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ABSTRACT

3D Face Recognition with Wireless Transportation. (August 2007)

Le Zou, B.S., Southeast University;

M.S., Southeast University

Co–Chairs of Advisory Committee: Dr. Mi Lu
Dr. Zixiang Xiong

In this dissertation, we focus on two related parts of a 3D face recognition system with

wireless transportation. In the first part, the core components of the system, namely,

the feature extraction and classification component, are introduced. In the feature

extraction component, range images are taken as inputs and processed in order to

extract features. The classification component uses the extracted features as inputs

and makes classification decisions based on trained classifiers. In the second part, we

consider the wireless transportation problem of range images, which are captured by

scattered sensor nodes from target objects and are forwarded to the core components

(i.e., feature extraction and classification components) of the face recognition system.

Contrary to the conventional definition of being a transducer, a sensor node can

be a person, a vehicle, etc. The wireless transportation component not only brings

flexibility to the system but also makes the “proactive” face recognition possible.

For the feature extraction component, we first introduce the 3D Morphable

Model. Then a 3D feature extraction algorithm based on the 3D Morphable Model

is presented. The algorithm is insensitive to facial expression. Experimental results

show that it can accurately extract features. Following that, we discuss the generic

face warping algorithm that can quickly extract features with high accuracy. The



iv

proposed algorithm is robust to holes, facial expressions and hair. Furthermore, our

experimental results show that the generated features can highly differentiate facial

images.

For the classification component, a classifier based on Mahalanobis distance is

introduced. Based on the classifier, recognition performances of the extracted features

are given. The classification results demonstrate the advantage of the features from

the generic face warping algorithm.

For the wireless transportation of the captured images, we consider the location-

based wireless sensor networks (WSN). In order to achieve efficient routing perfor-

mance, a set of distributed stateless routing protocols (PAGER) are proposed for

wireless sensor networks. The loop-free and delivery-guaranty properties of the static

version (PAGER-S) are proved. Then the performance of PAGER protocols are

compared with other well-known routing schemes using network simulator 2 (NS2).

Simulation results demonstrate the advantages of PAGER.
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CHAPTER I

INTRODUCTION

Fig. 1. Conventional 2D/3D face recognition system.

Like all pattern recognition systems, face recognition systems can also be divided

into three components, as shown in Fig. 1. The first component is the sensing com-

ponent that captures 2D/3D images containing human faces to be recognized. The

This dissertation follows the style of IEEE Transactions on Information Forensics
and Security.



2

images are then passed to the feature extraction component, where their features

are extracted. Using the extracted features as inputs, the classification component

evaluates the features and makes final decisions regarding the classes to which the

images belong.

Fig. 2. Conventional 3D face recognition system.

Different to 2D face recognition systems that use 2D texture images as inputs, 3D

face recognition systems utilize 3D range images to recognize a human face. Compared

to 2D texture images, 3D range images contain 3D geometric information of human

faces, and are insensitive to make-ups, lighting condition and pose variations. Hence

it is commonly believed [9] that 3D face recognition systems have the advantage of

achieving reliable recognition performance. In this dissertation, we restrict ourselves
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to 3D face recognition systems.

Fig. 3. The proposed 3D face recognition system with wireless transportation.

For a conventional 3D face recognition system, as shown in Fig. 2, range images

captured by a local 3D camera system are forwarded directly to the feature extraction

component. In our proposed 3D face recognition system shown in Fig. 3, unlike

conventional systems, sensors capture the range images and forward the data to the

feature extraction component via the wireless transportation component.

Compared to conventional 3D face recognition systems, our proposed framework
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has several advantages. First, surveying coverage of the 3D face recognition system

is more flexible. This is because the deployment of the sensors can be configured for

a given specific task. Second, with mobile sensors, range images can be captured in

a “proactive” way in our system. Rather than waiting for human subjects to enter a

certain area to capture images, the sensors in our system has the mobility to capture

images without being noticed. While the sensing component is beyond the scope of

this dissertation, we only focus on the wireless transportation, feature extraction and

classification components. The feature extraction and classification components can

be considered together as the core part of our 3D face recognition system.

A. Feature Extraction and Classification of 3D Face Recognition

1. Feature Extraction Using 3D Morpahble Model

2D face recognition has been dogged by the problem of being sensitive to the viewpoint

and lighting variations for a long time. These problem occurs when the lighting and

viewpoint variations dramatically alter the appearance of a human face in 2D texture

images. In order to obtain the actual texture and shape information of a human face

in a texture image, the lighting and viewpoint parameters of the 2D image have to be

estimated accurately. With the 3D Morphable Model [6], [7], this estimation becomes

possible.

The 3D Morphable Model estimates the lighting and viewpoint parameters start-

ing from several manually-defined landmark points, i.e., the eye corners, tip of the

nose and the mouth corners. A cost function is defined to measure the position

differences between the manually-defined landmark points in the input image and

the corresponding landmark points in the 3D Morphable Model. Minimization of the

cost function by optimizing the viewpoint and shape parameters of the 3D Morphable



5

Model not only gives a coarse estimation of viewpoint parameters of the face in the

image, but also the initial shape parameters of the 3D Morphable Model. Based on

the initial viewpoint and shape parameters, minimization of another cost function

measuring the color differences between the input texture image and the 3D Mor-

phable Model will give the refined estimation of viewpoint parameters along with the

lighting condition parameters. In the meantime, while obtaining the lighting condi-

tion and viewpoint parameters of the face in the input texture image, the optimized

texture and shape parameters of the 3D Morphable Model are also achieved to make

the rendering of the model similar to the appearance of the face in the texture image.

The shape and texture parameters are then become features of the human face in the

input image. Obviously, the drawback of the extracting features from 2D texture im-

ages using 3D Morphable Model is that it depends on human assistance. In addition

to estimation of viewpoint and lighting conditions, 3D Morphable Model also made

a solid progress towards the hybrid face recognition, which utilizes both detailed and

overall information and is considered as a promising direction.

Following this direction, we consider applying the 3D Morphable Model to extract

features from the range images [72]. Unlike 2D texture images, 3D faces in texture

images can be scaled, shifted and rotated to a standard pose. Therefore, the viewpoint

parameters of the 3D model are fixed in this scenario. Additionally, lighting condition

variations do not change geometric structures of the faces in range images. Therefore,

it is only necessary to consider optimizing the shape parameters. We define a cost

function measuring the depth differences between the 3D face and the input range

image. Minimizing the cost function by optimizing faces results in optimized shape

parameters of the 3D Morphable Model, which become the extracted features of the

input range image. Compared to using 3D Morphable Model to extract features from

2D texture images, the advantage of this scheme is: 1) the extraction procedure is
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automatic, 2) the feature extraction procedure is not affected by the lighting condition

and viewpoint variations and 3) the extraction procedure is faster. Compared to other

2D facial feature extraction methods, the scheme also has some advantages: 1)it is

not sensitive to holes, facial expressions and hair, and 2) as a hybrid approach, it

extracts both detailed and overall information from range images.

2. Generic Face Warping

Initially designed for reconstructing 3D faces from texture images, although the 3D

facial extraction scheme [72] based on 3D Morphabel Model has advantages, it suf-

fers from its slow feature extraction and manual initialization. In order to speedup

the extraction and perform the feature extraction automatically without losing the

advantages, we propose the generic face warping scheme [73].

The 3D facial feature extraction scheme based on generic face warping [73] can

automatically identify faces from range images. In our scheme, a set of carefully

selected range images constitute a gallery of example faces, and another range image

is chosen as a “generic face”. The generic face is then warped to match (in the least

mean square (LMS) sense) each of the example faces. Each such warp is specified by

a vector of displacement values.

In operation, when a target face1 comes in, the generic face is warped to match

it. The geometric transformation used is a linear combination of the example face

warping vectors. The coefficients of the various terms in the sum are adjusted to

minimize the root mean square (RMS) error. This minimization is achieved by using

two versions of Newton’s method. One of them is the conventional Newton’s method,

where a fixed set of points are chosen from the downsampled generic face to measure

1A target image contains the human face that is going to be recognized.
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the range difference between the warped generic face and the input face. The other

version is a stochastic version. During each iteration, the comparing point set in-

cludes randomly selected points from the genetic face. The holes in an input face are

dynamically avoided during the matching process by adaptive selection of matching

points in the generic face.

After the matching process is complete, the coefficients of the composite warp

are used as features. In order to choose representative example faces from the data

set, the principle component analysis (PCA) technique is used to select range faces

with large deviations from the average face. Furthermore, in order to match input

faces with facial expressions, example faces with facial expressions are added to the

gallery.

The accuracy of the feature extraction procedure is first demonstrated by the

RMS errors between the warped generic faces and the input faces. Then by mapping

the landmark points of the warped generic face to the input faces, we show the

precision of the extracted features.

Compared to the 3D feature extraction process based on 3D Morphable Model,

the feature extraction based on generic face warping is faster. This is due to two facts:

1) the 3D Morphable-Model-based feature extraction scheme has to calculate the

occlusion and shadow in order to choose proper triangle during the feature extraction

procedure while the generic-face-warping scheme does not have such requirement, and

2) the generic face warping scheme does not have the 3D geometric transformations

required in the 3D Morphable Model.

3. Classification Based on Mahalanobis Distance

The features extracted from generic face warping procedure are forwarded to a classi-

fier based on Mahalanobis distance. Before the classification, the features are prepro-
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cessed by using the PCA technique in order to reduce the dimensionality and prevent

numerical problems from happening during the calculation of Mhalanobis distances.

Using the classifier, we consider building a verification system that differentiates a

person from others. The classification process can be divided into the training stage

and the testing stage. During the training stage, the cross validation is used to obtain

the covariance matrix and the mean from the training sets of the person. In the test-

ing stage, the trained classifier uses the testing set of the person to generate a series of

false alarm rate and hit rate based on different Mahalanobis thresholds. These false

alarm rate and hit rate are rendered as the receiver operating characteristic (ROC)

curve. To obtain the accurate overall performance of the verification system, ROC

curves of verifying different persons are averaged to obtain the average ROC curves,

which show the superiority the verification system.

B. Distributed Routing for Wireless Sensor Networks

We then consider transferring the range images from sensors to a base station follow-

ing a multi-hop fashion. Furthermore, we restrict ourselves to the network layer and

consider only routing issue of the located-based sensor network. Since the sensors

are energy-restricted, in order to prolong the battery life of sensors, energy efficient

routing protocols are highly desired. Furthermore, other routing metrics, including

delivery-ratio, path length, control overhead are also important issues for use to con-

sider.

In order to achieve the desired properties, the dead-end problem is an inevitable

issue. The dead-end problem arises when the packets in a location-based network are

forwarded following the greedy forwarding, which is the foundation of all location-

based routing schemes. Without handling the dead-end problem, packets being for-
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warded to the base station may experience long path, enormous delays and severe

losses.

The dead-end problem occurs when a message falls into a local minimum using

greedy forwarding. Current solutions to this problem are insufficient in either elim-

inating traffic/path memorization or finding satisfactory short paths. In this paper,

we propose a novel algorithm, called Partial-partition Avoiding GEographic Routing

(PAGER) [74]–[76], to solve the problem. The basic idea of PAGER is to divide a

sensor network graph into functional sub-graphs and provide each sensor node with

message forwarding directions based on these sub-graphs. PAGER results in loop-

free short paths without memorization of traffics/paths in sensor nodes. It does not

require planarization of the underlying network graph. Further, the mobility adapt-

ability of PAGER makes it suitable for use in mobile sensor networks with frequent

topology changes. We implement the PAGER algorithm in two protocols and eval-

uate them in sensor networks with different parameters. Experimental results show

the advantage of PAGER in the context of sensor networks.

C. Applications

There are many potential applications of the proposed 3D face recognition system

with wireless transportation. One scenario is the mobile criminal identification sys-

tem [71], a unit of police officers is deployed in a certain surveying area. Each officer

carries a mobile 3D camera to capture 3D faces of human objects that are believed

to have potential danger. The range images that contain the 3D faces of suspects are

transferred to a central database at a base station via a wireless network. In order

to maximize the battery life of the mobile devices carried by the police officers, the

range images are forwarded to the base station following a multiple-hop fashion. The
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wireless network can be considered as the wireless transportation component. At the

base station, range images of the suspects will be analyzed by the automatic feature

extraction component in order to produce features that can effectively differentiate

a person from others. The extracted features are then processed by the classifica-

tion component to determine whether the range image contains a face belongs to a

criminal in the database or not. Unlike conventional identification system, in this mo-

bile criminal identification system, range images are captured in a “proactive” way.

Rather than having a certain number of fixed check points, the system has a large

number of check points with great mobility, which largely increases the flexibility and

enlarges the surveying area. Furthermore, the centralized database at the base sta-

tion contains records of thousands of criminals, which are impossible for any police

officer to memorize. As a result, the search ability of police officers will be greatly

enhanced.

D. Brief History of 3D Face Recognition and Routing in Wireless Sensor Network

The earliest 3D face recognition systems can be traced back to more than one decade

ago, when Cartoux et al. [12] presented a 3D face recognition system based on clas-

sifying profiles extracted from range face images. Following that, Lee and Milios [42]

proposed a scheme that calculated Gaussian curvatures from range face images and

created extended gaussian images (EGI) for classification. Trough the 1990s, how-

ever, relatively little work [28], [52] appeared in the literature. In recent years, due to

3D face recognition’s practical relevance to homeland security, it has received broad

attention in both academia and industry. Similar to 2D face recognition, 3D face

recognition can also be divided into three categories, namely, holistic, feature-based

and hybrid approaches. Holistic approach considers a 3D face image as a whole
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without distinguishing different parts of face, and is a popular category constitutes

many schemes [1], [14]–[17], [28], [32], [47]. Compared to 2D face recognition, fewer

schemes [18], [42], [61] in the literature belong to the feature-based approach. This

may due to the fact that it is more difficult to find out features (e.g., iris, eye corners,

mouth corners) in a range face than in a texture face. The schemes [65], [72], [73]

belonging to the hybrid category extract both detailed and overall information from

a range image. In the 2D face recognition, hybrid approach is considered as a promis-

ing direction. And because of the similarity between 2D and 3D face recognition, it

is reasonable to believe that hybrid approach is also a research direction with great

potential in 3D face recognition.

The earliest work on the dead-end problem of location-based wireless networks

appeared in the literature in late 1980s. In his 1987 paper [27], Finn reported the

dead-end problem in the large metropolitan-scale internetworks. However, not until

the early 2000s did researchers turn their attention to this problem. The main reason

behind the research direction turning is because of the emergence of the large-scale

wireless ad-hoc networks and, further, the wireless sensor networks. In large-scale

wireless ad-hoc networks and wireless sensor networks, location-based routing meth-

ods have inherent scalability. In other words, increase of the size of wireless networks

will not result in the increase of control overhead amount of routing methods. Without

solving the dead-end problem, however, location-based routing methods cannot guar-

anty packet delivery. Therefore, handling the dead-end problem becomes necessary.

In order to handle the problem, both memorization-based [37], [60] and stateless [8],

[39] recover mode algorithms have been proposed to address the dead-end problem.

The memorization-based methods [37], [60] require nodes to memorize their past

traffic or paths. These methods are not scalable because they are sensitive to the

node queue size, changes in node activity and node mobility. In contrast, stateless
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recover mode methods [8], [39] do not require a node to memorize its past traffic or

paths, hence they maintain almost no state information in sensor nodes; this property

makes the stateless recover mode methods [8], [39] suitable for sensor networks, which

usually consist of a large number of sensor nodes.

E. Organization of the Dissertation

We focus on two related parts of a networked 3D face recognition system, namely,

the core face recognition part and its wireless transportation component. This dis-

sertation is organized as follows. In Chapter II, we review face 3D Morphable Model,

and present a novel 3D facial feature extraction scheme based on the 3D Morphable

Model. Chapter III is focused on a novel face recognition scheme. We describe the

algorithm of the feature extraction based on generic face warping. We depict classifi-

cation performance of the features generated from the scheme and compare to other

features to demonstrate the its advantage. Chapter IV describes a wireless sensor

network model that is used to be the wireless transportation component of the 3D

face recognition system. A distributed stateless routing algorithm is provided for

stationary scenarios. The loop-free and delivery-guaranty properties are proved. A

distributed stateless routing algorithm for scenarios with frequent topology changes

is presented. The simulation results show the advantages of these routing algorithms.

F. Contributions of the Dissertation

The main contributions of the dissertation are the following:

• A novel facial feature extraction scheme based on 3D Morphable Model to

extract not only overall shape information but also details from a target face.

• A novel 3D facial extraction scheme based on the generic face warping, which
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is robust to facial expressions, holes, hair and has a high recognition rate.

• A novel distributed stateless routing scheme designed for static wireless sensor

networks, which is proved to be loop-free, delivery-guaranty and outperforms

other routing schemes in the report literature.

• A novel distributed stateless routing specifically designed for mobile wireless

sensor networks, which outperforms other routing schemes in the reported lit-

erature.

• A novel framework of face recognition system with wireless transportation com-

ponent largely increases the flexibility and enlarges the surveying area, as well

as the search ability.
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CHAPTER II

FEATURE EXTRACTION FROM RANGE IMAGES BASED ON 3D

MORPHABLE MODEL

In this chapter, a 3D feature extraction scheme [72] is introduced for 3D face recog-

nition. Unlike previous methods that fit a 3D Morphable Model to 2D intensity

images, our scheme utilizes 3D range images to extract features without requiring

manually-defined initial landmark points. A linear transformation is used to achieve

the mapping between the 3D model and a 3D range image, which makes the compu-

tation simple and fast. Moreover, our scheme is robust to the illumination and pose

variations. In addition to features from range images, extra features can be obtained

by examining optional 2D texture images. Using our scheme, we can also perform au-

tomatic eye/mouth corner localization. Experimental results show the high accuracy

and robustness of our scheme.

A. Introduction

Due to tighten homeland security in the US, face recognition has attracted increasing

interests recently. In a face recognition system, facial feature extraction is one of the

most significant components. The goal is to automatically extract features from face

images with accuracy and robustness. Currently there are two approaches: one relies

on 2D texture images; another utilizes 3D range images.

The first approach is plagued by problems due to viewpoint and lighting vari-

ations, which make it difficult to extract facial features accurately without human

assistance. For example, although methods based on the 3D Morphable Model [6],
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[7] can handle illumination and viewpoint variations, they rely on manually-defined

landmark points to fit the 3D model to 2D intensity images.

The second approach utilizes depth information of 3D range images to extract

features. Since 3D range images are invariant to illumination changes, the impact of

lighting variations is moot in this approach. Furthermore, 3D faces in range images

can be rotated and shifted to a standard pose to overcome the problem caused by

viewpoint variations. Therefore, this approach becomes increasingly attractive nowa-

days. Motivated by early research works [28], [52] that began about a decade ago,

different feature extraction techniques [11], [18], [43], [47], [61] have been proposed

by using wavelet-signature [18], curvature [61] and rigid surface matching [11], [43],

[47] techniques. These techniques, however, have the problem of being sensitive to

facial expression variations. While this problem was not addressed in [18], [43], [61],

a partial solution of the problem was addressed in [11], [47] by using rigid surface

matching.

In this chapter we propose a method based on 3D Morphable Model to extract

facial features from range images. In our scheme, a range image from a 3D image

acquisition system is normalized before being used as an input. Then a synthesized

3D face is generated by minimizing the range difference between the input range

image and the 3D Morphable Model. After this fitting procedure, features can be

obtained from the shape coefficients of the newly synthesized 3D face. In addition, an

extra optimization step can be performed to extract extra features from an optional

texture image, which is generated from the 3D image acquisition system together

with the input range image.

Compared to the 3D Morphable Model methods in [6], [7], which use 2D texture

images as inputs, our method has several advantages. First, initialization based on

manually-defined landmark points is not needed. In order to fit the 3D Morphable
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Model to a 2D texture face image, some key information (e.g., locations of eye and

mouth corners) of the human face has to be given as initialization. Because a tex-

ture image contains a mixture of shape and color information of a human face, it is

difficult to extract the shape information accurately from the texture image without

human assistance. In [6], [7], this important information is extracted manually. In

our method, since input range images contain only the shape information, this key

information can be obtained automatically during the fitting procedure. Therefore,

manual initialization is not needed in our method. Second, lighting variations, which

typically lower the accuracy of feature extraction, do not present a problem in our

method, because range images are robust to illumination changes. Third, a linear

transformation is used to map the 3D model to an input 3D range image, which

makes the computation simple and fast.

Compared to other range image-based feature extraction techniques [11], [18],

[43], [47], [61], our method can overcome the difficulty caused by expression varia-

tions. This is due to the fact that the 3D Morphable Model [6], [7] contains example

faces with facial expressions. This allows us to closely synthesize faces with facial

expressions and extract features accurately. In addition, our method can be used to

automatically label eye/mouth corners. Experimental results show the effectiveness

of our method.

B. Acquisition and Normalization of Input Images

In our system, the range images, along with the corresponding texture images, are

obtained by using a 3D image acquisition system from 3Q Inc., which can generate

high resolution 3D surface images in less than 2 milliseconds.

The obtained 3D meshes from the 3D image acquisition system describe 3D faces
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with different orientations. These 3D “raw” faces cannot be directly used as inputs

to our fitting algorithm. In order to make the 3D faces have the same orientation,

we rotate and shift each of them until the mean-squared-difference (MSD) between

it and a standard face is minimized. After the normalization, the eyes look straight

ahead and lie on a line parallel to the x-axis.

C. 3D Morphable Model

The 3D morphable face model [6], [7] is constructed based on a vector space repre-

sentation of 3D faces. In this model, a synthesized 3D face can be represented by a

convex combination of n shape and texture vectors Si and Ti (i = 1, . . . , n) of real hu-

man faces (example faces). Let s = 1
n

∑n
i=1 Si and t = 1

n

∑n
i=1 Ti, then we can obtain

covariance matrices AS = 1
n

∑n
i=1(Si−s)(Si−s)T and AT = 1

n

∑n
i=1(Ti−t)(Ti−t)T .

We further calculate the ith eigenvalue σ2
R,i and its corresponding eigenvector si of

AR. Similarly, let σ2
T,i and ti be the ith eigenvalue and the corresponding eigenvector

of AT . The shape and color of a synthesized face can be represented by a shape vector

s and a texture vector t, respectively, with

s = s +
n∑

i=1

αisi, t = t +
n∑

i=1

βiti, (2.1)

where the distributions of the coefficients α = (α1, . . . , αn)
T and β = (β1, . . . , βn)T

are:

p(α) ∝ exp(−1

2

n∑
i=1

α2
i

σ2
R,i

), p(β) ∝ exp(−1

2

n∑
i=1

β2
i

σ2
T,i

). (2.2)

Given an index i and coefficients α and β, a point p of the 3D model can be defined
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by its 3D position s(i, α) = (x(i, α), y(i, α), z(i, α)) and its color t(i, β) = (r(i, β),

g(i, β), b(i, β)).

The 3D model is placed in the 3D space with the eyes on a line parallel to the

x-axis and looking straight ahead. So the 3D Morphable Model and the 3D faces in

the normalized input range images have the same head pose. As we will see later,

this property simplifies the computation of our algorithm.

D. Feature Extraction from Range Images

The key step of our feature extraction method is to fit the 3D Morphable Model to

an input 3D range image. After the fitting procedure, the shape coefficients of the

model are optimized and become range features of the human face in the image.

1. Automatic Initialization

In the work presented in [6], [7], several manually-defined landmark points are used

to initialize the feature extraction procedure. In our method, as we explained in the

introduction of the chapter, automatic initialization is achieved by using range images

that contain only the shape information.

2. 3D Transformation

In the 3D-2D transformation presented in [7], a perspective projection is used to map

the 3D Morphable Model to a 2D image, which makes the transformation nonlinear.

In our scheme, the mapping between the 3D Morphable Model and a 3D range image

is a linear transformation because the perspective projection is not needed. Since the

3D model and the normalized input 3D faces have the same head pose, this linear

transformation can be further simplified to scaling and shifting. Let the original
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coordinates of a point p be (x(i, α), y(i, α), z(i, α)), which are defined by the index

i and the shape coefficients α1. We use the following transformation to transfer the

origin coordinates to the new coordinates (x′(i, α), y′(i, α), z′(i, α)):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x′(i, α) = scalex,y · x(i, α) − offx

y′(i, α) = scalex,y · y(i, α)− offy

z′(i, α) = scalez · z(i, α) − offz.

(2.3)

In the above transformation, the values of the scale factors scalex,y, scalez and the

offsets offx, offy and offz depend on the input range image format. Note that

scalex,y and scalez may not have the same value.

3. Cost Function

Let R represent the input range image and m be the length of the corresponding

shape vector s. When an index i (i = 1, . . . , m) of s and the shape coefficients α

are given, the described linear transformation maps the original coordinates s(i, α)

to the new coordinates (x′(i, α), y′(i, α),

z′(i, α)). We define the cost function as the sum of the squared difference between

the transformed depth z′(i, α) and the corresponding range image depth R(x′(i, α),

y′(i, α)), which can be represented as

C(α) =

m∑
i=1

(z′(i, α) − R(x′(i, α), y′(i, α)))2. (2.4)

Note that this cost function is based on all the indices of the shape vector s. In other

words, we use C(α) to measure the entire range difference between the 3D model

1We do not have texture coefficients β when only range images are involved.
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and the 3D face in R. This cost function can then be minimized by using standard

optimization methods (e.g., Newton’s method).

4. Maximum A Posteriori Estimator

Minimization of cost function C(α) with respect to α may produce unrealistic 3D

faces. So we use a maximum a posteriori (MAP) estimator to modify C(α). Given

an input image R, we try to maximize the posterior probability p(α|R) with respect

to the shape coefficients α. According to the Bayes rule,

p(α|R) ∝ p(R|α)p(α). (2.5)

Given the shape coefficients α of the model, the distribution of an input range image

R is assumed to follow a normal distribution, i.e., p(R|α) ∝ exp(− 1
2σ2

R
C(α)). The

posterior probability is then maximized by minimizing

C ′(α) = −2 log p(α|R) =
1

σ2
R

C(α) +
n∑

i=1

α2
i

σ2
R,i

, (2.6)

where σ2
R is a controllable parameter representing the relative weight of C(α) in

C ′(α). Thus after the modification of the MAP estimator, C ′(α) is the cost function

that we try to minimize by optimizing the shape coefficients α.

5. Optimization Procedure

The cost function C(α) is based on all the indices of the shape vector s. In order

to accelerate the minimization of C(α) without falling into local minima, we employ

a stochastic version of Newton’s method. In each iteration, eighty indices of s are

randomly selected to compose a set K. Based on the set K, a new cost function CK
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is defined:

CK(α) =
∑
i∈K

(z′(i, α) − R(x′(i, α), y′(i, α)))2. (2.7)

The corresponding cost function after the modification of the MAP estimator be-

comes:

C ′
K(α) =

1

σ2
R

CK(α) +
n∑

i=1

α2
i

σ2
R,i

. (2.8)

In each iteration, the first and second derivatives of CK(α) with respect to the jth

shape coefficient αj (j = 1, . . . , n) can be calculated as

∂CK(α)

∂αj

=
∑
i∈K

2(z′(i, α) − R(x′(i, α), y′(i, α))) ·

(
∂z′(i, α)

∂αj
− ∂R(x′(i, α), y′(i, α))

∂x′ · ∂x′(i, α)

∂αj

−∂R(x′(i, α), y′(i, α))

∂y′ · ∂y′(i, α)

∂αj

), (2.9)

∂2CK(α)

∂α2
j

=
∑
i∈K

2(
∂z′(i, α)

∂αj

−∂R(x′(i, α), y′(i, α))

∂x′ · ∂x′(i, α)

∂αj

−∂R(x′(i, α), y′(i, α))

∂y′ · ∂y′(i, α)

∂αj
)2

+
∑
i∈K

2(z′(i, α) − R(x′(i, α), y′(i, α)))

·(∂
2z′(i, α)

∂α2
j

− ∂2R(x′(i, α), y′(i, α))

∂α2
j

). (2.10)

With these derivatives, we can further obtain the derivatives
∂C′

K(α)

∂αj
and

∂2C′
K(α)

∂α2
j
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(j = 1, . . . , n). The shape coefficients α are updated according to α = α−λH−1∇C ′
K,

where H−1 ≈ diag(1/
∂2C′

K(α)

∂α2
j

) (j = 1, . . . , n) is the inverse Hessian matrix and λ � 1

the learning rate.

6. Segmentation

In some subregions (e.g., eyes and mouth) of a 3D face, the range differences are

subtle. Thus if we use the whole 3D morphable model to minimize the cost function

C(α), the locations of these subregions on the resulting synthesized 3D face may not

match those on the input range image. We therefore segment the 3D model into three

separate subregions (e.g., eyes, nose and mouth in Fig. 4). After fitting the whole 3D

model to a range image, we independently minimize C(α) based on these subregions.

This segmentation step improves the detailed description of the subregions on the

synthesized 3D face.

Fig. 4. Three segmented subregions on the 3D morphable model.



23

E. Feature Extraction from Texture Images

So far our feature extraction method only utilizes 3D range images for feature ex-

traction. Extra features can be obtained by minimizing the color difference between

the 3D model and 2D texture images. The details of the procedure are omitted here

because of space limitations. Thus our feature extraction method can be considered

as a 3D+2D approach that utilizes both 3D range and 2D texture images for feature

extraction.

F. Experimental Results

1. Test Data Set

Fig. 5. An example of range (left) and texture (right) images.
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The test data set contains both range and texture images. Each human face is

represented by a pair of range and texture images as shown in Fig. 5. A range/texture

image is 500 × 750 and each pixel has 8 bit resolution. These images are normalized

before being used as inputs of our fitting algorithm. The normalized range and texture

images have the following properties: 1) the tip of the nose on a range image is at

the center of the image; 2) the depth of the tip of the nose has the gray level of 255;

3) zero gray level represents a plane 82 mm behind the tip of the nose.

2. Synthesis of Range and Texture Images

(a) (b) (c)

Fig. 6. Fitting results. (a) Original range image. (b) Original texture image. (c)

Synthesized image.

We test our algorithm by reconstructing 3D faces from input images. For display

purposes, an extra fitting procedure is used to recover the color information of an
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input face. We show a fitting example in Fig. 6. The shape coefficients are optimized

by fitting the 3D morphable model to the range image in Fig. 6 (a). After that, we fix

the shape coefficients and optimize the color coefficients by fitting the 3D model to

the texture image in Fig. 6 (b). Finally, we show the frontal view of the synthesized

3D face in Fig. 6 (c).

Fig. 7. Fitting results on a smiling face without perfect normalization. Top left: input

range image; Top middle: input texture image; Top right: frontal view of the

synthesized 3D face; Bottom row: different views of the synthesized 3D face.

Some of the faces in the data set are not well normalized and some have facial

expressions, beards and mustaches. Fig. 7 shows a fitting example on one of such
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faces. An extra fitting based on texture image is performed for display purposes. In

this example, the face in the range and texture images has a cheerful facial expression

and the right eye is slightly higher than the left eye. After the automatic face fitting

procedure, the frontal view (Fig. 7 [top right]) and other views (Fig. 7 [bottom row])

of the synthesized 3D face are shown to demonstrate the effectiveness of our method.

3. Feature Localization

Fig. 8. Localization results.

To further test the performance of our algorithm, we run our proposed algorithm
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on 100 range images to label the positions of the tip of the nose, eye corners and mouth

corners. Some of the results are shown in Fig. 8. Again for display purposes, we show

the labeling results on texture images, although our tests are performed on range

images only. It is seen that our proposed algorithm produces accurate localization

results.

G. Discussion

In this chapter we proposed a method to automatically extract facial features from

range images using 3D Morphable Model. Like other feature extraction methods,

the illumination problem is eliminated by using range images. Comparing with other

feature extraction methods on range images, the proposed method is robust to the

effect of facial expression, beard and mustache. The inherent linear transformation of

this method makes it faster than the fitting algorithm [6], [7] of using 3D Morphable

Model on texture images. Further, the manual initialization of Vetter’s algorithm is

no longer required in our method. A byproduct of this method is the automatical

eye corner and mouth corner locator. Our experiments show the accuracy of the

feature extraction and feature points locating. Despite the advantages, the proposed

feature extraction scheme suffers from slow extraction speed. On the current stage,

it takes more than 2 minutes to finish the feature extraction process. In the next

chapter, we will propose a 3D face recognition scheme that utilizes a much faster

feature extraction technique without losing the advantages of the feature extraction

based on the 3D morphable model.
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CHAPTER III

FACE RECOGNITION BASED ON WARPED EXAMPLE FACES∗

In this chapter we describe a novel 3D face recognition scheme [73] for 3D face recog-

nition scheme that can automatically extract features from range images, and is

insensitive to holes, facial expression and hair. In our scheme, a number of carefully

selected range images constitutes a set of example faces, and another range image is

chosen as a “generic face”. The generic face is then warped to match each of the ex-

ample faces in the least mean square sense. Each such warp is specified by a vector of

displacement values. In feature extraction operation, when a target face image comes

in, the generic face is warped to match it. The geometric transformation used in the

warping is a linear combination of the example face warping vectors. The coefficients

in the linear combination are adjusted to minimize the root mean square error. After

the matching process is complete, the coefficients of the composite warp are used as

features for face recognition. Our technique is tested on a data set containing more

than 600 range images. Experimental results in the access control scenario show the

effectiveness of the extracted features.

A. Introduction

Face recognition has received broad attention in both academia and industry due to

its practical relevance to homeland security. Facial appearance can uniquely identify

a person, and it is a primary factor that people use to recognize each other. Although

∗ c© [2007] IEEE. Reprinted, with permission, from “3D face recognition based on
warped example faces” by L. Zou, S. Cheng, Z. Xiong, M. Lu, and K. Castleman,
2007. IEEE Transactions on Information Forensics and Security, to appear.
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human face images can be affected by illumination, facial expression, makeup, etc.,

they are non-invasive in nature and easy to collect in environments where other bio-

metrics (e.g., fingerprint, iris) require cooperation of the subjects. Therefore, face

recognition is both an attractive and a challenging area for research. During the

past decade, many different 2D and 3D face recognition algorithms have been pre-

sented [68].

Differentiated by the input image type, these algorithms can generally be cate-

gorized into 2D face recognition and 3D face recognition. According to the survey by

Zhao et al. [68], 2D face recognition algorithms can be classified into feature-based,

holistic and hybrid approaches. In the holistic category, algorithms use principle

component analysis (PCA) [63], linear discrimination analysis (LDA) [4], indepen-

dent component analysis (ICA) [3], support vector machine (SVM) [55] and neural

networks [45] to analyze a face as a whole unit, without distinguishing the individual

details (nose, mouth, eyes, etc.). By contrast, algorithms that extract detailed infor-

mation from these regions are called feature-based approaches [22], [56], [64]. Hybrid

approaches [6], [7], [34], [41], [67] consider both the overall and detailed information

in a face and are regarded as the most promising method [68]. Since 2D texture

pictures can be easily affected by external conditions (viewpoint, lighting, makeup,

etc.), 2D face recognition algorithms have difficulty to classify human faces with high

accuracy. Although face recognition methods based on 3D morphable model [6], [7],

[67] have made breakthrough progress in successfully solving the problem caused by

viewpoint and lighting variation, they rely on manually defined landmark points to

initialize the algorithm [6], [7], [67].

3D face recognition algorithms, on the other hand, utilize the geometric structure

of the face to recognize a person. Since 3D facial models are invariant to illumination,

the impact of lighting variations is moot in this approach. Furthermore, 3D faces in
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range images can be rotated and shifted to a standard pose to overcome the problem

caused by viewpoint variations. Therefore, this approach becomes increasingly at-

tractive nowadays. Motivated by early research works [5], [28], [52] that began about

a decade ago, different 3D face recognition systems [1], [11], [14]–[19], [32], [43], [46]–

[49], [51], [57], [61] have been proposed. In these schemes, principle PCA [1], [32],

wavelet-signature [18], curvature [61], rigid surface matching [14], [16], [43], itera-

tive closest point (ICP) [19], [47]–[49], [51] and optimal component analysis [46], [57]

techniques are employed in order to achieve good recognition performance.

An important issue on face recognition is the problem of facial expression, which

degrades the performance of most current 3D face recognition systems [9]. While

most face recognition systems [18], [19], [43], [47], [49], [61] do not address the prob-

lem explicitly, several schemes have been proposed to handle it [11], [14], [16], [48],

[51]. In the multiple nose region matching method [14], [16] presented by Chang et

al., different patches around the nose area in a target face are utilized to compare

with those surfaces in the gallery. In their algorithm, these patches are segmented

based on the surface curvatures. A target face is identified by measuring the similar-

ity between these patches of the target face and those in the gallery. By matching

the regions around the nose, which is believed to have relatively low shape varia-

tion caused by expressions, their scheme successfully handled the facial expression

problem. In the region matching method [51] proposed by Mian et al., different re-

gions of faces in a gallery are segmented and then matched to a target image using

ICP. The matching scores are then used to identify the target face. Facial expression

problems in target faces are avoided by choosing matching regions that are unlikely

to be affected by expression. In the deformable model fitting approach proposed by

X.Lu et al. [48], a deformable model is presented to model the facial expressions and

achieves good recognition rate. On the other hand, Bronstein et al. tried to use
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a modeling technique to solve the problem [11]. In their proposed algorithm [11],

generalized multidimensional scaling (GMDS) is used to model facial expressions in

order to achieve the expression-invariant performance.

Two other important issues of 3D face recognition are facial hair and holes on

the range images, which have negative impact on all 3D face recognition systems [9].

Facial hair in a target face changes the shape of a range image and introduces noises

to the face. A hole is an area of missing data in a range image caused by sensor’s

failure of acquiring data from objects. The region matching method [51] explicitly

addressed the problem and partially handled the situation by matching the nose and

the forehead region only. Their approach, however, does not consider the situation

when the forehead region is also partially covered by hair and holes. Although the

approach [14], [16] proposed by Chang et al. did not state the problem explicitly,

their approach also employs the same strategy of the region matching method [51]

and can partially solve the problem.

In this chapter we propose a scheme using the combination of multiple face

warps derived from 3D faces (called example faces) to extract facial features from

range images. These example faces then comprise a set called “example set”. In our

scheme, an input 3D face image is imitated by a warped generic face using a linear

combination of the face warps.
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Fig. 9. Warped generic faces based on face warps derived from three example faces (for

display purposes, the linear combinations of warped example faces are shown

as texture images, although our scheme is based on range images).
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To illustrate the idea of synthesizing 3D faces based on a linear combination

of warps derived from example faces, consider the 3D feature space shown in Fig.

9. Here we have three example faces, each of which corresponds to a particular

geometric transformation (shown in Fig. 10), namely, the one that makes the generic

face best match that example face. Each axis represents one coefficient in a three-term

weighted sum. Each example face lies at 1.0 along its corresponding axis. Further,

any point in that 3D space corresponds to a particular linear combination of those

three warps (shown in Fig. 11), and that in turn specifies a new face, namely, the one

obtained by warping the generic face with the corresponding linear combination of

warp parameters. If we restrict the coefficients to sum to unity, then the plane that

passes through these three points defines the locus of all faces that can be generated

by a linear combination of the three example face warp vectors. Any point on the

triangle corresponds to a set of three coefficients (that sum to 1.0), and a linear

combination of the three corresponding warps, using those weighting coefficients,

produces a synthesized face by warping the generic face.

In feature extraction operation, the algorithm adjusts the coefficients to minimize

the root mean square (RMS) error between the target face and the warped generic

face. The coefficient vector corresponding to the minimum then constitutes a set of

feature values that represents that face.

The feature extraction procedure of our scheme is illustrated in Fig. 12. This

procedure starts with an initial coefficient vector (w1
1, . . . , w

1
K), typically all equal to

1/K. Based on this initial coefficient vector, the generic face is warped to generate a

synthesized face S1. Then the RMS error between S1 and the target face T is com-

puted. Using optimization techniques, the coefficient vector of the second iteration

(w2
1, . . . , w

2
K) can be found. This matching process continues through M iterations

until the RMS error between the synthesized face SM and the target face is small
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Fig. 10. Face warping from generic face to different example faces.

Fig. 11. Linear combination of different face warpings.
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enough. After that, the coefficients (wM
1 , . . . , wM

K ) are used as features to classify the

target face T . In our scheme, the classification is based on Mahalanobis distance [23].

Fig. 12. The proposed feature extraction scheme.

Compared to the face recognition methods based on 3D morphable model [6],

[7], [67], our scheme is different in three ways. First, our scheme utilizes 3D range

images as inputs while the methods based on 3D morphable model [6], [7], [67] rely

on 2D texture images. Therefore our scheme and their approaches belong to two

different categories of face recognition systems and have different technical emphasis.

In 2D face recognition, illumination and pose variations cause different appearances

of the same humane face in 2D texture images. In order to achieve good recogni-

tion performance, it is crucial for 2D face recognition algorithms to handle the pose

and illumination variations. The 3D morphable model proposed in [6], [7] and the

extended approach [67] presented by L. Zhang et al. focus on handling this problem
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and have given successful solutions. By contrast, in 3D face recognition, illumination

variations do not affect the shapes of human faces on range images. Furthermore,

pose variations can be solved by rotating and shifting human face shapes in range

images to a standard pose. Hence pose and illumination variations are not important

issues in 3D face recognition. In 3D face recognition category, holes, facial expres-

sions and hair may change the overall shape of a 3D human face on range images, and

become important technical issues. Our feature extraction scheme has the ability to

extract both overall and detailed information from range images with the presence of

holes, facial expression and hair. Second, our feature extraction scheme is automatic

in contrast to the fitting procedure described in [6], [7], [67], which requires manual

initialization. This is due to the fact that cost function defined in [6], [7], [67] is

based on texture differences and has to be minimized by optimizing both shape and

texture parameters of the 3D morphable model. Therefore good initial starting values

of model parameters are critical and have to be discovered manually. While in our

scheme, the cost function is the sum of depth differences and can be minimized by

optimizing weighting coefficients only. Without involving of the texture parameters,

it is feasible to achieve minimization automatically without falling into local min-

ima. Third, compared to the methods [6], [7], [67] based on 3D morphable model,

our feature extraction scheme is more efficient in computation. During the fitting

procedure of 3D morphable model, in order to avoid occlusions and cast shadows,

the 3D morphable model has to be rendered every 1000 iterations. Due to the large

amount of vertices on 3D morphable model, this rendering procedure is inefficient in

computation. By contrast, our feature extraction procedure is based on 2D warping

of range images, or in a sense, 2.5D image transformation. The whole procedure does

not require re-rendering of the synthesized face and thus our scheme is more efficient

in computation. Note that this computation efficiency of our scheme is achieved by
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sacrificing the simplicity of the image acquisition system. Compared to 2D texture

images, 3D range images may require complicated image acquisition systems.

Compared to other 3D face recognition algorithms [1], [11], [14]–[19], [32], [43],

[46], [47], [51], [57], [61], our method has several advantages. First, our scheme is

insensitive to facial expressions. There are two techniques adopted in our scheme in

order to solve the facial expressions problem: 1) matching the facial region that are

insensitive to the face expressions; 2) including example faces with facial expressions

in the example set. By using these techniques in our scheme, faces belonging to the

same person with different facial expressions can be accurately differentiated from

other people, which has been confirmed by our experimental results. Second, our

scheme is robust to holes and facial expressions in range images. In our scheme,

holes are adaptively avoided when comparing the differences between a target face

and the synthesized face. The facial hair problem, on the other hand, is handled

by: 1) including example faces with facial hair in the example set, 2) excluding the

regions that can be easily affected by facial hair during the matching procedure, and

3) relying on the whole face region of a range image. By adding examples with hair in

the example set, target faces with facial hair can be accurately identified. By matching

the face region that is most likely to be unaffected by hair, the effect of facial hair

in target faces can be further reduced. Furthermore, by relying on the whole facial

region of a range image to identify a person, facial hair has limited influence on our

extracted features and the recognition results. Consequently, our proposed scheme

collects all useful information on the target face and successfully solves the problems

caused by facial hair and holes. Finally, as a hybrid approach [68], our scheme not

only consider the face region as a whole but also the details in target images. By

combining the advantages of feature-based and holistic approaches [68], as proven by

the experimental results, our scheme can achieve a high recognition rate.
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Our scheme shares the same philosophy with the Active Appearance Models

(AAM) [20]. Both schemes need manual labeling of landmark points to align images

and involve image matching. However, there exist several differences. First of all, our

scheme is a comprehensive solution for 3D face recognition comprising both feature

extraction and classification, whereas AAM is a general modeling technique designed

for studying the statistical nature of images. Second, our scheme is based on 3D range

images while AAM is primarily based on 2D texture images. Third, the matching

procedures in two schemes are different. In our scheme, we achieve image matching

by utilizing stochastic Newton’s method that updates derivative information in each

iteration. In AAM, the derivatives are calculated once before the optimization starts.

To summarize, our proposed scheme can be outlined as follows

1. During design process, warp a generic model of a face to match each of K

example faces, retaining the parameters of each of the K such warps in a warp

vector.

2. In feature extraction procedure, warp the generic face using a geometric trans-

formation that is a linear combination of the warp vectors that were developed

for the example faces.

3. Adjust the coefficients in the weighted sum to minimize the RMS error between

the input target face image and the warped generic face.

4. Take the coefficients that result in the minimum RMS error as extracted features

that describe the face.

5. Use a linear classifier based on Mahalanobis distance to classify the extracted

features.
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B. Generic Face Warping

As the first stage of design process, the goal of generic face warping is to establish

point-to-point correspondences between generic face and example faces. As illustrated

previously, we can consider the warped generic face based on a combination of face

warps derived from different example faces as a synthesized face. The main thrust

is the generic face warping procedure that establishes the point-to-point correspon-

dence between the generic face and example faces. In the sequel, we first describe

the landmark points on the example faces and the generic face. Based on these land-

mark points, the generic face warping procedure that establishes the point-to-point

correspondence between the generic face and example faces is introduced.

1. Necessity for Alignment

In order to generate a warped generic face by linearly combining the warps derived

from example faces, we need to develop the proper face warpings between the generic

face and example faces first. In other words, we need to find out the point-to-point

correspondence between the generic face and the example faces. Otherwise, when dif-

ferent warps derived from example faces are combined together, points with different

physical meanings will be added up, resulting in blurred faces. For instance, if we

develop two face warpings between the generic face and two example faces (shown

as example faces in Fig. 13 (a), (b)) without alignments, a combination of the face

warpings will generate a blurred face shown in Fig. 13 (c). With the alignment, how-

ever, pixels with the same physical meaning are aligned together and generate an

valid human face, as shown in Fig. 13 (d).
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(a) (b) (c) (d)

Fig. 13. Comparison of linear combination of two face waprings without/with align-

ment. (a) An example face with long chin. (b) A short example face. (c)

Warped generic face without aligning the face warpings. (d) Warped generic

face with aligned face warpings.

2. Landmark Points

In order to find out the point-to-point correspondences between the generic face and

example faces, we first manually define seventy landmark points (e.g., eye corners,

mouthe corners) on each of the K example faces and the generic face, as shown in

Fig. 14. These landmark points all have distinct physical meanings and are easy to

be marked manually1. Note that the number of landmark points can vary. In our

face recognition scheme, we find seventy landmark points are enough to accurately

describe the correspondences between the generic face and an example face. The

x and y coordinates of these seventy landmark points are concatenated to generate

1Since it is easier to find out the points with distinguishable physical meanings in
texture faces, the landmark points are manually marked in the corresponding texture
images of the chosen example range face.
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Fig. 14. Seventy landmark points on a texture face image. For display purposes, these

landmark points are shown on a texture image.

position vectors XL(i) and YL(i), i = 1, . . . , K. As we mentioned previously in

Section A, a face in the example set is chosen to be the generic face G. The position

vectors of the landmark points on G are denoted as Xg and Yg. With these position

vectors, the displacement vectors ∆XL(i) and ∆YL(i) (i = 1, . . . , K) are defined as

⎧⎪⎨
⎪⎩

∆XL(i) = XL(i) − Xg

∆YL(i) = YL(i) −Yg,
(3.1)

i = 1, . . . , K. Based on these displacement vectors, we can further generate new

displacement vectors

⎧⎪⎨
⎪⎩

∆Xl(W) =
∑K

i=1 wi · ∆XL(i)

∆Yl(W) =
∑K

i=1 wi · ∆YL(i),
(3.2)

where wi (i = 1, . . . , K) are the weighting coefficients. Depending on W = (w1,

w2, . . ., wK)t, ∆Xl(W) and ∆Yl(W) actually represent a set of displacements of
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the seventy landmark points on the generic face G. As we will see in the following

subsection, they play an important role in aligning face warpings.

3. Face Warping

In this section, we describe the warping procedure that calculates the displacements

of every point on the generic face G based on the displacement vectors ∆Xl(W),

∆Yl(W). After this procedure, a point (x, y) in the generic face G will be mapped

to a point (x + ∆x(W, x, y), y + ∆y(W, x, y)) in the warped face S(W). The generic

face and example faces used in this procedure are all rendered in range images of size

750 × 500.

Fig. 15. A range face image divided by Delaunay triangles.

We first divide the generic face into Delaunay triangles [24] based on the seventy

landmark points defined by Xg and Yg, as shown in Fig. 15. The Delaunay triangula-

tion of a set of points in the plane is a set of triangles connecting the points satisfying

an “empty circle” property: the circumcircle of each triangle does not contain any of



43

the points. We employ this triangulation because a fast method for such triangula-

tion is readily available. The coordinates Xg and Yg of the triangle vertices2 are then

mapped to Xl(W) = Xg + ∆Xl(W) and Yl(W) = Yg + ∆Yl(W), respectively.

Fig. 16. Displacement calculation of pixels inside a Delaunay triangle.

We can focus on a pair of such corresponding Delaunay triangles shown in Fig. 16,

in which the triangle T1 are mapped to the triangle T2. The vertices (x1, y1), (x2, y2)

and (x3, y3) of T1 are then mapped to the vertices (x′
1(W), y′

1(W)), (x′
2(W), y′

2(W))

and (x′
3(W), y′

3(W)) of T2, respectively. Now given a point (x, y) inside T1, we want

to find out the corresponding position (x′(W), y′(W)) in T2. If we restrict ourselves

to linear mappings, we have

⎧⎪⎨
⎪⎩

x′(W) = a(W) · x + b(W) · y + c(W)

y′(W) = d(W) · x + e(W) · y + f(W),
(3.3)

where a(W)—f(W) are the coefficients that need to be determined. Because of the

2These vertices of Delaunay triangles are actually the seventy landmark points on
the generic face.
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correspondences between vertices of T1 and T2, we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x′
1(W) = a(W) · x1 + b(W) · y1 + c(W)

x′
2(W) = a(W) · x2 + b(W) · y2 + c(W)

x′
3(W) = a(W) · x3 + b(W) · y3 + c(W),

(3.4)

and
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y′
1(W) = d(W) · x1 + e(W) · y1 + f(W)

y′
2(W) = d(W) · x2 + e(W) · y2 + f(W)

y′
3(W) = d(W) · x3 + e(W) · y3 + f(W).

(3.5)

From (3.4) and (3.5), we can obtain

⎡
⎢⎢⎢⎢⎣

x′
1(W)

x′
2(W)

x′
3(W)

⎤
⎥⎥⎥⎥⎦

= M

⎡
⎢⎢⎢⎢⎣

a(W)

b(W)

c(W)

⎤
⎥⎥⎥⎥⎦

(3.6)

and
⎡
⎢⎢⎢⎢⎣

y′
1(W)

y′
2(W)

y′
3(W)

⎤
⎥⎥⎥⎥⎦

= M

⎡
⎢⎢⎢⎢⎣

d(W)

e(W)

f(W)

⎤
⎥⎥⎥⎥⎦

, (3.7)

where M =

⎛
⎜⎜⎜⎜⎝

x1 y1 1

x2 y2 1

x3 y3 1

⎞
⎟⎟⎟⎟⎠

. Note that M is invertible as long as T1 has nonzero

area, so we have

⎡
⎢⎢⎢⎢⎣

a(W)

b(W)

c(W)

⎤
⎥⎥⎥⎥⎦

= M−1

⎡
⎢⎢⎢⎢⎣

x′
1(W)

x′
2(W)

x′
3(W)

⎤
⎥⎥⎥⎥⎦

, (3.8)
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and
⎡
⎢⎢⎢⎢⎣

d(W)

e(W)

f(W)

⎤
⎥⎥⎥⎥⎦

= M−1

⎡
⎢⎢⎢⎢⎣

y′
1(W)

y′
2(W)

y′
3(W)

⎤
⎥⎥⎥⎥⎦

. (3.9)

Let X′
t(W) = (x′

1(W), x′
2(W), x′

3(W))t, Y′
t(W) = (y′

1(W), y′
2(W), y′

3(W))t and

P = (x, y, 1)t, from (3.8) and (3.9), we can rewrite (3.3) as

⎧⎪⎨
⎪⎩

x′(W) = PtM−1X′
t(W)

y′(W) = PtM−1Y′
t(W).

(3.10)

Having established the mapping between two arbitrary corresponding triangles T1

and T2, by giving the corresponding vertices of triangles, we can map a point (x, y) in

triangle T1 to a point (x′, y′) in triangle T2. The displacements of the position (x, y)

can also be obtained as ∆x(W) = x′(W) − x and ∆y(W) = y′(W) − y.

Fig. 17. A range face image divided by grids based on landmark points.

If we draw vertical and horizontal lines passing through the landmark points of
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the generic face G, we can further divide G into more than 300 small grids, as shown

in Fig. 17. Clearly the crossing points of these grids are either landmark points them-

selves or fall into different Delaunay triangles. Displacements of the crossing points

that fall into Delaunay triangles can be obtained by using (3.10). When the displace-

ments of all crossing points of the grids are determined, we can further calculate the

displacements of the points inside these grids using bilinear interpolation. Suppose a

particular grid has four vertices (xi, yi), i = 1, 2, 3, 4, let the corresponding displace-

ments of the vertices be (∆xi(W), ∆yi(W)),i = 1, 2, 3, 4, the displacements of a pixel

with the position (x, y) inside a grid can be calculated as follows by using bilinear

interpolation [13],

∆x(W, x, y)= (∆x3(W) − ∆x1(W))
y − y1

y4 − y2 + 1
+ (∆x2(W) − ∆x1(W))

x − x1

x4 − x1 + 1

+(∆x1(W)) + ∆x4(W) − ∆x2(W) − ∆x3(W))
x − x1

x4 − x1 + 1

y − y1

y4 − y2 + 1

+∆x1(W),

∆y(W, x, y)= (∆y3(W) − ∆y1(W))
y − y1

y4 − y2 + 1
+ (∆y2(W) − ∆y1(W))

x − x1

x4 − x1 + 1

+(∆y1(W) + ∆y4(W) − ∆y2(W) − ∆y3(W))
x − x1

x4 − x1 + 1

y − y1

y4 − y2 + 1

+∆y1(W). (3.11)

Note that generic face and example faces in the face warping procedure are

in range images with size 750 × 500. We found that face warping procedure can

produce satisfying point-to-point correspondence between example faces even with

non-rigidities existed (facial expressions, etc.). From the above warping processes, we

have achieved the goal of obtaining the displacements of every point on the generic

face based on the displacements of landmark points.

After the above warping procedure, the displacement of every point on the generic

face G has been calculated, which clearly relies on the weighting coefficients W. These
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displacements can further be considered as displacement images ∆X(W, x, y) and

∆Y (W, x, y), which are indexed by a pixel’s position (x, y). Let the ith component

wi of W be one and the rest be zero, we can obtain the displacement images of the

ith example face (denoted as Ei) ∆Xi(x, y) and ∆Yi(x, y), i = 1, . . . , K. With these

displacement images, the pixel correspondences between the example faces and the

generic face G are established. This accomplishes our goal of seeking the point-to-

point correspondences between example faces and the generic face. In the next section,

we will use these face warpings derived from example faces to generate synthesized

faces using linear combination.

C. Linear Combination of Face Warpings

In this section, we will introduce the second stage of the design process. During

this stage, face warpings derived from example faces are linearly combined together

to generate different synthesized faces based on different weighting coefficients. In

addition, we describe the selection process of example faces, which is used to increase

the representability of synthesized faces.

1. Synthesized Faces from Linear Combination of Face Warpings

The above described warping procedure gives us the displacement images ∆Xi(x, y)

and ∆Yi(x, y) (i = 1, . . . , K) of example faces. We can further calculate the displace-

ment image of the ith example face Ei (i = 1, . . . , K) in the Z direction (i.e., the

depth of the face images)

∆Zi(x, y) = Ei(x + ∆Xi(x, y), y + ∆Yi(x, y)) − G(x, y), (3.12)
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where x and y are the coordinates of the image. From (3.12), we can reconstruct the

example face Ei (i = 1, . . . , K) as follows

Ei(x, y)= ∆Zi(x − ∆Xi(x, y), y − ∆Yi(x, y)) (3.13)

+G(x − ∆Xi(x, y), y − ∆Yi(x, y)). (3.14)

Moreover, we can utilize the obtained displacement images of the example images

∆Xi(x, y), ∆Yi(x, y) and ∆Zi(x, y) (i = 1, . . . , K) to generate new displacement

images

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∆X(W, x, y) =
∑K

i=1 wi · ∆Xi(x, y)

∆Y (W, x, y) =
∑K

i=1 wi · ∆Yi(x, y)

∆Z(W, x, y) =
∑K

i=1 wi · ∆Zi(x, y),

(3.15)

where ∆X(W, x, y), ∆Y (W, x, y) and ∆Z(W, x, y) can additionally be used to create

a new synthesized face S(W)

S(W, x + ∆X(x, y), y + ∆Y (x, y)) = G(x, y) + ∆Z(W, x, y). (3.16)

Therefore, with the aligned face warps derived from example range faces, we are

able to generate new synthesized faces using different weighting coefficients wi, i =

1, . . . , K. For instance, if we allocate each displacement image the same weight 1/K,

we can generate the average warped generic face, as shown in Fig. 18.

2. Selection of Example Faces

Our example set consists of carefully selected range faces, which are denoted as ex-

ample faces in our scheme. The selection of these example faces is performed in such

a way that faces with representative characteristics (for example, faces that are thin,

wide, long, short, etc.) will be added. This is because the representability of the
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Fig. 18. The average range face of K examples faces.

synthesized range face depends on the chosen example faces. This can be illustrated

in the feature space. Projected into the feature space, the example faces can be con-

sidered as points in the feature space. The valid synthesized faces will fall into the

“cloud” composed by the example faces, while the unreal synthesized faces will fall

out of it, as illustrated in Fig. 19. The larger the “cloud”, the wider range of valid

synthesized faces will be generated. Hence we should select the extreme faces (e.g.,

long faces, short faces) as example faces, so that the “cloud” composed by the exam-

ple faces will be as large as possible. Note that once the example faces in the example

set are determined, we will not change it during the feature extraction procedure

regardless of the input images. Hence the example set is irrelevant to the training set

used in the classification, which will be introduced later.

In our scheme, to find out extreme faces, PCA technique is applied to analyze a

number of range faces in the data set. From Section 1, we know that for a range face

E, we can obtain the corresponding displacement images ∆X, ∆Y and ∆Z. These
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Fig. 19. Range faces in the 2D feature space.

displacement images can be concatenated as a vector V. Let the length of vector V be

L. The purpose of the example face selection procedure is to select K example faces

out of H range images in the data set. By calculating the mean vector V̄ of these H

vectors Vi (i = 1, . . . , H), we can obtain the data matrix D = (V1−V̄, . . . ,VH −V̄).

The covariance matrix of D can therefore be expressed as P = ( 1
H

)DDT . In order to

perform PCA, the eigenvectors Ui (i = 1, . . . , H) should be calculated from P . Note

that the covariance matrix P is L×L, where L can be a very large number. In order

to save calculation complexity, we compute the eigenvectors U′
i (i = 1, . . . , H) from

P ′ = ( 1
H

)DT D. Let the corresponding eigenvalue of an eigenvector U′
i be λi. We

have

DT DU′
i = λiU

′
i. (3.17)

By multiplying the matrix D to the left side of the above equation, the following
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equation can be obtained

DDT DU′
i = λiDU′

i, (3.18)

where DU′
i is clearly an eigenvector of the covariance matrix P . We can then sort the

eigenvectors (DU′
1, . . . , DU′

H) according to the values of their corresponding eigen-

values, from large to small. Furthermore, since these eigenvectors may not be normal

vectors, it is necessary to normalize them. After the sorting and normalization, we can

obtain the eigenvectors (U1, . . . ,UH) of P . Each sample vector Vi, (i = 1, . . . , H),

is then projected to an eigenvector to get its coordinate value UiV
T
i . Since extreme

faces have extreme coordinate values on these eigenvectors (maximum or minimum),

based on the coordinate values of the sample vectors and the significance of the cor-

responding eigenvectors, we are able to choose K extreme faces from H range images

in a data set.

Fig. 20. Example faces with/without facial expressions in the example set.

In order to reduce the noise in target images caused by facial expressions, we

add example faces with facial expressions to the example set, as illustrated in Fig.
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20. These example faces with facial expressions can be linearly combined with those

example faces with neutral expressions to generate a series of synthesized faces. De-

pending on the weighting coefficients of the linear combination, different synthesized

faces with expressions can be obtained. As shown in Fig. 21, by adding the example

face with laughing expression (shown in Fig. 21 (e)) to the example with neutral ex-

pression (shown in Fig. 21 (a)), we can get a range of synthesized faces shown in Fig.

21 (b), (c), (d). This is achieved by giving different weighting coefficients to the linear

combinations of face warpings derived from these two example faces. Therefore, our

scheme can produce synthesized faces close to a target face with facial expression and

extract reliable features. This is one of the two techniques used in our scheme in

order to solve the facial expression problem. The other technique, as we described

in Section 2, tries to select matching regions that tend to be unaffected by facial

expressions. Note that for illustration purposes, the example faces shown in Fig. 20

are displayed as texture images, although in the example set the example faces are

stored as range images.

After the design process, we can generate different synthesized faces from different

linear combinations of face warpings by adjusting the weighting coefficients. In the

next section, we introduce the feature extraction procedure that can automatically

extracts features (weighting coefficients) from a target range image.
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(a) (b) (c)

(d) (e) (f)

Fig. 21. A range of synthesized faces with expressions can be obtained from example

faces. (a) An example face with neutral expression. (b)—(e) A series of

synthesized faces with laughing expressions can be obtained. (f) An example

face with laughing expression.
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D. Feature Extraction Procedure

Given a target range image T with a novel face, the goal of the feature extraction pro-

cedure is to extract reliable facial features that can differentiate the face from others.

Based on the aligned face warps derived from example faces, we design an algorithm

to make the warped generic face (synthesized face) as similar as possible to the target

face. In this section, we first introduce the cost function that describes the range

differences between the synthesized face and a target face. Then the optimization

procedure that minimizes the cost function is presented.

1. Cost Function

Suppose we have K example face Ei (i = 1, . . . , K), the generic face G and a target

face T . Given a weighting vector W, let the synthesized range face be S(W). For

a certain position (x, y) on G, the squared range difference between S(W) and T

becomes

C(W, x, y)= (S(W, x + ∆X(W, x, y), y + ∆Y (W, x, y))

−T (x + ∆X(W, x, y), y + ∆Y (W, x, y)))2

= (G(x, y) + ∆Z(W, x, y) (3.19)

−T (x + ∆X(W, x, y), y + ∆Y (W, x, y)))2. (3.20)

In order to measure the similarity between S(W) and T , we define the cost function

as the sum of the squared difference

C(W, Ω)=
∑

(x,y)∈Ω

(G(x, y) + ∆Z(W, x, y)

−T (x + ∆X(W, x, y), y + ∆Y (W, x, y)))2, (3.21)
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where Ω is a set containing selected points on the generic face. As we will see later,

dynamic selection of points in Ω will allow us to avoid holes in target faces. Further-

more, by choosing the points in a region that tend not to be affected by facial hair

and facial expressions, our scheme can be robust to facial hair and expressions.

2. Matching Region Selection

As just mentioned in Section 1, we should dynamically select points in Ω so that holes

will be avoided in the matching procedure. To understand the adaptive hole avoiding

strategy, let us consider picking a point P = (x, y) the point set Ω of the generic

face, as illustrated in Fig. 22. Based on the current weighting coefficients W, this

point will be compared to the point P ′ = (x + ∆X(W, x, y), y + ∆Y (W, x, y)) in the

target image. In our scheme, when the gray value of P ′ in the target image is zero,

we believe that P ′ has fallen into a hole. When that happens, we simply abandon

the point P from Ω. From this selection strategy, the points that fall into holes (with

gray level as zero) will be adaptively avoided in the matching procedure.

In order to avoid the facial hair and facial expression in a target face, we define

the matching region Ψ (shown in Fig. 23) in the generic face. In choosing the matching

region, the regions that below the lip and above the eyebrows are discarded to avoid

the effect caused by facial hair and facial expressions. During the matching procedure,

only points inside the matching region will be selected to the point set Ω. In our

scheme, this matching region selection is combined with the techniques mentioned in

Section A to achieve reliable feature extraction from target faces.
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Fig. 22. The adaptive hole avoiding mechanism.

Fig. 23. The matching region on the generic face.
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3. Optimization

After establishing the cost function as the measurement of the similarity between

S(W) and T , our goal is then to minimize C(W, Ω) by optimizing W. The minimiza-

tion of the cost function C(W, Ω) can be achieved by many optimization methods.

Here we choose Newton’s method [7], which is based on the calculation of deriva-

tives of C(W, Ω), because of its quick convergence. Compared to the optimization

procedure in [7], our optimization is automatic.

The derivatives of C(W, Ω) with respect to the ith weighting coefficient wi are

given as

∂C(W, Ω)

∂wi
=

∑
(x,y)∈Ω

2(G(x, y) + ∆Z(W, x, y)

−T (x + ∆X(W, x, y), y + ∆Y (W, x, y)))

(
∂∆Z(W, x, y)

∂wi

−(
∂T (x + ∆X(W, x, y), y + ∆Y (W, x, y))

∂(x + ∆X(W, x, y))
· ∂∆X(W, x, y)

∂wi
)

−(
∂T (x + ∆X(W, x, y), y + ∆Y (W, x, y))

∂(y + ∆Y (W, x, y))
·

∂∆Y (W, x, y)

∂wi
)), (3.22)

and

∂2C(W, Ω)

∂w2
i

=
∑

(x,y)∈Ω

2(
∂∆Z(W, x, y)

∂wi

−(
∂T (x + ∆X(W, x, y), y + ∆Y (W, x, y))

∂(x + ∆X(W, x, y))
· (∂∆X(W, x, y)

∂wi
))

−(
∂T (x + ∆X(W, x, y), y + ∆Y (W, x, y))

∂(y + ∆Y (W, x, y))
·

(
∂∆Y (W, x, y)

∂wi
)))2. (3.23)

Starting from all weighting coefficients equal to 1/K, in each iteration of Newton’s
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method, we update the next weighting coefficients as follows

W = W − λH−1∇C, (3.24)

where H−1 ≈ diag(1/∂2C(W)
∂w2

i
) (i = 1, . . . , K) is the inverse Hessian matrix and λ � 1

is the learning rate.

We implement two versions of Newton’s method to minimize the cost function.

The first version is the standard Newton’s method. We first downsample the generic

face G into different subsets based on different scale factors. These subsets are then

used as the set Ω in the optimization. It is obvious that proper downsampling scale

factor is important to achieve the balance of quick convergence and similarity between

synthesized face S(W) and a target face T . Let us consider the extreme case of

choosing all points in the generic face to form the Ω. When the minimization of the

cost function is achieved, we can obtain a synthesized face closest to the target face

T . However, the convergence could be slow because of the heavy computation in each

iteration. On the other hand, if we downsample the generic face using a high scale

factor, the size of the set Ω will be small and the computation will be fast in each

iteration. But in this case, even if the cost function C(W, Ω) is minimized, the actual

RMS error between S(W∗) and T may not be able to reach the minima.

The second version is a stochastic Newton’s method. In each iteration, a number

of points are randomly chosen to the set Ω from the matching region on the generic

face. So we should be able to determine the number of points in the set Ω in each

iteration. Here we face a tradeoff of choosing proper size of Ω. On one hand, smaller

size of Ω can reduce the computing time of the matching procedure in each iteration.

But from (3.24), we can see that it will also cause the instability of the changing

value λH−1∇C in each iteration. In order to smooth the changing of the weighting
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coefficients, small learning rate has to be given, resulting in overall slow convergence

to the global minima even if computation in each iteration is fast. On other hand, a

larger Ω can bring more stability to H−1∇C. With more stability, we can give the

learning rate λ a larger value, so that even if the computing time in each iteration

is longer, the overall matching procedure can be faster. In our scheme, the size of Ω

and learning rate λ are tested and tuned to reach the best performance.

Both versions of our proposed optimization method have been tested on more

than 600 different target images, none of the optimization procedures falls into local

minima, which demonstrates the robustness of the proposed optimization method.

After the feature extraction procedure, we obtain the optimized weighting coef-

ficients W∗, which can be used as features for classification.

E. Feature Classification Using Mahalanobis Distance

Many classifiers can be used to classify the obtained features from the feature ex-

traction procedure. In our proposed scheme, a linear classifier based on Mahalanobis

distance [23] is used, which yields good results as we will see later in Section F.
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1. Feature Preprocessing

Fig. 24. Principle component analysis.

The high dimensionality of the features (weighting coefficients) can be redundant,

therefore we again use the PCA to find out the dominant dimensions. Let us take

a look at the samples on the XY plane illustrated in Fig. 24. Using PCA, two

orthonormal vectors X′ and Y′ can be found. As shown in Fig. 24, these two vectors

have the following properties: 1) the covariance of samples is maximized by projecting

the samples to the normal vector X′, and 2) the normal vector Y′ is orthogonal to

X′. In addition to the two vectors X′ and Y′, PCA also produces the corresponding

eigenvalues σx′ and σy′ , respectively. These eigenvalues represent the variances of

the projected samples in the directions defined by X′ and Y′. In our example, it is

obvious that σx′ is larger than σy′ . Therefore, if we discard the vector Y′ and project

all samples to the vector X′, the dimensionality will be reduced without losing too

much information. From this 2D example, we can generalize the PCA technique to

higher dimensional space. As we will see later in Section 4, in our scheme, PCA
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reduces more than half of the dimensionality of our extracted feature vectors to lower

dimensions for analysis.

In addition to reducing the dimensionality of samples, here we use PCA as a

preprocessing technique to achieve another goal. As we mention previously in Sec-

tion A, our linear classifier is based on Mahalanobis distance. In order to calculate

the Mahalanobis distance, the inverse of a data set’s covariance matrix has be to

calculated. Therefore we require the covariance matrix to be invertible. From linear

algebra we learn that a square matrix is invertible if and only if its determinant is

not zero. In other words, none of the eigenvalues of an invertible covariance matrix

should be zero. Given a N × N covariance matrix, from PCA we can obtain a series

of eigenvectors (E1, . . . ,EN) sorted by their corresponding eigenvalues (ω1, . . . , ωN),

from large to small. If we select the eigenvectors with large eigenvalues and discard

the eigenvectors with small eigenvalues, by projecting the samples to the selected

eigenvectors, we obtain a new set of samples with non-singular covariance matrix.

This way, PCA can help prevent singular covariance matrices from occurring and

ensure accurate calculation of the Mahalanobis distance.

2. Mahalanobis Distance

Given an input feature vector x, assume we try to assign it to one of the two classes: ω1

and ω2, where ω1 represents the class of a particular human face P and ω2 represents

all other sample range images. From the training samples of P , we can calculate the

mean vector µ and the covariance matrix Σ. As shown in Fig. 25, the Mahalanobis

distance from a sample vector x to P can be then expressed as the following

D2
m(P,x) = (x − µ)tΣ−1(x − µ). (3.25)

Given a threshold h, we can assign a sample x to ω1 if its Mahalanobis distance
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Fig. 25. Mahalanobis distance.

D2
m(P,x) ≤ h; otherwise, x will be assigned to ω2.

In the classification based on Mahalanobis distance, given the human face P ,

accurately estimated covariance matrix and mean are the key factors to differentiate

P from other faces. Hence sufficient training samples from P are necessary to be

included in the training set. In our scheme, as we will see later, for a human face P ,

we choose twenty samples to constitute its training set.

F. Experimental Results

1. Data Acquisition

All range images along with corresponding texture images are obtained from a 3D

camera system. There are totally 650 range images in our data set containing 113

different human objects. Among these captured range images, about 100 images



63

Fig. 26. A range (left) image along with the corresponding texture (right) image cap-

tured by a 3D camera.

contain faces with facial hair, expressions and holes. Each range image is 750 × 500

in size. In addition, for a 3D face, the tip of the nose is at the center of the image;

and the eyes look straight ahead and they are on a line parallel to the x-axis.

For illustration purposes, a sample range image with its corresponding texture

image are given in Fig. 26. It is seen that the hair in the lady’s face results in holes

in the captured images. Our proposed scheme, as proven by our experiments, will be

able to tolerate these artifacts.

2. Accuracy and Robustness of the Optimization

In this section, we introduce the experiments that demonstrate the accuracy and

robustness of the optimization procedure in our proposed feature extraction scheme.

In the experiments, we first measure the accuracy between the positions of landmark
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points in synthesized face and target face. Then the distribution of range differences

between the synthesized face and target faces are given. After the optimization, we

Fig. 27. Feature extraction results.

can use the weighting coefficients W∗ to calculate the location of the seventy landmark

points Xg+∆X∗
l , Yg+∆Y∗

l on the synthesized face. In order to evaluate the accuracy

of our feature extraction scheme, we need to compare our results (the location of the

landmark points on the synthesized face) with the real location of the landmark points

(Xt, Yt) on the target face T . We find that the landmark points obtained from our

scheme are on average within the range of 5 pixels of the corresponding landmark

points on the target images. We give some marking results on the tested target faces
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shown in Fig. 27 to demonstrate the accuracy of our algorithm. For display purposes,

the extracted landmark points are shown on texture images and connected with lines,

although our scheme works solely on range images.

The accuracy and robustness of our feature extraction scheme can also be evalu-

ated based on the cost function defined in (3.21). Let the point set Ω be the matching

area Ψ defined in Section 2. Assuming there are M points in the matching area, from

(3.21) we can obtain the average range difference between the target face T and the

synthesized face S(W) as

AD(S(W), T, Ψ) =
1

M

∑
(x,y)∈Ψ

|G(x, y) + ∆Z(W, x, y)

−T (x + ∆X(W, x, y), y + ∆Y (W, x, y))| . (3.26)

After the matching procedure described in Section 3, based on the optimized weight-

ing coefficients W∗, the synthesized face S(W∗) can be obtained. The accuracy of the

matching procedure can then be evaluated by AD(S(W), T, Ψ). Clearly, the smaller

the average range difference AD(W∗, T, Ψ) is, the higher accuracy the matching pro-

cedure achieve. Based on our database that contains more than 600 range images, we

test the matching procedure and give the distribution of the average range difference

in Fig. 28. It is seen that after the matching procedure, about 95% resulted average

range differences are below 8 range unit, and less than 1% are larger than 9 range

unit, which clearly demonstrate the robustness of our optimization procedure.

3. Feature Extraction Schemes for Comparison

In order to demonstrate the effectiveness of the extracted features (weighting coef-

ficients) generated from our proposed scheme, two other different feature extraction
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Fig. 28. Distribution of average range difference after matching procedure.

schemes are used for comparison. Like the weighting coefficients extracted from our

scheme, the feature sets generated from these two schemes are also classified by the

Mahalanobis-distance-based classifier to evaluate the performances.

The first chosen feature set is the face profiles, which can be generated directly

from the target image T . As illustrated in Fig. 29, when an input range image has

been normalized, the tip of the nose of T will be fixed to the center of the image.

Therefore, we can get the vertical and horizontal profiles of T directly following the

vertical and horizontal lines that divide the image across the its center. The vertical
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and horizontal profiles are concatenated as a feature vector and used for comparison.

The reason for choosing face profiles is because they contain some important detailed

information that differentiate a person from others. In addition, profiles are relatively

insensitive to facial expressions, holes and hair.

In addition to the profiles, we also use the classical eigenface method [1], [32] to

extract features for comparison. On each input range image (with size of 750× 500),

resampling is performed to obtain a downsampled image at 75×50 resolution. All the

downsampled images from range images in the database are then treated as a group

and eigenvectors can be calculated from PCA. These downsampled images are then

projected back to 10 eigenvectors with most significant eigenvalues to generate feature

vectors. These feature vectors comprise the second feature set for comparison. The

reason for choosing this type of features is that they contain the overall information

of 3D human faces.
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(a) (b)

(c)

Fig. 29. Features obtained from the profiles of a target face. (a) The vertical and

horizontal lines on a target face for profile extraction. (b) Horizontal profile.

(c) Vertical profile.
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4. Classification Performance

Our scheme is tested in the access control scenario, where a group of authorized

users are allowed to enter a certain protected area, while the imposters are denied

from entering. The groups of authorized users and the imposters comprised of 8

and 105 different human subjects, respectively. Each authorized user has 40 range

images captured at different times, while each imposter has only a few images in the

database. Totally, there are 330 range images from imposters.

Fig. 30. Experimental settings.

The settings of the experiments are shown in Fig. 30. First, range images in

the database are processed by the three different feature extraction schemes. Af-

ter the feature extraction procedure, three different feature sets are obtained. In

the three feature sets, a range image will have three different corresponding feature

vectors (samples) respectively. A feature vector in the first feature set is comprised
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of weighting coefficients extracted from our proposed scheme based on warped ex-

ample faces. In the second set, the profiles of 3D faces become feature vectors, as

we mentioned in Section 3. The third feature set is obtained from the eigenface

method described in Section 3. A feature vector in the feature sets can be considered

as a sample of the corresponding range image, and is passed to the Mahalanobis-

distance-based classifier. When all the samples in a feature set have been classified,

the classification performance of the feature set will be obtained. Based on the clas-

sification performances, we can evaluate the three feature sets. In addition to the

three feature sets used in classification experiments, for comparison purposes, we also

implement the surface matching method presented by X. Lu et al. in [49] and con-

duct experiments in the same access control scenario. In surface matching method,

the Mahalanobis-distance-based classifier is not used. Instead, the surface difference

metric [49] is utilized to perform classification.

In the classification experiments based on the three feature sets, samples be-

longing to each of the eight authorized users are divided into two halves. For each

authorized user, one half samples are used for training and the other half are left

for testing. The training samples from all the authorized users then constitute the

training set. In the training step, for each of the eight authorized users, based on

the training samples, we calculate its covariance matrix and mean, which are then

used to construct the Mahalanobis-distance-based classifier. On the other hand, the

samples from the imposters and the testing halves of the authorized users comprise

the testing set. In the testing step, given a sample from testing set, the Mahalanobis

distances between the input feature and the eight authorized subjects are calculated.

Then based on a Mahalanobis distance threshold, this testing sample will be classified

either as an authorized user or an imposter. By changing the Mahalanobis distance

threshold, we can obtain a receiver operating characteristic (ROC) curve for each
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feature set. To reduce the effect caused by statistical bias, after one classification

experiment, the training halves and the testing halves belonging to the eight autho-

rized users are exchanged respectively to perform another classification. The final

classification results are the average of the two experiments.

In the experiments based on the surface matching method, the training set in-

cludes eight range images belonging to the eight different authorized users, respec-

tively. In the matching procedure, given a testing image, it will be matched to all

range images in the training set. The matching distance is then used as metric to

make classification decision. The authorized user in the range image belonging the

training set with closest matching distance to the testing range image will be consid-

ered as an identification unless the matching distance is larger than a threshold. Thus

by changing the threshold, we can also obtain ROC curve of the surface matching

method. In the surface matching procedure, given a testing image, about 300 control

points around the eye area are chosen.
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(a) (b)

(c) (d)

Fig. 31. ROC curves of various features. (a) ROC curve based on the weighting coef-

ficients. (b) ROC curve based on the profiles. (c) ROC curve based on the

eigenface method. (d) ROC curve based on the surface matching method.
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In order to evaluate the overall performance of our extracted features (weighting

coefficients) compared to the other two feature sets (features from profiles and eigen-

face method) using Mahalanobis-distance-based classifier and the surface matching

method, we draw the ROC curves using hit rate versus false alarm rate. In Fig. 31 (a),

we use the weighting coefficients from our extraction procedure as features; in Fig. 31

(b), the profiles become features; in Fig. 31 (c), features extracted by the eigenface

method are used; in Fig. 31 (d), the surface matching method is used. In Fig. 31 (a),

we can see that the hit rate reaches 97.2% at the false alarm rate 2%; when the false

alarm rate reaches 5%, the hit rate climbs to 98.5%. Compared to the performance

of weighting coefficients, the features obtained from the profiles are less efficient in

differentiating a person’s face from others. From Fig. 31 (b), we can see that when

the false alarm rate reaches 2%, the hit rate is already 93.4%. When the false alarm

rate is 5%, the hit rate reaches is 95.1%. The performance of using features from

the eigenface method is the worst among the three sets of features. As shown in Fig.

31 (c), when the false alarm rate reaches 2%, the hit rate is 91.2%. At the 5% false

alarm rate, the hit rate is about 92.5%. Thus, from the ROC curves, we can clearly

see the advantage of our extracted features. The reason that features from profiles

have better performance in classification than features from the eigenface method is

because they are less sensitive to the facial expressions, holes and hair.

Compared to the performances of the three feature sets using on the Mahalanobis-

distance-based classifier, the surface matching method has a lower recognition rate.

However, it needs to address that the surface matching method uses completely dif-

ferent classification method compared to the classification based on Mahalanobis dis-

tance. Unlike the Mahalanobis-distance-based classifier that needs sufficient training

data (in our experiments, twenty samples from each authorized users) to calculate

covariance matrices and mean, surface matching method just needs one range im-
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age from each of the authorized users in the training set. Therefore, the comparison

in some sense is unfair. Nevertheless, the classification results do demonstrate the

effectiveness of the features (weighting coefficients) extracted from our scheme.

Table I. Equal Error Rates for Different Test Schemes.

Test Schemes EER

Weighting Coefficients 2.5%

Profiles 5.1%

Eigenface method 6.7%

Surface matching 8.6%

At each point on a ROC curve, a pair of miss rate and false alarm rate can be

obtained. Considering a certain point on the ROC curve where the miss rate and the

false alarm rate are equal, we can obtain the equal error rate (EER) that is defined

to have the same value of both miss rate and false alarm rate. Here we list the EERs

for the four tested schemes as shown in Table. I

To further evaluate the performance, we study the misclassified target faces when

the system operates at the EER point on the ROC curve. For demonstration purposes,

four misclassified target faces with corresponding synthesized faces and those human

subjects to whom the target faces are mistakenly classified are shown in Fig. 32,

respectively. From the misclassified target faces, we can see that there are two reasons

that cause the misclassification. First, feature extraction procedure may not be able

to generate a synthesized face similar enough to a target face. This will cause the

inaccuracy of the extracted features and may result in a misclassification. Second,

even with a reasonably similar synthesized face, the extracted feature vector from

a target face can still be mistakenly classified when it falls within a range close to
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another person’s face in terms of Mahalanobis distance.

G. Summary

We have presented a novel feature extraction scheme for 3D face recognition based

on warped example faces. We first introduce the face warping procedure based on

landmark points defined in generic face. Based on a set of weighting coefficients, a

combination of the face warps derived from example faces can be used to warp the

generic face as a synthesized range face. After that, the selection of example faces

is described. In order to make the synthesized face similar to a target face, New-

ton’s method is used to minimize the range differences by optimizing the weighting

coefficients. After the optimization, the optimized weighting coefficients are used as

the feature of the target face. A linear classifier based on Mahalanobis distance is

used to verify the identity of the target face. We tested our scheme on a database

containing more than 600 range faces. Experimental results showed that the feature

extracted from our scheme can highly differentiate human faces a high recognition

rate. Currently, our 3D face recognition system is implemented in Matlab. On a PC

with a 2.4GHz Pentium processor, the scheme takes about 19 seconds to recognize a

person from its range image. We expect a significant speedup if the scheme is ported

in C with optimization.

Our scheme can automatically extract features from a range image captured

from 3D camera system and is insensitive to holes, facial expressions and hair. In our

scheme, both detailed and the overall geometric information are utilized to recognized

a person.
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Fig. 32. Misclassified faces (top row) along with corresponding synthesized faces (mid-

dle row) and the human subjects to whom the target faces are mistakenly

classified (bottom row) when the system operates at the EER point. Note

that different classification results can be obtained when the system operates

under different configurations.
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CHAPTER IV

DISTRIBUTED ROUTING ALGORITHMS FOR THE

LOCATION-BASED WIRELESS SENSOR NETWORKS∗

In this chapter, we turn to the wireless transportation component of our proposed

3D face recognition system. Specifically, we will focus on the distributed routing

algorithms in the location-based wireless sensor networks. Note that here sensor

node can be a person, vehicle, etc., rather than simply a conventional concept of

being a transducer. Here we start from the so-called dead-end problem [27], and

by solving it, we propose two complete routing solutions for location-based wireless

sensor networks.

The dead-end problem in greedy forwarding is an important issue of location-

based routing in sensor networks. It occurs when a message falls into a local minimum

using greedy forwarding. Current solutions to this problem are insufficient in either

eliminating traffic/path memorization or finding satisfactory short paths. In this

chapter, we propose a novel algorithm, called Partial-partition Avoiding GEographic

Routing (PAGER) [74]–[76], to solve the problem. The basic idea of PAGER is to

divide a sensor network graph into functional sub-graphs and provide each sensor

node with message forwarding directions based on these sub-graphs. PAGER results

in loop-free short paths without memorization of traffics/paths in sensor nodes. It

does not require planarization of the underlying network graph. Further, the mobility

∗ c© [2005] IEEE. Reprinted, with permission, from “A distributed algorithm for
the dead end problem of location based routing in sensor networks” by L. Zou, Z.
Xiong, and M. Lu, 2005. IEEE Transactions on Vehicular Technology, vol. 54, pp.
1509-1522.
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adaptability of PAGER makes it suitable for use in mobile sensor networks with

frequent topology changes. We implement the PAGER algorithm in two protocols

and evaluate them in sensor networks with different parameters. Experimental results

show the advantage of PAGER in the context of sensor networks.

A. Introduction

Sensor networks consist of a large number of tiny sensors with limited power and

computational capability. Data collected by the sensors are usually routed to the

base station (BS) in a multi-hop manner [2]. A number of routing protocols (e.g.,

non-location-based [2], [30], [31], [36], [38], [50], [53], [54], [62] and location-based [8],

[25], [27], [29], [37], [39], [40], [58]–[60], [69], [70]) have been proposed for sensor net-

works. Among them, the location-based solutions [8], [25], [27], [29], [37], [39], [40],

[58]–[60], [69], [70] have received more attention due to their inherent scalability and

power-efficiency. In addition, by providing the location information, location ser-

vice systems [33], [44] are available to support these location-based routing protocols.

However, the dead-end problem is an important issue in location-based routing for

sensor networks. It arises when greedy forwarding fails at a sensor node that is closer

(in Euclidean distance) to the BS than all its neighbors. Left unsolved, this problem

will prevent location-based routing protocols from providing paths from some sensor

nodes to the BS (even if such paths might exist). In the past, both memorization-

based [37], [60] and stateless [8], [39] recover mode algorithms have been proposed to

address the dead-end problem. The memorization-based methods [37], [60] require

nodes to memorize their past traffic or paths. These methods are not scalable because

they are sensitive to the node queue size, changes in node activity and node mobility.

In contrast, stateless recover mode methods [8], [39] do not require a node to memorize

its past traffic or paths, hence they maintain almost no state information in sensor
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nodes; this property makes the stateless recover mode methods [8], [39] suitable for

sensor networks, which usually consist of a large number of sensor nodes. The greedy-

face-greedy (GFG)/greedy perimeter stateless routing (GPSR) algorithm [8], [39] is

currently the most widely accepted stateless recover mode algorithm in ad-hoc/sensor

networks. GFG/GPSR elegantly handles the dead-end problem by routing a message

along boundaries of polygons of the planarized network graphs. However, compared

to the shortest-path [21] in sparse networks, this algorithm generates long paths with

loops, which increase traffic burden and risk of losing data packets in large-scale

sensor networks; it additionally requires the underlying network topology to be a

planar graph, which increases the computational complexity. In this chapter, we pro-

pose a distributed algorithm called Partial-partition Avoiding GEographic Routing

(PAGER) that divides a sensor network graph into functional sub-graphs and provides

forwarding directions for each sensor node based on these sub-graphs. Distinctive fea-

tures of PAGER are: 1) it does not require a node to memorize its past traffic or paths

or the underlying network graph to be planar, 2) it constructs loop-free paths with

lengths close to the shortest, and 3) it is adaptive to mobility, making it applicable

to mobile sensor networks with frequent topology changes. We implement PAGER in

routing protocols, resulting in PAGER-S and PAGER-M for stationary and mobile

scenarios, respectively. The performance of PAGER-S/M is evaluated under different

network topologies. Experimental results show the advantages of PAGER-S/M.

B. Sensor Network Model and the Dead-end Problem

1. Network Model

We consider the following network graph model: a number of sensor nodes are ran-

domly deployed on an unobstructed two-dimensional sensing field with a BS. The

sensor nodes are modeled by a unit graph. All sensor nodes within communication
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range r of a node x are considered as neighbors of x and have bi-directional links with

node x, as shown in Fig. 33. N(x) denotes the set of neighbors of node x which in-

cludes all sensor nodes that fall into the circle centered at x with radius r. Depending

on the applications, the BS is located either adjacent to the sensing field or inside

it. It has a communication range R, which is long enough to cover all sensor nodes.

Commands from the BS can be sent to sensor nodes via a broadcast channel. In this

dissertation we only consider using this broadcast channel to help sensors obtain the

location information of the BS. Note that for most sensor network applications, the

BSs are normally with little mobility, so that the broadcasting from the BS to sensor

is not necessary to be frequent even when the sensor nodes are moving with high fre-

quency. Also, the BS in a sensor network, unlike tiny power-constrained sensor nodes,

normally has sufficient power supply. With these two reasons, the cost of obtaining

the location information by sensor nodes from the BS is insignificant. Therefore, we

assume every sensor node knows the location of the BS, which is actually assumed by

all location-based routing protocols [8], [25], [27], [29], [37], [39], [40], [58]–[60], [69],

[70]. Consequently we will not consider the unidirectional links from the BS to sensor

nodes when modeling the sensor networks. We formally express our sensor network

model as a graph G(V, E, BS), where V is the set of sensor nodes and E ⊆ V ′ × V ′

with V ′ = V ∪ BS is the set of bi-directional communication links between pairs of

nodes (including the BS) when communication is possible.

2. The Dead-end Problem in Sensor Networks

Information collected at a sensor node is forwarded to the BS in a multi-hop manner

with possible data fusion/aggregation [30], [31]. In location-based routing methods

[8], [25], [27], [29], [37], [39], [40], [59], [60], [69], [70], a forwarding node utilizes the

location information of the destination, its neighbors and itself to route a message.
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Fig. 33. The sensor network model.

The most popular forwarding method in this category is greedy forwarding, in which

a node forwards the message to a neighbor that is closer (in Euclidean distance) to

the destination. Greedy forwarding is shown in [39] to have path length close to the

shortest in dense networks. Under greedy forwarding, node x in Fig. 33 will forward

the message to its neighbor y because y is closer to the BS. The so-called dead-

end problem makes greedy forwarding insufficient in sparse (or even dense) sensor

networks. This problem arises when a message is forwarded to a local minimum,

i.e., a node with no neighbor of closer distance to the destination. In Fig. 33, after

node z receives a message from node g, it finds no closer neighbor to the BS in its

communication range to forward the message (even though there exists a path to the

BS). Thus node z is a local minimum. In our sensor network model, a local minimum

is referred to as a concave node, which we formally define as follows.
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Definition 1 (Concave Node): A sensor node x in a sensor network graph G(V, E, BS)

is a concave node if distance(x, BS) < distance(y, BS), ∀y ∈ N(x), where distance(., .)

represents the Euclidean distance.

The objective of this chapter is to solve the dead-end problem in the context of

sensor networks, which is different from those of [8], [37], [39], [60] that deal with

ad-hoc networks with symmetric topology and no BS. We show that our proposed

PAGER algorithm solves the dead-end problem due to concave nodes.

C. The PAGER Algorithm

PAGER uses two phases to solve the dead-end problem in sensor networks. The first

shadow − spread phase divides a connected graph into sub-graphs originated from

concave nodes; the second cost−spread phase establishes paths on a given sub-graph

obtained in the first phase.

1. The Shadow-spread Phase

The aim of the shadow − spread phase is to locate the “dangerous nodes” close to

concave nodes, where a message will inevitably be forwarded to a concave node by

greedy forwarding. As an example, consider the process of shadow−spread on graphs

shown in Fig. 34. In Fig. 34(a), node A is a concave node while nodes B and C are

not. If we disconnect A from the graph (shown in Fig. 34(b)), B and C become new

concave nodes. Thus we go one step further by disconnecting B and C from the

original graph. As Fig. 34(c) shows, by disconnecting the sub-graph consisting of A,

B and C from the original graph, we obtain a graph with no concave node. Therefore,

using greedy forwarding, messages originated from any node in the new graph will be

forwarded to the BS without encountering the dead-end problem.
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(a) (b) (c)

Fig. 34. An example of the shadow-spread phase. (a) The original network graph

contains a concave node A. (b) After disconnecting A from graph, new concave

nodes B and C appear. (c) After excluding the sub-graph consisting of A, B

and C, the remaining graph contains no concave node.
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In Fig. 34, we mark A, B and C in the network graph as shadow nodes and the

remaining sensor nodes as bright nodes. In addition, we will call the bright nodes

adjacent to shadow nodes (i.e., nodes D and E) border nodes. Below we formally

define shadow nodes, bright nodes and border nodes.

Definition 2 (Shadow Node): A sensor node x in a sensor network graph G(V, E, BS)

is a shadow node if distance(x, BS) < distance(y, BS) for any y in N(x), excluding

the subset of N(x) that are already shadow nodes.

We denote the latter set as Shadow(N(x)). Note that according to Definition 2,

concave nodes are a subset of shadow nodes.

Definition 3 (Bright Node): A sensor node x in a sensor network graph G(V, E, BS)

is a bright node if there exists a node y ∈ N(x) - Shadow(N(x)) such that distance(x, BS)

> distance(y, BS).

Definition 4 (Border Node): Given a sensor network graph G(V, E, BS), a bright

node x is a border node if Shadow(N(x)) �= ∅.

Differentiating the nodes on the network graph based on their statuses (e.g.,

shadow or bright), we can thus divide the original graph into two sub-graphs. We call

the sub-graph that contains all shadow nodes the shadow area. Similarly, the sub-

graph that contains all bright nodes is called the bright area. Furthermore, we call the

area encompassing node A in Fig. 34 a partial partition, which partially partitions

the sensor network in Fig. 34 and creates the concave node A. Formal definitions of

the shadow area, bright area and partial partition are given below.

Definition 5 (Shadow Area): Given a sensor network graph G(V, E, BS), a shadow

area is a sub-graphs Gs(V s, Es) of G(V, E, BS), where Vs is the vertex set of all
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shadow nodes that are connected with each other and Es ⊆ Vs × Vs is the edge set

that consists of communication links between any pair of shadow nodes in Vs.

Definition 6 (Bright Area): Given a sensor network graph G(V, E, BS), a bright

area is the sub-graph of G(V, E, BS) that excludes all shadow areas.

Definition 7 (Partial Partition): Partial partition is a region on a graph bounded

by edges of sensor nodes and/or boundaries of the sensing field that encompasses at

least one concave node.

In order to divide the original graph into a bright area and shadow areas, nodes

should be able to exchange information of their status (shadow or bright) along with

their location information. This information exchange is realized by periodically

broadcasting beacon messages beacon(status, location) that contain two fields: status

and location. Every node on a graph should be able to decipher the location informa-

tion of the BS. Based on our network model, sensor nodes obtain the BS’s location

from its broadcast channel. The shadow− spread phase is given in Algorithm 1 for a

forwarding sensor node x, where the auxiliary function DecideShadow shown in Al-

gorithm 2 is used to determine whether x is a shadow node. The location information

of x (denoted as location(x)), the location information of the base station(denoted

as location(BS)), the beacon message received by x (denoted as beacon(x)) and the

neighbor list of x are the input parameters of algorithm 1 and 2.

Given a sensor network topology/graph, the shadow − spread phase needs a

convergence period to stabilize. Here we give its convergence time (in terms of the

beacon broadcast interval B) in Proposition 1.

Proposition 1 (Convergence Time of Shadow-spread): Given a sensor network graph

G(V, E, BS) that consists of n sensor nodes, the shadow− spread phase converges in

n rounds in terms of beacon broadcast interval B.



86

Algorithm 1 ShadowSpread(location(x), location(BS), beacon(x))

1: status(x) = bright;

2: while active do

3: if receive beacon from a neighbor y then

4: Refresh the neighbor set N(x) by updating the status and location informa-

tion of y;

5: if DecideShadow(location(x), location(BS), N(x)) then

6: status(x) = shadow;

7: else

8: status(x) = bright;

9: end if

10: end if

11: if beacon timeout occurs then

12: Copy status and location information of node x to beacon(status, location)

and send out to all neighbors;

13: end if

14: end while

Algorithm 2 BoolDecideShadow(location(x), location(BS), N(x))

1: shadow = true;

2: for each node z ∈ N(x) do

3: if ((status(z) = bright)&&(distance(z) < distance(x)) then

4: return false;

5: end if

6: end for

7: return shadow;
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Proof. We know that a shadow node will not change its status to bright as long as the

given graph G(V, E, BS) remains static. We only need to show that shadow nodes

appear continuously in the shadow−spread phase. That is, the time interval between

the appearances of two shadow nodes is no longer than B. By way of contradiction,

assume that during the period [t0, t0 + B), there is no new shadow node appearing

in G(V, E, BS); while during [t0 − B, t0) and [t0 + B, t0 + 2B) some shadow nodes

change their status to bright. Denote the first new shadow node appears during

[t0 + B, t0 + 2B) as v, then according to Algorithm 1, there are two possibilities for

v: it is a concave node or at least one of its neighbor changes status from bright

to shadow. It is clear that v is not a concave node, because otherwise it would

have appeared before the [t0, t0 + B) period. So at least one of v’s neighbors have

changed statuses from bright to shadow during [t0, t0 +B). This contradicts with our

assumption. Consequently, the convergence time of the shadow − spread phase is at

most n rounds.

We give the following two Lemmas before presenting Proposition 2 on the fatality

of shadow areas.

Lemma 1 (One Direction of Greedy Forwarding): Given a sensor network graph

G(V, E, BS), after the shadow − spread phase converges, shadow nodes will not

forward packets to bright nodes using greedy forwarding.

Proof. After the shadow − spread phase converges, all the shadow nodes are known.

Consider the shadow nodes that have at least one bright node as neighbor. If a shadow

node x can forward a message to its neighboring bright node y, then y must be closer

to the BS than x, contradicting the assumption that x is a shadow node.

Lemma 2 (Two Endings of a Path): Given a sensor network graph G(V, E, BS), a

message will end up with either a concave node or the BS using greedy forwarding.
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Proof. In [60] Stojmenovic and Lin proved that following greedy forwarding, paths are

loop-free. So a path constructed by greedy forwarding will end up with a certain node.

In the connected sensor network graph after the shadow − spread phase converges,

according to the definition of concave nodes, a node other than concave node or the

BS will always find a neighbor to forward a message using greedy forwarding. So the

only node that can be an end of a path constructed by greedy forwarding is either

the BS or a concave node.

Proposition 2 (Fatality of Shadow Areas): Given a sensor network graph G(V, E, BS),

after the shadow−spread phase converges, a message forwarded to a shadow area will

end up with a concave node using greedy forwarding; on the other hand, a messages

forwarded to the bright area will end up with the BS using greedy forwarding if all

shadow areas are disconnected from G(V, E, BS).

Proof. From Lemma 1, we know that a message x forwarded to a shadow area cannot

find a path across border nodes to the bright area using greedy forwarding. Lemma

2 stipulates that a message x will reach either a concave node or the BS using greedy

forwarding. The only way for the message x forwarded to a shadow area Gs(Vs, Es)

to end up with the BS is when the BS is adjacent to Gs(Vs, Es). But this violates the

definition of shadow nodes. So we conclude that any message forwarded to a shadow

area will end up with a concave node using greedy forwarding. On the other hand,

if we disconnect all the shadow areas from G(V, E, BS), we will find that there exist

no concave nodes in the resulted graph. Based on Lemma 2, we can conclude that

every messages originated from the resulted graph will reach the base station.

Proposition 2 means that a shadow node will always send forwarding messages to

a shadow area using greedy forwarding. For example, node B in Fig. 34(a) will always

forward a message to node A. Therefore a message forwarded to a shadow node will
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Fig. 35. Distribution of shadow/bright areas in a sensor network with 200 randomly

placed sensor nodes. The BS is represented by a rectangle. Concave nodes

are marked by “X”. Black nodes represent shadow nodes whereas white nodes

signify bright nodes.

eventually be trapped in a concave node using greedy forwarding. On the other hand,

messages from bright nodes will be safely forwarded to the BS without encountering

dead-ends if we disconnect all shadow areas from G(V, E, BS). For example, node

E will forward a message to the BS via node F after C is disconnected from the

graph (see Fig. 34(c)); otherwise, all messages from E will be forwarded to C and

lost in concave node A. The distribution of shadow/bright areas of a sensor network

depends on its topology and the communication range of sensor nodes. In Fig. 35 we

give an example distribution of shadow/bright areas on a 200-node sensor network.

Sensor nodes are randomly deployed on a 1000m × 1000m sensing field with the BS
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located at (500, 1000). Each node has a communication range of 113m, which creates

a network topology with average degree of 8. As shown later in our experiments, for

a fixed average degree, the more sensors; the bigger shadow areas (with more shadow

nodes). Similarly, for a fixed number of sensor nodes, a denser sensor network (with

higher average degree) will have smaller shadow areas.

2. The Cost-spread Phase

Once the sub-graphs are obtained from first shadow − spread phase, the second

cost − spread phase begins. The objective is to give each shadow node a forwarding

direction to the nearby bright area. To illustrate how the second phase works, we

show in Fig. 36 an example that starts with the same network graph as in Fig. 34.

Initially each node on the graph is marked with a cost that is its Euclidian distance

to the BS (see Fig. 36(a)). In the first step, every shadow node tries to avoid being

surrounded by neighbors with higher costs. As Fig. 36(b) shows, node A finds that

all its neighbors have higher cost. To avoid this situation, node A increases its cost to

22 to be higher than the maximum cost of its neighbors by ∆ (∆ is the incremental

step size, which is set to 3 in this example). In the second step, both nodes B and

C find that all their neighbors have higher costs (since node A’s cost is now 22). In

response, they increase their costs to 25 and 26, respectively, as shown in Fig. 36(c),

by following the same rule. The cost − spread phase ends in the third step when

node A increases its variable from 22 to 29, as shown in Fig. 36(d). Now, each of the

shadow nodes A, B and C has at least one neighbor with smaller cost. If we connect

each node with its lowest-cost neighbor, we establish cost gradients across the whole

graph (see Fig. 36(e)). Then messages forwarded from sensor nodes to the BS will

follow the paths of these gradients.
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(a) (b) (c)

(d) (e)

Fig. 36. An example of the cost-spread phase. (a) Before the current phase, shadow

nodes (A, B, C) are identified by the shadow-spread phase. (b) Step 1: Node A

increases its cost to 22=max(18,19)+∆. (c) Step 2: Nodes B and C increase

their costs to max(22,20)+∆=25 and max(22,23)+∆=26, respectively. (d)

Step 3: Node A further increases its cost to max(25,26)+∆=29. (e) The

cost-spread phase ends when each shadow node has at least one neighbor with

smaller cost. A cost gradient is established from each node to its lowest-cost

neighbor.
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An important parameter in the cost−spread phase is the incremental step size ∆.

In practice, ∆ should be set to be the average Euclidean distance between neighboring

sensor nodes in a sensor network graph G(V, E, BS). The rationale behind this is

that, if node y is the closest (in terms of number of hops) bright node to shadow node

x, then the cost of node x with this choice of ∆ will be approximately the desired

distance(x, y) + distance(y, BS). Note that the cost − spread phase depends on the

results of the shadow − spread phase. This is because cost − spread phase applies

only to shadow areas instead of the whole network, while the shadow areas should be

generated by the cost − spread phase. In practice, however, the first phase and the

second phase can be combined together. Once the status of a sensor node turns from

bright to shadow, the cost−spread phase can be triggered in that node immediately.

In addition, cost information must be exchanged among sensor nodes to enable cost−
spread. Similar to the way status information is handled in the shadow − spread

phase, we add the cost information to the periodically broadcasted beacon messages.

We summarize the cost− spread phase in Algorithm 3. The convergence time (again

in term of the beacon broadcast interval B) of the cost−spread phase depends on the

size of (or the number of nodes in) the shadow areas in a given sensor network graph

G(V, E, BS). Before we formally present this result in Proposition 1, we introduce

three lemmas under the assumption that the cost − spread phase starts after the

shadow − spread phase converges.

Lemma 3 (Adjacent Areas): Given a connected sensor network graph G(V, E, BS),

if shadow areas exist, they are adjacent to the bright area.

Proof. If there is no shadow area, the lemma is true. Consider the scenario with at

least one shadow area. To have a shadow area not adjacent to the bright area while

remaining connected to other nodes in the graph, the shadow area must be adjacent
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Algorithm 3 CostSpread(nodex)

1: cost(x) = distance(x, BS);

2: while active do

3: if receive beacon(cost) from a neighbor y then

4: Refresh the neighbor set N(x) by updating the cost of y;

5: if cost(x) ≤ minimum cost of neighbor set N(x) then

6: cost(x) = maximum cost of neighbors + ∆;

7: end if

8: end if

9: if beacon timeout occurs then

10: Copy cost of node x to beacon(cost) and send out to all neighbors;

11: end if

12: end while
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to the BS. According to definition of shadow nodes and shadow areas, we know that

this scenario is impossible. Hence the Lemma is proved.

Lemma 4 (Convergence and Upper Bound of Cost): Given a connected sensor net-

work graph G(V, E, BS) with shadow area Gs(Vs, Es), the cost − spread phase con-

verges. At convergence, shadow nodes in Gs(Vs, Es) have costs upper-bounded by

max distance(Bd(Gs), BS)+m∗∆, where Bd(Gs) is the set of all border nodes in the

shadow area Gs and m is the number of shadow nodes in Vs.

Proof. First, given sensor network graph G(V, E, BS), from the cost − spread algo-

rithm, we know that the costs maintained in every node will not decrease.

Base on Lemma 3, we know that there exist shadow nodes that have neighbors

with bright status. Let node x be a shadow node belongs to Vs that has at least one

neighbor with bright status, that is, bright(N(x)) �= ∅.
Let max cost(bright(N(x))) be the maximum cost of the x’s neighbors with

bright status. Since the costs of bright nodes are not affected by the cost − spread

algorithm, we have:

max cost(bright(N(x))) = max distance(bright(N(x)), BS), (4.1)

where max distance(bright(N(x)), BS) represents the maximum Euclidean distance

of x’s neighbors with bright status to the BS. It is clear that the cost of x has an

upper bound according to the cost − spread algorithm:

cost(x) ≤ max cost(bright(N(x))) + ∆. (4.2)

Combining Equations 4.1 and 4.2, we have:
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cost(x) ≤ max distance(bright(N(x)), BS) + ∆, ∀x ∈ Vs, bright(N(x)) �= 0. (4.3)

Let V 1
s be the set of all shadow nodes in Vs with at least one neighbor with bright

status. Then we have Bd(Gs) = bright(N(V 1
s )) and Equation 4.3 can be rewritten as

max cost(V 1
s ) ≤ max distance(Bd(Gs), BS) + ∆. (4.4)

Similarly, let V 2
s be the set of all shadow nodes in Vs that have at least one

neighbor belonging to V 1
s ; V 3

s be the set of all shadow nodes in Vs that have at least

one neighbor belonging V 2
s , etc. If we keep on dividing the shadow nodes in Vs in this

manner, the process will stop in at most m sets: V 1
s , . . . , V m

s . Since

max cost(V 1
s ) ≤ max distance(Bd(Gs), BS) + ∆,

max cost(V 2
s ) ≤ max cost(V 1

s ) + ∆ ≤ max distance(Bd(Gs), BS) + 2 ∗ ∆,

. . .

max cost(V m
s ) ≤ max distance(Bd(Gs), BS) + m ∗ ∆.

This completes the proof.

Lemma 5 (Minimum Cost Increase): Given a connected sensor network graph G(V ,

E, BS) and a shadow area Gs(Vs, Es) that contains m shadow nodes. When run-

ning the cost − spread algorithm, during any interval [t, t + B], the minimum cost

of the shadow nodes in Gs(Vs, Es) will increase at least ∆ until it is larger than

min distance(Bd(Gs)). All shadow nodes will stop increasing their costs after time

t + m ∗ B.

Proof. Given a shadow area Gs, at the beginning of cost − spread algorithm, all

shadow nodes have costs equal to their Euclidean distances to the BS. Hence the

minimum cost of shadow nodes in Gs is less than the minimum Euclidean distance
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of the border nodes of Gs. This can be verified from the definition of shadow nodes.

After running of the cost−spread algorithm, let t′ be the moment when the minimum

cost of shadow nodes in Gs becomes larger than the minimum Euclidean distance of

the border nodes of Gs to the BS. We consider any interval [t, t + B) with t + B < t′.

In Gs, let node x be a shadow node having the minimum cost at moment t and let

min distance(Bd(Gs)) be the minimum Euclidean distance of the border nodes of Gs

to the BS. Since cost(x) < min distance(Bd(Gs)), we conclude that at moment t,

cost(x) < min cost(N(x)). According to the cost− spread algorithm, x will increase

its cost at least ∆ during [t, t+B). This proves the first part of the Lemma. Let t” be

the moment when the cost− spread algorithm converges in the shadow area Gs. Let

t1 be the moment that the minimum cost of shadow nodes in Gs passes the minimum

Euclidean distance of border nodes of Gs to the BS. We consider the interval [t1, t1+B]

first. Let Φ be the set consisting of the border nodes with minimum Euclidean distance

to the BS. Let U1
s be the set of all shadow nodes in Gs that have at least one neighbor

in F . We pick any shadow node x in U1
s . Since cost(x) > min distance(Bd(Gs)),

x will not increase its cost any more after time t1, because it has found a neighbor

with a smaller cost. Similarly, let U2
s be the set of all shadow nodes in Vs that have

at least one neighbor belong to U1
s . Then after time t1 + B, the minimum cost of all

nodes belonging to U2
s will stop increasing. Similarly, let t2 = t1 + B, and let U3

s be

the set of all shadow nodes in Vs that have at least one neighbor belong to U2
s . After

t2 + B, the minimum cost of all nodes in U3
s will stop increasing. By keep on doing

this until t”, we conclude that before the cost− spread algorithm converges, at least

one node stop increasing its cost in every B period. Since there are m shadow nodes

in Gs, this process stop at most in t1 + m ∗ B.

Proposition 3 (Convergence Length of the Cost-spread Algorithm): Given a con-
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nected sensor network graph G(V, E, BS), the convergence time (in term of beacon

broadcast interval B) of the cost − spread algorithm is linear with respect to the

maximum size (number of nodes) of shadow areas in G.

Proof. Before the running of the cost − spread algorithm, the minimum cost in a

shadow area Gs with m nodes will be less than max distance(Bd(Gs))−m∗ r, where

r is the communication range of sensor nodes. We can conclude directly from Lemmas

4 and 5 that it will take O(m) rounds (in term of beacon broadcast period B) for

nodes in Gs to stop increasing their cost. In a sensor network, there may exist many

separate shadow areas. Since the convergence processes of the cost−spread algorithm

in different separate shadow areas are performed in a parallel way, the convergence

length of the cost − spread algorithm in the whole sensor network is only associated

with the maximum size (number of nodes) of these shadow areas.

After cost gradients are established, we have the following observations from

the example shown in Fig. 36: 1) A message originating from the bright area will

be eventually forwarded to the destination by following the cost gradients without

entering a shadow area. 2) A message originating from a shadow area will be led to

a bright area and eventually reach the destination via bright nodes following the cost

gradients. 3) A message originating from any node on the graph will not experience

the same node twice following the cost gradients. Based on the above observations,

we have Proposition 4. But before introducing it, we need Lemma 6:

Lemma 6 (Unidirectional Cost Gradients on Border): Given a connected sensor

network graph G(V, E, BS), after the convergence of the cost − spread algorithm,

bright nodes will not forward massages to shadow nodes following cost gradients.

Proof. After the cost − spread algorithm converges, in a shadow area Gs of the

connected sensor network graph G, let us consider a shadow node x that has at
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least one neighbor with bright status. The neighbors of x can be classified into

bright(N(x)) and shadow(N(x)) based on their status. If following cost gradients

a neighbor y with bright status can forwarded a message to x, the cost of y will be

larger than that of x, i.e., cost(y) > cost(x). Since distance(x, BS) ≤ cost(x), we get

distance(x, BS) < cost(y) = distance(y, BS). From the definition of shadow node,

we know this is impossible. This ends the proof.

Proposition 4 (Delivery Guarantee and Loop-free): Given a connected sensor net-

work graph G(V, E, BS), after the convergence of the cost − spread algorithm, fol-

lowing the cost gradients, all paths originating from different sensor nodes will end

up with the BS and are loop-free.

Proof. We first prove that the paths constructed following the cost gradients are loop-

free. For messages forwarded to any bright area, this is true since for bright nodes,

forwarding messages following the cost gradients is equivalent to greedy forwarding,

which has been proven to be loop-free in [60]. For messages forwarded to shadow

areas, by way of contradiction, we assume that there is a loop from node x to y to

z. Then we can conclude cost(y) > cost(x). This is impossible because otherwise x

will not forward the message to y in the first place. So there exist no loops in shadow

areas and in bright areas following the cost gradients. Further, based on Lemma

6, once a message has been forwarded from a shadow area to a bright area, it will

not enter any shadow area again. So we conclude that there exist no loop following

the cost gradients in a given connected sensor network graph G. To prove the other

part, we know from Lemma 6 that following the cost gradients, bright nodes will not

forward messages to shadow nodes. According to Proposition 2, every bright node

will find a path to the BS based on cost gradient (for bright nodes, forwarding a

message following cost gradients equals greedy forwarding). On the other hand, after
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the convergence of the cost − spread algorithm, every shadow node in the shadow

area will at least find a neighbor with lower cost. So for a message being forwarded to

a shadow area, it will be stuck in shadow nodes. From the first part of the statement

we know that the message will not experience the same node twice in a shadow area.

So for a message being forwarded to a shadow area, it will be forwarded to a bright

node. Once it enters a bright node, based on Proposition 2, it will reach the BS. This

ends the proof.

Proposition 4 shows that by combing the shadow − spread and cost − spread

algorithms together, our distributed scheme has the loop-free delivery-guaranteed

property. The main idea behind our scheme is to avoid messages entering “danger-

ous areas” and leading messages originating from these “dangerous areas” to “safe

areas”. According to Proposition 2, these “dangerous areas” and “safe areas” are ac-

tually shadow areas and bright areas, which are caused by partial−partition defined

previously. This is why we call our scheme Partial-partition Avoiding GEographic

Routing (PAGER).
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3. Extension of PAGER to Large-Scale

Sensor Networks with Multiple BS

To manage large sensing fields, multiple BS may be necessary. In these cases, we can

extend PAGER by dividing a large sensing field into multiple small cells as shown in

Fig. 37. Each BS takes care of one cell and uses a broadcast channel to inform sensors

in the cell of its location information and commands. In this way, shadow/bright

areas and cost gradients can be established within cells corresponding to different

BS. Communication between BS can be realized via a wireless or wired medium.

Fig. 37. Information collected by sensors is forwarded back to multiple base stations

in large-scale sensor networks.

4. Impact of Passive Mode

In order to save power, sensors may randomly go from active mode to passive mode,

which actually decreases the average degree of a given sensor network. As men-

tioned in Section 1, the number of dead-ends and the corresponding shadow areas
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may increase when the average degree of the network decreases. In this case, the

convergence time and path length in the PAGER algorithm will increase. However,

as long as the resulting network topology composed of active sensors is connected,

there exists a forwarding path for every active sensor to the BS, PAGER will converge

to stabilization.

D. Mobile Sensor Networks

In some application scenarios, sensor nodes move frequently either because they have

motion capacity or because of the instability of the sensing environment. These sce-

narios are different from the stationary sensor networks in many ways. We extend

PAGER to a protocol called PAGER-M to handle these scenarios, where “M” stands

for “mobility”. In this section we first introduce mobility adaptability to PAGER,

then explain certain features of the PAGER-M protocol, including the trade-off be-

tween the beacon broadcast interval and the utilization of path redundancy.

1. Mobility Adaptability of Shadow Areas and Cost

In mobile sensor networks that contain frequently moving sensor nodes, shadow/bright

areas can appear/disappear due to sensor node mobility. Along the appearance or

disappearance of shadow areas, the costs of sensor nodes also change. For the pur-

pose of presentation, we give two examples with figures. As Fig. 38(a) shows, initially

node B is within the communication range of node A although these two nodes are

moving apart; node A is not a concave node since its neighbor node B has a closer

distance to the BS. After a period of time, as shown in Fig. 38(b), when node B has

moved out of the communication range of node A, node B is no longer a neighbor of

node A. Without node B as a neighbor, node A becomes a concave node. Then the
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shadow− spread and cost− spread processes begin. These processes finally result in

shadow nodes (A, C and D) with different costs as shown in Fig. 38(b).

(a) (b)

Fig. 38. Appearance of a shadow area. (a) No concave node and shadow area exist

when node A and node B are within each other’s communication range. (b)

Link between node A and node B is broken due to movement, a new concave

node and shadow area appears.

On the other hand, node mobility can also cause the disappearance of concave

nodes and shadow areas. To explain this process, we consider the graph shown in Fig.

39. As Fig. 39(a) shows, initially nodes A and B are beyond each other’s communi-

cation range. Node A is hence a concave node because it is the closest node to the BS

within its local topology. After a period of time as Fig. 39(b) shows, when nodes A

and B are moving closer, they fall into each other’s communication range. Then node

A finds out that it is no longer a concave node because node B has a closer distance to

the BS. After that, node A first resets its cost to the Euclidean distance to the BS and

changes its status to “bright”. Then, it sends out beacon messages containing its new

status (bright) to all its neighbors. As Fig. 39(b) shows, this finally results in a graph

without a shadow node. Because shadow areas can adaptively appear/disappear with
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(a) (b)

Fig. 39. Disappearance of a shadow area. (a) Node A and node B are moving approach

to each other. (b) After the link established between node A and node B, node

A is no longer a concave node.

the topology changes, PAGER-M has the self-reconfiguring feature.

2. Beacon Message Broadcast Interval and Arrival Time

PAGER relies on periodically broadcasted beacons to provide nodes with their neigh-

bors’ location information. The performance is greatly affected by the choice of the

beacon interval B. In scenarios with high mobility, in order to have a complete and

up-to-date neighbor list, the beacon broadcast interval should be small. However, the

performance of PAGER in mobile sensor networks can be seriously impaired if beacon

broadcasting is too frequent. This is mainly because beacon packets contend with

data packets for wireless media, which will cause high data packet loss ratio due to

interference. In PAGER-M, we randomize and properly prolong the beacon broadcast

interval to reduce the interferences caused by beacon packets. On the other hand, the

longer the beacon broadcast interval, the more out-of-date neighbor information in a
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sensor node’s neighbor list. This may cause a node to send out a data packet to a

neighbor that has moved out of its communication range. To minimize the wrong for-

warding decision caused by out-of-date neighbor information, the forwarding decision

is made not only based on neighbors’ costs but also the arrival time of a neighbor’s

beacon message. In PAGER-M, when a beacon message is received, the arrival time is

recorded in the neighbor list with the beacon sender. When a sending node is choos-

ing its neighbors to forward, both the cost and the arrival time of the neighbor are

considered. When a node is forwarding messages at moment t, only those neighbors

with beacon messages received at moment t′ > t − τ are considered as forwarding

candidates, where τ is a preset threshold. As we will show in the next section, ad hoc

choices of B and τ are used to achieve the best performance of PAGER for different

network scenarios.

3. Path Redundancy

With proper density and arrival time threshold τ , multiple choices of forwarding

neighbors may still available for a forwarding node that follows the cost gradients.

This provides redundancy for a sending node to choose an up-to-date neighbor to for-

ward packets. We use this path redundancy to reduce forwarding failure. To clearly

explain how path redundancy helps to improve delivery ratio, we introduce an ex-

ample here. In the example shown in Fig. 40, node A (with a cost 28) has three

forwarding candidates (nodes B, C and D). How to choose the forwarding strategy

among the forwarding candidate has impact on the performance of PAGER-M. For

example, since nodes B and C have smaller cost than node D, if node A forwards a

packet to nodes B or C, the packet will experience 7 hops before reaching the BS.

Compared to the 8-hop path length via node D, choosing node B or C may be ad-

vantageous. However, as shown in Fig. 40, since nodes B and C are moving away
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from node A, packet forwarding may face transmission failure. Compared to nodes

B and C, forwarding the packet to node D may be a “safer” choice although it in-

creases the path length of the packet to the BS. In PAGER-M, the latter conservative

forwarding strategy is adopted to reduce the chance of transmission failure. This

strategy is implemented by choosing the neighbor with closest arrival time among

available forwarding candidates (a forwarding candidate should have lower cost than

the forwarding sensor node).

Fig. 40. Utilizing path redundancy to reduce transmission failure.

E. Stationary Sensor Networks Simulation

To test the performance of our proposed PAGER algorithm, we implement PAGER

into a protocol called PAGER-S using ns−2 [35] for topologies with limited mobility,

where S means topologies with limited mobility. In PAGER-S, two mechanisms can

trigger the sending of beacon messages. First, beacon messages in PAGER-S are

sent out when the timeout of beacon interval occurs. Similar to SPEED [29], in



106

stationary sensor network, the amount of this kind of beacon messages are reduced

by prolonging the beacon broadcast interval. In the following simulation, we fix the

beacon broadcast interval to 30s. Second, to shorten the convergence time, all nodes

in PAGER-S send out their beacon messages containing status and cost information

after their status and costs change. We reduce collisions happening in the MAC

layer by randomizing the sending time of these beacon messages. Our simulation

parameters are listed in Table II. The BS is located at (500, 1000). We simulate 7

CBR flows originated from 7 randomly chosen nodes across the whole networks. Each

CBR flow is sent at 256 bps and uses 32-byte packets. Random topologies (15 for

each degree, number of nodes) are created. All simulation results are based on the

average values of these topologies.

Table II. Simulation Parameters.

Nodes 100 ∼ 500

Workload 256bps × 7

Average Degree 6 ∼ 10

Region 1000m × 1000m

Simulation Length 100s

MAC Layer 802.11

Routing Protocol GPSR, PAGER-S, AODV

Propagation Model Two − Ray

We first simulate the distribution of shadow/bright areas in 500-node networks.

Then the convergence time of PAGER-S is obtained in sparse networks (average

degree = 6) with different number of nodes (100 ∼ 500 nodes). Finally, by comparing

with GPSR [39], AODV [54] and shortest path routing, we evaluate the following
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metrics of PAGER-S: 1) packets delivery ratio, 2) path length, 3) control overhead

and 4) energy consumption. We use AODV and GPSR to compare PAGER-S in

large-scale networks (500 nodes). The reason we choose AODV rather than DSR [38],

which is used in [29], [39], is because we find that AODV performs better in large

networks. GPSR is chosen because it is currently the most accepted stateless recover

mode method of location-based routing.

1. Distribution of Shadow Nodes/Areas

Fig. 41. Distribution of shadow nodes/areas. Average degree=7.

The performance of PAGER algorithm depends on the distribution of shadow

and bright areas. We randomly create sparse network topologies (100 ∼ 500 nodes,

average degree= 7). The average distribution of shadow nodes/areas is shown in Fig.

41. From the results we can see that 15% ∼ 25% nodes in these networks are shadow
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nodes, which will cause at least the same percentage of packet loss rate using greedy

forwarding without solving the dead-end problem. We can see that the maximum

size of shadow areas is small (26 nodes) even in large-scale networks (500 nodes).

Since the convergence time of the PAGER algorithm depends on the maximum size

of shadow areas, as we see later, PAGER-S quickly converges to stabilization. The

average number of shadow areas is small (97 shadow nodes with 26 shadow areas

on average in 500-node networks). Since the routing overhead of PAGER algorithm

depends on the average size of shadow areas, as we see later, the routing overhead of

PAGER-S only slightly surpasses the amount of control packets of GPSR.

2. Convergence Time of PAGER-S

Fig. 42. Convergence time of PAGER-S.

The PAGER algorithm needs a period of time to stabilize the cost gradients. As
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shown in Fig. 42, the average convergence time of PAGER-S is 5.12 ∼ 7.28 seconds

in large-scale networks (500 nodes). In smaller networks (100 nodes), the average

convergence time of PAGER-S is reduced to 0.56 ∼ 3.1 seconds.

3. Packet Delivery Ratio

Fig. 43. Packet delivery ratio. 500 nodes.

In static sensor networks, when a packet is sent down to routing protocols, it

may be lost mainly due to two reasons. First, routing protocols may cause packet

loss without providing routes to destinations. Also, packets may be lost in the un-

ideal MAC layer caused by packet collisions/congestions. The packet delivery ratio

of PAGER-S is higher than that in AODV and GPSR in 500-node networks. As Fig.

43 shows, PAGER-S delivers about 5% more data packets to the BS than AODV

even with a light traffic load (7 CBR flows from 7 nodes). This is because AODV
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has to flood control packets throughout the networks to find paths to the BS, which

causes congestions between data packets and control packets across the whole sensor

network. We observe a low packet delivery rate (< 82%) of GPSR in sparse networks

(degree=6 ∼ 8) as shown in Fig. 43. This is due to the long path length of GPSR

that increases a data packet’s risk of being lost due to congestion/packet collisions.

Different from AODV and GPSR, PAGER-S delivers more data packets by establish-

ing the cost gradients across the whole network before data transmissions. Further,

PAGER-S maintains low control overhead by utilizing geographic information as we

see later.

4. Path Length

Fig. 44. Path length. 500 nodes.

We simulate 500-node topologies to compare the path length of PAGER-S,
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AODV, GPSR and Shortest Path. The simulation results are shown in Fig. 44.

In all cases, PAGER-S has a path length close to shortest path and is shorter than

that of GPSR and AODV. In sparse networks (average degree=6), the path length

of GPSR is about 6 hops longer than that of PAGER-S. PAGER-S also constructs

shorter paths than AODV in all these topologies. As shown in Fig. 44, the path

length of PAGER-S is 2 hops shorter than that of AODV on average in all cases.

5. Control Overhead

Fig. 45. Routing protocol overhead. 500 nodes.

To test the control overhead of PAGER-S, we compare PAGER-S with AODV

and GPSR in sensor networks with 500 nodes. The results are shown in Fig. 45.

In all cases, the number of control packets generated in AODV is over 4000 higher

than that of PAGER-S. Compared to GPSR, PAGER-S produces a larger large of
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control packets. This is because nodes in PAGER-S send out extra beacon messages

containing status and cost information when they detect status/cost changes without

waiting for the beacon timeout.

6. Energy Consumption

Fig. 46. Energy consumption. 500 nodes.

With low routing overhead and short path length, it is not surprising to see the

energy efficiency of the PAGER algorithm. Here we give the energy consumptions of

the routing protocols in Fig. 46. GPSR has the highest energy consumption because

of its long detours when dead-ends are met, which happens frequently in sparse net-

works. Although AODV has the highest control overhead as shown previously, it has

a relatively short path length, which has advantages in stationary sensor networks.
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F. Mobile Sensor Networks Simulation

To test the performance of PAGER algorithm in mobile scenarios, we implement

PAGER into a protocol called PAGER-M for frequently changing topologies using

ns-2 [35]. In this section, we first give the simulation parameters for the mobile

sensor networks simulation. Then different metrics are considered to evaluate the

performances of PAGER-M. In our simulations, the following metrics are evaluated:

1) packet delivery ratio, 2) path length, 3) routing overhead and 4) energy consump-

tion.

1. Simulation Parameters

Table III. Parameters in Mobile Sensor Networks Simulation.

Number of Nodes 200

Average Degree 6 ∼ 10

Workload 256bps × 8

Region 1000m× 1000m

Simulation Length 100s

Routing Protocol GPSR, PAGER-M, AODV

MAC Layer 802.11

Propagation Model Two − Ray

Mobility Model Waypoint

Maximum Speed 20m/s

Communication Range 155, 126m

Pause Time 0 ∼ 40 seconds
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Our simulation parameters are listed in Table III. The BS is located at (500, 1000).

We simulate 200-node sensor networks and constrain the average degree to 15 and 10

by setting the communication range to 155m and 126m, respectively. We simulate

8 CBR flows originated from 8 randomly chosen nodes across the whole networks.

Each CBR flow is sent at 256 bps and uses 32-byte packets. Each sensor follows the

random waypoint motion model [10] to move randomly to a direction with a random

speed uniformly selected from 0 m/s to 20 m/s. The beacon interval B of PAGER-M

is set to range from 3 seconds to 7 seconds according to the average degree of sensor

networks. In GPSR, the beacon interval B is set to 0.5 ∼ 1 second to achieve its best

delivery ratio.

We randomly generate 5 motion patterns for each scenario (different in pause

time, maximum communication ranges and number of nodes). Each motion pattern

lasts 100 seconds. All experimental results are based on the average performance on

these motion patterns.

2. Packet Delivery Ratio

The packet delivery ratio is presented in Fig. 47. We control the mobility of nodes by

varying the pause time. In Fig. 47(a), we set the communication range of sensor nodes

to 155 m, which creates network topologies with average degree of 15. In Fig. 47(b),

we reduce the communication range to 126 m, which results in network topologies

with average degree of 10.
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(a)

(b)

Fig. 47. Delivery ratio. (a) Communication range=155m, 200 nodes.

(b) Communication range=126 m, 200 nodes.
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In the communication range=155 m case, we set the beacon broadcast interval

to 6 ∼ 7 seconds. As we see in Fig. 47(a), the average delivery ratio of PAGER-M

is about 99.3%, significantly higher that of GPSR (< 90%) and AODV (< 80%). As

we increase the beacon broadcast interval of GPSR from 0.5 second to 1 second, as

Fig. 47(a) shows, we observe significant decreasing of delivery ratio. This is because

of GPSR’s dependency on planarized graphs, which has high requirement of accuracy

information of a sensor’s local topology. When the communication range is shortened

to 126 m, we set the beacon interval B = 3 ∼ 4 seconds in PAGER-M. As shown in

Fig. 47(b), PAGER-M maintains an average delivery ratio of 96.6% while GPSR and

AODV have average delivery ratios below 80% and 70%, respectively.

3. Path Length

The performance of average path length of the protocols is presented in Fig. 48 with

different parameters. When the communication range is 155m, as shown in Fig.

48(a), PAGER-M has an average path length in between those of GPSR and AODV.

This is not surprising because of the conservative choice of forwarding destinations

in PAGER-M (only beacon message senders received less than 3 seconds ago are

considered as forwarding candidates). This conservative strategy makes a sending

node choose not the neighbor closest to the BS but the “safest” one.

When we decrease the communication range to 126m while increasing the beacon

interval to 3 ∼ 4 seconds in PAGER-M, as shown in Fig. 48(b), we observe that the

average path length of PAGER-M increases to about 7. Again in this case, GPSR

achieves the shortest path length compared to PAGER-M and AODV.
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(a)

(b)

Fig. 48. Path length. (a) Communication range=155 m, 200 nodes.

(b) Communication range=126 m, 200 nodes.
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4. Routing Overhead

We present our experimental results in Fig. 49. In our simulations, the implicit beacon

function of GPSR is disabled. When we set the communication range to 155m as

shown in Fig. 49(a), the routing overhead of PAGER-M is significantly lower than

those of GPSR and AODV. Again this is due to the long beacon broadcast interval of

PAGER-M, which reduces a bulk of the routing overhead in PAGER-M. The routing

overhead of GPSR is more than twice than that of PAGER-M because of its short

beacon interval. We also observe a decrease of the routing overhead in AODV with

increasing pause time. This is because with reduced mobility, AODV sends out less

routing packets to repair broken links. When the communication range is reduced to

126 m as shown in Fig. 49(b), in order to maintain the high delivery ratio, PAGER-

M reduces beacon interval to 3 ∼ 4 seconds, which causes the increasing of routing

overhead to about 6500 and 8000, respectively. However, compared with GPSR and

AODV, PAGER-M still has significantly less routing overhead.

5. Energy Consumption

Without the requirement of planariztion of underlying graphs, PAGER-M utilizes

the path redundancy to prolong the broadcast interval. By increasing the broad-

cast interval, PAGER-M reduces not only the control overhead but also the energy

consumption without experiencing much performance deterioration. We simulate 200-

node networks to observe the energy consumption of PAGER-M. The performances

are shown in Figs. 50(a) and 50(b). We can see from both figures that PAGER-M

achieves the lowest energy consumption with prolonged broadcast interval compared

to GPSR and AODV. Again, broadcast interval in GPSR is set to be 0.5/1.0 second

to achieve best performance in terms of delivery ratio and path length. We also see
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(a)

(b)

Fig. 49. Routing overhead. (a) Communication range=155m, 200 nodes. (b) Commu-

nication range=126m, 200 nodes.
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(a)

(b)

Fig. 50. Energy consumption. (a) Communication range=155m, 200 nodes. (b) Com-

munication range=126m, 200 nodes.
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that the energy consumption of PAGER-M and GPSR does not change a lot with the

increasing of pause time. This is due to their periodical broadcast sending.

G. Related Work

In single-path/flooding method proposed by Stojmenovic and Lin [60], when a concave

node receives a message, it attempts to use flooding to send copies of messages to all

its neighbors. By memorizing pass messages, the concave nodes can refuse receiving

the same message again. The single-path/flooding method is proved to guarantee

delivery, and the paths formed by this protocol are loop-free. Compared to their

scheme, PAGER uses single path strategy and does not require nodes to memorize

past traffic.

Bose et al. and Karp et al. independently propose Greedy-Face-Greedy (GFG)

[8] and Greedy Perimeter Stateless Routing (GPSR) [39] to handle the dead-end

problem, which are the most relevant solution to PAGER. These two schemes are two

quite similar routing schemes, which route packets around faces when concave nodes

receive packets. GFG/GPSR does not require nodes to memorize past path/traffic

and guarantee a sensor node with a path to the BS if there exists one. The detours

along faces in GFG/GPSR may produce long paths compared to the shortest path.

GFG/GPSR requires planarization of network topologies, which increases computa-

tional complexity in each sensor node. In contrast, PAGER produces path lengths

close to the shortest path and does not require planarization of underlying network

topologies.

SPEED [29] is a location-based routing protocol specifically designed for real-

time applications in sensor networks. SPEED partly handles the dead-end problem

by backpressure, which however cannot guarantee a forwarding message have a path
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to the BS if there exists one. Instead, our scheme provides each message a path to

the BS if such a path exists.

Fang et al. [25] give a distributed algorithm to locate stuck nodes. Stuck nodes are

actually the superset of concave nodes according to our definition. After locating stuck

nodes, they presented a distributed algorithm to find out holes in sensor networks. By

memorizing the shapes of holes in sensor networks, when a packet gets stuck in concave

nodes, it computes the shorter side of a hole to reach the BS. This scheme does not

require planarization of network topologies and can achieve shorter path lengths than

GPSR. However, when holes in sensor networks are large, communication overhead

and energy consumption in nodes along holes are large. Further, the shapes of holes

in sensor networks have to be updated frequently in scenarios with high mobility.

Compared to the works by Fang et al. [25], PAGER does not require memorizing

shapes of holes and can adapt to mobility rapidly.

A new geographic forwarding scheme, Geographic random forwarding (GeRaF),

is proposed in [69], [70]. This scheme is similar to greedy forwarding in choosing

a closer neighbor to the destination in terms of Euclidean distance. GeRaF differ-

entiates itself from greedy forwarding by relaying packets based on best-effort basis

without knowing a relay a priori by the sender. GeRaF trades latency for the elim-

ination of the broadcasting overhead, but does not offer a solution for the dead-end

problem. PAGER, however, can be combined with greedy forwarding as an alterna-

tive solution for GFG/GPSR to provide a complete location-based routing scheme

for sensor networks.

Faruque and Helmy propose Gradient-Based Routing in sensor networks [26],

which also uses gradients to help establish routes from sources to destinations. How-

ever, the gradients they used are based on physical phenomena, like temperature,

humidity, etc. PAGER, as a location-based routing protocol, establishes gradients
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across the whole sensor network based on locations of the BS and the sensor nodes.

GRAB is proposed by in [66], which has the same idea of establishing a cost

field across the whole sensing field as in PAGER. Compared to PAGER, GRAB has

no dead-end problem since it requires broadcasting messages from the BS across the

whole sensor network. As an alternative method of GPSR in sensor networks, PAGER

solves the dead-end problem inherited in geographic routing by establishing the cost

field based on the location information of sensor nodes and the BS. Hence, PAGER

and GRAB belong to two different categories of routing protocols.
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CHAPTER V

CONCLUSION

A. Summary

In this dissertation, we propose a 3D face recognition system with wireless trans-

portation. In this system, we consider designing three important components, namely

feature extraction, classification and distributed routing. In the system, 3D range im-

ages are captured by sensor with/without mobility and then transferred to the core

face recognition part constituted by the feature extraction component and the clas-

sification component. The feature extraction component processes the input range

images and produce features that are forwarded to the classification component that

classify faces in the range images. While a successful feature extraction component

should be able to produce reliable features that can effectively identify a face, the

purpose of the classification component is to effectively to differentiate a face from

others.

In Chapter II, we first consider extracting features from range images based

on 3D Morphable Model. In our proposed scheme, the RMS error between the 3D

Morphable Model and an input range image is minimized by optimizing the shape

coefficients. The optimized shape coefficients are then used as features of the face

in the input range image. The advantages of the scheme lie in its adaptive hole

avoiding, its insensitivity of facial expression and its extraction of both detailed and

overall geometric information.

In Chapter III, we presented a novel scheme for 3D face recognition based on

face warping. Our scheme can automatically identify a person from a range image
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captured from 3D camera and is insensitive to holes, facial expressions and hair. In our

scheme, both detailed and the overall geometric information is utilized to recognized

a person.

We first introduce the face warping procedure based on landmark points defined

in generic face. Based on a set of weighting coefficients, a combination of the face

warps derived from example faces can be used to warp the generic face as a synthesized

range face. After that, the selection of example faces is described. In order to make

the synthesized face similar to a target face, Newton’s method is used to minimize

the range differences by optimizing the weighting coefficients. After the optimization,

the optimized weighting coefficients are used as the feature of the target face. A

classifier based on Mahalanobis distance is used to verify the identity of the target

face. We tested our scheme on a database containing more than 600 range faces. The

experimental results showed that our scheme can achieve a high recognition rate.

In Chapter IV, we present a distributed routing algorithm named PAGER to

solve the dead-end problem of location-based routing in sensor networks. We prove

that PAGER has loop-free guarantee delivery property. We implement the algorithm

in protocols named PAGER-S/M for sensor networks without/with mobility. The

performance of PAGER-S/M is compared with AODV, GPSR and the shortest path

with respect to delivery ratio, path length, routing overhead and energy efficiency.

Experimental results confirmed the advantages of our PAGER algorithm.

B. Future Directions

Our proposed 3D face recognition system performs very well in both recognition and

wireless transportation. In our 3D face recognition scheme based on generic face

warping, the equal error rate reaches over 99.5%. However, the 3D face recognition
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system relies on the normalized faces in range images. If the normalization of faces

in range images cannot produce well normalized faces, the feature extraction proce-

dure may produce unreliable features. And the recognition performance will largely

deteriorate. Hence reliable normalization method is an interesting research direction.

Although our proposed feature extraction scheme can extract features with 20

seconds on a Pentium 4 workstation, it is always desirable for a feature extraction

scheme to produce features in real time. Therefore, further reduction of feature

extraction time is an exciting direction.
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