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ABSTRACT 

 

Symmetric and Asymmetric Hybridization in Citrus spp. 

(May 2007) 

Claudine Bona, B.S., Federal University of Parana; 

M.S., Federal University of Parana; 

Co-Chairs of Advisory Committee:  Dr. J. Creighton Miller, Jr 
 Dr. Eliezer S. Louzada 

 
 

The United States is the second largest producer of oranges and grapefruit. 

However, the US citrus industry experiences constraints in production due to pests, 

diseases and environmental concerns. Furthermore, due to the low diversity in current 

commercial scion cultivars any exotic diseases, if introduced into any of the producing 

states could be devastating. To maintain the US industry competitiveness it is necessary 

to improve cold, pest and disease resistance to allow expansion of citrus production 

areas in the US, and to improve fruit quality characteristics such as sweetness, vitamins 

and phytochemical contents and seedlessness. Sexual hybridization in most Citrus 

species is complicated because they are highly apomictic. Polyembryony makes it 

difficult to create large segregating populations for selection. Somatic hybridization by 

protoplast fusion circumvents sexual incompatibilities and is a powerful tool in genetic 

improvement. Symmetric and asymmetric hybdridization (gamma irradiation plus 

iodoacetamide) via protoplast fusion were performed with the objective of producing 

somatic hybrids of Citrus paradisi with C. sinensis and C. reticulata with C. sinensis. 
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These hybrids could be used for grapefruit improvement and to create genetic diversity. 

Furthermore, irradiated Swinglea glutinosa microprotoplasts were fused with ‘Ruby 

Red’ grapefruit and ‘Mucott’ tangor to assess the possibility of introgression of pieces of 

S. glutinosa chromosomes into the recipient protoplasts, a possible first step for radiation 

hybrid mapping. Double-inactivated fusions (irradiation + iodoacetamide) produced 

tetraploid and aneuploid plants, and hybridity was confirmed by amplified fragment 

length polymorphism (AFLP) analysis. This is the first report of obtaining rooted Citrus 

asymmetric hybrid plants, produced by irradiation plus iodoacetamide. AFLP confirmed 

presence of S. glutinosa into the receptor genomes, showing a possible donor 

introgression. 
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INTRODUCTION 

 

 With a production of 105,431,984 metric tons (Mt) on 7,605,363 hectares in 

2005, citrus is a very important crop worldwide. It is considered the most valuable fruit 

crop in international trade and has experienced continuous growth in the last decades, 

due mostly to consumer awareness of related health benefits (INFO COMM, 2006). 

Brazil is the leading orange producer and the third largest producer of tangerines, 

mandarins and ‘Satsuma’ and The United States is the second largest producer of 

oranges and grapefruit. Together, these countries represent almost 70% of the total world 

production (FAOSTAT data, 2006). 

The United States production is concentrated in California, Texas, Arizona and 

Florida, due to the tropical/subtropical characteristics of Citrus spp. which are usually 

frost-sensitive and require a humid environment and rich, well-drained soil for 

cultivation (INFO COMM, 2006; INFOAGRO, 2006). Besides environmental 

constraints, the US citrus industry experiences restraints on production due to many 

pests and diseases such as Citrus Tristeza Virus (CTV), Citrus blight, Greasy spot 

(Mycosphaerella horii), Alternaria brown spot, Phytophthora-induced diseases, 

melanose (fungal), scab (Elsinoe fawcetti Bitanc.), citrus canker (Xanthomonas 

axonopodis pv. Citri), postbloom fruit drop (PFD) (Colletotrichum acutatum) and in 

Florida, the major US producer, greening (Diaphorina citri) (Chung and Brlanski, 2006).  

____________ 
This dissertation follows the format and style of the Journal of the American Society for Horticultural Science. 
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Furthermore, due to the low diversity of scions currently in use, any exotic 

diseases, if introduced in any of the producer states, could be devastating.  

In order to expand the US citrus production area it is necessary to improve salt, 

drought, and cold tolerance, as well as to improve pest and disease tolerance/resistance 

of the cultivars (Davies and Albrigo, 1994). Furthermore, to keep up with the public 

demand for fruit quality characteristics such as sweetness, good acidity balance, vitamin, 

phytochemical composition and seedlessness is essential to maintain the competitiveness 

of the industry. Higher yields, year-round availability and longer shelf-life would be 

additional benefits (INFOCOMM, 2006). 

Grapefruit (Citrus paradisi Macf), sweet oranges (C. sinensis (L.) Osb.) and 

mandarins (C. reticulata Blanco) are the most commercially important citrus crops 

(Davies and Albrigo, 1994; Louzada et al., 2002). Grapefruit is a hybrid between 

pummelo and sweet orange. However, unlike pummelo, which produces zygotic 

embryos, grapefruit produces nucellar embryos, making breeding difficult. Also, its 

production and distribution is more limited than sweet oranges due to high heat 

requirements. Grapefruits, in general, present acid juice and moderately low total soluble 

solids (TSS) levels and are considered less palatable than oranges by many people. 

Sweet oranges are, in general, low to moderate in acids and moderate to high in per cent 

soluble solids. Hybridization between sweet oranges, including acidless oranges, and 

grapefruits could increase sweetness and decrease acidity of grapefruits. Likewise, 

hybridization between sweet oranges and mandarins could be of interest because it could 
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impart better color and increase cold-hardiness of sweet oranges and be benefic by 

imparting larger fruit sizes of sweet oranges (Davies and Albrigo, 1994). 

Sexual hybridization in most Citrus species is, however, very complicated because 

of its complex reproductive biology. Most Citrus cultivars are very heterozygous and 

nucellar embryony is prevalent, particularly in sweet orange, grapefruit and lemon, and 

few important traits show single-gene inheritance patterns (Davies and Albrigo, 1994; 

Louzada et al., 2002; Ollitrault et al., 2000). Polyembryony impairs creation of large 

segregating populations for selection; therefore, achievement of desired characteristics is 

complicated even when using complementary parents. In addition, Citrus species have 

long juvenile periods. Hence, conventional breeding and selection are time-consuming 

(Grosser and Gmitter, 1990). Furthermore, sterility and sexual incompatibility are 

widespread in citrus. 

Diversity in Citrus and related genera provides tremendous potential for 

developing hybrids with desirable characteristics. Such diversity has occurred during the 

long cultivation history of citrus due to weak barriers of reproductive isolation among 

species and nucellar embryony, which ensures intense vegetative reproduction in most 

Citrus species (Carvalho et al., 2005).  

Despite this great variability within Citrus and related genera and their economical 

importance, most of the current cultivars originated from natural mutations in pre-

existing cultivars, by chance selections, and by induced mutations, rather than from 
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breeding (Grosser and Gmitter, 1990). However, current demand does not allow 

researchers to rely solely on these methods. 

Traditional breeding techniques are important and still used for citrus rootstock 

improvement and for mandarin improvement, however, unconventional techniques could 

help to shorten the breeding process.  

Citrus has been genetically transformed (Dias, 1993), opening new opportunities 

for the development of novel citrus genotypes (Zhou et al., 2001). However, public 

antagonism, especially in Europe, towards such technologies has intensified interest in 

exploiting protoplasts in somatic hybridization and cybridization (Davey et al., 2005). 

Somatic hybridization by protoplast fusion is a powerful tool in genetic 

improvement (Mendes et al., 2001). It brings together the genomes of two species 

(Schoenmakers et al., 1994) and can be used to transfer mono- or polygenic traits 

controlled by non-identified and non-cloned genes (Ramulu et al., 1996a,b). It 

circumvents sexual incompatibilities and offers the unique potential of simultaneously 

transferring nuclear and cytoplasmic genes. In somatic hybrids, dominant traits can be 

accumulated, irrespective of the heterozygosity level of the breeding material, and 

inbreeding depression is avoided. Seedlessness, another very important trait for citrus, 

can be induced by symmetric hybridization, by haploid + diploid fusion, and by 

cybridization to transfer cytoplasmic male sterility (CMS) (Calixto et al., 2004; Grosser 

and Gmitter, 2005; Liu et al., 1999; Ollitrault et al., 2000; Tian et al., 2002; Yamagishi 

and Glimelius, 2003; Zhou et al., 2001). Many distant citrus relatives which normally 
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could not be hybridized with Citrus due to sexual incompatibility, may serve as somatic 

parents and contribute as sources of abiotic and biotic resistance traits of interest 

(Ollitrault et al., 2000). 

Many symmetric citrus somatic hybrids have been produced to data (Fu et al., 

2003) and have been extensively used as tetraploid breeding parents (Guo et al., 2000) 

targeting seedlessness. 

Asymmetric somatic hybridization (donor-recipient fusion or gamma fusion) using 

X- or γ-irradiation also has great potential because it allows partial genomic transfer 

from one cultivar to another (Derks and Colijn-Hooymans, 1989; Dudits et al., 1987). 

The contribution of the donor genome is minimized as chromosome elimination may be 

induced by the high radiation doses. Formation of donor irradiated colonies is avoided, 

as irradiation prevents donor parental escapes (Derks et al., 1992; Trick et al., 1994). 

Asymmetric hybrids containing only part of an irradiated genome would likely require 

fewer backcrosses to eliminate undesirable donor traits, and may expedite return to a 

near diploid level (Wijbrandi, 1989). 

Iodoacetamide (IOA) is an irreversible inhibitor of enzymes involved in glycolysis 

(Epstein et al., 1981). Cells treated with it cannot divide and eventually degenerate 

(Bonnema and O’Connell, 1990). Added to protoplasts of the receptor genome, IOA 

facilitates the selection process of the created hybrids once only the truly hybrid cells are 

able to develop further due to genome complementation (Tian et al., 2002). 



 6

 
 

Protoplast culture and regeneration is well established in citrus, and symmetric 

somatic hybridization has been extensively performed (Grosser and Gmitter, 2005). The 

same cannot be said about asymmetric hybridization in citrus. Vardi et al. (1989) used 

donor-recipient protoplast fusion to produce cybrids. However, the first and only report 

on regeneration of citrus mixoploid hybrid plants via protoplast asymmetric fusion was 

published by Liu and Deng (2002) who produced asymmetric hybrids from Dancy 

tangerine and Page tangelo by using X-rays, yet plantlets were recalcitrant to root.  

A different type of asymmetric hybridization was achieved by Louzada et al. 

(2002) who used microprotoplasts instead of irradiated protoplasts to produce 

asymmetric embryos with a few additional chromosomes. This work was based on the 

‘Microprotoplast Mediated Chromosome Transfer’ (MMCT) technique, developed for 

mammalian cells by Fournier and Ruddle (1977) and efficiently adjusted for using in 

plants by Ramulu et al. (1996a,b), in which microprotoplasts holding one or few 

chromosomes, are produced. 

Asymmetric somatic hybridization is also used for chromosome mapping 

(Wijbrandi, 1989; Yerle et al., 2004). A radiation dose breaks up chromosomes, and the 

resulting DNA fragments are rescued by hybridization with a background cell. Resulting 

hybrids, which typically retain only pieces of the target genome, are then assayed for 

those markers which are to be mapped (Tibshirani et al., 1999). Combination of gamma 

irradiation with MMCT could be interesting because chromosome breakage by radiation 

is prone to be more efficient in microprotoplasts than in protoplasts, not only due to the 
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smaller number of chromosomes but also because spindle formation has been inhibited 

by chemicals and microtubules-toxins used in the microprotoplasts preparation (Zhang et 

al., 2006). Hence, there is a better chance of more breakage and therefore, a more 

efficient introgression of the donor chromosome pieces in the receptor genome. The 

applicability and effectiveness of radiation hybrid mapping in plants has been 

demonstrated (Gao et al., 2004,2006). Same principles could be extended to Citrus. 

The primary goal of this research was to generate diversity by creating somatic 

symmetric and asymmetric hybrids using sweet oranges, mandarins and grapefruits, the 

most important commercial citrus via protoplast fusion with gamma irradiation for 

asymmetry and in conjunction with IOA for a double genome inactivation and more 

efficient selection.  

A secondary goal was to observe the potential of combining MMCT and gamma 

irradiation for introgression of donor chromosome pieces into a background cell as a 

possible first step for future use in radiation mapping.  
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LITERATURE REVIEW 

 

World production of citrus fruit has experienced continuous growth because 

consumption of citrus has increased not only as fresh fruit but also as juice. This has 

resulted from preferences for convenient and healthy products, improvements in quality, 

competitive prices, promotional activity and technological advances in processing, 

storage and packaging. This increase has boosted citrus juice production and 

international juice trade. The main citrus fruit producing countries are Brazil, the 

Mediterranean countries, the United States (where fruits for the fresh market are mainly 

grown in California, Arizona and Texas, while for processing are mostly produced in 

Florida) and China (INFO COMM, 2006).  

The US citrus industry, however, faces some economic constraints on its 

production. Citrus production areas are threatened by pests, diseases, and environmental 

problems, to which current commercial rootstock and scion cultivars are susceptible. 

Furthermore, the US citrus industry is experiencing a decrease in market share due to 

competition from foreign producers in both fresh and processed markets (Bowman et al., 

2004). Dealing with these deficiencies requires creation of diversity through 

development of new varieties with characteristics such as freeze-hardiness, disease 

tolerance/resistance, as well as, because of consumer preferences, seedless fruits, well 

nutritious value and sweetness. This requires the development of new scion varieties 

which are competitive on the world market and are available over a long production 

season (Bowman et al., 2004; Davies and Albrigo, 1994). 
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Unfortunately, Citrus species present a complex reproductive biology. Citrus 

seedlings have long juvenile periods, ranging on average from five to 15 years, another 

complicating factor for conventional breeding. Such a characteristic makes breeding 

costly (Davies and Albrigo, 1994; Grosser and Gmitter, 1999). Many Citrus species and 

genotypes display various degrees of pollen or ovary sterility. Most citrus cultivars are 

highly heterozygous, and few important traits show single-gene inheritance patterns 

(Louzada et al., 2002). When crossing fertile individuals, the resulting offspring is 

typically variable and replete with unexpected and undesirable types. Heterozygosis may 

also promote inbreeding depression because deleterious recessives have the opportunity 

to combine by meiotic recombination (Deng et al., 2000, Furr et al., 1969; Grosser and 

Gmitter, 1999).  

Nucellar embryony is prevalent, particularly in sweet orange, grapefruit and lemon 

(Davies and Albrigo, 1994; Ollitrault et al., 2000), and sexual embryos often die for lack 

of nourishment, making the construction of large segregating population difficult 

(Grosser and Gmitter, 1999; Louzada et al., 2001). Polyembryony greatly impairs the 

creation of large segregating populations for selection of desired characteristics even 

when using complementary parents.  

Some alternative possibilities to increase genetic diversity other than conventional 

breeding exist. Diversity has been obtained by selection of naturally occurring 

mutations, as well as by induced mutations (Grosser and Gmitter, 1990). Mutation 

breeding has been extensively used to induce mutation in citrus, and some important 

selections have been produced, such as ‘Star Ruby’, an induced seed mutation from 
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‘Hudson’ grapefruit and ‘Rio Red’, the main variety grown in Texas and Mexico, 

produced from the non-commercial A&I 1-48, which was produced by irradiation of a 

nucellar “Ruby Red’ budwood (Graça and Louzada, 2006, unpublished). However, the 

main difficulty in mutation breeding of vegetatively propagated plants is that mutations 

are one-cell events and plant parts, with their multicellular tissues, are thus automatically 

chimeric. Recovery of non chimeric products that can be effectively screened is difficult 

(Broertjes and Keen, 1980; Lee, 1988). 

Recombinant DNA technologies have been explored in citrus (Almeida et al., 

2003; Frydman et al., 2004; Guo et al., 2005; Peña et al., 2004), however, public 

antagonism, especially in Europe, towards such technologies has re-intensified interest 

in exploiting protoplasts in somatic hybridization, cybridization, proteomics and 

metabolomics (Davey et al., 2005). Transformation efficiency in citrus is, in any case, 

generally low. Some species are non transformable and in transformable species, more 

than 60% of produced shoots are escapes and high frequency of chimeras is common 

(Domingues et al., 1999). Furthermore, availability of horticulturally important genes is 

scarce (Louzada et al., 2002). 

Another possibility for genetic manipulation is somatic hybridization. Somatic 

hybridization or protoplast fusion is a powerful tool in genetic improvement and creation 

of diversity in gene pools, because, it not only overcomes sexual barriers between 

species but also allows combination of nuclear, chloroplastic and mitochondrial genomes 

in new patterns (Mendes et al., 2001; Ollitrault et al., 2000). 
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SOMATIC HYBRIDIZATION 

Somatic hybridization by protoplast fusion can bring together the genomes of two 

species (Schoenmakers et al., 1994), and transfer mono- or polygenic traits controlled by 

unidentified and uncloned genes (Ramulu et al., 1996a,b). It circumvents sexual 

incompatibilities and offers the unique potential of simultaneously transferring nuclear 

and cytoplasmic genes (Grosser and Gmitter, 1999).  

In somatic hybrids, dominant traits can be accumulated, irrespective of the 

heterozygosity level of the breeding material. Inbreeding depression is avoided because 

there is no haploidization of the recipient genomes and deleterious recessives alleles do 

not have the opportunity to combine (Calixto et al., 2004; Liu et al., 1999; Ollitrault et 

al., 2000; Tian et al., 2002; Yamagishi and Glimelius, 2003; Zhou et al., 2001). The 

unmasking of deleterious recessives by meiotic segregation, potentially expressed as 

inbreeding depression, does not occur with somatic hybridization. 

Somatic hybridization via protoplast fusion may allow creation of novel genotypes 

by combining different species or cultivars. Some cultivar combinations previously 

considered impossible to perform can be done using protoplast fusion. Related genera of 

the Citrae and Clauseneae tribes, which normally cannot be hybridized with citrus due 

to sexual incompatibility, can serve as sources of abiotic and biotic resistance traits of 

interest (Ollitrault et al., 2000). 

Combinations of parents with complementary favorable traits and/or presenting 

superior genotypes can be performed, irrespective of sexual incompatibility, sterility or 

polyembryony, without disrupting favorable gene combinations. Furthermore, traits that 
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are conditioned by dominant alleles in one of the donors should be expressed in the 

somatic hybrid (Grosser and Gmitter, 1999). 

 

SYMMETRIC SOMATIC HYBRIDIZATION IN CITRUS 

Since the first citrus somatic hybrid was obtained by Ohgawara et al. (1985) via 

protoplast fusion of C. sinensis Osb. and Poncirus trifoliata, somatic hybridization has 

contributed tremendously to citrus improvements. Several citrus somatic hybrids have 

been reported to be in use in various breeding programs. Many achievements were made 

by somatic hybridization (Fu et al., 2003). Louzada et al. (1993) first reported production 

of hybrid plants between two sexually incompatible Citrus genera via protoplast fusion 

by fusing C. sinensis (L.) Osbeck cv. ‘Hamlin’ with Atalantia ceylanica (Arn.) Oliv.. 

Grosser et al. (1996) combined Citrus with seven related genera, some of them sexually 

incompatible, via protoplast fusion for rootstock improvement. Guo et al. (2000) fused 

protoplasts of ‘Bonnanza’ navel orange (C. sinensis) with Red Blush grapefruit (C. 

paradisi). The regenerated plants flowered precociously. Mendes-da-Gloria et al. (2000) 

obtained plants from protoplast fusions of ‘Rangpur’ lime (C. limonia L. Osb.) and 

‘Caipira’ sweet orange (C. sinensis), aiming to combine the drought tolerance and vigor 

from the ‘Rangpur’ lime with the blight tolerance of ‘Caipira’ sweet orange. Deng et al. 

(2000) produced more than 20 interspecific, intergeneric, and intertribal somatic hybrids, 

as well as putative hybrids. Fu et al. (2003) regenerated plants from protoplast fusions of 

‘Newhall’ navel orange (C. sinensis) and ‘Chicken Heart’ sweet wampee (Clausena 

lansium). Calixto et al. (2004) produced hybrids of ‘Hamlin’ sweet orange and 
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‘Singapura’ pummelo with potential to be used as blight, Citrus tristeza virus (CTV), and 

Phytophthora-induced disease tolerant rootstocks. Khan and Grosser (2004) fused C. 

micrantha, a progenitor of lime, with sweet orange (C. sinensis) to recreate a lime-like 

fruit using the sweet orange as source of resistance against Witches’ broom disease of 

lime (WBDL), reporting for the first time the use of a progenitor species in somatic 

hybridization experiments. Takami et al. (2004) produced intergeneric somatic hybrids 

between ‘Kumquat’ (Fortunella japonica Swingle) and ‘Morita’ navel orange to 

introduce seedless kunquats for the Japanese market. Wu et al. (2005) used protoplast 

fusion to produce novel allotetraploid mandarin hybrids for use as parents in crosses 

with diploids to produce easy-peel, seedless, triploid Citrus cultivars and Takami et al. 

(2005) utilized intergeneric somatic hybrids as index discriminating taxa for Citrus and 

related species. 

In addition to the examples cited above, several inter- and intra- specific and inter-

generic and inter-tribal symmetric somatic hybrids have been produced by Liu and Deng 

(2000), Saito et al. (1991), Takami et al. (2004) and Wu et al. (2005), as well as many 

cybrids (cytoplasmic hybrids) by Cabasson et al. (2001), Guo et al. (2004, 2006), Liu et 

al. (2002), Saito et al. (1993), Xu et al. (2004). A more complete list of produced 

symmetric somatic hybrids and cybrids is found in Calixto (2003).  

Seedless fresh fruit varieties have been developed by symmetric hybridization, 

haploid + diploid fusion and targeted cybridization to transfer cytoplasmic male sterility 

(CMS). The male sterility is an important agronomic trait controlled at least partially by 

the mitochondrial genome. Cybridization is also interesting in that it offers the 
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possibility of manipulating chloroplast and mitochondrial genomes and evaluating their 

role on cultivar qualities in citrus (Cabasson et al., 2001) were, if not for the ability of 

protoplast fusion to yield such cytoplasmic-nuclear products, many years of repetitive 

sexual backcrossings would be required to produce the cytoplasmic substitutions 

(Grosser and Gmitter, 2005; Guo et al., 2004). 

Symmetric somatic hybridization has allowed development of inter- and intra-

generic allotetraploid hybrids, even when sexually incompatible parents were used for 

protoplast isolation. Such genotypes are very important for rootstock improvement, as 

they hybridize complementary genotypes without breaking up successful gene 

combinations and yet provide an opportunity to introduce disease and pest resistance, 

better adaptation to specific soil and climate niches, and for tree size control (Grosser 

and Gmitter, 2005; Louzada et al., 1993; Mendes-da-Gloria et al., 2000; Wu et al., 

2005).  

Wide somatic hybridizations make it possible to combine Citrus species with 

sexually incompatible genera that possess desirable attributes (Grosser and Gmitter, 

2005). Wild relatives are potential sources of useful resistance traits for citrus 

improvement (Fu et al., 2003) and represent a largely untapped reservoir of genetic 

diversity. Somatic hybridization of wild relatives with Citrus species may allow better 

horticultural performance for the wild relatives and make possible the use of resulting 

somatic hybrids as rootstocks (Louzada and Grosser, 1994). For example, somatic 

hybrids have been produced among Citrus and Clausena (subtribe Clausineae), 
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Citropsis, Severinia and Atalantia (subtribe Citrinae) and Feronia (subtribe 

Balsamocitrinae) (Louzada and Grosser, 1994). 

Even though symmetric somatic hybrids have great potential for rootstock 

improvement, they may not have direct application as scion cultivars (Louzada et al., 

2002). Most of the available hybrids are allotetraploids and may not be directly used as 

commercial scion cultivars because they contain genomes of both fusion parents. As a 

consequence, they express both the desirable and undesirable traits simultaneously, 

which, to some degree, limits the utilization of such somatic hybrids (Liu and Deng, 

2002). Hybrids created by symmetric hybridization may present complex genetic 

constitution and require many backcrosses to establish new cultivars, and may also 

present chromosome instability and sterility. Furthermore, no significant benefits have 

been presented for the two most important citrus commercial fruits, grapefruits and 

sweet oranges (Louzada et al., 2001).   

 

ASYMMETRIC HYBRIDIZATION 

Asymmetric hybrids, those with fewer genes from one partner than from the other, 

may arise from spontaneous chromosome elimination in some distant combinations. 

However, in such hybrids, there is no way to manipulate the amount of elimination or to 

direct which genome will undergo chromosome elimination (Hinnisdaels et al., 1991).  

Another way to achieve alien chromosome introgression is by breakage and fusion of 

chromosome fragments by radiation, i.e. X- or γ-rays (Chang and Jong, 2005). 

Elimination of chromosomes may also be induced as result of inactivation of mitotic 
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capacity in one partner by chemicals, such as colchicine (Harms, 1992; Sanamyan and 

Rakhmatullina, 2003). Wu and Mooney (2002) produced three desirable non-chimeric, 

autotetraploid plants of the mono-embryonic tangor cultivar ‘Umatilla’ using 0.05% 

colchicine and one from 0.1% colchicine and one mixoploid ‘Dweet’ plant by using 

0.1% colchicine. 

Irradiation may have the potential to direct the process of chromosome elimination 

(Hinnisdaels et al., 1991), since elimination seems to be dose-dependent (Wijbrandi, et 

al., 1990). Hence, asymmetric hybrids are prone to have fewer genes from one partner 

than from the other since the contribution of the donor genome is minimized as 

chromosome elimination is induced by radiation doses (Liu and Deng, 2002; Trick et al., 

1994). Liu and Deng (2002) observed that regeneration of shoots from citrus 

interspecific hybrids was dose dependent. Trick et al. (1994) using tobacco hybridization 

as a model, found that radiation-induced elimination of donor chromosomes increased 

with gamma dose and that in long-term callus culture donor-chromosome elimination 

was a variable process. Nevertheless, correlation between irradiation dose and number of 

donor chromosomes in the hybrid cells has been controversial (Derks et al., 1992). 

The dose of irradiation, the ionizing-radiation amount absorbed per unit mass, is 

presented as gray (Gy), which is the standard unit of absorbed ionizing-radiation dose 

and is equivalent to one joule per kilogram. One gray corresponds to 100 rads (common 

unit of radiation) (Ahloowalia and Maluszynski, 2001; Kondoh et al., 1998). 

Ionizing radiation causes fragmentation of DNA and induces both single and 

double-strand breaks, which lead to elimination of donor chromosomes, formation of 
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micro-chromosomes and translocations (Derks et al., 1992). The chromosome breakage 

in the irradiated cells seems not to be random (Fernandez et al, 1990). Wijbrandi (1989) 

observed that three donor Lycopersicum peruvianum loci, located on the chromosomes 

2, 4 and 7, were present in each of the resulting asymmetric hybrids, suggesting linkage. 

Asymmetric somatic hybridization (donor-recipient fusion or gamma fusion) using 

X- or γ-irradiation allows partial genomic transfer from one cultivar to another (Derks 

and Colijn-Hooymans, 1989; Dudits et al., 1987). Partial genome transfer is achieved by 

irradiation of the donor protoplasts to induce fragmentation and subsequent elimination 

of chromosomes before fusion with non-irradiated receptor protoplasts (Derks et al., 

1992; Liu and Deng, 2002; Trick et al., 1994). Contributions by the donor genome are 

minimized, i.e., chromosome elimination increases with higher radiation doses. 

Asymmetric hybrids containing reduced representation from the donor genome would 

theoretically require fewer backcrosses to eliminate undesirable traits and re-establish a 

near diploid level (Wijbrandi, 1989). Besides that, partial genome transference can be 

better tolerated than the whole donor genome (Ramulu et al., 1996a,b). 

Asymmetric hybrids have been produced in fusing species of Medicago, tobacco, 

tomato, potato, tomato + potato, Arabidopsis thaliana + Brassica napus and rice + 

Zizania latifolia (Liu et al., 1999; Tian et al., 2002). 

Asymmetric hybridization would seem to offer a great potential for genetic 

improvement of citrus. However further research is needed. Vardi et al. (1989) produced 

cybrids by donor-recipient protoplast-fusion. However, the first and only report about 

regeneration of mixoploid hybrid plants via protoplast asymmetric fusion in citrus was 
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published by Liu and Deng (2002) who produced asymmetric hybrids from Dancy 

tangerine and Page tangelo by using X-rays. However, plants were recalcitrant to rooting 

in rooting inducing media and had to be grafted. 

Another type of somatic hybridization capable of generating diversity is 

‘Microprotoplast Mediated Chromosome Transfer’ (MMCT), developed for mammalian 

cells by Fournier and Ruddle (1977). Micronucleation may be induced by prolonged 

mitotic arrest by using microtubule inhibitor compounds (Fournier and Ruddle, 1977). 

Fournier (1981) produced micronucleated mouse L-cells with colcemid. Falconier and 

Segull (1987) noticed that that the herbicide amiprophos-methyl (APM) was more 

efficient than colchicine for plant microtubule depolymerization. The micronuclei 

formed after the prolonged mitotic arrest can be physically isolated. When protoplasts 

are exposed to cytochalasin B under high speed centrifugation, the nucleus, some 

surrounding cytoplasm and the plasma membrane are pinched off to form 

subprotoplasts, some containing nuclei and others lacking them (Thomas et al., 1976; 

Wallin et al., 1977). The fusion of potato microprotoplasts with tobacco and tomato 

protoplasts by MMCT using APM are reported by Ramulu et al. (1996a,b) 

In citrus, the MMCT technique was first applied by Louzada et al. (2002) who 

fused hydroxyurea (HU) treated microprotoplasts of ‘Ruby Red’ grapefruit containing 

one to three chromosomes with protoplasts of ‘Succari’ sweet orange and S. glutinosa 

microprotoplasts with protoplasts of sour orange. They obtained embryos and suspension 

cells with a few additional chromosomes. 

 
 



 19

It has been shown that transfer of small portions of the genome (1-2) chromosomes 

together with a small portion of cytoplasm (a thin layer near the micronuclei) 

significantly reduce the destabilization of the acceptor cell (Yemets and Blume, 2003) 

and such generated cell lines are especially powerful gene manipulation tools (Fournier, 

1981; Fournier and Ruddle, 1977).  

Asymmetric somatic hybridization may also be used for chromosome mapping 

(Wijbrandi, 1989). Irradiation resultant small fragments of chromosomes greatly 

increase the power of physical mapping in the species of interest (FAO, 2006). Radiation 

hybrid mapping is a powerful tool for mapping genomes and it’s applicable to any 

species for which somatic hybrid cells can be made and provides a most efficient route 

to the production of ordered maps containing nonpolymorphic or minimally 

polymorphic markers (Womack, 1999). The technique is based in that if two markers are 

further apart on the chromosome, the more likely a given irradiation dose will break the 

chromosome between them, placing the markers on two separated chromosomes. By 

estimating the frequency of breakage, and thus the distance between markers, it is 

possible to determine their order in a manner analogous to meiotic mapping (Cox et a., 

1990). 

Radiation hybrid mapping was originally developed for animal systems but may 

also be used in plants (Wardrop, et al., 2002). Riera-Iizarazu et al. (2000) irradiated an 

oat-maize monosomic addition line containing chromosome 9 and produced maize 

chromosome 9 radiation hybrids, and oat lines possessing different fragments of maize 

chromosome 9. Kynast et al. (2002) developed a complete set of oat-maize chromosome 
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additions in order to map maize sequences and to study expression of maize genes in the 

genetic background of oats. Wardrop et al. (2002) generated and cultured in vitro plant 

(barley) radiation hybrids but could not create a map from them. Gao et al. (2004,2006), 

however, were able to create asymmetric sexual interspecific hybrids and successfully 

create RH maps. The results indicated genome-wide RH mapping is quite feasible in 

cotton. 

The combination of gamma-irradiation with MMCT may allow the insertion of 

donor chromosome pieces inside the receptor genome, which would be a first step in 

creating radiation hybrid cells because, in spite of its small size (haploid genome size has 

approximately 385 Mb (Gmitter et al., 1999), currently there are no physical maps of the 

Citrus genome (Roose et al., 2000; USDA, 2006).  

S. glutinosa, in the Balsamocitrinae subtribe, pursues a very distinct, 

heterochromatin-poor karyotype and presents the smallest chromosomes known in the 

whole sub-family Aurantioideae (Guerra et al., 2000). For such distinct characteristics 

and for being a distant citrus relative, ‘Swinglea’ irradiated microprotoplasts would be a 

great candidate for fusion with ‘Ruby Red’ grapefruit because it is a very distant relative 

of Citrus, belonging to a different sub-tribe, which could facilitate identification of 

possible ‘Swinglea’ DNA insertions by band polymorphism using AFLP.  

 

CONFIRMATION OF HYBRIDITY 

Another advantage of asymmetric hybridization over symmetric hybridization is 

that, by irradiation of the donor protoplasts, selection of hybrids is made easier because 
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formation of irradiated colonies is avoided, as irradiation prevents donor parental 

escapes (Derks et al., 1992; Trick et al., 1994). Furthermore, receptor protoplasts may be 

treated with iodoacetamide (IOA) (Liu et al., 1999; Tian et al., 2002), which is a 

metabolic inhibitor (Epstein et al, 1981). Cells treated with IOA cannot divide and 

eventually degenerate (Bonnema and O’Connel, 1990; Liu et al., 1999; Varotto et al., 

2001). Such double inactivation, using IOA inactivated receptors and gamma-irradiation 

inactivated donors, makes it possible to enhance selection performance by avoiding 

possible donor and receptor parental escapes and facilitating hybrid identification, since 

only the truly hybrid cells or superior mutants are able to develop further due to genome 

compensation (Tian et al., 2002). 

Confirmation of hybrid status has been done in the great majority of studies by 

morphology observation, chromosome number, flow cytometry and by random 

amplified polymorphic DNA (RAPD) analysis (Costa et al., 2004; Deng et al., 2000; 

Grosser et al., 1996; Khan and Grosser, 2004; Louzada and Grosser, 1994; Mendes et 

al., 2001; Mendes-da-Gloria et al., 2000; Takami et al, 2005; Wu et al., 2005). 

Isoenzyme analysis was extensively used for hybrid characterization. However, hybrid 

tissues may possess isoenzymes band profiles characteristic of each parent, as well as 

additional bands which may be either a signal of hybridity or artifacts (Lynch et al., 

1993). Chromosome counting from actively dividing cells, as from root tips and growing 

apices, help in the confirmation of hybridity. However, they may be inaccurate due to 

possible doublings, elimination of chromosomes, breakage or overlapping of 

chromosomes during slides preparations that may confuses accurate chromosome 
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number counting (Lynch et al., 1993). Accordingly with Kitajima et al. (2001), citrus 

chromosome preparations may be prepared using root tips or leaves, but aerial tissues 

are more desirable for accurate cytological and karyotyping studies in heterozygous fruit 

trees. Andras et al. (1999) suggested that a drop-spreading technique is recommended to 

produce cytoplasm-free preparations from plants with small chromosomes. Ploidy 

analysis by flow cytometry has been very useful to complement characterization of 

hybrids (Fu et al., 2004).  

Nevertheless, molecular markers for detection of alien DNA, e.g.,  restriction 

fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD) 

amplified fragment length polymorphism (AFLP) and variable numbers of tandem 

repeats (VNTR) are more reliable (Karp et al., 1996). RAPD markers are used most 

commonly, one of the reasons is that the method is simple and inexpensive (Oliveira et 

al., 2004). However, RAPD was failed to differentiate between sweet orange varieties, 

so Targon et al. (2000) suggested more sensitive methods of analysis. 

Cybrids have been detected mostly by cleaved amplified polymorphic sequence 

(CAPS), chloroplast simple sequence repeat (cp-SSR) and mitochondrial restriction 

fragment length polymorphism (mt-RFLP) (Cabasson et al., 2001; Guo et al., 

2004,2006; Takami et al., 2004; Vardi et al., 1989; Xu et al., 2005). Both RFLP and 

AFLP have been useful in detecting chromosome losses and in revealing more 

information about hybridity in somatic hybrids, because provide reliable markers, high 

resolution and efficiency (Fu et al., 2004). 
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AFLP is a DNA fingerprinting technique which is a very powerful tool for 

distinguishing closely related cultivars (Hanada et al., 2003). Using this method, sets of 

restriction fragments may be visualized by PCR without knowledge of nucleotide 

sequence (Vos et al., 1995). AFLP markers are highly polymorphic and reproducible 

(James et al., 2003) and the technique is robust and reliable (Vos et al., 1995). 

Pang et al. (2006) revealed genetic diversity of Poncirus accessions by AFLP 

which has been reported to be highly polymorphic in citrus (Campos et al., 2005; Chao 

et al., 2005). 

AFLP has proven to be robust against methylation alterations. Shaked et al. (2001) 

used AFLP and methylation-sensitive amplification polymorphism (MASP) to obtain a 

quantitative estimate of the timing and frequency of allopoliploid-associated genetic and 

epigenetic response of wheat in wide hybridizations and obtained reproducible patterns 

of elimination which were proven not to be attributed to heterozygosity or methylation. 

They concluded that AFLP is a robust and high-throughput means to assess the induction 

of genomic rearrangements. Furthermore, genetic and epigenetic evaluations of citrus 

calluses performed by Hao et al. (2004) using MSAP suggested that ploidy level remains 

stable during long in vitro periods. 

Genomic in situ hybridization (GISH) is a technique which provides a direct and 

visual method for effective number and position determination of the parental 

chromosomes (Fu et al., 2004), makes possible visualization of alien chromosomes and 

was successfully applied to identify citrus somatic hybrids by Fu et al. (2004) and Guo et 

al. (2004). There are two reasons why only a few GISH studies have been performed in 
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citrus somatic hybrids: citrus chromosomes are small, 2µ in size (Usman, 2005), and 

morphologically undistinguishable, and the GISH method has several key steps affecting 

the final result. Researchers must be highly skilled to successfully obtain high-quality 

chromosome slides, since to have well-dispersed chromosomes is an important factor 

(Fu et al., 2004). 

 

Relevance of this work. The importance of this work is that somatic hybridization is a 

powerful tool to generate diversity. It offers possibilities such as creation of potentially 

high-quality citrus hybrids, production of tetraploids to be used in interploid crosses and 

physical mapping of the genomes.  

Gamma-irradiation of donor protoplasts before fusion causes chromosome 

breakage, and allows part of a donor genome to be inserted into the recipient. Nucleus 

transference of less-than-entire genomes may reduce the number of backcrosses needed 

to eliminate possible undesirable alien traits. 

Furthermore, hybridization of grapefruits with sweet oranges could be very 

important to scion improvement and diversity, where the creation of such hybrids via 

conventional breeding would be practically impossible. 

Use of S. glutinosa microprotoplast and irradiation before fusion with grapefruit or 

‘Murcott’ protoplasts may facilitate introgression of pieces from the donor into the 

receptor, which, depending on future stability studies, could be a first step towards citrus 

radiation mapping and comprehensive genome sequencing. 
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OBJECTIVES 

• Create somatic symmetric and asymmetric hybrids using sweet oranges, 

mandarins and grapefruits with potential for scion improvement and tetraploid 

production for use in interploid crosses resulting in seedlessness. 

• Determine the potential of combining MMCT and gamma irradiation for 

asymmetric somatic hybridization in Citrus. 

• Evaluate the possibility of using asymmetric somatic hybrids in Citrus breeding 

and genomic (mapping). 
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MATERIALS AND METHODS 

 

PROTOPLAST SOURCE 

Protoplasts were isolated from habituated embryogenic suspension cells of the 

grapefruit cultivars ‘Ruby Red’ and ‘Flame’ (C. paradisi Macf.), the sweet oranges 

‘Itaborai’, ‘Natal’, Valencia’ and ‘Succari’ (C. sinensis (L.) Osbeck), from ‘Satsuma’ 

mandarin (C. reticulata Blanco) and from ‘Murcott’ tangor (Murcott Honey, Smith) (C. 

reticulate × C. sinensis).  

Suspension cells, produced from ovule-derived embryogenic callus, kindly 

provided by J. W. Grosser (Citrus Research and education Center, University of Florida, 

Lake Alfred), were maintained in a two-week subculture cycle in liquid half-strength 

H+H medium (Appendix A) under constant agitation on a horizontal gyratory shaker 

(Lab-Line, USA) at 130 rpm, at room temperature and under constant illumination (two 

growth lux lamps of 20 W each (GE lighting, Nela Park, Cleveland, OH) (Grosser and 

Gmitter, 1990; Louzada et al., 2002). 

 

Protoplast isolation. The protocol for protoplast isolation was adapted from Grosser 

and Gmitter (1990). Approximately 1 gram of fresh weight drained cells (4 to 10 days 

after subculturing) was placed in a 5 cm diameter Petri dish and 0.5 to 1 mL of enzyme 

solution plus 4 to 5 mL of 0.4 to 0.7 M BH3 medium (Appendix B) were added (Grosser 

and Gmitter, 1990). Cells were digested overnight, in the dark, on a rocker platform 

(Bellco Glass, Inc, Vineland, NJ) with 6 oscillations per minute.  
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To improve protoplast isolation, different ratios of 0.6 M BH3-enzyme solution 

were attempted. Furthermore, for some cultivars, a two-step digestion was performed. 

The enzyme solution consisted of 1% cellulase R-10 (Karlan, Santa Rosa, CA), 

0.2% pectolyase Y-23 (Karlan, Santa Rosa, CA), 1% macerozyme R-10 (Karlan, Santa 

Rosa, CA) 0.024 M CaCl2, 0.92 mM NaH2PO4, 6.15 mM 2-[N-morpholino]ethane 

sulforic acid (MES) (Sigma, Dallas, TX), and 0.4 to 0.7 M of mannitol. The pH was 

adjusted to 5.6, and the solution was filter-sterilized. 

Protoplasts were separated from the debris by filtering through a sterile 45 µm 

mesh stainless steel sieve, transferred to sterile 15-mL centrifuge tubes, and centrifuged 

at 100 gn for 5 min. The supernatant was removed and the protoplast pellet was carefully 

ressuspended in 5 mL of 25% sucrose. Mannitol (13%) was slowly added to form a 

gradient, and the tubes were centrifuged for 5-10 min at 100 gn. The protoplast band was 

carefully removed with a Pasteur pipette and transferred to clean tubes. Protoplasts were 

washed with 5 mL of liquid BH3 medium and centrifuged for 5 min at 100 gn. Protoplast 

pellets were diluted in a small volume of BH3 to approximately 1 × 106 protoplast.ml-1 

(Grosser and Gmitter, 1990). For cell counting, a Bright-Line® hematocytometer 

(Hausser Scientific, Horsham, PA) was used. 

 

SOMATIC HYBRIDIZATION 

Protoplast fusion was performed based on the polyethylene glycol (PEG) method 

described by Grosser and Gmitter (1990). Fusions were performed using different 

cultivar combinations (Table 1). Approximately equal amounts of the two kinds of 
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protoplasts were mixed. Two or three drops of mixed protoplasts were placed in the 

center of 5-cm diameter plates. Two drops of PEG solution (Appendix C) were added, 

one at a time, and protoplasts were allowed to fuse for 10 min. Two drops of 9:1 A:B 

solution (Appendix D,E) were added, one at each side of the fusion drop, and incubated 

for 15 min. The protoplasts were washed from the fusion solution by 12 drops of BH3 

medium, placed around the protoplasts, and left for 5 min, followed by three additional 

washings of 10 min each. Normal protoplast-protoplast fusions, i.e, without any prior 

treatment, will be designated as (P-P). 

 

ASYMMETRIC HYBRIDIZATION  

Donor-protoplast irradiation. Fusions were performed using randomly chosen donor-

receptor combinations (Table 1). Non-fused irradiated protoplasts were plated for 

control. Donor protoplasts were irradiated at the USDA/APHIS Moore Air Base, 

Edinburg, TX. Protoplasts were exposed to gamma ray doses of 30, 50, 70, 80, 100, 150, 

200 or 300 grays [1 kilorad (Krad) = to 10 grays (Gy)], prior to fusion with receptor 

protoplasts. Normal protoplast-irradiated protoplast fusions will be designated as (P-I). 

 

Iodoacetamide treatment. Double inactivation was achieved by treating receptor 

protoplasts with 3 mM iodoacetamide (IOA) (Sigma, Dallas, TX) for 10, 13, 15 or 20 

min (Bonnema and O’Connell, 1990. Protoplasts were washed with liquid BH3 and 

centrifuged for 5 min at 100 gn. The pellet was re-suspended in fresh liquid BH3 

medium, and the treated protoplasts were fused with the irradiated donor protoplasts. 
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Fusions were performed using randomly chosen donor-receptor combinations (Table 1). 

Non-fused irradiated protoplasts and IOA treated protoplasts. Non-fused protoplasts 

were plated as controls. IOA treated protoplast-irradiated protoplast fusions will be 

designated as (IOA-I). 

 

Table 1. Somatic symmetric and asymmetric fusions of citrus protoplasts. 
Protoplast + protoplast 

fusion (P-P) 
Protoplast + irradiated 

protoplast fusion (Grays) (P-I) 

3mM IOA treated protoplast (min) 
+ irradiated protoplast fusion 

(Grays) (IOA-I) 
‘Ruby Red’ + ‘Succari’ ‘Ruby Red’ + ‘Natal’ (100) ‘Ruby Red’ (20) + ‘Satsuma’ (150) 
‘Ruby Red’ + ‘Itaborai’ ‘Ruby Red’ + ‘Succari’ (100) ‘Ruby Red’ (20) + ‘Succari (150) 
‘Ruby Red’ + ‘Natal’ ‘Ruby Red’ + ‘Itaborai’ (100) ‘Ruby Red’ (20) + ‘Natal’ (100) 
‘Ruby Red’ + ‘Valencia’ ‘Ruby Red’+ ‘Natal’ (150) ‘Ruby Red’ (20) + ‘Natal’ (200) 
‘Flame’ + ‘Succari’ ‘Ruby Red’ + ‘Itaborai’ (150) ‘Ruby Red’ (20) + ‘Natal’ (300) 
‘Flame’ + ‘Natal’ ‘Ruby Red’ + ‘Satsuma’ (150) ‘Ruby Red’ (20) + ‘Satsuma’ (200) 
‘Flame’ + ‘Itaboraí’ ‘Ruby Red’ + ‘Natal’ (80) ‘Ruby Red’ (20) + ‘Succari’ (150) 

 ‘Ruby Red’ + ‘Murcott’ (70) ‘Ruby Red’ (20) + ‘Succari’ (50) 
 ‘Ruby Red’ + ‘Natal’ (70) ‘Ruby Red’ (20) + ‘Natal’ (50) 
 ‘Flame’ + ‘Itaboraí’ (100) ‘Ruby Red’ (20) + ‘Succari’ (100) 
 ‘Flame’ + ‘Natal’ (100) ‘Ruby Red’ (20) + ‘Itaborai’ (100) 
 ‘Flame’ + ‘Succari’ (100) ‘Ruby Red’ (20) + ‘Itaborai’ (80) 
 ‘Flame’ + ‘Satsuma’ (100) ‘Ruby Red’ (20) + ‘Succari’ (80) 
 ‘Flame’+ ‘Satsuma’ (150) ‘Ruby Red’ (15) + ‘Murcott’ (100) 
 ‘Natal’ + ‘Ruby Red’ (150) ‘Ruby Red’ (15) + ‘Changsha’ (100) 
  ‘Ruby Red’ (15) + ‘Itaborai’ (100) 
  ‘Ruby Red’ (15) + ‘Succari’ (100) 
  ‘Ruby Red’ (15) + ‘Natal’ (100) 
  ‘Ruby Red’ (15) + ‘Natal’ (50) 
  ‘Ruby Red’ (15) + ‘Itaborai’ (50) 
  ‘Ruby Red’ (15) + ‘Succari’ (50) 
  ‘Ruby Red’ (15) + ‘Murcott’ (30) 
  ‘Ruby Red’ (15) + ‘Succari’ (30) 
  ‘Ruby Red’ (10) + ‘Natal’ (50) 
  ‘Ruby Red’ (10) + ‘Murcott’ (50) 
  ‘Ruby Red’ (10) + ‘Changsha’ (50) 
  ‘Flame’ (20) + ‘Natal’ (150)   
  ‘Flame’ (20) + ‘Succari’ (100) 
  ‘Flame’ (20) + ‘Itaborai’ (150) 
  ‘Murcott’ (20) + ‘Natal’ (100)  
  ‘Murcott’(20) + ‘Itaborai’ (100)   
  ‘Murcott’ (15) + ‘Natal’ (50)  
  ‘Murcott’ (15) + ‘Succari’ (50)  
  ‘Murcott’ (10) + ‘Itaborai’ (100)  
  ‘Natal’ (15) + ‘Ruby Red’ (50)  
  ‘Itaborai’ (15) + ‘Murcott’ (50)  
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PROTOPLAST CULTURE 

The fused protoplasts were cultured in six drops of BH3 and 12 drops of the same 

medium were added to avoid protoplast desiccation. 

 Plates were sealed and stored in the dark, at room temperature until microcalli 

started to form. Osmotic stress was gradually reduced by adding three to four drops of 

1:1:1 and later 1:2 liquid media which are mixtures of BH3 and EMEP media 

(Appendices F and G). Microcalli colonies were transferred to solid EMEP (Appendix 

H) medium and gradually exposed to light (Grosser and Gmitter, 1990). 

 The whole process (protoplasts isolation, before and after irradiation, fusion, cell 

wall formation, and cell division) was monitored under a Nikon Eclipse TE300 inverted 

microscope (Nikon Instruments Inc. Melville, NY) and images were captured by using 

the Image-Pro® Plus software version 4.5.1 in a CoolSNAP-PROcf camera (Media 

Cybernetics, Silver Spring, MD). 

Formed embryos were transferred and sub-cultured on fresh solid EMEP until they 

reached approximately 0.5 cm, then transferred to 1500 media (Appendix I) for further 

development. 

 

Plantlet regeneration and root induction. Well developed embryos were transferred to 

B+ embryo germination medium (Appendix J) for shoot formation, while poorly 

developed ones were transferred to DBA3 media (Appendix K) media for shoot 

induction. 
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Proliferating embryos and embryos presenting shoots were transferred to Magenta 

boxes (Magenta Corp., Chicago, IL) containing B+ with half the normal NAA 

concentration for shoot elongation. 

Developed shoots were excised and transferred to Magenta boxes containing 

RMAN rooting media (Appendix L) (Grosser and Gmitter, 1990) or dipped in 1000 

mg.l-1 1-naphthalene-acetic acid (NAA) for 5 min or 3000 mg.l-1 indol-butyric acid 

(IBA) for 3, 5, 7 or 10 min and placed in EMEP with 6% sucrose. NAA and IBA were 

dissolved with less than 0.3 mL drops of 1 N potassium hydroxide (KOH) + double-

distilled water to 100 mL (Smith, 2000 - unpublished data). Rooted plantlets were 

planted in jiffy pots or plastic pots with commercial mix, covered by plastic bags, and 

placed in a growth room or directly in the greenhouse. 

 

Shoot grafting. Rooting-recalcitrant shoots were grafted onto sour orange, rough lemon, 

C-22 or C-146 (Swingle trifoliate x Sunki mandarin) rootstock seedlings by cleft 

grafting, which is usually used for grafting smaller plants such as grapevines or 

camellias (Kester et al., 1997), in which the rootstock is split and the plant to be grafted 

is cut on both sides in long wedges to allow efficient cambium-cambium contact. 

Grafting was held by a transparent soft plastic tube, and the plantlet protected from 

desiccation by covering it with a small plastic bag. Whole rootstock-plantlet units were 

covered with plastic and kept in growth room until acclimation in the greenhouse. 
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Acclimation. Both rooted and grafted plantlets were later transferred to pots containing 

plant commercial mix and transferred to a the greenhouse for acclimation which was 

achieved by gardual opening of the plastic covers. 

 

IRRADIATED MICROPROTOPLAST-PROTOPLAST FUSION  

Microprotoplast isolation. S. glutinosa suspension cells used for microprotoplast 

isolation had their media changed twice weekly to maintain logarithmic cell growth. 

Microprotoplasts were isolated following citrus microprotoplast isolation protocol from 

Louzada et al. (2002). Briefly, 10 mM hidroxyurea (HU) (Sigma-Aldrich Inc, St Louis, 

MO) were added to early log-phase suspension cells (1 day after sub-culturing) for cell 

synchronization. After 24 h, cells were washed, three times for 15 min each, with 30 mL 

of H+H medium, over a horizontal shaker. 

 Amiprophos-methyl (APM) (Bayer Corporation, Agricultural Division, Kansas 

City, MO) at 32 µM and 50 mL of H+H medium were added to the flasks to induce 

micronucleation.  

After 24 h, approximately 0.5 g of cells were collected and placed in sterile 0.5 cm 

Petri dishes containing 2 to 6 mL of BH3 media and 0.5 to 2 mL of enzyme solution, 

APM 32 µM and 10 µM cytochalasin-B (CB-Sigma, St. Louis), known for decreasing 

cytoskeletal strength (Thomas et al., 1976), were added. The proportion of media to 

enzyme solution mixtures was adjusted for the different cultivars.  

Cells were digested overnight, in the dark, on rocker platform, with six oscillations 

per minute.  
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Protoplasts were filtered through sterile 45 µm mesh stainless steel sieves and 

washed with 0.6 M BH3 containing 32 µM of APM and 10 µM of CB. Forty µM of CB 

and 32 µM APM were added to the sucrose 25% and mannitol 13% solutions and 

sucrose-mannitol gradient was performed as described. Protoplast bands were carefully 

removed and transferred to clean tubes. 

A 7.2% (w/v) mannitol to PercollTM (Amersham Phamacy Biotech., Piscataway, 

NJ) solution was placed in 14 x 89 mm centrifuge tubes (Beckman Instruments, Inc., 

Fullerton, CA) and a iso-osmotic mannitol-percoll gradient was pre-formed by 

centrifuging it for 30 min at 1000,000 g in a swinging bucket rotor (SW 41 Ti, Beckman 

Instruments, Inc., Fullerton, CA) to form a mannitol-percoll gradient. Protoplasts were 

placed on the top of the mannitol-percoll solution and tubes were centrifuged for more 

two hours at 100,000 gn at 20 °C. 

Bands of microprotoplasts formed were sequentially filtered through nylon sieves 

of 20, 15, 10 and 5 µm (Small Parts, Inc., Miami Lakes, FL). Small volumes of BH3 

media were added to help the filtration process. Filtered fractions were collected in 

mannitol-BH3 solution, and tubes were centrifuged for 10 min at 80 gn. Supernatant was 

re-centrifuged twice for 10 min at 160 gn and the pellet collected. One to three 

microprotoplast pellets were isolated; the first containing, probably, the heavier 

microprotoplasts, the second pellet the lighter microprotoplasts, and the third pellet the 

lightest.  
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Pellets were re-suspended with approximately 1 mL of BH3, transferred to 

microfuge tubes sealed with parafilm and irradiated with doses of 50, 70, 100 or 200 

gamma rays (Gy). 

 

Microprotoplast-protoplast fusion. Irradiated S. glutinosa microprotoplasts were fused 

with non irradiated ‘Murcott’ or ‘Ruby Red’ protoplasts in a proportion of 

approximately 3:1, as previously described.  

 

SOMATIC HYBRIDIZATION CONFIRMATION 

Hybridity of plantlets from protoplast + protoplast fusion was confirmed by 

amplified fragment length polymorphism (AFLP) and by flow cytometry analysis. To 

confirm the presence of the S. glutinosa genome in ‘Ruby Red’ and ‘Murcott’ tangor, 

callus derived from microprotoplast + protoplast fusion between S. glutinosa and the two 

species were evaluated by AFLP and dot blot analysis. 

 

DNA extraction. DNA was isolated using DNeasy® Plant Mini kit (Qiagen, Valencia, 

CA) with minor modifications from callus or suspension cells of parental species, from 

leaves of plantlets regenerated from the protoplast + protoplast fusion, and from callus 

produced from the microprotoplast + protoplast fusions.  

 

For calli and suspension cells. Calli and drained suspension cells were ground in liquid 

nitrogen in a nuclease-free, sterile mortar until a paste was formed. Approximately 100 
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mg of the paste was put inside sterile 2 mL microfuge tube with 400 µL of buffer AP1 

and 8 µL of RNase A stock solution (100 mg.mL-1). Tubes were incubated at 37 ºC over 

a rocker platform for 30 min plus 10 min at 65 ºC, and tubes were mixed three times 

during incubation. One hundred and thirty microliters of buffer AP2 were added and 

incubated on ice for 5 min and centrifuged for 5 min at 20,000 gn (14,000 rpm). The 

lysate was applied to a QIAshredder mini spin column in a 2 mL collection tube and 

centrifuged at 20,000 gn for 2 min. The flow-through was transferred, without disturbing 

the cell-debris pellet discarded, to a 2 mL tube, and 1.5 times the volume of the lysate of 

AP3/E buffer was added and mixed by pippeting. The mix was filtered in a DNeasy mini 

spin column by centrifuging it for 1 min at 6000 gn, and the flow-through was discarded. 

The column was placed in a clean tube, 500 µL of buffer AW was added, and columns 

were centrifuged for 1 min at 6000 gn. The flow-through was discarded, an additional 

500 µL of buffer AW was added, and the columns centrifuged for 2 min at 20,000 gn to 

dry the membrane. The columns were transferred to 1.5 mL microfuge tubes, 50 µL of 

AE elution buffer were added to the membrane, than incubated at room temperature for 

5 min and centrifuged at 6000 gn for 1 min to elute the DNA. This step was repeated 

twice. Two microliters of DNA from both elutions were diluted in 98 µL of nuclease 

free water, and purity and concentrations were measured in a UV/visible 

spectrophotometer (Amersham Biosciences, Piscataway, NJ). Extracted DNA was stored 

at -20 ºC. 
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For leaves. Leaves of 0.5 to 1 cm were collected, frozen in liquid nitrogen and stored at 

-80 ºC until DNA extraction. Leaves were macerated in liquid nitrogen using a sterile 

glass stick, 400 µL of buffer AP1 plus 4 µL of RNase A stock solution (100 mg.mL-1) 

were added, and DNA isolated as above. 

 

Dot blotting. DNA was extracted from calli produced from the microprotoplast-

protoplast fusion and from the donor and receptor parents. 

Target DNA blotting followed the protocol of the Bio-Dot® Microfiltration 

Apparatus (Bio-Rad, Hercules, CA) and nucleic acid labeling/detection followed the 

AlkPhos Direct® method (Amersham Biosciences, Piscataway, NJ) with minor 

modifications, for example, a Zeta-probe® blotting membrane (Bio-Rad, Hercules CA) 

was used instead of a Hybond-N+ nylon transfer membrane. 

For detecting the best target/blocking/probe concentration ratio were performed 

(Table 2) with the parents DNA in the following combinations: 

‘Swinglea’ as target and probe and ‘Murcott’ as blocking;  

‘Swinglea’ as target and probe and ‘Ruby Red’ as blocking;  

‘Murcott’ as target and blocking and ‘Swinglea’ as probe and; 

‘Ruby Red’ as target and blocking and ‘Swinglea’ as probe. 
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Table 2. Different target/blocking/probe concentration ratios used on a Zeta-Probe 
membrane. Preliminary studies used genomic DNA from parental species used in the 
microprotoplast-protoplast fusions. 

 30 × blocking DNA 100 × blocking DNA 1000 × blocking DNA 

2 ng.mL-1 probe 
0.3 µg 
target 
DNA 

3 µg 
target 
DNA 

9 µg 
target 
DNA 

0.3 µg
target 
DNA 

3 µg 
target 
DNA 

9 µg 
target 
DNA 

0.3 µg 
target 
DNA 

3 µg 
target 
DNA 

9 µg 
target 
DNA 

5 ng.mL-1 probe 
0.3 µg 
target 
DNA 

3 µg 
target 
DNA 

9 µg 
target 
DNA 

0.3 µg 
target 
DNA 

3 µg 
target 
DNA 

9 µg 
target 
DNA 

0.3 µg 
target 
DNA 

3 µg 
target 
DNA 

9 µg 
target 
DNA 

9 ng.mL-1 probe 
0.3 µg 
target 
DNA 

3 µg 
target 
DNA 

9 µg 
target 
DNA 

0.3 µg 
target 
DNA 

3 µg 
target 
DNA 

9 µg 
target 
DNA 

0.3 µg 
target 
DNA 

3 µg 
target 
DNA 

9 µg 
target 
DNA 

 

 

Denaturation of 0.3, 3 and 9 µg.µL-1 of target DNA (‘Ruby Red’, ‘Murcott’ or 

‘Swinglea’) was accomplished by addition of 0.4 M sodium hydroxide (NaOH) solution 

and 10 mM ethylenediaminetetraacetic acid (EDTA) solution. Samples were heated to 

100 ºC for 10 min and neutralized by adding equal volume of cold 2 M ammonium 

acetate pH 7.0. The membrane was pre-wet for 10 min in distilled water before placing 

inside the Bio-Dot apparatus. Membranes were re-hydrated, under vacuum, with 150 µL 

of water per well, before applying the samples. After samples passed through the 

membrane, 500 µL of 0.4 M NaOH were applied to each well. The membrane was 

removed from the apparatus, rinsed with 2x SSC (sodium chloride – sodium citrate 

buffer), and allowed to air dry. The membrane was cut in pieces representing the 

different treatments and put inside 5 cm diameter Petri dishes. The squared area of the 

blots was measured, and 0.25 mL.cm2 of pre-warmed (55 ºC) hybridization buffer [0.5 

M of sodium chloride (NaCl) and 4% (w/v) of AlkPhos Direct® blocking reagent 

(Amersham Biosciences, Little Chalfont Bickinghamshire, UK)] containing 30×, 100× 
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or 1000× blocking DNA were poured onto the blots. The blocking DNA was physically 

broken by passing through a syringe with needle, heated at 100 ºC, and placed on ice for 

5 min before its addition to the hybridization buffer. Pre-hybridization was performed 

for 15 min at 55 ºC in Shake ‘N’ BakeTM hybridization oven (Boekel Scientific, 

Feasterville, PA) under gentle agitation (60 strokes per min). The DNA used as a probe 

was diluted to 10 ng.µL-1 and 2, 5 and 10 ng of AlkPhos Direct® chemiluminescent 

(Amersham Biosciences, Piscataway, NJ) labeled probe DNA per mL of buffer were 

added to the blots and allowed to hybridize overnight inside the hybridization oven at 55 

ºC under gentle agitation.  

Blots were washed twice with 2 mL/cm2 primary wash buffer [2 M urea, 0.1% 

(w/v) sodium dodecyl sulfate (SDS), 50 mM sodium phosphate (Na2HPO4⋅7H2O), 150 

mM of NaCl, 1mM of magnesium chloride (MgCl2) and 0.2% (w/v) of blocking reagent] 

at 55 ºC for 10 min with agitation, transferred to clean container and washed twice with 

2 mL/cm2 secondary buffer [1 M Tris base, 2 M NaCl] at room temperature for 5 min 

under agitation. Excess buffer was drained, and blots were placed over a plastic covered 

cardboard and covered with 35 µL/cm2 of CPD-StarTM chemiluminescence (Amersham 

Biosciences, Piscataway, NJ) detection solution for 5 min. Excess detection reagent was 

drained. The DNA blots were placed DNA side up in a film cassette and exposed for 1 to 

3 h to BiomaxTM MS autoradiography film (Kodak, Rochester NY), in the dark, at room 

temperature, and processed manually by immersing films in Kodak GBX developer and 

replenisher (Eastman Kodak Company, Rochester, NY) for 5 min; transferring to Kodak 

Indicator Stop Bath (Eastman Kodak Company, Rochester, NY) for 30 sec, under 
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constant agitation; immersing in Kodak GBX fixer and replenisher (Eastman Kodak 

Company, Rochester, NY) for 7 min; washing under running water for 5 min and 

allowing them to dry at room temperature. 

A dot blot analysis using DNA extracted from callus produced by the fusions of 

irradiated ‘Swinglea’ microprotoplasts with non irradiated ‘Ruby Red’ protoplasts, 

named as H2, H3, H4, H5, H6 and H7 was performed. Three micrograms of H2, H3, H4, 

H5, H6 and H7 were used as target DNA, 1000 × ‘Ruby Red’ DNA was used as the 

block and 5 ng of ‘Swinglea’ were used as the labeled probe. 

Two additional dot blots were performed, using DNA extracted from callus 

produced by fusion of irradiated ‘Swinglea’ microprotoplasts with non irradiated 

‘Murcott’ protoplasts, named H8. Three micrograms of H8 were used as target DNA. 

For blocking, 1000 × ‘Murcott’ DNA was used in one of the dot blots and 1000 × H8 

DNA in the other. Five nanograms of ‘Swinglea’ DNA were used as labeled probes in 

both experiments. 

 

Amplified fragment length polymorphism (AFLP) analysis. AFLP analysis was 

performed in a 4300 DNA analyzer (Li-Cor, Inc. Lincoln, NE) using the IRDye® 

Fluorescent AFLP® Kit (Li-Cor® Biosciences, Lincoln, NE) with some adjustments. 

Briefly: for restriction digestion of genomic DNA, 100 ng of template DNA in less than 

9 µL were used, plus 1 µL of EcoRI/MseI enzyme mix [1.25 units/µL each in 10 mM 

Tris-HCl (pH 7,4), 50 mM NaCl, 0.1 mM EDTA, 1 mM DTT, 200 µg.mL-1 BSA 50% 

(v/v) glycerol, 0.15% Triton X-100], 2.5 µL 5X reaction buffer [50 mM Tris-HCl (pH 
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7.5), 50 mM magnesium-acetate, 250 mM potassium-acetate] were combined and 

deionized water was added to 12.5 µL total volume and incubated at 37 ºC for 2 h. The 

enzyme was inactivated at 70 ºC for 15 min and placed on ice to inactivate the restriction 

enzymes. Adapter ligation was performed by adding to the previous solution 12 µL of 

adaptor mix [EcoRI/MseI adapters, 0.4 mM ATP, 10 mM Tris-HCl (pH 7.5) 10 mM 

magnesium-acetate, 50 mM potassium-acetate], 0.5 µL of T4 DNA ligase and incubating 

the mixture at 20 ºC for 2 h. Ten microliters of the mixture were diluted 1:10 by adding 

90 µL of TE buffer [10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA]. Pre-amplification was 

performed by adding 2.5 µL of the 1:10 diluted ligation mixture to a 0.2-mL PCR tube 

containing 20 µL of AFLP® Pre-amp primer mix, 2.5 µL of 10× PCR reaction buffer 

[100 mM Tris-HCl (ph 8.3), 15 mM MgCl2, 500 mM KCl], and 0.5 µL Taq DNA 

polymerase (2.5 units/µL) (Roche Molecular Biochemicals, Indianapolis, IN); Thirty 

cycles at 94 ºC for 30 sec, 56 ºC for 1 min and 72 ºC for 1 min were performed. Mse 

primers used for selective amplification were from MWG (MWG Biotech AG, 

Ebersberg, Germany) and Operon (Operon Biotechnologies, Inc., Huntsville, AL). For 

selective amplification, 2 µL of pre-amplified DNA, 1.96 µL of nuclease free water, 1 

µL of 10 × buffer (Promega Corporation, Madison, WI), 1 µL of 25 mM MgCl, 1 µL of 

2 mM dNTPs, 0.04 µL of Taq polymerase (5 units/µL), 2 µL of MseI primer and 0.5 µL 

of both 700 and 800 IRDye EcoRI primer were used. One cycle of 94 ºC for 30 sec, 65 

ºC  for 30 sec, and 72 ºC  for 1 min; twelve cycles of 94 ºC  for 30 sec, 65 ºC for 30 sec, 

and 72 ºC for 1 min; and 23 cycles of 94 ºC for 30 sec, 65 ºC for 30 sec, and 72 ºC for 1 

min were performed. After amplification 2 µL of the samples were diluted with 8 µL of 
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nuclease-free water and 5 µL of dye (Li-Cor® Biosciences, Lincoln, NE). Samples and 

ladder (Li-Cor® Biosciences, Lincoln, NE) were denatured for 3 min at 94 ºC and placed 

on ice. Each sample (0.5 µL) was loaded on a 96-well polyacrylamide gel and image 

data was viewed and printed using SagaGT software.  

EcoRI labeled primers contained in the Licor kit and other unlabeled MseI primers 

were tested in different primer combinations (Tables 3, 4 and 5). 

 

Flow cytometry. Ploidy analysis was performed by flow cytometry. Leaves (0.5 to 1 

cm) from the protoplast-protoplast fusion plants were collected and shipped on ice to the 

Citrus Research and Education Center, University of Florida, Lake Alfred, were flow 

cytometry analysis was kindly performed by Dr. Jude Grosser on a Partec ploidy 

analysis machine (D-48161, Münster, Germany) following the method reported by 

Miranda et al. (1997). 
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Table 3. Primer combinations tested to identify microprotoplast-protoplast hybrids. 
MseI unlabeled primers EcoR1 labeled primers 

ACC 
AGG CAG 
CAG 
ACA 
AGG CAA 
CAA 
ACA 
AGG 
AAC 
ACT 
AAG 

CA 

ACC 
ACT 
ACA 
ACG 
AAC 
AGC 
AAG 
AGG 
ACC 

CT 

CAT 
 

 

Table 4. Primer combinations tested to observe polymorphisms in the parents. 
MseI unlabeled primers EcoR1 labeled primers 

ACA 
AGG 
AAC 
ACT 
AGG 

CA 

ACC 
AGG 
AAG 
ACG 
AAC 
ACC 
ACT 

CT 

ACA 
AGC AC AAG 
ACG TC AAC 
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Table 5. Primer combinations tested to identify protoplast-protoplast hybrids. 
MseI unlabeled primers EcoR1 labeled primers 

ACA CAA AGG 
ACT 
ACA CT 
ACG 
AGG 
ACC 
ACT CA 

ACA 
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RESULTS 

 

PROTOPLAST ISOLATION IN THE DIFFERENT CULTIVARS 

It was possible to isolate protoplasts from most of the cultivars tested. However, 

cultivars responded differently to the isolation protocol, and individual adjustments had 

to be performed for maximization of good quality protoplasts. Quality was defined by 

visual appearance under a microscope, i.e. protoplasts were round, completely free of 

cell wall or easily detachable from cell wall debris, and did not burst during enzymatic 

digestion and manipulation. 

 

ENZYME SOLUTION: MEDIUM PROPORTION USED FOR PROTOPLASTS 

ISOLATION IN THE DIFFERENT CULTIVARS 

Proportions of enzyme solution to BH3 medium had to be individually adjusted for 

each cultivar. 

A 2:1 medium:enzyme solution proportion was tested with cells of ‘Hanlim’, 

‘Itaborai’, Valencia’, ‘Flame’ and ‘Ruby Red’, however, only very thin protoplast band 

of ‘Ruby Red’, ‘Itaborai’ and ‘Flame’ were formed during the sucrose-mannitol gradient 

and the amount of protoplast was insufficient for isolation. Higher proportions of 

enzyme allowed digestion in less time, i.e. 8. However, cell clumps were observed with 

their core protected from the enzymes, while the external cells were digested fast and 

usually burst. Hence, a suitable amount of protoplasts for isolation was not formed 

because protoplasts were being formed gradually, and before the enzyme reached the 
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core of the cell clumps, the previously formed would be vulnerable to overdigestion by 

the high concentration of enzyme and would usually burst.  

When a 3:1 medium: enzyme solution proportion was tested with cells of 

‘Hanlim’, ‘Succari’, ‘Natal’, ‘Flame’ and ‘Ruby Red’; ‘Flame’ and ‘Natal’, it took 

approximately ten hours to form enough protoplasts for isolation. ‘Succari’ took more 

than 11 hours and ‘Ruby Red’ almost 17 h. ‘Hanlim’ protoplasts could not be isolated, 

and only clumps of undigested cells and detached over-digested cells were observed. 

When “Ruby Red’, ‘Flame’’ ‘Natal’ and ‘Succari’ were digested in a 3:0.5 

medium:enzyme solution, a good amount of ‘Flame’ protoplasts were obtained within 17 

h. A reasonable amount of ‘Natal’ protoplasts were formed. However, during isolation, 

they would not float in 25% sucrose, so 35% sucrose was used. The 3:0.5 

medium:enzyme solution proportion did not work for ‘Succari’. Many ‘Ruby Red’ 

protoplasts were obtained, but their formation took 21 h of incubation, i.e., much longer 

than for ‘Flame’. 

When ‘Valencia’, ‘Itaborai’, ‘Natal’, ‘Flame’ and ‘Succari’ were incubated in a 

4:0.5 medium:enzyme solution, cell walls were digested, 18 h were necessary to obtain 

adequate protoplast formation. However, it seemed that prolonged digestion in lower 

medium:enzyme solution proportion was more gentle and resulted in larger number of 

viable protoplasts. The exception was the ‘Valencia’ cultivar, which did not form 

protoplasts. 

For the cultivar Hanlim, protoplasts formation was not successful, even using low 

medium:enzyme solution proportions such as 4:0.5 and 5:0.5.  
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A 4:0.5 medium:enzyme solution proportion was tested with cells of ‘Satsuma’, 

‘Murcott’ and ‘Changsha’. Some ‘Satsuma’ protoplasts were isolated after 16 h 

digestion. ‘Murcott’ presented cell clumps and a few released protoplasts which burst. 

‘Changsha’ cells did not digest well, even with different medium:enzyme solution 

proportions (2:1 and 2:2). By changing the molarity of the BH3 medium and enzyme 

solutions from 0.6 (used for all the other cultivars) to 0.7, and using the ratio 3:0.5 

medium:enzyme solution, a large number of ‘Murcott’ and ‘Changsha’ protoplasts was 

obtained after 16 h incubation. 

A gradual digestion was tested with some of the cultivars which were presenting 

problems. Cell from the cultivars ‘Itaborai’ and ‘Succari’ were incubated in 2:0.5 BH3 

medium:1% macerozyme solution on a shaker at 6 rpm, for 2 h. Then, 2:0.5 of BH3 

medium:1% cellulose and 0.2% pectolyase enzyme solution were added to the plates. 

For the ‘Valencia’ cultivar, 2:0.25 was added to pre-digest the cells, and two hours later, 

3:0.25 was added. This gradual digestion was very efficient for the above problematic 

cultivars and good number of protoplasts was isolated. However, for ‘Hanlim’, no 

proportion was efficient in isolating protoplasts, even when using gradual digestion. 

Most cultivars yielded an adequate number of protoplasts (Fig. 1). The cultivars 

which produced fewer protoplasts were “Valencia’ and ‘Natal’, in which high content of 

starch could be observed. Their protoplasts broke easily, and protoplast bands were not 

easily formed since protoplasts usually stayed in the bottom of the flask. 
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Fig. 1 Ruby Red’ protoplasts (A); ‘Itaborai’ protoplasts (B); ‘Flame’ protoplasts (C); 
‘Succari’ protoplasts (D). 

 

Briefly, the following enzyme medium:solution proportions were chosen: 3:1 for 

‘Ruby Red’; 3.0.5 for ‘Murcott’; 4:0.5 for ‘Flame’, ‘Natal’ and ‘Satsuma’, and gradual 

digestion 2:0.5 + 2:0.5 for ‘Itaborai’ and ‘Succari’ and 2:0.25 + 3:0.25 for ‘Valencia’. 

Based on their protoplast isolation capacity, the cultivars ‘Ruby Red’, ‘Flame’, 

‘Itaborai’, ‘Natal’, Valencia’, ‘Succari’, ‘Satsuma’ and ‘Murcott’ were chosen for further 

experiments. The cultivars ‘Hanlim’ and ‘Changsha’ did not form viable protoplasts or 

did not produce enough quantities. 
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PROTOPLAST FUSION 

Approximately equal numbers of protoplasts were fused in different combinations, 

preferentially grapefruit with sweet orange, or ‘Murcott’ tangor with a sweet orange. 

 Fusions of two, three or more protoplasts were observed under an inverted 

microscope (Fig. 2). 

 

 

 

Fig. 2. Protoplast fusions showing two and three protoplasts fusing. 
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PROTOPLAST CULTIVATION 

Fused protoplasts were cultivated in the dark for the first 30 days. Cell wall 

formation was observed in approximately 3 to 5 days of culture after the protoplasts-

protoplasts normal fusions (P-P), and from one to two weeks for those treated with 

irradiation plus IOA. Following P-P, the cells started to enlarge after approximately 8 to 

10 days in preparation for division and a few cell divisions were observed (Fig. 3). 

Masses of calli from P-P were observed within 3-4 weeks (Fig. 4) whereas their 

appearance from the protoplasts-irradiated protoplasts (P-I) and IOA treated protoplasts-

irradiated protoplasts (IOA-I) took 6-8 weeks.  

 

 

Fig. 3. Cell before division (A); Cell dividing (B); Microcralli forming (C).
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Fig. 4. Microcalli produced from protoplast fusion. 

 
 

P-P calli was transferred to solid EMEP within approximately one and a half 

months and within two to two and a half months to P-I and IOA-I fusions. Larger calli 

were easier to transfer as could be handled with tweezers whereas smaller ones had to be 

pippeted with liquid BH3. Additionally, less liquid BH3 was transferred using tweezers, 

so less contamination occurred and embryos appeared earlier. After embryo formation, 

no significant developmental differences were observed among P-P, P-I and IOA-I 

fusions. However, no embryo was formed on callus from protoplasts irradiated at 150 

Gy or higher.  
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As soon as embryos were formed they were transferred to fresh solid EMEP. 

Embryos that were not transferred returned to callus stage. Sub-culturing in EMEP was 

performed about once monthly, depending of embryo growth. Embryos took around 

three sub-cultures to reach about 0.5 cm long at which they were transferred to 1500 

medium for further development. After a few months, it was noticed that this was an 

unnecessary step and so, embryos were allowed to stay longer on solid EMEP before 

being transferred to B+ medium to induce embryo elongation.  

Poorly developed embryos were transferred to DBA3, which is a medium rich in 

cytokines to induce shoot formation. However, embryos became deformed in DBA3 

medium so its use was terminated. Sub-culturing in B+ was performed as necessary until 

shoots started to develop. Shoot formation started after approximately 1 year from 

fusion. 

 Shoots were cut and placed in magenta boxes containing RMAN rooting media 

for rooting induction. Many shoots were lost during this phase of in vitro cultivation 

because they did not root and started to turn yellow and die. Only one shoot from the 

‘Ruby Red’ + ‘Succari’ fusion rooted (Fig. 5). However, the plant died during 

acclimation after 1.5 months in the greenhouse.  
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Fig. 5. Spontaneously rooted shoot formed from a ‘Ruby Red’ + ‘Succari’ 
protoplast fusion. 

 

 Some shoots were grafted onto rough lemon, C-22 or C-146 rootstocks, covered 

with plastic, and kept inside growth room until the graft was well bonded and shoots 

were feeding from the rootstocks (Fig. 6). Around 50% mortality was observed during 

this process. Some of the grafted shoots dehydrated, therefore, smaller plastic covers 

were used. However, shoots were attacked by fungi, probably because of the higher 

humidity environment created inside the plastic. Some shoots died because the graft did 

not bond well or from bacteria infections, probably due to tool manipulation during 

 
 



 53

grafting. Grafting onto C-146 was inferior in that took longer to seal the graft during 

which some shoots died for lack of nourishment. 

 

 

Fig. 6. Shoot grafted onto rootstock, held by a 
malleable plastic tube and covered with a 
plastic bag. 

 

To induce strong shoot formation for later rooting attempts, embryos with 

developing shoots were transferred to magenta boxes containing B+ with half the 

amount of NAA. This enabled shoot elongation (Fig. 7). It seems that once the auxin 

content was reduced to half and physical space was provided for elongation, shoots 

formed easily. 

 
 



 54

 

Fig. 7. Embryo germination and plantlets regenerated. 

 

 To solve the recalcitrance to rooting, shoots were dipped in 1000 mg l-1  NAA for 

5 min or in 3000 mg l-1 of IBA for 3, 5, 7 or 10 min (Fig. 8A) and placed in magenta 

boxes containing EMEP with 6% sucrose (Fig. 8B). Rooting occurred after shoots were 

dipped in IBA for 10 min (Fig. 9). 

 

 

Fig. 8. Shoots dipped in 3000 mg.l-1 IBA solution (A). Shoot placed in 
magenta box containing EMEP with 6% sucrose for rooting (B). 
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Fig. 9. Rooted shoots after dipping in 3000 mg l-1 IBA for 10 min and 
placed on EMEP with 6% sucrose. 

 

  The basic EMEP medium with extra sucrose accommodated the rooting plants 

very well, probably due to both the extra energy provided by the sucrose and the lack of 

hormonal conflict. 

Once the successfully grafted plants were acclimated, their development was fast 

(Fig. 10B). Development of plants over their own roots was better when shoots were 
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allowed to grow larger (> 2 cm) in vitro before dipping in IBA for rooting. Bigger plants 

developed faster in soil than the small ones (Fig. 10A). 

 

 

Fig. 10. ‘Ruby Red’ 20’ IOA + ‘Succari’ 80 Gy tetraploid plant (A).‘Ruby 
Red’ 20’ IOA + ‘Succari’ 80 Gy tetraploid shoot grafted onto C-22 
rootstock (B). 

 

SYMMETRIC HYBRIDIZATION 

Eight shoots, all from ‘Ruby Red’ + ‘Itaborai’ fusion, were grafted and 

transplanted to the greenhouse. Only two shoots survived acclimation. They resembled 

‘Itaborai’ and grew vigorously (Fig. 11). Both plants were diploid, as shown by the flow 

cytometry analysis (Fig. 12).  

Fifteen shoots from the ‘Ruby Red’ + ‘Itaborai’ fusion were dipped in 3000 mg.l-1 

IBA, formed roots, and were planted in jiffy pots. After approximately two weeks, plants 

were transplanted to pots containing commercial potting mix in the greenhouse. Seven 

plants survived the acclimation process. Some plants were lost to fungal infection due to 

high humidity in the plastic bags.  
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Fig. 11. Diploid ‘Ruby Red’ + ‘Itaborai’ shoot grafted onto 
rough lemon. 
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Fig. 12. Flow cytometry diagnosis. Diploid standard 
(A). Diploid ‘Ruby Red’ + ‘Itaborai’ plant (B). 
Diploid ‘Ruby Red’ + ‘Itaborai’ plant (C). 
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ASYMMETRIC HYBRIDIZATION 

Irradiation tolerance was different among varieties. However, no one survived 150 

and up gamma rays exposure. 

 The fusions involving irradiated ‘Satsuma’ protoplasts did not form embryos and 

fusions involving ‘Flame’ protoplasts did not developed further then the embryo stage. 

Fusions of ‘Ruby Red’ + ‘Itaborai’ irradiated, ‘Ruby Red’ + Succari’ irradiated 

and ‘Itaborai’ + ‘Ruby Red’ irradiated produced some shoots and are still producing. 

However, the first formed shoots were almost all lost during the media optimization, 

grafting, rooting experimentation and acclimation. 

There is one shoot of ‘Ruby Red’ + ‘Itaborai’ irradiated at 100 Gy grafted onto 

Rough lemon in greenhouse which present a peculiar ploidy; between triploid and 

tetraploid (Figure 13). However, it presents slow growth. 
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Fig. 13. Flow cytometry diagnosis. Diploid standard 
(A). Aneuploid ‘Ruby Red’ + ‘Itaborai’100 Gy plant 
(B). 

 

Four shoots from the ‘Itaborai’ 100 Gy controls were obtained. Two grafted and 

two rooted. The rooted plants were small and weak and both died. One of the grafted 

shoots was small and chlorotic and died while the other one was normal and was 

classified as diploid by flow cytometry.  
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IOA plus irradiation for double inactivation. A 3 mM IOA treatment precluded 

further development of the protoplasts independently of exposure time (10, 13, 15 or 20 

min). Treated cells did not divide and degenerated (Fig. 14).  

 

 

Fig. 14. IOA treated ‘Ruby Red’ protoplasts could not divide and 
disintegrated  

 

Cell division and multiplication were different among the IOA-treated, irradiated 

and fusion cells (Fig. 15). IOA treated cells could not divide; division in irradiated cells 

was delayed; fused protoplasts divided and multiplied, forming microcalli, probably due 

to complementation. 
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Fig. 15. IOA treated protoplasts; Irradiated 
protoplasts; fused protoplasts (Top to bottom). 
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The fusion of ‘Itaborai’ protoplasts exposed to 3 mM IOA for 15 min with 

‘Murcott’ protoplasts exposed to 50 Gy produced two shoots. One rooted but did not 

survive acclimation, and the other was grafted onto C-22. However, its leaves did not 

expand well.  

IOA-20 min ‘Murcott’ plus 100 Gy ‘Itaborai’ or ‘Natal’ fusions produced two 

plants, one from each treatment. However, they did not survive the acclimation process.  

Fusions involving ‘Changsha’ did not form embryos. 

A plant was obtained from the IOA-15 min ‘Ruby Red’ plus 100 Gy ‘Itaborai’ 

fusion and another one from the IOA-20 min ‘Ruby Red’ plus 100 Gy ‘Itaborai’ fusion. 

Their morphologies were very distinctive from the plants produced by double 

inactivation involving ‘Succari’ (IOA treated ‘Ruby Red’ protoplasts + irradiated 

‘Succari’ protoplasts). However, no further analysis was performed because they were 

too small to collect samples for DNA extraction or flow cytometry. 

Some shoots from fusions of the 20 min IOA treated ‘Ruby Red’ protoplasts + 100 

Gy ‘Succari’ irradiated protoplast fusion were still forming in ½ NAA B+ media and 

others were already in the rooting process. 

One shoot was produced from the 15 min IOA treated ‘Ruby Red’ protoplasts + 30 

Gy irradiated ‘Succari’ protoplasts fusion, and it was grafted onto C-22. Shoots from this 

treatment continued production in ½ NAA B+ medium. 

The best combination, which led to many plants, was the IOA-20 min ‘Ruby Red’ 

plus 80 Gy ‘Succari’ fusion. This treatment has already yielded 37 plants and many 

shoots continue to form in ½ NAA B+, and two shoots continue to root in EMEP 6% 
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(Fig. 16). During acclimation, eight plants from this treatment were lost. Samples from 

13 plants from this fusion combination were sent for flow cytometry analysis and all 

were found to be tetraploid (Fig. 17). IOA-20 min ‘Ruby Red’ or 80 Gy ‘Succari’ 

protoplasts alone were cultured as control but did not develop. 

 

 

Fig. 16. Plants from the 20 min ‘Ruby Red’ + 80 Gy irradiated 
protoplast fusion. In vitro (A and B); Grafted (C); Planted in commercial 
soil mix (D and F). 
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Fig. 17. Flow cytometry diagnosis. Diploid standard (A). 
Tetraploid IOA-treated ‘Ruby Red’ + 80 Gy irradiated 
‘Succari’ plants (B-G). 
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AFLPs. Good banding patterns were observed for most primer combinations, and some 

revealed polymorphisms. The technique was straightforward and is highly reproducible. 

 

‘Murcott’ + sweet orange protoplast fusions. One shoot was produced from the IOA-

15 min ‘Itaborai’ + 50 Gy ‘Murcott’ (Z5). Its morphology was different from both ‘Ruby 

Red’ + ‘Succari’ and ‘Ruby Red’ from ‘Murcott’ fusions. Shoot elongates slowly and 

leaves are small and not well developed. 

 One shoot was produced from the 20 min IOA treated ‘Murcott’ + 100 Gy 

irradiated ‘Natal’ (Z10). However, the shoot was lost to fungal contamination. 

 AFLP analysis from both shoots showed bands from both parents with MseI-CT 

plus EcoRI-ACT, MseI-AC plus EcoRI-ACT, and MseI-CAA plus EcoRI-AGG primer 

combinations (Fig. 18). 
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Fig. 18. ‘Murcott’ (M) and ‘Itaborai’ (I) parents and 
complementary parental band morphology of Z5 (15’ IOA 
‘Itaborai’ + 50 Gy ‘Murcott’) and Z10 (20’ IOA ‘Murcott’ 
+ 100 Gy ‘Natal’) with MseI-CT plus EcoRI-ACT, MseI-
AC plus EcoRI-ACT and MseI-CAA plus EcoRI-AGG 
primer combinations (left to right  panel). 

 
 



 68

‘Ruby Red’ + sweet orange irradiated protoplasts. ‘Ruby Red’ and sweet oranges 

presented very similar AFLP patterns. The DNA samples from many ‘Ruby Red’ + 

irradiated ‘Itaborai’ and ‘Ruby Red’ + irradiated ‘Succari’ shoots were analyzed. 

Polymorphisms were observed with different primer combinations.  

 The MseI-CAA plus EcoRI-ACA primer combinations revealed at least nine 

hybrid samples. Five of them from the 20 min IOA “Ruby Red’ + 80 Gy ‘Succari’ 

fusion, two from the ‘Ruby Red’ + ‘Itaborai’ fusion, one from the 15min IOA ‘Ruby 

Red’ + 30 Gy ‘Succari’ fusion, and one from the peculiar ploidy (between triploid and 

tetraploid) ‘Ruby Red’ + 100 Gy ‘Itaborai’ fusion (Fig. 19). This same plant (F) was also 

shown to be hybrid with two other primer combinations, MseI-CT plus EcoRI-ACA and 

MseI-CT plus EcoRI-ACT. These two primer combinations also showed band 

polymorphism in many samples (Fig. 20 and 21). 

The primer combination MseI-CA + EcoRI-AGG showed band polymorphism for 

the sample ‘44’ from the 15 min IOA ‘Ruby Red’ + 30 Gy ‘Succari’ fusion (Fig. 22). 
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Fig. 19. MseI-CAA plus EcoRI-ACA primer combination showing band 
polymorphism in different ‘Ruby Red’ + sweet orange fusions. Ladder (L). 
‘Ruby Red’ (RR) and ‘Succari’ (SU) parents. 20 min ‘Ruby Red’ + 80 Gy 
‘Succari’ (Z1-EE; 1.1,2.2,W6). ‘Itaborai’ + ‘Ruby Red’ (1A,2A). ‘Ruby Red’ 
+ 100 Gy ‘Itaborai’ (3A). 20 min ‘Rubt Red’ + 100 Gy ‘Itaborai’ (3.3). 15 
min ‘Ruby Red’ + 30 Gy Succari’ (4.4). 
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Fig. 20. MseI-CT plus EcoRI-ACA primer combination showing band 
polymorphism in at least nine samples. ‘Ruby Red’ (RR), ‘Succari’ 
(SU) and ‘Itaborai’ (I) parents. ‘Ruby Red’ + 100 Gy ‘Succari’ (B,U). 
‘Ruby Red’ + 100 Gy ‘Itaborai’ (F,Q). ‘Ruby Red’ + ‘Itaborai’ (H,K). 
20 min ‘Ruby Red’ + 80 Gy ‘Succari’ 
(A,C,D,E,G,I,J,L,M,N,O,P,R,S,T,V,X,W,Y). 
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Fig. 21. MseI-CT plus EcoRI-ACT primer combinations showing band 
polymorphism in four samples, three from tetraploid 20 min IOA ‘Ruby 
Red’ + 80 Gy ‘Succari’ plants (E,I,L) and the peculiar ploidy ‘Ruby Red’ 
+ 100 Gy ‘Itaborai’ plant (F). ‘Ruby Red’ (RR), ‘Succari’ (SU) and 
‘Itaborai’ (I) parents. ‘Ruby Red’ + 100 Gy ‘Succari’ (B,U). ‘Ruby Red’ + 
100 Gy ‘Itaborai’ (F,Q). ‘Ruby Red’ + ‘Itaborai’ (H,K). 20 min ‘Ruby 
Red’ + 80 Gy ‘Succari’ (A,C,D,E,G,I,J,L,M,N,O,P,R,S,T,V,X,W,Y). 
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Fig. 22. MseI-CA + EcoRI-AGG primer combination showing band polymorphism of 
sample from the 15 min IOA ‘Ruby Red’ + 30 Gy ‘Succari’ fusion. ‘Ruby Red’ (RR) 
and ‘Succari’ (SU) parents. 20 min ‘Ruby Red’ + 80 Gy ‘Succari’ (Z1-EE; 1.1,2.2,W6). 
‘Itaborai’ + ‘Ruby Red’ (1A,2A). ‘Ruby Red’ + 100 Gy ‘Itaborai’ (3A). 20 min ‘Rubt 
Red’ + 100 Gy ‘Itaborai’ (3.3). 15 min ‘Ruby Red’ + 30 Gy Succari’ (4.4). 
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 After ploidy confirmation by flow cytometry, samples from the IOA-20 min 

‘Ruby Red’ + 80 Gy ‘Succari’ tetraploid plants (B,C,D,G,Z9,Z8,K,L,M,O,P), the peculiar 

‘Ruby Red’ + 100 Gy ‘Itaborai’ (F) and from the 100 Gy ‘Itaborai’ (I) plant were 

analyzed for hybridity and genetic difference by comparioson of AFLP based on MseI-

CA + EcoRI-ACG and MseI-CT + EcoRI-ACG primer combinations (Fig. 23 and 24). 

Band morphology of samples C, G, L and M showed hybridity.  

 

IRRADIATED MICROCELL MEDIATED CHROMOSOME TRANSFER 

(MMCT) 

Proliferating calli were formed from all protoplast-irradiated microptotoplast 

fusions. However, embryos were only obtained from the ‘Ruby Red’ plus 70 Gy 

irradiated S. glutinosa microprotoplasts from the first pellet. 

 DNA was extracted from callus from most of the performed fusions; ‘Ruby Red’ 

plus 50 Gy S. glutinosa microprotoplasts from the first pellet (H2); ‘Ruby Red’ plus 70 

Gy S. glutinosa microprotoplasts from the first, second and third pellet (H3; H4; H5); 

‘Ruby Red’ plus 200 Gy S. glutinosa microprotoplasts from the first and second pellet 

(H6; H7); and ‘Murcott’ plus 100 Gy S. glutinosa microprotoplasts (H8) from the first 

pellet. 
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Fig. 23. MseI-CA plus EcoRI-ACG primer combination showing band 
polymorphism in the tetraploid 20 min IOA ‘Ruby Red’ + 80 Gy ‘Succari’ 
fusion plants. ‘Ruby Red’ (RR) and ‘Succari’ (SUC) parents. 
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Fig. 24. MseI-CT plus EcoRI-ACG primer combination showing band polymorphism 
in the tetraploid 20 min IOA ‘Ruby Red’ + 80 Gy ‘Succari’ fusion plants. ‘Ruby Red’ 
(RR) and ‘Succari’ (SUC) parents. 
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Dot blot 

When ‘Murcott’ was the target, blocked with excess of ‘Murcott’ and probed 

with S. glutinosa, all dots showed presence of S. glutinosa. Color saturation of the dots 

were proportional to the amount the probe, target, and blocking DNA used (Fig. 25). 

When ‘Ruby Red’ was the target, blocked with excess of ‘Ruby Red’ and probed 

with S. glutinosa, all dots showed presence of S. glutinosa, and color of the dots was 

stronger than the above experiment. Color saturation of the dots was proportional to the 

amount of probe, target, and blocking DNA used (Fig. 26). 

When S. glutinosa was the target, blocked with excess of ‘Ruby Red’ or ‘Murcott’ 

and probed with S. glutinosa, all dots showed, the presence of S. glutinosa, and color of 

the dots was stronger than in both the above experiment. There were no significant 

differences among the probe, target DNA or proportion of bloking DNA used. 

 Based on visual observation of the above dot blots, the best target/blocking/probe 

concentration ratio was chosen. They were 3 µg of target DNA, 5 ng of probe DNA and 

1000× blocking DNA. 

 H8 target DNA, blocked with ‘Murcott’ and probed with S. glutinosa, showed 

the presence of S. glutinosa, as well as both parents (Fig. 27). 
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Fig. 25. Dot blot. 0.3, 3 and 9 µg of ‘Murcott’ DNA blocked with 30, 100 and 
1000× ‘Murcott’ DNA and probed with 2, 5 and 10 ng of S. glutinosa DNA. 
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Fig. 26. Dot blot. 0.3, 3 and 9 µg of ‘Ruby Red’ DNA blocked with 30, 100 and 
1000× ‘Ruby Red’ DNA and probed with 2, 5 and 10 ng of S. glutinosa DNA. 

 

 

Fig. 27. Dot blot of the hybrid cell line H8, 
produced by the ‘Murcott’ (M) protoplast + S. 
glutinosa (SW) irradiated microprotoplast 
fusion. 
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H2, H3, H4, H5, H6 and H7 target DNA, blocked with ‘’Ruby Red’ and probed 

with S. glutinosa showed the presence of S. glutinosa. However, color intensity was 

much lower that both parents (Fig. 28). 

 

 

Fig. 28. Dot blot of the hybrid cell lines H2, H3, H4, H5, H6 and H7, produced by the 
‘Ruby Red’ (RR) protoplast + S. glutinosa (SW) irradiated microprotoplast fusion. 

 

AFLP ANALYSIS OF ‘MURCOTT’ PROTOPLASTS + IRRADIATED S. 

GLUTINOSA MICROPROTOPLASTS 

AFLP analysis showed polymorphic bands. 

Bands were complementary from both parents were observed in the H8 cell line 

(Fig. 29). 

The best primer combinations were: 

MseI-AC with EcoRI-AAC, 

MseI-CT with EcoRI-ACA, 

MseI-CT with EcoRI-AAC.  
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Fig. 29. From left to right. MseI-AC + EcoRI-AAC, MseI-CT + EcoRI-ACA and 
MseI-CT + EcoRI-AAC primer combinations showing band polymorphism of 
‘Murcott’ (M) protoplast + 100 Gy S. glutinosa (SW) microprotoplast fusion. 
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AFLP FOR ‘RUBY RED’ PROTOPLASTS + IRRADIATED S. GLUTINOSA 

MICROPROTOPLAST 

Bands from both parents were shown in the AFLP analysis of H2, H3, H4, H5, 

H6 and H7 with many primer combinations. 

 MseI-CAA + EcoRI-AGG were the primer combination which showed more S. 

glutinosa insertions (Fig. 30). 

The primer combinations MseI-CA + EcoRI-ACC and MseI-CT + EcoRI-ACT 

showed two S. glutinosa insertions each (Fig. 31 and 32), and the primer combinations 

MseI-CA + EcoRI-ACT and MseI-CT + EcoRI-ACT showed one S. glutinosa insertions 

each (Fig. 33). 
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Fig. 30. MseI-CAA + EcoRI-AGG primer combination showing S. glutinosa 
insertions. ‘Ruby Red’ (RR) and S. glutinosa (SW) parents. Hybrids (H2-H7). 
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Fig. 31. MseI-CA + EcoRI-ACC primer combination showing two S. 
glutinosa insertions. ‘Ruby Red’ (RR) and S. glutinosa (SW) parents. 
Hybrids (H2-H7). 
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Fig. 32. MseI-CT + EcoRI-ACT primer combination showing two S. glutinosa 
insertions. ‘Ruby Red’ (RR) and S. glutinosa (SW) parents. Hybrids (H2-H7). 
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Fig. 33. MseI-CA + EcoRI-ACT and MseI-CT + EcoRI-ACT 
primer combinations (2nd and 4th AFLP blocks) showing presence 
of S. glutinosa in the hybrids. ‘Ruby Red’ (RR) and S. glutinosa 
(SW) parents. Hybrids (H2-H7). 
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DISCUSSION 

 

The main goal of this study was to use protoplast fusion to produce symmetric and 

asymmetric somatic hybrids between grapefruits and sweet oranges and, tangerines and 

sweet oranges. Such hybrids will create genetic diversity and have potential use in future 

grapefruit improvement. 

The whole process, from protoplast isolation to plant acclimation and somatic 

hybrid verification was adjusted to increase the chance of success. 

The importance of preparing quality protoplast for somatic hybridization by using 

the right source material could be emphasized (Grosser, 1994). Keeping the suspension 

cells, as suggested by Grosser and Gmitter (1990), in a 2-week subculture cycle was 

important to acquire a high yield of quality, low starch protoplasts due to the induction 

of a logarithmic growth by the frequent media changes. The utilization of suspension 

cells from one to three days after the last change was important to achieve quantity of 

protoplasts.  

In spite of the efforts to be as consistent as possible in the source material 

maintenance, there was great difference in protoplast isolation among the different 

varieties. Some of the species, such as the grapefruits, were easily isolated, while others, 

such as ‘Hanlim’, were recalcitrant. This was expected, accordingly to Grosser and 

Gmitter (1999), due to genotypic and/or epigenetic differences among cultivars. 

The osmotic pressure of the medium influences both membrane tension and 

stability. The ideal osmotic pressure for most of the species studied herein was 0.6 M, 
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which the exception of ‘Murcott’ and ‘Changsha’, in which 0.7 M promoted a better 

osmotic equilibrium. More than the osmotic equilibrium, the ratio of BH3 medium: 

enzyme solution had to be individually adjusted to suit each cultivar. Grosser and 

Gmitter (1999) suggested 0.6 M BH3 when using suspension cells and 0.7 M BH3 when 

using calli for protoplast isolation. ‘Changsha’ and ‘Murcott’ had too much starch and 

this may be the reason for needing higher molarity. 

A very important modification to the Grosser and Gmitter (1990) protoplast 

isolation protocol was the gradual digestion by macerozyme (a macerating/separating 

enzyme) solution for two hours before adding a cellulase plus pectolyase solution, which 

improved isolation in some of the cultivars. A possible explanation is that cells such pre-

digestion allowed a better separation of the cells. Cellulase is a cellulose-digesting 

enzyme, and pectolyse, a pectin breaker (Fang et al, 2005). The use of macerozymes 

may have promoted a more efficient infiltration of the cellulose/macerozyme solution. 

Before protoplast fusion, some species were exposed to gamma irradiation, to 

fragment the DNA, or to 3 mM iodoacetamide (IOA) to inactivate metabolic activity.  

Protoplast irradiation was very effective in arresting protoplast division, calli and 

embryo formation. Doses of 150 gamma rays and higher were lethal to the protoplasts. 

Derks et al (1992) observed some cell division in tomato protoplast using 50 Gy but cell 

division was completely prevented after 100 Gy. This dose probably exceeded dose 

leading to fragmentation and subsequent elimination of chromosomes. Protoplasts might 

have suffered a great harm and a complete division-arrest. Liu and Deng (2002) 
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observed inhibitory impact on the regeneration of citrus hybrid shoots in a dose-

dependent way. 

Three mM of IOA, independently of the exposition time, totally inhibited further 

development of treated cells. Ge et al. (2006), in order to abolish the nursing effect, used 

2-4 mM IOA, at least twice the observed 1 mM IOA for 15 min dose found to 

completely inhibit growth of both wheat and Italian ryegrass protoplasts. However, 1 

mM IOA for 20 min at 4 ºC was not sufficient to prevent cell division in chicory 

protoplasts and 2-4 mM had to be used to completely inhibit protoplast division (Varotto 

et al., 2001). Furuta et al. (2004) used an even higher dose, 5 mM for 10 min at 4 ºC, to 

inactivate chrysanthemum protoplasts before fusing with wormwood protoplasts.  

Cell division and calli formation were reduced for fusion combinations where one 

parent was irradiated and also for those where one parent was irradiated and the other 

treated with IOA, in comparison to fused protoplasts from non-treated fusions. This was 

probably because treated protoplasts had to recover from damage caused by the 

treatments. However, once the first stress caused by irradiation and IOA passed, and 

embryos started to form, there were no significant differences among treated and normal 

fusions. Formed embryos probably originated from surviving cells produced by genome 

complementation, since controls alone did not develop. The exception was the 100 Gy 

‘Itaborai’ sweet orange control where two shoots were obtained.  

After embryo formation, constant media exchange at least once a month was 

necessary to regenerate shoots. Fifteen hundred medium and RMAP rooting medium 

were considered inefficient to respectively induce embryo growth and rooting, therefore, 
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their usage was discontinued. However, a modified B+ medium with half the normal 

NAA concentration, placed in magenta boxes, was essential to shoot elongation.  

Liu and Deng (2002) produced shoots from irradiated tangerine plus IOA treated 

tangelo fusion. Nevertheless, shoots were recalcitrant to root, even in root-induction 

medium. 

Some root recalcitrant shoots were grafted onto ‘Rough Lemon’, C-22 or C-146. 

Later, however, a more proficient solution was determined. The rooting problem was 

solved by dipping the base of the formed shoots in 3000 mg.L-1 IBA for 10 min and 

placing them in a modified EMEP, with 6% sucrose, in magenta boxes. The longer 

exposition (10 minutes) to IBA, as well as, the extra sucrose may have helped in rooting 

formation. Furthermore, because EMEP is a basic medium, conflict of cytokines or 

auxins were avoided. Furthermore, NAA is a stronger auxin than IBA. Even the smaller 

concentration may have been toxic to the plants. Liu et al., (2004) compared IBA and 

NAA effects over Pueraria lobata roots and observed that NAA exerted strong 

inhibition on primary and lateral root elongation. 

The size of the shoot when dipped in IBA did not solely determine rooting 

potential since even tiny shoots formed roots. However, shoots that were bigger were 

nevertheless more amenable to plant development after planting in soil.  

‘Flame’, ‘Valencia’ and ‘Satsuma’ were considered inappropriate for protoplast 

fusion, since they did not develop further than calli or small embryos. 

Shoots were produced from P-P fusions (not exposed to irradiation or IOA), 

mainly from ‘Ruby Red’ + sweet oranges fusion. Among them (Fig. 11) were two 

 
 



 90

vigorous diploid shoots which were grafted onto ‘Rough Lemon’. Even though there is a 

possibility that they are cybrids, they are probably fusion escapes because in a normal 

fusion, donor genomes are not inactivated, and potential escapes may occur. 

Cultivars also responded differentially to irradiation. ‘Natal’ and ‘Murcott’ 

appeared to be intolerant of irradiation or IOA treatment and seemed to be a poor choice 

for future fusions. 

Plants from fusions of ‘Ruby Red’ + sweet oranges were obtained, and ‘Itaborai’ 

seemed to be the most resistant to irradiation, since some shoots were formed from the 

100 Gy control. A shoot was produced from the ‘Ruby Red’ + 100 Gy ‘Itaborai’ fusion 

and flow cytometry analysis suggests aneuploidy (between triploid and tetraploid). 

However, the plant is not very vigorous. 

The strategy of double inactivation of both parents prior to fusion was very 

effective. Cell division and calli formation was delayed in irradiation protoplasts 

compared to non treated ones and avoided with IOA treatment. This was probably 

because treated protoplasts had to recover from damages caused by irradiation. Liu and 

Deng (2002) irradiated Dancy tangerine with 228, 342 and 456 Krad and fused with 0.25 

mM (15 min) iodoacetic acid treated Page protoplasts. First two doses allowed cell 

division one month later then the control, and embryo formation (only at 342 Krad) 2 

months later. The highest dose took extra 2 months for cell division and 24 months for 

embryo formation. Formed embryos were probably originated from surviving cells 

produced by genome complementation, since controls alone did not develop. 

Accordingly to Grosser and Gmitter (1999) complementation is what allows hybrid 
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embryos formation following x- or ү- irradiation (donor-recipient fusions). Double 

inactivation was very robust against escapes in that only one shoot from the 100 Gy 

‘Itaborai’ sweet orange controls was obtained, showing that the produced plants, by 

genome complementation, were truly hybrids, as later confirmed by AFLP analysis.  

Large numbers of embryos and more than 80 plants (mainly from the double 

inactivation fusions) were produced. Nevertheless, the great majority of the plants (37 in 

greenhouse and still producing in vitro) were produced by the IOA-20 min ‘Ruby Red’ + 

80 Gy ‘Succari’ fusion. Most of these plants were morphologically similar, with well-

expanded leaves, long internodes and a vigorous growth. All plants analyzed by the flow 

cytometry were tetraploid (Fig. 17). 

Double-inactivation was very effective. Time and material were saved. Besides, 

formed plants were vigorous and the species combination may be very interesting. 

Hybrid grapefruits expressing higher soluble solids content and lower acidity, 

(characteristic from ‘Succari) would be very valuable for the market, for both fresh and 

juice production. Furthermore, the tetraploid plants may also be used as breeding parents 

in interploid crosses. 

Such ‘Ruby Red’ + ‘Succari’ hybrids are potentially valuable because they would 

be hardly obtained by sexual hybridization since both species are highly apomictic and 

polyembryony impairs creation of large segregating population for selection. 

Flow cytometry and AFLP analysis were complementary, and their combination 

was important in identifying the hybrid plants, because one of them showed the ploidy 
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and the other showed both parents’ complementary bands. The AFLP analysis was very 

conclusive, presenting band polymorphisms in different primer combinations. 

 

PROTOPLAST + IRRADIATED MICROPROTOPLAST FUSION  

Similarly to Louzada et al. (2002) work, S. glutinosa microprotoplasts were easily 

isolated, and the procedure was very efficient to produce very small microprotoplasts  

Fusions of ‘Ruby Red’ and ‘Murcott’ with irradiated S. glutinosa may have led to 

insertions of rearranged chromosomes with the fusion nuclei and/or insertion of S. 

glutinosa DNA into chromosomes of ‘Ruby Red’and ‘Murcott’. Representation of S. 

glutinosa genome in a given product would presumably be reduced due to the use of 

microprotoplasts. This may be important as a first step for a future radiation mapping of 

Citrus.  

Dot blot was not considered a very explanatory analysis in this work because, even 

tough presence of S. glutinosa could be detected on the dots, it was not visually ideal. 
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CONCLUSIONS AND SUGGESTIONS 

 

Procedures were developed to improve protoplast fusion protocol by combining it 

with double genome inactivation (irradiation and IOA), and altering cultivation media. 

Rooting recalcitrance problem was solved and all produced plants using double 

inactivation are potentially hybrids saving time and money in the selection process. The 

produced hybrid plants may have great potential as both superior hybrids presenting 

desirable characteristics from both parents and as tetraploid parents in interploid 

crossings. 

Furthermore, for the first time S. glutinosa microprotoplasts were irradiated and 

fused to ‘Ruby Red’ or ‘Murcott’ protoplasts and all produced calli are hybrids AFLP 

analysis confirmed presence of S. glutinosa into the receptor genomes, showing a 

possible donor introgression. This technique may be a first step for future for radiation 

mapping in Citrus. 

Because citrus chromosomes are small, 2µ in size (Usman, 2006), and 

morphologically undistinguishable it is suggested that active growing apices be used for 

chromosome counting as a way to assess chromosome number and detect possible 

chromosome loss. Furthermore, genomic in situ hybridization (GISH) is suggested. 

GISH has several key steps affecting the final result and requires high-quality 

chromosome slides (Fu et al., 2004). However, after selecting the hybrid plants which 

present potential value, it would be interesting to invest time to perform GISH analysis, 

because the technique may allow not only for an effective chromosome number 
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determination (possible chromosome pieces, translocations and duplications may 

potentially interfere in chromosome countings) but also for visualization of 

chromosomes from each donor species, as previously observed by Fu et al. (2004) in 

intergeneric somatic hybrids of Goutou sour orange and Poncirus trifoliate. 

 
 



 95

LITERATURE CITED 

 

Ahloowalia, B.S. and M. Maluszynski. 2001. Induced mutations – A new paradigm in 
plant breeding. Euphytica. 118:167-173. 

 
Andras, S.C., T.P.V. Hartman, J.A. Marshall, R. Marchant, J.B. Power, E.C. Cocking, 

and M.R. Davey. 1999. A drop-spreading technique to produce cytoplasm-free mitotic 
preparations from plants with small chromosomes. Chrom. Res. 7:641-647. 

 
Bonnema, A.B. and M.A. O’Connell. 1990. Analysis of fertility of tomato cybrids with 

L. pennellii mitochondrial DNA. Rep. Tomato Gen. Coop. 40:7. 
 
Bowman, K.D. and F.G. Gmitter Jr. 1990. Caribbean forbidden fruit: Grapefruit’s 

missing link with the past and bridge to the future? Fruit Var. J. 44(1):41-44. 
 
Broertjes, C., A. Keen. 1980. Adventitious shoots: Do they develop from cell? 

Euphytica. 29:73-87. 
 
Cabasson, C.M., F. Luro, P. Ollitrault, and J.W. Grosser. 2001. Non-random inheritance 

of mitochondrial genomes in Citrus hybrids produced by protoplast fusion. Plant Cell 
Rep. 20:604-609. 

 
Calixto, M.C. 2003. Hibridação somática entre Citrus sinensis and C. grandis. 

Piracicaba-SP. BR. 99p. 
 
Calixto, M.C., F.A.V. Mourao Filho, B.M.J. Mendes, and M.L.C. Vieira. 2004. Somatic 

hybridization between Citrus sinensis (L.) Osbeck and C. grandis (L.) Osbeck. Pesq. 
Agropec. Bras. 39(7):721-724. 

 
Campos, E.T., M.A.G. Espinosa, M.L. Warburton, A.S. Varela, and A.V. Monter. 2005. 

Characterization of mandarin (Citrus spp.) using morphological and AFLP markers. 
Interciencia 30(11):697-693. 

 
Carvalho, R., W.S. Soares Filho, A.C. Brasileiro-Vidal, and M. Guerra. 2005. The 

relationships among lemons, limes and citron: A chromosomal comparison. Cytogenet. 
Genome Res. 109:276-282. 

 
Chang, S.B. and H. Jong, 2005. Production of alien chromosome additions and their 

utility in plant genetics. Cytogenet. Genome Res. 109:335-343. 
 

 
 



 96

Chao, C.T., P.S. Devanand, and J. Chen. 2005. AFLP analysis of genetic relationships 
among Calathea species and cultivars. Plant Sci. 168:1459-1469. 

 
Chung, K.R. and R.H. Brlanski. 2006. Citrus diseases exotic to Florida: Huanglongbing 

(citrus greening). IFAS Ext. Univ. Fla. P.210. 
 
Costa, M.A.P.C., W.A.B. Almeida, F.A.A. Mourao Filho, B.M.J. Mendes, and A.P.M. 

Rodriguez. 2004. Stomatal analysis of citrus somatic hybrids obtained by protoplast 
fusion. Pesq. Agropec. Bras. 39(3):297-300. 

 
Cox, D.R., M. Burmeister, E.R. Price, S. Kim, and R.M. Myers. 1990. Radiation hybrid 

mapping: A somatic cell genetic method for constructing high-resolution maps of 
mammalian chromosomes.  Science 250:245-250. 

 
Davey, M.R., P. Anthony, J.B. Power, K.C. Lowe. 2005. Plant protoplasts: Status and 

biotechnological perspectives. Sci. Dir. 23:131-171. 
 
Davies, F.S. and LG Albrigo. 1994. Citrus. Wallingford: CAB Int. 
 
Deng, X.X., W.W. Guo, and G.H. Yu. 2000. Citrus somatic hybrids regenerated from 

protoplast electrofusion. Acta Hort. 535:163-168. 
 
Derks, F.H.M. and C.M. Colijn-Hooymans. 1989. A study on the effect of gamma-

irradiation on protoplasts from Lycopersicon peruvianum. Rep. Tomato Gen. Coop. 
39:14. 

 
Derks, F.H.M., R.D. Hall, and C.M. Colijn-Hooymans. 1992. Effect of gamma-

irradiation on protoplast viability and chloroplast DNA damage in Lycopersicon 
peruvianum with respect to donor-recipient protoplast fusion. Environ. Exp. Bot. 
32(3):255-264. 

 
Dias, K.M. 1993. Citrus tissue culture and genetic transformation. PhD dissertation. 

Texas A&M Univ., College Station. 
 
Domingues, E.T., V.C. Souza, C.M. Sakuragui, J. Pompeu Jr, R.M. Pio, J. Teofilo 

Sobrinho, and J.P. Souza. 1999. Caracterização morfológica de tangerinas do banco 
ativo de germoplasma de citros do centro de citricultura Sylvio Moreira/IAC. Sci. 
Agric. 56(1):1-12. 

 
Dudits, D. E. Maroy, T. Praznovszky, Z. Olah, J. Gyorgyey, and R. Cella. 1987. Transfer 

of resistance traits from carrot into tobacco by asymmetric somatic hybridization: 
regeneration of fertile plants. Proc. Natl. Acad. Sci. 84: 8434–8438. 

 

 
 



 97

Epstein, D.L., J.M. Hashimoto, P.J. Anderson, and W.M. Grant. 1981. Effect of 
iodoacetamide perfusion on outflow facility and metabolism of the trabescular 
meshwork. Assoc. Res, Vis. Ophthal. 20(5):625-631. 

 
Falconier, M.M. and R.W. Seagull. 1987. Amiprophos-methyl (APM): A rapid, 

reversible, anti-microtubule agent for plant cell cultures. Protoplasma 136:118-124. 
 
Fang, K., L. Zhang, and J. Lin. 2005. A rapid, efficient method for the mass production 

of pollen protoplasts from Pinus bungeana Zucc. Ex Endl. and Picea wilsonii Mast. 
Flora(201):74-80. 

 
FAOSTAT data, 2006. http://www.fao.org (Accessed in Jun 2006). 
 
Fernandez, J.L., A. Campos, D. Cajigal, and V.J. Goyanes. 1990. Ultrastructural analysis 

of radiation induced chromosome breaks and rearrangments. Cytologia 55:595-600. 
 
Fournier, R.E. and F.H. Ruddle. 1977. Stable association of the human transgenome and 

host murine chromosomes demonstrated with trispecific microcell hybrids. Proc Natl 
Acad. Sci. 74(9):3937–3941. 

 
Fournier, R.E.K. 1981. A general high-efficiency procedure for production of microcell 

hybrids. Proc. Natl. Acad. Sci. 78(10):6348-6353. 
 
Fu, C.H., C.L. Chen, W.W. Guo, and Deng, X.X. 2004. GISH, AFLP and PCR-RFLP 

analysis of an intergeneric somatic hybrid combining Goutou sour orange and 
Poncirus trifoliate. Plant Cell Rep. 23(6):391-396. 

 
Fu, C.H., W.W. Guo, J.H. Liu, X.X. Deng. 2003. Regeneration of Citrus sinensis (+) 

Clausena lansium intergeneric triploids and tetraploid somatic hybrids and their 
identification by molecular markers. In Vitro Cell Dev. Biol. 39:360-364. 

 
Furr, J.R. 1969. Citrus Breeding for the arid southwestern United States. Proc. First Int. 

Citrus Sym. 1:191-197. 
 
Furuta, H., H. Shinoyama, Y. Nomura, M. Maeda, and K. Makara. 2004. Production of 

intergeneric somatic hybrids of chrysanthemum [Dendranthema x grandiflorum 
(Rama.) Kitamura] and wormwood (Artemisia sieversiana J.F. Ehrh. Ex. Willd) with 
rust (Puccinia horiana Henning) resistance by electrofusion of protoplasts. Plant Sci. 
166:695-702. 

 
Gao, W., Z.J. Chen, J.Z. Yu, D. Raska, R.J. Kohel, J.E. Womack, and D.M. Stelly. 2004. 

Wide-cross whole-genome radiation hybrid mapping of cotton (Gossypum hirsutum 
L.). Genetics 167:1317-1329. 

 

 
 



 98

Gao, W., Z.J. Chen, J.Z. Yu, R.J. Kohel, J.E. Womack, and D.M. Stelly. 2006. Wide-
cross whole-genome radiation hybrid mapping of the cotton (Gossypum hirsutum L.) 
genome. Mol. Gen. Genomics 275:105-113. 

 
Ge, T.W., X.H. Lin, F.I. Qin, S.W., Yu, and Y.J. Yu. 2006. Protoplast electrofusion 

between common wheat (Triticum aestivum L.) and Italian ryegrass (Lolium 
multiflorum Lam.) and regenerants of mature cybrids. In vitro Cell Dev. Biol. 42:179-
187. 

 
Gmitter, Jr F.G.,Y.L. Chang, Z. Deng, S. Huang, E.S. Louzada, H.B. Zhang. 1999. 

Construction of a deep bacterial artificial chromosome (BAC) library for mapping and 
cloning of agriculturally important genes in Poncirus and Citrus. Plant Animal 
Genome VII Conference. P111:17-21. 

 
Grosser, J.W. 1994. Observations and suggestions for improving somatic hybridization 

by plant protoplast isolation, fusion, and culture. HortScience 29(1):1241-1242. 
 
Grosser, J.W. and F.G. Gmitter Jr. 1990. Protoplast fusion and improvement. Plant 

Breed. Rev. 8:339-374. 
 
Grosser, J.W. and F.G. Gmitter Jr. 1999. Protoplast fusion and citrus improvement. 

Florida Agric. Exp. Sta. J. Series R-00141. 339-372. 
 
Grosser, J.W. and F.G. Gmitter Jr. 2005. ‘Thinking outside the cell’. Applications of 

somatic hybridization and cybridization in crop improvement, with citrus as a model. 
In vitro Cel. Dev. Biol. 41:220-225. 

 
Grosser, J.W., F.A.A Mourao, F.G. Gmitter Jr, E.S. Louzada, J. Jiang, K. Baergen, A. 

Quiros, C. Cabasson, J.L. Schell, J.L. Chandler. 1996. Allotetraploid hybrids between 
citrus and seven related genera produced by somatic hybridization. Theor. Appl. 
Genet. 92:577-582. 

 
Guerra, M., K.G.B. Santos, A.E.B. Silva, and F. Ehrendorfer. 2000. Heterochromatin 

banding patterns in Rutaceae-Aurantioideae – A case of parallel chromosomal 
evoltution. Amer. J. Bot. 87(5):735-747. 

 
Guo W., Y. Duan, O. Olivares-Fuster, Z. Wu, C.R. Arias, J.K. Burns, and J.W. Groseer. 

2005. Protoplast transformation and regeneration of transgenic Valencia sweet orange 
plants containing a juice quality-related pectin methylesterase gene. Plant Cell Rep. 
24:482-486. 

 
Guo, W.W., X.X. Deng, and H.L. Yi. 2000. Somatic hybrids between navel orange 

(Citrus sinensis) and grapefruit (C. paradise) for seedless triploid breeding. Euphytica. 
116:281-285. 

 
 



 99

 
Guo, W.W., Y.J. Cheng, C.L. Chen, C.H. Fu, and X.X. Deng. 2004. Molecular 

characterization of several intergeneric somatic hybrids between Citrus and its related 
genera. Acta Hort. 632:259-264. 

 
Guo, W.W., Y.Y. Cheng, C.L. Chen, and X.X. Deng. 2006. Molecular analysis revealed 

autotetraploid, diploid and tetraploid cybrid plants regenerated from an interspecific 
somatic fusion in Citrus. Sci. Hort. 108:162-166. 

 
Hanada, H., T. Kayano, Y. Koga-Ban, H. Tanaka, and Y. Tabei. 2003. Dicoxigenin 

(DIG)-base AFLP analysis of three citrus relatives. JARQ 37(4):225-228. 
 
Hao, Y., W. XiaoPeng, and D. Xiuxin. 2004. Genetic and epigenetic evaluations of 

citrus calluses recovered from slow-growth culture. J. Plant Phys. 161(4):479-484. 
 
Harms, C.T. 1992. Engineering genetic disease resitance into crops: Biotechnological 

approaches to crop protection. Crop Protection 11:291-306. 
 
Hinnisdaels, S., L. Bariller, A. Mouras, V. Sidorov, J. Del-Favero, J. Veuskens, and I. 

Negrutiu. 1991. Highly asymmetric intergeneric nuclear hybrids between Nicotiana 
and Petunia: evidence for recombinogenic and translocation events in somatic hybrid 
plants after “gamma”-fusion. Theor. Appl. Genet. 82:609-614. 

 
INFO COMM, 2006. http://r0.unctad.org/infocomm/anglais/orange/technology.htm 

(Accessed in Jun 2006). 
 
INFOAGRO, 2006. http://www.infoagro.com/citricos (Accessed in Jun 2006). 
 
James, C.M., S.S. Lesemann, and G.J. Down. 2003. Modified AFLP analysis method for 

species with small chromosomes. Plant Mol. Biol. Rep. 21:303-307. 
 
Karp, A., O. Seberg, and M. Buiatti. 1996. Molecular techniques in the assessment of 

botanical diversity. Annals Bot. 78(2):143-149. 
 
Kester, D.E., F.T. Davies Jr,, and R.L. Geneve. 1997. Hartmann and Kester's Plant 

Propagation: principles and practices, 7th ed. Prentice-Hall Int., Upper Saddle River. 
 
Khan, I.A. and J.W. Grosser. 2004. Regeneration and characterization of somatic hybrid 

plants of Citrus sinensis (sweet orange) and Citrus micanthra, a progenitor species of 
lime. Euphytica 137:271-2278. 

 
Kitajima, A., M. Befu, Y. Hidaka, T. Hotta, and K. Hasegawa. 2001. A chromosome 

preparation method using young leaves of Citrus. J. Japan. Soc. Hort. Sci. 70(2):191-
194. 

 
 



 100

 
Kondoh, K., T. Koshiba, A. Hiraoka, and M. Sato. 1998. ү-irradiation damage to the 

tonoplast in cultured spinach cells. Environ. Exp. Bot. 39:97-104. 
 
Kynast, R.G., R.J. Okagaki, H.W. Rines. 2002. Maize individualized chromosome and 

derived radiation hybrid lines and their use in functional genomics. Funct. Integr. 
Genomics 2:60-69. 

 
Lee, L.S. 1988. Citrus polyploidy - Origins and potential for cultivar improvement. Aust. 

J. Agric. Res. 39:735-47. 
 
Liu, B., Z.L. Liu, and X.M. Li. 1999. Production of a highly asymmetric somatic hybrid 

between rice and Zizania latifolia (Griseb): evidence for inter-genomic exchange. 
Theor. Appl. Genet.. 98:1099-1103. 

 
Liu, J. and X. Deng. 2000. Regeneration of hybrid embryoids via protoplast asymmetric 

furion between citrange and Page tangelo. Acta Hort. Sin. 37(3):207-209. 
 
Liu, J. and X. Deng. 2002. Regeneration and analysis of citrus interspecific mixoploid 

hybrid plants from asymmetric somatic hybridization. Euphytica 125:13-20. 
 
Liu, J.H., X.M. Pang, Y.J. Cheng, H.J. Meng, and X.X. Deng. 2002. Molecular 

characterization on the nuclear and cytoplasmic genomes of intergeneric diplod plants 
from cell fusion between Microcitrus papuana and rough lemon. Plant Cell Rep. 
21(4):327-332. 

 
Louzada, E.S. and J.W. Grosser. 1994. Somatic hybridization of citrus with sexually 

incompatible wild relatives. Biot. Agric. For. 27:428-438. 
 
Louzada, E.S., Grosser, J.W., and F.G. Gmitter Jr. 1993. Intergeneric somatic 

hybridization of sexually incompatible parents; Citrus sinensis and Atalantia 
ceylanica. Plant Cell Rep. 12:687-690. 

 
Louzada, E.S., H.S. del Rio, D. Xia. 2002. Preparation and fusion of Citrus sp. 

microprotoplasts. J. Amer. Soc. Hort. Sci, 127:484-488. 
 
Louzada, E.S., H.S. del Rio, I.L. Ingelbrecht, and D. Xia. 2001. Production of transgenic 

‘Valencia’ orange suspension cells to be used as donors for chromosome transfer. 
Subtrop. Plant Sci. 53:9-13. 

 
Lynch, P.T., M.R. Davey, J.B. Power. 1993. Plant protoplast fusion and somatic 

hybridization. Meth. Enzymol. 221:379-393. 
 

 
 



 101

Mendes, B.M.J., F.A.A. Mourao Filho, P.C.M. Farias, and V.A. Benedito. 2001. Citrus 
hybridization with potential for improved blight and CTV resistance. In Vitro Cell 
Dev. Biol.  37:190-195. 

 
Mendes-da-Gloria, F.J., F.A.V. Mourao Filho, L.E.A. Camargo, and B.M.J. Mendes. 

2000. Caipira sweet orange + Rangpur lime: a somatic hybrid with potential for use as 
rootstock in the Brazilian citrus industry. Genet. Mol. Biol. 23(3):1-10. 

 
Miranda, M., T. Motomura, F. Ikeda, T. Ohgawara, W. Saito, T. Endo, M. Omura, and 

T. Moriguchi. 1997. Somatic hybrids obtained by fusion between Poncitrus trifoliata 
(2x) and Fortunella hindsii (4x) protoplasts. Plant Cell Rep. 16:401-405. 

 
Ohgawara, T., S. Kobayashi, E. Ohgawara, H. Uchimiya, and S. Ishii. 1985. Somatic 

hybrid plants obtained by protoplast fusion between Citrus sinensis and Poncirus 
trifloliata. Theor. Appl. Genet.  71:1-4. 

 
Oliveira, R.P., C.I. Aguilar-Vildoso, M. Cristofani, and M.A. Machado. 2004. Skewed 

RAPD markers in linkage maps of Citrus. Genet. Mol. Biol. 27(3):437-441. 
 
Ollitrault, P., D. Dambier, Y. Froelicher, F. Carreel, A. d’Hont, F. Luro, S. Bruyere, C. 

Cabasson S. Lotfy, A. Joumma, F. Vanel, F. Maddi, K. Treanton, and M. Grisoni. 
2000. Somatic hybridization potential for Citrus germplasm utilization. Aggricultures. 
3(8):223-236. 

 
Pang, X.M., X.P. Wen, C.G. Hu, and X.X. Deng. 2006. Genetic diversity of Poncirus 

accessions as revealed by amplified fragment length polymorphism (AFLP). J. Hort. 
Sci. Biot. 81(2):269-275. 

 
Ramulu, K.S., P. Dijkhuis, E. Rutgers, J. Blass, F.A. Krens, J.J.M. Dons, C.M. Colijn-

Hooymans and H.A. Verhoeven. 1996a. Microprotoplast-mediated transfer of a single 
specific chromosome between sexually-inconpatible plants. Genome 39:921-933. 

 
Ramulu, K.S., P. Dijkhuis, E. Rutgers, J. Blass, W.H.J. Verbeek, H.A. Verhoeven, and 

C.M. Colijn-Hooymans. 1995. Microprotoplast fusion technique: a new tool for gene 
transfer between sexually-incongruent plant species. Euphytica 85:255-268. 

 
Ramulu, KS, P, Dijkhuis, E, Rutgers, FA. Blaas, FA. Krens, C.M. Werbeek, C.M. 

Colijn-Hooymans, and H.A. Verhoeven. 1996b. Intergeneric transfer of a partial 
genome and direct production of monosomic addition plants by microprotoplast 
fusion. Theor. Appl. Genet. 92:316-325. 

 
Riera-Iizarazu, O., M.I. Vales, E.V. Ananiev, H.W. Rines, and R.L. Phillips. 2000. 

Production and characterization of maize chromosome hybrids derived from an oat-
maize addition line. Genetics 156:327-339. 

 
 



 102

 
Roose, M.L., D. Feng, F.S. Cheng, R.I. Tayyar, C.T. Federici, and R.S. Kupper. 2000. 

Mapping the Citrus Genome. Acta Hort. 535:25-32. 
 
Saito, W., T. Ohgawaha, J. Shimizu, and S. Ishii. 1991. Acid citrus aromatic hybrids 

between sudachi (Citrus sudachi Hort. ex Shirai) and lime (C. aurantifolia Swing,) 
produced by electrofusion. Plant Sci. 77:125-130. 

 
Saito, W., T. Ohgawara, J. Shimizu, S. Ishii, and S. Kobayashi. 1993. Citrus cybrid 

regeneration following cell fusion between nucellar cells and mesophyll cells. Plant 
Sci. 88:195-201. 

 
Sanamyan, M.F. and E.M. Rakhmatullina. 2003. Cytogenetic analysis of translocations 

in cotton. Plant Breed. 122:511-516. 
 
Schoenmakers, C.H., J.J.M. Van de Meulen- Muisers, and M. Koornneef. 1994. 

Asymmetric fusion between protoplasts of tomato (Lycopersicon esculentum Mill.) 
and gamma-irradiated protoplasts of potato (Solanum tuberosum L.): the effects of 
gamma irradiation. Mol. Gen. Genet. 2242:313-320. 

 
Shaked, H., K. Kashkush, H. Ozkan, M. Feldman and A.A. Levy. 2001. Sequence 

elimination and cytosine methylation are rapid and reproducible responses of the 
genome to wide hybridization and allopolyploidy in wheat. Plant Cell. 13:1749-1759. 

 
Takami, K., A. Matsumara, M. Yahata, T. Imayama, H. Kunitake, and H. Komatsu. 

2004. Plant cell Rep. 23:39-45. 
 
Takani, K., A. Matsumaru, M. Yahata, H. Kunitaki, and H. Komatsu. 2005. Utilization 

of intergeneric somatic hybrids as an index discriminating taxa in the genus Citrus and 
its related species. Sex Plant reprod. 18:21-28. 

 
Targon, M.L.P.N., M.A. Machado, H.D. Coletta Filho, and M. Cristofani. 2000. Genetic 

polymorphism of sweet orange (Citrus sinensis [L.] Osbeck) varieties evaluated by 
random amplified polymorphic DNA. Acta Hort.535:51-54 

 
Thomas, D.D.S., D.M. Dunn, R.W. Seagull. 1976. Rapid cytoplasmic responses of oat 

coleoptiles to cytochalasin B, auxin, and colchicine. Can. J. Bot. 55:1977-1988. 
 
Tian, D., C. Niu, and R.J. Rose 2002. DNA transfer by highly asymmetric somatic 

hybridization in Medicago trunculata (+) Medicaco rugosa and Medicago trunculata 
(+) Medicago scutellata. Theor. Appl. Genet. 104:9-16. 

 

 
 



 103

Tibshirani, R., L. Lazzeroni, T. Hastie, A. Olshem, and D. Cox. 1999. The global 
pairwise approach to radiation hybrid mapping. Dept. Statistics, Stanford Univ. Tech. 
rep. no. 201. 

 
Trick, H, A. Zelcer, and G.W. Bates. 1994. Chromosome elimination in asymmetric 

somatic hybrids: effect of gamma dose and time in culture. Theor, Appl. Genet. 
88:965-972. 

 
USDA, 2006. http:// plants.usda.gov. (Accessed in Jun 2006). 
 
Usman, F. 2005. On the crinsom crop. The Nation Newspaper. March, 14. 1-6. 
 
Vardi, A., P. Arzee-Gonen, A. Frydman-Shani, S. Bleichman, and E. Gallun. 1989. 

Protoplast-fusion-mediated transfer of organelles from Microcitrus into Citrus and 
regeneration of novel alloplasmic trees. Theor. Appl. Genet. 78(5):741-747. 

 
Varotto, S., E. Nenz, M. Lucchin, and P.Parrini. 2001. Production of asymmetric 

somatic hybrid plants between Chicorium intybus L. and Helianthus annuus L. Theor. 
Appl. Genet. 102:950-956. 

 
Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. 

Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: A new technique for DNA 
fingerprinting. Nucleic Acids Res. 23(21):4407-4414. 

 
Wallin, A., K. Glimelius, and T. Eriksson. 1977. Enucleation of plant protoplasts by 

Cytochalasin B. Z. Pflanzenphysiol. 87: 333-340. 
 
Wardrop, J., J. Snape, W. Powell, and C. Machray. 2002. Constructing plant radiation 

Irbid panels. Plant J. 31(2):223-228. 
 
Wijbrandi, J. 1989. Isolation and characterization of somatic hybrids between 

Lycopersicon esculentum and Lycopersicon peruvianum. Wageningen University, NL 
Dissert. no.1320. 

 
Wijbrandi, J., W.V. Capelle, C.J. Hanhart, E.P.V.L. Martinet-Schurinca, and M. 

Koornneef. 1990. Selection and characterization of somatic hybrids between 
Lycopersicon esculentum and Lycopersicon peruvianum. Plant Sci. 70:197-208. 

 
Womack, J.E. 1999. Principles and pitfalls of radiation hybrid mapping. Plant Animal 

Genome VII Conference. W94. 
 
Wu, J and P. Mooney. 2002. Autotetraploid tangor plant regeneration from in vitro 

Citrus somatic embryogenic callus treated with colchicine. Plant Cell. Tiss. Org. 
Culture 70:99-104. 

 
 



 104

 
Wu, J., A.R. Fergurson, and P. Mooney. 2005. Allotetraploid hybrids produced by 

protoplast fusion for seedless triploid Citrus breeding. Euphytica 141:229-235. 
 
Xu,  X., J. Liu, and X. Deng. 2005. FCM, SSR and CAPS analysis of intergeneric 

somatic hybrid plants between Changshou kumquat and Dancy tangerine. Bot. Bull. 
Acad. Sin. 46:93-98. 

 
Xu, X., J. Liu, and X. Deng. 2004. Production and characterization of intergeneric 

diploid cybrids derived from symmetric fusion between Microcitrus papuana Swingle 
and sour orange (Citrus aurantium). Euphytica 136(5):115-123. 

 
Yamagish, H. and K. Glimelius. 2003. Somatic hybrids between Arabidopsis thaliana 

and cytoplasmic male-sterile radish (Raphanus sativus) Plant Cell Rep. 1-12. 
 
Yemets, A.I. and Y.B. Blume. 2003. Microprotoplasts as an effective method of transfer 

of individual chromosomes between incompatible plant species. Cytol. Genet. 
37(2):38-46. 

 
Yerle, M., Y. Lahbib-Mansais, A. Robie, F. Mompart, C. Delcros, and D. Milan. 2004. 

Radiation hybrids: A tool for high-resolution mapping. Animal Sci. Papers Rep. 
22(1):77-81. 

 
Zhang, Q., J. Liu, and X. Deng. 2006. Isolation of microprotoplasts from a partially 

synchronized suspension culture of Citrus inshiu. J. Plant Phys. 163(11):1185-1192. 
 
Zhdanova, N.S. 2002. Genome radiation hybrid mapping: Summary and future direction. 

Russian J. Genet. 38(5):475-485. 
 
Zhou, A., G, Xia, X. Zhang, H. Chen, and H. Hu. 2001. Analysis of chromosomal and 

organellar DNA of somatic hybrids between Triticum aestivum and Haynaldia villosa 
Schur. Mol. Genet. Gen. 265:387-393. 

 

 
 



 105

APPENDIX A 

H + H medium 

 

Ingredient For 1 liter 
Macronutrient stock* 10 mL 
BH3 macronutrient stock** 5 mL 
Vitamin stock*** 10 mL 
Calcium stock**** 10 mL 
Iron stock***** 15 mL 
Sucrose 5 mL 
Malt extract 50 g 
Glutamine 1.55 g 
pH to 5.8 with Potassium hydroxide (KOH)  

*82.5 g NH4NO3; 95 g KNO3; 18.5 g MgSO4.7H2O; 7.5 g KH2PO4; 1 g K2HPO4. 
**37 g MgSO4; 15 g KH2PO4; 2 g H2HPO4; 150 g KCl. 
***10 g mio-inositol; 1 g thiamine-HCl; 1 g pyridoxine-HCl; 0.5 g nicotinic acid; 0.2 g glycine. 
****29.33 g CaCl2.2H2O. 
*****7.45 g Na2EDTA; 5.57 g FeSO4.7H20. 
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APPENDIX B 

BH3 medium 

 

Ingredient For 1 liter 
BH3 macronutrient stock 10 mL 
Micronutrient stock* 10 mL 
Vitamin stock 10 mL 
Calcium stock 10 mL 
Iron stock 15 mL 
Vitamin A stock** 2 mL 
Vitamin B stock*** 1 mL 
KI stock**** 1mL 
Sugar alcohol stock***** 10 mL 
Organic acid stock****** 20 mL 
Coconut water 20 mL 
Sucrose 51.345 g 
Malt extract 1 g 
Glutamine 3.1 g 
Mannitol 81.99 g 
Casein enzyme hydrolysate 0.25 g 
pH to 5.7 with Potassium hydroxide (KOH)  

*0.62 g H3BO3; 1.68 g MnSO4. H2O; 0.86 g ZnSO4. 7H2O; 0.083 g KI; 0.025 g Na2MoO4.2H2O; 0.0025 g 
CuSO4.5H2O; 0.0025 g CoCl2.6H2O. 
**0.05 g calcium pantothenate; 0.1 g ascorbic acid; 0.05 g choline chloride; 0.001 g p-aminobenzoic acid; 
0.02 g folic acid; 0.01 g riboflavin; 0.001 g biotin. 
***0.001 g retinol; 0.001 g cholecalciferol; 0.02 g vitamin B12. 
****0.075 g KI. 
*****2.5 g fructose; 2.5 g ribose; 2.5 g xylose; 2.5 g mannose; 2.5 g rhamnose; 2.5 g cellobiose; 2.5 g 
galactose; 2.5 g mannitol. 
******0.1 g sodium pyruvato; 0.2 g citric acid; 0.2 g malic acid; 0.2 g fumaric acid. 
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APPENDIX C 

PEG solution 

 

Ingredient For 100 mL 
PEG 40 g 
CaCl2 0.97 g 
Glucose 5.41 g 
pH to 6 with Potassium hydroxide (KOH)  
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APPENDIX D 

Solution A 

 

Ingredient For 100 mL 
DMSO 10 mL 
CaCl2 0.97 g 
Glucose 7.2 g 
pH to 6 with Potassium hydroxide (KOH)  
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APPENDIX E 

Solution B 

 

Ingredient For 100 mL 
Glycine 2.25 g 
pH to 10.5 with Potassium hydroxide (KOH)  
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APPENDIX F 

Solution 1:1:1 

 

Ingredient  
1 part 0.6 M BH3  
1 part 0.5 M EMEP  
1 part 0.146 M EMEP  
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APPENDIX G 

Solution 1:2 

 

Ingredient  
1 part 0.6 M BH3  
2 parts 0.146 M EMEP  
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APPENDIX H 

EMEP solid medium 

 

Ingredient For 1 liter 
Macronutrient stock 20 mL 
Micronutrient stock 10 mL 
Vitamin stock 10 mL 
Calcium stock 15 mL 
Iron stock 5 mL 
Sucrose 50 g 
Malt extract 0.5 g 
Agar 8 g 
pH to 5.8 with Potassium hydroxide (KOH)  
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APPENDIX I 

1500 medium 

 

Ingredient For 1 liter 
Macronutrient stock 20 mL 
Micronutrient stock 10 mL 
Vitamin stock 10 mL 
Calcium stock 15 mL 
Iron stock 5 mL 
Sucrose 50 g 
Malt extract 1.5 g 
Agar 8 g 
pH to 5.8 with Potassium hydroxide (KOH)  
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APPENDIX J 

B+ medium 

 

Ingredient For 1 liter 
Macronutrient stock 20 mL 
Micronutrient stock 10 mL 
Vitamin stock 10 mL 
Calcium stock 15 mL 
Iron stock 5 mL 
Sucrose 25 g 
Coumarin stock* 10 mL 
NAA stock** 72 µL 
Agar 8 g 
pH to 5.8 with Potassium hydroxide (KOH)  
Gibberelic acid (GA3) after autoclaving 1 mL 

*1.46 g.L-1. 
**279.3 mg.L-1 
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APPENDIX K 

DBA3 medium 

 

Ingredient For 1 liter 
Macronutrient stock 18 mL 
Micronutrient stock 9 mL 
Vitamin stock 9 mL 
Calcium stock 15 mL 
Iron stock 5 mL 
Coconut water 20 mL 
Sucrose 12.5 g 
2,4-D stock* 10 µL 
6-BAP stock** 3 mL 
Agar 8 g 
pH to 5.8 with Potassium hydroxide (KOH)  

*66.3 mg.L-1 
**3 µg.L-1. 
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APPENDIX L 

RMAP (rooting) medium 

 

Ingredient For 1 liter 
Macronutrient stock 10 mL 
Micronutrient stock 5 mL 
Vitamin stock 5 ml 
Calcium stock 15 ml 
Iron stock 5 ml 
NAA stock* 72 µLl 
Sucrose 12.5 g 
Activated charcoal 0.5 g 
Agar 8 g 
pH to 5.8 with Potassium hydroxide 
(KOH) 

 

*20 µg.L-1 
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