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ABSTRACT 

The Role of Protein-Membrane Interactions in Modulation of Signaling by Bacterial 

Chemoreceptors. (May 2007) 

Roger Russell Draheim, 

B.S.; B.S., University of Maine 

Chair of Advisory Committee: Dr. Michael D. Manson 

Environmental signals are sensed by membrane-spanning receptors that 

communicate with the cell interior. Bacterial chemoreceptors modulate the activity of 

the CheA kinase in response to binding of small ligands or upon interaction with 

substrate-bound periplasmic-binding proteins. The mechanism of signal transduction 

across the membrane is a displacement of the second transmembrane domain (TM2) a 

few angstroms toward the cytoplasm. This movement repositions a dynamic 

transmembrane helix relative to the plane of the cell membrane. The research presented 

in this dissertation investigated the contribution of TM2-membrane interactions to 

signaling by the aspartate chemoreceptor (Tar) of Escherichia coli. Aromatic residues 

that reside at the cytoplasmic polar-hydrophobic membrane interface (Trp-209 and Tyr-

210) were found to play a significant role in regulating signaling by Tar. These 

interactions were subsequently manipulated to modulate the signaling properties of Tar. 

The baseline signaling state was shown to be incrementally altered by repositioning the 

Trp-209/Tyr-210 pair. To our knowledge, this is the first example of harnessing 

membrane-protein interactions to modulate the signal output of a transmembrane 

receptor in a controlled and predictable manner. Potential long-term applications include 
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the use of analogous mutations to elucidate two-component signaling pathways, to 

engineer the signaling parameters of biosensors that incorporate chemoreceptors, and to 

predict the movement of dynamic transmembrane helices in silico. 
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CHAPTER I 

INTRODUCTION 

E. coli responds to a variety of environmental stimuli 

Escherichia coli is a rod-shaped, nonsporulating, Gram-negative bacterium. 

Individual cells are small, measuring approximately 1-2 µm in length and 0.1-0.5 µm in 

diameter, and as individual cells they cannot change their surroundings to a significant 

extent. Therefore, to remain viable, planktonic bacteria must respond to changing 

environmental conditions. Chemotaxis is one mechanism bacterial use to adapt to such 

changes (1). E. coli responds to a wide variety of chemical signals, including pH (2), 

redox potential (3, 4), and concentration gradients of amino acids (5), sugars (6), small 

peptides (7), and certain noxious organic compounds and divalent cations (2). 

E. coli cells possess five to seven flagella distributed over their cellular surface 

(8). Each flagellum is driven by an independent bidirectional rotary motor (9). 

Counterclockwise (CCW) rotation of these motors allows the flagellar filaments, which 

are lefthanded helices, to coalesce into a bundle at one end of the cell and propel it in a 

relatively linear run (10). CW rotation of at least one flagellum disrupts this bundle, 

resulting in an active reorientation in three-dimensional space known as a tumble (11) 

(Figure 1.1A). The greater the number of flagella that rotate CW, the more rapid and 

complete the reorientation. 

 
 
 
______________ 
This dissertation follows the style of Biochemistry. 
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In a homogeneous environment, E. coli performs a three-dimensional random 

walk in which smooth swims (runs) lasting several seconds alternate with tumbles 

(Figure 1.1B). As they swim, cells are constantly comparing their environment to one 

they experienced a few seconds earlier (12-14). This temporal comparison gives cells the 

information they need to increase the length of runs that happen to lead in a favorable 

direction, whether up an attractant gradient or down a repellent gradient. This selective 

biasing of the random walk generates net migration in gradients of chemoeffectors 

(Figure 1.1C). 

 

A phosphorelay couples detection of stimuli to changes in cellular behavior 
 
 A series of protein phosphorylations (phosphorelay) couples the detection of 

chemoeffectors to changes in the direction of flagellar rotation (Figure 1.2). Within E. 

coli, each of the four members of a family of homodimeric chemoreceptors detects a 

specific set of chemoeffectors. The receptors normally activate the histidine protein 

kinase CheA (15), which is coupled to the receptors via the adaptor protein CheW. 

Interaction of CheA dimers with the chemoreceptors causes a hundred-fold increase in 

the rate of autophosphorylation of a specific histidyl residue (16) within each monomer 

(15). The phosphoryl group is then transferred to an aspartyl residue within the response 

regulator CheY (16). Phospho-CheY binds to FliM in the flagellar motor to promote 

clockwise (CW) rotation of the flagella (17, 18). The relative activities of CheA and the 

CheY-P phosphatase CheZ establish the ratio of CheY to CheY-P within the cell, and 

hence control the frequency of tumbling (15, 19) (Figure 1.2A). 

2



 

Figure 1.1 Chemotaxis of E. coli in a gradient of chemoeffector. (A) 
Counterclockwise (CCW) rotation allows the flagella to coalesce at one end of cell and 
propel it in a relatively linear fashion. Clockwise (CW) rotation of one or more flagella 
results in a tumbling event that randomly reorients that cell in three-dimensional space. 
(B) In a homogeneous environment, cells perform a random walk composed of 
alternating runs and tumbles. (C) In the presence of an attractant, the probability of a 
tumbling event (CW) decreases during running events that lead in a favorable direction. 
This biases the random walk (B) to allow net migration toward higher concentrations of 
attractant (shaded portion of the arrow) or lower concentrations of repellent. 
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The conformational changes induced by an attractant stimulus convert a 

chemoreceptor from a hundred-fold stimulator of CheA activity into a five-fold inhibitor 

(20) (Figure 1.2B). The resulting drop in phospho-CheY, which is accelerated by CheZ, 

suppresses tumbling and lengthens runs toward higher concentrations of attractant. 

Repellents increase the intracellular level of phospho-CheY, thereby lengthening runs 

that lead away from higher concentrations of repellents. Changes in CheA activity are 

balanced by covalent methylation of the cognate receptor (21) (Figure 1.2C). Methyl 

groups are added by a methyltransferase, CheR, and removed by CheB, a methylesterase 

(22, 23). CheB is active when it is phosphorylated by CheA (24). Increased methylation 

of four specific glutamyl residues in the cytoplasmic domain of the chemoreceptor 

biases it toward CheA stimulation, whereas decreased methylation results in less CheA 

stimulation (25, 26).  

The antagonistic effects of attractant binding and covalent methylation are 

essential for chemotactic behavior. When cells are moving in gradients of 

chemoeffectors, constant adjustment of the extent of receptor methylation allows for a 

temporal comparison of the current environment to one from few seconds ago. In this 

manner, methylation serves as a rudimentary chemical “memory” (12, 13). In addition, 

at various constant concentrations of extracellular chemoeffector, the interplay between 

ligand occupancy and receptor methylation allows cells to maintain the same baseline 

level of CheA activity (27). Maintaining this optimal run/tumble bias provides enhanced 

sensitivity to chemoeffectors over a wide range of concentrations. 
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Figure 1.2. The chemotactic circuit underlying control of flagellar rotation. (A) In 
the absence of chemoeffectors, baseline CheA activity maintains phospho-CheY levels 
produce a random walk as depicted in Figure 1.1B. (B) Binding of attractant to the 
chemoreceptor abolishes CheA stimulation, thereby decreasing intracellular phospho-
CheY levels. This reduces the probability of a tumbling event and biases the random 
walk as depicted in Figure 1.1C. (C) Adaptive methylation restores the ability of the 
receptor to stimulate CheA activity when the receptor is occupied by an attractant ligand. 
These antagonistic activities allow the cell to compare the current environment to one 
from a few seconds earlier. 
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Chemoreceptors combine several allosteric inputs to generate a single output 

A chemoreceptor must process various allosteric inputs, such as ligand 

occupancy, covalent modification, protein-protein interactions, and protein-membrane 

interactions, into a single signal output (kinase modulation) (Figure 1.3A). The 

cytoplasmic signaling subdomain that interacts with CheW and the CheA kinase is a 

coiled-coil of two antiparallel helices. Within a homodimer, two coiled-coils form a 

four-helix bundle (28) (Figure 1.3B). The “frozen dynamic” model for modulation of 

CheA activity (29, 30) suggests that allosteric inputs change the supercoiling state of this 

four-helix bundle. In the “off” (attractant-bound) state, the receptor has more 

conformational freedom, whereas in the “on” (repellent-bound) state the four-helix 

bundle is less dynamic. The “on” state is hypothesized to stimulate CheA activity by 

allowing the four-helix bundle to spend more time in a conformation with high affinity 

for CheA and CheW (31). Each class of allosteric input is considered below within the 

context of the frozen dynamic model.  

 

Transmembrane signaling in response to chemoeffectors 

Tar functions as the aspartate and maltose chemoreceptor in E. coli (32). 

Aspartate or maltose coverts Tar from a stimulator of kinase activity to an inhibitor (20). 

Aspartate binds directly to Tar, but signaling in response to maltose requires maltose-

binding protein (MBP), which is a member of the bacterial periplasmic binding protein 

(bPBP) superfamily (33). Ligand-free MBP exists in equilibrium between the “open” 

and “closed” conformations (34). Maltose binding shifts the equilibrium toward the 
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Figure 1.3. Domain structure of homodimeric Tar. (A) A topological representation 
of the homodimeric E. coli Tar chemoreceptor. The periplasmic portion of the receptor 
consists of the ligand-binding domain that interacts with aspartate and ligand-bound 
maltose-binding protein (MBP). One aspartate binding site and one docking site for 
ligand-bound MBP are represented in green.  The cytoplasmic domain consists of the 
HAMP domain and the adaptation and signaling subdomains. The four sites of covalent 
modification within each monomer are depicted as yellow dots. (B) The adaptation and 
signaling subdomains of Tar are composed of a coiled-coil formed from contiguous 
antiparallel α helices connected by a U-turn within each monomer (28). Within a 
homodimer these coiled-coils form a four-helix bundle. The sites of covalent 
modification are depicted in yellow space-filling models. The frozen dynamic model 
(29) suggests that allosteric effectors modulate the conformational dynamics of the four-
helix bundle within the signaling subdomain. Reduced conformational dynamics results 
in a greater percentage of time spent in conformations that interact with CheA and 
CheW with high affinity. 
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“closed” conformation, in which it interacts with the apical loops of the periplasmic 

domain of Tar (35-37). Tar is unusual because the periplasmic domain interacts both 

with small ligands such as aspartate and with a ligand-bound binding protein. The 

transmembrane conformational change triggered by these interactions is well-

characterized (38-44) and currently serves as the paradigm for other chemoreceptors, 

and potentially also for numerous members of the homodimeric sensor histidine kinase 

superfamily (45). Tar also mediates repellent responses to divalent cations (Ni2+
 and 

Co2+) (2), although the binding sites and the signaling mechanisms are not understood. 

The crystal structures of the periplasmic domains of Tar from Salmonella 

enterica serovar Typhimurium (35, 46) and E. coli (47) show that each monomeric unit 

of the functional homodimer (48, 49) consists of four antiparallel α helices that form a 

quasi four-helix bundle (Figure 1.4A). Studies of sulfhydryl reactivity demonstrate that 

the transmembrane regions (TM1 and TM2) flanking the periplasmic domain of Tar are 

extensions of the periplasmic helices H1 and H4 (50-55) (Figure 1.4B). Aspartate binds 

at either of two rotationally symmetric sites at the dimer interface, each of which 

contains residues from H1 and H4 of one subunit and H1’ of the opposing subunit (46). 

E. coli Tar exhibits “half-of-sites” binding such that, under physiological conditions, 

only one molecule of aspartate associates with a given dimer (56). Aspartate binding 

generates a downward vertical displacement of a few angstroms in one H4-TM2 helix 

relative to its H1-TM1 helix partner (38, 40-44) (Figure 1.4B). Trg, another E. coli 

chemoreceptor that interacts with ligand-bound ribose-binding protein (RBP) and 

glucose/galactose-binding protein (GGBP), seems to share a similar mechanism of 
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Figure 1.4. Structure of the periplasmic domain of Tar. (A) Three-dimensional 
structure of the ligand-bound conformation of homodimeric S. typhimurium  Tar (35, 
46). A single aspartate molecule is represented as a green spacefilling model. (B) 
Schematic representation of the periplasmic and transmembrane (TM) domains of the E. 
coli Tar chemoreceptor. TM1 and TM2 are represented as light and dark shaded areas, 
respectively. Upon binding aspartate, TM2 of one monomer (54, 55) is proposed to be 
displaced toward the cytoplasm, thereby repositioning TM2 relative to the phospholipid 
bilayer. The extent of TM2 shown is based on sulfhydryl-reactivity studies with 5-IAF 
and S. typhimurium Tar (42). The locations of the Trp-192, Trp-209, and Tyr-210 
residues, which are predicted to reside at the polar-hydrophobic interfacial regions of the 
cytoplasmic membrane, are emphasized. 
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transmembrane signaling when ligand-bound bPBPs interact with it (39). In both cases, 

this “piston” movement repositions TM2 relative to the plane of the cell membrane, 

thereby conveying the presence of attractants to the interior of the cell.  

 

Two models for signal processing by the HAMP domain 

 The HAMP domain functions as a linker between the periplasmic and 

cytoplasmic domains of Tar. It physically connects TM2 to the adaptation subdomain 

(Figure 1.3A). It somehow converts vertical displacements of TM2 (38, 40-44) into 

changes in the helical supercoiling of the adaptation and signaling subdomains (28-30, 

57). The HAMP domain consists of two amphipathic helices (AS1 and AS2) connected 

by a short flexible linker (58-60). Binding of attractants to the periplasmic domain of Tar 

is predicted to increase conformational dynamism in the signaling subdomain, resulting 

in decreased kinase stimulation (29). Currently, two possible mechanisms for conversion 

of a piston-type displacement into altered supercoiling have been proposed (60, 61). 

The first model proposes a major transition from one conformation of the HAMP 

domain to another (Figure 1.5A). In the absence of attractant, the HAMP domain might 

reduce the conformational dynamics of the adaptation and signaling subdomains by 

forming an AS2-AS2’ coiled-coil domain, as suggested by sulfhydryl-reactivity studies 

(58). The “helix interaction model” proposes that AS1 lies parallel to the membrane 

(60). The plausibility of this idea is supported by a recent survey of high-resolution 

structures of integral membrane proteins (62). Interaction with attractants, by displacing 

TM2 toward the cytoplasm, could decrease AS1-membrane interactions. Instead of TM2 
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Figure 1.5. Two models for function of the HAMP domain. (A) The “helix 
interaction” model (60) suggests that aspartate binding displaces TM2 and produces a 
localized membrane deformation because of the affinity of the amphipathic aromatic 
residues (red boxes) for the polar-hydrophobic interfaces. Note that only one TM2 is 
displaced, to account for the asymmetric attractant-induced signaling (54, 55). This 
distortion would decrease the affinity of AS1 for the membrane and produce another 
interaction surface for AS2 or AS2’. A decrease (right side) in AS2-AS2’ interactions 
diminishes supercoiling (increased spacing between AS2 and AS2’) of the adaptation 
and signaling subdomains shifting the equilibrium toward “off” (to the right). 
Presumably, repellents displace TM2 toward the periplasm, which should increase AS1-
membrane affinity and promote AS2-AS2’ interactions (decreased AS2-AS2’ spacing), 
shifting the equilibrium toward the “on” state (to the left). (B) Based on the solution 
structure of a HAMP domain, the other model (61) suggests that no large-scale changes 
in helical pairing occur. Changes in the supercoiling of the adaptation and signaling 
subdomains are mediated by interhelical rotation between AS2 and AS2’. This model 
requires no TM2 displacement relative to the membrane or interactions of the HAMP 
domain with the inner leaflet of the membrane. 
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being displaced out of the plane of the membrane into aqueous solution, which would be 

energetically unfavorable, it is possible that the displacement results in a localized 

membrane deformation due to affinity of the amphipathic aromatic residues for the 

polar-hydrophobic interfacial regions (63, 64). This localized distortion could reduce the 

affinity of AS1 for the membrane surface. Freeing AS1 from the membrane would, in 

turn, create another hydrophobic interaction surface for AS2, thereby shifting the 

equilibrium away from the stabilizing AS2-AS2’ coiled-coil. 

 The second model is based on a solution structure of a purified 

hyperthermophilic HAMP domain (61) that suggests a 26º helical rotation of α helices 

within a parallel coiled-coil is responsible for generating changes in supercoiling of the 

signaling subdomain (Figure 1.5B). This model implies that vertical displacement of 

TM2 relative to the membrane is not essential for signal transduction by the HAMP 

domain. The conditions required to generate the structural information may limit its 

generality. First, potential interactions with the membrane are absent because solution 

NMR was used to generate the structural data. Secondly, the HAMP domain used was 

atypical because it came from an archaeal receptor that contained no other cytoplasmic 

subdomains. Critical examination of potential HAMP-membrane interactions could be 

used to differentiate between these possibilities and will be discussed in Chapter IV. It 

remains an interesting possibility that the structure determined represents one particular 

conformation of all HAMP domains, perhaps in the “off” state. 
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Methylation modulates the conformational dynamics of the adaptation subdomain   

Following the HAMP linker, the remainder of the cytoplasmic domain forms an 

extended four-helix bundle consisting of antiparallel alpha helices from each monomer 

(Figure 1.3). The membrane-proximal portion of the adaptation subdomain is an 

extension of AS2 from the HAMP domain, whereas the membrane-distal portion forms a 

topologically contiguous four-helix bundle with the signaling subdomain (28, 65) 

(Figure 1.3B). Four glutamyl residues within each monomer are subject to covalent 

modification by the CheR methyltransferase (22). In vitro analyses in which the negative 

charges of these residues were neutralized, corresponding to methylation, reduced 

electrostatic repulsion between the two subunits of a homodimer and increased kinase 

stimulation. These results support the frozen dynamic model because the adaptation 

subdomain is a direct extension of the signaling subdomain. Reduced electrostatic 

repulsion would be expected to reduce the conformational dynamics of the signaling 

subdomain (66, 67). 

 

Higher-order interactions with other chemoreceptors promote signal integration 

Ligand occupancy and covalent modification are predicted to alter the 

conformational dynamics of signaling subdomains within individual homodimeric 

chemoreceptors as described above. However, under most conditions, E. coli cells will 

encounter multiple external stimuli. To determine an appropriate behavioral response, 

the signals sensed by different chemoreceptors must be processed into an integrated 

output. 
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The fundamental level of organization responsible for signal processing and 

integration is a trimer of chemoreceptor dimers (28). In this structure, three 

chemoreceptor homodimers interact within their membrane-distal signaling subdomains. 

These trimers of dimers can be composed of different homodimeric chemoreceptors (68-

71), an arrangement that enhances the processing of multiple detection events. These 

interactions are also likely to account for the exquisite sensitivity of the chemosensing 

machinery (14) and the positive cooperativity observed during titration of kinase-

stimulating activity with attractants (25, 26, 43, 71-73).  

A final level of spatial organization is required for proper signal processing. 

Repeating receptor-CheA-CheW complexes are believed to form large patches 

containing thousands of receptors that are localized to the poles of the cell (74-76). The 

remaining chemotaxis proteins also localize to these patches via interaction with the 

receptor (CheR and CheB) or interaction with CheA (CheB, CheY, and CheZ) (77). 

Therefore, the efficient processing of various allosteric inputs into a single decision by 

the cell requires multiple levels of organizational hierarchy, ranging from the formation 

of individual chemoreceptor dimers to large-scale cellular localization of chemosensory 

patches. 

 

The role of protein-membrane interactions during transmembrane signaling 

 Any membrane-spanning receptor that detects extracellular stimuli must 

transduce that information to the interior of the cell. As discussed earlier, the mechanism 

of signal transduction across the cellular membrane involves displacement of TM2 a few 
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angstroms toward the cytoplasm (38-44). This displacement repositions a dynamic 

transmembrane helix relative to the plane of lipid bilayer, thereby constituting another 

class of allosteric effectors that must be examined. 

 Phospholipid bilayers consist of polar, hydrophilic regions that flank a central 

nonpolar, hydrophobic core. The acyl chains that form the hydrophobic core account for 

approximately half the total bilayer thickness. The remainder is composed of the two 

flanking polar regions that contain the hydrophilic phosopholipid headgroups (78). To 

minimize energetically unfavorable protein-membrane interactions, certain amino acyl 

residues are usually located at different positions within a membrane-spanning α helix. 

Comparison of three-dimensional structures of integral membrane proteins and sequence 

analysis of predicted transmembrane α helices suggest a common motif in which a 

central core of aliphatic residues is flanked by amphipathic aromatic residues at the 

polar-hydrophobic interface and charged residues at the membrane-water interface (79). 

The primary sequence of TM2 of E. coli Tar conforms to this motif (42) (Figure 1.4).  

Several lines of evidence demonstrate that amphipathic aromatic residues in 

transmembrane helices are significant determinants in governing how a transmembrane 

helix interacts with the membrane. A glycosylation-site mapping technique (80) 

implicated Trp residues in determining the vertical position of a synthetic poly-Leu 

transmembrane α helix oriented roughly perpendicular to the membrane. Shifting the 

location of Trp residues within the peptide repositioned the α helix to allow Trp to reside 

within the interfacial zone (63). In addition, synthetic peptides consisting of an Ala-Leu 

core of different lengths flanked by Trp (WALP peptides) (81) interact in a characteristic 
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manner with phospholipid bilayers. The flanking Trp residues exhibit a very strong 

tendency to remain within the interfacial region regardless of the length of hydrophobic 

mismatch (64). Hydrophobic mismatch occurs when the length of the aliphathic residues 

within a transmembrane helix is different than the thickness of the hydrophobic core of 

the lipid bilayer it passes through. Previously, hydrophobic mismatch was thought to be 

the dominant element in determining how transmembrane helices interact with their lipid 

environment. This result demonstrates that Trp residues play a more significant role in 

positioning α helices within a membrane. 

 

Dissertation overview 

The research presented within this dissertation investigates the role of receptor-

membrane interactions, specifically the contribution of Trp residues flanking TM2, in 

maintaining the baseline signaling state of E. coli Tar. The study presented in Chapter II 

thoroughly examined the contribution of these residues. The presence of Trp-209 was 

found to be essential, whereas substitution of Trp-192 did not significantly alter the 

signaling state of Tar. Substitution of Ala for Trp-209 abolished in vitro kinase 

stimulation and severely biased the baseline signaling output toward the ligand-bound 

conformation in vivo. Tyr-210 was found to play an auxiliary role in maintenance of 

signal output. 

Chapter III demonstrates that the interactions between TM2 and the membrane 

can be harnessed to modulate the signaling state of E. coli Tar. The baseline signaling 

state of Tar was incrementally altered by repositioning the Trp-209/Tyr-210 pair about 
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their original position. Moving these residues is predicted to reposition TM2 within the 

membrane to modulate signaling output. To my knowledge, this is the first published 

example (44) of harnessing membrane-protein interactions to modulate the signal output 

of a transmembrane receptor predictably and incrementally. 

Potential future extensions of this research are discussed in Chapter IV. These 

include identification of HAMP-membrane interactions to differentiate between the 

proposed mechanisms for signal propagation and the use of analogous mutations in the 

sensors of the two-component signaling pathways that are ubiquitous in prokaryotes. 
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CHAPTER II 

TRYPTOPHAN RESIDUES FLANKING THE SECOND TRANSMEMBRANE 

DOMAIN (TM2) SET THE SIGNALING STATE OF THE TAR 

CHEMORECEPTOR* 

Overview 

 This chapter is a published work (43). It assesses the contribution of the 

tryptophan residues flanking the second transmembrane domain (TM2) to maintenance 

of the basal signaling state of the aspartate chemoreceptor (Tar) of Escherichia coli. I 

conceived and conducted the majority of the experimentation described within this 

chapter. Dr. Arjan F. Bormans established the protocol for determining the extent of 

methylation in vivo and performed the experiments described in Figures 2.2 and 2.3. Dr. 

Run-zhi Lai and I worked together to establish the protocol and purify the proteins 

necessary for the receptor-coupled in vitro phosphorylation assay used in Figure 2.1 and 

Tables 2.2 and 2.4.     

 

Summary 

The chemoreceptors of Escherichia coli are homodimeric membrane proteins 

that cluster in patches near the cell poles. They convert environmental stimuli into 

intracellular signals that  control flagellar rotation.  The  functional domains of a receptor 

_____________ 
*Reproduced with permission from “Tryptophan residues flanking the second 
transmembrane domain (TM2) set the signaling state of the Tar chemoreceptor” by 
Draheim, R. R., Bormans, A. F., Lai, R.-Z., and Manson, M. D., 2005, Biochemistry 44, 
1268-77. Copyright 2005 American Chemical Society. 
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are physically separated by the cell membrane. Chemoeffectors bind to the extracellular 

(periplasmic) domain, and the cytoplasmic domain mediates signaling and adaptation. 

These two domains communicate through the second transmembrane helix (TM2) that 

connects them. In the high-abundance receptors Tar and Tsr, TM2 is flanked by 

tryptophan residues, which should localize preferentially to the interfacial zone between 

the polar and hydrophobic layers of the phospholipid bilayer. To investigate the 

functional significance of the Trp residues that flank TM2 of Tar, we used site-directed 

mutagenesis to generate the W192A and W209A substitutions. The W192A protein 

retains full activity in vivo and in vitro, but it increases the Ki for aspartate in the in vitro 

assay 3-fold. The W209A replacement eliminates receptor-mediated stimulation of 

CheA in vitro, and it leads to an increased level of  adaptive methylation  in  vivo.  This 

W209A substitution may cause the C-terminus of TM2 to protrude farther into the 

cytoplasm, these results reinforce the hypothesis that aspartate binding causes a similar 

displacement. Moving Trp to each position from residue 206 to residue 212 generated a 

wide variety of Tar signaling states that are generally consistent with the predictions of 

the piston model of transmembrane signaling. None of these receptors was completely 

locked in one signaling mode, although most showed pronounced signaling biases. Our 

findings suggest that the Trp residues flanking TM2, especially Trp-209, are important 

in setting the baseline activity and ligand sensitivity of the Tar receptor. We also 

conclude that the Tyr-210 residue plays at least an auxiliary role in this control. 
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Introduction 

Escherichia coli performs chemotactic migrations in response to a wide variety 

of environmental stimuli, including changes in pH (2), temperature (82), redox potential 

(3, 4), amino acids (5), sugars (6), small peptides (7), and certain noxious organic 

compounds and divalent cations (2). Cells swim up gradients of attractant stimuli and 

down gradients of repellent ones. To do so, cells bias a three-dimensional random walk 

of alternating smooth swims (runs) and reorienting tumbles by selectively lengthening 

runs in the favorable direction (12-14). 

The signal transduction pathway that directs the biased random walk controls the 

direction of flagellar rotation. Each of the five members of a family of homodimeric 

chemoreceptors detects a specific set of stimuli. These receptors normally activate the 

histidine protein kinase CheA (15), which is coupled to the receptors via the adapter 

protein CheW. CheA autophosphorylates, and the phosphoryl group is then transferred 

to the response regulator CheY (16). CheY-P binds to FliM in the flagellar motor to 

promote clockwise (CW) rotation of the flagella (17, 18). Counterclockwise (CCW) 

motor rotation allows the flagellar filaments, which are left-handed helices, to coalesce 

into a bundle that propels the cell in a run (10). CW rotation of one or more flagella 

disrupts the bundle and generates a tumble (11). The relative activities of CheA and the 

CheY-P phosphatase, CheZ, establish the ratio of CheY to CheY-P within the cell, and 

hence the frequency of tumbling (15, 19). 

The conformational changes induced by an attractant stimulus convert a receptor 

from a stimulator of CheA activity into an inhibitor (20). The resulting drop in CheY-P, 
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which is accelerated by CheZ, suppresses tumbling and lengthens the average run. 

Inhibition of CheA activity is reversed by covalent methylation of the cognate receptor 

(21). Methylation is also facilitated by a transient decrease in the level of the active, 

phosphorylated form of the CheB methylesterase (24), which is another substrate for 

phosphotransfer from CheA (16). 

Tar functions as the aspartate chemoreceptor in E. coli (32). The crystal 

structures of the periplasmic ligand-binding domains of Tar from Salmonella enterica 

serovar Typhimurium (35, 46) and E. coli (47) show that each monomeric unit of the 

functional homodimer (48, 49) consists of four antiparallel α helices that form a quasi 

four-helix bundle. Sulfhydryl reactivity experiments (50-53) demonstrate that the 

transmembrane regions (TM1 and TM2) flanking the periplasmic domain are extensions 

of the periplasmic helices H1 and H4. Aspartate binds at either of two rotationally 

symmetrical sites at the dimer interface, each of which contains residues from H1 of one 

subunit and H4 of the opposing subunit. E. coli Tar exhibits half-of-sites binding such 

that, under most conditions, only one molecule at a time of aspartate associates with a 

given dimer (56). Aspartate binding is proposed to generate a downward vertical 

displacement of a few angstroms in one H4-TM2 helix relative to its H1-TM1 helix 

partner (38, 40-44). This movement should also reposition TM2 relative to the plane of 

the cell membrane. Tryptophan residues in transmembrane helices localize preferentially 

to the interfacial regions of phospholipid bilayers (83). A glycosylation-site mapping 

technique (80) implicated Trp residues in determining the vertical position of a synthetic 

poly-Leu transmembrane helix oriented roughly perpendicular to the membrane. Shifting 
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the location of Trp residues within the peptide repositioned the helix to allow Trp to 

reside within the interfacial zone (63). Also, synthetic peptides consisting of an Ala-Leu 

core of different lengths flanked by Trp (WALP peptides) interact in a characteristic 

manner with phospholipid bilayers (81). The flanking Trp residues exhibit a strong 

tendency to remain within the interfacial region regardless of the length of hydrophobic 

mismatch (64), indicating that they are significant determinants in governing how a 

transmembrane helix interacts with the membrane. 

TM2 of E. coli Tar consists of a largely aliphatic core of sixteen residues 

bounded by a Trp residue at each end. It thus resembles a WALP peptide. This striking 

similarity prompted us to examine whether these Trp residues modulate the signaling 

state of Tar. We report here the effects of the residue substitutions W192A and W209A 

on the function of Tar in vivo and in vitro. We then describe the results obtained when 

Trp was moved from position 209 to each of positions 206 through 212. Our findings 

emphasize the crucial role of Trp-209 in regulating the activity of the Tar receptor. By 

extension, they suggest that the aromatic residues that are conserved in many 

homodimeric chemoreceptors and transmembrane sensor kinases may play a similarly 

important role. Finally, we propose that our results support a piston model for 

transmembrane signaling by this entire set of bacterial proteins. 
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Materials and methods 

Bacterial strains and plasmids  

Strain RP3098 (84) is a ∆(flhD-flhB)4 derivative of the E. coli K-12 strain RP437 

(85). Strain VB13 (86) is a thr+ eda+ ∆tsr7201 trg::Tn10 ∆tar-tap5201 version of 

RP437. Plasmid pRD100 was created by cloning the PCR-amplified tar gene from 

plasmid pMK113 (87) into pBAD18 (88), using flanking EcoRI and HindIII restriction 

sites. Plasmid pRD200 was made by adding an in-frame coding sequence to the 3′ end of 

tar. This sequence encodes a seven-residue linker (GGSSAAG) (89) and a C-terminal 

V5 epitope tag (GKPIPNPLLGLDST) (90). The BamHI site in the tar promoter region 

of pMK113 was also removed to restore the wild-type sequence. Plasmid pRD300 is 

identical to pRD100 except for the addition of the in-frame coding sequence for the 

seven-residue linker and C-terminal V5 tag. Mutations were introduced into tar in these 

plasmids using standard site-directed mutagenesis techniques (Stratagene). 

 

Observation of swimming cells 

Cells were inoculated from a single colony on Luria Broth agar (91) containing 

50 µg/mL ampicillin into 25 mL of tryptone broth (91) supplemented with 50 µg/mL 

ampicillin. Cultures were swirled at 32 °C until they reached an optical density at 600nm 

of ~0.7, at which time a large majority of cells were highly motile. Cells were diluted 

1:50 into tethering buffer [10 mM potassium phosphate (pH 7.0), 100 mM NaCl, 10 µM 

EDTA, 20 µM L-methionine, 20 mM sodium lactate, 20 µg/mL chloramphenicol] and 

observed at 1000× magnification under phase contrast using an oil immersion 100× 
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objective and Olympus BH-2 microscope. Ten separate fields, each traversed by five to 

ten cells during the approximately 30 s observation period, were analyzed for each 

strain. A subjective assessment was made of whether individual cells were running and 

tumbling (R cells), smooth swimming (S cells), or primarily tumbling (T cells). 

 

Observation of tethered cells  

Cultures were grown as described above and harvested by centrifugation after the 

addition of chloramphenicol to a final concentration of 30 µg/mL to prevent regrowth of 

flagella after shearing. Cells were resuspended in 25 mL of tethering buffer containing 

30 µg/mL chloramphenicol and exposed to six 10-s intervals of agitation at high speed in 

a 50 mL stainless steel cup of a Waring blender. Bouts of blending were separated by 15 

s to allow cooling. Cells were then pelleted by centrifugation and resuspended in 5 mL 

of tethering buffer containing chloramphenicol. These cells were kept on ice until 

needed, when 20 µL of cell suspension was mixed with 20 µL of a 200-fold dilution of 

anti-flagellar filament antibody. This entire volume was loaded within a peripheral ring 

of Apiezon-L grease on a 12 mm diameter round coverslip. After incubation for 20 min 

at room temperature, coverslips were affixed to a flow chamber (92), and nontethered 

cells were removed by passing several milliliters of tethering buffer through the 

chamber. Cells were observed at 1000× magnification, as described above. Enough 

fields were videotaped for ~1 min apiece to ensure that at least 30 freely rotating cells 

could be analyzed for each strain. Rotational behavior was assessed during video 

playback. Cells were divided into three categories: cells that turned their flagella only 
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CCW, cells that exhibited only a few, brief reversals to CW flagellar rotation, and cells 

that reversed often and/or rotated for extended intervals both CCW and CW. 

 

Chemotaxis swarm assays  

Swarm assays were run as described (89), with minor modifications. Briefly, 

semisolid agar contained 0.325 g/L Difco BactoAgar in motility medium [10 mM 

potassium phosphate (pH 7.0), 1 mM (NH4)2SO4, 1 mM MgSO4, 1 mM MgCl2, 1 mM 

glycerol, 90 mM NaCl] supplemented with 20 µg/mL L-threonine, L-histidine, L-

methionine, and L-leucine and 1 µg/mL thiamine. Ampicillin was present at 25 µg/mL. 

Aspartate and maltose were added to a final concentration of 100 µM. Swarm plates 

were incubated at 30 °C. Once visible swarm rings formed, their diameter was measured 

every 2 h, and the rate of ring expansion was expressed in mm/h. 

 

Protein preparation  

We employed the protocol of Gegner et al. (93), with minor modifications. Strain 

RP3098 containing pRD100 or one of its derivatives was used for production of 

receptor-containing membranes. Tar expression was induced by addition of L-arabinose 

to a final concentration of 0.2% (w/v). CheY was purified using the method described by 

Hess et al. (94). 
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Receptor-linked CheA kinase assay 

We employed a slightly modified version of the receptor-coupled 

phosphorylation assay described by Borkovich and Simon (95). Tar containing 

membranes (20 pmol of Tar) and CheY (500 pmol) were added to CheA (5 pmol) and 

CheW (20 pmol), which were incubated overnight on ice in a total volume of 9 µL of 

fresh phosphorylation buffer [50 mM Tris-HCl, 50 mM KCl, 5 mM MgCl2, 2 mM DTT 

(pH 7.5)]. Aspartate was added to the desired final concentration while the same total 

volume was maintained. This mixture was then held at room temperature for 4 h. The 

reaction was initiated by addition of 1 µL of [γ-32P]-ATP (3000 Ci/mmol NEN# 

BLU502A) diluted 1:1 with 10 mM unlabeled ATP. Reactions were terminated by 

adding 40 µL of 2X SDS-PAGE loading buffer containing 25 mM EDTA. Production of 

CheY-32P was determined to be linear through 20 s and to be proportional to the amount 

of receptor present over a range from 5 to 40 pmol (data not shown). Ultimately, we 

used 20 pmol in each reaction because this concentration is in the middle of the linear 

range, allowing us to measure increases or decreases in production of CheY-P 

accurately. Analysis of the aspartate-induced titration curves was performed according to 

a previously described method (25), using KaleidaGraph v3.6 software and the Hill 

equation to determine the cooperativity of inhibition by aspartate. We calculated the 

concentration of free aspartate by performing a series of iterations in which we used the 

uncorrected aspartate values to determine an approximate Ki, which was then used to 

determine free aspartate (total minus bound) to calculate a new Ki. We performed 

consecutive iterations until no change in Ki or the Hill coefficient was observed. The 
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uncertainties in the estimates of the Ki and Hill coefficients represent the standard 

deviation of the mean, with n ≥ 3. 

 

Determination of the methylation state of receptors in vivo 

We adapted our methylation assay from Weerasuriya et al. (86). To determine 

levels of receptor methylation, VB13 cells harboring plasmid pRD200 or one of its 

mutant derivatives were grown to an OD590nm of 0.6 in 10 mL of tryptone broth (91). 

Cells were harvested by centrifugation and washed three times with 10 mM potassium 

phosphate, 0.1 mM EDTA (pH 7.0) and finally resuspended in 5 mL of 10 mM 

potassium phosphate (pH 7.0), 10 mM sodium lactate, and 200 µg/mL chloramphenicol. 

One-milliliter aliquots of cells were transferred to 10-mL scintillation vials and 

incubated with shaking for 10 min at 32 °C. Following addition of L-methionine to 2 

µM, cells were incubated for an additional 30 min. In some samples, aspartate or NiSO4 

was added to 100 mM and 10 mM, respectively, and the cells were incubated for an 

additional 20 min. Control reactions received an equal volume of buffer. Reactions were 

terminated by addition of 100 µL of ice-cold 100% TCA and then incubated on ice for 

15 min. Proteins were pelleted by centrifugation at 13000g and subsequently washed 

with 1% TCA and acetone. The proteins were resuspended in 200 µL of 2X SDS-

loading buffer. A 10-µL aliquot of each sample was loaded into a 7.5% SDS gel. 

Following electrophoresis, the proteins were transferred to nitrocellulose and subjected 

to immunoblotting and visual detection by antibody against the V5 epitope (Invitrogen), 
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using goat anti-mouse conjugated with alkaline phosphatase (Bio-Rad) as the secondary 

antibody. 

 

Results 

Substitution of Trp residues flanking TM2 with Ala  

The position of TM2 of Tar relative to TM1 is a crucial factor in transmembrane 

signal transduction (38-44). Inspired by the demonstrated role of Trp residues in 

positioning transmembrane helices, we decided to assess the role of the Trp-192 and 

Trp-209 residues that flank TM2 in modulating the signaling state of the receptor (Figure 

1.4B). We generated mutant versions of Tar containing the W192A or W209A 

substitution as well as the W192A-W209A (WAWA) double substitution. We chose Ala 

as the replacement residue because it removes the amphipathic character of Trp, does not 

introduce charge or polar character, and minimizes the probability of introducing steric 

hindrance or helix disruption. We made these changes in plasmid pRD200, which 

expresses fully functional Tar with a C-terminal V5 epitope tag (see below). 

 

Chemotactic behavior of cells expressing Trp-substituted receptors 

We expressed both wild-type and mutant Tar proteins in the transducer-depleted 

(∆T) strain VB13, which retains the redox receptor Aer. The chemotactic behavior of 

these cells was tested in aspartate, maltose, and glycerol motility agar, the last of which 

allows an assessment of aerotaxis in the absence of any specific Tar chemoeffector. 

Substitution of Trp-192 with Ala decreased the rate of swarm-ring expansion in aspartate 
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and maltose motility agar to 85% of the wild-type rate, a statistically insignificant 

difference (Table 2.1). In contrast, substitution of Trp-209 with Ala decreased the rate of 

ring migration to 45% and 60% of the wild-type rate in aspartate and maltose semisolid 

agar, respectively. When both Trp-192 and Trp-209 were substituted with Ala, 

intermediate expansion rates of 60% and 70% of the wild-type rate were observed. All 

mutants formed aerotaxis rings in agar containing only glycerol, with swarms expanding 

at 85%, 70%, and 80% of the wild-type rate for the W192A, W209A, and WAWA 

mutants, respectively.  

The swarms made by cells expressing either W209A or WAWA Tar formed 

significantly sharper rings on aspartate plates (data not shown). This result suggests that 

these cells may respond differently to the aspartate gradient produced by the expanding 

colony. 

 

Stimulation of CheA activity by Trp-substituted receptors in vitro 

Any inherent changes in the ability of the mutant receptors to stimulate CheA 

activity or to alter their activity in response to aspartate could be partially masked by 

adaptive methylation. Performing in vitro assays using purified components in the 

absence of CheR and CheB avoids this complication. We therefore isolated inner-

membrane vesicles from cells in which wild-type or mutant Tar proteins were expressed 

at high levels from an arabinose-inducible, plasmid-borne tar gene in strain RP3098, 

which lacks all flagellar, motility, and chemotaxis proteins. These membranes were then 

used in an in vitro assay for receptor-coupled CheA kinase activity (95). In these 
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 Table 2.1: Swarm behavior of cells harboring the Trp-to-
Ala Tar proteins. 

Swarm expansion ratesa

Receptor Aspartate Maltose  Glycerol 

WT 1.72 ± 0.14 0.87 ± 0.04 0.55 ± 0.04 
W192A 1.49 ± 0.11 0.71 ± 0.10 0.46 ± 0.05 
W209A 0.67 ± 0.00 0.50 ± 0.03 0.38 ± 0.01 
WAWA 0.48 ± 0.07 0.57 ± 0.09 0.43 ± 0.03 

a The rate at which the swarm diameter increased was 
measured in mm/hr, as described in  Materials and Methods.  
The error represents the standard deviation of three 
independent assays. 
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membranes, all of the Tar present is in the unmodified state in which the protein is 

originally translated. The four sites of covalent methylation are correspondingly 

occupied by two Gln residues and two Glu residues (the QEQE form of the receptor). 

Tar constituted between 50% and 65% of the total protein in membrane preparations for 

the wild-type and mutant receptors (data not shown). Thus, all of the mutant proteins are 

reasonably stable. 

Receptor/CheA/CheW complexes containing wild-type Tar produced produced 

44 ± 1 pmol of CheY-P in 20 s (Table 2.2). Complexes containing the W192A mutant 

Tar produced 44 ± 6 pmol in 20 s, similar to the wild-type receptor. The W209A 

substitution, either by itself or in combination with W192A, eliminated receptor-

mediated stimulation of CheA activity almost completely. This behavior resembles that 

of the previously described “lock-off” disulfide-scanning mutants (38), in which no 

modulation of CheA activity was detected. We concluded that the relatively good 

swarming of cells expressing Tar W209A or WAWA might depend on compensation 

through adaptive methylation. 

 

Aspartate inhibition of receptor-coupled CheA activity 

To examine the role of the Trp-192 residue in transmembrane signaling in more 

detail, we compared aspartate inhibition of the CheA kinase activity in vitro stimulated 

by the wildtype and W192A Tar receptors. We used the multisite Hill equation to draw a 

best-fit curve to the data (Figure 2.1), as previously described (25). The wild-type Tar-

CheA-CheW complex had a Ki for aspartate of 7 ± 1 µM. Complexes containing W192A 
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Table 2.2:  CheA kinase-stimulating activity of 
Trp-to-Ala Tar proteinsa. 
Receptor    pmol CheY-P produced 
  None  0.24 ± 0.02 
  WT 44.37 ± 1.26 
  W192A 44.55 ± 5.80 
  W209A 0.26 ± 0.02 
  WAWA 0.48 ± 0.07 
a CheA kinase activity was measured as 
described in Materials and Methods. Activities 
were calculated by averaging the values obtained 
for at least three independent membrane 
preparations assayed in duplicate. The error bars 
represent the standard deviation of the mean for 
these measurements. 
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Figure 2.1. Aspartate inhibition of receptor-coupled CheA activity for W192A Tar 
and W211 Tar. These data are shown as closed, open circles, and closed triangles, 
respectively. The inhibition assays were performed as described in the Materials and 
Methods. Each data point represents the mean of at least six total reactions from at least 
three independently isolated receptor-containing vesicle preparations. The best-fit curve 
(solid line) is based on the cooperative multisite Hill model (25).  The error bars 
represent the standard deviation of the mean when n ≥ 3. 
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had a 3-fold increase in Ki to 22 ± 1 µM. The mutation did not appear to alter the 

cooperativity involved in aspartate-induced inhibition of CheA kinase activity, with the 

Hill coefficients being 1.8 ± 0.1 to 2.0 ± 0.2 for the wild-type and W192A proteins, 

respectively. 

 

Effect of Trp substitutions on in vivo methylation of Tar 

All of the Trp-substituted Tar proteins supported chemotactic swarming in 

aspartate and maltose semisolid agar to a significant degree. In view of the very low 

activity of the W209A and WAWA proteins in the in vitro CheA-stimulation assay, we 

decided to test whether compensating changes in receptor methylation restored 

chemotaxis. We expressed V5-tagged wild-type and mutant Tar proteins in the ∆T strain 

VB13 and monitored the level of Tar methylation in the absence and presence of various 

chemoeffectors. To provide a scale for comparing the levels of methylation, we 

transformed strain RP3098 with derivatives of plasmid pRD300 that produce V5-tagged 

Tar proteins in which the methylation sites are all Gln (QQQQ), all Glu (EEEE), or in 

the unmodified (QEQE) form. During SDS-PAGE, the QQQQ receptor should migrate 

fastest, like the fully methylated Tar protein, the unmethylated EEEE receptor should 

run slowest, and the QEQE receptor should migrate to an intermediate position (Figure 

2.2).  

With wild-type Tar proteins produced in VB13 cells, we observed two distinct 

bands that correspond to unmethylated and singly methylated species. Addition of a 

saturating concentration of aspartate (100 mM) led to a substantial increase in 
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Figure 2.2. Extent of methylation of the Trp-to-Ala Tar proteins. Wild-type and 
mutant Tar receptors were expressed in VB13 (∆T) cells that were exposed to aspartate 
and Ni2+. Migration rate is affected by the level of methylation, with the more highly 
methylated forms moving faster. As migration standards, the EEEE, QEQE and QQQQ 
forms of Tar were loaded on the leftmost lane. The QEQE and QQQQ forms of Tar 
migrate like doubly methylated and quadrupally methylated Tar. Chemoeffectors were 
added to the cells as 10 mM NiSO4 (repellent) and 100 mM aspartate (attractant). Equal 
amounts of total protein were loaded on each lane. 
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methylation, whereas a saturating amount (10 mM) of the repellent NiSO4 caused a 

slight decrease. The methylation patterns of Tar W192A were nearly identical to those of 

the wild type.  

The Tar W209A or Tar W192A W209A receptors expressed in strain VB13 

showed a dramatic increase in basal methylation. This result could explain why these 

proteins, which fail to stimulate CheA kinase activity in vitro when they are in the 

QEQE form, support chemotactic swarming. Apparently, methylation can compensate 

for the low CheA stimulating activity of a receptor that lacks the cytoplasmic interfacial 

anchor for TM2, just as it restores activity to attractant-bound wild-type receptor.  

Addition of 100 mM aspartate produced a further increase in methylation of the 

W209A and WAWA receptors, which exhibited higher levels of methylation than the 

aspartate-adapted wild-type and W192A receptors. Similarly, Ni2+ at 10 mM decreased 

methylation below the baseline level for the W209A and WAWA proteins, but the 

methylation was greater than for nickel-adapted wild-type or W192A Tar. Thus, 

adaptive methylation and demethylation occur in the absence of Trp-209, but with the 

absolute extent of methylation shifted to a level higher than that of wild-type Tar in 

naive, attractant-adapted and repellent-adapted cells. 

 

Repositioning the cytoplasmic interfacial Trp residue alters chemotactic behavior 

Since replacement of Trp-209 with Ala shifted Tar signaling in a similar manner 

as binding of an attractant ligand, we wondered whether the output of Tar could be more 

subtly modulated by moving this Trp residue in one-residue increments in the N-
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terminal and C-terminal directions. We began with the Tar W209A protein and 

introduced Trp at each position within one helical turn of position 209. These mutants 

were named W206 through Tar W212 according to the position at which Trp replaced 

the original residue. W209 is the wild-type receptor. 

We expressed these proteins in strain VB13 and analyzed their behavior in 

aspartate, maltose, and glycerol semisolid agar plates (Table 2.3). Three swarm 

phenotypes were observed. The first, seen with the W207 and W211 strains, was like 

wild type on all three plates. Cells expressing Tar W206 and Tar W210 formed swarms 

on aspartate plates like those of cells expressing Tar W209A, with very narrow, sharp 

chemotactic rings and rates of migration approximately half those of cells expressing 

wild-type Tar. Finally, cells expressing the W208 and W212 proteins failed to produce 

significant swarms on any of the three plates, looking just like VB13 cells containing the 

vector plasmid without a tar gene. 

 

In vitro stimulation of CheA activity by receptors with repositioned Trp residues 

We next analyzed the ability of the W206 through W212 receptors to stimulate 

CheA in vitro (Table 2.4). Only W209 (wild type) and W211 Tar stimulated CheA 

activity. Complexes containing Tar W211 produced 40 ± 7 pmol of CheY-P in 20 s and 

were not significantly different from wild-type Tar. We then examined the ability of 

aspartate to inhibit stimulation of CheA kinase by W211 Tar (Figure 2.1). The Ki value 

determined was 430 ± 50 µM, about 60-fold higher than the wild-type value of 7.0 ± 1 
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Table 2.3: Swarm behavior of cells harboring the Trp-
repositioned Tar proteins a. 

Receptorb Aspartate 
Swarm Rate 

Maltose 
Swarm Rate 

Glycerol 
Swarm Rate 

W206 0.88 ± 0.12 0.71 ± 0.13 0.42 ± 0.04 
W207 1.50 ± 0.04 0.71 ± 0.06 0.50 ± 0.04 
W208 0.31 ± 0.04 0.29 ± 0.04 0.33 ± 0.01 

W209 (WT) 1.72 ± 0.14 0.87 ± 0.04 0.55 ± 0.04 
W210 1.03 ± 0.08 0.77 ± 0.05 0.39 ± 0.01 
W211 1.81 ± 0.14 0.78 ± 0.02 0.38 ± 0.00 
W212 0.09 ± 0.04 0.18 ± 0.03 0.12 ± 0.01 

a The rate at which the swarm diameter expanded was measured 
in mm/hr as described in Materials and Methods. 
b The mutant receptors Tar W206 through Tar W212 were 
named according to the position at which the original residue in 
the Tar W209A protein was replaced by Trp. This manipulation 
placed a single Trp residue near the cytoplasmic end of TM2 at 
the specified position in each mutant receptor.  
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Table 2.4:  Effect of repositioning of Trp-
209 on CheA kinase activitya. 
Receptor b pmol CheY-P Produced 
  W206  0.42 ± 0.04 
  W207 0.61 ± 0.04 
  W208 0.80 ± 0.06 
  W209 (WT) 44.37 ± 1.26 
  W210 0.21 ± 0.02 
  W211 40.01 ± 7.07  
  W212 0.67 ± 0.11 
a CheA kinase activity was measured as 
described in Table 2.  
b The W206 through W212 receptors are 
described in the footnote to Table 3. 
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µM. The calculated Hill coefficient dropped to 0.6 ± 0.1 from the wild-type value of 1.8 

± 0.1. 

 

In vivo methylation of receptors with repositioned Trp residues 

To determine whether methylation compensates for the signaling biases 

introduced by the repositioned Trp residues, we analyzed the level of methylation of the 

mutant receptors (Figure 2.3). Tar W211 showed wild-type levels of methylation in the 

absence of chemoeffectors and after adaptation to saturating concentrations of aspartate 

and Ni2+. The W206, W207, and W210 receptors produced methylation patterns very 

similar to those of the W209A and WAWA proteins. The differences in the swarm 

phenotypes of cells expressing W206 versus W207 Tar could be due to the greater 

severity of the signaling bias of the former, since the methylation levels of W207 Tar 

were intermediate between the wild-type and W206 proteins, and closer to the former. 

Tar containing Trp-208 or Trp-212 exhibited extreme overmethylation in the absence of 

chemoeffectors, yet these proteins partially demethylated after the addition of Ni2+. 

Thus, even these extremely CCW-biased mutants are not totally blind to repellent 

stimuli, and therefore the W208 and W212 receptors cannot be “locked” in one 

conformation. It remains to be seen whether they can mediate a CW (tumbly) response 

to nickel. 
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Figure 2.3. Extent of methylation of the Trp-repositioned Tar proteins. Wild-type 
and mutant Tar protein were expressed in VB13 (∆T) cells and exposed to aspartate or 
Ni2+. Analysis was as in the legend to Figure 2.3. 
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Motility patterns of cells expressing mutant Tar receptors 

Our prediction was that compensatory methylation enables mutant cells to 

achieve a baseline run-tumble swimming pattern that is compatible with chemotaxis in 

every case except for strains expressing the W208 or W212 Tar protein. To confirm, we 

observed the swimming behavior of all strains using phase contrast microscopy. Strain 

VB13 harboring the vector plasmid pBR322 (96) or pRD200 carrying a tar gene 

encoding the W208 or W212 protein appeared to be almost entirely smooth swimming 

(Table 2.5), whereas VB13 cells carrying any other of the mutant tar genes tumbled with 

about the same frequency as cells containing the tar+ control plasmid. 

To measure the rotational biases of the flagellar motors of the various mutants 

directly, we examined tethered cells (Table 2.5). As expected, VB13 cells containing the 

vector plasmid never reversed. The same was true for cells expressing the W212 Tar 

protein, and of 45 cells expressing W208 Tar, only two reversed. In contrast, the fraction 

of reversing cells for the other mutants was similar to the fraction of VB13 cells 

expressing wild-type Tar that reversed. 

 

Discussion 

A fundamental question in biolozgy is how transmembrane receptors 

communicate the detection of environmental stimuli to the interior of the cell. Tar, the 

aspartate receptor of E. coli, signals in response to several types of ligands by regulating 

the activity of its cognate histidine kinase, CheA (15). Disulfide-scanning experiments 

using Tar proteins with Cys substitutions in the first and second transmembrane helices 

42



 Table 2.5: Motile behavior of cells expressing the mutant Tar proteins 
Tethered cellsc

Receptora Swimming 
cellsb

Cells with flagella 
that rotate only CCW 

Cells with CCW-
biased flagella that 

occasionally reverse

Cells with flagella that reverse 
frequently or show extended 

CCW and CW rotation  
Wild type R, s, T 5 2 23 

None     

      

      

S 33 0 0
W192A R, S, t 12 2 24 
W209A R, s, T 5 0 28 
WAWA R, s, T 9 1 20 
W206 R, S, T 4 1 27 
W207 R, S, t 4 2 23 
W208 r, S 45 0 2
W210 R, s, T 14 3 18 
W211 R, S, T 6 5 25 
W212 r, S 41 0 0

a Tar proteins are designated using the nomenclature described in the test and in footnote b of Table 3. None 
indicates that vector plasmid without a tar gene insert was present. 
b Ten fields of cells swimming in TB medium at room temperature were observed for about 30 sec each. R, S, 
and T represent cells that were running and tumbling, smooth swimming, and primarily tumbling, respectively. 
Upper case letters indicate that a large fraction of the cells observed behaved in the manner indicated. Lower 
case letters indicate that only a few cells exhibited the behavior indicated. 
c Tethered cells were prepared from each strain and analyzed as described in Materials and Methods.  
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(TM1 and TM2) of Tar strongly suggest that, upon binding of ligands, TM2 moves 

relative to TM1 and also to the plane of membrane (38-44). Here, we have examined 

how interactions between TM2 of Tar and the phospholipid environment influence the 

signaling behavior of the receptor. 

We focused on the effect of Trp residues that are predicted to localize to the 

region between the polar headgroups and hydrophobic core of the bilayer. 

Glycosylation-mapping experiments (80) have been used to estimate the position of a 

transmembrane helix in the dimension perpendicular to the plane of the membrane. Such 

studies have shown that Trp residues exert a restoring force that can reposition synthetic 

helices either up or down relative to the membrane surface (63). 

We first substituted Ala for Trp-192 and Trp-209, singly and in combination. We 

chose Ala as the replacement residue because we wanted to avoid introducing a residue 

with marked chemical properties of its own, such as charge, polarity, a high 

hydrophobicity index, or a reactive moiety on the side chain. The W192A protein 

behaved very much like wild-type Tar in every assay used, with the only consistent 

difference being a 3-fold increase in the Ki, from 7 µM to 22 µM, in the receptor-

coupled CheA kinase assay (Figure 2.1). 

In contrast, the W209A substitution drastically affected the behavior of Tar, 

decreasing the rate of chemotactic ring migration and eliminating receptor-mediated 

stimulation of CheA kinase. The WAWA double mutant behaved much like W209A, 

although chemotactic ring migration was slightly less impaired with the double mutant. 
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The combination of retained chemotactic ability coupled with lack of CheA 

stimulation in vitro associated with W209A or WAWA Tar can be explained by the 

compensatory role of adaptive methylation in vivo. Both proteins showed increased basal 

levels of methylation but still responded to addition of saturating aspartate (100 mM) 

and Ni2+ (10 mM NiSO4) by increasing and decreasing, respectively, methylation from 

the altered basal level. Thus, both proteins behave in the absence of ligands as though 

they had undergone covalent methylation in response to attractant, but they could still 

mediate qualitatively appropriate responses to attractants and repellents. The tight rings 

formed by these mutants on aspartate swarm plates could result from a decreased 

dynamic range of adaptation that traps cells in the steepest portion of the gradient. 

The phenotypes of the Trp-substituted mutants can be interpreted as a change in 

the position of TM2 relative to the membrane, thereby causing a shift in the equilibrium 

signaling state of the receptor. In the absence of ligand, by default Tar is in the “on” 

state, which stimulates the CheA kinase. Upon binding of aspartate, TM2 is predicted to 

slide in an axial fashion toward the cytoplasm to generate the “off” state, in which kinase 

activity is inhibited. We believe removal of Trp-209, with its affinity for the interfacial 

region, causes a slight shift of TM2 toward the cytoplasm. We speculate that the most 

energetically favorable repositioning upon removal of Trp-209 would be a displacement 

of TM2 similar to when attractant-bound receptor adopts the “off” state. Both of the 

proposed models for signal transmission through the HAMP linker domain (60, 97) 

involve tight regulation of the interactions between the HAMP domain and the inner 

membrane. This linkage could be perturbed by removal of Trp-209. 
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Using the same reasoning, we predict that the W192A mutation could cause a 

small shift in the position of the N-terminus of TM2 toward the periplasm, perhaps 

consistent with the 3-fold increase in the aspartate Ki of the Trp-192 receptor compared 

with wild type. However, the wild-type level of stimulation of CheA activity and the 

very slight decrease in basal methylation suggest that no significant changes are imposed 

on the cytoplasmic domain. Initially, this result may seem contradictory with the 

changes associated with the W192R mutant receptor (42), but the difference presumably 

lies with the nature of the residue that replaces Trp. Arg would be expected to interact 

with the negatively charged phospholipid headgroups and thus contribute a specific 

transmembrane-repositioning effect of its own (98). Thus, the W192R substitution may 

overcome the positioning determinants on the cytoplasmic end of TM2 and cause Tar 

W192R to stimulate CheA kinase more than the wild-type receptor, in contrast to our 

observation of a minimal difference between W192A and the wild-type receptor. 

To examine how the repositioning of Trp residues within TM2 affects the 

signaling state of Tar, we moved Trp-209 while leaving Trp-192 in place. If Trp-209 is a 

primary contributor to the position of TM2 within the membrane, the signaling state of 

the receptor should be altered when Trp residues are scanned from positions 206 to 212 

(Figure 2.4). Trp residues repositioned toward the periplasm (Trp-206 through Trp-208) 

should displace TM2 toward the cytoplasm and favor the “off” state (Figure 2.4B). Trp 

residues repositioned toward the cytoplasm Trp-210 through Trp-212 should displace 

TM2 farther into the membrane and favor the “on” state (Figure 2.4C). 
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Figure 2.4. Model for the role of cytoplasmic interfacial Trp residue. TM2 is 
represented by a dark rectangle. Trp-209 is shown as a gray box, and the white boxes 
represent Ala replacing Trp. In the wild-type receptor, Trp-209 is predicted to reside 
within the cytoplasmic interfacial region (42). Upon repositioning the cytoplasmic 
interfacial Trp residue into the hydrophobic core, we predict a displacement of TM2 
toward the cytoplasm, as represented by the downward-directed arrow.  Upon 
repositioning a Trp residue toward the cytoplasm, we predict a displacement of TM2 
into the membrane, as indicated by the upward-directed arrow.repellents boost CheA 
activity in the in vitro receptor-coupled assay. (Ni2+ at concentrations that cause a 
repellent response inhibits CheA activity.) 
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Three of the mutant proteins fulfilled the predictions of our model. W206 and 

W207 supported reduced but significant chemotaxis in swarm plates (Table 2.3), failed 

to stimulate CheA in vitro (Table 2.4), and showed increased basal levels of methylation 

(Figure 2.3). W211 formed wild-type chemotactic swarms, had a modestly increased 

stimulation of CheA in vitro, and showed normal levels of methylation in vivo. 

However, the Ki for aspartate in the in vitro assay increased 60-fold (7 to 430 íM) 

relative to wild-type Tar (Figure 2.1), and the Hill coefficient dropped from 1.8 to 0.6, 

indicating that some level of negative cooperativity might operate with the W211 

protein. We do not know whether the increased Ki value reflects a lower affinity for 

aspartate, a partial decoupling of ligand binding and receptor inhibition, or some 

combination of effects. It is, however, consistent with the notion that moving the Trp 

residue to a more C-terminal site puts the mutant protein into a signaling conformation 

that is less subject to inhibition by attractant. 

 W211 Tar stimulated CheA activity essentially like wild-type Tar. Our prediction 

that the cytoplasmic end of TM2 should be pulled up into the membrane to mimic 

repellent-bound receptor had suggested to us that the W211 protein might support a 

higher rate of CheA autophosphorylation. We note however, that no one has shown that 

Tar repellents boost CheA activity in the in vitro receptor-coupled assay. (Ni2+ at 

concentrations that cause a repellent response inhibits CheA activity.) 

Cells expressing the W208 and W212 proteins are completely nonchemotactic 

(Table 2.3). Their lack of receptor-coupled CheA activity in vitro is shared with the 

W206, W207, and W210 proteins (Table 2.4), but the first two receptors differ from the 
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latter three in that those proteins are restored to some level of function in vivo by 

adaptive methylation. The W208 and W212 proteins are stable when overexpressed 

(data not shown) and are also present at normal levels in vivo (Figure 2.3), where they 

are very highly methylated. In fact, W212 exists solely in the highest methylated form. 

However, these proteins are not totally inert, since addition of aspartate further increases 

methylation of the W208 protein, and Ni2+ leads to demethylation of both proteins. The 

W208 and W212 proteins cannot support chemotaxis because their signaling bias is set 

so far toward CCW that the cells rarely, if ever, tumble (Table 2.5). 

One explanation for the grossly disrupted function of the W208 and W212 

receptors is suggested by a helical-wheel projection of TM1 and TM2 of the receptor 

homodimer (38). The side chains of residues Ala-208 and Ile-212 are directed toward 

TM2 and TM1 of the other subunit, respectively. Insertion of a bulky Trp residue at 

either of these positions may disrupt the helical packing face, as has been seen in the 

transmembrane proton channel of the MotAB complex (99, 100) or the dimer-dimer 

interface in the trimer of dimers in the cytoplasmic domain of the Tsr receptor (68). 

However, other interpretations are equally plausible. 

Perhaps the most informative Trp mutant is the double mutant W209A/Y210W. 

The W210 protein generated by these two substitutions behaves much like W209A. We 

attribute the signaling abnormalities of the latter protein to the loss of Trp-209. The 

residue that Trp replaces at position 210 is Tyr. Thus, both the wild-type and W211 

proteins have tandem amphipathic aromatic residues (either WYG or AYW at positions 

209-211), whereas the W210 and W209A proteins have a single aromatic residue (AWG 
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or AYG, respectively). Preliminary data (Draheim, unpublished) suggest that juxtaposed 

aromatic residues are required for proper positioning of the cytoplasmic end of TM2. 

Bacterial chemoreceptors resemble many members of a large family of 

homodimeric transmembrane sensor kinases (68). Functional chimeras have been made 

that join the periplasmic, transmembrane, and linker domains of Tar (101) and Trg (102) 

to the signaling domain of the sensor kinase EnvZ. In a reciprocal chimera, the 

periplasmic, transmembrane, and linker domains of the NarX kinase were connected to 

the signaling and adaptation domains of Tar to create a nitrate/nitrite repellent receptor 

(103). An alignment of the C-terminal portion of TM2 from the four E. coli 

chemoreceptors and all E. coli transmembrane sensor kinases with P-type linker domains 

(Figure 2.5) reveals that most have one or more aromatic residues closely preceding the 

highly conserved Pro residue that begins the linker. The function of these aromatic 

residues, particularly Trp and Tyr, may be to orient the receptor with respect to 

cytoplasmic face of the cell membrane. Both EnvZ and NarX possess a Trp residue at 

the cytoplasmic end of TM2. 

Our results provide additional evidence of the importance of interactions between 

TM2 and the surrounding phospholipid environment and demonstrate the crucial role of 

the Trp residue at the C-terminus of TM2. Such considerations will be important for the 

design of chemoreceptors and other transmembrane sensors with specific functions. It 

also appears that tandem aromatic residues may be required for optimal localization of 

TM2 with respect to the cytoplasmic face of the cell membrane, a possibility that is 

currently under investigation. 
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Figure 2.5. Sequence alignment of the C-termini of TM2 from membrane-spanning 
receptors in E. coli. All proteins predicted to contain only two TM helices and a P-type 
linker (60) are shown. The conserved Pro residue at the N-terminus of the first 
amphipathic helix (ASI) of the linker region provided the reference point for the 
alignment. An evident shared motif consists of one or more aromatic residues that may 
serve as an anchor within the interfacial zone of the membrane and a basic tether that 
should interact strongly with negatively charged polar head groups. The sensor kinases 
mediate responses to environmental conditions: stress on the cell envelope (BaeS, CpxA, 
SliS); expression of virulence genes (BarA, PhoQ); biofilm formation (RcsC); 
environmental osmolarity (EnvZ); use of alternative electron acceptors nitrate/nitrite 
(NarQ, NarX) and TMAO (TorS); or of unknown function (BasS, YgiY). 
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CHAPTER III 

TUNING A BACTERIAL CHEMORECEPTOR WITH 

PROTEIN-MEMBRANE INTERACTIONS* 

 

Overview 

 This chapter is a published work (44). It describes research that manipulates 

protein-membrane interactions between the second transmembrane domain (TM2) and 

the cell membrane to incrementally modulate the basal signaling state of Tar. I 

conceived and conducted the majority of the experimentation described within this 

chapter. Dr. Arjan F. Bormans established the protocol for determining the extent of 

methylation in vivo and performed some of the experiments described in Figure 3.5. Dr. 

Run-zhi Lai and I worked together to establish the protocol and purify the proteins 

necessary for the receptor-coupled in vitro phosphorylation assay used in Figure 3.6. 

 

Summary 

Chemoreceptors in Escherichia coli are homodimeric transmembrane proteins 

that convert environmental stimuli into intracellular signals controlling flagellar motion. 

Chemoeffectors bind to the extracellular (periplasmic) domain of the receptors, whereas 

their cytoplasmic domain mediates signaling and adaptation. The second transmembrane 

helix (TM2)  connects  these  two  domains.  TM2  contains an aliphatic core flanked  by 

_____________ 
*Reproduced with permission from “Tuning a bacterial chemoreceptor with protein-
membrane interactions” by Draheim R. R., Bormans, A. F., Lai, R.-Z., and Manson, M. 
D., 2006, Biochemistry 45, 14655-64. Copyright 2006 American Chemical Society. 
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amphipathic aromatic residues that have specific affinity for polar-hydrophobic 

membrane interfaces. We previously showed that Trp-209, near the cytoplasmic end of 

TM2, helps maintain the normal baseline-signaling state of the aspartate chemoreceptor 

(Tar) and that Tyr-210 plays an auxiliary role in this control. We have now repositioned 

the Trp-209/Tyr-210 pair in single-residue increments about the cytoplasmic polar-

hydrophobic interface. Changes from WY-2 to WY+1 modulate the baseline signaling 

state of the receptor in predictable and incremental steps that can be compensated by 

adaptive methylation/demethylation. Greater displacements, as in WY-3, WY+2, and 

WY+3, bias the receptor to the “off” kinase-inhibiting state or the “on” kinase-

stimulating  state,  respectively,  to  a  degree  that  cannot  be  fully  compensated by the 

adaptation system. Aromatic residues analogous to Trp-209/Tyr-210 are present in other 

chemoreceptors and many transmembrane sensor kinases, where they may serve a 

similar function. 

 
Introduction 

Escherichia coli cells migrate in chemical gradients using a behavior known as 

chemotaxis. In a homogeneous environment, cells perform a three-dimensional random 

walk in which smooth swims (runs) of several seconds alternate with briefer periods of 

active, random reorientation (tumbles). Movement in the gradient is accomplished by 

selectively increasing the length of runs that happen to lead in a favorable direction, 

whether up an attractant gradient or down a repellent gradient (12-14). The signal-

transduction pathway modulates flagellar motion to increase intervals of exclusively 

counter-clockwise (CCW) rotation, which produces runs, when the bacterium senses an 
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increase in attractant or a decrease in repellent over time. Thus, a spatial gradient is 

sensed by temporal comparison of chemoeffector concentrations.  

The histidine protein kinase CheA is coupled, via the CheW adapter protein, to 

four different methyl-accepting chemotaxis proteins, known as MCPs (104), and to the 

Aer redox sensor (3, 4). A receptor/CheA/CheW ternary complex (105) stimulates CheA 

autophosphorylation (15). The phosphoryl group on CheA is then transferred to the 

response regulator CheY. Phospho-CheY interacts with FliM of the flagellar motor to 

promote clockwise (CW) rotation (17, 18).  

CCW motor rotation coalesces the left-handed helical flagellar filaments into a 

bundle that propels the cell in a run (10), whereas CW rotation of one or more flagella 

disrupts the bundle to cause a tumble (11). The intracellular level of phospho-CheY, and 

hence the frequency of tumbling, is determined by the relative activities of CheA and the 

phospho-CheY phosphatase, CheZ (16, 19). The conformational change induced by 

attractant binding converts a receptor from a stimulator (50-100× increase) of CheA 

activity into an inhibitor (5× decrease) of CheA (15). The resulting drop in the 

intracellular phospho-CheY level lowers the probability of tumbling and thereby 

lengthens the average run.  

Inhibition of CheA activity is balanced by covalent methylation of the cognate 

receptor (21). Methyl groups are added by a methyltransferase, CheR, and removed by 

CheB, a methylesterase (22, 23). CheB is active when phosphorylated by CheA (24). 

Increased methylation of four specific Glu residues biases a receptor toward CheA 

stimulation, whereas decreased methylation results in less CheA stimulation (25, 26). By 
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constantly adjusting the extent of methylation, a cell can maintain nearly the same 

baseline level of CheA activity at any constant concentration of chemoeffector (27), and 

adaptation is robust (106). 

Tar is the aspartate/maltose chemoreceptor in E. coli (32). The crystal structure 

of the periplasmic ligand-binding domains of Salmonella (35, 46) and E. coli (47) Tar 

show that each monomeric unit of the functional homodimer (48, 49) consists of four 

anti-parallel α-helices in a four-helix bundle. The first and second transmembrane 

regions (TM1 and TM2) flanking the periplasmic domain are N-terminal and C-terminal, 

respectively, helical extensions of the first (H1) and fourth (H4) periplasmic helices (50-

53). Aspartate binds at one of two rotationally symmetric sites composed of residues in 

H1 and H4 of one monomer and in H1’ of the other (46). Binding generates a 1 to 2 

ångström vertical displacement of H4-TM2 toward the cytoplasm (38-44). Within the 

HAMP-linker domain (59-61), this piston-like movement is converted into a 

conformational change in the cytoplasmic domain of the receptor.  

 TM2 possesses an aliphatic core bracketed by aromatic residues at the polar-

hydrophobic interfaces, and positively charged residues reside at the membrane-water 

interface (42). A similar distribution of hydrophobicity, aromaticity, and charge density 

is often found in membrane-spanning α helices (79). Several experimental systems have 

demonstrated the energetic advantage for the localization of amphipathic aromatic 

residues at the polar-hydrophobic interfaces. A glycosylation-mapping technique (80) 

implicated Trp residues in positioning a poly-Leu helix within a biological membrane. 

When the Trp residues were moved, the helix repositioned to allow the Trp residues to 
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remain at the interfacial zone of the membrane (63). Also, WALP (81) and YALP (107) 

peptides consisting of Ala-Leu cores of different lengths flanked by Trp or Tyr residues, 

respectively, induce phase transitions in various lipid systems that allow the aromatic 

residues to reside at polar-hydrophobic interfaces. Thus, amphipathic aromatic residues 

govern how transmembrane helices interact with their lipid environments. 

 The position of TM2 relative to the membrane is a critical component of 

transmembrane signaling. Therefore, interactions between TM2 and the phospholipid 

bilayer are likely to contribute to the baseline-signaling state of a receptor. Arginine-

scanning mutagenesis of Salmonella Tar revealed the importance of aromatic residues 

within TM2. Substitution of Phe-189 or Trp-192 stabilized the kinase-stimulating “on”-

state of Tar, while substitution of Trp-209 promoted the kinase-inhibiting “off”-state 

(42). We previously demonstrated that Trp-209 is essential for maintaining the normal 

baseline-signaling state of E. coli Tar. Substitution of Ala for Trp-209 puts the mutant 

receptor into the kinase-inhibiting state typically associated with binding of aspartate. 

Tyr-210 also contributes to positioning of TM2 within the lipid bilayer (43). These prior 

studies identified residues participating in essential membrane-protein interactions that 

position TM2 within the membrane. Here, we extend these initial analyses by moving 

the Trp-209/Tyr-210 pair in single-residue increments three positions toward the N-

terminus (WY-3) and three positions toward the C-terminus (WY+3). We demonstrate 

that, within the context of an intact chemotactic circuit, moving the Trp/Tyr pair “tunes” 

the signaling state of Tar in predictable and incremental steps. 
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Materials and methods 

Bacterial strains and plasmids  

Strains HCB436 [∆tsr7021 ∆trg(100) zbd::Tn5 ∆(tar-cheB)2234] (108), RP3098 

[∆(flhD-flhB)4] (85) and VB13 [∆tsr7021 ∆tar-tap5201 trg::Tn10] (86) are derivates of 

the E. coli K12 strain RP437 (85). Plasmid pRD100 (43), derived from pBAD18 (88), 

carries a wild-type copy of tar inducible upon addition of L-arabinose. Plasmid pRD200 

(43), derived from pMK113 (87), harbors a version of the tar gene that encodes wild-

type Tar attached to a C-terminal in-frame sequence for a seven-residue flexible linker 

and a V5-epitope tag. The tar gene of pRD200 is expressed from the native tar 

promoter. Plasmid pRD300 is identical to pRD100 except for the addition of the C-

terminal linker and V5-epitope tag from pRD200. Mutations were introduced into tar 

using standard site-directed mutagenesis techniques (Stratagene). 

 

Observation of tethered cells 

Cells were grown in tryptone broth (91) supplemented with 25 µg/mL ampicillin 

to an OD590nm of 0.7. Ten mL of cells were resuspended in tethering buffer [10 mM 

potassium phosphate (pH 7.0), 100 mM NaCl, 10 µM EDTA, 20 µM L-methionine, 20 

mM sodium DL-lactate, 20 µg/ml chloramphenicol], and their flagella were sheared in 

the 50-mL stainless-steel cup of a Waring blender (109). Sheared cells were washed 

twice in tethering buffer and mixed with an equal volume of a 500-fold dilution of anti-

flagellar filament antibody. This mixture was placed inside an Apiezon-L grease ring on 

a 12 mm round coverslip, incubated for 30 min at 30ºC, and then affixed to a flow 
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chamber (92). Tethered cells were observed at 1000x magnification by oil-immersion, 

reverse-phase contrast microscopy. Enough fields of view were videotaped to ensure that 

at least 100 freely rotating cells were monitored for each strain in two duplicate 

experiments. Rotational behavior was visually assessed during video playback, and cells 

were assigned to one of five rotational categories; exclusively CCW; mostly CCW with 

occasional reversals; reversing frequently with no clear bias; mostly CW with reversals; 

and exclusively CW. Reversal frequency was determined by tallying the number of 

reversals for each cell during video playback. 

 

Determination of the methylation state of receptors in vivo 

Cells were grown to an OD590nm of 0.6 in 10 mL of tryptone broth (91), harvested 

by centrifugation, washed three times with 10 mM potassium phosphate (pH 7.0) 

containing 0.1 mM EDTA, and resuspended in 5 mL of 10 mM potassium phosphate 

(pH 7.0), 10 mM sodium DL-lactate, and 200 µg/mL chloramphenicol. One-mL aliquots 

of cells were transferred to 10-mL scintillation vials and incubated with shaking for 10 

min at 32oC. Cells were then incubated for another 30 min after the addition of L-

methionine to 2 µM. Chemoeffectors were added at this time, and the cells were 

incubated for an additional 20 min. Reactions were terminated by addition of 100 µL 

ice-cold 100% TCA and then incubated on ice for 15 min. Denatured proteins were 

pelleted, subsequently washed with 1% TCA and acetone, and resuspended in 200 µL 

2X SDS-loading buffer. A 10-µL aliquot of each sample was subjected to SDS-PAGE 
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immunoblotting and detection by commercially available antibodies raised against the 

V5 epitope (Invitrogen). 

 

Protein expression and isolation 

We isolated receptor-containing inner membranes as previously described (73). 

Strain RP3098 harboring pRD100 or one of its derivatives was used for production of 

receptor-containing membranes. Tar expression was induced by addition of L-arabinose 

to a final concentration of 0.2% (w/v). Soluble Che proteins were isolated as previously 

described (73). 

 

In vitro analysis of receptor function 

We performed the receptor-coupled in vitro phosphorylation assay as previously 

described (43). Our reactions contained 20 pmol Tar, 5 pmol CheA, 20 pmol CheW, and 

500 pmol CheY in 9 µL of fresh phosphorylation buffer [50 mM Tris-HCl, 50 mM KCl, 

5 mM MgCl2, 2 mM DTT (pH 7.5)]. Aspartate was added to the desired final 

concentration, taking care to maintain the same total volume. The reaction was initiated 

by addition of 1 µL of [γ-32P]-ATP (3000 Ci/mmol NEN# BLU502A) diluted 1:1 with 

10 mM unlabeled ATP. Reactions were terminated by adding 40 µL 2X SDS-PAGE 

loading buffer containing 25 mM EDTA. Samples were subjected to SDS-PAGE, dried, 

and imaged using a phosphorimager (Fuji BAS 5000).  
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Chemotactic swarm assays 

Swarm assays were performed as described previously (43). Briefly, semi-solid 

agar contained 3.25 g/L Difco BactoAgar in motility medium [10 mM potassium 

phosphate (pH 7.0), 1 mM (NH4)2SO4, 1 mM MgSO4, 1 mM MgCl2, 1 mM glycerol, 90 

mM NaCl] supplemented with 20 µg/mL of L-threonine, L-histidine, L-methionine, and 

L-leucine and 1 µg/mL thiamine. Ampicillin was present at 25 µg/mL. Aspartate and 

maltose were added to a final concentration of 100 µM. Swarm plates were incubated at 

30ºC and, once visible swarms formed, their diameter was measured every 4 h. 

 

Results 

Repositioning Trp-209/Tyr-210 of TM2 relative to the polar-hydrophobic membrane 

interface 

We have shown that Trp-209 is essential for maintaining the normal baseline-

signaling state of Tar and suggested that Tyr-210 plays an auxiliary role in this control 

(43). Inspired by these results and the demonstrated affinity of amphipathic aromatic 

residues for the polar-hydrophobic interfaces of phospholipid bilayers (63, 64, 79, 81, 

83), we hypothesized that the signaling state of Tar could be modulated by repositioning 

the tandem residue pair Trp-209/Tyr-210, which localizes to the polar-hydrophobic 

interface at the cytoplasmic side of the cell membrane (42). We used site-directed 

mutagenesis to construct receptors in which the Trp/Tyr pair was repositioned in single-

residue increments from three residues N-terminal of their original position (WY-3) to 

three residues C-terminal (WY+3) (Figure 3.1). 
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Figure 3.1. TM2 sequences of the Trp/Tyr-repositioned Tar proteins. (A) TM1 and 
TM2 are represented as gray- and black-shaded areas, respectively. Aspartate binding 
displaces TM2 toward the cytoplasm, thereby repositioning TM2 relative to the plane of 
the phospholipid bilayer (downward gray arrow). Repellent binding displaces TM2 away 
from the cytoplasm (white upward arrow). The extent of TM2 is based on sulfhydryl-
reactivity studies of S. enterica Tar (42) and includes the Trp-209 and Tyr-210 residues 
(boldface). (B) Primary sequences of TM2 of the full range of Tar proteins investigated 
in this study. The Trp/Tyr residue pair is indicated in boldface. The conserved Pro 
residue of P-type HAMP-linker domains (60) provides a reference for the beginning of 
AS1. The gray, leftward-pointing arrow indicates shifts of the Trp/Tyr pair in the N-
terminal (-) direction. The white, rightward-facing arrow indicates shifts of the Trp/Tyr 
pair in the C-terminal (+) direction. 
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Flagellar rotation and reversal frequency correlate with the position of the Trp-Tyr pair 

We tested the hypothesis that repositioning Trp-209/Tyr-210 would result in a 

displacement of TM2 relative to the membrane and a concomitant change in the 

baseline-signaling state of the receptor (Figure 3.1). Rotational bias and reversal 

frequency in the absence of chemoeffectors were measured in transducer-depleted (∆T) 

tethered cells (strain VB13; 86) expressing the WY-3 through WY+3 Tar receptors from 

plasmid pRD200. Expression from pRD200 results in a five-fold excess of total cellular 

receptor (data not shown). These cells possess an intact chemotactic circuit, and 

therefore their behavior should reflect steady-state signaling, which is affected by 

changes in both the position of TM2 relative to the membrane and the compensatory 

effects of adaptive methylation (43). Approximately 200 cells were analyzed for each 

receptor variant (Figure 3.2). Most cells producing wild-type Tar reversed frequently and 

showed the same CW/CCW bias (between 20/80 and 40/60%) previously observed with 

the wild-type strain RP437. A few cells reversed less frequently and were more strongly 

CW or CCW biased, and a very small number of cells were observed to rotate 

exclusively in one direction or the other. 

Flagella of cells harboring Tar WY-1 or Tar WY-2 exhibited a slight CCW 

rotational bias compared to those expressing wild-type Tar, and cells expressing WY-3 

Tar were even more CCW biased. A CCW bias indicates that these cells had a decreased 

intracellular concentration of phospho-CheY (19), a result consistent with decreased 

stimulation of CheA by a receptor bearing a displacement of TM2 toward the cytoplasm 

(38). Cells expressing Tar WY+1 were very similar to cells producing the wild-type 
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Figure 3.2. The directional bias of flagellar rotation correlates with the position of 
the Trp/Tyr pair. Transducer-depleted VB13 (cheR+B+) cells expressing the wild-type 
or mutant Tar proteins from plasmid pRD200 were tethered, observed for 30 s, and 
placed into one of five categories based on the CW/CCW rotational behavior of their 
flagella. The five categories of rotation, from left to right, are: exclusively CCW; mostly 
CCW with occasional reversals; reversing frequently with no clear bias; mostly CW with 
reversals; and exclusively CW. Control (ctrl) cells (bottom right) contained only the 
empty vector plasmid. Two sets of 100 cells were analyzed for each strain. 
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receptor. WY+2 and WY+3 Tar cells exhibited a bimodal distribution; the majority were 

CW biased, but some cells were observed whose flagella rotated exclusively CCW. A 

CW bias is characteristic of increased intracellular levels of phospho-CheY (19) and is 

consistent with the expectation that displacement of TM2 toward the periplasm should 

increase the ability of a receptor to stimulate CheA activity. 

The mean reversal frequency (MRF) was approximately 0.4·sec-1 for cells 

expressing WY-2, WY-1, wild-type, and WY+1 Tar. Cells expressing WY-3 Tar had an 

MRF of 0.2·sec-1, whereas cells expressing WY+2 and WY+3 Tar had an MRF of 

0.25·sec-1
 (Figure 3.3). We conclude that cells expressing WY-3, WY+2, and WY+3 Tar 

have reduced MRF values because the signaling state of these receptors is perturbed to 

an extent that cannot be entirely compensated by adaptive methylation. 

 

Cells lacking adaptive methylation cannot compensate for TM2 displacements. 

To assess the contribution of adaptive methylation to the signaling state of Tar, 

we analyzed flagellar rotation in strain HCB436 (∆T ∆cheRB) (108). HCB436 cells 

expressing wild-type Tar displayed a slight CW bias (Figure 3.4) and high MRF values 

(~0.55·sec-1) (Figure 3.3). HCB436 cells producing the WY-3 through WY-1 receptors 

seldom, if ever, rotated CW (Figure 3.4). These cells clearly had lower levels of 

intracellular phospho-CheY than VB13 (∆T cheR+B+) cells expressing the equivalent 

mutant receptors. This finding is consistent with our previous discovery (43) that 

methylation can compensate for an inherently decreased baseline-signaling state of a 

receptor. The WY+1 protein conferred a modest CW bias to HCB436 cells. Cells 
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Figure 3.3. Mean reversal frequency (MRF) correlates with the position of the Trp-
Tyr pair. The same 200 VB13 cells (cheR+B+) analyzed in Figure 3.2 (closed squares) 
and 200 HCB436 cells (∆cheRB) (open squares) expressing each wild-type or mutant 
Tar protein from plasmid pRD200 were tethered as described in Figure 3.2. Cells were 
monitored for 30 s, and the number of reversals was determined. Each data point 
represents the mean number of reversals per second. The error bars represent the 
standard deviation of the mean, with n = 200. 
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Figure 3.4. Cells deficient in methylation exhibit severe changes in flagellar rotation 
upon repositioning Trp-209/Tyr-210. The same 200 HCB436 cells (∆cheRB) of each 
strain for which MRF values were determined (Figure 3.3) were analyzed as in Figure 
3.2. 
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producing WY+2 and WY+3 were also CW biased relative to cells expressing wild-type 

Tar, but a significant number of cells rotated their flagella only CCW. Such cells were 

also seen when the WY+2 and WY+3 proteins were expressed in strain VB13 (Figure 

3.2), although the fraction of CCW-only cells was lower. 

 

Methylation of mutant receptors in vivo 

To demonstrate that methylation restores a more-normal baseline-signaling state 

for the mutant receptors, we analyzed methylation in vivo. To create standards for 

comparison, we expressed the all Gln (QQQQ), all Glu (EEEE), and wild-type (QEQE) 

forms of Tar in strain RP3098 [∆flhD-flhB] (84). During SDS-PAGE, the QQQQ form 

migrates fastest, the EEEE form slowest, and the QEQE form at an intermediate rate 

(Figure 3.5). WY-1 and WY-2 exhibited increased levels of methylation in vivo that 

were apparently adequate to compensate completely for the inherent CCW bias 

associated with those receptors in the absence of adaptive methylation (compare Figures 

3.2 and 3.4). WY-3 Tar had equivalently elevated levels of methylation, but in this case 

only partial compensation for the inherent CCW bias (Figure 3.2) associated with the 

mutant receptor was seen.  

In contrast, WY+1 Tar had a very slight decrease in its methylation level 

compared to wild-type Tar, a finding consistent with the wild-type rotational bias of 

VB13 cells containing this protein. The methylation level observed with WY+2 and 

WY+3 Tar was significantly decreased relative to wild-type, but the CW bias of VB13 
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Figure 3.5. Extent of methylation of Trp/Tyr-repositioned Tar proteins. Transducer-
depleted VB13 cells expressing the wild-type or mutant Tar proteins from plasmid 
pRD200 were exposed to 100 mM aspartate or 10 mM Ni2+. The level of methylation 
affects the migration rate during SDS-PAGE, with the more-highly methylated forms 
moving faster. As migration standards, the EEEE, QEQE, and QQQQ forms of wild-
type Tar were loaded in the leftmost lane. The QEQE and QQQQ forms of Tar migrate 
like the doubly methylated and quadruply methylated Tar, respectively.  
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cells expressing either of those proteins demonstrated that adaptive demethylation 

cannot completely offset the inherent CW bias imposed by those two receptors.  

Apparently, none of the mutant receptors were locked in one conformation. The 

WY-3 to WY-1 receptors all showed increases in methylation in response to addition of 

100 mM aspartate (Figure 3.5), although the change with the WY-3 protein was slight. 

Similarly, all of these receptors became less methylated after addition of 10 mM of the 

Tar-mediated repellent Ni2+ (Figure 3.5). Little change was seen in the methylation state 

of the wild-type or WY+1, WY+2, and WY+3 proteins in response to Ni2+, but all four 

proteins became more substantially more methylated after addition of 100 mM aspartate. 

 

Mutant Tar receptors possess reduced sensitivity to aspartate. 

Based on the results described thus far, we proposed that the signaling state of 

Tar correlates with the position of the Trp-209/Tyr-210 pair at the cytoplasmic polar-

hydrophobic interface. Furthermore, the mutant receptors still react to either, or both, 

aspartate (attractant) and Ni2+ (repellent) (Figure 3.5). It has been suggested that 

methylation of MCPs in receptor/CheA/CheW ternary complexes causes adaptation by 

altering the gain between ligand binding and kinase inhibition without substantially 

altering ligand affinity or kinase stimulation (72). If this is true, receptors producing 

wild-type rotational phenotypes (Tar WY-2 to Tar WY+1) should exhibit different 

sensitivities to ligand in proportion to the extent of methylation required to maintain a 

wild-type rotational bias. 

69



To test this prediction, we expressed both wild-type and mutant receptors from 

plasmid pRD200 in VB13 (∆T) cells and analyzed chemotactic migration in motility 

agar containing aspartate (Figure 3.6A), maltose, or glycerol (data not shown). Glycerol 

is a non-attractant carbon source that allows for analysis of aerotaxis in the absence of 

any specific Tar chemoeffector. Repositioning of Trp-209/Tyr-210 invariably decreased 

the migration rate to a degree that correlated with the distance they were moved. This 

was true even for cells expressing Tar WY-2, Tar WY-1, and Tar WY+1, which possess 

similar baseline rotational biases (Figure 3.2) and MRFs (Figure 3.3). We conclude that 

when Trp-209/Trp-210 are at their original positions, the receptor possesses a level of 

methylation that allows optimal sensitivity to a gradient of attractant. We also examined 

the ability of the mutant receptors to stimulate CheA in the receptor-coupled in vitro 

phosphorylation assay (15, 43), which is performed in the absence of CheR and CheB. 

We isolated the inner membranes from RP3098 cells in which Tar was expressed from 

plasmid pRD100. All Tar in these membranes should be in the QEQE form in which it is 

initially translated. Tar constituted between 40 and 60 percent of total protein in all of 

the membrane preparations, demonstrating that all of the mutant proteins are reasonably 

stable. Receptor/CheA/CheW complexes containing wild-type Tar produced 7.8 ± 1.2 

pmol phospho-CheY·s-1 (Figure 3.6B). The WY-3 through WY-1 receptors all stimulated 

CheA to less than 10 percent of this value, a result consistent with displacement of TM2 

toward the cytoplasm and the absence of adaptive methylation. The WY+1 to WY+3 

receptors all retained the ability to stimulate CheA. The somewhat reduced activities of 
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Figure 3.6. Mutant receptors exhibit decreased ligand sensitivity. (A) The rate at 
which the swarm diameter increased, measured in mm/h, was analyzed for VB13 cells 
expressing wild-type or mutant receptors from plasmid pRD200. The error bars 
represent the standard deviation of the mean, with n = 3. (B) CheA kinase-stimulating 
activity was measured for membranes containing the wild-type and mutant Tar proteins. 
CheA activities were calculated by averaging the values obtained for at least three 
independent membrane preparations, each of which was assayed in triplicate. The error 
bars represent the standard deviation of the mean, with n = 9. All receptors were in the 
QEQE configuration. (C) Aspartate-inhibition of receptor-coupled kinase activity of 
receptor/CheA/CheW complexes containing wild-type (filled circles), WY+1 (filled 
squares), WY+2 (filled diamonds), and WY+3 (filled triangles) Tar proteins. Each data 
point represents the mean of six total reactions from three independently isolated 
receptor-containing vesicle preparations. The best-fit curves, represented in blue for the 
wild-type receptor and red for the mutants, were calculated using the cooperative Hill 
model. The error bars represent the standard deviation, with n = 3. 
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WY+2 and WY+3 Tar suggest that the transmembrane, HAMP-linker, and cytoplasmic 

domains may be “out of register,” somehow resulting in decreased CheA activity.  

We also examined the aspartate-induced inhibition of CheA activity for wild-

type and mutant receptors in vitro. The multisite Hill equation was used to draw a best-

fit curve to the data (Figure 3.6C). With wild-type-Tar, the aspartate Ki was 7 ± 1 µM, 

and the Hill coefficient was 1.8 ± 0.1, suggesting positive cooperativity. The WY+1 

through WY+3 receptors had aspartate Ki values between 10 and 100 µM. Most 

strikingly, the Hill coefficients were in the range 0.2 ± 0.1, suggesting that there was a 

strong negative cooperativity for aspartate inhibition. 

Methylation has been suggested to cause adaptation by altering the gain between 

ligand binding and kinase inhibition without altering ligand affinity or kinase stimulation 

(72). Therefore, we hypothesized that receptors producing similar kinase activities in 

vivo should exhibit different sensitivities to ligand in proportion to the extent of 

methylation required to maintain a wild-type rotational bias. Our results support this 

hypothesis and are consistent with the proposed mechanism of adaptive modification 

(55). VB13 (cheR+B+) cells expressing Tar WY-2 through WY+1 possess similar 

rotational biases (Figure 2) and MRFs (Figure 3.3) suggesting similar levels of in vivo 

kinase stimulation. However, these receptors require different levels of methylation to 

maintain wild-type rotational biases (Figure 3.5). As hypothesized, we discovered that 

the sensitivities to a gradient of attractant decreased (Figure 3.6A) as the extent of 

methylation (Figure 3.5) required to maintain wild-type levels of kinase stimulation in 

vivo (Figure 3.2) increased. In addition, analyses performed in the absence of adaptive 
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modification (Figures 3.6B and 3.6C), support its role in maintaining the relationship 

between level of methylation, receptor signaling state, and ligand sensitivity. These 

observations highlight the enormous restorative power of covalent receptor methylation 

and underscore the robustness of the adaptation machinery. 

 

Discussion 

Binding of aspartate to the periplasmic domain of the Tar chemoreceptor is 

proposed to displace the second transmembrane helix (TM2), which connects the 

periplasmic and cytoplasmic domains of the protein, a few ångströms toward the 

cytoplasm (38-44). This displacement repositions TM2 relative to the plane of the 

phospholipid bilayer. Therefore, interactions of TM2 with the membrane may be critical 

for setting the baseline signaling state of the receptor. Arginine-scanning mutagenesis of 

Salmonella Tar revealed the importance of aromatic residues within TM2. Substitution 

of Phe-189 or Trp-192 stabilized the “on”-state of Tar, while substitution of Trp-209 

promoted the “off” conformation (42). We previously showed that Trp-209 and, to a 

lesser extent, Tyr-210 help maintain the normal baseline-signaling state of E. coli Tar 

(43). Here, we extended our previous analysis by systematically moving the Trp-

209/Tyr-210 aromatic pair in single-residue steps to precisely modulate the signaling 

character of Tar. In the context of an intact chemotactic circuit (i.e., in cheR+B+ cells), 

this manipulation allows us to “tune” the signaling properties of Tar in a predictable 

manner. To our knowledge, this is the first time that protein-membrane interactions have 
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been harnessed to incrementally manipulate the signaling state of a transmembrane 

receptor over its full range of activities. 

A chemoreceptor must process several allosteric inputs, including ligand 

occupancy, extent of covalent methylation, and higher-order interactions with other 

chemoreceptors. The “frozen dynamic” model for modulation of CheA activity (28, 30) 

suggests that allosteric inputs change the supercoiling state of a four-helix bundle 

composed of a coiled-coil of two anti-parallel helices from each monomer. In the “off” 

(attractant-bound) state the receptor has more conformational freedom, whereas in the 

“on” (repellent-bound) state the four-helix bundle is less dynamic. The adaptation sub-

domain forms a four-helix bundle that is contiguous with the signaling sub-domain (65). 

The four Glu residues that are subject to covalent modification by the CheR 

methyltransferase may act as an “electrostatic switch.” Neutralization of the negative 

charges on these residues, corresponding to methylation in vivo, should decrease 

electrostatic repulsion between the two subunits of a homodimer, resulting in decreased 

mobility of the signaling domain and increased levels of kinase stimulation (Figure 

3.7A) (66, 67). The HAMP-linker connects TM2 to the adaptation and signaling sub-

domains. In some fashion, it must transduce vertical displacements of TM2 into changes 

in helical supercoiling of the cytoplasmic domain. 

The steady-state in vivo kinase activities, reflected in the rotational biases of 

tethered cells, associated with the mutant receptors are affected by allosteric 

contributions from both ligand-occupancy and adaptive methylation. Therefore, 

receptors with different, but still balanced, contributions of ligand-binding and adaptive 
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Figure 3.7. Adaptive methylation allows mutant Tar receptors to support similar 
baseline CheA activities. (A) The “frozen dynamic” model for modulation of CheA 
activity (28, 30) suggests that allosteric inputs change the supercoiling state of the 
signaling sub-domain, which forms a contiguous four-helix bundle with the adaptation 
sub-domain (67). Neutralization by methylation of negatively charged Glu residues 
within the adaptation sub-domain decreases electrostatic repulsion between the two 
subunits of a homodimer, resulting in decreased mobility of the signaling domain and 
increased levels of kinase stimulation (66). This degree of mobility is illustrated as 
differential spacing between the methylation domains within a Tar homodimer, with a 
larger spacing indicating higher mobility. In its adapted state, a receptor is in an 
intermediate signaling state, which leads to CW/CCW flagellar rotation (center). This 
state may represent equilibrium between fully “on” (left; exclusively CW flagellar 
rotation) and fully “off” (right; exclusively CCW flagellar rotation) states. Attractant 
binding may displace TM2 into the cytoplasm (right), as indicated by a downward-
facing arrow, to produce a localized membrane deformation. The polar regions of the 
lipid bilayer are represented in dark gray, whereas the hydrophobic core shown in light 
gray. The amphipathic aromatic residues near the periplasmic (Trp-192) and cytoplasmic 
(Trp-209/Tyr-210) ends of TM2 are represented as red boxes. Note that only one TM2 is 
shown as displaced to account for the asymmetry of attractant-induced signaling (54, 
55), although both of the HAMP linkers of the dimer are probably affected, as 
illustrated. Repellent binding may displace TM2 toward the periplasm as indicated by an 
upward-facing arrow. For sake of consistency, repellent signaling is also illustrated as 
asymmetric, although this has not been demonstrated experimentally. Adaptive 
methylation and demethylation are envisioned as returning attractant-bound and 
repellent-bound receptors, respectively, to the intermediate (CW/CCW) signaling state. 
(B) Repositioning of TM2 by moving the tandem Trp-209/Tyr-210 residues may 
generate conformational changes similar to those that occur when an attractant or a 
repellent interacts with the receptor. For relatively small displacements (WY-1 and -2, 
and WY+1), which may correspond to attractant-induced and repellent-induced 
conformational changes, respectively, the methylation system can compensate to restore 
nearly normal levels of CheA kinase stimulation in vivo. We suggest that repositioning 
the Trp-Tyr pair produces TM2 displacements that change the distance between of 
beginning of the HAMP domain and the inner leaflet of membrane. In the case of the 
plus-series receptor mutants, the distance decreases (as may happen in response to 
repellent binding), whereas within the minus-series of receptors this distance would 
increase (as is thought to happen in response to attractant binding). The displacements of 
TM2 in WY-3, WY+2, and WY+3 Tar are too large to be completely compensated by 
adaptive methylation or demethylation. Therefore, these receptors are strongly biased 
toward the “off” state (WY-3, right) or the “on” state (WY+2 and +3, left). Note that 
both TM2s are displaced within the dimer, unlike the asymmetrical displacement of 
TM2 by attractant or repellent binding as shown in (A). 
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methylation can possess similar activities (Figure 3.7B). Tar WY-2, Tar WY-1, wild-

type Tar, and Tar WY+1 produce similar rotational phenotypes (Figure 3.2) and mean 

reversal frequencies (Figure 3.3) in cheR+B+ cells, suggesting that they possess 

equivalent abilities to stimulate CheA in vivo. However, each of these receptors is in a 

different signaling state that reflects changes that are induced by repositioning TM2 and 

compensated by adaptive methylation (Figure 3.7B). WY-2 and WY-1 Tar exhibit 

increased levels of methylation (Figure 3.5). Conversely, WY+1 is less methylated 

(Figure 3.5). Even though tethered cheR+B+ cells expressing these mutant receptors have 

nearly identical CW/CCW ratios of flagellar rotation, the corresponding swimming cells 

show decreased sensitivity in the chemotaxis swarm assay (Figure 3.6A). 

Methylation of MCPs in receptor/CheA/CheW ternary complexes has been 

suggested to cause adaptation by altering the gain between ligand binding and kinase 

inhibition (72). Therefore, we predicted that the mutant receptors would possess 

differences in sensitivity to a gradient of ligand. The results (Figure 3.6A) support our 

hypothesis and suggest that when Trp-209/Trp-210 are at their original positions the 

receptor possesses a level of methylation in vivo that allows optimal sensitivity to a 

gradient of attractant. 

Tar WY-3 possesses the largest displacement of TM2 toward the cytoplasm and 

produces CCW-biased behavior even in cheR+B+ tethered cells (Figure 3.2). In this case, 

adaptive methylation cannot restore a normal CW/CCW rotational bias. The majority of 

tethered cells expressing WY+2 and WY+3 Tar exhibit a CW-biased rotational 

phenotype (Figure 3.2), suggesting that they also have a displacement of TM2, albeit in 
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the opposite direction, that cannot be fully compensated by demethylation. A 

subpopulation of cheR+B+ cells producing these proteins rotate their flagella exclusively 

CCW, suggesting that in some cells the population of mutant receptors is primarily in an 

inactive state. Presumably, larger displacements of TM2 toward the periplasm tend to 

distort Tar into a conformation in which it is unable to stimulate CheA. Our results 

clearly demonstrate that there are limits to the extent to which TM2 can be repositioned 

while retaining normal Tar function. The changes conferred by WY-3, WY+2, and 

WY+3 Tar cannot be compensated by the methylation/demethylation system, suggesting 

that in these receptors TM2 is displaced outside its normal range of motion (Figure 

3.7B). 

The rotational biases (Figure 3.4) and mean reversal frequencies (Figure 3.3) 

caused by repositioning the Trp/Tyr pair are not graded when the mutant receptors are 

expressed in ∆cheRB cells. The same is true when the mutant receptors are analyzed in 

the in vitro assay for receptor-coupled CheA kinase activity. In the latter assay, the WY-

1 through WY-3 receptors all stimulated CheA very weakly (Figure 3.6B). The WY+1 

through WY+3 receptors all stimulated CheA significantly, although Tar WY+2 and 

WY+3 were considerably less active than wild-type Tar. The most notable difference, 

however, was in the response to titration by aspartate. The aspartate Ki was somewhat 

higher for all three mutant proteins, but the biggest difference was in the apparent 

cooperativity of the inhibition. For wild-type Tar, the apparent Hill coefficient was 1.8, 

whereas for the WY+1 through WY+3 receptors the apparent Hill coefficient fell to 0.2 

(Figure 3.6C). We do not know whether the increased Ki and decreased cooperativity 
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reflect a lower affinity for aspartate, a partial decoupling of ligand binding and receptor 

inhibition, or some combination of these effects. The WY-1 to WY-3 receptors, which 

are inactive in their QEQE forms, may stimulate kinase activity when present in their 

QQQQ forms, which are equivalent to fully methylated receptors. Conversely, the EEEE 

forms of WY+1 to WY+3 Tar may exhibit a pattern of aspartate inhibition more like that 

of QEQE Tar. 

Several functional chimeric receptors have been made by fusing the periplasmic, 

transmembrane, and HAMP-linker domains of chemoreceptors to the signaling domains 

of sensor kinases (101, 102), and vice versa (103), suggesting that the mechanism of 

signal transduction is conserved for these related proteins. Thus, we predict that 

mutations in transmembrane sensor kinases analogous to the ones described here could 

generate a graded series of signaling outputs, without the complication of adaptive 

methylation. Chemoreceptors have also been modified to confer different ligand 

specificity (110, 111). A combinatorial approach has been used with the bacterial 

periplasmic binding protein (bPBP) superfamily (112) to create chemoreceptors that 

interact with a broad range of ligands that cannot bind directly to the transmembrane 

receptors. Modification of any of the allosteric contributions to signaling by such 

“rationally designed” proteins, including changes to TM2, the HAMP linker, and the 

adaptation sub-domain, can be used, in principle, to tune their activities. 

 The solution structure of the HAMP domain of a hyperthermophilic archae was 

recently determined (61) using nuclear magnetic resonance (NMR) spectroscopy. The 

authors suggest that helical rotations within a parallel coiled-coil domain are responsible 
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for signal propagation. They conclude that their results imply that a piston-type 

displacement of TM2 cannot be responsible for transmembrane signal transduction (38-

44). Everyone in the field of transmembrane signaling should be excited about the 

determination of the structure of a soluble HAMP domain. However, the HAMP domain 

used in this study was hardly typical, which may explain the authors’ success in the 

structural determination of one possible conformation. Furthermore, potential protein-

membrane interactions are absent in aqueous solution. We therefore advise caution in 

drawing sweeping conclusions from valuable, but necessarily limited, data. 
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CHAPTER IV 

GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 

Summary 

Membrane-spanning receptors detect extracellular stimuli and communicate that 

information to the cell interior. E. coli chemoreceptors use a small (~1-3Å) piston-like 

displacement of TM2 toward the cytoplasm to signal attractant binding (38-44). The 

research presented in this dissertation examines the role of protein-membrane 

interactions during transmembrane signaling by the aspartate chemoreceptor (Tar). It 

begins by examining the contribution of residues within TM2 to the signaling state of 

Tar. Residues at the cytoplasmic polar-hydrophobic interface of the cellular membrane 

(42), namely Trp-209 and Tyr-210, were found to be critical for maintenance of a 

normal baseline signaling state (Chapter II). Furthermore, repositioning this tandem pair 

in single-residue steps about their original position was shown to modulate the signaling 

state of Tar in an incremental manner (Chapter III). 

 

Trp-209 and Tyr-210 contribute to the baseline signaling state of Tar 

Phospholipid bilayers consist of polar, hydrophilic regions that flank a central 

nonpolar, hydrophobic core. To minimize energetically unfavorable protein-membrane 

interactions, specific amino acids occupy different positions within a transmembrane α 

helix. A transmembrane helix typically consists of a central core of aliphatic residues 

flanked by amphipathic aromatic residues at the polar-hydrophobic interface and 

charged residues at the membrane-water interface (79). TM2 of E. coli Tar conforms to 
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this consensus motif (Figure 1.4B) (42). During the initial study, I examined the 

contribution of Trp residues because synthetic peptides consisting of an Ala-Leu core of 

different lengths flanked by Trp (WALP peptides) (81) interact with phospholipid 

bilayers in a characteristic manner. The flanking Trp residues exhibit a very strong 

tendency to remain within the interfacial region regardless of the length of hydrophobic 

mismatch (64). The flanking Trp residues exhibit a very strong tendency to remain 

within the interfacial region regardless of the length of hydrophobic mismatch (64). 

Hydrophobic mismatch occurs when the length of the aliphathic residues within a 

transmembrane helix is different than the thickness of the hydrophobic core of the lipid 

bilayer it passes through. Previously, hydrophobic mismatch was thought to be the 

dominant element in determining how transmembrane helices interact with their lipid 

environment. This result demonstrates that Trp residues play a more significant role in 

positioning α helices within a membrane. 

I began by substituting alanyl residues for Trp-192 and Trp-209. Substitution of 

Trp-192 resulted in no change in the baseline signaling state of Tar. However, cells 

expressing Tar W209A possessed a baseline signaling state that was severely biased 

toward the kinase-inhibiting conformation (Figure 2.2 and Table 2.2). These results 

suggest that the W209A substitution may cause the C-terminus of TM2 to protrude 

farther into the cytoplasm, in a manner similar to the displacement observed upon 

binding of aspartate (Figure 2.4). By repositioning Trp-209 about its original position, 

we also determined that Tyr-210 plays an accessory role in maintaining TM2 position 

within the membrane. 
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Harnessing TM2-membrane interactions to modulate Tar signal output 

 I extended the initial analysis by systemically moving the Trp-209/Tyr-210 pair 

in single-residue steps in either direction. In the context of an intact chemotactic circuit, 

this manipulation allowed us to “tune” the signaling properties of Tar in a predictable 

manner. The result was the production of a series of transmembrane receptors with 

incrementally modulated signaling states spanning the entire range of possible receptor 

activities. 

 These results demonstrate that the steady-state in vivo kinase activities associated 

with mutant receptors are affected by the allosteric contribution from both ligand-

occupancy and adaptive methylation. Receptors with different, but still balanced, 

contributions of ligand-binding and adaptive methylation can possess similar in vivo 

activities (Figure 3.7B). Tar WY-2, Tar WY-1, wild-type Tar, and Tar WY+1 produce 

similar rotational phenotypes (Figure 3.2) and mean reversal frequencies (Figure 3.3) in 

cheR+B+ cells, suggesting that they possess equivalent abilities to stimulate CheA in 

vivo. However, each of these receptors is in a different signaling state that reflects 

changes that are induced by repositioning TM2 and compensated by adaptive 

methylation. WY-2 and WY-1 Tar exhibit increased levels of methylation relative to 

wild-type Tar (Figure 3.5). Conversely, WY+1 Tar is less methylated (Figure 3.5). The 

results also show that there are limits to the extent to which TM2 can be repositioned 

and still retain normal Tar function. The changes conferred by the WY-3, WY+2, and 

WY+3 repositionings cannot be compensated by the methylation/demethylation system, 
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suggesting that in these receptors TM2 is displaced outside its normal range of motion 

(Figure 3.7B). 

The results support a recent model for methylation of receptors in ternary 

complexes with CheA and CheW. Methylation has been suggested to cause adaptation 

by altering the gain between ligand binding and kinase inhibition (72). Even though 

tethered cheR+B+ cells expressing these mutant receptors have nearly identical CW/CCW 

ratios of flagellar rotation (Figure 3.2), the corresponding swimming cells show 

decreased sensitivity in the chemotaxis swarm assay (Figure 3.6A). Therefore, we 

identified an inverse correlation between the extent of adaptive methylation required to 

maintain a normal rotational bias in tethered cells and the sensitivity of cells expressing 

these receptors to a gradient of attractant.  

 

Examining signal processing by the HAMP domain 

One logical extension of this research would be to analyze HAMP domain 

function in mutant receptors with biased signaling states. HAMP domains transduce 

extracellular sensory input into an intracellular signaling response in over 7500 proteins, 

including chemoreceptors and sensor histidine kinases (61). Within most transmembrane 

receptors, these domains reside adjacent to the inner leaflet of the cytoplasmic 

membrane (45). HAMP domains consist of two amphipathic α helical sequences (AS1 

and AS2) connected by a short flexible linker (58-60). As discussed extensively in 

Chapter I, two models of the role of the HAMP linker in signal transduction have been 

proposed: a “helix interaction” model, involving peripheral association of AS1 with the 
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membrane (60) (Figure 1.5A), and a second implying changes in helical register within a 

parallel coiled-coil domain (61) (Figure 1.5B). It remains possible that both models are 

correct and that they are used within different classes of receptors. Another possibility is 

that the two models may represent alternative HAMP conformations within a single 

receptor. 

To determine whether these models reflect reality and to identify potential 

HAMP-membrane interactions, genes encoding mutant Tar proteins that possess 

intermediate swarm rates (Tar WY-2 and WY+1) could be used as templates for random 

mutagenesis of AS1. Rapid screening of cells in semisolid swarm agar should yield a 

variety of suppressing mutations that restore a wild-type swarm rate. If the “helix 

interaction” model is correct, residue substitutions within AS1 predicted to increase 

interaction with the inner leaflet of the membrane (introduction of aromatic, 

hydrophobic, or positively charged residues) would be expected to shift the equilibrium 

toward the kinase-stimulating state, whereas those predicted to reduce interaction with 

the membrane (introduction of polar or negatively-charged residues) would be expected 

to bias the equilibrium toward the kinase-inhibiting state. The position of the substituted 

residues should also be considered in the context of the solution structure of an archaeal 

HAMP domain (61). Using two mutant receptors that possess signaling states biased in 

opposite directions in this study may result in isolation of sets of suppressing mutations 

of opposite natures. This approach will require a large collection of suppressors for each 

type of mutant receptor. 
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Application to other two-component signaling pathways 

Another logical extension of this research would be to establish a method to 

examine a wide range of two-component signaling pathways controlled by 

transmembrane receptors. One prevalent type of environmental sensor in prokaryotic 

organisms is the two-component system (TCS). A recent survey of 145 prokaryotic 

genomes detected more than 4000 TCSs (113). TCSs regulate a diverse array of 

virulence factors (114, 115). A canonical TCS consists of a membrane-spanning sensor 

histidine kinase (SHK) and a cytoplasmic response regulator (RR). Understanding two-

component signaling pathways that lead to enhanced pathogenicity is essential for 

understanding complex host-pathogen interactions and could result in the detection of 

previously unidentified therapeutic targets. The research presented within this 

dissertation demonstrates that moving the tandem Trp/Tyr residues near the cytoplasmic 

end of TM2 can be used to “tune” the signal output of Tar in predictable steps (44). 

Aromatic residues are located near the cytoplasmic end of TM2 within many SHKs (43) 

(Figure 2.6), in which they may control the signaling state of the SHK. 

A four-tiered approach could be used to establish a method to identify and 

harness SHK-membrane interactions to modulate SHK output in a controlled manner. 

Directly manipulating SHK output would provide a technique to study two-component 

signaling systems without knowing the precise signal-eliciting ligand. First, potential 

SHK-membrane interactions could be examined in a few select SHKs. Two of the most 

well-characterized, EnvZ and NarX, are predicted (using TMHMM; 116, 117) to share a 

distribution of charge and aromaticity in TM2 that is similar to that in Tar (42). If the 
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mechanism of transmembrane signaling is conserved between SHKs and 

chemoreceptors, repositioning aromatic residues about the cytoplasmic polar-

hydrophobic interface within EnvZ and NarX may modulate their signaling output in a 

manner similar to what was observed with Tar. Previously described (118, 119) 

transcriptional and translational reporter systems could be used to monitor changes in 

signal output upon repositioning of these residues in EnvZ (Trp-176/Phe-178) and NarX 

(Trp-173). If no correlation is observed, alanine-scanning mutagenesis could be used to 

determine whether neighboring residues within TM2 contribute to the baseline signal 

output of EnvZ and NarX.  

After important TM2-membrane interactions have been identified, functional 

Tar-SHK chimeras could be created. Multiple fusion sites would need to be investigated 

to elucidate the relationship between TM2 and the HAMP domain and to maximize the 

probability of creating a fully functional Tar-NarX chimera (Figure 4.1). The fusion joint 

in the first chimera should be prior to TM2. This region should tolerate substitutions, and 

the distance between TM2 and the HAMP domain of NarX will remain constant. The 

second fusion joint should be after the conserved Arg residue at the cytoplasmic end of 

TM2. This fusion may change the distance between the end of Tar TM2 and the 

beginning of NarX AS1. The final fusion joint should be C-terminal to the HAMP 

domain, so that the hybrid contains the entire Tar HAMP domain joined to the remainder 

of the cytoplasmic portion of NarX. The activities supported by NarX and Tar-NarX 

chimeras in the absence and presence of nitrate and aspartate, respectively, will define 

basal and ligand-induced signal outputs. This comparison may determine whether the 
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Figure 4.1. Chimeric Tar-NarX receptors. Tar and NarX are depicted in white and 
gray, respectively. From left to right, the black boxes within Tar or the diagonally-
striped boxes within NarX represent TM1, TM2, AS1, and AS2. Chimera 1 contains the 
TM2 and HAMP domains from NarX. The second chimeric protein contains TM2 of Tar 
and the HAMP domain of NarX. The final chimera possesses the TM2 and HAMP 
domain of Tar. 
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displacement of TM2 produced by aspartate is similar to that produced by nitrate and 

which combination of TM2 and HAMP domains should be considered for other Tar-

SHK chimeras. 

Next, the output of Tar-SHK chimeras could be modulated by altering the 

interactions between TM2 and the membrane. Previous results with a NarX-Tar chimera 

(Nart; 103) suggest chimeric proteins similar to those proposed here retain both the 

essential properties of their individual domains and the ability of the domains to 

conformationally communicate. Nart was shown to retain a correlation between liagnd-

occupancy and signal output while retaining sensitivity to ligand. Based on these results, 

a total of three Tar-NarX and three Tar-EnvZ chimeras should be studied: an “off” 

chimera that supports minimal RR phosphorylation; a “baseline” chimera with 

intermediate activity; and an “on” chimera that produces maximal RR phosphorylation. 

The signal outputs of these proteins could be analyzed to determine the feasibility of 

introducing the C-termini of other SHKs into the system. The functional interactions 

between the SHKs and RRs of E. coli have been characterized in an in vitro 

phosphorylation assay (120) that provides enough information to create reporter 

constructs for all SHKs. This systems-level analysis would categorize the mechanism of 

transmembrane signaling by each SHK into one of three classes: SHKs that transduce 

signal by TM2 displacement toward the cytoplasm; those that signal by TM2 

displacement toward the periplasm; and those that utilize an entirely different 

mechanism such as rotation of TM2 relative to TM1 (121). 
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The final objective of this research would be to couple chimeric expression 

systems with transcriptional profiling to identify the targets of TCSs in any organism. 

Transcriptional profiles of E. coli cells expressing an “off” chimera could be compared 

with those expressing an “on” chimera to determine which genes are subject to 

regulation upon changes in SHK output. One advantage of this approach would be that 

the signal-eliciting ligand would not have to be known. After comparing the differences 

in output among cells expressing these receptors, aspartate could be used to modulate the 

activity of the intermediate (or “baseline”) Tar-SHK chimera to confirm that the 

differences are dependent on ligand-induced changes in SHK signal output. 

 

Predicting dynamic transmembrane-helix movements in silico 

 A final application of this research would involve a synergistic approach using 

experimental and computational techniques. As described above, creation and analysis 

of Tar-SHK chimeras with harnessed TM2-membrane interactions may classify 

transmembrane signaling by SHKs into one of three groups: a displacement of TM2 

toward the periplasm; a displacement toward the cytoplasm; or using a different 

mechanism (i.e. rotation of TM2).  

 Recently, a “biological” hydrophobicity scale was published (122) that 

approximated the propensity for each amino acyl residue to promote insertion of a poly-

Ala α helix into a biological membrane. The apparent free energies of membrane 

insertion were calculated for all 20 amino acyl residues at different positions. These free 

energies were found to be additive; therefore, a computational analysis of the primary 
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sequence within and flanking TM2 could be compared to the experimentally determined 

parameters of mechanism of transmembrane signaling. One would expect different 

residues to be present at different positions within a membrane-spanning helix based on 

the mechanism employed. For example, an SHK that conveys the presence of 

extracellular ligand by rotation might be predicted to have a greater resistance to 

removal from the membrane when compared to an SHK that signals by displacement. 

   These experiments would provide a conceptual framework for predicting 

transmembrane helix movement within intact proteins. The ability to these movements 

would be very useful for analyzing SHKs, or other proteins, with dynamic 

transmembrane helices. 

 

Overall application of this research 

 The experiments suggested here describe a potential method for manipulation of 

transmembrane proteins. A systematic method for engineering the signaling parameters 

of fully functional transmembrane receptors (e.g. SHKs) would have broad implications 

in research involving two-component signaling pathways. This approach could also be 

used to modulate the signaling parameters of novel biosensors that use SHKs as protein 

scaffolds (111, 112). 
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