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ABSTRACT 

Biophysical Studies of Anhydrous Peptide Structure. (August 2007)  

Janel Renee McLean, B.A., Maryville College;  

M.S., Cornell University 

Chair of Advisory Committee: Dr. David H. Russell 

 

Defining the intrinsic properties of amino acids which dictate the formation of helices, 

the most common protein secondary structure element, is an essential part of 

understanding protein folding.  Pauling and co-workers initially predicted helical peptide 

folding motifs in the absence of solvent, suggesting that in vacuo studies may potentially 

discern the role of solvation in protein structure.  Ion mobility-mass spectrometry (IM-

MS) combines a gas-phase ion separation based on collision cross-section (apparent 

surface area) with time-of-flight MS. The result is a correlation of collision cross-section 

with mass-to-charge, allowing detection of multiple conformations of the same ion. Most 

gas-phase peptide ions assume a compact, globular state that minimizes exposure to the 

low dielectric environment and maximizes intramolecular charge solvation. Conversely, 

a small number of peptides adopt a more extended (β-sheet or α-helix) conformation and 

exhibit a larger than predicted collision cross-section.  Collision cross-sections measured 

using IM-MS are correlated with theoretical models generated using simulated annealing 

and allow for assignment of the overall ion structural motif (e.g. helix vs. charge-

solvated globule).  
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Here, two series of model peptides having known solution-phase helical propensities, 

namely Ac-(AAKAA)nY-NH2 (n = 3, 4, 5, 6 and 7) and Ac-Y(AEAAKA)nF-NH2 (n = 2, 

3, 4, and 5), are investigated using IM-MS.  Both protonated ([M + H]+) and metal-

coordinated ([M + X]+  where X = Li, Na, K, Rb or Cs) species were analyzed to better 

understand the interplay of forces involved in gas-phase helical structure and stability.  

The data are analyzed using computational methods to examine the influence of peptide 

length, primary sequence, and number of basic (Lys, K) and acidic (Glu, E) residues on 

anhydrous ion structure.     
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CHAPTER I 

BACKGROUND AND INTRODUCTION 

 

1Proteins, the workhorses of biological systems, carry out many of the cellular processes 

required for life (1).  Protein structure and function are intimately connected; for 

example, relatively small structural changes (e.g. phosphorylation of a single residue) 

can result in dramatic functional consequences (e.g. activation of a kinase which triggers 

cell division) (1).  Thus, understanding how primary amino acid sequence influences 

protein folding and structure is paramount to understanding protein function.   

 

The mechanism of protein folding has been the subject of much research and debate (2).  

If a 100 residue protein randomly searched all possible conformations to find its native 

state, it would take over 1077 years for it to fold (3).  However, experimental evidence 

has shown that protein folding occurs on a short timescale (µs - s) (4).  The question then 

becomes, how do proteins fold?  Many hierarchical protein folding theories have been 

put forth in the literature for soluble proteins (5-8).  The framework model or related 

diffusion-collision model describes protein folding as a process where multiple 

microdomains (small units of structure) form secondary structures, diffuse and collide to 

form the native protein structure (5; 6).  The nucleation-condensation model differs from 

the framework, and diffusion-collision, models in that secondary structure is affected by 

tertiary structure (i.e. secondary and tertiary structure form simultaneously (7; 9).  In the 

                                                 
This dissertation follows the style of the Biophysical Journal. 
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nucleation-condensation model, a folding nucleus forms first and the process continues 

from the folding center.  Gianni and colleagues presented an analysis which highlighted 

the unified aspects across the hierarchical theories of protein folding whereby the 

stability of secondary structure determines the mechanism of protein folding (10).  For 

instance, if stable secondary structure is formed first, then the protein would fold by the 

framework/diffusion-collision model.  However, in the absence of any stable secondary 

structural elements, the protein would likely fold via hydrophobic collapse, where 

tertiary contacts are formed first, followed by secondary structure (8).  Finally, if some 

secondary structure and tertiary structure form simultaneously (dependently), then the 

protein would fold via the nucleation-condensation mechanism.  Thus, the stability of 

secondary structural elements may determine the protein folding mechanism. 

 

Determining the relationship between primary structure and the stability of protein 

secondary structure is fundamental to understanding the mechanism of protein folding.  

The most common secondary structural element, the α-helix, is stabilized by backbone 

H-bonds between the amide hydrogen and carbonyl oxygen of (i, i+4, see Figure 1, 

Right for definition) peptide bonds (4).  Because the peptide bond has a permanent 

dipole (Figure 1, Left), alignment of the carbonyl and amide groups along the helical 

axis in combination with the dangling (non-H-bonded) carbonyl and amide groups at the 

termini of the helix results in a helix macrodipole (Figure 1, Right) (11).   
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FIGURE 1. Helix macrodipole. (Left) The peptide bond permanent dipole moment (µ) 
(Right) Polyalanine α-helix in stick and ribbon representation showing alignment of H-
bonded carbonyl and amide groups along the helical axis. Adapted from Refs. 11 and 37.   
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Many groups have tried to relate amino acid composition to helical propensity.  Shortly 

after the first crystal structures became available, a solution-phase helical propensity 

scale for all 20 amino acids was developed, based on the frequency of occurrence in 

helical segments in proteins (12).  Scheraga and colleagues systematically determined 

helical propensities for the amino acids using random co-polymers (host-guest studies) 

(13).  Wójcik and co-workers found no substantial difference in helical propensity 

between the amino acids and suggested that short peptides would not exhibit significant 

helical structure in solution.  Subsequently, peptide systems were developed in the 

Kallenbach and Baldwin laboratories (14; 15).  An experimental helical propensity scale 

derived by Pace and Scholtz listed amino acid helical propensities in the following order: 

alanine > leucine > isoleucine > valine >> glycine (16); this helical propensity scale  

correlates very well with the Chou and Fasman scale and the peptide systems of 

Kallenbach and Baldwin (14; 15), but not the random co-polymer host-guest studies 

(13).  The reason for the discrepancy between the host-guest and peptide/experimental 

helix propensity scales is likely due the assumption that the amino acids behave like 

random co-polymers.    

 

Although solvent plays an important role in determining the stability of helices (17; 18), 

Pauling and co-workers initially predicted helical peptide folding motifs in the absence 

of solvent (19).  In vacuo studies of anhydrous and partially-solvated peptides may 

provide insight into the role of solvation in protein structure and folding.  Furthermore, 

anhydrous studies allow evaluation of the intrinsic structural propensities of peptides and 
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may shed light on the general protein folding mechanism, i.e. (i) determine intrinsic 

secondary structural stability, (ii) identify autonomous folding units and (iii) evaluate 

solvent effects on peptide structure.   

 

The coupling of ion mobility (IM) spectrometry, a gas-phase electrophoretic separation, 

with mass spectrometry (MS), provides a powerful biophysical tool for the study of 

solvent-free or stepwise-solvated peptide and protein structure (20-22).  Analysis using 

IM-MS results in a two-dimensional correlation between apparent surface area (collision 

cross-section, Ω) which depends on ion structure and the mass-to-charge ratio (m/z) of 

the ion (Figure 2), allowing detection of multiple conformations of the same m/z.  

Correlation of IM-MS collision cross-sections with model structures generated by 

simulated annealing allows structural interpretation of the IM-MS data.  Gas-phase 

peptide ions predominately assume a charge-solvated, globular conformation dictated by 

their gas-phase packing efficiency and define the average, globular peptide mobility-

mass correlation (Figure 3) (23-25).  However, a small percentage of peptides exhibit 

intrinsic, gas-phase secondary structure (26-28).  Collision cross-sections larger or 

smaller than those predicted by the globular mobility-mass correlation have been 

attributed to secondary structure (22; 28-30) or post-translational modification such as 

phosphorylation or glycosylation (31-33), respectively.   
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FIGURE 2. IM-MS conformation space (IM arrival time versus m/z) projected in (A) 3D 
and (B) 2D for an E. coli cell lysate. The integrated mass spectrum over all conformation 
space (A, top) is readily deconvoluted into individual mass spectra for peptides and non-
peptides (A, right), by integrating regions in conformation space corresponding to their 
respective structural appearance space.   
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FIGURE 3. Characterization of the average, globular mobility-mass correlation.  
Collision cross-sections plotted as a function of mass-to-charge ratio for electrospray 
(ESI) and matrix-assisted laser desorption ionization (MALDI) generated ions of tryptic 
peptides.  The solid line is a third order polynomial fit of the ESI and MALDI data (23; 
25; 34).  The dotted lines represent ± 10 % of the polynomial function.     
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In a series of important experiments, Jarrold and co-workers used IM-MS to study 

polymers of alanine (29; 35), the amino acid with the highest helical propensity in 

solution (12; 16).  They showed that alanine-based peptide ions predominately assume 

two gas-phase structures—charge-solvated globules and helices (29; 35; 36).  In contrast 

with solution-phase studies, they found that protonated polyalanine ions are not helical 

in the gas phase unless the N-terminus is blocked by acetylation and a basic amino acid 

(e.g. lysine) is incorporated near the C-terminus.  These modifications mitigate 

unfavorable charge-helix macrodipole (see Figure 1 for description) interactions in low 

dielectric environments, i.e. in vacuum where ε  = 1 (37).  In addition, acetylation 

significantly reduces the basicity of the N-terminus, biasing the protonation site toward 

the C-terminal lysine.  Localization of the charge at the C-terminal lysine stabilizes the 

helix by favorable interaction of the positive charge (proton) with the negative pole of 

the helix macrodipole (29; 35).  Similarly, when a basic residue is placed at the N-

terminus of acetylated polyalanine, the helix collapses to form a charge-solvated globule 

(36).  While N- and C-terminal preferences for a subset of amino acids (capping effects) 

have been noted in proteins and systematically examined in peptides in solution (38-40), 

electrostatic effects are enhanced in the absence of solvent.  Thus, in the low dielectric 

environment of the mass spectrometer electrostatic effects are strong determinants in 

gas-phase helix stability.   

 

Following the determination of peptide ion characteristics necessary to promote stable 

helical structure in gas-phase alanine-based peptides, the Jarrold laboratory began 
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exploring the effect of glycine residue insertion in these systems (41; 42). In solution, 

glycine has very low helical propensity, due to its conformational flexibility, i.e. 

glycine’s side chain, H, does not sterically-hinder peptide backbone rotation, resulting in 

more conformational degrees of freedom (4; 16).  Although, both polyalanine and 

polyglycine (unmodified) protonated ions adopt charge-solvated globular structures in 

the gas phase (35), only Ac-polyAK and not Ac-polyGK is helical in the gas phase (43; 

44).  Kaleta and Jarrold inserted blocks of glycine residues into the middle of acetylated 

alanine peptides with the aim of disrupting helical structure; five or more glycine 

residues (in a chain length of 15 residues) are required to accomplish this goal (41).  It is 

surprising that so many glycine residues are required to disrupt gas-phase helical 

structure because a single glycine is considered a helix breaker in solution (45).  [Note: 

Acetylation of the N-terminus of polyalanine is sufficient for helix formation, i.e. a C-

terminal basic residue is not required, presumably because a backbone carbonyl near the 

C-terminus becomes the most favorable protonation site (41).]  Kaleta and Jarrold 

conclude that glycine does not act as an entropically-driven helix breaker in the gas 

phase, but rather glycine insertion affects the relative energies of the globule and helix, 

resulting in more globular structures (41).   

 

Although simulations and experimental evidence indicate that entropy plays a large role 

in determining helical structure in solution (46; 47), Kinnear and Jarrold showed that 

entropy does not determine gas-phase helical structure for small hydrophobic amino 

acids (48).  They determined that gas-phase helical propensity increases from valine > 
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leucine > alanine (48), which is the opposite of solution-phase trends (12; 16).  The 

likely reasons for the discrepancy between solution and gas-phase are two fold.  First, as 

Kinnear and Jarrold show, the gas-phase packing efficiency of the hydrophobic residues 

decreases with increasing size which destabilizes the globular state and stabilizes the 

helical conformation (48).  Secondly, the low dielectric of the vacuum severely weakens 

the hydrophobic effect and decreases the energetic cost of exposing hydrophobic 

residues on the helical face, whereas, in solution, it is unfavorable to expose 

hydrophobic residues to solvent (as in the helical conformation).   

 

Kohtani and co-workers showed that alkali metal adduction stabilizes gas-phase helical 

conformations of polyalanine (49).  Molecular models and previous work with 

protonated polyalanine peptides suggested that the site of the alkali metal coordination 

was the C-terminus (49), likely because of the dangling carbonyl groups available for 

metal coordination.  Furthermore, as was the case for Ac-polyAK, C-terminal charge 

location stabilizes helical conformations via favorable interaction of the alkali ion with 

the helix macrodipole.  However, metal coordination results in moderate deformation of 

the helix near the site of coordination (49).  This effect becomes more pronounced when 

the peptide is coordinated to high charge density divalent metals ions (e.g. Ca+2) (50).   

 

In summary, the Jarrold group has laid a strong foundation for gas-phase studies of 

peptide structure. They have shown that the dominant gas-phase structures of alanine-

based peptides are charge-solvated globules (compact, spherical structures) and helices.  
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They have also established that gas-phase helices are only formed in ions when the 

charge is located near the C-terminus, due to the favorable interaction of the charge with 

the helix macrodipole.  Furthermore, they have demonstrated that conformational 

entropy is not the determining factor in gas-phase structure of glycine-containing 

peptides or the small hydrophobic polyamino acids—polyalanine, polyvaline and 

polyleucine.  Thus the relative abundance of gas-phase globules and/or helices is 

dependent on amino acid sequence and type of ion species. 

 

Russell and co-workers has contributed to the field of anhydrous peptide ion structure in 

naturally-occurring peptide sequences (25; 28; 30-32; 51-53).  Ruotolo et al. discovered 

a subset of tryptic peptides with significant gas-phase helical propensity (28; 30).  In 

these studies, the helical propensity was influenced by the solvent used in sample 

preparation, but it is not clear if these solvent effects are reflected in gas-phase structure.  

The present studies are motivated by these prior studies (28; 30-32; 35; 36) which 

showed that anhydrous structure is sensitive to charge location, peptide length and 

sequence as well as the solvent used for MALDI sample preparation.   

 

The solution-phase conformation of the peptides examined here, namely Ac-

(AAKAA)nY-NH2 (n = 3, 4, 5, and 6) and Ac-Y(AEAAKA)nF-NH2 (n = 2, 3, 4, and 5), 

have been well-characterized by CD and both series exhibit increasing helicity with 

increasing peptide length (54; 55).  In solution, the K and E side chains of the AEAAKA 

series (i, i+3 spacing) are significantly less helix-stabilizing (by ca. 40%) than the 
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optimal spacing (i, i+4) in solution (56; 57), owing to the spatial constraints of the helix 

which prevent strong side-chain interactions (i.e. lysine-glutamic acid H-bonding and/or 

ion-pairing) in the i, i+3 spacing. The ends of each peptide were originally modified (N-

acetylation and C-amidation) in order to minimize unfavorable charge-helix macrodipole 

interactions because, in solution, the presence of a negative charge at the C-terminus 

(i.e., COO-) or positive charge at the N-terminus (i.e., -NH3
+) destabilizes helical 

conformations owing to unfavorable charge-macrodipole interactions (11; 58).  A similar 

effect is observed for gas-phase ions, i.e. protonated polyalanine peptides only form gas-

phase helices if the N-terminus is acetylated and a basic site is incorporated at the C-

terminus, and thus the use of these model peptides in gas-phase studies is justified (29).  

Also, by removing the charges at the termini of the peptides, the peptide becomes a 

better model for a protein segment (i.e. the terminal modifications more closely simulate 

the environment of a peptide sequence in a protein).  In the present work, we use the 

AAKAA and AEAAKA peptide series to investigate the effect of multiple basic and 

acidic residues (E, K) on gas-phase structure.  Our IM-MS results for [M + H]+ and [M + 

X]+ (X = Li, Na, K, Rb or Cs) species are interpreted using molecular modeling and 

compared to known solution-phase helical propensities in an effort to better understand 

the governing principles of gas-phase structure and as a foundation for future step-wise 

solvation, variable temperature (VT)-IM-MS experiments.  
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CHAPTER II 

METHODS 

 

Sample preparation 

The model helical peptides, Ac-(AAKAA)nY-NH2 (n = 3, 4, 5, 6 and 7) and Ac-

Y(AEAAKA)nF-NH2 (n = 2, 3, 4, and 5), were synthesized, lyophilized, and stored at -

20 °C (54; 55).  Peptide samples were prepared for matrix-assisted laser desorption 

ionization (MALDI) using the dried droplet method by diluting the peptides (5 mg/ml in 

H2O) 1:1 with α-cyano-4-hydroxycinnamic acid (20 mg/ml in methanol) resulting in a 

250:1 matrix-to-analyte ratio.  Alkali metals in the form of chloride salts were spiked 

into the MALDI samples to achieve a final concentration of 0.1% (w/v).  Our preference 

for using MALDI for these studies is based on two factors: (1) MALDI yields almost 

exclusively singly-charged ions, which minimizes structural changes owing to 

coulombic repulsion associated with high charge state ions (59; 60) and (2) MALDI is a 

pulsed ionization technique and thus more compatible with IM-MS.  Although sample 

preparation for MALDI requires addition of a large excess of matrix, our previous 

studies suggest that helical solution-phase structure is not altered by the presence of the 

matrix (30; 51).  

 

Instrumentation and data acquisition 

The MALDI-IM orthogonal time-of-flight mass spectrometer (MALDI-IM-TOFMS, 

Figure 4) used in these studies was constructed in collaboration with Ionwerks, Inc.  
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FIGURE 4. Schematic of the MALDI-IM-TOF-MS used in these studies.  Ions are 
generated in the MALDI source and injected into the IM drift cell (maintained at 2-3 
Torr He).  After the drift cell, the ions are extracted into the source of the TOFMS and 
mass analyzed.  Because the IM drift time (100s of µs – ms) is much longer than for 
TOF analysis (10s of µs), multiple mass spectra can be acquired during elution from the 
IM drift cell (i.e. multiple mass spectra are acquired over IM profiles). 



 15

(Houston, TX) and based on instrumentation previously described by our laboratory (22; 

61).  MALDI was performed using a frequency-tripled solid state Nd:YLF laser (349 

nm, Crystal laser, Reno, NV) operated at a frequency of 300 Hz (62).  Singly-charged 

ions were directed into a 15 cm-long drift cell maintained at approximately 2.5 Torr He 

(measured with a capacitance manometer (Inficon, Balzers, Liechtenstein)), resulting in 

IM separation field strengths of 20-50 V cm-1 Torr-1.  All measurements were performed 

at ambient temperature (ca. 297 K).  The ion abundances used to generate IM-MS 

profiles are for the isotope clusters of the specific ion population of interest (e.g. [M + 

H]+, [M + Na]+, etc.).  Two-dimensional IM-MS data were acquired and analyzed using 

custom software (Ionwerks, Inc.).   

 

Collision cross-section calculations 

The governing principles of separations by IM are detailed elsewhere (63).  Briefly, ions 

are injected into a drift cell containing a neutral buffer gas and migrate under the 

influence of a weak electrostatic field.  The velocity (v) of the ion is mitigated by 

collisions with the buffer gas and is related to the electric field strength (E) by a 

proportionality constant which is the ion mobility (K) in a particular gas: 

     v KE=                    (1) 
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                (2) 

 

where mobility is related to the gas number density at STP (No), charge of the ion (q, 

where q = ze and z = charge of the ion, e = elementary charge), mass of the ion (mI), 
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mass of the buffer gas (mB), temperature (T), Boltzmann’s constant (kB) and collision 

cross-section of the ion-neutral pair (Ω) (64).  It is conventional practice to report the 

reduced mobility (K) which normalizes the mobility to STP for comparing 

measurements conducted at different pressures (P) and temperatures (T): 
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By substitution and rearrangement of Eqns. 1-3, the empirical collision cross-section is 

determined by the relation (63): 
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where td is the transit time of the ion in a drift cell of length L and the other parameters 

are as defined above.  Eq. 4 is only valid within the “low field limit” (when the 

following inequality is satisfied) (64):  
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              (5) 

where λ is the ion mean free path.  In this limit, the energy acquired by the ions due to 

the electric field (field energy) is negligible compared with thermal energy and the 

separation is within the “low field limit” (Figure 5).  That is, the ion energy gained due 

to the electrostatic potential across the drift cell is dissipated by cooling collisions with 

the buffer gas (i.e. the ions are thermalized). It follows that the experimental metric used 

to describe the energy of an ion during IM separation is a function of the electric field 

strength and the number density or pressure of the buffer gas—E/No or E/p (64).  All IM- 
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FIGURE 5. The low field limit for globules (lower curve) and helices (upper curve) over 
a range of m/z values. The low field limit was calculated from Eq. 5. Note: The field 
energy is expressed as E/p (V/cm-Torr) and can be converted to E/No (10-17 V-cm2) by 
multiplying by 4.03 (T = 298K) (63).  The globular collision cross-sections were derived 
from the average mobility-mass correlation (as described in Figure 3) and the α-helical 
collision cross-sections were calculated using MOBCAL (65) for rigid helices of the 
same amino acid sequence. 
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MS spectra were acquired under “low-field” conditions (63; 64; 66).  Spectra were 

obtained at five IM voltages to accurately estimate the mass-dependent drift time 

correction, to (tmeasured – to = td), which represents the time that the ion spends outside of 

the IM drift cell.  The mass-dependent drift time correction was obtained as the y-

intercept of a linear regression of arrival time versus 1/V, where V is the potential across 

the drift cell (Figure 6).   

 

It is important to note that significantly different drift-time distributions (peak widths) 

are observed for different ion populations.  IM peak broadening, which is dominated by 

diffusion of the ions in the buffer gas as they traverse the drift cell, can be modeled using 

classical diffusion and flux equations (63; 67).  We modeled peak profiles for an ion 

population composed of a single collision cross-section using Monte Carlo simulations 

of ion electrodynamics (68).  Furthermore, we used predicted peak width values in 

conjunction with peak deconvolution techniques (53) to estimate the range of structural 

diversity for a given ion population, i.e. to estimate the number of un-resolved 

populations.   

 

Injected ion studies were performed by incrementally increasing the potential between 

the sample plate and the entrance to the drift cell, similar to those reported previously 

(69).  The injected ion potential increases the kinetic energy of the ion, resulting in 

energetic collisions (collisional heating) and subsequent annealing of ion structure prior 

to IM structural analysis in the drift cell. 
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FIGURE 6. Drift time correction procedure. (A) IM-MS spectra are obtained over a 
series of IM voltages (B) Measured ion arrival times are plotted as a function of the 
inverse IM voltage (1/V) to accurately estimate the mass-dependent drift time correction, 
to (tmeasured – to = td), which is the y-intercept of a linear fit to the data points.     
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 Definition of helical content 

 Helical content is defined by Eq. 6: 

obs glob

helix glob

Ω  - Ω
Helical content (%) = x 100

Ω  - Ω
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

I                       (6) 

In cases where the IM profile is bimodal, I values correspond to the relative abundance 

of the integrated peak area of the larger collision cross-section and Ωobs is that 

determined at the maximum of the larger peak profile.  In cases where the profile is 

dominated by a single peak (I = 1), Ωobs is that determined at the maximum of the peak 

profile. Ωglob is the predicted collision cross-section for charge-solvated globules derived 

from the mobility-mass correlation (a third-order polynomial fit to a dataset of collision 

cross-sections (23; 34)) and Ωhelix is the calculated collision cross-section for a rigid α-

helix.  We assume that any positive deviation from the average mobility-mass 

correlation is a result of helical structure.  Conversion of the measured collision cross-

sections to helical content (Eq. 6) normalizes the dataset for both relative abundance of 

the extended population and the mass-dependent relative difference between globular 

and helical collision cross-sections, allowing us to examine structural trends as a 

function of peptide length. 

 

Molecular modeling 

Theoretical peptide structures were generated using simulated annealing as previously 

described (28).  In silico models were generated using Insight II v2000.2 (70) and 

simulated annealing was performed using Cerius2 v4.9 (71).  Simulations were 
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performed from multiple starting structures to sample peptide conformational space.  

Initially, simulations were started from two conformations: α-helical and fully extended.  

Because the gas-phase basicity of lysine is approximately 16 kcal/mol higher in energy 

than the carboxamide C-terminus, (72) only lysine residues were considered as charge 

carrying sites in the simulations.  Protons were covalently attached to the lysine side 

chain for both peptide conformations; this resulted in 2n starting conformations (n = the 

number of repeats or lysines) per ion.  The final structure from each annealing cycle was 

minimized, generating 300 structures per trajectory.  The total simulation time for each 

simulated annealing run was 2.5 ns (dielectric = 1, 300 annealing cycles, time step of 1 

fs, temperature range = 300 – 1000 K with temperature increment of 50 K and a 

relaxation time of 0.1 ps using the T-damping thermostat (73), see Figure 7 for a 

graphical representation of temperature changes over a single cycle).  All simulations 

were performed using the Open Force Field (OFF) force field driver and the Consistent 

Force Field (CFF) v1.02 as implemented in Cerius2 v4.9 (71).  In total, 600n (1200-3600 

for n = 2-6 respectively) candidate structures were generated for each species in this first 

tier of modeling.  A second tier of simulated annealing was performed by starting 

simulations from 5-10 of the lowest energy conformations of the first tier of modeling.  

All molecular modeling images were generated using Insight II v2000.2 (70) or Pymol 

(74). 
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FIGURE 7. Protocol used for a single cycle of simulated annealing.  8.4 ps simulation 
time/cycle, temperature range = 300 – 1000 K.  300 cycles of annealing were completed 
per annealing trajectory, generating 300 ion structures.  



 23

  

The collision cross-sections of all models were calculated using the trajectory method in 

MOBCAL (65).  The potential energy for each model structure (from molecular 

dynamics) was plotted versus the calculated collision cross-sections to visualize the 

spread in energy and collision cross-section of all structures generated for a particular 

species (Figure 8).  For comparison with empirical IM-MS results, simulation collision 

cross-sections within 2% were found for most ions (gray bar in Figure 8).  However, 

there were few compact structures in these initial simulations.  We surmised that this 

was due to an underestimation of non-bonding interactions.   

 

More computationally-intensive molecular modeling studies with increased non-bonding 

interaction distances (30 Å nonbonding cutoff vs. 8 Å nonbonding cutoff in the methods 

described above) were performed for all metal-coordinated ions and [M + H]+ of 

AAKAA n = 6 and 7 in order to better sample peptide conformations with extensive 

intramolecular contacts (e.g. compact conformations, see Figure 8 for graphical 

representation).  All other simulation parameters were maintained as above.  All results 

shown for [M + H]+ ions have an 8 Å cutoff except for AAKAA n = 6 and 7 which have 

a 30 Å cutoff.  All results shown for metal-coordinated ions have a 30 Å cutoff. 

 

The secondary structural elements present in each model structure were characterized 

using Kabsch-Sander definitions implemented in Insight II v2000.2 (75).  The 

percentage of each element (helix (α, π and 3/10), β-sheet, or turn) is reported by   
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FIGURE 8. Cluster plot of molecular dynamics energy versus calculated collision cross-
sections for two nonbonding cutoffs (8 Å and 30 Å) for [M + Na]+ ions of Ac-
Y(AEAAKA)4F-NH2.  The dotted lines are the measured collision cross-sections 
obtained by IM-MS and the gray bars represent ± 2 % of these values (the precision of 
our IM-MS measurements).   
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dividing the number of residues exhibiting secondary structure by the total number of 

residues 

 

The helical mobility-mass correlations for ideal α-, π− and 3/10- helices for the 

AEAAKA and AAKAA peptide ions were estimated by generating energy minimized 

model structures in Insight II v2000.2 (70)and calculating their collision cross-sections 

using MOBCAL (65).    
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CHAPTER III 

ANHYDROUS STRUCTURE OF PROTONATED PEPTIDES 

 

Introduction 

Over the past decade the potential of structural mass spectrometry techniques for studies 

of gas-phase biomolecular ions and complexes of biomolecular ions have evolved, and 

advances in computational techniques for large molecules have greatly enhanced our 

ability to infer structure from mass spectrometry data.  Ion mobility-mass spectrometry 

(IM-MS), a gas-phase electrophoretic separation technique coupled to a modern mass 

spectrometer (76), represents another powerful biophysical tool to study solvent-free or 

stepwise-solvated peptide and protein ion structure (20-22; 28; 30; 77).  Although ion 

mobility spectrometry has been extensively used for studies of fundamental ion 

chemistry, only recently has its utility for biological studies been realized (26; 59).  The 

importance of IM-MS as a biophysical tool is the ability to correlate empirical collision 

cross-sections (apparent surface area) and accurate mass-to-charge measurements (m/z, 

i.e. molecular weight) to candidate structures derived using molecular dynamics and 

molecular orbital calculations (29; 59; 78; 79).  The inherent advantages of IM-MS as a 

structural mass spectrometry tool are further enhanced by variable-temperature (VT) IM-

MS to determine thermo-chemical data for interconversion between different structural 

forms (42).   
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Previous studies have shown that most gas-phase peptide ions adopt compact, globular 

conformations dictated by their intrinsic gas-phase packing efficiencies, defining an 

average globular peptide mobility-mass correlation (23; 24; 80).  Conversely, some 

peptide ions exhibit ordered structure in the gas phase (26; 27), yielding collision cross-

sections that are either larger or smaller than those predicted by globular peptide 

mobility-mass correlation (22; 28-30; 35).  Elongated, helical structures yield larger 

collision cross-sections, whereas intramolecular interactions between polar residues, i.e., 

formation of salt-bridges and post-translational modifications yield smaller than 

predicted collision cross-sections (22; 31; 32). 

 

Helices are the most common secondary structural element of transmembrane proteins 

(81), thus the forces that dictate the formation and stability of helices are fundamental to 

understanding protein folding.  On the other hand, much of our understanding of protein 

folding is based on experiments performed in aqueous solutions and we have very 

limited understanding of the effects of low dielectric environments and/or non-polar 

solvents (82; 83).  Nonetheless, the potential importance of solvent-free peptide structure 

studies is underscored by Pauling’s prediction of helical peptide folding motifs in the 

absence of solvent (19).   

 

A strong foundation for studying gas-phase helices exists based on the work of Jarrold 

and co-workers who used IM-MS to study gas-phase polyalanine ions (29; 35; 36; 78; 

79), which exhibit high helical content in aqueous solution (12; 16; 57); however, they 
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found that [M + H]+ polyalanine ions adopt helical conformations only if the charge is 

localized near the C-terminus (i.e. by blocking the N-terminus by acetylation and 

introducing a basic residue near the C-terminus), which stabilizes the helix by favorable 

interactions of the positive charge with the helix macrodipole (29; 35).  Russell and co-

workers previously reported data for a subset of tryptic peptides with significant helical 

structure (28; 30),  and showed that the same peptides exhibit helical preferences in 

solution (as measured by circular dichroism (CD)). Furthermore, a good correlation 

between results obtained by CD and H/D exchange was demonstrated (30).  The present 

work builds upon these earlier studies and is aimed at understanding how amino acid 

sequence affects anhydrous structure in peptides that contain multiple acidic and/or basic 

residues.   

 

The solution-phase conformation of the peptides Ac-(AAKAA)nY-NH2, n = 3, 4, 5, 6 

and 7, and Ac-Y(AEAAKA)nF-NH2, n = 2, 3, 4, and 5, has been well-characterized by 

CD. Both series exhibit increasing helicity with increasing peptide length (54; 55).  

Here, we examine the relationship between helical content, primary sequence and 

peptide length in the AAKAA and AEAAKA series.  Previously, Jarrold showed that 

insertion of an E/K pair into Ac-A3G12K decreased the helical content of the anhydrous 

peptide ions compared to the unsubstituted peptide (84).  In the present work, we use the 

AEAAKA peptide series to investigate the effect of multiple E/K pairs on gas-phase 

structure and compare the helical content of this peptide series to that of the AAKAA 



 29

series to provide a foundation for future studies of step-wise solvation and VT-IM-MS 

experiments.   

 

Results and discussion 

The model peptides Ac-(AAKAA)nY-NH2 and Ac-Y(AEAAKA)nF-NH2, hereafter 

simply referred to as AAKAA and AEAAKA, respectively, are used to probe the effects 

of peptide length, primary sequence, and number of basic (K) and acidic (E) residues on 

gas-phase ion structure.  The AAKAA and AEAAKA model peptides were originally 

designed in the R. L. Baldwin laboratory to study the effect of peptide length on 

solution-phase helical content (54; 55); these studies showed that the helical content of 

the AEAAKA and AAKAA peptides increases with peptide length.  For the purposes of 

our gas-phase studies, we assume that differences in the N- and C-terminal residues of 

the AAKAA (C-terminal Y) and AEAAKA (N-terminal Y; C-terminal F) do not affect 

the charge site of the ion and therefore have no significant impact on gas-phase 

structural trends.  That is, the site of protonation should be a K residue.  The presence of 

a negative charge at the C-terminus (i.e., COO-) or positive charge at the N-terminus 

(i.e., -NH3
+) destabilizes helical conformations owing to unfavorable charge-

macrodipole interactions (58); therefore the ends of the AAKAA and AEAAKA peptides 

were originally modified (N-acetylation and C-amidation) in order to minimize 

unfavorable charge-helix macrodipole interactions in solution (11).  Similarly, gas-phase 

protonated polyalanine peptides only form gas-phase helices if the N-terminus is 
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acetylated and a basic site is incorporated at the C-terminus, justifying the use of these 

AAKAA and AEAAKA peptides in the present gas-phase studies (29).   

 

Figure 9 contains IM-MS data plotted as abundance of [M + H]+ ions versus IM drift 

time (td, upper axes) and collision cross-section (Ω, lower axes) for the AAKAA (n = 3 - 

7) peptide series.  The dashed vertical lines in Figure 9 represent the average peptide 

mobility-mass correlation (derived from a third order polynomial fit of a dataset of 964 

[M + H]+ peptide ions (23; 34)) for charge-solvated, globular peptide ions and the solid 

vertical lines represent the calculated collision cross-sections for rigid α-helical 

conformations.  Note that the absolute difference in collision cross-section between 

globular and helical structures increases as peptide length increases because helix 

propagation impacts the collision cross-section more per amino acid due to the aspect 

ratio of a helix (approximated by a cylinder) compared to a globule (approximated by a 

sphere) (85). 

 

The IM profiles for the [M + H]+ ions of the AAKAA series are each composed of a 

single peak, centered at a collision cross-section that falls between the expected values 

for globules and helices (Figure 9).  As AAKAA peptide length increases, the relative 

abundance of the more compact (globular) structures increases.  This is especially 

apparent for the longest AAKAA peptides (n = 6 and 7), which exhibit bimodal 

distributions.  The structures that correlate with the measured collision cross-sections for 

the [M + H]+ ions of AAKAA n  = 3 - 5 correspond to partial helices (Figure 10).  For  
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FIGURE 9. Ion mobility drift time (upper x-axis) and collision cross-section (lower x-
axis) profiles for [M + H]+ ions of Ac-(AAKAA)nY-NH2  (n = 3, 4, 5, 6 and 7).  The 
dashed vertical lines represent the predicted collision cross-sections for globular peptide 
mobility-mass correlation (as defined in Figure 3) and the solid vertical lines represent 
the α-helical mobility-mass correlation (calculated collision cross-sections for α-helices 
of the same amino acid sequence).  The shaded profiles are simulated IM profiles for a 
single collision cross-section, assuming peak broadening is solely due to longitudinal 
diffusion.  
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FIGURE 10. The lowest energy structures generated using molecular dynamics for 
compact and extended conformations of [M + H]+ ions for Ac-(AAKAA)nY-NH2  (n = 3, 
4, 5, 6 and 7).  ‘7a’ and ‘7b’ correspond to the compact and extended conformations for 
n = 7, respectively. “N” and “C” indicate the N- and C-termini, respectively.  The 
protonated lysine side chains and all atoms H-bonded to the proton are shown in cylinder 
representation.  
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n = 6 and 7, the ions with bimodal distributions, the peak profile on the left (shorter drift 

time) correspond to charge-solvated globules and the peaks profiles on the right (longer 

drift time) correspond to partial helices.  The globular IM profile for n = 7 appears to 

contain at least two subpopulations as evidenced by the shoulder on the profile biased 

towards smaller collision cross-sections.  Notice that there is significant bridging in the 

IM profile for n = 7 between the globule and distorted helix, indicating structural 

interconversion on the timescale of the experiment (< 1 ms).   

 

One important issue to address is approximately how many structural populations are 

represented by the experimental peak widths for the AAKAA ions.  Using simulations 

developed by Raznikov and co-workers, peak profiles were estimated for ion 

populations where peak broadening arises exclusively from ion diffusion (68).  That is, 

we expect the simulated peak widths to approximate the experimental profiles if the 

empirical profile is the result of structures corresponding to a single collision cross-

section, i.e. an ensemble of closely-related structures.  The shaded peaks (Figure 9) are 

the simulated peak profiles and clearly show that the experimental profiles are broader 

than the simulated profile, indicating that there are a few, related structures which 

remain unresolved for the AAKAA [M + H]+ ions. 

 

Very different drift-time distributions (Figure 11) are observed for AEAAKA [M + H]+ 

ions.  With the exception of n = 2, all AEAAKA [M + H]+ ions exhibit a single IM peak 

that correlates with globular conformations (dashed line) and structures that match the  
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FIGURE 11. Ion mobility drift time (upper x-axis) and collision cross-section (lower x-
axis) profiles for [M + H]+ ions of Ac-Y(AEAAKA)nF-NH2 (n = 2, 3, 4, and 5).  The 
dashed vertical lines represent the predicted collision cross-sections for globular peptide 
mobility-mass correlation (as defined in Figure 3) and the solid vertical lines represent 
the α-helical mobility-mass correlation (calculated collision cross-sections for α-helices 
of the same amino acid sequence).  The shaded profiles are simulated IM profiles for a 
single collision cross-section, assuming peak broadening is solely due to longitudinal 
diffusion.  
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measured collision cross-sections are charge-solvated globules (Figure 12).  For the n = 

2 ion, the experimental peak profile is very broad compared to the simulated peak profile 

(Figure 11, shaded profile).  Structures which match the average collision cross-section 

for n = 2 are best described as partial or distorted helices (Figure 12), though it is 

possible that the ions are interconverting between globule and helix on the timescale of 

the experiment.   

 

It is interesting to compare data for AAKAA peptides to that of the AEAAKA series.  

The [M + H]+ collision cross-sections plotted as a function of m/z provide an overview 

of the structural trends across both series (Figure 13, see Table 1 for list of collision 

cross-section values).  Both of the short peptides (AAKAA, n = 3 and AEAAKA, n = 2) 

exhibit collision cross-sections intermediate between globules and helices.  The longer 

AAKAA ion signals also fall between globules and helices, but a charge-solvated 

globular population grows in as peptide length (and number of basic sites) increases.  

The longer AEAAKA ions exhibit collision cross-sections indicative of globules.   

 

To normalize for the absolute difference in collision cross-section between globules and 

helices as m/z increases, we calculated helical content (Eq. 6, Figure 14), a metric 

similar in concept to the “relative collision cross-sections” reported by Hudgins and co-

workers (36): the major difference is that helical content accounts for the relative 

abundance of the helical population (for bimodal distributions).  The helical content 

remains relatively constant (ca. 60%) for AAKAA n = 3 - 5 [M + H]+ ions, but then  
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FIGURE 12. The lowest energy structures generated using molecular dynamics for [M + 
H]+ ions for Ac-Y(AEAAKA)nF-NH2 (n = 2, 3, 4, and 5).  “N” and “C” indicate the N- 
and C-termini, respectively. The protonated lysine side chains and all atoms H-bonded to 
the proton are shown in cylinder representation. The dashed black lines represent H-
bonds.   
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FIGURE 13. Plot of collision cross-section versus m/z for [M + H]+ ions for AAKAA  
(■) and AEAAKA (▲).  The solid lines represent the mobility-mass correlations for 
globular and helical peptide ions as defined in Figure 3.  Error bars represent ±1 σ for 10 
measurements.  For clarity, error bars are not shown for the globular or helical mobility-
mass correlations.   
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TABLE 1. Mass-to-charge ratios (m/z), collision cross-sections (Ω) and reduced 
mobilities (Ko) for [M+H]+ ions for Ac-(AAKAA)nY-NH2 (n = 3, 4, 5, 6 and 7) and Ac-
Y(AEAAKA)nF-NH2 (n = 2, 3, 4, and 5) where n = the number of peptide repeats and 
subscripts indicate compact (c) or extended (e) conformations. Mass-to-charge values 
were calculated using average masses. Collision cross-sections and reduced mobilities 
are reported as the average ± 1σ for m measurements.  
 
 
  n species m/z Ω (Å2) Ko m 

3 [M+H]+ 1460.72 362 ± 5 1.486 ± 0.020 10 
4 [M+H]+ 1873.21 446 ± 6 1.207 ± 0.018 10 
5 [M+H]+ 2285.70 522 ± 4 1.030 ± 0.009 10 

[M+H]+
c 2698.19 486 ± 16 1.142 ± 0.009 17 6 

[M+H]+
e 2698.19 609 ± 20 0.908 ± 0.005 27 

[M+H]+
c 3110.68 549 ± 21 1.019 ± 0.012 17 

Ac-(AAKAA)nY-NH2 

7 
[M+H]+

e 3110.68 697 ± 26 0.802 ± 0.004 17 
2 [M+H]+ 1453.64 339 ± 12 1.590 ± 0.056 10 
3 [M+H]+ 1995.24 393 ± 3 1.370 ± 0.009 10 
4 [M+H]+ 2536.85 456 ± 6 1.181 ± 0.016 10 

Ac-Y(AEAAKA)nF-NH2 

5 [M+H]+ 3078.45 521 ± 3 1.032 ± 0.006 10 
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FIGURE 14. Plot of helical content vs. number of basic amino acid residues for the 
AAKAA (■) and AEAAKA (▲) [M + H]+ peptide ions.  The helical content is defined 
in Eq. 6.  Error bars represent ±1 σ for 10 measurements. 
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decreases for the longest AAKAA peptides.  Helical content decreases with peptide 

length for AEAAKA [M + H]+ ions as well, but the onset occurs with fewer basic sites  

than for the AAKAA peptides, with only the n = 2 ion exhibiting appreciable helical 

content.   

 

To probe the thermodynamic stability of ion structural populations, we used ion injection 

techniques similar to those reported elsewhere (69).  Briefly, this methodology consists 

of accelerating the ion population, from the point of ion generation, so that the ions 

experience ca. 10-100 higher energy collisions (i.e. the ions are collisionally-heated).  

The ions are then cooled by collisions with the buffer gas and injected into the IM drift 

cell for structural analysis. If the ions comprising a particular population are easily 

converted to another structure (i.e. helix  globule), then we expect to observe changes 

in the relative peak areas for a particular conformation as a function of the ion injection 

voltage. 

 

In the ion injection studies presented here, the ion temperature increase over the system 

temperature (297 K) owing to the initial higher energy collisions (100 eV  lab frame 

energy), is estimated to range from ca. 5 to 28 K for the largest (n = 6) to the smallest (n 

= 3) injected ion species, respectively. These estimates are based on calculations derived 

from kinetic theory, and represent an upper limit of temperature. Thus, even in this limit, 

the ion temperature likely remains well below ca. 350-400 K, after which the ions are 

collisionally-cooled prior to injection into the drift cell. This premise is further supported 
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by the absence of b-type ions arising from increased injection energy (data not shown). 

This ion class (b-type) is indicative of thermally-activated dissociation of helices (86).  

 Injected ion experiments for short AAKAA peptides (n = 3 – 5) revealed no apparent 

change in ion structure (Figure 15A).  However, long AAKAA peptides exhibit dramatic 

structural changes when heated.  Injected ion studies of AAKAA n = 6 (Figure 15B) 

show a structural conversion from partial helix to globule as the injection potential 

increases.  The IM profile for the 100 V potential (top panel) is bimodal with significant 

bridging between the globule and partial helix populations, suggesting that the ions are 

interconverting on the timescale of the experiment.  Extensive analysis of this profile 

reveals many possible structural sub-populations that are unresolved within the broad 

profile (Figure 16).  Each peak under the experimental profile represents a simulated 

peak with a width expected for a single collision cross-section.  Previous results from the 

Jarrold laboratory have shown that C-terminal charge location is the dominant factor in 

gas-phase helix stabilization (29; 79).  Thus, it is likely that the proton becomes mobile 

in the heated AAKAA n = 6 ion because both compact (N-terminal localization), 

intermediate, and extended conformations (C-terminal localization) are observed.  

Heating of the longest AAKAA ion (n = 7) by increasing the field strength (see 

Methods, Chapter II) also elicits a dramatic structural re-organization (Figure 17).  In 

this case, the ion structure transitions from a tightly-packed globule (A) to an expanded 

globule (B) to a partial helix (C) with increasing separation field strength.  Inset in the 
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FIGURE 15. The IM profiles for [M + H]+ ions of (A) Ac-(AAKAA)3Y-NH2, (B) Ac-
(AAKAA)6Y-NH2, (C) Ac-Y(AEAAKA)3F-NH2 and (D) Ac-Y(AEAAKA)4F-NH2 are 
shown for 0, 50, and 100 V lab frame ion injection energies.  The dashed vertical lines 
represent the predicted collision cross-sections for globular peptide mobility-mass 
correlation (as defined in Figure 3) and the solid vertical lines represent the α-helical 
mobility-mass correlation (calculated collision cross-sections for α-helices of the same 
amino acid sequence). 
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FIGURE 16. Peak deconvolution analysis constrained using peak widths derived from 
Monte Carlo simulations for AAKAA n = 6 [M + H]+ ion (100 V lab frame ion injection 
energy, 1700 V IM separation field strength). The black line is the measured IM profile, 
theoretical subpopulations are shown under the measured profile and the colored lines 
are the composite fit. The residuals from the deconvolution analysis are shown (R2 > 
0.99, bottom).  
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FIGURE 17. IM profiles for [M + H]+ Ac-(AAKAA)7Y-NH2  for various field strengths 
(indicated in the figure) accessed by changing the pressure in the drift cell while 
maintaining a constant potential across the drift cell. The globular (dashed lines) and 
helical (solid lines) mobility-mass correlations are shown for comparison (defined in 
Figure 3). The letters in the top panel correspond to three structural populations (see text 
for details). 
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top panel of Figure 17 is peak deconvolution analysis for AAKAA n = 7 which 

illustrates the large number of structural sub-populations which remain unresolved in the 

peak profile.  On the other hand, the AEAAKA peptides do not undergo structural 

change upon ion heating for any peptide length (Figure 15C and D), presumably because 

intramolecular charge solvation is significant enough that temperatures high enough to 

elicit structural change (i.e. break multiple non-bonding E/K or peptide-proton 

interactions) are not achieved in these experiments.     

 

Results from the Jarrold laboratory for [M + H]+ ions of polyalanine (polyA) are quite 

different (29; 35) than for the AAKAA or AEAAKA peptides in these studies.  Gas-

phase [M + H]+ ions of polyA are not all helical, presumably because the charge is 

located at the N-terminus which destabilizes helical structure (29; 79).  Blocking of the 

N-terminus by acetylation and insertion of a basic site (K) at the C-terminus results in a 

rigid helix for the [M + H]+ ion of Ac-polyA-K (29).  However, as evidenced by the 

structural trends reported here for acetylated AAKAA and AEAAKA peptides, a 

blocked N-terminus and a C-terminal basic site alone are not sufficient for stabilization 

of gas-phase helices.  One reason helices may not be as energetically-favored in the 

AAKAA and AEAAKA systems is due to the location of the C-terminal K residue 

which is removed from the C-terminus by 2 or 3 residues, making helix capping by the 

charge less efficient.  The location of basic sites is similar between the AAKAA and 

AEAAKA peptides and so it is unlikely basic site location alone accounts for the lower 

helical content of AEAAKA series.  It is more likely that the presence of multiple basic 
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and/or acidic residues contributes more significantly to the prevailing structural 

stabilities observed for the AAKAA and AEAAKA systems.      

 

There are several possibilities to rationalize why multiple basic and acidic sites 

(AEAAKA) might contribute more significantly to globule stabilization (helix 

destabilization) than multiple basic sites alone (AAKAA).  Sudha and co-workers 

demonstrated that insertion of an E/K pair into Ac-A3G12K decreased gas-phase helical 

structure compared to the unsubstituted peptide ion (84).  They suggested that the main 

reason for decreased helical content was competition for backbone H-bonds and 

stabilization of the globular conformation.  In the AAKAA peptides, the lysine side 

chains may compete for helix H-bonds and destabilize helical structure, resulting in 

detection of partial helices.  For the AEAAKA peptides, we suspect that predominantly 

globular structures are observed because the side chains and charge are heavily 

coordinated due the polar side chains (note that E is more polar than K), which stabilizes 

the globular conformation via charge-dipole, dipole-dipole and other interactions.  

Additionally, the energetic cost associated with exposing hydrophilic/polar residues to 

vacuum (as they would be in the helical conformation) likely outweighs the stability 

gained by helix formation.  Note that at neutral pH in aqueous solution the E and K side 

chains are charged and so charge-charge interactions act to stabilize helices.  However, 

for [M + H]+ ions, only one charge site is present (K side chain) and so the E/K charge-

charge interactions are not present to stabilize helical structure.  Furthermore, the 
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AEAAKA peptides have E/K pairs which may facilitate proton transfer, and thus charge 

mobility may also affect helical content in the AEAAKA series. 
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CHAPTER IV 

ANHYDROUS STRUCTURE OF ALKALI METAL-COORDINATED 

PEPTIDES   

 

Introduction 

Alkali metal ions play essential roles in biological systems.  Specifically, Na+ and K+ 

ions are involved in enzyme activation, action potential propagation in neurons, and 

membrane ion transporter structure and regulation (87; 88).  Specialized transport 

proteins are required to allow movement of ions across the low dielectric barrier of the 

cell membrane.  Ion transport across cell membranes has been extensively studied and 

has revealed a role for ions in channel structure and gating (89-91).   

 

Although structural characterization of ion channels and their interactions with metal 

ions is challenging due to the insolubility of membrane proteins in water, a number of 

groups have overcome this obstacle by adding detergents to solubilize ion channels, 

crystallizing the mixture, and performing X-ray crystallography experiments (91; 92).  

Furthermore, metal ion binding sites have been located in these ion channel structures, 

often near the C-terminus of α-helices, the most common secondary structure element in 

membrane proteins (81).  Based on the location and coordination of the metal ions, it has 

been suggested that they stabilize helices by favorable interaction of the positive charge 

with the negative end of the helix macrodipole (89; 90; 92; 93).  Recently, Boudker and 

colleagues reported Na+ binding sites in a sodium-dependent aspartate transporter which 
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contribute to substrate binding and channel gating (90).  Thus, understanding how metal 

ions affect peptide and protein structure in low dielectric environments may potentially 

reveal the underlying interactions important for ion binding, specificity and transport.   

 

Anhydrous studies of polyalanine-based peptides using IM-MS have shown that alkali 

metal ions bind near the C-terminus, thereby stabilizing helical structure by favorable 

interaction of the charge and the helix macrodipole (49; 50).  The effect of primary 

sequence or number of basic/acidic sites on alkali metal ion helix stabilization has not 

been well-characterized. 

 

Chapter II described IM-MS data for protonated peptides of two model peptide 

systems—Ac-(AAKAA)nY-NH2 (n = 3, 4, 5, 6 and 7) and Ac-Y(AEAAKA)nF-NH2 (n = 

2, 3, 4, and 5).  The results indicate that gas-phase helical structure is dependent on 

amino acid sequence and peptide length.  For the AAKAA series, the collision cross-

sections for the [M + H]+ species correlated with partial helices.  However, for the 

longest peptides, n = 6 and 7 (corresponding to 31 and 36 residues, respectively), the ion 

IM profiles became bimodal with collision cross-sections corresponding to charge-

solvated globules and partial helices.  In contrast, the AEAAKA peptides exhibited very 

little helical content.  The IM profile for the shortest [M + H]+ AEAAKA (n = 2) peptide 

was very broad with the average collision cross-section corresponding to a partial-helix.  

For the longer AEAAKA [M + H]+ ions, only a population corresponding to charge-
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solvated globules was detected.  Here, we use IM-MS to probe the anhydrous structure 

of these model peptides to understand the effect of metal-coordination on ion structure.    

  

Results and discussion 

Alkali metal ions are important in protein structure and enzyme activity, especially in 

membrane transporter proteins (87).  Thus, it is important to understand how metal ions 

affect peptide structure and stability in a low dielectric environment (i.e. similar to that 

of the cell membrane).  We have used IM-MS to measure collision cross-sections for the 

metal-coordinated ions of Ac-(AAKAA)nY-NH2 (n = 3, 4, 5, 6 and 7) and Ac-

Y(AEAAKA)nF-NH2 (n = 2, 3, 4, and 5), hereafter simply referred to as AAKAA and 

AEAAKA, in an effort to understand the effect of metal ion coordination on anhydrous 

peptide structure.  These peptide systems were originally developed in the R. L. Baldwin 

laboratory to study the effect of peptide length on solution-phase helical content; CD 

studies showed that the helical content of the AAKAA and AEAAKA peptides increases 

with peptide length (54; 55).  See Chapter I for further information on these systems and 

justification for their use in these studies.   

 

Figure 18 contains IM-MS data plotted as abundance of [M + Na]+ ions versus IM drift 

time (td, upper axes) and collision cross-section (Ω, lower axes) for the AAKAA (n = 3 - 

7) and AEAAKA (n = 2, 3, 4, and 5) peptide ions.  A plot of the average collision cross-

section of [M + X]+ (where X = Li, Na, K, Rb, Cs) versus the averaged mass-to charge 

(m/z) for all metal-coordinated peptides (Figure 19) reveals that structural trends for the 
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FIGURE 18. IM drift time (upper x-axis) and collision cross-section (lower x-axis) 
profiles for [M + Na]+ of (A) Ac-(AAKAA)nY-NH2  (n = 3, 4, 5, 6, and 7) and (B) Ac-
Y(AEAAKA)nF-NH2 (n = 2, 3, 4, and 5).  The dashed vertical lines represent the 
predicted collision cross-sections for globular peptide mobility-mass correlation (as 
defined in Figure 3) and the solid vertical lines represent the α-helical mobility-mass 
correlation (calculated collision cross-sections for α-helices of the same amino acid 
sequence).  The shaded profiles are simulated IM profiles for a single collision cross-
section, assuming peak broadening arises only from longitudinal diffusion.  
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FIGURE 19. Plot of the composite alkali metal-coordinated peptide collision cross-
sections versus average m/z for [M + X]+ (X = Li, Na, K, Rb, or Cs) ions for (A) 
AAKAA  (■) and (B) AEAAKA (▲), i.e. each point is the average of all [M + X]+ 
collision cross-sections for that peptide.  The lines represent the globular and helical 
mobility-mass correlations (as defined in Figures 3 and 9).  The labels correspond to the 
number of peptide repeats (n). Error bars represent ±1 σ for 25 measurements.    
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metal-coordinated ions are dependent on primary sequence.  The AAKAA metal-

coordinated ions exhibit collision cross-sections which are intermediate between the 

expected globular and helical mobility-mass correlations, regardless of peptide length 

(Figure 19A).  However, the anhydrous structure of the metal-coordinated AEAAKA 

ions is peptide length dependent.  Metal-coordinated species of the shortest peptide (n = 

2) exhibit a collision cross-section indicative of a helix.  However, as peptide repeats are 

added, the metal-coordinated species exhibit bimodal distributions, as indicated in 

Figure 19B for n = 3, 4, and 5.   

 

The absolute difference in collision cross-section between globular and helical structures 

increases as peptide length increases because helix propagation impacts the collision 

cross-section more per amino acid due to the aspect ratio of a helix (approximated by a 

cylinder) compared to a globule (approximated by a sphere) (85).  Thus, conversion of 

the measured collision cross-sections to helical content (Eq. 6) normalizes the dataset for 

both relative abundance of the extended population and the mass-dependent relative 

difference between globular and helical collision cross-sections, allowing us to examine 

structural trends as a function of peptide length.  Comparison of the helical content of 

[M + X]+ for the AAKAA peptides to the AEAAKA peptides (Figure 20) reveals that the 

AAKAA peptides exhibit similar helical content regardless of length (or number of polar 

residues), whereas helical content consistently decreases with peptide length and 

addition of polar residues in the AEAAKA series.  Although these same general trends 

in helical content were observed for the [M + H]+ of these series (94), alkali metal  
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FIGURE 20. Plot of average helical content (Eq. 6) for all metal-coordinated species [M 
+ X]+ (X = Li, Na, K, Rb, or Cs) ions (each point is the average of all [M + X]+ collision 
cross-sections for that peptide) versus number of basic amino acid residues for the 
AAKAA  (■) and AEAAKA (▲) peptides.  Error bars represent ±1 σ for 25 
measurements. 
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coordination results in overall higher helical content for both peptide series, suggesting 

that alkali metals stabilize some helical structure regardless of the amino acid sequence 

investigated here.  The decrease in overall helical content with increasing peptide length 

in the AEAAKA (and not AAKAA) suggests that it is the combination of E/K residues 

which destabilizes helices or stabilizes globules.  This trend could be due to competition 

of E/K side chains for backbone H-bonds (as has been suggested previously (84)) or a 

shift in the energetic balance between globule and helix caused by participation of the 

E/K side chains in metal ion coordination, i.e. formation of charge-solvated ion 

structures.   

 

The effect of specific alkali metals on helical content is shown in Figure 21.  For the 

AAKAA series, helical content remains relatively constant for all species (60 – 80 %).  

Interestingly, the collision cross-sections for [M + Li]+ are intermediate between [M + 

H]+ and the other alkali metals (see Table 2, for all collision cross-sections); this could 

be a consequence of the high charge density of Li+ compared to the other alkali metals 

(95) which may be better solvated in globular conformations.  The metal-coordinated 

ions of the AEAAKA series exhibit collision cross-sections which depend on ion type 

and peptide length (Figure 21B, Table 3).  Helical content decreases with increasing 

peptide length, regardless of ion type, but the range of helical content for each peptide 

length is large, as evidenced by the large error bars in Figure 20.  In the AEAAKA 

series, helical content increases with increasing ionic radius (Cs > Rb > Na > Li) for all  
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FIGURE 21. Plot of helical content (Eq. 6) versus metal-coordinated [M + X]+ (X = Li, 
Na, K, Rb, or Cs) species for (A) AAKAA and (B) AEAAKA. In the legends, n is the 
number of peptide repeats. Error bars represent ±1 σ for 5 measurements. 
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TABLE 2. Mass-to-charge ratios (m/z), collision cross sections (Ω) and reduced 
mobilities (Ko) for [M + X]+ ions for Ac-(AAKAA)nY-NH2 (n = 3, 4, 5, 6 and 7) where 
n = the number of peptide repeats. Mass-to-charge values are reported as average mass. 
Collision cross-sections and reduced mobilities are reported with error corresponding to 
± 1 σ for m measurements. 
 
 
 
  n species m/z Ω (Å2) Ko M 

[M+Li]+ 1466.65 374 ± 2 1.441 ± 0.007 10 
[M+Na]+ 1482.72 378 ± 5 1.423 ± 0.019 10 
[M+K]+ 1498.80 372 ± 3 1.323 ± 0.007 10 
[M+Rb]+ 1545.18 378 ± 8 1.329 ± 0.025 10 

3 

[M+Cs]+ 1592.62 376 ± 2 1.335 ± 0.008 10 
[M+Li]+ 1879.14 455 ± 4 1.184 ± 0.010 10 
[M+Na]+ 1895.21 460 ± 4 1.169 ± 0.011 10 
[M+K]+ 1911.29 454 ± 5 1.185 ± 0.012 10 
[M+Rb]+ 1957.67 453 ± 3 1.196 ± 0.009 10 

4 

[M+Cs]+ 2005.11 450 ± 2 1.113 ± 0.007 10 
[M+Li]+ 2291.63 524 ± 2 1.028 ± 0.004 10 
[M+Na]+ 2307.68 542 ± 4 0.994 ± 0.009 10 
[M+K]+ 2323.78 538 ± 2 1.000 ± 0.004 10 
[M+Rb]+ 2370.16 534 ± 2 1.007 ± 0.004 10 

5 

[M+Cs]+ 2417.60 528 ± 3 1.019 ± 0.006 10 
[M+Li]+ 2704.12 601 ± 2 0.895 ± 0.004 10 
[M+Na]+ 2720.19 624 ± 6 0.862 ± 0.009 10 
[M+K]+ 2736.30 619 ± 2 0.868 ± 0.003 10 
[M+Rb]+ 2782.67 615 ± 2 0.874 ± 0.003 10 

6 

[M+Cs]+ 2830.11 610 ± 3 0.881 ± 0.004 10 
[M+Li]+ 3116.61 656 ± 3 0.820 ± 0.004 9 
[M+Na]+ 3132.66 678 ± 8 0.98 ± 0.098 10 
[M+K]+ 3148.77 679 ± 8 0.798 ± 0.001 9 
[M+Rb]+ 3195.14 679 ± 7 0.800 ± 0.002 9 

Ac-(AAKAA)nY-NH2 

7 

[M+Cs]+ 3242.58 676 ±7 0.803 ± 0.002 9 
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TABLE 3. Mass-to-charge ratios (m/z), collision cross sections (Ω) and reduced 
mobilities (Ko) for [M + X]+ ions for Ac-Y(AEAAKA)nF-NH2 (n = 2, 3, 4, and 5) where 
n = the number of peptide repeats and subscripts indicate compact (c) or extended (e) 
conformations. Mass-to-charge values are reported as average mass. Collision cross-
sections and reduced mobilities are reported with error corresponding to ± 1 σ for m 
measurements.  
 
 
  n species m/z Ω (Å2) Ko m 

[M+Li]+ 1459.57 378 ± 5 1.421 ± 0.020 3 
[M+Na]+ 1475.62 383 ± 3 1.405 ± 0.010 10 
[M+K]+ 1491.73 383 ± 4 1.403 ± 0.013 5 
[M+Rb]+ 1538.10 385 ± 2 1.399 ± 0.006 4 

2 

[M+Cs]+ 1585.54 383 ± 2 1.405 ± 0.008 4 
[M+Li]+

c 2001.18 390 ± 4 1.379 ± 0.013 3 
[M+Li]+

e 2001.18 498 ± 8 1.081 ± 0.017 3 
[M+Na]+

c 2017.23 393 ± 6 1.369 ± 0.022 10 
[M+Na]+

e 2017.23 503 ± 3 1.071 ± 0.006 10 
[M+K]+

c 2033.34 395 ± 1 1.364 ± 0.003 8 
[M+K]+

e 2033.34 503 ± 4 1.069 ± 0.008 9 
[M+Rb]+

c 2079.71 397 ± 4 1.354 ± 0.014 4 
[M+Rb]+

e 2079.71 505 ± 3 1.065 ± 0.006 4 
[M+Cs]+

c 2127.14 400 ± 5 1.346 ± 0.016 3 

3 

[M+Cs]+
e 2127.14 503 ± 3 1.069 ± 0.006 4 

[M+Li]+
c 2542.78 452 ± 6 1.190 ± 0.016 3 

[M+Li]+
e 2542.78 619 ± 12 0.870 ± 0.017 3 

[M+Na]+
c 2558.83 456 ± 4 1.180 ± 0.011 10 

[M+Na]+
e 2558.83 620 ± 5 0.868 ± 0.008 9 

[M+K]+
c 2574.94 455 ± 4 1.183 ± 0.007 10 

[M+K]+
e 2574.94 618 ± 8 0.871 ± 0.011 6 

[M+Rb]+
c 2621.31 456 ± 2 1.181 ± 0.006 4 

[M+Rb]+
e 2621.31 621 ± 7 0.866 ± 0.010 4 

[M+Cs]+
c 2668.75 457 ± 3 1.178 ± 0.007 4 

4 

[M+Cs]+
e 2668.75 622 ± 4 0.865 ± 0.006 4 

[M+Li]+
c 3084.39 519 ± 7 1.045 ± 0.013 3 

[M+Na]+
c 3100.44 517 ± 5 1.041 ± 0.009 10 

[M+Na]+
e 3100.44 727 ± 11 0.74 ± 0.012 8 

[M+K]+
c 3116.53 518 ± 6 1.043 ± 0.012 9 

[M+Rb]+
c 3162.91 523 ± 2 1.028 ± 0.004 4 

[M+Rb]+
e 3162.91 735 ± 4 0.732 ± 0.004 4 

[M+Cs]+
c 3210.35 520 ± 2 1.035 ± 0.003 4 

Ac-Y(AEAAKA)nF-NH2 

5 

[M+Cs]+
e 3210.35 732 ± 3 0.735 ± 0.003 4 



 59

FIGURE 22. The lowest energy structures generated using molecular dynamics for [M + 
Na]+ ions for (A) Ac-(AAKAA)nY-NH2  (n = 3, 4, 5, 6 and 7) and (B) Ac-
Y(AEAAKA)nF-NH2 (n = 2, 3, 4, and 5).  (C) Magnified images of ion-peptide 
interactions in model structures.  (i) Li+ coordination by backbone carbonyl oxygens in 
Ac-Y(AEAAKA)3F-NH2 (ii) Na+ coordination by backbone carbonyl oxygen atoms of 
Ac-Y(AEAAKA)4F-NH2, and (iii) K+ coordination by backbone carbonyl structure 
oxygen atoms of Ac-(AAKAA)3Y-NH2.  Na+, Li+ and K+ are depicted as red spheres. 
Coordination to the metal by oxygen atoms is denoted with dashed black lines. “N” and 
“C” indicate the N- and C- termini, respectively. 
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peptide lengths, with the exception of [M + K]+, which exhibit lower helical content than 

[M + Na]+ or [M + Rb]+ ions.   

 

Molecular models were generated for all species. Models for the other alkali metals were 

similar to the results for [M + Na]+, so for simplicity, we will discuss model structure 

mainly in terms of the Na+-coordinated species.  Models which correlate with the 

measured collision cross-sections for the [M + Na]+ AAKAA ions (Figure 22A) are all 

distorted helices.  The AAKAA metal-coordinated collision cross-sections are 

significantly larger than predicted by the globular mobility-mass correlation (see Figure 

19A), but somewhat smaller than rigid α-helices.  This pattern could potentially indicate 

π-helices (smaller collision cross-sections than α-helices), but calculation of π-helical 

collision cross-sections for these sequences only reveals a 3% difference between the 

two helix types, a difference that is too small to resolve with our current instrumentation.  

Therefore, we can not rule out the possibility that these ions are indeed π-helices or a 

mixture of α- and π- helices, but the models generated by simulated annealing (Figure 

22A) indicate bent or distorted extended α-helices for all [M + Na]+ AAKAA ions, 

which are structural elements common in proteins which specifically bind Na+ ions (87).  

Also, Kohtani and co-workers reported distortion of the C-terminus of helices in metal-

coordinated ions, suggesting that metal coordination often results in distortion of the 

helical backbone (49). 
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The structural trends for AEAAKA [M + Na]+ are different and depend on peptide 

length.  Molecular models for the shortest peptide (n = 2) indicate helical conformations 

for [M + Na]+ ions.  The bimodal distributions for n = 3, 4, and 5 are composed of two 

populations—compact and extended.  The model structures for the compact conformers 

of n = 3, 4, and 5 are charge-solvated globules (Figure 22B), as expected from the 

correlation between the predicted globular collision cross-section and the 

experimentally-determined values (Figure 19B).  The collision cross-sections of the 

extended conformations of n = 3, 4, and 5 approximate the α-helical mobility-mass 

correlation and the lowest energy molecular models are indeed α-helices (Figure 22B).  

Several IM profiles for the AEAAKA ions extend slightly beyond the ideal α-helical 

mobility-mass correlation (see for example Figure 18, AEAAKA n = 3) which could 

indicate the presence of 3/10 helical segments because the collision cross-sections of 

3/10-helices are significantly larger (ca. 7-15%) than α- or π- helices (Figure 23).  

However, the lowest energy models for the extended populations of the AEAAKA ions 

do not contain 3/10 helical components and thus we assign the extended AEAAKA ions 

to α-helices.  

 

The average percent helix (α, π and 310 combined) in the 10 lowest energy structures for 

each peptide generated by molecular modeling is consistent with the experimental results 

(Figure 24). For instance, the percent helix of the model structures is highest for the 

extended conformers of the [M + Na]+ AEAAKA species (54%), lowest in the compact 

conformers of the AEAAKA series (10%), and intermediate in ions of the AAKAA 
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FIGURE 23. Mobility-mass correlations for the three types of helices for AAKAA and 
AEAAKA peptide [M + H]+ ions (for details see Chapter II, Molecular modeling). 
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FIGURE 24. Average percent helix of the 10 lowest energy model structures which 
match the measured collision cross-sections for [M + Na]+ for Ac-(AAKAA)nY-NH2 (n 
= 3, 4, 5, and 6, ■) and Ac-Y(AEAAKA)nF-NH2 (n = 2, 3, 4, and 5, ▲).  The average 
percent helix was calculated using the Kabsch Sander definitions (34; 75).  Error bars 
represent ±1 σ for 10 structures. 
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series (34%). This trend agrees with the experimental helical content data (Figure 21), 

although the absolute values are lower in the modeled structures; this may be a 

consequence of the strict parameterization of the model used to define the secondary 

structural elements (i.e. only residues with i, i+3; i, i+4, or i, i+5 H-bonds are considered 

helical) (75).    

 

We have critically evaluated our structural assignments for the AEAAKA ions by 

examining the torsion angle space of the [M + Na]+ ions for n = 4.  The range of allowed 

backbone torsion angles (dihedral angles), denoted Φ (N Cα bond angle) and 

Ψ (Cα Cc=o bond angle), are determined by the physicochemical characteristics of the 

peptide (Figure 25).  For example, only certain angle pairs are energetically-favored for 

specific amino acids depending on bond and steric constraints (96).  Various Φ and 

Ψ pairs are indicative of secondary structure elements such as α-helices (Φ = -57°, Ψ = -

47°)  or β-sheets (Φ = -60 to -180, Ψ = 60 to 180 ).  Thus, the Ramachandran plot can be 

used to assess peptide and protein secondary structure by visualizing the individual Φ 

and Ψ pairs for each amino acid in a peptide sequence.  The torsion angles of the 

extended conformations of the AEAAKA series are consistent with α-helices (Figure 26, 

region A) but the globular conformations populate torsion angle space corresponding to 

non-specific, “random” secondary structure (Figure 26, region C).  The AEAAKA 

globules sample several disallowed (energetically-unfavorable) torsion angle regions, 

which are indicative of unfolded proteins in solution (97; 98), i.e. the dominant 
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FIGURE 25. Peptide torsion angles. (A) Illustration of peptide torsion angles Φ (N Cα 
bond angle) and Ψ (Cα Cc=o bond angle).  (B) Allowed Φ and Ψ torsion angle space for 
alanine (Adapted from Ref. 96).     
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FIGURE 26. Ramachandran plot for simulated AEAAKA peptide (n = 4) structures 
which match the empirical collision cross-sections for globular (compact) and helical 
(extended) conformations. (A) denotes region indicative of α-helices, (B) denotes region 
indicative of β-structure and (C) denotes a representative disallowed region.  Each data 
point represents a Φ and Ψ torsion angle pair for one amino acid as defined in Figure 25. 



 67

intramolecular interactions in charge-solvated ions are not ordered and result in 

“random” structures.    

 

In general, the IM peak widths for globular conformations are broader than those 

attributed to helical conformations (Figure 27A). Owing to this relationship between 

peak width and ion conformation, we performed extensive analysis of the peak profiles 

for the [M + Na]+ AEAAKA n = 4 ion using ion trajectory  simulations developed by 

Raznikov and co-workers (68).  From these calculations, we can estimate the expected 

peak profiles (shaded region of Figure 27A) for a population of ions corresponding to a 

single collision cross-section, i.e. an ensemble of closely-related structures, assuming 

peak broadening arises exclusively from ion diffusion.  The peak width of the helical 

component corresponds well with the simulated peak (residuals are shown in the bottom 

panel).  We also applied peak deconvolution analysis to estimate the number of possible 

conformers comprising the peak profiles. A best-fit of the helical profile corresponds to 

a single component peak with one minor component (labeled v and vi, respectively, 

middle panel, Figure 27A).  The absence of multiple conformations under the helical IM 

profile suggests that the ion population is likely composed of a single dominant species, 

a rigid helix, which has few related conformations that are energetically-accessible.  On 

the other hand, the peak profile labeled “globule” is much broader than the computed 

peak profile, and deconvolution analysis reveals that this peak is composed of multiple 

structural populations (6 - 7 components), suggesting that at least several stable, 

unresolved conformations are present under these experimental conditions.  The 
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FIGURE 27. IM profile for [M + Na]+ AEAAKA n = 4.  (A) Comparison of simulated 
(shaded) and empirical IM profiles for [M + Na]+ Ac-Y(AEAAKA)4F-NH2 (top). Peak 
deconvolution analysis constrained using peak widths derived from Monte Carlo 
simulations (68)(middle). The black lines are the measured IM profile and the theoretical 
subpopulations under the parent profile. The colored lines are the composite fit. The 
residuals from the deconvolution analysis are shown (red for globule and blue for helix, 
R2 > 0.99, bottom). (B) Representative ribbon models for structures (in terms of Ω 
values) ranging from globular to helical conformations. The numbered peaks in part (A) 
correspond to the collision cross-sections of the structural models shown in part (B). 
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presence of multiple populations in the globular profile and only a single dominant 

population for the helical component may be compared to solution-phase protein folding 

where there are many randomly unfolded states (globular conformers), but only one or a 

few native states (helix).  

 

We used ion injection techniques similar to those reported elsewhere (69) to investigate 

the stability of the [M + Na]+ ion structural populations.  This methodology consists of 

accelerating the ion population, so that the ions experience ca. 10-100 low energy 

collisions and are then cooled by collisions with the buffer gas and injected into the IM 

drift cell for structural analysis. If the ions comprising a particular population are easily 

converted to another structure (i.e. globule  helix), then we expect to observe changes 

in the relative peak area as a function of the ion injection voltage.  Neither the AAKAA 

nor the AEAAKA peptides undergo significant structural changes upon ion heating for 

any peptide length (Figure 28), presumably because the metal is solvated by the peptide 

(Figure 22C(ii)) and we do not access temperatures high enough to elicit structural 

change, i.e. break multiple non-bonding E/K or ion-dipole interactions.   
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FIGURE 28. The collision cross section profiles for [M + Na]+ ions of Ac-(AAKAA)3Y-
NH2, Ac-(AAKAA)6Y-NH2, Ac-Y(AEAAKA)3F-NH2 and Ac-Y(AEAAKA)4F-NH2 are 
shown for 0, 50, and 100 V lab frame ion injection energies.  The dashed vertical lines 
represent the predicted collision cross-sections for globular peptide mobility-mass 
correlation (as defined in Figure 3) and the solid vertical lines represent the α-helical 
mobility-mass correlation (calculated collision cross-sections for α-helices of the same 
amino acid sequence).   
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Our results for AAKAA and AEAAKA confirm previous results (29; 30; 35) showing 

that the dominant gas-phase structures of alanine-containing peptides are charge-

solvated globules and helices.  Analysis of IM-MS and molecular modeling data for [M 

+ H]+ ions of AAKAA and AEAAKA peptides reveals that peptide structure in the gas 

phase is dependent on primary sequence and peptide length (Chapter III).  The presence 

of multiple basic sites in the AAKAA series does not affect the formation of partial 

helices for shorter peptides (n = 3 - 5), but as peptide length increases further, globular 

populations become more apparent.  Insertion of glutamic acid residues (AEAAKA 

series) results in different gas-phase structural trends where helical structure decreases as 

peptide length increases, much more dramatically than in the AAKAA peptides.  Even 

though a basic site is present near the C-terminus, only the shortest (n = 2) AEAAKA 

peptide exhibits any gas-phase helical content.  We probed the stability of the structural 

populations by collisional heating the ions and demonstrated that long AAKAA [M + 

H]+ ions exhibit pronounced structural transitions, whereas AEAAKA [M + H]+ ions 

exhibit little structural change.  We attribute the increased stability of the AEAAKA ion 

structures to increased charge solvation by polar side chains and H-bonding as well as 

the energetic cost associated with exposing polar side chains to vacuum (as in the helical 

conformation).   
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Alkali metal coordination results in very different structural trends in the AAKAA and 

AEAAKA peptide series (Chapter IV).  Helical content is related to peptide sequence, 

peptide length, and ion type.  Li+ is the least helix stabilizing of all the alkali metals for 

both peptide series.  For the AAKAA peptides, distorted helices are stabilized by all the 

alkali metals (although to a lesser extent by Li+) for all peptide lengths.  Alkali metal 

coordination by the AEAAKA peptides results in helix stabilization for all peptide 

lengths, but the relative abundance of the helical component decreases as peptide length 

increases.  Neither series exhibits structural transitions upon collisional heating when 

sodium coordinated, indicating that metal-coordinated ion structures are more stable than 

protonated ion structures.  Together, these data show that alkali metal helix stabilization 

can be counterbalanced by other forces such as intramolecular interactions and charge 

solvation.   

 

The results presented in Chapters III and IV demonstrate the strength of IM-MS an 

analytical tool to investigate the intrinsic properties of polypeptide ions with multiple 

basic residues and to elucidate the dominant forces that dictate structure in low dielectric 

environments. Although the relevance of gas-phase data to biological systems is still an 

open issue, it is interesting to note that gas-phase, low dielectric environments more 

closely approximate the estimated dielectric of the protein interior (ε = 2 - 20) (99; 100) 

or cell membrane (ε = 2) than aqueous solution (ε = 80) (37), suggesting that, in some 

cases, gas-phase studies may provide more accurate information than solution-based 

methodologies.   
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There are a number of exciting experiments that can grow from our knowledge of the [M 

+ H]+ and [M + X]+ AAKAA and AEAAKA ions.  Given the diversity of structural 

subpopulations represented by many of the IM profiles (see for example Chapter IV), 

other gas-phase structural probes, such as H/D exchange (53; 101), may shed more light 

on the structural populations detected by IM-MS.  The IM-MS instrumental setup 

(Figure 4) makes H/D exchange relatively simple because a small partial pressure of 

D2O can be added to the IM bath gas to perform such experiments.     

 

The effect of MALDI sample preparation on the gas-phase structure of the AAKAA and 

AEAAKA systems is also an open issue.  Preliminary results (data not shown) reveal no 

affect of solution pH or solution temperature on the ion structures sampled (maintaining 

all other sample preparation as outline in Chapter II).  However, changing the MALDI 

solvent affects crystal morphology and signal intensity (102; 103), so comparison of 

MALDI-IM-MS results from different solvents must be addressed critically and 

carefully.  The organic matrix used for MALDI may also impact gas-phase ion structure.  

Different matrices impart varying degrees of internal energy to the ions (104; 105).  The 

internal energy of the ion may be translated into conformational rearrangement (e.g. 

from a globule to a helix).  Experiments with various MALDI matrices ranging from 

“hot” (high internal energy ions) to “cold” (low internal energy ions) could provide 

information on how MALDI matrix affects gas-phase structure, allowing for more 

detailed interpretation of MALDI- IM-MS results.   
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MALDI was used as the ionization source of choice in these studies because MALDI 

results almost exclusively in singly-charged ions, which greatly simplifies IM-MS 

spectral interpretation.  In addition, MALDI is more compatible with IM-MS than ESI, 

because it is a pulsed ion source (i.e. it produces ion packets which are amenable to 

injection into the IM drift cell).  However, other groups have successfully developed IM-

MS instruments using continuous ion sources (e.g. ESI) (106-108).  Development of an 

ESI source on the same IM-MS instrumental platform would provide a unique 

opportunity to compare ion structures generated from the two ionization techniques.  

Thus far, the studies of AAKAA and AEAAKA have been limited to singly-charged 

ions, but ESI produces ions with multiple charges.  This would be especially interesting 

in the AAKAA and AEAAKA peptides because the basic sites are dispersed along the 

backbone.  Charge-macrodipole effects may destabilize helical segments C-terminal to 

the charge and result in multiple conformations (e.g. globule, partial helix, helix, etc.) for 

both AEAAKA and AAKAA peptide series.          

 

In solution, negatively-charged residues (D, E) are found at a higher frequency near the 

N-terminus (39), presumably to stabilize the helix via favorable charge-dipole 

interactions.  The studies presented in Chapters III and IV focused on the structure of 

positively-charged ions; however, preliminary results for the AEAAKA series (data not 

shown) indicate that gas-phase helices can be stabilized by location of a negative charge 

at the N-terminus.  Location of a negative charge at the positive end of the helix 

macrodipole results in favorable charge-dipole interactions and helix stabilization.  Gas-



 75

phase results for negative ions will provide insight into the dominant determinants of 

anhydrous helical structure.     

 

A particularly intriguing avenue for biophysical studies involves the unique kinetic and 

thermodynamic information that can be obtained by VT-IM-MS.  In the IM drift cell, 

water molecules can be added one by one to gas-phase peptide ions, allowing the study 

of partially-hydrated peptide and protein structures (109-111).  Hydration experiments of 

the AAKAA and AEAAKA ions could potentially reveal how many water molecules are 

required so that the hydrated ion mimics structures determined in solution.  By using 

VT-IM-MS, the equilibrium constant for the hydration reaction can be determined over a 

range of temperature and used to determine the thermodynamics associated with ion 

hydration using the van’t Hoff equation (110).  However, it is challenging to coax water 

molecules to adsorb to singly-charged, gas-phase helices (110), presumably because the 

H-bonding network is too strong for water to penetrate.  One potential way to overcome 

this obstacle is to begin the experiment with partially-desolvated ions.  Finally, VT-IM-

MS can be used to probe the interconversion of structural conformations and determine 

the kinetics of the rearrangement as a function of temperature (42).  These experiments 

would be especially interesting for the AAKAA and AEAAKA peptides because 

bimodal distributions are observed at room temperature for [M + H]+ and [M + X]+ ions, 

respectively.  By measuring the rate of interconversion as a function of temperature, the 

activation energy can be obtained from an Arrhenius plot.           
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IM-MS has shown great potential for biophysics and proteomics.  IM-MS is a useful tool 

for studies of anhydrous biomolecules (e.g. proteins, peptides, DNA, etc.) (29; 59; 112).  

VT-IM-MS can be used to determine thermodynamic and kinetic information for 

structural interconversion and hydration.  Application of IM-MS technology to novel 

and broadscale biophysical questions continues to drive future instrumental 

developments, pushing IM-MS into the forefront of modern biophysics and proteomics.   
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