineBit()
| |
| |_____ XIC_XIO_Examine_OUT()
| | |_____ XIC_XIO_Examine_OUT_ValidPin()
| |
| |_____ XIC_XIO_Examine_Timer()
| | |_____ XIC_XIO_Examine_Timer_EN_bit()
| | |_____ XIC_XIO_Examine_Timer_TT_bit()
| | |_____ XIC_XIO_Examine_Timer_DN_bit()
| |
| |_____ XIC_XIO_Examine_Counter()
| |_____ XIC_XIO_Examine_Counter_CU_bit()
| |_____ XIC_XIO_Examine_Counter_RES_bit()
| |_____ XIC_XIO_Examine_Counter_DN_bit()
|
|_____ OUT_Timer_Counter_EnableOrNot()
 |
 |_____ OUT_EnableOrNot()
 | |_____ Path_EnabledOrNot_Ahead_OUT_Timer_Counter()
 |
 |_____ Timer_EnableOrNot()
 | |_____ Path_EnabledOrNot_Ahead_OUT_Timer_Counter()
 |
 |_____ Counter_EnableOrNot()
 |_____ Path_EnabledOrNot_Ahead_OUT_Timer_Counter()

73

VITA

Name: Yuan-Teng Cheng

Address: No.86, Kangtzwei, Anding, Tainan 745, Taiwan

Education: B.S., Computer Science, National Tsing Hua University, Taiwan, 2002

 M.S., Computer Science, Texas A&M University, 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

