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ABSTRACT 
 
 

Ozone (O3) Efficacy on Reduction of Phytophthora capsici in Recirculated Horticultural 

Irrigation Water. (May 2007) 

Garry Vernon McDonald, B.S., Texas A&M University; 

M.S. Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Michael A. Arnold 
                                                  Dr. Don C. Wilkerson 

 
 

Microorganisms that cause plant disease have been isolated in recirculated 

irrigation water and increase the risks of disease incidence in horticultural operations.  

Ozone is an effective oxidizer used to disinfect drinking water supplies and treat 

industrial wastewater.  The objective of this research was to investigate using ozone gas 

as part of a strategy to reduce the incidence of Phytophthora deBary in recirculated 

irrigation water.  An isolate of Phytophthora capsici Leonian was cultured to induce 

sporulation.  Spore dilutions were placed in aliquots of reverse osmosis water and 

bubbled with ozone gas (O3) to concentrations of 0 to 1.5 mg·L-1.  Ozonated samples 

were plated and observed for colony forming units. 

Increasing ozone concentrations reduced the number of colony forming units to 0 

at 1.5 mg· L-1 03.  Turbidity effects on efficacy on Phytophthora capsici were tested using 

bentonite clay at 0 to 2.0 nephelometric turbidity units and ozone concentrations of 0 to 

1.5 mg· L-1.  Increasing bentonite did not affect the efficacy of increasing ozone 

concentrations on reducing colony formation to 0 at 1.5 mg·L-1 O3.  Bioassays using 

Phytophthora capsici on Capsicum annuum L. seedlings confirmed apparent 

pathogenicity.  Reverse osmosis water, containing a soluble fertilizer at 0 to 300 mg· L-1 

N, was ozonated to concentrations of 0 to 1.5 mg·L-1 O3 and used to irrigate 

Chrysanthemum x morifolium T. de Romatuelle.  Increasing ozone concentrations did not 

interact with increasing fertilizer levels to affect the final growth parameters.  

Chrysanthemum exposed to ozone gas concentrations of  0.5 to 1.5 mg·L-1 showed 

symptomatic ozone damage.  Complete soluble fertilizer solutions with micronutrients 
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were ozonated from 0 to 1.5 mg·L-1 O3 and analysed for nutrient content.  Increasing 

ozone levels did not interact with fertilizers to affect macronutrients.  Increasing ozone 

interacted with iron at a high fertilizer level.  Ozone did not affect the efficacy of 

paclobutralzol in controlling growth in Viola x wittrockiana.  Ozone was effective in 

controlling Phytophthora capsici in recirculated irrigation water with minimum impact 

on plant growth.  Adjustments in fertility regiemes may be needed to counteract the 

oxidizing affect of ozone on micronutrients. 
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CHAPTER I 

INTRODUCTION 

 
Consumers demand high quality containerized bedding plants, shrubs, trees, and 

other ornamental plants produced by the horticultural industry.  This demand for quality 

exhorts pressure on horticultural producers to grow aesthetically pleasing plants free from 

pest and blemishes.  Production of such plants results in the luxurious consumption of 

water and agricultural chemicals with concomitant potential for nutrient and pesticide 

runoff (Yelanich and Biernbaum, 1990).  Plant growth regulators (PGR) are another class 

of agricultural chemicals of recent concern.  There is the possibility of PGR residue 

runoff in recycled irrigation water and its implications in unwanted growth retardation at 

low levels (Adriansen, 1997; Arnold and McDonald, 2001; Million et al., 1999).  In 

addition, ground and surface water usage and rights issues are becoming increasingly 

important in many areas of the country (Wilkerson and Arnold, 1994; Wilkerson, 1995).  

Having less water of lower quality is a fact the industry may face.  To reduce water 

consumption and mitigate pollution runoff, horticultural operations may capture and 

recycle irrigation runoff.  The Water Pollution Control Act sets the standard for clean 

water and prescribes point-discharge requirements for federal, state, and regional water 

districts (U.S. Congress, 1972).  Because of these standards, specific concerns to the 

horticulture production managers include, irrigation and rainfall runoff, capture, 

recycling, deactivating organic and inorganic agricultural chemicals and water 

disinfection to control the spread of plant pathogens.  The conundrum the horticulture 

industry faces is to maximize water use efficiency, minimize water contamination, and 

reduce the volume of chemicals applied to crops while maintaining a high quality 

product.  An area of major concern for many producers is the possibility of large-scale 

plant pathogen infestations due to contaminated recycled water (Thompson and Allen, 

1974). 

_____________ 
This dissertation follows the style of  the Journal of the American Society for 
Horticultural Sciences. 
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As alluded to, many operations capture and re-use vast amounts of water with 

some peak usage rates reported as high as 190-750 x 103 L ·hr-1 that is re-distributed over 

large areas (MacDonald et al., 1994).  The potential for irrigation water to become 

infested with plant disease causing organisms and then becoming widely dispersed 

throughout the growing facility is great (Jenkins and Averre, 1983; Runia, 1995; van Os, 

1999). 

The incidence of plant pathogens being spread by contaminated irrigation water is 

documented (Shokes and McCarter, 1979; Thompson and Allen, 1974; Whiteside and 

Oswalt, 1973).  Specific plant pathogenic organisms of concern include but are not 

limited to Rhizoctonia DC, Phytophthora deBary, Pythium Pringsh, and Fusarium 

Schlechtendahl species (Barnes, 2004; Reeser, 1998).  Bacteria are usually less of a 

problem, but the possibility exists for the spread of Erwinia (Townsend) Holland and 

Pseudomonas E. F. Smith (Joiner, 1981).  Organisms in infected tissue reproduce and 

form either asexual or sexual propagules that wash off infected plants into the irrigation 

runoff (Joiner, 1981).  Irrigation water that runs off from these diseased plants may be 

captured and recycled (Reeser, 1998).  Captured runoff water may be enriched with 

nutrients from fertility programs and with organic or inorganic particulate matter that 

may further facilitate microbial infestations through enriched environments, or by 

interfering with water treatment systems such as filtration (MacDonald et al., 1994).  

Phytophthora, in particular, has been reported as a major contaminant of recirculated 

nursery irrigation water (MacDonald et al., 1994) 

A major component in overcoming such potential disease problems is to disinfect 

the captured runoff water. Traditional methods for treating water in municipal drinking 

supplies and industrial waste water present challenges to the horticultural industry.  The 

most common method of treating any water supply (either potable or industrial 

wastewater) including nursery irrigation water is the injection of chlorine or bromine, as 

chlorine or bromine gas, into the water stream (Ferraro and Brenner, 1997).  Treatment 

concentrations vary widely depending on types of influent or effluent being treated.  

Normal domestic wastewater effluents require a range from 1 to 3 mg·L-1 residual free 

chlorine to meet most state and federal standards (De Hayr et al., 1994; Grasso, 1996).  

Water sources high in organic and inorganic contaminants may require as much as 25 to 
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30 mg·L-1 chlorine to achieve the required 1 to 3 mg·L-1 residual chlorine due to chemical 

binding (De Hayr et al., 1994).  In addition, 1 mg·L-1 of free chlorine (in the form of 

HOCl-2) has been shown to inactivate many water-borne viruses (Rubin, 1975). These 

recommendations are based on chlorine's efficacy at keeping coliform bacteria at or 

below established threshold levels.  The major factor for the use of chlorination in water 

treatment in horticultural operations is low to moderate levels (>7 mg·L-1) of chlorine 

may be lethal or phytotoxic to many plant species (Bugbee, 1987; Ferraro and Brenner, 

1997). In addition to negative plant growth responses, chlorine can be very corrosive to 

equipment, may form undesirable secondary organic by-products such as trihalomethane, 

and can be an explosive and health hazard (Grasso, 1996). 

An alternative method of treating recycled water is the use of radiant energy in the 

form of ultraviolet radiation (UV) excimer lamps emitting radiation at 172 and 222 nm 

(Ramsay et. al, 2000).  The use of ultraviolet radiation in a disinfection procedure works 

by inducing photobiochemical changes within a microorganism.  Two criteria must be 

met in order for UV light to be effective; namely, the radiation must be of sufficient 

energy to alter chemical bonds, and the radiation must be adsorbed by the organism 

(Grasso, 1996).  The ability to deliver radiation from the UV generating source to the 

target organism is crucial to the performance of UV disinfection systems.  The major 

problem in UV disinfecting systems in horticultural production facilities is dissolved and 

fine particulate matter causing turbidity in the water to be treated.  These materials may 

impede or absorb UV radiation transmission through the liquid being treated. Limitations 

on radiation delivery can also be caused by the deposition of insoluble materials, such as 

various mineral salts, on the surface of the quartz jackets that typically surround and 

house the UV source lamps (Grasso, 1996), resulting in a process known as fouling.  

Hard water or water high in iron oxides (Fe3+) may also result in fouling of the lamp 

surfaces.  Another disadvantage to using UV radiation is a phenomenon known as 

photoreactivation and dark repair in which microorganisms have evolved biological 

systems to repair damage by sub-lethal exposure to disinfectants such as UV light.  This 

phenomenon can be overcome by treating the water with successive UV light exposures 

followed by a dark period.  Such systems are costly to build, maintain, and operate and 
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are not usually feasible for most horticultural operations. Other water treatment strategies 

include heat, oxidizing chemicals, and membrane filters (Ehret et al., 2001). 
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CHAPTER II 

OZONE AND WATER TREATMENT: AN OVERVIEW 

 

Ozone has been used to treat drinking water, especially in France, since the early 

1900's (Brink et al.,1991; Rideal, 1920).  Because of high equipment cost and low ozone 

generation efficiency, ozone disinfection has not been widely used in the United States 

until recently with the development of improved ozone gas generators and reduced 

equipment cost (Martin, 1991).  Ozone, when used as a disinfectant in dosages of 3 to 10 

mg·L-1, is highly effective in inactivating common forms of bacteria, bacterial spores, 

fungi, and harmful viruses in wastewater effluent.  Ozone, under higher treatment 

concentrations and under catalytic conditions, can also chemically oxidize organic waste 

materials and deactivate certain pesticides, herbicides, and flocculate out suspended 

solids (Rice and Browning, 1981; Rivas et. al., 2001; Runia, 1994).  As a disinfectant, 

ozone has an advantage over other compounds in that ozone is short-lived (half-life = 20 

min.) in an aqueous solution and breaks down into elemental oxygen (O2).  

Some potential problems do occur when using ozone.  Off gassing from excessive 

dosage or leakage can be a major concern in areas with poor air quality and stringent gas 

or pollution emission restrictions.  De-ozonation of excess ozone generation may be 

required at some sites.  A more immediate concern to the nursery/floral industry is the 

effect of ozone on plant growth due to either direct tissue damage from high residual 

ozone levels or indirectly from interaction with fertility regimes, mainly fertilizers 

injected into the irrigation stream (fertigation). Health issues will be discussed separately. 

Ozone is an inherently unstable gas that can not be stored and therefore must be 

produced or generated at the point of use.  In a gaseous state, ozone has a half-life (point 

in time where one-half of the original ozone concentration is reduced to elemental 

oxygen O2) of about 12 h in the ambient atmosphere.  However, in an aqueous solution 

ozone's half-life is much shorter at around 20 min. in distilled water.  Pure water has a 

low concentration of ozone-demanding constituents with a corresponding longer residual 

time.  In a comparison between various water sources and the half-life of ozone under 

identical temperatures, Rosenthal (1974), found a half-life as short as 10 min. in filtered 

lake water and greater than 1 h in double distilled water.  In practical terms, the longer 
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the half-life or residual time, the greater the ability to inactivate any contaminants in that 

water source.  Conversely, turbid or waters otherwise high in contaminants will require a 

higher ozone concentration over a longer time period to achieve effective inactivation of 

those contaminants. Acid conditions (pH 5 to 7) facilitate better microbial or contaminant 

inactivation because of the higher ozone stability at those pH ranges (Farooq et al., 1977). 

The water's constituents have a major effect on ozone's disinfection ability.  

As mentioned previously, ozone must be generated at the point of usage.  

Traditionally, ozone was generated by a corona discharge method.  This method was 

previously preferred because it generated the greatest concentration of ozone gas per 

electrical unit input (Rice et al., 1986).  In this procedure, an ambient air source or pure 

oxygen gas source is heated or otherwise chemically dried (dew point of -40 °C) to 

remove moisture or humidity from the gas.  The gas is passed between two electrically 

charged plates separated by a ceramic dielectric substance across a narrow discharge gap.  

As the gas passes through the discharge gap, part of the oxygen in air or supplied oxygen 

is converted to ozone.  This synthesis is a equilibrium reaction with the reverse reaction 

increasing at temperatures above 35° C (Rice et al., 1986).  Because of the amount of 

electrical current needed to effect the reaction, a large amount of waste heat is generated 

that must be dissipated.  The corona discharge method is capable of generating ozone 

concentrations of 12 to 38 mg · L-1 when ambient air is used with pure oxygen generating 

concentrations of 103 to 155 mg · L-1  (Flusche, 2006).  This system of ozone generation 

requires large amounts of electrical power to operate both the corona discharge plates and 

the necessary cooling plant to maintain the equipment and prevent the reverse reaction 

from ozone to oxygen.  In addition, significant inputs are required to pre-treat ambient air 

streams and the expense and danger associated with liquid oxygen supplies and storage.  

Ultraviolet (UV) light ozone generators also exists.  The generators have limited 

application because of the minimum ozone output (< 1.2 mg · L-1) (Flusche, 2006). 

Recent technological innovations in ozone generation offer greater opportunities for a 

wider use and application of ozone in water treatment schemes.  Electrochemical ozone 

generators have been developed using electrochemical cell stacks.  The basic chemical 

process is the electrolysis of water.  A direct current (DC) is applied across the anode and 

cathode sources positioned on either side of a Nafion 117 (DuPont) proton-exchange 
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membrane (PEM), a fluoropolymer highly resistant to chemical degradation (Flusche, 

2006).  When water is fed to the anode (+) electrode, which is coated with lead dioxide, 

two oxidation reactions take place.  Reaction 1 is an oxygen evolution reaction.  Reaction 

2 is an ozone formation reaction summarized as follows: 

Reaction 1.  2H2O + 4 e- → O2 + 4 H+  E○ = 1.23 V 

Reaction 2.  3H2O + 6 e- → O3 + 6 H+    E○ = 1.51 V 

 

At anodic potentials greater than 1.23 V, the lead dioxide coating on the electrode can 

catalyze the ozone formation reaction (reaction 2 above) while reducing the oxygen 

generating reaction (reaction 1 above).  The ozone and oxygen generated partitions 

between the liquid and gas phases as they are produced.  Hydrogen protons move to the 

cathode electrode via an external circuit where they react with electrons to produce 

hydrogen gas which may be vented or combined with oxygen via a catalyst to produce 

water vapor which is also vented.  The reaction is:  

 2H+ + 2 e- → H2  E○ = 0.0 V 

The proton-exchange membrane is a solid electrolyte which serves to conduct protons 

between the two electrodes.  The solid electrolyte has several advantages over a liquid 

electrolyte.  The potential leakage of corrosive chemicals is eliminated.  Additionally, the 

solid proton-exchange membrane separates the two electrodes and the Nafion anode 

interface by providing a favorable environment which allows for greater electrochemical 

ozone formation.  The Nafion membrane, as mentioned, is highly resistant to chemical 

attack by ozone.  A final cathode reaction involves reducing oxygen from ambient air and 

protons (H+) flowing from the anode to the cathode via the proton-exchange membrane to 

produce water and is represented by the reaction: 

 O2 + 4H+ + 4 e- → 2 H2O E○ = 1.23 V 

Individual electrochemical cells can be "stacked" to form multi-cell units to scale up 

production to a desired output.  Electrochemical generation can produce an ozone output 

of 12 to 16 percent by weight and has the advantage of using good quality water (reverse 

osmosis or better) as a feed source thereby eliminating the need for expensive air drying 

equipment or liquid oxygen (Flusche, 2006). 
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Ozone along with hydroxyl radicals are considered two of the strongest chemical 

oxidants (Gottschalk et al., 2000).  Ozone can act directly on an microorganism and other 

substances or indirectly by producing secondary hydroxyl radicals that then react with a 

targeted organism or substance (Gottschalk et al., 2000).  These two reaction types, 

indirect and direct, follow different pathways and have different oxidation products and 

are controlled by different reaction kinetics; however, they usually interact.  Many 

substances react instantaneously with ozone.  Metals such as iron, manganese, many 

organic complexes with heavy metals, and phenols react very quickly.  In addition, many 

types of algae and inorganic compounds such as cyanide, sulfide, and nitrite also react 

quickly.  Conversely, other types of organic material reacts more slowly with ozone.  

Detergents, pesticides, organo-nitrogen, organic acids, and some algae react much slower 

with ozone (Rice et al., 1986). 

The indirect reaction involves the decay of ozone into radicals and is accelerated by 

initiators such as OH- which in turn form secondary hydroxyl radicals (OH○).  Other 

initiators include peroxides (H2O2, HO2
-) and Ferrous Iron (Fe 2+).  These radicals, acting 

as oxidants, react instantaneously with solutes and are nonselective.  The actual radical 

pathway is complex and influenced by many factors. The pathway is divided into three 

different stages namely the initiation step, the radical chain reaction, and a final 

termination step (Gottschalk et al., 2000). 

An initial reaction between ozone and hydroxide ions leads to the formation of one 

superoxide anion radical and one hydroperoxyl radical and summarized by the equation: 

O3 + OH- → O2 ○- + HO2
○  k = 70 M-1 s-1  

The hydroxyl radical is in an acid-base equilibrium: 

 HO2
○ ↔ O2

○- + H+   pK = 4.8 

The products of this initial reaction with additional ozone are used in a chain reaction 

phase to produce hydroxyl radicals (OH○) and summarized as follows: 

 O3 + O2
○- → O3

○- + O2  k = 1.6 109 M-1 s-1 

 HO3
○ ↔ O2

○- + H+   pK = 6.2 

  HO3
○ → OH○ +O2   k = 1.1 108 M-1 s-1 

The hydroxyl radical (OH○) reacts with ozone to produce: 

 OH○ + O3 → HO4
○   k = 2.0 109 M-1 s-1 
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 HO4
○ → O2 + HO2

○   k = 2.8 104 M-1 s-1 

The decay of HO4
○ into oxygen (O2) and the hydroperoxide radical (HO2

○) allows for the 

reaction to start again leading to a chain reaction producing hydroxyl radicals (OH○) 

which act as the main oxidizing element.  Materials which can convert the hydroxyl 

radical into superoxide radicals (O2
○-, HO2

○) promote the chain reaction and are known as 

promoters.  Organic molecules (R) can act as promoters which have functional groups 

that can react with the hydroxyl radicals to form organic radicals (R○) represented by: 

 H2R + OH○ → HR○ + H2O 

When oxygen is present, organic peroxy radicals (ROO○) can form and further react with 

the superoxide radicals (O2
○-, HO2

○) to form further hydroxyl radicals which then can 

enter the chain reaction as represented by: 

 HR○ + O2 → HRO2
○ 

 HRO2
○ → R + HO2

○ 

 HRO2
○ → RO + OH○  

The decay of ozone and the subsequent chain reaction produces fast reacting and non-

selective hydroxyl radicals (OH○). These hydroxyl radicals are electrophilic and react at a 

molecule’s bond position that has the highest electron density (Gottschalk et al., 2000).  

Certain organic and inorganic molecules react with the hydroxyl radical (OH○) to 

form secondary radicals that do not produce superoxide radicals (O2
○-, HO2

○) and 

therefore induce an inhibitory effect.  These inhibitors, also known as scavengers, can 

terminate the chain reaction and inhibit ozone decay and thus hydroxyl radical formation.  

Examples of scavengers include bicarbonate and carbonate, phosphates, humic or other 

organic acids, and tert-butyl alcohol.  In the overall multi-step indirect reaction, three 

ozone molecules decay to produce two hydroxyl radicals as follows: 

3 O3 + OH- + H+ → 2 OH○ + H2O  

 

In the direct reaction, ozone reacts directly at unsaturated carbon bonds (C=C) due to 

the dipolar structure and splits the bonds as summarized by the reaction: 

     O 

   │         ║ 

─ C = C ─ + O3  →  ─ C = O or  – C – OH 



 10

Ozone will react quicker with substances that have electron supplying substituents 

(hydroxyl groups) (Gottschalk et al., 2000).  The reaction will be slower if no such 

substituent components are available.  Ionized organic compounds react faster with ozone 

than neutral compounds.  The direct ozone reaction becomes important if the radical 

producing reactions become inhibited.  In aqueous solutions, if initiators are absent to 

form the chain reaction or scavengers are present with terminate the chain reaction, the 

direct reaction dominates.  Under acidic conditions (pH < 4) the direct reaction 

predominates while in basic (pH > 10) conditions the indirect reactions predominate.  In 

neutral (pH ≈ 7) aqueous conditions, both direct and indirect reactions contribute to 

ozone decay and subsequent oxidation. 

Toxicology examines the adverse affects of substances on living organisms.  Two 

terms are normally used when describing toxicological events.  Acute toxicology is a fast 

harmful effect after only a short exposure time or an exposure in limited amounts.  

Chronic toxicology concerns the harmful effects caused by a substance over a prolonged 

time period (Gottschalk et al., 2000).  When considering toxicity, terms used include 

lethal dose (LD) or lethal concentration (LC).  LC50 is the concentration where 50% of a 

targeted population dies.  The effective dose or concentration (ED or EC) is defined 

analogously where EC50 is used to describe adverse effects in 50% of the test organisms 

within the prescribed exposure period (Gottschalk et al., 2000). 

Ozone is a highly toxic, oxidizing gas.  Routes of entry into humans include 

inhalation, skin penetration, and eye contact.   The most common mode of ozone 

exposure is inhalation of ozone gas.  However, ozone effects differentiate when 

application uses vary such as ozone in gas, ozone in liquid, and ozone by-products 

(Gottschalk et al., 2000). 

Ozone exposure concentrations of a few tenths of 1 mg · L-1 (1 mg · L-1 = 2 mg · 

m-3 at 20° C and 101.3 kPa) can cause occasional discomfort in the form of headaches, 

dry throat and mucous membranes, and irritation of the nose (Gottschalk et al., 2000).  

Ozone has an olfactory (odor detected) threshold of about 0.02 mg · L-1 but also has a 

desensitizing effect over time (Gottschalk et al., 2000).  Exposure to high concentrations 

or prolonged exposure can have serious health manifestations.  Toxic symptomology 

includes lung edema, frontal headaches, substernal pressure, constriction or oppression, 
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acid taste in the mouth, and anorexia.  Severe acute exposure to ozone can produce 

dyspnea (difficult or labored breathing), cough, choking sensation, tachycardia (rapid 

heart rate), vertigo, low blood pressure, cramping chest pain, and generalized body pain.  

An estimated 50 mg · L-1 exposure for 30 minutes is considered fatal (Gottschalk et al., 

2000). 

Chronic exposure symptomology is similar to acute exposure with pulmonary 

lung function decreasing depending on ozone concentration and duration.  Asthma, 

allergies, and other respiratory disorders have been linked to chronic ozone exposure.  In 

vivo studies indicate direct and indirect genetic damage with possible tumorgenic effects.  

Prolonged exposure is suspected of having carcinogenic potential (Gottschalk et al., 

2000). 

Direct ozone contact to skin tissue can cause irritation and high concentrations in 

liquid can cause skin burn and frostbite.  Eye irritation can occur at or above levels of 0.1 

mg · L-1 (Gottschalk et al., 2000). 

The American Conference of Governmental Industrial Hygienist (ACGIH) sets 

exposure limits for work involving ozone gas.  Immediately Dangerous to Life or Health 

(IDLH) level for ozone is 5 mg · L-1.  Threshold value limits (TVL) for ozone are 0.05, 

0.08, and 0.10 mg · L-1 for heavy, moderate, and light work conditions (Gottschalk et al., 

2000).  For safety reasons, an ambient air ozone monitor (0 to 1 mg · L-1 range) should 

always be present when ozone is in use.  Appropriate shut down safety procedures should 

also be in place (Gottschalk et al., 2000). 

No health hazard data are available and no limits for the workplace exist on using 

ozone in liquids (Gottschalk et al., 2000).  Ozonated water in high concentrations can 

lead to eye and skin irritations.  Most of the toxic effects associated with ozone in liquids 

are related to off-gassing (ozone evolution out of solution).  For this reason, ozonated 

liquids at high concentrations should be used in closed piping or containers (Gottschalk et 

al., 2000).  Langlais et al. (1991) investigated the toxic affects of ozonated water on fish 

species and found a LD50 ranging from 0.0093 mg · L-1 for 96 hour exposure  in Rainbow 

Trout Oncorhynchus mykiss Walbaum to 0.38 mg · L-1 for 24 hour exposure in White 

Perch Morone Americana Gmelin. 
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CHAPTER III 

PHYTOPHTHORA: TAXONOMY AND EPIDEMIOLOGY 

 

Overview 

Phytophthora deBary microorganisms account for some of the most destructive 

and economically significant plant disease epidemics on record (Zentmyer, 1983).  The 

most poignant example is late blight of potato (Solanum tuberosum L.) caused by 

Phytophthora infestans (Mont.) deBary which triggered the great famine of 1845-1849 in 

Ireland (Bourke, 1991; Gregory, 1983).  This one epidemic caused massive starvation in 

which over one million people died and the immediate emigration to North America of 

another million Irish people; fundamentally altering a whole culture and society.  This 

epidemic occurred just before the advent of modern germ theory and it has been stated 

that the potato famine triggered the development of plant pathology as a science (Erwin 

and Ribeiro, 1996).  Currently, a pathogenic organism that has caused much concern in 

the United States and Europe is Phytophthora ramorum Werres, DeCock, and Man in't 

Veld which is the cause of Sudden Oak Death (SOD) in the western United States and 

leaf blight and canker on many ornamental species including rhododendron 

(Rhododendron L.) and camellia (Camellia L.) in the southeastern United States and in 

Europe.  First noticed in 1993 in Germany and Belgium on rhododendron and viburnum 

(Viburnum L.), P. ramorum was not described until 2000 and is of an unknown origin 

(Werres et al., 2001).  This organism is of concern because it is not host specific, but 

infects a wide number of both woodland and landscape species (Tjosvold et al., 2006).  

The list of susceptible species continues to grow as multiple governmental and scientific 

agencies monitor this organism's spread (U.S. Department of Agriculture, 2005).  In 

2003-2004, over two million containerized plants potentially infested with P. ramorum 

were shipped from the west coast of the United States to nurseries and garden centers in 

49 of the 50 states (U.S.Department of Agriculture, 2005).  California and Oregon have 

reported infestations in native forests (Rizzo et al., 2002).  Phytophthora ramorum can 

potentially adversely affect forest ecosystems through increased fire and safety hazards 

from dead trees, in addition to negative economic impacts such as lost lumber revenues 

and reduced property values.  The affect on urban landscapes will also be great through 
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loss of mature trees and shrubs and the subsequent cost of tree removal and replacement.  

The economic impact on the $13 billion a year horticultural industry will be great due to 

quarantine restrictions, stop sell orders, and the destruction of infected nursery stock 

(U.S. Department of Agriculture, 2005).  The above are but a couple of examples of the 

immense impact on mankind from diseases caused by Phytophthora. 

Given the fact that species of Phytophthora cause worldwide epidemics, what 

characteristics and physiological aspects account for the virulent nature of these 

organisms?  Phytophthora causes root and collar rots, leaf spots, twig, and seedling 

blights on a wide range of plants from herbaceous annuals to forest trees.  The genus 

Phytophthora, along with the genus Pythium Springsheim, are commonly referred to as 

"water molds" because both are favored by free water in soil and on plant foliage or other 

moist humid environments.  Pathogenic species of Phytophthora are reported in natural 

streams, ponds, and in recirculated nursery irrigation effluents (MacDonald et al., 1994)  

While many species of Pythium are plant pathogens, many are saprophytes or even 

parasitic on Phytophthora (Erwin and Ribeiro, 1996).  Most species of Phytophthora are 

generally considered to be plant pathogens.  A moist wet condition is an important 

environmental component for disease development caused by species of Phytophthora; 

however, P. ramorum is unique in that it lacks a strict association with wet soils or free 

water with symptomatic trees being found on dry hillside sites (Rizzo et al., 2002).  

Cankers can appear on trunks instead of the crowns and roots where Phytophthora 

diseases causing root and stem rots normally originate (Rizzo et al., 2002).  Furthermore, 

several species including P. ramorum and P. infestans are sometimes referred to as aerial 

blights since they attack twigs, stems, and other above ground structures (Werres et al., 

2001).  Aerial blights can be a significant problem in the production of horticultural crops 

(Denman et al., 2005).  Diseases caused by Phytophthora have been associated with a 

major decline of Eucalypt forests in Australia (Podger, et al., 1965) 
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Taxonomy 

Species of Phytophthora were traditionally classified as fungi in the Kingdom 

Fungi (Myceteae; former classification).  Recent advances in phylogenetic research using 

modern molecular techniques has led to multiple and often conflicting classification 

revisions.  Phytophthora has been classified as being a member of the Kingdom 

Chromista (Cavalier-Smith, 1986; Werres et al., 2001) with other classification systems 

further delineating a kingdom called the Stramenopila with the term Pseudomycota also 

being used (Patterson, 1989; Sogan and Hinkle, 1997).  Stramenopila is gaining 

acceptance as a synonymous status with Chromista.  However, pending further research, 

this review follows Cavalier-Smith's (Cavalier-Smith, 1986) classification using the 

hierarchy Chromista.  The genus Phytophthora was first described by Anton deBary in 

1876.  The differences between the true fungi and the Chromista are based on 

evolutionary divergence, but plant pathologist have always considered Phytophthora to 

be 'fungus-like' and realized it had unique characteristics that needed to be considered 

when studying and controlling species within this genus (Erwin and Ribeiro, 1996).  

Indeed, it is thought that true fungi and members of the Chromista represent an example 

of convergent evolution (Cavalier-Smith 1987).  The kingdom Chromista is characterized 

by having heterokont (different types of flagella) flagellation on zoospores and was 

formally named in 1986 (Cavalier-Smith, 1986).  Chromista includes all protista having 

tripartite, hollow, tubular hairs (mastigonemes) arranged in two rows along the flagellar 

shaft and or a complete rough endoplasmic reticulum (RER) envelope around the 

chloroplast (Erwin and Ribeiro, 1996).  The brown algae are included in the Chromista 

and are all thought to have evolved from a common ancestor (Erwin and Ribeiro, 1996).  

The Oomycetes (phylum to which Phytophthora belongs) evolved with and are 

phylogenetically related to heterokont algae (Erwin and Ribeiro, 1996).  This concept is 

supported through ultrastructural similarities.  Small subunit ribosomal RNA gene 

sequences agree that oomycetes differ at the molecular level from true fungi (Erwin and 

Ribeiro, 1996).  The oomycetes are characterized by the production of zoospores with 

two cilia with anterior rootlets having a ribbed triplet and doublet with posterior rootlets 

having an octet and doublet and with cytoplasmic and nuclear associated microtubles. 
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The practical implication associated with whether Phytophthora is a true fungi or not is in 

the method of chemical disease control.  

The following general taxonomic hierarchy of the genus Phytophthora is based on 

descriptions by Cavalier-Smith (1986), Bar (1992), and Dick (1969) with the 

understanding that this system may be supplanted by other systems upon consensus in the 

literature: 

Kingdom: Chromista 

Phylum: Oomycota 

Class: Oomycetes 

Order: Pernosporales 

Family: Pythiaceae 

Genus: Phytophthora 

Characteristics of the Chromista are uni- or multi-cellular, filamentous, or colony 

forming microorganisms.  They are primarily phototropic and some have tubular flagellar 

appendages and or chloroplast inside the rough endoplasmic reticulum.  Fungi produce 

mycelium which contain glucans and chitin or chitosan, but lack chloroplasts (Cavalier-

Smith, 1986, Tyler, 2001).  Genomic analysis of RNA sequences show that fungi and 

oomycetes (Chromista) are phylogenetically distinct (Tyler, 2001). 

Species of Phytophthora belong to the phylum Oomycota and are characterized 

by biflagellate zoopores.  Longer tinsel flagellum are directed forward while shorter 

"whiplash" flagellum are directed backward.  Cell walls are made up of glucans, 

hydroproline, and cellulose. 

Oomycetes are fungal-like organisms that have elongated mycelium containing 

cellulose and glucans but have no cross walls.  Oomycetes synthesize lysine via diamino-

pimelate while fungi synthesize lysine via an alpha-amino-adipate pathway (Tyler, 2001).  

They produce in oogonium (female gametangium) zygotes called oospores.  These are 

thick-walled spores and may be long-lived.  Oomycetes also produce zoospores or 

zoosporania as their asexual spores.  The Oomycota also produce chlamydospores (Dick, 

1990; Barr and Desaulniers, 1990; Barr 1992).  
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Life History 

Phytophthora species have coenocytic mycelium [coenocytic = pertaining to 

multinucleate mycelium in which the nuclei are not separated by cell walls] with no, or 

few, septa and in water produce zoosporangia that bear biflagellate zoospores 

[zoospores= spores that form within the sporangia and exits through a terminal pore, has 

a tinsel and a whiplash flagellum and are capable of swimming for several hours].  

Sporangia are the sacs within which zoospores form, especially when water is cooled 

about 10° C below ambient temperature.  In solid substrate, sporangia usually germinate 

by germ tubes.  Zoospores can swim for hours but eventually cease swimming (Bimpong 

and Clerk, 1970).  At this time, the spores round up or become spherical and within 

minutes develop a cell wall and is called a cyst (Bartnicki-Garcia and Wang, 1983).  

Encystment is induced by agitation, shaking, or spores naturally colliding with each 

other.  Zoospores are thought to be a major source of infectious propagules (Erwin and 

Ribeiro, 1996). 

Sexual oospores form singly within the oogonium after fertilization by a nucleus 

from the anteridium (Erwin and Ribeiro, 1996).  The most important morphological 

feature of the oomycetes is sexual reproduction by production of oospores after union of 

two gametangia in which meiosis occurs prior to fertilization (Erwin and Ribeiro, 1996).  

The thallus is diploid (Erwin and Ribeiro, 1996). 

Phytophthora, as a member of the Oomycetes, differs from other true fungi in a 

number of characteristics (Zentmyer, 1983; Griffith et al., 1992).  The cell walls are 

composed of cellulose and beta-glucans but not chitin which is present in non-oomycetic 

fungi (Bartnicki-Garcia, 1969; Bartnicki-Garcia and Wang, 1983).  The main storage 

carbohydrate is mycolaminarin, a beta-1-3 glucan (Wang and Bartnicki-Garcia, 1974).  

The zoospores are biflagellate with one being a whiplash and the other being a tinsel 

flagellum (Desjardins et al., 1969; Hemmes, 1983). 

An important characteristic is that Phytophthora species do not synthesize sterols, 

but require an exogenous source of beta-hydroxy sterols for sporulation (Elliot, 1983; 

Hendrix, 1970).  The Phythiaceae are resistant to polyene antibiotics such as pimaricin.  

This is coupled with an exogenous beta-hydroxy sterol requirement (Eckert and Tsao, 

1962).  Other fungi which synthesize sterols are sensitive to polyene antibodies.  This 
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dependence on exogenous sterols offers strategies for the control of diseases caused by 

Phytophthora. 

Inoculum from Phytophthora can range from undetectable to high levels in a very 

short time period (MacKenzie et al., 1983; Weste, 1983).  The increase of inoculum is 

caused by the rapid production of sporangia and zoospores from infected plant tissue 

when environmental conditions are favorable.  In particular, the presence of free water 

greatly increases spore production.  Because of a short regeneration time and great 

reproductive capacity, diseases caused by Phytophthora are usually multicyclic or have 

the ability to reproduce many times during a single growing season (Fry, 1982; 

MacKenzie et al., 1983).  The oospores produced are capable of surviving long periods of 

time and also show great genetic variability in the progeny.  Multicyclic diseases can 

result in epidemics which quickly escalate when environmental conditions are favorable. 

Production of sporangia and zoospores are the principal means by which the 

numbers of propagules are increased and account for rapid regeneration times.  Time 

required for sporulation is species dependant and ranges from a few hours to a week 

(Erwin and Ribeiro, 1996)  Sporulation physiology is complex and the induction in many 

soil borne species has exacting environmental combinations of moisture and temperature 

(Erwin and Ribeiro, 1996). 

In laboratory studies using Phytophthora in vitro cultures, water free of metallic 

ions is essential.  Phytophthora is sensitive to copper and possibly other metals (Kennedy 

and Erwin, 1961).  Glass distilled water should be used to avoid metallic contamination 

(Gerrettson-Cornell, 1976).  Copper concentrations as low as 1 x 10-7 M inhibited several 

species from sporulating (Halsall, 1977). 

Soil borne species produce sporangia optimally on new mycelial growth only 

after the cultural media is changed from a nutrient rich to a nutrient poor media followed 

by water or salt solution rinses (Erwin and Ribeiro, 1996; Ho, 1969).  Depletion of 

nutrients is an important factor in inducing sporulation of many species (Elliott, 1989; 

Yoshikawa and Masoago, 1977).  Species that cause aerial blight sporulate under high 

relative humidity, while most root infecting species sporulate only in free water or other 

aqueous environments (Erwin and Ribeiro, 1996). 
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In addition to water, media pH can be important with most species favoring a 

neutral to acidic (pH 6 to 7) environment.  Appropriate nutrient components must be 

present as well as an exogenous sterol source (Nes et al., 1982).  Oxygen is also required 

and may be limiting in saturated soils (Erwin and Ribeiro, 1996).  In addition, 

sporangium formation may be suppressed when carbon dioxide levels rise above ambient 

conditions (Mitchell et al., 1978).  Light quality can also affect sporangium production on 

certain species.  Light in the near-ultraviolet (320-400 nm) or blue (430-500 nm) region 

is favorable for sporangium formation in certain species (Erwin and Ribeiro, 1996).  

Many species, especially those which are soil-borne, may be inhibited by light or 

sporulate better in dark conditions (Gooding and Lucas, 1959; Harnish, 1965; Ribeiro et 

al., 1976). 

As alluded to, many individual factors contribute to the sporulation process.  

Moreover, it is a precise combination of these factors that determine a specie’s ability to 

successfully sporulate thereby producing a large number of propagules. 

Zoospore production is the most important part of the Phytophthora life history as 

this is the mechanism that allows for rapid population increase and dispersal when free 

water is present.  Many species (for example P. infestans) produce zoospores at lower 

temperatures (12º C) with direct germination of sporangium by germ tubes at higher 

temperatures (24º C).  Many other species produce zoospores at higher temperatures as 

those species grow better at higher temperatures (Erwin and Ribeiro, 1996).  In general, 

cooling sporangia cultures to 10º C below optimum growth temperatures stimulates 

zoospore formation (Erwin and Ribeiro, 1996). 

Sporangium can germinate by production of germ tubes or by the production and 

release of zoospores.  Sporangia that germinate by zoospore production are controlled by 

environmental factors such as temperature lowering and the availability of free water 

(Barr, 1992; Barr and Desaulniers, 1990; Hemmes and Hohl, 1971).  When 

environmental conditions favor zoospore production, the cytoplasm in the sporangium 

cleaves around each nucleus and biflagellate zoospores form (Erwin and Ribeiro, 1996)  

Zoospores are expelled upon maturity from the sporangium by a difference in osmotic 

potential whereby water moves into the sporangium and increases turgor pressure within 

the sporangium (Gisi, 1983).  A cap or plug consisting of a gel-like material dissolves 
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and the spores are pushed out of the apical opening by the higher internal osmotic 

pressure (Gisi et al., 1979; MacDonald and Duniway, 1978).  Once released, the 

zoospores swim by means of their flagellates.  After time, zoospores cease to swim and 

form a cell wall during the encystment process. 

Phytophthora follows a typical disease life history.  There are normally seven 

stages involved in a disease cycle and include the following (Agrios, 1997): 

1. Inoculation 

2. Penetration/germination 

3. Establishment of infection 

4. Colonization (invasion) 

5. Growth and reproduction 

6. Dissemination 

7. Pathogen survival or over-seasoning 

Inoculation occurs when the pathogen first comes into contact and enters the host 

plant.  Inoculum consists of any part of a pathogen that can initiate infection once it is 

brought into contact with a host plant.  A single unit of inoculum is a propagule. 

Pathogens in a vegetative state can immediately infect a plant.  Spores must 

germinate before they can penetrate plant tissue.  Spore germination requires favorable 

temperatures and free water or at least high humidity.  Ideal environmental conditions 

must persist until host plant penetration.  Spores are normally capable of germinating 

immediately after maturation and release.  Resting spores may require a dormancy period 

before germination is possible (Agrios, 1997). 

Upon germination, spores produce a germ tube which can penetrate the host plant.  

Nutrients or other plant metabolites diffusing out of the plant's surface may stimulate or 

favor germinating spores (Agrios, 1997).  Some pathogens germinate only by exposure to 

exudates of plants susceptible to that particular pathogen (Agrios, 1997).  In other 

instances, spore germination may be inhibited by exposure to plant exudates (Agrios, 

1997). 

After germination, pathogens must penetrate the plant surface.  This is 

accomplished by direct penetration through the surface or by penetrating natural openings 

(stoma, lenticels, hydathodes) in addition to plant surface wounds (Agrios, 1997).  
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Penetration does not always lead to infection.  Pathogens which do penetrate directly do 

so by hypha produced directly by the spore or, though a penetration peg produced by an 

appressorium, which is a swollen tip of a hypha or germ tube that allows attachment 

facilitating penetration (Agrios, 1997).  The hypha pierces the cuticle and cell wall 

through mechanical force and enzymatic action on cell wall substances (Agrios, 1997). 

Infection is the process by which pathogens establish contact with susceptible 

host cells or tissue and procure nutrients (Agrios, 1997).  Pathogens grow and or multiply 

within the plant tissue and spread or colonize surrounding tissue.  Tissue invasion and 

pathogen reproduction (colonization) in or on infected tissues are two concurrent 

substages of disease development within the infection process.  Infection results in the 

appearance of a particular pathogen's disease symptomology.  However, some infections 

remain latent without symptoms until such time as environmental or other factors become 

favorable for disease expression.  Fungal infection may be local and only involve a single 

cell or a few cells immediately surrounding the invasion site, or the infection may enlarge 

to cover plant organs (flower, leaf, fruit) or the entire plant (Agrios, 1997). 

Fungi generally invade and infect tissue by growing into them from one point of 

inoculation (Agrios, 1997).  These pathogens normally continue to grow and branch out 

indefinitely and spread throughout the affected tissue until infection stops or the plant is 

dead.  Fungi causing vascular wilts invade plants by producing spores within the vascular 

system and the released spores are carried to other parts of the plant via sap or water flow 

(Agrios, 1997).  This allows for subsequent infection away from the initial infection site.  

Most pathogenic fungi produce mycelia only within the plant they infect (Agrios, 1997).  

Few fungi produce mycelia on the plant surface (with the exception of the powdery 

mildew fungi: order Erysiphales Gwynne-Vaughan).  The majority of fungi produce 

spores on or just below the surface of infected plants (Agrios, 1996).  These spores are 

usually released outwards into the surrounding environment.  Some fungi do not release 

their spores until the host plant dies and disintegrates (Agrios, 1996). 

Pathogen propagules are disseminated by many methods.  Wind, rain, insect, or 

animal/mechanical dispersions are common.  The role of water in Phytophthora dispersal 

is especially important.  Excess irrigation and rainfall are the most important factors 

affecting the severity and spread of diseases caused by Phytophthora (Agrios, 1997; 
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Erwin and Ribeiro, 1996).  The duration of free water either in the soil or on the plant is 

important because of the favorable environment coupled with the high capacity of 

Phytophthora to reproduce by sporangia and zoospores (Erwin and Ribeiro, 1996).  A 

main method of dispersal for zoospores or cyst (encysted zoospore) in soil is flowing 

water or rainfall splashing and runoff (Erwin and Ribeiro, 1996). 

An important part in the disease life history is the ability of a pathogen to survive 

during periods unfavorable for growth and reproduction.  Unfavorable conditions range 

from a lack of a suitable host to environmental conditions such as cold, heat, and 

extended drought.  Several mechanisms have evolved to enable a pathogen to survive.  A 

common survival mechanism is for mycelia or spores to remain on infected host plant 

tissues over time (Agrios, 1997).  Such tissues include bud scales, decaying fruit, stem 

cankers, or infected leaves, stems, and roots.  Annual or deciduous tissues that fall to the 

ground can be overseasoning refuges for pathogens (Agrios, 1997).  Other pathogens may 

survive for long periods of time in the soil (Agrios, 1997).  Additional survival strategies 

include overseasoning on seed, vegetative propagules, or insects (Agrios, 1997). 

Phytophthora in the absence of host plants does not persist in the soil as long as 

other fungi that are saprophytic or possess the ability to colonize non-living organic 

matter (Agrios, 1997).  Survival times for Phytophthora propagules vary greatly 

depending on individual species.  Mycelia can persist from a few days to 2 years while 

chlamydospores or oospores may persist for six years under certain conditions (Agrios, 

1997). 
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Phytophthora capsici: An Overview 

Phytophthora capsici Leonian (1922) 

syn.  P. hydrophila Curzi 

 P. parasitica var. capsici (Leonian) Sarejanni 

 P. palmivora MF4 Griffin 

 

Phytophthora capsici was first described by Leonian in 1922 (Leonian, 1922) as 

the causal agent of chili pepper (Capsicum annuum L.) blight in New Mexico.  

Phytophthora capsici is known to infect many plant species from temperate to tropical 

agronomic and horticultural crops worldwide.  Diseases caused by P. capsici include 

foliar blights, fruit rots, stem and root rots (Erwin and Ribeiro, 1996). 

Phytophthora capsici was re-described to accommodate a broad range of biotypes 

that were originally included under P. palmivora MF4.  These isolates cause black pod of 

cocoa (Theobroma cacao L.) and black pepper (Piper nigrum L.) wilt (Tsao and 

Alizadeh, 1988; Tsao, 1991).  Because P. capsici has been broadened in scope, host-

specific pathogenicity is diverse.  For example, Macadamia nut (Macadamia integrifolia 

L.) isolates are not pathogenic on pepper (Capsicum  spp.) (Uchida and Araguki, 1989).  

A world collection of 84 isolates were analyzed for isozyme relatedness.  

Phytophthora capsici is a genetically complex species containing three subgroups 

(Oudemans and Coffey 1991).  Subgroup one, CAP1, contains isolates from annual 

solanaceous (Solanaceae Juss.) and cucurbit (Cucurbitaceae Juss.) species, as well as 

isolates from black pepper and cocoa previously described as P. palmivora MF4 (Kaosiri 

and Zentmyer 1980).  Subgroup two, CAP2, contains isolates from mainly tropical crops 

such as black pepper, papaya (Carica papaya L.), macadamia, and rubber Hevea 

braziliensis (Willd. ex A. Juss.) Mull.  Subgroup three, CAP3, mainly includes isolates 

from cocoa in Brazil and is the least genetically diverse (Oudemans and Coffey, 1991).  

Mchau and Coffey (1994) looked at 113 isolates of P. capsici and conducted further 

isozyme analysis.  This analysis showed that the isolates could be separated into two 

subgroups, CAPA and CAPB.  Each subgroup is diverse with a wide range of host and 

geographical distribution.  Morphology varied in some members of the subgroups. 
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Phytophthora capsici needs a minimum of 10º C for growth with an optimal 

temperature of 28 ºC and a maximum temperature greater than 35º C (Stamps 1985).  

Studies report various temperature ranges under which growth will occur (Tsao, 1991; 

Leu and Kao, 1981).  Isolates from CAP3 tend to grow better at higher (35º C) 

temperatures. 

Sporangia are mostly papillate (nipple-shaped) with some showing semi-papillate 

forms.  Sporangial shapes are influenced by light and cultural conditions (Tsao and 

Alizadeh, 1988; Tsao, 1991).  The overall shapes range from subsperical, ovoid, obovoid, 

ellipsoid, fusiform (spindle-shaped), to pyriform (pear-shaped).  Sporangia are tapered at 

the base and are cauduous (from the Latin "to fall") on a long pedicel (Erwin and Ribeiro, 

1995).  Caudicity, or the ability of sporangia to readily detach from sporangiophores and 

be carried by wind currents is a primary method of dispersal (Erwin and Ribeiro, 1995).  

Mchau and Coffy (1994) also report much variability in morphology.  Sporangiophores 

formed under light are irregularly branched and sympodia (chains) form only in water.  

Isolates of subgroup CAPA produce rounded ellipsoid sporangia, some with multiple 

papilla.  Subgroup CAPB produce ellipsoid-lanceolate sporangia. Morphology can be 

diverse among isolates (Erwin and Ribeiro, 1995). 

According to Tucker (1931) P. capsici from annual pepper rarely produce 

chlamydospores in culture.  Ristaino (1990) reports no chlamydospore formation from 

annual pepper or cucurbit isolates.  Some chlamydospores were reported on annual 

peppers grown in Iran (Ershad, 1972).  Mchau and Coffy (1994) suggest chlamydospore 

formation is related to isolates from subgroup CAPB.  Chlamydospores were observed to 

be terminal or intercalary.  Chlamydospore production in some isolates is determined to 

some extent by cultural methods (Uchida and Araguki, 1985).  Mycelial mats grown for 

five days on clarified vegetable extract juice (V8) and then submerged in sterile distilled 

water and incubated in the dark produced chlamydospores in 20 of 29 P. capsici isolates. 

However, with the exception of three isolates from eggplant (Solanum melongena L.), 

isolates from species of Solanaceae did not produce chlamydospores (Erwin and Ribeiro, 

1995). 
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CHAPTER IV 

PHYTOPHTHORA CONTROL: 

THEORY AND STRATEGY 

 

Overview 

Effective Phytophthora deBary control strategies must take into account factors 

that contribute to disease development.  Successful strategies should achieve as much 

disease control as is efficient and cost effective.  This is most effective in control of 

Phytophthora by focusing on the weakest link in the pathogen's life history. 

To begin, a brief discussion of disease causing factors is necessary.  These factors 

include an organism capable of causing disease (pathogen), a susceptible host, and a 

suitable environment in which the pathogen can successfully complete its life history or 

otherwise inflict harm on its host by disease manifestation.  The degree of interaction 

between these factors determines the severity of a disease (Agrios, 1997).  A classic 

example representing the interactivity of these factors is the concept of a disease triangle 

(Agrios, 1997).  Each side of a theoretical equilateral triangle represents one of the above 

mentioned factors.  Creating conditions or situations where one of the three sides of the 

triangle is adversely affected reduces the incidence or the severity of the disease.  A more 

accurate method of describing this interaction is thinking of each side of the three factors 

as a separate circle or sphere.  Bringing the three circles into proximity from partial to 

complete overlapping represents a degree of disease severity (Erwin and Ribeiro, 1996).  

Complete separation of the circles indicates a condition where no disease occurs.  A 

partial overlapping indicates a condition where an endemic or low threshold of disease 

occurs.  A complete overlapping of the three factors indicates a condition where epidemic 

disease is possible.  Any strategy which can theoretically move the circles further apart 

will reduce the incidence of disease (Erwin and Ribeiro, 1996). 

When considering the theoretical disease triangle and the three factors involved 

(pathogen, host, and environment), environment, which in this instance includes plant 

culture, is one factor that can be modified, particularly in container or greenhouse 

production.  Environment by this definition can include not only climatic factors such as 

rainfall, temperature, or humidity, but other diverse elements including irrigation or water 
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management, soil or other growing substrates, abiotic and biotic stresses, and host plant 

nutritional status.  These elements can influence the severity and spread of diseases.  

Specific factors reported to increase the severity or spread of diseases caused by 

Phytophthora are listed as follows: 

1. Water saturated soil (Bowers et al., 1990; Bowers and Mitchell, 1990) 

2. Soil hardpans ( Shea et al., 1984; Zentmyer, 1980) 

3. Drought stress (Blaker and MacDonald, 1986; Ristaino and Duniway, 1989) 

4. High soil salinity (Blaker and MacDonald, 1986; MacDonald, 1982, 1984) 

5. Increase in soil pH (Kincaid et al., 1970) 

6. Leaf wetness (Grove et al., 1985; Kuske and Benson, 1983) 

7. Mound building ants (McGregor and Moxon, 1985) 

8. Excess fertilization (Elliott, 1989; Hoitnick et al., 1986; Utkhede, 1984) 

The two most important factors in the severity and spread of diseases caused by 

Phytophthora are excessive irrigation and rainfall (Erwin and Ribeiro, 1996).  Rotem and 

Palti (1969) reported that flood irrigation and sprinkling foliage has an important impact 

on the incidence of disease. 

Free water, either in the soil or on the plant foliage or fruit, for a prolonged time is 

the most important environmental consideration as this allows for a favorable situation 

for the rapid increase in the production of Phytophthora inoculum (Grove et al., 1985).  

Free water allows the reproductive capacity of Phytophthora to rapidly increase the 

formation of sporangia and zoospores.  Zoospores and cysts are normally moved in the 

soil through flowing irrigation water, rainfall runoff, and physical soil movement by any 

method.  Reports from Australia show that soil infested with Phytophthora cinnamomi 

Rands used to construct new roads in Jarrah (Eucalyptus marginata J. Donn ex Sm.) 

forests contributed to a pattern of diseases caused by Phytophthora that subsequently 

developed along those forest roads (Shea et al., 1983; Weste, 1983). 

Zoospores are motile, but independently cannot move very far in soil.  However, 

in flowing water, zoospore movement is widespread (Erwin and Ribeiro, 1996).  

References cite instances of Phytophthora being isolated in bodies of water such as 

canals, reservoirs, lakes, and streams (Garber et al., 1986; Klotz et al., 1959; von 

Broembsen, 1984).  Excess irrigation in containerized plant production is also common 
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(Erwin and Ribeiro, 1996).  Although containers normally have drainage holes, drainage 

is much less efficient than in field situations.  Substrates may actually stay saturated for a 

prolonged time particularly at the bottom of the containers.  Additionally, containerized 

plant production often involves the use of overhead sprinkler irrigation which in turn 

leads to prolonged wet foliage and high humidity immediately surrounding the container. 

Free water in the soil will increase the number of sporangia and or zoospores 

which can increase the occurrence and severity of disease (Mitchell et al., 1978). In areas 

of low or seasonal rainfall, irrigation management can be a first line of defense in both 

field production and containerized nursery operations.  This also applies to greenhouse 

crop production where rainfall is not usually a factor and irrigation is controlled.  A 

paramount factor that is decisive in the severity of root disease is the length of time that 

soil remains saturated or near saturation (Duniway, 1983; Pfender et al., 1977).  A 

confounding factor is that flooded soils can set up an anaerobic (anoxia) condition that 

causes root rot conditions which often mimic diseases caused by Phytophthora (Erwin 

and Ribeiro, 1996). 

As mentioned, the life history of Phytophthora requires free water for the spread 

of zoospores.  Zoospores have the ability to stick to plant surfaces because of the rapid 

production of an adhesive substance during the encystment process (Sing and Bartnick-

Garciai, 1975).  This adhesive substance is thought to be associated with lectin-ligand 

interactions and is not host specific (Hardham et al., 1991; Hohl, 1991).  In orchards or 

other crop areas with permanent established plantings, such as landscapes, inoculum of 

Phytophthora cannot be economically eradicated.  Cultural practices should be such that 

growing conditions are plant favorable, but not favorable for the pathogen.  One of the 

most important methods for the prevention of crown rot on tree trunks is to prevent 

irrigation water from splashing or spraying on the trunks, or limiting overhead irrigation 

on nursery sites (Klotz, 1978). 

A soil hardpan, or any change in soil texture, below the surface can create an 

interface which affects the percolation of water through the soil profile (Erwin and 

Ribeiro, 1996).  This interface may be temporary as in the case of sandy soils, or 

permanent in the case of heavy clay or a concreted lateritic layer (hardpan).  While this is 

a common condition in field soils, especially where heavy equipment is in continual use, 
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a similar boundary layer effect can occur in containerized plants with bottom drainage 

holes (Erwin and Ribeiro, 1996).  A permeable growing substrate at the container 

interface will cause a temporary impedance to the downward flow of water.  If this 

condition extends the length of time that the substrate remains saturated, this can set up 

an environment favorable to sporangia development and zoospore release. 

To illustrate the affect of a clay hardpan in a native soil contributing to the 

development of a specific epidemic caused by Phytophthora, it is useful to look at a case 

described by Shea and others (1983) previously mentioned concerning the decline of a 

Jarrah forest in Western Australia from 1965 to the mid-1980's.  The conundrum was to 

explain how large Jarrah trees, whose death was attributed to Phytophthora cinnamomi, 

died during the dry season when the trees had large vertical roots extending deep into the 

ground which should have supported the trees during the dry season.  All data indicated 

that the environment was only marginally favorable for the development of Phytophthora 

cinnamomi.  Although fibrous roots were lost to Phytophthora cinnamomi at very 

shallow layers (< 10 cm) during the wet season, it was difficult to explain such 

widespread damage during the dry season when soil sampling showed a low population 

of Phytophthora cinnamomi and large vertical roots appeared to be intact.  Research 

showed that even in years with above average rainfall, Phytophthora cinnamomi could 

not be consistently detected in the fibrous root zone near the surface.  Shea concluded 

that sampling methodology was not looking in the right location.  When subsequent dead 

trees were excavated to a depth below the concreted lateritic layer (hardpan), lesions 

typical of Phytophthora cinnamomi were immediately recognized along the large vertical 

roots that penetrated the hard pan some 10 to 70 cm below the soil surface.  Repeated 

root system excavations were able to isolate Phytophthora cinnamomi from where large 

roots extended into the hardpan and left cavities.  Ultimately, it was shown that Jarrah 

trees produce strong vertical roots which penetrate the hardpan layer leaving channels 

and holes.  Water percolating down through the soil profile collected in these channels 

and holes and was prevented from further downward movement due to the impervious 

soil layer.  This set up a water saturated zone where Phytophthora cinnamomi 

proliferated in sporangium and zoospore production.  This in turn caused infection of the 

large roots to take place producing the characteristic lesions on the vertical roots.  These 
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damaged roots were unable to transport water upward from lower reservoirs of water 

during the dry season causing subsequent die-back and eventual death.  Shea et al. (1983, 

1984) found Phytophthora cinnamomi where roots penetrated the hardpan at depths (> 70 

cm) not previously reported.  Additionally, they found high sporangium development at 

the hardpan interface only because of the high retention of soil water (Shea, et al., 1983).  

Subsequent research in Jarrah production and forest management shifted focus from fine 

root susceptibility to studies focusing on root and root collar infections (Shea et al., 

1982). 

Environmental factors of a non-genetic nature that can affect a plant's disease 

susceptibility prior to infection is known as predisposition (Schoenweiss, 1975).  

Predisposition is an important concept because many plant genotypes thought to be 

disease resistant may become susceptible under adverse or predisposing conditions.  A 

predisposing effect is different than a simple environmental factor, such as a high rainfall 

event, which may cause an increase in pathogen inoculum, but does not necessarily affect 

the host plant.  Main factors predisposing a plant host to disease include, drought stress, 

pre-inoculation flooding, and soil or water salinity (Duniway, 1983). 

Field crops such as safflower (Cathamus tinctorius L.) and tomato (Solanum 

lycopersicum L.) show an increase in Phytophthora root rots following drought stress 

(Knowles et al., 1965; Ristaino and Dunway, 1989; Zimmer and Urie, 1967).  Even 

disease resistant cultivars of safflower became susceptible when exposed to drought 

stress (Duniway, 1977).  The exact mechanism that triggers this effect is complex and not 

fully known, but may relate to net photosynthesis or possible desiccation of roots and 

corresponding release of amino acids into the soil (Hsiao, 1973; Katznelson et al., 1955; 

Ristaino and Dunway, 1989; Sharp and Davies, 1979). 

Ornamental species produced in containers may also show a predisposition to 

disease susceptibility from water or salinity stress.  Rhododendron (Rhododendron L.) 

produced for retail sale are predisposed to root rots by P. cinnamomi by water stress and 

salinity (Blaker and MacDonald, 1981).  The susceptible cultivar Rhododendron 'Purple 

Splendor' did not show an increase of disease incidence when placed under drought stress 

and then inoculated; however, the resistant cultivar Rhododendron 'Caroline' showed a 
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marked increase in disease incidence after exposure to pre-inoculation water stress 

(Blaker and MacDonald, 1981). 

Chrysanthemum (Chrysanthemum x morifolium T. de Ramatuelle) placed under 

artificial salinity stress (NaCl at 0.1 and 0.2 M soln.) were later inoculated with zoospores 

of Phytophthora cryptogea Pethybridge and Lafferty.  Salt stressed plants had 70-88% of 

their roots showing lesions with non-stressed plants showing a 20% lesion cover 

(MacDonald, 1982, 1984).  Swiecki and MacDonald (1988) looked at tissue penetration 

of P. cryptogea on chrysanthemum roots pulsed with NaCl in a nutrient solution for 24 h 

and then inoculated with zoospores.  Results showed that salt stressed roots were deeply 

penetrated while non-stressed roots were only penetrated to a depth of 3 to 4 cells within 

6 to 12 h after inoculation.  Photographic microscopy of the infection process indicated 

that salinity inhibited root defense systems (Swiecki and MacDonald, 1988).  While 

phytoalexins (plant produced antimicrobial substances) have not been shown to play an 

active part in chrysanthemum resistance, salinity repressed the production of gyceollin; a 

phytoalexin in soybean [Glycine Max (L.) Merrill] (Murch and Paxton, 1980).  While 

high soil salinity increased the severity of root rot of tomato caused by P. cryptogea, 

asexual reproduction of Phytophthora nicotianae Breda de Haan (syn. P. parasitica 

Dastur) was suppressed (Swiecki and MacDonald, 1991). Snapp and others (1991) 

concurred that high soil salinity increased the severity of tomato root rot by P. nicotianae.  

High soil salinity increased the severity of stem rot caused by Phytophthora citrophthora 

R. E. Smith and E. H. Smith on numerous citrus (Citrus L.) rootstocks.  High salinity also 

reduced the production of the phytoalexin 6, 7-dimethoxycoumarin in citrus roots 

(Sulistyowati and Keane, 1992).  Weicht and MacDonald (1992) concluded that the 

possibility of root infection should be taken into account when breeding plants for 

salinity resistance. 

In contrast to drought predisposing plants to disease, flooding soils prior to 

inoculation increased root rot in alfalfa (Medicago sativa L.) from Phytophthora 

medicaginis E.M. Hansan and Maxwell (Kuan and Erwin, 1980).  Flooded or otherwise 

water saturated soils reduces the amount of oxygen available to roots.  Soils flooded for 

three days showed alfalfa roots to be much more attractive (chemotaxis) to Phytophthora 

medicaginis zoospores than in non-flooded soils (Kuan and Erwin, 1980).  Sampling of 
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root exudates indicated increased electrical conductivity and higher concentrations of 

sugars and amino acids indicating that root leakage increased on flooded soils.  

Aerenchyma (tissue with large air spaces) production is common in plants exposed to 

prolonged flooding (Drew and Lynch, 1980).  Flooded conditions causes an elevation in 

soil ethylene production which in turn increases the formation of arenchyma tissue in the 

xylem (Drew and Lynch, 1980).  Ethylene caused alfalfa roots to become more 

susceptible to P. medicaginis (Zook and Erwin, 1986). 

A depleted soil oxygen level associated with an increased incidence of root rots 

caused by Phytophthora has been found in loblolly pine (Pinus taeda L.) and shortleaf 

pine (Pinus echinata Mill.) (Fraedrich and Tainter, 1989).  Cherry (Prunus L.) also 

showed predisposition to root rot by Phytophthora from flooding (Wilcox and Mircetich 

1985).  Conversely, seedlings of Fraser fir [Abies fraseri (Pursh) Poir] were not 

predisposed by pre-inoculation flooding (Kenerley et al., 1984).  However, this lack of 

predisposition in Fraser fir may indicate that either the host was greatly susceptible to 

Phytophthora cinnamomi in the first place, or that isolate was particularly virulent or else 

the population was so high as to overshadow the predisposing factor.  Additionally, stems 

of Eucalyptus sieberi L.A.S. Johnson were more susceptible to Phytophthora cinnamomi 

when under a high plant water potential than when under drought conditions (Smith and 

Marks, 1986). 

In addition to drought and flooding predisposing plants to disease, other factors 

can play a role.  MacDonald (1991) showed that container grown chrysanthemum 

exposed to a growing substrate temperature of 45 to 47° C increased disease incidence 

from Phytophthora cryptogea in roots.  A 30 min. exposure to substrate temperature of 

40 to 45° C showed a marked increase in disease incidence.  The response was similar in 

containers and hydroponic culture (MacDonald, 1991). 

Transplants of Strawberry (Fragaria x ananassa Duchesne) injured by freezing 

temperatures were more susceptible to crown rot caused by Phytophthora cactorum (Leb. 

and Cohn) Schroeter than from uninjured transplants.  Uninjured plants only became 

susceptible upon artificially wounding the plants (Erwin and Ribeiro, 1996). 

Biotic factors such as nematode [Meloidogyne incognita (Kofoid and White) 

Chitwood] infection can increase the incidence and severity of root rots caused by 
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Phytophthora in alfalfa plants (Welty et al., 1980).  A similar situation has been found in 

tobacco (Nicotiana tabacum L.) cultivars resistant to P. nicotianae.  Resistance was 

overcome when roots were injected with M. incognita, the organism that causes root knot 

(Powell, 1979; Powell and Nusbaum, 1960).  Finally, potato (Solanum tuberosum L.) leaf 

age can affect predisposition to infection by Phytophthora infestans (Mont.) deBary.  As 

leaf age increased, the degree of infection decreased.  However, the ability of P. infestans 

to sporulate increased slightly in older leaves and plants (Lapwood, 1961a; Lapwood, 

1961b;  Lowings and Acha, 1959; Rotem and Sari, 1983). 

Research on environmental factors as related to disease incidence and severity has 

tended to focus on the pathogen and not as much on the host plant.  The rationale is that 

whatever happens to reduce the pathogen population will reduce the incidence of disease.  

Research on predisposition suggest that this reasoning may be partly false and that factors 

that affect the condition of the host plant should be considered (Duniway, 1983; 

Fraedrich and Tainer, 1989).  The assumption that root disease caused by Phytophthora 

can be controlled simply by allowing a substantial reduction in irrigation frequency and 

quantity may not be a safe or valid assumption.  Maintaining a delicate balance between 

environmental conditions that are not extreme plays an important role in control of 

Phytophthoral. 

When a specific host plant is absent, most species of Phytophthora do not survive 

as long as other types of fungi that are more saprophytic such as some species of Pythium 

Springsheim or Fusarium Link ex Gray. However, many species of Phytophthora can 

persist in soil for long periods of time meaning that the absence of a host plant does not 

indicate total eradication of that pathogen.  Chlamydospores of P. cinnamomi were found 

to have survived up to six years (Hwang and Ko, 1978).  Although data suggest that 

propagules of Phytophthora survival times are relatively short, accessing long term 

survival potentials may be obscured by the difficulty of successfully detecting various 

species of Phytophthora in the soil.  The ability of a relatively small number of 

propagules to increase rapidly under favorable conditions may compensate for short 

survival times (Erwin and Ribeiro, 1996) 

Effective control strategies are related to the ability of each species of 

Phytophthora to survive in the absence of a host plant or favorable environment.  Much 
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variation exists among species of Phytophthora survival potential either as saprophytes or 

dormant spores.  Generally, mycelium and zoospores survive for only a few weeks in the 

absence of a host.  Chlamydospores, however, may survive much longer and some 

oospores may persist up to thirteen years (Erwin and Ribeiro, 1996).  Such long-term 

survival precludes a pathogen such as Phytophthora cinnamomi from being controlled by 

crop rotation or allowing a field to lay fallow for a reasonable amount of time (Zentmyer 

and Mircetich, 1966).  Additionally, Zentmyer (1980) and Reeves (1975) suggests that 

Phytophthora cinnamomi may be a competitive saprophyte.  Phytophthora medicaginis is 

known to colonize organic material in the soil and produce oozpores even in soils at low 

temperature (Stack and Millar, 1985).  Phytophthora palmivora Butler, conversely, is 

thought to be a poor saprophyte since it only migrates a short distance in the soil and then 

lyses (Ko, 1971; Sneh and McIntosh, 1974; Tsao, 1969).  The mechanism by which 

differing species overwinter (or overseason) varies by the various types of propagules 

that are able to survive.  Gregory (1983) studied several disease epidemics including late 

blight of potato (Phytophthora infestans), black pod on cacao (Theobroma cacao L.) 

caused by Phytophthora megakarya Brasier and Griffin, root rot caused by Phytophthora 

palmivora on Eucalyptus in Australia, leaf blight caused by Phytophthora colocasiae on 

Taro [Colocasia esculenta (L.) Schott], and finally fruit rot of apple (Malus L.) by 

Phytophthora syringae.  Each case showed a different type of propagule initiated that 

particular epidemic.  Phytophthora infestans survived by mycelium in infected tubers and 

also in the soil for short periods although the propagule for the soil inoculum was 

unknown.  Phytophthora colocasiae produced both chlamydospores and oospores in taro 

rhizomes.  In apple, Phytophthora syringae produced oospores in leaves that were later 

deposited on the ground.  In cacao, Phytophthora palmivora produced chlamydospores in 

infected fruit.  Phytophthora megakarya was thought to survive in infected cocao flower 

parts and possibly in infected but asymptomatic roots (Gregory, 1983).  Phytophthora 

cinnamomi survived as chlamydospores in infected taro roots as well as in the ground 

(Weste, 1983). 

Erwin and Ribeiro (1996) concluded that most likely all root, crown and foliar 

diseases caused by Phytophthora are multicyclic since these diseases can be initiated 

from low, or even undetectable, levels of inoculum and that pathogen levels can increase 
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exponentially if conditions are right.  Propagule longevity depends on the ability to 

colonize plant or other organic material and to persist in gravel, sand, or soil independent 

of a host (Weste, 1983).  Major factors that contribute to the survival of Phytophthora in 

soil are temperatures sub-optimal for plant growth, adequate soil moisture, and low soil 

microbial activity.  An increase in fungi and bacteria populations can suppress propagules 

of Phytophthora (Weste, 1983).  As previously mentioned, surviving propagules 

(oospores, chlamydospores, and mycelium) under favorable conditions can quickly 

germinate or otherwise grow and produce sporangia and zoospores thereby quickly 

increasing inoculum (Weste, 1983).  The entire process from germination to zoospore 

production requires less than 48 to 96 h under optimum conditions.  Therefore, 

"explosions" of inoculum from Phytophthora can rapidly cause subsequent epidemics 

(MacKenzie et al., 1983). 

The transportation of infected plant parts or soil into previously uninfected areas 

is the main method of long range dispersal of Phytophthora.  A historic example is the 

spread of late potato blight Phytophthora infestans worldwide through the shipping of 

infected potato tubers used to propagate plants.  As pointed out earlier, trucks and other 

road building equipment in addition to fill soil, were shown to be a factor in the spread of 

root rot caused by Phytophthora cinnamomi in Jarrah trees in Western Australia (Shea, 

1988).  Currently of concern is the spread of Phytophthora ramorum Werres, DeCock, 

and Man in't Veld via shipment of nursery stock from infected areas to pathogen free 

areas (U.S.Depatment of Agriculture, 2005). 

An important advantage in spore or inoculum dispersal in many species of 

Phytophthora is a morphological adaptation called caducity.  Caducous species have the 

ability to detach sporangia from the sporangiophore much like the abscission zone that 

forms during leaf senescence.  This ability to detach readily allows spores to become 

airborne moving on air currents and wind, and also moved by rainfall or splashing water.  

Gregory (1983) refers to such caducous sporangia and zoospores as xenospores (from the 

Greek Xeno meaning guest or stranger).  The ability to be moved with ease is an 

evolutionary advantage for some species of Phytophthora over other microorganisms.  In 

addition to abiotic factors such as rainfall runoff, splashing, and wind, biotic factors, 

other than humans, such as ants and rats can transport inoculum (Erwin and Ribeiro, 
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1996).  Pruning shears and other production equipment and practices can also spread 

inoculum (Newhook and Jackson, 1977). 

Up to this point, biotic and abiotic factors as they relate to the ability of 

Phytophthora to infect a susceptible host have been reviewed.  Such factors include the 

interaction of the pathogen, host, and environment.  Soil, water management, and soil 

conditions were mentioned.  A plant's genetic disposition to disease was found to be an 

important factor in some plant species.  And finally, inoculum survival and dispersal 

were reviewed.  The next section will explore strategies to control diseases caused by 

Phytophthora.  The control strategies include such areas as cultural practices, biological 

control, host resistance, and chemical control.  Effective control of Phytophthora is 

usually a combination of several strategies and practices. 

The prevention of a disease ever getting a foothold is the best defense against 

plant damage and potential epidemics.  A referral back to the concept of the disease 

triangle indicates that eliminating either the pathogen (source of inoculum), host plant, or 

a favorable environment will prevent, or substantially reduce, the incidence of disease.  

This principle holds true whether control is desired locally on-site, or world-wide.  Total 

elimination or isolation of infectious organisms would be desirable, but rarely obtainable.  

Modern transportation systems and global economies make "walling off" vulnerable 

agricultural or other plant production systems very difficult (Erwin and Ribeiro, 1996).  

Notwithstanding the difficulties of preventing the spread of pathogens from infected to 

non-infected areas, quarantines still play an important role in governmental attempts to 

control the spread of specific pathogens.  Currently, a major component of the US 

Department of Agriculture's national strategic plan (U.S. Department of Agriculture, 

2005) for control and management of Phytophthora ramorum relies on quarantining 

infected areas and preventing the movement of susceptible plant species (in this case 

containerized nursery stock) into non-infected areas of the country.  This program also 

relies on the eradication of infected material (host elimination) and remediation of 

affected forest areas (environment manipulation).  Phytophthora ramorum is particularly 

problematic since it infects a wide number of disparate hosts.  These hosts include not 

only ornamental plants produced in containers, but also many species occurring in forest, 

parks, and other natural habitats.  The attempted control of Phytophthora ramorum is of 
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national and international concern and is an example of a widespread and multi-

organizational effort (U.S. Department of Agriculture, 2005).  The same principles of 

isolation, eradication, and remediation are useful tools to the individual producer to 

prevent the spread of diseases locally on-site or in the immediate area. 

Sanitation is the process of preventing the deposition of inoculum and removing 

any plant material suspected of being infected.  In field production situations, this process 

is effective for the control of epidemics from mono-cyclic diseases that produce only one 

cycle of inoculum during the growing season, usually in autumn (Vanderplank, 1963).  

Sanitation is less effective in the field when diseases are multi-cyclic such as many 

species of Phytophthora that cause foliar blights.  Planting disease-free seed potatoes 

delayed, but did not prevent, epidemics later in the season (Bonde and Schultz, 1943, 

1944; Vanderplank, 1963).  Sanitation alone is insufficient to control Phytophthora 

infestans since the organism is capable of rapid regeneration from small residual 

populations of inoculum.  MacKenzie and others (1983) suggest that multicyclic diseases 

are hard to control in field or orchards through sanitation alone.  However, control of 

Phytophthora cinnamomi in Australia by washing trucks and equipment has been an 

effective control strategy (Shea et al., 1983). 

Conversely, sanitation is very important in nursery and greenhouse production 

facilities in reducing disease incidence.  Forsberg (1985) isolated numerous species of 

Phytophthora from ornamental plants in production.  Forsberg recommends that 

ornamental plant nurseries adopt an accreditation system similar to the one used by the 

avocado (Persea americana Mill) industry (Pegg, 1978) to insure the production of 

disease free stock plants.  While sanitation is very important in nursery and greenhouse 

production to reduce the amount of inoculum from infected plants or equipment, research 

indicates that irrigation water can be a source of  inoculum of Phytophthora (MacDonald 

et al., 1994; Ribeiro and Linderman, 1991; Taylor, 1977)  A vigorous program to insure 

pathogen-free stock material from propagation to shipping will greatly reduce the 

potential for disease outbreak. 
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Steam heat has traditionally been used to sterilize soil or other growing substrates 

on a limited scale.  While very effective, it is also expensive and not practical on a large 

scale, or even desirable.  The standard method is to use pressurized steam to heat the 

coolest part of the soil to at least 82º C for 30 min. with the idea that the soil will 

eventually reach 100º C (Erwin and Ribeiro, 1996).  It must be kept in mind that the 

sterilization process, by definition, will eliminate all microorganisms including those 

antagonistic to species of Phytophthora; hence, the question of desirability for sterilized 

soil.  Re-introduction of inoculum from disease causing organisms into a sterile substrate 

can very quickly lead to an explosion of pathogenic inoculum if conditions are favorable. 

Another method that has been found useful in reducing the incidence of 

Phytophthora in field soil or landscape ground beds is the process of solarization.  The 

principle is to cover the soil, which must be moist (Pullman et al., 1979), with a clear 

plastic tarp or film trapping the heat produced by the infrared radiation from the sun.  

This method is effective where summers are hot and cloudless.  Solarization's 

effectiveness in controlling soil borne microorganisms was first described by Katan and 

others (1976).  Several researchers have further described the methodology and effects of 

solarization (Katan et al., 1976; Katan and DeVay, 1991; Stapleton and DeVay, 1982, 

1986). 

Thermal inactivation is another method to using heat to control pathogens in 

infected or otherwise susceptible plant material.  This is based on the fact that some 

plants, or plant parts, can survive thermal temperatures higher than propagules of 

Phytophthora.  Hot water soaks of calla lily [Zantedeschia aethioica (L.) K. Spreng.] at 

50° C for 1 h suppressed Phytophthora richardiae Buisman (Dimock and Backer, 1944).  

A 2 min. soak at 48.9º C eliminated P. citrophthora R.E. Smith and E.H. Smith from 

infected lemon [Citrus lemon (L.) Burman] fruits (Klotz, 1940; Klotz and DeWolfe, 

1961).  Dormant grape cuttings (Vitis L). have been treated with hot water soaks to 

reduce pathogen level prior to rooting (McEachern, 2006). 

The rationale for crop rotation is that monoculture of a specific crop on the same 

site will eventually lead to a situation where pathogenic inoculum builds to a level where 

disease incidence becomes a limiting factor in production (Glynne, 1965).  While this is 

normally the case, exceptions exist.  Most orchard crops are monoculture systems that co-
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exist for decades on soils infested with Phytophthora.  Examples include apple, and citrus 

orchards.  However, other fruit bearing trees, such as avocado can be susceptible on 

marginal sites where even large trees can succumb to Phytophthora cinnamomi over time 

(Zentmyer, 1980).  Crop rotation is an important strategy for annual crops.  Some species 

of Phytophthora are subject to microbial antagonism.  While there is evidence of long 

term survival of oospores and chlamydospores in the soil, Phytophthora is not a strong 

competitive saprophyte (Tsao, 1969) and would not normally persist in a high population 

without a host plant.  Crop rotation can also be successfully employed in landscape 

situations and ornamental plant production facilities.  This may be especially important 

where seasonal "color beds" are often repeatedly planted to the same species yearly 

thereby allowing for a re-infection to occur.  

Conventional thought suggests that a well fertilized vigorously growing plant is 

more disease resistant than a nutritionally starved plant.  While this is true in many cases, 

evidence suggests that certain species of vigorously growing plants may actually be more 

susceptible to disease (Erwin and Ribeiro, 1996). 

Nitrogen is usually the most commonly applied nutrient in growing agronomic 

crops since many times it is a limiting factor in plant growth.  Schmitthenner and Canady 

(1983) suggest that nitrogen has both a positive and negative impact on diseases caused 

by Phytophthora.  This research shows that the form of available nitrogen can increase or 

decrease the incidence of disease (Schmitthenner and Canady, 1983).  Luxury amounts of 

nitrogen increase succulence which can increase susceptibility.  Rhododendron supplied 

with high levels of nitrogenous fertilizers became more succulent and more susceptible to 

leaf blight caused by P. cactorum (Hoitink et al., 1986).  The most effective use of 

nutrition management to reduce disease incidence is to reduce soil pH.  Sulfur additions 

to acidify the soil to pH 3.8 drastically reduced pineapple [Ananas comosus (L.) Merrill] 

root rot caused by P. cinnamomi by acting to supress the formation of sporangia in soil 

(Pegg, 1977).  While reduction to pH 4.0 by sulfur or aluminum sulfate fertilizers 

suppresses many species of Phytophthora, this is obviously useful only on plants adapted 

to low pH soils (Pegg, 1977; Schmitthenner and Canady, 1983). 

The chemical element involved may be as important as the absolute pH value.  

Treatment of acidic (pH 4.8) greenhouse soils with calcium carbonate and calcium 
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hydroxide to raise soil pH increased the incidence of seedling blight caused by 

Phytophthora capsici.  The increase in disease incidence was attributed to an 

immobilization of free aluminum instead of a simple rise in pH (Muchovej et al., 1980).  

Aluminum applied as a soil drench controlled seedling blight caused by Phytopthora. 

parasitica on periwinkle [Catharanthus roseus (L.) G. Don] grown in an inoculated peat-

based substrate (Bensen, 1993).  The addition of calcium carbonate to buffer soil pH 

increased the amount of aluminum sulfate needed to control seedling blight.  However, 

an increase in soil pH actually reduced the amount of exchangeable elemental aluminum 

(Al+3) needed to control blight.  Bensen (1993) suggests that the fungistatic effectiveness 

of aluminum is caused by the presence of soluble aluminum.  Additionally, it is suggested 

that the addition of calcium to aluminum sulfate could reduce the affect of aluminum 

toxicity while still allowing for fungistatic control of Phytophthora parasitica.  High pre-

plant levels of nitrogen applied as ammonia (NH4
+) suppressed Phytophthora cinnamomi 

and Phytopthora parasitica (Tsao and Oster, 1981).  The downside is that high levels of 

ammonia applied fertilizers can be phytotoxic (Gilpatrick, 1969). 

The mechanisms by which nutrients suppress Phytophthora are not known.  In 

fact, investigations into the role of various nitrogenous fertilizers show contradicting 

results (Schmitthenner and Canady, 1983).  This research concluded that multiple factors 

such as soil type, host pathogen interactions, and nitrogen formulation determined disease 

severity.  

Peat-based substrates are commonly used to grow containerized plants in 

greenhouse and nursery operations.  These peat-based substrates are well drained and are 

of great value in the production of containerized plants (Baker, 1957).  While peat moss 

is acidic (pH 4.0), its use in growing substrates does not lower pH enough to suppress 

most soil pathogens.  An economic alternative to peat moss is the use of composted 

hardwood bark (Daft et al., 1979; Hoitink, 1980; Hoitnick and Fahy, 1986; Hoitink and 

Powell, 1990).  Composted hardwood bark has been shown to suppress rhododendron 

root rot caused by Phytophtora cinnamomi in soil (Gerrettson-Cornell et al., 1976). 

Composted bark can be effective in controlling Phytophthora in containers as it reduces 

the need for soil sterilization or fungicidal drenches (Hoitink and Powell, 1990).  

Mechanisms of controlling Phytophthora by hardwood compost were reviewed by 
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Hoitink and Fahy (1986).  This review suggests that hardwood bark decomposes more 

slowly than pine bark and that composting is an aerobic process that generates internal 

heat to 60 to 70° C.  Pathogens are suppressed by high temperatures, toxic by-products 

from decomposition, and by re-colonization by microbes antagonistic to Phytophthora 

(Hoitink, 1986; Hoitink et al. 1976).  The natural process of decomposition releases 

chemical inhibitors of sporangia and zoospores (Hoitink, 1986; Hoitink et al., 1976).  

This chemical inhibition usually only last about a year (Hoitink and Powell, 1990).  

Leachates from the composted material also have been shown to suppress Phytophthora 

(Spring et al., 1980). 

There is a limited amount of data on the effects of organic amendments on 

suppression of Phytophthora.  Linderman (1989) reports that certain soil amendments can 

either increase or suppress certain diseases.  The mechanisms for the control and 

suppression are not fully known (Linderman, 1989).  Amendments known to have an 

adverse affect on Phytophthora in greenhouse systems include alfalfa meal, cotton waste, 

soybean meal, wheat straw, chicken manure, hydrolized feather meal, and urea 

(Gilpatrick, 1969; Tsao, 1977; Tsao, and Zentmyer, 1979; Zentmyer, 1983).  Use of 

amendments has not shown consistent results.  In general, these compounds are thought 

to work via breakdown products which may suppress sporangia formation, reduced 

zoospore germination, or reduced mycelial growth (Zentmyer and Thompson, 1967). 

Biological control of Phytophthora is not a single mode of action or procedure, 

but rather a complex combination of components that interact to create a desired effect.  

Indeed, trying to define biological control can be problematic.  One definition is the 

reduction of inoculum and disease incidence through the use of one or more organisms 

other than humans (Cook and Baker, 1983).  The National Academy of Science (1987) 

defines biological control as the use of natural or genetically modified organisms to 

reduce the effects of disease causing organisms while favoring desirable organisms (plant 

life, animals, and beneficial insects and microorganisms).  DeBach (1964) has a more 

specific concept that includes the use of parasites, predators, and pathogens to maintain 

another organism's (in this case a plant pathogen) population at a lower level than would 

occur in the absence of those controlling organisms.  Gabriel and Cook (1990) advocate 

the broader definition such as that by the National Academy of Science and further 
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contend that disease control should be divided into physical, biological, and chemical 

control.  In this definition, biological control is the use of natural or genetically modified 

organisms to act as antagonist to a pathogen.  Included in this definition is host 

resistance; either natural or genetically manipulated.  However, Gabriel and Cook (1990) 

point out that cultural methods as well as conventional plant breeding can be a part of 

biological control.  Biological control, as defined, largely depends on bacterial or fungal 

antagonist or other microorganism derived metabolites that suppress or otherwise inhibit 

disease development.  While research looking at these processes has been fairly 

successful in sterile soils or other controlled situations, less success has occurred in non-

sterile fields (Baker, 1978; Malajczuk, 1983).  For instance, many bacteria and fungi are 

antagonistic to Phytophthora, but effectiveness in the field is limited.  One successful 

system is a field or cropping situation is the so-called "Ashburner System" (Baker, 1978).  

This system relies on a cover crop rotation of various species to maintain a healthy soil 

microorganism population antagonistic to plant pathogens. 

Resistance has been defined as the ability of a host plant to hinder the 

development of a pathogen (Robinson, 1969, 1976).  Host resistance is the most 

important aspect of disease control since a resistant plant reduces or eliminates the need 

for fungicides or other plant protection chemicals.  The goal of breeding or selecting 

resistant plants is to obtain a high level of resistance to disease, but keeping the required 

agronomic, horticultural, or other attributes. 

As with biological control, many concepts of resistance exist, especially in the 

terminology used to describe resistance.  Umaerus and others (1983) suggested the terms 

specific resistance and general resistance.  Others contend that the term general resistance 

is vague and should not be used (Robinson, 1969).  Muller (1953) referred to host 

specific resistance as true resistance and is also known as vertical resistance 

(Vanderplank, 1963).  The term general resistance as defined is identical to the term 

horizontal resistance (Umaerus et al., 1983; Thurston, 1971).  General resistance is also 

known as field resistance (Wastie, 1991).  The term tolerance as suggested by 

Schimitthenner and Walker (1979) may be more descriptive and understood more clearly 

by producers and growers.  Their definition of tolerance was the ability of a susceptible 

plant (soybean) to endure infection by Phytophthora sojae Kaufmann and Gerdemann 
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without severe symptoms while resistance means no infection.  Physiologic or pathologic 

race are terms to describe microorganisms that are morphologically identical, but differ in 

cultural requirements, or physiological and biochemical traits (Hawksworth et al., 1983).  

This term implies that a particular biotype or "race" is pathogenic on specific plant 

genotypes (cultivars, botanical varieties), but not pathogenic on other plants of the same 

species. 

Race-specific resistance or vertical resistance is characterized by single-gene 

interactions between the host and the pathogen.  Host plants tend to be resistant to a 

specific pathological race (Erwin and Ribeiro, 1996).  Race-specific resistance reduces 

the pathogenic inoculum to almost zero or very low levels since the initial infection does 

not spread beyond a few cells on the leaf surface (at least in leaf blights of potato caused 

by Phytopthora infestans) and cannot produce subsequent sporangia.  Since race-specific 

resistance prevents an increase in inoculum, it acts as a sort of sanitation method 

(Vanderplank, 1984)  The major drawback to race-specific resistance is readily apparent 

in that pathogenic organisms continually mutate creating new races.  These new races 

may have the ability to infect host plants that lack the single-gene resistance for the 

newly mutated race.  Hence, the new race of pathogens can quickly multiply negating the 

resistance of the original race-specific plant host (Vanderplank, 1971). 

General or horizontal resistance usually involves multiple gene expression.  The 

resistance is known as rate-limiting in that many components make up the resistance 

mechanisms.  The rate of infection is much slower than in a non-resistant plant.  This 

reduction in rate may slow the infection of certain plant parts until environmental 

conditions (loss of free water, lower humidity, optimal temperatures) preclude further 

disease development (MacKenzie et al., 1983; Parlevliet, 1979).  General resistance is 

considered to be more stable than race-specific resistance.  The supposition is that two or 

more chance mutations occurring simultaneously in the pathogen are rare (Vanderplank, 

1971, Wastie, 1991). 

As alluded to throughout this review, mechanisms to reduce the incidence of 

disease such as cultural, biological, or resistance seldom offer complete eradication or 

even control of diseases caused by Phytophthora.  Chemical control is usually a 

necessary component in an overall control strategy.  Many different chemicals with 
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varying modes of action are included in this control arsenal.  Fungicides are chemical 

formulations that either destroys a fungus or inhibits or suppresses growth.  Fungistats 

similarly suppress sporulation and growth, but do not actually kill the fungus.  While 

most modern chemicals are actually fungistatic, the general term fungicide is most 

commonly used (Smith, 1980).  Two broad modes of action are used to chemically 

control Phytophthora.  The first is the eradication of inoculum by biocides or chemicals 

which kill propagules of Phytophthora.  These types of chemicals kill all types of living 

organisms and as such must be used with extreme care around desirable plants.  Biocides 

are normally used to treat such items as pots, benches, growing substrates, and in some 

cases irrigation water (Erwn and Ribeiro, 1996).  The second broad mode of control are 

plant protectant fungicides which can be applied and act topically on the plant surface or 

systemically.  These can act as inoculum eradicants, protectants, or as curative (Erwin 

and Ribeiro, 1996). 

Commonly used biocides include many chemicals used in everyday life.  An 

effective biocide with multiple uses is sodium hypochlorite, the active ingredient in 

household chlorine bleach.  A 10 % solution is highly effective in treating exposed 

surfaces and tools.  It is also effective in surface sterilization of seeds and other plant 

parts.  However, since sodium hypochlorite is a strong oxidizer, it is very corrosive to 

susceptible equipment, has a short residual time, and must be frequently re-applied 

(Erwin and Ribeiro, 1996). Other biocides include the use of chlorine or other halogen 

gases to treat irrigation water similar to those systems used to treat public water supplies.  

The most common method of treating any water supply (either potable or industrial 

wastewater) including nursery irrigation water is the injection of chlorine or bromine, as 

chlorine or bromine gas, into the water stream (Ferraro and Brenner, 1997).  Treatment 

concentrations vary widely depending on types of influent or effluent being treated.  

Normal domestic wastewater effluents require a range from 1 to 3 mg·L-1 residual free 

chlorine to meet most state and federal standards (De Hayr et al., 1994; Grasso, 1996).  

Water sources high in organic and inorganic contaminants may require as much as 25 to 

30 mg·L-1 chlorine to achieve the required 1 to 3 mg·L-1 residual chlorine due to chemical 

binding (De Hayr et al., 1994).  The major factor for the use of chlorination in water 

treatment in horticultural operations is that low to moderate levels (>7 mg·L-1) of chlorine 
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may be lethal or phytotoxic to many plant species (Ferraro and Brenner, 1997).  In 

addition to negative plant growth responses, chlorine can be very corrosive to equipment, 

may form undesirable secondary organic by-products such as trihalomethane, and can be 

an explosive and health hazard (Grasso, 1996).  When chlorine, the biocidal element, is 

used to treat irrigation water, dosages must be adjusted to achieve effective control but 

not phytotoxicity. 

Copper naphthenate is effective in suppressing inoculum on wooden benches used 

in greenhouse or nursery operations.  A periodic routine re-application of the chemical is 

effective to suppress residual inoculum in cracks and seams in benches.  Copper 

napthaenate is toxic to plant roots if in direct contact (Baker, 1957).  Other copper 

containing compounds have been shown to kill mycelium of Phytophthora (Smith, 1979). 

Quaternary ammonium compounds have been used to eradicate species of 

Phytophthora such as Phytophthora cinnamomi.  The quaternary ammonium compounds 

were found to be more effective than phenolic compounds (Noske and Shearer, 1985).  

This type of chemical is also useful for treating containers, tools, and other equipment. 

Two chemicals traditionally used as soil sterilants or fumigants are methyl 

bromide/chloropicrin formulations and isothiocyanate (metham sodium)(Smith, 1980).  

These two chemicals are highly effective as general biocides including nematicidal action 

(Erwin and Ribeiro, 1996).  These chemicals are expensive to apply and require 

specialized equipment and handling to use.  Adverse environmental impacts and public 

concerns have severely restricted their use to small areas of intense production of high 

value crops (Erwin and Ribeiro, 1996). 

Fungicides usually are classified as eradicative, protective, or curative.  Many of 

the modern plant protection chemicals are systemic (taken up by the plant and 

translocated) and may be multifunctional and therefore lacking a discreet mode of action 

i.e., they may be both protective and curative.  This multiplicity may vary by dosage and 

other situations (Heitefuss, 1989).  Protectant fungicides are applied directly to the plant, 

usually as a spray coating the foliage.  This differs from eradicant fungicides (such as 

methyl-bromide) which are used to sterilize equipment or act as pre-plant soil sterilants.  

Protectant fungicides often have a metallic cation component which many times are 

copper, tin, zinc, or manganese based (Schwinn and Margot, 1991).  These are usually 
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coupled with various dithiocarbamate formulations.  Other protectant chemicals include 

chlorthalonil and phthalimide compounds.  These chemicals exert a protective effect, but 

are not translocated in the plant and must be re-applied (Schwinn and Margot, 1991) 

Systemic fungicides are chemical formulations that are taken up actively or 

passively through several plant structures (leaves, stems, roots, flowers) and translocated 

or moved from place of absorption to another area of the plant.  Transport can be 

translaminar (across the leaf), apoplastically (upwards towards the meristem), or 

symplastically (downward movement)(Erwin and Ribeiro, 1996).  Many systemic 

fungicides move upwards via the transpiration stream, while other fungicides can move 

downward via solute flow in the phloem (Erwin and Ribeiro, 1996).  The effectiveness of 

systemic fungicides are greater than protectant fungicides in that they are less likely to 

wash off during rainfall or irrigation events.  Additionally, they can suppress a pathogen 

after infection takes place.  Some fungicides can act as a curative if disease pressure is 

not too high (Platt, 1985).  Phytophthora may be controlled through many classes of 

systemic chemicals.  These chemical classes include the carbamates, isoxazoles, 

cyanoacetamide oximes, ethyl-phosphates, and phenylamides (Erwin and Ribeiro, 1996).  

As with any fungicides, these chemicals should be used carefully and as part of an overall 

control strategy to mitigate the chances of Phytophthora developing fungicide resistant 

races. 

Novel Methods of Control in Irrigation Supplies 

An alternative method of treating water supplies is the use of radiant energy in the 

form of ultraviolet radiation (UV) excimer lamps emitting radiation at 172 and 222 nm 

(Ramsay et. al, 2000).  The use of ultraviolet radiation in a disinfection procedure works 

by inducing photobiochemical changes within a microorganism.  Two criteria must be 

met in order for UV light to be effective; namely, the radiation must be of sufficient 

energy to alter chemical bonds, and the radiation must be adsorbed by the organism 

(Grasso, 1996).  The ability to deliver radiation from the UV generating source to the 

target organism is crucial to the performance of UV disinfection systems.  The major 

problem in UV disinfecting systems in horticultural production facilities is dissolved and 

fine particulate matter causing turbidity in the water to be treated (Grasso, 1996).  These 

materials may impede or absorb UV radiation transmission through the liquid being 
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treated.  Limitations on radiation delivery can also be caused by the deposition of 

insoluble materials, such as various mineral salts, on the surface of the quartz jackets that 

typically surround and house the UV source lamps (Grasso, 1996), resulting in a process 

known as fouling.  Hard water or water high in ferric (Fe3+) iron oxides may also result in 

fouling of the lamp surfaces (Grasso, 1996).  Another disadvantage to using UV radiation 

is a phenomenon known as photoreactivation and dark repair in which microorganisms 

have evolved biological systems to repair damage by sub-lethal exposure to disinfectants 

such as UV light (Grasso, 1996) This phenomenon can be overcome by treating the water 

with successive UV light exposures followed by a dark period.  Such systems are costly 

to build, maintain, and operate and are not usually feasible for most horticultural 

operations. Other water treatment strategies include heat, oxidizing chemicals (hydrogen 

peroxide), and membrane filters (Ehret et al., 2001). 

Ozone gas has been used to treat municipal drinking and industrial waste water.  

Ozone has been used in municipal water treatment facilities since the late 1800's 

(Vosmaer, 1916).  To date, little research has been published on using ozone to treat 

irrigation water in horticultural production operations for control of Phytophthora 

(Ferraro and Brenner, 1997). Studies in The Netherlands looking at recycled water in 

greenhouse hydroponic production systems have shown that recycled water can save up 

to 30% of the water used and up to 40% of fertilizer usage (Runia, 1994). However, the 

possibility of plant pathogens infesting the irrigation water that is being recycled is a real 

concern (van Os, 1999). Further studies in The Netherlands on closed irrigation systems 

(captured and recycled hydroponic systems) show ozone to be effective in reducing 

microorganisms in drainwater (Runia, 1994, 1995).  However, these studies dealt with 

relatively small amounts of water (<1000 L) used in soilless substrate (rockwool) under 

greenhouse conditions.  There are reported cases where a few nurseries on the West 

Coast of the United States have used ozone generators for disinfection purposes, but data 

on efficacy has not been published and industry practices and procedures tend to remain 

proprietary (Reeser, 1998). 

Research in the food processing industry has examined using pressure and 

turbulence to eliminate bacteria and fungi during certain processes (Hoover, 1992).  This 

methodology usually requires a pressure chamber and is not economical for treating large 
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volumes of irrigation water.  Surfactants have been shown to lyse zoospores of 

Phytophthora but not mycelium or encysted zoospores (Stranghellini and Tomlinson, 

1987; Stranghellini et al., 1996).  If surfactant levels can be maintained in the irrigation 

stream, plants are protected from zoosporic inoculum but not from other forms of 

inoculum (Moorman and Lease, 1999).  Additionally, the surfactant must not be 

phytotoxic.  Antimicrobial substances containing copper and zinc (Smith, 1979; 

Tomlinson and Faithfull, 1979; Toppe and Thinggard, 1998), hydrogen peroxide, sodium 

phosphate, phosphorus acid, and EDTA (ethylene diamine-tetraacetic acid: a chelating 

agent) have been used to control pathogens in water supplies (Fett, 2002; Runia, 1995; 

Yun, 2003).  Calcium has been added to irrigation water to disrupt the motility of 

zoospores of Phytophthora.  While not a completely effective biocide, calcium may play 

a role in reducing inoculum (Deacon and Donaldson, 1993; Reid, et al., 1995).  All of the 

above listed non-chemical or non-traditional methods of treating water have advantages 

and disadvantages and must be carefully evaluated in terms of cost and benefits. 

The purpose of the following studies are to investigate the efficacy of ozone gas 

in controlling Phytophthora capsici in horticultural irrigation water as part of an overall 

strategy to reduce the incidence of plant disease from pathogens in recirculated irrigation 

water.  Studies include the role of turbid water in ozone efficacy, the pathogenicity of the 

selected plant pathogen, and possible phytotoxic effects of ozone on vegetative growth.  

Additional studies look at ozone interactions with a commercially used water soluble 

fertilizer, and a preliminary study looking at possible inactivation of a plant growth 

regulator using ozone gas. 
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CHAPTER V 

OZONE EFFICACY ON PHYTOPHTHORA CAPSICI  

 

Phytophthora capsici Leonian is a virulent plant pathogen that attacks a large 

number of plant species and has been isolated in recirculated irrigation water in addition 

to causing disease and was chosen as a model organism to represent a pathogen 

encountered in horticultural production.  Ozone gas introduced into water has powerful 

oxidizing capabilities and will control a large number of microorganisms including 

bacteria, fungi, viruses, and protozoa-like organisms (Rice and Browning, 1981; Rivas et 

al., 2001; Runia, 1994).  Ozone is often effective in low concentrations in the range of 0.1 

to 5 mg· L-1(Flusche, 2006).  Ozone injection has been used for a variety of commercial 

purposes including control of pathogens in municipal water supplies (Rice et al., 1986), 

but has not been experimentally tested for use on recirculated nursery or greenhouse 

water to control Phytophthora.  Reeser (1998) states that nurseries in the state of Oregon 

use ozone in treating irrigation water, but does not present information on ozone 

concentrations or methodology.  Information concerning specific commercial operations 

is often considered proprietary and data remains unpublished.  In a review of plant 

pathogens in irrigation water, Hong and Moorman (2005) state that a lack of published 

reports of pathogen control strategies under actual operating conditions constitutes a 

serious gap in knowledge.  The purpose of this study was to determine the efficacy of 

ozone gas in controlling a species of Phytophthora in horticultural irrigation water. 

Materials and Methods 

A pure isolate of Phytophthora capsici Leonian (1922) was obtained from 

American Type Culture Collection (ATCC), Manassas, Va. (ATCC Accession number 

66630).  This culture was originally isolated from commercially produced chili peppers 

Capsicum annuum L. grown in New Mexico, U.S.  To obtain this particular isolate from 

ATCC, it was necessary to obtain a plant protection and quarantine permit from the 

United States Department of Agriculture Animal and Plant Health Inspection Service 

(USDA-APHIS PPQ 526 Permit) countersigned by the Texas Department of Agriculture.  

This permit dictates pathogen handling, transport, and disposal requirements and 

laboratory conditions.  The laboratory where this work was conducted was classified as a 
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Center for Disease Control CDC Level I lab.  Phytophthora capsici was chosen because 

of its virulence and ability to infect a large number of plant species.  The ATCC 

maintains a limited amount of readily available material and obtaining specific cultures 

involves significant lead time. Phytophthora capsici was in stock at the time of choosing 

an organism. 

Culture media was a modified vegetable juice agar based on that described by 

Miller (1955).  A 0.163 L aliquot of vegetable juice (V8, Campbell Soup Co., Camden, 

N.J.) was poured into in a 2 L heat resistant borosilicate flask and diluted with distilled 

water to an initial volume of 0.5 L.  The solution was amended with 2 g of CaCO3 

(Producers Coop., Bryan, Texas), and was dissolved by stirring.  Agar (15 g) (Fisher 

Granulated Agar, Fisher Scientific, Fair Lawn, N.J.) was added and the final volume 

brought to 1L with distilled water and placed on a stir plate to insure mixing.  Final pH 

was adjusted to pH 7.0 with 0.1 N H2SO4.  The flask opening was covered with 

aluminum foil and steamed autoclaved for 15 min. at 110 kPa and 115° C.  After 

autoclaving, agar media was dispensed into either 4.5 or 6.5 mm plastic culture plates 

(Fisher Scientific, Fair Lawn, N.J.) under a laminar flow transfer hood using aseptic 

techniques.  The 6.5 cm culture plates were used for culture maintenance while the 4.5 

cm culture plates were used for regrowth plating so as to accommodate more plates under 

a restricted amount of bench space under lights.  After agar media set, culture plate lids 

were sealed with a paraffin sealing film (Parafilm “M”, American Can Co., Greenwich, 

Conn.). 

From the original ATCC culture tube, 25 mm2 (5 mm x 5 mm) sections of the 

agar containing mycelium of Phytophthora capsici were excised and transferred to the 

surface of fresh culture plates containing the above agar media using sterile techniques 

under a laminar flow transfer hood.  Plates were sealed with paraffin sealing film and 

placed on a work bench in the laboratory under a fluorescent light bank containing two 

tubes emitting an average 35 µmole·m-2·s-1 PAR. Ambient room temperature was 22 C ± 

2° C.  Twenty culture dishes were re-plated at 2 to 3 week intervals to maintain viable 

cultures and to supply a suitable number of plates for specific studies. 

Mycelium from maintenance cultures were transferred to fresh culture plates and 

were grown as above for 1 week.  At this time, mycelium covered the plates.  Plates were 
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rinsed five times at 30 min. intervals with 10 ml autoclaved distilled water at ambient 

temperature (20 ± 2° C).  Water was decanted after each washing.  Plates were stored in 

the dark at ambient temperature for a minimum of 24 h.  Plates were then held at 5° C for 

1 h and then returned to the bench under growing conditions listed above.  Plates were 

observed under a microscope for sporangium development which usually began within 

24 h.  Sufficient culture plates were grown to have ample material for each subsequent 

study.  All activities pertaining to preparation of samples to be treated were done using 

aseptic techniques under a laminar flow transfer hood.  Upon completion of each study, 

all contaminated equipment and culture plates were autoclaved to eliminate the 

possibility of accidental release of propagules of Phytophthora capsici organism into the 

general environment and to fulfill USDA permit requirements. 

Sporangium along with associated mycelia fragments were serially diluted by 

excising a 1 cm-2 piece of the culture and transferring to a sterile 50 ml capacity conical 

bottom plastic tube with screw tight cap (BD Falcon, Fisher Scientific, Hampton, N.H.). 

Fifty ml of previously autoclaved distilled water was added to the tube and gently 

agitated to disperse the organisms.  A 1 ml sample of this tube was then pipetted into 

another conical tube and 50 ml of sterile water was added as previously described and 

gently agitated.  Fifty ml of water allowed sufficient volume for subsequent ozonation.  

Excess agitation was avoided to reduce possible encystment of spores.  At this point, a 

pipette was used to place a sample on a hemacytometer with Neubauer markings and a 

maximum volume of 0.1µ L (Cole Parmer Instruments, Vernon Hills, Ill.) and placed 

under a light compound microscope (Binocular Compound Microscope, Carl Zeiss Inc.,  

Thornwood, N.Y.) at 50 to 100 X magnification for quantification.  Number of spores per 

ml of sample was calculated by counting spores within the Neubauer markings multiplied 

by a dilution factor (50 ml) and multiplied by 10,000.  Dilution continued until spore 

count of about 1 x 105 · ml-1 was obtained.  This value was chosen as it is a level 

commonly used in disinfection studies conducted with Escherichia coli T. Escherich, a 

common fecal coliform group of bacteria often found in water supplies (Haas and Finch, 

2001).  Once an appropriate dilution was obtained, replicate tubes were assembled under 

aseptic conditions.  The conical tubes were modified by punching a hole with a heated 

cork borer in the top of the screw on cap with a diameter large enough to admit the ozone 
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generator gas feed line (6.5 mm o.d.). The hole was subsequently sealed with paraffin 

film. The caps were modified to reduce the possibility of microbial contamination by 

minimizing the open surface area exposed during the actual ozonation process. 

To reduce possible cross contamination, prepared sealed tubes were surface 

sprayed with 90% ethyl alcohol (EtOH), placed in a foam tube carrier, and placed in a 

sealable plastic bag also sprayed with 90% EtOH for transportation to the ozone 

generator locale which was not under aseptic conditions. Prior to treatment, ozone 

generator parameters were established to achieve the desired ozonation concentrations at 

the 50 ml volume.  Ozone concentration was determined by the indigo colorimetric 

method.  This procedure is based on the rapid and stoichiometrical decolorization of 

indigo trisulfonate (from indigo blue to clear) when in the presence of ozone (Bader and 

Hoigne, 1986).  The source of the indigo trisulfonate was AccuVac ozone reagent low (0-

0.2 mg·L-1) and high range (0.25-1.0 mg· L-1) evacuated ampuls (Hach Co., Loveland, 

Colo.).  The tip of an ampul containing a measured amount of reagent is inserted into a 

sample of the ozonated water and crushed.  The vacuum within the ampul draws in a 15 

ml amount of the ozonated liquid.  The ampul is inverted twice to insure mixing and then 

immediately placed in a portable ozone meter (Hach Co., Loveland, Colo.) and the ozone 

concentration is read directly as mg·L-1 O3.  For concentrations greater than 1.0 mg·L-1 

O3, a color comparison wheel (Hach Co., Loveland, Colo.) was used to determine O3 

concentrations up to 1.5 mg·L-1.  Ozone gas source was from an experimental catalytic 

electrochemical stack generator with a rated output of 0.113 kg· d-1 (Lynntech Industries, 

College Station, Texas).  Ozone generator operating parameters were set at 9 amp output 

with an ozone flow rate of 5 ml·L-1· s-1.  Ozone levels increase to a peak level and then 

ozone decay occurs either through ozone demand, or ozone degradation due to its 

inherent instability.  Ozone treatments were 0, 0.5, 1.0, and 1.5 mg·L-1 at peak 

concentrations and were selected based on detectability limitations and probable effective 

dosages.  Five prepared tubes containing an estimated 1 x 105· ml-1 spores were used per 

ozone concentration (4 O3 concentrations x 5 replicates = 20 tubes total).  Each tube was 

removed from the plastic carrier bag and the ozone gas feed line was inserted into the 

hole after peeling back the paraffin film.  After the required treatment time to reach peak 

ozone concentration (0, 30, 60, or 120 s), the film was replaced to seal the hole, the tube 
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was once again surface sprayed with 90% EtOH and returned to the carrier bag.  Each 

subsequent tube was treated in a like manner. Tubes were allowed to stand for 1 h after 

treatment to allow for ozone diffusion through the sample and for transport back to the 

laboratory. 

After ozonation, tubes were returned to the laboratory and placed under aseptic 

conditions.  A sample was pipetted from each tube and observed under the 

hemacytometer as before for spore survival quantification.  Prepared 4.5 mm plastic 

culture plates of fresh media containing the vegetative juice substrate were flooded with 1 

ml of liquid pipetted from each tube and replicated 3 times for a total of 60 plates (4 O3 

concentrations x 5 replicates per O3 concentration x 3 replicates per re-growth plate = 60 

plates total) and randomly arranged on a laboratory bench under fluorescent lights 

emitting 35 µmole· m-2· s-1 PAR at ambient room temperature (22  ± 2° C).  Plates were 

observed at 12 h intervals for 36 h for signs of re-growth.  New colony forming units per 

ml of sample (CFU·ml-1) were counted and recorded using a binocular dissecting 

microscope (SMZ1, Nikon Inc., Tokyo, Japan).  Rapid mycelial growth precluded 

counting individual colony formation much after 24 h of first observed re-growth. New 

mycelial growth was then observed under light microscopy for comparison with original 

cultures.  The experimental design of the re-growth phase was a complete factorial 

randomized design.  The experiment was initially started on 7 November, repeated on 14 

November, and again repeated on 5 December, 2006 for a total of 3 separate treatment 

dates.  Possible interactions between ozone concentration and treatment date and main 

effects of ozone concentration and treatment date by each observed time on CFU·ml-1 

were analyzed using SAS PROC GLM and means comparison were made using least 

squares means procedures (SAS 9.1 for Windows, Institute, Cary, N.C.).   

Results and Discussion 

The ozone production, or gas evolution, from the generator was uniform and mass 

transfer in reverse osmosis water was predictable and reproducible with several initial 

operating tests giving consistant results in reaching desired ozone concentrations for all 

subsequent experiments (Fig. 1).  Ozone decay in the irrigation water treatments followed 

a typical ozone mass transfer reaction whereby an initial lag time occurs in increasing 

ozone concentration as ozone dissolves and diffuses through the water sample (Fig.2).   
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Figure 1. Linear regressions (P< 0.001) of observed and predicted values of ozone 

production over time (min.) from a electrochemical stack cell generator.  Symbols for 

the means ±  standard error bars are partially obscured by predicted symbols.  Means  

represent observations of 5 replications. 
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Figure 2.  Predicted regression curve (P< 0.001) and observed values of ozone decay over 

time (min.) in reverse osmosis water using the electrochemical stack cell generator.  

Verticle bars represent standard errors of means of 5 observations. 
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The number of colony forming units per ml of sample (CFU·ml-1) observed growing 

at 12 and 24 h after inoculating agar plates with ozone treated spores of Phytophthora 

capsici over three dates indicates a significant reduction in CFU·ml-1 as ozone 

concentration increased from 0 to 1.5 mg·L-1 O3 (Fig. 3).  Across all treatment dates (7 

Nov., 14 Nov., 5 Dec.), a 12 h incubation period shows a reduction in CFU·ml-1 from 5.2 

CFU·ml-1 at 0 mg·L-1 to 4.2 CFU·ml-1 at 0.5 mg· L-1 O3.  At ozone concentrations of 1.0 

mg·L-1 O3, CFU·ml-1 are reduced to 0.4 or less than 1 CFU·ml-1 per plate at 12 h.  A 

similar pattern emerges at 24 h after inoculation (Fig. 4).  At 24 h, additional CFU·ml-1 

are observed as more intact inoculum germinates and grows.  At 0 mg· L-1 O3 an average 

of 6.5 CFU·ml-1 formed across dates, an increase of 1.3 CFU·ml-1 over the 12 h 

incubation period. At 0.5 mg·L-1 O3, 5.2 CFU·ml-1 formed with a decrease to 0.5 CFU·ml-

1 at 1.0 mg· L-1 and 0 CFU·ml-1 at 1.5 mg· L-1 O3.  Colony forming units per ml 

significantly decreased at each observed time interval by treatment date (Figs. 3 and 4).  

The December treatment date had the lowest CFU·ml-1 across ozone concentration and 

observed time interval.  This was attributable in part to improved protocol technique and 

manipulation of the samples over time.  An additional factor could have been the 

physiological condition of the inoculum from different treatment dates.  However, the 

trends were consistent and an ozone concentration of 1.5 mg· L-1 prevented CFU·ml-1 of 

Phytophthora capsici under the treatment conditions.  Post-ozonation treatment 

observations of the aliquots containing spores using a hemacytometer showed spore and 

mycelial fragments still in the solution, but it was not possible to tell whether the 

structures were viable propagules or lyzsed cellular remains.  Biological stains exist to 

observe intact spores, but stains such as a 0.1% aniline blue dye involve “fixing” the 

organism in lactophenol thereby affecting re-growth (Erwin and Ribeiro, 1996).  Re-

plating and subsequent reduced CFU·ml-1 formation with increasing ozone concentration 

is a better verification of ozonation efficacy than post-treatment spore quantification.  As 

a comparison of ozone efficacy using other types of microorganisms, studies looking at 

reducing viruses and bacteria in water found that Escherichia coli was 99.99% 

inactivated at ozone concentrations of 0.038 mg·L-1 at a 30 s exposure (Boyce et al., 

1981). A poliovirus (Sabin Type 1) was 97% inactivated at a concentration of 0.031 mg· 

L-1 O3 after a 30 s exposure (Boyce et al., 1981).  Hong and Moorman (2005) report 
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researchers in Japan showing differing sensitivities of root-infecting plant pathogens to 

ozonation in hydroponic solutions. These researchers (Yamamoto et al., 1990) looked at 

Corynebacterium michiganense (E.F Smith) Jensen, Pseudomonas solanacearum E.F 

Smith, Erwinia carotovora subsp. carotovora (Townsend) Holland, and Fusarium 

oxysporum Schlechtendahl f. sp. lycopersici (Saccardo) Holland, but not species of 

Phytophthora.  This research from Japan ozonated a hydroponic test solution containing a 

complete nutrient solution and the various microorganisms at an ozone gas feed rate of 10 

L·min-1 but did not report actual ozone concentrations in the nutrient solutions. They did 

report an immediate drop in viable cell numbers of the organisms after a 15 min. 

exposure with almost complete inactivation of the organisms after 60 min. exposure to 

ozone at the 10 L· min -1 input rate.  No ozone concentrations in the nutrient solutions are 

given for the various time intervals.  In developing the ozonation protocols, precautions 

were taken, such as conical tube modification and surface sterilization and transport, to 

insure that the Phytophthora capsici or the treated water samples were not contaminated 

by unknown micro-organisms during the various treatment phases.  Results indicate that 

peak ozone concentrations in the range of 1.5 mg· L-1 applied to batch treatments of water 

is effective in controlling Phytophthora capsici.  The 1.5 mg· L-1 O3 concentration was 

greater than the reported rate of 0.5 to 1.0 mg· L-1 concentration reported as being 

effective for coliform bacteria control in drinking water treatment systems.  One possible 

explanation for the increased ozone demand is that the glue bonding together the sand-

based aeration stones used in these studies was attacked and degraded by the ozone 

during the course of treating the samples.  Over a period of a few hours, the aeration 

stones were reduced to sand and this was attributed to the action of the ozone gas.  

Therefore, aeration stones were replaced before each treatment to insure uniformity and 

this may explain the higher ozone demand in these studies. 
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Figure 3. Colony forming units per ml of sample (CFU·ml-1) at 12 h after inoculation for 

the three treatment dates with 4 ozone concentrations. Symbols represent means of 15 

observations and vertical bars represent standard errors.  The treatment date by ozone 

concentration was significant at P≤ 0.05. 

 

 

 

 

 

 

 

0 0.5 1.0 1.5 

C
ol

on
y 

fo
rm

in
g 

un
its

 (C
FU

 · 
m

l-1
) 



 57

0 0.5 1.0 1.5

Date
B

B

B

B

J

J

J

J

H

H

H
H0

1

2

3

4

5

6

7

8

B 7 Nov

J 14 Nov

H 5 Dec

Date

 
   Ozone concentration (mg· L-1) 

 

Figure 4. Colony forming units per ml of sample (CFU·ml-1) at 24 h after inoculation for 

the three treatment dates with 4 ozone concentrations.  Symbols represent means of 

15 observations and vertical bars represent standard errors.  The treatment date by 

ozone concentration interaction was significant at P≤ 0.05. 
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CHAPTER VI 

EFFECT OF TURBID WATER ON EFFICACY 

 

Irrigation runoff collection systems from greenhouse and nursery operations 

usually consists of canals, channels, swales, or other configurations that capture excess 

irrigation and rainfall and by gravity flow convey that water to a detention pond or other 

holding area for subsequent treatment or discharge.  These collection basins may be lined 

with an impervious surface such as concrete, or may be unlined open surfaces.  The 

possibility exists for the captured irrigation water to pick up particulate matter such as 

organic and inorganic growing substrates (i.e. peat moss, bark, sand, perlite, vermiculite) 

from greenhouse benches or floors and outdoor nursery bays along with soil or clay 

particles from the collection basins.  This may be especially problematic during periods 

of heavy rainfall or in areas with soils that are highly subject to erosion.  While much of 

this particulate matter may settle in holding tanks, or be removed by filtration, fine 

particulate matter such as suspended clay particles may escape settling and filtration and 

pass through to be re-applied in irrigation water.  Microorganisms and viruses in 

particular have been found to be absorbed to clay particles or embedded in solid matter 

(Carlson et al., 1968; Schaub and Sagik, 1975).  Microorganisms absorbed, embedded, or 

shielded by particulate matter may react differently or pass through disinfection systems 

in a viable state.  Turbidity is a measure of the cloudiness of water and is measured in 

nephelometric turbidity units (NTU).  The Interim Enhanced Surface Water Treatment 

Rule (IESWTR) recognizes the potential of pathogen protection by suspended particulate 

matter in water treatment facilities.  The Environmental Protection Agency (EPA) sets 

limits on cloudiness in drinking water.  Turbidity performance standards for surface 

water call for direct filtration combined filter effluent of ≤ 0.3 NTU in at least 95% of 

measurements taken each month.  As of 2002, no turbidity greater than 1 NTU is allowed 

in surface derived drinking water (Environmental Protection Agency, 2001).  Bentonite 

(Al2O3· 4SiO2· H2O) clay, a aluminum phyllosilicate, has been used to investigate 

turbidity in drinking water studies using ozone disinfection methods on bacteria and 

viruses (Boyce et al., 1981).  Bentonite clay particles range in size from 3 to 8 µm, a size 

comparable to that found following treatment from a filtration system in water treatment 
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facilities (Tate et al., 1977).  Previous studies have looked at a range of bentonite derived 

turbidity from 1 to 5 NTU based on older threshold contaminant levels of a 5 NTU 

maximum.  Because of the likelihood of recycled horticultural irrigation water picking up 

sediments or other particulate matter during capture and reuse, the purpose of this study 

was to investigate the potential of Phytophthora capsici Leonian being absorbed to clay 

particles or otherwise shielded from ozone disinfection concentrations of 0.0, 0.5, 1.0, 

and 1.5 mg· L-1 O3 using bentonite clay up to 2 NTU (2 times the EPA action level of 1 

NTU) as a model for suspended clay particles in recycled irrigation water. 

Materials and Methods 

A pure isolate of Phytophthora capsici Leonian (1922) was obtained from 

American Type Culture Collection (ATCC), Manassas, Va. (ATCC Accession number 

66630).  This culture was originally isolated from commercially produced chili peppers 

Capsicum annuum L. grown in New Mexico, USA.  To obtain this particular isolate from 

ATCC, it was necessary to obtain a plant protection and quarantine permit from the 

United States Department of Agriculture Animal and Plant Health Inspection Service 

(USDA-APHIS PPQ 526 Permit) countersigned by the Texas Department of Agriculture.  

This permit dictates pathogen handling, transport, and disposal requirements and 

laboratory conditions.  The laboratory where this work was conducted was classified as a 

Center for Disease Control CDC Level I lab.  Phytophthora capsici was chosen because 

of its virulence and ability to infect a large number of plant species.  The ATCC 

maintains a limited amount of readily available material and obtaining specific cultures 

involves significant lead time.  Phytophthora capsici was in stock at the time of choosing 

an organism. 

Culture media was a modified vegetable juice agar based on that described by 

Miller (1955).  A 0.163 L aliquot of vegetable juice (V8, Campbell Soup Co., Camden, 

N.J.) was poured into in a 2 L heat resistant borosilicate flask and diluted with distilled 

water to an initial volume of 0.5 L.  The solution was amended with 2 g of CaCO3 

(Producers Coop., Bryan, Texas), and was dissolved by stirring.  Agar (15 g) (Fisher 

Granulated Agar, Fisher Scientific, Fair Lawn, N.J.) was added and the final volume 

brought up to 1 L with distilled water and placed on a stir plate to insure mixing.  Final 

pH was adjusted to 7.0 with 0.1N H2SO4.  The flask opening was covered with aluminum 
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foil and steamed autoclaved for 15 min. at 110 kPa and 115° C.  After autoclaving, agar 

media was dispensed into either 4.5 or 6.5 cm plastic culture plates (Fisher Scientific, 

Fair Lawn, N.J.) under a laminar flow transfer hood using aseptic techniques.  The 6.5 cm 

culture plates were used to maintain the cultures over time while the 4.5 cm culture plates 

were used for subsequent regrowth plating to maximize limited lighted bench space.  

After agar media set, culture plate lids were sealed with a paraffin sealing film (Parafilm 

“M”, American Can Company, Greenwich, Conn.). 

From the original ATCC culture tube, 25 mm2 (5 mm x 5 mm) sections of the 

agar containing mycelium of  Phytophthora capsici were excised and transferred to the 

surface of fresh culture plates containing the above agar media using sterile techniques 

under a laminar flow transfer hood.  Plates were sealed with paraffin sealing film and 

placed on a work bench in the lab under a fluorescent light bank containing two tubes 

emitting an average of 35 µmole·m-2·s-1 PAR.  Ambient room temperature was 22 C ± 2° 

C.  Twenty culture dishes were re-plated at 2 to 3 week intervals to maintain viable 

cultures and to supply a suitable number for of plates for specific studies. 

Turbidity levels of 0.0, 0.5, 1.0, 1.5, and 2.0 NTU were determined to correspond 

with 0.0, 3.5, 7.0, 10.5, or 14.0 mg · L-1 bentonite clay (Sigma-Aldrich Chemical, St. 

Louis, Mo.), respectively.  Peak ozone concentrations were 0.0, 0.5, 1.0, and 1.5 mg · L-1 

O3.  Ozone concentration was determined by the indigo colorimetric method.  This 

procedure is based on the rapid and stoichiometrical decolorization of indigo trisulfonate 

(from indigo blue to clear) when in the presence of ozone (Bader and Hoigne, 1986).  The 

source of the indigo trisulfonate was AccuVac ozone reagent low (0-0.2 mg·L-1) and high 

range (0.25-1.0 mg· L-1) evacuated ampuls (Hach Co., Loveland Colo.).  The tip of an 

ampul containing a measured amount of reagent is inserted into a sample of the ozonated 

water and crushed.  The vacuum within the ampul draws in a 15 ml amount of the 

ozonated liquid.  The ampul is inverted twice to insure mixing and then immediately 

placed in a portable ozone meter (Hach Co., Loveland, Colo.) and the ozone 

concentration is read directly as mg·L-1 O3.  For concentrations greater than 1.0 mg·L-1 

O3, a color comparison wheel (Hach Co., Loveland, Colo.) was used to determine O3 

concentrations up to 1.5 mg·L-1.  Ozone gas source was from an experimental catalytic 

electrochemical stack generator with a rated output of 0.113 kg· d-1 (Lynntech Industries, 
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College Station, Texas).  Ozone generator operating parameters were set at 9 amp output 

with an ozone flow rate of 5 ml·L-1· s-1.  

Sporangium along with associated mycelia fragments were serially diluted by 

excising a 1 cm-2 piece of agar and transferring to a sterile 50 ml capacity conical bottom 

plastic tube with screw tight cap (BD Falcon, Fisher Scientific., Hampton, N.H.).  Fifty 

ml of autoclaved distilled water was added to the tube and gently agitated to disperse the 

organisms.  A 1 ml sample of this tube was then pipetted into another conical tube and 50 

ml of sterile water was added and gently agitated.  Fifty ml of water allowed sufficient 

volume for subsequent ozonation.  Excess agitation was avoided to reduce possible 

encystment of spores.  At this point, a pipette was used to place a sample on a 

hemacytometer with Neubauer markings and a maximum volume of 0.1µ L (Cole Parmer 

Instruments, Vernon Hills, Ill.) and placed under a light compound microscope 

(Binocular Compound Microscope, Carl Zeiss Inc., Thornwood, N.Y.) at 50 to 100 X 

magnification for quantification.  Number of spores per ml of sample was calculated by 

counting spores within the Neubauer markings multiplied by a dilution factor (50 ml) and 

multiplied by 10,000.  Dilution continued until spore count of about 1 x 105 · ml-1 was 

obtained.  Dilution factors varied greatly due to the status of the particular culture at the 

time of sampling and had to be determined for each set of experiments.  The value of 1 x 

105 · ml-1 was chosen as it is a level commonly used in disinfection studies conducted 

with Escherichia coli T. Escherich, a common fecal coliform  bacteria often found in 

water supplies (Haas and Finch, 2001). 

A 5 x 4 complete factorial design with 5 replications per treatment combination (5 

bentonite clay concentrations x 4 O3 concentrations x 5 replications per treatment = 100 

total) was established using 50 ml conical bottom tubes as previously described.  

Solutions containing 0, 0.5, 1.0, 1.5, or 2.0 NTU  of bentonite clay suspended in distilled 

water were autoclaved at 120° C at 110 kPa for 15 min., cooled and then dispensed into 

50 ml aliquots per bentonite treatment under aseptic conditions.  Spores of Phytophthora 

capsici previously diluted to 1 x 105 ml were added (1 ml spore suspension) to the tubes 

containing the bentonite clay.  Each tube cap had previously been modified by using a 

heated cork borer to make a hole (6.5 mm o.d.) into which the ozone gas feed line was 

inserted.  This modification was to reduce the possible incidence of cross contamination 
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during the ozonation process.  The tube caps were tightened and the top access hole 

sealed with paraffin film (Parafilm “M”, American Can Co., Greenwich, Conn.)  All 

transfers were under aseptic conditions in a laminar flow hood.  Tubes were then surface 

sprayed with 90 % ethyl alcohol (EtOH) to reduce possible contamination and placed in 

foam holders and placed inside a sealed plastic bag used to transport the prepared 

samples to the ozone generator.  Samples were ozonated to obtain peak concentrations of 

0, 0.5, 1.0, 1.5 mg· L-1 O3.   The paraffin film was replaced after each ozonation treatment 

and each tube was surface sprayed with 90% EtOH prior to being returned to the foam 

carrier and placed in the plastic bag for transport back to the laboratory. 

After ozonation, tubes were returned to the laboratory and placed under aseptic 

conditions.  A sample was pipetted from each tube and observed under the 

hemacytometer as before for spore survival quantification.  Each tube with a ozonated 

spore suspension was considered an experimental unit.  Prepared 4.5 cm, to conserve 

bench space, plastic culture plates of fresh media containing the vegetative juice substrate 

were flooded with 1 ml of liquid pipetted from each tube and replicated 3 times for a total 

of 300 plates (5 bentonite clay concentrations x 4 O3 concentrations x 5 replications per 

treatment x 3 replicates for replating = 300 total) and randomly placed on a laboratory 

bench under fluorescent lights emitting an average of 35 µmole· m-2· s-1 at ambient room 

temperature (22  ± 2° C).  Plates were observed at the end of 12 h for signs of re-growth 

and at 12 h intervals thereafter.  At first sign of re-growth, new colony forming units per 

ml of sample (CFU·ml-1) were counted and recorded.  Rapid mycelial growth precluded 

counting colony formation much after 24 h of first observed re-growth.  New mycelial 

growth was then observed under light microscopy for comparison with original cultures.  

Data were analyzed at each observation period for significance with NTU and ozone 

concentration as main effects and along with possible significant interactions between 

NTU and ozone concentrations using SAS PROC GLM and means were compared using 

least squares means procedures (SAS 9.1 for Windows, Institute, Cary, N.C.). 
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Results and Discussion 

Regrowth of Phytophthora capsici in the form of CFU·ml-1 at 12 h and 24 h after 

inoculation of agar substrate plates was reduced as ozone concentration increased across 

all bentonite NTU levels (Figs. 5 and 6).  At 12 h incubation, there was no significant (P≤ 

0.05) differences in the interaction between bentonite NTU and ozone concentrations.  

There was also no significant difference (P≤ 0.05) in CFU·ml-1 and bentonite NTU 

concentration at 12 h incubation.  However, there were significant differences in CFU·ml-

1 among ozone concentrations at 12 h incubation (Fig. 5).  Average regrowth ranged from 

5.4, 4.0, 0.21, and 0 CFU·ml-1 across all NTU at 0.0, 0.5, 1.0, and 1.5 mg· L-1 ozone, 

respectively.  At 24 h incubation, a similar trend developed where there was no 

significant (P≤ 0.05) differences in the interaction between bentonite NTU and ozone 

concentration nor significant differences in CFU·ml-1 and bentonite NTU levels (Fig. 6). 

However, there was a significant difference in CFU·ml-1 at various ozone concentrations 

as in the 12 h incubation with regrowth means ranging from 6.6, 5.0, 0.28, and 0 CFU·ml-

1 across all NTU at  0.0, 0.5, 1.0, and 1.5 mg· L-1 ozone, respectively.  After 24 h 

incubation, rapid mycelial growth precluded identification of new CFU·ml-1.  These data 

indicate that under the test conditions bentonite clay at 0 to 2 NTU did not impede the 

ability of ozonated water samples to reduce the regrowth of Phytophthora capsici 

cultured in vitro.  These data also re-affirm earlier tests investigating ozone efficacy in 

reducing Phytophthora capsici regrowth in vitro (Chapter V).  Similar results have been 

reported for the relationship between turbidity and reduction of bacteria and viruses using 

ozonation with bentonite clay up to 5 NTU offering little or no protection to the 

organisms during the disinfection process (Boyce et al., 1981).  Hoff (1978) reported that 

organic particulate matter better protected virus particles than bentonite clay.  This report 

concluded that the type of matter (organic vs. inorganic) causing the turbidity is more 

important in providing protection than in the NTU level as particulate concentration.  In 

horticultural operations, organic particulate matter such as peat moss, composted pine 

bark, and other substrate components and inorganic substrate components such as perlite, 

vermiculite, or sand, may be effectively removed from the recycled irrigation water via 

screens, settling ponds, or filtration systems.  However, smaller suspended particulates 

such as clay are often harder to remove and may pass through filtration systems.  These 
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data indicate that small inorganic particles such as bentonite clay (3 to 8 µM diameter) do 

not adversely affect the ozonation process in reducing propagules of Phytophthora 

capsici and subsequent reduced CFU when cultured  in vitro.  It should be noted that the 

tested water samples contained no organic matter which would present a greater demand 

for ozone.  In field applications where recirculated water contains high amounts of 

organic matter or other contaminants from substrates or the production environment, the 

concentration of ozone needed to disinfect the water will be greater than the 1.5 mg·L-1 

O3 used in this study. 
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Figure 5. The effect of turbidity as nephelometric turbidity units (NTU) on colony 

forming units per ml of sample (CFU·ml-1) at 12 h incubation periods at 

concentrations of 0, 0.5, 1.0 , and 1.5 mg·L-1 ozone. Vertical bars represent standard 

errors.  Values are means ± standard errors of  15 observations. 
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Figure 6. The effect of turbidity nephelometric turbidity units (NTU) on colony forming 

units per ml of sample (CFU·ml-1) at 24 h incubation periods at concentrations of 0, 

0.5, 1.0, and 1.5 mg·L-1 ozone. Vertical bars represent standard errors.  Values are 

means ± standard errors of 15 observations. 
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CHAPTER VII 

BIOASSAY USING CAPSICUM ANNUUM SEEDLINGS 

 

Plant pathogens grown in vitro or continuously sub-cultured on artificial substrate 

can lose virulence over time (Kelman, 1954).  The term used to describe this loss of 

virulence is attenuation (Ibrahim et al., 2002)  The causality of attenuated pathogens vary 

between differing types of pathogens (bacteria, fungi, viruses) (Ibrahim et al., 2002).  

Changes in polysaccharide production in vitro was correlated with virulence in Erwinia 

amylovora [(Burrill, 1882) Winslow et al., 1920], the causal agent of fire blight (Kelman, 

1954).  Loss of motility in virulent strains of Pseudomonas solanacearum Smith in broth 

culture allowed attenuated strains to proliferate since the non-motile virulent strains could 

not move and compete when oxygen became a limiting factor (Kelman, 1954). 

Researchers investigating pathogens infecting insects have found that changes in 

polysaccharide formation affects the ability of pathogen spores to adhere to insect 

surfaces affecting germination and invasion and hence virulence (Fargues, 1984; Morrow 

et al., 1989).  The age of mycelium in vitro can affect sporangia production in some 

species of Phytophthora (Ribeiro, 1983).  Juvenile mycelium depleted of nutrients 

produced more sporangia than older mycelium (Ayers and Zentmyer, 1971; Eye et al., 

1978).  One-day-old mycelium of Phytophthora megasperma f. sp. glycina Kuan and 

Erwin produced four times the sporangia as a five-day-old mycelium (Eye et al., 1978).  

Phytophthora cinnamomi Rands decreased the production of sporangia with increasing 

culture age when under axenic or pure culture conditions (Ayers and Zentmyer, 1971).  In 

contrast, Gooding and Lucas (1959) found an increase in sporangium production by 

Phytophthora nicotianae Breda de Haan with increasing culture age. 

To ensure the viability and virulence of the isolate of Phytophthora capsici 

Leonian used in this research, a bioassay was conducted under sterile conditions to look 

at infection and loss of pepper seedlings (Capsicum annuum L.) after inoculation and 

incubation.  The isolate of Phytophthora capsici was originally identified growing on 

chili peppers in New Mexico. 
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Materials and Methods 

Mature fruit of Capsicum annuum L. ‘Thai Poinsettia’, a locally grown 

ornamental pepper, were collected from the Texas A&M University Horticultural 

Gardens in September 2006 (College Station, Texas).  Seed were extracted from the fruit, 

placed on paper towels and allowed to air dry for several days.  On 15 November, 2006, 

seed were then surface sterilized by a 5 min. soak in a 2400 mg·L-1 sodium hypochlorite 

solution (The Clorox Co., Oakland, Calif.) and then triple rinsed in autoclaved distilled 

water under aseptic conditions.  Seed were then transferred (one seed each) to 2.5 x 15.0 

cm borosilicate culture tubes (VWR International, West Chester, Pa.) containing 10 cm-3 

medium grade vermiculite (Sun Gro Horticulture, Pine Bluff, Ark.) previously moistened 

and autoclaved.  Vermiculite was moistened with sterile distilled water via a wash bottle 

and the seed were covered with vermiculite twice the diameter of the seed.  Culture tubes 

were capped and wrapped with paraffin film (Parafilm “M”, American Can Co., 

Greenwich, Conn.) and placed in an incubator oven set at 25° C for 5 d to stimulate 

germination.  After 5 d, tubes were transferred to slanting test culture tube racks on a 

laboratory bench under 35 µmole · m-2 · s-1 PAR fluorescent light and ambient 

temperature (22 ± 2° C) and allowed to germinate.  After the first true leaves formed 

(about 2 weeks), 15 tubes containing seedlings were inoculated with 1 ml of water 

containing mycelial fragments and zoospores of Phytophthora capsici at a concentration 

of 1 x 105 · ml-1.  Another 15 tubes containing only seedlings without spore inoculum 

acted as a control (2 treatments x 15 replications per treatment = 30 tubes total). 

Sporangium along with associated mycelia fragments were serially diluted by 

excising a 1 cm-2 piece of agar and transferring to a sterile 50 ml capacity conical bottom 

plastic tube with screw tight cap (BD Falcon, Fisher Scientific, Hampton, N.H.).  Fifty ml 

of autoclaved distilled water was added to the tube and gently agitated to disperse the 

organisms.  A 1 ml sample of this tube was then pipetted into another conical tube and 50 

ml of sterile water was added and gently agitated.  A pipette was used to place a sample 

on a hemacytometer with Neubauer markings and a maximum volume of 0.1µ L (Cole 

Parmer Instruments, Vernon Hills, Ill.) and placed under a light compound microscope 

(Binocular Compound Microscope, Carl Zeiss Inc., Thornwood, N.Y.) at 50 to 100 X 

magnification for quantification.  The number of spores per ml of sample was calculated 
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by counting spores within the Neubauer markings multiplied by a dilution factor (50 ml) 

and multiplied by 10,000.  Dilution continued until a spore count of about 1 x 105 · ml-1 

was obtained.  After inoculation, tubes were capped and sealed with paraffin film and 

returned to the bench under light as before and observed for signs of disease which was 

defined as seedling stem collapse or lose of turgor indicating a loss of intact roots, and 

necrosis.  At the end of 2 weeks, the number of surviving seedlings was recorded.  The 

experiment was initiated on 1 December, 2006 and terminated on 15 December, 2006.  

The treatments were randomized within each test tube rack, and the test tube racks were 

randomly placed under the fluorescent lights on the bench top.  Results were treated as 

categorical data and analyzed in SAS using PROC FEQ for tabular data using Chi-Square 

procedures to test for significance (SAS 9.1 for Windows, SAS Institute, Cary N.C.) 

Results and Discussion 

The results of this experiment at 14 d after inoculation with spores of 

Phytophthora capsici showed about a 75% incidence of disease resulting in pepper 

seedling death (Table 1).  No significant (P≤ 0.05) incidence of seedling death occurred 

at 7 d, but death was significant (P≤ 0.05) at 10 and 14 d.  The 10 to 14 d incubation 

period is a typical time interval for infection caused by Phytophthora to occur (Erwin and 

Ribeiro, 1996).  Seedlings not inoculated with spores showed a 100% survival rate across 

all days after inoculation.  Surviving seedlings in inoculated tubes may have lacked the 

necessary physical or environmental conditions for infection, or may be showing some 

resistance to the pathogen.  With the exception of the seedlings intentionally inoculated 

with spores of Phytophthora, this experiment was conducted under sterile conditions in a 

laboratory environment instead of inoculating seedlings in an open or exposed 

greenhouse environment.  The isolate of Phytophthora capsici used throughout the 

various studies maintained viability and virulence. 
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Table 1.  Effect of inoculum and virulence of Phytophthora capsici on seedling survival 

of Capsicum annuum ‘Thai Poinsettia’ under sterile conditions at 1 to 14 d 

incubation. 

 

 

         Days after inoculation  

Spore count y  Seedling  1 7 10 14 

 

0   Live   15z 15 15 15 

0   Dead     0   0   0   0 

1x105  Live   15 13   7   4 

1x105  Dead     0   2   8 11 

 
y Spore estimate per ml water using hemacytometer determination. 
Z Number of surviving or dead seedlings out of 15 possible; Values differed significantly 

(P≤ 0.05) from expected tabulated values at 10 and 14 d using Chi-square analysis, but 

were not significant at 1 or 7 d. 
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CHAPTER VIII 

EFFECT OF OZONE TREATED WATER ON VEGETATIVE GROWTH OF 

CHRYSANTHEMUM 

 

Atmospheric ozone gas is a common pollutant in industrialized urban centers or in 

areas where environmental conditions are favorable for ozone concentration buildup 

(Jacobsen and Hill, 1970). A concern in using ozone gas in water treatment is “off-

gassing” or the process where excess ozone gas is vented to the atmosphere as a pollutant 

(Gottschalk et al., 2000).  Elevated levels of ozone gas in the atmosphere can enter 

through leaf stomata and oxidize plant tissue to induce ozone damage.  Symptoms vary, 

but may include foliar discoloration of leaves, chlorosis, and necrosis (Jacobsen and Hill, 

1970).  While this type of foliar damage can be caused by many factors other than ozone, 

additional types of damage have been linked to ozone.  Flecks, stippling, bronzing, 

bleaching, or reddening of foliage has been reported (Jacobsen and Hill, 1970).  

Continual exposure or high concentrations of ozone can result in necrosis or chlorosis 

obscuring the above mentioned symptoms (Fiscus et al., 2005).  Symptoms usually occur 

interveinally on the upper leaf surface but may affect both leaf surfaces (Fiscus et al., 

2005).  Older foliage is generally affected first with subsequent damage to younger tissue 

(Fiscus et al., 2005).  Young plants are more sensitive to ozone while older mature plants 

are more resistant (Fiscus et al., 2005).  Ozone exposure can also stunt plant growth and 

affect flower bud formation as well as causing marginal leaf rolling and scorching (Fiscus 

et al., 2005).  Ozone exposure for 4 h at concentrations of 0.04 to 1.0 mg· L-1 induced 

injury symptoms (Sikora and Chappelka, 2004). 

When considering ozone as a disinfecting agent in irrigation water, it is important 

to know if the possibility exists of inadvertently causing crop damage by ozone 

interacting with roots or shoots during irrigation with ozonated water or by possible off-

gassing from excess ozone.  On the other hand, a natural breakdown product of ozone is 

elemental oxygen which might have a positive affect on plant growth by increasing the 

oxygen content in the plant growing substrate.  Chrysanthemum (Chrysanthemum x 

morifolium T. de Romatuelle) has been reported to be sensitive to ozone exposure (Sikora 

and Chappelka, 2004).  Chrysanthemum is commonly grown in enclosed greenhouses 
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where the possibility exists of ozone concentration building up if off-gassing is occurring 

out of the irrigation water.  The purpose of this experiment was to investigate potential 

positive, negative, or neutral affects of ozone treated irrigation water on garden 

chrysanthemum, at 3 nitrogen (N) levels using a complete water soluble fertilizer with 

micronutrients.  Multiple N levels were used to test if ozone interacted at zero, low or 

high nutrient concentrations to affect vegetative plant growth.  Additionally, 

chrysanthemum plants were directly exposed to ozone gas in a sealed container to 

document acute ozone damage. 

Materials and Methods 

Rooted cuttings (8 cm long) of Chrysanthemum x morifolium ‘Country Girl’ were 

potted on 9 August, 2006 in 0.73 L (TLC, Branford, Ontario, Canada) containers using a 

peat-based substrate (Metro Mix 700, Sun Gro, Bellevue, Wash.) and randomly placed on 

a greenhouse bench under ambient air of 23º C ± 5º C, and a natural photoperiod of 700 

µmole· m-2· s-1 PAR as measured at 1:00 p.m. in mid-August 2006.  Aliquots (1 L) of 

reverse osmosis (RO) water were amended with 0, 50, and 300 mg·L-1 N from a 21N-7P-

7K water soluble fertilizer (Peter’s Acid Special. Scott’s Co., Marysville, Ohio) and 

exposed to ozone (O3) gas to obtain peak ozone concentrations of 0, 0.5, 1.0 or 1.5 mg·L-

1.  Ozone concentration was determined by the indigo colorimetric method.  This 

procedure is based on the rapid and stoichiometrical decolorization of indigo trisulfonate 

(from indigo blue to clear) when in the presence of ozone (Bader and Hoigne, 1986).  The 

source of the indigo trisulfonate was AccuVac ozone reagent low (0-0.2 mg·L-1) and high 

range (0.25-1.0 mg· L-1) evacuated ampuls (Hach Co., Loveland, Colo.).  The tip of an 

ampul containing a measured amount of reagent is inserted into a sample of the ozonated 

water and crushed.  The vacuum within the ampul draws in a 15 ml amount of the 

ozonated liquid.  The ampul is inverted twice to insure mixing and then immediately 

placed in a portable ozone meter (Hach Co., Loveland, Colo.) and the ozone 

concentration is read directly as mg·L-1 O3.  For concentrations greater than 1.0 mg·L-1 

O3, a color comparison wheel (Hach Co., Loveland, Colo.) was used to determine O3 

concentrations up to 1.5 mg·L-1.  Ozone gas source was from an experimental catalytic 

electrochemical stack generator with a rated output of 0.113 kg· d-1 (Lynntech Industries, 

College Station, Texas).  Ozone generator operating parameters were set at 9 amp output 
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with an ozone flow rate of 5 ml·L-1· s-1.  Time to reach peak O3 concentrations of 0, 0.5, 

1.0, or 1.5 mg·L-1 in the 1 L fertilizer solutions via mass transfer were determined by 

prior indigo colorimetry assays to be 0, 60, 120, or 180 s, respectively.  Aliquots were 

sealed for 15 min to allow for O3 diffusion.  Treated water was used to irrigate plants as 

needed until floral initiation which was 1 September, 2006.  The experiment was 

arranged as a completely randomized design with a complete factorial of ozone (4 O3 

concentrations) and fertilizer (3 N concentrations) with 5 replicates per treatment 

combination (4 x 3 x 5 = 60 plants total).  Data collected included an initial and final 

growth index (plant height times two perpendicular widths and reported as cm3) and final 

shoot (g) and root dry mass (g) (60° C for 7 d).  Chlorophyll content (chlorophyll a + b) 

was determination by the acetone extraction method as described by Harborne (1998) and 

reported as mg·mm-2 leaf area.  Growth parameter (final growth index, shoot and root dry 

weight, chlorophyll content) data were analyzed for significance with fertility level and 

ozone concentrations as main effects and for possible interactions between fertility level 

and ozone concentration using SAS PROC GLM and means were compared using the 

least squares means procedure (SAS 9.1 for Windows, Institute, Cary, N.C.). 

A “gas chamber” was constructed using a 100 L (volume) plastic storage bin 

(0.45 m x 0.80 m x 0.33 m) (Rubbermaid Inc, Fairlawn, Ohio) with a tight fitting lid.  A 

small hole was drilled into one upper side to allow a feed line (65 mm outer diameter) to 

emit ozone gas into the sealed chamber.  A safety precaution was taken to eliminate the 

inhalation of ozone gas by using a face respirator with activated charcoal filter canisters 

(Premier 6000 Respirator, Willson Co. Santa Ana, Calif.).  Previously grown plants of 

‘Country Girl’ chrysanthemum in 0.65 L pots were placed in the chamber and exposed to 

peak concentrations of 0, 0.50, 1.0, or 1.5 mg· L-1 ozone gas.  Each ozone concentration 

had 5 single plant replicates (5 plants per ozone concentration x 4 ozone concentrations = 

20 plants total).  Exposure time to achieve required ozone concentrations was calculated 

by determining ozone gas feed rate (FO3) in air which under the ozone generator 

operating parameters was 0.065 mg· L-1· s-1 O3.  Exposure times were calculated to be 

7.6, 15.4, and 23.1 s, respectively, for desired O3 concentrations.  After treatment, plants 

were allowed to incubate in the chamber for 15 min. when acute toxicity symptoms were 

observed on the foliage.  Plants were removed from the chamber and randomly placed on 
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a nursery bench under 50 % light exclusion for subsequent development of ozone damage 

symptomology.  After 2 h, a total foliage damage visual rating of 1 (81 to 100% of 

foliage exhibiting injury), 2 (61 to 80%), 3 (51 to 60%), 4 (21 to 50%), or 5 (0 to 20%) 

was assigned to each plant.  Results were treated as categorical data and analyzed in SAS 

using PROC FEQ for tabular data using Chi-Square procedures to test for significance 

(SAS 9.1 for Windows, SAS Institute, Cary N.C.). 

Results and Discussion 

Chrysanthemum x morifolium ‘Country Girl’ plants exposed to acute doses of 

ozone gas from 0 to 1.5 mg·L-1 started exhibiting typical ozone damage symptoms within 

15 min. of exposure.  After a 2 h development period, any exposure greater than 0.5 

mg·L-1 showed foliar damage (Table 2).  Damage symptoms included bronzing of the 

older mature leaves with necrosis subsequently developing (Fig. 7).  Acropetal growth 

near the meristem area did not exhibit damage symptoms at 2 h.  Some marginal leaf 

rolling occurred as well as bleaching of the foliage.  These symptoms are similar in 

description to other reports of ozone damage to plants (Jacobsen and Hill, 1970).  Results 

of this experiment suggest that treating water containing fertilizer solutions with ozone 

does not affect vegetative plant growth of chrysanthemum.  No foliar symptoms of ozone 

damage were observed on the plants.  However, chrysanthemum plants with induced 

ozone damage by direct exposure to ozone gas did display typical ozone damage 

symptoms.  Results of the experiment using ozonated irrigation water to test for 

phytotoxicity on chrysanthemum indicated no significant interactions (P≤ 0.05) between 

ozone concentration and fertility levels for shoot dry mass, root dry mass, total plant dry 

mass, root to shoot ratio, final growth index, or chlorophyll content.  Significant 

differences (P≤ 0.05) did occur in shoot and root dry mass and chlorophyll content 

among fertility levels across ozone concentrations, but not for ozone concentrations 

across fertility levels (Table 3).  Increasing fertility levels increased all growth 

parameters, including chlorophyll content.  Increasing ozone concentration did not 

negatively impact any of the growth parameters, nor did it positively impact growth.  

Chlorophyll content was unaffected by increasing ozone concentration.  Micronutrient or 

other mineral deficiencies, as well as non-specific root damage are often associated with 

chlorosis or leaf yellowing and is a commonly diagnostic feature when looking at plant 
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health.  These results suggest that ozonated irrigation water used routinely for irrigation 

does not adversely affect vegetative growth of the ozone sensitive species 

Chrysanthemum x morifolium at concentrations up to 1.5 mg·L-1 O3. 
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Figure 7.  Foliar damage symptoms  on Chrysanthemum x morifolium ‘Country Girl’ 

caused by ozone gas for 15 min. at a concentration of  1.5 mg· L-1. 
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Table 2.  Effects of direct ozone gas exposure on subsequent foliar damage on 

Chrysanthemum x morifolium ‘Country Girl’.  Plants exposed to ozone 

concentrations (mg· L-1) in a sealed chamber for 15 min.  Ratings were assessed 2 h 

after removal from chamber.  

 

 

Ozone           Foliar Damage Ratingy 

 (mg·L-1)   1 2 3 4 5    

 

0    0z 0 0 0 5 

0.5    0 0 0 4 1 

1.0    1 0 2 2 0 

1.5    4 0 1 0 0 

 
y Rating scale corresponding to a percent of foliage damaged: 1 (81 to 100%), 2 (61 to 80%), 3 (41 to 

60%), 4 (21 to 40%), 5 (0 to 20%). 
Z Number of plants out of 5 possible; Two-way tabular analysis using Chi-squares was significant at P ≤ 

0.05. 
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Table 3. Main effects (P ≤ 0.05 ) of ozone treated irrigation water on shoot dry mass, root 

dry mass, total plant dry mass, root to shoot ratios, final growth index, and 

chlorophyll on Chrysanthemum x morifolium ‘Country Girl’ with increasing fertility 

levels (N).  Values are means of 20 observations. 

 

 
         Dry mass   

N level     Shoot          Root         Total           Root to Shoot Ratio        Growth index                Chlorophyll 

(mg· L-1)       (g)            (g)            (g)                      (g·g-1)                     (cm3)                          (mg·m2) 

 

0     1.01za          1.03 a       2.04 a            1.01 a                  522.55 a             0.047 a 

50     1.29 b          1.43 b       2.72 b            1.10 b                  654.35 b             0.056 b 

300     2.17 c          2.49 c       4.66 c            1.14 c                2574.00 c             0.098 c 
 
z Means followed by the same letter are not significantly different at P ≤ 0.05 using least 

squares means procedures. 
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CHAPTER IX 

OZONE INTERACTIONS WITH FERTILIZER SOLUTIONS 

 

Because ozone is a strong oxidizer (causing a loss of electrons with a subsequent 

increase in oxidation number in the element being oxidized), ozone has the potential to 

react with metals contained in plant fertilizers (Runia, 1994; Vanachter et al., 1988).  Of 

particular interest is iron (Fe) which is classified as a transition metal.  Transition metals 

are elements whose atoms have incomplete d sub-shell electron orbitals, or which yield 

cations with incomplete d sub-shells (Brown and LeMay, 1977).  Transition metals are 

important because they can have various oxidation states and can form complexes and act 

as catalysts (Brown and LeMay, 1977).  These traits are important in biological reactions.  

Other transition metals found to be essential for plant growth include manganese (Mn), 

nickel (Ni), copper (Cu), and zinc (Zn) (Marschner, 1995).  Elemental iron is an 

electropositive metal (electronegativity 1.8 in the 2+ valence state) and can therefore 

readily donate electrons to a highly electronegative element such as the oxygen liberated 

during the ozone decomposition process.  The oxidation of iron is summarized by the 

reaction Fe2+ → Fe3+ + e- (Brown and LeMay, 1977).  The oxidized form of iron (Fe3+) is 

not readily taken up by plant roots and must be chemically reduced by various 

mechanisms to be biologically active in plants (McDonald, 1990).  Major nutritional 

elements such as nitrogen, phosphorus, and potassium have not been found to be 

negatively affected by ozone (Ehret et al., 2001; Runia, 1994).  Other possible effects of 

interest include possible change in solution pH and electrical conductivity (EC).  Because 

of the importance of iron as a micronutrient in plant growth, and the possibility of ozone 

interaction with fertilizer application by irrigation water, a series of studies were 

undertaken to ascertain possible affects of ozone on plant nutrient constituents contained 

in fertilizer solutions typically used for commercial plant production. 
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Materials and Methods 

Ozonated aliquots of distilled water containing a common commercially used 

water soluble fertilizer were measured for nitrogen content in both the nitrate (NO3
-) and 

ammonium (NH4
+) forms in addition to phosphorus (P), potassium (K), ferrous iron 

(Fe2+) and ferric iron (Fe3+), and total iron content.  Electroconductivity and pH were also 

measured. 

Aliquots (50 ml) of distilled water were each amended with 0, 50, 100, or 300 mg· L-1 

N from a water soluble acid forming fertilizer containing 21N-7P-7K (Peters Acid 

Special, Scott’s Co., Marysville, Ohio).  This fertilizer is formulated to have Fe-EDTA, a 

chelated form of Fe2+ containing 0.714 mg· L-1 at 100 mg· L-1 N solution.  Aliquots were 

placed in 50 ml conical bottom plastic tubes with screw tight caps (BD Falcon, Fisher 

Scientific, Hampton, N.H.).  Tubes containing fertilizer solutions were bubbled with 

ozone gas via a gas diffusion airstone (Top Fin Air Stone, Pacific Coast Distributing, 

Phoenix, Ariz.) to obtain peak concentrations of 0, 0.5, 1.0, or 1.5 mg·L-1 O3.  Total 

aliquots tested were 4 fertilizer concentrations x 4 ozone concentrations x 5 replications 

each for a total of 80 water samples per nutrient analysis.  Ozone concentration was 

determined by the indigo colorimetric method whereby a indigo blue reagent is 

progressively oxidized to a clear solution in the presence of increasing ozone 

concentration.  The methodology uses AccuVac ozone reagent low (0-0.2 mg·L-1) and 

high range (0.25-1.0 mg· L-1) (Hach Co., Loveland, Colo.) evacuated ampuls.  The tip of 

an ampul containing a measured amount of reagent is inserted into a sample of the 

ozonated water and crushed.  The vacuum within the ampul draws in a 15 ml amount of 

the ozonated liquid.  The ampul is inverted twice to insure mixing and then immediately 

placed in a portable ozone meter (Hach Co., Loveland, Colo.) and the ozone 

concentration is read directly as mg·L-1 O3.  For concentrations greater than 1.0 mg·L-1 

O3, a color comparison wheel (Hach Co., Loveland, Colo.) was used to determine O3 

concentrations up to 1.5 mg·L-1.  Ozone generator operating parameters were set at 9 amp 

output with an ozone flow rate of 5 ml·L-1· s-1.  Time to reach peak O3 concentrations of 

0, 0.5, 1.0, or 1.5 mg·L-1 in the fertilizer solutions via mass transfer were 0, 30, 60, or 120 

s, respectively, at the set parameters.  Immediately after treatment, tubes were sealed and 
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allowed to incubate for 1 h.  Samples were placed in a light free environment at 5 ºC until 

individual nutrient analysis was performed. 

For all subsequent nutrient analysis, the same general procedure was used.  From 

each ozone/fertilizer treatment combination, a total of 80 samples were analyzed per 

nutrient of interest. Aliquots of 50 mls were sufficient in volume to carry out required 

analysis.  Results are reported in mg· L-1 nutrient and means were analyzed using a 

general linear model (PROC GLM) to analyze main effects and interactions, and means 

comparisons were made using least squares means procedures in SAS (SAS 9.1 for 

Windows,  Institute, Cary, N.C.). 

Nitrogen Content: Nitrate (NO3
-) content was determined by a colorimetric 

procedure using salicylic acid (Cataldo et al., 1975) which yields a yellow color upon 

reaction with nitrate.  Standard curves were obtained using NaNO3 as a nitrate source. 

Samples were read on a spectrophotometer (Spectronic 20, Fisher Scientific, Hampton, 

N.H. ) at 410 nm and reported as mg· L-1 NO3
-.  Ammonium (NH4

+) concentration was 

determined by using an ion-selective probe to directly read from treated samples 

(Ammonium ion-selective probe, Cole-Parmer Instrument Co., Vernon Hills, Ill.) with 

standard curves using NH4SO4 as an ammonium source and reported as mg· L-1 NH4
+.  

The fertilizer used in this experiment was an acid forming formulation containing very 

low nitrate levels with ammonia being the main source of nitrogen.  To test the effects of 

ozone on nitrate forms of nitrogen, a separate nitrate analysis was performed using 

potassium nitrate (KNO3
-) as a nitrogen source using the analytical procedure as 

described above (Cataldo et al., 1975). 

Phosphorus Content: Phosphorus (P) was measured by a colorimetric procedure 

by Strickland et al. (1968) which produces a blue color in the presence of phosphorus.  

Standard curves were generated using potassium phosphate (KH2PO4) as a standard and 

results reported as mg· L-1 P. 

Potassium Content: Potassium (K) was measured by placing one drop of each 

sample on the sensor pad of an ion specific meter (Cardy K+ ion meter, Horiba Americas, 

Irving, Calif.) which directly reads sample concentration as mg ·L-1 K. 

Iron Content: Samples treated as above were placed in amber colored bottles (250 

ml capacity) and kept on ice with light exclusion until transported to a local testing 
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laboratory (Thompson Analytical, College Station, Texas) for subsequent iron 

determinations.  Ferrous (Fe2+) and Ferric (Fe3+) content was measured.  The 

methodology used was the phenanthroline method (Clesceri et al., 2005).  Results are 

reported as mg· L-1 Fe2+ , Fe3+, and Fe2+ + Fe3+. 

Electrical Conductivity (EC): Total dissolved salt content was measured by the 

EC of the samples read directly by a portable EC meter (EC meter, Horiba Americas, 

Irving, Calif.).  Results are reported as microsiemens (µS·cm-1· s-1). 

Solution pH: The solution pH was directly read by using a portable pH meter 

(Horiba, portable pH meter, Horiba Americans, Irving, Calif.) to sample each treatment.  

Results are reported in pH units. 

Results and Discussion 

The results of the analysis of the fertilizer components nitrate (NO3
-) and 

ammonical (NH4
+) nitrogen, phosphorus (P), potassium (K), electrical conductivity (EC), 

and pH of the test fertilizer solution show no significant interactions (P ≤ 0.05) between 

increased fertilizer and ozone concentrations in a complete fertilizer with N primarily in 

the ammonical form (Table 4).  There was a significant difference (P≤ 0.05) in the main 

effect of fertilizer concentration with the NH4
+, P, K, and EC fertilizer parameters, but 

not in increasing ozone concentrations.  There was also a significant difference (P≤ 0.5) 

in the lowering of solution pH at increasing fertilizer concentrations, but not increasing 

ozone concentrations.  This pH lowering is expected in an acid forming fertilizer.  Results 

also did not show a significant (P≤ 0.05) interaction between ozone levels and increasing 

nitrate content on an additional analysis using a KNO3
- fertilizer source.  There was a 

significant difference (P≤ 0.05) in NO3
- concentration across increasing fertility levels, 

but not in increasing ozone concentration (Table 4).  Iron in the reduced ferrous (Fe2+) 

form did not show a significant interaction (P ≤ 0.05) with increasing ozone 

concentration.  Detectable Fe2+ levels overall were low (0.03 mg· L-1 maximum detected) 

and just above the assay detectability limit of 0.02 mg· L-1 (data not shown).  Either the 

iron in the fertilizer was already in an oxidized ferric (Fe3+) state or the reduced Fe2+ 

chelated form of iron in Fe-EDTA is not detectable using the selected analytical 

procedure.  At 1.5 mg· L-1 ozone, detectable Fe2+ levels did decrease to 0 mg·L-1 across 

all fertilizer concentrations.  However, Fe3+ content and increasing ozone concentration 
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was significant at 50 and 100 mg· L-1 N levels with a slight increase in Fe3+ content at 1.5 

mg· L-1 ozone over the 0.0 mg·L-1 ozone concentration (Fig. 8).  The iron in the test 

fertilizer is formulated to contain 0.35 mg· L-1  and 0.714 mg· L-1 Fe-EDTA at 50 and 100 

mg· L-1 N respectively.  The detectable amounts of iron were slightly above the 

formulated amounts of iron indicating possible variation in fertilizer manufacturing or 

blending.  At 300 mg· L-1 N, the initial Fe3+ iron content of 12.79 mg·L-1 is about 3 times 

the 100 mg· L-1 N level of 4.21 mg· Fe3+ as was expected.  At 0.5 and 1.0 mg· L-1 ozone 

at the 300 mg· L-1 N rate, Fe3+ content drops to 8.25 and 7.87 mg· L-1, respectively.  At 

1.5 mg· L-1 ozone at the 300 mg· L-1 N rate, Fe3+ content decreased to 0 mg· L-1.  Total 

iron content followed a similar trend as Fe3+ since this form of Fe was the main 

component of the fertilizer test solution (Fig. 9).  At 300 mg· L-1 N and the corresponding 

higher initial total iron content of 12.80 mg· L-1, increasing ozone concentration 

decreased iron content to 0 mg· L-1 at 1.5 mg·L-1 ozone (Fig. 9).  There is a conundrum in 

the results with low to medium initial iron content as compared to the high initial iron 

content.  Whereas the low to medium total iron content did not decrease to 0 mg· L-1 at 

the high ozone concentration, the high initial iron content did decrease with increasing 

ozone concentration to 0 mg·L-1.  One possible explanation is that Fe is often used as a 

catalyst in ozone reactions in industrial applications (Rice at al., 1986; Gottschalk, et al., 

2000).  The higher Fe content could possibly be auto-catalyzing the reaction and 

increasing the rate at which Fe itself is precipitated out of solution.  Ozone is commonly 

used to precipitate high Fe concentrations from drinking water and industrial wastewaters 

(Rice et al., 1986).  Results indicate that increasing ozone concentration does have an 

effect on the iron component of the test fertilizer, but does not affect the macro nutrients 

as N, P, K.  Electroconductivity and solution pH were also unaffected (P≤ 0.05) by ozone 

concentrations used in this study (Table 4). 
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Table 4.  Fertilizer parameter (NH4
+, NO3

-, P, K), fertilizer concentration (mg·L-1), 

electrical conductivity (µS·cm-1·s-1), and pH analysis of the effect of increasing ozone 

(O3) and fertilizer concentration on a water soluble fertilizer.   

 

Fertilizer      Fertilizer            Ozone concentration                                                            
Parameter concentration  0.0  0.5  1.0  1.5 
      (mg·L-1)         (mg·L-1)         (mg·L-1)          (mg·L-1)          (mg·L-1) 
NH4

+       0      0.0      0.0      0.0      0.0 
     50    84.5    81.8    85.0    83.6 
   100  186.0  187.0  187.6  188.0 
   300  320.3    312.0  320.6  315.3 
Anova effects 
NH4

+   *z  
O3   n.s. 
NH4

+ x O3  n.s. 
NO3

-
         0      0.6      0.7      0.5      0.7  

     50    48.3    52.9    54.4    54.1 
   100  101.8    98.4    98.8    95.5 
   300  287.8  286.3  284.7  285.5 
Anova effects 
NO3

-   * 
O3   n.s. 
NO3

- x O3  n.s. 
P       0      0.4    0.9    5.0    2.4 
     50    19.1  19.3  18.6  16.4 

   100    33.6  32.6  33.0  44.4 
   300    87.5  90.5  95.2  94.0 
Anova effects 
P   * 
O3   n.s. 
P x O3   n.s. 
K       0     0.0    0.0    0.0    0.0 
     50   12.3  12.0  12.0  11.0 
   100   29.0  29.0  28.3  28.4 

300   82.0  82.0  80.6  82.3 
Anova effects 
K   * 
O3   n.s. 
K x O3   n.s. 
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Table 4. Continued. 
 
Fertilizer      Fertilizer            Ozone concentration                                                           
Parameter concentration  0.0  0.5  1.0  1.5 
      (mg·L-1)          (mg·L-1)          (mg·L-1)          (mg·L-1)          (mg·L-1) 
Electrical      0  0.004  0.004  0.005  0.003 
conductivity    50  0.290  0.300  0.310  0.266 
   100  0.620  0.636  0.633  0.630 
   300  1.570  1.600  1.600  1.590 
Significance 
Fertilizer  * 
Ozone   n.s. 
Fertilizer x Ozone n.s. 

pH       0  6.53  6.23  5.90  5.92 
     50  6.00  5.66  5.70  5.90 
   100  5.60  5.56  5.40  5.63 
   300  5.43  5.35  5.33  5.40 
Significance 
Fertilizer  * 
Ozone   n.s. 
Fertilizer x Ozone n.s. 
Z Significant at P≤ 0.05, or n.s.= not significant. 
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Figure 8.  Effect of increasing fertility level (expressed as the N level in mg·L-1) and 

ozone concentration on ferric (Fe+3 in mg·L-1) content.  Symbols represent means ± 

standard errors of 5 observations. 
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Figure 9.  Effect of increasing fertility level (expressed as the N level in mg· L-1) and 

ozone concentration on total Fe content (Fe total in mg· L-1).  Symbols represent 

means ± standard errors of 5 observations. 
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CHAPTER X 

PRELIMINARY STUDY ON OZONATION OF A PLANT GROWTH 

REGULATOR ON PANSY 

 

Chemical plant growth regulators (PGR) are an important component of 

greenhouse and nursery production systems.  They are used to reduce plant height or 

otherwise retard growth making plants more compact, aesthetically pleasing, easier to 

ship, or prolong marketable shelf life.  Most act by inhibiting gibberellic acid synthesis or 

otherwise retard stem elongation and growth (Rademacher, 2000).  Many of these 

chemicals are highly active stable compounds with long residual times in plant tissue 

(Arnold and McDonald, 2005).  These chemicals are also active at low concentrations 

(Douglas and Paleg, 1974).  Post-production carryover or lag time effects have been 

documented in a number of ornamental species long after they have been planted to the 

landscape (McDonald and Arnold, 2005).  At higher concentrations or with multiple 

applications during the production phase, landscape performance can be negatively 

affected (Arnold and McDonald, 2001; McDonald and Arnold, 2005).  Plant growth 

regulators have also been found in recycled nutrient solutions from ebb and flow 

irrigation of pot plants (Adriansen, 1997). Because of the wide-spread use and the 

effectiveness of PGR’s in plant tissue at low concentrations, the potential exists that 

recycled irrigation water can become contaminated with PGR’s and redistributed 

throughout the production facility, or discharged with the potential to become a non-point 

source pollutant.  Ozone gas has been used under high concentrations and under catalytic 

conditions to chemically oxidize organic waste, and deactivate certain pesticides and 

herbicides (Rice, 1981; Rivas et al., 2001; Runia, 1994).  The purpose of this experiment 

was to study the possibility of ozone gas (at levels used to control pathogens) 

deactivating a commonly used PGR, paclobutralzol, in greenhouse bedding plant 

production. 
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Materials and Methods 

Nontreated pansy (Viola x wittrockiana H. Gams ‘Bingo Blue with Blotch’) plugs 

were obtained from the Texas Agricultural Research and Extension Center, Overton, 

Texas on 15 October, 2006 and transplanted into 0.57 L containers (TLC,  Branford, 

Ontario, Canada) using a peat based substrate (Metro-Mix 700, Sun-Gro Horticulture, 

Bellevue, Wash.) and placed on a greenhouse bench with an average mid-day light level 

of 350 µmole · m-2 · s-1 PAR and setpoints at 25° C/21° C day/night temperatures.  Plants 

were watered as needed with reverse osmosis (RO) water and fertilized with a water 

soluble 300 mg· L-1 fertilizer (21N-7P-7K Peter’s Acid Special, Scott’s Co., Marysville, 

Ohio) twice weekly.  At day 14, plants were either sprayed with distilled water to runoff 

(10 ml per plant) or sprayed (10 ml per plant) with paclobutrazol [(2RS,3RS)-1-(4-

chlorophenyl)-4,4-dimethly-2-1, 2, 4-triazol-1-yl-pentan-ol, formulated as Bonzi, 

Uniroyal Chemical Co. Middlebury, Conn.] at 15 mg· L-1 that had been treated with 

ozone at 0.0, 0.5, 1.0, or 1.5 mg· L-1 peak O3 concentration after paclobutralzol addition.  

Ozone concentration was determined by the indigo colorimetric method. This procedure 

is based on the rapid and stoichiometrical decolorization of indigo trisulfonate (from 

indigo blue to clear) when in the presence of ozone (Bader and Hoigne, 1986).  The 

source of the indigo trisulfonate was AccuVac ozone reagent low (0-0.2 mg·L-1) and high 

range (0.25-1.0 mg· L-1) evacuated ampuls (Hach Co., Loveland, Colo.).  The tip of an 

ampul containing a measured amount of reagent is inserted into a sample of the ozonated 

water and crushed.  The vacuum within the ampul draws in a 15 ml amount of the 

ozonated liquid.  The ampul is inverted twice to insure mixing and then immediately 

placed in a portable ozone meter (Hach Co., Loveland, Colo.) and the ozone 

concentration is read directly as mg·L-1 O3.  For concentrations greater than 1.0 mg·L-1 

O3, a color comparison wheel (Hach Company, Loveland, Colo.) was used to determine 

O3 concentrations up to 1.5 mg·L-1.  Ozone gas source was from an experimental catalytic 

electrochemical stack generator with a rated output of 0.113 kg· d-1 (Lynntech Industries. 

College Station, Texas).  Ozone generator operating parameters were set at 9 amp output 

with an ozone flow rate of 5 ml·L-1· s-1.  Five replicates per treatment combination (2 

PGR concentrations x 4 O3 concentrations x 5 replications per treatment combination = 

40 plants total) were completely randomized on a greenhouse bench. Heights and canopy 
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diameter in two perpendicular directions were initially measured at treatment time.  A 

plant index was calculated as height x width 1 x width 2 as a volume estimate of canopy 

size and reported as growth index (cm3).  Five plants were also initially harvested for a 

baseline dry matter determination.  At first flower, 20 November 2006, the study was 

terminated.  Final growth measurements were taken and the plants were harvested for 

shoot and root dry mass (60° C for 7 d).  Means of plant index, shoot and root dry mass 

were analyzed using a general linear model (PROC GLM) to analyze main effects and 

interactions, and means comparisons were made using least squares means procedures in 

SAS (SAS 9.1 for Windows,  Institute, Cary, N.C.). 

Results and Discussion 

No significant (P ≤ 0.05) interactions were found for increasing ozone 

concentrations and PGR applications.  Likewise, the main effect of ozone concentration 

was not significant (P ≤ 0.05).  However, the main effect of paclobutralzol application 

(Table 5) was significant (P≤ 0.05).  Increasing ozone concentration from 0 to 1.5 mg·L-1 

did not effect the efficacy of paclobutrazol in controlling growth of pansy when applied 

at 0 or 15 mg·L-1.  These results suggest that ozone at the tested concentrations would not 

affect paclobutrazol applications administered to a target crop via irrigation systems.  

However, ozonation at the tested levels did not inactivate the paclobutrazol and prevent it 

from being potentially recycled or discharged.  Ozone is commonly used to treat 

wastewater to remove organic and other compounds (Rice at al., 1986).  In waste water 

treatment facilities, ozone dosages of up to 50 mg· L-1 are typical.  The average dose for 

drinking water and the beverage industry is 0.5 to 1.2 mg· L-1 (Gottschalk et al. 2000).  

Further research is needed in investigating higher ozone concentrations and possibly a 

longer exposure times to test inactivation of paclobutrazol and other commonly used 

plant growth regulators. 
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Table 5.  Main effects of paclobutralzol applications on growth of Viola x wittrockiana 

‘Bingo Blue with Blotch’ grown for 36 days in 0.57 L containers in a greenhouse. 

Values represent means of 20 observations. 

 

     Paclobutrazol   Final growth index    Shoot dry mass 

       (mg· L-1)             (cm3)    (g) 

 

0          553.40z a              0.66 a  

15                     150.83  b              0.37 b 

 
z Means followed by different letters are significantly different at P ≤ 0.05 using least 

squares means procedures.  
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CHAPTER XI 

SUMMARY 

 

Results 

The production of high quality horticultural products demands high quality water 

in copious quantities.  Increased urbanization in many horticultural production areas 

coupled with increasing water demand and decreasing quality and quantity dictates that 

the horticulture industry conserve current and future water resources.  Additional 

concerns such as overall water discharge, agricultural chemical contamination, and 

nutrient leaching into the groundwater or downstream surface water must be addressed.  

One strategy to mitigate runoff and conservation concerns is to capture and reuse existing 

irrigation water.  A major concern in the reuse of irrigation water is the possibility of 

spreading plant pathogens via recycled irrigation water (Hong and Moorman, 2005; 

Thompson and Allen, 1974).  Nursery production facilities and environments are 

normally favorable for disease development and proliferation.  High humidity levels, 

standing water, and lack of air-circulation in growing areas are particularly conducive to 

the development of disease outbreaks caused by species of Phytophthora.  Virulent 

species such as Phytophthora ramorum are especially problematic with a potential for 

widespread disease outbreaks and can impact not only production facilities, but 

landscapes and the general environment with significant economic and ecological 

consequences (Rizzo et al., 2002; U.S. Department of Agriculture, 2005).  Traditional 

water treatment systems such as settling ponds and reservoirs, filtration, and even 

constructed wetlands can mitigate particulate matter or sediment accumulation and excess 

fertilizer discharge (MacDonald et al., 1994), but can’t fully address the problem of 

pathogen dissemination.  This problem of pathogen control has traditionally been 

addressed through the use of biocides or other disinfecting agents such as chlorination.  

Chlorination is an effective means of control as it has a long residual in solution (Ferraro 

and Brenner, 1997).  However, many plants are sensitive to chlorine and production 

equipment may become corroded or degraded over time (Grasso, 1996).  Chlorine is 

dangerous and may present health hazards if not handled properly (Grasso, 1996).  

Alternative methods to disinfect water supplies have been tried such as lasers, ultraviolet 
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light, peroxides, and filtration (Grasso, 1996; Ramsay, 2000).  While these methods may 

be effective in certain applications, they have limitations in effectiveness and practicality 

in horticultural operations. 

Ozone gas has been used to treat municipal water supplies in Europe since the late 

1800’s (Brink et al., 1991; Rideal, 1920).  It is commonly used in treating industrial 

wastewater, bottled water supplies, and increasing being used in drinking water treatment 

plants (Rice et al, 1986).  Ozone is a strong oxidizer and is used to control a wide range 

of microorganisms including viruses, bacteria, protozoa, and fungi in drinking water.  

Ozone is effective in low concentrations, usually < 1.0 mg· L-1 O3 (Rice at al., 1986).  

Ozone generation has advanced with increased production efficiency using new 

electrochemical fuel cell technology (Flusche, 2006). 

The purpose of this research project was to investigate the possible use of ozone 

gas to control a plant pathogen of interest to the horticultural industry.  Species of 

Phytophthora deBary are especially problematic in the horticultural industry and were 

chosen as a test organism.  Phytophthora capsici Leonian was chosen as a model 

pathogen as it infects a large number of cultivated plant species, both ornamental and 

olericultural (Erwin and Ribeiro, 1996).  There were a number of questions to address. 

The first question to answer was the efficacy of ozone in reducing the number of  

propagules of Phytophthora capsici in irrigation water.  The second question was the 

effect of turbid or cloudy water on ozone efficacy.  The third area of concern was the 

ability of Phytophthora capsici, under extended in vitro culture, to maintain 

pathogenicity or the ability to infect plants.  The fourth question was the possibility of 

induced ozone damage or toxicity on vegetative plant growth due to residual ozone off-

gassing from treated water when used to irrigate plants.  Acute toxicity from a direct 

exposure to ozone gas on a test plant species needed to be documented to verify 

symptomology of ozone damage.  And finally, the fifth question to ask is given that 

ozone is an powerful oxidizer, what are the effects of ozonating fertilizer-containing or 

plant growth regulator solutions on various nutrient or plant growth regulator components 

of a commercial fertilizer or plant growth control program typically used in production 

facilities? 



 94

Results from the ozonation of solutions containing propagules of Phytophthora 

capsici indicate that increasing ozone concentrations decreased the number of surviving 

propagules, reducing the subsequent number of colony forming units that formed in 

culture.  Ozone concentrations of 1.5 mg· L-1 prevented the growth of any new colony 

forming units in culture (Figs. 3 and 4 ).  Multiple treatment dates verified the trend in 

propagule reduction as ozone concentration increased.  These results indicate that 

ozonation is efficacious in reducing propagules of Phytophthora capsici in irrigation 

water. 

The effect of turbid or opaque irrigation water on the efficacy of ozone on 

reduction of propagules of Phytophthora capsici was tested using bentonite clay as a 

model system.  Bentonite clay has been used in prior research to look at turbidity effects 

on screening viruses and bacteria during the ozonation process (Boyce et al., 1981).  In 

this study, bentonite clay was used at concentrations corresponding to Nephelometric 

Turbidity Units of 0 to 2 NTU.  A 2 NTU level is above the Environmental Protection 

Agency’s permitted levels in surface water sources.  Results indicate that increasing 

bentonite levels to 2 NTU did not effect the ability of increasing ozone concentrations to 

reduce the number of propagules of Phytophthora capsici and subsequent regrowth in 

vitro (Figs. 5 and 6).  Other research indicates the source of turbidity is more important 

than the level of turbidity (Hoff, 1978).  Organic matter is found to absorb 

microorganisms thus providing a screen or shield to the applied ozone.  Organic matter 

can also scavenge or use ozone (ozone demand) reducing the amount available for 

microorganism oxidation.  Bentonite clay was not found to negatively affect the 

ozonation process (Figs. 5 and 6).  Whereas organic matter may be filtered, screened, or 

otherwise trapped and removed from recycled irrigation water, fine particulate clay 

particles can pass through most filtration systems.  These results indicate that clay 

particles such as bentonite clay do not adversely affect the ozonation process. 

The isolate of Phytophthora capsici was originally obtained as a pure culture from 

the American Type Culture Collection.  It was sub-cultured in vitro on a vegetable broth 

based artificial agar media for several months during the course of the various 

experiments.  To test for the continued virulence of the isolate of Phytophthora capsici 

with assumed pathogenicity, a bioassay was conducted using ornamental pepper 
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Capsicum annuum L., the same species from which the organism was originally isolated.  

Ornamental peppers were grown under aseptic conditions from seed until the first true 

leaves emerged.  Plants were then inoculated with propagules of Phytophthora capsici 

and incubated for 14 days.  At the end of the test period, about 75% of the inoculated 

seedlings were dead while all non-inoculated controls remained alive (Table 1).  Results 

indicate that the pathogen was still virulent and capable of infecting and killing 

ornamental pepper seedlings. 

A concern in using ozone gas, especially in enclosed structures is the possibility 

of off-gassing or the evolution of ozone gas out of irrigation water when under high 

concentrations.  This evolving gas may have phytotoxicity implications if the 

concentration is high enough to cause either root or foliar damage to plants.  Conversely, 

the breakdown product of ozone is elemental oxygen which could cause increased root 

zone oxygen content and improved plant growth.  To test for phytotoxicity or other 

effects,  Chrysanthemum x morifolium T. de Romatuelle was grown in a greenhouse and 

watered with plus or minus ozonated water at a range of fertility levels and allowed to 

grow until floral initiation.  Plant growth measurements were taken, along with leaf 

chlorophyll content.  Results indicate that increasing ozone concentrations to 1.5 mg· L-1 

did not affect plant growth negatively or positively, but were neutral (Table 2).  

Chrysanthemum plants directly exposed to ozone gas exhibited foliar damage (Fig. 7) 

similar to that reported in other species (Jacobsen and Hill, 1970).  No foliage damaged 

corresponding to the induced damaged was observed on the plants irrigated with the 

ozonated water.  Results indicate that ozonated irrigation water at concentrations up to 

1.5 mg· L-1 O3 did not have a negative effect on vegetative growth in chrysanthemum 

under normal production conditions. 

Ozone is a strong oxidizer and is often used to remove heavy metals from 

industrial waste water.  Another use of ozone is to remove iron from municipal or other 

drinking water systems to reduce iron staining in plumbing and  household fixtures.  The 

effect of ozonation on fertility of irrigation water using a commercial fertilizer in 

horticultural production was studied.  The major nutrient components of the fertilizer 

solution were analyzed as well as the micronutrient iron.  Results indicate that increasing 

ozone concentration to 1.5 mg· L-1 did not effect the macro nutrient components nitrogen, 
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phosphorus, or potassium.  Ozonation also had no effect on electroconductivity or 

solution pH.  Increasing ozone concentrations did have an effect on ferric and total iron 

content at a high concentration of fertilizer (Figs. 8 and 9).  When complete fertilizer 

applied at 300 mg·L-1 nitrogen was exposed to 1.5 mg·L-1 O3, iron content decreased to 0 

mg· L-1 Fe and precipitated out of solution.  It is suggested, since iron is apparently 

affected by increasing ozone concentrations, irrigation water be treated and ozone 

allowed to decay prior to the fertilizer injection stage. 

Plant growth regulators are commonly used during horticultural production to 

control plant growth for various reasons.  A consequence of this practice is the possibility 

of irrigation water becoming contaminated with these plant growth regulator chemicals.  

These chemicals are often active in low concentrations and are stable compounds with an 

extended period of activity in the treated plant (Arnold and McDonald, 2001).  

Contaminated water could be recycled and applied to plants sensitive to plant growth 

regulators or otherwise applied where not intended.  In addition, contaminated water 

could be discharged off-site and have unintended consequences downstream.  A solution 

of paclobutrazol, a commonly used plant growth regulator, at a rate of 15 mg· L-1 was 

ozonated at 1.50 mg· L-1 O3 and applied to pansy (Viola x wittrockiana H. Gams).  

Untreated water was used as a control.  Results indicate that ozone at 1.50 mg· L-1 did not 

have an effect on paclobutralzol (Table 5).  Applications of paclobutrazol through 

irrigation systems would be unaffected.  However, ozone at the tested concentration also 

would not inactivate or neutralize the paclobutrazol in any recycled irrigation water. 

Discussion 

Ozone can be an effective sterilent for Phytophthora capsici and perhaps other 

species of Phytophthora in nursery/greenhouse irrigation water with minimal potential 

for plant damage.  As mentioned, ozone is used to control many species of coliform 

bacteria and other forms of microorganisms in municipal water supplies.  Other plant 

pathogens found in irrigation waters that might be controlled by ozonation include, 

Phythium, Rhizoctonia, and Fusarium.  Many other fungal organisms are pathogenic to 

plants, but most have not been reported as being identified in irrigation water so the value 

of ozonating water to control these organisms, many of them soil-borne, is questionable.  

Ozone may be effective in controlling bacterial plant pathogens species such as Erwinia 



 97

and Pseudomonas.  However, little data exist on effective ozone concentrations and 

methodology for these pathogens and experimental data would be necessary in designing 

ozonation systems to insure pathogen control. 

This reseach showed that bentonite clay did not affect the effacy of ozone on the 

control of Phytophthora.  However, it should be mentioned that bentonite clay does not 

require an ozone demand.  Irrigation water found in horticultural production facilities 

such as a greenhouse or nursery operation would most likely have some amount of solid 

or dissolved organic matter in the recirculated water despite treatment by filtration or 

settling ponds.  Any organic matter, or inorganic chemical compounds, would have an 

ozone demand above that which is required for pathogen control and would require a 

much higher ozone concentration that the maximum 1.5 mg· L-1 O3 used in these studies.  

Higher ozone concentrations require the use of specialized detection, monitoring, and 

injection equipment designed to deliver the required higher ozone concentrations.  

Corrosion resistant piping at the ozone injection site would also be needed.  In addition, 

gas handling and off-gassing concerns increase and provisions must be made to neutralize 

excess ozone gas (heat or catalyst degradation) to comply with possible local and state air 

quality standards. 

Chemical precipitaton of iron by ozonation suggests that injection of fertilizer 

solutions containing iron or other micronutrients should occur after ozone decay.  Iron 

was chosen as a model micronutrient in these studies because of its ability to readily 

change oxidation states and because iron deficiency symptoms on plants are usually 

apparent at an early stage of a lack of plant available iron.  Other essential plant 

micronutrients such as copper (Cu), manganese (Mn), nickel (Ni), and zinc (Zn) are 

chemically related to iron and may also be oxidized and precipitated out of an ozonated 

fertility solution.  Many complete water soluble fertilizers contain a mixture of 

micronutrients or are applied as a separate micronutrient fertilizer.  As with iron, 

allowing sufficient time for ozone decay would mitigate the oxidizing effects of ozone on 

these other plant micronutrients. 

The increased use of chemical plant growth regulators to manipulate or control 

plant growth may have a real impact on recirculated irrigation water in the future.  As 

mentioned, these chemicals are stable and active in low concentrations.  Re-applying 
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water containing these chemicals may have many unintended consequences on both on-

site production and water released downstream.  Ozone has been used to inactivate many 

organic and inorganic chemicals.  Ozone levels used in these studies did not inactivate 

paclobutralzol and experimental data are needed to determine effective ozone 

concentrations for commonly used plant growth regulators.  It is difficult to make 

ozonation recommendations and system requirements for these types of chemicals 

without a known range of effective concentrations.  More studies are needed looking at 

chemical degradation by ozonation, especially in the area of plant growth regulators and 

horticultural pesticides. 

The economics of upscaling ozone treatment to full scale horticulture production 

facilities are problematic.  There are no “one size fits all” solutions.  Ozonation should be 

considered as part of an overall strategy to reduce plant pathogens in recirculated 

irrigation water with the concomitant risk of increased disease incidence.  Because of the 

expense involved in installing and maintaining ozone equipment, irrigation water should 

be tested and monitored for pathogens to access the potential or desirability of ozone 

treatment.  The quality of the recirculated irrigation water must be assessed as to turbidity 

levels, composition, as well as the presence of organic or inorganic constituents which 

will influence ozone demand.  The volume of water to be treated must also be considered.  

Large volumes of water will considerably increase the ozone generation requirements and 

will determine the type and capacity of the generation equipment needed.  Possibilites 

exist whereby selected use of smaller quantities of ozonated water can be used in critical 

aspects of production such as in plant propagation facilities, liner production areas, or in 

the production of high value or sensitive crops.  Ozone is another tool that may be 

considered in the overall strategy of crop protection and irrigation water remediation. 
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