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ABSTRACT 

 

Modeling of the Optical Properties of Nonspherical Particles  

in the Atmosphere. (August 2007) 

Guang Chen, B.S., Jilin University; 

M.S., University of Southern California  

Chair of Advisory Committee: Dr. Ping Yang 

 

The single scattering properties of atmospheric particles are fundamental to 

radiative simulations and remote sensing applications. In this study, an efficient 

technique, namely, the pseudo-spectral time-domain (PSTD) method which was first 

developed to study acoustic wave propagation, is applied to the scattering of light by 

nonspherical particles with small and moderate size. Five different methods are used to 

discretize Maxwell’s equations in the time domain. The perfectly matched layer (PML) 

absorbing boundary condition is employed in the present simulation for eliminating 

spurious wave propagations caused by the spectral method.  

A 3-D PSTD code has been developed on the basis of the five aforementioned 

discretization methods. These methods provide essentially the same solutions in both 

absorptive and nonabsorptive cases. In this study, the applicability of the PSTD method 

is investigated in comparison with the Mie theory and the T-matrix method. The effects 

of size parameter and refractive index on simulation accuracy are discussed. It is shown 

that the PSTD method is quite accurate when it is applied to the scattering of light by 
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spherical and nonspherical particles, if the spatial resolution is properly selected. 

Accurate solutions can also be obtained from the PSTD method for size parameter of 80 

or refractive index of 2.0+j0.  

Six ice crystal habits are defined for the PSTD computational code. The PSTD 

results are compared with the results acquired from the finite difference time domain 

(FDTD) method at size parameter 20. The PSTD method is about 8-10 times more 

efficient than the conventional FDTD method with similar accuracy. In this study, the 

PSTD is also applied to the computation of the phase functions of ice crystals with a size 

parameter of 50.  

Furthermore, the PSTD, the FDTD, and T-matrix methods are applied to the study 

of the optical properties of horizontally oriented ice crystals. Three numerical schemes 

for averaging horizontal orientations are developed in this study. The feasibility of using 

equivalent circular cylinders as surrogates of hexagonal prisms is discussed. The 

horizontally oriented hexagonal plates and the equivalent circular cylinders have similar 

optical properties when the size parameter is in the region about from 10 to 40. 

Otherwise, the results of the two geometries are substantially different.  
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CHAPTER I 

INTRODUCTION 

 

Cirrus clouds, covering more than 20% of the globe [1-3], influence the terrestrial 

climate system on all scales through their radiative influence. For example, in the tropic 

region, the thermal structure of the upper troposphere is substantially impacted by the 

solar absorption of cirrus clouds [4]. Influences of radiative and microphysical properties 

of cirrus clouds on weather and climate evolutions are considered to be an outstanding 

problem in atmospheric research [5]. Significant research efforts have been made to 

understand the radiative properties of ice clouds from various perspectives [6-13]. Thus, 

the single scattering properties of cloud particles have been widely studied, as they are 

fundamental to the study of the radiative properties of cirrus clouds [14-26]. Additionally, 

the single scattering of ice crystals in the atmosphere is required for the remote sensing 

of clouds [27-29]. Recently, a great deal of research work has been dedicated to the 

direct and indirect effects and forcing of aerosols on climate change [30-35]. According 

to satellite observations, the impact of aerosols on weather evolution is believed to be 

significant. However, inadequate understanding of aerosol optical and microphysical 

characteristics makes the study difficult. Therefore, it is necessary to improve the current 

knowledge about the scattering of light by aerosols.    

The single-scattering properties of atmospheric particles depend strongly upon 
 

This dissertation follows the style of Journal of Quantitative Spectroscopy & Radiative 
Transfer. 
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 incident wavelength, refractive index, particle size, shape, orientation, and composition. 

However, in the atmosphere, particle characteristics are very complicated. As described  

by Hemysfield and Platt [36], shapes and sizes of ice crystals in cirrus clouds are 

strongly impacted by temperature and supersaturation. Ice crystals have various shapes, 

for example, solid and hollow hexagonal columns, droxtals, various bullet rosettes and 

aggregates. The sizes of ice particles range from smaller than one micron to several 

thousand microns.  Shapes, compositions and sizes of aerosols, particularly mineral 

aerosols, are also highly variable [37]. The uncertainty of particle sizes and shapes 

makes the light scattering study difficult. Therefore, various theories and numerical 

methods have been developed to understand the single-scattering properties of 

atmospheric particles. When the maximum dimensions of particles are much smaller 

than the incident wavelength, Rayleigh theory pioneered by Rayleigh in 1871 [38] can 

be used to provide non-analytical solutions. The analytical solutions in the case of 

homogeneous spherical particles can be derived from the conventional Lorenz-Mie (or 

Mie) theory [39]. Improved Mie theory has also been developed for absorbing sphere 

[40] and coated sphere in an absorbing medium [41]. Furthermore, scattering properties 

of double sphere system [42], spheroids [43] and Chebyshev particles [44] can also be 

obtained analytically from theoretical methods.  

However, most atmospheric particles with complex geometries cannot be solved 

analytically. Therefore, numerical methods have been developed for nonspherical 

particles. When the maximum dimension of a particle is larger than approximately 20 

times the incident wavelength, the geometric optics method (GOM) provides solutions 
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for arbitrary convex nonspherical particles with acceptable accuracy. Takano and Liou 

applied GOM method to single-scattering of hexagonal ice crystals [45]. In 1996 

Geometric-Optics-integral-equation method, an improved GOM method developed by 

Yang, was applied to nonspherical ice crystals [46]. Then, this method has been used for 

various ice crystals with complex geometries [47, 48].  

In order to study the scattering of light by atmospheric particles with complex 

geometries, for example, ice crystals in cirrus clouds and mineral aerosols, the finite-

difference time-domain method (FDTD) was developed. This method can be applied to 

arbitrary geometries with various compositions because electromagnetic boundary 

conditions need not be satisfied on the particle surface. The finite-difference time 

domain method was developed by Yee in 1966 to directly solve Maxwell’s equation in 

the time domain [49]. Then, Yang introduced this method for light scattering by 

nonspherical ice crystals [19, 25, 50-51]. Single-scattering properties of aerosols can 

also be calculated by this method [52]. However, the FDTD method becomes impractical 

for large particles due to the tedious calculations associated with this size. According to 

numerous numerical experiments, the FDTD method is applicable when the maximum 

dimension of particles is smaller than approximately 6 times the incident wavelength.  

The T-matrix method [53] is a very efficient technique for symmetric particles with 

moderate size by rigorously solving Maxwell’s equations, for example, finite circular 

cylinders and spheroids. However, when imaginary part of particle refractive index is 

very small, the conventional T-matrix method becomes ill-conditioned due to the strong 

impact of the ripple structure [54]. Fortunately, an improved T-matrix method has been 
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developed for nonabsorbing particles by substituting a matrix inversion technique 

associated with a lower triangular-upper triangular factorization for the conventional 

Gaussian elimination [54]. In atmospheric science, the T-matrix method is widely 

applied to scattering of light by aerosols with fixed or random orientations in which 

particles are approximated as symmetric geometries [55-57].  Although, this method is 

considered to be applicable for arbitrary geometries, for complex shapes, the algorithm 

becomes impractical because the calculation is difficult to converge.  

There are several other methods applicable for studying light scattering, for 

example, the anomalous diffraction theory (ADT) [58, 59] and the discrete-dipole 

approximation (DDA) [60, 61]. However, for particles with complex geometries and 

compositions, and size in the range of approximately 6λ to 20λ (λ is the incident 

wavelength), there is no efficient method to be used. Unfortunately, in the atmosphere, 

many aerosols and ice crystals are this kind of particle. In this study, we will use the 

pseudo-spectral time-domain (PSTD) method pioneered by Liu for studying acoustic 

wave propagations [62, 63] to calculate the single-scattering properties of arbitrarily 

shaped particles with moderate size. Similar to the FDTD method, this method solves 

Maxwell’s equations in the time domain. In the PSTD method, a high order accurate 

approximation of spatial derivative on the basis of the spectral method is employed. In 

contrast to the FDTD algorithm, the PSTD method is much more efficient since a coarse 

grid resolution can be used for acceptable accuracy due to the application of the new 

approximation. However, for an unbounded problem, this method suffers from a 

“wraparound effect.” The wraparound effect describes a case in which the solution is 
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contaminated by spurious wave propagations pertaining to the spatial periodicity of the 

Fast Fourier Transform (FFT) used in the spectral method. Fortunately, perfectly 

matched layer (PML) boundary conditions [64, 65] can be used to eliminate the spurious 

wave propagations. Another limitation is that the accuracy of the PSTD method in a 

Cartesian grid may degrade due to Gibb’s phenomenon caused by discontinuities of 

electromagnetic properties on a particle surface. In this study, we will investigate the 

influence of Gibb’s phenomenon on calculation accuracy. For the partially empty cells 

located near the scatter surface, we will evaluate the mean electromagnetic properties in 

terms of permittivity and permeability to decrease Gibb’s phenomenon. 

The content of this dissertation is organized as follows: Chapter II generalizes 

formulations of the PSTD method in the Cartesian coordinate for scattering of light by 

atmospheric particles. Five different schemes are applied to discretize Maxwell’s 

equations in the time domain. PML boundary conditions are used to terminate the 

computation domain and eliminate the wraparound effect. Transformation of near field 

to far field is implemented by a surface integration technique. In Chapter III, 

applicability of a 3-D PSTD code for dielectric particles is discussed. Accuracy of the 

five discretization methods is reviewed. Solutions of the PSTD method and the Mie 

theory are compared in terms of phase functions of spheres with various sizes and 

refractive indices. Influence of spatial resolution and refractive index on simulation 

accuracy is also discussed. Applicability of the PSTD for nonspherical particles is 

investigated in comparison with the T-matrix method. Phase functions of spheroids and 

circular cylinders with various aspect ratios are calculated from these two methods at 
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refractive index of 1.38+ j3.9×10-9, which is a typical refractive index of oceanic 

aerosols. Chapter IV applies the PSTD method for ice crystals. Six geometries-

hexagonal plate, hexagonal column, hollow hexagonal column, bullet rosette, aggregate 

and droxtal-are defined according to observations in cirrus clouds. Phase functions of 

these ice crystals from the PSTD and FDTD methods are compared at an incident 

wavelength of 3.7 μm and size parameter 20. Furthermore, the PSTD method is applied 

for ice crystals with size parameter 50. In Chapter V, the PSTD, FDTD and T-matrix 

methods are used to study horizontally oriented ice crystals. In this study, three 

numerical schemes are applied to the average of the particle orientations. The 

orientations can be arbitrary but confined to be horizontal for computing the scattering 

properties of ice crystals. Also discussed is the feasibility for using circular cylinders as 

surrogates of horizentally oriented hexagonal ice crystals in the computation of the 

scattering properties. 
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CHAPTER II 

PSEUDO-SPECTRAL TIME-DOMAIN METHOD APPLIED TO 

LIGHT SCATTERING BY ATMOSPHERIC PARTICLES WITH 

ARBITRARY GEOMETRIES AND COMPOSITIONS IN THREE-

DIMENSIONAL SPACE 

 

2.1 Introduction 

The finite-difference time-domain (FDTD) method has been widely used to solve 

Maxwell’s equations in the time domain. This method has also been demonstrated to be 

accurate and reliable for propagations of acoustic waves in various media. In 

atmospheric science, the FDTD method is applied to study the scattering of light by 

small nonspheric particles in the atmosphere. The grid spatial resolution used in 

simulations determines the accuracy of this method. The typical grid spatial resolution of 

FDTD is about 20 cells per minimum wavelength according to numerous numerical 

experiments. However, the computation demand increases by the fourth order of particle 

size increase for 3D problems. Therefore, if the particle size is large, the FDTD method 

becomes impractical for the 3D case. Generally, the conventional FDTD method is 

applied to simulations with size parameters smaller than 20. Another limitation of the 

conventional FDTD method is the relatively large dispersion errors which accumulate 

with time steps [66]. In calculation with large time steps, a finer spatial grid resolution is 

necessary for acceptable accuracy. Therefore, the computation demand also goes up with 
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the increase of the spatial resolution. Alternatively, the pseudo-spectral time-domain 

(PSTD) method pioneered by Liu [63, 67] in 1997 and 1998 to solve Maxwell’s 

equations and study propagations of acoustic waves in absorptive media can be applied 

to study the scattering problems with moderate sizes. In this method, spatial derivatives 

with high order accuracy are approximated on the basis of the spectral method. No 

accumulated dispersion errors are introduced in this approximation. Therefore, the PSTD 

method is much more efficient than the conventional FDTD method because a coarse 

spatial grid resolution can be used for acceptable accuracy. Another major advantage is 

that the PSTD method could be applied to arbitrary geometries. Similar to the FDTD 

method, the PSTD method discretizes the computational domain containing a scattering 

particle by using a grid mesh. At each grid point, electromagnetic parameters, namely 

permittivity, permeability, and conductivity, are specified. Because the electromagnetic 

boundary conditions do not need to be imposed at the particle surface in the PSTD 

method, it is applicable to arbitrarily shaped or inhomogeneous objects. 

The spectral method was first discussed by Kreiss and Oliger [66] in 1972, who 

used Fourier series to approximate derivatives. In the same year, Orszag [68] also 

studied the advantage of the spectral method based on Chebyshev polynomials. In 1988, 

the spectral method was applied to solve partial differential equations in fluid dynamics 

[69]. In 1982 another kind of spectral method, k-space method, was developed and 

applied by Bojarski [70] to solve scalar acoustic waves. Then Liu [62, 71] applied k-

space method to study electromagnetic and elastic waves. If the coefficients in wave 

equations vary smoothly, high order spatial derivatives can be obtained from both 
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spectral methods with about 2 to 4 grid points per minimum wavelength. In the spectral 

methods, the fast Fourier transform (FFT) pioneered by Cooley and Tukey [72] is 

employed to make the calculation more efficient. However, for an unbounded problem, 

the PSTD method suffers from a “wraparound effect.” The wraparound effect describes a 

case in which the solution is contaminated by spurious wave propagations pertaining to 

the spatial periodicity of the FFT used in the spectral method. Fortunately, the perfectly 

matched layer (PML) absorbing boundary conditions [64, 65] can be used to eliminate 

the spurious wave propagations. Thus, it appears feasible that PSTD can be applied to 

the scattering of light by nonspherical particles with moderate size parameters. 

This chapter is organized as follows. In the second section, physical 

fundamentals of the PSTD method are discussed. Then, in the third section, the finite 

different approximation and the spectral method are reviewed. In the fourth section, the 

PSTD method is used to calculate the frequency dependent near field. In this section, 

Maxwell curl equations are discretized in the time domain by several numerical schemes, 

and the corresponding time-marching equations are also given. Then transformation of 

the near field from time domain to frequency domain is reviewed. The fifth section 

recapitulates the uniaxial anisotropic perfectly matched layer (UPML) absorbing 

boundary condition [65], which is used to truncate the wraparound effect and eliminate 

the outgoing wave propagations on the computational domain boundary. The sixth 

section first reviews the definitions of several important scattering properties, namely the 

amplitude and the phase matrixes; then, recapitulates the surface integration technique, 

which is used to map the near field to the far field.  
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2.2 Physical background of the PSTD method 
 

All electromagnetic phenomena can be described by Maxwell’s equations; 

however, these equations are not independent of each other. Maxwell’s divergence 

equations (Gauss’s law) can be obtained from Maxwell curl equations (Faraday’s law 

and Ampere’s law). Therefore, the PSTD method can be used to study light scattering of 

nonspherical atmospheric particles by solving the corresponding Maxwell curl equations 

in time domain. As shown in Fig. A.1, the PSTD method discretizes the computational 

domain containing a scattering particle by using a grid mesh. The electromagnetic 

properties, namely permittivity, permeability, and conductivity, are specified at each grid 

point, and the scattering particle is defined in the grid domain. The incident wave is 

introduced into the computational domain and interacts with the scattering particle. As 

shown in Fig. A.2a, in the FDTD algorithm, the electric field components and the 

magnetic field components are located at the edges and at the surface centers of the grid 

cell, respectively [49]. However, the PSTD method applies a centered grid scheme that 

specifies all field components at the centers of the grid cells, as shown in Fig. A.2b. 

Because of this advantage, the PSTD algorithm is significantly simplified, particularly 

for the calculation in an anisotropic medium [65]. Furthermore, the centered grid scheme 

can also remove the singularity problem for electromagnetic waves in cylindrical 

coordinates [73]. 

In the present study, the rectangular Cartesian grid is employed in the PSTD 

method. However, for a medium with large contrasts in electromagnetic properties, the 

accuracy of the PSTD method in Cartesian grid may be degraded due to Gibb’s 
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phenomenon caused by the discontinuities on the scattering particle surface. This 

phenomenon describes the case in which the Fourier series cannot converge to a function 

with discontinuity points. In an extreme case, such as the case of a perfect conductor, 

significant Gibb’s phenomenon will be observed, and the PSTD simulation results would 

be incorrect. Furthermore, similar to the conventional FDTD method, the PSTD method 

also encounters the problem of staircasing approximation for a curved particle surface in 

a rectangular mesh. To avoid Gibb’s phenomenon and the staircasing errors, significant 

efforts have been focused on the multidomain Chebyshev PSTD method in general 

curvilinear coordinates [73-77]. Although this elegant approach is more accurate, it is 

relatively inflexible when scatters have various sizes and arbitrary geometries and the 

algorithm becomes much more complicated. Particularly, the implementation of the 

PML boundary condition in curvilinear coordinates is much more complicated than in 

the Cartesian grid. Fortunately, in this study, ice crystals and most aerosols are 

nonferromagnetic and their electromagnetic properties are not so different from the 

vacuum. For the partially empty cells located near the scatter surface, the mean 

electromagnetic properties in terms of permittivity and permeability can be evaluated to 

decrease the discontinuities. For these reasons, the medium discontinuities and 

staircasing errors do not cause serious problems in this study. Thus, the rectangular 

Cartesian grid is still most appropriate for the present study. 

In the PSTD method, the finite difference method and the spectral method are 

employed to approximate the temporal and spatial derivatives and discretize the 

corresponding Maxwell curl equations in time and space domains, respectively. As the 
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initial condition, a known plane incident wave, which propagates toward the scattering 

particle, is introduced into the computational domain.  At the next time step, the excited 

electromagnetic field at every grid point can be obtained from the initial conditions by 

using the discretized Maxwell curl equations. Iteratively, the excited electromagnetic 

fields at any time can be computed from the corresponding fields at the last time step. 

Therefore, in the computational domain, the excited fields as functions of time can be 

calculated from the time-marching iterations. If a pulse source is chosen as the incident 

wave, the iterations stop when the electromagnetic fields in the computational domain 

are significantly weak. Otherwise, no convergent scattered fields can be obtained.  

The near fields calculated from the preceding discretized Maxwell curl equations 

are in the time domain. The time dependent solutions should be transformed into 

corresponding results in the frequency domain in order to study the single-scattering 

properties. The discrete Fourier transform is used to implement this transform. If initial 

excitation is a Gaussian pulse, theoretically, the frequency spectrum of the time-

dependent results should cover most of frequencies. However, in the simulation, the 

available frequency spectrum depends strongly on the width of the Gaussian pulse. The 

impertinent pulse width can cause serious numerical aliasing and dispersion, which 

degrade the accuracy of the numerical results.  More details will be discussed in section 

2.6.   

In order to obtain the amplitude matrix and other scattering properties, the near 

fields in frequency domain should be transformed into the corresponding far fields. Both 

surface and volume integrations are discussed by Yang and Liou [19] for transforming 
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the near field to the far field. Because the volume integration approach is less accurate 

for the large refractive index [78] and has a relatively tedious computation, the surface 

integration approach was chosen for this study.  

According to the preceding discussion, the PSTD method applied to scattering of 

light by atmospheric particles includes the following steps: 

1. Discretize the computational domain containing the scattering particle by a 

rectangular grid mesh and obtain the time-dependent near fields from the time-

marching iteration.  

2. Transform the near fields from time domain to frequency domain. 

3. Transform the near fields to the corresponding far fields.  
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2.3 The finite difference approximation and the spectral method approximation 

Similar to the FDTD method, the temporal derivatives of Maxwell equations are 

approximated in terms of the finite difference approximation in the PSTD method. The 

finite difference approximation can be derived from Taylor series expansions. Keeping 

spatial variable x fixed at nx , the Taylor series expansion of ),( txf  about time it  to 

time 
2
tti

Δ
+  can be written as follows:  
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where tΔ is the time interval between two time steps and 1ι locates in the range of 

it to
2
tti

Δ
+ . Similarly, the Taylor series expansion of ),( txf about time 

2
tti

Δ
−  to time 

it is given as follows:  
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where )
2

,(2
ttt ii

Δ
+∈ι . Subtracting Eq. ( 2.2 ) from Eq. ( 1.2 ), we have: 

 



15 

,)()
2

(
3
1)()

2
()

2
( 3

3
3

3

nnnn xx

i

x
i

x
i t

ft
t
tftttfttf

∂
∂Δ

+
∂

∂
Δ=

Δ
−−

Δ
+

ι
 ( 3.2 ) 

where )
2

,
2

(3
tttt ii

Δ
+

Δ
−∈ι . It is a straightforward calculation to obtain the first partial 

time derivate of ),( txf at time it : 
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As shown in Eq. ( 4.2 ), the finite difference approximation of the first partial derivative 

has second-order accuracy.  

In contrast to the FDTD method, the spatial derivative terms in Maxwell’s 

equations are approximated by the spectral method based on the Fourier series in the 

PSTD technique. According to partial integration, consider the spatial partial derivatives 

of ),( txf , which are transformed in K-space by the forward Fourier transform, keeping 

time fixed at it : 
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jKxi πππ π  ( 5.2 ) 

 

where j denotes imaginary unit. If ),( txf is zero at infinite boundary, it is possible to 
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simplify Eq. ( 5.2 ) as follows: 
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The spatial derivatives of ),( txf  in x-space were obtained by applying the inverse 

Fourier transform to Eq. ( 6.2 ): 
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The right side of Eq. ( 7.2 ) is the exact expression of the spatial partial derivatives which 

can be viewed as an approximation with infinite-order accuracy. However, in the 

numerical algorithm, the computational domain is not infinite. On the basis of the 

preceding discussion, it is apparent that the computational domain is discretized by the 

grid mesh. Therefore, the discrete Fourier transform is employed to represent the spatial 

derivatives of the discrete data, substituting for the conventional Fourier transform. By 

analogy with Eq. ( 6.2 ), the expression of the partial derivatives of a discrete 

function ),( in txf  in k-space was obtained keeping time fixed at it : 
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where N is total grid points number along x direction, and mK  is the corresponding 

Fourier variable. In Eq. ( 8.2 ), mK  is defined as: 

 

,
xN

mKm Δ
=  ( 9.2 ) 

 

 where xΔ is the spatial interval between to two grid points. Applying the inverse 

discrete Fourier transform to Eq. ( 8.2 ) gives the approximations of the spatial 

derivatives of  ),( in txf  in the x-space: 

 

.]),(2[1),( 1

0

1

0

22

∑ ∑
−

=

−

=

−
=

∂
∂ N

m

N

n

N
jnm

inm
N
jnm

in etxfjKe
Nx

txf ππ

π  ( 10.2 ) 

 

In contrast to the finite difference approximation of the spatial derivative at grid point 

nx , whose value only depends on the two values, ),2/( in txxf Δ−  and ),2/( in txxf Δ+ , 

the spectral method approximation of the spatial derivative at every grid point depends 

on ),( itxf  values at all grid points. Therefore, the spectral method approximation has a 

much higher order accuracy than the finite difference approximation. Furthermore, in the 

spectral method, the fast Fourier transform [72], which reduces the number of 

computation needed from 22N to )(log2 2 NN , is used to make the numerical calculation 

more efficient.  
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In order to study the accuracy of the spectral method, the PSTD method is first 

used to simulate the transmission and reflection processes of a Gaussian pulse on a 

dielectric medium surface in one-dimensional case. In this simulation, the spatial 

interval xΔ is m015.0 , and the permittivity of medium is given as )0.05.1(0 j+= εε . The 

reflection coefficient from the one-dimensional PSTD method is compared with the 

corresponding analytic values in the frequency domain in Fig. A.4 As shown in this 

figure, the differences between the PSTD results and analytical solutions increase with 

the frequency of the incident wave. The relative error is less than 2% with frequency 4 

GHz. In contrast to the finite different technique for which the spatial grid resolution is 

about 15 cells per wavelength, the corresponding spatial grid resolution of the spectral 

method at the incident frequency 4 GHz is about 4 cells per minimum wavelength.  

 

2.4 The discretized time-domain equations for the near field 

As discussed in the preceding section, the PSTD method is applied to the 

scattering of light by nonspherical atmospheric particles by solving Maxwell curl 

equations in the time domain. In the present study, all ice crystals and most aerosol 

particles, such as various marine, dust-like, and soil aerosols, are inhomogeneous and 

nonferromagnetic, and their electromagnetic properties are isotropic. Therefore, the 

current density terms in Maxwell’s equations can be ignored, and the permeability μ is 

selected as 0μ , which is the permeability in vacuum. Maxwell curl equations are 

simplified as: 
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∂εε  ( a11.2 ) 

,0 E
t

H v
v

×−∇=
∂

∂μ  ( b11.2 ) 

 

where 0ε denotes the permittivity in vacuum andε is relative permittivity of the dielectric 

medium. However, some atmospheric particles are absorptive; thus, the permittivity is 

complex, and the imaginary part causes the absorption. Yang and Liou [19] first 

introduced a method in 1996 to deal with the calculation associated with complex 

permittivity in the FDTD algorithm. Following this method, the PSTD method can be 

applied to the cases of absorption. If the harmonic time-dependent factor of the 

electromagnetic fields in frequency domain is defined as )exp( tjω− , in which ω  is 

angular frequency, the refractive index has a positive imaginary part, and the refractive 

index m  and the relative permittivityε are defined as: 

 

,ir jεεε +=  ( a12.2 ) 

,ir jmmm +=  ( b12.2 ) 

 

where the subscripts r and i denote the real part and imaginary part, respectively. The 

relations between permittivity and refractive index are represented: 

 

,22
irr mm −=ε  ( a13.2 ) 
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.2 iri mm=ε  ( b13.2 ) 

 

Substituting Eq. ( a12.2 ) into Eq. ( a11.2 ) and using )exp( tjω−  as the harmonic time-

dependent factor, we have: 
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where 
λ
π2

=k is the wave number of the incident source in vacuum, λ is the 

corresponding wavelength, and c denotes the light speed in vacuum. 

Before discretizing the calculation domain with the rectangular grid mesh to 

obtain the time-marching iterative equations of Maxwell curl equations, it is necessary to 

discuss the introduction of the incident source into the PSTD simulation. In the FDTD 

method applied to scattering of light by particles with linear electromagnetic properties, 

the total (incident+scattered) field and scattered field method (TF/SF) [19] is employed 

to introduce incident wave. As shown in Fig. A.3a, a connecting surface, the Huygens 

surface, is defined in the computation domain to connect the total field region and the 

scattered field region in this method. Inside the Huygens surface, total fields are 

calculated, and outside the surface, only scattered fields are calculated. The incident 

waves are introduced on the Huygens surface. However, if the incident wave is also 

introduced by using the same TF/SF method in the PSTD method, a serious Gibb’s 

phenomenon will occur in the Fourier transform used in the spectral method due to field 



21 

discontinuity at the Huygens surface. Furthermore, the simulation will be contaminated 

by the noise caused by the Gibb’s phenomenon. In order to eliminate the Gibb’s 

phenomenon, there are two approaches for introducing the incident wave by the TF/SF 

method. As shown in Fig. A.3b, a connecting region is employed to connect the total 

field region and the scattered field region [79] in the first approach, and a new field conE
v

 

is defined: 

 

,sicon EEE
vvv

+= ρ  ( 15.2 ) 

 

 where superscripts i and s denote the incident field and scattering field, respectively, 

and ρ is a continuous function, which smoothly changes from 0 to 1 in the connecting 

region. The variable  ρ  is 1 in the total field region, and is 0 in the scattered field region. 

Therefore, conE
v

is also a continuous function in every region, and the Gibb’s 

phenomenon caused by the discontinuity is eliminated. According to the definition in Eq. 

( 15.2 ), it is apparent that conE
v

becomes the total field, inside the connecting region, and, 

as well, conE
v

 becomes the scattered field outside the region. In the connecting region, 

there are several choices for ρ —half of cosine function, half of a Gaussian function, 

half of the Blackman-Harris window function, and an integral form of the Blackman-

Harris window function. However, an extra computational error will be created in the 

connecting region due to Gibb’s phenomenon no matter which function is chosen. In 

addition, for this approach, the computational domain is larger than the conventional 



22 

approach due to the Huygens region, and the algorithm is relatively complicated. 

Therefore, another approach was selected to introduce the incident wave. Because only 

the medium with linear electromagnetic properties is considered in this investigation, the 

other approach can express the total field as the superposition of the incident and 

scattered field. Maxwell curl equations of the total field can be rewritten as: 
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 For the incident field, the corresponding Maxwell curl equations are 
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Substituting Eqs. ( 17.2 ) into Eqs. ( 16.2 ) produces Maxwell curl equations for the split 

scattered and incident fields: 
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In the total field region, the analytic values of the incident electrical field are used in 

a18.2 , and total field is evaluated. In the scattered field and boundary regions, only the 

scattered fields are computed, and the incident terms in Eq. ( a18.2 ) are zero. By this 

method, only scattered field, which is continuous in all computational domain, is 

simulated by the PSTD method, and any incident waves can be introduced with the 

analytic values. No Gibb’s phenomenon occurs on the Huygens surface.  

In order to discretize Maxwell’s equations in time domain, the finite different 

approximation is used. The finite different analog of Eqs. ( 2.18a ) and ( 2.18b )in each 

Cartesian components can be written as: 
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where superscript n, n+1, and n±½ denote time step number, and indices 

),,( KJI denotes the grid points location. In Eqs. ( a19.2 ) through ( c19.2 ) and ( a20.2 ) 

through ( c20.2  ), the spatial derivatives can be approximated on the basis of the spectral 

method, and the terms associated with the incident electrical field can be obtained by 

analytic values. Additionally, by approximating the temporal derivatives of the incident 

electrical field in terms of the finite different method, Eq. ( 2.18a ) can be written as 

another form of the finite different analog: 
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2.4.1 Scheme 1 

The equation of the s
xE  component is chosen as an example. Integration of the x 

component of the Eq. ( a18.2 ) on the temporal interval ])1(,[ tntn Δ+Δ  leads to the 

following: 
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The mean values of the real and imaginary parts of the permittivity at the grid points 

denoted by index ),,( KJI , ),,( KJIrε and ),,( KJIiε , can be obtained by: 
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In the present scheme, the temporal derivatives are discretized by the following 

equations: 
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Substituting Eqs. ( a24.2 ) through ( f24.2 ) into Eq. ( 22.2 ), the coefficients of Eqs. 

( a19.2 ) through ( c19.2 ) can be obtained as: 
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2.4.2 Scheme 2 

In this scheme, before integrating on the temporal interval ])1(,[ tntn Δ+Δ , the x 
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component of the Eq. ( a18.2 ) is first multiplied by a factor of )exp( t⋅τ  

where ),,(/),,( KJIKJIkc ri εετ = . Therefore, the Eq. ( 22.2 ) can be rewritten in a 

compact form as: 
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For this scheme, the discretizations of the temporal derivatives of Eq. ( 26.2 ) can be 

expressed  as follows: 
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Substituting Eqs. ( a27.2 ) – ( e27.2 ) into Eq. ( 26.2 ) gives the coefficients of the Eqs. 

( a19.2 ) – ( c19.2 ) as: 
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2.4.3 Scheme 3 

In this scheme, Eq. ( 26.2 ) is discretized by approximating the temporal 

derivatives with the following expressions: 
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Using these expressions, the coefficients in Eqs. ( a19.2 ) through ( c19.2 ) are given as 

follows: 
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2.4.4 Scheme 4 

This scheme is similar to scheme 1, except that finite different approximation 

was used to express the temporal derivatives of the incident field. In this scheme, Eq. 

( 22.2 ) can be rewritten into the form of Eq. ( a21.2 ) by replacing Eqs. ( c24.2 ) and 

( d24.2 ) with the following expressions: 
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Discretizing Eq. ( 22.2 ) by the present scheme gives the coefficients of Eqs. ( a21.2 ) 

through ( c21.2 ) as the following: 
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2.4.5 Scheme 5 

In this scheme, Eq. ( 26.2 ) is rewritten into a more compact form: 
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Similar to scheme 2, the left side and the first term of the right side of Eq. ( 33.2 ) can be 

discretized by the Eqs. ( a27.2 ), ( d27.2 ), and ( e27.2 ). However, the terms associated 

with the incident electrical field are approximated as follows: 
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Therefore, the coefficients of Eqs. ( a21.2 ) – ( c21.2 ) are obtained as follows: 
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Following the preceding schemes, Maxwell’s equations can be discretized in the 

time domain to obtain the finite different analog of Eqs. ( 2.18a ) and ( 2.18b ); however, 

to obtain a stable PSTD scheme, the temporal interval tΔ must satisfy a stability 

condition. Similar to the stability condition of the FDTD method [80], the stability 

condition of the PSTD method can be obtained by the dispersion analysis [67]. For 

three-dimensional computation, the stability condition of the Fourier PSTD method in 

Cartesian coordinate is given by: 
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As shown in Eq. ( a18.2 ), any incident source can be introduced into the PSTD 
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simulations. In the present study, a Gaussian pulse is chosen as the incident source, 

which is given by: 
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where it denotes the initial time of the pulse and wt denotes the width of the pulse. By 

ignoring the phase shift, in frequency domain, this Gaussian pulse can be expressed as: 
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where 
w

p t
2

=ω . Therefore, the frequency spectrum depends on the pulse width wt . As 

shown in Eq. ( 38.2 ), the amplitude of the ω  component in the pulse dramatically 

decreases by wt . By choosing the pulse width wt  too narrow, the accuracy of the 

simulation may degrade due to the corresponding small amplitude of the ω  component 

in frequency domain.  However, if the pulse width is too wide, a longer computation 

time is needed. In the present study, the pulse width wt is given by 
c

tw 2
λ

= . The 

corresponding pω is 
λ
c4 . 

Following the preceding PSTD method, it is possible to compute the near fields 
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in the time domain. Therefore, it is necessary to transform the solutions in the time 

domain to the counterparts in the frequency domain. In the present study, this 

transformation is implemented by the discrete Fourier transform. If )( tlf Δ is used to 

denote any components of the near fields in time domain, the corresponding results 

)(ωF  in the frequency domain are given by: 

 

,)exp()()(
0

∑
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ΔΔ=
L

l
tljtlfF ωω  ( 39.2 ) 

 

where L  denotes the total number of the time steps in the simulation. In practice, the 

field values )(ωF  calculated by Eq. ( 39.2 ) will be normalized by the corresponding 

incident wave in the frequency domain, which locates at the center of the computation 

domain.  

 

2.5 Absorbing boundary conditions in the PSTD method 

The PSTD method requires an appropriate absorbing boundary condition, which 

is applied to eliminating the wraparound effect and truncating the outgoing fields at the 

computational boundary. In the present study, an absorbing boundary, namely the 

perfectly matched layer (PML) boundary condition, is employed. The PML boundary 

condition was first developed by Berenger [64, 81] in 1994 and 1996. In this technique, 

an absorbing medium backed by a perfectly conducting layer is arranged at the outside 

of the computational domain to absorb the outgoing waves without any reflection. First, 
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a case that a TEz (transverse electric) wave impinges on a loss medium half space 

located at x<0 (region 1). The TEz electric conductivity and magnetic loss are denoted as 

1σ and ∗
1σ , and the permittivity and the permeability are represented as 1ε and 1μ , 

respectively. Region 2 is defined as a lossless medium half space x>0. It is easy to 

demonstrate that, for any incidence angle, the reflection coefficient is always equal to 

zero when 21 εε = , 21 μμ = , and 
1

*
1

1

1

μ
σ

ε
σ

= are satisfied. For the three-dimensional 

simulation, Berenger (1996) first split the six electromagnetic field Cartesian 

components into 12 subcomponents and rewrote Ampere’s law and Faraday’s law to the 

corresponding subcomponents forms. By analogy with the case of the TEz wave, if the 

absorbing boundary conditions are set as shown in Fig. A.5, any outgoing waves from 

the inner vacuum can be absorbed without reflection. On the six sides of the PML 

boundary, the PML layers match the inner vacuum by having zero transverse electrical 

conductivities and magnetic losses. For the 12 edges of the PML, only one electrical 

conductivity and magnetic loss equal zero. At the eight corners, all conductivities and 

losses are not zero. In the PML layer, the permittivity and permeability equal the 

corresponding values in vacuum, and all conductivities and losses have to satisfy 

0

*

0 μ
σ

ε
σ

= . 

Berenger (1996) introduced the split field PML based on a mathematical model. 

The medium at the boundary layer is hypothetical. In 1995, Sacks [82] used a uniaxial 

anisotropic medium (UPML) to model the perfectly matched layer. In this technique, 
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Maxwell’s equations do not need to be rewritten to the split-field forms. and the 

numerical algorithm is simplified. Then, in 1999, Liu applied the UPML boundary to the 

PSTD method [65]. In this technique, the permittivity ε and permeability μ  of the 

uniaxial anisotropic medium, which are expressed to diagonal tensors, are given by: 
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where s and s* are dimensionless values, given by: 
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By analogy with the split field PML condition 
0

*

0 μ
σ

ε
σ

= , the anisotropic medium, which 

can absorb the outgoing waves without reflection, has to satisfy the following conditions: 
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In Eqs. ( a41.2 ) and ( b41.2 ), values of the electrical conductivities and the magnetic 

losses depend upon the location in the UPML boundary. If we assume, for example, that 

a boundary with the thickness d is along the x direction and the interface of the boundary 

and the inner vacuum locates at the x=0, the value of the electric conductivity is given by: 
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where R(0) represents the desired reflection error of the UPML boundary, and m is a real 

number which is usually chosen within 3<m<4. The corresponding values of the 

magnetic losses can be obtained from the absorbing boundary conditions.  

Similar to calculation in the computational domain, to simulate the wave 

absorption of the UPML boundary, it is necessary to also discretize Maxwell’s equations 

in the time domain also. First, Eqs. ( a40.2 ) and ( b40.2 ) are substituted into Eqs. ( a11.2 ) 

and ( b11.2 ) to obtain expressions of Maxwell curl equations in the UPML boundary: 
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In order to make the numerical computation more efficient, two new vectors, A
v

 andC
v

, 

are defined. Their Cartesian components are represented as: 
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Applying Eqs. ( a45.2 ) and ( b45.2 ) to Eqs. ( a44.2 ) and ( b44.2 ) shows: 
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Multiplying a factor of )exp(
0

ty ⋅
ε
σ

 and integrating on the temporal 

interval ])1(,[ tntn Δ+Δ , the x component of Eq. ( a46.2 ) at the grid point denoted by 

index ),,( KJI  is written as follows: 
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By analogy with scheme 2, which is used to discretize the Maxwell’s equations in the 

computational domain, the finite different analog of Eq. ( 47.2 ) is obtained as: 

 

),,()
),,(

exp(

),,(

)(

0

)1(

KJIAt
KJI

KJIA

n
x

y

n
x

Δ−=

+

ε
σ   

}.
),,(),,({)

2
),,(

exp(
)()(

0

0

0

2
1

2
1

z
KJIH

y
KJIHtctKJI ns

y
ns

zy

∂

∂
−

∂
∂

Δ
Δ

−+
++

ε
μ

ε
σ

 ( a48.2 ) 



43 

 

The finite different analog of the y component and z component are given by: 
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Similar to Eq. ( a46.2 ), the finite different analogs of Eq. ( b46.2 ) are written for the 

Cartesian component as: 
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Furthermore, it is also necessary to discretize the Eqs. ( a45.2 ) and ( b45.2 ) in the time 

domain. The x component of Eqs. ( a45.2 ) is chosen as an example. Consider the 

integral of the product of the x component and )exp(
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tt zx ⋅+⋅
ε
σ

ε
σ  on temporal 

interval ])1(,[ tntn Δ+Δ : 
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The integrals in Eq. ( 50.2 ) are approximated as follows: 
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After applying Eqs. ( a51.2 ) and ( b51.2 ), the finite different analog of the x component 

of ( a45.2 ) is given as: 
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By analogy with ( a52.2 ), the other finite different analogs of Eqs. ( a45.2 ) and ( b45.2 ) 

can be obtained as follows: 
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2.6 The transformation of near field to far field 

Following the preceding discussions, the frequency-dependent scattered waves in 

near field can be obtained. However, in order to obtain the single-scattering properties, 

for example, amplitude scattering matrix and phase matrix, the frequency-dependent 

near-field solution must to be transformed to far field. According to the electromagnetic 

equivalence principle, two approaches, surface integration technique and volume 

integration, can be applied to the transformation of near field to far field [19]. Because 

the volume integration approach is less accurate for the large refractive index and has a 

relatively tedious computation, the surface integration approach was chosen for this 

study. 
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Before discussing the transformation of near field to far field, this study reviews 

the definitions of two important scattering properties, amplitude scattering matrix and 

phase matrix, which describe the relation between the incident wave and the scattered 

wave. As shown in Fig. A.6, it is assumed that the incident wave propagates along z 

direction, and the incident electric field is decomposed into two components orthogonal 

to each other. The principal-scattering plane, which includes both the incident direction 

and the scattering direction, is chosen as a reference plane for the decomposition. In this 

plane, the horizontal component is iE//  and the component perpendicular to the principal 

scattering plane is vertical component iE⊥ . Similarly to the incident wave, the scattered 

wave can be projected to the two components ( sE// and sE⊥ ) also. Because the 

electromagnetic boundary condition is linear on the scatter surface, the relation between 

the incident and the scattered waves can be given by: 
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 where the vector rv specifies the scattering direction, r is the distance from the scatter to 

the scattering observation point, k is the wave number and the S matrix is the amplitude 

scattering matrix. In light scattering, another important scattering property is the phase 

matrix, which describes the relation of the incident and scattered Stokes parameters. The 

Stokes parameters are defined as the follows: 
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where the superscript asterisk denotes the corresponding conjugate complex and j is 

imaginary unit. I represents field intensity and Q, U, and V have the same dimension, 

and are used to describe  the light polarization. In terms of the Stokes parameters, the 

phase matrix is defined by the following equation: 
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where superscript s and i denote the scattered and incident light, respectively. According 

to the definition of the amplitude scattering matrix, the elements of the phase are shown 

as the following equations: 
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Now the surface integration technique will be recapitulated. According to the 

electromagnetic equivalence theorem, the equivalent electric and magnetic currents on a 

surface including a scatter, can be used to substitute the scatter to create the same far 

fields.  The equivalence is given by the following equtions: 
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where sn̂ is the unit normal vector of the surface. The Hertz vectors associated with the 

equivalent currents can be obtained by: 
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where Σ is the surface which encloses the scatter and the free space Green’s 

function ),( rrG vv′ is given by:  
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The electric field induced by the equivalent currents on the surface can be obtained by: 
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Substituting Eqs. ( a59.2 ) and ( b59.2 ) into Eq. ( 61.2 ) and letting r approach infinity 

gives the scattered field in far field region as: 
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where n̂ represents the unit vector in the scattering direction. Thus, α̂ and β̂  are used to 

denote the unit vectors which are horizontal and perpendicular to the principal scattering 

plane, respectively, and satisfy:  

 

,ˆˆˆ αβ ×=n  ( 63.2 ) 

 

Therefore, the scattered electric field can be represented as the horizontal and 

perpendicular components in the form: 
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Rewriting Eq. ( 62.2 ) in the components form gives: 
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where ℑ
v

denotes the vector, )](ˆ[ˆˆ)(ˆˆ rHnnnrEnn ss ′×××−′×× vvvv
. Assuming the incident 

direction is along z direction, the horizontal and the perpendicular components of the 

incident electric field are: 
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where i
xE  and i

yE  indicate the incident electric field components in a Cartesian 

coordinate. On the basis of the Eqs. ( 54.2 ) and ( 66.2 ), the Eq. ( 65.2 ) is rewritten as: 
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where 

 

,ˆ
ˆ

)ˆexp(
4 1,0

2
2

,

, ∫∫Σ ==
′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

ℑ⋅
ℑ⋅

′⋅−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
i
y

i
x EE

y

y rdrnikk
F
F

v

v
v

β
α

πβ

α  ( a68.2 ) 

 

,ˆ
ˆ

)ˆexp(
4 0,1

2
2

,

, ∫∫Σ ==
′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

ℑ⋅
ℑ⋅

′⋅−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
i
y

i
x EE

x

x rdrnikk
F
F

v

v
v

β
α

πβ

α  ( b68.2 ) 



54 

 

where the subscripts ( 1,0 == i
yEi

xE ) and ( )0,1 == i
yEi

xE denote that the polarization 

of the incident electric field is along the x direction and y direction, respectively. 

Therefore, following the preceding discussion, the amplitude scattering matrix can be 

obtained from the near fields. Using Eqs. ( a57.2 ) - ( o57.2 ), the phase matrix could be 

calculated from the corresponding amplitude matrix.  
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CHAPTER III 

VALIDATION OF PSEUDO-SPECTRAL TIME-DOMAIN  

METHOD IN 3-D SPACE FOR LIGHT SCATTERING BY 

ATMOSPHERIC PARTICLES 

 

3.1 Introduction 

Following the preceding discussion in Chapter II, a 3-D PSTD code in FORTRAN 

has been developed for scattering of light by arbitrary geometries. Before applying the 

PSTD code to atmospheric particles, this chapter discusses the applicability of the PSTD 

method for scattering of light. The PSTD method is first compared with the Lorenz-Mei 

theory. As discussed in Chapter I, scattering of light from homogeneous spheres can be 

precisely described by the conventional Lorenz-Mie theory (Mie theory). In this method, 

an analytical solution can be obtained by directly solving Maxwell’s equation in the 

frequency domain. Therefore, the accuracy of the PSTD method for homogeneous 

spheres can be studied by comparison with the corresponding solution from the Lorenz-

Mie theory. Furthermore, the PSTD method is compared with the T-matrix method, 

which is an efficient technique applied to scattering of light from rotationally symmetric 

particles with moderate size parameters. The solutions from this method are also 

analytical. Thus, the applicability of the PSTD method for light scattering of 

nonspherical particles can be investigated by comparison with the counterpart of the T-

matrix method. 
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This chapter is organized as follows. As discussed in Chapter II, five different 

schemes are applied to discretizing Maxwell’s equations in the time domain.  In the 

second section of this chapter, the five schemes are used to carry out the phase functions 

for spheres. The accuracy of the schemes is investigated by comparison with the 

counterpart from the Mie theory.  In the third section, the PSTD method is utilized to 

study the scattering properties of spheres with different size parameters and refractive 

indices. The accuracy of the PSTD method for spheres is investigated by comparison 

with the Mie theory. The impact of the grid spatial resolution and size parameter on the 

simulation accuracy are also studied in this section. In the fourth section, two geometries, 

circular cylinders and spheroids, are considered. The applicability of the PSTD method 

for oriented nonspherical particles is validated by comparison with the corresponding T-

matrix solutions in terms of scattering phase functions. The fifth section draws a 

conclusion.     

 

3.2 Investigation of the accuracy of the five methods used for discretizing Maxwell’s 

equations in the PSTD method 

As discussed in Chapter II, there are five different methods involved in 

discretization of Maxwell’s equations in the time domain. To investigate the accuracy of 

the five methods, scattering phase functions of spheres calculated from the PSTD 

method based on the five discretization methods are compared with the corresponding 

results from Mie theory. First, the phase function of a sphere with a size parameter of 20 

is calculated by the PSTD method. In this simulation, the grid spatial resolution, which is 
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defined as the ratio of the incident light wavelength in vacuum to the grid cell length, is 

10, and the refractive index is 1.2+0.01j, where the imaginary part represents the 

absorption of this medium. The phase functions from PSTD method and Mie theory are 

compared in Fig. A.7 The relative errors, which are defined as the ratio of the difference 

between the two solutions to the corresponding Mie results, are also given in this figure. 

As shown in panel (a) of Fig. A.7, the solutions from the computations based on 

discretization schemes 1, 2, and 3 are essentially the same, and in the relative error 

patterns of the three schemes, no distinguishable difference is observed. The comparison 

of the PSTD and Mie solutions shows considerable agreement except for some 

deviations near scattering angle °90 and near the backward scattering direction. As 

shown in panel (b) of Fig. A.7, the PSTD solutions based on Schemes 4 and 5 converge 

with the Mie results at all scattering angles. In the relative error pattern of Panel (b), the 

two discretization methods do not show any distinguishable difference, although the 

PSTD solutions deviate from the Mie results at scattering angles near °90 and °180  In 

Panel (c) of Fig. A.7, the absolute values of the relative errors of Schemes 2 and 5 are 

plotted in a logarithmic scale. The differences of the two schemes can also be ignored. 

Therefore, in the case of size parameter 20, the accuracies of the five methods are almost 

indistinguishable.  

Normally, in numerical simulations, errors can accumulate with simulation scale 

and time steps.  For example, the dispersion error of the FDTD method increases with 

time steps. To compare the accuracy of the five methods for large size scale simulation, 

phase function of a sphere with size parameter 50 is calculated by the PSTD method and 
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Mie theory, respectively. In this case, the refractive index is 1.1+0j. According to the 

discussion in Chapter II, for a nonabsorptive medium, discretization Schemes 1 through 

5 are reduced to two schemes. For discussion in this chapter, Scheme A denotes the 

scheme originated from Schemes 1 through –3, and Scheme B is derived from Schemes 

4 and 5. In Fig. A.8, the phase functions from Schemes A and B and the Mie theory are 

compared, and absolute values of the relative errors are plotted on a logarithmic scale. It 

is evident that the solutions of the PSTD associated with methods A and B essentially 

converge to the counterpart of Mie theory. The difference between the methods A and B 

cannot be distinguished from the patterns of relative error in logarithmic scale. Therefore, 

the five discretization methods provide the same accuracy for the light scattering study. 

 

3.3 Validation of the PSTD method for sphere: comparison with the Mie theory 

In this section, applicability of the PSTD method for spheres is investigated in 

comparison with Mie theory. Impacts of grid spatial resolution, size parameter, and 

refractive index on accuracy of the PSTD method are studied, where the grid spatial 

resolution is defined as the ratio of the incident light wavelength in vacuum to the length 

of the grid cell, the size parameter of sphere is the product of wave number of the 

incident light in vacuum and the sphere radius, and the refractive index is complex.  

First, we consider the impact of grid spatial resolution. For the FDTD method, in 

which the spatial derivatives are approximated by the finite difference method, the 

accuracy of the simulation highly depends on the grid spatial resolution. Although a 

better solution can be obtained by increasing the spatial resolution, the much more 
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tedious computation associated with resolution increase makes the simulation very 

inefficient and even impractical. According to the numerical experiments, in the FDTD 

method for scattering of light, the grid spatial resolution is selected as the product of 25 

and the real part of the refractive index for an acceptable accuracy. In the PSTD method, 

in which the spectral method is applied to the spatial derivatives in Maxwell’s equations, 

the finer spatial resolution may also provide more accurate results. In order to discover 

the most efficient grid spatial resolution for an acceptable accuracy, phase functions 

from the PSTD method with spatial resolutions 8, 12, 16, and 20 are compared with their 

counterparts of Mie theory. 

Figure A.9 compares the PSTD and Mie solutions at refractive index 1.05+0j and 

size parameter 20. In Panel (a) of this figure, a spatial resolution of 8.  It is evident that 

the PSTD results follow the counterpart of Mie theory well at all scattering angles, 

although some differences are observed at scattering angles near °120 , °150 , and in a 

backward direction. The phase function at the spatial resolution 12 is shown in panel (b). 

There is a good agreement between the PSTD and Mie solutions for all scattering angles. 

In contrast to the results in panel (a), obvious differences are no longer observed at 

angles near °120 , and the difference near °150 is smaller in Panel (b). The results from 

the PSTD method at spatial resolutions 16 and 20 are compared with the counterparts of 

Mie theory in panels (c) and (d), respectively. For these two cases, the PSTD and Mie 

solutions are almost essentially the same except for slight deviations near the backward 

scattering direction. Therefore, the accuracy of the PSTD method increases with the grid 

spatial resolution. However, at resolution 16, the agreement of the phase functions near 



60 

the backward scattering direction is even less than with the counterparts at resolution 12. 

The implication is that an increase in resolution does not always provide better results. 

Inside the scattering particles, the light wavelength is shorter than the wavelength 

in the vacuum due to the larger refractive index of the medium. Thus, keeping the length 

of the grid cell fixed, the ratio of the incident light wavelength in the scattering particle 

to the length of grid cell decreases with an increase in the refractive index. Therefore, in 

the FDTD method, to obtain the same accuracy, the spatial resolution needs to increase 

with the refractive index. In order to study the impact of refractive index on the PSTD 

method, phase functions are also calculated at refractive index 1.2+0j. Fig. A.10 shows 

the comparison of the Mie and PSTD results at size parameter 20. In panels (a), (b), (c), 

and (d), grid spatial resolutions are chosen as 8, 12, 16, and 20, respectively. As shown 

in panel (a), the PSTD solutions agree with the Mie solution at all scattering angles with 

some slight differences at the angles near °90 and in the backward direction. In contrast 

to the corresponding results at refractive index 1.05+0j, the agreement of the solutions in 

panel (a) does not worsen with the increase of the refractive index. The agreement of the 

comparison in panel (b) is better than its counterpart in panel (a) due to the increase of 

spatial resolution. The deviations near °90 and the backward direction obviously became 

smaller. The solution in panel (c) is almost the same as the result in panel (b) except for a 

slight decrease in the deviation near the backward direction. As shown in panel (d), the 

PSTD results at resolution 20 essentially converge with the Mie results at all scattering 

angles except for very slight differences at the backward direction.  

According to the preceding discussion, it is evident that accuracy of the PSTD 
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method will increase with the spatial resolution, although in some special cases, 

agreement of the phase functions with the finer spatial resolution can be less pronounced 

at some scattering angles. On the basis of numerous numerical experiments, the grid 

spatial resolution in the PSTD method can be determined as 10 multiplied by the largest 

real part of the refractive index in the computational domain for size parameters smaller 

than 20. Comparison of the solutions in Figs. A.9 and A.10 shows that the accuracy of 

the PSTD method is not as sensitive to the refractive index of the scattering particle as 

the FDTD method.  

Secondly, the impact of the size parameter on the PSTD method is studied. In 

numerical simulation in the time domain, some errors increase with the calculation scale 

and time steps. This means that some simulation errors may increase with size parameter. 

For example, as discussed by Taflove [83], the dispersion errors of the FDTD method 

accumulate with the time steps. The accuracy of the FDTD method decreases with an 

increase in the scale of the computational domain. Additionally, in the FDTD method for 

scattering of light, obvious errors are frequently observed at the scattering angles near 

the backward direction in terms of phase function at large size parameters. In the PSTD 

method, almost no dispersion errors which accumulate with time steps are observed due 

to the application of the spectral method to the approximation of the spatial derivatives 

of the electromagnetic fields. However, in numerical simulations, calculation errors 

which increase with the computational scale and time steps cannot be entirely avoided. 

In addition, in the PSTD code, the phase differences of the scattered field and the 

incident field may increase with the size parameters and time steps because the analytic 
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incident field is introduced in the simulation. Therefore, the accuracy of the PSTD 

method at large size parameter needs to be investigated.  

Figure A.11 shows the comparisons of the PSTD and Mie results in terms of phase 

functions at refractive index 1.05+0j. Two size parameters, 30 and 50, are involved in 

this study. According to the preceding discussion, the grid spatial resolution of the PSTD 

method is selected as 10. As shown in the left panel, the PSTD phase function is 

essentially the same as the counterpart of Mie theory at size parameter 30 except for a 

slight difference at the angles near 160°. The solutions at size parameter 50 are 

compared in the right panel. The PSTD and Mie results are essentially the same except 

for a very slight difference near 90°. It is evident that the accuracy of the PSTD method 

does not diminish with the increase of the size parameter. Especially at size parameter 50, 

no obvious difference is observed at the backward direction, whereas the FDTD method 

frequently creates obvious errors as the size parameter increases.  

The phase functions of the PSTD method at refractive index 1.6+0j are compared 

with the counterpart of the Mie theory in Fig. A.12. The grid spatial resolution is selected 

as 16. As shown in the left panel of this figure, the PSTD solutions converge with the 

corresponding Mie results at most of the scattering angles. Some differences are 

observed at some scattering angles where the maxima or minima of the phase functions 

occur. The phase functions of the PSTD method also deviate slightly from the 

counterpart of Mie theory at the scattering angles near 180°. As shown in the right panel 

where the size parameter is 50, the solutions of the PSTD and Mie agree well at most of 

the scattering angles. The simulation errors of the PSTD method frequently occur at 
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some angles where the phase functions have slight oscillations and backward direction. 

In contrast to the comparison in the left panel, the accuracy of phase functions at size 

parameter 50 does not become worse, but rather is better at some scattering angles, for 

example the backward direction. 

According to the discussions about Figs. A.11 and A.12, it is evident that the 

accuracy of the PSTD solution for the same spatial resolution does not degrade with the 

size parameter increase. In some cases, the agreement of the comparisons of the PSTD 

and Mie at the larger size parameters is even better. The reason for this phenomenon of 

the larger size simulation having better accuracy is discussed first by review of the 

discussion in Chapter II. Using the PSTD method, the discrete Fourier transform (DFT) 

is used in the spectral method, which approximates the spatial derivatives in Maxwell’s 

equation. The accuracy of the derivative approximation can increase with the number of 

grid points involved in DFT. The accuracy of the simulation at the large size parameter, 

therefore, is improved because the computational domain includes more grid points. To 

demonstrate this assumption, the phase functions of a sphere with size parameter 80 are 

calculated from the PSTD method at refractive index 1.05+0j. In this case, a spatial 

resolution of 8 is selected. The results are compared with the corresponding Mie 

solutions in Fig. A.13. As shown in this figure, the PSTD results essentially converge 

with the counterparts of Mie theory and show almost no distinguishable difference. The 

accuracy of the phase functions at size parameter 80 is better than the counterparts at 

size parameters 30 or 50 and spatial resolution 10 which are shown in Fig. A.11. 

Furthermore, the agreement of this comparison is much better than the case at size 
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parameter 20 and resolution 8, which is shown in Fig. A.9. Therefore, the accuracy of the 

PSTD method does not degrade with the increase of the size parameter, and the 

applicability of the PSTD method for large size particles is validated.  

As discussed in Chapter II, the accuracy of the PSTD method may be degraded due 

to Gibb’s phenomenon caused by the discontinuities of the electromagnetic properties, 

such as refractive index, on the scattering particle surface. In the atmosphere, the real 

part of the refractive index of most of ice crystals and aerosols is smaller than 2. To 

study the impact of Gibb’s phenomenon on the PSTD method for measurement of light 

scattering of the atmospheric particles, the phase functions of a sphere with size 

parameter 40 are calculated by both the PSTD method and Mie theory at refractive index 

2.0+0j. In this case, the spatial resolution is 18. As shown in Fig. A.14, the PSTD 

solutions follow the corresponding Mie results well at most of the scattering angles, 

although some differences are observed at some angles where the phase functions 

achieve maxima or minima. Therefore, for most of the atmospheric particles, the PSTD 

method for the scattering of light can provide an acceptable accuracy, which does not 

degrade with the increase of the size parameter. According to numerous numerical 

experiments, the spatial resolution at large size simulation can be determined as follows. 

When size parameter is larger than 30 and the real part of refractive index is smaller than 

1.5, spatial resolution can be selected to be about 12. When the real part of refractive 

index is larger than 1.5 and smaller than 2.0, spatial resolution is determined to be about 

9 multiplied by the real part of the refractive index.   
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3.4 Validation of the PSTD method for nonspherical particles: comparison with T-

matrix method. 

The single-scattering properties of rotationally symmetric particles with fixed 

orientation have also been discussed by Mishchenko et al. [57] using the rigorous T-

matrix method. Analytical results can be obtained from this method. In this section, the 

phase functions of oriented cylinders and spheroids are calculated from the PSTD 

method. The applicability of the PSTD method for nonspherical particles is investigated 

by comparison with the T-matrix method in terms of phase functions. 

Two geometries, spheroid and circular cylinder, are considered in this study.  A 

spheroid is defined in terms of its vertical radius (polar radius hl) and horizontal radius 

(equatorial radius ha). The aspect ratio for this spheroid is defined as hl/ha. A spheroid 

for which the aspect ratio is larger than 1 is called a prolate spheroid; otherwise, it is 

called an oblate spheroid. A circular cylinder is specified in terms of the radius of its 

cross section (r) and height (h). The aspect ratio for this particle is defined as h/r. The 

size parameters of the two geometries are defined as k (the wave number = 2π/λ) 

multiplied by the largest dimension of the particles, where λ is the incident wavelength. 

Therefore, the size parameter of a prolate spheroid is k2hl and the size parameter of an 

oblate spheroid is k2ha. For a circular cylinder, when h is larger than 2r, size parameter 

is defined as kh; otherwise, size parameter is defined as k2r. 

Normally, for oriented particles, four angles, iθ , iϕ , sθ , and sϕ , specify the 

incidence scattering configuration. As shown in the left panel of Fig. A.15, incident 

angle ( iθ ) and azimuth angle ( iϕ ) define the incident direction in a laboratory 



66 

coordinate system. As shown in Fig. A.15, the orientations of spheroids and cylinders in 

the laboratory coordinate system are specified by choosing the z axis as the symmetry 

axis of the two geometries. This symmetry of the particle orientation leads to the 

simplification of the incidence scattering configuration in which only three angles, iθ  , 

sθ , and sϕ , are used. For oriented scattering particles, their single-scattering properties 

depend on both the scattering angle (θs ) and the azimuth angle (ϕs) of a scattering plane 

to which the scattering properties are referred. The principal scattering plane, a plane 

with ϕs = 0, contains the zenith and incident directions. 

 First, the PDTD and T-matrix methods are used to compute the phase functions 

of an oriented spheroid at refractive index (1.381, 3.9×10-9), which is a typical refractive 

index of oceanic aerosols. In this section, the grid spatial resolution for the PSTD 

method is selected as 12. The solutions are compared for a scattering azimuth angle,ϕs, 

of 0°, and two incident angles, °0 and °30 .  

Figure A.16 shows the comparisons for an oblate spheroid with aspect ratio 0.5 

and size parameter 20. In the left panel, the PSTD solutions at incident angle °0 agree 

well with the corresponding T-matrix results at all scattering directions, except for 

differences at some angles where the phase functions achieve maxima or minima and at 

the backward direction. In the right panel, the solutions from the PSTD and T-matrix 

methods at incident angle °30 are essentially the same. Only slight deviations are 

observed at the scattering angles near °170 .  

Figure A.17 is essentially the same as Fig. A.16 except for an aspect ratio of 2. 
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As shown in the left panel, at the incident angle 0°, the solutions of the PSTD and T-

matrix methods agree very well at all scattering directions. Slight differences are 

observed at some scattering angles where the minima of phase function occur. In the 

right panel, the phase functions at the incident angle 30° change smoothly with the 

scattering angles, and the PSTD solutions essentially converge with the corresponding T-

matrix results.  

To investigate the impact of the size parameter on the PSTD method, the phase 

functions of a spheroid with aspect ratio of 2 and size parameter 50 are compared in Fig. 

A.18. As shown in the left panel, at the incident angle 0°, the PSTD solutions are 

essentially the same as the T-matrix results, except for slight differences near the 

scattering angle 160°.  The agreement of the solutions at size parameter 50 is even better 

than the results at size parameter 20, which is shown in the left panel of Fig. A.17. As 

shown in the right panel, the phase functions from PSTD method deviates from the 

counterpart of the T-matrix method at the scattering angles near 130° and 160°. 

Secondly, the phase functions of a circular cylinder with fixed orientation are 

calculated from the PSTD and T-matrix methods. The solutions are also compared for a 

scattering azimuth angle,ϕs, of 0°, and two incident angles, 160° and 30°. Figure A.19 

shows the comparison of the PSTD and T-matrix solutions at aspect ratio 1 and size 

parameter 20. As shown in the left panel, at the incident angle °0 , the phase functions 

from the PSTD method deviates from the counterpart of the T-matrix only at scattering 

angles °20 and °95 . At incident angle °30 , the solutions of the PSTD and T-matrix 

methods are essentially the same. Figure A.20 compares with Fig. A.19 except for a size 
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parameter of 50. In this case, for both of the incident angles, °0 and °30 , the PSTD 

solutions agree with the T-matrix results very well except for the differences at the 

angles where the maxima or minima of the phase functions occurs.  

Figures A.21 and. A.22 compare with Figs. A.19 and A.20, respectively, except 

an aspect ratio 4 is used for the computations in Figs. A.21 and A.22. In Fig. A.21, the 

PSTD solutions converge well to the corresponding T-matrix results except at some 

scattering angles where the phase functions achieve maxima or minima, particularly for 

the case in which the incident angle is 0°. The calculations for size parameter 50 are 

compared in Fig. A.22, where it is shown that the phase functions frequently oscillate 

with the scattering angles. The solutions of the two methods agree very well except for 

the differences at some angles where the maxima or minima of the phase functions occur.  

In this section, the comparison of the PSTD and T-matrix solutions demonstrate 

the excellent applicability of the PSTD method for the nonspherical particles with 

moderate and large sizes. Although some differences are observed at some scattering 

angles where the phase functions achieve maxima or minima, the accuracy of the PSTD 

method for nonspherical particles does not degrade with the increase in the size 

parameter; particularly, no errors which increase with the size parameter are observed at 

the backward direction. Therefore, the solutions for randomly oriented particles may be 

more accurate because the impact of errors is weakened by the orientation average. In 

contrast to the solutions for sphere discussed in Section 3.3, the PSTD method for 

nonspherical particles with moderate size provides better accuracy.   
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3.5 Summary and conclusion 

A 3-D PSTD code, in which the five discretization methods discussed in Chapter II 

are used, has been developed for light scattering. The comparison of the PSTD method 

and Mie theory in terms of phase functions for a sphere with size parameters 20 and 50 

demonstrates that the five different discretization methods provide the same accuracy, 

for both absorption and nonabsorption. The applicability of the PSTD method for 

scattering of light by sphere is the validated by comparison with Mie theory at different 

refractive indexes and size parameters. According to the numerical experiments, the grid 

spatial resolution is determined as follows: For the cases of size parameters smaller than 

30, the grid spatial resolution can be determined as 10 multiplied by the real part of the 

refractive index ( rm ). Otherwise, if rm  is smaller than 1.5, the resolutions is selected as 

12, and if rm is larger than 1.5 and smaller than 2.0, the spatial resolution is determined 

as 9 multiplied by rm . In comparison with the Mie theory, some differences are 

observed at the scattering angles where the maxima or minima of the phase function 

occur as the solutions frequently oscillate. However, no obvious errors which accumulate 

with the increase of the scale of the computational domain or the time steps occur in the 

PSTD method; particularly, no errors accumulate with size parameter at the backward 

direction, whereas in the FDTD method, obvious errors frequently occur as the particle 

size increases. In some cases, the accuracy of the PSTD method increases with the size 

parameter because the approximation of the spatial derivatives obtained from the 

spectral method is more accurate due to more grid cells being involved in the simulation. 

Additionally, the agreement of the comparison of the PSTD and Mie solutions at 
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refractive index (2.0+0j) demonstrates that Gibb’s phenomena caused by the 

discontinuities of the refractive index at the surface of the scattering particles does not 

create an obvious impact on the accuracy of the simulation in the case of rm smaller than 

2.0. Furthermore, the PSTD method is applied to the rotationally symmetric particles, 

spheroids and circular cylinders, and the solutions are compared with their counterparts 

of the T-matrix method at different incident angles and size parameters. The applicability 

of the PSTD method for nonspherical particles is validated by the excellent agreement of 

the comparisons. In contrast to the application to sphere, the solutions for nonspherical 

particles have the better accuracy.  
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CHAPTER IV 

APPLICATION OF PSEUDO-SPECTRAL TIME-DOMAIN 

METHOD TO LIGHT SCATTERING BY ICE CRYSTALS 

 

4.1 Introduction 

Cirrus clouds, which cover more than 20% of the globe, influence climate 

evolutions on all scales though their strong influences on the radiative budget of the 

terrestrial and atmospheric system. Significant research efforts have focused on the 

radiative properties of ice clouds from various perspectives [6–13]. Inasmuch as they are 

fundamental to the understanding of radiative properties, the scattering of light by ice 

particles is studied for various applications [14–26]. Additionally, remote sensing of 

cirrus clouds also requires a strong understanding of the single-scattering properties of 

ice crystals.  

Laboratory experiments have demonstrated that the shape and size of ice particles 

are highly dependent on various factors, including temperature and supersaturation. 

According to observation of cirrus clouds [84], ice crystal morphologies include various 

geometries, for example, complex bullet rosettes and aggregates, although in the 

atmosphere, most ice crystals have a basic hexagonal structure. Various techniques are 

used to study the scattering of light by ice crystals due to the numerous geometries and 

size parameters of ice particles in cirrus clouds. The geometric-optic-integral-equation 

(GOM) method was used by Yang in 1996 [22] to investigate scattering properties of ice 
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crystals with size parameters larger than 60. The light scattering by small ice crystals 

with arbitrary shapes can be studied by the finite-different time domain method [17, 19]. 

For this method, the upper limit of size parameter is about 20. The T-matrix method is 

usually used for rotationally symmetric particles [57], although it may also be applied to 

quasi hexagonal prisms [18]. However, ice crystals with moderate size parameters and 

complex geometries cannot be characterized by all of these methods. In this study, the 

PSTD method is used to study the single-scattering properties of nonspherical ice 

crystals with small and moderate size parameters. In the PSTD method, a coarse spatial 

grid resolution is adequate for acceptable accuracy because of a high order 

approximation of spatial derivative based on the spectral method. In contrast to the 

FDTD method, in which the spatial resolution is about 25 to 30, the spatial resolution of 

the PSTD method is selected as approximately 12 when the real part of the refractive 

index is not too large. Therefore, in 3-D cases, the PSTD method is about 8 times more 

efficient than the conventional FDTD method. Additionally, when the refractive index of 

scattering particles is very close to one, the PSTD method provides much better accuracy 

than the FDTD method in which phase function has an obvious error at the scattering 

angles near the backward direction.  

This chapter first compares the phase functions of the PSTD and FDTD methods 

with the corresponding Mie results at the refractive index of 1.05+0j. Furthermore, six 

ice crystal habits (hexagonal plate, hexagonal solid column, hexagonal hollow column, 

bullet rosette, aggregate, and droxtal) are defined in the PSTD method. The PSTD 

solutions of these ice crystals with fixed orientation are compared with the 
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corresponding FDTD results in term of phase function at size parameter 20 and 

wavelength 3.7 μm. Then, the phase functions of the ice crystals with size parameter 50 

are also calculated by the PSTD method.  

 

4.2 Application for ice crystals: comparison of the pseudo-spectral time-domain and 

finite-difference time-domain methods 

 

4.2.1 Spheres with very small refractive index 

The FDTD method has been widely used for various applications and 

demonstrated to be reliable in most electromagnetic simulations. However, for this 

method, when the variation of refractive index on particle surface is very tiny, an 

obvious error is observed in the phase functions near the backscattering direction. In this 

section, the phase function of a sphere with refractive index of 1.05+0j and size 

parameter of 20 is calculated from the PSTD, FDTD, and Mie methods. In the PSTD 

method, the spatial resolution is 8; in the FDTD method, the spatial resolution is 26. In 

Fig. A.23, the phase functions of PSTD and FDTD methods are compared with the 

corresponding results from Mie theory. As shown in this figure, the FDTD solutions are 

essentially the same as the Mie results, as the scattering angle is smaller than 160°. 

However, at scattering angles 160° to 180°, the phase function of the FDTD method 

substantially deviates from the corresponding counterpart of the Mie theory. In 

comparison of phase functions, the PSTD solutions agree very well with the Mie results 

at all scattering directions except for slight differences at the scattering angles 90°, 130°, 
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160°, and 180°. Therefore, in contrast to the FDTD method, which has an obvious error 

in terms of phase function at the backward scattering direction, the PSTD method 

provides an accurate solution with very coarse spatial resolution, as the particle 

refractive index is very close to one.  

 

4.2.2 Hexagonal plates and columns 

A hexagonal prism is the basic structure of ice crystals in cirrus clouds. As shown 

in the left panel of Fig. A.24, a hexagonal prism is specified in terms of its side length (a) 

and length (L). Its aspect ratio is defined as 2a/L. Thus, when aspect ratio is larger than 

one, this geometry is a hexagonal plate in which size parameter is defined as k (the wave 

number = 2π/λ) multiplied by a; otherwise, this geometry becomes a hexagonal column 

with size parameter πL/λ. According to observed data from ice crystal clouds by Auer 

and Veal [85], Mitchell and Arnott  [59] specified hexagonal columns by determining the 

crystal width D (D=2a) as follows:  
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where the units of width and length of the column are measured in microns. For 

hexagonal plates, the relation between particle width (D) and length (L) is presented by 

Pruppachar and Klett [86] as shown in Eq. (4.2): 

v 
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where units selected are also  microns. Therefore, when particle size is very small, the 

aspect ratio of the hexagonal prism is approximately equal to one.   

As discussed in Chapter II, four angles, iθ , iϕ , sθ , and sϕ  are used to specify the 

incidence scattering configuration, where incident angle ( iθ ) and the azimuth angle ( iϕ ) 

define the incident direction and scattering angle ( sθ ) and the corresponding azimuth 

angle ( sϕ ) define the scattering direction. The orientation of a hexagonal prism in a 

laboratory coordinate is shown in the right panel of Fig. A.24 in which the z axis is 

selected as the principal axis of this particle.   

Phase functions of a hexagonal ice plate with size parameter 20 are calculated from 

the PSTD and FDTD methods at o45=iθ , o0=iϕ and incident wavelength of 3.7 μm. 

The solutions are compared in the left panel of Fig. A.25 at o0=sϕ . According to the 

discussion in Chapter III in this study, spatial resolution of the PSTD method is selected 

as 14. In the FDTD simulation, spatial resolution is 32. As shown in the panel, the 

solutions of the two methods agree well at all scattering angles except for the difference 

at scattering angle o85 . Thus, in this study, the PSTD method is about 8 to 10 times more 

efficient than the FDTD method for similar accuracy. The PSTD method can be applied 

to a larger-scale calculation. Phase function of a hexagonal ice plate with size parameter 

50 obtained from the PSTD method is shown in the right panel of Fig. A.25 at o45=iθ , 

o0=iϕ and o0=sϕ . The spatial resolution of this calculation is 12.  



76 

Figure A.26 shows phase functions of hexagonal ice columns. In the left panel, the 

PSTD method solutions are compared with the corresponding FDTD method results at 

size parameter 20. In this calculation, the spatial resolution of the FDTD method is 

changed to 28. As shown in this figure, there is good agreement between the two 

methods except for the differences at scattering angles near o85 , o110 , o130 , and o160 . 

In contrast to the comparison in Fig. A.25, in Fig. A.26, the FDTD results with coarser 

spatial resolution obviously deviate from the corresponding PSTD solutions at several 

scattering angles, particularly if the difference at o85 is larger. Therefore, the differences 

between the two methods are more likely caused by the simulation errors of the FDTD 

method rather than the PSTD method. In the right panel of Fig. A.26, phase function of 

the hexagonal column with size parameter of 50 calculated by the PSTD method is 

shown at o45=iθ , o0=iϕ and o0=sϕ .  

 

 

4.2.2 Hollow hexagonal column 

The hollow hexagonal column is one very important ice crystal habit. In cirrus 

clouds, it has been found that 90% hexagonal columns are hollow type. As shown in the 

left panel of Fig. A.27, cavity depth (d) is used to specify the ice column with hollow 

structure in addition to its side length (a) and length (L). Similar to the solid hexagonal 

column, the aspect ratio of the hollow column can be obtained by Eq. (4.1). In this study, 

cavity depth (d) is selected as:   
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The orientation of the hollow hexagonal column in a laboratory coordinate is shown in 

the right panel of Fig. A.27, in which the principal axis of the column is selected as the z 

axis and the x axis passes through one edge of this column. Incident angles iθ  and iϕ  

are defined in this coordinate also. 

Figure A.28 is essentially the same as Fig. A.25 except for the geometry of the 

hollow hexagonal ice column. In the left panel, solutions of the PSTD and FDTD 

methods are compared at size parameter 20; in the right panel, the PSTD method 

solutions are shown at size parameter of 50. It is evident that at a size parameter of 20, 

the PSTD solutions with spatial resolution 14 are essentially the same as the FDTD 

results with spatial resolution 32 at all scattering angles except for the differences at the 

scattering angles where the maxima or minima of phase functions occurs. Therefore, the 

PSTD method is approximately 8 to 10 times efficient than the FDTD method.  

 

4.2.3 Bullet rosette 

As discussed by Heymsfield and Miloshevich in 2002 [87], in ice clouds, the bullet 

is one of the most important structures, and nearly all of the ice crystals with maximum 

dimensions larger than 100 μm are either bullet rosettes or bullet rosette aggregates. In 

this study, a rosette which consists of six bullets is defined. As shown in the right panel 

of Fig. A.29, in a laboratory coordinate, the rosette is specified by arranging the six 

bullets along the forward and backward directions of the x, y, z axes.  A single bullet of 
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this rosette is shown in the left panel of Fig. A.29. Following Yang’s definition [23], a 

bullet is specified in the terms of its side length (a), length (L) and the pyramidal tip high 

(h). Aspect ratio of the bullet (2a/L) can be obtained from the following relation: 

 

,3104.2 63.0LD =  )4.4(  

 

where D (D=2a) is the width of the bullet and the unit of d and L is micron. According to 

Greenler [88], keeping the inclination angle referred to the principal axis of the bullet 

28°, the pyramidal tip high (h) is determined as: 

 

,4605.0 ah =  )5.4(  

 

where the unit of h is micron. Size parameter of this geometry is defined as kL.   

Phase functions of an ice bullet rosette with size parameter 20 are calculated by the 

PSTD and FDTD methods.  The solutions are compared in the left panel of Fig. A.30 at 

o45=iθ , o0=iϕ and o0=sϕ . It is evident that the solutions of the two methods are 

essentially the same except for some slight differences at the scattering angles of 30°, 

90°, and 150°. Therefore, the PSTD method (in which spatial resolution is 14) is much 

more efficient than the FDTD method (with a spatial resolution of 32) for similar 

accuracy.  The bullet rosette phase functions from the PSTD method are also shown in 

the right panel of this figure at size parameter of 50 and spatial resolution of 12.  
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4.2.4 Aggregate 

Aggregate is normally observed in the terrestrial atmosphere. In this study, we 

construct the geometry by following the discussion of Yang and Liou [48]. The 

numerical definition of this geometry in laboratory coordinate is shown in Fig. A.31, in 

which eight hexagonal columns with the different spatial coordinates, size parameters, 

and aspect ratios are tightly attached without overlap. Size parameter is defined as the 

maximum dimension (D) multiplied by π/λ. 

Solutions of aggregate ice crystals are shown in Fig. A.32, which is essentially the 

same as Fig. A.30 except for the geometry of aggregate. In the left panel, the PSTD 

solutions with spatial resolution 14 are compared with the corresponding FDTD results 

with spatial resolution 32 at size parameter of 20. The two methods agree very well 

except for slight differences at the scattering angles of 30° and 60°.. Phase functions of 

aggregate with size parameter of 50 are efficiently calculated by the PSTD method and 

are shown in the right panel.  

 

4.2.5 Droxtal 

Small ice crystals are frequently observed in the uppermost layer of cirrus clouds 

and polar stratospheric clouds where the temperature is extremely low. These small ice 

particles were described as “quasi–spherical,” and their optical properties were 

calculated by the Lorenz-Mie theory. However, the single-scattering properties of a 

particle are highly sensitive to its geometry. A more realistic numerical geometry, droxtal, 

is used to describe the small ice crystals. Yang [25] first applied the FDTD method to 
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droxtal in 2003 and discussed the deviation between droxtal and sphere solutions. The 

scattering properties of this geometry were calculated by the GOM method [48].  

This study, following the definition of droxtal given by Yang [25], specifies this 

convex geometry in terms of its peripheral sphere.  As shown in Fig. A.33, the droxtal 

structure consists of 12 isosceles trapezoid faces: six rectangular faces at the center of 

the crystal and two hexagonal faces at the top and bottom of the crystal.  In this figure, 

the geometry is defined in a coordinate frame in which both the mass center of this ice 

crystal and the center of its peripheral sphere are located at the origin of this frame. The 

z axis crosses the center of the top of this crystal, and the y axis passes through the 

center of a rectangular face. As shown in the figure, all vertices of convex geometry 

located on the peripheral sphere are specified in terms of R , 1α  and 2α , where R is the 

radius of the peripheral sphere.  From Fig. A.33, we can determine the 1h  and 2h from 

the follow relations: 

 

),cos( 11 αRh = ),cos( 22 αRh =   )6.4(  

where in this study the two angles, 1α and 2α  are selected as °35.32 and °81.71 , 

respectively. For droxtal, we define size parameter as kR, where k is the wave number.  

Figure A.34 shows the phase functions of ice droxtals at incident wavelength 3.7 

μm. In the left panel, the solutions of the PSTD and FDTD methods are compared at size 

parameter of 20 and o45=iθ , o0=iϕ and o0=sϕ . In this comparison, the PSTD 

solutions follow the corresponding FDTD results at most scattering directions except for 
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differences at some scattering angles where the phase function maxima or minima occur. 

Phase function of an ice droxtal with size parameter of 50 is also calculated by the PSTD 

method. The solutions are shown in the right panel of Fig. A.34.  

 

4.3 Conclusion 

In this chapter, the PSTD method was applied to the scattering of light by ice 

crystals with various geometries. Phase function of a sphere with refractive index of 

1.05+0j and size parameter of 20 was calculated from the PSTD and FDTD methods, 

respectively. The solutions from the two methods were compared with the corresponding 

Mie results. In this comparison, the FDTD solutions with spatial resolution of 26 

substantially deviated from the Mie method at scattering angles160° through 180°. The 

PSTD method with a very coarse spatial resolution of 8 agreed very well with the Mie 

theory at all scattering angles. Six ice crystal shapes (hexagonal plate, hexagonal column, 

hollow hexagonal column, bullet rosette, aggregate and droxtal) were defined by the 

PSTD method. The solutions of the PSTD and FDTD methods were compared in terms 

of phase functions of these six ice habits with size parameter of 20 and incident 

wavelength of 3.7. It is evident that the PSTD method with a spatial resolution of about 

15 provides similar accuracy to the FDTD method with a resolution of about 35. The 

PSTD method is approximately 8 times more efficient than the FDTD method. Therefore, 

the phase functions of ice crystals with size parameter 50 can be calculated by this 

method.  
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CHAPTER V∗ 

HORIZONTALLY ORIENTED HEXAGONAL AND CIRCULAR ICE 

CRYSTALS: APPLICATION AND COMPARISON OF THE LIGHT 

SCATTERING METHODS, PSTD, FDTD AND T-MATRIX 

 

5.1 Introduction 

Understanding of the radiative properties of cirrus clouds that cover more than 

20% of the globe is essential to better understanding of the terrestrial climate system and 

its evolution [89–92]. The pristine ice crystals within cirrus clouds have hexagonal 

structures, which are associated with various optical phenomena in the atmosphere [93]. 

In addition to the nonspherical effect of ice crystals, the orientations of these particles is 

also important to their optical properties. In the atmosphere, large ice crystals tend to 

have horizontal orientations in terms of the spatial orientations of their longest axes, as 

demonstrated by Platt using LIDAR measurements for ice plates [94]. Stephens [95] 

demonstrated the importance of the shapes and orientations of nonspherical particles in 

radiation transfer calculations. While the errors associated with the neglect of 

nonsphericity of ice crystals in dealing with cirrus radiative properties can be substantial, 

the influence of the specific orientations of the long cylinders on cloud albedo, 

                                                        
∗ Part of this chapter is reprinted with permission from “Scattering phase functions of 
horizontally oriented hexagonal ice crystals” by Guang Chen, Ping Yang, G.W. Kattawar 
and M.I. Mishchenko, 2006, J. Quant. Spectro. Rad. Transfer.,100,91-102,Copyright 
[1999] by Elsevier Science Ltd. 
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absorption, and emission can also be significant in comparison with the case for 

randomly oriented ice crystals. Therefore, the scattering properties of oriented crystals 

should be studied as functions of both the scattering zenith and azimuth angles. 

Rockwitz [96] has discussed the scattering properties of horizontally oriented ice 

columns using the ray-tracing method, which is used in cases with very large size 

parameters. The single-scattering properties of oriented particles with rotational 

symmetric geometries have also been discussed by Mishchenko et al. [57] using the 

rigorous T-matrix method.  

This study first compares the solutions based on the FDTD and T-matrix 

methods for the phase matrix of oriented circular cylinders. The phase matrix elements 

P11, P12, P33, and P34 from the two methods are compared at wavelengths of 0.55 μm and 

12 μm. The comparison validates the applicability of the FDTD method for oriented 

particles. Furthermore, we apply the FDTD method to the scattering of light by 

horizontally oriented hexagonal particles at size parameter 10 in which several schemes 

are employed to average the particle orientations. The PSTD method, whose 

applicability for oriented particles has been validated in Chapters III and IV, is then used 

to investigate the scattering of light by horizontally oriented hexagonal ice plates with 

various aspect ratios and size parameters at wavelengths 0.532 μm and 1.064 μm. Note 

that horizontally oriented particles, such as columns, can have arbitrary orientations with 

one-dimensional freedom in terms of the arbitrary orientations of their principal axes in a 

horizontal plane. Horizontally oriented particles can have, arbitrary orientations with 2-

D freedom for the case where the particle principal axes are arbitrarily oriented in a 
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horizontal plane where the particles may also have random rotational angles around their 

axes. Therefore, the resultant anisotropic phase functions depend on scattering zenith 

angle and also on the azimuthal angle of the scattering plane of interest. Lee et al. [97] 

investigated the feasibility of using circular cylinders as surrogates of randomly oriented 

hexagonal ice crystals in the computation of the scattering properties of the latter. In this 

study, we investigate the feasibility and errors associated with using circular cylinders as 

surrogates for hexagonal columns or plates in computing the optical properties of 

horizontally oriented ice crystals. The T-matrix theory [57] is used to calculate the 

scattering properties of circular cylinders.  

 

5.2 Definitions 

Two geometries, circular cylinders and hexagonal prisms, are considered in this 

study. Similar to characterization in  the section 4.2.2, a circular cylinder is specified in 

terms of the radius of its cross section (r) and length (L). A hexagonal prism is defined in 

terms of its side length (a) and length (L). The aspect ratios for these particles are 

defined as r/L for circular cylinders and a/L for hexagonal prisms. The size parameters of 

the particles are defined as k (the wave number = 2π/λ) multiplied by the largest 

dimension of the particles, where λ is the incident wavelength. When L is larger than 2r 

or 2a, size parameters are defined as kL; otherwise, size parameters are defined as ka or 

kr. 

In this study, we use six angles, pϕ , pθ , pψ , iθ , sθ , and sϕ  to specify the 

incidence scattering configuration for oriented particles. Consider the scattering of 
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sunlight by ice crystals in the atmosphere. As shown in Fig.A.35, the incident angle with 

respect to the zenith direction is denoted by θi .  For scattering particles with horizontal 

orientations, their single-scattering properties depend on both the scattering angle (θs ) 

and the azimuth angle (ϕs) of a scattering plane to which the scattering properties are 

refereed. The principal scattering plane, a plane with  ϕs = 0, contains the zenith and 

incident directions. An interesting point to note is that some oriented particles (e.g., 

circular plates with vertical orientations of their axes) are mirror-imaging symmetrical 

about the principal plane. This symmetry leads to some unique features of the scattering 

properties of the particles, as will be demonstrated in Section 3.  

In the present numerical computation, we defined a laboratory coordinate system, 

OXYZ, and a particle coordinate system, OXpYpZp. The particle system is fixed to the 

corresponding scattering particle and rotates with the particle. The relative orientation of 

the particle coordinate system with respect to the laboratory system is specified by three 

Euler angles, ϕ p , θp and ψp , where ϕ p ∈ 0,2π[ ] is the counterclockwise rotation about 

the z axis, θ p ∈ 0,π[ ] is the rotation about the new rotated x-axis, and ψ p ∈ 0,2π[ ] is 

the rotation about the new z axis again, as shown in the upper panel of Fig. A.36. Note 

that to define the particle system, the rotations specified by the three Euler angles are 

those by sequentially given by ϕ p , θp and ψp .  The lower  panels  of Fig. A.36 show the 

geometries of a hexagon and a circular cylinder  in the particle system.  

As described by Platt [94], ice plates (L < 2a) or columns (L > 2a) in ice 

clouds prefer to have their longest dimension oriented horizontally. In this case, the 
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corresponding phase matrix elements are functions of scattering zenith angle, sθ  and 

azimuthal angle, sϕ . In this study, three schemes are applied to the average of the particle 

orientations that can be arbitrary but confined to be horizontal for computing the 

scattering properties of hexagonal particles. As shown in the left panel of Fig. A.37, 

hexagonal plates can have random rotational angles about their symmetry axis (z axis), 

whereas their principal axes are vertically oriented. In the present computation of the 

scattering properties of hexagonal plates, 120 orientations with the rotation angles from  

0°to 360°with a resolution of °3  are used. As shown in the right panel of Fig. A.37, the 

hexagonal columns can have 1-D or 2-D arbitrary orientations. For the 1-D orientations, 

the particles can have arbitrary rotation about the z axis. The number of orientations 

assumed for the present computation is 18 with a resolution of  20°for the rotation about 

the z axis from 0° to360°. For the arbitrary orientation, the columns not only rotate 

horizontally about the z axis, but also spin about their symmetry axes. In this case, the 

orientation resolution is 18×24, where 18 indicates the rotations about the z axis and 24 

indicates the rotations about the principal axis (with a resolution of15°). In this study, the 

scattering properties of horizontally oriented particles are also compared with those of 3-

D randomly oriented particles. For the 3-D randomly oriented particles, 24×18×360 

orientations are accounted for, where 24 is the number of the incident azimuth angles, 18 

is the number of the incident zenith angles, and 360 is the number of the scattering 

azimuth angles. We find little improvement on the accuracy of the results, if the angular 

resolution for averaging the particle orientations increases further. The mean phase 
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matrix averaged for particle orientations can be written as follows: 

 

P(θs,ϕs) =
dϕpϕ1

ϕ2∫ sinθpdθpθ1

θ2∫ P(ϕp,θp,ψp,θs,ϕs)Csca(ϕp,θp,ψp,θs,ϕs)dψpψ1

ψ2∫
dϕpϕ1

ϕ2∫ sinθpdθpθ1

θ2∫ Csca(ϕp,θp,ψp,θs,ϕs)dψpψ1

ψ2∫
 ,       )1(  

 

where ),,,,( sspppP ϕθψθϕ and ),,,,( sspppscaC ϕθψθϕ  are the phase matrix and the 

scattering cross section for one specific orientation, respectively.  

In the FDTD and PSTD methods the grid resolution specified in terms of 

n=λ/Δs, where λ is the incident wavelength, is a key parameter that determines the 

accuracy of the numerical solutions and the corresponding computational effort. In this 

study, for the FDTD method, we select rmn 25= , in which rm  is the real part of the 

refractive index of the particle; for the PSTD method, we select 12=n .  
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5.3 Validation of the FDTD method for oriented particles  

The FDTD and T-matrix methods are used to compute the phase matrices for a 

circular cylinder with a unit aspect ratio and a fixed orientation at wavelengths of 12 μm 

and 0.55 μm. The complex refractive index of ice at these two wavelengths are (1.2799, 

0.4133) and (1.311, 0.311×10-8) taken from the data sets of Warren [98]. As shown in the 

left panel at the bottom of the Fig. A.36, in the laboratory coordinate system, the Z axis 

is chosen as the symmetry axis of the ice cylinder. The solutions are compared for a 

scattering azimuth angle,ϕs, of 0°, and two incident angles, °30 and °60 . According to 

the discussion in the preceding discussion, we notice that at a scattering azimuth angle of 

0°, the scattering plane coincides with the principal plane. If a particle has a symmetric 

geometry about the principal plane, the mirror-imaging symmetry about the scattering 

plane is observed, which does not change with the scattering angle. Therefore, in the 

corresponding amplitude matrix, S3 and S4 are expected to be zero due to the 

transformation properties associated with the scattering properties of a scattering 

particles (or a particle) consisting of a two mirror-imaging symmetric components. 

Consequently, in the corresponding phase matrix, elements of P13, P14, P23, P24, P31, P32, 

P41 and P42 are zero, and P22/P11 is unit. Note that the deviation of P22/P11 from unity can 

normally be regarded as an indication of the nonsphericity of a scattering particle [99, 

100]. This indication is not always true for particles with specific orientations. Phase 

element, P22/P11, of a fixed oriented hexagonal column is shown in Fig. A.38 at a 

wavelength of 12 μm and an incident angle of °30 . We observe that P22/P11 is one as 

incident azimuth angle is zero (left panel) and P22/P11 is a function of the scattering 
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zenith angle at an incident azimuth angle of °15 (right panel). The relations given by 

P12=P21, P33= P44 and P43= -P34 are also noticed. In the following P11, P12, P33 and P34 are 

discussed. It should be pointed out the comparison of the FDTD and T-matrix solutions 

for the scattering phase functions of ice crystals has been reported by Baran et al [101]. 

Figure A.39 shows the phase matrix elements P11, P12, P33 and P34 at a 

wavelength of 0.55 μm and an incident angle of 30° . It is evident that the FDTD solution 

agrees well with the counterparts from the T-matrix at all scattering angles. For P11, 

solutions are slightly different for angles near150º. For P12 and P43, the FDTD and T-

matrix results are essentially the same. For P33, excellent agreement of the two solutions 

is also noticed except slight differences near 150º. 

Figure A.40 is the same as Fig. A.39 except for an incident angle of 60º. In 

this case, the FDTD solutions essentially converge  with the T-matrix results in terms of 

the phase function P11. For the other three phase matrix elements, the FDTD solutions 

also agree with the T-matrix counterparts, except for P43/ P11 at 120º and 165º where the 

minima in these two quantities are occurred.  

Figures A.41 and A.42 are the same as Figs. A.39 and A.40, respectively, 

except a wavelength of 12 μm is used for two computations reported in Figs. A.41 and 

A.42. At the 12-μm wavelength, ice is quite absorptive, as the imaginary part of the 

refractive index is 0.4133. Again, the FDTD solutions agree well with the T-matrix 

solutions except at some scattering angles where the maxima or minima of the phase 

matrix elements occur, particularly in the case when the incident angle is 30º (Fig. A 41). 
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5.4 Single-scattering properties of horizontally oriented hexagonal ice crystals and 

circular cylinders 

The phase functions for the horizontally oriented hexagonal ice plates with an 

aspect ratio (a/L) of 2 are computed with the FDTD method on the basis of the 

previously described 1-D scheme for averaging the particle’s horizontal orientations. The 

numerical computations are carried out at the wavelengths of 0.55 μm and 12 μm with 

three incident angles, 0º. 30º, and 60º.  Figure A.43 shows the variations of phase 

functions of both hexagonal and cylindrical ice plates versus the scattering zenith and 

azimuth angles. Overall, the phase functions for the two particle geometries are quite 

similar. An interesting effect associated with the phase functions is the scattering 

maxima observed at °= 120sθ  and sϕ = °90 . These maxima are caused by the external 

reflection associated with the top face of ice plates.  

Figure A.44 shows phase functions of horizontally oriented hexagonal columns 

with an aspect ratio of a/L=1/6 for two incident angles, 30º and 60º.The solutions on the 

basis of the previously described 1-D and 2-D orientation averaging schemes are shown 

in the first and second rows of Fig. A.44, respectively. The third row shows the phase 

functions of horizontally oriented circular ice cylinders. As a circular cylinder is 

rotationally symmetric about it principal axis, only 1-D orientation average is required. 

The reflection peaks caused by the external reflection of the column side faces are not 

significant as compared with the case for horizontally oriented plates. A comparison of 

the results in the first and second rows of Fig. A.44 indicates that at the scattering angles 

between 0º and 60º, the hexagonal columns with the two orientation-averaging schemes 
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have similar optical properties, and the relative differences due to the two different 

orientation-averaging schemes are less than 10%. At the other scattering angles, only 

slight differences are noticed. Therefore, the rotation about the principal axes of the 

columns does not have a significant influence on the mean phase functions.  

Circular cylinders have been suggested as surrogates for hexagonal ice crystals in 

the literature. For example, Lee et al. [97] noticed that circular cylinders have similar 

scattering and absorption properties as hexagonal ice crystals when a random orientation 

condition is imposed at infrared wavelengths. The results shown in Figs. A.43 and A.44 

indicate that circular cylinders can also be used as surrogates for hexagonal ice crystals 

even if horizontal orientations are considered. At the two wavelengths of 12 μm and 0.55 

μm, the relative differences between the equivalent cylinder and the hexagonal plate are 

less than 4% in the forward direction and are less than 10% in the backward direction for 

all tilted incident cases. Therefore, in the cases of size parameter 10, a circular cylinder 

can be used as a surrogate for a horizontally oriented hexagonal plate in the computation 

of its scattering properties.  

The influence of size parameter on the agreement of hexagonal plates and 

cylinders is investigated. On the basis of the previously described 1-D scheme for 

averaging the particle’s horizontal orientations, the PSTD method is used to compute the 

phase functions for the horizontally oriented hexagonal ice plates with various aspect 

ratios (a/L) and size parameters (k2a) at the incident angle of 0º. Considering the 

symmetry of the incident configuration, in this study, the phase functions for the 

horizontally oriented plates depend only on the scattering angles ( sθ ). The numerical 
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computations are carried out at the wavelengths of 0.532 μm and 1.064 μm. According 

to the data sets of Warren [98], the complex refractive index of ice at these two 

wavelengths are (1.3117, 2.6139×10-9) and (1.3004, 1.9330×10-9). The phase functions 

of ice circular cylinders with the same aspect ratios (r/L) and size parameters (k2r) are 

also calculated by the T-matrix method at the two wavelengths. The solutions from the 

PSTD and T-matrix methods are compared at aspect ratios, 0.5, 1, 2, and the largest 

dimension of the particles (2a or 2r), 2, 4, 6, 8 μm.  

Figure A.45 shows the variations of phase functions of both hexagonal and 

cylindrical ice plates versus the aspect ratios and largest dimension of the particles at 

wavelength 0.532 μm. When the largest dimension is smaller than 6 μm—the 

corresponding size parameter is about 35—the phase functions for the two-particle 

geometries are quite similar for all aspect ratios in which the similarity increases with 

the particle size. However, in the cases of 2a=2r=8 μm, the solutions of the hexagonal 

plates with aspect ratios 0.5 and 2 obviously deviate from the corresponding results of 

the cylinders. The reflection peaks caused by the external reflection of the top face of the 

ice plates are also observed at the backward scattering direction.  

Figure A.46 is substantially the same as Fig. A.45 except for incident wavelength 

of 1.064 μm. Similar to the cases of wavelength 0.532 μm, maxima of the phase 

functions due to the external reflection of the top face occurs at the backward direction. 

Overall, the circular cylinder results agree with the solutions of hexagonal plates at most 

of the scattering angles except in the case of aspect ratio 2 and 2a=2r=2 μm in which 

obvious discrepances are observed in the comparison. Therefore, when size parameter is 
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in the region of approximately from 10 to 40, a circular cylinder can be used as a 

surrogate for a horizontally oriented hexagonal plate with various aspect ratios in the 

computation of its scattering properties.  

Figure A.47 shows the comparison of phase functions for 1-D horizontally and 

3-D randomly oriented ice crystals. An incident angle of 0º  is used for the computation 

for the horizontally oriented particles. The randomly oriented results are substantially 

different from the horizontally oriented solutions. Particularly for the strong absorption 

case, the back scattering of horizontally oriented plates caused by the external reflections 

is approximately 50 times of the counterpart of the randomly oriented particle.  

 

5.5 Conclusions 

We compared the FDTD method for the computation of the scattering 

properties of oriented nonspherical particles with solutions from the T-matrix method. 

The PSTD method is used to calculate the phase functions of horizontally oriented 

hexagonal ice plates with various aspect ratios and particle sizes. Three numerical 

schemes are used to average the particle horizontal orientations for hexagonal plates and 

columns. The corresponding randomly oriented solutions are also calculated with the 

FDTD method. The phase functions of horizontally oriented hexagonal plates are 

sensitive to the scattering azimuth angle, and are substantially different from the 

randomly oriented results. In the cases of size parameter 10, the phase functions of the 

equivalent cylinders agree well with the corresponding counterparts of hexagonal ice 

crystals at all incident angles at a wavelength of 12 μm. At a wavelength of 0.55 μm, 



94 

some discrepancies are noted at the scattering angles when the reflection peaks for the 

horizontal oriented plate results occur. The comparisons of phase functions for the 

hexagonal columns with 1-D and 2-D orientation-averaging schemes indicate that the 

results are not sensitive to the rotation of the particles around their principal axes. When 

the size parameter is in the region from about 10 to 40, the solutions of the horizontally 

oriented hexagonal plates with various aspect ratios follow the corresponding results of 

the equivalent cylinders at most of scattering angles. The agreement of the two 

geometries increases with the particle size. Otherwise, when the size parameter is too 

small or too large, the results of the equivalent cylinders may obviously deviate from the 

solutions of the hexagonal plates. Therefore, the equivalent circular cylinders can be 

applied as surrogates for hexagonal columns at moderate size parameter. 
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CHAPTER VI 

CONCLUSION AND SUMMARY 

 

In the atmosphere, nonspherical particles with size parameter in the range of 20 to 

60 cannot be accurately calculated by known single-scattering methods and theories. 

This study applies the pseudo-spectral time-domain (PSTD) method (which was first 

developed for acoustic wave propagation) to study scattering properties of arbitrary 

geometries with moderate size. In contrast to the FDTD method, a high order accurate 

approximation of spatial derivative is employed for more efficient simulation in the 

PSDT method. In this method, Maxwell’s equations can be discretized by five different 

methods in the time domain. Perfectly matched layer (PML) conditions are employed to 

eliminate the wraparound effect and truncate the computation region. Furthermore, we 

evaluate the mean electromagnetic properties in terms of permittivity and permeability to 

decrease Gibb’s phenomenon associated with the discontinuity of the particle surface. 

Applicability of the PSTD method for light scattering is feasible.    

3-D PSTD codes associated with the five discretization methods in the Cartesian 

coordinate provide essentially the same solutions in both nonabsorptive and absorptive 

cases. In comparison with the Mie theory, the PSTD method provides excellent 

agreement in terms of phase functions at any scattering direction. Although some slight 

errors occur at the scattering angles where phase functions have the maxima or minima, 

no accumulated error, which increases with the simulations scale and time, is observed in 

this method. Phase functions from the two methods even agree well at size parameter 80. 
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According to the numerical experiments, the grid spatial resolution of the PSTD method 

can be selected as follows: When size parameter is smaller than 30, the grid spatial 

resolution can be determined as 10 multiplied by the real part of the refractive index 

( rm ); otherwise, if rm  is smaller than 1.5, the resolutions is selected as 12; and if rm is 

larger than 1.5 and smaller than 2.0, the spatial resolution is determined as 9 multiplied 

by rm .   Phase functions of spheroid and circular cylinders with various aspect ratios are 

calculated by the PSTD method. In comparison with the T-matrix method, the PSTD 

method shows better agreement for nonspherical particles.    

The PSTD method is applied to light scattering of nonspherical ice crystals. Six 

geometries (hexagonal plate, hexagonal column, hollow hexagonal column, bullet 

rosette, aggregate and droxtal) are defined in this study. The PSTD and FDTD solutions 

of these ice crystals are compared at size parameter 20 and incident wavelength 3.7 μm. 

The PSTD method is about 8-10 times more efficient than the conventional FDTD 

method for an acceptable accuracy. Phase functions of the ice crystals with size 

parameter 50 are also calculated by the PSTD method. 

Scattering properties of horizontally oriented ice crystals are calculated by the 

PSTD, the FDTD and T-matrix methods. In this study, three numerical methods are 

employed to average the particle orientations. The feasibility of using a circular cylinder 

as a surrogate of the horizontally oriented hexagonal prism is discussed in the phase 

function comparisons of the two geometries. When size parameter is in the region of 

approximately 10 to 40, hexagonal ice crystals and circular cylindrical ice particles have 

similar optical properties; particularly, at a strongly absorbing wavelength, if the two 
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particle geometries have the same length and aspect ratio. When size parameter is 

smaller than 10 or larger than 40, the results of the equivalent circular cylinders 

substantially deviated from the corresponding solutions of the hexagonal ice crystals.   
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APPENDIX 

 

 

Fig. A.1 Conceptual diagram for the near field computation by the PSTD method. 
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(a) 

 

(b) 

Fig. A.2 Field components locations on a grid cell. 
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(a) 

 

(b) 

Fig. A.3 Conceptual diagram for the TF/SF technique 
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Fig. A.4 The transmission coefficients on a dielectric surface. 



115 

 

Fig. A.5 Conceptual diagram of the PML boundary applied to the PSTD method. 
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Fig. A.6 Incident and scattering light geometry. 
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           (c) 

 
Fig. A.7. Comparison of phase functions for a sphere computed based on the five 
discretization schemes at refractive index 1.2+0.01j and size parameter 20.    
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Fig. A.8. Comparison of phase functions for a sphere computed based on two different 
discretization methods at refractive index 1.1+0j and size parameter 50. 
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(a)                                                               (b) 

 

 

(c)                                                                 (d) 

Fig. A.9. Comparison of phase functions for a sphere with various grid spatial 
resolutions at refractive index 1.05+0j and size parameter 20.  
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(a) (b) 

 

 

(c) (d) 

Fig. A.10. Comparison of phase functions for a sphere with various grid spatial 
resolutions at refractive index 1.2+0j and size parameter 20.  
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Fig. A.11. Comparison of PSTD and Mie solutions in terms of phase functions at 
refractive index 1.05+0j and spatial resolution 10. Size parameters are 30 and 50, 
respectively.  
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Fig. A.12. Comparison of PSTD and Mie solutions in terms of phase functions at 
refractive index 1.6+0j and spatial resolution 16. Size parameter is 30 and 50, 
respectively.  
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Fig. A.13. Comparison of PSTD and Mie solutions in terms of phase functions at size 
parameter 80, refractive index 1.05+0j and spatial resolution 8. 
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Fig. A.14 Comparison of the PSTD and Mie solutions in terms of phase functions at size 
parameter 40, refractive index 2.0+0j and spatial resolution 18. 
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Fig. A.15. Orientations of spheroid and circular cylinder in the laboratory coordinate.  
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Fig. A.16 Comparison of PSTD and T-matrix solutions in terms of phase functions for an 
oblate spheroid with aspect ratio 0.5 and size parameter 20. 
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Fig. A.17. Comparison of PSTD and T-matrix solutions in terms of phase functions for 
an oblate spheroid with aspect ratio 2 and size parameter 20. 
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Fig. A.18. Comparison of PSTD and T-matrix solutions in terms of phase functions for 
an oblate spheroid with aspect ratio 2 and size parameter 50. 
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Fig. A.19. Comparison of PSTD and T-matrix solutions in terms of phase functions for 
circular cylinder with aspect ratio 1 and size parameter 20. 
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Fig. A.20. Comparison of PSTD and T-matrix solutions in terms of phase functions for 
circular cylinder with aspect ratio 1 and size parameter 50. 
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Fig. A.21. Comparison of PSTD and T-matrix solutions in terms of phase functions for 
circular cylinder with aspect ratio 4 and size parameter 20. 
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Fig. A.22. Comparison of PSTD and T-matrix solutions in terms of phase functions for 
circular cylinder with aspect ratio 4 and size parameter 50. 
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Fig. A.23. Comparison of PSTD, FDTD and Mie solutions in terms of phase functions 
for a sphere with refractive index 1.05+0j and size parameter 20. 
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Fig. A.24. Geometry for hexagonal ice prism and its orientation in a laboratory 
coordinate. 
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Fig. A.25. Phase functions of fix oriented hexagonal ice plate at incident wavelength of 
3.7 μm where o45=iθ , o0=iϕ and o0=sϕ . Size parameters are 20 and 50. 
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Fig. A.26 Phase functions of oriented hexagonal ice columns at incident wavelength of 
3.7 μm where o45=iθ , o0=iϕ and o0=sϕ . Size parameters are 20 and 50. 
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Fig. A.27. Geometry for a hollow hexagonal ice column and its orientation in a 
laboratory coordinate. 
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Fig. A.28. Phase functions of oriented hollow hexagonal ice column at incident 
wavelength of 3.7 μm where o45=iθ , o0=iϕ and o0=sϕ . Size parameters are 20 and 50. 
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Fig. A.29. Geometry for a bullet and orientation of rosette in a laboratory coordinate. 
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Fig. A.30. Phase functions of oriented ice bullet rosette at incident wavelength of 3.7 μm 
where o45=iθ , o0=iϕ , and o0=sϕ . Size parameters are 20 and 50. 
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Fig. A.31. Geometry and orientation for an aggregate. 
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Fig. A.32. Phase functions of oriented ice aggregate at incident wavelength of 3.7 μm 
where o45=iθ , o0=iϕ and o0=sϕ . Size parameters are 20 and 50. 
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Fig. A.33. Geometry and orientation for a droxtal. 
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Fig. A.34. Phase functions of oriented ice droxtal at incident wavelength of 3.7 μm 
where o45=iθ , o0=iϕ and o0=sϕ . Size parameters are 20 and 50. 
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Fig. A.35. Incident scattering configuration. 
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Fig. A.36. Definition of the Euler angler and orientations of geometries of hexagonal 
column and cylinder in particle coordinates. 
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Fig. A.37 Orientation-averaging schemes for the hexagonal plate and column. 
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Fig. A.38. Phase matrix element, P22 of a fixed oriented ice hexagonal column with a unit 
aspect ratio at a wavelength of 12μm at an incident angle of 30°. 
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Fig. A.39. Phase matrix elements, P11, P12, P33 and P34 of a fixed oriented ice cylinder 
with a unit aspect ratio at a wavelength of 0.55μm at an incident angle of 30°. 
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Fig. A.40. Phase matrix elements, P11, P12, P33, and P34 of a fixed oriented ice cylinder 
with a unit aspect ratio at a wavelength of 0.55μm at an incident angle of 60°. 
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Fig. A.41. Phase matrix elements, P11, P12, P33, and P34 of a fixed oriented ice cylinder 
with a unit aspect ratio at a wavelength of 12μm at an incident angle of 30°. 
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Fig. A.42. The phase matrix elements, P11, P12, P33, and P34 of a fixed oriented ice 
cylinder with a unit aspect ratio at a wavelength of 12μm at an incident angle of 60°. 
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Fig. A.43. Phase functions of the horizontally oriented hexagonal plates and their 
equivalent cylinder plates with an aspect ratio of 0.25, wavelengths of 12μm and 0.55μm. 
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Fig. A.44. Phase functions of the horizontally oriented hexagonal columns and their 
equivalent cylinders with an aspect ratio of 3, wavelengths of 12 μm and 0.55 μm. 



155 

 
 

Fig. A.45. Phase functions of the horizontally oriented hexagonal plates and their 
equivalent cylinders with aspect ratios of 0.5, 1, 2 and the particle largest dimensions of 
2 μm, 4 μm, 6 μm, 8 μm at wavelength of 0.532 μm. 
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Fig. A.46. Phase functions of the horizontally oriented hexagonal plates and their 
equivalent cylinders with aspect ratios of 0.5, 1, 2, and the particle largest dimensions of 
2 μm, 4 μm, 6 μm, and 8 μm at wavelength 1.064 μm. 
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Fig. A.47. Normalized phase functions of the randomly oriented and horizontally 
oriented ( °= 0iθ ) ice hexagonal plates with an aspect ratio of 0.25 at the wavelength of 
12μm and 0.55μm. 
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