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ABSTRACT

Geometry and Constructions of Finite Frames.

(May 2007)

Nathaniel Kirk Strawn, B.S., Texas A&M University

Chair of Advisory Committee: Kenneth Dykema

Finite frames are special collections of vectors utilized in Harmonic Analysis and Dig-

ital Signal Processing. In this thesis, geometric aspects and construction techniques

are considered for the family of k-vector frames in Fn = Rn or Cn sharing a fixed

frame operator (denoted Fk(E,Fn), where E is the Hermitian positive definite frame

operator), and also the subfamily of this family obtained by fixing a list of vector

lengths (denoted Fk
µ(E,Fn), where µ is the list of lengths).

The family Fk(E,Fn) is shown to be diffeomorphic to the Stiefel manifold Vn(Fk),

and Fk
µ(E,Fn) is shown to be a smooth manifold if the list of vector lengths µ sat-

isfy certain conditions. Calculations for the dimensions of these manifolds are also

performed. Finally, a new construction technique is detailed for frames in Fk(E,Fn)

and Fk
µ(E,Fn).
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1. INTRODUCTION

A finite frame is essentially a (possibly overcomplete) basis for a vector space. Frame

Theory is an indispensable tool for numerous pursuits including Harmonic Analysis,

Internet Coding, Digital Signal Processing, and Quantum Theory to name only a

few. This document explores geometric aspects of the family of k-member real and

complex frames that share a fixed frame operator, as well as the subfamily obtained by

specifying a list of vector lengths for frames in this family. These families are denoted

Fk(E,Fn) and Fk
µ(E,Fn) respectively. Also, encyclopedic construction techniques

are detailed for both of these families.

In the Geometry section of this thesis, a diffeomorphism between Fk(E,Fn) and

the Stiefel manifold Vn(Fk) is produced when n ≤ k. An alternate proof elucidat-

ing the manifold structure of Fk(E,Fn) is also produced, and an adaptation of the

technique utilized in this proof demonstrates that Fk
µ(E,Fn) is a manifold when the

list of lengths µ satisfy certain constraints imposed by E. These results generalize a

number of results obtained in Dykema et al. [6].

Constructions for frames have been considered in a number of settings. A con-

structive existence proof for frames in Fk
µ(E,Fn) was first demonstrated by Cassaza

and Leon [2], Dhillon et al. [4, 5] detail a number of methods for computing frames

in Fk
µ(E,Fn), and the frame potential introduced by Benedetto and Fickus [1] pro-

vides method for computing tight and near tight frames from a given vector sequence.

The available methods for constructing arbitrary frames in Fk
µ(E,Fn) are either ex-

haustive in scope but indiscriminant with respect to vector position, or precise with

The journal model is Applied and Computational Harmonic Analysis.
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respect vector position but narrow in scope. In this thesis, an encyclopedic con-

struction method is detailed. Moreover, this method allows one to hand pick frame

vectors. This does not come without it’s caveats, as the process is computationally

expensive. Mitigating the computational expenses of this construction technique is

also addressed.

This paragraph discusses the organization of this thesis. In the second section,

preliminary notions and notation from Matrix Analysis, Frame Theory, and Differ-

ential Geometry are presented. The results summarized above are then presented in

sections three and four, corresponding to geometry and construction results. Section

five concludes the thesis by summarizing the results and describing avenues of re-

search opened up, but not explored by this thesis. Finally, the Appendix contains all

of the MATLAB code produced by the author.



3

2. PRELIMINARIES

This section details general notational conventions and pertinent results from Matrix

Analysis, Frame Theory, and elementary Differential Geometry. Throughout this

thesis, [n] is used to denote the set {1, . . . , n}.

2.1. Matrix Analysis

What follows is a survey of basic notions and notation from Matrix Analysis. The

main reference for this section is Horn and Johnson [8].

For positive integers n and k, Mn×k(F), Mn(F), F ∗, and Hn(F) denote the n by

k matrices with entries in the field F = R or C, the n by n matrices, the Hermitian

adjoint of a matrix F ∈ Mn×k(F), and the set of all self adjoint n by n matrices

respectively. Finally, In denotes the n by n identity matrix.

For a given H ∈ Hn(F), it is a standard result that H = UΛU∗ where U is such

that UU∗ = In and Λ = diag(λ1, . . . , λn). If the eigenvalues {λi}n
i=1 are ordered so

that λ1 ≥ λ2 ≥ · · · ≥ λn, then λi(H) = λi and λ(H) = {λi(H)}n
i=1 is said to be

spectrum of H.

Given a matrix E ∈ Mn(F) such that 0 ≤ 〈Ex, x〉 for all x ∈ Fn, E is said to

be positive semidefinite and one writes 0 ¹ E. When this inequality is strict for all

x ∈ Fn, E is said to be positive definite and one writes 0 ≺ E. Futhermore, the

relations E ¹ F and E ≺ F are written whenever 0 ¹ F − E and 0 ≺ F − E.

Let Rn
+≥ denote the set of all strictly positive non-increasing sequences of real

numbers with n entries. Note that E is positive definite if and only if λ(E) ∈ Rn
+≥.
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For two sequences λ, µ ∈ Rn
+≥, λ is said to majorize µ if

m∑
i=1

µi ≤
m∑

i=1

λi (2.1.1)

for all m ∈ [n − 1] and
∑n

i=1 µi =
∑n

i=1 λi. If λ majorizes µ, we write µ ¹ λ. A

useful generalization of majorization is n-majorization (see Dahl and Margot [3]). A

sequence λ ∈ Rn
+≥ is said to n-majorize a sequence µ ∈ Rk

+≥ if (2.1.1) holds for all

m ∈ [n− 1] and
∑k

i=1 µi =
∑n

i=1 λi. When λ n-majorizes µ, one writes µ ¹n λ.

The trace of a matrix E ∈ Mn(F) is the sum of the diagonal entries of E. The

trace of a matrix E is denoted tr(E). Corollary 2.5 of Cassaza and Leon [2] will be

utilized extensively in the fourth section, so we state it here for reference.

Proposition 2.1.1. Suppose E ∈ Hn(F) is such that λ(E) ∈ Rn
+≥ and further sup-

pose that P is a rank m projection on Fn. Then

tr(PEP ) ≤
m∑

i=1

λi(E).

2.2. Frame Theory

A frame is a collection of vectors F = {fi}i∈I in some Hilbert space H satisfying

A‖x‖2 ≤
∑
i∈I

|〈x, fi〉|2 ≤ B‖x‖2

for all x ∈ H, where 0 < A ≤ B are constants. When such constants exist, the

supremum over applicable A and infimum over applicable B produce the frame bounds

of F . If the index set I is finite, then H must be finite dimensional and it is trivial

that the members of F span H.

Throughout this document, H is finite dimensional and any frame will contain

only finitely many members. Under these circumstances a frame may be identified

with the matrix F = [f1 · · · fk] ∈ Mn×k(F), where the columns of F are k vectors
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that form a frame for Fn and F = R or C. As an operator from Fk to Fn, the matrix

F is called the synthesis operator and its Hermitian adjoint F ∗ is called the analysis

operator. Furthermore, the n by n matrix given by

E = FF ∗ =
k∑

i=1

fif
∗
i

is called the frame operator of F . The rightmost expression in this equation harkens

back to the rank one decompositions of Kornelson and Larson [11]. Note that the

frame operator of a frame F is always Hermitian positive definite. The maps Φk
n :

Mn×k(F) → Hn(F), F 7→ FF ∗ receive a great deal of attention in the third section,

so these are called the frame operator maps and the indices are omitted when there

is no danger of ambiguity.

Given a positive definite E ∈ Hn(F), define Fk(E,Fn) ⊂ Mn×k(F) to be the

family of frames in Fn with k members and frame operator E. It is worth noting

that (Φk
n)−1({E}) = Fk(E,Fn) whenever E ∈ Hn(F) is positive definite. For any

µ ∈ Rk
+≥, denote the embedded product of spheres

Sk
µ(Fn) = {F = [f1 · · · fk] ∈ Mn×k(F)|‖fi‖2 = µi,∀i ∈ [k]},

Whenever E ∈ Hn(F) is positive definite and µ ∈ Rk
+≥, define Fk

µ(E,Fn) = Fk(E,Fn)∩
Sk

µ(Fn). Moreover, by restricting the domain of the frame operator map Φk
n to Sk

µ(Fn),

one obtains (Φk
n)−1({E}) = Fk

µ(E,Fn) whenever E is positive definite.

Theorem 2.1 of Cassaza and Leon [2] is an essential ingredient throughout this

paper, so a translated version shall be presented as a reference for the reader.

Theorem 2.2.1. (Cassaza and Leon) Let E ∈ Hn(F) be such that λ(E) ∈ Rn
+≥ and

suppose that
∑k

i=1 µi =
∑n

i=1 λi(E) for some µ ∈ Rk
+≥ with k ≥ n. Then Fk

µ(E,Fn)

is nonempty if and only if µ ¹n λ.
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2.3. Basic Differential Geometry

It will be assumed that the reader is familiar with the basic theory of C∞-manifolds.

The notions pertinent to our discussion are tangent spaces, smooth maps between

manifolds, and regular points and values of smooth maps between manifolds. For an

elementary overview of these notions, see Milnor [12]. In particular, the following

proposition is used in the second section.

Proposition 2.3.1. If f : Mm → N n is a smooth map between manifolds of dimen-

sion m ≥ n and y ∈ N is a regular value of f , then the set f−1({y}) is a smooth

submanifold of M with dimension m− n.

The families of all subsets of in Fk composed of n orthonormal vectors (Stiefel

manifolds) contribute to the disussion in Section 2. Concretely, these are the sets

Vn(Fk) = {F ∈ Mk×n(F)|F ∗F = In}.
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3. GEOMETRY

This section begins with the proof that the family of k-member frames sharing a given

frame operator is a manifold. The main result of this chapter, however, is that the

intersection of this manifold with a product of spheres gives rise to a manifold when

certain restrictions are imposed upon the radii of the spheres. Explicit calculations

for the dimensions of these manifolds are also performed.

3.1. The Manifold Structure of Fk(E,Fn)

In this subsection, the manifold structure of Fk(E,Fn) is elucidated. First, it will

be shown that Fk(E,Fn) may be identified with the Stiefel manifold Vn(Fk). In the

sequel, a constructive proof is presented.

3.1.1. Identification with Stiefel manifolds and remarks

A brief remark by Dhillon et al. [5] drew a connection between Stiefel manifolds and

frames. Indeed, it is a trivial observation that the map F 7→ √
EF ∗ is a diffeomor-

phism between the Stiefel manifold Vn(Fk) and Fk(E,Fn) whenever E is Hermitian

and positive definite. The immediate benefit of this connection is that efficient non-

linear optimization techniques may be brought to bear on these manifolds. The

dissertation of S. Smith [13] details these techniques.

3.1.2. An alternate, generalizable proof

This proof might seem superfluous in light of the previous observation. Nevertheless,

it generalizes to the case Fk
µ(E,Fn).
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Proposition 3.1.1. Let n ≤ k be integers and suppose that Er ∈ Hn(R) and Ec ∈
Hn(C) are both positive definite. Then

(i) Fk(Er,Rn) is a smooth submanifold of Mn×k(R) with dimension

dim
(Fk(Er,Rn)

)
= nk −

(
n + 1

2

)
;

(ii) Fk(Ec,Cn) is a smooth submanifold of Mn×k(C) with dimension

dim
(Fk(Ec,Cn)

)
= 2nk −

(
n + 1

2

)
−

(
n

2

)
.

Proof. First consider the complex case. Set E = Ec and let Φk
n : Mn×k(C) → Hn(C)

be the frame operator map. For the remainder of the proof, this map is just Φ. It is

immediately clear that Fk(E,Cn) = Φ−1({E}). Note that Mn×k(C) and Hn(C) are

smooth manifolds of dimension 2nk and
(

n+1
2

)
+

(
n
2

)
respectively, so E a regular value

of Φ implies the result by Proposition 2.3.1.

Let F = [f1 · · · fk] be such that Φ(F ) = E. For G = [g1 · · · gn] ∈ Mn×k(C) ≡
TFMn×k(C), we have that α(0) = F and α′(0) = G when α(t) = F+tG, so application

of the differential map yields

dΦF (G) =
d

dt

∣∣∣∣
t=0

k∑
i=1

(fi + tgi)(fi + tgi)
∗

=
d

dt

∣∣∣∣
t=0

k∑
i=1

fif
∗
i + t(fig

∗
i + gif

∗
i ) + t2gig

∗
i

=
k∑

i=1

fig
∗
i + gif

∗
i .
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Since F is a frame, gi =
∑k

j=1 γijfj for some choice of γij, so

dΦF (G) =
k∑

i=1

fi

(
k∑

j=1

γijfj

)∗

+

(
k∑

j=1

γijfj

)
f ∗i

=
k∑

i=1

k∑
j=1

γijfif
∗
j + γijfjf

∗
i

=
k∑

i=1

(γii + γii)fif
∗
i

+
∑

1≤i<j≤k

(γji + γij)fif
∗
j + (γji + γij)fjf

∗
i . (3.1.1)

Now consider a given H ∈ TEHn(C) ≡ Hn(C). If {ei}n
i=1 is the canonical orthonormal

basis of Cn, then H has an expansion

H =
n∑

i=1

hiieie
∗
i +

∑
1≤i<j≤n

(
hijeie

∗
j + hijeje

∗
i

)

where hii is real for all i ∈ [n]. Since F is a frame, it spans Cn and hence ei =
∑k

j=1 ej
ifj

for some choice of coefficients ej
i whenever i ∈ [n]. {fif

∗
j }(i,j)∈[n]2 . A computation then

yields

H =
n∑

i=1

hii




k∑

j=1

ej
ifj







k∑

j=1

ej
ifj



∗

+
∑

1≤i<j≤n

hij

(
k∑

l=1

el
ifl

)(
k∑

l=1

el
jfl

)∗

+
∑

1≤i<j≤n

hij

(
k∑

l=1

el
jfl

)(
k∑

l=1

el
ifl

)∗

=
k∑

i=1




n∑

j=1

hjje
i
je

i
j


 fif

∗
i +

k∑

i=1


 ∑

1≤j<l≤n

hjle
i
je

i
l + hjle

i
le

i
j


 fif

∗
i

+
∑

1≤i<j≤k

((
n∑

l=1

hlle
i
le

j
l

)
fif

∗
j +

(
n∑

l=1

hlle
j
l e

i
l

)
fjf

∗
i

)

+
∑

1≤i<j≤k





 ∑

1≤l<m≤n

hlmei
le

j
m


 fif

∗
j +


 ∑

1≤l<m≤n

hlmej
l e

i
m


 fjf

∗
i




+
∑

1≤i<j≤k





 ∑

1≤l<m≤n

hlmei
mej

l


 fif

∗
j +


 ∑

1≤l<m≤n

hlmej
mei

l


 fjf

∗
i


 .
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This simplifies to H =
∑k

i=1 h′iifif
∗
i +

∑
1≤i<j≤k h′ijfif

∗
j +

∑
1≤i<j≤k h′ijfjf

∗
i where

h′ii =

[(
n∑

j=1

hjj|ei
j|2

)
+ 2

( ∑

1≤j<l≤n

<
(
hjle

i
je

i
l

))]

for all i ∈ [k] and

h′ij =

[(
n∑

l=1

hlle
i
le

j
l

)
+

( ∑

1≤l<m≤n

hlmei
le

j
m + hlmei

mej
l

)]

for all i, j ∈ [k] with i < j. Noting that h′ii is real, we may simply assume that

H =
k∑

i=1

hiifif
∗
i +

∑

1≤i<j≤k

hijfif
∗
j + hijfjf

∗
i

where hii is real for each i ∈ [k]. Choosing G so that γji + γij = hij and γii + γii = hii

for all i, j ∈ [k] then implies dΦF (G) = H. H and F were arbitrary, so dΦF is onto

for all F and hence E is a regular value of Φ. Thus, the result holds in the complex

case. The real case follows from a similar proof with marginally less complexity.

3.2. The Manifold Structure of Fk
µ(E,Fn)

In this subsection, it is shown that Fk
µ(E,Fn) is a manifold under suitable condi-

tions. First, redistributions on node-weighted graphs are introduced to provide some

essential machinery. After defining the notion of orthodecomposability, the results

concerning redistributions are applied to show that a frame F is a regular point of

the (restricted) map Φ if and only if F is not orthodecomposable. Finally, char-

acterizations are provided for all pairs µ and E such that Fk
µ(E,Fn) contains no

orthodecomposable frame.
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3.2.1. Redistributions on a node-weighted graph

Definition 3.2.1. Suppose that Γ = (V,E) is a loopless oriented graph and that V

is finite. A skew symmetric function δ : V × V → R is called a redistribution flow

on Γ if δ(vα, vβ) = 0 whenever (vα, vβ) 6∈ E and (vβ, vα) 6∈ E. If Γ is equipped with

a node weighting function w : V → R, any redistribution flow induces a new node

weighting function by setting

wδ(v) = w(v) +
∑
vα∈V

δ(vα, v)

for all v ∈ V . Such a wδ is called a redistribution of w on Γ.

Redistribution flows are very intuitive objects. Given a loopless oriented graph Γ,

one may imagine that the vertices are asset traders and that the edges are transaction

interfaces. If δ is a redistribution flow on Γ, then δ(vα, vβ) can represent the net

amount of assets passed from the trader vα to the trader vβ over the course of a day.

Of course, one should expect that the amount of assests passed from trader vβ to vα

should be negative, and skew symmetry of δ ensures that this occurs. For a node

weighting function w on Γ, we may think of a given node’s weight as the respective

trader’s assets before a day’s trading commences. The redistribution wδ then reflects

the new distribution of assets among the traders at the end of the day.

It is clear that redistribution flows induce redistributions, but what range of node

weighting functions arise in this manner? Intuitively, a redistribution should conserve

the sum of initial weights. Indeed,
∑

vα∈V wδ(vα) =
∑

vα∈V w(vα) follows immediately

from the constraints imposed upon a redistribution flow δ and its corresponding

redistribution wδ. If w′ is some node weighting function on a loopless, oriented,

connected Γ with some node weighting function w, then the conservation condition

is also a sufficient condition for the existence of a redistribution flow δ such that
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w′ = wδ. Given a w′ satisfying the conservation condition imposed by w, we will

present an algorithm for constructing a redistribution flow δ so that w′ = wδ. The

process is simple, but notation obfuscates the simplicity. To aid comprehension, we

present an example.

Example 3.2.2. Consider the following connected graph Γ. A rooted tree is obtained

from Γ by finding a spanning tree T and declaring v1 to be the root of this tree. This

is shown in Figure 1.

Γ:

◦v1

¡
¡

¡¡ª◦v2 - ?◦v3 -

@
@

@@R◦v4

¡
¡

¡¡ª?◦v5 - ?◦v6 -

@
@

@@R?◦v7

T :

◦v1

¡
¡

¡¡ª◦v2 ?◦v3

@
@

@@R◦v4

¡
¡

¡¡ª◦v5 ?◦v6

@
@

@@R◦v7

Fig. 1. Extracting a rooted tree from Γ.

Now suppose that w is a node weighting function on Γ and that w′ satisfies

∑
vi∈V

w′(vi) =
∑
vi∈V

w(vi).

We will use T = (V, ET ) to inductively define a redistribution flow δ so that w′ = wδ.

First, set δ(vi, vj) = 0 for all i and j such that (vi, vj) 6∈ ET and (vj, vi) 6∈ ET .

We now turn our attention to the youngest generation of nodes in the tree, W2 =

{v5, v6, v7}. Set δ(v3, vi) = w′(vi) − w(vi) for vi ∈ W2. Since no other vertices are
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adjacent to any vi ∈ W2, this assignment of values immediately implies

w′(vi) = w(vi) +
7∑

j=1

δ(vj, vi)

for all vi ∈ W2. We now consider the first generation nodes W1 = {v2, v3, v4}. Setting

δ(v1, vi) = w′(vi)−w(vi) ensures that the above equation is also satisfied for i = 2, 4.

However, there is now a net flow that has accumulated at v3, so we must set

δ(v1, v3) = w′(v3)− w(v3)−
∑

vi∈W2

δ(vi, v3)

to ensure that the equation holds when i = 3. At this point, δ has been completely

defined but we must still verify that the equation holds for i = 1. A computation

yields

w(v1) +
7∑

i=1

δ(vi, v1) = w(v1) +
∑

vi∈W1

δ(vi, v1) = w(v1)−
∑

vi∈W1

δ(v1, vi)

= w(v1)−
∑

vi∈W1

(
w′(vi)− w(vi)−

7∑
j=2

δ(vj, vi)

)

=
4∑

i=1

w(vi)−
4∑

i=2

w′(vi) +
∑

vi∈W2

δ(vi, v3)

=
4∑

i=1

w(vi)−
4∑

i=2

w′(vi)−
∑

vi∈W2

δ(v3, vi)

=
4∑

i=1

w(vi)−
4∑

i=2

w′(vi)−
∑

vi∈W2

w′(vi)− w(vi)

=
7∑

i=1

w(vi)−
7∑

i=2

w′(vi)

= w′(v1),

and so we may conclude that w′ = wδ. Note how the conservation of total weight was

utilized at the very last equality.
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We now proceed to demonstrate this algorithm in full generality.

Lemma 3.2.3. Let Γ and w satisfy the hypothesis of Definition 3.2.1. All functions

w′ : V → R satisfying
∑

i∈V w′(i) =
∑

i∈V w(i) are redistributions of w on Γ if and

only if Γ is connected.

Proof. If Γ is connected and finite, then it contains a finite spanning tree T = (V, ET ).

Convert this to a rooted tree by distinguishing some v0 ∈ V . Let Wk denote the kth-

generation descendants of the root v0, set Vk =
⋃k

i=0 Wi and V ∗
k = Vk \ {v0}, and let

n be the maximum depth of the tree. Note that each vα ∈ V has exactly one parent

when vα 6= v0. This parent will be denoted vβα .

Choose an arbitrary w′ satisfying the hypothesis. We will define the redistribu-

tion flow corresponding to w′ via the rooted tree T . First, set δ(vα, vβ) = 0 for all edges

(vα, vβ) that are not contained in ET . For all vα ∈ Wn, set δ(vβα , vα) = w′(vα)−w(vα),

and impose skew-symmetry. Next, for all vα ∈ Wn−1, set

δ(vβα , vα) = w′(vα)− w(vα)−
∑

vβ∈Wn

δ(vβ, vα).

Imposing skew-symmetry again and continuing this process inductively yields

δ(vβα , vα) = w′(vα)− w(vα)−
∑

vβ∈Wk+1

δ(vβ, vα)

for all vα ∈ Wk and all k ∈ [n]. By construction, w′(vα) = w(vα) +
∑

vβ∈V δ(vβ, vα)

for all vα ∈ Wk and all k ∈ [n]. All that remains is to show that this holds for v0. We
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have that

w(v0) +
∑
vα∈V

δ(vα, v0) = w(v0) +
∑

vα∈W1

δ(vα, v0) = w(v0)−
∑

vα∈W1

δ(vα, v0)

= w(v0) +
∑

vα∈W1


w(vα)− w′(vα) +

∑
vβ∈W2

δ(vβ, vα)




=
∑

vα∈V1

w(vα)−
∑

vα∈V ∗1

w′(vα) +
∑

vα∈W1

∑
vβ∈W2

δ(vβ, vα)

=
∑

vα∈V1

w(vα)−
∑

vα∈V ∗1

w′(vα)−
∑

vα∈W2

δ(vβα , vα).

Applying induction produces

w(v0) +
∑
vα∈V

δ(vα, v0) =
∑

vα∈Vn−1

w(vα)−
∑

vα∈V ∗n−1

w′(vα)−
∑

vα∈Wn

δ(vβα , vα)

=
∑

vα∈Vn−1

w(vα)−
∑

vα∈V ∗n−1

w′(vα)−
∑

vα∈Wn

(w(vα)− w′(vα))

=
∑
vα∈V

w(vα)−
∑

vα∈V \{v0}
w′(vα)

= w′(v0),

where the last equality holds by hypothesis. This line of reasoning shows that con-

nectivity of Γ is a sufficient condition.

Necessity will follow by demonstration of the contrapositive. Suppose, now, that

Γ is not connected. Then Γ contains two nonempty disjoint connected components,

Γi = (Vi, Ei) for i = 1, 2. If w′ and δ constitute a network redistribution of w on Γ,

then skew-symmetry implies
∑

vα∈Vi

∑
vβ∈Vi

δ(vβ, vα) = 0, and so disjointness implies

∑
vα∈Vi

w′(vα) =
∑

vα∈Vi

w(vα) +
∑

vα∈Vi

∑
vβ∈V

δ(vβ, vα)

=
∑

vα∈Vi

w(vα) +
∑

vα∈Vi

∑
vβ∈Vi

δ(vβ, vα)

=
∑

vα∈Vi

w(vα)
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for i = 1, 2. Thus, any admissible redistribution must conserve the total weight on

each disjoint connected component. Choose v1 ∈ V1 and v2 ∈ V2. Define w′ by

setting w′(vα) = w(vα) for all vα 6= v1 and vα 6= v2. Set w′(v1) = w(v1) + 1 and

w′(v2) = w(v2) − 1. Clearly, w′ satisfies the hypothesis but fails to conserve the

weight on the disjoint components. Consequently, w′ cannot be a redistribution of w

on Γ and the connectivity’s necessity follows.

3.2.2. Orthodecomposablity and regular points of Φ

Capitalizing on the previous technical lemma, a connection is drawn between the no-

tion of orthodecomposability introduced by Dykema et al. [6] and the regular points

of the frame operator map. First, we introduce the general definition of orthodecom-

posability.

Definition 3.2.4. Let F = [fi]i∈I be a frame for some Hilbert space H and suppose

that none of the frame vectors are zero. We say F is orthodecomposable if there is a

proper, nonempty subset A ⊂ I such that [fi]i∈A is a frame for some subspace V of

H and [fi]i∈Ac is a frame for V⊥. In addition, we define the correlation network of F

to be the oriented graph on I labeled vertices where an edge (vi, vj) is in the edge set

if and only if 〈fi, fj〉 6= 0 and i < j. This network is denoted ΓF .

An elementary lemma now demonstrates the relationship between connectivity

the correlation network of a frame F and orthodecomposability of F .

Lemma 3.2.5. Let H be a Hilbert space. A frame F = [fi]i∈I for H is orthodecom-

posable if and only if its correlation network ΓF is disconnected.

Proof. F is orthodecomposable if and only if there is a proper, nonempty subset

A ⊂ I such that [fi]i∈A is a frame for some subspace V of H and [fi]i∈Ac is a frame
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for V⊥. This is equivalent to the statement 〈fi, fj〉 = 0 for all i ∈ A and all j ∈ Ac

which is in turn equivalent to the statement that all vertices of ΓF with labels in A

are not connected to any of the vertices of ΓF with labels in Ac.

Lastly, restrictions must be placed upon the map Φ in order to generalize the

result obtained in the first section. Both the domain and range of the map must be

slightly altered. Choose µ ∈ Rk
+≥ and suppose that

∑k
i=1 µi = c. Let Hn

c (F) denote

the space of all Hermitian matrices with trace equal to c. Since tr(
∑k

i=1 fif
∗
i ) =

∑k
i=1 ‖fi‖2, we then have that Φ : Sk

µ(Fn) → Hn
c (F) is well defined. Moreover,

TFSk
µ(Fn) ≡ {G = [g1 · · · gk] ∈ Mk×n(F)|<(〈fi, gi〉) = 0,∀i ∈ [k]}

and TEHn
c (F) ≡ Hn

0 (F) for all appropriate F and E. The stage is now set to demon-

strate the theorem.

Theorem 3.2.6. Suppose that F ∈ Fk
µ(E,Fn) for some µ ∈ Rk

+≥ and a positive

definite E ∈ Hn
c (F). Further suppose that

∑k
i=1 µi = c. Then F is a regular point of

Φ : Sk
µ(Fn) → Hn

c (F) if and only if F is not orthodecomposable.

Proof. Let F = C and suppose H ∈ TEHn
c (C) ≡ Hn

0 (C). As in Proposition 1,

H admits an expansion H =
∑k

i=1 hiifif
∗
i +

∑
1≤i<j≤k hijfif

∗
j + hijfjf

∗
i . The trace

condition on H is equivalent to
∑k

i=1 hii‖fi‖2 +
∑

1≤i<j≤k hij 〈fi, fj〉+ hij 〈fj, fi〉 = 0,

which simplifies to

1

2

k∑
i=1

hii‖fi‖2 +
∑

1≤i<j≤k

< (hij 〈fi, fj〉) = 0 (3.2.1)

upon further inspection.

Let G = [g1 · · · gk] ∈ TFSk
µ(Cn). There is an expansion gi =

∑k
j=1 γijfj for

each i ∈ [k] since F is a frame. By (3.1.1) of Proposition 3.1.1, application of the
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differential map yields

dΦF (G) =
k∑

i=1

(γii + γii)fif
∗
i +

∑

1≤i<j≤k

(γji + γij)fif
∗
j + (γji + γij)fjf

∗
i

Equating this expansion with the expansion of H, we arrive at the system of equations

γji+γij = hij for all 1 ≤ i ≤ j ≤ k. Thus, the γij’s we seek must satisfy two conditions:

i. γji + γij = hij for all 1 ≤ i ≤ j ≤ k.

ii. <
(∑k

j=1 γij 〈fi, fj〉
)

= 0 for all i ∈ [k],

where (i) ensures that dΦ(G) = H and (ii) is equivalent to G ∈ TFSk
µ(Fn). Note that

(i) implies γij = hij−γji for all i < j, and <(γii) = 1
2
hii for all i ∈ [k]. Thus, assuming

(i) holds, mass substitution into (ii) produces

∑
j<i

< (γij 〈fi, fj〉) +
1

2
hii‖fi‖2 +

∑
i<j

< ((hij − γji) 〈fi, fj〉) = 0

for all i ∈ [k]. Rearrangement and simplification yield

1

2
hii‖fi‖2 +

∑
j<i

< (hji 〈fi, fj〉) = −
∑
j<i

< (γij 〈fj, fi〉) +
∑
i<j

< (γji 〈fi, fj〉) (3.2.2)

for all i ∈ [k]. Hence, the existence of a solution to the system (3.2.2) is a necessary

condition for any G satisfying (i) and (ii). It is also a sufficient condition since (3.2.2)

depends only upon {γij}i<j ({γij}j≤i may then be chosen so that (i) is satisfied, and

subsequent reversal of the mass substitution implies (ii)). Thus, dΦF is surjective if

and only if there exists a solution to (3.2.2) for all possible H.

Let ΓF = (VF , E ′
F ) be the correlation network of F and equip ΓF with the

weight function w ≡ 0. Given any H ∈ Hn
0 (C) expanded as before, set w′

H(vi) =
∑i

j=1< (hji 〈fi, fj〉) for all i ∈ [k] vertices. For any w′ : VF → R such that
∑

vi∈VF
w′(vi) =

∑
vi∈VF

w(vi) = 0, there is an H such that w′ = w′
H . To see this,

simply set hij = 0 for i 6= j and set hii = w(vi)/‖fi‖2 in the previous expansion
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of H. It is clear that (ii) is satisfied by H, so H ∈ Hn
0 (C). It is also clear that

w′(vi) = w′
H(vi).

It will now be shown that there is a solution to (3.2.2) for all H ∈ Hn
0 (C) if

and only if all functions w′ : VF → R satisfying
∑k

i=1 w′(vi) = 0 are redistributions

of w ≡ 0 on ΓF . First, suppose that there is a solution to (3.2.2) for all H ∈
Hn

0 (C). Let w′ satisfy the hypothesis, and identify w′ with w′
H constructed above.

Let {γji}i<j be a solution to (3.2.2) for the H obtained in this construction. Setting

δ(vj, vi) = <(γji 〈fi, fj〉) for i < j and imposing skew symmetry then produces a

redistribution flow that makes w′ a redistribution of w on ΓF . On the other hand, if

all admissible functions w′ are redistributions of w on ΓF , let H be given and let δ

be the redistribution flow corresponding to w′
H . Setting γji = δ(vj, vi)/ 〈fi, fj〉 for all

i < j such that 〈fi, fj〉 6= 0 and γij = 0 otherwise then produces a solution to (3.2.2)

for H.

Putting this all together, we have that dΦF is surjective if and only if there is

a solution to (3.2.2) for all H ∈ Hn
0 (C). We have just seen that there is a solution

to (3.2.2) for all H ∈ Hn
0 (C) if and only if all functions w′ : VF → R satisfying

∑k
i=1 w′(vi) = 0 are redistributions of w ≡ 0 on ΓF . By Lemma 2, the latter condition

is equivalent to connectivity of ΓF which, by Lemma 1, is equivalent to the fact that

F is not orthodecomposable. Consequently, dΦF is surjective if and only if F is not

orthodecomposable and the theorem holds in the complex case. The proof for the

real case proceeds similarly, but again with added simplicity.

3.2.3. Redundant n-majorization and regular values of Φ

This previous proposition implies that, for µ ∈ Rk
+≥ and a positive definite E ∈ Hc(F)

with c =
∑k

i=1 µk, Fk
µ(E,Fn) will be a smooth manifold if it contains no frame F

which is orthodecomposable. Since orthodecomposability depends on the existence
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of frames for subspaces, Theorem 2.2.1 will be relied upon in an essential way to

characterize pairs µ and E for which Fk
µ(E,Fn) has no orthodecomposable member.

In this vein, the notion of redundant n-majorization is introduced.

Definition 3.2.7. Suppose a ≤ b, β ∈ Rb
+≥, α ∈ Ra

+≥, and β ¹b α. We say α

redundantly a-majorizes β if there are proper nonempty subsets A ⊂ [a] and B ⊂ [b]

such that {αi}i∈A |A|-majorizes {βi}i∈B and {αi}i∈Ac |Ac|-majorizes {βi}i∈Bc .

Any positive definite E ∈ Hn(F) has an orthonormal set of eigenvectors {ei}n
i=1

corresponding to the eigenvalues given by some λ ∈ Rn
+≥. Let µ ∈ Rk

+≥ be redun-

dantly n-majorized by λ with A ⊂ [n] and B ⊂ [k] the proper nonempty sets such that

{λi}i∈A |A|-majorizes {µi}i∈B and {λi}i∈Ac |Ac|-majorizes {µi}i∈Bc . Let VA ⊂ Fn be

the subspace spanned by the eigenvectors with indices in A and set EA =
∑

i∈A λieie
∗
i .

It is then true that V⊥A = VAc and that E = EA + EAc where EAc =
∑

i∈Ac λieie
∗
i .

Setting µB = {µi ∈ µ|i ∈ B}, the theorem of Cassaza and Leon then implies the ex-

istence of FV ∈ F |B|
µB (EA,VA) and FV⊥ ∈ F |Bc|

µBc (EAc ,VAc). Concatenation of these two

frames then produces F ∈ Fk
µ(E,Fn) which is, by construction, orthodecomposable

and hence a critical point of the map Φ by Theorem 3.2.6. The following theorem

illustrates the converse.

Theorem 3.2.8. Suppose the positive definite matrices Er ∈ Hn(R) and Ec ∈ Hn(C)

are such that λ(Er) = λ(Ec) ∈ Rn
+≥. Suppose further that µ ∈ Rk

+≥ is n-majorized by

λ(Ec), but that λ(Ec) does not redundantly n-majorize µ. Then

(i) Fk
µ(Er,Rn) is a smooth submanifold of Mn×k(R) with dimension

dim
(Fk

µ(Er,Rn)
)

= k(n− 1)−
(

n + 1

2

)
+ 1;
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(ii) Fk
µ(Ec,Cn) is a smooth submanifold of Mn×k(C) with dimension

dim
(Fk

µ(Ec,Cn)
)

= k(2n− 1)−
(

n + 1

2

)
−

(
n

2

)
+ 1.

Proof. Let E = Ec or E = Er. Suppose the hypotheses hold and further suppose

(by way of contradiction) that some F ∈ Fk
µ(E,Fn) is orthodecomposable into FV ∈

FkV
µV (EV ,V) and FV⊥ ∈ FkV⊥

µV⊥ (EV⊥ ,V⊥) where kV + kV⊥ = k and 1 ≤ kV , kV⊥ . Let

{ai}kV
i=1 and {αi}kV

i=1, and {bi}kV⊥
i=1 and {βi}kV⊥

i=1 be the respective eigenvectors and

eigenvalues of EV and EV⊥ respectively. If {ei}kV
i=1 and {λi}n

i=1 are the eigenvectors

and eigenvalues of E, it is clear that {ei}n
i=1 = {ai}dim(V)

i=1 ∪ {bi}dim(V⊥)
i=1 and also that

{λi}n
i=1 = {αi}dim(V)

i=1 ∪ {βi}dim(V⊥)
i=1 since V and V⊥ are orthogonal subspaces. Let

A ⊂ [n] be such that {λi}i∈A = {αi}dim(V)
i=1 and note that {λi}i∈Ac = {βi}dim(V⊥)

i=1 .

Theorem 2 of Cassaza and Leon then implies that µV is |µV |-majorized by {λi}i∈A

and that µV⊥ is |µV⊥|-majorized by {λi}i∈Ac . The concatenation of µV and µV⊥ yield

µ which is thus redundantly n-majorized by {λi}n
i=1. This contradicts the hypotheses.

Thus, no F ∈ Fk
µ(E,Fn) is orthodecomposable and application of Proposition 2 gives

us that E is a regular value of Φ : Sk
µ(Fn) → Hn

c (F) where c =
∑k

i=1 µi. We may then

conclude that Φ−1(E) = Fk
µ(E,Fn) is a smooth manifold.

In the real case, the domain of Φ is as smooth manifold of dimension k(n − 1)

and the range is a smooth manifold of dimension
(

n+1
2

) − 1. In the complex case,

the domain is a smooth manifold of dimension k(2n − 1) and the range is a smooth

manifold of dimension
(

n+1
2

)
+

(
n
2

)− 1. These observations conclude the result.

Noting that Fk
1k

( k
n
I,Fn) denotes the space of k-member unit-norm tight frames

when I is the n× n identity matrix and setting 1k = {1}k
i=1, we obtain the following

generalization of Theorem 4.3 of Dykema et al. [6].

Corollary 3.2.9. If n and k are relatively prime, then Fk
1k

( k
n
I,Fn) is a smooth man-
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ifold of dimension k(n−1)−(
n+1

2

)
+1 when F = R and dimension k(2n−1)−(

n+1
2

)−
(

n
2

)
+ 1 when F = C.

Proof. If 1k = {1}k
i=1 is redundantly n-majorized by { k

n
}n

i=1, then there are partitions

k = k1 + k2 and n = n1 + n2 with 1 ≤ ki and 1 ≤ ni for i = 1, 2 so that k
n

= ki

ni

for i = 1, 2. This then implies that kni = kin. Since n and k are relatively prime, k

must divide ki. This contradicts the fact that ki < k. The result then follows from

the previous Theorem.
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4. CONSTRUCTIONS

Numerous algorithmic constructions of finite frames have been discovered over the

past decade, but the current constructions methods often lack control or scope over

the constructed frames. In this section, a very general framework for the construction

of finite frames with a given frame operator will be presented. Application of these

techniques allows one to hand-pick frame vectors in an iterative fashion so that the

final collection is a frame with a desired frame operator.

In the first subsection, the theory behind these construction tools will be ex-

plained. The second and third subsection apply these tools to obtain constructions in

Fk(E,Cn) and Fk
µ(E,Cn) respectively. This section then concludes with an overview

of techniques that are useful in implementing these results.

4.1. The Main Construction Tools

This section provides the main results justifying the iterative constructions. First, a

lemma will demonstrate that E−ff ∗ has a determinant with a very simple expansion.

This expansion implies an ellipsoidal condition on f ensuring that E−ff ∗ is positive

definite, as well as a hyperbolic condition on f ensuring that E−ff ∗ has an eigenvalue

greater than some c ∈ R.

4.1.1. The determinant of E − ff ∗

The determinant of E − ff ∗ has a very pleasant expansion which yields a number of

helpful techniques.

Lemma 4.1.1. Suppose that E ∈ Mn(C) is Hermitian, and that f ∈ Cn. Let {λi}n
i=1

be the set of eigenvalues of E and let f =
∑n

i=1 f iei be the expansion of f in terms
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of the corresponding orthonormal eigenvectors of E. Then

det(E ± ff ∗) =
n∏

i=1

λi ±
n∑

i=1

(∏

j 6=i

λj

)
|f i|2. (4.1.1)

Proof. Without loss of generality, we may assume that E = Λ = diag(λ1, . . . , λn)

since E is Hermitian and hence unitarily equivalent to a diagonal matrix. Let Sn be

the group of all permutations on the set [n]. The determinant of this matrix has the

form
∑

σ∈Sn

sgn(σ)
n∏

i=1

αiσ(i)

where αii = λi ± |f i|2 and αij = ±f if j when i 6= j, and sgn(σ) is ±1 depending

upon whether the signature of the permutation σ is even or odd. Since any nontrivial

permutation must rearrange at least two indices, the only permutation from which

a contribution to the term
∏n

i=1 λi arises in this sum is the trivial one. Likewise, a

contribution to each of the terms
(∏

j 6=i λj

)
|f i|2 is only produced when the trivial

permutation is encountered in the sum, and the coefficient will be ±. These terms are

exactly those in the right-hand side of (4), so we need only show that the remaining

terms cancel in the sum.

The products which will contribute to the term
∏

i∈A λi

∏
i∈Ac |f i|2 when A ⊂ [n]

and |A| ≤ n − 2 arise from permutations such that σ(i) = i for all i ∈ A. For each

such σ, there is exactly one contribution to this term since the summand at such a

σ has the form
∏

i∈Bσ
(λi ± |f i|2) ∏

i∈Bc
σ
±f ifσ(i) where A ⊂ Bσ = {i ∈ [n]|σ(i) = i}.

Noting that i ∈ Bc
σ implies the existence of j ∈ Bc

σ such that σ(j) = i, the summand

becomes (±1)|B
c
σ | ∏

i∈Bσ
(λi± |f i|2) ∏

i∈Bc
σ
|f i|2. Choosing the λi such that i ∈ A from

the first part of the product, and then choosing the remaining |f i|2 from the first and

last part of the product, the term (±1)|A
c| ∏

i∈A λi

∏
i∈Ac |f i|2 is formed. Summing
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over all σ such that A ⊂ Bσ, we see that this term has the coefficient

(±1)|A
c| ∑

σ∈Sn
A⊂Bσ

sgn(σ).

Since sgn(στ) = sgn(σ)sgn(τ) for any permutations σ, τ ∈ Sn, for every even permu-

tation in this sum there is a corresponding odd permutation since we may multiply by

any fixed transposition disjoint from A and any such multiplication induces a bijec-

tion between even and odd signature permutations. Consequently, these sums vanish

and the result follows.

4.1.2. The ellipsoidal and hyperbolic conditions

The ellipsoidal condition supplies a precise constraint on f that implies 0 ¹ E − ff ∗

when E is Hermitian positive semidefinite. It also indicates exactly when E − ff ∗

has rank lower than the rank of E.

Theorem 4.1.2. Let E ∈ Hn(C) be positive semidefinite with orthonormal eigen-

vectors {ei}n
i=1 and corresponding eigenvalues {λi}n

i=1. Set A = {i ∈ [n]|λi 6= 0}, fix

f ∈ Cn, and write f =
∑n

i=1 f iei. Then

(i) When 0 ≺ E, 0 ¹ E − ff ∗ if and only if
∑n

i=1
|f i|2
λi

≤ 1;

(ii) 0 ¹ E − ff ∗ if and only if
∑

i∈A
|f i|2
λi

≤ 1 and f i = 0 for all i ∈ Ac;

(iii) 0 ¹ E− ff ∗ and rank(E− ff ∗) = rank(E)− 1 if and only if
∑

i∈A
|f i|2
λi

= 1 and

f i = 0 for all i ∈ Ac.

Proof. i. Without loss of generality, E = Λ = diag(λ1, . . . , λn). Λ − ff ∗ has

at most one non-positive eigenvalue, and hence 0 ¹ Λ − ff ∗ if and only if
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0 ≤ det(Λ− ff ∗). Applying Lemma 1,

0 ≤ det(Λ− ff ∗) ⇔ 0 ≤
n∏

i=1

λi −
n∑

i=1

(∏

j 6=i

λj

)
|f i|2

⇔
n∑

i=1

(∏

j 6=i

λj

)
|f i|2 ≤

n∏
i=1

λi

⇔
n∑

i=1

|f i|2
λi

≤ 1.

ii. Assuming that 0 ¹ Λ and 0 ¹ Λ− ff ∗, then

〈(Λ− ff ∗)ei, ei〉 = −| 〈f, ei〉 |2 = −|f i|2,

whenever i ∈ A, so f i = 0 for all i ∈ Ac. Thus, in this instance, we need only

consider the behavior of Λ − ff ∗ on V = span{ei}i∈A. Λ is of full rank on V

and f ∈ V , so (i) implies that
∑

i∈A |f i|2/λi ≤ 1. Conversely, suppose that
∑

i∈A |f i|2/λi ≤ 1 and f i = 0 for all i ∈ Ac. The latter condition implies that

we need only consider the behavior of Λ − ff ∗ on V . Since
∑

i∈A |f i|2/λi ≤ 1,

(i) implies the result.

iii. By a line of reasoning similar to the proof in (ii), we may assume that Λ is of

full rank without loss of generality. Λ− ff ∗ has at least rank n− 1. Therefore,

Λ − ff ∗ has rank n − 1 if and only if 0 = det(Λ − ff ∗). Replacing ’≤’ with

’=’ in the chain of equivalences produced in the proof of (i) then leads to this

equivalence.

Then next theorem is useful when one desires to control the eigenvalues of E −
ff ∗, or at least ensure that the greatest eigenvalue of E − ff ∗ is greater than some

constant c ∈ R. In certain instances, this is not even concern. This is implicit in the
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hypothesis λ2(E − ff ∗) < c ≤ λ1(E − ff ∗).

Theorem 4.1.3. Let E ∈ Mn(C) be Hermitian positive definite with eigenvalues

{λi}n
i=1 non-increasing as the index increases and corresponding orthonormal eigen-

vectors {ei}n
i=1. Write f ∈ Cn as f =

∑n
i=1 f iei and suppose that c ∈ R+.

(i) Whenever λ2 < c < λ1, E − ff ∗ ≺ cIn if and only if
∑n

i=1
|f i|2
λi−c

> 1;

(ii) Whenever c = λ1, E − ff ∗ ≺ cIn if and only if 0 < |f 1|2.

Proof. i. cI − Λ + ff ∗ has at most one negative eigenvalue, so 0 ≺ cI − Λ + ff ∗

if and only if 0 ≤ det(cI − Λ + ff ∗). As in the previous theorem, we have

0 < det(cI − Λ + ff ∗) ⇔ 0 <

n∏
i=1

(c− λi) +
n∑

i=1

(∏

j 6=i

(c− λj)

)
|f i|2

⇔ −
n∑

i=1

(∏

j 6=i

(c− λj)

)
|f i|2 <

n∏
i=1

(c− λi)

⇔ −
n∑

i=1

|f i|2
c− λi

> 1

⇔
n∑

i=1

|f i|2
λi − c

> 1.

ii. If c = λ1, then right hand side of the first equivalence in the preceding chain

reduces to

0 <

(∏

j 6=1

(c− λj)

)
|f 1|2.

The term
(∏

j 6=1(c− λj)
)

is positive since λj < c for all j 6= 1. Thus, the

equivalence follows.

Note that the proofs of these conditions both relied upon the determinant ex-

pansion in Lemma 4.1.1.
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4.2. Constructing Frames in Fk(E,Cn)

This section outlines two methods for constructing frames in Fk(E,Cn). The first

method is computationally inexpensive, but is essentially blind with respect to the

frame vectors that are produced. The second method amends this deficiency, but is

far more computationally intensive.

4.2.1. The fast blind method

Utilizing the diffeomorphism F 7→ √
EF ∗, a frame in Fk(E,Cn) arises whenever

a frame in Vn(Ck) is constructed. Thus, a random member of Fk(E,Cn) can be

obtained by constructing a random member of Vn(Ck). A random member of St(n, k)

can be constructed in a very simple manner. First, a point x1 is chosen from the

unit sphere in Ck. It is then true that In − x1x
∗
1 is a projection on the the subspace

orthogonal to x1. After x1 is fixed, x2 is chosen to lie in both the unit sphere and

the kernel of x1x
∗
1. Thus, x2 is orthogonal to x1. Continuing this process inductively,

xj+1 is chosen to lie in the kernel of
∑j

i=1 xix
∗
i and also in the unit sphere. Clearly,

this process produces an X = [x1 · · · xn] ∈ Vn(Ck), so
√

EX∗ ∈ Fk(E,Cn).

4.2.2. The interactive method

This next procedure allows one to iteratively choose k vectors interactively and in

such a way that the resulting vector collection is a frame with frame operator E. At

each step, Theorem 4.1.2 is used to produce the precise region of admissible vectors.

Let E ∈ Hn(C) be positive definite. First, one computes E−1. Theorem 4.1.2

ensures that region bounded by the ellipsoid {x ∈ Cn| 〈E−1x, x〉 = 1} contains all

admissible candidates for f1. There are two distinct cases to deal with. If f1 is chosen

from this interior of this region, (iii) of Theorem 4.1.2 implies that E−f1f
∗
1 is positive
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definite, and hence invertible. In this case, (E − f1f
∗
1 )−1 is calculated, and an f2 is

chosen from the region bounded by the ellipsoid

{x ∈ Cn| 〈(E − f1f
∗
1 )−1x, x

〉
= 1}.

On the other hand, f1 may also be chosen from the boundary of the ellipsoid. Part

(iii) of Theorem 4.1.2 then implies that E − f1f
∗
1 is of rank n − 1 and hence cannot

be inverted. Nevertheless f2 may still be chosen from the region

{x ∈ Cn| 〈(E − f1f
∗
1 )†x, x

〉 ≤ 1, E†Ex = x}

by part (ii) of Theorem 4.1.2. Since E−1 = E† in the case that E is positive definite,

the (j + 1)th vector may generally be chosen from the region



x ∈ Cn

∣∣∣∣∣∣

〈(
E −

j∑
i=1

fif
∗
i

)†

x, x

〉
≤ 1, E†Ex = x





so long as the inequality j < k − rank(E −∑j
i=1 fif

∗
i ) holds. If this inequality fails

to hold, the only admissible choices for fj+1 lie in the region



x ∈ Cn

∣∣∣∣∣∣

〈(
E −

j∑
i=1

fif
∗
i

)†

x, x

〉
= 1, E†Ex = x



 .

since the subtraction of a rank-one matrix only reduces the rank of another matrix

by at most one.

Example 4.2.1. This example shows a progression of three dimensional ellipsoidal

regions produced by implementing the described construction method. The construc-
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tion produces a frame in F6(25I3,R3). The frame

F =




4
√

3
3

4
√

3
3

4
√

3
3

√
3

√
3

√
3

−
√

3
2

−
√

3
2

√
3 −2

√
3

3
−2

√
3

3
4
√

3
3

−2
√

2 −2
√

2 0 −3
√

2
2

−3
√

2
2

0




has been chosen. Figure 2 shows the progression of ellipsoidal regions as the frame

vectors of F are added column by column.

Note that the final three vectors are chosen from the surface of the ellipsoid, and

that the ellipsoids become progressively more degenerate as these vectors are chosen.

4.3. Constructing Frames in Fk
µ(E,Cn)

This section is devoted to specializing the interactive iterative method presented in

the previous section to produce many members of Fk
µ(E,Cn) whenever µ ∈ Rk

+≥,

E ∈ Hn(C) is positive definite, and µ ¹n λ, and where λ ∈ Rn
+≥ are the eigenvalues

of E. Unfortunately, this process is more delicate than the previous process. It is

explained why this is the case and then some computationally inexpensive remedies

are proposed.

4.3.1. Ensuring n-majorization

Supposing one begins choosing vectors of prescribed lengths based on the interactive

method from 4.2.2. This may prove unstable since Fk−m
µ (E −∑j

i=1 fifi,Cn) is only

nonempty for particular choices of µ ∈ Rk−j
+≥ . More concretely, suppose that we begin

choosing vectors in the same manner as the previous algorithm while also taking care

to insure that ‖fj‖2 = µj. Assuming that this process does not fail at the jth step,

let µ(j) ∈ R(k−j)
+≥ and λ(j) ∈ Rn

+≥ denote the list of remaining squared lengths and the

eigenvalues of E(j) = E − ∑j
i=1 fif

∗
i respectively. By the theorem of Cassaza and
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Leon, Fk−j

µ(j) (E
(j),Cn) is nonempty if and only if µ(j) ¹n λ(j). Thus, if n-majorization

fails to hold at this step, we can be certain that the algorithm will also fail.

Let us now turn our attention towards the first of the n-majorization inequalities.

In practice, one would like to choose fj+1 with ‖fj+1‖2 = µ
(j)
1 so that µ

(j+1)
1 ≤ λ

(j+1)
1 .

Setting µ
(j+1)
1 = c, there are two cases to consider if one assumes that µ(j) ¹n λ(j).

First, if c ≤ λ
(j)
2 , then any choice of fj+1 will work by the interlacing inequalities

for eigenvalues. On the other hand, if λ
(j)
2 < c < λ

(j)
1 , application of Theorem 4.1.3

produces the region from which fj+1 may be chosen. In this instance, the theorem

essentially states that all eigenvalues of E −∑i
j=1 fjf

∗
j are less than c if and only if

n∑
i=1

|f i
j+1|2

λ
(j)
i − c

> 1.

Since we seek an eigenvalue greater than c, Theorem 4.1.3 ensures that this will occur

when
n∑

i=1

|f i
j+1|2

λ
(j)
i − c

≤ 1,

so fj+1 is chosen to satisfy this inequality.

Example 4.3.1. Let µ = (7/3, 7/3, 1, 1/3) and suppose E = diag(3, 2, 1). First, we

find all f such that E − ff ∗ is positive definite with largest eigenvalue greater than

µ2 = 7/3. The ellipsoidal describes the first region, and since 2 < 7/3 < 3, the

hyperbolic condition describes the second region. Figure 3 depicts the region from

which f may be chosen. f1 must also be chosen so that ‖f1‖2 = µ1 = 7/3, and the

region of admissible f1 is seen in the above figure.
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Fig. 3. The region satisfying the ellipsoidal and hyperbolic conditions.
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The hyperbolic condition supplies a precise way of choosing fj so that the first

n-majorization inequality holds between µ(j) and λ(j). For the remaining inequalities

there are two distinguishable cases. In the case that

m∑
i=1

µ
(j)
i+1 =

m∑
i=1

µ
(j+1)
i ≤

m∑
i=1

λ
(j)
i+1,

the interlacing inequalities for eigenvalues immediately imply

m∑
i=1

µ
(j+1)
i ≤

m∑
i=1

λ
(j)
i+1 ≤

m∑
i=1

λ
(j+1)
i ,

and so fj+1 may be chosen indiscriminately. However, if

m∑
i=1

λ
(j)
i+1 <

m∑
i=1

µ
(j)
i+1 =

m∑
i=1

µ
(j+1)
i ,

then fj must be chosen with a fair amount of caution.

There is a very simple, but computationally unadvisable approach to constructing

frames in Fk
µ(E,Fn). One may simply choose a vector fj, compute the eigenvalues of

E(j) (perhaps with the aid of Lemma 4.1.1), and then perform a test to determine if

n-majorization holds. However, the region of viable choices for f may be quite small,

and repeatedly computing the eigenvalues of a matrix proves expensive. The next

few conditions will provide a way to sidestep this problem, but implementing these

conditions imposes a slight restriction upon the frames that may be obtained via the

specialized interactive method.

4.3.2. The cylindrical and directional conditions

The cylindrical and directional conditions are computationally inexpensive, but in-

exact conditions ensuring that the mth majorization inequality is satisfied between



35

some {µi+1}k−1
i=1 ∈ Rk−1

+≥ and λ(E − ff ∗) whenever

m∑
i=1

λi+1(E) <

m∑
i=1

µi+1.

Along the way to these conditions, some convenient objects are defined.

Given a positive definite E ∈ Hn(C) with an orthonormal basis of eigenvectors

{ei}n
i=1 ⊂ Cn in correspondence with the eigenvalues λ(E) ∈ Rn

+≥, define the family

of projections {Pm}n−1
m=1 where Pm is the subspace spanned by {ei}m

i=1 for m ∈ [n− 1].

Based on these projections, define the family of seminorms {‖ · ‖m}n−1
m=1 by setting

‖f‖m =
√
〈Pmf, Pmf〉. This family of seminorms leads to the cylindrical condition.

Proposition 4.3.2. Let E ∈ Hn(C) be positive definite with eigenvalues λ(E) ∈ Rn
+≥

and corresponding orthonormal eigenvectors {ei}n
i=1. Let f ∈ Cn be such that E−ff ∗

is positive semidefinite, and write f =
∑n

i=1 f iei. Suppose µ ∈ Rk
+≥ is such that

µ ¹n λ(E). If ‖f‖2
m ≤ ∑m

i=1 λi(E)−∑m
i=1 µj+1, then

∑m
i=1 µi+1 ≤

∑m
i=1 λi(E− ff ∗).

Proof. As before, assume E = Λ = diag(λ1, . . . , λn). The argument will follow by

simply examining the trace and invoking the fact that

tr(PHP ) ≤
m∑

i=1

λi(H)

whenever H is Hermitian positive semidefinite, and P is any rank m projection. Let

PΛ
m be the projection onto the subspace spanned by {ei}m

i=1. Then

tr(Pm(Λ− ff ∗)Pm) = tr(PmΛPm)− tr(Pmff ∗Pm)

=
m∑

i=1

λi − ‖f‖2
m.

By hypothesis, ‖f‖2
m ≤ ∑m

i=1 λi(E) −∑m
i=1 µj+1, so we also have that

∑m
i=1 µj+1 ≤
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∑m
i=1 λi(E)− ‖f‖2

m. It then follows that

m∑
i=1

µj+1 ≤
m∑

i=1

λi(Λ)− ‖f‖2
m = tr(Pm(Λ− ff ∗)Pm) ≤

m∑
i=1

λi(Λ− ff ∗).

The inequality
∑m

i=1 λi+1(E) <
∑m

i=1 µi+1 was not utilized to demonstrate the

previous result. Nevertheless, application of this result is superfluous if this inequality

does not hold.

In the event that this inequality does hold and
∑m

i=1 λi(E)−∑m
i=1 µj+1 < ‖f‖2

m,

the cylindrical condition does not indicate when the mth majorization inequality holds.

In search of another condition, define another family of seminorms {‖ · ‖E,m}n−1
m=1 by

setting ‖f‖E,m =
√
〈EPmf, Pmf〉 for all f ∈ Cn. Also define the trace of E orthogonal

to f on the range of Pm by setting

trf⊥m(E) = tr(PmEPm)− ‖f‖2
E,m/‖f‖2

m

for all f ∈ Cn with 0 < ‖f‖2
m. Let Pf,m denote the projection onto the subspace

spanned by Pmf , and note that Pf,m = Pmf(Pmf)∗/‖f‖2
m. For brevity, denote Qf,m =

Pm − Pf,m. It is then true that

tr(Qf,mEQf,m) = tr(PmEPm)− tr(Pf,mEPm)− tr(PmEPf,m) + tr(Pf,mEPf,m).

Since E commutes with Pm by construction and tr(Pmf(Pmf)∗E) = tr(EPmf(Pmf)∗) =

‖f‖2
E,m by expanding Pmf in terms of the eigenvectors of E, one acquires

tr(Qf,mEQf,m) = tr(PmEPm)− ‖f‖2
E,m/‖f‖2

m

= trf⊥m(E).



37

It is clear that tr(Qf,mff ∗Qf,m) = 0 by construction, so it is also true that

tr(Qf,m(E − ff ∗)Qf,m) = trf⊥m(E).

These observations lead to a directional condition on f that implies the mth majoriza-

tion inequality whenever f fails the cylindrical condition.

Proposition 4.3.3. Let E ∈ Hn(C) be positive definite with eigenvalues λ(E) ∈ Rn
+≥

and corresponding orthonormal eigenvectors {ei}n
i=1. Suppose µ ∈ Rk

+≥ is such that

µ ¹n λ(E). Let f ∈ Cn be such that E − ff ∗ is positive semidefinite, write f =
∑n

i=1 f iei, and suppose that 0 <
∑m

i=1 λi(E)−∑m
i=1 µi+1 < ‖f‖2

m. If

‖f‖2
E,m

‖f‖2
m

≤
m+1∑
i=1

λi(E)−
m∑

i=1

µi+1,

then
∑m

i=1 µi+1 ≤
∑m

i=1 λi(E − ff ∗).

Proof. First, we will show that

‖f‖2
E,m+1

‖f‖2
m+1

≤ ‖f‖2
E,m

‖f‖2
m

. (4.3.1)

A quick computation yields

λm+1‖f‖2
m =

m∑
i=1

λm+1|f i|2 ≤
m∑

i=1

λi|f i|2 = ‖f‖2
E,m,

so we also have

‖f‖2
E,m‖f‖2

m + λm+1‖f‖2
m|fm+1|2 ≤ ‖f‖2

E,m‖f‖2
m + ‖f‖2

E,m|fm+1|2.

Factoring both sides of this inequality yields

‖f‖2
E,m+1‖f‖2

m ≤ ‖f‖2
E,m‖f‖2

m+1.

By hypothesis, 0 < ‖f‖2
m ≤ ‖f‖2

m+1, so division produces the desired inequality.
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Applying this inequality to the hypothesis, we obtain

‖f‖2
E,m+1

‖f‖2
m+1

≤ ‖f‖2
E,m

‖f‖2
m

≤
m+1∑
i=1

λi(E)−
m∑

i=1

µi+1

and rearrangement yields

m∑
i=1

µi+1 ≤
m+1∑
i=1

λi(E)− ‖f‖2
E,m+1

‖f‖2
m+1

= trf⊥m+1(E − ff ∗).

Since Qf,m+1 is a projection of rank m,

trf⊥m+1(E) = tr(Qf,m+1(E − ff ∗)Qf,m+1) ≤
m∑

i=1

λi(E − ff ∗),

and thus the result holds.

Example 4.3.4. Again, suppose E = diag(3, 2, 1). Assume that E − ff ∗ needs to

be such that 13
3
≤ λ1(E − ff ∗) + λ2(E − ff ∗). Figure 4 depicts the region which is

accepted by the cylindrical condition. Any vector lying in or on the cylinder satisfies

the desired constraints. Figure 5 depicts an elliptical band and cylindrical band arising

from the directional condition. Since the elliptical band is outside of the cylindrical

band, no f satisfies the directional condition. Nevertheless, there are many more

vectors that satisfy the desired constraints.

4.3.3. The quasihyperbolic condition

In the instance that the cylindrical and directional conditions both fail, there is still

one final condition that will guarantee the mth majorization inequality. The f that

satisfy this final condition are bounded by a figure resembling a hyperboloid in Cn.

Proposition 4.3.5. Let E ∈ Hn(R) be positive definite with eigenvalues λ(E) ∈ Rn
+≥

and corresponding eigenvectors {ei}n
i=1. Suppose µ ∈ Rk

+≥ is such that µ ¹n λ.
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Fig. 5. The directional condition.
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Further suppose that

m+1∑
i=1

λi(E)−
m∑

i=1

µi+1 <
‖f‖2

E,m

‖f‖2
m

and 0 <

m∑
i=1

λi(E)−
m∑

i=1

µi+1 < ‖f‖2
m

for some f =
∑n

i=1 f iei ∈ Cn and some m ∈ [n− 1]. If

‖f‖2
m∑m

i=1 λi −
∑m

i=1 µi+1

+
n∑

i=m+1

|f i|2
λi + trf⊥m(E)−∑m

j=1 µj+1

≤ 1, (4.3.2)

then
∑m

i=1 µi+1 ≤
∑m

i=1 λi(E − ff ∗).

Proof. As before, E = Λ = diag(λ1, . . . , λn). By hypothesis, 0 < ‖f‖2
m, so Pf,m is not

the zero matrix. Consequently, Qf,m = Pm − Pf,m is a projection of rank m− 1. For

any normalized z ∈ Cn such that Qf,mz = 0, it then follows that P = Qf,m + zz∗ is a

projection of rank m. Moreover,

tr(P (Λ− ff ∗)P ) = tr(Qf,mΛQf,m) + tr(zz∗ΛQf,m) + tr(Qf,mΛzz∗) + tr(zz∗Λzz∗)

−tr(Qf,mff ∗Qf,m)− tr(zz∗ff ∗Qf,m)− tr(Qf,mff ∗zz∗)

−tr(zz∗ff ∗zz∗)

= tr(Qf,mΛQf,m) + (z∗Λz) tr(zz∗)− (z∗ff ∗z) tr(zz∗)

= trf⊥m(Λ) + 〈(Λ− ff ∗)z, z〉

Thus, if there is such a z that also satisfies
∑m

i=1 µi+1 − trf⊥m(Λ) ≤ 〈(Λ− ff ∗)z, z〉,
we will have

m∑
i=1

µi+1 =
m∑

i=1

µi+1 − trf⊥m(Λ) + trf⊥m(Λ)

≤ trf⊥m(Λ) + 〈(Λ− ff ∗)z, z〉

= tr(P (Λ− ff ∗)P )

≤
m∑

i=1

λi(Λ− ff ∗).
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In pursuit of such a z, set Λ̂ = diag
(‖f‖2

Λ,m/‖f‖2
m, λm+1, . . . , λn

)
and set f̂ =

‖f‖mêm +
∑n

i=m+1 f iêi where {êi}n
i=m is the canonical orthonormal basis for Cn−j+1.

Given any z = zmPmf/‖f‖m +
∑n

i=m+1 ziei, it is true that Qf,mz = 0. For each such

z, note that there is a corresponding ẑ =
∑n

i=m ziêi ∈ Cn−j+1. Let Λ̂′ = Λ̂− f̂ f̂ ∗ and

observe that

〈
Λ̂′ẑ, ẑ

〉
Cn−m+1

=
〈
Λ̂ẑ, ẑ

〉
Cn−m+1

−
∣∣∣
〈
f̂ , ẑ

〉
Cn−m+1

∣∣∣
2

=
‖f‖2

Λ,m

‖f‖2
m

|zm|2 +
n∑

i=m+1

λi|zi|2 −
∣∣∣∣∣‖f‖mzm +

n∑
i=m+1

f izi

∣∣∣∣∣

2

=
m∑

i=1

λi

∣∣∣∣
zmf i

‖f‖m

∣∣∣∣
2

+
n∑

i=m+1

λi|zi|2 −
∣∣∣∣∣

m∑
i=1

f i zmf i

‖f‖m

+
n∑

i=m+1

f izi

∣∣∣∣∣

2

= 〈Λz, z〉Cn − | 〈f, z〉Cn |2

= 〈(Λ− ff ∗)z, z〉Cn .

Thus, the desired z exists if and only if there is a ẑ ∈ Cn−m+1 such that
∑m

i=1 µi+1 −
trf⊥m(Λ) ≤

〈
Λ̂′ẑ, ẑ

〉
Cn−m+1

. We will now show that such a ẑ exists by demonstrating

that Λ̂′ has an eigenvalue bounded below by
∑m

i=1 µi+1 − trf⊥m(Λ).

By hypothesis, we have that

m+1∑
i=1

λi −
m∑

i=1

µi+1 <
‖f‖2

Λ,m

‖f‖2
m

.

Rearranging this inequality yields

λm+1 <

m∑
i=1

µi+1 −
m∑

i=1

λi +
‖f‖2

Λ,m

‖f‖2
m

=
m∑

i=1

µi+1 − trf⊥m(Λ).

Note that
m∑

i=1

µi+1 − trf⊥m(Λ) <

m∑
i=1

λi − trf⊥m(Λ) =
‖f‖2

Λ,m

‖f‖2
m

,
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and hence

λm+1 <

m∑
i=1

µi+1 − trf⊥m(Λ) <
‖f‖2

Λ,m

‖f‖2
m

.

The stage is now set to apply Theorem 4.1.3. Setting c =
∑m

i=1 µi+1 − trf⊥m(Λ)

and noting that f̂ satisfies the hyperboloidal inequality by hypothesis, we have that

Λ̂− f̂ f̂ ∗ has an eigenvalue greater than
∑m

i=1 µi+1− trf⊥m(Λ). Retracing our steps, we

have that the mth majorization condition holds.

Even if the quasihyperbolic condition fails, there is still a chance that the mth

majorization inequality holds. Indeed, the quasihyperbolic condition becomes more

conservative as one strays from the eigenvectors of a given E and the range of Pm.

Nevertheless, implementing the quasihyperbolic condition is computationally inex-

pensive when compared to computing eigenvalues. It should also be noted that the

quasihyperbolic condition is actually stronger than both the cylindrical and direc-

tional condition. Still, one must compute the quantities utilized in both of these

conditions to evaluate the quasihyperbolic condition. Thus, one might as well check

that these hold before applying the quasihyperbolic condition.

Example 4.3.6. As in Example 4.3.4, suppose E = diag(3, 2, 1) and assume that

E − ff ∗ needs to be such that 13
3
≤ λ1(E − ff ∗) + λ2(E − ff ∗). Figure 6 illustrates

the region of vectors satisfying the quasihypberbolic condition. Note that the region

satisfying the quasihyperbolic condition contains the regions satisfying both of the

other conditions.

4.4. Other Utile Machinery

In this subsection, a number of useful techniques are surveyed. Implementation of

the presented construction techniques with computational thrift proves challenging.
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Fig. 6. The quasihyperbolic condition.
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Sampling Fk(E,Fn) uniformly or almost uniformly is also pertinent consideration.

The author found the following results useful when implementing these constructions.

4.4.1. The Sherman-Morrison formula

The Sherman-Morrison formula provides a computationally inexpensive procedure

for computing the inverse of E − fg∗ when E ∈ Mn(C) is invertible, f, g ∈ Cn, and

E − fg∗ is invertible. The Sherman-Morrison formula is given by

(E − fg∗)−1 = E−1 − E−1fg∗E−1

1 + 〈E−1f, g〉 .

For our purposes, f = g. It should also be noted that a determinant formula for

E − fg∗ arises from the Sherman-Morrison (see Kéri [10]). This provides another

proof of Lemma 4.1.1.

4.4.2. The rank reduced psuedoinverse formula

The Sherman-Morrison formula provides a simple expression for the inverse of E−ff ∗

when this matrix is invertible. By the ellipsoidal condition, if

n∑
i=1

|f i|2
λi(E)

= 1,

then this matrix is not invertible. Nevertheless, it is convenient to have an analogous

formula for the pseudoinverse of E − ff ∗ in this instance. In the case that E is

Hermitian and positive definite, the formula is given by

(E − ff ∗)† = E−1 − E−2ff ∗E−1 + E−1ff ∗E−2

〈E−2f, f〉 +
〈
E−3f, f

〉 E−1ff ∗E−1

〈E−2f, f〉2 .
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4.4.3. Uniformly sampling Sn and Vk(Fn)

One may generate random points uniformly on the n-sphere by generating a sample

from a normal distribution on (n+1)-dimensional dimensional space. Normalizing this

sample then produces a point on the sphere. Since Gaussians are isotropic, the dis-

tribution obtained in this manner is uniform. To sample from an (n+1)-dimensional

normal distribution, one need only obtain samples from n+1 one dimensional normal

distributions since the n + 1 dimensional normal distribution is the joint distribution

arising from n + 1 normally distributed independent variables. To complexify, one

simply multiplies each entry by a random complex number with unit modulus.

Sampling from Vk(Fn) is possible once one is able to sample from the n-sphere.

First, a sample is drawn from the n-sphere. Let this sample be u1. The next sample

(u2) is then drawn from the (n − 1)-sphere lying in the subspace orthogonal to u1.

This process continues iteratively until uk has been chosen.
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5. CONCLUSION

This thesis has addressed the manifold structure of both Fk(E,Fn) and Fk
µ(E,Fn).

In particular, an intimate link between the spaces Fk(E,Fn) and Stiefel manifolds

has been drawn, and the pairs E, µ for which Fk
µ(E,Fn) is a manifold have been

characterized. An interactive method for designing frames contained in these spaces

has also been introduced. By considering a causally connected sequence of ellipsoidal

regions, any frame in Fk(E,Fn) can be constructed vector by vector. This process is

specialized to design frames in Fk
µ(E,Fn), but the mitigation of computational costs

leads to a causally connected sequence of hyperbolic, cylindrical, directional, and

quasihyperbolic regions. Now that these techniques are firmly established, a number

of new directions immediately present themselves.

A number of questions may still be asked about the geometry of Fk
µ(E,Fn). In

Dykema et al. [6], the connectivity of Fn+2
1n+2

(n+2
n

In,Fn) was demonstrated and it was

conjectured that Fk
1k

( k
n
In,Fn) is connected for all k ≥ n + 2. Verification of this

conjecture would be an immediate corrollary if a characterization could be obtained

for all the spaces Fk
µ(E,Fn) which are connected. Furthermore, global or even local

parameterizations of Fk
µ(E,Fn) would prove useful. It would also be interesting to

see if inifinite dimensional analogs held for the results obtained in Section 3.

The promise of numerical verification of Nik Weaver’s reformulation of the Kadison-

Singer conjecture (see Weaver [14], Kadison and Singer [9]) provided the primary

motivation for the construction techniques that have been detailed. The Kadison-

Singer conjecture is a forty year old problem in C∗-algebras that has eluded a number

of brilliant mathematicians. Though the results obtained in this thesis do not offer

a direct resolution of this conjecture, they do present a method by which one may
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either empirically verify the Kadison-Singer conjecture or ferret out some badly be-

haved sequence leading to a counterexample. Adapting the constructions to acquire

numerical data on this problem will be considered in future publications.

Taken in totality, this thesis has provided apparatuses that pave the way for

optimization on these spaces. Since Fk(E,Fn) is diffeomorphic to a homogeneous

space, a host of nonlinear optimization techniques may be applied to acquire desirable

frames. For particular applications, it is often of interest to design frames in Fk
µ(E,Fn)

that satisfy further constraints (for example the Grassmanian frames of Heath and

Stromer [7]). The presented construction techniques provide a method by which

random frames in Fk
µ(E,Fn) may be sampled. Utilizing this sampling method and

nonlinear optimization techniques, globally optimal frames may be found with relative

ease.

In summary, there are numerous fruitful research directions emerging from this

thesis. A number of applications immediately present themselves and shall be con-

sidered in due course.
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APPENDIX

MATLAB ROUTINES

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Program: unirandsphere.m %
% Programmer: Nathaniel Strawn %
% Contact: nate.strawn@gmail.com %
% Date: 03/17/07 %
% %
% %
% Description: %
% %
% This routine uniformly samples a sphere in $n$ dimen- %
% sional space. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S=unirandsphere(n, cmplx)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% A uniform sample drawn from the real $n$ %
% cube, converted to a sample drawn from an %
% $n$ dimensional gaussian via the inverse %
% error function, and then normalized. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

S=2*rand(n,1)-1;
S=erfinv(S);
S=S./norm(S);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% If $cmplx = 1$ then the sample is comple- %
% xified randomly. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if (cmplx == 1)

theta=rand(n,1);
C=cos(theta)+i*sin(theta);
S=S.*C;

end

return



52

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Program: SampleStiefel.m %
% Programmer: Nathaniel Strawn %
% Contact: nate.strawn@gmail.com %
% Date: 03/17/07 %
% %
% %
% Description: %
% %
% This routine produces a random sample from the real %
% or complex Stiefel manifold of $n$ orthonormal frames %
% in $k$ dimensional space. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function V=SampleStiefel(n,k,cmplx)

count=0;
V=zeros(k,n);
P=eye(k);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% During each iteration of the following %
% loop, a sample is drawn from the $k$ sph- %
% ere, projected onto the space orthonormal %
% to the previous samples, normalized, and %
% then added to $V$, %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

while (count < n)

count=count+1;

v=P*unirandsphere(k,cmplx);
v=v/norm(v);

V(:,count)=v;
P=P-v*conj(v’);

end

return
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Program: InterSample.m %
% Programmer: Nathaniel Strawn %
% Contact: nate.strawn@gmail.com %
% Date: 03/17/07 %
% %
% %
% Description: %
% %
% This routine produces a random sample from the inter- %
% section of a unit sphere and the ellipsoid induced by %
% the Hermitian positive semidefinite matrix $E$. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function f=InterSample(Etilde,ALIVE,cmplx)

tol=10^(-12);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% $Etilde$ is the psuedoinverse of $E$. %
% $Atilde$ is the projection of $Etilde$ on %
% the range of $E$. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Atilde=(conj(ALIVE)’)*Etilde*ALIVE;
Atilde=(Atilde+conj(Atilde)’)/2;

[n,m]=size(Atilde);
[V,Lambda]=eig(Atilde);

lambda=diag(Lambda);

problem=zeros(n,1);
dead=zeros(n,1);
a_up=zeros(n,1);
a_down=zeros(n,1);
a_on=zeros(n,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This determines the indices for which the %
% eigenvalues of $Atilde$ are negative, %
% zero, between zero and one, one, and gre- %
% ater than one. Let $lambda_i$ be the $i$ %
% eigenvalue of $Atilde$ then %
% %
% dead(i,1)=1 if abs(lambda_i)<tol %
% problem(i,1)=1 if lambda_i<0 %
% a_up(i,1)=1 if lambda_i>1 %
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% a_on(i,1)=1 if lambda_i=1 %
% a_down(i,1)=1 if 0<lambda_i<1 %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for index=1:n

if (abs(lambda(index,1)) < tol)

dead(index,1)=1;

else

if (lambda(index,1) <= 0)

problem(index,1)=1;

else

if (lambda(index,1) < 1)

a_down(index,1)=1;

elseif (lambda(index,1) == 1)

a_on(index,1)=1;

else

a_up(index,1)=1;

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% A random vector is sampled, split into %
% parts that are manipulated so that %
% %
% <Atilde*f,f>=<f,f>=1 %
% %
% and then converted lie in the range of %
% $E$. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

erratic=rand(n,1);



55

lamb=lambda-1;

f_up=a_up.*erratic;
f_down=a_down.*erratic;
f_on=a_on.*erratic;

f_up=f_up/sqrt((conj(f_up)’)*(lamb.*f_up));
f_down=f_down/sqrt((conj(f_down)’)*(-lamb.*f_down));

f=f_up+f_down+f_on;
f=V*(f/norm(f));
f=ALIVE*f;

return
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Program: SampleUTF.m %
% Programmer: Nathaniel Strawn %
% Contact: nate.strawn@gmail.com %
% Date: 03/17/07 %
% %
% %
% Description: %
% %
% This routine produces a random uniform tight frame %
% with $k$ vectors in $n$ dimensional space. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function F=SampleUTF(n,k,cmplx)

dim=n;
count=0;
tol=10^(-12);

F=zeros(n,k);
E=diag((k/n)*ones(1,n));
Etilde=diag((n/k)*ones(1,n));
ALIVE=eye(n);
DEAD=[];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This first loop samples from the interse- %
% ction of an ellpsoid bounded region with %
% the unit sphere. Vectors are added to %
% the frame in this manner until all remai- %
% ning vectors must lie on the surface of %
% the ellipsoid. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

while (dim < k-count)

accepted=0;

while (accepted == 0)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% A vector on the $n$-sphere is randomly %
% chosen. The ellipsoidal condition is %
% then calculated. If the vector satisfies %
% the ellipsoidal condition, then it is put %
% in the frame and updates occur for the %
% next iteration. If it does not, then a %
% vector is chosen from the intersection of %
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% the unit sphere with the ellipsoid. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f=ALIVE*unirandsphere(dim,cmplx);
f=f/norm(f);

flipse=1-(conj(f)’)*(Etilde*f);

if (flipse >= 0)

accepted = 1;
count=count+1;
F(:,count)=f;

if (flipse <= tol)

dim=dim-1;

ffstar=f*(conj(f)’);

Etilf=Etilde*f;

Etil2=norm(Etilf)^2;
Etil3=(conj(Etilf)’)*Etilde*Etilf;

EtfftE=Etilf*(conj(Etilf)’);
E2tfftE=Etilde*EtfftE;
Etf2ftE=E2tfftE+conj(E2tfftE)’;

% Update E and Etilde

E=E-ffstar;
Etilde=Etilde-Etf2ftE/Etil2+Etil3*EtfftE/(Etil2^2);

DEAD=[DEAD; Etilf’];
ALIVE=null(DEAD);

else

ffstar=f*(conj(f)’);

Etilf=Etilde*f;
EtfftE=Etilf*(conj(Etilf)’);

E=E-ffstar;
Etilde=Etilde+EtfftE/flipse;

end

else
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dim=dim-1;

f=InterSample(Etilde,ALIVE,cmplx);

count=count+1;

F(:,count)=f;

ffstar=f*(conj(f)’);

Etilf=Etilde*f;

Etil2=norm(Etilf)^2;
Etil3=(conj(Etilf)’)*Etilde*Etilf;
EtfftE=Etilf*(conj(Etilf)’);
E2tfftE=Etilde*EtfftE;
Etf2ftE=E2tfftE+conj(E2tfftE)’;

E=E-ffstar;
Etilde=Etilde-Etf2ftE/Etil2+Etil3*EtfftE/(Etil2^2);

DEAD=[DEAD; Etilf’];
ALIVE=null(DEAD);

accepted=1;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This last loop samples exclusively from %
% unit sphere - ellipsoid surface intersec- %
% tion. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

while (count < k-1)

f=InterSample(Etilde,ALIVE,cmplx);

count=count+1;
F(:,count)=f;

ffstar=f*(conj(f)’);

Etilf=Etilde*f;

Etil2=norm(Etilf)^2;



59

Etil3=(conj(Etilf)’)*Etilde*Etilf;

EtfftE=Etilf*(conj(Etilf)’);
E2tfftE=Etilde*EtfftE;
Etf2ftE=E2tfftE+conj(E2tfftE)’;

E=E-ffstar;
Etilde=Etilde-Etf2ftE/Etil2+Etil3*EtfftE/(Etil2^2);

DEAD=[DEAD; Etilf’];
ALIVE=null(DEAD);

dim=dim-1;

end

F(:,k)=ALIVE;

return
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