# HABITAT USE, GROWTH, AND MORTALITY OF POST-

# SETTLEMENT LANE SNAPPER (Lutjanus synagris) ON NATURAL

## **BANKS IN THE NORTHWESTERN GULF OF MEXICO**

A Thesis

by

### JOSEPH JOHN MIKULAS

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

### MASTER OF SCIENCE

May 2007

Major Subject: Wildlife and Fisheries Sciences

## HABITAT USE, GROWTH, AND MORTALITY OF POST-

## SETTLEMENT LANE SNAPPER (Lutjanus synagris) ON NATURAL

## **BANKS IN THE NORTHWESTERN GULF OF MEXICO**

A Thesis

by

### JOSEPH JOHN MIKULAS

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

### MASTER OF SCIENCE

Approved by:

Chair of Committee, Jay R. Rooker Committee Members, André M. Landry Jr. Timothy M. Dellapenna Head of Department, Delbert M. Gatlin III

May 2007

Major Subject: Wildlife and Fisheries Sciences

#### ABSTRACT

Habitat Use, Growth, and Mortality of Post-Settlement Lane Snapper (*Lutjanus synagris*) on Natural Banks in the Northwestern Gulf of Mexico. (May 2007)
Joseph John Mikulas, B.S., University of Vermont
Chair of Advisory Committee: Dr. Jay R. Rooker

Three low-relief banks (Heald Bank, Sabine Bank, Freeport Rocks) in the northwestern Gulf of Mexico were evaluated as lane snapper (Lutjanus synagris Linnaeus, 1758) nursery habitat. Trawl surveys were conducted in three habitat types (inshore mud, shell ridge, offshore mud), designated by side-scan sonar surveys, to determine patterns of distribution and abundance. Heald Bank and Sabine Bank were trawled in 2003 while Freeport Rocks was trawled in 2000 (Freeport A) and 2004 (Freeport B). Density of lane snapper was higher on Sabine Bank ( $20.8 \pm 2.8$  ind ha<sup>-1</sup>) than on Heald Bank ( $1.1 \pm 0.4$  ind ha<sup>-1</sup>), Freeport A ( $12.7 \pm 2.3$  ind ha<sup>-1</sup>) or Freeport B  $(3.0 \pm 1.0 \text{ ind ha}^{-1})$ . Habitat-specific differences in density were observed, although patterns were not consistent among banks. Highest densities of lane snapper were found on Heald Bank's offshore habitat  $(1.7 \pm 1.0 \text{ ind } ha^{-1})$ , Sabine Bank's ridge habitat (26.5)  $\pm$  6.9 ind ha<sup>-1</sup>), and on the inshore habitat of Freeport A and B (17.6  $\pm$  4.9 ind ha<sup>-1</sup> and  $4.8 \pm 3.6$ , respectively). Otolith microstructure analysis was performed on lane snapper collected in trawl surveys to determine age, hatch-date distribution, growth and mortality of new recruits. Hatch dates ranged from May 1 to August 31, peaking in June for Freeport (A and B) and in July for Heald Bank and Sabine Bank. Growth rates varied

iii

from 0.90 mm d<sup>-1</sup> at Heald Bank to 1.27 mm d<sup>-1</sup> at Sabine Bank, and rates were highest on the ridge habitat of Sabine Bank (1.31 mm d<sup>-1</sup>). Mortality of post-settlement lane snapper was higher on Sabine Bank (15.2% d<sup>-1</sup>; Z = 0.165), than on Freeport A (9.2% d<sup>-1</sup>; Z = 0.097), and was greatest on the ridge habitat of Sabine Bank (24 % d<sup>-1</sup>; Z = 0.275). Recruitment potential (G : Z), evaluated on habitats at Sabine Bank, was highest on the offshore habitat, with a value greater than 1.0, indicating higher potential contribution to the adult population. Results indicate Heald Bank, Sabine Bank, and Freeport Rocks all serve as settlement habitat of lane snapper, which appear to be capable of successful settlement across a variety of habitats and banks.

# DEDICATION

To my beloved family and friends

## ACKNOWLEDGMENTS

Special thanks to my advisor, Dr. Jay Rooker, for providing me with continual financial and academic support throughout my study. Jay, I have learned so much about academia, leadership and people in general just from observing the way you do your job. Thank you. I would also like to thank Drs. André M. Landry Jr. and Timothy M. Dellapenna for always being available to help and for their comments on my thesis.

Thank you to the following people, who provided assistance with field work: Eddie Majzlik, Chris Noll, Brian Fielder, Harlan Hollis, David Sanchez, and Michelle Zapp. A special thanks to Captain Buddy and the crew of the R/V Marie Hall, Janelle Case, Ryan Schloesser, and Claudia Freiss for their enthusiastic attitude and tireless work in the field. Funding provided by the NOAA MARFIN program (grant # NA17FF2872 to Jay R. Rooker).

# **TABLE OF CONTENTS**

| ABSTRACT                                                                                                           | iii                              |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------|
| DEDICATION                                                                                                         | v                                |
| ACKNOWLEDGMENTS                                                                                                    | vi                               |
| TABLE OF CONTENTS                                                                                                  | vii                              |
| LIST OF FIGURES                                                                                                    | viii                             |
| LIST OF TABLES                                                                                                     | xiii                             |
| INTRODUCTION                                                                                                       | 1                                |
| METHODS                                                                                                            | 5                                |
| Field Work<br>Laboratory Work<br>Data Analysis                                                                     | 5<br>11<br>16                    |
| RESULTS                                                                                                            | 19                               |
| Environmental Conditions.<br>Abundance and Distribution.<br>Size.<br>Age and Growth.<br>Mortality.<br>G : Z Index. | 19<br>31<br>36<br>40<br>44<br>50 |
| DISCUSSION                                                                                                         | 55                               |
| SUMMARY AND CONCLUSIONS                                                                                            | 65                               |
| LITERATURE CITED                                                                                                   | 67                               |
| APPENDIX                                                                                                           | 77                               |
| VITA                                                                                                               | 120                              |

# LIST OF FIGURES

| FIGU | RE                                                                                                                                                                                                                                                                                                                                                                                           | Page |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1    | Study area in the northwestern Gulf of Mexico. Banks are represented by A (Freeport Rocks), B (Heald Bank), and C (Sabine Bank)                                                                                                                                                                                                                                                              | 6    |
| 2A   | Side-scan sonar mosaic of Freeport Rocks. Areas of high reflectivity (high density), such as hard packed sand and shell, are light in color, while areas of low reflectivity (low density), such as mud, are represented by dark regions. Side-scan sonar mosaics overlay bathymetry                                                                                                         | 7    |
| 2B   | Side-scan sonar mosaic of Heald Bank. Areas of high reflectivity (high density), such as hard packed sand and shell, are light in color, while areas of low reflectivity (low density), such as mud, are represented by dark regions. Side-scan sonar mosaics overlay bathymetry                                                                                                             | 8    |
| 2C   | Side-scan sonar mosaic of Sabine Bank. Areas of high reflectivity (high density), such as hard packed sand and shell, are light in color, while areas of low reflectivity (low density), such as mud, are represented by dark regions. Side-scan sonar mosaics overlay bathymetry                                                                                                            | 9    |
| 3    | Number of daily increments on otoliths of post-settlement lane snapper<br>observed after chemical marking with alizarin complexone. The solid<br>line represents a 1:1 relationship, while the dashed line represents linear<br>regression of observed number of increments on days after staining                                                                                           | 15   |
| 4    | Environmental conditions ( $\pm 1$ SE) on natural banks in the northwestern Gulf of Mexico: Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Habitats are designated as inshore ( $\mid$ ), ridge ( $\mid$ ), and offshore ( $\Box$ ). Factor levels with the same letters are not significantly different, based upon <i>a posteriori</i> comparisons, a = 0.05 | 22   |
| 5A   | Water temperature ( $\pm 1$ SE) by date on Heald Bank and Sabine Bank (2003). Habitats are designated as inshore ( $\mid$ ), ridge ( $\mid$ ), and offshore ( $\Box$ ).                                                                                                                                                                                                                      | 23   |

| FIGU | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 5B   | Water temperature ( $\pm 1$ SE) by date on Freeport A (2000), and Freeport B (2004). Habitats are designated as inshore ( $\uparrow$ ), ridge ( $\uparrow$ ), and offshore ( $\Box$ ).                                                                                                                                                                                                                                                                                  | 24   |
| 6A   | Salinity levels ( $\pm$ 1 SE) by date on Heald Bank and Sabine Bank (2003),<br>Freeport A (2000), and Freeport B (2004). Habitats are designated as<br>inshore ( $\ddagger$ ), ridge ( $\ddagger$ ), and offshore ( $\Box$ )                                                                                                                                                                                                                                            | 25   |
| 6B   | Salinity levels ( $\pm 1$ SE) by date on Freeport A (2000), and Freeport B (2004). Habitats are designated as inshore ( $\uparrow$ ), ridge ( $\uparrow$ ), and offshore ( $\Box$ ).                                                                                                                                                                                                                                                                                    | 26   |
| 7A   | Dissolved oxygen levels ( $\pm 1$ SE) by date on Heald Bank and Sabine Bank (2003). Habitats are designated as inshore ( $\dagger$ ), ridge ( $\dagger$ ), and offshore ( $\Box$ ).                                                                                                                                                                                                                                                                                     | 28   |
| 7B   | Dissolved oxygen levels ( $\pm 1$ SE) by date on Freeport A (2000), and Freeport B (2004). Habitats are designated as inshore ( $\mid$ ), ridge ( $\mid$ ), and offshore ( $\Box$ ).                                                                                                                                                                                                                                                                                    | 29   |
| 8    | Mean shell weight ( $\pm 1$ SE) collected in trawls on natural banks in the northwestern Gulf of Mexico: Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Shell weight was recorded to confirm bottom types. Habitats are designated as inshore ( $\ddagger$ ), ridge ( $\ddagger$ ), and offshore ( $\square$ ). Factor levels with the same letters are not significantly different, based upon <i>a posteriori</i> comparisons, a = 0.05 | 30   |
| 9    | Mean percent carbonate ( $\pm 1$ SE) of bottom sediment from Heald Bank<br>and Sabine Bank (2003). Carbonate analysis was performed on different<br>habitats to confirm bottom types. Habitats are designated as inshore ( $\ddagger$ ),<br>ridge ( $\ddagger$ ), and offshore ( $\Box$ ). Factor levels with the same letters are not<br>significantly different, based upon <i>a posteriori</i> comparisons, a = 0.05                                                 | 32   |

# FIGURE

| 10  | Mean densities ( $\pm 1$ SE) of post-settlement lane snapper collected in trawls on natural banks in the northwestern Gulf of Mexico: Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Habitats are designated as inshore ( $\ddagger$ ), ridge ( $\ddagger$ ), and offshore ( $\square$ ). Factor levels with the same letters are not significantly different, based upon <i>a posteriori</i> comparisons, a = 0.05 | 33 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 11A | Mean densities ( $\pm 1$ SE) of post-settlement lane snapper collected in trawls on Heald Bank and Sabine Bank in 2003. Habitats are designated as inshore ( $\ddagger$ ), ridge ( $\ddagger$ ), and offshore ( $\square$ )                                                                                                                                                                                                                       | 34 |
| 11B | Mean densities ( $\pm 1$ SE) of post-settlement lane snapper collected in trawls on Freeport A (2000) and Freeport B (2004). Habitats are designated as inshore ( $\ddagger$ ), ridge ( $\ddagger$ ), and offshore ( $\square$ )                                                                                                                                                                                                                  | 35 |
| 12  | Length-frequency distributions of post-settlement lane snapper from<br>Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B<br>(2004). Twelve out of the 813 individuals collected (1.5%) were = 100<br>mm SL and not included                                                                                                                                                                                                    | 37 |
| 13A | Mean lengths ( $\pm 1$ SE) of post-settlement lane snapper from Heald Bank<br>and Sabine Bank (2003). Habitats are designated as inshore ( $\ddagger$ ), ridge<br>( $\ddagger$ ), and offshore ( $\square$ ). Two out of the 375 individuals collected (0.5%)<br>were = 100 mm SL and not included                                                                                                                                                | 38 |
| 13B | Mean lengths ( $\pm 1$ SE) of post-settlement lane snapper from Freeport A (2000) and Freeport B (2004). Ten out of the 438 individuals collected (2.3%) were = 100 mm SL and not included. Habitats are designated as inshore ( $ $ ), ridge ( $ $ ), and offshore ( $\Box$ )                                                                                                                                                                    | 39 |
| 14  | Mean lengths ( $\pm 1$ SE) of post-settlement lane snapper collected in trawls<br>on natural banks in the northwestern Gulf of Mexico: Heald Bank and<br>Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Habitats<br>are designated as inshore ( $\ddagger$ ), ridge ( $\ddagger$ ), and offshore ( $\Box$ )                                                                                                                        | 41 |

Page

Х

| FIGU | RE                                                                                                                                                                                                                                                                                               | Page |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 15   | Age-frequency distributions of post-settlement lane snapper (= 60 mm SL) from Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004)                                                                                                                                        | 42   |
| 16   | Hatch-date distributions of post-settlement lane snapper (= 60 mm SL) from Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Full moon and new moon represented by ? and ?, respectively                                                                              | 43   |
| 17   | Size-at-age relationships by bank for post-settlement lane snapper (= 60 mm SL) from Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Linear regression plots and equations included. Growth rate based on slope of regression equation                              | 45   |
| 18   | Size-at-age relationships by bank for post-settlement lane snapper (= 60 mm SL) from Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Exponential regression plots and equations included. Growth rate based on slope of regression equation                         | 46   |
| 19   | Size-at-age relationships by cohort for post-settlement lane snapper (= $60 \text{ mm SL}$ ) from Sabine Bank (2003). Cohort 1 is from May 1 - June 21 and cohort 2 is from June 23 – July 31. Linear regression plots and equations included. Growth rate based on slope of regression equation | 47   |
| 20   | Size-at-age relationships by habitat for post-settlement lane snapper (= 60 mm SL) from Sabine Bank (2003). Linear regression plots and equations included. Growth rate based on slope of regression equation                                                                                    | 48   |
| 21   | Linear regression of Ln (abundance +1) on age of post-settlement lane<br>snapper from Sabine Bank (2003) and Freeport Rocks A (2000). Age<br>range is from 27-36 d for Sabine and from 26-35 d for Freeport A. Linear<br>regression plots and equations included.                                | 49   |

## FIGURE

| 22 | Linear regression of Ln (abundance +1) on age of post-settlement lane<br>snapper for two cohorts from Sabine Bank (2003). Cohort 1 is from May<br>1 - June 21 and cohort 2 is from June 23 - July 31. Age range is from 27-<br>36 d for both cohorts. Linear regression plots and equations included | 51 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 23 | Linear regression of Ln (abundance +1) on age of post-settlement lane<br>snapper from two habitats on Sabine Bank (2003). Age range is from 27-<br>36 d for all habitats. Linear regression plots and equations included                                                                             | 52 |
| 24 | Weight-specific growth (G) to instantaneous mortality (Z) index by cohort and habitat. Cohort 1 is from May 1 - June 21 and cohort 2 is from June23-July 31. A $G : Z$ ratio greater than 1.0 represents a gain in biomass, while a $G : Z$ ratio less than 1.0 represents a loss in biomass         | 54 |

Page

# LIST OF TABLES

| TABL | BLE                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1    | Summary of <i>P</i> -values from statistical analyses. Temperature, salinity, dissolved oxygen, shell weight, percent carbonate, and density were analyzed with an analysis of variance (ANOVA), while length, age, growth, and mortality were analyzed with an analysis of co-variance (ANCOVA). Due to low sample size ( $n = 59$ ), mortality was not statistically analyzed for the inshore habitat of Sabine Bank | 20 |
| 2    | Weight-specific growth (G), mortality (Z), and growth to mortality ratio (G : Z) of post-settlement lane snapper collected from Sabine Bank in 2003. Weight-specific growth, mortality, and the growth to mortality ratio were not determined for the inshore habitat of Sabine Bank due to low sample size ( $n = 59$ )                                                                                               | 53 |

### INTRODUCTION

Adult lane snapper (*Lutjanus synagris* Linnaeus, 1758) range from North Carolina to southeastern Brazil (Randall, 1983) and occupy a wide variety of habitats. They have been found in turbid, clear, and brackish waters, and occur over artificial and natural reefs as well as soft bottom habitats (Randall, 1983; Bortone and Williams, 1986). Throughout their range, lane snapper are caught with various types of fishing gear (e.g. fish traps, hook and line, and spear guns; Bortone and Williams, 1986). Lane snapper are an important component of the recreational and commercial fisheries in the Caribbean, often accounting for a significant fraction of the overall commercial catch in countries such as Puerto Rico (Matos-Caraballo, 2000) and Cuba (Bustamante et al., 2000). To a lesser extent, lane snapper are caught in the Gulf of Mexico; 25.6 metric tons of lane snapper were commercially harvested from the Gulf in 2004 (NMFS FSED, Silver Spring, MD, pers. comm.). Despite their commercial and recreational importance, detailed life history data on lane snapper are limited, particularly for early life stages.

Reproductive behavior of adult lane snapper has been studied in the coastal waters of Bermuda (Luckhurst et al., 2000), Jamaica (Aiken, 2001), Puerto Rico (Figuerola et al., 1998), and Trinidad (Manickhand-Dass, 1987), but has not been extensively characterized within the Gulf of Mexico. Limited evidence suggests that this species is an aggregate spawner, similar to other congeners such as red snapper

This thesis follows the style of the Bulletin of Marine Sciences.

(*Lutjanus campechanus* Poey, 1860) and gray snapper (*Lutjanus griseus* Linnaeus, 1758) (Allen, 1985; Grimes, 1987). Lane snapper spawning is protracted with peaks during spring or summer; however, periodicity and duration of spawning appear to vary by region (Manickchand-Dass, 1987; Acosta and Appeldoorn, 1992; Luckhurst et al., 2000; Aiken, 2001). Most spawning likely occurs within nearshore environments; larvae from SEAMAP ichthyoplankton surveys were most abundant on the continental shelf inside the 20 m depth contour (SEAMAP, unpublished data). In the Gulf of Mexico, densities of post-settlement individuals (approximately 30-40 days old) are highest in July and August, suggesting that the primary spawning period for these individuals extends from May to July (J. Rooker, pers. comm.).

Information on post-settlement lane snapper is limited, consisting of basic distribution data from broad-scale surveys (e.g. Bortone and Williams, 1986; Rooker and Dennis, 1991; Lindeman et al., 1998). These studies indicate that juvenile lane snapper use a variety of habitats (e.g. seagrass, mangrove prop roots, shell ridges, soft bottoms), including areas impacted by trawling activity (Gutherz and Pellegrin, 1988). Similar to that of red snapper, survival and recruitment success of lane snapper may be reduced due to incidental bycatch from shrimp fisheries, particularly in the Gulf (Gutherz and Pellegrin, 1988; Workman and Foster, 1994; Gillig et. al, 2001). While several studies have attempted to characterize nursery habitat of red snapper in the Gulf of Mexico (e.g. Gallaway and Cole, 1999; Workman et al., 2002; Rooker et al., 2004), comparable studies have not been conducted for lane snapper, thus limiting our ability to effectively characterize and protect nursery areas utilized by this species.

Data on red snapper provide a nice framework for lane snapper research since these two species employ similar spawning behaviors and often occupy the same habitats during early life. In the eastern Gulf, juvenile red snapper are most commonly observed on complex habitats such as natural banks, or low-profile reefs (e.g. shell hash) (Workman and Foster, 1994; Szedlmayer and Howe, 1997; Workman et al., 2002). In the northwestern Gulf, several low-relief banks (e.g. Heald Bank, Sabine Bank, Freeport Rocks) are prominent features on the inner continental shelf, and serve as postsettlement habitat of red snapper on these banks and adjacent, non-structured (i.e. mud bottom) habitats in close proximity to the bank (Rooker et al., 2004). While habitat complexity (i.e. refuge) typically reduces predation-mediated mortality (Rozas and Odum, 1988; Hixon and Beets, 1993), the relative importance of habitats on these natural banks is still undetermined for post-settlement red snapper as well as lane snapper. Since these natural banks appear to represent the only structured habitat on the inner shelf of the northwestern Gulf, there is a clear need to assess their potential value as nursery habitat.

This study evaluated the importance of natural banks and associated habitats in the northwestern Gulf of Mexico as nursery habitat of lane snapper. According to Beck et al. (2003), valuable nursery habitats "...contribute disproportionately to the size and numbers of adults relative to other...habitats". Following this definition, I attempted to predict the banks and habitats which would contribute most to the adult lane snapper population. To accomplish this goal, estimates of density, growth, and mortality were determined for post-settlement lane snapper collected from different natural banks (Heald Bank, Sabine Bank, Freeport Rocks) and habitats (e.g. shell hash, sand, mud) within each bank. These measurements were used to determine the quality of different banks and habitats frequented by lane snapper in the northwestern Gulf.

### Specific Objectives of this study:

1. Create habitat maps for Heald Bank, Sabine Bank, and Freeport Rocks using side-scan sonar

2. Quantify distribution and abundance of post-settlement lane snapper on banks and associated habitats

3. Determine the age, hatch-date, growth rate and natural mortality rate of postsettlement lane snapper

4. Assess the quality of different habitat types used by lane snapper during the early life interval using estimates of growth rate, mortality, and recruitment potential

### METHODS

#### Field Work

The study area included three natural banks in the Gulf of Mexico: Heald Bank, Sabine Bank, and Freeport Rocks (Fig. 1). Heald Bank is located southwest of the Texas/ Louisiana border, approximately 71 km southwest of Sabine Pass, TX, and is oriented from northeast to southwest. The study area of Heald Bank was approximately 20 km<sup>2</sup> and ranged in depth from 9-14 m. Sabine Bank is located south of the Texas/ Louisiana border, approximately 39 km south of Sabine Pass, TX, and is oriented northeast to southwest. The study area of Sabine Bank was approximately 27 km<sup>2</sup> and ranged in depth from 8-11 m. Freeport Rocks is approximately 22 km south of Freeport, TX, and is oriented northeast to southwest. The area of Freeport Rocks covered in this study was approximately 80 km<sup>2</sup> and ranged in depth from 13-24 m.

Habitat maps were developed using an Edge Tech 272-TD dual frequency digital side-scan sonar, coupled with CODA data interpretation software. Signals are sent and received by dual transducers within the side-scan unit at a frequency of 100 kHz. Images are then created based upon the reflectivity (density) of bottom sediment. Dense substrates are highly reflective and are represented by lighter shades, while soft substrates have low reflectivity and are represented by darker areas (Fig. 2A, 2B, 2C). Recently, side-scan imagery has been successfully employed to identify habitat of snapper (Rooker et al., 2004; Patterson et al., 2005) and other marine teleosts (Franklin et al., 2003;

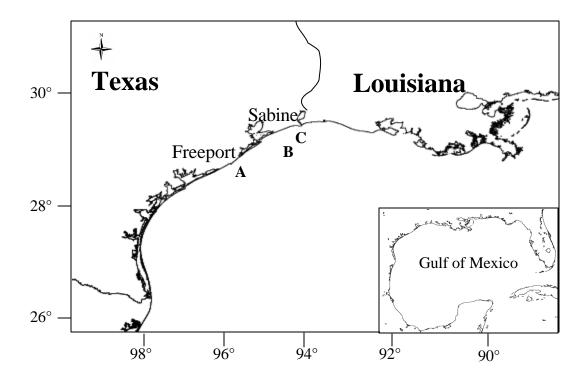



Figure 1. Study area in the northwestern Gulf of Mexico. Banks are represented by A (Freeport Rocks), B (Heald Bank), and C (Sabine Bank).

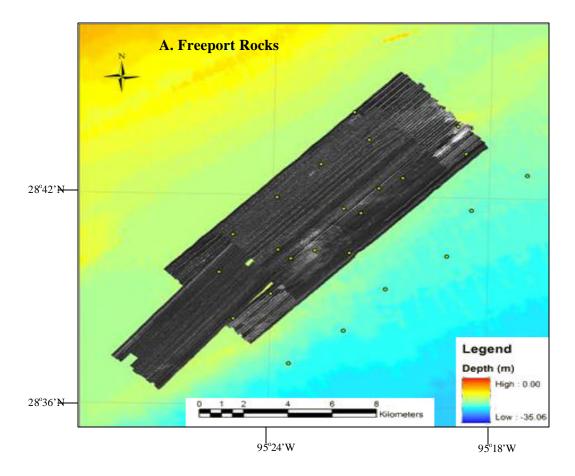



Figure 2A. Side-scan sonar mosaic of Freeport Rocks. Areas of high reflectivity (high density), such as hard packed sand and shell, are light in color, while areas of low reflectivity (low density), such as mud, are represented by dark regions. Side-scan sonar mosaics overlay bathymetry.

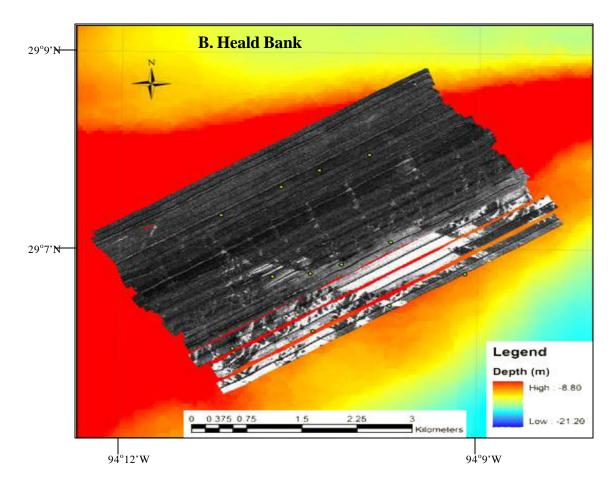



Figure 2B. Side-scan sonar mosaic of Heald Bank. Areas of high reflectivity (high density), such as hard packed sand and shell, are light in color, while areas of low reflectivity (low density), such as mud, are represented by dark regions. Side-scan sonar mosaics overlay bathymetry.

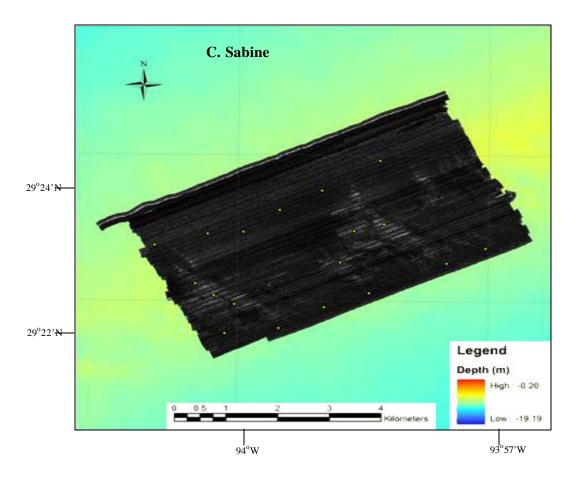



Figure 2C. Side-scan sonar mosaic of Sabine Bank. Areas of high reflectivity (high density), such as hard packed sand and shell, are light in color, while areas of low reflectivity (low density), such as mud, are represented by dark regions. Side-scan sonar mosaics overlay bathymetry

Jagielo et al., 2003). Interpreted side-scan sonar images, along with bathymetric data of the banks, allowed me to choose trawl sites representative of different bottom types. The side-scan unit was towed at 5 knots, swath width was 200 m (100 m on either side), and transects overlapped by 150%.

A ponar grab sampler was used to obtain bottom sediment samples, and carbonate analysis of bottom sediments was performed for ground truthing of bottom types. Sediment samples were washed through a 63  $\mu$ m sieve, oven dried in a tin, and weighed. Ten percent HCl was then added to the samples until reaction with the carbonate stopped (as evidenced by the cessation of gas bubbles). The sample was then washed back through the sieve with deionized (DI) water, oven dried in a tin, and weighed again. The difference between the original sample weight and the acid-treated sample represented the amount of carbonate in the sediment.

Trawl sites were chosen within each habitat type (inshore mud, shell ridge, offshore mud) based upon side-scan imagery and bathymetric data. Initially, the ridge habitat of Freeport Rocks in a 2004 survey was further sub-divided into shell ridge and sand ridge habitats in order to assess small scale variation in habitat type. However, no significant difference was found between shell ridge and sand ridge habitats in terms of shell weight (P = 0.053, power = 0.494), so the data were combined into 1 habitat type (ridge) for this study. Twelve trawl sites were chosen for Heald Bank, with 4 inshore, 4 ridge, and 4 offshore sites. Eighteen trawl sites were chosen for Sabine Bank, with 6 inshore, 6 on the ridge area, and 6 offshore. Both Heald Bank and Sabine Bank were sampled in 2003. Freeport Rocks was sampled in two different years, 2000 and 2004.

Hereafter, Freeport Rocks 2000 and Freeport Rocks 2004 will be referred to as Freeport A and Freeport B, respectively. Eighteen sites were chosen for Freeport A (6 inshore, 6 ridge and 6 offshore), while twenty four sites were chosen for Freeport B (6 inshore, 12 ridge and 6 offshore). Post-settlement snapper were collected in bottom trawls from June through September to cover the anticipated peak recruitment period of red snapper (Futch and Bruger, 1976; Collins et al., 2000; Rooker et al., 2004) and lane snapper (J. Rooker, pers. comm.) in the Gulf of Mexico. Sampling trips to each bank lasted for two days at a time, and were conducted every 2-4 weeks. Trawl locations were recorded with GPS and tow direction was against prevailing surface currents. Trawling speed was 2.5 knots and lasted for 5 minutes on Heald Bank, Sabine Bank and Freeport B to ensure sampling occurred within the targeted habitat; trawls lasted for 10 minutes on Freeport A. A 6-m otter trawl, equipped with 2 cm mesh, a 1.25 cm mesh liner, and a 0.6 cm link tickler chain, and spread by 45 x 90 cm doors, was used to collect snapper. All snapper were immediately placed in a freezer for future processing. Bottom water conditions (i.e. temperature, salinity, dissolved oxygen) were recorded on-site with a Hydrolab Scout. Shell picked up in the trawl was weighed to the nearest 0.1 kg.

#### Laboratory Work

Prior to otolith extraction from each snapper, standard length (SL), fork length (FL), and total length (TL) were measured to the nearest 0.1mm. Statistical analysis was performed on SL and all results are reported in mm SL. Blotted weight was measured to the nearest 0.01 g. Sagittal otoliths were removed, cleaned, and processed based upon protocol developed by Stevenson and Campana (1992), and red snapper age and growth

procedures of Rooker et al. (2004) were followed. One sagitta from each lane snapper was randomly selected for age determination and mounted in Struer's Resin (EPOES/EPOAR). Otoliths were sectioned along a transverse plane, adjacent to the core, using a Buehler Isomet low-speed saw. Sections were then fixed to microscope slides with Crystal Bond, sanded on Buehler Carbimet paper discs (240, 320, 400 and 600 grit) and polished with 0.3 µm alpha alumina micropolish on a microcloth following techniques reported by Rooker et al. (2004). Sectioned otoliths were examined through transmitted light on an Olympus BX41 compound microscope at 40X magnification. Image Pro Plus 4.5 image analysis software was employed to aid in counting growth increments. Distances (µm) from the core to the first visible ring were taken using the image analysis software.

Opaque bands of the sectioned otolith were considered daily growth increments (Panella, 1971) and counted along the sulcus, from the core to the edge in order to determine the age of an individual fish. In order to account for the difficulty in enumerating growth increments around the core, a correction factor was added to the increment count. This correction factor was based upon measurements from the core to the first visible ring in easy to read lane snapper otoliths and is represented by the equation:

(1) Correction Factor =

Avg. Age + ((distance from core to first ring – 1.76) / 1.54)  $r^2 = 0.900, n = 5$  Overall, the correction factor was only applied to 5 of 297 otoliths (1.7%). Ages were based upon the average of two counts for each otolith. In the event of a mean difference of counts greater than 10%, a third count was taken and used for age estimates. To complete the hatch-date distributions and age-frequency plots, ages were also predicted for individuals with unreadable otoliths, and for individuals not included in age determination. Equations predicting age of individuals were developed for each Bank :

| (2) Heald Bank  | predicted age $= 0.900(SL) - 5.188$ | $r^2 = 0.668, n = 11$  |
|-----------------|-------------------------------------|------------------------|
| (3) Sabine Bank | predicted age = 1.268(SL) - 16.901  | $r^2 = 0.837, n = 247$ |
| (4) Freeport A  | predicted age $= 1.091(SL) - 9.214$ | $r^2 = 0.741, n = 15$  |
| (5) Freeport B  | predicted age $= 0.941(SL) - 7.755$ | $r^2 = 0.793, n = 24$  |

Of the 420 otoliths prepared, 297 (70%) were included in analyses. Fish greater than 60 mm SL were considered beyond the scope of the post-settlement period, and therefore were not included in age-based results (i.e. age-frequency, hatch-date distribution, growth). Number and percent lane snapper excluded from each bank were: Heald Bank, n = 1 (7.7%); Sabine Bank, n = 63 (17.4%); Freeport A, n = 83 (22.4%); Freeport B, n = 9 (13.2%). A sub-sample of lane snapper otoliths (n = 46) was independently aged by a second reader to provide quality control in aging technique. Reader agreement was high, based upon linear regression:

(6) Reader A age = 0.924 \* Reader B age + 3.71  $r^2 = 0.975$ so no further age adjustments were made.

Otolith daily incremental formation was validated via alizarin complexone staining of lane snapper following the immersion methods of Thomas et al. (1995).

Wild lane snapper were captured from Freeport Rocks in August of 2005, held in a circular 0.58 m-diameter x 0.56 m-depth tank for 6 d, dipped in 100 mg L<sup>-1</sup> alizarin complexone for 2 hr, and sacrificed 5, 10 and 15 d later. Otoliths were removed, processed, and analyzed for the number of growth increments after the alizarin complexone mark. On average,  $5 (\pm 0.4)$ ,  $9 (\pm 2.1)$ , and  $13 (\pm 2.7)$  increments were counted after the mark in fishes sacrificed 5, 10, and 15 d, respectively (Fig. 3). The following equation describes the relationship between expected number of increments after the mark:

(7) Number of increments = 
$$0.824 * (\text{days after staining}) + 0.759$$

$$r^2 = 0.783, n = 23$$

Linear regression was applied to otolith-based age information to determine growth rates and mortality. Daily growth rates were estimated using the linear growth equation:

(8) Standard Length = slope \* age + y-intercept

Daily instantaneous growth was estimated using the exponential model:

(9) 
$$L_t = L_o e^{gt}$$

Where  $L_t$  represents length at time t (age in days),  $L_o$  represents the estimated length at time of hatching and g is the daily instantaneous growth coefficient. Linear and exponential growth estimation equations were comparable in terms of fitting the data, so linear growth estimates were used to more directly compare results to previous studies. In order to maintain growth rates representative of early life history, samples were restricted to lane snapper = 60mm SL.

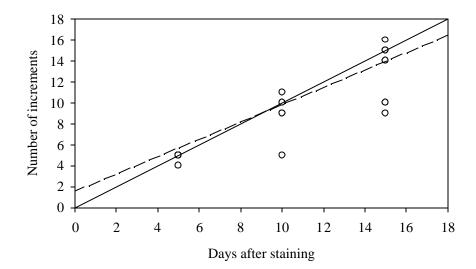



Figure 3. Number of daily increments on otoliths of post-settlement lane snapper observed after chemical marking with alizarin complexone. The solid line represents a 1:1 relationship, while the dashed line represents linear regression of observed number of increments on days after staining.

Weight-specific instantaneous growth coefficients were predicted using the exponential model:

(10) 
$$W_t = W_0 e^{-Gt}$$

where  $W_t$  represents the wet weight (g) at time t (age in days),  $W_o$  represents estimated weight at time of hatching, *G* represents the weight-specific instantaneous growth coefficient (d<sup>-1</sup>). Mortality of lane snapper was examined using the regression of Ln (abundance + 1) versus age (d) (i.e. catch curve). Instantaneous mortality rates were predicted using the exponential model:

(11) 
$$N_t = N_o e^{-Zt}$$

where  $N_t$  represents the abundance at time t (age in days),  $N_o$  represents abundance at time of hatching, *Z* represents the instantaneous mortality coefficient.

Recruitment potential, expressed as the ratio of weight-specific growth (*G*) to mortality (*Z*), was assessed for bank, habitat, and cohort on Sabine Bank and for bank on Freeport A. Any G : Z value greater than 1 represents a group which is gaining in biomass, and therefore has a higher recruitment potential, while any G : Z value less than 1 represents a group which is losing biomass, and therefore has a lower recruitment potential.

#### Data Analysis

Due to regional differences and possible inter-annual variability, statistical analyses were only performed within banks. Also, due to the small number of post-settlement lane snapper collected on Heald Bank (n = 13), statistical analysis was not performed on density, length, age, growth, or mortality data. Due to low sample size on

Freeport A (n = 15 otolith pairs) and Freeport B (n = 68 lane snapper), statistical analysis was not performed on growth data for Freeport Rocks A or B, or on mortality data for Freeport B. Sample size was too small (n = 59) on the inshore habitat of Sabine Bank to produce meaningful mortality data, so analysis was restricted to ridge and offshore habitats. Similarly, mortality could not be determined for Freeport A by habitat or cohort.

All statistical analyses were performed on SPSS 13.0, and significance was accepted at the a = 0.5 level. Percent carbonate and shell weight were analyzed across habitats, with a one way analysis of variance (ANOVA). Two-factor ANOVA was performed for all environmental parameters (temperature, salinity, DO), with date (expressed as the number of days since June 1) as a blocking factor. Two-factor ANOVA was also performed with density as a dependent variable, and date as a blocking factor. Many trawl sites and dates contained values of zero, so data were Ln + 1 transformed prior to analysis.

Analysis of covariance (ANCOVA) was employed to determine the effects of date and habitat on length, age, growth, and mortality, with date as the covariate for length and age and age as the covariate for growth and mortality. Additionally, ANCOVA was used to examine growth and mortality by cohort on Sabine Bank. Slopes of the catch curves were compared using an ANCOVA, with age as the covariate. The assumption of normality was tested with a Kilmogorov-Smirnov test, while the assumption of homogenous variances was examined with Leve ne's test and residual analysis. *Post hoc* differences among factor levels (a = 0.05) were examined with Tukey's honestly significant difference (HSD) test when variances were equal, and with a Dunnett's T-3 test when variances were unequal. When a test failed to reject the null hypothesis, power analysis was performed.

### RESULTS

### Environmental Conditions

Water quality characteristics varied by bank, date, and habitat (Table 1, Fig. 4). Average water temperatures differed by only 0.8 °C among banks, and ranged from 28.5 °C to 29.2 °C. During the peak recruitment period of July to August, water temperatures increased for all banks, and date was identified as a significant factor affecting temperature for all banks (P < 0.001) (Fig. 5A, 5B). Mean water temperature was lowest in July (27.9 ± 0.3 °C), and increased in August (29.5 ± 0.1 °C). Differences in water temperature among habitats were also detected at Heald Bank (P < 0.001), Freeport A (P = 0.024), and Freeport B (P < 0.001). On all banks, mean water temperature was highest for the inshore (29.0 ± 0.2 °C) and ridge habitats (29.0 ± 0.1 °C), relative to the offshore (28.7 ± 0.3 °C) habitat. Tukey's HSD test indicated that water temperatures from both inshore (28.7 °C ± 0.3) and ridge habitats (28.7 °C ± 0.3) of Freeport A were significantly higher than the offshore habitat (28.1 °C ± 0.3). No significant difference in temperature by habitat was found at Sabine Bank (P = 0.194, power = 0.340).

Average salinities on Heald Bank  $(31.2 \pm 0.5)$  and Sabine Bank  $(30.3 \pm 0.6)$  were consistently lower than those of Freeport A  $(34.9 \pm 0.1)$  and Freeport B  $(34.8 \pm 0.2)$ , indicating a stronger freshwater influence on the northernmost banks (Fig. 4). From July to August, salinity increased at Heald Bank (23.1 to 32.3) and Sabine Bank (26.7 to 32.0), stayed the same on Freeport A (34.9), and decreased on Freeport B (35.5 to 34.3) (Fig. 6A, 6B). Date was identified as a significant factor affecting salinity for all three banks (P < 0.05). Habitat was identified as a factor significantly influencing salinity on

|                   | Heald<br>2003 | Sabine<br>2003 | Freeport<br>2000 | Freeport<br>2004 |
|-------------------|---------------|----------------|------------------|------------------|
| Temperature       |               |                |                  |                  |
| Date              | < 0.001       | < 0.001        | < 0.001          | < 0.001          |
| Habitat           | < 0.001       | NS             | 0.024            | < 0.001          |
| Salinity          |               |                |                  |                  |
| Date              | < 0.001       | < 0.001        | NS               | < 0.001          |
| Habitat           | 0.015         | 0.006          | NS               | 0.013            |
| Dissolved Oxygen  |               |                |                  |                  |
| Date              | < 0.001       | < 0.001        | NS               | < 0.001          |
| Habitat           | 0.031         | 0.009          | 0.004            | NS               |
| Shell Weight      |               |                |                  |                  |
| Habitat           | < 0.001       | < 0.001        | < 0.001          | < 0.001          |
| Percent Carbonate |               |                |                  |                  |
| Habitat           | NS            | 0.024          |                  |                  |
| Density           |               |                |                  |                  |
| Date              |               | 0.018          | 0.002            | NS               |
| Habitat           |               | 0.020          | 0.031            | NS               |
| Length            |               |                |                  |                  |
| Habitat‡          |               | < 0.001        | NS               | NS               |
| Date†             |               |                | < 0.001          | 0.034            |
| Habitat†          |               |                | < 0.001          | 0.018            |
| Age               |               |                |                  |                  |
| Habitat‡          |               | 0.021          | 0.008            | NS               |
| Date†             |               |                |                  | 0.069            |
| Habitat†          |               |                |                  | 0.006            |

Table 1. Summary of *P*-values from statistical analyses. Temperature, salinity, dissolved oxygen, shell weight, percent carbonate, and density were analyzed with an analysis of variance (ANOVA), while length, age, growth, and mortality were analyzed with an analysis of co-variance (ANCOVA). Due to low sample size (n = 59), mortality was not statistically analyzed for the inshore habitat of Sabine Bank.

† ANCOVA, y-intercepts test; ‡ ANCOVA, slopes test

|           | Heald<br>2003 | Sabine<br>2003 | Freeport<br>2000 | Freeport<br>2004 |
|-----------|---------------|----------------|------------------|------------------|
| Growth    |               |                |                  |                  |
| Cohort‡   |               | 0.048          |                  |                  |
| Cohort 1† |               | NS             |                  |                  |
| Cohort 2† |               | NS             |                  |                  |
| Habitat‡  |               | NS             |                  |                  |
| Mortality |               |                |                  |                  |
| Cohort‡   |               | NS             |                  |                  |
| Habitat†  |               | 0.021          |                  |                  |
| Date†     |               |                |                  |                  |

† ANCOVA, y-intercepts test; ‡ ANCOVA, slopes test

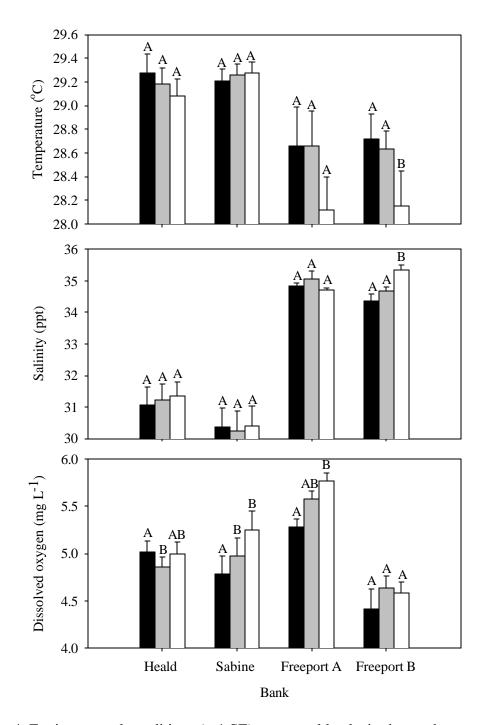



Figure 4. Environmental conditions ( $\pm 1$  SE) on natural banks in the northwestern Gulf of Mexico: Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Habitats are designated as inshore ( $\mid$ ), ridge ( $\mid$ ), and offshore ( $\Box$ ). Factor levels with the same letters are not significantly different, based upon *a posteriori* comparisons, a = 0.05.

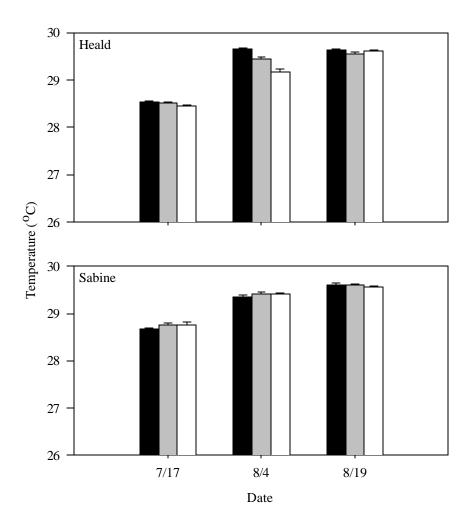



Figure 5A. Water temperature ( $\pm 1$  SE) by date on Heald Bank and Sabine Bank (2003). Habitats are designated as inshore ( $\frac{1}{2}$ ), ridge ( $\frac{1}{2}$ ), and offshore ( $\Box$ ).

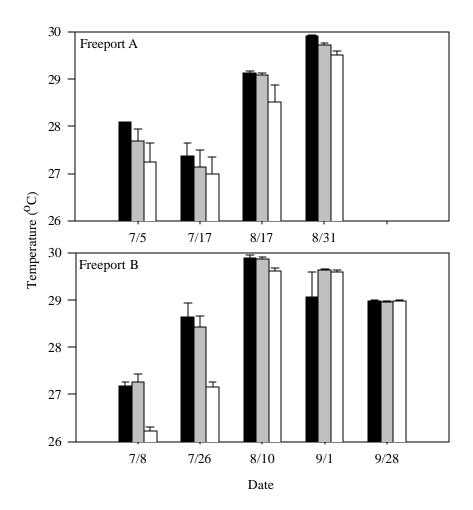



Figure 5B. Water temperature ( $\pm 1$  SE) by date on Freeport A (2000), and Freeport B (2004). Habitats are designated as inshore ( $\mid$ ), ridge ( $\mid$ ), and offshore ( $\Box$ ).

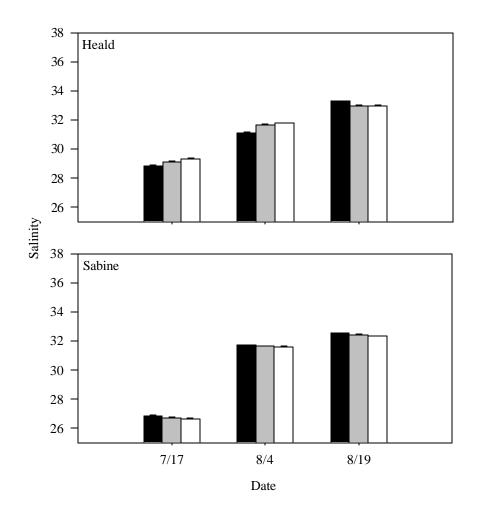



Figure 6A. Salinity levels ( $\pm 1$  SE) by date on Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Habitats are designated as inshore ( $\ddagger$ ), ridge ( $\ddagger$ ), and offshore ( $\square$ ).

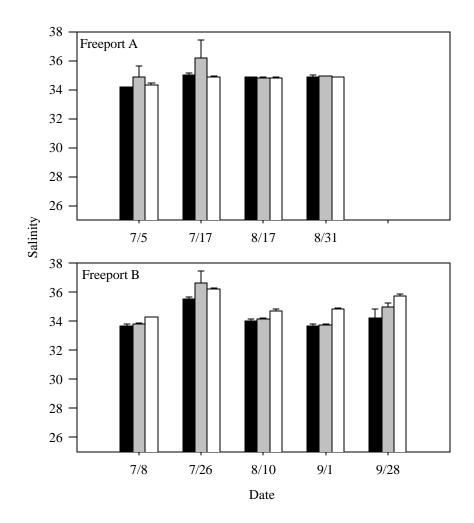



Figure 6B. Salinity levels ( $\pm 1$  SE) by date on Freeport A (2000), and Freeport B (2004). Habitats are designated as inshore ( $\frac{1}{2}$ ), ridge ( $\frac{1}{2}$ ), and offshore ( $\Box$ ).

Heald Bank (P = 0.015), Sabine Bank (P = 0.006), and Freeport B (P = 0.013). In general, salinity at the offshore habitat was 0.5 higher than the inshore or ridge habitats. Salinities did not differ among habitats at Freeport A (P = 0.130, power = 0.413).

Dissolved oxygen (DO) was relatively similar among banks: Heald  $(5.0 \pm 0.1 \text{ mg L}^{-1})$ , Sabine  $(5.0 \pm 0.2 \text{ mg L}^{-1})$ , Freeport A  $(5.5 \pm 0.1 \text{ mg L}^{-1})$ , and Freeport B  $(4.5 \pm 0.2 \text{ mg L}^{-1})$  (Fig. 4). Seasonal variation in DO was detected at Heald Bank, Sabine Bank, and Freeport B (P < 0.001). From July to August, DO increased at Heald Bank (4.6 to 5.1 mg L<sup>-1</sup>), Sabine Bank (4.5 to 5.3 mg L<sup>-1</sup>), and Freeport B (4.5 to 5.3 mg L<sup>-1</sup>) (Fig. 7A, 7B). Dissolved oxygen measurements were not taken during the July research cruise on Freeport A. Significant differences in DO by habitat were seen at all three locations: Heald Bank (P = 0.031), Sabine Bank (P = 0.009), and Freeport A (P = 0.004). On average, DO values were higher in the offshore habitats ( $5.2 \pm 0.2 \text{ mg L}^{-1S}$ ) than ridge ( $5.0 \pm 0.2 \text{ mg L}^{-1}$ ) or inshore ( $4.9 \pm 0.2 \text{ mg L}^{-1}$ ) habitats. There was no significant difference in DO by habitat for Freeport B (P = 0.164, power= 0.376).

Shell material collected and carbonate sedimentary facies (expressed as kg ha<sup>-1</sup> trawled and % CO<sub>3</sub>, respectively) were also assessed on all banks (Table 1). There were marked differences in shell material from trawls among banks and collection years (Fig. 8). Heald Bank ( $25.2 \pm 3.3 \text{ kg ha}^{-1}$ ), for example, yielded more shell material than Sabine Bank ( $10.8 \pm 1.9 \text{ kg ha}^{-1}$ ), while Freeport A ( $30.6 \pm 9.0 \text{ kg ha}^{-1}$ ) yielded over three times that of Freeport B ( $8.4 \pm 1.7 \text{ kg ha}^{-1}$ ). Shell material in trawls varied significantly among habitats at each location, with the majority of the shell collected in trawls over ridge habitat: Heald Bank ( $33.3 \pm 7.8 \text{ kg ha}^{-1}$ ), Sabine Bank ( $18.5 \pm 3.5 \text{ kg}$ 

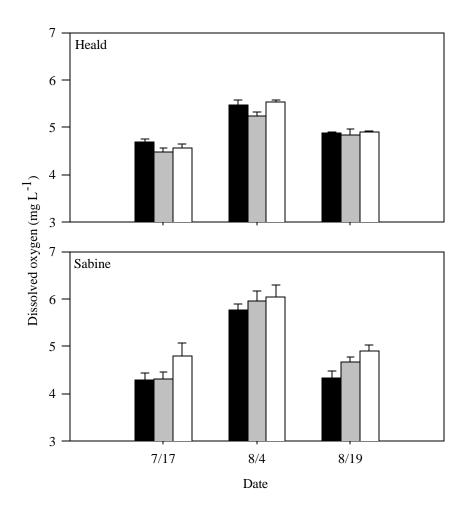



Figure 7A. Dissolved oxygen levels ( $\pm 1$  SE) by date on Heald Bank and Sabine Bank (2003). Habitats are designated as inshore ( $\lfloor$ ), ridge ( $\lfloor$ ), and offshore ( $\Box$ ).

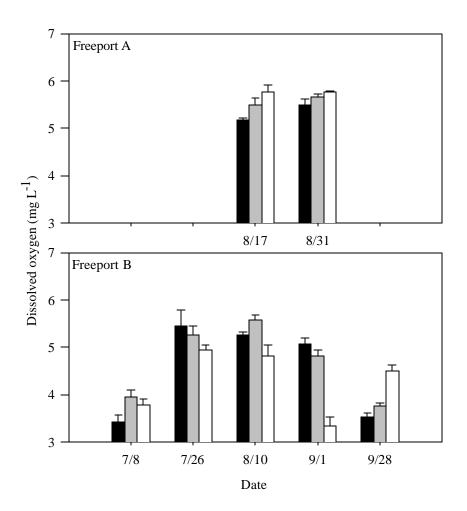



Figure 7B. Dissolved oxygen levels ( $\pm 1$  SE) by date on Freeport A (2000), and Freeport B (2004). Habitats are designated as inshore ( $\ddagger$ ), ridge ( $\ddagger$ ), and offshore ( $\square$ ).

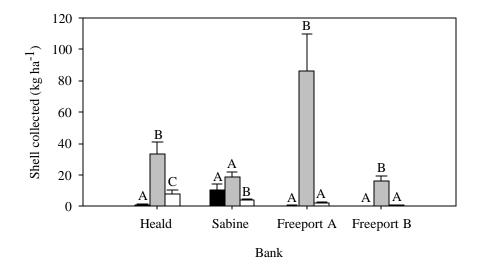



Figure 8. Mean shell weight ( $\pm 1$  SE) collected in trawls on natural banks in the northwestern Gulf of Mexico: Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Shell weight was recorded to confirm bottom types. Habitats are designated as inshore (|), ridge (|), and offshore ( $\Box$ ). Factor levels with the same letters are not significantly different, based upon *a posteriori* comparisons, a = 0.05.

ha<sup>-1</sup>), Freeport B (16.2 ± 3.1 kg ha<sup>-1</sup>), and Freeport A (86.4 ± 23.7 kg ha<sup>-1</sup>) (P < 0.001 for all banks). In some cases, the inshore and offshore habitats had shell material, which were orders of magnitude less than that of the ridge habitat. Similarly, percent carbonate values in sediment cores were also highest on the ridge habitat at the two banks examined (Fig. 9). Heald Bank had an average of 55.8 ± 12.8% CO<sub>3</sub> on its ridge habitats, but the result was not statistically significant (P = 0.181, power = 0.320), while Sabine's ridge (28.2 ± 5.0 % CO<sub>3</sub>) and offshore habitats (30.3 ± 23.3% CO<sub>3</sub>) were significantly higher than the inshore habitat (6.3 ± 2.2% CO<sub>3</sub>) (Dunnett's T-3 post hoc test, P = 0.003).

### Abundance and Distribution

Overall, 813 post-settlement lane snapper were collected, and mean densities at Sabine Bank ( $20.8 \pm 2.8$  ind ha<sup>-1</sup>) and Freeport A ( $12.7 \pm 2.3$  ind ha<sup>-1</sup>) were at least fourfold higher than those on Heald Bank ( $1.1 \pm 0$ . ind ha<sup>-1</sup>) and Freeport B ( $3.0 \pm 1$ . ind ha<sup>-1</sup>) (Fig. 10). Densities varied as a function of both date and habitat at Sabine Bank (date P = 0.018, habitat P = 0.020) and Freeport A (date P = 0.002, habitat P = 0.031) (Table 1). Densities peaked during the August 4 sampling trip on Sabine ( $37.9 \pm 10.5$ ind ha<sup>-1</sup>), and numbers were significantly higher on the ridge ( $26.5 \pm 6.9$  ind ha<sup>-1</sup>) and offshore habitats ( $25.5 \pm 3.4$  ind ha<sup>-1</sup>), relative to inshore habitats ( $10.3 \pm 2.8$  ind ha<sup>-1</sup>) (Fig. 11A). On Freeport A, peak densities were significantly higher during the July 5 ( $17.8 \pm 6.2$  ind ha<sup>-1</sup>) and July 17 ( $18.6 \pm 5.6$  ind ha<sup>-1</sup>) sampling trips, and numbers were significantly higher inshore ( $17.6 \pm 4.9$  ind ha<sup>-1</sup>) than offshore ( $5.2 \pm 1.7$  ind ha<sup>-1</sup>) (Fig. 11B).

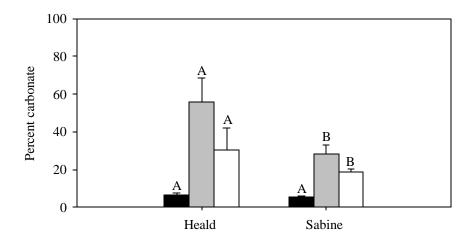



Figure 9. Mean percent carbonate ( $\pm 1$  SE) of bottom sediment from Heald Bank and Sabine Bank (2003). Carbonate analysis was performed on different habitats to confirm bottom types. Habitats are designated as inshore ( $\mid$ ), ridge ( $\mid$ ), and offshore ( $\Box$ ). Factor levels with the same letters are not significantly different, based upon *a posteriori* comparisons, a = 0.05.

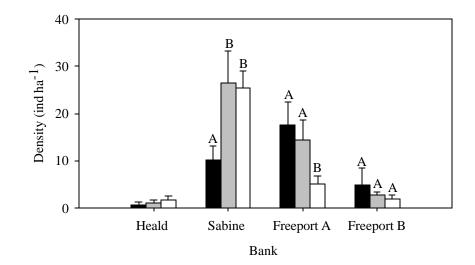



Figure 10. Mean densities ( $\pm 1$  SE) of post-settlement lane snapper collected in trawls on natural banks in the northwestern Gulf of Mexico: Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Habitats are designated as inshore ( $\parallel$ ), ridge ( $\parallel$ ), and offshore ( $\square$ ). Factor levels with the same letters are not significantly different, based upon *a posteriori* comparisons, a = 0.05.

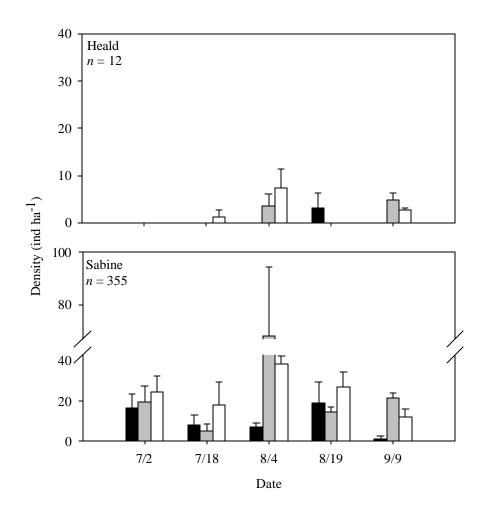



Figure 11A. Mean densities ( $\pm$  1 SE) of post-settlement lane snapper collected in trawls on Heald Bank and Sabine Bank in 2003. Habitats are designated as inshore ( $\ddagger$ ), ridge ( $\ddagger$ ), and offshore ( $\square$ ).

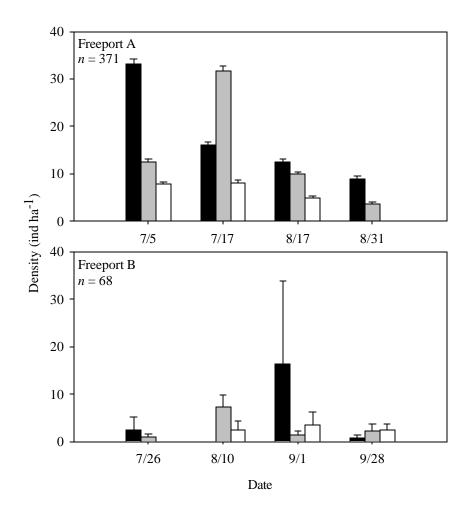



Figure 11B. Mean densities ( $\pm$  1 SE) of post-settlement lane snapper collected in trawls on Freeport A (2000) and Freeport B (2004). Habitats are designated as inshore ( $\ddagger$ ), ridge ( $\ddagger$ ), and offshore ( $\square$ ).

Densities peaked during the August 10 (4.0  $\pm$  1.1 ind ha<sup>-1</sup>) and September 1 (6.2  $\pm$  4.4 ind ha<sup>-1</sup>) sampling trips on Freeport B, but no significant difference in date (*P* = 0.148, power= 0.515) or habitat (habitat *P* = 0.528, power = 0.155) was detected. Size

Mean length of post-settlement lane snapper increased over the sampling season at all banks and size varied by habitat (Table 1, Fig. 12). Mean length of lane snapper at Freeport A and Freeport B (44.2  $\pm$  1.2 mm and 43.1  $\pm$  4.3, respectively) were substantially larger than lane snapper from either Heald Bank ( $28.0 \pm 3.6 \text{ mm}$ ) or Sabine Bank  $(36.2 \pm 1.0 \text{ mm})$ . Still, the minimum length of new settlers present on each bank was relatively similar with individuals < 19 mm collected on all banks: Heald Bank (16.9 mm), Sabine Bank (15.1 mm), Freeport A (15.9 mm), Freeport B (18.1 mm). Mean length increased nearly threefold from July to September (21.6 to 67.0) at Sabine Bank (Fig. 13A). Date was identified as a factor significantly affecting mean length of lane snapper on Freeport A and Freeport B (ANCOVA, intercepts test, P < 0.001 and P = 0.034, respectively), with length doubling from July to August at Freeport A (28.2 to 74.7) and Freeport B (25.8 to 62.9) (Fig. 13B). In addition to date, mean length of postsettlement lane snapper varied as a function of habitat. Individuals found on the ridge habitat were significantly larger than those on the inshore or offshore habitats of Freeport A and Freeport B (ANCOVA, intercepts test, P < 0.001 and ANCOVA,

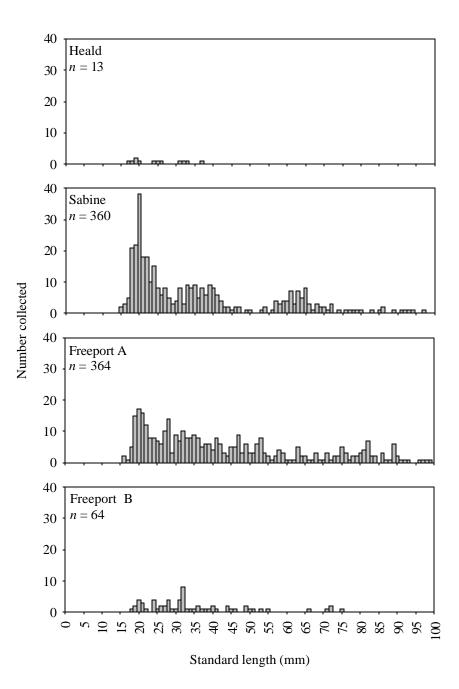



Figure 12. Length-frequency distributions of post-settlement lane snapper from Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Twelve out of the 813 individuals collected (1.5%) were = 100 mm SL and not included.

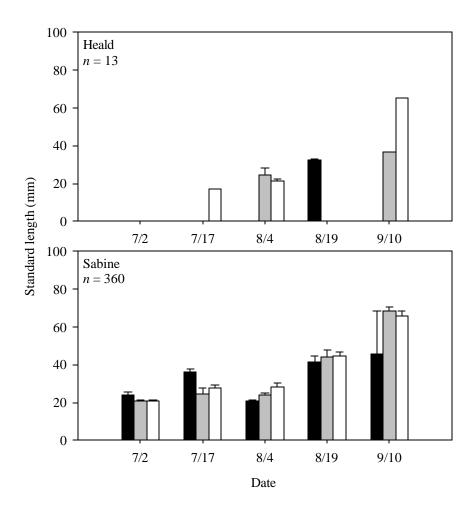



Figure 13A. Mean lengths ( $\pm$  1 SE) of post-settlement lane snapper from Heald Bank and Sabine Bank (2003). Habitats are designated as inshore ( $\ddagger$ ), ridge ( $\ddagger$ ), and offshore ( $\Box$ ). Two out of the 375 individuals collected (0.5%) were = 100 mm SL and not included.

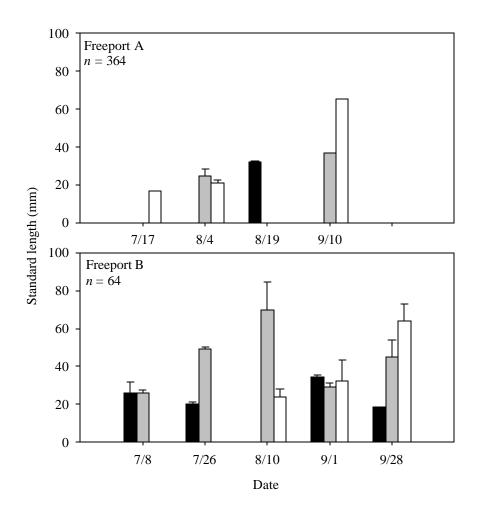



Figure 13B. Mean lengths ( $\pm$  1 SE) of post-settlement lane snapper from Freeport A (2000) and Freeport B (2004). Ten out of the 438 individuals collected (2.3%) were = 100 mm SL and not included. Habitats are designated as inshore ( $\ddagger$ ), ridge ( $\ddagger$ ), and offshore ( $\square$ ).

intercepts test, P = 0.018, respectively). Similarly, the mean length of lane snapper at Sabine Bank was higher on the ridge habitat (37.3 ± 1.8 mm) than either the inshore (33.0 ± 1.8 mm) or offshore (36.4 ± 1.5 mm) habitats (Figure 14).

### Age and Growth

Ages of post-settlement lane snapper collected at all banks ranged from 21 to 66 d, and individuals < 29 d old were collected from all banks (Fig. 15). The dominant age class of lane snapper was 30-39 d (peak at 27-28 d) for Heald Bank, Sabine Bank, and Freeport A. At Freeport B, most individuals were in the 30-39 d or 40-49 d age class (peak at 42 d). As expected, the oldest individuals were collected during trawl surveys at the end of the season at Heald Bank, Sabine Bank, and Freeport A; however, no temporal effect on age was detected at Freeport B (ANCOVA, intercepts test, P = 0.069, power = 0.446). A significant interaction between date and habitat on age was observed for Sabine Bank (ANCOVA, slopes test, P = 0.021) and Freeport A (ANCOVA, slopes test, P = 0.008) (Table 1). The mean age of lane snapper on the ridge habitat at both Freeport A and Freeport B (43.4 ± 0.9 d and 45.2 ± 1.9 d, respectively) was greater relative to inshore (35.5 ± 0.9 d and 40.9 ± 1.8 d, respectively) and offshore (40.9 ± 2.0 d and 35.3 ± 4.0 d, respectively) habitats.

Hatch dates of lane snapper ranged from early May to late August across all banks, and both bimodal and unimodal hatch-date distributions were observed (Fig. 16). The hatch-date distribution at Sabine Bank was bimodal, with peaks in early June and mid July. In contrast, Freeport A had a unimodal hatch-date distribution, with a single

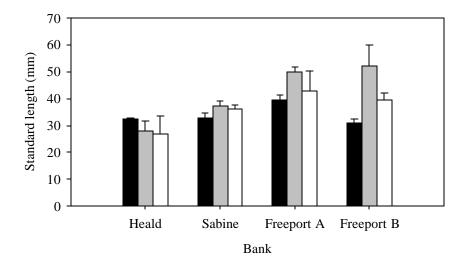



Figure 14. Mean lengths ( $\pm 1$  SE) of post-settlement lane snapper collected in trawls on natural banks in the northwestern Gulf of Mexico: Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Habitats are designated as inshore ( $\ddagger$ ), ridge ( $\ddagger$ ), and offshore ( $\square$ ).

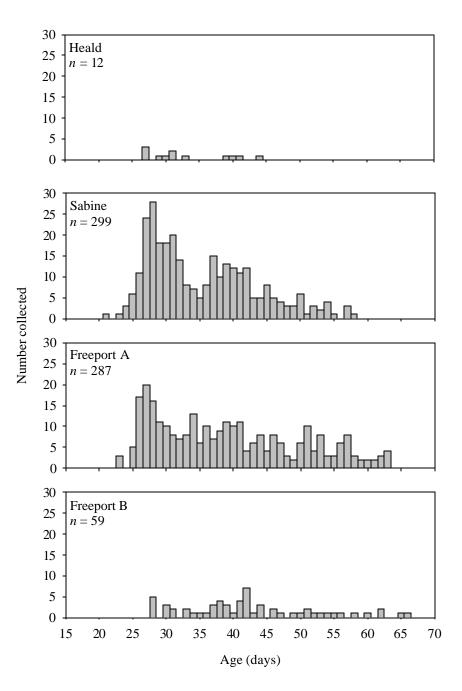



Figure 15. Age-frequency distributions of post-settlement lane snapper (= 60 mm SL) from Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004).

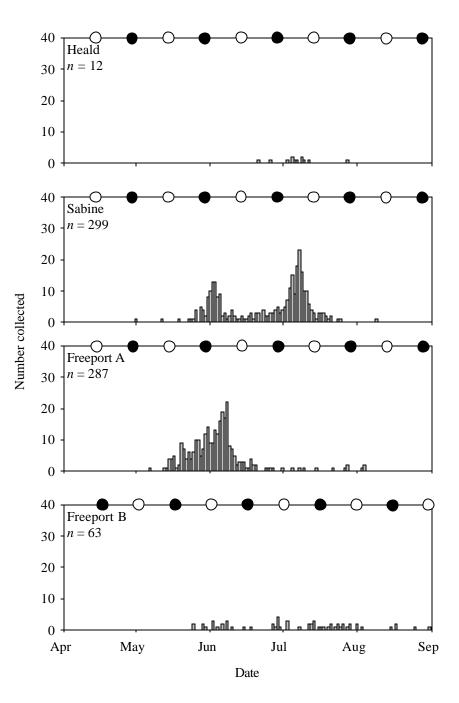



Figure 16. Hatch-date distributions of post-settlement lane snapper (= 60 mm SL) from Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Full moon and new moon represented by ? and ?, respectively.

peak in early June. The majority of lane snapper from Freeport B (78%) were from June and July spawning events. While catch numbers were too low on Heald Bank to show any clear pattern, the majority of hatch dates were from July. The first peak in hatch dates of lane snapper on Sabine Bank occurred in early June and coincided with the new moon, while the second peak in hatch dates occurred in early July and coincided with the first quarter moon. Peak hatch date of lane snapper on Freeport A also coincided with the first quarter moon. Freeport B and Heald Bank had low catch numbers and patterns of hatch date with moon phase were not discerned.

Cohort- and habitat-specific variation in growth of post-settlement lane snapper were observed (Table 1). Growth rates were fairly similar among Heald Bank (0.9 mm d<sup>-1</sup>), Sabine Bank (1. 3 mm d<sup>-1</sup>), Freeport A (1.1 mm d<sup>-1</sup>), and Freeport B (0.9 mm d<sup>-1</sup>) (Figs. 17, 18). Using hatch-date distributions, two distinct cohorts (May 1- June 21 and June 23-July 31) were identified for Sabine Bank. The early season cohort growth rate (1.0 mm d<sup>-1</sup>) at Sabine Bank was significantly lower (ANCOVA, slopes, P = 0.048) than the later season cohort (1.4 mm d<sup>-1</sup>) (Fig. 19). Habitat-specific growth was determined for each cohort and no effect of habitat was detected for the early or late season cohorts on Sabine Bank (ANCOVA, slopes test, P = 0.206, power = 0.333 and ANCOVA, slopes test, P = 0.558, power = 0.146, respectively) (Fig. 20).

# Mortality

Daily instantaneous mortality coefficients ( $Z d^{-1}$ ) were estimated for lane snapper over 10-d intervals at Sabine Bank and Freeport A (Table 1, Fig. 21). Overall, *Z* estimates were higher on Sabine (Z = 0.165) than Freeport B (Z = 0.097) over similar

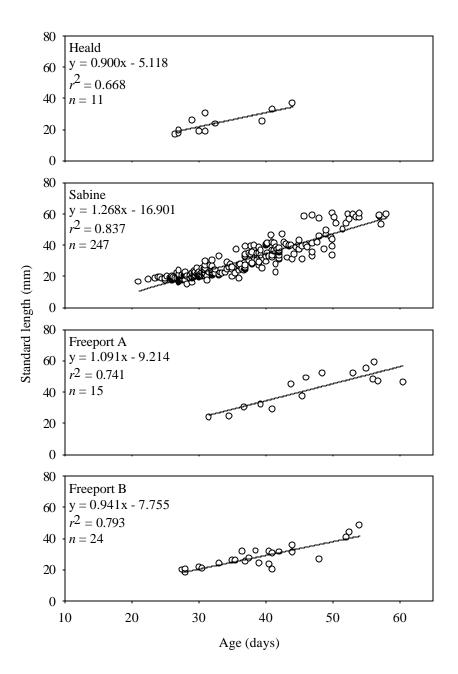



Figure 17. Size-at-age relationships by bank for post-settlement lane snapper (= 60 mm SL) from Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Linear regression plots and equations included. Growth rate based on slope of regression equation.

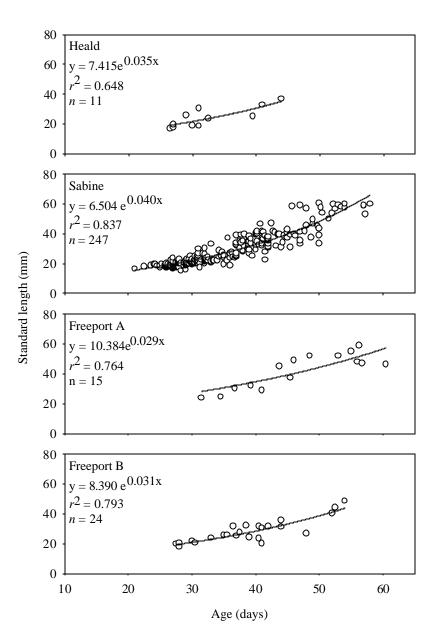



Figure 18. Size-at-age relationships by bank for post-settlement lane snapper (= 60 mm SL) from Heald Bank and Sabine Bank (2003), Freeport A (2000), and Freeport B (2004). Exponential regression plots and equations included. Growth rate based on slope of regression equation.

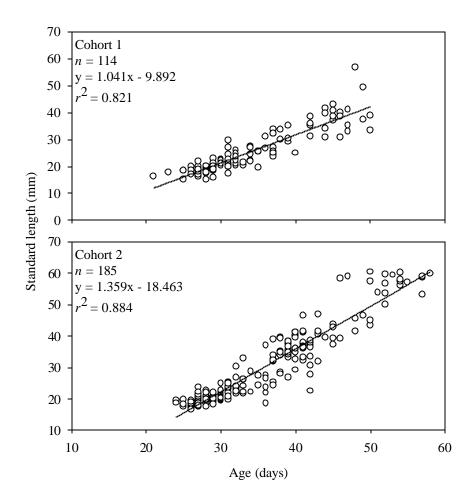



Figure 19. Size-at-age relationships by cohort for post-settlement lane snapper (= 60 mm SL) from Sabine Bank (2003). Cohort 1 is from May 1 - June 21 and cohort 2 is from June 23 – July 31. Linear regression plots and equations included. Growth rate based on slope of regression equation.

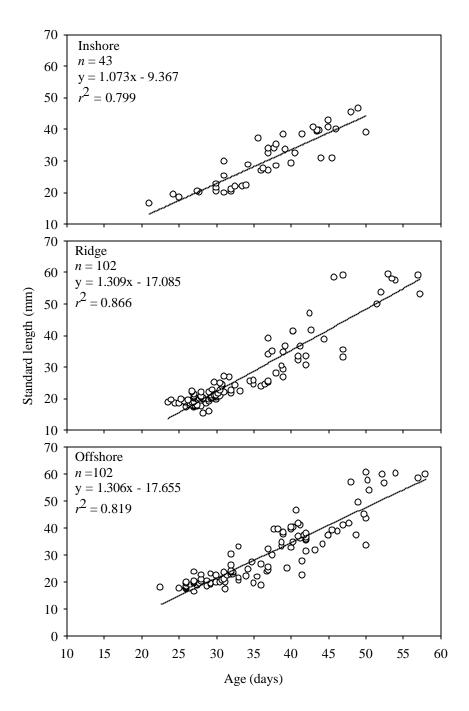



Figure 20. Size-at-age relationships by habitat for post-settlement lane snapper (= 60 mm SL) from Sabine Bank (2003). Linear regression plots and equations included. Growth rate based on slope of regression equation.

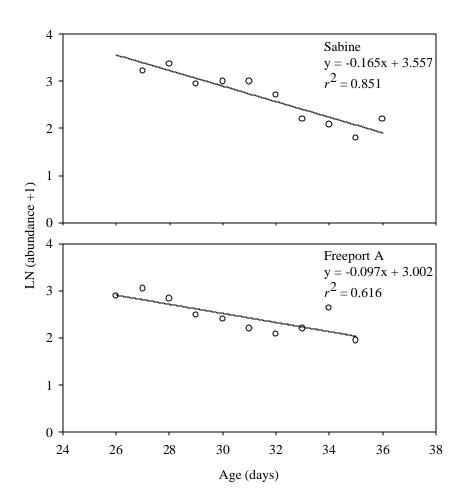



Figure 21. Linear regression of Ln (abundance +1) on age of post-settlement lane snapper from Sabine Bank (2003) and Freeport Rocks A (2000). Age range is from 27-36 d for Sabine and from 26-35 d for Freeport A. Linear regression plots and equations included.

age intervals (27-36 d and 26-35 d, respectively). Differences in mortality among the early season (Z = 0.162) and late season (Z = 0.155) cohorts on Sabine Bank were negligible, (ANCOVA, slopes test, P = 0.894, power = 0.018), thus cohorts were pooled for estimates of habitat-specific mortality at Sabine Bank (Fig. 22). Instantaneous mortality on the ridge habitat at Sabine Bank (Z = 0.275) was significantly higher than estimates from the offshore habitat (Z = 0.111, ANCOVA, slopes test, P = 0.021) (Fig. 23).

#### G: Z Index

Recruitment potential (G : Z) was assessed by bank, on Sabine Bank and Freeport A, and for cohorts, and habitats of Sabine Bank (Table 2, Fig. 24). Both banks had G : Z values close to 1, but slightly higher values were found on Freeport A (0.992) than on Sabine Bank (0.858). On Sabine Bank, the ridge habitat had the lowest recruitment potential (0.491) relative to the offshore (1.329) habitat. The early season (May 1 – June 21) cohort of Sabine Bank had a lower G : Z (0.889) than the late season (June 23 – July 31) cohort (0.902).



Figure 22. Linear regression of Ln (abundance +1) on age of post-settlement lane snapper for two cohorts from Sabine Bank (2003). Cohort 1 is from May 1 - June 21 and cohort 2 is from June 23 - July 31. Age range is from 27-36 d for both cohorts. Linear regression plots and equations included.

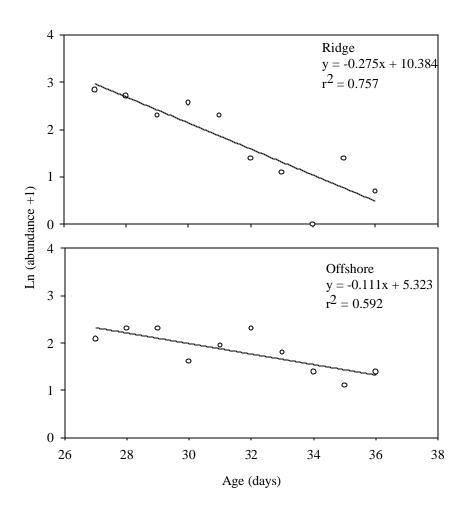



Figure 23. Linear regression of Ln (abundance +1) on age of post-settlement lane snapper from two habitats on Sabine Bank (2003). Age range is from 27-36 d for all habitats. Linear regression plots and equations included.

|           | G                                                     | Z                                                                         | G:Z                                                                                                                                                                                                                                   |
|-----------|-------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All sites | 0.096                                                 | 0.097                                                                     | 0.992                                                                                                                                                                                                                                 |
| All sites | 0.142                                                 | 0.165                                                                     | 0.858                                                                                                                                                                                                                                 |
| Cohort 1  | 0.144                                                 | 0.162                                                                     | 0.889                                                                                                                                                                                                                                 |
| Cohort 2  | 0.140                                                 | 0.155                                                                     | 0.902                                                                                                                                                                                                                                 |
|           |                                                       |                                                                           |                                                                                                                                                                                                                                       |
| Inshore   | NA                                                    | NA                                                                        | NA                                                                                                                                                                                                                                    |
| Ridge     | 0.135                                                 | 0.275                                                                     | 0.491                                                                                                                                                                                                                                 |
| Offshore  | 0.148                                                 | 0.111                                                                     | 1.329                                                                                                                                                                                                                                 |
|           | All sites<br>Cohort 1<br>Cohort 2<br>Inshore<br>Ridge | All sites0.096All sites0.142Cohort 10.144Cohort 20.140InshoreNARidge0.135 | All sites       0.096       0.097         All sites       0.142       0.165         Cohort 1       0.144       0.162         Cohort 2       0.140       0.155         Inshore       NA       NA         Ridge       0.135       0.275 |

Table 2. Weight-specific growth (G), mortality (Z), and growth to mortality ratio (G : Z) of post-settlement lane snapper collected from Sabine Bank in 2003. Weight-specific growth, mortality, and the growth to mortality ratio were not determined for the inshore habitat of Sabine Bank due to low sample size (n = 59).

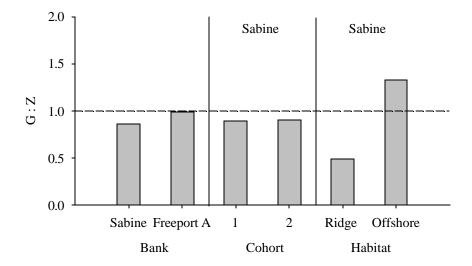



Figure 24. Weight-specific growth (*G*) to instantaneous mortality (*Z*) index by cohort and habitat. Cohort 1 is from May 1 - June 21 and cohort 2 is from June 23-July 31. A G : Z ratio greater than 1.0 represents a gain in biomass, while a G : Z ratio less than 1.0 represents a loss in biomass.

## DISCUSSION

Three low-relief banks on the mid-continental shelf of the northwestern Gulf of Mexico, Heald Bank, Sabine Bank, and Freeport Rocks, were trawled in this study. These relic barrier islands (Rodriguez et al., 1999; Rodriguez et al., 2000) are composed of a sand and relic shell material, with mud inshore and offshore of the ridge or bathymetric high on each bank. Within banks, habitat designations were based primarily on side-scan mosaics. Percent carbonate composition of sediment was highest on the ridge of both Heald Bank and Sabine Bank, and shell weight collected during trawl surveys was high on ridges and negligible from inshore and offshore mud habitats, providing additional evidence that sampling was conducted within designated habitats.

Low-relief sand and relic shell banks (of similar origin) trawled in the present study also exist off of Alabama (Schroeder et al., 1995), Florida (Mallinson et al., 2003), and the Yucatan Peninsula (Rudenko, 1998); however, banks examined here are somewhat unique in their close proximity to outputs of major fluvial systems, which discharge directly into the Gulf of Mexico (e.g. the Mississippi River to Heald Bank and Sabine Bank, and the Brazos River to Freeport Rocks). Most banks in the Gulf of Mexico receive inputs from riverine systems, draining first through estuaries and thereby lowering the amount of organic matter and nutrients being exported to offshore areas (Boyes and Elliott, 2006). As a result of the proximity of the banks of this study to direct fluvial inputs, secondary production is expected to be high, and the increased availability of prey resources likely enhances the values of these banks as nursery areas of lane snapper and other taxa.

Temperature, salinity, and dissolved oxygen varied across banks, but values of all three parameters were within the presumed range of conditions required by lane snapper. Optimal rearing temperatures reported for juvenile lane snapper in the laboratory are from 25.0 - 28.5 °C (Clarke et al., 1992; Clarke et al., 1997), and wild lane snapper have been collected from similar water temperatures (27.2 - 29.9 °C, J. Rooker, unpubl. data). Reported salinity levels from laboratory trials and field collections of larval and early juvenile lane snapper are 31.0 - 38.0, (Drass et al., 2000) and 25.0 - 31.1 (Thayer et al., 1999; Franks and Vanderkooy, 2000), respectively. Mean temperature and salinity on all three banks examined here were 28.5 - 29.2 °C and 30.3 - 34.9, respectively, and these values are similar to aforementioned ranges reported in the literature for both lab-based and field-based studies. Dissolved oxygen ranged from 4.5 - 5.5 mg  $L^{-1}$  across banks, which is close to the lower threshold level of red snapper (Gallaway and Cole, 1999). Although dissolved oxygen has been known to drop below 2 mg  $L^{-1}$  at the mouth of the Mississippi River, extending a hypoxic zone as far west as the TX/LA boarder (Rabalais, 2002), this condition was not observed, and thus, dissolved oxygen levels on all three banks were well above the hypoxia threshold during the recruitment period of lane snapper to these areas.

Regional differences in lane snapper abundance were pronounced, with the majority of lane snapper collected from Sabine Bank. Sabine Bank had densities greater than 20 ind ha<sup>-1</sup>, which was at least twofold higher than any other bank surveyed. Although information on post-settlement lane snapper catch appears to be limited to abundance data (Franks and Vanderkooy, 2000; Hernandez et al., 2001; Brooks et al., unpubl. data),

density of post-settlers was reported in a study conducted in Florida Bay, FL. The mean density reported in the Florida Bay study (6 ind ha<sup>-1</sup>) was approximately one third lower than the density on Sabine Bank (Thayer et al., 1999), one half lower than the density on Freeport A, and comparable to the density observed for Heald Bank and Freeport B. Since post settlement lane snapper and red snapper often occur together during early life, comparisons of density with their congener may shed some light on habitat partitioning between the two species. Post-settlement density of red snapper varies spatially and temporally (Szedlmayer and Conti, 1999; Rooker et al., 2004), with reported densities as high as 90 ind ha<sup>-1</sup> in the northwestern Gulf of Mexico (Rooker et al., 2004). In contrast to patterns observed for lane snapper, red snapper density was highest on Freeport Rocks (Geary et al., in review), with low numbers observed on Heald Bank and Sabine Bank. Regional differences in density between the two species may be due to environmental conditions, such as lower salinity on certain banks (e.g. Sabine Bank) with higher lane snapper catches, suggesting the relative value of each bank is species specific.

Sampling was conducted during the anticipated peak spawning period of lane snapper, and temporal variability in post-settlement density was pronounced. Similar to other marine teleosts, spawning seasons of lane snapper (Figuerola et al., 1998; Luckhurst et al., 2000) and other lutjanids (Allman and Grimes, 2002; Denit and Sponagule, 2004) are often restricted to specific seasons, and thus intra-annual variability in settlement density was expected. Post-settlement lane snapper were observed on banks from June through September, with peak densities occurring from July and August. Previous studies of the same banks indicated red snapper recruit to these habitats during the same period. Densities in newly settled red snapper were observed from July through September in the northwestern Gulf of Mexico (Rooker et al., 2004) and the same pattern of settlement has been reported for the northeastern Gulf of Mexico (Szedlmayer and Conti, 1999, Szedlmayer and Lee, 2004). Inter-annual variation in settlement is relatively common among lutjanids (Allman and Grimes, 2002; Denit and Sponagule, 2004; Rooker et al., 2004), and often attributed to variation in abiotic or biotic conditions such as temperature (Lankford and Targett, 2001), prey availability (Cowan and Shaw, 2002), and predation mortality (Webster, 2002; Johnson, 2006).

Densities of post-settlement lane snapper were variable across habitats, and patterns were not consistent across banks surveyed. Significantly higher densities of post-settlement lane snapper were found on Sabine Bank's ridge and offshore habitats, relative to its inshore habitat. Conversely, lane snapper densities at Freeport A were significantly higher on the inshore habitat than the offshore habitat. This inconsistency of lutjanid density by habitat was also observed by Rooker et al. (2004) where post-settlement red snapper were found across all habitats, with peak densities occurring on different habitats in different years. Although red snapper have been shown to settle to structured habitat (SzedImayer and Conti, 1999), it appears that young red snapper settle on both structured (shell ridge), and unstructured (inshore and offshore mud) habitats, and tend to move to structured habitats with increasing size (SzedImayer and Lee, 2004; Wells and Cowan, in press). Mean sizes of lane snapper within banks were greater on the ridge habitat in 3 of 4 surveys (Sabine Bank, Freeport A and B), suggesting larger

individuals select for, or move to structured habitat. However, lane snapper do not appear to favor shell ridge habitats over mud bottoms during the early post-settlement period, and this finding has been reported for red snapper, with comparable numbers of new settlers on mud, sand, and shell habitats (Rooker et al., 2004; Szedlmayer and Lee, 2004). Ontogenetic shifts to more structured habitats by red snapper have been attributed to increased size (Patterson et al., 2005) and a concominant change in diet (Szedlmayer and Lee, 2004) and possibly occur for lane snapper as well.

Otolith microstructure analysis determined that lane snapper settled to demersal habitat on banks in the northwestern Gulf of Mexico at approximately 21-28 d. The observed planktonic larval duration (PLD) of 3-4 weeks is similar to observed planktonic periods of other lutjanids. Reported PLDs of red snapper from the same banks are quite similar (26 d, Rooker et al., 2004; 22 - 28 d, Geary et al., in review). Similarly, gray snapper from the West Florida shelf have a PLD of 25 days (Allman and Grimes, 2002), and a PLD of 24 - 26 d from eastern Florida and North Carolina (Denit and Sponagule, 2004). Also, the timing of settlement has been reported for three species of eastern Pacific snapper (*Lutjanus argentiventris* Peters, 1869; *Lutjanus guttatus* Steindachner, 1869; and *Lutjanus novemfasciatus* Gill, 1862) and PLDs are similar, ranging from 22 - 24 d (Zapata and Herron, 2002). Since the observed PLD of the smallest lane snapper was highly similar across banks and comparable to values reported for other lutjanids, the predicted PLD appears to represent a viable estimate of when settlement occurs for this species.

Hatch dates closely track spawning events (hatching occurs approximately 19-23 h after egg fertilization in lane snapper, as observed by Borrero et al., (1978)), and thus, hatch-date distributions from the present study were compared to spawning dates reported in the literature from other locations. Hatch dates of lane snapper in this study ranged from early May to late August, and estimated hatch times were highly similar to reported spawning times of lane snapper in Bermuda, which range from May through early September, with peaks in June - August (Luckhurst et al., 2000). In warmer waters of the Caribbean, lane snapper are perennial (Acosta and Appeldoorn, 1992), and prolonged spawners (Manickhand-Dass, 1987; Aiken, 2001). Still, times of peak spawning in many of these regions fall within the range observed for lane snapper in the northwestern Gulf of Mexico. Peak spawning in Puerto Rico and Jamaica occurred in May (Acosta and Appeldoorn, 1992), and July – August (Aiken, 2001), respectively. In contrast, peak spawning in Trinidad occurs earlier (March) than any other studies (Manickhand-Dass, 1987). Although perennial spawning is not expected in the northwestern Gulf of Mexico, protracted spawning is possible.

An association between moon phase and peak hatch dates of lane snapper was apparent on Sabine Bank and Freeport A. On Sabine Bank, peaks in the bimodal hatchdate distribution occurred during the new moon and the first quarter. Hatch dates of lane snapper from Freeport A also peaked during the first quarter. The observed association with the new moon phase at Sabine Bank is supported by several other studies that documented peaks in spawning and/or hatch dates of lutjanids during or proximal to the new moon (Watson et al. 2002; Emata, 2003; Tzeng et al., 2003; Denit and Sponagule, 2004). Moreover, in a related study on Freeport Rocks, Geary et al. (in review) reported that hatch dates of red snapper peaked during the new moon. A peak in spawning or hatch during the new moon phase is likely an anti-predator tactic to reduce the success of visual predators that may feed on eggs (Holt et al., 1985), and spawning adults (Nikolsky, 1963). Clearly, dates proximal to the new moon (i.e., first quarter) are also likely to enhance survivorship, since reduced light levels have been shown to reduce the effectiveness of visual predators (James and Heck, 1994).

Previous assessments of growth for lane snapper have focused on larger (>150 mm FL) individuals (Manooch and Mason, 1984; Manickhand-Dass, 1987; Acosta and Appeldoorn, 1992; Johnson et al., 1995; Luckhurst et al., 2000; Aiken, 2001). Thus, otolith-based estimates of growth determined here for post-settlers serve as the baseline for all future studies. In general, growth rates of post-settlement lane snapper ranged from 0.9 - 1.3 mm d<sup>-1</sup>, and these values are in the upper range of rates reported for post-settlement red snapper in the Gulf of Mexico: 0.78 - 0.8 mm d<sup>-1</sup> (Rooker et al., 2004), 0.9 - 1.1 mm d<sup>-1</sup> (Geary et al., in review), and 0.54 - 0.86 mm d<sup>-1</sup> (Szedlmayer and Conti, 1999). Growth rates of gray snapper in Florida are also comparable to observed values, ranging from 0.6 - 1.0 mm d<sup>-1</sup> (Allman and Grimes, 2002; Denit and Sponagule, 2004). Overall, growth rates in this study were comparable to studies on congeners from the Gulf of Mexico.

Temporal variation in growth is not uncommon during early life for lutjanids (Allman and Grimes, 2002) as well as other fishes in the Gulf of Mexico (e.g. DeVries and Grimes, 1997; Rooker et al., 1999; Peterson et al., 2004; Wells and Rooker, 2004). Cohort-specific variation in growth was observed in the present study, with early season settlers growing at a slower rate  $(1.0 \text{ mm d}^{-1})$  than individuals arriving later in the season  $(1.4 \text{ mm d}^{-1})$ . Cohort-specific differences in growth have been attributed to a variety of factors, including temperature (Taylor and Able, 2006), salinity (Secor et al., 2000), food availability (Cowan and Shaw, 2002; Katersky et al., 2006) and predation mortality (Rilling and Houde, 1999; Taylor and Able, 2006). Slower growth observed for the early season cohort of lane snapper is possibly linked to temperature, since the early cohort experienced cooler conditions, which often results in lower growth in fishes from subtropical (Rooker and Holt, 1997) and temperate environments (Sammons et al., 2001).

Habitat-specific variation in growth was observed, with lower rates on the inshore habitat than either the ridge or offshore habitats; however, no significant difference was detected. Differences in growth rates among habitats have been attributed to prey availability (Comyns et al., 2003) and type (Cowan and Shaw, 2002) and assessments of post-settlement growth of red snapper on banks examined in the present study have detected differences in growth among habitats (Rooker et al., 2004; Geary et al., in review). The lack of significant habitat-specific differences in growth of lane snapper suggests that environmental conditions were relatively consistent across the three habitats. Temperature, typically the primary physical factor affecting growth (Jones, 2002), was not significantly different among habitats, and salinity and dissolved oxygen levels were higher than the minimum thresholds for red snapper (Gallaway and Cole, 1999).

Mortality of post-settlement lane snapper on Sabine Bank ( $Z = 0.165 \ 15.2 \ \text{m} \ \text{d}^{-1}$ ) was almost double that of Freeport A ( $Z = 0.097, 9.2 \% d^{-1}$ ). Although no previous mortality estimates of post-settlement lane snapper exist, rates observed in this study were comparable to mortality rates for other species. Rooker et al. (2004) estimated comparable mortalities of 0.129 (12.1%) for post-settlement red snapper on Freeport Rocks in 2000, for individuals approximately 20 days older than (e.g. 47 - 57 d) than ranges of ages used for lane snapper estimates. In addition, mortality coefficients, both higher and lower than those observed in this study, have been estimated from other lutjanids: 0.19 – 0.29 for larval vermillion snapper (*Rhomboplites aurorubens* Cuvier, 1829) (Comyns et al. 2003), 0.04 - 0.28 for juvenile yellowtail snapper (Ocyurus chrysurus Bloch, 1791) (Watson et al 2002) and 0.14-0.43 for juvenile gray snapper (Alman and Grimes, 2001). Early life mortality is often linked to water quality (Sponagule and Grorud-Colvert, 2006), and density-dependent processes, such as predation mortality (Holbrook and Schmitt, 2002), starvation (Leggett and DeBlois, 1994; Sogard, 1997), and disease (Houde, 2002). Although it is difficult to determine the exact cause of observed differences in mortality between the two banks examined, both density and mortality of lane snapper were lower on Freeport A, possibly indicating that density-dependent factors could be involved.

Habitat-specific variation in mortality rates was also observed, and rates were more than twice as high (Z = 0.275, 24 % d<sup>-1</sup>) for lane snapper on the ridge than on the offshore habitat. Rooker et al. (2004) found a similar pattern with higher mortality on the ridge (Z = 0.12, 11.9 % d<sup>-1</sup>) relative to the unstructured, mud habitats found inshore

 $(Z = 0.05, 4.4\% \text{ d}^{-1})$  and offshore  $(Z = 0.10, 9.3\% \text{ d}^{-1})$ . Predation during the early postsettlement period is typically high (Houde, 2002; Almany and Webster, 2006), and predator numbers are often higher on structured habitat (Masuda et al., 2003). Therefore, it is possible that higher mortality on the structured, ridge habitat was a function of higher predator numbers in this habitat. Emigration and size-based gear avoidance (i.e. larger individuals are more capable of avoiding the gear) could also contribute in part to higher mortality rates observed on the ridge habitat.

Estimates of weight-specific growth (*G*) and mortality (*Z*) of lane snapper during early life are often combined (G : Z) to determine recruitment potential (Rutherford et al., 1997; Rooker et al., 1999; Hoffman and Olney, 2005). Cohort and habitat-specific variation in recruitment potential of lane snapper was estimated on Sabine Bank, and ratios were less than 1.0 for both cohort 1 and cohort 2 (habitats pooled), indicating that both cohorts were losing biomass. The only favorable G : Z ratio (greater than 1) was observed for individuals from offshore habitat, with a value of 1.33. This indicated the offshore habitat contributes substantially more individuals to the adult population, and thus, appears to represent nursery habitat, according to the definition of Beck et al. (2003).

## SUMMARY AND CONCLUSIONS

My results suggest lane snapper successfully settle across different banks (Heald Bank, Sabine Bank, and Freeport Rocks), and habitats (inshore mud, shell ridge and offshore mud) in the northwestern Gulf of Mexico. Most post-settlement lane snapper were collected from Sabine Bank and from Freeport Rocks, suggesting these banks may serve as important nursery areas for lane snapper. However, post-settlement numbers may vary as a function of interannual variation in recruitment, and thus, collection number alo ne may not be a useful indicator of nursery quality.

Banks and habitats used by post-settlement snapper were further evaluated by estimating growth, mortality and recruitment potential, since all three parameters are commonly used to evaluate the quality of a habitat or nursery area. Since all three parameters are age based, otolith microstructure analysis was essential data required for these estimates and associated life history parameters (i.e. hatch dates). Key demographic features determined for post-settlement lane snapper in the present study are listed below:

- Lane snapper settled to demersal habitat in the northwestern Gulf of Mexico from approximately 21-28d
- Spawning or hatch dates of post-settlement lane snapper peak from early May to late August
- 3. Growth rates of post-settlement lane snapper are between 0.9 1.3 mm d<sup>-1</sup> and bank and habitat-specific variation in growth were negligible

- 4. Natural mortality during the early post-settlement period is significant, ranging from 9.2 to 24.0%  $d^{-1}$
- Recruitment potential (G : Z) was highest in the offshore habitat, indicating this habitat contributes disproportionately more to the adult population

Lane snapper are commercially and recreationally important in the Caribbean and to a lesser extent, in the Gulf of Mexico, but have not been extensively researched, particularly during the early life stage. The present study represents one of the first attempts to comprehensively study lane snapper during the early post-settlement period, and will serve as the foundation for future studies. In addition to providing critical information for future demographic studies, this complements earlier efforts to identify the essential nursery habitat of snapper in the Gulf of Mexico. An improved understanding of the role of natural banks and associated habitats as nurseries of red snapper, lane snapper, and associated species is critically needed because these banks are currently being targeted as "sources of sand" for beach replenishment projects (Trembanis and Pilkey, 1998). Beach nourishment projects have already been implemented from Chorpus Christi, TX to Marco Island, FL (Trembanis and Pilkey, 1998), and the banks examined in the present study (e.g. Sabine Bank, Freeport Rocks) are currently being evaluated as potential sand borrow sites for future projects. Clearly, the role of these low-relief banks as potential nursery habitat of snapper is important and warrants further consideration.

## LITERATURE CITED

- Acosta, A. and R. S. Appeldoorn. 1992. Estimation of growth, mortality and yield per recruit for *Lutjanus synagris* (Linnaeus) in Puerto Rico. Bull. Mar. Sci. 50: 282-291.
- Aiken, K. A. 2001. Aspects of reproduction, age and growth of the lane snapper, *Lutjanus synagris* (Linnaeus, 1758) in Jamaican coastal waters. Proc. Gulf Carib. Fish. Inst. 52: 116-134.
- Allen, G. R. 1985. Snappers of the world: an annotated and illustrated cataloque of lutjanid species known to date. FAO Fisheries Synopsis. 6: 1-207
- Allman, R. J. and C. B. Grimes. 2002. Temporal and spatial dynamics of spawning, settlement, and growth of gray snapper (*Lutjanus griseus*) from the West Florida shelf as determined from Otolith microstructures. Fish. Bull. 100: 391-403.
- Almany, G. R., and M. S. Webster. 2006. The predation gauntlet: early post-settlement mortality in reef fishes. Coral Reefs. 25: 19-22.
- Beck, M. W., K. L. Heck, K. W. Able, D. L. Childers, D. B. Eggleston, B. M. Gillanders, B. S. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan, and P. M. Weinstein. 2003. The role of nearshore ecosystems as fish and shellfish nurseries. Issues Ecol. 11: 1-12.
- Borrero, M., E. Gonzales, N. Millares, and T. Damas. 1978. Embryological and prelarval development of the lane snapper (*Lutjanus synagris* Linne, 1758). Rev. Cub. Invest. Pesq. 3: 1-28.
- Bortone, S. A. and J. L. Williams. 1986. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (south Florida) – gray, lane, mutton, and yellowtail snappers. U.S. Fish Wildl. Serv. Biol. Rep. 82(11.52). U.S. Army Corps of Engineers, TR EL-82-4. 18 p.
- Boyes, S. and M. Elliott. 2006. Organic matter and nutrient inputs to the Humber Estuary, England. Mar. Pollut. Bull. 53: 136-143.

Brooks, R. A., S. C. Keitzer, and K. J. Sulak. 2004. Taxonomic composition and relative frequency of the benthic fish community found on natural sand banks and shoals in the northwestern Gulf of Mexico. (A synthesis of the southeast area monitoring and assessment program's groundfish survey database, 1982-2000). USGS Outer Continental Shelf Studies Ecosystem Program Report USGS-SIR-2004-XXX (CEC NEGOM Program Investigation Report No. 2004-0X, October 2004); Minerals Management Service, OCS Study MMS-2004-XXXX. (Unpublished USGS Technical Report). Available from: http://cars.er.usgs.gov/coastaleco/Final\_Report\_-\_SEAMAP.pdf. Accessed 1 January 2007. 47 p.

\_\_\_\_\_\_, A. Quaid, and K. J. Sulak. 2003. Assessment of fish communities associated with offshore sand banks and shoals in the northwestern Gulf of Mexico. (Unpublished USGS Technical Report). Available from: http://www.mms.gov/SandAndGravel/PDF/TX%20Sand%20Cruise%20Report.p df. Accessed 1 January 2007. 17 p.

- Bustamante, G., M. Chiappone, J. Kelly, A. Lowe, and K. Sullivan Sealy. 2000. Fish and Fisheries in Guantanamo Bay, Cuba: Recommendations for their protection. Proc. Gulf Carib. Fish. Inst. 51: 242-257.
- Clarke, M. E., M. Domeier, and W. A. Laroche. 1997. Development of larvae and juveniles of the mutton snapper (*Lutjanus analis*), lane snapper (*Lutjanus synagris*) and yellowtail snapper (*Lutjanus chrysurus*). Bull. Mar. Sci. 61:511-537.
  - \_\_\_\_\_\_, C. Calvi, M. Domeier, M. Edmonds, and P. J. Walsh. 1992. Effects of nutrition and temperature on metabolic enzyme activities in larval and juvenile red drum, *Sciaenops ocellatus*, and lane snapper, *Lutjanus synagris*. Mar. Biol. 112: 31-36.
  - Collins, L. A., G. R. Fitzhugh, and R. J. Allman. 2000. Red snapper reproduction revisited: Spawning and fecundity in the Northern Gulf of Mexico, 1998-1999. Southern Division of the American Fisheries Society 2000 Midyear Meeting, Savannah, GA (USA). Feb. 3-6. (World Meeting Number 001 5064).
- Comyns, B. H., R. F. Shaw, and J. Lyczkowski-Shultz. 2003. Small-scale spatial and temporal variability in growth and mortality of fish larvae in the subtropical

northcentral Gulf of Mexico: implications for assessing recruitment success. Fish. Bull. 101: 10-21.

- Cowan, J. H. Jr. and R. F. Shaw. 2002. Recruitment. Pages 88-111 in L. A. Fuiman and R. G. Werner, eds. Fishery science: The unique contributions of early life stages. Blackwell Science Ltd., Oxford. 326 p.
- Denit, K. and S. Sponagule. 2004. Growth variation, settlement, and spawning of gray snapper across a latitudinal gradient. Trans. Am. Fish. Soc. 133: 1339-1355.
- DeVries, D. A. and C. B. Grimes. 1997. Spatial and temporal variation in age and growth of king mackerel, *Scomberomorus cavalla*, 1977-1992. Fish. Bull. 95: 694-708.
- Drass, D. M., K. L. Bootes, J. Lyczkowski-Shultz, B. H. Comyns, G. J. Holt, C. M. Riley and R. P. Phelps. 2000. Larval development of red snapper, *Lutjanus campechanus*, and comparisons with co-occurring snapper species. Fish. Bull. 98: 507-527.
- Emata, A. C. 2003. Reproductive performance in induced and spontaneous spawning of the mangrove red snapper, *Lujanus argentimaculatus*: a potential candidate species for sustainable aquaculture. Aquac. Res. 34: 849-857.
- Figuerola, M., D. Matos-Caraballo, and W. Torres. 1998. Maturation and reproductive seasonality of four reef fish species in Puerto Rico. Proc. Gulf Carib. Fish. Inst. 50: 938-968.
- Futch, R. B. and G. E. Bruger. 1976. Age, growth and reproduction of red snapper in Florida waters. In Proceedings: colloquium on snapper-grouper fishery resources of the western central atlantic ocean. Pages 165-184 *in* Bullis, H. R. and A. C. Jones, eds. Florida Sea Grant College Program Report No. 17.
- Franklin, E. C., J. S. Ault, S. G. Smith, J. Luo, G. A. Meester, G. A. Diaz, M. Chiappone, D. W. Swanson, S. L. Miller, and J. A. Bohnsack. 2003. Benthic habitat mapping in the Tortugas region, Florida. Mar. Geodesy. 26: 19-34.

- Franks, J. S. and K. E. VanderKooy. 2000. Feeding habitats of juvenile lane snapper *Lutjanus synagris* from Mississippi coastal waters, with comments on the diet of gray snapper *Lutjanus griseus*. Gulf Carib. Res. 12: 11-17.
- Gallaway, B. J., and J. G. Cole. 1999. Delineation of essential habitat for juvenile red snapper in the northwestern Gulf of Mexico. Trans. Am. Fish. Soc. 128: 713-726.
- Geary, B. W, J.J. Mikulas Jr., J. R. Rooker, and A. M. Landry. Patterns of habitat use by newly settled red snapper in the northwestern Gulf of Mexico. Am. Fish. Soc. Spec. Symp. In Press.
- Gillig, D., W. L. Griffin, T. Ozuna Jr. 2001. A bioeconomic assessment of Gulf of Mexico red snapper management policies. Trans. Am. Fish. Soc. 130: 117-129.
- Grimes, C. B. 1987. Reproductive biology of the lutjanidae: a review. Pages 239-294 *in*J. J. Polovina and S. Ralston, eds. Tropical snappers and groupers: biology and fisheries management. Westview Press, Boulder. 659 p.
- Gutherz, E. J. and G. J. Pellegrin. 1988. Estimate of the catch of red snapper, *Lutjanus campechanus*, by shrimp trawlers in the U.S. Gulf of Mexico. Mar. Fish. Rev. 50: 17-25.
- Hernandez, F. J. Jr., R. F. Shaw, J. S. Cope, J. G. Ditty, and T. Farooqi. 2001. Do lowsalinity, rock jetty habitats serve as nursery areas for presettlement larval and juvenile reef fish? Proc. Gulf Carib. Fish. Inst. 52: 442-454.
- Hoffman, J. C. and J. E. Olney. 2005. Cohort-specific growth and mortality of juvenile American shad in the Pamunkey River, Virginia. Trans. Am. Fish. Soc. 134: 1-18.
- Holbrook, S. J. and R. J. Schmitt. 2002. Competition for shelter space causes densitydependent predation mortality in damselfishes. Ecology. 3: 2855-2868.
- Holt, G. J., S. A. Holt, and C. R. Arnold. 1985. Diel periodicity of spawning in sciaenids. Mar. Ecol. Prog. Ser. 27: 1-7.

- Houde, E. D. 1996. Evaluating stage-specific survival during the early life of fish. Pages 51-66 *in* Y. Watanabe, Y. Yamashita, and Y. Oozeki, eds. Survival strategies in early life stages of marine resources. Balkema, Rotterdam. 367 p. \_\_\_\_\_\_\_, 2002. Mortality. Pages 64-87 *in* L. A. Fuiman and R. G. Werner, eds. Fishery science: The unique contributions of early life stages. Blackwell Science Ltd., Oxford. 326 p.
- Hixon, M. A. and J. P. Beets. 1993. Predation, prey refuges, and the structure of coralreef fish assemblages. Ecol. Monogr. 63: 77-101.
- Jagielo, T., A. Hoffmann, and J. Tagart. 2003. Demersal groundfish densities in trawlable and untrawlable habitats off Washington: implications for the estimation of habitat bias in trawl surveys. Fish. Bull. 1: 545-565.
- James, P. L. and K. L. Heck Jr. 1994. The effects of habitat complexity and light intensity on ambush predation within a simulated seagrass habitat. J. Exp. Mar. Biol. Ecol. 176: 187-200.
- Johnson, A. G., L. A. Collins, J. Dahl, and M. S. Baker. 1995. Age, growth, and mortality of lane snapper from the northern Gulf of Mexico. Proc. Annu. Conf. SEAFWA. 49: 178-186.
- Johnson, D. W. 2006. Predation, habitat complexity, and variation in density-dependent mortality of temperate reef fishes. Ecology 87: 1179-1188.
- Jones, C. M. 2002. Age and Growth. Pages 33-63 *in* L. A. Fuiman and R. G. Werner, eds. Fishery science: The unique contributions of early life stages. Blackwell Science Ltd., Oxford. 326 p.
- Katersky, R. S., M. A. Peck, and D. A. Bengtson. 2006. Oxygen consumption of newly settled summer flounder, *Paralichthys dentatus* (Linnaeus, 1766). Aquaculture 257: 249-256.
- Lankford, T. E. and T. E. Targett. 2001. Low-temperature tolerance of age-0 Atlantic croakers: Recruitment implications for US Mid-Atlantic estuaries. Trans. Am. Fish. Soc. 130: 236-249.

- Leggett, W. C. and E. DeBlois. 1994. Recruitment in marine fishes-is it regulated by starvation and predation in the egg and larval stages. Neth. J. Sea Res. 32: 119-134.
- Lindeman, K. C., G. A. Diaz, J. E. Serafy, and J. S. Ault. 1998. A spatial framework for assessing cross-shelf habitat use among post-settlement grunts and snappers. Proc. Gulf Carib. Fish. Inst. 50: 385-416.
- Luckhurst, B. E., J. M. Dean, and M. Reichert. 2000. Age, growth and reproduction of the lane snapper *Lutjanus synagris* (Pisces: Lutjanidae) at Bermuda. Mar. Ecol. Prog. Ser. 203: 255-261.
- Mallinson, D., A. Hine, P. Hallock, S. Locker, E. Shinn, D. Naar, B. Donahue, and D. Weaver. 2003. Development of small carbonate banks on the south Florida platform margin: response to sea level and climate change. Mar. Geol. 199: 45-63.
- Manickchand-Dass, S. 1987. Reproduction and growth of the lane snapper, *Lutjanus synagris* (Linnaeus), in Trinidad, West Indies. 1987. Bull. Mar. Sci. 40: 22-28.
- Manooch, C. S. III and D. L. Mason. 1984. Age, growth, and mortality of lane snapper from southern Florida. Northeast Gulf Sci. 7: 109-115.
- Masuda, R., K. Keller, D. A. Ziemann, and J. Ogle. 2003. Association with underwater structures in hatchery-reared and wild red snapper *Lutjanus campechanus* juveniles. J. World Aquac. Soc. 34: 140-146.
- Matos-Caraballo, D. 2000. Overview of Puerto Rico's small scale fisheries statistics: 1994-1997. Proc. Gulf Carib. Fish. Inst. 51: 215-231.

Nikolsky, G. V. 1963. The ecology of fishes. Academic Press, New York. 352 p.

- Panella, G. 1971. Fish otoliths: daily growth layers and periodical patterns. Science 173: 1124-1127.
- Patterson, W. F., C. A. Wilson, S. J. Bentley, and J. H. Cowan. 2005. Delineating juvenile red snapper habitat on the northern Gulf of Mexico continental shelf. Am. Fish. Soc. Symp. 41: 277-288.
- Peterson, M., B. Comyms, and C. Rakocinski. 2004. Defining the fundamental physiological niche of young estuarine fishes and its relationship to understanding distribution, vital metrics, and optimal nursery conditions. Environ. Biol. Fish. 71: 143-149.
- Rabalais, N.N., R. E. Turner, and D. Scavia. 2002. Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. BioScience 52: 129-142.
- Randall, J. E. 1983. Caribbean reef fishes, 2nd. edn. T. F. H. Publications, Inc., Neptune City, NJ. 350 p.
- Rilling, G. C. and E. D. Houde. 1999. Regional and temporal variability in distribution and abundance of bay anchovy (*Anchoa mitchilli*) eggs, larvae, and adult biomass in the Chesapeake Bay. Estuaries 22: 1096-1109.
- Rodriguez, A. B., J. B. Anderson, F. P. Siringan, and M. Taviani. 1999. Sedimantary facies and genesis of Holocene sand banks on the east Texas inner continental shelf. Pages 165-178 *in* K. M. Bergman and J. W. Snedden, eds. Isolated shallow marine sand bodies: sequence sratigraphic analysis and sedimentologic interpretation. SEPM Special Publication, Tulsa.

\_\_\_\_\_, \_\_\_\_, L. A. Banfield, M. Taviani, K. Abdulah, and J. N. Snow. 2000. Identification of a -15 m middle Wisconsin shoreline on the Texas inner continental shelf. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159: 25-43.

Rooker, J. R. and G. D. Dennis. 1991. Diel, lunar and seasonal changes in a mangrove fish assemblage off southwestern Puerto Rico. Bull. Mar. Sci. 49: 684-698.

and S. A. Holt. 1997. Utilization of subtropical seagrass meadows by newly settled red drum *Sciaenops ocellatus*: patterns of distribution and growth. Mar. Ecol. Prog. Ser. 158: 139-149.

\_\_\_\_\_, G. J. Holt, and L. A. Fuiman. 1999. Spatial and temporal variability in growth, mortality, and recruitment potential of postsettlement red drum, *Sciaenops ocellatus*, in a subtropical estuary. Fish. Bull. 97: 581-590.

\_\_\_\_\_, A. M. Landry Jr., B. W. Geary, and J. A. Harper. 2004. Assessment of a shell bank and associated substrates as nursery habitat of postsettlement red snapper. Est. Coast. Shelf Sci. 59: 653-661.

- Rozas, L. P. and W. E. Odum. 1988. Occupation of submerged aquatic vegetation by fishes: testing the roles of food and refuge. Oecologia 77: 101-106.
- Rudenko, M. V. 1998. Investigations of the bank Campeche in the Gulf of Mexico. Okeanologiya 38: 138-143.
- Rutherford, E.S., E.D. Houde, and R.M. Nyman. 1997. Relationship of larval-stage growth and mortality to recruitment of striped bass, *Morone saxatilis*, in Chesapeake Bay. Estuaries. 20: 174-198.
- Sammons, S. M., P. W. Bettoli, and V. A. Greear. 2001. Early life history characteristics of age-0 white crappies in response to hydrology and zooplankton densities in Normandy Reservoir, Tennessee. Trans. Am. Fish. Soc. 130: 442-449.
- Schroeder, W. W., A. W. Shultz, and O. H. Pilkey. 1995. Late quaternary oyster shells and sea-level history, inner shelf, Northeast Gulf of Mexico. J. Coast. Res. 11: 664-674.
- SEAMAP made unpublished data on lane snapper larval distributions available for this study

- Secor, D. H., T. E. Gunderson, and K. Karlsson. 2000. Effect of temperature and salinity on growth performance in anadromous (Chesapeake Bay) and nonanadromous (Santee-Cooper) strains of striped bass *Morone saxatilis*. Copeia 2000: 291-296.
- Sogard, S. M. 1997. Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull. Mar. Sci. 60: 1129-1157.
- Sponagule, S. and K. Grorud-Colvert. 2006. Environmental variability, early life-history traits, and survival of new coral reef fish recruits. Integr. Comp. Biol. 46: 623-633.
- Stevenson, D. K. and S. E. Campana. 1992. Otolith microstructure examination and analysis. Can. Spec. Publ. Fish. Aquat. Sci. 117: 126 p.
- Szedlmayer, S. T. and J. Conti. 1999. Nursery habitats, growth rates, and seasonality of age-0 red snapper, *Lutjanus campechanus*, in the northeast Gulf of Mexico. Fish. Bull. 97: 626-635.

and J. C. Howe. 1997. Substrate preference in age-0 red snapper, *Lutjanus campechanus*. Environ. Biol. Fish. 50: 203-207.

and J. D. Lee. 2004. Diet shifts of juvenile red snapper (*Lutjanus campechanus*) with changes in habitat and fish size. Fish. Bull. 102: 366-375.

\_\_\_\_\_\_ and R. L. Shipp. 1994. Movement and growth of red snapper, *Lutjanus campechanus*, from an artificial reef area in the northeastern Gulf of Mexico. Bull. Mar. Sci. 55: 887-896.

- Taylor, D. L. and K. W. Able. 2006. Cohort dynamics of summer-spawned bluefish as determined by length-frequency and otolith microstructure analyses. Trans. Am. Fish. Soc. 135: 955-969.
- Thayer, G. W., A. B. Powell, and D. E. Hoss. 1999. Composition of larval, juvenile, and small adult fishes relative to changes in environmental conditions in Florida Bay. Estuaries 22: 518-533.

- Thomas, L. M., S. A. Holt and C. R. Arnold. 1995. Chemical marking techniques for larval and juvenile red drum (*Scianops ocellatus*) otoliths using different fluorescent markers. Pages 703-717 in D. H. Secor, J. M. Dean, and S. E. Campana, eds. Recent developments in fish otolith research. University of South Carolina Press, Columbia.
- Trembanis, A. C. and O. H. Pilkey. 1998. Summary of beach nourishment along the U.S. Gulf of Mexico shoreline. J. Coast. Res. 14: 407-417.
- Tzeng, M. W., J. A. Hare, and D. G. Lindquist. 2003. Ingress of transformation stage gray snapper, *Lutjanus griseus* (Pisces: Lutjanidae) through Beaufort Inlet, North Carolina. Bull. Mar. Sci. 72: 891-908.
- Watson, M., J. L. Munro, and F. R. Gell. 2002. Settlement, movement and early juvenile mortality of the yellowtail snapper *Ocyurus chrysurus*. Mar. Ecol. Prog. Ser. 237: 247-256.
- Webster, M. S. 2002. Role of predators in the early post-settlement demography of coral-reef fishes. Oecologia 131: 52-60.
- Wells, R. J. D. and J. H. Cowan Jr. Video estimates of red snapper and associated fish assemblages on sand, shell, and natural reef habitats in the northcentral Gulf of Mexico. Am. Fish. Soc. Spec. Symp. In Press.
- Workman, I. K. and D.G. Foster. 1994. Occurrence and behavior of juvenile red snapper, *Lutjanus campechanus*, on commercial shrimp fishing grounds in the northeastern Gulf of Mexico. Mar. Fish. Rev. 56: 9-11.
  - \_\_\_\_\_\_, A. Shah, D. Foster, and B. Hataway. 2002. Habitat preferences and site fidelity of juvenile red snapper (*Lutjanus campechanus*). ICES J. Mar. Sci. 59: S43-S50.
- Zapata, F. A. and P. A. Herron. 2002. Pelagic larval duration and geographic distribution of tropical eastern Pacific snappers (Pisces: Lutjanidae). Mar. Ecol. Prog. Ser. 230: 295-300.

## APPENDIX

|          |        |        |          | Start      | End        |            |           |           |           | Shell  |         |
|----------|--------|--------|----------|------------|------------|------------|-----------|-----------|-----------|--------|---------|
|          |        |        |          | Depth      | Depth      |            |           | Start     | Stop      | Weight | # Lane  |
| Date     | Site # | Bank   | Habitat  | <b>(m)</b> | <b>(m)</b> | Start Lat  | Stop Lat  | Long      | Long      | (kg)   | Snapper |
| 7/2/2003 | 1      | Sabine | Inshore  |            | 9.8        | 29 22.7430 | 29 22.587 | 94 01.230 | 94 01.139 | 0      | 1       |
| 7/2/2003 | 2      | Sabine | Inshore  |            | 9.4        | 29 22.916  | 29 22.778 | 94 00.378 | 94 00.471 | 0      | 7       |
| 7/2/2003 | 3      | Sabine | Inshore  |            | 9.4        | 29 22.954  | 29 22.799 | 94 00.029 | 94 00.094 | 0      | 6       |
| 7/2/2003 | 4      | Sabine | Inshore  |            | 9.1        | 29 23.223  | 29 23.055 | 93 59.548 | 93 59.580 | 0      | 1       |
| 7/2/2003 | 5      | Sabine | Inshore  |            | 8.5        | 29 23.480  | 29 23.314 | 93 58.996 | 93 59.073 | 0      | 0       |
| 7/2/2003 | 6      | Sabine | Inshore  |            | 8.8        | 29 23.828  | 29 23.680 | 93 58.332 | 93 58.441 | 0      | 3       |
| 7/2/2003 | 7      | Sabine | Ridge    |            | 8.2        | 29 23.026  | 29 22.860 | 93 58.366 | 93 58.461 | 3.2    | 0       |
| 7/2/2003 | 8      | Sabine | Ridge    |            | 8.8        | 29 22.963  | 29 22.759 | 93 58.614 | 93 58.659 | < 1 lb | 0       |
| 7/2/2003 | 9      | Sabine | Ridge    |            | 10.1       | 29 22.626  | 29 22.470 | 93 58.852 | 93 58.947 | < 1 lb | 1       |
| 7/2/2003 | 10     | Sabine | Ridge    |            | 10.1       | 29 22.171  | 29 22.001 | 94 00.337 | 94 00.391 | 5.0    | 6       |
| 7/2/2003 | 11     | Sabine | Ridge    |            | 9.1        | 29 22.322  | 29 22.142 | 94 00.487 | 94 00.397 | 1.1    | 7       |
| 7/2/2003 | 12     | Sabine | Ridge    |            | 9.1        | 29 22.095  | 29 21.949 | 94 00.102 | 94 00.231 | 0.2    | 9       |
| 7/2/2003 | 13     | Sabine | Offshore |            | 11.0       | 29 21.674  | 29 21.508 | 94 00.099 | 93 59.990 | 0      | 0       |
| 7/2/2003 | 14     | Sabine | Offshore |            | 11.3       | 29 21.740  | 29 21.550 | 93 59.481 | 93 59.495 | < 1kg  | 1       |
| 7/2/2003 | 15     | Sabine | Offshore |            | 11.0       | 29 22.027  | 29 21.857 | 93 58.940 | 93 58.820 | < 1kg  | 4       |
| 7/2/2003 | 16     | Sabine | Offshore |            | 11.0       | 29 22.225  | 29 22.042 | 93 58.391 | 93 58.389 | 0      | 7       |
| 7/2/2003 | 17     | Sabine | Offshore |            | 10.7       | 29 22.597  | 29 22.427 | 93 57.509 | 93 57.572 | < 1kg  | 8       |
| 7/2/2003 | 18     | Sabine | Offshore |            | 10.7       | 29 22.772  | 29 22.620 | 93 57.072 | 93 57.202 | < 1kg  | 9       |
| 7/3/2003 | 19     | Heald  | Inshore  |            | 9.8        | 29 8.083   | 29 7.867  | 94 11.047 | 94 11.054 | 0      | 0       |
| 7/3/2003 | 20     | Heald  | Inshore  |            |            | 29 8.281   | 29 8.113  | 94 10.643 | 94 10.579 | 0      | 0       |
| 7/3/2003 | 21     | Heald  | Inshore  |            | 9.4        | 29 8.398   | 29 8.238  | 94 10.307 | 94 10.355 | 0      | 0       |
| 7/3/2003 | 22     | Heald  | Inshore  |            | 9.1        | 29 8.660   | 29 8.598  | 94 9.839  | 94 9.999  | < 1kg  | 0       |

|           |        |        |          | Start<br>Depth | End<br>Depth |           |           | Start     | Stop      | Shell<br>Weight | # Lane  |
|-----------|--------|--------|----------|----------------|--------------|-----------|-----------|-----------|-----------|-----------------|---------|
| Date      | Site # | Bank   | Habitat  | <b>(m)</b>     | ( <b>m</b> ) | Start Lat | Stop Lat  | Long      | Long      | (kg)            | Snapper |
| 7/3/2003  | 23     | Heald  | Ridge    |                | 12.8         | 29 7.743  | 29 7.575  | 94 9.728  | 94 9.773  | 6.8             | 0       |
| 7/3/2003  | 24     | Heald  | Ridge    |                | 12.2         | 29 7.550  | 29 7.358  | 94 10.080 | 94 10.035 | 6.8             | 0       |
| 7/3/2003  | 25     | Heald  | Ridge    |                | 10.1         | 29 7.543  | 29 7.427  | 94 10.395 | 94 10.424 | 0.5             | 0       |
| 7/3/2003  | 26     | Heald  | Ridge    |                | 9.1          | 29 7.451  | 29 7.337  | 94 10.034 | 94 10.544 | 9.1             | 0       |
| 7/3/2003  | 27     | Heald  | Offshore |                |              | 29 6.744  | 29 6.607  | 94 11.030 | 94 11.021 | 0.9             | 0       |
| 7/3/2003  | 28     | Heald  | Offshore |                | 13.1         | 29 6.936  | 29 6.771  | 94 10.367 | 94 10.271 | 10.4            | 0       |
| 7/3/2003  | 29     | Heald  | Offshore |                | 13.4         | 29 7.427  | 29 7.256  | 94 9.116  | 94 9.007  | < 1kg           | 0       |
| 7/3/2003  | 30     | Heald  | Offshore |                | 14.33        | 29 7.427  | 29 7.256  | 94 9.116  | 94 9.007  | < 1kg           | 0       |
| 7/17/2003 | 1      | Sabine | Inshore  |                | 9.9          | 29 22.910 | 29 22.794 | 94 00.964 | 94 00.803 | 0.0             | 4       |
| 7/17/2003 | 2      | Sabine | Inshore  |                | 9.4          | 29 23.044 | 29 22.887 | 94 00.301 | 94 00.219 | 0.0             | 1       |
| 7/17/2003 | 3      | Sabine | Inshore  |                | 9.3          | 29 23.049 | 29 22.877 | 93 59.958 | 93 59.909 | < 1kg           | 5       |
| 7/17/2003 | 4      | Sabine | Inshore  |                | 9.0          | 29 23.191 | 29 22.941 | 93 59.500 | 93 59.506 | 0.0             | 0       |
| 7/17/2003 | 5      | Sabine | Inshore  |                | 8.5          | 29 23.466 | 29 23.257 | 93 59.015 | 93 58.977 | < 1 lb          | 0       |
| 7/17/2003 | 6      | Sabine | Inshore  |                | 8.7          | 29 23.775 | 29 23.573 | 93 58.189 | 93 58.221 | 0.0             | 0       |
| 7/17/2003 | 7      | Sabine | Ridge    |                | 9.3          | 29 23.116 | 29 22.925 | 93 58.245 | 93 58.211 | 3.9             | 0       |
| 7/17/2003 | 8      | Sabine | Ridge    |                | 7.8          | 29 22.965 | 29 22.774 | 93 58.591 | 93 58.613 | 4.1             | 4       |
| 7/17/2003 | 9      | Sabine | Ridge    |                | 9.1          | 29 22.561 | 29 22.361 | 93 58.741 | 93 58.714 | 0.9             | 1       |
| 7/18/2003 | 10     | Sabine | Ridge    |                | 9.6          | 29 22.187 | 29 22.011 | 94 00.283 | 94 00.324 | 3.6             | 1       |
| 7/18/2003 | 11     | Sabine | Ridge    |                | 8.6          | 29 22.330 | 29 22.158 | 94 00.504 | 94 00.545 | 0.5             | 0       |
| 7/18/2003 | 12     | Sabine | Ridge    |                | 9.8          | 29 22.086 | 29 21.917 | 93 59.958 | 93 59.900 | 0.0             | 0       |
| 7/17/2003 | 13     | Sabine | Offshore |                | 9.5          | 29 21.849 | 29 21.706 | 94 00.049 | 93 59.960 | 1.6             | 3       |
| 7/17/2003 | 14     | Sabine | Offshore |                | 10.9         | 29 21.825 | 29 21.673 | 93 59.475 | 93 59.368 | 0.0             | 1       |
| 7/17/2003 | 15     | Sabine | Offshore |                | 10.6         | 29 22.149 | 29 21.975 | 93 58.909 | 93 58.837 | < 1kg           | 1       |
| 7/17/2003 | 16     | Sabine | Offshore |                | 10.7         | 29 22.265 | 29 22.095 | 93 58.396 | 93 57.068 | < 1kg           | 15      |

|           |        |        |          | Start<br>Donth | End<br>Depth |           |           | Start     | Stop       | Shell<br>Weight | # Lane            |
|-----------|--------|--------|----------|----------------|--------------|-----------|-----------|-----------|------------|-----------------|-------------------|
| Date      | Site # | Bank   | Habitat  | (m)            | (m)          | Start Lat | Stop Lat  | Long      | Long       | (kg)            | # Lane<br>Snapper |
| 7/17/2003 | 17     | Sabine | Offshore | (111)          | 10.4         | 29 22.610 | 29 22.429 | 93 57.552 |            | < 1kg           | 1                 |
| 7/17/2003 | 18     | Sabine | Offshore |                | 10.6         | 29 22.760 | 29 22.559 |           | 93 57.122  | 0.0             | 0                 |
| 7/18/2003 | 19     | Heald  | Inshore  |                | 9.3          | 29 8.010  | 29 7.967  |           | 94 11.406  | < 1kg           | 0                 |
| 7/18/2003 | 20     | Heald  | Inshore  |                | ,            | 29 8.364  | 29 8.407  | 94 10.699 |            | < 1kg           | 0                 |
| 7/18/2003 | 21     | Heald  | Inshore  |                | 8.9          | 29 8.444  | 29 8.520  | 94 10.429 |            | 0.0             | 0                 |
| 7/18/2003 | 22     | Heald  | Inshore  |                | 8.9          | 29 8.599  | 29 8.657  |           | 94 10.0176 | < 1kg           | 0                 |
| 7/18/2003 | 23     | Heald  | Ridge    |                | 12.4         | 29 7.747  | 29 7.601  | 94 9.765  | 94 9.895   | 5.9             | 0                 |
| 7/18/2003 | 24     | Heald  | Ridge    |                | 13.2         | 29 7.639  | 29 7.610  | 94 10.197 | 94 10.359  | 19.1            | 0                 |
| 7/18/2003 | 25     | Heald  | Ridge    |                | 10.9         | 29 7.516  | 29 7.529  | 94 10.387 | 94 10.601  | 10.0            | 0                 |
| 7/18/2003 | 26     | Heald  | Ridge    |                | 9.7          | 29 7.485  | 29 7.434  | 94 10.691 | 94 10.837  | 1.4             | 0                 |
| 7/18/2003 | 27     | Heald  | Offshore |                | 12.1         | 29 6.787  | 29 6.861  | 94 11.111 | 94 11.297  | 2.0             | 0                 |
| 7/18/2003 | 28     | Heald  | Offshore |                | 13.5         | 29 6.961  | 29 6.856  | 94 10.294 | 94 10.441  | 4.5             | 0                 |
| 7/18/2003 | 29     | Heald  | Offshore |                | 13.6         | 29 7.171  | 29 7.014  | 94 9.735  | 94 9.769   | 0.9             | 0                 |
| 7/18/2003 | 30     | Heald  | Offshore |                | 13.96        | 29 7.461  | 29 7.361  | 94 9.118  | 94 9.247   | 0.9             | 1                 |
| 8/4/2003  | 1      | Sabine | Inshore  | 9.4            | 9.5          | 29 22.890 | 29 22.731 | 94 01.053 | 94 01.110  | < 1kg           | 1                 |
| 8/4/2003  | 2      | Sabine | Inshore  | 9.2            | 9.2          | 29 23.057 | 29 22.896 | 94 00.377 | 94 00.423  | 2.5             | 0                 |
| 8/4/2003  | 3      | Sabine | Inshore  | 8.8            | 9.1          | 29 23.032 | 29 22.933 | 93 59.994 | 94 00.123  | 6.8             | 4                 |
| 8/4/2003  | 4      | Sabine | Inshore  | 8.8            | 8.8          | 29 23.226 | 29 23.046 | 93 59.526 | 93 59.524  | 14.5            | 0                 |
| 8/4/2003  | 5      | Sabine | Inshore  | 8.6            | 8.4          | 29 23.453 | 29 23.336 | 93 58.982 | 93 59.100  | 1.8             | 1                 |
| 8/4/2003  | 6      | Sabine | Inshore  | 8.6            | 9.0          | 29 23.794 | 29 23.637 | 93 58.340 | 93 58.390  | 8.6             | 1                 |
| 8/4/2003  | 7      | Sabine | Ridge    | 8.8            | 9.1          | 29 23.046 | 29 22.902 | 93 58.305 | 93 58.399  | 11.3            | 7                 |
| 8/4/2003  | 8      | Sabine | Ridge    | 7.9            | 9.1          | 29 23.085 | 29 22.927 | 93 58.642 | 93 58.691  | 8.2             | 3                 |
| 8/4/2003  | 9      | Sabine | Ridge    | 9.9            | 9.6          | 29 22.645 | 29 22.502 | 93 58.768 | 93 58.844  | 5.4             | 18                |
| 8/4/2003  | 10     | Sabine | Ridge    | 9.7            | 9.2          | 29 22.329 | 29 22.213 | 94 00.307 | 94 00.389  | 10.0            | 7                 |

|           |        |        |          | Start<br>Depth | End<br>Depth |           |           | Start     | Stop      | Shell<br>Weight | # Lane  |
|-----------|--------|--------|----------|----------------|--------------|-----------|-----------|-----------|-----------|-----------------|---------|
| Date      | Site # | Bank   | Habitat  | ( <b>m</b> )   | <b>(m)</b>   | Start Lat | Stop Lat  | Long      | Long      | (kg)            | Snapper |
| 8/4/2003  | 11     | Sabine | Ridge    | 9.6            | 7.8          | 29 22.482 | 29 22.350 | 94 00.550 | 94 00.618 | 5.2             | 28      |
| 8/4/2003  | 12     | Sabine | Ridge    | 9.9            | 9.0          | 29 22.151 | 29 21.991 | 94 00.060 | 94 00.108 | 9.1             | 4       |
| 8/4/2003  | 13     | Sabine | Offshore | 10.1           | 10.5         | 29 21.617 | 29 21.605 | 94 00.222 | 94 00.224 | 3.9             | 7       |
| 8/4/2003  | 14     | Sabine | Offshore | 10.0           | 10.5         | 29 21.889 | 29 21.740 | 93 59.467 | 93 59.495 | < 1kg           | 8       |
| 8/4/2003  | 15     | Sabine | Offshore | 10.1           | 10.3         | 29 22.086 | 29 21.952 | 93 59.023 | 93 59.095 | < 1kg           | 4       |
| 8/4/2003  | 16     | Sabine | Offshore | 10.1           | 10.6         | 29 22.319 | 29 22.158 | 93 58.404 | 93 58.315 | 0.5             | 8       |
| 8/4/2003  | 17     | Sabine | Offshore | 10.1           | 10.0         | 29 22.695 | 29 22.555 | 93 57.489 | 93 57.548 | 0.7             | 5       |
| 8/4/2003  | 18     | Sabine | Offshore | 9.8            | 10.3         | 29 22.860 | 29 22.742 | 93 57.061 | 93 57.201 | 0.7             | 7       |
| 8/5/2003  | 19     | Heald  | Inshore  | 9.6            | 9.9          | 29 08.999 | 29 07.870 | 94 11.112 | 94 11.196 | 0               | 0       |
| 8/5/2003  | 20     | Heald  | Inshore  | 8.9            | 9.4          | 29 08.303 | 29 08.156 | 94 10.552 | 94 10.559 | 0               | 0       |
| 8/5/2003  | 21     | Heald  | Inshore  | 9.0            | 8.8          | 29 8.496  | 29 8.386  | 94 10.412 | 94 10.441 | 0               | 0       |
| 8/5/2003  | 22     | Heald  | Inshore  | 8.8            | 8.9          | 29 08.648 | 29 08.493 | 94 09.908 | 94 09.891 | 0               | 0       |
| 8/5/2003  | 23     | Heald  | Ridge    | 12.0           | 12.5         | 29 7.860  | 29 7.774  | 94 9.674  | 94 9.717  | 0.5             | 1       |
| 8/5/2003  | 24     | Heald  | Ridge    | 12.7           | 10.4         | 29 7.592  | 29 7.474  | 94 10.232 | 94 10.307 | < 1kg           | 1       |
| 8/5/2003  | 25     | Heald  | Ridge    | 10.9           | 9.3          | 29 07.525 | 29 07.397 | 94 10.419 | 94 10.471 | < 1kg           | 0       |
| 8/5/2003  | 26     | Heald  | Ridge    | 9.9            | 8.9          | 29 07.492 | 29 07.344 | 94 10.698 | 94 10.779 | < 1kg           | 0       |
| 8/5/2003  | 27     | Heald  | Offshore | 11.6           | 12.1         | 29 06.780 | 29 06.669 | 94 11.064 | 94 11.194 | 0               | 3       |
| 8/5/2003  | 28     | Heald  | Offshore | 12.6           | 13.4         | 29 07.002 | 29 06.842 | 94 10.383 | 94 10.494 | 0.5             | 2       |
| 8/5/2003  | 29     | Heald  | Offshore | 12.2           | 13.7         | 29 07.260 | 29 07.173 | 94 09.783 | 94 09.886 | 0               | 0       |
| 8/5/2003  | 30     | Heald  | Offshore | 13.6           | 14.1         | 29 07.492 | 29 07.384 | 94 09.073 | 94 09.151 | < 1kg           | 0       |
| 8/19/2003 | 1      | Sabine | Inshore  | 9.5            | 9.3          | 29 22.848 | 29 22.701 | 94 01.007 | 94.01.073 | < 1kg           | 0       |
| 8/19/2003 | 2      | Sabine | Inshore  | 9.2            | 9.1          | 29 23.050 | 29 22.875 | 94 00.302 | 94 00.315 | < 1kg           | 2       |
| 8/19/2003 | 3      | Sabine | Inshore  | 8.8            | 9.1          | 29 22.991 | 29.22.823 | 93 59.930 | 93 59.954 | 2               | 7       |
| 8/19/2003 | 4      | Sabine | Inshore  | 9.0            | 8.9          | 29 23.143 | 29 22.940 | 93 59.578 | 93 59.633 | 6               | 0       |

|           |        |        |          | Start<br>Depth | End<br>Depth |           |           | Start     | Stop      | Shell<br>Weight | # Lane  |
|-----------|--------|--------|----------|----------------|--------------|-----------|-----------|-----------|-----------|-----------------|---------|
| Date      | Site # | Bank   | Habitat  | <b>(m)</b>     | <b>(m)</b>   | Start Lat | Stop Lat  | Long      | Long      | (kg)            | Snapper |
| 8/19/2003 | 5      | Sabine | Inshore  | 8.5            | 8.6          | 29 23.464 | 29 23.298 | 93 59.030 | 93 59.143 | 11              | 0       |
| 8/19/2003 | 6      | Sabine | Inshore  | 8.7            | 8.9          | 29 23.619 | 29 23.462 | 93 58.404 | 93 58.538 | 2               | 13      |
| 8/19/2003 | 7      | Sabine | Ridge    | 8.2            | 8.9          | 29 23.097 | 29 22.926 | 93 58.301 | 93 58.405 | 9               | 2       |
| 8/19/2003 | 8      | Sabine | Ridge    | 9.3            | 9.3          | 29 22.932 | 29 22.752 | 93 58.720 | 93 58.787 | 3.5             | 4       |
| 8/19/2003 | 9      | Sabine | Ridge    | 9.6            | 9.4          | 29 22.692 | 29 22.721 | 93 58.862 | 93 59.045 | 4.5             | 1       |
| 8/19/2003 | 10     | Sabine | Ridge    | 10.1           | 8.3          | 29 22.198 | 29 22.049 | 94 00.240 | 94 00.366 | < 1kg           | 1       |
| 8/19/2003 | 11     | Sabine | Ridge    | 8.6            | 8.4          | 29 22.384 | 29 22.214 | 94 00.490 | 94 00.529 | 4               | 3       |
| 8/19/2003 | 12     | Sabine | Ridge    | 9.1            | 9.2          | 29 22.111 | 29 21.963 | 94 00.997 | 94 00.084 | 3.5             | 6       |
| 8/19/2003 | 13     | Sabine | Offshore | 10.0           | 10.2         | 29 21.731 | 29 21.603 | 94 00.212 | 94 00.340 | < 1kg           | 4       |
| 8/19/2003 | 14     | Sabine | Offshore | 10.2           | 10.5         | 29 21.828 | 29 21.679 | 93 59.616 | 93 59.733 | < 1kg           | 7       |
| 8/19/2003 | 15     | Sabine | Offshore | 10.1           | 10.2         | 29 22.127 | 29 22.021 | 93 59.002 | 93 59.169 | 1               | 11      |
| 8/19/2003 | 16     | Sabine | Offshore | 10.2           | 10.2         | 29 22.128 | 29 22.007 | 93 58.809 | 93 58.970 | < 1kg           | 0       |
| 8/19/2003 | 17     | Sabine | Offshore | 9.8            | 9.9          | 29 22.648 | 29 22.584 | 93 57.681 | 93 57.873 | 2               | 8       |
| 8/19/2003 | 18     | Sabine | Offshore | 9.8            | 9.8          | 29 22.932 | 29 22.825 | 93 57.016 | 93 57.181 | 2               | 4       |
| 8/20/2003 | 19     | Heald  | Inshore  | 9.8            | 9.6          | 29 08.003 | 29 07.818 | 94 11.197 | 94 11.263 | 1               | 2       |
| 8/20/2003 | 20     | Heald  | Inshore  | 9.1            | 9.3          | 29 08.295 | 29 08.132 | 94 10.653 | 94 10.708 | 0               | 0       |
| 8/20/2003 | 21     | Heald  | Inshore  | 9.1            | 9.3          | 29 08.415 | 29 08.251 | 94 10.284 | 94 10.297 | 0               | 0       |
| 8/20/2003 | 22     | Heald  | Inshore  | 9.1            | 8.6          | 29 08.633 | 29 08.508 | 94 09.939 | 94 09.996 | 0               | 0       |
| 8/20/2003 | 23     | Heald  | Ridge    | 12.7           | 11.6         | 29 07.679 | 29 07.536 | 94 09.708 | 94 09.718 | 12              | 0       |
| 8/20/2003 | 24     | Heald  | Ridge    | 12.5           | 10.9         | 29 07.610 | 29 07.517 | 94 10.142 | 94 10.287 | 4               | 0       |
| 8/20/2003 | 25     | Heald  | Ridge    | 10.4           | 9.5          | 29 07.490 | 29 07.349 | 94 10.446 | 94 10.548 | 3.5             | 0       |
| 8/20/2003 | 26     | Heald  | Ridge    | 9.7            | 9.1          | 29 07.541 | 29 07.284 | 94 10.742 | 94 10.753 | 15              | 0       |
| 8/20/2003 | 27     | Heald  | Offshore | 12.1           | 12.1         | 29 06.795 | 29 06.632 | 94 11.132 | 94 11.196 | 0               | 0       |
| 8/20/2003 | 28     | Heald  | Offshore | 13.3           | 14.4         | 29 06.963 | 29 06.787 | 94 10.307 | 94 10.326 | 0               | 0       |

|           |        |        |          | Start<br>Depth | End<br>Depth |           |           | Start     | Stop      | Shell<br>Weight | # Lane  |
|-----------|--------|--------|----------|----------------|--------------|-----------|-----------|-----------|-----------|-----------------|---------|
| Date      | Site # | Bank   | Habitat  | ( <b>m</b> )   | ( <b>m</b> ) | Start Lat | Stop Lat  | Long      | Long      | ( <b>kg</b> )   | Snapper |
| 8/20/2003 | 29     | Heald  | Offshore | 12.5           | 13.5         | 29 07.241 | 29 07.097 | 94 09.726 | 94 09.830 |                 | 0       |
| 8/20/2003 | 30     | Heald  | Offshore | 12.5           | 13.5         | 29 07.241 | 29 07.097 | 94 09.195 | 94 09.329 | < 1kg           | 0       |
| 9/9/2003  | 1      | Sabine | Inshore  | 10.1           | 10.1         | 29 22.920 | 29 23.091 | 94 01.983 | 94 00.931 | 0.2             | 0       |
| 9/9/2003  | 2      | Sabine | Inshore  | 9.7            | 9.7          | 29 23.072 | 29 23.197 | 94 00.308 | 94 00.156 | 2.3             | 2       |
| 9/9/2003  | 3      | Sabine | Inshore  | 9.3            | 9.2          | 29 23.046 | 29 23.115 | 93 59.910 | 93 59.767 | 1.8             | 0       |
| 9/9/2003  | 4      | Sabine | Inshore  | 9.3            | 9.2          | 29 23.325 | 29 23.310 | 93 59.474 | 93 59.338 | 12.7            | 0       |
| 9/9/2003  | 5      | Sabine | Inshore  | 9.0            | 9.1          | 29 23.561 | 29 23.544 | 93 58.952 | 93 58.787 | 0.0             | 0       |
| 9/9/2003  | 6      | Sabine | Inshore  | 9.1            | 8.9          | 29 23.932 | 29 23.946 | 93 58.189 | 93 58.056 | 3.6             | 0       |
| 9/9/2003  | 7      | Sabine | Ridge    | 9.7            | 10.1         | 29 23.136 | 29 23.149 | 93 58.254 | 93 58.127 | 5.0             | 0       |
| 9/9/2003  | 8      | Sabine | Ridge    | 8.4            | 9.1          | 29 23.104 | 29 23.117 | 93 58.561 | 93 58.395 | 6.8             | 11      |
| 9/9/2003  | 9      | Sabine | Ridge    | 10.8           | 10.6         | 29 22.676 | 29 22.718 | 93 58.703 | 93 58.580 | 2.3             | 3       |
| 9/9/2003  | 10     | Sabine | Ridge    | 10.2           | 10.6         | 29 22.309 | 29 22.379 | 94 00.264 | 94 00.140 | 6.8             | 7       |
| 9/9/2003  | 11     | Sabine | Ridge    | 9.9            | 10.5         | 29 22.396 | 29 22.449 | 94 00.448 | 94 00.297 | 5.9             | 2       |
| 9/9/2003  | 12     | Sabine | Ridge    | 10.9           | 11.2         | 29 22.210 | 29 22.317 | 93 59.008 | 93 59.909 | 5.4             | 16      |
| 9/9/2003  | 13     | Sabine | Offshore | 10.1           | 10.5         | 29 21.823 | 29 21.912 | 94 00.091 | 94 00.976 | 4.3             | 3       |
| 9/9/2003  | 14     | Sabine | Offshore | 10.9           | 10.6         | 29 21.941 | 29 22.045 | 93 59.440 | 93 59.343 | 2.0             | 5       |
| 9/9/2003  | 15     | Sabine | Offshore | 10.9           | 10.8         | 29 22.144 | 29 22.257 | 93 58.885 | 93 58.800 | 0.5             | 2       |
| 9/9/2003  | 16     | Sabine | Offshore | 10.6           | 10.3         | 29 22.363 | 29 22.505 | 93 58.410 | 93 58.362 | < 1kg           | 3       |
| 9/9/2003  | 17     | Sabine | Offshore | 10.6           | 10.6         | 29 22.712 | 29 22.739 | 93 57.464 | 93 57.312 | 0.5             | 4       |
| 9/9/2003  | 18     | Sabine | Offshore | 10.6           | 10.5         | 29 22.887 | 29 22.970 | 93 57.015 | 93 56.892 | 0.5             | 4       |
| 9/10/2003 | 19     | Heald  | Inshore  | 9.7            | 10.3         | 29 08.063 | 29 07.899 | 94 11.212 | 94 11.236 | < 1kg           | 0       |
| 9/10/2003 | 20     | Heald  | Inshore  | 9.2            | 9.4          | 29 08.315 | 29 08.133 | 94 10.653 | 94 10.730 | 0.0             | 0       |
| 9/10/2003 | 21     | Heald  | Inshore  | 9.3            | 9.1          | 29 08.494 | 29 08.381 | 94 10.347 | 94 10.453 | 0.0             | 0       |
| 9/10/2003 | 22     | Heald  | Inshore  | 8.8            | 8.9          | 29 08.574 | 29 08.462 | 94 09.915 | 94 10.051 | 0.0             | 0       |
|           |        |        |          |                |              |           |           |           |           |                 |         |

|           |        |          |           | Start<br>Depth | End<br>Depth |           |           | Start     | Stop      | Shell<br>Weight | # Lane  |
|-----------|--------|----------|-----------|----------------|--------------|-----------|-----------|-----------|-----------|-----------------|---------|
| Date      | Site # | Bank     | Habitat   | ( <b>m</b> )   | (m)          | Start Lat | Stop Lat  | Long      | Long      | (kg)            | Snapper |
| 9/10/2003 | 23     | Heald    | Ridge     | 12.4           | 12.5         | 29 07.798 | 29 07.661 | 94 09.709 | 94 09.880 | 7.7             | 0       |
| 9/10/2003 | 24     | Heald    | Ridge     | 12.7           | 10.9         | 29 07.582 | 29 07.497 | 94 10.186 | 94 10.358 | 16.6            | 0       |
| 9/10/2003 | 25     | Heald    | Ridge     | 11.5           | 10.1         | 29 07.494 | 29 07.342 | 94 10.396 | 94 10.472 | 22.0            | 1       |
| 9/10/2003 | 26     | Heald    | Ridge     | 10.2           | 9.4          | 29 07.482 | 29 07.309 | 94 10.728 | 94 10.810 | 10.9            | 0       |
| 9/10/2003 | 27     | Heald    | Offshore  | 11.9           | 13.3         | 29 06.843 | 29 06.638 | 94 11.018 | 94 11.023 | 5.4             | 0       |
| 9/10/2003 | 28     | Heald    | Offshore  | 12.9           | 13.4         | 29 06.970 | 29 06.803 | 94 10.389 | 94 10.479 | 2.9             | 0       |
| 9/10/2003 | 29     | Heald    | Offshore  | 12.9           | 13.7         | 29 07.180 | 29 07.966 | 94 09.738 | 94 09.726 | 2.3             | 1       |
| 9/10/2003 | 30     | Heald    | Offshore  | 13.6           | 14.0         | 29 07.540 | 29 07.435 | 94 09.145 | 94 09.335 | < 1kg           | 0       |
| 7/8/2004  | 1      | Freeport | Inshore   | 16.9           | 16.8         | 28 44.268 | 28 44.104 | 95 21.721 | 95 21.651 |                 | 0       |
| 7/9/2004  | 2      | Freeport | Inshore   | 16.5           | 0.0          | 28 39.629 | 28 39.448 | 95 25.505 | 95 25.541 |                 | 2       |
| 7/9/2004  | 3      | Freeport | Inshore   | 16.8           | 0.0          | 28 40.941 | 28 40.820 | 95 25.045 | 95 24.933 |                 | 0       |
| 7/9/2004  | 4      | Freeport | Inshore   | 16.8           | 0.0          | 28 41.932 | 28 41.837 | 95 23.787 | 95 23.645 |                 | 0       |
| 7/9/2004  | 5      | Freeport | Inshore   | 16.5           | 0.0          | 28 42.823 | 28 42.680 | 95 22.694 | 95 22.649 |                 | 0       |
| 7/8/2004  | 6      | Freeport | Inshore   | 16.5           | 16.5         | 28 43.700 | 28 43.686 | 95 21.352 | 95 21.147 | < 1kg           | 0       |
| 7/8/2004  | 7      | Freeport | On Ridge  | 15.8           | 16.2         | 28 42.351 | 28 42.229 | 95 21.129 | 95 21.129 | < 1kg           | 0       |
| 7/9/2004  | 8      | Freeport | On Ridge  | 16.2           | 0.0          | 28 41.656 | 28 41.513 | 95 22.805 | 95 21.725 | 3.2             | 0       |
| 7/9/2004  | 9      | Freeport | On Ridge  | 14.9           | 0.0          | 28 40.515 | 28 40.377 | 95 22.754 | 95 22.741 | 5.4             | 3       |
| 7/9/2004  | 10     | Freeport | On Ridge  | 15.2           | 0.0          | 28 40.096 | 28 39.896 | 95 23.542 | 95 23.589 |                 | 0       |
| 7/9/2004  | 11     | Freeport | On Ridge  | 15.2           | 0.0          | 28 39.158 | 28 38.961 | 95 23.965 | 95 23.981 | 2.3             | 1       |
| 7/8/2004  | 12     | Freeport | On Ridge  | 15.4           | 15.7         | 28 44.057 | 28 44.074 | 95 18.887 | 95 18.596 | 18.1            | 3       |
| 7/8/2004  | 13     | Freeport | Off Ridge | 17.7           | 17.8         | 28 43.283 | 28 43.125 | 95 18.614 | 95 18.591 | < 1kg           | 0       |
| 7/9/2004  | 14     | Freeport | Off Ridge | 16.5           | 0.0          | 28 38.082 | 28 38.193 | 95 24.665 | 95 24.623 |                 | 0       |
| 7/9/2004  | 15     | Freeport | Off Ridge | 15.2           | 0.0          | 28 40.320 | 28 40.112 | 95 23.893 | 95 23.894 |                 | 0       |
| 7/8/2004  | 16     | Freeport | Off Ridge | 17.5           | 17.5         | 28 40.264 | 28 40.122 | 95 21.838 | 95 21.882 | 4.5             | 0       |

|           |        |          |           | Start<br>Depth | End<br>Depth |           |           | Start     | Stop      | Shell<br>Weight | # Lane  |
|-----------|--------|----------|-----------|----------------|--------------|-----------|-----------|-----------|-----------|-----------------|---------|
| Date      | Site # | Bank     | Habitat   | ( <b>m</b> )   | ( <b>m</b> ) | Start Lat | Stop Lat  | Long      | Long      | (kg)            | Snapper |
| 7/8/2004  | 17     | Freeport | Off Ridge | 16.5           | 16.9         | 28 41.541 | 28 41.552 | 95 21.495 | 95 21.276 |                 | 0       |
| 7/8/2004  | 18     | Freeport | Off Ridge | 15.5           | 15.4         | 28 42.745 | 28 42.900 | 95 20.325 | 95 20.175 | < 1kg           | 0       |
| 7/8/2004  | 19     | Freeport | Offshore  | 19.7           | 19.7         | 28 41.543 | 28 41.392 | 95 18.503 | 95 18.480 |                 | 0       |
| 7/8/2004  | 20     | Freeport | Offshore  | 20.6           | 21.0         | 28 40.297 | 28 40.152 | 95 19.011 | 95 18.929 | 0               | 0       |
| 7/8/2004  | 21     | Freeport | Offshore  | 20.9           | 20.9         | 28 39.304 | 28 39.145 | 95 20.701 | 95 20.708 | 0               | 0       |
| 7/9/2004  | 22     | Freeport | Offshore  | 21.6           | 0.0          | 28 38.254 | 28 38.355 | 95 21.863 | 95 21.726 |                 | 0       |
| 7/9/2004  | 23     | Freeport | Offshore  | 21.5           | 21.9         | 28 37.20  | 28 37.00  | 95 23.48  | 95 23.38  | < 1kg           | 0       |
| 7/8/2004  | 24     | Freeport | Offshore  | 19.4           | 19.7         | 28 42.631 | 28 42.517 | 95 16.927 | 95 16.752 | < 1kg           | 0       |
| 7/27/2004 | 1      | Freeport | Inshore   | 17.1           | 17.2         | 28 44.451 | 28 44.495 | 95 21.749 | 95 21.670 | 0               | 0       |
| 7/27/2004 | 2      | Freeport | Inshore   | 16.6           | 16.6         | 28 39.585 | 28 39.446 | 95 25.627 | 95 25.830 | 0               | 0       |
| 7/27/2004 | 3      | Freeport | Inshore   | 13.4           | 15.2         | 28 40.708 | 28 40.482 | 95 25.326 | 95 25.590 | 0               | 0       |
| 7/27/2004 | 4      | Freeport | Inshore   | 17.1           | 16.9         | 28 41.830 | 28 42.008 | 95 23.921 | 95 23.920 | 0               | 3       |
| 7/27/2004 | 5      | Freeport | Inshore   | 16.9           | 16.8         | 28 42.883 | 28 42.948 | 95 22.748 | 95 22.628 | 0               | 0       |
| 7/27/2004 | 6      | Freeport | Inshore   | 16.8           | 16.9         | 28 43.636 | 28 43.765 | 95 21.306 | 95 21.215 | 0               | 0       |
| 7/26/2004 | 7      | Freeport | On Ridge  | 16.2           | 16.2         | 28 42.235 | 28 42.338 | 95 21.029 | 95 20.867 | 3.2             | 0       |
| 7/26/2004 | 8      | Freeport | On Ridge  | 15.7           | 15.8         | 28 41.668 | 28 41.759 | 95 22.042 | 95 21.963 | 3.6             | 0       |
| 7/27/2004 | 9      | Freeport | On Ridge  | 16.2           | 16.0         | 28 40.492 | 28 40.577 | 95 22.686 | 95 22.490 | 8.6             | 0       |
| 7/27/2004 | 10     | Freeport | On Ridge  | 15.4           | 15.4         | 28 40.259 | 28 40.392 | 95 23.502 | 95 23.398 | 0               | 0       |
| 7/27/2004 | 11     | Freeport | On Ridge  | 15.7           | 15.5         | 28 39.191 | 28 39.271 | 95 23.939 | 95 23.796 | 0               | 0       |
| 7/26/2004 | 12     | Freeport | On Ridge  | 15.2           | 15.1         | 28 43.031 | 28 44.152 | 95 18.945 | 95 18.843 | 23.4            | 2       |
| 7/26/2004 | 13     | Freeport | Off Ridge | 17.8           | 17.7         | 28 43.251 | 28 43.355 | 95 18.614 | 95 18.444 | < 1kg           | 0       |
| 7/26/2004 | 14     | Freeport | Off Ridge | 16.0           | 16.2         | 28 38.430 | 28 38.570 | 95 25.010 | 95 24.859 |                 | 0       |
| 7/27/2004 | 15     | Freeport | Off Ridge | 15.7           | 16.0         | 28 40.464 | 28 40.489 | 95 23.834 | 95 23.678 | 0               | 0       |
| 7/27/2004 | 16     | Freeport | Off Ridge | 17.4           | 17.7         | 28 40.311 | 28 40.515 | 95 21.764 | 95 21.714 | 2.5             | 0       |

|           |        |          |           | Start<br>Donth | End<br>Depth |           |           | Start     | Stop      | Shell<br>Weight | # Lane            |
|-----------|--------|----------|-----------|----------------|--------------|-----------|-----------|-----------|-----------|-----------------|-------------------|
| Date      | Site # | Bank     | Habitat   | (m)            | (m)          | Start Lat | Stop Lat  | Long      | Long      | (kg)            | # Lane<br>Snapper |
| 7/27/2004 | 17     | Freeport | Off Ridge | 16.6           | 16.5         | 28 41.621 | 28 41.809 | 95 21.525 | 95 21.615 | 1.4             | 0                 |
| 7/26/2004 | 18     | Freeport | Off Ridge | 16.5           | 16.0         | 28 42.586 | 28 42.720 | 95 20.269 | 95 20.165 | 5.9             | 0                 |
| 7/26/2004 | 19     | Freeport | Offshore  | 20.1           | 19.8         | 28 41.671 | 28 41.828 |           | 95 18.326 | < 1kg           | 0                 |
| 7/26/2004 | 20     | Freeport | Offshore  | 20.4           | 20.6         | 28 40.358 | 28 40.533 |           | 95 18.973 | < 1kg           | 0                 |
| 7/26/2004 | 21     | Freeport | Offshore  | 21.2           | 20.4         | 28 39.389 | 28 39.570 | 95 20.726 | 95 20.701 | 0               | 0                 |
| 7/26/2004 | 22     | Freeport | Offshore  | 21.8           | 21.0         | 28 38.132 | 28 38.190 | 95 21.971 | 95 21.813 | 0               | 0                 |
| 7/26/2004 | 23     | Freeport | Offshore  | 21.8           | 21.6         | 28 37.208 | 28 37.325 | 95 23.428 | 95 23.290 | 0               | 0                 |
| 7/26/2004 | 24     | Freeport | Offshore  | 19.5           | 19.2         | 28 42.618 | 28 42.749 | 95 16.896 | 95 16.777 | < 1kg           | 0                 |
| 8/10/2004 | 1      | Freeport | Inshore   | 16.8           | 16.8         | 28 44.217 | 28 44.020 | 95 21.925 | 95 22.048 | < 1kg           | 0                 |
| 8/10/2004 | 2      | Freeport | Inshore   | 16.3           | 16.2         | 28 39.691 | 28 39.485 | 95 25.623 | 95 25.742 | 0               | 0                 |
| 8/10/2004 | 3      | Freeport | Inshore   | 16.3           | 16.5         | 28 40.852 | 28 40.919 | 95 25.190 | 95 25.412 | 0               | 0                 |
| 8/10/2004 | 4      | Freeport | Inshore   | 16.6           | 16.5         | 28 41.991 | 28 42.055 | 95 24.098 | 95 24.328 | 0               | 0                 |
| 8/10/2004 | 5      | Freeport | Inshore   | 16.5           | 16.3         | 28 42.870 | 28 42.808 | 95 22.760 | 95 22.617 | 0               | 0                 |
| 8/10/2004 | 6      | Freeport | Inshore   | 16.3           | 16.3         | 28 43.466 | 28 43.273 | 95 21.560 | 95 21.694 | 0               | 0                 |
| 8/10/2004 | 7      | Freeport | On Ridge  | 15.7           | 15.8         | 28 42.223 | 28 42.223 | 95 21.213 | 95 21.040 |                 | 2                 |
| 8/10/2004 | 8      | Freeport | On Ridge  | 15.4           | 16.0         | 28 41.619 | 28 41.445 | 95 22.083 | 95 22.039 | 2.5             | 3                 |
| 8/10/2004 | 9      | Freeport | On Ridge  | 15.4           | 14.9         | 28 40.441 | 28 40.253 | 95 22.662 | 95 22.676 | 15              | 0                 |
| 8/10/2004 | 10     | Freeport | On Ridge  | 14.9           | 14.9         | 28 40.123 | 28 39.900 | 95 23.594 | 95 23.670 | 0               | 4                 |
| 8/10/2004 | 11     | Freeport | On Ridge  | 15.4           | 15.5         | 28 39.122 | 28 39.004 | 95 24.061 | 95 24.276 | < 1kg           | 0                 |
| 8/10/2004 | 12     | Freeport | On Ridge  | 15.1           | 15.4         | 28 44.011 | 28 44.042 | 95 18.873 | 95 18.742 | 2               | 2                 |
| 8/10/2004 | 13     | Freeport | Off Ridge | 17.4           | 17.7         | 28 43.231 | 28 43.232 | 95 18.689 | 95 18.559 | 1.8             | 0                 |
| 8/10/2004 | 14     | Freeport | Off Ridge | 16             | 16.3         | 28 38.427 | 28 38.230 | 95 25.202 | 95 25.368 | 3.4             | 6                 |
| 8/10/2004 | 15     | Freeport | Off Ridge | 15.2           | 15.4         | 28 40.285 | 28 40.129 | 95 23.919 | 95 24.083 |                 | 0                 |
| 8/10/2004 | 16     | Freeport | Off Ridge | 16.8           | 17.1         | 28 40.282 | 28 40.099 | 95 22.000 | 95 22.077 | 5.2             | 0                 |

|           |        |          |           | Start<br>Denth | End<br>Depth |           |           | Start     | Stop      | Shell<br>Weight | # Lane  |
|-----------|--------|----------|-----------|----------------|--------------|-----------|-----------|-----------|-----------|-----------------|---------|
| Date      | Site # | Bank     | Habitat   | (m)            | (m)          | Start Lat | Stop Lat  | Long      | Long      | (kg)            | Snapper |
| 8/10/2004 | 17     | Freeport | Off Ridge | 16.3           | 16.6         | 28 41.449 | 28 41.262 | 95 21.580 | 95 21.556 | 0               | 0       |
| 8/10/2004 | 18     | Freeport | Off Ridge | 15.8           | 16.3         | 28 42.551 | 28 42.482 | 95 20.471 | 95 20.364 | 2.7             | 0       |
| 8/11/2004 | 19     | Freeport | Offshore  | 20.0           | 20.1         | 28 41.561 | 28 41.433 | 95 18.579 | 95 18.731 |                 | 0       |
| 8/11/2004 | 20     | Freeport | Offshore  | 20.7           | 20.6         | 28 40.214 | 28 40.067 | 95 19.158 | 95 19.312 | < 1kg           | 0       |
| 8/11/2004 | 21     | Freeport | Offshore  | 20.7           | 20.7         | 28 39.267 | 28 39.117 | 95 20.849 | 95 20.977 | < 1kg           | 1       |
| 8/11/2004 | 22     | Freeport | Offshore  | 21.2           | 21.5         | 28 38.133 | 28 37.994 | 95 21.918 | 95 22.021 | 0               | 2       |
| 8/11/2004 | 23     | Freeport | Offshore  | 21.2           | 21.5         | 28 37.138 | 28 36.916 | 95 23.507 | 95 23.617 |                 | 0       |
| 8/11/2004 | 24     | Freeport | Offshore  | 19.7           | 20.0         | 28 42.522 | 28 42.285 | 95 16.909 | 95 16.922 |                 | 0       |
| 9/2/2004  | 1      | Freeport | Inshore   | 16.6           | 16.6         | 28 44.255 | 28 44.087 | 95 21.867 | 95 2.959  |                 | 16      |
| 9/1/2004  | 2      | Freeport | Inshore   | 16.6           | 16.6         | 28 39.726 | 28 39.846 | 95 25.434 | 95 25.353 | < 1kg           | 1       |
| 9/1/2004  | 3      | Freeport | Inshore   | 16.8           | 16.8         | 28 40.854 | 28 40.915 | 95 25.011 | 95 24.888 |                 | 0       |
| 9/1/2004  | 4      | Freeport | Inshore   | 16.9           | 16.5         | 28 41.878 | 28 41.958 | 95 23.856 | 95 23.761 |                 | 0       |
| 9/2/2004  | 5      | Freeport | Inshore   | 16.5           | 16.5         | 28 42.897 | 28 42.869 | 95 22.621 | 95 22.443 |                 | 0       |
| 9/2/2004  | 6      | Freeport | Inshore   | 16.5           | 16.6         | 28 43.695 | 28 43.804 | 95 21.448 | 95 21.625 |                 | 0       |
| 9/2/2004  | 7      | Freeport | On ridge  | 16.2           | 16.2         | 28 42.248 | 28 42.347 | 95 21.012 | 95 20.872 |                 | 2       |
| 9/2/2004  | 8      | Freeport | On ridge  | 16.2           | 16.6         | 28 41.488 | 28 41.326 | 95 21.973 | 95 21.893 |                 | 0       |
| 9/2/2004  | 9      | Freeport | On ridge  | 15.7           | 15.2         | 28 40.368 | 28 40.290 | 95 22.936 | 95 23.137 | 13.2            | 0       |
| 9/1/2004  | 10     | Freeport | On ridge  | 15.1           | 15.2         | 28 40.154 | 28 40.310 | 95 23.454 | 95 23.418 |                 | 0       |
| 9/1/2004  | 11     | Freeport | Off ridge | 15.5           | 15.4         | 28 39.162 | 28 39.287 | 95 24.131 | 95 24.064 |                 | 0       |
| 9/2/2004  | 12     | Freeport | On ridge  | 15.1           | 15.5         | 28 43.998 | 28 43.810 | 95 18.894 | 95 18.812 | 19.5            | 0       |
| 9/2/2004  | 13     | Freeport | Off ridge | 17.8           | 18.1         | 28 43.159 | 28 42.956 | 95 18.616 | 95 18.547 |                 | 0       |
| 9/1/2004  | 14     | Freeport | Off ridge | 16.6           | 16.6         | 28 38.415 | 28 38.498 | 95 24.985 | 95 24.896 | 2.7             | 0       |
| 9/1/2004  | 15     | Freeport | Off ridge | 15.5           | 15.5         | 28 40.455 | 28 40.588 | 95 23.758 | 95 23.713 |                 | 0       |
| 9/2/2004  | 16     | Freeport | Off ridge | 17.4           | 17.8         | 28 40.253 | 28 40.072 | 95 21.905 | 95 22.000 | 3.6             | 0       |

|           |        |          |           | Start | End       |           |           | <b>S</b> 44   | 64           | Shell  | # <b>T</b> |
|-----------|--------|----------|-----------|-------|-----------|-----------|-----------|---------------|--------------|--------|------------|
| Date      | Site # | Bank     | Habitat   | -     | Depth (m) | Start Lat | Stop I at | Start<br>Long | Stop<br>Long | Weight | # Lane     |
|           |        |          |           | (m)   | (m)       | Start Lat | Stop Lat  | Long          | Long         | (kg)   | Snapper    |
| 9/2/2004  | 17     | Freeport | Off ridge | 16.6  | 16.6      | 28 41.398 | 28 41.263 | 95 21.633     | 95 21.784    |        | 1          |
| 9/2/2004  | 18     | Freeport | Off ridge | 16.2  | 16.5      | 28 42.495 | 28 42.356 | 95 20.461     | 95 20.629    |        | 0          |
| 9/1/2004  | 19     | Freeport | Offshore  | 19.5  | 19.5      | 28 41.612 | 28 41.556 | 95 18.773     | 95 19.011    | < 1kg  | 1          |
| 9/1/2004  | 20     | Freeport | Offshore  | 20.6  | 20.4      | 28 40.231 | 28 40.185 | 95 19.331     | 95 19.571    |        | 0          |
| 9/1/2004  | 21     | Freeport | Offshore  | 20.4  | 21.2      | 28 39.277 | 28 39.167 | 95 20.950     | 95 21.186    |        | 0          |
| 9/1/2004  | 22     | Freeport | Offshore  | 21.3  | 21.2      | 28 38.133 | 28 38.213 | 95 25.931     | 95 21.826    |        | 3          |
| 9/1/2004  | 23     | Freeport | Offshore  | 21.3  | 21.5      | 28 37.282 | 28 37.374 | 95 23.330     | 95 23.201    |        | 0          |
| 9/1/2004  | 24     | Freeport | Offshore  | 19.2  | 19.4      | 28 42.600 | 28 42.70  | 95 17.06      | 95 17.018    | < 1kg  | 0          |
| 9/28/2004 | 1      | Freeport | Inshore   | 56.5  | 56.5      | 28 44.323 | 28 44.367 | 95 21.664     | 95 21.473    | < 1kg  | 0          |
| 9/29/2004 | 2      | Freeport | Inshore   | 53.5  | 53.5      | 28 39.821 | 28 39.822 | 95 25.4       | 95 25.180    |        | 1          |
| 9/29/2004 | 3      | Freeport | Inshore   | 55    | 55        | 28 40.860 | 28 40.851 | 95 25.992     | 95 24.776    |        | 0          |
| 9/29/2004 | 4      | Freeport | Inshore   | 54.5  | 55        | 28 41.968 | 28 41.986 | 95 23.818     | 95 23.582    |        | 0          |
| 9/29/2004 | 5      | Freeport | Inshore   | 54.5  | 54.5      | 28 42.853 | 28 42.814 | 95 22.583     | 95 22.359    |        | 0          |
| 9/28/2004 | 6      | Freeport | Inshore   | 55.5  | 55.5      | 28 43.670 | 28 43.816 | 95 21.246     | 95 21.076    |        | 0          |
| 9/28/2004 | 7      | Freeport | On ridge  | 54.5  | 53.5      | 28 42.293 | 28 42.434 | 95 21.018     | 95 20.888    |        | 0          |
| 9/29/2004 | 8      | Freeport | On ridge  | 52    | 53.5      | 28 41.643 | 28 41.577 | 95 21.956     | 95 21.770    | < 1kg  | 1          |
| 9/29/2004 | 9      | Freeport | On ridge  | 52    | 51.5      | 28 40.449 | 28 40.421 | 95 22.669     | 95 22.467    | 9.1    | 0          |
| 9/29/2004 | 10     | Freeport | On ridge  | 50    | 51.5      | 28 40.185 | 28 40.229 | 95 23.384     | 95 23.177    | < 1kg  | 0          |
| 9/29/2004 | 11     | Freeport | Off ridge | 57    | 55        | 28 39.195 | 28 39.153 | 95 23.923     | 95 28.709    | < 1kg  | 0          |
| 9/28/2004 | 12     | Freeport | On ridge  | 52    | 53.5      | 28 44.007 | 28 44.018 | 95 18.828     | 95 18.609    | 15.9   | 4          |
| 9/28/2004 | 13     | Freeport | Off ridge | 60    | 58.9      | 28 43.271 | 28 43.403 | 95 18.583     | 95 18.461    |        | 0          |
| 9/29/2004 | 14     | Freeport | Off ridge | 55    | 56        | 28 38.430 | 28 38.412 | 95 25.002     | 95 24.805    |        | 0          |
| 9/29/2004 | 15     | Freeport | Off ridge | 51.5  | 50.5      | 28 40.391 | 28 40.350 | 95 29.739     | 95 23.545    |        | 0          |
| 9/29/2004 | 16     | Freeport | Off ridge | 57.5  | 59        | 28 40.326 | 28 40.385 | 95 21.776     | 95 21.548    | 4.1    | 1          |

|           |        |          |           | Start      | End          |           |           |           |           | Shell  |         |
|-----------|--------|----------|-----------|------------|--------------|-----------|-----------|-----------|-----------|--------|---------|
|           |        |          |           | Depth      | Depth        |           |           | Start     | Stop      | Weight | # Lane  |
| Date      | Site # | Bank     | Habitat   | <b>(m)</b> | ( <b>m</b> ) | Start Lat | Stop Lat  | Long      | Long      | (kg)   | Snapper |
| 9/29/2004 | 17     | Freeport | Off ridge | 54.5       | 55           | 28 41.514 | 28 41.505 | 95 21.421 | 95 21.209 |        | 0       |
| 9/28/2004 | 18     | Freeport | Off ridge | 54.5       | 55           | 28 42.538 | 28 42.641 | 95 20.293 | 95 20.136 | 9.1    | 0       |
| 9/28/2004 | 19     | Freeport | Offshore  | 66.5       | 66.0         | 28 41.563 | 41.554    | 95 18.447 | 95 18.261 |        | 1       |
| 9/28/2004 | 20     | Freeport | Offshore  | 69         | 69           | 28 40.287 | 28 40.453 | 95 19.078 | 95 19.041 |        | 0       |
| 9/28/2004 | 21     | Freeport | Offshore  | 69         | 69           | 28 39.402 | 28 39.516 | 95 20.875 | 95 20.746 |        | 1       |
| 9/28/2004 | 22     | Freeport | Offshore  | 71         | 71           | 28 38.160 | 28 38.259 | 95 21.964 | 95 21.841 |        | 0       |
| 9/28/2004 | 23     | Freeport | Offshore  | 70.5       | 70.5         | 28 37.065 | 28 37.009 | 95 23.779 | 95 23.995 |        | 0       |
| 9/28/2004 | 24     | Freeport | Offshore  | 64.5       | 65           | 28 42.517 | 28 42.438 | 95 16.955 | 95 17.143 |        | 1       |

|          |        |          |          |              | ~                         | ~                 |              | Water        |           |
|----------|--------|----------|----------|--------------|---------------------------|-------------------|--------------|--------------|-----------|
| Date     | Site # | Bank     | Habitat  | Depth<br>(m) | n Conductivity<br>(mS/cm) | Salinity<br>(ppt) | DO<br>(mg/L) | Temp<br>(oC) | Seas (ft) |
| 7/5/2000 | 1      | Freeport | Ridge    |              |                           |                   |              |              |           |
| 7/5/2000 | 2      | Freeport | Ridge    |              |                           | 36.3              |              | 27.5         |           |
| 7/5/2000 | 3      | Freeport | Offshore |              |                           | 34.1              |              | 27.7         |           |
| 7/5/2000 | 4      | Freeport | Offshore |              |                           | 34.1              |              | 27.9         |           |
| 7/5/2000 | 5      | Freeport | Ridge    |              |                           |                   |              |              |           |
| 7/5/2000 | 6      | Freeport | Offshore |              |                           |                   |              |              |           |
| 7/5/2000 | 7      | Freeport | Offshore |              |                           |                   |              |              |           |
| 7/5/2000 | 8      | Freeport | Ridge    |              |                           | 34.1              |              | 28.2         |           |
| 7/5/2000 | 9      | Freeport | Ridge    |              |                           | 34.3              |              | 27.4         |           |
| 7/5/2000 | 10     | Freeport | Ridge    |              |                           |                   |              |              |           |
| 7/5/2000 | 11     | Freeport | Offshore |              |                           | 34.3              |              | 27.3         |           |
| 7/5/2000 | 12     | Freeport | Offshore |              |                           | 34.8              |              | 26.1         |           |
| 7/5/2000 | 13     | Freeport | Inshore  |              |                           |                   |              |              |           |
| 7/5/2000 | 14     | Freeport | Inshore  |              |                           |                   |              |              |           |
| 7/5/2000 | 15     | Freeport | Inshore  |              |                           |                   |              |              |           |
| 7/5/2000 | 16     | Freeport | Inshore  |              |                           | 34.2              |              | 28.1         |           |
| 7/5/2000 | 17     | Freeport | Inshore  |              |                           |                   |              |              |           |
| 7/5/2000 | 18     | Freeport | Inshore  |              |                           |                   |              |              |           |

|           |        |          |          |              |              |          |        | Water |           |
|-----------|--------|----------|----------|--------------|--------------|----------|--------|-------|-----------|
|           |        |          |          | Depth        | Conductivity | Salinity | DO     | Temp  |           |
| Date      | Site # | Bank     | Habitat  | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | (oC)  | Seas (ft) |
| 7/17/2000 | 1      | Freeport | Ridge    |              |              |          |        |       |           |
| 7/17/2000 | 2      | Freeport | Ridge    |              |              | 37.4     |        | 27.5  |           |
| 7/17/2000 | 3      | Freeport | Offshore |              |              | 34.7     |        | 27.5  |           |
| 7/17/2000 | 4      | Freeport | Offshore |              |              | 34.6     |        | 27.4  |           |
| 7/17/2000 | 5      | Freeport | Ridge    |              |              |          |        |       |           |
| 7/17/2000 | 6      | Freeport | Offshore |              |              | 35.1     |        | 27.1  |           |
| 7/17/2000 | 7      | Freeport | Offshore |              |              |          |        |       |           |
| 7/17/2000 | 8      | Freeport | Ridge    |              |              |          |        |       |           |
| 7/17/2000 | 9      | Freeport | Ridge    |              |              |          |        |       |           |
| 7/17/2000 | 10     | Freeport | Ridge    |              |              | 34.9     |        | 26.8  |           |
| 7/17/2000 | 11     | Freeport | Offshore |              |              | 35       |        | 26    |           |
| 7/17/2000 | 12     | Freeport | Offshore |              |              |          |        |       |           |
| 7/17/2000 | 13     | Freeport | Inshore  |              |              |          |        |       |           |
| 7/17/2000 | 14     | Freeport | Inshore  |              |              | 35.3     |        | 26.8  |           |
| 7/17/2000 | 15     | Freeport | Inshore  |              |              | 35       |        | 27.6  |           |
| 7/17/2000 | 16     | Freeport | Inshore  |              |              | 34.8     |        | 27.7  |           |
| 7/17/2000 | 17     | Freeport | Inshore  |              |              |          |        |       |           |
| 7/17/2000 | 18     | Freeport | Inshore  |              |              |          |        |       |           |

| DateSite #BankHabitatConductivity<br>(m)Salinity<br>(ppt)DO<br>(mg/L)Temp $8/17/2000$ 1FreeportRidge $34.7$ $5.3$ $29.12$ $8/17/2000$ 2FreeportRidge $34.7$ $5.3$ $29.12$ $8/17/2000$ 3FreeportOffshore $34.7$ $5.54$ $29.11$ $8/17/2000$ 4FreeportOffshore $34.7$ $5.54$ $29.13$ $8/17/2000$ 5FreeportRidge $34.7$ $5.45$ $29.13$ $8/17/2000$ 6FreeportOffshore $34.7$ $5.85$ $29.13$ $8/17/2000$ 6FreeportOffshore $34.7$ $5.36$ $28.89$ $8/17/2000$ 7FreeportRidge $34.7$ $5.36$ $28.89$ $8/17/2000$ 8FreeportRidge $34.9$ $5.31$ $29.13$ $8/17/2000$ 9FreeportRidge $34.9$ $5.91$ $29$ $8/17/2000$ 10bFreeportRidge $34.9$ $5.91$ $29$ $8/17/2000$ 11FreeportOffshore $34.9$ $5.92$ $28.28$ $8/17/2000$ 12FreeportOffshore $34.9$ $5.13$ $29.22$ $8/17/2000$ 13FreeportInshore $34.8$ $5.23$ $29.11$ $8/17/2000$ 14FreeportInshore $34.8$ $5.23$ $29.11$ $8/17/2000$ 15FreeportInshore $34.8$ $5.23$ $29.11$ <                                                                                                                                                                          |           |        |          |          |              |              |          |        | Water         |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|----------|----------|--------------|--------------|----------|--------|---------------|-----------|
| 8/17/2000       1       Freeport       Ridge       34.7       5.3       29.12         8/17/2000       2       Freeport       Ridge       34.7       5.3       29.12         8/17/2000       3       Freeport       Offshore       34.7       5.54       29.11         8/17/2000       4       Freeport       Offshore       34.7       5.54       29.11         8/17/2000       5       Freeport       Offshore       34.7       5.45       29.13         8/17/2000       6       Freeport       Offshore       34.7       5.85       29.15         8/17/2000       6       Freeport       Offshore       34.7       5.36       28.89         8/17/2000       7       Freeport       Offshore       34.7       5.36       28.89         8/17/2000       8       Freeport       Ridge       34.9       5.31       29.13         8/17/2000       10b       Freeport       Ridge       34.9       5.91       29         8/17/2000       11       Freeport       Ridge       34.9       5.9       28.28         8/17/2000       12       Freeport       Offshore       35       5.6       26.87 |           |        |          |          | Depth        | Conductivity | Salinity | DO     | Temp          |           |
| 8/17/20002FreeportRidge $8/17/2000$ 3FreeportOffshore $34.7$ $5.54$ $29.11$ $8/17/2000$ 4FreeportOffshore $34.7$ $6.37$ $28.82$ $8/17/2000$ 5FreeportRidge $34.7$ $5.45$ $29.13$ $8/17/2000$ 6FreeportOffshore $34.7$ $5.85$ $29.15$ $8/17/2000$ 6FreeportOffshore $34.7$ $5.36$ $28.89$ $8/17/2000$ 7FreeportRidge $34.9$ $5.31$ $29.13$ $8/17/2000$ 8FreeportRidge $34.9$ $5.91$ $29$ $8/17/2000$ 9FreeportRidge $34.9$ $5.91$ $29$ $8/17/2000$ 11FreeportOffshore $34.9$ $5.91$ $29$ $8/17/2000$ 12FreeportOffshore $34.9$ $5.28$ $29.11$ $8/17/2000$ 13FreeportInshore $34.9$ $5.13$ $29.22$ $8/17/2000$ 14FreeportInshore $34.8$ $5.23$ $29.11$ $8/17/2000$ 15FreeportInshore $34.8$ $5.07$ $29.1$ $8/17/2000$ 16FreeportInshore $34.8$ $5.07$ $29.1$ $8/17/2000$ 17FreeportInshore $34.8$ $5.07$ $29.1$ $8/17/2000$ 16FreeportInshore $34.8$ $5.07$ $29.1$ $8/17/2000$ 16FreeportInshore $34.8$ <td< th=""><th>Date</th><th>Site #</th><th>Bank</th><th>Habitat</th><th>(<b>m</b>)</th><th>(mS/cm)</th><th>(ppt)</th><th>(mg/L)</th><th>(<b>oC</b>)</th><th>Seas (ft)</th></td<>      | Date      | Site # | Bank     | Habitat  | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | ( <b>oC</b> ) | Seas (ft) |
| 8/17/20003Freeport<br>FreeportOffshore34.75.5429.118/17/20004Freeport<br>FreeportRidge34.76.3728.828/17/20005Freeport<br>FreeportRidge34.75.4529.138/17/20006Freeport<br>FreeportOffshore34.75.8529.158/17/20007Freeport<br>FreeportOffshore34.75.3628.898/17/20008Freeport<br>FreeportRidge34.95.91298/17/20009Freeport<br>FreeportRidge34.95.91298/17/200011Freeport<br>FreeportOffshore34.95.928.288/17/200012Freeport<br>FreeportOffshore34.95.2829.118/17/200013Freeport<br>FreeportInshore34.95.1329.228/17/200014Freeport<br>FreeportInshore34.85.2329.118/17/200016Freeport<br>FreeportInshore34.85.0729.18/17/200016Freeport<br>FreeportInshore34.85.0729.18/17/200016Freeport<br>FreeportInshore34.85.0729.18/17/200017Freeport<br>Inshore34.85.0729.18/17/200017Freeport<br>Inshore34.85.0729.1                                                                                                                                                                                                                                                                                  | 8/17/2000 | 1      | Freeport | Ridge    |              |              | 34.7     | 5.3    | 29.12         |           |
| 8/17/20004Freeport<br>FreeportOffshore34.76.37<br>6.37<br>6.37<br>28.828/17/20005Freeport<br>FreeportRidge34.7<br>34.7<br>5.85<br>29.155.85<br>29.158/17/20006Freeport<br>FreeportOffshore34.7<br>34.7<br>5.36<br>28.895.85<br>29.138/17/20007Freeport<br>FreeportRidge34.9<br>34.9<br>5.31<br>29.1329.138/17/20009Freeport<br>FreeportRidge34.9<br>34.95.91<br>298/17/200010bFreeport<br>FreeportRidge34.9<br>34.95.91<br>298/17/200011Freeport<br>FreeportOffshore34.9<br>34.95.91<br>298/17/200012Freeport<br>InshoreOffshore34.9<br>34.95.28<br>29.118/17/200013Freeport<br>InshoreInshore34.9<br>34.95.13<br>29.228/17/200015Freeport<br>Inshore34.8<br>34.85.23<br>29.118/17/200016Freeport<br>Inshore34.8<br>34.85.07<br>29.18/17/200017Freeport<br>Inshore34.8<br>34.85.07<br>29.1                                                                                                                                                                                                                                                                                                  | 8/17/2000 | 2      | Freeport | Ridge    |              |              |          |        |               |           |
| 8/17/20005FreeportRidge $34.7$ $5.45$ $29.13$ $8/17/2000$ 6FreeportOffshore $34.7$ $5.85$ $29.15$ $8/17/2000$ 7FreeportOffshore $34.7$ $5.36$ $28.89$ $8/17/2000$ 8FreeportRidge $34.9$ $5.31$ $29.13$ $8/17/2000$ 9FreeportRidge $34.9$ $5.91$ $29$ $8/17/2000$ 10bFreeportRidge $34.9$ $5.91$ $29$ $8/17/2000$ 11FreeportOffshore $34.9$ $5.9$ $28.28$ $8/17/2000$ 12FreeportOffshore $35$ $5.6$ $26.87$ $8/17/2000$ 13FreeportInshore $34.9$ $5.13$ $29.22$ $8/17/2000$ 14FreeportInshore $34.8$ $5.23$ $29.11$ $8/17/2000$ 15FreeportInshore $34.8$ $5.07$ $29.1$ $8/17/2000$ 16FreeportInshore $34.8$ $5.07$ $29.1$ $8/17/2000$ 17FreeportInshore $34.8$ $5.07$ $29.1$                                                                                                                                                                                                                                                                                                                                                                                                                 | 8/17/2000 | 3      | Freeport | Offshore |              |              | 34.7     | 5.54   | 29.11         |           |
| 8/17/20006FreeportOffshore $34.7$ $5.85$ $29.15$ $8/17/2000$ 7FreeportOffshore $34.7$ $5.36$ $28.89$ $8/17/2000$ 8FreeportRidge $34.9$ $5.31$ $29.13$ $8/17/2000$ 9FreeportRidge $34.9$ $5.91$ $29$ $8/17/2000$ 10bFreeportRidge $34.9$ $5.91$ $29$ $8/17/2000$ 11FreeportOffshore $34.9$ $5.9$ $28.28$ $8/17/2000$ 12FreeportOffshore $34.9$ $5.6$ $26.87$ $8/17/2000$ 13FreeportInshore $34.9$ $5.13$ $29.22$ $8/17/2000$ 14FreeportInshore $34.8$ $5.23$ $29.11$ $8/17/2000$ 15FreeportInshore $34.8$ $5.07$ $29.1$ $8/17/2000$ 16FreeportInshore $34.8$ $5.07$ $29.1$ $8/17/2000$ 17FreeportInshore $34.8$ $5.07$ $29.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8/17/2000 | 4      | Freeport | Offshore |              |              | 34.7     | 6.37   | 28.82         |           |
| 8/17/20007Freeport<br>FreeportOffshore<br>Ridge $34.7$ $5.36$ $28.89$ $8/17/2000$ 8Freeport<br>FreeportRidge $34.9$ $5.31$ $29.13$ $8/17/2000$ 9Freeport<br>FreeportRidge $34.9$ $5.91$ $29$ $8/17/2000$ 10bFreeport<br>FreeportRidge $34.9$ $5.91$ $29$ $8/17/2000$ 11Freeport<br>FreeportOffshore $34.9$ $5.9$ $28.28$ $8/17/2000$ 12Freeport<br>FreeportOffshore $35$ $5.6$ $26.87$ $8/17/2000$ 13Freeport<br>FreeportInshore $34.9$ $5.13$ $29.22$ $8/17/2000$ 14Freeport<br>FreeportInshore $34.8$ $5.23$ $29.11$ $8/17/2000$ 16Freeport<br>FreeportInshore $34.8$ $5.07$ $29.1$ $8/17/2000$ 17Freeport<br>InshoreInshore $34.8$ $5.07$ $29.1$                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8/17/2000 | 5      | Freeport | Ridge    |              |              | 34.7     | 5.45   | 29.13         |           |
| 8/17/2000       8       Freeport       Ridge         8/17/2000       9       Freeport       Ridge         8/17/2000       10b       Freeport       Ridge         8/17/2000       10b       Freeport       Ridge         8/17/2000       11       Freeport       Offshore         8/17/2000       12       Freeport       Offshore         8/17/2000       13       Freeport       Inshore         8/17/2000       14       Freeport       Inshore         8/17/2000       15       Freeport       Inshore         8/17/2000       16       Freeport       Inshore         8/17/2000       16       Freeport       Inshore         8/17/2000       17       Freeport       Inshore                                                                                                                                                                                                                                                                                                                                                                                                           | 8/17/2000 | 6      | Freeport | Offshore |              |              | 34.7     | 5.85   | 29.15         |           |
| 8/17/2000       9       Freeport       Ridge         8/17/2000       10b       Freeport       Ridge       34.9       5.91       29         8/17/2000       11       Freeport       Offshore       34.9       5.9       28.28         8/17/2000       12       Freeport       Offshore       35       5.6       26.87         8/17/2000       13       Freeport       Inshore       34.9       5.13       29.22         8/17/2000       14       Freeport       Inshore       34.8       5.23       29.11         8/17/2000       15       Freeport       Inshore       34.8       5.07       29.11         8/17/2000       16       Freeport       Inshore       34.8       5.07       29.11         8/17/2000       16       Freeport       Inshore       34.8       5.07       29.1         8/17/2000       17       Freeport       Inshore       34.8       5.07       29.1                                                                                                                                                                                                              | 8/17/2000 | 7      | Freeport | Offshore |              |              | 34.7     | 5.36   | 28.89         |           |
| 8/17/2000       10b       Freeport       Ridge       34.9       5.91       29         8/17/2000       11       Freeport       Offshore       34.9       5.9       28.28         8/17/2000       12       Freeport       Offshore       35       5.6       26.87         8/17/2000       13       Freeport       Inshore       34.9       5.13       29.22         8/17/2000       14       Freeport       Inshore       34.8       5.23       29.11         8/17/2000       15       Freeport       Inshore       34.8       5.07       29.11         8/17/2000       16       Freeport       Inshore       34.8       5.07       29.1         8/17/2000       17       Freeport       Inshore       34.8       5.07       29.1                                                                                                                                                                                                                                                                                                                                                             | 8/17/2000 | 8      | Freeport | Ridge    |              |              | 34.9     | 5.31   | 29.13         |           |
| 8/17/200011FreeportOffshore34.95.928.288/17/200012FreeportOffshore355.626.878/17/200013FreeportInshore34.95.2829.118/17/200014FreeportInshore34.95.1329.228/17/200015FreeportInshore34.85.2329.118/17/200016FreeportInshore34.85.0729.18/17/200017FreeportInshore34.85.0729.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8/17/2000 | 9      | Freeport | Ridge    |              |              |          |        |               |           |
| 8/17/2000       12       Freeport       Offshore       35       5.6       26.87         8/17/2000       13       Freeport       Inshore       34.9       5.28       29.11         8/17/2000       14       Freeport       Inshore       34.9       5.13       29.22         8/17/2000       15       Freeport       Inshore       34.8       5.23       29.11         8/17/2000       16       Freeport       Inshore       34.8       5.07       29.1         8/17/2000       17       Freeport       Inshore       34.8       5.07       29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8/17/2000 | 10b    | Freeport | Ridge    |              |              | 34.9     | 5.91   | 29            |           |
| 8/17/2000       13       Freeport       Inshore       34.9       5.28       29.11         8/17/2000       14       Freeport       Inshore       34.9       5.13       29.22         8/17/2000       15       Freeport       Inshore       34.8       5.23       29.11         8/17/2000       16       Freeport       Inshore       34.8       5.07       29.1         8/17/2000       17       Freeport       Inshore       34.8       5.07       29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8/17/2000 | 11     | Freeport | Offshore |              |              | 34.9     | 5.9    | 28.28         |           |
| 8/17/2000       14       Freeport       Inshore       34.9       5.13       29.22         8/17/2000       15       Freeport       Inshore       34.8       5.23       29.11         8/17/2000       16       Freeport       Inshore       34.8       5.07       29.1         8/17/2000       17       Freeport       Inshore       34.8       5.07       29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8/17/2000 | 12     | Freeport | Offshore |              |              | 35       | 5.6    | 26.87         |           |
| 8/17/2000       15       Freeport       Inshore       34.8       5.23       29.11         8/17/2000       16       Freeport       Inshore       34.8       5.07       29.1         8/17/2000       17       Freeport       Inshore       34.8       5.07       29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8/17/2000 | 13     | Freeport | Inshore  |              |              | 34.9     | 5.28   | 29.11         |           |
| 8/17/2000         16         Freeport         Inshore         34.8         5.07         29.1           8/17/2000         17         Freeport         Inshore         34.8         5.07         29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8/17/2000 | 14     | Freeport | Inshore  |              |              | 34.9     | 5.13   | 29.22         |           |
| 8/17/2000 17 Freeport Inshore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8/17/2000 | 15     | Freeport | Inshore  |              |              | 34.8     | 5.23   | 29.11         |           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/17/2000 | 16     | Freeport | Inshore  |              |              | 34.8     | 5.07   | 29.1          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8/17/2000 | 17     | Freeport | Inshore  |              |              |          |        |               |           |
| 8/17/2000 18 Freeport Inshore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8/17/2000 | 18     | Freeport | Inshore  |              |              |          |        |               |           |

|           |        |          |          | Depth        | Conductivity | Salinity | DO     | Water<br>Temp |           |
|-----------|--------|----------|----------|--------------|--------------|----------|--------|---------------|-----------|
| Date      | Site # | Bank     | Habitat  | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | ( <b>oC</b> ) | Seas (ft) |
| 8/31/2000 | 1      | Freeport | Ridge    |              |              |          |        |               |           |
| 8/31/2000 | 2      | Freeport | Ridge    |              |              | 35       | 5.53   | 29.85         |           |
| 8/31/2000 | 3      | Freeport | Offshore |              |              |          |        |               |           |
| 8/31/2000 | 4      | Freeport | Offshore |              |              | 34.9     | 5.81   | 29.4          |           |
| 8/31/2000 | 5      | Freeport | Ridge    |              |              | 35       | 5.83   | 29.65         |           |
| 8/31/2000 | 6      | Freeport | Offshore |              |              | 34.9     | 5.74   | 29.7          |           |
| 8/31/2000 | 7      | Freeport | Offshore |              |              | 34.9     | 5.71   | 29.42         |           |
| 8/31/2000 | 8      | Freeport | Ridge    |              |              | 34.9     | 5.56   | 29.69         |           |
| 8/31/2000 | 9      | Freeport | Ridge    |              |              | 34.8     | 5.74   | 29.66         |           |
| 8/31/2000 | 10b    | Freeport | Ridge    |              |              |          |        |               |           |
| 8/31/2000 | 11     | Freeport | Offshore |              |              | 34.9     | 5.79   | 29.55         |           |
| 8/31/2000 | 12     | Freeport | Offshore |              |              |          |        |               |           |
| 8/31/2000 | 13     | Freeport | Inshore  |              |              |          |        |               |           |
| 8/31/2000 | 14     | Freeport | Inshore  |              |              | 34.8     | 5.63   | 29.94         |           |
| 8/31/2000 | 15     | Freeport | Inshore  |              |              |          |        |               |           |
| 8/31/2000 | 16     | Freeport | Inshore  |              |              |          |        |               |           |
| 8/31/2000 | 17     | Freeport | Inshore  |              |              |          |        |               |           |
| 8/31/2000 | 18     | Freeport | Inshore  |              |              | 35       | 5.37   | 29.89         |           |

|           |        |        |          |         |              |              |          |        | Water |           |
|-----------|--------|--------|----------|---------|--------------|--------------|----------|--------|-------|-----------|
| _         | ~      |        |          |         | Depth        | Conductivity | Salinity | DO     | Temp  | ~ (*)     |
| Date      | Site # | Bank   | Habitat  |         | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | (oC)  | Seas (ft) |
| 7/2/2003  | 3      | Sabine | Inshore  | Surface | 0.6          | 43.1         | 27.8     | 5.13   | 29.3  | 1         |
|           |        |        |          | Middle  | 5.5          | 43.1         | 27.8     | 5.01   | 29.29 |           |
|           |        |        |          | Bottom  | 11.3         | 43.2         | 27.8     | 5.06   | 29.23 |           |
| 7/2/2003  | 6      | Sabine | Inshore  | Surface | 0.5          | 43.1         | 27.8     | 5.35   | 29.82 | 1         |
|           |        |        |          | Middle  | 5.2          | 43.2         | 27.8     | 5.27   | 29.26 |           |
|           |        |        |          | Bottom  | 9.4          | 43.2         | 27.9     | 5.96   | 29.24 |           |
| 7/2/2003  | 9      | Sabine | Ridge    | Surface | 0.6          | 43.1         | 27.8     | 5.53   | 29.98 | 1         |
|           |        |        |          | Middle  | 5.4          | 43.1         | 27.8     | 5.47   | 29.43 |           |
|           |        |        |          | Bottom  | 11.4         | 43.2         | 27.8     | 6.05   | 29.34 |           |
| 7/2/2003  | 12     | Sabine | Ridge    | Surface | 0.7          | 43           | 27.7     | 5      | 29.24 | 1         |
|           |        |        |          | Middle  | 5.3          | 43           | 27.7     | 4.88   | 29.23 |           |
|           |        |        |          | Bottom  | 10.5         | 43.1         | 27.8     | 4.98   | 29.31 |           |
| 7/2/2003  | 15     | Sabine | Offshore | Surface | 0.8          | 42.9         | 27.6     | 5.21   | 29.43 | 1         |
|           |        |        |          | Middle  | 5.9          | 42.9         | 27.7     | 5.32   | 29.24 |           |
|           |        |        |          | Bottom  | 11.7         | 43.1         | 27.8     | 5.2    | 29.41 |           |
| 7/2/2003  | 18     | Sabine | Offshore | Surface | 0.8          | 42.2         | 27.2     | 5.58   | 29.68 | 1         |
|           |        |        |          | Middle  | 5.9          | 42.9         | 27.6     | 5.53   | 29.5  |           |
|           |        |        |          | Bottom  | 11.4         | 43.2         | 27.8     | 4.91   | 29.39 |           |
| 7/17/2003 | 1      | Sabine | Inshore  | Surface | 0.9          | 40.5         | 25.9     | 6.06   | 30.96 |           |
|           |        |        |          | Middle  | 5.1          | 41.1         | 26.3     | 4.7    | 28.77 |           |
|           |        |        |          | Bottom  | 10.2         | 42           | 27       | 4.15   | 28.69 |           |

| Date      | Site # | Bank   | Habitat |         | Depth<br>(m) | Conductivity<br>(mS/cm) | Salinity<br>(ppt) | DO<br>(mg/L) | Water<br>Temp<br>(oC) | Seas (ft) |
|-----------|--------|--------|---------|---------|--------------|-------------------------|-------------------|--------------|-----------------------|-----------|
| 7/17/2003 | 2      | Sabine | Inshore | Surface | 1            | 40.4                    | 25.9              | 5.92         | 30.48                 |           |
|           |        |        |         | Middle  | 5.1          | 41                      | 26.2              | 6.28         | 29.52                 |           |
|           |        |        |         | Bottom  | 10           | 41.7                    | 26.8              | 4.65         | 28.75                 |           |
| 7/17/2003 | 3      | Sabine | Inshore | Surface | 0.9          | 40.5                    | 25.9              | 5.97         | 30.04                 |           |
|           |        |        |         | Middle  | 4.6          | 40.6                    | 25.9              | 5.69         | 28.92                 |           |
|           |        |        |         | Bottom  | 9.9          | 41.7                    | 26.8              | 4.57         | 28.75                 |           |
| 7/17/2003 | 4      | Sabine | Inshore | Surface | 0.9          | 40.5                    | 25.9              | 5.63         | 30.34                 |           |
|           |        |        |         | Middle  | 4.9          | 40.7                    | 26.1              | 4.82         | 28.7                  |           |
|           |        |        |         | Bottom  | 9.7          | 42.1                    | 27                | 4.07         | 28.64                 |           |
| 7/17/2003 | 5      | Sabine | Inshore | Surface | 0.8          | 40.8                    | 25.9              | 5.74         | 31.11                 |           |
|           |        |        |         | Middle  | 4.9          | 40.8                    | 26.1              | 4.99         | 28.71                 |           |
|           |        |        |         | Bottom  | 9.4          | 41.9                    | 26.9              | 4.57         | 28.59                 |           |
| 7/17/2003 | 6      | Sabine | Inshore | Surface | 0.9          | 39.8                    | 25.4              | 5.79         | 30.33                 |           |
|           |        |        |         | Middle  | 4.8          | 40.6                    | 26                | 5.42         | 28.84                 |           |
|           |        |        |         | Bottom  | 9.5          | 41.4                    | 26.6              | 3.69         | 28.61                 |           |
| 7/17/2003 | 7      | Sabine | Ridge   | Surface | 1            | 39.9                    | 25.4              | 6.81         | 30.49                 |           |
|           |        |        | -       | Middle  | 4.8          | 40.8                    | 26.1              | 5.75         | 28.95                 |           |
|           |        |        |         | Bottom  | 10.1         | 41.1                    | 26.3              | 4.45         | 28.71                 |           |
| 7/17/2003 | 8      | Sabine | Ridge   | Surface | 0.8          | 40.3                    | 25.7              | 6.33         | 30.29                 |           |
|           |        |        | Ũ       | Middle  | 4.3          | 40.7                    | 26.1              | 5.22         | 28.78                 |           |
|           |        |        |         | Bottom  | 8.5          | 41.2                    | 26.4              | 4.5          | 28.68                 |           |

|           |        |        |          |         |              |              |          |        | Water |            |
|-----------|--------|--------|----------|---------|--------------|--------------|----------|--------|-------|------------|
|           |        |        |          |         | Depth        | Conductivity | Salinity | DO     | Temp  |            |
| Date      | Site # | Bank   | Habitat  |         | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | (oC)  | Seas (ft)  |
| 7/17/2003 | 9      | Sabine | Ridge    | Surface | 0.8          | 40           | 25.5     | 6.94   | 31.19 |            |
|           |        |        |          | Middle  | 5            | 40.8         | 26.1     | 4.85   | 28.77 |            |
|           |        |        |          | Bottom  | 10.9         | 42.1         | 27       | 3.74   | 28.59 |            |
| 7/18/2003 | 10     | Sabine | Ridge    | Surface | 0.7          | 40.8         | 26.2     | 5.47   | 29.07 |            |
|           |        |        |          | Middle  | 4.9          | 40.9         | 26.2     | 5.24   | 29.05 |            |
|           |        |        |          | Bottom  | 10.8         | 41.8         | 26.8     | 4.38   | 28.84 |            |
| 7/18/2003 | 11     | Sabine | Ridge    | Surface | 0.8          | 40.8         | 26.1     | 5.09   | 28.87 |            |
|           |        |        |          | Middle  | 4.7          | 40.8         | 26.1     | 5.04   | 29.9  |            |
|           |        |        |          | Bottom  | 9.2          | 42           | 26.9     | 4.18   | 28.76 |            |
| 7/18/2003 | 12     | Sabine | Ridge    | Surface | 1.1          | 41           | 26.3     | 5.37   | 29    | light chop |
|           |        |        |          | Middle  | 5.7          | 41.1         | 26.4     | 5.32   | 28.96 |            |
|           |        |        |          | Bottom  | 10.8         | 41.5         | 26.7     | 4.66   | 28.94 |            |
| 7/17/2003 | 13     | Sabine | Offshore | Surface | 1            | 40.9         | 26.2     | 7.13   | 31.15 |            |
|           |        |        |          | Middle  | 5.1          | 41.2         | 26.4     | 5.68   | 29.27 |            |
|           |        |        |          | Bottom  | 10.6         | 41.6         | 26.7     | 4.79   | 28.86 |            |
| 7/17/2003 | 14     | Sabine | Offshore | Surface | 0.9          | 40.5         | 25.9     | 6.04   | 30.48 |            |
|           |        |        |          | Middle  | 5            | 41.1         | 26.3     | 5.69   | 29.27 |            |
|           |        |        |          | Bottom  | 10           | 41.3         | 26.5     | 5.92   | 28.94 |            |
| 7/17/2003 | 15     | Sabine | Offshore | Surface | 1.2          | 40.3         | 25.8     | 6.16   | 31.01 |            |
|           |        |        |          | Middle  | 5.2          | 40.8         | 26.2     | 5.3    | 28.94 |            |
|           |        |        |          | Bottom  | 10.9         | 42           | 26.9     | 4.56   | 28.7  |            |

|           |                     |        |           |         |       |              |          |        | Water |           |
|-----------|---------------------|--------|-----------|---------|-------|--------------|----------|--------|-------|-----------|
|           | <b>a</b> . <i>1</i> |        |           |         | Depth | Conductivity | Salinity | DO     | Temp  |           |
| Date      | Site #              | Bank   | Habitat   |         | (m)   | (mS/cm)      | (ppt)    | (mg/L) | (oC)  | Seas (ft) |
| 7/17/2003 | 16                  | Sabine | Offshore  | Surface | 0.9   | 40.3         | 25.7     | 6.8    | 30.64 |           |
|           |                     |        |           | Middle  | 5.3   | 40.9         | 26.2     | 4.86   | 28.76 |           |
|           |                     |        |           | Bottom  | 11    | 41.9         | 26.9     | 4.08   | 28.65 |           |
| 7/17/2003 | 17                  | Sabine | Offshore  | Surface | 0.9   | 39.3         | 25.2     | 6.84   | 31.93 |           |
|           | - /                 | Sucine | 011511010 | Middle  | 5.5   | 40.8         | 26.1     | 5.52   | 28.92 |           |
|           |                     |        |           | Bottom  | 10.2  | 41.1         | 26.3     | 4.27   | 28.7  |           |
| 7/17/2003 | nd attem            | Sabine | Offshore  | Surface | 1.1   | 39.8         | 25.4     | 6.97   | 30.76 |           |
|           |                     | Suchie | 011511010 | Middle  | 5.3   | 40.8         | 26.2     | 5.99   | 29.05 |           |
|           |                     |        |           | Bottom  | 10.5  | 41.1         | 26.4     | 5.13   | 28.74 |           |
|           |                     |        |           |         |       |              |          |        |       |           |
| 7/18/2003 | 19                  | Heald  | Inshore   | Surface | 0.9   | 42.5         | 27.4     | 5.53   | 29.18 |           |
|           |                     |        |           | Middle  | 5.1   | 43.3         | 27.9     | 5.59   | 28.86 |           |
|           |                     |        |           | Bottom  | 10.2  | 44.6         | 28.9     | 4.64   | 28.57 |           |
| 7/18/2003 | 20                  | Heald  | Inshore   | Surface | 1.1   | 42.2         | 27.1     | 5.35   | 29.01 |           |
|           |                     |        |           | Middle  | 5.3   | 43.3         | 28       | 5.5    | 28.84 |           |
|           |                     |        |           | Bottom  | 9.3   | 44.6         | 28.9     | 4.59   | 28.57 |           |
| 7/18/2003 | 21                  | Heald  | Inshore   | Surface | 0.7   | 42.2         | 27.2     | 5.16   | 28.72 |           |
|           |                     |        |           | Middle  | 5.2   | 43.5         | 28.1     | 5.02   | 28.67 |           |
|           |                     |        |           | Bottom  | 10    | 44.5         | 28.8     | 4.7    | 28.52 |           |
|           |                     |        |           |         |       |              |          |        |       |           |
| 7/18/2003 | 22                  | Heald  | Inshore   | Surface | 0.9   | 42.3         | 27.2     | 5.21   | 28.64 |           |
|           |                     |        |           | Middle  | 4.9   | 43.4         | 28.1     | 5.11   | 28.63 |           |
|           |                     |        |           | Bottom  | 9.7   | 44.5         | 28.8     | 4.86   | 28.51 |           |

|           | <b>GA</b> . 11 |       |          |         | Depth | Conductivity | Salinity | DO     | Water<br>Temp |           |
|-----------|----------------|-------|----------|---------|-------|--------------|----------|--------|---------------|-----------|
| Date      | Site #         | Bank  | Habitat  | ~ ^     | (m)   | (mS/cm)      | (ppt)    | (mg/L) | (oC)          | Seas (ft) |
| 7/18/2003 | 23             | Heald | Ridge    | Surface | 0.8   | 24.5         | 27.3     | 5.09   | 28.67         |           |
|           |                |       |          | Middle  | 6.4   | 44.7         | 28.6     | 4.72   | 28.53         |           |
|           |                |       |          | Bottom  | 12.9  | 45           | 29.2     | 4.3    | 28.5          |           |
| 7/18/2003 | 24             | Heald | Ridge    | Surface | 0.9   | 42.6         | 27.4     | 5.22   | 28.71         |           |
|           |                |       |          | Middle  | 6.3   | 44.2         | 28.8     | 5      | 28.6          |           |
|           |                |       |          | Bottom  | 13.6  | 44.9         | 29.1     | 4.5    | 28.51         |           |
| 7/18/2003 | 25             | Heald | Ridge    | Surface | 1.3   | 42.5         | 27.4     | 5.34   | 28.84         |           |
|           |                |       | -        | Middle  | 6.3   | 44.1         | 28.6     | 5.17   | 28.63         |           |
|           |                |       |          | Bottom  | 12.5  | 44.9         | 29.1     | 4.65   | 28.55         |           |
| 7/18/2003 | 26             | Heald | Ridge    | Surface | 0.8   | 42.6         | 27.4     | 5.38   | 28.8          |           |
|           |                |       |          | Middle  | 5.2   | 43.8         | 28.3     | 5.27   | 28.74         |           |
|           |                |       |          | Bottom  | 10.7  | 44.9         | 29.1     | 4.5    | 28.54         |           |
| 7/18/2003 | 27             | Heald | Offshore | Surface | 0.9   | 43.9         | 28.3     | 5.44   | 28.96         |           |
|           |                |       |          | Middle  | 6.5   | 44.1         | 28.4     | 5.36   | 28.77         |           |
|           |                |       |          | Bottom  | 12.7  | 45           | 29.2     | 4.37   | 28.52         |           |
| 7/18/2003 | 28             | Heald | Offshore | Surface | 0.8   | 42.9         | 27.7     | 5.44   | 28.76         |           |
|           |                |       |          | Middle  | 6.7   | 44.7         | 28.9     | 5.1    | 28.65         |           |
|           |                |       |          | Bottom  | 13.3  | 45.2         | 29.3     | 4.53   | 28.45         |           |
| 7/18/2003 | 29             | Heald | Offshore | Surface | 0.7   | 42.5         | 27.3     | 5.28   | 28.72         |           |
|           |                |       |          | Middle  | 6.8   | 44.4         | 28.7     | 4.87   | 28.51         |           |
|           |                |       |          | Bottom  | 13.3  | 45.3         | 29.3     | 4.78   | 28.42         |           |

|           |        |        |          |         |              |              |          |        | Water |                      |
|-----------|--------|--------|----------|---------|--------------|--------------|----------|--------|-------|----------------------|
|           |        |        |          |         | Depth        | Conductivity | Salinity | DO     | Temp  |                      |
| Date      | Site # | Bank   | Habitat  |         | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | (oC)  | Seas (ft)            |
| 7/18/2003 | 30     | Heald  | Offshore | Surface | 1            | 42.2         | 27.1     | 5.13   | 28.63 |                      |
|           |        |        |          | Middle  | 7            | 44.7         | 28.9     | 4.82   | 28.58 |                      |
|           |        |        |          | Bottom  | 14           | 45.3         | 29.4     | 4.62   | 28.42 |                      |
| 8/4/2003  | 1      | Sabine | Inshore  | Surface | 0.9          | 48.3         | 31.6     | 5.61   | 29.84 |                      |
|           |        |        |          | Middle  | 4.9          | 48.3         | 31.6     | 5.29   | 29.71 |                      |
|           |        |        |          | Bottom  | 10.1         | 48.6         | 31.8     | 6      | 29.49 |                      |
| 8/4/2003  | 2      | Sabine | Inshore  | Surface | 0.6          | 48.3         | 31.5     | 5.17   | 29.88 |                      |
|           |        |        |          | Middle  | 4.5          | 48.2         | 31.5     | 5.3    | 29.75 |                      |
|           |        |        |          | Bottom  | 9.5          | 48.4         | 31.7     | 5.7    | 29.43 |                      |
| 8/4/2003  | 3      | Sabine | Inshore  | Surface | 0.7          | 48.2         | 31.5     | 5.17   | 29.82 |                      |
|           |        |        |          | Middle  | 4.5          | 48.3         | 31.6     | 5.29   | 29.63 |                      |
|           |        |        |          | Bottom  | 9.3          | 48.4         | 31.6     | 5.94   | 29.44 |                      |
| 8/4/2003  | 4      | Sabine | Inshore  | Surface | 0.9          | 48.3         | 31.6     | 5.13   | 29.45 | waves 2-3 ft./ sunny |
|           |        |        |          | Middle  | 3.9          | 48.3         | 31.6     | 5.16   | 29.34 |                      |
|           |        |        |          | Bottom  | 9.5          | 48.5         | 31.7     | 5.68   | 29.27 |                      |
| 8/4/2003  | 5      | Sabine | Inshore  | Surface | 0.8          | 48.4         | 31.7     | 5.14   | 29.36 | waves 2-3 ft./ sunny |
|           |        |        |          | Middle  | 4.2          | 48.4         | 31.6     | 5.28   | 29.29 |                      |
|           |        |        |          | Bottom  | 8.7          | 48.4         | 31.7     | 6.1    | 29.24 |                      |
| 8/4/2003  | 6      | Sabine | Inshore  | Surface | 0.9          | 48.6         | 31.8     | 5.03   | 29.3  | waves 2-3 ft./ sunny |
|           |        |        |          | Middle  | 4            | 48.6         | 31.8     | 5.04   | 29.24 |                      |
|           |        |        |          | Bottom  | 9.5          | 48.7         | 31.8     | 5.14   | 29.2  |                      |

|          |        |        |          |         |              |              |          |        | Water |                      |
|----------|--------|--------|----------|---------|--------------|--------------|----------|--------|-------|----------------------|
| _        | ~      |        |          |         | Depth        | Conductivity | Salinity | DO     | Temp  | ~ (2)                |
| Date     | Site # | Bank   | Habitat  |         | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | (oC)  | Seas (ft)            |
| 8/4/2003 | 7      | Sabine | Ridge    | Surface | 1            | 48.4         | 31.6     | 5.05   | 29.49 | waves 2-3 ft./ sunny |
|          |        |        |          | Middle  | 4.5          | 48.4         | 31.7     | 5.25   | 29.33 |                      |
|          |        |        |          | Bottom  | 8.7          | 48.5         | 31.7     | 5.95   | 29.31 |                      |
| 8/4/2003 | 8      | Sabine | Ridge    | Surface | 1            | 48.4         | 31.7     | 5.14   | 29.54 | waves 2-3 ft./ sunny |
|          |        |        |          | Middle  | 4.5          | 48.4         | 31.7     | 5.39   | 29.36 |                      |
|          |        |        |          | Bottom  | 8.5          | 48.4         | 31.7     | 6.6    | 29.33 |                      |
| 8/4/2003 | 9      | Sabine | Ridge    | Surface | 1            | 48.3         | 31.6     | 5.02   | 29.58 |                      |
|          |        |        |          | Middle  | 5.1          | 48.3         | 31.6     | 5.12   | 29.42 |                      |
|          |        |        |          | Bottom  | 10           | 48.4         | 31.6     | 5.37   | 29.39 |                      |
| 8/4/2003 | 10     | Sabine | Ridge    | Surface | 1            | 48.2         | 31.5     | 5.02   | 29.89 |                      |
|          |        |        |          | Middle  | 5.3          | 48.3         | 31.6     | 5.31   | 29.44 |                      |
|          |        |        |          | Bottom  | 9.8          | 48.3         | 31.6     | 5.45   | 29.51 |                      |
| 8/4/2003 | 11     | Sabine | Ridge    | Surface | 1            | 48.2         | 31.5     | 4.98   | 29.87 |                      |
|          |        |        |          | Middle  | 5.1          | 48.4         | 31.6     | 5.34   | 29.43 |                      |
|          |        |        |          | Bottom  | 10.2         | 48.4         | 31.7     | 6.51   | 29.49 |                      |
| 8/4/2003 | 12     | Sabine | Ridge    | Surface | 1.2          | 48.3         | 31.6     | 5.02   | 29.83 |                      |
|          |        |        |          | Middle  | 5.2          | 48.2         | 31.5     | 5.3    | 29.46 |                      |
|          |        |        |          | Bottom  | 10.5         | 48.3         | 31.5     | 5.9    | 29.47 |                      |
| 8/4/2003 | 13     | Sabine | Offshore | Surface | 1.2          | 48.3         | 31.6     | 5.12   | 29.84 |                      |
|          |        |        |          | Middle  | 5.4          | 48.2         | 31.5     | 5.38   | 29.63 |                      |
|          |        |        |          | Bottom  | 9.8          | 48.3         | 31.6     | 7.08   | 29.48 |                      |

|          |        |        |          |         | Depth        | Conductivity | Salinity | DO     | Water<br>Temp |           |
|----------|--------|--------|----------|---------|--------------|--------------|----------|--------|---------------|-----------|
| Date     | Site # | Bank   | Habitat  |         | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | (oC)          | Seas (ft) |
| 8/4/2003 | 14     | Sabine | Offshore | Surface | 1            | 48.2         | 31.5     | 5.04   | 29.82         |           |
|          |        |        |          | Middle  | 5.3          | 48.2         | 31.5     | 5.22   | 29.66         |           |
|          |        |        |          | Bottom  | 10.7         | 48.3         | 31.5     | 6      | 29.42         |           |
| 8/4/2003 | 15     | Sabine | Offshore | Surface | 1            | 48.2         | 31.5     | 5.06   | 29.79         |           |
|          |        |        |          | Middle  | 5            | 48.3         | 31.5     | 5.62   | 29.42         |           |
|          |        |        |          | Bottom  | 10.4         | 48.2         | 31.5     | 6.44   | 29.37         |           |
| 8/4/2003 | 16     | Sabine | Offshore | Surface | 1            | 48.1         | 31.4     | 5.11   | 29.77         |           |
|          |        |        |          | Middle  | 5            | 48.2         | 31.5     | 5.22   | 29.52         |           |
|          |        |        |          | Bottom  | 10.2         | 48.2         | 31.6     | 5.8    | 29.43         |           |
| 8/4/2003 | 17     | Sabine | Offshore | Surface | 1            | 48.4         | 31.7     | 5.17   | 29.73         |           |
|          |        |        |          | Middle  | 5.4          | 48.5         | 31.7     | 5.25   | 29.38         |           |
|          |        |        |          | Bottom  | 10.1         | 48.5         | 31.7     | 5.5    | 29.37         |           |
| 8/4/2003 | 18     | Sabine | Offshore | Surface | 1            | 48.5         | 31.7     | 5.07   | 29.7          |           |
|          |        |        |          | Middle  | 5.4          | 48.6         | 31.8     | 5.16   | 29.43         |           |
|          |        |        |          | Bottom  | 10           | 48.6         | 31.8     | 5.42   | 29.38         |           |
| 8/5/2003 | 19     | Heald  | Inshore  | Surface | 1.2          | 47.7         | 31.1     | 4.99   | 29.77         |           |
|          |        |        |          | Middle  | 5.1          | 47.6         | 31.1     | 5.09   | 29.73         |           |
|          |        |        |          | Bottom  | 9.8          | 47.8         | 31.1     | 5.71   | 29.65         |           |
| 8/5/2003 | 20     | Heald  | Inshore  | Surface | 1.1          | 47.7         | 31.1     | 5.05   | 29.7          |           |
|          |        |        |          | Middle  | 4.9          | 47.6         | 31.1     | 5.09   | 29.67         |           |
|          |        |        |          | Bottom  | 8.9          | 47.7         | 31.1     | 5.53   | 29.62         |           |

|          |        |       |          |         | Depth        | Conductivity | Salinity | DO     | Water<br>Temp |           |
|----------|--------|-------|----------|---------|--------------|--------------|----------|--------|---------------|-----------|
| Date     | Site # | Bank  | Habitat  |         | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | (oC)          | Seas (ft) |
| 8/5/2003 | 21     | Heald | Inshore  | Surface | 1.3          | 47.7         | 31.1     | 5.05   | 29.7          |           |
|          |        |       |          | Middle  | 5.4          | 47.6         | 31       | 5.17   | 29.71         |           |
|          |        |       |          | Bottom  | 9.2          | 47.7         | 31.2     | 5.21   | 29.68         |           |
| 8/5/2003 | 22     | Heald | Inshore  | Surface | 1            | 47.6         | 31       | 5.15   | 29.67         |           |
|          |        |       |          | Middle  | 4.5          | 47.5         | 31       | 5.24   | 29.68         |           |
|          |        |       |          | Bottom  | 9.5          | 47.5         | 31       | 5.45   | 29.68         |           |
| 8/5/2003 | 23     | Heald | Ridge    | Surface | 0.9          | 47.4         | 30.9     | 5.08   | 29.7          |           |
|          |        |       |          | Middle  | 6            | 47.4         | 30.9     | 5.11   | 29.71         |           |
|          |        |       |          | Bottom  | 12.5         | 48.6         | 31.8     | 5.05   | 29.33         |           |
| 8/5/2003 | 24     | Heald | Ridge    | Surface | 0.9          | 47.3         | 30.8     | 5.04   | 29.76         |           |
|          |        |       |          | Middle  | 6.1          | 47.2         | 30.8     | 5.1    | 29.75         |           |
|          |        |       |          | Bottom  | 12.1         | 48.4         | 31.7     | 5.29   | 29.46         |           |
| 8/5/2003 | 25     | Heald | Ridge    | Surface | 1.1          | 47.3         | 30.9     | 5      | 29.87         |           |
|          |        |       |          | Middle  | 5.2          | 47.4         | 30.9     | 5.11   | 29.77         |           |
|          |        |       |          | Bottom  | 11.9         | 48.3         | 31.6     | 5.25   | 29.44         |           |
| 8/5/2003 | 26     | Heald | Ridge    | Surface | 0.8          | 47.4         | 30.9     | 5.01   | 29.89         |           |
|          |        |       |          | Middle  | 5.1          | 47.5         | 31       | 5.07   | 29.77         |           |
|          |        |       |          | Bottom  | 10.2         | 48.3         | 31.5     | 5.41   | 29.56         |           |
| 8/5/2003 | 27     | Heald | Offshore | Surface | 0.8          | 47.3         | 30.8     | 5.03   | 29.96         |           |
|          |        |       | -        | Middle  | 5.4          | 47.5         | 31       | 5.06   | 29.78         |           |
|          |        |       |          | Bottom  | 11.4         | 48.5         | 31.8     | 5.53   | 29.26         |           |

|           |        |        |          |         |              |              |          |        | Water |                          |
|-----------|--------|--------|----------|---------|--------------|--------------|----------|--------|-------|--------------------------|
|           |        |        |          |         | Depth        | Conductivity | Salinity | DO     | Temp  |                          |
| Date      | Site # | Bank   | Habitat  |         | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | (oC)  | Seas (ft)                |
| 8/5/2003  | 28     | Heald  | Offshore | Surface | 1.1          | 47.3         | 30.8     | 5.03   | 30.03 | waves 3-4 feet/ overcast |
|           |        |        |          | Middle  | 5.5          | 47.4         | 30.9     | 5.23   | 29.77 |                          |
|           |        |        |          | Bottom  | 12           | 48.5         | 31.7     | 5.68   | 29.26 |                          |
| 8/5/2003  | 29     | Heald  | Offshore | Surface | 1.2          | 47.2         | 30.8     | 4.99   | 29.8  |                          |
|           |        |        |          | Middle  | 5.9          | 47.1         | 30.8     | 5.14   | 29.79 |                          |
|           |        |        |          | Bottom  | 11.6         | 48.5         | 31.7     | 5.48   | 29.12 |                          |
| 8/5/2003  | 30     | Heald  | Offshore | Surface | 1            | 47.2         | 30.8     | 5.05   | 29.79 |                          |
|           |        |        |          | Middle  | 6.5          | 47.1         | 30.8     | 5.17   | 29.8  |                          |
|           |        |        |          | Bottom  | 13.6         | 48.7         | 31.8     | 5.43   | 29.06 |                          |
| 8/19/2003 | 1      | Sabine | Inshore  | Surface | 0.7          | 49.4         | 32.3     | 4.89   | 30.15 |                          |
|           |        |        |          | Middle  | 5.2          | 49.5         | 32.5     | 4.9    | 29.64 |                          |
|           |        |        |          | Bottom  | 10.3         | 49.8         | 32.7     | 4.19   | 29.65 |                          |
| 8/19/2003 | 2      | Sabine | Inshore  | Surface | 0.7          | 49.3         | 32.3     | 4.83   | 30.23 |                          |
|           |        |        |          | Middle  | 4.5          | 49.4         | 32.4     | 4.85   | 29.69 |                          |
|           |        |        |          | Bottom  | 9.2          | 49.8         | 32.7     | 4.03   | 29.68 |                          |
| 8/19/2003 | 3      | Sabine | Inshore  | Surface | 0.6          | 49.3         | 32.3     | 4.81   | 30.21 |                          |
|           |        |        |          | Middle  | 4.8          | 49.5         | 32.4     | 4.85   | 29.66 |                          |
|           |        |        |          | Bottom  | 9.6          | 49.7         | 32.5     | 4.12   | 29.69 |                          |
| 8/19/2003 | 4      | Sabine | Inshore  | Surface | 0.9          | 49           | 32.2     | 4.76   | 29.44 |                          |
|           |        |        |          | Middle  | 5.2          | 49.5         | 32.4     | 4.63   | 29.55 |                          |
|           |        |        |          | Bottom  | 9.6          | 49.6         | 32.5     | 4.11   | 29.58 |                          |

|           |        |        |         |         | Depth        | Conductivity | Salinity | DO     | Water<br>Temp |           |
|-----------|--------|--------|---------|---------|--------------|--------------|----------|--------|---------------|-----------|
| Date      | Site # | Bank   | Habitat |         | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | ( <b>oC</b> ) | Seas (ft) |
| 8/19/2003 | 5      | Sabine | Inshore | Surface | 0.9          | 48.9         | 31.9     | 4.77   | 29.34         |           |
|           |        |        |         | Middle  | 4.7          | 49.4         | 32.4     | 4.68   | 29.52         |           |
|           |        |        |         | Bottom  | 9.5          | 49.4         | 32.4     | 4.76   | 29.52         |           |
| 8/19/2003 | 6      | Sabine | Inshore | Surface | 0.9          | 49.4         | 32.2     | 4.66   | 29.47         |           |
|           |        |        |         | Middle  | 4.9          | 49.3         | 32.4     | 4.55   | 29.49         |           |
|           |        |        |         | Bottom  | 9.6          | 49.4         | 32.3     | 4.79   | 29.49         |           |
| 8/19/2003 | 7      | Sabine | Ridge   | Surface | 0.9          | 49.2         | 32.3     | 4.63   | 29.65         |           |
|           |        |        | C       | Middle  | 4.7          | 49.5         | 32.4     | 4.57   | 29.54         |           |
|           |        |        |         | Bottom  | 9.6          | 49.4         | 32.4     | 4.72   | 29.52         |           |
| 8/19/2003 | 8      | Sabine | Ridge   | Surface | 0.8          | 49.1         | 32.1     | 4.7    | 29.8          |           |
|           |        |        |         | Middle  | 4.4          | 49.5         | 32.4     | 4.62   | 29.58         |           |
|           |        |        |         | Bottom  | 8.7          | 49.4         | 32.4     | 4.75   | 29.56         |           |
| 8/19/2003 | 9      | Sabine | Ridge   | Surface | 0.9          | 49.1         | 32.1     | 4.72   | 29.75         |           |
|           |        |        |         | Middle  | 5.1          | 49.5         | 32.4     | 4.74   | 29.58         |           |
|           |        |        |         | Bottom  | 10.7         | 49.5         | 32.3     | 5.11   | 29.56         |           |
| 8/19/2003 | 10     | Sabine | Ridge   | Surface | 1            | 49.1         | 32.2     | 4.83   | 30.4          |           |
|           |        |        |         | Middle  | 5.6          | 49.4         | 32.4     | 4.78   | 29.67         |           |
|           |        |        |         | Bottom  | 10.8         | 49.6         | 32.5     | 4.55   | 29.67         |           |
| 8/19/2003 | 11     | Sabine | Ridge   | Surface | 0.7          | 49.2         | 32.2     | 4.81   | 30.43         |           |
|           |        |        | C       | Middle  | 5.2          | 49.4         | 32.4     | 4.77   | 29.65         |           |
|           |        |        |         | Bottom  | 10.5         | 49.6         | 32.5     | 4.41   | 29.67         |           |

|           |        |        |          |         | Depth        | Conductivity | Salinity | DO     | Water<br>Temp |           |
|-----------|--------|--------|----------|---------|--------------|--------------|----------|--------|---------------|-----------|
| Date      | Site # | Bank   | Habitat  |         | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | (oC)          | Seas (ft) |
| 8/19/2003 | 12     | Sabine | Ridge    | Surface | 1            | 49.1         | 32.2     | 4.82   | 30.44         |           |
|           |        |        |          | Middle  | 4.9          | 49.4         | 32.4     | 4.83   | 29.69         |           |
|           |        |        |          | Bottom  | 9.9          | 49.6         | 32.5     | 4.48   | 29.66         |           |
| 8/19/2003 | 13     | Sabine | Offshore | Surface | 0.9          | 49.1         | 32.2     | 4.85   | 30.36         |           |
|           |        |        |          | Middle  | 5.3          | 49.5         | 32.4     | 4.96   | 29.65         |           |
|           |        |        |          | Bottom  | 10.5         | 49.5         | 32.4     | 5.5    | 29.63         |           |
| 8/19/2003 | 14     | Sabine | Offshore | Surface | 0.8          | 48.9         | 32       | 4.8    | 30.48         |           |
|           |        |        |          | Middle  | 5.5          | 49.4         | 32.4     | 4.8    | 29.66         |           |
|           |        |        |          | Bottom  | 10.6         | 49.5         | 32.4     | 4.66   | 29.63         |           |
| 8/19/2003 | 15     | Sabine | Offshore | Surface | 0.8          | 48.6         | 31.8     | 4.93   | 30.17         |           |
|           |        |        |          | Middle  | 5.4          | 49.3         | 32.3     | 4.8    | 29.62         |           |
|           |        |        |          | Bottom  | 11           | 49.3         | 32.3     | 4.95   | 29.59         |           |
| 8/19/2003 | 16     | Sabine | Offshore | Surface | 0.7          | 49           | 32.2     | 4.77   | 30.25         |           |
|           |        |        |          | Middle  | 5.4          | 49.3         | 32.3     | 4.87   | 29.59         |           |
|           |        |        |          | Bottom  | 10.6         | 49.4         | 32.3     | 4.94   | 29.55         |           |
| 8/19/2003 | 17     | Sabine | Offshore | Surface | 0.8          | 49           | 32       | 4.6    | 29.87         |           |
|           |        |        |          | Middle  | 5            | 49.4         | 32.3     | 4.64   | 29.5          |           |
|           |        |        |          | Bottom  | 10           | 49.4         | 32.3     | 4.64   | 29.5          |           |
| 8/19/2003 | 18     | Sabine | Offshore | Surface | 0.8          | 48.2         | 31.5     | 4.81   | 30            |           |
|           |        |        |          | Middle  | 5            | 49.3         | 32.3     | 4.82   | 29.51         |           |
|           |        |        |          | Bottom  | 10.4         | 49.2         | 32.3     | 4.67   | 29.48         |           |

|           |        |       |         |         | Depth        | Conductivity | Salinity | DO     | Water<br>Temp |           |
|-----------|--------|-------|---------|---------|--------------|--------------|----------|--------|---------------|-----------|
| Date      | Site # | Bank  | Habitat |         | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | ( <b>oC</b> ) | Seas (ft) |
| 8/20/2003 | 19     | Heald | Inshore | Surface | 0.8          | 50           | 32.8     | 4.97   | 29.52         |           |
|           |        |       |         | Middle  | 5            | 50           | 32.8     | 5.09   | 29.48         |           |
|           |        |       |         | Bottom  | 10.3         | 50.6         | 33.2     | 4.85   | 29.66         |           |
| 8/20/2003 | 20     | Heald | Inshore | Surface | 0.8          | 50.1         | 32.8     | 4.96   | 29.49         |           |
|           |        |       |         | Middle  | 4.9          | 50           | 32.8     | 4.96   | 29.48         |           |
|           |        |       |         | Bottom  | 9.8          | 50.7         | 33.3     | 4.86   | 29.65         |           |
| 8/20/2003 | 21     | Heald | Inshore | Surface | 0.9          | 50.1         | 32.9     | 4.97   | 29.46         |           |
|           |        |       |         | Middle  | 5.2          | 50.1         | 32.9     | 4.93   | 29.46         |           |
|           |        |       |         | Bottom  | 9.9          | 50.7         | 33.3     | 4.87   | 29.63         |           |
| 8/20/2003 | 22     | Heald | Inshore | Surface | 1            | 50.1         | 32.9     | 5.04   | 29.47         |           |
|           |        |       |         | Middle  | 5.5          | 50.2         | 32.9     | 4.91   | 29.49         |           |
|           |        |       |         | Bottom  | 9.8          | 50.7         | 33.3     | 4.95   | 29.63         |           |
| 8/20/2003 | 23     | Heald | Ridge   | Surface | 1.2          | 50           | 32.8     | 4.97   | 29.44         |           |
|           |        |       |         | Middle  | 6.6          | 50.1         | 32.9     | 4.96   | 29.47         |           |
|           |        |       |         | Bottom  | 12.8         | 50.2         | 33       | 4.88   | 29.61         |           |
| 8/20/2003 | 24     | Heald | Ridge   | Surface | 0.8          | 50           | 32.8     | 4.9    | 29.39         |           |
|           |        |       |         | Middle  | 6.4          | 50           | 32.9     | 4.85   | 29.44         |           |
|           |        |       |         | Bottom  | 13.4         | 50.2         | 33       | 4.73   | 29.55         |           |
| 8/20/2003 | 25     | Heald | Ridge   | Surface | 0.9          | 49.9         | 32.7     | 4.87   | 29.52         |           |
|           |        |       |         | Middle  | 5.6          | 49.9         | 32.8     | 4.88   | 29.44         |           |
|           |        |       |         | Bottom  | 11.7         | 49.9         | 32.8     | 5.18   | 29.44         |           |

| as (ft) |
|---------|
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |

|          |        |          |          |         | Donth        | Conductivity            | Colinity.         | DO     | Water        |           |
|----------|--------|----------|----------|---------|--------------|-------------------------|-------------------|--------|--------------|-----------|
| Date     | Site # | Bank     | Habitat  |         | Depth<br>(m) | Conductivity<br>(mS/cm) | Salinity<br>(ppt) | (mg/L) | Temp<br>(oC) | Seas (ft) |
| 7/9/2004 | 3      | Freeport | Inshore  | Surface | 1            | 52.8                    | 32                | 4.64   | 29           |           |
|          |        |          |          | Bottom  | 55           | 53.6                    | 33.9              | 3.4    | 27           |           |
| 7/9/2004 | 4      | Freeport | Inshore  | Surface | 1            | 52.3                    | 31.6              | 4.7    | 29           |           |
|          |        |          |          | Bottom  | 55           | 53.6                    | 33.6              | 3.7    | 27.4         |           |
| 7/9/2004 | 5      | Freeport | Inshore  | Surface | 1            | 52                      | 31.4              | 4.9    | 28.9         |           |
|          |        |          |          | Bottom  | 54           | 53.6                    | 33.5              | 3.6    | 27.5         |           |
| 7/8/2004 | 7      | Freeport | On Ridge | Surface | 1            | 52                      | 31.3              | 5.1    | 29.2         | 2         |
|          |        |          |          | Bottom  | 52.5         | 54.1                    | 33.6              | 4.66   | 27.9         |           |
| 7/9/2004 | 8      | Freeport | On Ridge | Surface | 1            | 49.1                    | 31.3              | 5      | 29           | 2.3       |
|          |        |          |          | Bottom  | 53           | 37.1                    | 33.6              | 3.9    | 27.5         |           |
| 7/9/2004 | 9      | Freeport | On Ridge | Surface | 1            | 52                      | 31.5              | 4.7    | 28.9         |           |
|          |        |          |          | Bottom  | 49           | 53.9                    | 33.7              | 4.2    | 27.6         |           |
| 7/9/2004 | 10     | Freeport | On Ridge | Surface | 1            | 48.7                    | 31.7              | 4.5    | 28.9         |           |
|          |        |          |          | Bottom  | 50           | 53.9                    | 33.8              | 3.6    | 27.4         |           |
| 7/9/2004 | 11     | Freeport | On Ridge | Surface | 1            | 53.5                    | 32.4              | 4.6    | 29           |           |
|          |        |          |          | Bottom  | 50           | 51.4                    | 33.7              | 3.4    | 27.3         |           |
| 7/8/2004 | 12     | Freeport | On Ridge | Surface | 1            | 48.1                    | 30                | 4.99   | 29.4         | 2         |
|          |        | _        | -1       | Bottom  | 49.5         | 50.8                    | 33.2              | 4.84   | 27.7         |           |

|          |        |          |           |         | Depth        | Conductivity | Salinity | DO     | Water<br>Temp |           |
|----------|--------|----------|-----------|---------|--------------|--------------|----------|--------|---------------|-----------|
| Date     | Site # | Bank     | Habitat   |         | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | (oC)          | Seas (ft) |
| 7/8/2004 | 13     | Freeport | On Ridge  | Surface | 1            | 45.9         | 29.4     | 5.07   | 29.3          | 2         |
|          |        |          |           | Bottom  | 58           | 53.4         | 34.2     | 3.5    | 26.7          |           |
| 7/9/2004 | 14     | Freeport | Off Ridge | Surface | 1            | 53           | 31.9     | 4.4    | 29.2          |           |
|          |        |          |           | Bottom  | 54           | 53.8         | 33.9     | 3.72   | 27.3          |           |
| 7/9/2004 | 15     | Freeport | Off Ridge | Surface | 1            | 46.8         | 30.1     | 4.7    | 28.9          |           |
|          |        |          |           | Bottom  | 50           | 53.6         | 33.8     | 3.7    | 27.2          |           |
| 7/8/2004 | 16     | Freeport | Off Ridge | Surface | 1            | 46.4         | 30.2     | 4.93   | 29.3          | 2         |
|          |        |          |           | Bottom  | 57           | 53.4         | 34.3     | 3.36   | 26.3          |           |
| 7/8/2004 | 17     | Freeport | Off Ridge | Surface | 1            | 52.4         | 31.5     | 4.91   | 29.3          |           |
|          |        |          |           | Bottom  | 55           | 53.6         | 34.3     | 3.68   | 26.5          |           |
| 7/8/2004 | 18     | Freeport | Off Ridge | Surface | 1            | 50.4         | 30.1     | 5.11   | 29.2          | 2         |
|          |        |          |           | Bottom  | 53           | 54.1         | 33.6     | 4.76   | 27.9          |           |
| 7/8/2004 | 19     | Freeport | Offshore  | Surface | 1            | 49.6         | 29.6     | 5.23   | 29.4          | 2         |
|          |        |          |           | Bottom  | 64.5         | 53.2         | 34.3     | 3.84   | 26.3          |           |
| 7/8/2004 | 20     | Freeport | Offshore  | Surface | 1            | 45.7         | 29.4     | 5.07   | 29.6          | 2         |
|          |        |          |           | Bottom  | 68.5         | 53           | 34.2     | 3.76   | 26.1          |           |
| 7/8/2004 | 21     | Freeport | Offshore  | Surface | 1            | 50.7         | 29.6     | 5.03   | 29.4          | 2         |
|          |        |          |           | Bottom  | 67.5         | 53           | 34.3     | 3.47   | 25.9          |           |

| Date      | Site # | Bank     | Habitat  |         | Depth<br>(m) | Conductivity<br>(mS/cm) | Salinity<br>(ppt) | DO<br>(mg/L) | Water<br>Temp<br>(oC) | Seas (ft) |
|-----------|--------|----------|----------|---------|--------------|-------------------------|-------------------|--------------|-----------------------|-----------|
| 7/8/2004  | 24     | Freeport | Offshore | Surface | 1            | 49.2                    | 29.1              | 5.18         | 29.5                  | 2         |
|           |        | Ĩ        |          | Bottom  | 63           | 53.2                    | 34.3              | 4.05         | 26.4                  |           |
| 7/27/2004 | 1      | Freeport | Inshore  | Surface | 1            | 57.2                    | 34.1              | 5.75         | 30.2                  |           |
|           |        |          |          | Bottom  | 56           | 57.8                    | 35.6              | 5.95         | 28.6                  |           |
| 7/27/2004 | 2      | Freeport | Inshore  | Surface | 1            | 58.5                    | 35.2              | 5.9          | 29.9                  |           |
|           |        |          |          | Bottom  | 54.5         | 57.3                    | 36                | 3.93         | 27.8                  |           |
| 7/27/2004 | 3      | Freeport | Inshore  | Surface | 1            | 58.7                    | 35.4              | 5.92         | 29.8                  |           |
|           |        |          |          | Bottom  | 55           | 57.9                    | 35.6              | 5.5          | 28.4                  |           |
| 7/27/2004 | 4      | Freeport | Inshore  | Surface | 1            | 53                      | 34.8              | 5.72         | 29.9                  |           |
|           |        |          |          | Bottom  | 54.5         | 58.5                    | 35.2              | 6.11         | 29.7                  |           |
| 7/27/2004 | 5      | Freeport | Inshore  | Surface | 1            | 57.4                    | 34.4              | 5.77         | 29.9                  |           |
|           |        |          |          | Bottom  | 55           | 58.2                    | 35.1              | 6.06         | 29.6                  |           |
| 7/27/2004 | 6      | Freeport | Inshore  | Surface | 1            | 52.7                    | 34.6              | 5.8          | 29.9                  |           |
|           |        |          |          | Bottom  | 55           | 54.1                    | 35.6              | 5.17         | 28.6                  |           |
| 7/26/2004 | 7      | Freeport | On Ridge | Surface | 1            | 58.6                    | 35.2              | 5.52         | 29.9                  |           |
|           |        | -        | 2        | Bottom  | 53           | 54.6                    | 36.1              | 4.89         | 27.6                  |           |
| 7/26/2004 | 8      | Freeport | On Ridge | Surface | 1            | 58.4                    | 35.1              | 5.6          | 29.9                  |           |
|           |        | _        | -        | Bottom  | 52.5         | 57.3                    | 36                | 4.71         | 27.9                  |           |

|           |        |          |           |         | <b>D</b> (1  |                         | <b>a n n</b>      | DO           | Water        |           |
|-----------|--------|----------|-----------|---------|--------------|-------------------------|-------------------|--------------|--------------|-----------|
| Date      | Site # | Bank     | Habitat   |         | Depth<br>(m) | Conductivity<br>(mS/cm) | Salinity<br>(ppt) | DO<br>(mg/L) | Temp<br>(oC) | Seas (ft) |
| 7/27/2004 | 9      | Freeport | On Ridge  | Surface | 1            | 58.6                    | 35.3              | 5.78         | 29.8         |           |
|           |        | , r      |           | Bottom  | 52.5         | 58.3                    | 35.8              | 5.77         | 28           |           |
| 7/27/2004 | 10     | Freeport | On Ridge  | Surface | 1            | 54.4                    | 35.2              | 5.77         | 29.8         |           |
|           |        |          |           | Bottom  | 49           | 58.7                    | 35.5              | 6.04         | 29.1         |           |
| 7/27/2004 | 11     | Freeport | On Ridge  | Surface | 1            | 52.9                    | 34.8              | 5.76         | 29.8         |           |
|           |        |          |           | Bottom  | 51           | 53.7                    | 35.3              | 6            | 29.9         |           |
| 7/26/2004 | 12     | Freeport | On Ridge  | Surface | 1            | 54                      | 35.5              | 5.77         | 30           |           |
|           |        |          |           | Bottom  | 50           | 57.1                    | 36                | 4.23         | 27.6         |           |
| 7/26/2004 | 13     | Freeport | Off Ridge | Surface | 1            | 59                      | 35.5              | 5.85         | 29.9         |           |
|           |        |          |           | Bottom  | 59.5         | 54.5                    | 36                | 4.63         | 27.8         |           |
| 7/26/2004 | 14     | Freeport | Off Ridge | Surface | 1            | 58.7                    | 34.9              | 5.66         | 30.4         |           |
|           |        |          |           | Bottom  | 52.5         | 58.3                    | 36                | 5.6          | 28.6         |           |
| 7/27/2004 | 15     | Freeport | Off Ridge | Surface | 1            | 58.4                    | 35.2              | 5.73         | 29.8         |           |
|           |        |          |           | Bottom  | 52           | 58.4                    | 35.5              | 5.55         | 29.3         |           |
| 7/27/2004 | 16     | Freeport | Off Ridge | Surface | 1            | 53.7                    | 35.3              | 5.77         | 29.7         |           |
|           |        |          |           | Bottom  | 58.5         | 58.4                    | 35.6              | 5.93         | 29.1         |           |
| 7/27/2004 | 17     | Freeport | Off Ridge | Surface | 1            | 58.4                    | 35.3              | 5.76         | 29.7         |           |
|           |        | -        | <u> </u>  | Bottom  | 56.5         | 57.8                    | 35.8              | 4.45         | 28.2         |           |

|             |        |          |           |         | Depth | Conductivity | Salinity | DO     | Water<br>Temp |           |
|-------------|--------|----------|-----------|---------|-------|--------------|----------|--------|---------------|-----------|
| Date        | Site # | Bank     | Habitat   |         | (m)   | (mS/cm)      | (ppt)    | (mg/L) | (oC)          | Seas (ft) |
| 7/26/2004   | 18     | Freeport | Off Ridge | Surface | 1     | 53.6         | 35.2     | 5.78   | 30            |           |
|             |        |          |           | Bottom  | 54    | 57.9         | 45.7     | 5.33   | 28.1          |           |
| 7/26/2004   | 19     | Freeport | Offshore  | Surface | 1     | 53.2         | 35       | 5.55   | 30            |           |
|             |        |          |           | Bottom  | 67.7  | 54.7         | 36.2     | 5.25   | 27.5          |           |
| 7/26/2004   | 20     | Freeport | Offshore  | Surface | 1     | 52.9         | 34.7     | 5.67   | 30            |           |
|             |        | -        |           | Bottom  | 63.5  | 54.8         | 36.3     | 5.1    | 27.1          |           |
| 7/26/2004   | 21     | Freeport | Offshore  | Surface | 1     | 53           | 34.8     | 5.71   | 30.3          |           |
|             |        | -        |           | Bottom  | 66.5  | 54.9         | 36.3     | 5.02   | 27            |           |
| 7/26/2004   | 22     | Freeport | Offshore  | Surface | 1     | 58.4         | 34.8     | 5.63   | 30.3          |           |
|             |        | -        |           | Bottom  | 69.5  | 56.9         | 36.3     | 4.82   | 26.9          |           |
| 7/26/2004   | 23     | Freeport | Offshore  | Surface | 1     | 58.7         | 35       | 5.65   | 30.2          |           |
|             |        | -        |           | Bottom  | 70.5  | 56.9         | 36.3     | 4.93   | 26.9          |           |
| 7/26/2004   | 24     | Freeport | Offshore  | Surface | 1     | 53           | 35.4     | 5.79   | 30            |           |
|             |        | -        |           | Bottom  | 63    | 54.6         | 36.1     | 4.58   | 27.6          |           |
| 8/10/2004   | 1      | Freeport | Inshore   | Surface | 1     | 49.6         | 32.5     | 5.09   | 31            |           |
|             |        |          |           | Bottom  | 64.8  | 51.4         | 33.5     | 5.24   | 30.09         |           |
| 8/10/2004   | 2      | Freeport | Inshore   | Surface | 1     | 50.5         | 33.1     | 5.19   | 30.87         |           |
| 5, 20, 2001 | -      | poit     |           | Bottom  | 63.3  | 52           | 34.4     | 5.54   | 29.72         |           |

|           |        |          |          |         | Depth | Conductivity | Salinity | DO     | Water<br>Temp |           |
|-----------|--------|----------|----------|---------|-------|--------------|----------|--------|---------------|-----------|
| Date      | Site # | Bank     | Habitat  |         | (m)   | (mS/cm)      | (ppt)    | (mg/L) | (oC)          | Seas (ft) |
| 8/10/2004 | 3      | Freeport | Inshore  | Surface | 1     | 49.5         | 32.4     | 5.32   | 31.34         |           |
|           |        |          |          | Bottom  | 63.9  | 52           | 34.3     | 4.99   | 29.72         |           |
| 8/10/2004 | 4      | Freeport | Inshore  | Surface | 1     | 49.6         | 32.5     | 5.16   | 31.2          |           |
|           |        |          |          | Bottom  | 54    | 51.8         | 34.1     | 5.23?  | 29.91         |           |
| 8/10/2004 | 5      | Freeport | Inshore  | Surface | 1     | 49.5         | 32.4     | 5.26   | 30.9          |           |
|           |        |          |          | Bottom  | 64    | 51.5         | 33.9     | 5.26   | 30.01         |           |
| 8/10/2004 | 6      | Freeport | Inshore  | Surface | 1     | 49.6         | 32.5     | 5.07   | 30.87         |           |
|           |        |          |          | Bottom  | 64.2  | 51.5         | 34       | 5.3    | 30.01         |           |
| 8/10/2004 | 7      | Freeport | On Ridge | Surface | 1     | 50           | 32.8     | 5.24   | 30.91         |           |
|           |        |          |          | Bottom  | 60    | 51.6         | 34       | 5.73   | 30            |           |
| 8/10/2004 | 8      | Freeport | On Ridge | Surface | 1     | 51           | 33.5     | 5.18   | 30.9          |           |
|           |        |          |          | Bottom  | 60.1  | 51.6         | 34       | 5.9    | 30            |           |
| 8/10/2004 | 9      | Freeport | On Ridge | Surface | 1     | 50.9         | 33.4     | 5.14   | 30.76         |           |
|           |        |          |          | Bottom  | 60.4  | 51.8         | 34.2     | 5.23   | 29.89         |           |
| 8/10/2004 | 10     | Freeport | On Ridge | Surface | 1     | 50.8         | 33.3     | 5.08   | 30.82         |           |
|           |        | _        | -        | Bottom  | 58    | 52.2         | 34.4     | 5.16   | 29.72         |           |
| 8/10/2004 | 11     | Freeport | On Ridge | Surface | 1     | 50.7         | 33.3     | 5.21   | 31.27         |           |
|           |        |          | 5        | Bottom  | 60    | 52.3         | 34.5     | 5.27   | 29.63         |           |

| Date      | Site # | Bank     | Habitat   |         | Depth<br>(m) | Conductivity<br>(mS/cm) | Salinity<br>(ppt) | DO<br>(mg/L) | Water<br>Temp<br>(oC) | Seas (ft) |
|-----------|--------|----------|-----------|---------|--------------|-------------------------|-------------------|--------------|-----------------------|-----------|
| 8/10/2004 | 12     | Freeport | On Ridge  | Surface | 1            | 48.6                    | 31.8              | 5.59         | 30.71                 | <u>``</u> |
|           |        | I I I I  |           | Bottom  | 58.8         | 51.5                    | 33.9              | 5.43         | 30                    |           |
| 8/10/2004 | 13     | Freeport | Off Ridge | Surface | 1            | 48.7                    | 31.9              | 5.65         | 30.9                  |           |
|           |        |          |           | Bottom  | 66.4         | 51.6                    | 34                | 5.66         | 30.01                 |           |
| 8/10/2004 | 14     | Freeport | Off Ridge | Surface | 1            | 50.8                    | 33.4              | 5.18         | 30.74                 |           |
|           |        |          |           | Bottom  | 61.7         | 52.1                    | 34.4              | 5.31         | 29.53                 |           |
| 8/10/2004 | 15     | Freeport | Off Ridge | Surface | 1            | 50.6                    | 33.2              | 5.27         | 30.83                 |           |
|           |        |          |           | Bottom  | 59.3         | 519                     | 34.2              | 6.15         | 29.74                 |           |
| 8/10/2004 | 16     | Freeport | Off Ridge | Surface | 1            | 50.9                    | 33.5              | 5.22         | 30.77                 |           |
|           |        |          |           | Bottom  | 63.8         | 52.2                    | 34.5              | 5.77         | 29.81                 |           |
| 8/10/2004 | 17     | Freeport | Off Ridge | Surface | 1            | 51                      | 33.5              | 5.29         | 30.93                 |           |
|           |        |          | -         | Bottom  | 63.7         | 51.7                    | 34.1              | 5.51         | 29.99                 |           |
| 8/10/2004 | 18     | Freeport | Off Ridge | Surface | 1            | 49.2                    | 32.2              | 5.31         | 31.1                  |           |
|           |        |          |           | Bottom  | 58.5         | 51.5                    | 34                | 5.92         | 30                    |           |
| 8/11/2004 | 19     | Freeport | Offshore  | Surface | 1            | 49.2                    | 32.2              | 5.21         | 30.18                 | 2-3 ft.   |
|           |        | -        |           | Bottom  | 76.4         | 52.2                    | 34.6              | 5.21         | 29.62                 |           |
| 8/11/2004 | 20     | Freeport | Offshore  | Surface | 7.4          | 50.7                    | 33.3              | 5.17         | 30.17                 |           |
|           |        |          |           | Bottom  | 79.1         | 52.8                    | 34.9              | 4.92         | 29.58                 |           |

| Date      | Site # | Bank     | Habitat  |         | Depth<br>(m) | Conductivity<br>(mS/cm) | Salinity<br>(ppt) | DO<br>(mg/L) | Water<br>Temp<br>(oC) | Seas (ft) |
|-----------|--------|----------|----------|---------|--------------|-------------------------|-------------------|--------------|-----------------------|-----------|
| 8/11/2004 | 21     | Freeport | Offshore | Surface | 7.7          | 51.2                    | 33.5              | 5.31         | 30.15                 |           |
|           |        | -        |          | Bottom  | 79.3         | 52.9                    | 35                | 5.34         | 29.54                 |           |
| 8/11/2004 | 22     | Freeport | Offshore | Surface | 7.1          | 50.8                    | 33.4              | 5.24         | 30.1                  |           |
|           |        |          |          | Bottom  | 61.2         | 52.9                    | 34.9              | 4.84         | 29.9                  |           |
| 8/11/2004 | 23     | Freeport | Offshore | Surface | 7.2          | 51                      | 33.6              | 5.2          | 30.15                 |           |
|           |        |          |          | Bottom  | 81.2         | 52.9                    | 34.9              | 3.81         | 29.23                 |           |
| 8/11/2004 | 24     | Freeport | Offshore | Surface | 1            | 48.9                    | 32                | 5.2          | 30.35                 | 1-2 ft.   |
|           |        |          |          | Bottom  | 75.3         | 51.7                    | 34.1              | 4.84         | 19.82                 |           |
| 9/2/2004  | 1      | Freeport | Inshore  | Surface | 55.4         | 33.3                    | 5.18              | 29.6         | 3.6                   | < 1 ft    |
|           |        |          |          | Bottom  | 55.4         | 33.4                    | 5.29              | 29.5         | 54.5                  |           |
| 9/1/2004  | 2      | Freeport | Inshore  | Surface | 55.1         | 33.2                    | 5.62              | 29.5         | 3.6                   | 2-3ft     |
|           |        |          |          | Bottom  | 56           | 34.2                    | 4.53              | 29.8         | 54.4                  |           |
| 9/1/2004  | 3      | Freeport | Inshore  | Surface | 55.3         | 33.3                    | 5.65              | 29.5         | 3.6                   | 2 ft      |
|           |        |          |          | Bottom  | 56.3         | 33.9                    | 5.22              | 29.6         | 55                    |           |
| 9/1/2004  | 4      | Freeport | Inshore  | Surface | 55.1         | 33.2                    | 5.59              | 29.5         | 3.6                   | 2 ft      |
|           |        |          |          | Bottom  | 56.1         | 33.7                    | 5.37              | 29.7         | 54                    |           |
| 9/2/2004  | 5      | Freeport | Inshore  | Surface | 55.4         | 33.3                    | 5.36              | 29.5         | 3.6                   | < 1 ft    |
|           |        |          |          | Bottom  | 55.4         | 33.4                    | 4.86              | 25.9         | 54                    |           |

|          |        |          |           |         | Depth | Conductivity | Salinity | DO     | Water<br>Temp |           |
|----------|--------|----------|-----------|---------|-------|--------------|----------|--------|---------------|-----------|
| Date     | Site # | Bank     | Habitat   |         | (m)   | (mS/cm)      | (ppt)    | (mg/L) | (oC)          | Seas (ft) |
| 9/2/2004 | 6      | Freeport | Inshore   | Surface | 55.3  | 33.3         | 5.23     | 29.5   | 3.6           | < 1 ft    |
|          |        |          |           | Bottom  | 55.3  | 33.3         | 5.12     | 29.4   | 54            |           |
| 9/2/2004 | 7      | Freeport | On ridge  | Surface | 55.1  | 32.8         | 5.56     | 29.4   | 3.6           | < 1 ft    |
|          |        |          |           | Bottom  | 55.4  | 33.5         | 5.22     | 29.5   | 52.5          |           |
| 9/2/2004 | 8      | Freeport | On ridge  | Surface | 55    | 33.1         | 5.34     | 29.4   | 3.6           | < 1 ft    |
|          |        |          |           | Bottom  | 55.6  | 33.5         | 5.19     | 29.6   | 52.5          |           |
| 9/2/2004 | 9      | Freeport | On ridge  | Surface | 55    | 33.2         | 5.23     | 29.4   | 3.6           | 1 ft      |
|          |        |          |           | Bottom  | 56.1  | 33.7         | 4.8      | 29.6   | 51.5          |           |
| 9/1/2004 | 10     | Freeport | On ridge  | Surface | 54.9  | 33.1         | 5.7      | 29.5   | 3.6           | 2-3ft     |
|          |        |          |           | Bottom  | 56.8  | 34.1         | 4.6      | 29.7   | 50            |           |
| 9/1/2004 | 11     | Freeport | Off ridge | Surface | 53.6  | 33.1         | 5.64     | 29.6   | 3.6           | 2-3ft     |
|          |        |          |           | Bottom  | 57    | 34.2         | 4.34     | 29.8   | 50            |           |
| 9/2/2004 | 12     | Freeport | On ridge  | Surface | 55.1  | 33.2         | 5.19     | 29.4   | 3.6           | < 1 ft    |
|          |        |          |           | Bottom  | 55.2  | 33.4         | 5.3      | 29.4   | 50            |           |
| 9/2/2004 | 13     | Freeport | Off ridge | Surface | 55.2  | 33.2         | 5.28     | 29.5   | 3.6           | 1 ft      |
|          |        |          |           | Bottom  | 55.8  | 33.5         | 4.23     | 29.6   | 58            |           |
| 9/1/2004 | 14     | Freeport | Off ridge | Surface | 52    | 30.7         | 5.62     | 29.6   | 3.6           | 2-3ft     |
|          |        | _        | -         | Bottom  | 57.1  | 34.3         | 4.07     | 29.8   | 53.5          |           |

|          |        |          |           |         | Depth        | Conductivity | Salinity | DO     | Water<br>Temp |           |
|----------|--------|----------|-----------|---------|--------------|--------------|----------|--------|---------------|-----------|
| Date     | Site # | Bank     | Habitat   |         | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L) | (oC)          | Seas (ft) |
| 9/1/2004 | 15     | Freeport | Off ridge | Surface | 54           | 33.1         | 5.63     | 29.4   | 3.6           | 2 ft      |
|          |        |          |           | Bottom  | 56.7         | 34.1         | 4.97     | 29.8   | 51            |           |
| 9/2/2004 | 16     | Freeport | Off ridge | Surface | 54.9         | 33.1         | 5.36     | 29.4   | 3.6           | 1 ft      |
|          |        |          |           | Bottom  | 56.1         | 33.7         | 4.68     | 29.6   | 56.5          |           |
| 9/2/2004 | 17     | Freeport | Off ridge | Surface | 55.1         | 33.1         | 5.43     | 29.5   | 3.6           | 1 ft      |
|          |        |          |           | Bottom  | 55.7         | 33.5         | 5        | 29.6   | 54.5          |           |
| 9/2/2004 | 18     | Freeport | Off ridge | Surface | 55.4         | 33.3         | 5.37     | 29.5   | 3.6           | < 1 ft    |
|          |        |          |           | Bottom  | 55.6         | 33.5         | 5.42     | 29.5   | 53            |           |
| 9/1/2004 | 19     | Freeprot | Offshore  | Surface | 53.70        | 32           | 5.43     | 29.6   | 3.6           | 2-3ft     |
|          |        |          |           | Bottom  | 57.50        | 34.8         | 3.53     | 29.5   | 64            | Mod. Wind |
| 9/1/2004 | 20     | Freeprot | Offshore  | Surface | 54.90        | 32.9         | 5.34     | 29.6   | 3.6           | 2ft       |
|          |        |          |           | Bottom  | 57.60        | 34.9         | 3.14     | 29.5   | 67.5          | Overcast  |
| 9/1/2004 | 21     | Freeprot | Offshore  | Surface | 52.20        | 31.1         | 5.76     | 29.6   | 3.6           | 2ft       |
|          |        |          |           | Bottom  | 57.50        | 34.7         | 2.99     | 29.5   | 67            | Some wind |
| 9/1/2004 | 22     | Freeprot | Offshore  | Surface | 55.10        | 33           | 5.52     | 29.6   | 3.6           | 2-3ft     |
|          |        | -        |           | Bottom  | 57.50        | 34.7         | 2.97     | 29.6   | 70            |           |
| 9/1/2004 | 23     | Freeprot | Offshore  | Surface | 52.90        | 33.9         | 5.55     | 29.7   | 3.6           | 2-3ft     |
|          | -      | - F      |           | Bottom  | 57.50        | 34.7         | 2.93     | 29.6   | 70            |           |

|           |        |          |          |         | Depth | Conductivity | Salinity | DO     | Water<br>Temp |           |
|-----------|--------|----------|----------|---------|-------|--------------|----------|--------|---------------|-----------|
| Date      | Site # | Bank     | Habitat  |         | (m)   | (mS/cm)      | (ppt)    | (mg/L) | (oC)          | Seas (ft) |
| 9/1/2004  | 24     | Freeprot | Offshore | Surface | 60.30 | 40.5         | 5.12     | 29.44  | 3.6           | 2ft       |
|           |        |          |          | Bottom  | 63.00 | 42           | 3.44     | 29.24  | 63.8          | Overcast  |
| 9/28/2004 | 1      | Freeport | Inshore  | Surface | 3.6   | 47.74        | 28.6     | 5.81   | 28.9          |           |
|           |        |          |          | Bottom  | 56.5  | 54.10        | 31.4     | 3.71   | 29.1          |           |
| 9/29/2004 | 2      | Freeport | Inshore  | Surface | 3.6   | 46.97        | 28.5     | 5.96   | 28.2          |           |
|           |        |          |          | Bottom  | 54    | 58.1         | 35.5     | 3.38   | 29            |           |
| 9/29/2004 | 3      | Freeport | Inshore  | Surface | 3.6   | 46.85        | 28.4     | 5.72   | 28.2          |           |
|           |        |          |          | Bottom  | 55    | 57.5         | 35.2     | 3.43   | 28.9          |           |
| 9/29/2004 | 4      | Freeport | Inshore  | Surface | 3.6   | 46.75        | 28.3     | 5.64   | 28.3          |           |
|           |        |          |          | Bottom  | 54.5  | 56.7         | 34.6     | 3.34   | 28.9          |           |
| 9/29/2004 | 5      | Freeport | Inshore  | Surface | 3.6   | 46.83        | 28.3     | 5.31   | 28.3          |           |
|           |        |          |          | Bottom  | 54.5  | 57.40        | 35.1     | 3.36   | 28.9          |           |
| 9/28/2004 | 6      | Freeport | Inshore  | Surface | 3.6   | 48.22        | 28.8     | 5.6    | 29            |           |
|           |        | -        |          | Bottom  | 55.5  | 54.90        | 33.4     | 3.92   | 29            |           |
| 9/28/2004 | 7      | Freeport | On Ridge | Surface | 3.6   | 47.76        | 28.5     | 5.82   | 28.8          | 1-2 ft    |
|           |        |          |          | Bottom  | 54    | 56.50        | 34.5     | 3.66   | 29            |           |
| 9/29/2004 | 8      | Freeport | On Ridge | Surface | 3.6   | 45.81        | 27.9     | 5.59   | 27.9          |           |
|           |        |          |          | Bottom  | 52.5  | 58           | 35.5     | 3.72   | 29            |           |

|           |        |          |           |          |       |              |          |        | Water |           |
|-----------|--------|----------|-----------|----------|-------|--------------|----------|--------|-------|-----------|
| Data      | Site # | Doult    | Habitat   |          | Depth | Conductivity | Salinity | DO     | Temp  |           |
| Date      |        | Bank     |           | <b>a</b> | (m)   | (mS/cm)      | (ppt)    | (mg/L) | (oC)  | Seas (ft) |
| 9/29/2004 | 9      | Freeport | On Ridge  | Surface  | 3.6   | 45.95        | 28       | 5.25   | 27.9  |           |
|           |        |          |           | Bottom   | 51.5  | 57.5         | 35.2     | 3.41   | 28.8  |           |
| 9/29/2004 | 10     | Freeport | On Ridge  | Surface  | 3.6   | 46.25        | 28.2     | 5.5    | 27.9  |           |
|           |        |          |           | Bottom   | 49.5  | 54.2         | 32.8     | 3.6    | 28.8  |           |
| 9/29/2004 | 11     | Freeport | On Ridge  | Surface  | 3.6   | 46.82        | 28.2     | 5.8    | 27.9  | 1-2 ft    |
|           |        |          |           | Bottom   | 50.5  | 58.4         | 35.8     | 3.55   | 28.9  |           |
| 9/28/2004 | 12     | Freeport | On Ridge  | Surface  | 3.6   | 47.18        | 28.4     | 5.77   | 28.6  |           |
|           |        |          |           | Bottom   | 52.5  | 56           | 34.1     | 3.73   | 29.1  |           |
| 9/28/2004 | 13     | Freeport | Off Ridge | Surface  | 3.6   | 46.89        | 28.3     | 5.7    | 28.4  |           |
|           |        |          |           | Bottom   | 60    | 57           | 34.7     | 3.9    | 29.1  |           |
| 9/29/2004 | 14     | Freeport | Off Ridge | Surface  | 3.6   | 46.52        | 28.3     | 5.5    | 28.1  | <2 ft     |
|           |        |          |           | Bottom   | 54    | 58.6         | 35.9     | 4.16   | 29    |           |
| 9/29/2004 | 15     | Freeport | Off Ridge | Surface  | 3.6   | 46.48        | 28.3     | 5.45   | 28    |           |
|           |        |          |           | Bottom   | 51.5  | 57.5         | 35.2     | 3.39   | 28.8  |           |
| 9/29/2004 | 16     | Freeport | Off Ridge | Surface  | 3.6   | 45.85        | 27.9     | 5.56   | 27.9  |           |
|           |        |          |           | Bottom   | 56.5  | 59.8         | 36.1     | 4.2    | 29    |           |
| 9/29/2004 | 17     | Freeport | Off Ridge | Surface  | 3.6   | 46.03        | 28       | 5.33   | 28    |           |
|           |        |          |           | Bottom   | 55    | 58.5         | 35.8     | 3.9    | 29    |           |

|           |        |          |           |         | Depth        | Conductivity | Salinity | DO        | Water<br>Temp |           |
|-----------|--------|----------|-----------|---------|--------------|--------------|----------|-----------|---------------|-----------|
| Date      | Site # | Bank     | Habitat   |         | ( <b>m</b> ) | (mS/cm)      | (ppt)    | (mg/L)    | (oC)          | Seas (ft) |
| 9/28/2004 | 18     | Freeport | Off Ridge | Surface | 3.6          | 47.73        | 28.5     | 5.98      | 29            |           |
|           |        |          |           | Bottom  | 55           | 56.70        | 34.6     | 3.81      | 29            |           |
| 9/28/2004 | 19     | Freeport | Offshore  | Surface | 3.6          | 44           | 28.3     | 5.56      | 28.3          |           |
|           |        |          |           | Bottom  | 66           | 57.8         | 35.4     | 4.6       | 29            |           |
| 9/28/2004 | 20     | Freeport | Offshore  | Surface | 3.6          | 47.62        | 28.4     | 5.56      | 28.9          |           |
|           |        |          |           | Bottom  | 69           | 50.40        | 35.7     | 4.44      | 29            |           |
| 9/28/2004 | 21     | Freeport | Offshore  | Surface | 3.6          | 47.53        | 28.4     | 5.76      | 28.8          |           |
|           |        |          |           | Bottom  | 69           | 58.4         | 35.8     | 4.61/4.41 | 29            |           |
| 9/28/2004 | 22     | Freeport | Offshore  | Surface | 3.6          | 47.62        | 28.5     | 5.49      | 28.9          |           |
|           |        |          |           | Bottom  | 70           | 58.6         | 35.9     | 4.73/4.57 | 29            |           |
| 9/28/2004 | 23     | Freeport | Offshore  | Surface | 3.6          | 47.07        | 28.2     | 5.72      | 28.7          |           |
|           |        |          |           | Bottom  | 70.5         | 59           | 36.1     | 4.91/4.79 | 29.1          |           |
| 9/28/2004 | 24     | Freeport | Offshore  | Surface | 3.6          | 46.5         | 28.2     | 5.7       | 28.1          | 2 ft      |
|           |        | _        |           | Bottom  | 65           | 58           | 35.6     | 4         | 28.9          |           |

## VITA

Joseph John Mikulas received his Bachelor of Science degree in natural resources from The University of Vermont in 1999. He entered the wildlife and fisheries sciences program at Texas A&M University in September 2003 and received his Master of Science degree in May 2007.

Mr. Mikulas may be reached at Fisheries Ecology Lab, 5007 Ave. U #102, Galveston, TX 77551. His e-mail address is mikulasj@neo.tamu.edu.