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ABSTRACT 
 
 

Metabolic and Thermoregulatory Capabilities of Juvenile Steller Sea Lions,  

Eumetopias jubatus.  (May 2007) 

Lisa Ann Hoopes, B.S., Michigan State University; 
 

M.S., Texas A&M University 
 

Co-Chairs of Advisory Committee: Dr. Graham A.J Worthy 
                            Dr. Jay R. Rooker 

 
 

 Maintaining thermal balance is essential for all homeotherms but can be 

especially challenging for pinnipeds which must regulate over a variety of ambient 

temperatures and habitats as part of their life history.   Young pinnipeds, with their 

immature physiology and inexperience, have the additional expense of needing to 

allocate energy for growth while still dealing with a thermally stressful aquatic 

environment.  With the immense environmental and physiological pressures acting on 

juvenile age-classes, declines in prey resources would be particularly detrimental to 

survival.  The goal of the present study was to examine the metabolic and 

thermoregulatory capabilities of juvenile Steller sea lions to better understand how 

changing prey resources indirectly impact juvenile age classes.  

 Data collected from captive Steller sea lions suggest that changes in body mass 

and body composition influence the thermoregulatory capabilities of smaller sea lions in 

stationary and flowing water.  Serial thermal images taken of sea lions after emergence 

from the water show vasoconstriction of the flippers compared to the body trunk to help 

minimize heat loss.  Despite this ability to vasoconstrict, sea lions in poor body 

 



 iv

condition displayed a reduced tolerance for colder water temperatures, suggesting that 

decreases in prey availability which affect insulation may limit survival in younger sea 

lions.   

If reductions in prey availability (i.e., nutritional stress) were impacting western 

Alaskan populations, a reduction in energetic expenditures would be expected in these 

animals to cope.  Measures of resting metabolism in juvenile free-ranging Steller sea 

lions across Alaska showed no differences between eastern and western capture 

locations, suggesting no evidence of metabolic depression in declining western stocks of 

sea lions. 

Finally, thermal costs predicted by a thermal balance model were compared to 

actual costs measured in the present study.  Model output reliably predicted 

thermoregulatory costs for juvenile Steller sea lions under certain environmental 

conditions.  Basic physiological measurements combined with the predictive power of 

modeling will allow for greater exploration of the environmental constraints on juvenile 

Steller sea lions and identify directions of future study.  
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CHAPTER I 

 INTRODUCTION 
 

 Metabolism is the process by which energy and materials are transformed within 

an organism and exchanged between the organism and its environment.  Metabolic rates 

of organisms scale allometrically rather than isometrically with body mass and the 

relationship between basal metabolic rate (BMR) on body mass (M) is typically 

expressed as the well-known power function: 

BMR = a Mb 

where a is a scaling constant, which is taxon dependent, and b is the scaling exponent.  

Given that heat produced through metabolic processes is lost through the body surface, it 

has been proposed that metabolic rate should be proportional to the organisms’ surface 

area.  This relationship was noted by Sarrus and Ramaeux in 1838 and tested by Max 

Rubner in 1883 (cited by White and Seymour, 2005) who suggested that the scaling 

exponent should have a value of ⅔ (0.67) as it was thought that this relationship could be 

described by geometric constraints due to the surface area to volume ratio of an 

organism.  It was Max Kleiber who demonstrated an alternative scaling exponent of 

approximately ¾ for a variety of sized terrestrial organisms in his 1932 monograph 

(Kleiber, 1932).  Kleiber’s data set was expanded by both Benedict (1938, cited in White 

and Seymour, 2005) and later by Brody (1945, cited in White and Seymour, 2005) in his 

now famous mouse-to-elephant curve.  This relationship has since been demonstrated in 

numerous organisms ranging in size over 20-fold including unicellular microorganisms,  
____________ 
This thesis follows the style of Journal of Experimental Biology. 

 



 2

plants, ectothermic vertebrates and invertebrates, and endothermic birds and mammals 

(Hemmingsen, 1960; Peters, 1983; Schmidt-Nielsen, 1984; Niklas, 1994; Clarke and 

Johnston, 1999).  When metabolic rate is expressed per unit body mass (i.e. mass 

specifically), the relationship is negative and b = -0.25, meaning that per unit of body 

mass, smaller animals (e.g., mouse) have a higher metabolic rate, than larger animals 

(e.g., elephant).  Both the 0.75 and -0.25 slopes refer to what is known as the quarter 

power rule/law in biology (Hochachka et al., 2003).    

Compelling evidence exists for quarter power scaling.  Extensive research on 

allometry has shown that this is the case for not only BMR, but numerous other 

mechanisms of organism form, function, physiology, and life history (Peters, 1983).  Not 

only does whole-organism metabolism scale to M0.75, so does the size of biological 

structures (e.g., cross-sectional area of mammalian aorta and of tree trunks) (West et al., 

1997).  Mass specific metabolic rate and most other biological rates scale to the M-0.25 

(e.g., rates of cellular metabolism, circulatory and respiratory rates, stride frequencies) 

and most biological times scale as M0.25 (e.g., life spans, gestation times, embryonic 

growth)  (Lindstedt and Calder III, 1981; Peters, 1983; Schmidt-Nielsen, 1984; West et 

al., 1997; Savage et al., 2004).   

 Quarter power scaling is not universally accepted and debate still surrounds the 

use of slope of 0.75 as a generalization (Bokma, 2004).  It has been demonstrated that 

individual processes that make up whole-animal metabolism (e.g., lung ventilation, 

cardiac output, circulation) have different scaling relationships (Darveau et al., 2002; 

Hochachka et al., 2003).  Additionally there is some evidence supporting the use of the 
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⅔ scaling exponent in large mammals (≥ 10 kg) and in birds over the ¾ scaling exponent 

(Dodds et al., 2001; White and Seymour, 2003).  Many proximate factors have been 

attributed to the differences in mammalian BMR including diet, geography, habitat 

productivity, and relative organ size, and it is likely that these factors are confounding 

the relationship of BMR to body mass (White and Seymour, 2003).  Criticism leveled at 

the ¾ power scaling of metabolic rate also stems from the practice of many researchers 

to focus on interspecific data sets while ignoring the possibility for phylogenetic 

differences at the species level (Clarke and Johnston, 1999; Lovegrove, 2000; Bokma, 

2004).   

 While it is generally agreed upon that the quarter power scaling rule explains 

most biological phenomena, the mechanism underlying this relationship has been the 

subject of much recent speculation and debate (West et al., 1997; Darveau et al., 2002; 

West et al., 2002; Banavar et al., 2003; Darveau et al., 2003; Hochachka et al., 2003).  

West et al. (1997) proposed a theoretical model to explain the scaling of metabolic rate 

based on the fractal-like nature of biological distribution systems, such as animal and 

plant vascular systems.  The model assumes that metabolic rate equals the rate at which 

these networks deliver resources and that evolution has minimized the time and energy 

needed to transport substances inside the body.  They assume that while organisms vary 

greatly in size, the terminal units in their distribution networks (e.g., blood capillaries) 

do not.  Combined, the theory predicts that the number of terminal units in a network 

(which has a fractal structure at all scales) and the rate at which resources are delivered 

to cells is proportional to the ¾ power of body mass (West et al., 1997; West et al., 2002; 
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Bokma, 2004).  An alternative theoretical model has been developed by Darveau et al. 

(2002) which attempts to predict the scaling of BMR and maximum metabolic rate from 

the scaling relationships of the individual processes that make up the overall rates.  They 

have termed this multi-site concept an “allometic cascade” and suggest that each step in 

the pathway of ATP synthesis has its own scaling behavior with body mass and its own 

degree of control over whole-animal metabolic rates.  Thus, both the scaling exponent 

and the control coefficient in the intracellular pathways of ATP cycling determine the 

overall scaling behavior of the whole organism (Darveau et al., 2002; Hochachka et al., 

2003).   

   When analyzing data that vary in magnitude with the body size of the animals 

being studied, it is often desirable to remove the confounding effects of body mass.  

Physiological ecologists often use ratios (e.g. mass-specific metabolic rate) to increase 

the precision of the data and attempt to correct for body size differences among subjects 

(Packard and Boardman, 1988).  Several papers have been published criticizing the wide 

use of ratios, percentages, and indices in physiological studies in this fashion (Packard 

and Boardman, 1988; Hayes and Shonkwiler, 1996; Packard and Boardman, 1999; 

Hayes, 2001).  They contend that the problem lies with the fact that mass-specific data 

are not mass-independent unless the variable of interest varies proportionally 

(isometrically) with body size.  Since most physiological variables change allometrically 

with body size, the use of ratios during data analysis could lead to erroneous conclusions 

(Packard and Boardman, 1988).  Hayes (2001) suggests that the use of mass-specific 

data, especially as it relates to metabolism, should be avoided since mass-specific 
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metabolism and whole-animal metabolism often do not measure the same biological 

concept.  In contrast, while McNab (1999) states that total units of metabolism are the 

ecologically and evolutionary relevant units, he also maintains that the use of mass-

specific rates of metabolism are acceptable and often preferred when examining the 

variation surrounding the scaling relationship of metabolism.   

 The regression line describing the relationship between metabolism and body 

mass (often referred to as the ‘Kleiber line’) is based on metabolism measurements of 

terrestrial mammals.  So how do marine mammals compare?  It has generally been 

assumed that the basal metabolic rate of marine mammals were elevated compared with 

terrestrial animals of the same size due to the need to maintain thermal balance in the 

high conductivity medium of water (Hart and Irving, 1959; South et al., 1976; 

Thompson et al., 1987; Whittow, 1987).  Williams (1999) suggests that while marine 

mammals are more efficient locomotors compared to terrestrial mammals, a greater 

proportion of their total cost of locomotion is comprised of BMR and thermoregulatory 

functions.   

Kleiber (1975) established criteria for measuring metabolic rate that required 

subjects to be adults, resting, post-absorptive, and thermoneutral.  There is a potential 

problem in interpreting the published data for marine mammals in that many studies 

assessing metabolic rate in marine mammals failed to meet the criteria outlined by 

Kleiber (Lavigne et al., 1986).  Juvenile mammals generally display elevated metabolic 

rates relative to adults, and this elevation is thought to be associated with extra energy 

required for growth.  There is evidence that metabolic rates in marine mammals decline 
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as animals mature (Matsuura and Whittow, 1973; Miller and Irving, 1975; Ashwell-

Erickson and Elsner, 1981; Thompson et al., 1987; Rea and Costa, 1992; Donohue et al., 

2000; Rutishauser et al., 2004).  Comparisons of basal metabolism in marine to 

terrestrial mammals can be difficult due to several other factors, including differences in 

metabolic response across the different taxonomic groups of marine mammals, large 

changes in body composition (specifically body fat), and difficulty in defining “resting” 

in marine mammals (Costa and Williams, 1999).    

 Marine mammals spend all or some portion of their lives in water.  It is no 

surprise that BMR increases exponentially with temperature in marine ectotherms due to 

the high thermal conductivity (25X) and specific heat loss (4000X) of water compared to 

air (Nadel, 1984).  For marine endotherms maintaining a constant body core temperature 

is essential, heat input and heat loss must be balanced such that: 

Htotal = ± Hk ± Hc ± Hr ± He ± Hs 

where Htotal is the rate of metabolic heat production, Hk is the conductive heat exchange, 

Hc is the convective heat exchange, Hr is the radiant heat exchange, He is the evaporative 

heat loss, and Hs is the rate of storage of heat in the body (Schmidt-Nielsen, 1983).  The 

magnitude of heat loss from these processes (excluding evaporative heat loss) depends 

on the total surface area for transfer and the thermal gradient between the body surface 

and the environment.  The balancing of this equation with body temperature, metabolic 

rate, and evaporative water loss determine the limits of extreme conditions which an 

animal can withstand.    
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 Marine mammals are distributed across the world’s oceans and can be found in 

variety of thermal environments, and as such, would be expected to deal with heat 

balance differently depending on whether they inhabit waters near the poles or the 

equator.  In water, radiation and evaporation are considered relatively insignificant to 

heat balance, although, total evaporative heat loss from the lungs (via respiration) has 

been documented to be as much as 20% of the heat budget in California sea lions, 

Zalophus californianus, when exposed to warm conditions (Matsuura and Whittow, 

1974).  Evaporative heat losses are assumed to be minimal at cold temperatures.  

Alternately, convection is the primary mechanism for heat exchange, with some transfer 

through conduction (usually lumped with the convection term) (Schmidt-Nielsen, 1983).  

Preserving heat in cold water requires either a decrease in conductance (or the inverse, 

an increase in insulation) or an increase in metabolic heat through an increase in either 

metabolic rate and/or voluntary (exercise) or involuntary (shivering) muscular activity.  

For the large number of marine mammals distributed throughout cold waters, the main 

solution to preserving heat is effective insulation.   

Marine mammals that are strictly aquatic rely on a layer of subcutaneous adipose 

tissue known as blubber for insulation.  This blubber layer can be a thick as 25 cm in 

Arctic bowhead whales, Balaena mysticetes, and can range in lipid content between 9 to 

82% depending on the species and site (Lockyer et al., 1984; Ryg et al., 1988; Worthy 

and Edwards, 1990).  Blubber can make up a substantial percentage of body mass, often 

in excess of 30%, and its insulative properties depends not only on thickness, but on 

lipid quality (Parry, 1949; Worthy and Edwards, 1990; Pabst et al., 1999; Dunkin et al., 
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2005).  When ambient conditions are below core body temperatures, marine mammals 

can constrict blood flow to the highly vascularized blubber layer and the extremities, 

thus reducing the surface area available for heat loss.  Measurements of skin temperature 

of submerged phocid seals support this idea for the temperature at the skin is close to 

that of the water (Irving, 1969).     

Some marine mammals (pinnipeds, polar bears, sea otters) also use fur as an 

insulator.  While the blubber layer in phocid seals (true or haired seals) is a sufficient 

insulator, otariid seal (eared seals) blubber tends to be thinner (Bryden and Molyneux, 

1978) and their ability to thermoregulate is partially compensated by the pelage.  To be 

an effective insulator, fur must decrease the skins’ contact with the external 

environment.  Dry fur is a better insulator than blubber; however, when submerged, fur 

losses most of its insulative properties (Scholander et al., 1950; Costa and Kooyman, 

1982).  Sea otters, Enhydra lutris, and northern fur seals, Callorhinus ursinus, have very 

dense pelts (60,000-130,000 hairs/cm3) that trap a layer of air next to the skin surface, 

thus maintaining a dry skin surface when wet (Pabst et al., 1999).  However, where the 

fur seal has thick fur and blubber and can spend more time submerged while foraging, 

sea otters have very little internal fat stores and are limited to short foraging dives since 

most of the air is compressed from the fur at depth (Costa and Kooyman, 1982).      

A short-term option for balancing heat losses in a cold environment would be to 

increase metabolic heat production.  Metabolic rate has been measured for a variety of 

marine mammals (e.g., Hart and Irving, 1959; Heath et al., 1977; Costa and Kooyman, 

1982; Gallivan and Best, 1986; Thompson et al., 1987; Worthy and Lavigne, 1987; 
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Markussen et al., 1992; Rea and Costa, 1992; Renouf and Gales, 1994; e.g., Hansen et 

al., 1995; Boily and Lavigne, 1997; Rosen and Trites, 1999; Donohue et al., 2000; 

Arnould et al., 2001; Hurley and Costa, 2001; Trillmich and Kooyman, 2001; Sparling 

and Fedak, 2004), although as mentioned earlier, it is unclear whether the reported 

higher rates for marine mammals are due solely to the need to maintain thermal balance 

in water. 

 For marine mammals in tropical waters, the need to avoid overheating, especially 

during sustained swimming and or diving, is more pressing.  Marine mammals are able 

to shunt heat to the surface of the skin where it can be lost through conductive processes 

to the water by bypassing the insulative layer.  This is accomplished through 

vasodilation of the arterioles that run through the highly vascularized blubber layer that 

can carry blood (and heat) to the epidermal surface of the animal.  Sparsely insulated 

appendages such as flippers, dorsal fins and flukes can also act as “thermal windows” to 

dissipate heat.  Often these areas are also highly vascularized allowing warm blood to be 

carried to the skin surface where it can be cooled by exposure to ambient water 

(McGinnis et al., 1972; Hampton and Whittow, 1976; Pabst et al., 1999). 

 In air, radiant and evaporative heat exchange mechanisms become important for 

marine mammals along with conduction and convection.  Similar to that in water, in 

order to maintain heat balance in air, marine mammals can alter their thermal balance 

through physiological modification of skin temperature via constriction or dilation of the 

blubber vasculature (i.e. changing insulation) and metabolic heat production.  Behavioral 

thermoregulation is also a mechanism used by marine mammals to control the amount of 
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surface area exposed to heat losses or gains (e.g., huddling, cooling off in water)(Odell, 

1974; Limberger et al., 1986).    

 The range of temperatures within which regulatory metabolic heat production is 

unaffected by a temperature change is termed the animal’s thermoneutral zone (TNZ).  

The limits of the TNZ are determined by an upper (Tuc) and lower (Tlc) critical 

temperature beyond which the animal increases metabolic heat production.  While much 

research has been conducted on determining components of the TNZ in air (e.g., Heath 

et al., 1977; Hansen et al., 1995; Hansen and Lavigne, 1997b; Donohue et al., 2000; e.g., 

Arnould et al., 2001) surprisingly few studies of the TNZ in marine mammals have been 

conducted in water.           

 Thermoneutral zone studies in marine mammals have focused on phocid seals, 

which tend to have a broad TNZ compared with the narrow TNZ in air of most terrestrial 

mammals.  Studies with harbor seals, Phoca vitulina, suggest that the Tlc in water was 

higher (near 20 ºC) in the summer than when measured in the winter (13 ºC).  This 

seasonal change in the Tlc was attributed to a 30% increase in insulation during the 

winter (Hart and Irving, 1959).  Harp seals, Phoca groenlandica, appear to have a 

broader TNZ than harbor seals of at least 28 ºC and the Tlc for this species is below 0 ºC 

in water (Gallivan and Ronald, 1979).  The Tuc for these species are not known.  

Northern elephant seal, Mirounga angustirostris, pups with sufficient lipid stores at the 

end of the post-weaning fast were shown to be able to remain thermally neutral in 4 ºC 

water; however, water temperatures of approximately 14 ºC and warmer may be outside 

their TNZ (Noren, 2002).  
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 Little is known of the TNZ in otariids.  Sea lions are generally temperate water 

otariids and are considered to be leaner animals than Arctic phocids of the same size.  

Liao (1990) examined the metabolic response of sub-adult California sea lions to 

changing water temperatures (range 5-30 ºC).  The TNZ was approximately 20 ºC and 

the Tlc was about 14 ºC, which is close to ambient water conditions within the home 

range of this species.  This suggests that California sea lions in the wild live at the edge 

of their TNZ, implying an increased reliance on physiological mechanisms to maintain 

thermoneutrality or increased levels of activity to offset thermal costs.  Rutishauser et al. 

(2004) estimated the Tlc of young Antarctic fur seals, Arctocephalus gazella, at about 14 

ºC, which is 10-15 ºC above water temperatures normally experienced by these otariids, 

suggesting they too might have a high metabolic overhead living outside their TNZ.  

Although Tlc was not determined for post-molt northern fur seal pups, Donohue et al. 

(2000) noticed no differences in metabolic rate when pups were exposed to 5, 10, and 20 

ºC water suggesting that this species may have a greater thermal tolerance to cold than 

Antarctic fur seals.  While no studies have examined the Tuc of otariids in water, limited 

work with California sea lions suggests the Tuc in air is between 22 and 30 ºC, with 

smaller sea lions being able to tolerate higher temperatures (Matsuura and Whittow, 

1973; Matsuura and Whittow, 1975).          

  Little work has been done to examine the TNZ of cetaceans (whales, dolphins, 

porpoises) due to the logistics involved in working with such large, solely aquatic 

animals and due to the difficulty in being able to thermally manipulate such large 

quantities of water in a captive setting.  Costa and Williams (1999) report that captive 
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bottlenose dolphins, Tursiops truncatus, in 28 ºC water have a TNZ of at least 15 ºC and 

the Tlc depended on the size of the animal along with the quality and thickness of the 

blubber layer.  They also note the TNZ of bottlenose dolphins can be shifted depending 

on the temperature of water to which they are acclimated (Costa and Williams, 1999).  

Studies of temperature regulation in small odontocetes (toothed whales) have largely 

focused on changes in core body temperature, heat production, and heat flux across the 

body surface (McGinnis et al., 1972; Hampton and Whittow, 1976; Whittow, 1987; 

Worthy and Edwards, 1990; Heath and Ridgway, 1999; Noren et al., 1999; Williams et 

al., 1999; Meagher et al., 2002).  Studies with captive Pacific bottlenose dolphins, 

Tursiops gilli, and Hawaiian spinner dolphins, Stenella longirostris, suggest that these 

species displayed elevated body temperatures and insulation while at rest in warm 

tropical water (24 ºC) in order to conserve body heat (McGinnis et al., 1972; Hampton 

and Whittow, 1976).  These species exist near their Tlc and may rely on heat generated 

from swimming to maintain thermal balance (Hampton and Whittow, 1976). 

 Given that experimental determination of TNZ is not feasible for mysticete 

(baleen) whales, attempts at theoretical calculations of Tlc have been made using various 

heat-flow models (Hokkanen, 1990; Lavigne et al., 1990; Watts et al., 1993).  Although 

there is some level of uncertainty associated with modeling the thermal environment of a 

living organism (Kvadsheim et al., 1997), these studies suggest that blue whales, 

Balaenoptera musculus, should have little trouble maintaining thermal balance in the 

coldest of waters (-2 ºC) and estimated Tlc was below the lowest recorded sea surface 

temperatures (Lavigne et al., 1990; Watts et al., 1993). 
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 Unlike other marine mammals, manatees, Trichechus sp., and sea otters exhibit 

atypical metabolic rates compared with terrestrial mammals of a similar size.  Manatees 

exhibit body temperatures near the lower end of the normal mammalian range and 

relatively high Tlc (20-23 ºC) compared with other marine mammals (Gallivan et al., 

1983; Irvine, 1983; Miculka and Worthy, 1995).  Combined with a lower than predicted 

metabolic rate based on size alone, these physiological limits constrain the tolerance of 

these animals to changing water temperature.  In contrast, sea otters maintain a higher 

than normal metabolic rate (2.5X) than would be predicted by body size.  Thermoneutral 

zone studies suggest sea otters tolerate a broader range of temperatures in air (-20 to 21 

ºC) than in water (20 to 33 ºC) (Morrison et al., 1974).     

The 14 extant members of the Family Otariidae are widely distributed from the 

equator (e.g., Galapagos fur seal, Arctocephalus galapagoensis) to the poles (e.g., 

northern fur seal) and hence are subject to a wide variety of environmental conditions.  

Summer water temperatures near the Galapagos Islands can reach 35 ºC, while winter 

water temperatures in the Bering Sea can reach near freezing temperatures (0 ºC).  While 

otariids must deal with the thermal challenges of swimming and diving in water, they 

also have the dual challenge of coping with terrestrial conditions for reproduction, 

parturition, and nursing.  For example, female Galapagos fur seals exhibit lower field 

metabolic rates than Antarctic fur seals, implying a lower metabolic overhead while 

onshore due to the need to reduce thermal stress on land in the warmer environment 

(Costa and Trillmich, 1988).  Of the pinnipeds, otariids are considered to be the most 

terrestrial, spending upwards of 30% of their lives on shore (Gentry, 1970). 
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In order to maintain thermal equilibrium animals should theoretically show a 

preference for a habitat that keeps them within their TNZ (Trites, 1990).  This is not 

always possible, and as already discussed, many marine mammals exist near their 

critical temperature limits.  In these situations, animals usually initially rely on 

behavioral mechanisms as they are less of a drain on energy stores and later on 

physiological mechanisms as previously discussed.  For example, a sea lion on land in 

the winter might compensate for heat loss by increasing metabolism and/or muscular 

activity to produce heat.  This energy would come either from recently ingested food, or 

through mobilization of lipid stores.  Active foraging in water requires additional energy 

expenditure in a medium that promotes heat loss, while mobilization of fat stores 

reduces valuable blubber thickness needed to thermoregulate.  It has been suggested that 

the heat generated through locomotion or as a result of digestion may be used by animals 

to offset heat loss; however, experimental results are mixed (Costa and Kooyman, 1984; 

Feldkamp, 1987; Klassen et al., 1989; Wilson and Culik, 1991; MacArthur and 

Campbell, 1994; Chappell et al., 1997; Jenson et al., 1999; Campbell et al., 2000; Hindle 

et al., 2003; Rosen and Trites, 2003; Bech and Praesteng, 2004; Williams et al., 2004b), 

and in marine mammals the use of heat generated through activity and feeding to offset 

an increase in metabolism for thermoregulation has only been observed in sea otters 

(Costa and Kooyman, 1984).  Collectively, thermoregulation is series of complex 

behavioral and physiological energetic tradeoffs employed by an animal to prevent 

thermal imbalance in a given environment (Rosen et al., 2007).  These thermal 

challenges are further magnified when resources are limited. 
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Steller Sea Lion 

Steller sea lions, Eumetopias jubatus, are the largest of the otariids and are 

distributed throughout the northern Pacific Rim from California north through the Gulf 

of Alaska and the Aleutian Islands, including the waters near the Pribilof Islands over to 

the Kamchatka Peninsula and the Sea of Okhotsk.  Stellers are considered ‘lean’ animals 

with an average blubber layer less than 2-3 cm thick (Pitcher et al., 2000) and forage in 

water that can reach near-freezing temperatures (Jefferson et al., 1993).   

Stellers exhibit a high degree of sexual dimorphism with males reaching an 

average body mass of 1100 kg compared to females which reach an average size of 270 

kg.  This size difference has allowed a polygynous breeding system to develop on 

established rookeries and rocky outcroppings.  Males arrive in May to compete for 

territories, fasting the duration of the breeding season to maintain their territories.  

Females arrive by late May to give birth to a single pup usually in June and averaging 

approximately 22 kg in size.  Mating occurs about 10 days after parturition, after which 

males depart the rookery.  Females remain on land with their pups for 11-14 days after 

birth, and then begin to make brief foraging trips alternating with periods of nursing their 

new pup (Gentry, 1970).  Pups are completely terrestrial for the first 2-3 weeks and then 

transition rapidly to exploring the near shore waters.  By a few months of age they are 

well adapted to aquatic life and have been observed dispersing long distances from their 

natal rookery (Raum-Suryan et al., 2004).  Pups are typically weaned within the first 
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year, although observations of suckling juveniles two and three years old have been 

reported (Pitcher and Calkins, 1981; Trites and Porter, 2002).   

The development of diving plays a major role in determining what age a 

pinnipeds can successfully forage and survive independently (Horning and Trillmich, 

1997).  This is likely constrained by the ontogeny of thermoregulatory capabilities in 

young pups entering the water for the first time.  Development of thermoregulatory 

capabilities may limit the age at which pups begin to enter the water due to the need for 

pups to allocate energy between maintenance, growth and activity (Donohue et al., 

2000). 

Steller sea lions in the U.S. are currently listed as threatened within their eastern 

Alaskan range (east of Cape Suckling, 144º W) and endangered in their western Alaskan 

range (west of 144º W).  Population levels have declined over 85% of peak levels during 

the past 30 years (Braham et al., 1980; Loughlin et al., 1984; Merrick et al., 1987; 

Loughlin et al., 1992; Trites and Larkin, 1996; Loughlin, 1998; Calkins et al., 1999).  

Several mechanisms have been proposed to account for the decline, including 

commercial and subsistence hunting (e.g., Pascual and Adkinson, 1994), disease (e.g., 

Burek et al., 2005; Bowen et al., 2006), pollutants (e.g., Beckmen et al., 2004), killer 

whale predation (e.g., Springer et al., 2003; Williams et al., 2004a), ecosystem-wide 

ocean climate changes (e.g., Guénette et al., 2006; e.g., Trites et al., 2007), malnutrition 

(e.g., Merrick et al., 1997; Rosen and Trites, 2000; Trites and Donnelly, 2003), and 

competition with commercial fisheries (e.g., Cornick et al., 2006; Guénette et al., 2006).  

The leading, but unconfirmed, hypothesis for the decline is reduced juvenile survival 
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resulting from a historical shift in the quality and/or quantity of prey available.  This is 

referred to as the nutritional stress hypothesis in the literature (York, 1994; Merrick and 

Loughlin, 1997; Calkins et al., 1998; Trites and Donnelly, 2003).  If the energetic 

demands of young sea lions are not being met by energy input (i.e., nutritional stress), 

these animals might be forced to tap into their insulatory stores, thus comprising their 

ability to thermoregulate and increasing the metabolic costs associated with staying 

warm.  The smaller size of these juvenile sea lions means increased heat loss due to a 

smaller surface area to volume ratio and their immaturity and inexperience are 

suggestive of limited diving abilities.  Thus, declining blubber stores could also impact 

foraging by limiting how far the sea lion can range to productive feeding locations, how 

deep they could dive, and how long they have at depth to search for prey.  If this 

continues over the long term, lipid stores would continue to be depleted until body 

condition deteriorated to such a state where thermal balance could not longer be 

maintained, ultimately leading to death.   

 

Scope of the Project 

The goal of the present investigation was to examine the thermal energetics of 

juvenile Steller sea lions.  Currently, no information is available about the thermal limits 

for young Steller sea lions in air or in water.  Steller sea lions are a model species for 

undertaking energetic studies due to the need for a greater understanding of their general 

physiology and energetic requirements.  Additionally, there are a modest number of 

Steller sea lions of varying age in captivity available for research purposes. 
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Because nutritional deficiencies may impact thermoregulatory abilities in young 

Steller sea lions, the influence of varying body condition on thermoregulatory ability in 

cold water was examined in captive animals at the Vancouver Aquarium.  How these sea 

lions responded to a range of cold water temperatures in stationary and flowing water 

was also assessed.  The results of this study are presented in Chapter II. 

After emergence from thermal trials in cold water, serial thermal images were 

taken of captive sea lions held at ambient air conditions to assess the spatial and 

temporal distribution of thermal windows on the trunk and appendages.  The results of 

this study are presented in Chapter III. 

Current estimates of Steller sea lions in Alaska suggest that the western 

population is continuing to decline, while the eastern population has remained stable or 

has slightly increased.  If nutritional stress is still impacting sea lions within the western 

Alaskan range, these animals would be expected to limit energy expenditures in order to 

cope.  One of the most common ways to limit energy expenditures is through a lowering 

of metabolic rate, known as metabolic depression.  Metabolic studies were conducted on 

free-ranging juvenile Steller sea lions captured from populations in the region of decline 

(Aleutian Islands, Prince William Sound) and the region of stability (Southeast Alaska) 

and compared to determine evidence of metabolic depression.  The results of this study 

are presented in Chapter IV. 

In order to better understand the relationship between Steller sea lions and their 

thermal environment, modifications were made to a predictive energetics-based model 

using metabolic data presented in the previous chapters.  One of the goals of this model 
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was to determine a threshold of body condition, below which thermal costs in water 

would be incurred in varying sized sea lions.  The results of this effort are presented in 

Chapter V and the project overview and conclusions are presented in Chapter VI. 
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CHAPTER II 

INFLUENCE OF BODY CONDITION ON METABOLISM AND 

THERMOREGULATORY CAPABILITIES OF JUVENILE STELLER SEA LIONS 

 
Introduction 

 
 Pinnipeds face unique thermoregulatory challenges among marine mammals in 

that while they lead a primarily aquatic existence they also reproduce on land.  Foraging 

at sea can be energetically costly given the high thermal conductivity and specific heat 

of water which can draw heat away from an animal 25 times faster than air (Schmidt-

Nielsen, 1983; Nadel, 1984).  This is especially true for younger, smaller animals which 

may lose more heat as a result of a smaller surface area to volume ratio compared to that 

of larger animals.  Being able to balance, or counter, these thermal losses is critical for 

juvenile pinnipeds to master as they can impact survival at independence when young 

animals transition to the water to begin foraging and diving (Baker and Donohue, 2000; 

Donohue et al., 2000).  

Thermoregulatory challenges in water can potentially be overcome by increasing 

insulation through the addition of lipid to the subcutaneous blubber layer.  However, the 

blubber layer serves multiple, often conflicting, roles including acting both as insulator 

and energy store.  This is certainly the case for ice-breeding phocids such as harp seals, 

where pups enter the water shortly after weaning and must rely primarily on blubber 

stores as both an energy source and insulator during the 6 week fast until food resources 

become available (Worthy and Lavigne, 1983b).  Other physiological mechanisms that 
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can compensate for elevated heat losses over the short term include increasing metabolic 

rate, lowering core body temperature, and restricting blood flow or modifying blood 

flow through heat exchangers.  Additionally, heat losses may be compensated for 

through metabolic increases due to activity and/or digestion (Costa and Williams, 1999; 

Rosen et al., 2007).  In the short term, animals typically opt to cope with thermal stress 

by increasing metabolic rates through increased activity, shivering, and non-shivering 

thermogenesis (Schmidt-Nielsen, 1983).  This energy comes either from the ingestion of 

food, or through mobilization of lipid stores.  Foraging requires increased energy 

expenditures in a medium that promotes heat loss, while depleting blubber stores for 

energy needs reduces insulation and ultimately threatens thermal stability.  The latter can 

be particularly costly when resources are limited and ultimately this imbalance could 

produce a situation where body condition deteriorates and energy deficits increase until 

thermal balance can no longer be supported.  It should be noted that all of these 

mechanisms are likely employed and that thermoregulation is a series of complex 

energetic tradeoffs employed by an animal to balance thermal stability within its 

environment (Rosen et al., 2007).   

Juvenile marine mammals have been shown to have elevated metabolic rates, a 

trait usually associated with the energetic cost of growth (Matsuura and Whittow, 1973; 

Miller and Irving, 1975; Ashwell-Erickson and Elsner, 1981; Thompson et al., 1987; 

Rea and Costa, 1992; Hansen and Lavigne, 1997a; Donohue et al., 2000; Rutishauser et 

al., 2004).  These rates decline as animals mature, complicating the relationship between 

metabolic rate and thermoregulation.  The interpretation of metabolic rate in marine 
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mammals is further complicated by the large changes in body composition (usually 

lipid) that some species undergo as part of their natural life history.  It is generally 

agreed upon that adipose tissue is metabolically inert relative to lean tissue, thus making 

a minimal contribution to an animals overall metabolism (Rea and Costa, 1992).  This 

has been demonstrated in several pinniped species (Rea and Costa, 1992; Aarseth et al., 

1999; Donohue et al., 2000; Noren, 2002; Rutishauser et al., 2004), however, changes in 

lipid mass could influence metabolism if decreases in blubber stores impacted an 

animal’s ability to thermoregulate.  Thus, animals that undergo extended fasting events, 

should mobilize blubber and core reserves equally to maintain thermal balance (Ryg et 

al., 1988; Rea and Costa, 1992).       

Several studies have examined the thermoregulatory response in pinnipeds 

concurrent with natural changes in body composition (e.g., post-weaning and/or molting) 

(Hart and Irving, 1959; Miller and Irving, 1975; Worthy and Lavigne, 1983a; Worthy 

and Lavigne, 1987; Costa and Trillmich, 1988; Worthy, 1991; Hansen and Lavigne, 

1997b; Hedd et al., 1997; Donohue et al., 2000; Noren, 2002; Rutishauser et al., 2004; 

Harding et al., 2005).  Few of these studies examine the thermoregulatory response with 

changing body composition in otariids.  Donohue et al. (2000) found that post-molt 

northern fur seal pups had lower mass-specific metabolic rates than pre-molt pups, 

suggesting increased thermoregulatory capacity due, in part, to increased lipid stores.  

Similar increases in body lipid reserves were measured in pre-and post-molt Subantarctic 

fur seal pups and suggest a thermoregulatory benefit (Beauplet et al., 2003).  Similarly, 
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the interaction of body composition and body size appears to impact thermoregulation in 

young Antarctic fur seals (Rutishauser et al., 2004).            

Steller sea lions (Eumetopias jubatus) are the largest of the otariids, inhabiting 

the near-freezing waters of Alaska and the Bering Sea.  While other sympatric pinnipeds 

rely on dense pelage (e.g., northern fur seal) or thick blubber layers (e.g., phocids, 

walrus), Steller sea lions are considered to be ‘lean’ animals with relatively thin blubber 

layers (Pitcher et al., 2000).  Declines in western Steller sea lion populations have been 

attributed to reduced juvenile survival and nutritional limitations (York, 1994; Merrick 

et al., 1995; Trites and Donnelly, 2003), although supporting data are equivocal.  If 

energy deficits are not met by energy intake, as a result of nutritional stress, then 

juvenile sea lions would be expected to tap into their energy (lipid) stores, thus reducing 

valuable insulation needed to prevent heat losses. 

The present study quantifies the thermoregulatory response of juvenile Steller sea 

lions in cold water and examines the influence of varying body condition on the 

thermoregulatory response.  Specific goals of the study were to (1) investigate the 

thermal response of captive juvenile Steller sea lions to a range of cold water 

temperatures, (2) assess the effect of varying body condition on thermoregulatory 

capabilities, (3) examine differences in thermal response to stationary versus flowing 

water, and (4) compare metabolic capacity of sea lions in an air and water medium.     
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Materials and Methods 

 
Study Local and Subjects 

Experiments were conducted with a group of Steller sea lions that had been 

captured as pups and raised at the Vancouver Aquarium Marine Science Centre 

(Vancouver, BC, Canada).  Nine female Steller sea lions – eight juveniles, 2-3.5 years 

old; and one sub-adult, 5.5 years old – participated in experimental trials between 2003 

and 2005, with some individuals being measured multiple times across years.  

Additionally, limited measurements were opportunistically collected from four juvenile 

female pups (8 mo. old).  Individual sea lions sampled were of varying age, body size, 

and body condition (Table 1).  Sea lions were held in an outdoor compound with access 

to ambient seawater and haul out space.  Animals were generally fed a daily diet of 

Pacific herring (Clupea pallasi), occasionally with other fish species, equivalent to 

approximately 5-6% of their body mass and supplemented with vitamins.  All 

experimental protocols were conducted under Texas A&M University Laboratory 

Animal Care Committee Animal Use Protocol number 2001-319, University of Central 

Florida Institutional Animal Care and Use Committee number 02-07W and the 

University of British Columbia Animal Care Committee.  

 

Experimental Design 

Sea lions began each experimental trial in a state of reduced body mass (10-15% 

reduction), and body condition, as a result of being fed a sub-maintenance diet as part of 

other studies (Kumagai, 2004; Rosen and Trites, 2005; Kumagai et al., 2006; T. Dudot,  
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Table 1.  Summary of captive Steller sea lion experimental trials conducted between 
2003 and 2005 

 
Animal Trial Date Age at Trial (yr) Trial Duration (d)
F97HA Spring 2003 5.5 17 131.6

Fall 2003 6.0 36 136.4
F00ED Spring 2003 2.5 18 101.2

Fall 2003 3.0 37 95.1
F00NU Spring 2003 2.5 17 113.0

Fall 2003 3.0 37 112.0
Spring 2004 3.5 31 145.0

F00TS Spring 2003 2.5 18 124.4
Fall 2003 3.0 36 121.3

F00YA Spring 2004 3.5 31 128.7
F03AS Spring 2004 0.7  - 56.9

Summer 2005 2.0 65 81.7
F03IZ Spring 2004 0.7  - 55.4

Summer 2005 2.0 72 77.0
F03MA Spring 2004 0.7  - 57.7

Summer 2005 2.0 68 79.6
F03WI Spring 2004 0.7  - 54.3

Summer 2005 2.0 75 79.4

Initial Mass (kg)
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personal communication).  Throughout the course of each trial in the present study 

(ranging from 17-75 d in length) animals were fed at a daily rate comparable to 6-7% of 

their body mass, resulting in a steady gain of mass.  Most sea lions reached pre-weight 

loss body masses by the end of each experimental period.  Metabolic measurements 

were collected from each sea lion on three separate occasions through the course of the 

experiment; an initial set when sea lion body condition was in a reduced state, the 

second mid-way through the experiment at some transitional state, and the last set after 

the sea lion had recovered lost body mass.  Body condition was assessed at the start and 

end of each experiment through deuterium isotope dilution techniques and ultrasound 

measurements of blubber depth.  Additional ultrasound measurements were taken 

throughout the course of the experiment when the opportunity arose.  Body mass was 

recorded daily, and other morphometrics were measured at least once a week. 

 

Metabolic Measurements 

Standard metabolic rate (SMR) was measured in water, and for a subset of 

animals, in air, via open flow respirometry.  Standard metabolic rate measurements were 

made when the animal was post-absorptive, quiescent but awake, and non-pregnant 

comparable to the conditions set by Kleiber (1975), but measurements were performed 

beyond the thermoneutral zone.  Water trials were conducted in a temperature-controlled 

seawater swim flume as described by Rosen and Trites (2002b).  The swim flume was 

equipped with a 120-l lexan dome under which the sea lions could surface to breathe.  

Water flow was generated by two turbines and flow rates were controlled by individual 
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rheostats.  Actual water speed was determined through calibration with a low-flow water 

velocity meter (Flow-Mate 2000, Marsh-McBirny Inc., MD, USA).  Air was drawn 

through the dome at a constant rate (140-200 l min-1) and was regulated by a flow meter 

(King Instrument Company, CA, USA) in series with a vacuum pump.  In later 

experiments, the flow meter and vacuum were replaced with a flow generator and 

controller (500H Flow Kit, Sable Systems International, NV, USA).  Oxygen and carbon 

dioxide concentrations, within a desiccated subsample of expired air, were determined 

by an oxide cell analyzer (FC-1B, Sable Systems International, NV, USA) and an 

infrared gas analyzer (CA-1B, Sable Systems International, NV, USA), respectively.   

The system was baselined to known ambient air concentrations before and after 

each trial and N2 recovery rates at each flume speed were measured at the end of the 

study to correct for mass flow.  The amount of oxygen consumed during the trial was 

calculated from the difference in oxygen concentration between air entering and leaving 

the chamber, with flow corrected to standard temperature and pressure, dry (STPD).  

Carbon dioxide was not removed from the sampled air stream, therefore, oxygen 

consumption rates were determined by Datacan V software (Sable Systems International, 

NV, USA) using equation 3b from Withers (1977) to remove the affect of carbon 

dioxide on oxygen readings.  The entire system was calibrated through the course of the 

experiments using gases of known concentration and a standard nitrogen dilution 

technique (Fedak et al., 1981).  Theoretical and measured changes in oxygen 

consumption inside the chamber agreed to within 0.01%-0.04%.      
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 Sea lions had previous experience with the swim flume and were trained to enter 

the flume willingly.  Sea lions were usually tested in the morning, a minimum of 16 h 

after their last meal.  Metabolic rate was determined over a combination of water 

temperatures (2, 4, and 8 °C) and water flow speeds (0, 0.5, 1.0, and 1.2 m s-1) to 

examine the potential interaction of temperature and convective heat loss as a function of 

water flow past the animal.  It should be noted that sea lions were not actively swimming 

in the flume; rather, the animals remained stationary under the dome while water flow 

speed was altered to estimate the heat generated due to convective loss without the 

added cost of swimming.  The four flow speeds were measured in succession for 25 

minutes each at a given temperature within a single day.  Water temperature in the flume 

was monitored with a thermocouple attached to a digital thermometer (Model #61220-

670, VWR International, Ontario, Canada).  For each animal, SMR was determined from 

the lowest rate of oxygen consumption recorded during a minimum 15 min period.  For 

all trials, sea lion activity was recorded every 5 min. and whenever activity changed.  

Oxygen consumption rates were converted to energy consumption assuming that 1 l O2 = 

20.1 kJ. 

 In-water metabolic measurements were made opportunistically on four juvenile 

female pups (8 mo. old).  For these measurements, sea lions were tested in the swim 

flume at the same three water temperatures listed above but only at flume speeds of 0 

and 0.5 m s-1.  Trials were 20 min in duration at each speed and each pup was restricted 

to measurements at a single temperature per day.  Body mass was recorded daily; 

however, mass was not experimentally modified in these animals (beyond natural 
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growth) nor was body condition assessed.  For each animal, SMR was determined from 

the lowest rate of oxygen consumption recorded during (at minimum) a 10 min period.  

For all trials, pup sea lion activity was recorded every 5 min and whenever activity 

changed.     

 In-air measurements were conducted on four of the same juvenile animals used 

in the in-water trials.  Instrumentation and methodology were similar to that described 

above and as described in Rosen and Trites (1999).  Sea lions were trained to enter a dry 

metabolic chamber (approximately 1050 l), equipped with a fan to circulate air and a 

video camera to monitor activity.  Metabolism was monitored over a 50-min period, 

following a 5-10 min acclimation period.  For all trials, sea lion activity was recorded 

every 5 min and whenever activity changed.  SMR was determined from the lowest rate 

of oxygen consumption during a minimum 15 min period where the animal was inactive.  

Both ambient and chamber air temperatures, atmospheric pressure, and humidity were 

recorded with a digital weather station (WS-7014U, Springfield Instrument Canada, 

Ontario, Canada).   

 

Body Condition 

Body condition was assessed in sea lions by measuring the thickness of the 

subcutaneous blubber layer, and by estimating body composition calculated from total 

body water (TBW).  Blubber thickness was measured using ultrasound (either 

Scanoprobe II, Scanco Inc., NY, USA or SonoSite 180PLUS, SonoSite Inc., WA, USA) 
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at five locations along the body the sea lion:  neck, dorsal and laterally along the axillary 

girth, and dorsal and laterally along the hip girth (Fig. 1).  

 Total body water pool was determined using deuterium isotope (2H2O) dilution.  

An initial serum sample was collected from the caudal gluteal vein of the sea lion to 

determine background isotope levels.  Deuterium oxide was then injected 

intramuscularly at a dose of 0.10-0.15 mg kg-1 and allowed to equilibrate with body 

water for 120 min (D. Rosen, personal communication), after which, a second serum 

sample was obtained.  Sera and dosage samples were analyzed by Metabolic Solutions 

Inc. (Nashua, NH, USA) and calculated TBW was converted to total body lipid (TBL) 

using predictive equations derived for adult Antarctic fur seals (Arnould et al., 1996) and 

correcting for the approximate 4% overestimation of TBW (Bowen and Iverson, 1998).  

Lean body mass (LBM) was calculated as the difference between total body mass 

(TBM) and TBL and then expressed as percentage of total mass (%TBL, %LBM).  

 

Morphometrics 

Body mass was measured by using having the sea lions hold position on a 

platform scale (±0.1 kg, Pacific Industrial Scale Company Ltd.).  Standard pinniped 

morphometric measurements, including standard length were taken (American Society 

of Mammalogists, 1967).  Girths were measured at three locations (shoulder, axilla and 

hips) along the axis of the sea lion.   
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Figure 1.  Locations along the trunk of the sea lion where blubber depth was measured via ultrasound: neck (1), dorsal axillary 
(2), lateral axillary (3), dorsal hips (4) and lateral hips (5). 
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Statistical Analyses 

SAS (version 9.1) and JMP (SAS Institute, version 6.0) software were used for 

statistical analyses.  Repeated measures analysis of covariance (RM ANCOVA) was 

used to examine the response of metabolic rate at each of the sampling points (initial, 

mid, final) to water temperature and flow speed using a mixed model (PROC MIXED) 

to account for the non-independence of longitudinal data and a covariate (body mass) 

that changed over time.  Significant treatment effects in the mixed model were further 

explored using repeated measures analysis of variance (RM ANOVA) and paired t-tests.  

A Bonferroni correction was applied to multiple pairwise comparisons.  Least-squares 

linear regression was used when indicated.  All data were explored for sphericity, 

normality and equality of variances where appropriate using Mauchley’s, Shaprio-Wilk 

and Levene’s F tests, respectively.  For non-normal distributions or those with unequal 

variances, a Mann-Whitney rank sum test or a Kruskal-Wallis one-way ANOVA on 

ranks was used.  Means are reported with ±1 standard error of the mean (SEM).  Results 

were considered significant at P<0.05, unless otherwise noted.    
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Results 

 
Body Condition 

Sea lions lost an average of 11.8 ± 0.8 kg of body mass (9.8%, range 7.1-13.0%) 

and 15.1% of TBL (range 5.5-40.7%) prior to the start of the present study.  Over the 

course of the experimental trials, sea lions experienced a mean increase in body mass of 

12.7 ± 1.4 kg (11.7%), although body mass gain varied across individuals (Table 2).  In 

all but one trial (Spring 2003), sea lions had returned to or exceeded original body mass 

levels recorded prior to the start of the reduction in energy intake.  Mean daily rates of 

total body mass gain (kg d-1) did not differ between trials; with the exception of the sea 

lions sampled in Summer 2005, which had significantly lower rates of mass gain 

(F3,10=13.61, all P≤0.007, Table 3).   

Along with increases in body mass, sea lions generally exhibited increases in 

mean total body lipid (3.71 ± 1.68 kg, 40.8%) and lean mass (8.38 ± 1.06 kg, 9.1%).   

However, two sea lions exhibited decreases in TBL despite increases in total body mass 

(Table 2).  Sub-adult sea lion F97HA lost 2.3 kg (16.4%) of fat mass, while juvenile sea 

lion F00TS lost 11.2 kg (54%).  Conversely, two juvenile sea lions (F00ED, F00NU) 

experienced large gains in TBL as a percentage of their starting body mass (142.6% and 

136.0%, respectively, Table 2).  Mean daily rates of lipid and lean mass gain did not 

differ between sampling trips (TBL: F3,10=0.653, P=0.60, LBM: F3,10=0.666, P=0.59).  

Overall, both TBL and LBM increased over the course of the experiment, however,  
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Table 2.  Initial and final values of body mass (kg), total body lipid (%), and standard 
metabolic rate (MJ d-1) of Steller sea lions in still water (2, 4, 8 ºC) 

 
   2 °C  4 °C  8 °C 

Animal Age 
class  Initial Final  Initial Final  Initial Final 

F03AS Juvenile BM 81.7       90.8 
  TBL 11.8       13.7 
  SMR 33.9 38.2     30.7 29.2 
           

F03IZ Juvenile BM 77.0       90.8 
  TBL 14.0       12.7 
  SMR 31.0 36.8     28.9 26.0 
           

F03MA Juvenile BM 79.6       92.0 
  TBL 14.1       13.9 
  SMR 22.0 28.4     22.0 25.5 
           

F03WI Juvenile BM 79.4       85.6 
  TBL 13.0       15.6 
  SMR 31.0 26.3     26.3 26.3 
           

F00ED Juvenile BM 101.2       107.7
  TBL 14.8       16.6 
  SMR 33.6 29.8  31.0 27.8  30.1 24.0 
 Juvenile BM 95.1       112.4
  TBL 6.1       14.8 
  SMR 89.1 42.0  64.0 45.7  71.5 37.9 
           

F00NU Juvenile BM 113.0       120.8
  TBL 15.0       15.4 
  SMR 35.6 31.5  29.8 39.7  24.9 26.9 
 Juvenile BM 112.0       131.6
  TBL 7.5       17.7 
  SMR 48.3 33.3  70.0 35.9  46.3 32.1 
 Juvenile BM 145.0       160.2
  TBL 20.3       20.5 
  SMR 35.6 39.1  36.5 38.2  33.3 37.3 
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Table 2.  Continued 
 

      2 °C   4 °C   8 °C 

Animal Age 
class   Initial Final   Initial Final   Initial Final 

F00TS Juvenile BM 124.4   130.5
  TBL 17.3   7.9
  SMR 30.7 25.8 26.6 23.2  23.7 26.9
 Juvenile BM 121.3   138.8
  TBL 12.3   16.9
  SMR 60.8 41.7 46.3 42.5  46.3 38.2
     
F00YA Juvenile BM 128.7   145.4
  TBL 11.7   16.7
  SMR 58.8 37.0 55.0 38.2  52.7 36.5
     

F97HA 
Sub-
adult BM 131.6   136.4

  TBL 13.4   11.2
  SMR 42.0 45.2 39.9 37.3  44.6 39.7

 
Sub-
adult BM 136.4   152.7

  TBL 12.2   14.8
  SMR 50.4 56.7 46.9 47.2  50.4 50.4
     
     BM, body mass; TBL, total body lipid; SMR, standard metabolic rate.   
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Table 3.  Daily body mass loss and subsequent gain (kg d-1) for captive Steller sea lions 
sampled between 2003 and 2005 

 
 Spring 2003 Fall 2003 Spring 2004 Summer 2005 

Animal Loss Gain Loss Gain Loss Gain Loss Gain 
F97HA 1.27 0.42 1.27 0.47     
F00ED 1.20 0.35 1.75 0.48     
F00NU 0.98 0.56 1.86 0.54 0.44 0.51   
F00TS 1.23 0.31 1.90 0.50     
F00YA     0.57 0.56   
F03AS       0.16 0.14 
F03IZ       0.22 0.24 

F03MA       0.22 0.24 
F03WI       0.15 0.15 

         
Body mass loss occurred during sub-maitenance feeding as part of other experiments 

     (Kumagai, 2004; Rosen and Trites, 2005; Kumagai et al., 2006; T. Dudot,  
 personal communication).  Rates of body mass gain occurred in the present study.  
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when expressed as a percentage of total body mass (%TBL, %LBM) this relationship 

was not significant (t=1.40, d.f.=13, P=0.186, Fig. 2).   

Ultrasound measurements of blubber depth varied with individual animal and 

measurement location, but were generally 2.0 cm or less (Table 4).  Comparisons of 

initial and final blubber depth measurements at each of the locations along the body 

were not significantly different (paired t-tests, all P>0.05) except that initial blubber 

depths at the lateral axillary site were significantly thicker compared to final 

measurements (t=2.287, d.f.=13, P=0.040).  Initial and final girth measurements are 

listed in Table 5.  Comparisons of initial and final girth measurements at the shoulder 

and hips were not significantly different (paired t-tests, all P>0.05); however, final 

axillary girth measurements were significantly larger than initial values (t=-2.903, 

d.f.=13, P=0.012). 

Blubber depths at the axillary girth (dorsal) position were used to calculate the 

blubber volume (and subsequently blubber mass) changes during the course of the trials 

using a dual cone approximation of a sea lion body (Feldkamp, 1987; Gales and Burton, 

1987; Castellini and Calkins, 1993; Stelle et al., 2000).  Briefly, the body of a sea lion 

was represented as two unequal length cones joined at their bases, with the ends 

representing the head and the tail of the sea lion.  An identical, smaller set of dual cones 

placed inside the larger can be used to distinguish between body core tissues (within 

inner cones) and subcutaneous blubber (space between inner and outer cones).  Thus, 

total blubber volume is represented by a layer that is thickest at the axillary girth.
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Figure 2.  The relationship between body mass (kg) and total body lipid (TBL, % of total mass) for sea lions at the start (open 
circles, dashed line) and end of the experiment (closed circles, solid line).  Although end %TBL values were higher than initial 
levels, values were not significantly different (t=1.40, d.f.=13, P=0.186). 

38 
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Table 4.  Initial and final blubber depth measurements (mm) at the neck, axilla (dorsal 
and lateral), and hip (dorsal and lateral) locations along the sea lion trunk 

 
Animal Age class Initial Final
F03AS Juvenile Neck 5 4

Axillary-dorsal 8 10
Axillary-lateral 14 15
Hip-dorsal 7 7
Hip-lateral  -  -

F03IZ Juvenile Neck  -  -
Axillary-dorsal 6 8
Axillary-lateral 12 12
Hip-dorsal 7 8
Hip-lateral  -  -

F03MA Juvenile Neck 6 7
Axillary-dorsal 7 8
Axillary-lateral 14 13
Hip-dorsal 4 5
Hip-lateral  -  -

F03WI Juvenile Neck 7 7
Axillary-dorsal 8 8
Axillary-lateral 14 18
Hip-dorsal 8 6
Hip-lateral  -  -

F00ED Juvenile Neck 8 15
Axillary-dorsal 11 14
Axillary-lateral 14 11
Hip-dorsal 7 14
Hip-lateral 9 10

Juvenile Neck 6 7
Axillary-dorsal 13 9
Axillary-lateral 11 6
Hip-dorsal  -  -
Hip-lateral 7 6

F00NU Juvenile Neck 11 9
Axillary-dorsal 17 13
Axillary-lateral 14 17
Hip-dorsal 13 7
Hip-lateral 7 10  
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Table 4.  Continued 
 

Animal Age class Initial Final
Juvenile Neck 12 10

Axillary-dorsal 14 19
Axillary-lateral 10 7
Hip-dorsal 9 12
Hip-lateral 10 9

Juvenile Neck 10 12
Axillary-dorsal 22 19
Axillary-lateral 26 13
Hip-dorsal 14 12
Hip-lateral 18 10

F00TS Juvenile Neck 14 14
Axillary-dorsal 14 22
Axillary-lateral 21 13
Hip-dorsal 8 12
Hip-lateral 9 9

Juvenile Neck 10 8
Axillary-dorsal 11 13
Axillary-lateral 9 10
Hip-dorsal 6 16
Hip-lateral 4 12

F00YA Juvenile Neck 8 11
Axillary-dorsal 14 20
Axillary-lateral 22 17
Hip-dorsal 11 11
Hip-lateral 9 11

F97HA Sub-adult Neck 14 10
Axillary-dorsal 17 12
Axillary-lateral 23 13
Hip-dorsal 17 8
Hip-lateral 19 11

Sub-adult Neck 12 8
Axillary-dorsal 15 18
Axillary-lateral 11 7
Hip-dorsal 12 18
Hip-lateral 6 11  
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Table 5.  Initial and final girth (shoulder, axillary, hips) measurements (mm) 
 

Animal Age class Initial Final
F03AS Juvenile Shoulder 112 118

Axillary 105 112
Hip 72 73

F03IZ Juvenile Shoulder 115 121
Axillary 102 108
Hip 72 74

F03MA Juvenile Shoulder 115 121
Axillary 101 109
Hip 67 73

F03WI Juvenile Shoulder 112 116
Axillary 108 111
Hip 72 73

F00ED Juvenile Shoulder 118 122
Axillary 117 111
Hip 74 69

Juvenile Shoulder 119 122
Axillary 105 114
Hip 71 75

F00NU Juvenile Shoulder 125 124
Axillary 126 125
Hip 79 70

Juvenile Shoulder 127 127
Axillary 125 126
Hip 73 82

Juvenile Shoulder 141 146
Axillary 135 140
Hip 89 91

F00TS Juvenile Shoulder 134 129
Axillary 125 123
Hip 79 74

Juvenile Shoulder 135 128
Axillary 114 133
Hip 78 82  
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Table 5.  Continued 
 

Animal Age class Initial Final
F00YA Juvenile Shoulder 135 137

Axillary 122 126
Hip 78 82

F97HA Sub-adult Shoulder 133 132
Axillary 123 128
Hip 88 87

Sub-adult Shoulder 137 134.5
Axillary 126 132
Hip 85 91  
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Using the equation for the volume of a cone, the total blubber volume can be 

calculated as the difference between the inset cones.  The radius of the sea lion was 

calculated as girth/2π.  Girth and ultrasound blubber depth measurements taken at the 

axillary position at the start and end of the thermal trials were used in the calculations to 

approximate the change in total blubber.  Estimates of blubber volume were converted to 

blubber mass based on blubber density values of 0.94 g cm-3 for pinniped blubber (G. 

Worthy, personal communication).    

The change in blubber mass, coinciding with body mass gain during the trials, 

varied across individual sea lions and ranged from a loss of 0.8 kg to a gain of 1.68 kg of 

blubber (Table 6).  Knowing total mass gained for each animal during each trial and the 

change in TBF from deuterium isotope estimates, a clearer picture of the changes in 

body composition were evident.  For example, sea lion F97HA gained 5.9 kg of mass 

during Spring 2003 trials while losing 2.3 kg of fat, 1 kg of which, was lost from blubber 

stores.  Similarly, this same animal gained 16.3 kg in Fall 2003, 5.9 kg of which was fat 

(10.4 kg lean mass), and roughly 1 kg of this fat was stored as blubber (leaving 4.9 kg of 

fat stored as visceral tissue) (Table 6).  Most animals stored a fraction (8-63%) of their 

fat gain as blubber, but a few animals lost blubber despite increasing overall fat mass, 

which suggests fat storage in other locations.   Total body fat values for sea lion F00TS 

are not physiologically possible with the measured mass gain and likely an error in 

deuterium sampling occurred.   
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Table 6.  Change in body mass (kg), total lipid mass (kg), and blubber mass (kg) for 
individual Steller sea lions   

 
Animal Trial Dates BM Gain (kg) Change in TBL (kg) Change in Blubber (kg)
F97HA Spring 2003 5.9 -2.26 -0.98

Fall 2003 16.3 5.88 0.94
F00ED Spring 2003 5.9 2.97 0.41

Fall 2003 17.3 10.77 -0.64
F00NU Spring 2003 7.8 1.68 -0.97

Fall 2003 19.6 14.91 1.28
Spring 2004 15.2 3.38 -0.58

F00TS Spring 2003 5.3  -11.25*  1.68*
Fall 2003 17.5 8.55 0.91

F00YA Spring 2004 16.7 9.23 1.66
F03AS Summer 2005 8.1 2.84 0.53
F03IZ Summer 2005 15.5 0.75 0.48
F03MA Summer 2005 15.5 1.55 0.28
F03WI Summer 2005 10.8 3.04 -0.08

     BM, body mass; TBL, total body lipid.
     Positive values indicate and increase, negative values represent a decrease.  
     Total body lipid was determined by isotope dilution and blubber mass was estimated using 
the dual cone approximation to calculate blubber volume.
     *Values are suspect since they suggest animal was losing more fat mass than can be 
accounted for by total mass gain.
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Metabolic Rates 

A total of 504 individual measurements of metabolism were collected over the 

duration of the study.  Repeated measures ANCOVA model results show that water 

temperature (F2,162=7.67, P=0.0007) and water flow speed (F3,162=16.67, P<0.0001) had 

significant effects on SMR at each sampling point in the trial.  Repeated samplings 

across a trial (representing changing body condition) also significantly influenced SMR 

(F2,297=9.90, P<0.0001). 

 

Temperature 

Overall, SMR (MJ d-1) generally increased with decreasing water temperatures 

(Figs. 3, 4, 5).  At all measurement intervals (initial, mid, final), SMRs at 2 ºC were 

significantly higher than at 8 ºC (paired t-tests, all P<0.05), with levels at 4 ºC being 

intermediary and not significantly different (all P>0.05) from either.     

 

Sea Lion Condition 

Sea lions demonstrated individual patterns of change in total body mass and 

%TBL over the course of the experiments (Table 2).  While final total body mass values 

were significantly higher than initial levels (t=8.76, d.f.=13, P<0.0001), %TBL values 

remained similar (t=1.39, d.f.=13, P=0.187).  While mean SMR decreased over the 

course of the experiment with initial values (just after food restriction) being higher than 

final (recovered) values, this trend was not significant (RM ANOVA, all P>0.05).  
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Figure 3.  Three dimensional plot of mean SMR (MJ d-1) as a function of both water temperature (2, 4, 8 ºC) and water flow 
speed (0, 0.5, 1.0. 1.2 m s-1) for sea lions at the start of the experiment (reduced body condition).   46 
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Figure 4.  Three dimensional plot of mean SMR (MJ d-1) as a function of both water temperature (2, 4, 8 ºC) and water flow 
speed (0, 0.5, 1.0. 1.2 m s-1) for sea lions mid-way through the experiment (transitional body condition).   47 
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Figure 5.  Three dimensional plot of mean SMR (MJ d-1) as a function of both water temperature (2, 4, 8 ºC) and water flow 
speed (0, 0.5, 1.0. 1.2 m s-1) for sea lions at the end of the experiment (recovered body condition).   
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Log-log regression of SMR plotted as a function of body mass for all sea lions 

measured within their thermoneutral zone (TNZ, Tw=8 ºC) at the end of trial (recovered) 

yielded a significant positive relationship (r2=0.70, F1,17=38.14, P<0.0001, Fig. 6):  

SMR=2.95 M0.63, where SMR is expressed as MJ d-1 and M represents body mass in kg.  

These values were 2.4 to 4.0 times the predicted levels for adult terrestrial mammals of 

the same size (Kleiber, 1975).   

In-water SMRs of sea lions increased with mass at each water temperature 

measurement over the duration of each experiment (Fig. 7).  While, mean SMR 

increased with decreasing water temperature and decreased with improving total body 

mass, individual animals displayed a varied response (Figs. 8, 9, Table 2).  Figures 8 and 

9 show SMR as a function of temperature and varying body condition for a selection of 

sea lions in the study.  Those sea lions experiencing the greatest SMR under lean 

conditions (Fig. 8 A1) tended to be smaller in size (body mass), and had lost greater 

amounts of TBL prior to start of trials.  Conversely, those sea lions with the lowest SMR 

were larger animals.    

For example, sea lion F00ED generally displayed the highest SMR at each water 

temperature when thin (Fig. 8 A1).  This sea lion started the experiment at 95.1 kg after 

losing 14.0 kg (12.7%) mass and 5.6 kg (49.1%) of TBL.  SMR at 2 ºC under these 

conditions was 28.2 % higher than the rate measure at 4 ºC for this sea lion, and 19.8% 

higher than the rate measured at 8 ºC (Fig. 8 A1).  Conversely, sea lion F00NU 

displayed the lowest SMR at each water temperature during 2004.  This sea lion 

weighted 145.0 kg at the start of the trials and had lost 12.3 kg (7.8%) mass and 5.6 kg 
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Figure 6.  Log-log plot of whole-body metabolism (MJ d-1) as function of body mass (kg) for all sea lions (N=18, including 8 
mo. old pups) within their TNZ (8 ºC water, recovered body mass). The linear fit of the line is expressed at SMR (MJ d-1)=2.95 
M0.63 (r2=0.70), where M represents body mass in kg.  Kleiber (1975) line (dashed line) of predicted metabolic rates for adult 
terrestrial mammals of similar size is plotted for comparison. 
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Figure 7.  Whole body metabolic rate (MJ d-1) as a function of body mass (kg) for sea lions measured at 2, 4, and 8 ºC water 
temperatures (still water).  All body condition states were included.  The regression equation for sea lions at 2 ºC is 
y=15.09+0.21x (r2=0.18, sold black line, P=0.0016), at 4 ºC is y=17.04+0.17x (r2=0.18, solid grey line, P=0.0002) and at 8 ºC 
is y=11.28+0.20x (r2=0.28, dashed line, P<0.0001).  Metabolic data for 8 mo. pups were included.  Each point represents the 
lowest rate of oxygen consumption for an individual sea lion during at least a 15 min. period and includes values for all 
animals at all replicates within a experiment.  
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Figure 8.  Metabolic rate (MJ d-1) as a function of water temperature (ºC) for juvenile 
and sub-adult sea lions (F97HA, F00ED, F00NU, F00TS, F00YA) in still (A) and 
moving (B) water and at reduced (1), transitional (2), and recovered (3) body condition 
states.  Black and grey symbols represent measurements from Fall 2003 and Spring 
2004, respectively.    
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Figure 9.  Metabolic rate (MJ d-1) as a function of water temperature for juvenile sea 
lions (F03AS, F03IZ, F03MA, F03WI) in still (A) and moving water (B) and at reduced 
(1), transitional (2), and recovered (3) body condition states.  
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(16.0%) of TBL.  This sea lion showed little change (6.5% drop) in SMR across varying 

water temperatures under these conditions (Fig. 8 A1).  At the end of the trial, sea lion 

F00ED had regained 17.3 kg (18.2%) and 10.8 kg (186.2%) of TBL and reduced her 

SMR by 52.9% at 2 ºC, 28.5% at 4 ºC and 47.0% at 8 ºC (Fig. 8 A3).  Sea lion F00NU 

gained 15.2 kg (10.5%) of body mass and 3.4 kg of TBL (11.6%) and showed little 

change in SMR (12.2% increase) from initial conditions (Fig. 8 A3).  Interestingly in 

Fall 2003 trials, sea lion F00NU gained comparable amounts of body mass (19.6 kg, 

17.5%) but much more TBL (14.9 kg, 176.6%) at her starting body mass of 113.0 kg.  

This resulted in as much as a 25 fold difference in the reduction of mass specific SMR 

for this sea lion (Table 7).  

When oxygen consumption rate are monitored over a range of water 

temperatures, an inflection in the data is usually suggestive of a critical temperature, 

beyond which an individual animal must increase metabolic costs to remain thermally 

neutral.  While the response to varying water temperature was not consistent across all 

sea lions, an inflection at 4 ºC was evident for two sea lions in reduced body condition 

(F00ED, F00TS Fig. 8 A1).  This inflection at 4 ºC (suggesting a lower critical 

temperature, Tlc) was no longer evident once body mass and/or TBL were regained in 

these individual sea lions (Fig. 8 A3).         

 Surprisingly, the group of youngest sea lions (F03AS, F03IZ, F03MA, F03WI, 

77-81 kg) showed little change in SMR across water temperatures and across varying 

body condition states (Fig. 9 A1-A3).  These sea lions had lost an average of 9.3 kg of 

body mass (10.5%) and 3.7 kg of TBL (24.3%, range 5.1-41.5%) prior to the start of  
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Table 7.  Percent body mass, total body lipid, and mass specific standard metabolic rate 
change over the course of the trials at each water temperature 

 
Animal Sampling Date Tw (ºC)
F97HA Spring 2003 2 4.1 -12.8 3.8

4 -
8 -12.7

Fall 2003 2 12.0 35.3 3.3
4 -
8 -

F00ED Spring 2003 2 5.8 19.9 -14.5
4 -12.8
8 -22.5

Fall 2003 2 18.2 184.6 -58.1
4 -35.4
8 -51.9

F00NU Spring 2003 2 7.1 9.9 -14.8
4 28.6
8 3

Fall 2003 2 17.5 176.6 -40.3
4 -54.6
8 -39.4

Spring 2004 2 10.5 11.5 1.6
4 -
8 4

F00TS Spring 2003 2 4.2 -52.3 -18.9
4 -13.9
8 11.3

Fall 2003 2 14.4 57.1 -38.0
4 -16.8
8 -26.5

F00YA Spring 2004 2 13.0 61.1 -42.3
4 -38.1
8 -36.6

F03AS Summer 2005 2 11.1 29.5 2.2
8 -13.7

F03IZ Summer 2005 2 18.2 7.0 1.7
8 -22.3

msSMR change (%)TBL change (%)BM gain (%)

7.8

6.3
6.2

.7

4.4
.4
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Table 7.  Continued 
 

Animal Sampling Date Tw (ºC)
F03MA Summer 2005 2 16.8 13.9 12.1

8 1

F03WI Summer 2005 2 10.3 29.6 -23.0
8 -

     Tw, water temperature; BM, body mass; TBL, total body lipid; msSMR, mass specific 
standard metabolic rate.

BM gain (%) TBL change (%) msSMR change (%)

.5

8.1
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experimental trials and gained an average of 12.5 kg of body mass (14.1%) and 2.1 kg of 

TBL (20.1%, range 7.5-30.2%) during the experimental trials.  Metabolic rate data was 

not collected at 4 ºC in these sea lions when body condition was reduced, but there was 

some evidence of an inflection point at 4ºC at other body condition states (Fig. 9, A2-

A3).  On a mass specific basis, SMR for these younger sea lions was 32-34% higher than 

rates measured in sea lion F00NU (juvenile, 145 kg) under reduced body conditions, and 

20-31% higher in the same animal once body condition had returned. 

 

Water Flow  

Within each water temperature, SMR increased as water flow increased from 0 to 

1.2 m s-1 (Figs. 3, 4, 5).  At 2 ºC, SMR measured in stationary water (0 m s-1) was 

significantly lower (RM ANOVA, P<0.05) than rates measured at higher water flow 

speeds (1.0, 1.2 m s-1), with intermediary flow (0.5) grouping either with stationary 

water or flow speeds.  Similar patterns were observed at all stages of body condition and 

at 4 and 8 ºC.  When SMR was compared across sampling intervals, no differences were 

evident (RM ANOVA, P>0.05) with the exception of significantly higher initial SMRs 

compared to mid-experiment levels (P=0.002).  Since there were no statistical 

differences between the three flow velocities (0.5, 1.0, 1.2 m s-1) in the majority of 

comparisons, data were pooled (averaged) for each animal to provide a single estimate 

of metabolism in moving water.  

In comparisons of stationary (0 m s-1) versus moving (0.5, 1.0, 1.2 m s-1 pooled) 

water, SMR was significantly higher in moving water at all temperatures (paired t-tests, 
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all P<0.001).  Sea lions were grouped by size (70-99 kg, 100-130 kg, >130 kg) to 

compare mean SMR in stationary and moving water (Table 8).  Smaller sea lions 

incurred larger increases in SMR in moving water compared with larger sea lions (Table 

8).  Additionally, smaller sea lions had higher mean SMR levels at colder temperatures, 

and when in a state of reduced body condition compared with the levels in the larger 

sub-adult animal (Table 8). 

     

Air Versus Water Comparison 

In-air SMRs for juvenile sea lions (Ta=12.6 ºC, N=4, age 2 yr) ranged from 23.2 to 39.1 

MJ d-1 at the start of the experiment under reduced body conditions, 29.2 to 46.9 MJ d-1 

mid-way through, and 24.3 to 60.8 MJ d-1 by the end of the study, when an improved 

body condition was achieved.  With improving body condition, SMR (absolute and 

mass-specifically) tended to increase, however, there were no significant differences in 

SMR between sampling points (initial, mid, final) for the in-air trials (RM ANOVA, all 

P>0.05).  When these four animals are considered separately, there were also no 

significant differences in SMR between initial and final measurements at 2 and 8 ºC in 

water.  These in-air values were 4.1 to 5.5 times higher than predicted by Kleiber (1975) 

for similarly sized adult terrestrial mammals.  While SMRs measured in air tended to be  

higher than levels measured on the same animals in water (2, 8 ºC), this trend was not 

significant (RM ANOVA, all P>0.05). 

Opportunistic in-water metabolic measurements on young (8 months of age) sea 

lion pups yielded average SMRs of 22.7 MJ d-1 at 2 ºC, 26.0 MJ d-1 at 4 ºC and 21.5 MJ 
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Table 8.  Mean standard metabolic rate (MJ d-1) for Steller sea lions in stationary and 
moving water (2, 4, 8 ºC) at each sampling point in the trial 

 
SMR SMR

Age class Sampling Point Tw (°C) Stationary Moving 
Juvenile, 70-100 kg Initial 2 29.5 51.6

4  -  -
8 27.0 43.5

Mid 2 28.2 45.1
4 27.1 40.7
8 27.4 38.0

Final 2 32.4 49.3
4 27.1 46.8
8 26.8 41.8

Juvenile, 100-130 kg Initial 2 49.1 63.3
4 44.9 59.1
8 41.1 49.9

Mid 2 44.1 58.7
4 39.8 54.1
8 33.4 47.6

Final 2 35.0 52.0
4 36.4 50.1
8 32.5 44.1

Sub-adult, >130 kg Initial 2 46.2 58.7
4 43.4 55.0
8 47.5 51.3

Mid 2 48.2 51.1
4 43.1 54.0
8 42.7 51.5

Final 2 50.9 58.1
4 42.3 52.1
8 45.0 46.4

     Tw, water temperature; SMR, standard metabolic rate.  
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d-1 at 8 ºC in stationary water.  Metabolism was significantly elevated (approximately 

15%) at water speeds of 0.5 m s-1 (t=4.23, d.f.=11, P=0.0014) at all water temperatures.  

Individual pups showed greater increases in SMR between water flow speeds at 2 ºC 

compared with 8 ºC.  

 

Discussion 

 
Water temperature, water flow speed, and changes in body condition influenced 

metabolic rate in juvenile Steller sea lions.  Sea lions showed elevated metabolic rates at 

colder water temperatures and in flowing water.  In stationary water, initial mean SMRs 

at 2 ºC were 12% higher than at 8 ºC, while final mean SMRs were 10% higher.  In 

flowing water, initial mean SMRs at 2 C were 19% higher than at 8 C, while final mean 

SMRs were 16% higher.  Few studies have examined changes in metabolic rate with 

varying water temperatures in otariids (Liao, 1990; Donohue et al., 2000; Rutishauser et 

al., 2004).  Liao (1990) measured metabolic rates of sub-adult California sea lions in 

water (Tw=5 to 35 ºC) and found that their Tlc was near 15 ºC.  More recently, Mostman 

and Williams (2005) found a lower Tlc of 6 ºC in water for adults and 12 ºC for juvenile 

animals.    Both studies suggest that free-ranging juvenile California sea lions are outside 

their TNZ while resting in water since these animals normally inhabit waters at or below 

critical temperatures.   

Donohue et al. (2000) looked at how ontogeny influenced the thermal 

capabilities of pre- and post-molt northern fur seal pups.  They found that post-molt pups 

showed no differences in SMR at water temperatures of 5, 10, and 20 ºC, nor from levels 
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in pre-molt pups.  They attributed this response to increased thermoregulatory capacity 

in the larger pups, suggesting that the Tlc for these pups is below 5 ºC.  Finally, 

Rutishauser et al. (2004) measured metabolic rates in pup and juvenile Antarctic fur 

seals in water and estimated the Tlc to be 14 ºC, which is considerably warmer than the 

waters they inhabit.   In the present study, Tlc was evident between 4 and 8 ºC in smaller 

Steller sea lions with reduced body condition, however, once body mass (and in some 

cases lipid mass) was regained, their was a suggestion that larger animals may still be 

thermoneutral at 2 ºC.  Steller sea lions are the largest of the otariids inhabiting the 

waters of the North Pacific and thus might be expected to have greater thermal 

tolerances than smaller species of otariids. 

Blubber depths of captive sea lions measured in the present study were thinner 

than typically measured in free-ranging animals.  Steller sea lions are considered to be 

relatively ‘lean’ animals with thin blubber (Pitcher et al., 2000).  Total body lipid (% of 

total body mass) levels in Steller sea lions (8 to 21%, recovered) were within the range 

of levels measured in similar sized free-ranging Steller sea lions (5-32%, L. Rea, 

personal communication) and in yearling Antarctic fur seals (15%, Rutishauser et al., 

2004).  In contrast to sea lions, fur seals rely primarily on their dense fur for insulation 

(Scheffer, 1962), and the addition of subcutaneous adipose tissue further enhances 

thermoregulation and increased lipid reserves provide a source of energy to pups during 

times of reduced intake (Donohue et al., 2000; Arnould et al., 2001).  While the fur of 

Steller sea lions confers less of an insulative role than in fur seals, their large body size, 
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compared to other otariids, may help to reduce heat flow due to lower surface area to 

volume ratios.     

While lipid mass does not contribute significantly to total metabolic rate in 

marine mammals (Rea and Costa, 1992; Aarseth et al., 1999), lipid loss can indirectly 

affect metabolic rate when it impinges on thermoregulatory capabilities (Rea and Costa, 

1992).  This is supported by the large elevations in metabolic rate found in those sea 

lions that experienced large changes in lipid loss at the start of the trials and the 

subsequent reduction in metabolic rate, which occurred once total mass and lipid mass 

were regained.  Additionally, a Tlc was evident between 4 and 8 ºC in both smaller 

Steller sea lions and those that had undergone large changes in fat mass.  However, once 

body mass or in some cases fat mass was regained, the metabolic increase at 4 ºC was 

less obvious, and thermoregulatory capacity was restored.  This has significant 

implications for thermal balance of young sea lions in the wild during times of limited or 

inadequate energy intake.  Juvenile sea lions experiencing reductions in energy intake 

are forced to choose between mobilizing energy reserves for metabolic fuel and 

defending lipid stores for thermoregulation.  Foraging introduces another set of 

physiological constraints in that in order to find prey animals must leave land to forage 

in a medium where heat losses are magnified and they must further expend energy while 

searching for prey.  Smaller body size and reduced thermal tolerances make juvenile 

animals more susceptible to higher metabolic costs in order to survive.  It is no surprise 

then, that under conditions of unpredictable prey availability these metabolic costs are 

magnified.  By understanding the physiological conditions under which juvenile sea 
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lions overcome these challenges allows for better predictions of the factors (biotic and 

abiotic) affecting juvenile success and survival.       

As body condition improved (and original total body mass was regained), total 

metabolic rate decreased even within the TNZ.  Smaller sea lions generally experienced 

greater relative increases in SMR compared to larger animals, except for young sea lions 

measured during the summer.  When sea lions were in a state of reduced body condition, 

juveniles increased their heat production 26-40% over that seen when body condition 

was recovered, whereas sub-adult animals only had to raise metabolism 0-5% when 

body mass was reduced.  Larger body mass confers an advantage in that a large surface 

area to volume ratio helps reduce heat losses.  Over this same time frame, juvenile sea 

lions have increased their TBL (% of total body mass) by 20%, whereas sub-adult 

animals only experienced a 5% increase.  This is consistent with the notion that changes 

in total body mass and body composition in younger sea lions have a more detrimental 

impact on their ability to maintain thermal homeostasis.     

Even though sea lions started the experimental trials in a state of reduced body 

condition, no changes in blubber depth at any of the sites on the body were evident even 

after sea lion regained, or exceeded, their initial mass.  Although individual changes in 

body composition varied, the general trend was for increases in both lean and lipid 

masses.  The only morphometric parameter to change over the recovery period was 

axillary girth suggesting that the increase in body mass came from both lean tissue 

recovery and lipid deposition in visceral and muscle storage sites, not within blubber 
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stores.  This suggests that during times of reduced energy intake, sea lions rely on 

internal lipid stores for fuel while defending the blubber layer for thermoregulation.   

Recent studies on young otariids have provided mostly indirect evidence that 

these animals use lipids as the primary metabolic fuel source in order to spare protein 

(Rea et al., 2000; Arnould et al., 2001; Donohue et al., 2002), like other adult species 

that undergo periods of fasting (Castellini and Rea, 1992; Cherel et al., 1994).  Directed 

studies by Beauplet et al. (2003) examining changes in body composition and metabolic 

fuel use during short-term fasting (2-3 weeks) in Subantarctic fur sea pups confirms that 

the majority of mass lost (56%) in these animals was comprised of lipid.  However, 

Beauplet et al. (2003) did not examine blubber depth in the study, so there is no way to 

determine whether preferential use of lipid reserves included the fat from the blubber 

layer.   

Changes in blubber volume were estimated using dual cone approximations of 

the body of a sea lion.  Calculations suggest that most animals were storing a fraction of 

their lipid gain as blubber (0.28 to 1.66 kg).  Despite no significant changes in blubber 

depth, it is not inconceivable that these small amounts of lipid, spread over the entire 

body of the sea lion, could result in much more than 1-2 mm difference in blubber 

thickness, which is within the range of sensitivity of the ultrasounds used to measure 

blubber depth (±1 mm, G. Worthy, personal communication).  However, it should be 

noted that this type of approximation of blubber mass assumes an overly simplistic view 

of the uniform blubber depth across the entire body surface of the sea lion.  In reality, 

blubber thickness varies with location across the body of most pinnipeds (e.g., Gales and 
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Burton, 1987).  Additionally, since blubber depth at the thickest location on the body 

was used in the calculations (axillary), this technique likely overestimated total blubber 

volume and hence mass.  Finally, reducing the sea lion body to a set of cones joined at 

the base is also a simplification of sea lion body form.   

In water, heat is primarily transferred away from the surface of an animal to the 

surrounding medium through convection.  Convective heat loss will change depending 

on whether the animal is at rest in still water (free convection) or whether the animal is 

moving (forced convection).  In the latter situation, the heat transfer rate across the 

skin/water boundary will increase with velocity (Hind and Gurney, 1997).  The present 

study is the first one to quantify the increased cost in metabolism in a non-swimming 

animal due to convective heat loss in flowing water.  Sea lions in the present study 

showed increases in SMR with increasing water speed at each temperature.  The 

magnitude of this response was increased when sea lions were either young (i.e., small) 

and/or in a state of reduced body condition.  The mechanism of heat transfer was likely 

forced convection, even for animals in still water, as “rest” in these captive Steller sea 

lions still included some degree of movement in the flume.  Interestingly, SMR for some 

animals at 1.2 m s-1 was less than at 1.0 m s-1.  At the highest water flow speed, sea lions 

were observed to engage in greater activity than at lower speeds (L. Hoopes, personal 

observation).  Animals often were observed pushing into the water flow and occasionally 

swimming for short bursts.  This is suggestive of Steller sea lions being able to substitute 

heat loss in water with increased heat production through increased levels of activity.  
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The decrease in SMR on average was 6% and for individual animals it was as high as 

22%.   

Body size was also an important determinant of the metabolic response during 

recovery from reduced energy intakes.  Two animals (F00ED, F00TS) were noteworthy 

in that they both started the trials having lost similar proportions of body fat (42 and 

49% respectively); however, their thermal response to cold water was very different.  

The smaller sea lion (F00ED) showed some of the largest elevations in SMR in still 

water (10X Kleiber at 2 ºC), while the larger animal (F00TS) displayed SMRs that were 

comparable to similarly sized animals.  The difference in thermal response between 

these two animals is likely a function of size, where the larger animal had an easier time 

defending against heat loss and the smaller animal, by virtue of a larger surface area to 

volume ratio, could not.  Both animals gained proportionally more fat mass than lean 

mass over the experiment, confirming that decreases in fat mass prior to the trials were 

impacting thermoregulatory demands.  In moving water, this smaller sea lion 

experienced virtually no increase in SMR at 2 ºC over that measured at same 

temperature in still water, suggesting this animal was operating near peak metabolic 

capacity.        

Not all animals showed similar recovery responses to the reduced intakes, with 

the four young sea lions (2 yr old) tested during the summer showing little changes in 

metabolism across water temperatures and over the course of the experiment as they 

regained body mass.  In contrast, the young sea lion (2.5 yr old) that was tested during 

the fall showed an elevated metabolic response to temperature, which declined as body 
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mass (and fat mass) was regained.  These differing responses suggest that season may be 

an important variable in determining how sea lions respond to reduced energy intake.  

Kumagai et al. (2006) found that changes in body mass and body composition in captive 

Steller sea lions responded differently to reduced energy intake based on season.  They 

found that in-air metabolic rates were highest in the fall and lowest in the summer but no 

differences in body fat between these two seasons were evident.  Molting typically 

occurs in the month of July for these captive sea lions (D. Rosen, personal 

communication) and is generally thought to be an energetically expensive activity due to 

increased metabolism necessary to grow new hair tissue and/or defend against 

thermoregulatory costs during hair replacement (Worthy et al., 1992; Boily, 1996).  

Kumagai et al. (2006) suggest that the increases metabolic rates in sea lions in the fall 

and the lack of change in fat mass may be suggestive of a switch from thermoregulation 

to somatic growth expenditures.  Energy intake reductions during this period of somatic 

growth, where expenditures were already elevated, could explain the high metabolic 

costs of thermoregulation in water for the small sea lion F00ED in this study.  This could 

also explain the muted metabolic response of the young sea lions (F03AS, F03IZ, 

F03MA, and F03WI) in the summer, which also exhibited the slowest daily rates of 

body mass loss.  Food intakes in captive Steller sea lions appear to be lower in the 

warmer months (Kastelein et al., 1990) and it is possible that natural differences in 

energy state were influencing metabolism (Kumagai et al., 2006), and hence the 

thermoregulatory response.  This is an area of study that warrants further investigation.            
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In-air metabolic rates showed the same patterns with changing body condition as 

seen in the water trials.  In-air metabolic rates (mean 13 ºC) were slightly higher, but not 

significantly so, than in-water rates at 2 and 8 ºC for the same group of juvenile sea 

lions.  While it is generally thought that animals that are able to thermoregulate in water 

would have trouble coping with the milder properties of air, data collected in the present 

study do not support this notion.  Noren and Mangel (2004) report higher metabolic rates 

in northern elephant seal pups at air temperatures of 21 ºC compared to animals in 3-8 ºC 

water, and they suggest that pups may take advantage of warmer air temperatures to 

reduce total metabolic costs during their first foraging trip.  In contrast, in-water 

metabolic rates were significantly greater than in-water rates (at similar temperatures) 

for pre-molt Antarctic and northern fur seal pups (Donohue et al., 2000; Arnould et al., 

2003).  

Steller sea lions may temporarily experience periods of thermal stress during 

periods of reduced energy intake in the wild.  These reduced intakes would primarily 

impact young animals in water temperatures at the lower limit of their TNZ.  As shown 

in the present study, reduced energy intakes, even lasting as short as 8 days, can severely 

impact juvenile sea lions whose small body size and the reduced insulatory layer is 

insufficient to defend against heat losses in the water.  Under situations of reduced 

energy intake (whether from changes in prey quality or quantity) juvenile sea lions cope 

with the conflicting demands of preserving their insulative layer for thermoregulation 

and the need to survive by mobilizing fuel (lipid) reserves to survive.  Juvenile sea lions 

must compromise between remaining on land with lower thermal costs, but with no 
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opportunity to acquire energy, or entering the water to forage, with the potential 

increased cost of energy expenditure for thermoregulation (Rosen et al., 2007).  

Understanding the thermal constraints to foraging allows for better understanding of the 

challenges to survival in juvenile Steller sea lions. 
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CHAPTER III 

SPATIAL AND TEMPORAL DEVELOPMENT OF THERMAL WINDOWS IN PUP 

AND JUVENILE STELLER SEA LIONS 

 
Introduction 

 
The dual aquatic and terrestrial existence of pinnipeds poses thermal challenges 

to these marine mammals since the heat transfer coefficient in water is significantly 

higher than that of air at similar temperatures (Nadel, 1984).  To cope with the increased 

thermal conductivity in water, and the potential for increased heat loss, pinnipeds rely on 

a number of physiological mechanisms, including increasing metabolic rate, allowing a 

decrease in body temperature, decreasing thermal conductance of the body in contact 

with water through increased insulation of pelage and/or a subcutaneous blubber layer, 

increased muscular activity, and/or restriction of blood flow from body core to skin to 

prevent heat loss (Costa and Williams, 1999).  In some cases the response to the thermal 

challenges of submersion in cold water may be dealt with through heterothermy, 

whereas other times it is accomplished through increases in metabolic rate (Boyd, 2000).  

The ability of different species to respond to cold, and the suite of physiological 

mechanisms that are employed are often poorly understood.   

Even though immersion in water is perceived to be the more stressful 

environment, pinnipeds must also retain the capacity to dissipate excess heat and avoid 

hyperthermia on land or when active (e.g, Hart and Irving, 1959).  Excess body heat in 

pinnipeds is usually eliminated by utilizing circulatory changes that effectively bypass 
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their thermal insulation.  Since blubber is highly vascularized, marine mammals can 

either constrict or dilate arterioles in the blubber depending on the thermal needs of the 

animal, easily allowing excess heat to be carried by the vascular system through the 

blubber and to the body surface (Pabst et al., 1999).  Historically, it was presumed that 

body heat was principally lost through areas of the body that were poorly insulated (e.g., 

Irving and Hart, 1957; e.g., Hart and Irving, 1959; Matsuura and Whittow, 1974; 

Gallivan and Ronald, 1979).  In pinnipeds, this includes the fore and hind flippers where 

heat is transferred to the environment through small vessels running close to skin and is 

aided by the fact that these appendages often have large surface area to volume ratios 

(Tarasoff and Fisher, 1970; Innes et al., 1990; Pabst et al., 1999).   

Studies examining the relative role of heat dissipation via the flippers versus the 

body trunk have produced mixed results, and have almost always utilized phocid seals.  

Early physiological studies suggested that the flippers were the main avenue of heat 

transfer and thermoregulation (Irving and Hart, 1957; Hart and Irving, 1959; Matsuura 

and Whittow, 1974; Gallivan and Ronald, 1979).  Hart and Irving (1959) measured skin 

temperatures of harbor seals in water and in air and found that in air the temperature of 

the flippers was much more variable than the temperatures on the trunk and they 

suggested separate control of heat flow through these appendages.  Estimates of heat loss 

from the flippers of a resting seal in water ranged from 10-30% with an increase up to 

80% during exercise (Ryg et al., 1993).  Additionally, assuming that skin temperatures 

were the same on the appendages as on the body trunk, Ryg et al. (1993) found a 20% 

higher heat loss per unit surface from the flippers.   
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However, later studies have debated the role of the flippers in heat transfer 

(Kvadsheim and Folkow, 1997; Kvadsheim et al., 1997; Mauck et al., 2003).  Øritsland 

(1968) recorded surface temperatures in exercising harp seals on land and found areas of 

heat dissipation both on the flippers and along the body trunk.  Warm spots appeared 

near the base of each flipper and spread out towards the main body of the trunk, and 

were also observed in irregular patterns along the trunk (Øritsland, 1968).  Kvadsheim et 

al. (1997) found subcutaneous temperatures in the flippers of harp seals exposed to ice 

water were comparable to subcutaneous temperatures measured along the trunk, and 

assumed equal rates of heat loss per unit area between the two different body regions.  

Further study with the same species showed increasing heat loads with increasing water 

temperatures (1 to 24 ºC), and the fraction of heat lost from the flippers increased, while 

the fraction of heat lost through the trunk decreased, despite an increase in conductive 

heat transfer through the blubber layer (Kvadsheim and Folkow, 1997).  Recently, 

Mauck et al. (2003) demonstrated the presence of thermal windows on the trunks of 3 

species of phocid seals, although they were neither consistent in time nor space.  In the 

only study incorporating an otariid, Willis et al. (2005) found high loads of heat flux 

from the shoulder and hip regions of Steller sea lions stationary and swimming in water, 

suggesting these areas were preferential to dump excess heat.  Traditionally, the term 

‘thermal window’ has been used to describe areas of the body that are naked or sparsely 

haired and poorly insulated (usually the appendages) which would facilitate the transfer 

of excess heat from the body core to the body surface (Noren et al., 1999; Meagher et al., 

2002).  However, Mauck et al. (2003) noted that the term ‘thermal window’ must be 
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used more broadly to include all body surfaces functioning as temporary heat dissipaters 

during high heat loads.   

Infrared thermography has been used in a variety of terrestrial (Phillips and 

Heath, 1992; Phillips and Heath, 1995; Tattersall and Milsom, 2003) and marine species 

(Dehnhardt et al., 1998; Meagher et al., 2002; Mauck et al., 2003; McCafferty et al., 

2005; Willis et al., 2005) to monitor changes in surface temperatures and 

thermoregulation.  Thermal imaging cameras measure the amount of infrared radiation 

emitted by the surface and then convert this to a radiative surface temperature using the 

Stefan-Boltzmann equation for a blackbody emitter: 

R=єσT4  

where R is the emitted energy (W m-2), є is the emissivity of the surface body, σ is the 

Stefan-Boltzmann constant (5.67 × 10-8 W m-2 K-4), and T is temperature (K) 

(McCafferty et al., 2005).   

Because the balance between heat production and heat loss in cold water can be 

mediated by the adjustment of blood flow to the skin and extremities, examining surface 

temperatures along the body after submersion in water can provide information about the 

mechanism of heat flux in an organism.  Heat balance models estimated for marine 

mammals have assumed the importance of skin temperature for the conduction (both 

free and forced) of heat away from the body surface to the surrounding water (Lavigne et 

al., 1990; Boily, 1995; Hind and Gurney, 1997).  While skin temperatures have been 

measured using attached heat sensor devices (e.g., Boyd, 2000; Willis et al., 2005), few 

studies have successfully measured skin temperatures in otariid seals without having to 
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compromise insulation (e.g., pelage) of the animal (e.g., Liao, 1990).  Thermal imaging 

is a non-invasive technique which provides a complete picture of the heat profile of an 

entire animal.  It provides several advantages over alternate techniques.  Unlike direct 

measures of heat flux using sensors, it avoids a priori assumptions of locations where 

heat loss occurs along the body.  While measuring metabolism can provide indications 

of total energy requirements under different thermal conditions, the physiological 

mechanisms can not be elucidated.     

  The goal of this study was to use infrared thermography to (1) assess surface 

temperatures (as a proxy for skin temperature) in pup and juvenile Steller sea lions after 

exposure to various water temperatures, and (2) assess patterns of warming and 

development of thermal windows in pup and juvenile Steller sea lion held at ambient air 

conditions post-exposure.   
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Materials and Methods 

 
Animals 

Thermograms were recorded from a group of Steller sea lions that had been 

captured as pups and held at the Vancouver Aquarium Marine Science Centre 

(Vancouver, BC, Canada).  Six female sea lions (4 pups, 8 months of age; 2 juveniles, 

3.5 years of age) were included in the study.  Prior to the first thermal image being 

recorded, sea lions were exposed to varying water temperatures (2, 4, 8 ºC), both 

stationary and flowing, for 100 min as part of larger study to examine the energetic cost 

of thermoregulation (see Chapter II). 

  

Infrared Thermography 

Thermal images were taken using the ThermaCAM P20 thermal imaging camera 

(FLIR Systems, MA, USA).  This system has a thermal sensitivity of 0.08 ºC at 30 ºC, 

field of view/minimum focal distance of 24º x 18º/0.3 m.  Images were produced in real-

time and were not affected by animal movement.   

In each session, images were taken of sea lions within 1-2 min from the time of 

emergence from a temperature-controlled swim flume at ambient air temperatures 

(mean=12.8 ± 2.9 ºC).  Initial images were taken when sea lions were wet and held 

stationary.  Images of both the right and left side of the sea lion were taken from animals 

in their normal ‘standing’ posture (both fore and hind flippers on the ground) and a third 

image was taken of the sea lion upright on their hind flippers, in order to get complete 

coverage of the dorsal surface of the animal.  Images of the ventral surface of the sea 
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lions were not taken since this area of the body was in constant contact with the 

substrate.  Subsequent images were taken 15 and 30 min after initial photos in pups, and 

30 and 60 min after initial photo in juveniles to monitor changes in appearance of 

thermal windows.  Due to logistical constraints, only one pup was able to be imaged 

after the 4 ºC water trials.  Over 150 images were recorded and stored digitally for later 

analysis.  Sea lions were held in a dry run between photos and their fur was usually dry 

in these later images.  Ambient air temperature and humidity were recorded with a 

digital thermometer (Model # 61220-670, VWR International, Ontario, Canada) along 

with distance from the camera to the sea lion (range 2 to 4 m) to correct for absorbed 

radiation and a drop in transmittance with distance and humidity.  The emissivity of the 

sea lion’s fur was set at 0.96, similar to values used for other pinnipeds (Trites, 1990; 

McCafferty et al., 2005).       

All images were analyzed using ThermaCAM Researcher (Version 2.7, FLIR 

Systems, MA, USA) software and a rainbow color scheme.  Images were screened and 

selected for analysis in which the complete profile of the sea lion was visible.  The body 

of the sea lion was divided into 5 regions for analysis of surface temperature: head, 

upper body, lower body, fore flipper, and hind flipper.  The head area was defined as the 

tip of the nose to just posterior to the ear flap (including eyes and vibrissae).  Upper 

body included the area just below the ear to axillary girth and excluding the fore flipper.  

Lower body was defined as the area from the axillary girth to the tail, excluding the hind 

flipper (Fig. 10).  Average surface temperatures were determined within each region and 
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Figure 10.  Division of the sea lion body for surface temperature analysis of thermograms: head (A), upper body (B), lower 
body (C), fore flippers (D), and hind flippers (E).   
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the location, number, and temperature profile of thermal windows within each region 

were also recorded.   

 

Statistical Analyses 

SigmaPlot (SPSS Science, version 8.0) and SPSS (SPSS Science, version 11.5) 

software was used for graphical and statistical analyses.  Repeated measures analysis of 

variance (RM ANOVA) was used to account for non-independence of longitudinal data.  

Friedman repeated measures on ranks was used for repeated-measures distributions with 

unequal variances.  When significant, Tukey-Kramer HSD multiple pairwise 

comparisons or Tukey-Kramer multiple pairwise comparisons on ranked data were 

performed.  Independent t-tests were employed to examine differences between groups 

of animals.  All data were explored for sphericity, normality and equality of variances 

where appropriate using Mauchley’s, Shaprio-Wilk and Levene’s tests, respectively.  For 

non-normal distributions or those with unequal variances, Mann-Whitney rank sum tests 

were used where indicated.  Means are reported with ±1 SEM.  Statistical tests were 

considered significant at P<0.05 unless otherwise stated. 
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Results 

 
Pup and juvenile sea lions displayed similar patterns of warming after emergence 

from the swim flume (Fig. 11).  The head was always the warmest region of the body 

upon emergence, and the hind flippers the coolest, often only 1 ºC warmer than the 

colder water temperatures (Table 9).  While body region surface temperatures 

consistently decreased down the length of the animal (from head to tail), only the head 

was significantly warmer than the remaining regions (F4,129=9.20, P<0.001).  Although 

not a significant trend, pups had cooler mean surface temperatures at all body regions 

upon emergence (2 and 8 ºC water) compared with juveniles.  While serial thermal 

images were taken at different time scales between pups and juveniles, both had photos 

taken at 30 min post-emergence.  Surface temperatures differed between pup and 

juvenile sea lions in the fore-flippers after submergence in 2 ºC water (t=6.86, d.f.=5, 

P=0.002), and in the lower body after 8 ºC water (t=3.26, d.f.=5, P=0.031).  Sample 

sizes were not large enough to look at difference between age groups after trials in 4 ºC 

water.  

Mean surface temperatures became significantly warmer with each image taken 

post-emergence for pups (χ2(19)=38.0, P<0.001; χ2(5)=10.0, P=0.007; χ2(20)=37.54, 

P<0.001) (Figs 11, 12, 13) and juveniles (F2,16=72.89, P<0.001; F2,18=158.66, P<0.001; 

F2,18=25.05, P<0.001) (Figs 11, 13, 14) at all water temperatures, with one exception.  

Mean surface temperatures did not differ between the second (30 min) and final (60 min) 

set of images in juvenile animals that were exposed to the 8 ºC water.  Overall, surface 
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Figure 11.  Surface temperatures (ºC) for the head (A), upper body (B), lower body (C), 
fore flippers (D), and hind flippers (E) of pup (while circle) and juvenile (black circle) 
Steller sea lions immediately after emergence from water.  Solid line represents the line 
of equality.  
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Table 9.  Surface temperatures (ºC, mean±SEM) for juvenile (N=4) and pup (N=2) sea 
lions after emergence from 2, 4, 8 ºC water 

 
Region

Juveniles Head 13.3 ± 2.5 14.2 ± 1.4 15.6 ± 0.6 
Upper 7.2 ± 0.8 8.2 ± 0.5 11.3 ± 0.2 
Lower 6.2 ± 0.6 7.3 ± 0.3 10.2 ± 0.8 
Fore 5.6 ± 0.5 7.2 ± 0.6 9.9 ± 0.9 
Hind 5.5 ± 0.6 6.9 ± 0.7 10.8 ± 0.8 

Pups Head 10.5 ± 1.2 9.6* 14.5 ± 1.3 
Upper 5.9 ± 0.9 5.6* 12.5 ± 0.9 
Lower 5.1 ± 0.7 5.1* 10.9 ± 0.3 
Fore 4.9 ± 0.6 4.9* 11.0 ± 0.4 
Hind 4.5 ± 0.6 4.9* 11.2 ± 0.7 

     *  N  =1. 

2 ºC 4 ºC 8 ºC 
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Figure 12.  Surface temperatures (ºC) for the head (A), upper body (B), lower body (C), 
fore flippers (D), and hind flippers (E) of pup Steller sea lions in air 15-minutes post-
emergence.  Solid line represents the line of equality.  
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Figure 13.  Surface temperatures (ºC) for the head (A), upper body (B), lower body (C), 
fore flippers (D), and hind flippers (E) of pup (white circles) and juvenile (black circles) 
Steller sea lions in air 30-minutes post-emergence.  Solid line represents the line of 
equality.  
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Figure 14.  Surface temperatures (ºC) for the head (A), upper body (B), lower body (C), 
fore flippers (D), and hind flippers (E) of juvenile Steller sea lions in air 60-minutes 
post-emergence.  Solid line represents the line of equality.  
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temperatures recorded in air were variable within an age class and between age classes 

(Figs. 11, 12, 13, 14).     

Assuming a constant and linear increase in surface temperature warming in sea 

lions over time, the rate of warming of each body region was calculated as the increase 

in temperature divided by the amount of time between measurements (ºC min-1).  Mean 

rates of warming did not differ between pups and juveniles based on flume water 

temperatures nor body region, with the exception of the fore flippers that had warmed up 

2 times faster in pups (0.36 ºC min-1) compared to juveniles (0.18 ºC min-1) after trials at 

2 ºC.   Given the lack of significant differences between the rate of warming in pups and 

juveniles, warming rates were pooled for all animals to look at differences between body 

compartments.  The fore flippers were excluded from these comparisons using the 

pooled data since differences were observed in this region. 

The mean rate of surface warming did not differ across the four body 

compartments (head, upper body, lower body, hind flippers) for a given water 

temperature.  However, when individual body regions were compared across water 

temperatures, differences were evident in the rate of warming after trials in 8 ºC water.  

Mean rates of warming were generally slower for animals emerging from 8 ºC water in 

each region of the body, although this trend was only significant in the upper body 

(F2,12=4.538, P=0.034, 4 v. 8: P=0.033) and hind flipper regions (F2,11=9.419 P=0.004, 2 

vs. 8: P=0.034, 4 vs. 8: P=0.005).  All other comparisons of the rate of warming between 

body regions did not differ based on water temperature. 
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 Thermal windows were classified in sea lions as areas of the body surface 

showing higher temperatures than the rest of the body and that are separated from the 

surrounding areas by an edge that transitions to lower temperatures (Mauck et al., 2003); 

e.g. Fig. 15).  Thermal windows typically appeared in both pups and juveniles in the 

upper and lower regions of the body.  In the upper region of the body windows appeared 

predominately in the area of insertion of the fore flipper to the body.  Thermal windows 

in the lower region of the body typically appeared around the hips and even on portions 

of the hind flippers (see Fig. 15).   

Windows initially appeared in the thermograms as small, circular areas with 

moderate temperature differences to surrounding areas.  Over time these areas increased 

in temperature and adjoining windows often became merged together to form larger 

patches.  These warm patches could become quite large, and in several instances, 

occupied nearly half the visible body surface (e.g., Fig. 16).  Individual thermal windows 

could easily be followed over time, as their centers generally remained in the same 

location, and surface temperatures compared (Fig. 17), however, the time scale in which 

images were taken for this study was not fine enough to detect the spatial pattern of 

window development along the sea lion trunk nor long enough to determine whether 

windows had fully developed.    
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Figure 15.  Thermograms of a juvenile sea lion (F00NU) 60 min. after emergence from 2 ºC water at an ambient air 
temperature of 10.5 ºC.  Note the presence of several thermal windows in the upper and lower body regions and the large patch 
of merged windows on the fore flipper.   
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Figure 16.  Thermograms of a juvenile sea lion (F00YA) immediately after emergence from 4 ºC water (A), and 30 min. (B) 
and 60 min. (C) post-emergence at an ambient air temperature of 18.5 ºC.   
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Figure 17.  Thermograms of a sea lion pup (F03WI) immediately after emergence from 8 ºC water (A), and 15 min. (B) and 30 
min. (C) post-emergence at an ambient air temperature of 11 ºC.  Surface temperature profiles at three thermal windows (1, 2, 
and 3) were followed between the 15 (a) and 30-min (b) images.  
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Discussion 

 
 As expected, the head was always the warmest region of the sea lions body.  

Given the minimal insulation and the need to maintain the brain at core body 

temperatures, it is not surprising that this region has a significant energetic cost 

associated with it.  Pinnipeds and likely other aquatic mammals preferentially direct 

warm blood to the regions surrounding the eyes and vibrissae in order to maintain 

sensory function while in the water (Dehnhardt et al., 1998; Mauck et al., 2000).  It was 

evident in the images that these regions were much warmer than the surrounding surface 

area of the head and were a major reason for the higher average surface temperature for 

this body region.  Additionally, sea lions tended to avoid submergence of their head 

while in the swim-flume, especially at colder water temperatures, which may have 

contributed to warmer surface temperatures immediately after emergence from the 

water.  When images of the head region were reexamined excluding the eyes and 

vibrissae, surface temperatures were 1-2 ºC cooler.      

 The fore flippers were consistently warmer than the hind flippers after emergence 

from the water and throughout the serial images.  The fore flippers of sea lions are large 

and make up roughly 16% of the total surface area of the body (Feldkamp, 1987; Stelle 

et al., 2000).  Based on surface area alone the fore flippers would experience greater heat 

loss than the smaller hind flippers.  Additionally, the fore flippers are the primary 

propulsive appendage in otariids during swimming (Feldkamp, 1987; Stelle et al., 2000), 

and although the animals were not actively swimming in the flume, at the higher water 

flow speeds an increase in activity was noticeable.  Given their proximity to the primary 
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propulsive musculature, the fore flippers would be expected to experience increased heat 

losses to cold water due to greater heat production during activity from the large 

swimming muscles.  Additionally, the temperature differential (ΔT) between the flippers 

and the water upon emergence was smaller for the extremities than for areas along the 

body trunk.  This suggests that in cold water, sea lions maintain tight peripheral control 

of blood flow through utilization of arteriovenous anastomoses (AVA) and/or 

countercurrent vascular heat exchange systems in the poorly insulated flippers to 

conserve heat as compared to insulated portions of the body.  This was evident by the 

low surface temperatures of the hind flippers in this study.  This was also the case for a 

variety of other (usually phocid) pinnipeds (Irving and Hart, 1957; Watts et al., 1993; 

Kvadsheim and Folkow, 1997; Kvadsheim et al., 1997).  Alternatively, as temperature 

increases, flippers can become significant dissipaters of heat by bypassing the heat 

exchanger (e.g., Tarasoff and Fisher, 1970).      

 Thermal windows were consistently present in the region of the body where the 

fore flipper attaches to the base of the body, and grew to be quite large (extending both 

onto the flipper and up the body) and warm over time.  Both Øritsland (1968) and Willis 

et al. (2005) also noted high surface temperatures in this area.  This area must be 

preferential for dumping heat generated during locomotion given the fact that the fore 

flipper is the sea lions primary propulsive mechanism and its proximity the pectoral 

swimming muscles. 

   Large animals have a smaller surface area to volume ratio than smaller animals 

and therefore relatively less surface area is available for heat exchange (Innes et al., 
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1990).  McNab (1983) suggested that given the relationship between metabolic rate and 

body mass, temperature regulation (e.g., heat loss) should also scale with body mass in 

vertebrates.  Phillips and Heath (1995) tested this idea by measuring surface 

temperatures on a variety of terrestrial animals ranging in size from a mouse to an 

elephant and verified that the ability to control surface temperature becomes more 

important as the surface area to volume ratio decreases.  Under these principles, it would 

be expected that the larger sea lions in this study would warm more slowly than smaller 

pups and that their larger size should have buffered them against heat loss in the colder 

water temperatures compared with the younger animals.  This appears to be the case as 

pups had cooler surface temperatures upon emergence from the water than juveniles, 

especially in the fore flippers, and the fore flippers warmed at a slower rate in the larger 

sea lions. 

Rates of warming for all sea lions were slower across the body surface after 

emergence from the warmest water temperature (8 ºC).  This is not unexpected given the 

smaller difference in skin temperature and ambient air temperature after emergence from 

the water.  It was also more likely that individual sea lions were within their thermal 

neutral zone at this water temperature (see Chapter II) and would have less need to 

acquire heat as would animals emerging from the colder water temperatures.  Juvenile 

sea lions exposed to 8 ºC-water had reached thermal equilibrium in air within 30 minutes 

and no changes surface warming were evident beyond this time point.                 

 Willis et al. (2005) used infrared thermography to identify ‘hot’ and ‘cold’ spots 

along the trunk of adult Steller sea lions for the purposes of attaching heat flux sensors.  
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They noted that surface temperatures of the shoulders and hips were warmer than other 

areas along the trunk and heat flux from these areas were consistently greater than from 

mid-trunk and axillary regions.  Serial thermal photos in this study confirm the 

development of thermal windows in the areas around the shoulder (upper body) and hip 

(lower body) areas.  Thermal window development in the hip area was generally more 

pronounced and was evident in pups within 15 minutes of emergence from the water.  

Additionally, warm patches were evident at the base of the fore flipper in the larger sea 

lions immediately after emergence from the water, and continued to increase in size and 

temperature over time.  Willis et al. (2005) also noted the base of the fore flipper as a 

‘hot’ spot; however, no data on heat flux was collected from this location or any of the 

flippers due to the difficulty in sensor attachment.      

Understanding the mechanisms of heat loss in water requires understanding how 

sea lions modify blood perfusion to the skin and extremities.  It has been presumed that 

sea lions would minimize heat flux in cold water by minimizing skin temperature.  Thus 

as water temperature gets colder, the difference (ΔT) between water and skin 

temperature should increase up until a point where skin temperature cannot be decreased 

any further.  This is supported by the surface temperature data in this study for animals 

immediately after emergence from the water where surface temperatures of the wet 

pelage are assumed to be comparable to skin temperatures.  Other studies have noted that 

temperature at the skin/blubber interface can be several degrees warmer than ambient 

temperature (Hart and Irving, 1959; McGinnis et al., 1972; Hampton and Whittow, 

1976; Worthy, 1985; Folkow and Blix, 1987; Folkow and Blix, 1989; Kvadsheim et al., 
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1997).  However, ΔT in free-swimming and diving Antarctic fur seals were much more 

variable in cold water (mean 1.8-2.9 ºC) and the strategy of minimizing skin temperature 

to control heat loss was not observed in these animals (Boyd, 2000).  It is not surprising 

that skin temperature was highly variable in Boyd’s (2000) study given the range of 

diving and swimming activities undertaken by free-ranging animals and given the 

complex interaction of exercise and cold water where individuals are generating excess 

heat from muscular work while trying to minimize heat loss.  The present study has 

attempted to minimize the activity component of heat production since water was 

flowing past the sea lion in the swim flume (although see Discussion in Chapter II) and 

the assumed net transfer of heat was loss, through convection.  Surface temperatures 

were recorded immediately upon emergence from the water at these high flow speeds 

and were assumed to be the same as skin temperature.   

Although the present study was not as extensive as the one undertaken in three 

species of phocid seals by Mauck et al. (2003), thermal windows in Steller sea lions also 

developed primarily along the body trunk of the animal.  Thermal windows were 

observed in all sea lions during all sessions.  While the present study was unable to 

identify the initial location of the first thermal window and subsequent order in which 

they developed, it was clear that there were variations in window size, shape, and 

number between individual sea lions.  Mauck et al. (2003) speculated on the 

physiological mechanism of heat transfer as evaporation of condensed water vapor 

contained in the pelage.  They noticed ‘steaming’ of animals on colder days and the 

development of windows in areas of the pelage that were still wet.  Mauck et al. (2003) 
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suggested that the thermal window was driving the drying process in a particular region 

through ‘forced evaporation’ of water from the pelage.  They noted this would be a 

thermoregulatory advantage to the animal as it serves to restrict heat loss to a small area 

and could be more efficiently controlled by the animal over time given the limited 

storage capacity of water in the pelage per unit body surface.  By this mechanism, after 

water has completely evaporated from a thermal window, blood flow could be directed 

to another region to ‘force’ evaporation (create another window) or could be restricted if 

no further heat loss is required (Mauck et al., 2003).  Sea lions in the current study were 

not observed between serial photos and it was unclear whether any ‘steaming’ occurred.  

Given the mild air temperatures during this time of year in Vancouver, the possibility 

seems unlikely.   

This was the first study to examine surface temperatures in pup and juvenile 

Steller sea lions after exposure to cold water temperatures, and to look at serial thermal 

window development during warming at ambient air temperatures.  Serial photos in this 

study were taken at a fairly broad scale (15-30 min intervals) and during a relatively 

warm month.  Continued examination of the development of thermal windows over a 

finer scale, across seasons, and with changing body condition would provide a clearer 

picture as to the physiological mechanisms that control thermoregulation in juvenile sea 

lions. 
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CHAPTER IV 

EFFECTS OF AGE, REGION, AND TEMPERATURE ON IN-AIR RESTING 

METABOLIC RATES OF FREE-RANGING STELLER SEA LIONS 

 
Introduction 

 
 Juvenile pinnipeds experience energetic challenges unique to their life history 

stage that can impact individual survival and even species population dynamics (York, 

1994; Craig and Ragen, 1999).  Compared to adults, juveniles must deal with a different 

set of energetic constraints associated with growth, thermoregulation, and foraging.  

Elevated metabolic rates in young pinnipeds are thought to be associated with growth 

and at least partially reflect the heat produced in association with biochemical synthesis 

of new tissue.  The relatively small size of young pinnipeds can potentially constrain 

thermoregulatory abilities given that smaller animals are prone to greater heat losses due 

to their high surface area to volume ratio (Irving and Hart, 1957).  While this can be a 

concern for species on land at higher latitudes, pinnipeds must eventually enter the water 

to forage where the potential for heat loss is considerably higher upon submergence.  

Juvenile pinnipeds naïveté with regard to foraging strategies and behavior during the 

transition from weaning to independence is a critical factor determining survival in these 

animals (Baker and Donohue, 2000).   Juvenile seals are faced with the constraints of 

reduced diving capabilities (e.g., smaller total oxygen stores, high metabolic rates) 

compared with larger more experienced divers, potentially making some prey resources 

difficult or impossible to access (Burns, 1999; Hindell et al., 1999; Irvine et al., 2000; 
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Fowler et al., 2006; Richmond et al., 2006).  To better understand energetic constraints 

to survival in juveniles, knowledge of the animals’ basic physiology is required.  

Understanding maintenance requirements in young animals can provide the key for 

developing energy budgets, bioenergetics models, and identifying thermal and diving 

constraints on immature life history stages.  This information becomes even more critical 

when resource availability, such as access to prey, becomes unpredictable or scarce (e.g., 

Hindell, 1991).   

Under conditions of reduced food availability, animals can either increase 

foraging effort or limit energy expenditures, if they are to maintain energy balance.  

Increased foraging effort is a short-term strategy with the tradeoff being increased 

energy expenditure in the hopes of finding prey resources to offset the expense on the 

front end.  Limiting energy expenditures is a longer term strategy used by animals during 

predictable or prolonged shortages in energy intake (Rosen and Trites, 2002a).  The 

criteria in which an animal chooses one strategy over the other is not well understood. 

Animals can limit energy expenditures through decreased activity, increased 

sleep, and/or a lowering of core body temperature and/or metabolism.  One of the most 

common physiological responses to undernutrition or fasting is a lowering of basal 

metabolic rate, known as metabolic depression (Guppy and Withers, 1999).  Adaptations 

to periods of food restriction requires not only adjustments in metabolism, but also in fat 

deposition, in hormonal regulation, and in mobilization of fuel reserves in order to 

extend the time an organism can survive (e.g., Robin et al., 1988).  Metabolic depression 

has been observed in nearly all major animal taxa (Guppy and Withers, 1999) including 
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several species of marine mammals (Heath et al., 1977; Ashwell-Erickson and Elsner, 

1981; Gallivan and Best, 1986; Nordøy et al., 1990; Rea and Costa, 1992; Boily and 

Lavigne, 1995; Markussen, 1995; Rosen and Renouf, 1998; Rosen and Trites, 1999; 

Rosen and Trites, 2002a).       

 Metabolic depression occurs during natural periods of fasting (usually associated 

with weaning and molting) in phocid pinnipeds (Worthy and Lavigne, 1987; Nordøy et 

al., 1990; Rea and Costa, 1992; Boily and Lavigne, 1995; Markussen, 1995).  Juvenile 

otariids, on the other hand, generally do not undergo extensive periods of fasting 

associated with changes in life history.  Rather, these species tend to experience periods 

of reduced intake associated with unpredictability in prey availability over spatial and 

temporal scales.  Diet restriction studies with captive Steller sea lions showed reductions 

in metabolic rate (31%) when animals were fasted or on a low-energy diet, however, 

these reductions were not sufficient to prevent body mass loss (Rosen and Trites, 2002a; 

Rea et al., 2007). 

 Steller sea lion populations have shown precipitous declines starting in the late 

1970’s throughout their western Alaskan range (Aleutian Islands and Gulf of Alaska), 

while numbers in Southeastern Alaska, British Columbia and Oregon have remained 

stable or slightly increased.  Current population trends (1989-2006) in the west reflect 

continued declines in central and western Aleutian Islands, with counts of non-pups 

holding stable in the eastern Aleutian Islands and western and eastern Gulf of Alaska 

(National Marine Mammal Laboratory, unpublished data; www.afsc.noaa.gov/NMML).  

One hypothesis proposed to explain the rapid decline of western Alaskan Steller sea 
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lions is that these populations experienced either a reduction in overall prey abundance 

or change in relative abundance of the type and quality of prey available (Trites and 

Donnelly, 2003).  Reductions in prey abundance would be particularly hard on juvenile 

animals, thus potentially reducing recruitment of this life history stage into the breeding 

population (e.g., York, 1994). 

 If Steller sea lions are continuing to decline in western Alaska due to reductions 

in prey abundance (i.e., nutritional stress hypothesis) then we would expect to see 

evidence of this reflected in maintenance requirements between sea lions from the 

differing regions.  The goal of the present study was to better understand energetic 

maintenance requirements in individuals at a variety of ages and interpret these data in 

reference to ambient temperature and the magnitude of insulative fat stores.  The 

principle objective was to determine if there was evidence of metabolic depression in 

animals from the declining western population.   
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Materials and Methods 

 
Study Area and Subjects 

Free-ranging Steller sea lions (N=91) ranging in age from 2 to 44 months were 

captured throughout their Alaskan range between 2003 and 2005.  Individual animals 

originated from three distinct geographical regions and populations:  (1) Southeast 

Alaska (SEA) ranging from the southern border of Alaska north to Cape Suckling, (2) 

Prince William Sound (PWS), west of Cape Suckling, and (3) the Aleutian Islands chain 

(AI) (Fig. 18).   Within each region, sea lions were captured in the waters surrounding 

known haul out or rookery locations using SCUBA divers and an underwater capture 

technique developed by the Alaska Department of Fish and Game (ADFG) (see Raum-

Suryan et al., 2004).  Occasionally sea lions were captured on land with hoop nets when 

weather or current conditions prevented in-water capture.  All research conformed to the 

guidelines of the ADFG Animal Care and Use Committee (# 03-0002) and was 

conducted under MMPA permit #358-1564.  

 

Animal Processing 

Approximately 1-2 h post-capture, sea lions were weighed (Ocean King D-6, TCI 

Scales, Inc., Mukilteo, WA, ±0.5 kg) in their capture boxes and then immobilized under 

gas anesthesia based on methods detailed by Heath et al. (1997).  Age and sex were 

determined.  With the exception of young pups, whose age was estimated by average 

pupping date (June 15, Pitcher et al., 2001), age determination for older sea lions was 

estimated using date, body size, and degree of tooth eruption or canine length (King et 
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Figure 18.  Map of Alaska showing capture locations (black circles) within each of the three sampling regions: 
Southeast Alaska (SEA), Prince William Sound (PWS), and the Aleutian Islands (AI).  
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al., 2003).  Animals were intubated to collect gastric contents in order to determine 

whether animals had recently been nursing or feeding.  Standard length and girths at five 

locations along the body (neck, chest, axilla, mid trunk, and hips) were also recorded.   

 

Body Condition 

Body condition was assessed in sea lions by measuring the thickness of the 

subcutaneous blubber layer (N=87) and by measuring body composition (N=90) 

calculated from total body water (TBW).  Blubber thickness was measured with the 

SonoSite 180PLUS, ultrasound (SonoSite Inc., WA, USA) at a single site, dorsally, on 

the right hip.     

Total body water was determined using the deuterium isotope (2H2O) dilution 

method.  Blood samples to assess background isotope levels were collected either from 

the interdigital rear flipper vein or the caudal gluteal vein prior to the intermuscular 

administration of deuterium oxide (dose 0.5 g kg-1).  Additional blood samples were 

collected during a subsequent anesthesia procedure at a minimum of 2 and 2.5 h after 

deuterium dosing to ensure equilibrium with body water (L. Rea, personal 

communication).  Sera and reference samples were stored on dry ice in the field, and at   

-80 ºC upon return to the lab.  Samples were analyzed for TBW by ADFG using infra-

red (FTIR) spectrophotometry.  Calculated TBW was converted to total body lipid 

(TBL) using predictive equations derived for pinnipeds (Bowen and Iverson, 1998) and 

correcting for the approximate 4% overestimation of TBW (Reilly and Fedak, 1990).  
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Lean body mass (LBM) was calculated as the difference between total body mass 

(TBM) and TBL and then expressed as percentage of total mass (%TBL, %LBM).  

  

Resting Metabolism 

Resting metabolic rate (RMR) was measured under ambient air temperature 

conditions using open-flow respirometry.  Sea lions held in ventilated metal cages where 

placed on the wooden base of the metabolic chamber, over which, a plexiglass lid 

(231×79×56 cm) was fitted into metal tracking.  An airtight seal between the lid and base 

was ensured by filling the track initially with seawater, and later with foam-rubber.  Fans 

were mounted in each of the four corners of the lid to ensure continuous air mixing.  

Temperature inside the chamber, monitored by a thermocouple inserted into the chamber 

through air intake tubing and attached to a weather station (Weather Monitor II, Davis 

Instruments, CA, USA), was recorded every 5 min.  The chamber was outdoors, located 

on the deck of the vessel, and thus air temperature in the chamber was influenced by 

ambient conditions.  Chamber temperature was usually 2 to 8 ºC warmer than ambient 

conditions.  Under sunny summer conditions, tarps were erected over the chamber to 

help keep chamber temperatures from getting too warm.  On these days, sea lion 

behavior was closely monitored along with chamber temperature, and trials were 

immediately ended when chamber temperatures approached 24 ºC or if sea lions 

exhibited signs of heat stress (e.g. open mouth breathing).     

 Air was drawn through the chamber at a constant rate (70-200 l min-1, based on 

animal size) and was regulated by a flow controller (500H Flow Kit , Sable Systems 
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International, NV, USA).  Oxygen and carbon dioxide concentrations within a 

desiccated sample of expired air were measured by an oxide cell analyzer (FC-1B, Sable 

Systems International, NV, USA) and an infrared gas analyzer (CA-2A, Sable Systems 

International, NV, USA), respectively.  The amount of oxygen consumed during the trial 

was calculated from the difference in oxygen concentration between air entering and 

leaving the chamber, with flow corrected to STPD.  Carbon dioxide was not removed 

from the sampled air stream and oxygen concentrations were determined by Datacan V 

software (Sable Systems International, NV, USA) using equation 3b from Withers 

(1977):  

2OV& = f×60×(FIO2 – FEO2) – ×FIO2/(1 – FIO2)                                 2COV&

where  is the rate of oxygen consumption (ml h-1), f is the rate of airflow through the 

chamber (ml min-1), FIO2 is the fractional concentration of oxygen gas entering the 

respirometer, FEO2 is the fractional concentration of oxygen gas leaving the respirometer, 

and  is the rate of carbon dioxide production (ml h-1).  The entire system was 

calibrated using gases of known concentration both before and after each trip (Fedak et 

al., 1981).  Oxygen consumption (and carbon dioxide production) data was recorded for 

a minimum of 1 h, and up to 2 h.  Resting metabolic rates were calculated from the 

lowest rate of oxygen consumption during a minimum 15 min period where the animal 

was inactive and chamber temperatures held stable.  Oxygen consumption rates were 

converted to energy utilization assuming that 1 l O2 = 20.0 kJ.   

2OV&

2COV&

Resting metabolism was measured on animals post-anesthesia, during deuterium 

equilibration with body water.  To determine the potential effects of anesthesia on 
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metabolism, oxygen consumption was measured before and after anesthesia in a subset 

of animals (N=19), varying in age from 5 to 20 months.  All sea lions were awake when 

placed in the chamber.  Some animals initially struggled or paced in their cage when 

placed in the chamber, but most animals were immediately calm or attempted to sleep.  

Sea lion activity was monitored and recorded every 5 min, or whenever activity levels 

changed, and tapping on the chamber prevented animals from sleeping.  For grouping 

purposes, sea lions < 12 months in age were considered “young of the year” (YOY), 

while animals ≥ 12 months of age were considered “juveniles”. 

 

Statistical Analysis 

SPSS (version 11.0) and JMP (version 6.0) statistical software were used for all  

analyses.  The relative contribution of factors such as age, total body mass, lean mass, 

lipid mass, and ambient temperature to RMR was determined by multiple linear 

regression.  Linear regression was calculated by least squares and stepwise methods, and 

significance of the relationships was determined by F-tests.  Paired t-tests were used to 

compare metabolic rates pre- and post-anesthesia.  Sexes were compared using two-

sample t-tests.  One-way ANOVA was employed to compare group means across age 

categories and Tukey-Kramer HSD test was used for post hoc pairwise comparisons.  

ANCOVA was employed to identify differences in metabolic rate between locations 

while accounting for the influence of total mass, LBM, air temperature, and/or age on 

metabolism.  Interaction terms using the general linear model were used to compare 
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 slopes of relationships.  All means are presented with ± SEM.  Results were considered 

significant at P<0.05, unless otherwise noted.   

 

Results 

 
Morphometrics 

Male sea lions were generally heavier than females for each age class in which 

comparisons could be made (Table 10). Both male and female juvenile sea lions were 

significantly heavier than YOY (t=4.08, d.f.=60, P<0.001; t=4.19, d.f.=26, P<0.001 

respectively).   Although there were differences in age between regions, sea lions in 

PWS were larger than animals in SEA (Fig. 19).  For their age, AI YOY were larger than 

similarly aged animals from the other capture locations and were of similar total mass to 

juvenile animals (Fig. 19).   

Dorsal standard length and all girth measurements (neck, chest, axillary, mid 

trunk, hips) were significantly longer/larger in male sea lions compared to female sea 

lions (all P<0.05).  Mean length and girths generally differed between sexes within each 

age class, with the exception of 17 and 26 mo. animals where males and females were 

similar in all morphometric measurements (Tables 11, 12, 13, 14 ,15, 16).  Non-linear 

increases in length and girth were evident with increasing sea lion size/age (Fig. 20).  All 

morphometric parameters showed similar patterns, however, only data for dorsal length, 

axillary girth, and hip girth are presented here (Figs. 21, 22, 23).  Morphometric 

comparisons between similarly aged animals in PWS and SEA showed no significant 

differences in length or girth (P>0.05) between location with the exception of PWS sea 
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lions (both 8 and 20 mo. animals) having significantly larger (P<0.05) neck girths than 

SEA sea lions.           

 

Body Composition 

Total body water (TBW) ranged from 44.0 to 69.0% across all aged sea lions.  

No significant differences in %TBW were evident between male and female sea lions 

(all P>0.05).  Mean %TBW levels varied with sea lion size, especially in YOY, where 

smaller animals had a significantly higher water pool than larger YOY (Fig. 24).  Little 

difference in %TBW was observed among juvenile sea lions (Fig. 24).     

Total body lipid (TBL) ranged from 2.8 to 35.3% and varied longitudinally with 

ontogeny but also individually within an age class (Table 17).  There were no significant 

differences (P>0.05) in mean %TBL between male and female sea lions at all age 

categories where sufficient sample sizes allowed comparisons (Table 17).  Sea lions 

from PWS maintained a relatively constant proportion of %TBL as they increased in 

total mass since mean %TBL did not significantly differ with age (F4,29=1.55, P=0.218, 

Fig. 25).  Conversely, sea lions captured in SEA showed significant differences in mean 

%TBL among the age classes in this location (F4,43=6.94, P=0.0003, Fig. 26).  

Specifically, among the yearlings, 2 mo. old animals had significantly lower (P<0.05) 

mean %TBL than 8 mo. old sea lions (Fig. 26).  No differences in mean %TBL were 

evident among juvenile sea lions in SEA (Fig. 26).  Sea lion YOY from AI had the 

greatest mean %TBL at 27.4% (Fig. 27).    Pups captured in PWS had similar (P=0.55) 

mean %TBL values to sea lions in SEA of the same age (8 mo), while juvenile sea lions 
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Table 10.  Mean body mass values (kg, ±SEM) for female and male Steller sea lions 
captured in the Aleutian Islands, Prince William Sound, and Southeast Alaska 

 
Location Age (mo) P

AL 10.5 106.8 ± 7.0 (6) 145.7 ± 8.6 (10) 0.007

PWS 5 61.7 ± 5.7 (4) 82.7 ± 3.2 (11) 0.006
8 99.0 ± 3.0 (2) 86.0 (1)
17 124.1 ± 2.4 (3) 137.5 ± 6.5 (5) 0.180
20 150.5 ± 13.4 (3)
44 232.5 (1)

SEA 2 34.6 ± 1.5 (4) 42.2 ± 0.7 (5) 0.002
8 70.6 ± 5.4 (6) 82.8 ± 3.7 (12) 0.077
14 104.0 (1) 100.6 ± 5.5 (8)
20 127.4 ± 6.4 (5)
26 143.3 ± 16.8 (2) 146.0 ± 3.0 (2) 0.887

     Sample sizes are in parentheses; significant comparisons at P <0.05 are in bold.
     AI, Aleutian Islands; PWS, Prince William Sound; SEA, southeast Alaska.

Females Males
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Figure 19.  Mean total body mass (kg) ± SEM per age category for sea lions captured in Southeast Alaska (SEA), 
Prince William Sound (PWS), and the Aleutian Islands (AI).  The regression equation for SEA animals is 
y=4.39x+38.46 (r2=0.85, P<0.001; dashed line) and the regression equation for PWS animals is y=4.28x+57.76 
(r2=0.88, P<0.001; solid line).   
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Table 11. Mean dorsal standard length (cm, ±SEM) for female and male Steller sea lions 
captured in the Aleutian Islands, Prince William Sound, and Southeast Alaska 

 
Location Age (mo) P

AL 10.5 166.0 ± 2.7 (6) 182.6 ± 2.5 (10) 0.001

PWS 5 141.8 ± 2.3 (4) 153.9 ± 2.0 (11) 0.005
8 159.3 ± 0.3 (2) 150.5 (1)

17 185.7 ± 1.8 (3) 189.4 ± 2.6 (5) 0.349
20 191.5 ± 5.4 (3)
44 220.0 (1)

SEA 2 114.0 ± 2.3 (4) 123.4 ± 0.9 (5) 0.018
8 145.8 ± 3.8 (6) 152.7 ± 2.6 (12) 0.160

14 174.0 (1) 169.3 ± 3.9 (8)
20 183.4 ± 4.6 (5)
26 189.9 ± 12.8 (2) 190.8 ± 9.8 (2) 0.956

     Sample sizes are in parentheses; significant comparisons at P <0.05 are in bold;
comparisons were made where adequate sample sizes allowed.
     AI, Aleutian Islands; PWS, Prince William Sound; SEA, southeast Alaska.

Females Males
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Table 12.  Mean neck girth (cm, ±SEM) for female and male Steller sea lions captured in 
the Aleutian Islands, Prince William Sound, and Southeast Alaska 

 
Location Age (mo) P

AL 10.5 72.2 ± 2.2 (6) 79.9 ± 1.9 (10) 0.021

PWS 5 57.5 ± 2.6 (4) 64.1 ± 1.1 (11) 0.014
8 72.5 ± 5.5 (2) 68.0 (1)
17 70.3 ± 0.9 (3) 76.0 ± 2.0 (5) 0.084
20 82.0 ± 2.3 (3)
44 87.0 (1)

SEA 2 50.8 ± 1.9 (4) 54.6 ± 0.7 (5) 0.132
8 59.0 ± 2.1 (6) 65.7 ± 1.2 (12) 0.026
14 73.0 (1) 70.6 ± 1.8 (8)
20 73.8 ± 1.7 (5)
26 74.5 ± 3.5 (2) 79.5 ± 3.5 (2) 0.419

     Sample sizes are in parentheses; significant comparisons at P <0.05 are in bold;
comparisons were made where adequate sample sizes allowed.
     AI, Aleutian Islands; PWS, Prince William Sound; SEA, southeast Alaska.

Females Males
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Table 13.  Mean chest girth (cm, ±SEM) for female and male Steller sea lions captured 
in the Aleutian Islands, Prince William Sound, and Southeast Alaska 

 
Location Age (mo) P

AL 10.5 111.2 ± 3.5 (6) 121.5 ± 2.3 (10) 0.021

PWS 5 98.8 ± 3.2 (4) 107.6 ± 2.3 (11) 0.061
8 111.0 ± 8.0 (2) 104.0 (1)
17 126.7 ± 1.7 (3) 121.6 ± 2.6 (5) 0.222
20 129.7 ± 6.0 (3)
44 154.0 (1)

SEA 2 75.5 ± 1.3 (4) 83.4 ± 1.1 (5) 0.020
8 94.5 ± 2.9 (6) 106.9 ± 2.4 (12) 0.007
14 115.0 (1) 111.4 ± 3.7 (8)
20 121.0 ± 3.9 (5)
26 121.5 ± 2.5 (2) 124.0 ± 1.0 (2) 0.492

     Sample sizes are in parentheses; significant comparisons at P <0.05 are in bold;
comparisons were made where adequate sample sizes allowed.
     AI, Aleutian Islands; PWS, Prince William Sound; SEA, southeast Alaska.

Females Males
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Table 14.  Mean axillary girth (cm, ±SEM) for female and male sea lions captured in the 
Aleutian Islands, Prince William Sound, and Southeast Alaska 

 
Location Age (mo) P

AL 10.5 119.8 ± 3.8 (6) 132.7 ± 3.2 (10) 0.026

PWS 5 93.8 ± 4.1 (4) 105.0 ± 1.8 (11) 0.013
8 115.3 ± 2.3 (2) 109.5 (1)

17 129.5 ± 2.3 (3) 125.3 ± 2.5 (5) 0.310
20 127.2 ± 3.9 (3)
44 146.0 (1)

SEA 2 78.5 ± 1.5 (4) 84.3 ± 1.0 (5) 0.003
8 101.8 ± 3.5 (6) 109.3 ± 1.8 (12) 0.093

14 114.0 (1) 110.4 ± 2.8 (8)
20 128.0 ± 3.8 (5)
26 123.1 ± 3.0 (2) 123.3 ± 1.3 (2) 0.956

     Sample sizes are in parentheses; significant comparisons at P <0.05 are in bold;
comparisons were made where adequate sample sizes allowed.
     AI, Aleutian Islands; PWS, Prince William Sound; SEA, southeast Alaska.

Females Males
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Table 15.  Mean mid-trunk girth (cm, ±SEM) in female and male Steller sea lions 
captured in the Aleutian Islands, Prince William Sound, and Southeast Alaska 

 
Location Age (mo) P

AL 10.5 113.8 ± 4.4 (6) 128.7 ± 3.7 (10) 0.023

PWS 5 89.5 ± 4.3 (4) 98.7 ± 2.4 (11) 0.070
8 106.5 ± 2.5 (2) 107.0 (1)

17 111.3 ± 2.4 (3) 119.0 ± 3.0 (5) 0.133
20 119.0 ± 5.5 (3)
44 143.0 (1)

SEA 2 75.0 ± 1.2 (4) 81.8 ± 0.9 (5) 0.005
8 98.3 ± 2.4 (6) 105.0 ± 2.2 (12) 0.059

14 106.0 (1) 107.1 ± 2.1 (8)
20 118.8 ± 3.9 (5)
26 117.0 ± 5.0 (2) 120.0 ± 3.0 (2) 0.668

     Sample sizes are in parentheses; significant comparisons at P <0.05 are in bold;
comparisons were made where adequate sample sizes allowed.
     AI, Aleutian Islands; PWS, Prince William Sound; SEA, southeast Alaska.

Females Males
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Table 16.  Mean hip girth (cm, ±SEM) for female and male Steller sea lions captured in 
the Aleutian Islands, Prince William Sound, and Southeast Alaska 

 
Location Age (mo) P

AL 10.5 82.5 ± 2.3 (6) 97.3 ± 2.9 (10) 0.003

PWS 5 62.3 ± 2.9 (4) 74.9 ± 1.3 (11) 0.004
8 80.0 ± 4.0 (2) 76.0 (1)

17 84.3 ± 2.8 (3) 88.8 ± 2.1 (5) 0.245
20 89.0 ± 1.2 (3)
44 107.0 (1)

SEA 2 56.8 ± 1.4 (4) 59.6 ± 0.9 (5) 0.141
8 72.2 ± 1.5 (6) 76.2 ± 1.5 (12) 0.081

14 79.0 (1) 79.0 ± 1.1 (8)
20 87.8 ± 4.4 (5)
26 85.0 ± 4.0 (2) 84.0 ± 2.0 (2) 0.850

     Sample sizes are in parentheses; significant comparisons at P <0.05 are in bold;
comparisons were made where adequate sample sizes allowed.
     AI, Aleutian Islands; PWS, Prince William Sound; SEA, southeast Alaska.

Females Males
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Figure 20.  Non-linear relationship between total body mass (kg) and dorsal standard length (r2=0.95, F2,88=904.1, P<0.0001, 
triangles), axillary girth (r2=0.92, F2,88=578.1, P<0.0001, squares), and hip girth (r2=0.88, F2,88=311.2, P<0.0001, circles).  
Relationships between body mass and chest (r2=0.85, F2,88=251.7, P<0.0001), mid-trunk (r2=0.91, F2,88=422.9, P<0.0001) and 
neck (r2=0.88, F2,88=331.5, P<0.0001) girths were similar, however, these data are not shown. 
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Figure 21.  Mean dorsal standard length (cm) ± SEM as a function of age (mo) for sea lions captured in Southeast Alaska 
(SEA), Prince William Sound (PWS), and the Aleutian Islands (AI).  
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Figure 22.  Mean axillary girth (cm) ± SEM as a function of age (mo) for sea lions captured in Southeast Alaska (SEA), Prince 
William Sound (PWS), and the Aleutian Islands (AI).   
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Figure 23.  Mean hip girth (cm) ± SEM as a function of age (mo) for sea lions captured in Southeast Alaska (SEA), Prince 
William Sound (PWS), and the Aleutian Islands (AI).   
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in PWS had lower, but non-significant (P=0.06), mean %TBL values than similar aged 

animals (20 mo) in SEA (Fig. 28).   

Lean body mass (LBM) ranged from 64.7 to 95.1% in all free-ranging sea lions.  

Percent LBM was similar (P>0.05) between male and female sea lions at each age 

category.  Similar to %TBL, %LBM did not differ significantly by age in PWS 

(F4,29=1.55, P=0.218).  However, %LBM did differ between sea lion age groups in SEA 

(F4,43=11.14, P<0.001).  Specifically, 2 mo. old pups had significantly higher %LBM 

than 8 mo. YOY and 20 mo. old juveniles (P<0.05), but no differences in lean mass 

compared to 14 and 26 mo. old juveniles (P>0.05, Fig. 25).  In comparisons of similarly 

aged animals %LBM was similar between regions for 8 mo. old animals (t=0.367, 

P=0.718) and slightly higher, but not significantly so (t=-2.35, P=0.06), for 20 mo. sea 

lions in PWS compared to SEA.  

Blubber depth ranged from 1.0 to 2.7 cm across all animals.  Among the YOY, 2 

mo. old animals had the smallest mean blubber depths (1.1±0.2 cm), which were 

significantly thinner than blubber depths from older pups (Fig. 29).  Sea lion YOY 

captured in AI had the thickest mean blubber depths measured (2.2±0.1 cm, Fig. 29).  

While blubber depths were slightly higher in SEA 8 mo. YOY compared to animals of 

the same age in PWS, these values were not significantly different (P>0.05, Fig. 29).  

Among juveniles, no significant differences in blubber depth were evident across the age 

classes nor the differing capture regions (Fig. 29). 
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Figure 24.  Mean percent total body water (%TBW) ± SEM for sea lions captured in Southeast Alaska (SEA), Prince William 
Sound (PWS), and the Aleutian Islands (AI).  Levels of %TBW with different letters were considered significantly different, 
while levels with the same letter were not significantly different.   
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Table 17.  Mean total body lipid levels (%, ±SEM) for female and male Steller sea lions 
captured in the Aleutian Islands, Prince William Sound, and Southeast Alaska 

 
Location Age (mo) P

AL 10.5 27.0 ± 2.4 (6) 27.8 ± 1.4 (10) 0.760

PWS 5 21.6 ± 1.9 (4) 18.6 ± 1.1 (11) 0.196
8 21.6 ± 4.5 (2) 28.2 (1)
17 20.9 ± 4.9 (3) 13.9 ± 3.8 (5) 0.302
20 17.4 ± 1.7 (3)
44 11.2 (1)

SEA 2 10.2 ± 2.1 (4) 8.4 ± 1.9 (5) 0.549
8 23.9 ± 3.3 (6) 19.1 ± 2.4 (12) 0.254
14 22.7 (1) 13.1 ± 1.6 (8)
20 24.3 ± 2.0 (5)
26 11.1 ± 2.8 (2) 11.3 ± 2.8 (2) 0.965

     Sample sizes are in parentheses; significant comparisons at P <0.05 are in bold;
comparisons were made where adequate sample sizes allowed.
     AI, Aleutian Islands; PWS, Prince William Sound; SEA, southeast Alaska.

Females Males
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Figure 25.  Mean total body mass and proportion of lean and lipid tissue for sea lions captured in Prince William Sound (PWS) 
as determined by total body water.  Numbers in parentheses represent sample size.  There were no significant differences in 
%TBL with age (P>0.05).      
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Figure 26.  Mean total body mass and proportion of lean and lipid tissue for sea lions captured in Southeast Alaska (SEA) as 
determined by total body water.  Numbers in parentheses represent sample size.  Significant difference in %TBL with age are 
indicated by lipid levels with differing letters.  Levels that share the same letter are not considered significantly different at 
P>0.05.     
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Figure 27.  Mean total body mass and proportion of lean and lipid tissue for sea lions captured in Aleutian Islands (AI) as 
determined by total body water.  Numbers in parentheses represent sample size.     

125 



 

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

8 months 20 months

SEA lipid

PWS lipid

SEA lean

PWS lean

21%

79%

24%

76%

24%

76%

17%

83%

Ti
ss

ue
 M

as
s (

kg
)

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

8 months 20 months

SEA lipid

PWS lipid

SEA lean

PWS lean

21%

79%

24%

76%

24%

76%

17%

83%

Ti
ss

ue
 M

as
s (

kg
)

8 months 20 months

SEA lipid

PWS lipid

SEA lean

PWS lean
SEA lipidSEA lipid

PWS lipidPWS lipid

SEA leanSEA lean

PWS leanPWS lean

21%

79%

24%

76%

24%

76%

17%

83%

Ti
ss

ue
 M

as
s (

kg
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28.  Mean total body mass and proportion of lean and lipid tissue for 8 and 20 month old sea lions captured in Prince 
William Sound (PWS), and Southeast Alaska (SEA) as determined by total body water.   
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Metabolic Rate 

 Resting metabolic rate (MJ d-1) measured on a subset of sea lions (N=19) showed 

no significant differences (t=1.29, d.f.=18, P=0.214) between pre- and post-anesthesia 

measurements.  Thus, anesthesia was not considered to be a factor influencing metabolic 

rate.  Milk was discovered in the stomach of a small number of animals (N=14) ranging 

in age from 2-17 months, with all but one animal being younger than 12 mo. of age.  No 

significant differences in RMR (all P>0.05) were detected between animals with and 

without milk according to age class and location, therefore, the potential increase in 

metabolism resulting from the biochemical work associated with digestion was not 

evident.  Therefore, all sea lions, regardless of the presence of milk, were included in the 

remainder of analyses.   

 Metabolic rate was determined for free-ranging sea lions captured over varying 

ambient air temperatures (range -6.5 to 19.2 ºC).  Multiple linear regressions 

incorporating combinations of total body mass, age, gender, ambient air temperature, 

location, %TBL, %LBM, and blubber depth for all sea lions were run to determine the 

most parsimonious model with respect to RMR.  Three variables (total body mass, age, 

ambient temperature) explained most of the variation in metabolic rate (r2=0.75, 

F10,89=24.18, P<0.001).  While ambient temperature had a non-significant (P=0.087) 

effect on metabolic rate, both age and total body mass were significant (both P<0.001).  

These results were confirmed by sequential tests (Type I sums of squares).  

Mean RMR in air ranged from 6.7 to 36.2 MJ d-1 and varied with sea lion 

age/size.  Younger sea lions generally had lower absolute metabolic rates than older  
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Figure 29.  Mean blubber depth (cm) ± SEM as a function of age (mo) for sea lions captured in Southeast Alaska (SEA), 
Prince William Sound (PWS), and the Aleutian Islands (AI).  Blubber depth levels with similar letters showed no significant 
differences, while levels with differing letters were considered significantly different at P<0.05. 
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juveniles (Fig. 30).  Among the YOY, 2 mo. old animals (SEA) had the lowest mean 

RMR at 11.00±1.38 MJ d-1 (N=9) and 10.5 mo. old animals (AI) had the highest mean 

RMR at 21.19±1.07 MJ d-1 (N=15).  However, mean RMR in the AI YOY was not 

significantly different (P>0.05) from mean RMR values in 5 (20.97±1.07 MJ d-1, N=15), 

8 (SEA: 16.40±0.98 MJ d-1, N=18; PWS: 14.95±2.39 MJ d-1, N=3), 14 (20.65±1.38 MJ 

d-1, N=9), 20 (SEA: 20.15±1.85 MJ d-1, N=5; PWS: 22.96±2.39 MJ d-1, N=3), and 44 

(29.23±4.14 MJ d-1, N=1) mo. old animals (Fig. 30).  Among juvenile sea lions, 26 mo. 

old animals had highest mean RMR (32.35±2.07 MJ d-1, N=4). 

 In general, metabolic rates increased linearly with total body mass, lean mass and 

lipid mass.  Resting metabolic rate was slightly more strongly correlated to LBM 

(r2=0.55, P<0.001) than to total body mass (r2=0.52, P<0.001), and weakly correlated to 

TBL (r2=0.13, P=0.0004).  Conversely, metabolic rates for all sea lions were not 

correlated with %TBL (P=0.72) nor %LBM (P=0.95).  A backward stepwise regression 

incorporating all mass compartments (total body mass, LBM, and TBL) revealed that 

RMR could be predicted solely by LBM (r2=0.55, P<0.001).   

 ANCOVA results suggested no significant differences in the metabolic rates of 

sea lions from different capture locations when ambient temperature and LBM were 

included as covariates in the model (r2=0.59, F2,85=1.29, P=0.280).   

 Young of the year from AI (10.5 mo., 130.2 kg, N=15) were compared to 17 and 

20 mo. juvenile sea lions of similar size from PWS and SEA.  Since there were no 

significant differences in total body mass between the 17 mo. PWS, 20 mo. PWS and 20  
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Figure 30.  Mean metabolic rate (MJ d-1) ± SEM as a function of age (mo) for sea lions captured in Southeast Alaska (SEA), 
Prince William Sound (PWS), and the Aleutian Islands (AI).  Metabolic rate levels with similar letters showed no significant 
differences, while levels with differing letters were considered significantly different at P<0.05. 
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mo. SEA animals (F2,15=2.19, P=0.152), juvenile sea lions were pooled (134.3 kg, 

N=16) so that they could be compared to the AI YOY.  While there were no significant 

differences in total body mass between AI YOY and similarly sized juveniles (t=0.493, 

P=0.626), AI sea lions displayed significantly higher blubber depths (t=-3.16, P=0.004) 

and %TBL values (t=-3.70, P<0.001) than juvenile sea lions of the same size.  

ANCOVA comparisons of RMR showed no differences between AI YOY and (pooled) 

juveniles (F1,27=0.087, P=0.770) with ambient temperature and LBM as covariates in the 

model.           

Resting metabolic rate as a function of total body mass was plotted for sea lions 

from each capture location (Figs. 31, 32, 33).  Data from SEA showed the strongest 

correlation (r2=0.75, P<0.0001, Fig. 31) while data from PWS had the weakest (r2=0.29, 

P=0.0022, Fig. 32).         

 

Comparison of RMR Among Various Otariid Species 

Metabolic rates measured on individual sea lions in the present study are 

equivalent to 1.1-4.1 (overall mean 2.2±0.1) times the predicted basal metabolic rate of 

similarly sized adult terrestrial mammals (Kleiber, 1975) (Fig. 34).  The mean value of 

2.2 times predicted RMR for all animals was similar to predicted levels when sea lions 

were considered by age (Table 18).  Log-log regression produced the following 

predictive equation:  RMR=1.33 M0.62 (r2=0.58, N=91, P<0.001), where RMR is 

expressed as MJ d-1 and M represents total body mass in kg.  In-air RMRs from this 

  



132 

Figure 31.  Resting metabolic rate (MJ d-1) as a function of body mass (kg) for sea lions captured in Southeast Alaska (SEA).  
The regression equation is y=0.55x0.71 (r2=0.75, P<0.0001). 
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Figure 32.  Resting metabolic rate (MJ d-1) as a function of body mass (kg) for sea lions captured in Prince William Sound 
(PWS).  The regression equation is y=13.51x0.43 (r2=0.29, P=0.0022). 
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Figure 33.  Resting metabolic rate (MJ d-1) as a function of body mass (kg) for sea lions captured in the Aleutian Islands (AI).  
The regression equation is y=0.03x0.93 (r2=0.60, P=0.0007). 
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Figure 34.  Log-log plot of metabolic rate (MJ d-1) expressed as a function of total body mass (kg).  This relationship is best 
described by the equation: RMR=1.33 M0.62 (r2=0.58, N=91, P<0.001; solid line).  RMR in young Steller sea lions is about 
2.2 times the predicted levels for adult terrestrial mammals of similar size (Kleiber, 1975; dashed line). 
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Table 18.  A comparison between mean standard metabolic rate measured for Steller sea 
lions of varying age and predicted basal metabolic rate   

 
    SMR  BMR  Factor by which  
Age 
(mo) N (MJ d-1)  (MJ d-1)  SMR exceeds 

BMR 
2 9 11.0 ± 1.12  4.6 2.4 
5 15 21.0 ± 1.29  7.6 2.8 
8 21 16.2 ± 0.78  7.9 2.1 

10.5 15 21.0 ± 1.45  11.3 1.9 
14 9 20.6 ± 0.63  9.3 2.2 
17 8 28.3 ± 0.95  11.5 2.5 
20 8 21.2 ± 1.21  11.7 1.8 
26 4 32.3 ± 1.29  12.2 2.7 
44 1 29.2    17.5 1.7 

          
     Predicted basal metabolic rates (BMR) were estimated according to  
Kleiber, 1975.         
     Values for standard metabolic rate (SMR) are means ± SEM,  
N=number of subjects.            
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Figure 35.  Log-log plot of resting metabolic rate (measured in air) as a function of body mass for a variety of otariid species:  
free ranging (this study; grey circles) and captive (Rosen and Trites, 1997; Rosen and Trites, 1999; Rosen and Trites, 2002; 
Rosen and Trites, 2003; L. Hoopes, unpublished data; black circles) Steller sea lions, California sea lions (Matsuura and 
Whittow, 1973; crosses), northern fur seal pups (Donohue et al., 2000; squares), Antarctic fur seal pups (Arnould et al., 2003; 
Rutishauser et al., 2004; black triangles), and subantarctic fur seal pups (Arnould et al., 2003; grey triangles).    
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study and from the literature on other otariids were complied and plotted as a function of 

total body mass (Fig. 35).  Metabolic data taken from the literature (Matsuura and 

Whittow, 1973; Rosen and Trites, 1997; Rosen and Trites, 1999; Donohue et al., 2000; 

Rosen and Trites, 2002a; Arnould et al., 2003; Rosen and Trites, 2003; Rutishauser et 

al., 2004) were converted to like units (MJ d-1, assuming 1 l O2 = 20.1 kJ) and both 

individual and mean values were included.   

For comparison to other studies, RMR was expressed mass-specifically (MJ d-1 

kg-1).  Mass-specific RMR declined with increasing sea lion age (size), with younger sea 

lions (2, 5 mo.) having significantly higher RMRs than older animals (Fig. 36).  Log-log 

regression produced the following relationship: RMR=1.41 M-0.38 (r2=0.34, F1,89=46.54, 

P<0.0001).  ANCOVA results failed to detect difference in mass-specific RMR with 

regard to location when ambient temperature, total body mass and LBM were covariates 

in the model (F2,84=1.63, P=0.201).   
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Figure 36.  Mean mass-specific metabolic rate (MJ d-1 kg-1) ± SEM as a function of age (mo) for sea lions captured in 
Southeast Alaska (SEA), Prince William Sound (PWS), and the Aleutian Islands (AI).  Metabolic rate levels with similar 
letters showed no significant differences, while levels with differing letters were considered significantly different at P<0.05. 
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Discussion 

 
 Male YOY sea lions were 15 to 27% heavier than female sea lions (depending on 

age).  This difference in size was less pronounced in juvenile male sea lions, which were 

only 2 to 10% heavier than juvenile females.  Overall, male sea lions were greater in 

length (7.5%) and neck (8.8%), chest (8.3%), axillary (6.9%), mid-trunk (8.6%), and hip 

(9.1%) girth than female sea lions.  Sexual dimorphism is a characteristic of all otariids 

and its influence is evident early in development where, maternal investment during 

gestation, average birth mass, mass at weaning, and growth rates of male pups are 

generally greater than those of females (Kovacs and Lavigne, 1992; Trites, 1992).  This 

disparity in size is evident in neonate Steller sea lion pups (Brandon et al., 2005), and 

several other otariids young, including, Antarctic fur seals (Goldsworthy, 1995; Guinet 

et al., 1999), California sea lions (Ono and Boness, 1996), northern fur seals (Boltnev et 

al., 1998; Boltnev and York, 2001), South African/Australian fur seals (Arnould and 

Hindell, 2002; Gamel et al., 2005), South American sea lions (Lima and Páez, 1995), 

and southern sea lions (Cappozzo et al., 1991).   The more similar body masses of male 

and female juvenile sea lions compared to YOY may be indicative of weaning status, 

where juveniles may no longer rely on milk but instead on foraging and diving ability 

amongst a patchy prey resource.  In other words, females may have a chance to “narrow 

the gap” in body mass in an environment of equally unpredictable prey availability.   

Size differences were also evident between capture regions.  Sea lions from SEA 

were smaller in total body mass at every age compared with sea lions from PWS and AI.  

This pattern of increasing body mass from east to west is indicative of larger scale trends 
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across a greater variety of age categories for Steller sea lions in Alaska (Merrick et al., 

1995; Fadely et al., 2004).  Additionally, AI animals were heavier, longer, and fatter 

(body mass, axillary girth, blubber depth, %TBL) than YOY from other regions.  While 

a direct comparison of size based on age between all three regions was not feasible, 

other studies have noted that both neonate and juvenile sea lions from the AI were larger 

and of a higher body fat content than similarly aged animals in other regions of Alaska 

(Merrick et al., 1995; Fadely et al., 2004; Brandon et al., 2005).   

Although sample sizes were small, no differences in %TBW or %TBL were 

evident between male and female Steller sea lions in this study.  Brandon et al. (2005) 

similarly reported no difference in %TBW and %TBL between male and female Steller 

sea lion pups (1-5 days of age).  Average %TBL in 2 mo. old sea lions was low (9% of 

total body mass), only 3% higher than levels measured at birth (Brandon et al., 2005), 

reflecting the fact that Steller sea lion pups are born with small energy reserves and 

exposure to short-term fasting during periods of maternal foraging results in slower 

gains in lipid mass compared to phocid seals.    

Lean mass in Steller sea lions appears to be the primary contributor to total 

metabolic rate, with fat mass contributing little to this value.  The strong correlation 

between both total body mass (r2=0.55) and lean body mass (r2=0.52) with metabolic 

rate and the lack of a relationship between fat mass (r2=0.13) and metabolic rate support 

this conclusion.  Other studies with pinnipeds have determined that changes in 

metabolism in juvenile animals were strongly correlated with increases in lean mass 

instead of fat mass (Rea and Costa, 1992; Aarseth et al., 1999; Donohue et al., 2000).  It 
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has been suggested that lipid mass could indirectly influence metabolism if decreases in 

blubber stores impact the thermoregulatory capacity of the animal (Rea and Costa, 

1992).  Lean mass has also been correlated to metabolic rate in humans (Cunningham, 

1980; Roza and Shizgal, 1984; Elliot et al., 1989; Forbes and Brown, 1989) and lean 

body mass metabolic rates were similar in obese and non-obese individuals, suggesting 

that additional fat mass did not increase metabolic rate (Felig et al., 1983; Ravussin et 

al., 1986; Segal et al., 1989).      

Average %TBL increased with age for YOY sea lions from SEA and PWS, 

although the latter trend was non-significant.  Juvenile sea lions however, displayed 

fluctuating, but non-significant %TBL levels with age.  As a percentage of body mass, 

TBL ranged from 2.8 to 35.3% in YOY and from 6.9 to 32.7% in juveniles and was 

highly variable within and between age categories and locations.  Young Antarctic fur 

seals decrease their lipid stores (and increase lean tissue) from 31% of total body mass as 

2-3 mo. old pups to 15% of total mass as weaned yearlings (Rutishauser et al., 2004).  A 

similar decrease in %TBL would be expected at independence in Steller sea lions; 

however, a clear decrease in %TBL (increase in %LBM) was not evident in the data 

from this study likely due to variation in weaning time in this small sample size.  Steller 

sea lions typically wean at one year of age, but juveniles have been observed suckling up 

to three years (Pitcher and Calkins, 1981; Trites and Porter, 2002).  Similarly, it would 

be expected that sea lions would be leaner post-weaning due to the switch in energy 

intake (lipid to protein) and the increased energetic expenditure necessary to forage 

independently.  In the present study, one juvenile sea lion (17 mo. old) had milk in their 
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stomach.  This animal’s %TBL values were significantly higher (P<0.05, 23.1% TBL) 

than mean levels measured in the other juveniles (16.6% TBL).  While differences in 

%LBM by age were evident in SEA animals, it was not feasible to determine weaning 

status in this small dataset. 

Steller sea lions are considered to be relatively ‘lean’ animals, with thin blubber 

layers (Pitcher et al., 2000).  Blubber depths measured in this study were comparable to 

depths measured in captive Steller sea lion juveniles (Chapter II), but were considerably 

thinner than measured in phocid seals (e.g., Gales and Burton, 1987; Slip et al., 1992; 

Rosen and Renouf, 1997).  Additionally, for their large size, 2 mo. old Steller sea lions 

had much lower mean %TBL (9%) compared to smaller species such as northern fur 

seals (15%, 1 mo. of age, Donohue et al., 2000), Antarctic and subantarctic fur seals (22-

31%, 2-3 mo. of age, Arnould et al., 2003; Rutishauser et al., 2004) and California sea 

lions (1.5-19.3%, 1-3 mo. of age, Oftedal et al., 1987).  This difference is largely a 

reflection of life history strategy since northern fur seals and Antarctic fur seals typically 

wean quicker (4 months, Arnould et al., 2003) than Steller sea lions.   

While differences in blubber depth were not evident between sea lions from the 

stable and declining populations, animals from SEA were considerably smaller and had 

slightly less lean tissue mass than sea lions from other regions.  While size differences 

could be attributed to genetic differences in eastern and western stocks (Bickham et al., 

1996), it is more likely that increasing numbers of sea lions in SEA (Calkins et al. 1999) 

are imposing density-dependent constraints on growth and ultimately body size of 

juvenile sea lions.  As animals approach their carrying capacity in a given environment 
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there is greater competition for food, resulting in smaller body size.  Pups in SEA have 

been shown to have slower growth rates and be smaller in body mass than animals in 

western regions (Merrick et al., 1995; Rea et al., 1998).  Population density pressures are 

evident in other age classes of sea lions.  Female Steller sea lions in SEA undertake 

longer foraging trips and travel further to find resources (Milette and Trites, 2003).  As a 

result, pups in SEA have a longer period of dependence on their mothers, as a higher 

proportion of young are nursed into their second year compared to animals in western 

areas.  Finally, higher parasite loads (e.g., hookworms) in SEA pups is further evidence 

of overcrowding (Beckmen et al., 2005; Hughes et al., 2006).  Conversely, decreased 

competition for food due to lower population density could result in increased body size.  

Increases in body size in northern fur seals have been observed during periods of 

population decline (Trites and Bigg, 1992).  This could explain the larger size attained 

by AI YOY in this study given that rookeries throughout the Aleutian Island chain are 

sparsely populated compared to areas in SEA.   

Given that AI YOY appear to be larger in both total mass and lipid mass than 

their cohorts from other regions, and even some juvenile animals, it was no surprise that 

their RMR was similar to other juvenile animals.  However, given the larger body size of 

these YOY compared to similar aged animals in PWS and SEA, it would be expected 

that the AI animals would have lower mass specific RMRs compared to their cohorts.   

The finding that Steller sea lion juveniles have RMRs on average two times, but 

up to four times, the level predicted by Kleiber (1975) for adult mammals of similar 

body size is consistent with the elevated metabolic rates of juveniles.  Studies with other 
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young otariids show similar elevations in metabolic rate (Thompson et al., 1987; 

Donohue et al., 2000; Rutishauser et al., 2004).  However, sea lions in this study were 

also influenced by temperature and this could further inflate already elevated RMR 

levels.  To account for body size, energy measurements are often compared on the basis 

of metabolic size.  RMR of sea lions in this study scaled to M0.61, giving a scaling 

coefficient similar to the value of 0.66 reported in intraspecific studies of metabolic rate 

(Heusner, 1982). 

Under short-term conditions of deceased energy intake (nutritional stress) sea 

lions would be expected to increase foraging efforts since further expenditure of energy 

is likely off-set by a reasonable expectation of success during the forage.  However, 

when faced with predictable (e.g., seasonal availability) or large-scale shortages (e.g., El 

Niño) of energy intake, physiological adaptations that would limit energy expenditures 

include a reduction in activity, thermoregulation, and metabolism, also known as 

metabolic depression.  These strategies serve to increase survival time by limiting the 

loss of body mass.  Animals undergoing periods of reduced energy intake would also be 

expected to be in ‘poorer’ condition than animals with continuous access to food.  These 

animals should have thinner blubber and lipid stores due to catabolism of these tissues 

for fuel.  If sea lions from the western declining population are experiencing either short-

term or chronic periods of reduced food intake, we should see evidence of this in dive 

profiles, measures of body composition, and studies of RMR.   

Evidence of population differences in diving performance between eastern and 

western stocks of juvenile Steller sea lions is not clear cut.  Pitcher et al. (2005) found 
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maximum dive depths, dive durations, and dive rates in animals from the eastern stock, 

while sea lions from the western population spent greater amounts of time at sea.  They 

concluded that these differences may relate to differences in bathymetry and prey 

distribution in the two areas, and cannot be interpreted as greater foraging effort.  

Loughlin et al. (2003) reported deeper dives in yearlings Steller sea lions from 

Washington (eastern stock) compared with animals from the Gulf of Alaska and the 

Aleutian Islands (western stock) but also pointed at differences in prey habitat as a likely 

explanation.  Finally, trip duration was longer for juvenile Steller sea lions in the western 

population compared to the eastern population, suggesting either earlier weaning or 

greater difficulty in locating sufficient prey in the west (Raum-Suryan et al., 2004)   

Evidence of metabolic depression has been documented during periods of 

experimental and natural fasting in both marine (Heath et al., 1977; Ashwell-Erickson 

and Elsner, 1981; Gallivan and Best, 1986; Markussen et al., 1992; Rea and Costa, 1992; 

Nordøy et al., 1993; Boily and Lavigne, 1995; Rosen and Trites, 1999) and terrestrial 

(Grande et al., 1958; Harlow, 1981; Heldmaier et al., 2004; Reidy and Weber, 2004) 

mammals.  Rosen and Trites (1999) showed that when captive juvenile Steller sea lions 

were switched from a high to low energy diet for 14 days a resulting depression (16-

26%) in RMR was observed.  However, shorter periods of reduced energy intake (8-9 d) 

in the same animals did not necessarily elicit decreases in metabolism despite evidence 

of mass loss and varied seasonally (Kumagai et al., 2006), suggesting the relationship 

between metabolism and energy intake is more complex.  Few studies have sought to 

measure metabolic depression as a response to prey limitations in free-ranging marine 
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mammals and results from this study do not provide evidence of metabolic depression 

between sea lions from differing populations.  This suggests that either during the 

periods of measurement sea lions were getting adequate energy intake or that nutritional 

stress in not the cause of continuing declines in the western stock of Steller sea lions.       

In a related study, Myers et al. (2006) found decreasing concentrations of thyroid 

hormones (total T3, T4 and free T3, T4) with Steller sea lion maturity.  These results 

support RMR measurements in the current study which show elevations in metabolism 

in younger sea lions.  One of the roles of thyroid hormones is to regulate energy 

metabolism and levels correspond directly with energy intake.  Myers et al. (2006) also 

noted differences in thyroid concentrations by region.  They found that pups from SEA 

had the lowest concentration of thyroid hormones compared to western regions of 

Alaska and Russia and suggested that elevated levels in the west were suggestive of 

increased metabolism in order to maintain thermal homeostasis.  However, in the present 

study, no differences in metabolic rate were evident between sea lions from the three 

capture regions.  This disparity is likely due to differences in age and ambient 

temperature (Myers et al., 2006) which certainly influenced RMR in the present study.   

Extremes in air temperatures had an obvious influence on metabolism in young 

sea lions.  Resting metabolic rate of 5 and 17 mo. old sea lions from PWS were 

measured at an average air temperature of -1.8 ºC, while RMRs of 2, 14, and 26 mo. old 

sea lions from SEA were measured in much warmer air temperatures (mean 15.4 ºC, 

range 12 to 19 ºC).  Resting metabolic rate plotted as function of air temperature 

suggests that elevated RMRs at the temperature extremes may suggest that young sea 
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lions were outside their thermoneutral zone in air (Fig. 37).  Little is known of the 

thermal limits in air of many otariids species, including Steller sea lions.  Thompson et 

al. (1987) measured RMR in 3-5 week old California sea lion pups at ambient air 

temperature ranging from 16 to 26 ºC and found some individuals near hypothermic at 

ambient air temperatures below 19 ºC.  Alternatively, it appears that yearling California 

sea lions are unable to maintain thermal equilibrium at warmer air temperatures between 

28 and 36 ºC (Whittow et al., 1972; South et al., 1976).  While it is intuitive that the 

TNZ would expand as animals mature due to a decrease in the surface area to volume 

ratio that comes with larger size and freedom from the need to allocate energy into 

growth, few studies have examined how TNZ changes with ontogeny.  Hansen and 

Lavigne (1997a) measured an 11 ºC decrease in the lower critical temperature and a 3.5 

ºC increase in the upper critical temperature of 3 yr old harbor seals compared to the 

same animals as yearlings.   

Because temperature was such an important component to predicting RMR, this 

relationship was explored further to see if inferences of thermal limits could be made for 

free-ranging Steller sea lions.  Plotting RMR as a function of the ambient temperatures 

under which the measurements were made (regardless of sea lion age) reveals that the 

relationship is best fit by a polynomial curve (r2=0.22, F2,89=12.92, P<0.0001, Fig. 37).  

Using linear and nonlinear regression techniques described by Nickerson et al. (1989) 

and Nickerson (1991), a two-phase model was fit to the data to estimate a lower critical 

temperature (Tlc), below which sea lions would be expected to increase RMR to 

compensate for increased heat losses on land.  A three-phase model was not possible to 
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Figure 37.  Metabolic rate (expressed mass specifically, MJ d-1 kg-1) as a function of ambient air temperature (ºC) for all sea 
lions captured in the study.  Relationship is best expressed as a polynomial curve (r2=0.23, F2,87=12.92, P<0.0001).  Note the 
gap in measurements between 7 and 12 ºC.  
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fit (providing also an upper critical temperature) due to the lack of RMR measurements 

at air temperatures between 6 and 12 ºC.  

The best fit model included mass specific RMRs (MJ d-1 kg-1) and ambient air 

temperatures less than 10 ºC.  The fitted model produced an inflection point of 4.1 ºC, 

with data points at colder temperatures having a significant negative slope (P<0.0001), 

while data points at warmer temperatures had a slightly positive, but non-significant 

(from zero) slope (P=0.356) (Fig. 38).  When the data set was split according to age 

class, the inflection point for yearlings was similar at 4.3 ºC.  The smaller juvenile data 

set failed to converge upon an inflection point (air temperature) due to the absence of 

RMR measurements at a sufficient range of temperatures.  

This Tlc of approximately 4 ºC in air suggests that yearling and possibly juvenile 

sea lions may be living outside their TNZ during colder months.  Average winter air 

temperatures in the Gulf of Alaska can range as cold as 0 to -15 ºC (Nov-Feb, National 

Ocean and Atmospheric Association, NOAA).  Young sea lions exposed to these air 

temperatures would have to increase heat production in order to maintain thermal 

homeostasis.  This becomes especially significant during times of reduced food intake, 

where sea lions would have to rely on lipid reserves for fuel, further compromising 

thermoregulatory abilities.  Models predicting the environmental impacts on thermal 

tolerances in Steller sea lions suggests that solar radiation plays a large part in sea lions 

maintaining thermoneutrality (Roscow, 2001).  Under cloudy conditions or at night 

modeled heat losses suggested that Steller sea lions experienced a thermoregulatory cost, 

and small animals with thin blubber depths incurred the greatest costs.  This is supported 
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Figure 38.  Metabolic rate (expressed mass specifically, MJ d-1 kg-1) as a function of air temperatures (ºC) below 10 ºC for all 
sea lions captured in the study.  Results of two-phase nonlinear regression techniques (Nickerson et al. 1989, Nickerson 1991) 
suggest a lower critical temperature (Tlc) of 4.1 ºC.    
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by limited field data suggesting that at air temperatures of 10-15 ºC Steller sea lions tend 

to stay dry and cover their flippers to expose minimal surface area to the air (Gentry 

1973).           

While evidence of metabolic depression was not evident in sea lions from the 

western population, it is unclear whether or not the metabolic response might be greater 

at times of year when sea lions are more likely to experience decreased energy intakes 

(e.g., winter) or in conjunction with life history events that are energetically expensive 

(e.g. molting).  Although sampling trips were conducted at various times of year, small 

sample sizes and non-similar age classes between locations prevented comparisons of 

RMR by season.  While food restriction experiments with arctic foxes revealed no effect 

of season on the degree of metabolic depression (Fuglei and Oritsland 1999), short-term 

reductions in energy intake over the course of a year revealed seasonally dependent 

changes in metabolism, body composition and body mass in captive Steller sea lions 

(Kumagai et al., 2006).  Sea lions responded differently to reduced intakes depending on 

season and differences in body mass loss based on diet type (high lipid or low lipid) 

suggested that diet composition may pose an additional impact during certain times of 

the year (Kumagai et al., 2006).  Steller sea lions undergo their annual molt in the fall 

(Aug/Sept), when it is predicted that metabolism would be elevated due to new hair 

growth and/or thermoregulatory costs.  Metabolic studies in otariids have shown that 

pups have elevated metabolic rates during molt (Donohue et al., 2000; Beauplet et al., 

2003), but no studies have been done with juveniles or adults.  Sampling of sea lions 

during the molt was avoided for this study to avoid potential confounding effects on 
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resting metabolism, however, future studies looking at seasonal changes in metabolism 

would be valuable to making better predictions about energetic requirements.  

This is the first study to measure RMR in free-ranging juvenile Steller sea lions 

and subsequently identify a Tlc for animals in air.  Understanding basic physiological 

parameters such as metabolism have important implications to understanding diving 

limitations and capabilities, maintenance requirements for energy budgets, 

thermoregulatory constraints, and bioenergetics modeling of complicated physiological 

systems.      
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CHAPTER V 

EVALUATION OF A THERMAL MODEL FOR JUVENILE STELLER SEA LIONS 

 
Introduction 

 
 Mathematical models can often provide insight into complex biological and/or 

physiological systems that may be impossible to measure and integrate in a natural 

setting.  Thermoregulation is an example of such a complex physiological control 

system, that despite the complexity, can be described by simple thermodynamic 

equations linked together in a quantitative form (e.g., Birkebak et al., 1966; e.g., Luecke 

et al., 1975).  The guiding principle in modeling thermal capabilities in endotherms 

attempts to balance heat losses and heat gains based on exchanges of energy between 

and animal and its environment.  Under steady state conditions heat storage of an animal 

is zero and body temperature remains constant.  The standard heat balance equation 

balances metabolic heat production, evaporative heat losses, and heat exchange through 

radiative, convective, and conductive means (Schmidt-Nielsen, 1983).  The extreme 

conditions that an animal can withstand are determined by balancing this equation with 

body temperature, metabolic rate, and evaporative water loss within sustainable 

physiological limits.  Thermal modeling in this fashion allows for predictions of heat 

balance and energy production under differing environmental conditions in species 

where it can be difficult to make experimental measurements (Luecke et al., 1975). 

The dual aquatic and terrestrial existence of pinnipeds exposes these animals to 

potentially severe thermal challenges from their environment, especially those species 
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living at high latitudes.  Pinnipeds must venture into the water to forage in a medium 

which promotes heat loss during swimming and diving (Nadel, 1984), yet still retain the 

capacity to dissipate excess heat and avoid hyperthermia on land or when active (e.g., 

Hart and Irving, 1959).  Maintaining thermal balance is an essential feature in the life of 

pinnipeds and a wide variety of adaptations have evolved to control heat loss to the 

environment (Irving, 1969).  Pinnipeds employ both morphological (fur, highly 

vascularized subcutaneous blubber layer, heat exchangers) and behavioral (e.g., 

huddling) mechanisms to mediate heat exchange with their environment.  Despite a large 

body of literature examining thermoregulation in pinnipeds (e.g., Tarasoff and Fisher, 

1970; Odell, 1974; Heath et al., 1977; Costa and Kooyman, 1982; Pierotti and Pierotti, 

1983; Thompson et al., 1987; Whittow, 1987; Watts et al., 1993; Andrews et al., 1994; 

Hansen et al., 1995; Boily and Lavigne, 1996; Hind and Gurney, 1997; Boyd, 2000; 

Donohue et al., 2000; Noren, 2002; Mauck et al., 2003; Willis et al., 2005), it is not 

clear, in spite of these adaptations, whether pinnipeds need to increase their metabolic 

rates to maintain body temperature under certain environmental conditions.   

Steller sea lions are the largest of the otariid (eared) seals and are distributed 

throughout the North Pacific basin from California north through the Gulf of Alaska, the 

Aleutian Islands and the Bering Sea, and extending south into the waters surrounding 

Japan.  Like other otariids, Steller sea lions have relatively thin blubber layers compared 

to similarly sized phocid seals (e.g., Bryden and Molyneux, 1978, L. Hoopes, 

unpublished data).  Juvenile sea lions, by virtue of their smaller size and immature 

physiology, likely experience greater challenges to thermoregulation than adults.  
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Reductions in body condition (blubber thickness) arising from nutritional deficiencies 

would certainly impact the thermoregulatory abilities of young Steller sea lions, 

ultimately compromising survival.  While evidence of the impact of nutritional stress in 

Steller sea lions (e.g., change in survival rates, body size and/or condition) has been 

sought to explain the continued declines in western Alaskan populations, supporting 

evidence is inconclusive and sometimes contradictory (Castellini, 1993; Merrick et al., 

1997; Rea et al., 1998; Milette and Trites, 2003; Rea et al., 2003).  Exploring the thermal 

constraints placed on juvenile Steller sea lions by their changing environment through 

the application of an energetics model may provide insight to the physiological 

challenges these young animals face, and ultimately to understanding the potential for 

population decline.         

 Thermoregulation is often neglected in bioenergetics models for pinnipeds by 

assuming animals are always operating within their thermal neutral zone (TNZ) 

(Ashwell-Erickson and Elsner, 1981; Olesiuk, 1993; Mohn and Bowen, 1996) or by 

lumping thermal costs into activity costs (Winship et al., 2002).  Roscow (2001) created 

a series of individual-based predictive models for assessing thermal constraints of Steller 

sea lions across both terrestrial and aquatic habitats.  The model inputs include 

parameters such as body mass, blubber depth, temperature (air or water), velocity (air or 

water), and examines the interactions between the heat generated from locomotion and 

digestion with the heat needed for thermoregulation.   The model predicted that Steller 

sea lions require additional energy to maintain thermal balance in water, unless they are 

moving and generating additional heat from locomotion.  Steller sea lions were within 
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their TNZ when resting in air during clear sunny days as a result of direct solar radiation.  

However, at night, under cloudy conditions, or at extremely cold air temperatures sea 

lions needed to generate extra heat for thermoregulation.  These additional expenditures 

could be partially or completely offset if sea lions could use the heat generated from 

digestion.  For all conditions tested, smaller sea lions of those with poor body condition 

(1 cm blubber thickness) incurred the greatest thermal costs (Roscow 2001).         

 While the model is the first of its kind and is useful for exploring the physical 

and environmental conditions under which sea lions experience thermal imbalance, the 

predictive power of the model is limited by the reliability of data used to construct it.  At 

the time it was created, little information on basic physiological parameters (e.g., resting 

metabolic rate, skin temperature) was available for Steller sea lions and data for 

California sea lions or other phocids were used instead.  Since the model was completed, 

several studies on Steller sea lions (e.g., Rosen and Trites, 2002b; Willis et al., 2005, 

current study) have been conducted which have the potential to improve the predictive 

power of the model.  Thus, the objectives of this exercise were to (1) compare predicted 

metabolic expenditures to actual measured expenditures presented in Chapters II and IV 

to identify how well the model predicts the thermal reality of juvenile Steller sea lions in 

water and air, (2) modify model parameters based on whether the model underestimates 

or overestimates heat losses, and finally (3) re-run the model and identify parameters 

which limit the predictive power of the model.   
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Materials and Methods 

 
Comparisons to Experimental Data 

 Parameter inputs were modified for Roscow’s (2001) thermal bioenergetics 

model so that predicted thermoregulatory costs could be compared to available 

experimental data from captive and free-ranging juvenile Steller sea lions.  For in-water 

comparisons, data from captive Steller sea lions that had recovered their body mass were 

used (see Chapter II).  For in-air measurements, data for free-ranging Steller sea lions 

within their TNZ (4 to 10 ºC, see Chapter IV) were utilized.  In order to better predict the 

thermal constraints on young Steller sea lions, mass estimates for the model were set to 

50, 75, 100, 125, 150 and 175 kg, comparable to the range of masses for sea lions in the 

experimental datasets.  Water temperatures were modeled at 2, 4, and 8 ºC, while air 

temperatures were set to -5, 0, 5, and 10 ºC.  In order to assess the portion of convective 

(lumped with conduction) heat lost for sea lions at rest but in moving water, water 

velocity inputs were restricted to 0.1, 0.5, 1.0, and 1.2 m s-1.  Experimental data for free-

ranging Steller sea lions in air were collected from animals in a metabolic chamber 

which protected them from wind.  Every effort was made to keep the chamber shaded to 

minimize the impacts of solar radiation on the animal.  Based on these measurement 

conditions, the in-air model simulating night time conditions (wind velocity set to 0 m s-

1) was chosen for comparison to actual data since solar radiation is minimal at this time.   

 Body condition in the original model was assessed using maximum blubber 

depths of 1, 3, and 5 cm, representing animals in poor, average, and good body 

condition, respectively.  Captive and free-ranging juvenile Steller sea lions rarely 
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displayed blubber depths greater than 2.0 cm (see Chapters II, IV).  Therefore, maximum 

juvenile blubber depths were modeled at 1, 2, and 3 cm, better representing the range of 

potential blubber depths for juvenile Steller sea lions in the size categories that were 

modeled. 

 Skin temperature (Ts) in the original model (Roscow, 2001) was varied between 

0 and 3 ºC above ambient temperatures (Ta) to simulate the varying response in 

peripheral blood perfusion to varying environmental conditions.  It was unclear how Ts 

varied in response to Ta in the original design of the model.  Surface temperatures 

recorded from Steller sea lions immediately after emergence from the water were often 

2-4 ºC warmer than ambient (depending on location, see Chapter III).  Therefore, skin 

temperatures was arbitrarily set to be 3 ºC above ambient in the model.  Model output 

was converted to MJ d-1 for comparisons to experimental data collected on captive 

Steller sea lions over a limited range of water temperatures (see Chapter II) and on free-

ranging Steller sea lions in air (see Chapter IV).  Experimental data are presented as 

linear regression estimates (as determined by least squares)  ± 95% confidence intervals.   

  

 

 

 

 

 

 

 



 160

Results 

 
Comparison of Predicted Versus Actual Expenditures 

Comparison of predicted metabolic expenditures to actual expenditures of 

juvenile sea lions in stationary water (2, 4, 8 ºC) suggests that model predictions for sea 

lions with 1-2 cm of blubber were within range of actual measurements (Figs. 39, 40, 

41).  In moving water (1.2 m s-1) the model appeared to overestimate heat losses at all 

water temperatures (Figs. 42, 43, 44).  This overestimation ranged from 4-120% 

depending on sea lion size and temperature.  Overall, the model tended to overestimate 

thermal losses for larger animals and at the warmer water temperatures (Figs. 42, 43, 

44).   

Within their terrestrial TNZ, predicted metabolic expenditures for sea lions with 

2-3 cm of blubber were within the range of actual measurements, while values predicted 

for sea lions modeled with thinner blubber overestimated actual expenditures (Fig. 45).  

Below the TNZ (< 4 ºC), predicted estimates of expenditure were similar to actual 

measured values at 0 and -5 ºC (Fig. 46 and 47, respectively).     

 

Changes to the Model 

While the model did a good job of predicting metabolic expenditures in 

stationary water and in air, the model overestimated heat losses for sea lions in moving 

water.  Parameters in the model that could be contributing to the overestimation of heat 

loss in modeled sea lions relates to heat transfer from the core of the sea lion to its 

surface.  Heat flow is dependent on blood perfusion due to vasoconstriction and 
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Figure 39.  Comparison of the metabolic expenditures (MJ d-1) for captive Steller sea lions (black circles, solid line) in 2 ºC 
water and predicted results for similar sized sea lions modeled with 1 (white triangles), 2 (grey triangles), and 3 (black 
triangles) cm of blubber in stationary water.  Dashed line represents BMR as predicted by Kleiber (1975) for similarly sized 
adult terrestrial mammals. Dotted lines represent the ±95% confidence intervals around the regression line.  
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Figure 40.  Comparison of the metabolic expenditures (MJ d-1) for captive Steller sea lions (black circles, solid line) in 4 ºC 
water and predicted results for similar sized sea lions modeled with 1 (white triangles), 2 (grey triangles), and 3 (black 
triangles) cm of blubber in stationary water.  Dashed line represents BMR as predicted by Kleiber (1975) for similarly sized 
adult terrestrial mammals. Dotted lines represent the ±95% confidence intervals around the regression line. 
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Figure 41.  Comparison of the metabolic expenditures (MJ d-1) for captive Steller sea lions (black circles, solid line) in 8 ºC 
water and predicted results for similar sized sea lions modeled with 1 (white triangles), 2 (grey triangles), and 3 (black 
triangles) cm of blubber in stationary water.  Dashed line represents BMR as predicted by Kleiber (1975) for similarly sized 
adult terrestrial mammals. Dotted lines represent the ±95% confidence intervals around the regression line.  
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Figure 42.  Comparison of the metabolic expenditures (MJ d-1) for captive Steller sea lions (black circles, solid line) in 2 ºC 
water and predicted results for similar sized sea lions modeled with 1 (white triangles), 2 (grey triangles), and 3 (black 
triangles) cm of blubber in flowing (1.2 m s-1) water. Dotted lines represent the ±95% confidence intervals around the 
regression line.  The model overestimates metabolic expenditures in flowing water.
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Figure 43.  Comparison of the metabolic expenditures (MJ d-1) for captive Steller sea lions (black circles, solid line) in 4 ºC 
water and predicted results for similar sized sea lions modeled with 1 (white triangles), 2 (grey triangles), and 3 (black 
triangles) cm of blubber in flowing (1.2 m s-1) water. Dotted lines represent the ±95% confidence intervals around the 
regression line.  The model overestimates metabolic expenditures in flowing water.  
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Figure 44.  Comparison of the metabolic expenditures (MJ d-1) for captive Steller sea lions (black circles, solid line) in 8 ºC 
water and predicted results for similar sized sea lions modeled with 1 (white triangles), 2 (grey triangles), and 3 (black 
triangles) cm of blubber in flowing (1.2 m s-1) water. Dotted lines represent the ±95% confidence intervals around the 
regression line.  The model overestimates metabolic expenditures in flowing water.  
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Figure 45.  Comparison of the metabolic expenditures (MJ d-1) for free-ranging Steller sea lions (black circles, solid line) in air 
temperatures between 4 and 10 ºC and predicted results for sea lions modeled with 1 (white triangles), 2 (grey triangles), and 3 
cm (black triangles) of blubber in air at 5 ºC (triangles).  Dotted lines represent the ±95% confidence intervals around the 
regression line. 
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Figure 46.  Comparison of the metabolic expenditures (MJ d-1) for free-ranging Steller sea lions (black circles, solid line) in air 
temperatures between -1 and 1 ºC and predicted results for sea lions modeled with 1 (white triangles), 2 (grey triangles), and 3 
(black triangles) cm of blubber in air at 0 ºC. Dotted lines represent the ±95% confidence intervals around the regression line.
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Figure 47.  Comparison of the metabolic expenditures (MJ d-1) for free-ranging Steller sea lions (black circles, solid line) in air 
temperatures between -6 and -3 ºC and predicted results for sea lions modeled with 1 (white triangles), 2 (grey triangles), and 3 
(black triangles) cm of blubber in air at -5 ºC. Dotted lines represent the ±95% confidence intervals around the regression line.  
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vasodilation, which in turn affects the conductivity of the tissue.  Blubber conductivity in 

the original model was set to between 0.18 and 0.20 W m-1 ºC-1 based on measured 

values in dead tissue samples (e.g., Worthy, 1991) which do not account for the 

likelihood of some minimal peripheral blood flow.  It was assumed that sea lions at the 

lower end of their TNZ would have little blood flow in their blubber to reduce heat 

losses.  Under these conditions, blubber conductivity would be similar to that of dead 

blubber.  In order to increase insulative capacity in the model, thus correcting for the 

overestimation in heat loss, the lowest conductivity value (0.18 W m-1 ºC-1) was selected.   

Additional avenues for the overestimation of heat loss include the temperature 

differentials between the blubber/muscle layer and between the blubber/skin interface.  

The original model set the blubber/muscle layer interface temperature to 32 ºC, 5.5 ºC 

below core body temperature.  When this temperature was decreased to 30 ºC, the model 

more accurately predicted heat losses.  At the blubber/skin interface, Kvadsheim et al. 

(1997) reported an average difference of 3 ºC between the skin and ambient 

temperatures of surrounding medium.  A difference of 2-4 ºC above ambient was also 

evident in body surface temperatures of juvenile Steller sea lions measured upon 

emergence from flowing water (see Chapter III), with average whole body surface 

temperatures being 3 ºC warmer than ambient water temperatures.  Thus, Ts was 

maintained at 3 ºC above Ta for all environmental conditions.  Based on these 

modifications, the model was re-run for juvenile sea lions in moving water to see if 

model predictions could better estimate actual metabolic expenditures. 
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Modifications to the model (blubber conductivity, blubber/muscle interface 

temperature) produced little change in predicted metabolic expenditures for juvenile sea 

lions in moving water.  Thermal expenditures from the modified model were at most 3% 

lower than original values, and the modified predictions were still high compared to 

actual measurements (Figs. 48, 49, 50).  It is possible that the model is still 

overestimating thermal heat loss in flowing water because it assumes that sea lions are 

stationary in flowing water.  This rarely was the case during experimental trials.  The 

model is designed to allow for the substitution of heat generated through locomotion to 

total heat losses when the animal is swimming.  To explore the possibility that sea lions 

may use the heat generated from activity to offset thermal costs in flowing water, swim 

speed was modeled at the same velocity as water speed (0.1, 0.5, 1.0, 1.2 m s-1) as a 

proxy for increased activity and model output was compared to experimental data on 

captive sea lions.  The predicted increase in heat production due to locomotion helped 

defray total heat loss by 16% and reduce expenditures to within the range of actual 

measurements in smaller animals (Figs. 48, 49, 50).  Even with the reduction in total 

heat loss, predicted expenditures for larger juveniles still overestimated actual values.    

 

Comparison of Lower Critical Temperatures 

Metabolic expenditures in both water and in air are dependent upon whether the 

environmental conditions under which they are measured are within the animals’ TNZ.  

Determination of the lower critical temperature (Tlc) was possible for both the in-water 

and in-air experimental data sets (see Chapters II, IV).  The original model predicted a 
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Figure 48.  Comparison of the metabolic expenditures (MJ d-1) for captive Steller sea lions (black circles, solid line) in flowing 
(1.2 m s-1), 2 ºC water and modified model results for sea lions with 1 (white triangles), 2 (grey triangles), and 3 (black 
triangles) cm of blubber. Predicted results overestimate actual measurements.  The predicted reduction in total heat loss due to 
heat generated from locomotion is plotted for sea lions with 1 (white squares), 2 (grey squares), and 3 (black squares) cm of 
blubber.  Dotted lines represent the ±95% confidence intervals around the regression line. 172 
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Figure 49.  Comparison of the metabolic expenditures (MJ d-1) for captive Steller sea lions (black circles, solid line) in flowing 
(1.2 m s-1), 4 ºC water and modified model results for sea lions with 1 (white triangles), 2 (grey triangles), and 3 (black 
triangles) cm of blubber. Predicted results overestimate actual measurements.  The predicted reduction in total heat loss due to 
heat generated from locomotion is plotted for sea lions with 1 (white squares), 2 (grey squares), and 3 (black squares) cm of 
blubber.  Dotted lines represent the ±95% confidence intervals around the regression line.  173 
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Figure 50.  Comparison of the metabolic expenditures (MJ d-1) for captive Steller sea lions (black circles, solid line) in flowing 
(1.2 m s-1), 8 ºC water and modified model results for sea lions with 1 (white triangles), 2 (grey triangles), and 3 (black 
triangles) cm of blubber. Predicted results overestimate actual measurements.  The predicted reduction in total heat loss due to 
heat generated from locomotion is plotted for sea lions with 1 (white squares), 2 (grey squares), and 3 (black squares) cm of 
blubber.  Dotted lines represent the ±95% confidence intervals around the regression line.  174 
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Tlc in water of 6 ºC for 100 kg animals.  A Tlc was not determined under environmental 

conditions at night in air for any sized sea lion in the original model (Roscow, 2001).  

The model was modified to include smaller sea lions masses (50, 100, 150 kg) and 

predicted expenditures were plotted over a range of water and air temperatures.  Three 

patterns of skin temperature change were explored.  Based on thermography results with 

captive sea lions (see Chapter III) Ts was first assumed to consistently be 3 ºC above 

ambient conditions.  Second, a graded response to Ts with changing ambient conditions 

was modeled.  Here, Ts was assumed to be similar to Ta in warmer conditions (0 ºC 

differential).  Under colder conditions, the model assumed that sea lions would defend 

Ts, thus minimizing heat loss from the surface, and a maximum temperature differential 

of 3 ºC was used.  Ambient temperatures in between showed a graded response to Ts.  

Finally, near their Tlc, sea lions should be minimizing peripheral blood perfusion through 

the blubber and skin to prevent heat loss.  Under these conditions it is reasonable to 

assume that Ts is the same as Ta.  Model predictions of this scenario will provide Tlc 

values for juvenile animals based on an extreme response in Ts to eliminate metabolic 

heat loss.       

In the original model, predicted expenditures were subtracted from a multiple of 

BMR (determined by Kleiber, 1975), leaving the increase in metabolism as a result of 

thermoregulation (MJ d-1).  Estimates of BMR equivalent to 2 and 3 times the value 

predicted by Kleiber (1975) were chosen for comparison based on measured metabolic 

rates for juvenile sea lions (see Chapter II, IV).  If output values were positive, a thermal 

cost was incurred at that temperature, while negative values indicated no additional cost 
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(a savings) due to thermoregulation.  The lowest temperature at which thermal energetic 

costs are negligible (negative) is considered to be the predicted Tlc.  

Assuming juvenile sea lions were operating at a metabolic rate comparable to 2 

times Kleiber, the model predicts that sea lions weighing between 50 and 150 kg (all 

blubber depths) would never be thermoneutral in water (-2 to 30 ºC) when skin 

temperatures are held consistently 3 ºC warmer than ambient conditions.  If juvenile sea 

lions with 1 cm of blubber have a metabolic rate of 3 times Kleiber, the model predicts a 

Tlc in water of 11 ºC for 50 kg animals, 1 ºC for 100 kg animals, and 150 kg animals are 

thermoneutral at the coldest ocean temperatures (-2 ºC) (Fig. 51).  Sea lions with greater 

blubber depths were thermoneutral at -2 ºC.  If we assume that skin temperature is not 

consistently higher than ambient conditions, but rather shows a graded response to 

ambient temperature such that there is a larger differential at colder temperatures (3 ºC) 

and no differential at warmer temperatures (0 ºC), then a very different thermal pattern 

emerges.  Here, the model predicted a Tlc for 50 kg animals at 1 ºC, for 100 kg animals 

near 0 ºC, and for 150 kg animals at -1 ºC when metabolism was assumed to be 2 times 

Kleiber and blubber depth was 1 cm (Fig. 52).  Sea lions with thicker blubber were 

thermoneutral at -2 ºC.  At 3 times Kleiber, all age classes at all blubber depths (1-3 cm) 

were thermoneutral at -2 ºC water.   

In air, the model predicts a Tlc of 5 ºC for 50 kg sea lions, 2 ºC for a 100 kg sea 

lions, and 0 ºC for a 150 kg sea lion at an assumed basal metabolism equilavent to 3 

times Kleiber (Fig. 53).  These lower critical temperatures did not change regardless of 

the skin temperature profiles that were used in the model.  When the model was run with 
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Figure 51.  Predicted metabolic expenditures (MJ d-1) for 50 (solid black line), 100 (dashed black line), and 150 (solid grey 
line) kg sea lions with 1 cm of blubber operating at a basal metabolism 3 times Kleiber in water.  Skin temperatures were 
assumed to be 3 ºC above ambient conditions.  The predicted lower critical temperature is the temperature at which heat losses 
become positive, indicating a need for the animal to increase metabolism to compensate.   
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Figure 52.  Predicted metabolic expenditures (MJ d-1) for 50 (solid black line), 100 (dashed black line), and 150 (solid grey 
line) kg sea lions with 1 cm of blubber operating at a basal metabolism 2 times Kleiber in water.  Skin temperatures were 
assumed to show a graded response to ambient conditions.  The predicted lower critical temperature is the temperature at 
which heat losses become positive, indicating a need for the animal to increase metabolism to compensate.   
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Figure 53.  Predicted metabolic expenditures (MJ d-1) for 50 (solid black line), 100 (dashed black line), and 150 (solid grey 
line) kg sea lions with 1 cm of blubber operating at a basal metabolism 3 times Kleiber in air.  The predicted lower critical 
temperature is the temperature at which heat losses become positive, indicating a need for the animal to increase metabolism to 
compensate.  Lower critical temperatures were the same regardless of which skin temperatures were chosen.   
 179 
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sea lions at 2 times Kleiber, heat losses were predicted over the entire range of air 

temperatures (-5 to 28 ºC) for all sizes of sea lions, and no Tlc was identified.      

            

Discussion 

 
 Roscow’s (2001) thermal energetics model predicts total heat loss under a variety 

of environmental conditions for both the aquatic and terrestrial habitats that Steller sea 

lions commonly occupy.  This model, is a simplified representation of what in reality is a 

complex physiological system.  However, the value of models is that they allow for the 

conceptualization of these complex systems and allow for predictions to be made about 

real world situations that are difficult to measure.  Understanding the thermal energetics 

of juvenile Steller sea lions is an example of such a system, especially in light the 

potential for nutritional deficiencies to impact the fate of the blubber layer which has the 

conflicting role of both insulator and fuel source.  Before the model can have any value 

at predicting thermal reality in Steller sea lions, model validation using actual 

measurements from juvenile Steller sea lions was required.    

Model predictions were within the range of actual metabolic measurements 

collected from captive and wild Steller sea lions at rest both in water and in air.  The 

original model was designed to compare total heat loss values to BMR (determined by 

Kleiber, 1975) to gauge whether maintenance requirements were enough to offset heat 

loss or whether the animal was required to increase metabolism to prevent the heat loss.  

It is clear from the experimental data that Steller sea lions, like most other otariids are 

not operating at metabolic rates comparable to what the Kleiber equation would predict, 
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but at some multiple of it.  In water this averaged 3.1 times Kleiber (individual range 2.4 

to 4.0 times predicted) and in air sea lions averaged 2.2 times Kleiber (individual range 

1.5 to 4.0 times predicted).  This higher level of metabolism is commonly seen in 

juvenile pinnipeds and it is unclear as to whether this is a thermoregulatory response 

(Oftedal et al., 1987; Thompson et al., 1987; Whittow, 1987) or is a function of the 

added cost of growth (McNab, 1980).  Regardless, the use of Kleiber’s (1975) 

relationship for adult terrestrial mammals to estimate BMR in Steller sea lions 

overestimates the need for sea lions to increase their metabolic rate to cope with heat 

losses and suggests that the original model may have predicted additional 

thermoregulatory costs where none need exist.  Previous models have used multipliers of 

Kleiber’s equation to account higher metabolic rates in immature growing animals (e.g., 

Malavear, 2002; Winship et al., 2002) and this likely provides better estimates of 

maintenance requirements.    

Comparisons between predicted and actual thermal expenditures suggest that the 

original model may be overestimating heat loss for juvenile sea lions in flowing water.  

Since heat transfer mechanisms operating externally on the sea lion in water (mostly 

conduction and convection) were determined by standard thermal equations and the 

properties of the medium in which they are modeled, it seems that the overestimation 

was likely attributable to the parameters which dictate internal heat production and 

transfer.  Blubber conductivity, blubber/muscle interface temperature, and skin 

temperatures were altered in the model to attempt to model heat losses in flowing water 

within the range of actual measurements.  Changes in blubber conductivity (with the 
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range measured for dead tissue) and blubber/muscle interface temperature produced little 

change (3%) in predicted values.  Changing skin temperature drastically altered the 

model output.  This is not surprising given the complex vascular network in the 

subcutaneous blubber layer which can bypass or shunt heat to the outer body surface 

depending on thermal demands on the animal.  Patterns of blood perfusion and 

vasoconstriction/vasodilation are not well understood in the skin and blubber layer of 

marine mammals, but obviously serve an important physiological role in maintaining 

thermoregulation.  Studies measuring skin temperatures in otariids are limited and 

measurements from free-ranging fur seals show large fluctuations in Ts during diving 

and swimming in cold water, and animals tended not to minimize skin temperatures as 

would be expected to minimize heat losses in cold water (Boyd, 2000).  While captive 

sea lions showed relatively constant differences (2-4 ºC difference) between surface 

temperatures (which were assumed to be equivalent to Ts) and ambient water 

temperatures, this appears to be an oversimplification since the model produced 

predictions that still overestimated actual expenditures.  Further study examining the 

environmental and physiological mechanisms which influence skin temperature are 

necessary in order to increase the predictive power of the model.           

Another possibility for the disparity in predicted and actual metabolic 

expenditure values for juvenile sea lions in flowing water was the observation that at 

highest flow speeds, sea lions increased their activity level in the swim flume (L. 

Hoopes, personal observation).  The model assumes that sea lions are stationary in 

flowing water, when in reality this was rarely the case.  It is possible that these animals 
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were increasing their activity level to help defray thermal losses, especially at the colder 

water temperatures.  While the model does not have an activity component, the 

substitution of heat generated from locomotion was examined.  When water flow is 

greater than 0.1 m s-1, the model assumes that the animal is swimming and the heat due 

to locomotion is subtracted from total heat loss.  Predicted output for juvenile sea lions 

generating heat from locomotion was within the range of measured values in captive sea 

lions.  This possibility likely explains the overestimation in the model output and 

evidence of the substitution of heat generated through activity was observed at the higher 

flow speeds in the experimental data set (see Chapter II). 

Captive sea lions were also observed shivering at the colder water temperatures 

and higher flow speeds (L. Hoopes, personal observation).  Shivering is a common 

mechanism by which heat is generated for thermoregulation due to muscular 

contractions that generate metabolic heat.  The contribution of shivering thermogenesis 

to overall heat balance has been examined in relation to thermal acclimation, typically in 

small, terrestrial mammals (e.g., Bockler and Heldmaier, 1983; Nespolo et al., 1999).  

The contribution of shivering in overall heat production in pinnipeds is not known, but is 

probably small.  The model did not take into account heat production via shivering 

thermogenesis.        

The model performed well in predicting energetic expenditures in air both within 

and outside of the TNZ (see Chapter IV) when compared to experimental data from free-

ranging sea lions.  The model that simulated nighttime conditions was selected in an 

effort to minimize the effect of solar radiation on total heat loss given that the metabolic 
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chamber was kept shaded.  Solar radiation can certainly influence thermoregulation in 

the metabolic chamber (Porter, 1969) and during daylight hours, the model predicts 

significant reductions in heat loss during clear sunny days, even at very cold (-20 ºC) air 

temperatures (Roscow, 2001). 

Model estimates of Tlc in water were variable and depended largely on how 

variations in Ts were defined.  Measurements of Ts for pinnipeds in water are scarce 

(e.g., Worthy, 1985; Boyd, 2000; Willis et al., 2005) and comparisons can be difficult 

due to differing measurement techniques and confusion over what is actually being 

measured (e.g., skin/blubber interface temperature vs. surface temperature).  The three 

modeled variations in Ts with changing Ta were based on patterns observed in other 

studies or assumptions made in other thermal models (Worthy, 1985; Lavigne et al., 

1990; Ryg et al., 1993; Boily, 1995; Hansen and Lavigne, 1997a; Hind and Gurney, 

1997; Kvadsheim et al., 1997).  Skin temperature, which is regulated by the delivery of 

heat from the core to the surface, has been regarded as one of the most important 

physiological mechanisms by which endotherms regulate metabolic rate in cold water 

(Boyd, 2000).  Yet, patterns of Ts change with immersion are still poorly understood.  

Direct measurements of Ts can only increase of peripheral blood flow and the control of 

heat from the core to the surface.                       

Captive work with juvenile Steller sea lions suggests a Tlc in water between 2 and 

4 ºC for smaller sea lions having undergone reductions in total body mass (and 

potentially lipid mass).  However, when body mass was recovered, an inflection in the 

data was no longer evident (see Chapter II).  The range of experimental water 
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temperatures that were tested was constrained by how cold the chiller unit could keep 

the water given the mild ambient air conditions in Vancouver, British Columbia.  

Therefore, it was hard to say which of model predictions were more accurate.  In the 

original model, sensitivity analysis revealed that Ts in the water model was one of the 

most sensitive parameters to change with as little as a 1 ºC change in temperature 

influencing the heat production for thermoregulation by as much as 140% (Roscow, 

2001).  This reinforces for need for accurate skin temperature measurements over a 

range of ambient conditions in order to improve the predictive ability of the model.   

While predictions of Tlc in water seem to be sensitive to changes in Ts, estimates 

of Tlc in air showed little sensitivity to this parameter.  This was confirmed by results of 

the sensitivity analysis in the original model (Roscow, 2001).  However, model 

predictions of Tlc at 2 ºC for 100 kg sea lions may be too low.  Data from free-ranging 

juvenile Steller sea lions suggest that the Tlc in air may actually be around 4 ºC (see 

Chapter IV).  While this temperature was determined over a range of differing sized sea 

lions, the majority of sea lions were near 100 kg in size.  The high thermal losses 

predicted by the in-air model may be a function of the simulation of night time 

conditions and the absence of solar radiation.  Predicted output (at 2 times Kleiber) 

suggests that thermal heat losses remain high over a range of air temperatures that are 

likely well within the TNZ, and may even be approaching the upper critical temperature 

(Tuc).  This overestimation of the model to actual heat losses is a common feature of 

thermal models in marine mammals and has been attributed to errors in determining 
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surface area both in the body and body core and in the calculation of the distribution of 

blubber along the body surface (Kvadsheim et al., 1997).   

Thermal models can be a useful tool in examining how abiotic changes in the 

habitat of juvenile Steller sea lions influence the cost of thermoregulation, but the model 

is only as good as the quality of information used in its construction.  Understanding 

how pinnipeds change their thermal conductance through the regulation of skin 

temperature is probably one of the most important, and least understood, mechanisms for 

determining total heat loss across the body surface.  As more information becomes 

available, the model was designed such that changes in parameter inputs could easily be 

accomplished.  However, given the available physiological information on Steller sea 

lions, the thermal model appears to reasonably predict thermal costs in young animals.  

While the model was created specifically for Steller sea lions, it could easily be modified 

and tested for other pinniped species in which more experimental data may be available 

for experimental validation.    
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CHAPTER VI 
 

SUMMARY AND CONCLUSIONS 
 
 

 Maintaining thermoregulatory balance is critical for marine mammals, especially 

for pinnipeds that must maintain the ability to regulate body temperature over a variety 

of ambient temperatures and habitats as part of their natural life history.  The ability to 

maintain thermal balance, in spite of potentially greater heat losses in water, can affect 

submergence times, dive depth, and dive duration during foraging.  Young pinnipeds are 

especially vulnerable given their immature physiology and inexperience and the added 

energetic cost of needing to acquire new tissue for growth.  Given that juvenile life 

history stages are typically subject to enormous environmental (abiotic) and 

physiological pressures, it is expected that changes in the quality and/or quantity of prey 

resources may greatly impact survivability.  If a nutritional deficiency is occurring in 

juvenile Steller sea lions as hypothesized, then body condition, and subsequently 

thermoregulatory homeostasis, might be compromised beyond sustainable limits.   

 Body condition was shown to have a significant effect on thermoregulatory 

ability in Steller sea lions.  Sea lion body size, water temperature, and water velocity 

also influenced energetic expenditures.  Smaller sea lions were particularly affected as 

suggested by the shift in Tlc to colder temperatures (outside the range tested) when total 

body mass was recovered.  The present study was the first to examine how body 

condition influences thermoregulatory abilities in juvenile Steller sea lions.  This 

information is essential for understanding basic energetic requirements in this species 
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and for creating realistic bioenergetic models, which have previously assumed or 

ignored these types of relationships.   

While small changes in total body mass (0-6%) and hence, composition, had less 

of an impact on energetic expenditure than large changes in total body mass (10-15%), it 

is not clear how seasonal changes in body mass and metabolism would impact an 

animal’s ability to remain thermally neutral in water, and over what range of 

temperatures.  This is an area of research that warrants further investigation.  Results 

from the present study suggest that the Tlc for juvenile Steller sea lions in water is below 

2 ºC.  Expanding the range of water temperatures at the lower limit in juvenile Steller 

sea lions would be the next step in examining the thermal constraints on juvenile Steller 

sea lions which ultimately dictate how these animals operate in their environment.   

 One parameter that was not feasible to measure in the captive Steller sea lions 

was core body temperature.  Core body temperature in pinnipeds is indirectly inferred 

through either rectal temperature or stomach temperature, neither of which was feasible 

in this study due to logistical constraints.  Including these types of measurements in 

future studies would allow for discussions of whether or not the sea lion was thermally 

defending a smaller core at the colder water temperatures or if all heat losses were 

occurring peripherally.     

While this work fills a significant gap in our understanding of the thermal 

energetics in Steller sea lions, it is recognized that caution should be exercised when 

inferring results from captive animals to those in the wild.  In the present study, captive 

sea lions were considerably smaller (in total mass) and had thinner blubber layers than 
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similarly aged free-ranging Steller sea lions.  This largely was a function of early 

weaning experienced by captive sea lions and the fact these animals were long-term 

research subjects involved in diet manipulations.  In attempting to discuss the potential 

impacts of changing body condition on thermoregulation in wild Steller sea lions, the 

focus was kept to general processes and trends.  While application of studies with 

captive animals should be cautiously applied to their wild cohorts, it should be noted that 

the captive setting allowed for precisely controlled experimentation of metabolic 

responses to changing water temperature and water flow that would otherwise have been 

impossible to measure. 

Thermography was used to assess patterns of vasoconstriction in captive Steller 

sea lions after emergence from water by measuring surface temperature as a proxy for 

skin temperature.  Thermal images were also taken serially to assess patterns of warming 

in air and monitor development of thermal windows along the body trunk.  After 

emergence from the water, the fore and hind flippers tended to be the coldest regions of 

the body, suggesting peripheral constriction in these regions to maintain heat in the body 

trunk.  This trend was more pronounced in cold water temperatures and in smaller sea 

lions.  Once in air, sea lions quickly warmed and within 15 minutes some animals had 

developed thermal windows along the region of the shoulder and hips to allow for heat 

dissipation.  By 60 minutes, individual thermal windows had merged to cover large 

portions of the body at relatively high temperatures in some of the larger sea lions. 

This study allowed for inferences to be made about peripheral blood flow control 

for sea lions while in cold flowing water and provided a first look at patterns of surface 
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warming in air.  The time scale at which the thermal images were taken turned out to be 

too broad to assess individual thermal window development.  Examining the spatial 

development of thermal windows on the trunk of Steller sea lions at a finer temporal 

scale will allow for better interpretation of the physiological mechanism of heat 

dissipation in these animals.  Further work in this area is already planned for future 

studies in Vancouver.  

 The rate of heat flow to the environment is dependent on a number of factors, 

including activity.  Pinnipeds must compromise between remaining on land with lower 

thermal costs, resulting in a lack of opportunity to increase energy intake, or entering the 

water to forage, which allows for energy intake, but at the cost of increased energy 

expenditure for thermoregulation.  Heat generated during swimming and diving may 

actually offset some of these energetic costs for sea lions in water; however, decreased 

metabolic rates observed during diving may make the need for heat substitution less 

likely.  Understanding patterns of warming and the role of thermoregulation in sea lions 

post-dive might help elucidate whether such compromises occur during foraging. 

It is also unclear how changes in insulation affect thermal flow in pinnipeds.  In 

theory, decreased insulation would lead to increased heat flow, perhaps due to higher 

rates of flow at specific sites and the size of thermal windows.  Conversely, if heat flow 

is effectively mediated by circulatory adjustments (vasoconstriction), then substantial 

changes in lipid stores might occur before there was an observed effect on thermal heat 

loss.  This hypothesis is supported by suggestions that the hypodermal blubber layer of 
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otariids under normal conditions is greater than solely required for thermoregulatory 

considerations. 

While this study measured surface temperatures in captive sea lions that had 

recovered their body mass in the spring, planned future studies in Vancouver will utilize 

thermal imaging to assess the development of thermal windows in juvenile Steller sea 

lions under different seasonal and body condition states in order to better understand the 

physiological mechanisms of heat transfer in a species of concern and how these 

mechanisms are influenced by the nutritional and environmental fluctuations.  It is hoped 

that thermography will also be useful in measuring post-diving surface temperature in 

sea lions to see if thermal mechanisms during foraging/diving can be inferred.     

While previous studies were focused on how young Steller sea lions would 

physiologically respond to theoretical changes in their prey resources (assessed through 

changes in body condition), the study with free-ranging Steller sea lions was designed to 

see if evidence of such a nutritional impact could be detected in wild populations.  

Animals experiencing periods of fasting or undernutrition would be expected to limit 

energy expenditures, usually by lowering metabolic rate.  Current population trends of 

Steller sea lions in Alaska indicate that western populations are continuing to decline, 

while eastern populations are stable or increasing.  Resting metabolic rates of juvenile 

sea lions were compared across three geographical regions and results suggested no 

evidence of differing metabolic rates.  Ambient air temperature played a significant role 

in determining metabolic rate and estimations of Tlc were near 4 ºC.  While there is 

evidence of a shift in the TNZ of some pinnipeds with maturity, measurement of 
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metabolism over an incomplete range of ambient air temperatures prevented this from 

being analyzed.  Further metabolic studies over a larger range of ambient conditions and 

sizes of free-ranging Steller sea lions would help define how the Tlc changes with 

maturity or ontogeny. 

Results from the current study suggest that while short-term changes in body 

mass and body composition (as might be experienced due to nutritional stress) have the 

potential to significantly impact the thermoregulatory ability of captive juvenile Steller 

sea lions; still, evidence from free-ranging Steller sea lions showed no differences in 

energy expenditure at rest between juveniles in eastern and western regions.  This is 

consistent with recent studies which have failed to detect physiological and behavioral 

differences in eastern and western populations that would be consistent with the 

presence of nutritional stress in juvenile sea lions.  Contrary to predictions, pup masses, 

growth rates, and estimated body fat levels from the region of decline were greater than 

in stable pup populations (Merrick et al., 1995; Rea et al., 1998; Brandon, 2000; Rea et 

al., 2003).  Adult females were larger in the west and perinatal period and time spent 

nursing were also greater (Brandon, 2000; Milette and Trites, 2003).  Measures of blood 

metabolites (ketone bodies, blood urea nitrogen, and fatty acids) as indicators of 

nutritional stress indicate that a higher proportion of pups were engaging in short-term 

fasting in the western stock, however, given the larger and fatter animals in the west, this 

increased fasting was apparently not influencing body condition (Rivera et al., 2006).  

Lastly, no differences in thyroid levels were detected between sea lions from eastern and 

western regions (Myers et al., 2006).  Taken together, these studies provide a distinct 
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lack of evidence that nutritional stress may be influencing continued declines in western 

juvenile Steller sea lions.   Model results by Holmes and York (2003) suggest that while 

Steller sea lions declines in the early 1980s were associated with low juvenile 

survivorship, declines in the 1990s were attributed to low fecundity.   Combined with 

high levels of organochlorine contaminants, polychlorinated biphenyls, and diphenyl-

trichloroethane (which are known to influence reproduction in vertebrates) in the tissues 

of Steller sea lions (Lee et al., 1996; Beckmen et al., 2004), it seems that research efforts 

should be redirected to other life history stages (e.g., reproductive females).   

Significant ecosystem changes are occurring in the North Pacific.  Not only have 

Steller sea lions shown dramatic declines across the Bering Sea and Gulf of Alaska, but 

other marine mammals such as northern fur seals in the Pribilof Islands, harbor seals in 

western Alaska, and sea otters in the Aleutian Islands have also experienced population 

declines.  Population declines in this region have occurred across other taxonomic 

groups and include reductions in seabird (kittiwakes, least auklets, murres) numbers and 

fish assemblages.  Declines on this scale suggest a physical change in the ecosystem that 

likely cannot be pinpointed to one specific mechanism.  Rather declines are probably 

linked to complex climatic, oceanographic, and biological interactions.  While support 

for long-term research in this region is essential to understanding the interactions of 

these mechanisms this should be coupled with an understanding the physiological 

processes which dictate how a species deals with its changing environment.   

Recently, effort has shifted from trying to identify a single mechanism that 

explains the decline and the species’ subsequent failure to recover since receiving 
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protection under the US Endangered Species Act, to looking at the combined effects of 

several mechanisms, such as fishing, predation, competition, and ocean productivity 

(e.g., Cornick et al., 2006; Guénette et al., 2006; e.g., Trites et al., 2007).  These alternate 

hypotheses include the suggestion that large-scale fisheries in the Gulf of Alaska 

modified the ecosystem structure to the detriment of sea lions (e.g., Alverson, 1992), that 

sea lions have been predated on by transient killer whales, Orcinus orca (e.g., Springer 

et al., 2003; Williams et al., 2004a), that sea lions are unsuccessfully competing for 

resources with other species, and that shifts in ocean climate in the 1970’s have impacted 

primary production and thus the food web structure that sea lions depended on (e.g., 

Merrick et al., 1997; Anderson and Piatt, 1999; Benson and Trites, 2002; Trites et al., 

2007).  Modeling results suggest that ocean climate change (e.g., higher sea surface 

temperatures) in the Bering Sea ecosystem occurred in the late 1970’s and this may have 

caused bottom-up effects through several trophic levels which had the potential to affect 

the distribution of Steller sea lion prey (Guénette et al., 2006; Trites et al., 2007).  The 

effects of fishing and predation by killer whales appears to be secondary in determining 

sea lion abundance and likely contributed to declines once populations were already 

depressed (Cornick et al., 2006; Guénette et al., 2006).  Trites et al. (2007) maintain that 

support for the ocean climate hypothesis does not discount other hypotheses to explain 

the decline in Steller sea lions, such as the nutritional stress hypothesis.  Rather, they 

maintain that the ocean climate hypothesis provides a ‘holistic’ framework within which 

each of the alternate hypotheses can be explained.          
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Complex physiological systems lend themselves well to exercises in modeling, 

where it is often difficult to collect whole or partial components of the model in a natural 

setting.  Predictions from a thermal energetics model created for Steller sea lions based 

on the principles of thermodynamics were within the range of actual energetic 

expenditures for juvenile sea lions in water and in air.  The model tended to overestimate 

expenditures in flowing water, and this was attributed to uncertainty in how skin 

temperatures fluctuate with varying environmental conditions to regulate heat flux to the 

surface of the sea lion.  While a model is only as good as the reliability of information 

used to construct it, the model did allow for the manipulation of various limiting 

physiological and environmental variables that would otherwise be impossible to study. 

While the model was constructed specifically for Steller sea lions, it relies on 

basic thermal equations that are applicable to any pinniped and could easily be modified 

to examine similar questions on thermal constraints.  Additionally, the thermal model 

could serve as a component of a larger bioenergetics model for Steller sea lions since 

most pinniped models tend to ignore thermoregulation by assuming animals are within 

their TNZ.  Research with otariids has shown that this is not the case, and in fact many 

species are living near the lower limit of their TNZ.           

 This model is static in that it estimates thermal expenditures at a given point in 

time, and it might be interesting to develop a more dynamic model that changes with 

season, or development of the sea lion.  This could include seasonal changes in body 

composition and metabolism and how they might impinge thermoregulation during 

periods of undernutrition.  With ontogeny and an increase in size, sea lions gain greater 
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thermoregulatory tolerances and lower metabolic rates.  Body composition changes 

greatly at independence and this transitional period is likely a difficult period of thermal 

adjustment.  The addition of these types of parameters into the model might provide 

clues to important physiological milestones in the life history of juvenile Steller sea 

lions. 

 This is the first study to measure resting metabolism in free-ranging juvenile 

Steller sea lions, a basic physiological parameter which is essential to understanding how 

this species uses and stores energy.  Metabolic rate forms the basis for many energetic 

calculations and forms the foundation for discussions of thermoregulatory capabilities, 

locomotory costs, diving limitations, and prey consumption rates in marine mammals.  

This is also the first study to explore thermal constraints on Steller sea lions and how 

thermoregulatory capacity can change with changes in insulation.  Understanding the 

energetics and thermoregulatory capabilities of juvenile Steller sea lions is especially 

critical given precipitous population declines over past three decades which are thought 

to be attributed to changes in quantity and/or quality of prey availability.  Basic 

physiological measurements combined with the predictive power of modeling will allow 

for the exploration of the effects of environmental and physiological interactions on 

individual sea lions, thus pinpointing potential avenues that warrant further study.              
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