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ABSTRACT 

 
Post-fire Recovery and Successional Dynamics of an Old-Growth 

 Red Spruce Forest in the Southern Appalachian Mountains. (May 2007) 

Adam R. Krustchinsky, B.S. Texas A&M University 

Chair of Advisory Committee:  Dr. Charles Lafon 
 

 

 Red spruce is a shade-tolerant conifer whose distribution and abundance reflect 

Quaternary climate history as well as natural and anthropogenic disturbances.  This 

species once extended further south than its present localities, because of natural and 

anthropogenic disturbances such as logging, windthrow, and fire.  Little is known about 

the disturbance regime of this species, because long term stand dynamics are difficult to 

obtain.  This-long lived species is hypothesized to be suffering a decline in radial 

growth, density and abundance at the present time.  Recent research suggests pollution, 

biotic stresses, climate change and natural stand dynamics are the driving forces behind 

these decreases. 

 The purpose of this study is to investigate the influence of fire in a mesic 

ecosystem, specifically a high-elevation red spruce (Picea rubens Sarg.) forest on 

Whitetop Mountain in the southern Appalachian Mountains.  Six plots were established 

in a high elevation red spruce stand to characterize the stand composition. Tree ring data 

were collected to investigate radial growth relations to inter-annual climatic variability 

and cross-sections were used to investigate fire history.  Red spruce continued to 

establish throughout the 19th century until a severe fire occurred in 1919 and caused a 
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new cohort of yellow birch (Betula alleghaniensis Britt.) to establish within the stand.  

Logging and fire caused high mortality in the stand, yet many spruce remain that outdate 

the past disturbances.  Red spruce saplings continue to persist in the stand, showing 

regeneration despite the abundant hardwoods.  Moisture was the main contributing 

factor to red spruce growth in the dendroclimatic analysis.  Red spruce radial growth was 

significantly correlated to high precipitation and low temperatures of the previous 

growing season, which is similar to recent research results.  This study collaborates the 

current literature on red spruce growth along with the results found here in creating a 

model to represent the growth characteristics of red spruce when inter-mixed with 

hardwoods after a severe disturbance.   
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CHAPTER I 

INTRODUCTION 

 

Disturbances that kill or damage plants alter species composition and stimulate 

ecosystem processes such as succession and invasion (Sousa, 1984; Foster and Boose, 

1995; Fraver and White, 2005).  They often delay competitive exclusion and thereby 

help maintain species diversity (Connell, 1978; Huston, 1979).  Disturbances act in 

concert with physical and biotic factors to drive vegetation structure and function 

(Thonicke et. al., 2001). Disturbance has been an important theme of recent literature in 

vegetation science (Hobbs and Huenneke, 1992; Chappell and Agee, 1996; Soule', 

Knapp and Grissino-Mayer, 2004; Lafon, Hoss and Grissino-Mayer, 2005). 

Fire events have been recognized as an important primary disturbance affecting 

the vegetation dynamics of many ecosystems (Sousa, 1984) at global, regional and local 

scales (Thonicke, Venevsky, Sitch and Cramer, 2001).  Research into mechanisms of 

plant succession following fire has emphasized the significance of life history 

characteristics of species in determining vegetation dynamics (Dix and Swan, 1971; 

Hobbs and Huenneke, 1992; Cheney, Gould and Catapole, 1993).  Recent research has 

addressed the importance of fire in dry forests (Brose and Waldrop, 2006), grasslands 

(Daubenmire, 1968; Cheney, Gould and Catapole, 1993; Morgan, 1999), and shrublands 

(Keeley and Fotheringham, 2001) and has shown that species respond differently to the  

 

__________________ 
This thesis follows the formatting of Ecology. 
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severity and frequency of fire (Turner, Romme, Gardner, and Hargrove, 1997). This 

research will investigate the influence of fire in a wet high-elevation red spruce (Picea 

rubens Sarg.) forest in the southern Appalachian Mountains.   Little is known about the 

role of fire and other disturbances in Southern Appalachian spruce stands.   

Red spruce is a conifer species of the southern boreal forests throughout eastern 

North America.  In the southern Appalachian Mountains, the species is restricted to the 

highest peaks (Adams and Stephenson, 1989).  Because of past logging and fires, spruce 

forests of the Appalachian Mountains are less extensive than in the past, often limited to 

small mountaintop stands (Shields, 1962; Stephenson and Adams, 1984).  It is an 

important species, ecologically and economically, because of its aesthetic appeal to 

tourists and high value in timber/paper sales.  Red spruce forests are home to many 

endemic animals, including several federally-listed endangered species  such as the 

Carolina flying squirrel (Glaucomys sabrinus coloratus) and Weller’s salamander 

(Plethodon welleri) (Sullivan, Lautenschlager and Wagner, 1999; Loeb, Tainter and 

Cazares, 2000).  

Whitetop Mountain in southwestern Virginia presents a rare opportunity to study 

the role of disturbances in a red spruce forest, and most importantly the response of a red 

spruce forest to fire.  In the summer of 2004, a southern pine beetle (Dendroctonus 

frontalis Zimmermann) infestation of the red spruce was treated by the US Forest 

Service on Whitetop Mountain, resulting in the clearing of dozens of red spruce trees in 

an old-growth forest.  This extensive clearing normally would not have been conducted 

because of the rarity of red spruce forests in the southern Appalachian Mountains.  As a 
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result, I was able to obtain spruce cross-sections that contain fire scars formed decades 

ago.  These enabled me to date the occurrence of fire and to examine subsequent 

vegetation recovery.  Additionally, I will investigate forest response to timbering 

because the stand appears to have been selectively logged in the past, despite its 

characterization as “old-growth” by the U.S. Forest Service.   

Few studies have described the disturbance regimes in the central and southern 

Appalachian red spruce forests (Adams and Stephenson, 1991).  Studies of disturbance 

in this forest type have emphasized gap dynamics (White, MacKenzie and Busing, 1985; 

Macguire, Brissette, and Gu, 1998; Battles and Fahey, 2000) and seedling recruitment 

(Nicholas, Zedaker and Eager, 1992; Wu, McCormick and Busing, 1999).  Previous 

studies have not investigated the impacts of fire on red spruce forests because of the 

infrequency of fire in these cool, moist sites.  My purpose is to provide insights about the 

post-disturbance successional patterns and forest dynamics that are a result of fire in red 

spruce forests in the southern Appalachian Mountains.  My research will also elucidate 

the influence of climatic variability on the growth of red spruce.  Red spruce forests may 

be threatened by ongoing climatic changes, which could favor the upslope encroachment 

of competing hardwood trees. 
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CHAPTER II 

OBJECTIVES 

 

 The objective of this study is to investigate red spruce forest dynamics and 

response to disturbance and climate in a high-elevation stand in the southern 

Appalachian Mountains.  This research is important as old growth spruce stands are rare 

within the southeast boreal forest, yet provide a number of unique ecological functions.  

Coupled with this, past methods used to collect stand history data oftentimes caused tree 

mortality and were therefore avoided when possible (Lorimer, 1980).  This combination 

has led to a sparse data set for southeastern spruce stands.   

The following questions serve as a framework for conducting this research: 

1. Fire characteristics:  When did fires occur in the stand, according to the fire-

scar record preserved in the spruce cross sections?  Did the surviving trees 

exhibit increased radial growth, which would imply that the fires were severe 

enough to cause substantial tree mortality? 

2. Stand response to disturbance:  Were fires followed by the establishment of a 

new cohort of trees (e.g. yellow birch, Betula alleghaniensis) that are 

considered to be disturbance-dependent?  Did red spruce recruitment occur 

after fires? Did the response of the red spruce forest to logging differ from its 

response to fire? 

3. Climate response:  How does the radial growth of red spruce respond to inter-

annual climatic variability?   
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CHAPTER III 

LITERATURE REVIEW 

 

Fundamentals of Disturbance 

 Disturbances provide spatial and temporal heterogeneity in a landscape structure 

(Sousa, 1984).   In recent years, disturbances have been the focus of much research to 

determine their importance on various landscapes and to interpret the influence of 

invasive species encroaching on natural habitats.   

 Pickett and White (1985) define a disturbance as “any relatively discrete event in 

time that disrupts ecosystem, community or population structure and changes resources, 

substrate or availability, or the physical environment.”  Additional definitions have been 

proposed, for example, processes that can remove or damage biomass (Grime, 1985), or 

changes in the community structure caused by events outside the ecosystem’s hierarchal 

level (Pickett, 1991).  For this thesis, I will follow the definition proposed by Grime 

(1985).   

 Disturbances are characterized by their frequency, intensity and severity.  

Frequency is best described as how often a disturbance occurs (Frelich, 2002).  The 

amount of energy imparted by a disturbance is intensity.  For example, the amount of 

heat released by fire in a given unit of time would be an example of intensity.  Severity 

can be described as the amount of plant mortality that results from the disturbance. 

 Connell’s (1978) intermediate disturbance hypothesis proposes that species 

diversity is highest when disturbance is neither too high nor too low in frequency and 
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severity.  Highest levels of diversity are maintained when disturbances occur at an 

intermediate frequency or severity.  Low disturbance frequencies result in competitive 

exclusion, favoring the dominant species.  Higher frequencies permit only the species 

that are tolerant of disturbances to persist in the community. 

 Disturbance can have a variety of influences on the successional development of 

vegetation.  Disturbances may “set back” succession to an earlier stage of development 

(Abrams and Scott, 1989).  In many cases, however, they accelerate the replacement of 

pioneer tree species by later-successional species.  Disturbances also may shift 

vegetation development toward a novel trajectory (Sprugel, 1976) especially if the 

disturbance regime is altered beyond historical conditions.   Disturbance regimes and 

stand dynamics of red spruce forests have stimulates considerable interest.  In the 

following sections I review red spruce biogeography- its distribution, disturbance 

regimes, and climatic relations.   

 

Quaternary Changes in the Distribution of Red Spruce 

During the last glacial maximum, glaciers reached as far south as 41°N and 

covered much of North America.  Ocean levels were reduced and temperatures were 12° 

C lower than at present (Watts, 1979), resulting in a cold, dry climate.  Before the glacial 

maximum, red spruce is thought to have occurred between 34° and 37°N  and it was 

intermixed with fir (Abies), larch (Larix), jack pine (Pinus banksiana), and hardwoods in 

low elevations (Delcourt and Delcourt, 1988).  Spruce-pine forests only occurred at low 
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elevations, and persisted until approximately 12,500 years ago, when an abrupt shift in 

climate and vegetation occurred.   

The Laurentide glacier shrank approximately 15,000 years ago (Prentice, Bartlein 

and Webb, III, 1991).  Picea nearly disappeared from the pollen record in the 

southeastern North America (approximately 9,000 years ago), suggesting that the 

warmer climates forced it into the highest bogs and mountaintops. After the Holocene 

maximum, the extent of spruce was similar to present day (Jacobsen et al. 1987) 

extending as far south as Tennessee and as far north as Maine and Canada accompanied 

by Betula and Acer species (Watts, 1979).  Approximately 2,000 years ago, red spruce 

expanded as the global temperatures cooled (Lindbladh, Jacobson and Schauffler, 2003).  

In summary, Picea was abundant during the late glacial in southeast North America, 

became uncommon in the mid Holocene, and expanding and to some extent in the late 

Holocene.   

   

Modern Distribution of Red Spruce 

The northern extent of red spruce today is in southern Canada.  Pure red spruce 

stands cap mountaintops in the northern part of the species range.  Spruce is often 

intermixed with hardwoods and other conifers on much of the landscape.  In the southern 

parts of its range, red spruce is limited to the highest peaks of the southern Appalachian 

Mountains (Adams and Stephenson, 1989).   

Red spruce in central and southwestern Virginia ranges in elevation between 975 

and 1700 m, although mature stands are not present below 1200 m (Stephenson and 
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Adams, 1984). In Virginia, red spruce only exists in a few communities at no more than 

about a few dozen localities (Hoffman, 1950, Mazeo 1966, Adams and Stephenson 

1989).  Adams and Stephenson (1991) estimate that no more than 24 pure red spruce 

stands remain in Virginia.   

 

Disturbance Regimes of Red Spruce Forests 

Disturbance regimes of red spruce communities, though stimulating much 

interest in recent years, are not clearly understood.  Red spruce has thin bark, shallow 

root systems and flammable needles, making the species susceptible to mortality from 

fires. A single low intensity surface fire can destroy an entire stand of spruce (Murphy, 

1917). However, moist microsite conditions in red spruce forests prevent frequent fires 

from naturally occurring, thus ice storms, wind, logging and climatic variability are the 

most common disturbances in these forest types. 

Windthrow is the dominant natural disturbance agent in red spruce forests in the 

southern Appalachian Mountains (Sprugel, 1976; Reiners and Lang, 1979; Foster and 

Reiners, 1983; White et. al. 1985; Clebsch and Busing, 1989). Windthrow of older trees, 

along with individual tree mortality is the main disturbance type creating small tree gaps.  

Red spruce is an extremely shade-tolerant species and windthrow can favor regeneration 

within the small gaps (Runkle, 1985); however larger openings often favor the shade-

intolerant species.  Wu et al. (1999) estimated that the recovery time for canopy closure 

with small gaps is less than 60 years, with an average of 29 years.  White et al. (1985) 



 9

proposed that small gaps (<200 m²) took an average of 50 years to recover, with a return 

interval of 100 years.   

Individual tree mortality has highly localized effects on forest composition and 

structure (Clebsch and Busing, 1989).  It is within these gaps that permit seedlings 

establish and later gaps permit these seedlings to grow up into the canopy.  Succession in 

these forests is generally directional and moves from shade-intolerant species in early 

successional stages to shade-tolerant species in the late successional period (Bergeron 

and Dubuc, 1989).  The rate at which red spruce radial growth responds to canopy gaps 

varies, but mature trees can take as long as 5 years (Brix and van den Driessche, 1977) 

Climate warming has been proposed (Cook and Jacoby, 1977; Johnson, 

Friedland and Dushoff, 1986) as a catalyst in reducing the abundance of red spruce 

forests in the Appalachian Mountains.  Dendroecological investigations of tree ring 

growth have been shown to be an effective tool in determining the response of red 

spruce to climate change. One example of these climatic variations is the warming of 

temperatures and lower precipitation amounts between the mid 1950s and late 1960s. A 

decrease in red spruce density and basal area over 15 years in northern New England as 

a result of climatic variations since the mid-1950s has been shown in many reports 

(Cook and Jacoby, 1977; Siccama, Bliss and Vogelmann, 1982; Scott, Sicamma, 

Johnson and Breisch, 1984). During this time, a drought occurred in the high elevation 

red spruce stands, altering growth rates and densities across its extent.  

Logging has been an important disturbance in forests of eastern North America.  

Colonial expansion, as well as the establishment of commercial timber companies that 
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began in the mid-1850s, resulted in many forests being leveled and the loss of many 

species that are becoming less extensive today.  The southern Appalachian Mountains 

were heavily logged between 1880 and 1925 (Stephenson and Adams, 1984; Pyle and 

Schafale, 1988) reducing red spruce populations by half; some accounts suggest up to 90 

percent loss.  Murphy (1917) reported a decrease in red spruce acreage from 445,000 to 

60,000 acres as a result of logging in the beginning of the century.  Further, red spruce 

forests in West Virginia declined from approximately 200,000 to 600,000 hectares of red 

spruce and have now been reduced to 17,500 to 44,500 hectares (Mayfield, 1997).  

Subsequent fires persisted in this region after the logging, causing forests to have a shift 

in their composition to hardwoods (Pyle and Schafale, 1988). 

Beginning in 1902, logging shifted from the northeast United States and Canada 

to the more southern forested areas of Virginia and West Virginia.  In 1909, the spruce 

of Virginia produced an estimated 79,672,000 board feet of saw-timber (4.9% of the 

U.S. spruce production).  To compare these figures, Maine, the leading spruce producer, 

cut an estimated 421,297,000 board feet of spruce saw-timber (24% of U.S. spruce) 

(Murphy, 1917).  Once the spruce was cut in these areas, slash was left by the loggers, 

often resulting in fires to spread causing higher mortality. 

 

Red Spruce Forest Succession Models 

 Different types of models have been proposed to describe and predict the 

dynamics of forest ecosystems (Bugmann, 2001).  Gap models have been widely used in 

exploring the successional sequence of red spruce forests (Urban, Bonan, Smith, and 
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Shugart, 1991; Bugmann, 1997; Larocque, Archambault and Delisle, 2006).  What has 

been learned from these models is that red spruce consistently increases in abundance 

and biomass throughout time.  However, the interacting species, such as yellow birch, 

fluctuate in their basal area and abundance throughout time.  Red spruce typically peaks 

at 140 years in abundance; however, at lower elevations the peak could be much sooner 

(Leak, 1991).  Once red spruce has become established in the forest, it continues to 

increase in biomass, until the carrying capacity of the community is reached.  Once the 

carrying capacity is reached, red spruce biomass remains relatively constant.   

 

Climate Relations of Red Spruce 

 Red spruce forests located in the southern Appalachian Mountains have a longer 

growing season than forests in the northern extent.  Longer growing seasons, in 

combination with high humidity and rainfall, explain the higher growth rates than in 

north (Oosting and Billings, 1951).  Tree ring studies have proven to be effective in 

investigating the climate-growth relationships of red spruce.  Inter-annual variations in 

tree ring radial growth are associated with temperature rather than rainfall (Conkey, 

1979; Cook, 1987) and have shown positive results in locating climate signals in the past 

that may have altered forest composition and distribution.  In conducting such research, 

ring width variability is examined and is tested via statistical methods to find 

correlations between climate factors such as temperature, precipitation and PDSI 

(Palmer Drought Severity Index).  PDSI is a measure of detecting abnormal wet or dry 

conditions. 
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 Comparative research suggests that red spruce radial growth is highly correlated 

to previous year’s climate. In the southern Appalachian Mountains, radial growth is 

negatively correlated to previous year’s late summer temperatures, suggesting that 

extreme temperatures do not favor red spruce growth (Sicamma, 1974; Conkey, 1979; 

Johnson et al., 1986; Cook, Johnson and Blasing, 1987).  The general consensus among 

current research is that red spruce favors cool summers, early winters and high 

precipitation to have above normal growth.   

 Red spruce response to PDSI is not clearly understood.  Attempts in finding 

correlations between ring widths and PDSI have been made (Cook and Jacoby, 1977; 

Adams, Stephenson, Blasing and Duvick, 1985), yet are not conclusive.  Two significant 

droughts have been documented in the northern and southern Appalachian Mountains, 

taking place in the 1930s and 1960s (Cook and Jacoby, 1977; Adams et al. 1985; 

Johnson et al., 1986; Johnson, Cook and Sicamma, 1988).  Ring width variability has 

been shown to be correlated to the onset of drought since the 1960s and has shown poor 

recovery since in sampled stands (Adams et al., 1985).  The correlations found were 

derived from annual July PDSI values and December PDSI values.  Narrower ring 

widths and higher PDSI values are the signature marks of these drought onsets, resulting 

in dieback and foliage loss to the red spruce, along with other species as well such as fir.  

As a result, red spruce is limited in making a recovery from drought due to the loss of 

resources.   
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CHAPTER IV 

STUDY SITE 

 

General Description 

Whitetop Mountain is located in the Jefferson National Forest in southwestern 

Virginia at 36°38`19``N, 81°36`37``W (Fig. 1 (USGS, 1989)).  It is the second highest 

peak in Virginia (1682m), and the adjacent peak Mount Rogers (1746 m) together form 

the Balsam Mountains (Stephenson and Adams, 1984).  Whitetop Mountain serves as a 

tri-border between Grayson, Smythe and Washington counties, along with residing near 

the border of Tennessee, Virginia and North Carolina.   

 
 

 
 
Fig. 1 – DOQQ (USGS, 1989) image of Whitetop Mountain, VA.  The winding road in the center of the 
image is Forest Service Rd. 89.  The dark shaded areas are red spruce stands.  The road on the right is 
Virginia Route 600 which passes through the gap between Mount Rogers and Whitetop Mountain. 
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 The soils of Whitetop Mountain are derived from igneous rocks (rhyolite) and 

are poorly sorted (Coile, 1938).  The soils are considerably acidic, ranging from 3.5pH 

to 5.5pH.  The two soil types upon the crest and slopes are Burton stony loam and Ashe 

stony loam (Coile, 1938).   Ashe stony loam is the most common soil layer within 

Grayson County, ranging in depth from 6 to 10 inches.  It is a light brown or brownish 

yellow loam.  In moist sites, the surface layer can extend as deep as 18 inches where 

biomass has accumulated or in drainage areas.  The sub-soil extends approximately 28 to 

30 inches deeper and is light brownish-yellow or deep-yellow clay or clay loam 

(Devereux, 1930).   A dark, thin layer on the summit is composed of organic content 

(Shields, 1962) which is often eroded in heavy rains, exposing the underlying igneous 

rocks.   

 Mean January and July temperatures in Marion, Virginia (approximately 19.3 km 

from Whitetop at 661 m) are 1.4° C and 22.4° C (Stephenson and Adams, 1984), 

respectively.  The annual average precipitation in Marion is 133 cm; however, Adams 

and Stephenson (1989) propose that the summit may receive as much as 150 cm 

annually due to orographic enhancement.   

 Little is known of the land use history of Whitetop Mountain before 1900.  A 

early role of Whitetop Mountain was its establishment in 1772 as part of a boundary line 

between the Cherokee Nation and the colony of Virginia (Shields, 1962).  Coale (1874) 

conducted a biography on Wilburn Waters, a notorious miner and hunter, and described 

Whitetop as remote and poorly accessible (Coale, 1874).  Pyle and Schafale (1988) 

located a map of Grayson County from 1897 with a hotel near the summit of Whitetop.  
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Before 1900, various parts of Whitetop were used for livestock grazing, but exact 

locations are not documented.   

 In 1902, much of Mount Rogers, adjacent to Whitetop, was logged.  Railroads 

and access roads were constructed to remove the timber.  Between 50,000 to 100,000 

board feet per acre were removed from the Mount Rogers area when logging began 

(Pyle and Schafale, 1988).  However, this is only an estimate since detailed logging 

records were not kept until approximately 1924 (Pielke, 1981).  From 1902 to 1909, 

Whitetop Mountain timber was not cut because the trees were not mature (Pyle and 

Schafale, 1988).  A longtime resident of Konnarock, Virginia, which is located at the 

base of Whitetop Mountain, informed Pyle and Schafale (1988) that the mature red 

spruce was selectively harvested from Whitetop Mountain between the end of World 

War I and the U.S. Forest Service acquisition in 1922.  Beginning in 1930, in addition to 

the hotel tourist traffic on the summit, Whitetop Mountain became a tourist attraction 

because of the scenery and a fiddler’s convention (Pyle and Schafale, 1988).   

 

Forest Condition in 1922 
 
 I located an Examination Report in the George Washington and Jefferson 

National Forest Supervisor’s Office in Roanoke, Virginia.  This report contained 

information such as logging patterns, brief land use history and tree inventories.  It was 

written in 1922 by H.L. Russell, a forest examiner involved in the purchase of the land 

by the Forest Service. 
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 Two tracts of land on and around Whitetop Mountain were purchased from the 

Douglas Land Company in 1922 at $4.00 per acre.  The purchase included two separate 

tracts, 2b (Fig. 2) containing 528 ha. and 2c (Fig. 3) with 542 ha.  Upon purchase of the 

tracts, forest examinations were conducted by Russell to inventory trees and assess the 

quality of the land.  Tract 2b is of most importance to this study because it is the location 

of the stand I sampled.    

 Maps associated with the examination report (Fig. 2 – 4) provide information 

about stand location and logging activities.  The red outlined area in Fig. 2 depicts the 

red spruce stand present on Whitetop today and is classified as “Cut-Over” (refer to Fig. 

2).  The areas marked with “S” refer to areas that are spruce dominated. 

 

 
 
Fig. 2 – Map from Examination Report of 1922 (Russell, 1922) showing the survey boundaries of tract 2b 
along with species and logging information.  The red outlined area is the red spruce stand that is the 
furthest right in Fig. 1 along the service road.  
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Fig. 3 – A snapshot of tract 2c, west of tract 2b, from the Douglas Land Company sale of Whitetop 
Mountain (Russell, 1922). 
 
 

 
 

 
Fig. 4 – The map legend for Figs. 2 and 3 (Russell, 1922). 
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 The report describes tract 2b as being left alone for the most part, with only 

select trees being cut that were of profitable size.  The remaining trees in the stand were 

left alone for future cutting if necessary. The report indicates logged areas in these two 

tracts were “heavily” timbered for red spruce (only on Mount Rogers), sugar maple, red 

oak, ash, beech and birch.  Spruce was overlooked in tract 2b because of many small, 

unprofitable trees, but noted as “timber of good quality” that would be profitable to cut 

at a later time. 

   

Current Status of Study Area  

 Two clear cuts were created during 2004 in spots infested by southern pine beetle 

(Fig. 5).  These clear cuts were approximately 0.8 hectares each, located on both sides of 

the Forest Service road on Whitetop Mountain approximately 100m apart.  The two 

cleared areas are within the same red spruce stand, but will be described as two different 

areas of the site.  The northern clearing will be referred to as the east side of the stand 

and the other clear cut will be described as the west side of the stand.  This terminology 

will be used consistently throughout this study.  The clear cuts that were cut in 2004 are 

within the red outlined area in Fig. 2 (USGS, 2000), and also the most eastward red 

spruce stand in Fig. 1.   
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Fig. 5 – USGS (2000) topographic map of Whitetop Mountain.  The private road labeled on the map is 
Forest Service Road 89.  The red shaded areas are the GPS point boundaries in which I collected of the 
clearings made by the US Forest service in 2004.  These clearings are within the same red spruce stand 
indicated in Fig. 2.   
 
 
 The west side of the stand (Fig. 6) was cleared much more than the east (Fig. 7), 

leaving few living trees standing regardless of species.  All spruce trees, mature and 

juvenile, were removed from both clear cuts.  The only living trees to remain were 

juvenile birch and sugar maple trees.  Both clearings have many dead trees, mostly 

hardwoods, lying on the forest floor; however some living hardwoods remain today.  

The infected spruce trees were cut at the base.  Because of heavy visitor traffic along this 

road today, a placard was placed near the clearings to explain to tourists the reason for 

the timber cuts.  
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Fig. 6 – West side of the stand that was cleared in 2004.  

 

 

Fig. 7 - East side of the stand that was cleared in 2004 
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The west side of the stand is dominated by red spruce (Fig. 8) with striped maple 

(Acer pensylvanicum L.), sugar maple (Acer saccharum), red maple (Acer rubrum), 

black cherry (Prunus serotina Ehrh.), service berry (Amelanchier arborea), yellow birch 

(Betulla alleghaniesis Britton) and mountain ash (Sorbus amaericana).  

 

 

Fig. 8 – Spruce-dominated community on the west side of the stand with easy navigation along forest 
floor. 
 

 The understory of the west side of the stand has a clear understory and is easy to 

navigate through, but patches of great rhododendron (Rhododendron maximum) are 

present along stream channels and damp sites.  Another obstacle to note in the stand was 

downed snags.  These snags were mostly mature spruce that caused great piles of debris 

in their paths.   
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Fig. 9 - Canopy cover of the west side of the stand consisting of mostly red spruce.  

 

The canopy on the west side of the stand was dense with red spruce cover, along 

with occasional treefall gaps (Fig. 9).  Saplings of various sizes were present in patches 

along with numerous seedling patches.  Seedling and sapling patch locations were 

consistent with canopy gap openings. 

The east side of the stand (Fig. 10) is quite different than the western side.  It is 

mainly composed of hardwoods, most importantly yellow birch, sugar maple and striped 

maple.  Spruce is present along the road, but becomes less abundant down-slope the east; 

however some seedlings and saplings still persist.  Moving approximately 200 m from 

the road, yellow birch becomes the dominant species, with few spruce saplings 

measuring approximately 10 to 15 cm DBH.  When moving away from the road to the 

east, the canopy on the east side of the stand is more open than the west.  This was 

partially due to the hardwoods not in leaf at the time of sampling, but also there were 
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fewer trees.  The forest floor was covered with leaf litter and downed logs, but for the 

most part, was relatively open and easy to navigate through. 

 

 

 
 
Fig. 10 – An example of the eastern side of the stand consisting of mainly yellow birch and few red spruce 
seedlings and saplings. 
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CHAPTER V 

 METHODS 

 

Field Methods 

In the summer of 2004, Forest Service personnel cut cross sections from the 

spruce stumps that remained after the southern pine beetle infected trees were harvested.  

To characterize stand structure and composition, I established six plots adjacent to the 

clear cuts during May 2006, as shown in Fig. 11a.  All plots were laid out along a central 

transect line.  Each plot measured 20 x 50 m and was 10 m from adjacent plots.  Each 

plot was divided into five subplots measuring 10 x 20 m and labeled as sub-plots A-E as 

shown in Fig. 11b.  A GPS unit was used to record each of the plot corners. 

 

 

  

                    (a)       (b) 

Fig. 11 – Plot design for stand composition.  a. Plot layout within cleared areas.  b. A sketch of a single 
plot design.  Saplings were collected is the dark grey area and the seedling nests the small 1x1m areas.   
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“Trees” were defined as being >50 cm height and >5 cm in DBH (Fig. 12). The 

species and DBH of each living tree was recorded and the tree was assigned an 

identification number.  Dead trees, standing or uprooted, were recorded, but not cored or 

given an identification number.  An increment borer was used to extract a core from the 

base of each tree.  Red spruce trees were cored twice from opposite sides in order to 

collect as close to the pith as possible.   

 

 

Fig. 12 – An example of a red spruce tree. 
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“Saplings” were defined as being greater than 50 cm in height, but less than 5 cm 

in DBH (Fig. 13).  Saplings were sampled within a 10 x 10 m subplot nested inside each 

plot (Fig. 11b).  One cross section was obtained from each sapling present.  

 
 

 

Fig. 13 – An example of a sapling. 
 

 “Seedlings” (Fig. 14) were defined as woody stems less than 50 cm in height.  

Seedlings were recorded in nested plots as well, measuring 1 by 1 m, with a total of 10 

seedling subplots per plot (identified as numbers 1 through 10 in Fig. 11b).  Each 

seedling was recorded by counting each individual, and noting the number and species 

type.   

 

 

Fig. 14 – An example of a red spruce seedling. 
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 I noticed a compositional shift in the tree stratum while conducting field work 

and I realized that the two sides of the stand needed to be analyzed separately because of 

a distinct composition difference.  The reason for this shift from spruce to birch (moving 

west to east) is unknown at this time, but may be due to the road, between the two parts 

of the stand, acting as a fire block in the past decades with fire activity.  In the remaining 

parts of the analysis, I will be examining more closely the differences in the two sides of 

the stand and also examine the compositional gradient that may be present.  

 

Laboratory Methods 

 All increment cores were prepared at the Plant Geography Laboratory in the 

Department of Geography at Texas A&M University.  Each sample collected in the field 

was air dried for at least 48 hours and then glued to a wooden core mount and labeled.  

A belt sander was used with extra coarse (80 grit) sandpaper to plane the surface of the 

cores, and then with progressively finer sandpaper (220, 320, 400 grit) to prepare a 

smooth surface with easily visible rings. 

 A master chronology (Stokes and Smiley, 1968) was constructed based on the 

cores from 18 trees and was used for crossdating.  Crossdating (Fritts, 1976) allows each 

ring to be assigned correctly to the year of formation.  The purpose of the master 

chronology is to ensure the correct dating of all the cores with irregular growth patterns 

that are not easily identifiable.  The increment cores that were chosen for the master 

chronology were those with a consistent growth pattern to each other with a life span 
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that dated as far back as possible.  A total of 16 red spruce increment cores were used in 

the master chronology while attempting to use an equal number of cores from each plot.   

 The master chronology was measured using Measure J2X software and a Velmex 

measuring system with 0.001mm precision.  The dendrochronology package COFECHA 

(Grissino-Mayer, 2001b) was used to crossdate the measured ring-width series 

statistically.  Crossdating is the matching of year to year variations in ring width among 

different trees (Grissino-Mayer, 2001a).  The master chronology extended from 1895-

2005. 

 A total of 227 cores (from 147 trees) (Table 1) were measured and then 

crossdated against the master chronology.  Although two cores were taken from each 

tree in the field, some cores were of no use upon measurement because of rot or damage 

in transit.  For the 49 spruce cores (from 41 trees) that did not crossdate, simple ring 

counts were used to estimate tree age.  For cores that did not intersect the pith, standard 

pith estimators (Applequist, 1958) were used to estimate the pith date based on the 

curvature and width of the inner rings.   

 

Table 1 - Descriptive statistics and results of COFECHA analyses. 

 

 

Species 

 

No. 

series 

 

Master series 

interval 

 

Series inter-

correlation 

 

Average mean 

sensitivity 

 
Mean length 

of series 
(years) 

Picea 

rubens 

227 1835–2005 .453 0.244 125.8 
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Seven spruce cross sections contained fire scars.  Each cross-section was sanded, 

measured and crossdated against the master chronology, then each fire scar was dated 

and recorded. Saplings were aged solely by ring counts (i.e. were not crossdated) 

because they did not contain enough rings for crossdating. 

 Yellow birch cores were sanded to a fine surface for clear ring visibility.  

However, when measured, the yellow birch cores could not be crossdated against the 

spruce chronology or each other.  Therefore, ring counts along with pith estimations 

were conducted to estimate the dates of establishment.  Age class histograms were 

constructed to identify pulses of recruitment. 

 

Dendroclimatological Methods 

 Climate data for the summit of Whitetop Mountain are not available for the 

length of the chronology in this study; therefore I used state division climate data to 

estimate the climate patterns in the region of the site.  Whitetop Mountain rests near the 

borders of three states, therefore the state divisions adjacent to its location were used in 

averaging the climate data.  Climate data were obtained from the National Climatic Data 

Center (NCDC, 2006).  State division data (Fig. 15) were obtained for divisions 2, 1 and 

6 for North Carolina, Tennessee and Virginia, respectively. 

 Variables of interest within this data set were Palmer Drought Severity Index 

(PDSI), mean monthly temperature and precipitation for a total of 111 year span (1895-

2005).  PDSI characterizes moisture conditions based on both precipitation and 

temperature.  PDSI values often are correlated with ring widths of eastern trees (Adams 
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et al., 1985).  Within each variable’s data set, each monthly value was averaged to each 

division data set to have a single value for each year of data. 

 

 

Fig. 15 – Map of state climate divisions used in climate analyses. (Map created from NCDC maps, 2006) 
 

 Cores from eight trees were added to the original master dating series to create a 

dendroclimatology series (i.e. 46 cores from 26 individual trees).  The criterion in 

choosing these extra cores was simple:  at least one core of a tree must have a consistent 

and clear ring-width pattern that could be easy crossdated back to 1900.  These cores 

were similar to the master chronology cores in that they were clear, but were not 

originally chosen because they did not date as far back as the others.  Both cores of each 

tree were included in the new dendroclimatic series.  

 The ARSTAN program (Cook and Holmes, 1986) was used to standardize the 

ring widths for the 26 series.  Standardizing the ring widths removes the variance at low 

frequencies and also removes the overall long-term growth trend (Grissino Mayer et al., 

1992).  The double-detrending option in ARSTAN (option 2) was used to (1) fit a linear 

regression or negative exponential model and (2) fit a cubic smoothing spline that 
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retained 50 percent of the ring width variance over a 20 year interval (Cook and Holmes, 

1986).  The resulting detrended series was therefore appropriate for investigating radial 

growth response to year-to-year climate variability, but not to longer-term climate 

trends.  Residuals were calculated by dividing the ring width for each year by the 

modeled value (Johnson et al., 1988).   

 After standardizing the series, ARSTAN generates a single ring-width index 

chronology with autocorrelation removed.  I correlated this residual chronology with the 

monthly climate data for January to September of the year of ring formation, and for the 

previous year by offsetting the data by one year.  SPSS v.14 was used to calculate the 

Pearson correlation coefficient for each month.  

 

Radial Growth Release Methods 

 To examine the release patterns of the spruce cores I used the program JOLTS, 

following Holmes (1999).  This method is ideal for red spruce trees in that they are 

shade tolerant and their rings will clearly show the growth following a disturbance.  

Radial growth patterns have been recently studied (Lorimer and Frelich, 1989; Wu et al., 

1999) to not only examine characteristics of disturbances (i.e. frequency and severity) 

but also detect any sudden changes in the regime. In this study, changes in recent and 

past growth patterns in red spruce may begin to give insight as to the environmental 

changes that occurred in the past. 

 Trees that exhibited a release at a given year when ring width was at least 50 

percent greater than the mean ring width of the previous 10 years (program default: jolt 



 32

release factor of 1.5 (50% growth increase) and 10 year moving average (Holmes, 1999).  

The increase in ring width was to be maintained for 10 years (Brose and Waldrop, 2006).  

A major release was identified with a 100 and 50 percent increase in average growth 

lasting at least 10 years.  A 10 year growth period was chosen for this study because of 

red spruce’s shade tolerance characteristics.  For example, with a disturbance intense 

enough to open the canopy, it can be expected that the underlying juvenile spruce 

saplings will exert an increase in growth with a less dense canopy following a 

disturbance.  
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CHAPTER VI 

RESULTS 

 
Stand Composition 
 
 Red spruce and yellow birch were the dominant species (Tables 3-8) at the time 

of sampling (Table 2).  Sugar maple and striped maple were the next most abundant 

species, but were much less abundant than red spruce and yellow birch.  The remaining 5 

species were only found rarely and were not of major importance.   The average age of 

the sampled trees was 126 years (±44 years), with the oldest dating to 1732.   

 

Table 2 –Total inventory of sampled trees, saplings and seedlings.  

Species 

Tree 
Basal Area 

(m²/ha) 

Tree 
Density 

(stem/ha) 

Sapling 
Density 

(stem/ha) 
Seedling Density

(stem/ha) 
Red Spruce 
Picea Rubens Sarg. 35.05 (±12.57) 350 (±126) 1400 (±1108) 10000 (± 29972)
Yellow Birch 
Betulla alleghaniesis 
Britton 10.35 (±9.85) 198 (±98) 0 (±0) 7666.7 (±32800)
Sugar Maple 
Acer saccharum 2.70 (±3.62) 35 (±36) 0 (±0) 833.33 (±3340) 
Striped Maple 
Acer pensylvanicum L. 1.21 (±9.13) 161 (±91) 1133 (±1133) 0 (±0) 
Black Birch  
Betula lenta 0.63 (±1.22) 5 (±12) 0 (±0) 0 (±0) 
Black Cherry 
Prunus serotina 0.43 (±0.84) 5 (±8) 0 (±0) 0 (±0) 
Service Berry 
Amelanchier arborea 0.14 (±1.22) 6 (±16) 0 (±0) 0 (±0) 
American Wahoo 
Euonymus atropurpureus 
Jacq. 0.11 (±0.81) 3 (±8) 0 (±0) 0 (±0) 
American Mountain Ash 
Sorbus Americana 0.08 (±2.04) 8 (±20) 0 (±0) 0 (±0) 

Total 50.68 (±11.02) 771 (±45) 281.44 (±437.4) 2056 (±9907) 
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Table 3 - Plot 1 inventory. 

 Basal Area (m²) 
Tree Density 
(stems/ha) 

Sapling Density 
(stems/ha) 

Seedling Density 
(stems/ha) 

Black Birch 0.00 0   
Black Cherry 2.15 20   
Mountain Ash 0.49 50   
Red Spruce 45.14 400 3300 160000 

Service Berry 0.83 40   
Striped maple 0.00 260 1300 20000 
Sugar Maple 5.92 0   

Wahoo 0.63 20   
Yellow Birch 7.33 170  20000 

 

Table 4 - Plot 2 inventory.  

 Basal Area (m²) 
Tree Density 
(stems/ha) 

Sapling Density 
(stems/ha) 

Seedling Density 
(stems/ha) 

Black Birch 3.75 30   
Black Cherry 0.00 0   
Mountain Ash 0.00 0   
Red Spruce 48.86 510 1500 370000 

Service Berry 0.00 0   
Striped maple 2.25 200 1500  
Sugar Maple 1.70 80   

Wahoo 0.00 0   
Yellow Birch 4.09 70  310000 

 

Table 5 - Plot 3 inventory. 

 Basal Area (m²) 
Tree Density 
(stems/ha) 

Sapling Density 
(stems/ha) 

Seedling Density 
(stems/ha) 

Black Birch 0.00 0   
Black Cherry 0.00 0   
Mountain Ash 0.00 0   
Red Spruce 45.64 450 1700 60000 

Service Berry 0.00 0   
Striped maple 0.73 220 900  
Sugar Maple 0.15 10   

Wahoo 0.00 0   
Yellow Birch 5.15 150   

 

 

 



 35

 

Table 6 - Plot 4 inventory. 

 Basal Area (m²) 
Tree Density 
(stems/ha) 

Sapling Density 
(stems/ha) 

Seedling Density 
(stems/ha) 

Black Birch 0.00 0   
Black Cherry 0.43 10   
Mountain Ash 0.00 0   
Red Spruce 31.51 290 1300 10000 

Service Berry 0.00 0   
Striped maple 3.45 180 600  
Sugar Maple 0.00 10   

Wahoo 0.00 0   
Yellow Birch 13.88 250  10000 

 

Table 7 - Plot 5 inventory. 

 Basal Area (m²) 
Tree Density 
(stems/ha) 

Sapling Density 
(stems/ha) 

Seedling Density 
(stems/ha) 

Black Birch 0.00 0   
Black Cherry 0.00 0   
Mountain Ash 0.00 0   
Red Spruce 28.61 280 300  

Service Berry 0.00 0   
Striped maple 0.75 100 2500 20000 
Sugar Maple 6.82 80   

Wahoo 0.00 0   
Yellow Birch 12.11 190  50000 

 

Table 8 - Plot 6 inventory. 

 Basal Area (m²) 
Tree Density 
(stems/ha) 

Sapling Density 
(stems/ha) 

Seedling Density 
(stems/ha) 

Black Birch 0.00 0   
Black Cherry 0.00 0   
Mountain Ash 0.00 0   
Red Spruce 10.54 170 300  

Service Berry 0.00 0   
Striped maple 0.06 10 0 10000 
Sugar Maple 1.57 30   

Wahoo 0.00 0   
Yellow Birch 19.55 360  20000 
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Date and Severity of Fires 

 Eight fire scars were found within eight of the cross sections, with fires occurring 

in 1854, 1902, 1919 and 1939.  The 1854 fire was found in only one cross section early 

in the ring record when the tree was only a sapling.  The 1902 fire was found within two 

cross sections.  The 1919 fire was also found within two cross sections and the 1939 fire 

was found in three cross sections.   The scars in the 1900s occurred in the late wood and 

appear to have resulted from growing season fires.  The 1854 fire occurred when the tree 

was young, 21 years old, and showed no characteristics of being a late season fire.  All 

fire scars were recorded in mature stages of the trees lives, with the exception of the 

1854 fire.    

  

Radial Growth Releases 

 Prior to 1840, the east side of the stand showed no releases that were detected by 

JOLTS (Fig. 16).  The east side of the stand showed the highest number of releases 

between 1910 and 1929.  The period with the most releases for the west side of the stand 

was between 1880 and 1929.  Both sides of the stand showed high number of releases in 

the 1990s.  Few differences were observed between the 100 percent release and the 50 

percent release.  
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100 % Radial Growth Increase
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50 % Radial Growth Increase
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(b) 
 

Fig. 16 – Tables representing the radial growth release outputs.  The black bars indicate the western side of 
the stand and the white bars depict the east side of the stand.  Values shown are the decades with >10 trees 
detected within that year with releases.(a) Percentage of trees with releases in ring record after testing for 
100 percent radial width increase. (b) Percentage of trees with releases in ring record after testing for 50 
percent radial width increase. 
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Age Structure of Red Spruce and Yellow Birch  

  The western side of the stand (Fig. 17a) shows a spruce dominated community 

with few hardwoods until the 1900s.  After the start of the century, red spruce 

establishment began to slow on both sides of the stand, resulting in an abundance of 

yellow birch.  In recent decades, red spruce saplings established more on the west side of 

the stand than the east side (Fig. 17b). 

Most of the yellow birch in the stand established from 1910 to 1970 (Fig. 18), but 

a few trees established in the early 1800s as well.    The west side of the stand did not 

have the sharp increase in yellow birch like the east side of the stand did.  Beginning in 

1910-1919, the east side of the stand began to increase rapidly in yellow birch 

establishment, reaching its peak between 1930 and 1949.  Yellow birch establishment 

had a peak after 1910 then slightly declined after 1940, then rose again up until 1980. 
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      (b) 
 
Fig. 17 – Red spruce tree (black bars) and red spruce sapling (grey bars) establishment.  (a) Western side 
of stand; (b) Eastern side of stand. 
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Fig. 18 – Yellow birch tree establishment on the west (black bars) and east (white bars) side of the stand.    
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Dendroclimatic Relationships 
 
 The radial growth of red spruce was correlated with all three climatic variables 

(Fig. 19).  The relationship with PDSI was strongest: a positive correlation with PDSI 

for the growing season of the previous year.  Radial growth was also related positively to 

precipitation and negatively to temperature of the previous growing season.  Further, tree 

growth exhibited a positive relationship with previous November temperature. 
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Fig. 19 – Red spruce radial growth correlations with climate.  PDSI (Blue), Temperature (Green) and 
Precipitation (Pink).   The dashed lines indicate p=.187. 
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 CHAPTER VII 

DISCUSSION 

 

 Whitetop Mountain presents a unique response to disturbance with a new cohort 

of trees being established after a series of fires. The stand in which I sampled has old-

growth components, with the majority of the spruce predating the period of logging in 

the early 20th century. This study presents a general description of not only the 

disturbance regime of a red spruce forest, but a fire regime and the successional patterns 

and dynamics associated with fire.  Unlike other red spruce studies, this thesis uses 

valuable fire scarred cross sections to reconstruct the fire regime of Whitetop Mountain, 

hoping to partially fill the knowledge gap in understanding red spruce response to 

disturbance, fire in particular.  The role of fire in these stands is not clearly understood 

because it does not occur frequently, but this study provides new insights about fire 

effects in a red spruce stand.  

  

Chronology of Stand Development 

a. The Fire of 1854 

 The 1854 fire apparently was a low severity fire because even a small sapling 

survived it with only a scar and did not change much of the stand composition.  I am not 

as confident in this fire because of the lack of data.  There was only one scar found in 

one tree, which makes me less confident that it was indeed a fire and not another type of 

injury. If any existing yellow birch established after the 1854 fire, they were not present 
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at the time of sampling.  Birch establishment patterns may have been higher during this 

time, but records are lacking and can only be speculated.  Red spruce establishment at 

this time was low as well, and its abundance can also only be speculated because there 

may have been mature trees present at this time, but had died between then and the time 

of sampling.  Radial growth releases suggest no major shift in growth pattern or 

structure.  Red spruce releases were only detected in 15 percent of the trees in the 1850-

1859 decade, giving no strong evidence of a major growth pattern change.   

 

b. The Fire of 1902 

 The 1902 fire data suggests that it was a low severity fire, causing low mortality 

and failing to significantly alter the composition of the stand.  To support the claim, 

average monthly PDSI values (Fig. 20) for the year 1902 indicate only a mild to 

moderate drought (Palmer, 1965) occurring during the summer months.  Red spruce 

typically does not begin to grow until June and normally grows until the middle of 

August (Hart, 1959).  This data, along with the visual confirmation of a late season fire, 

suggests that the fire must have occurred between June and August.  If this claim is true, 

then the stand was in a mild drought period, and it was not dry enough for a severe burn. 
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Fig. 20 – PDSI values for the year 1902, 1919 and 1939.  Values were collected from the NCDC state-
division climate data set for Virginia (Div. 5), Tennessee (Div. 1) and North Carolina (Div. 2).   
 

Radial growth releases were moderately high during the 1900-1910 decade. As 

stated before, human activity on Whitetop was increasing at the time off the 1902 fire.  

The cause and location of this fire is unknown, but it could have possibly been human 

induced because of the increased activity.  No significant red spruce or yellow birch tree 

establishment occurred as a result of the 1902 fire based on the results presented here.  

Red spruce establishment declined to one tree being established on the east side of the 

stand while the west side had eight trees establish; however, future fires may have 

burned any trees that established at this time.  Yellow birch establishment was similar on 

both sides, establishing one tree per side.  This fire apparently caused little mortality in 

the stand; however, radial growth releases indicate optimal growing conditions that 

promoted a high number of releases.  
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c. The Fire of 1919 

 The 1919 fire caused a major shift in the forest composition due to apparently 

high mortality within the forest.  Because the 1919 fire occurred in the later part of the 

growing season, the radial growth releases most likely would not have been detected 

until the 1920’s.  The high number of releases in the 1900-1919 decade can be attributed 

to logging within the stand after World War I (~1918) and increased human activity 

around the summit.  Logging in this stand was “selective”, resulting in numerous canopy 

openings being left behind as opposed to large clear-cuts that occurred on Mount Rogers 

(Pyle and Schafale, 1988).  These canopy gaps would have allowed understory trees to 

release, which were detected in my results between 1910 and 1919.  Therefore, if 

logging began in 1918, releases would not have been detected until the following year, 

suggesting that the radial growth releases detected in the 1910-1919 decade are the result 

of logging and the 1920s radial growth releases are the result of the fire, combined with 

logging. 

 Radial growth release detections were at their peak following the 1919 fire, with 

over 50 percent of trees in the sampled stand showing release between 1910 and 1919, 

most notably the 70 percent of the trees showing releases on the east side.  The 

difference in percent of trees between the two sides of the stand may suggest that the 

east side of the stand was logged and burned, while the west side was only logged.  

 Red spruce tree establishment following the 1919 fire showed no significant 

pulses.  The decade following the fire showed a slight increase in red spruce 



 46

establishment on the west side of the stand and a small decline of spruce establishment 

on the east side.  The low spruce establishment on the east side may be the result of a 

severe fire killing understory trees.  In addition to the mortality of understory trees and 

mature trees, a severe fire would have set back the establishment of red spruce by killing 

the seed bank left by prior year’s seed fall.   

 Red spruce seeds require specific conditions to germinate properly, such as 

adequate moisture and moderate soil temperature, and cool temperatures (Frank and 

Bjorkbom, 1973).  The lack of spruce establishing on the east side of the stand could be 

supported by this evidence.  As a result of the 1919 fire, red spruce never made a strong 

recovery on the east side of the stand following the 1919 fire, which left it more 

susceptible to invasion of hardwoods.  The west side of the stand showed similar 

establishment patterns to the east side, with few spruce establishing after the 1920s (less 

than 10 trees established after 1929).   

 Yellow birch establishment is the most significant difference within the stand 

after the 1919 fire.  The west side of the stand showed little increase in yellow birch 

trees establishment (10 trees establishing between 1910 and 1929).  This may be a result 

of more severe fire on the east side of the east side of the stand.  Yellow birch 

establishment rapidly increased after the 1919 fire to 17 trees being established between 

1910 and 1929.  The increase in yellow birch trees is consistent with an intense fire 

setting back succession, allowing the faster-growing trees to persist.  If the fire was as 

severe as I believe it to be, then the birch and spruce would have been competing for 

canopy room, however we see the result of this today.    
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d. The Fire of 1939 

 The 1939 fire was the last fire found within the cross sections, and I believe this 

fire to have been a low severity event.  Red spruce release detections show no significant 

pulses in radial growth in the 1930s or 1940s.  Additionally, no major red spruce 

establishment occurred as a result of the fire, with less than 10 trees establishing between 

1930 and 1949.  Yellow birch establishment peaked in the 1930s and 1940s, resulting in 

37 yellow birch trees to be established on the east of the stand.  Less than 10 yellow 

birch trees established in the 1930s and 1940s continuing to outnumber the red spruce 

until the present.   

 From 1920 to 1949, yellow birch out-competed red spruce on Whitetop 

Mountain, which subsequently resulted in part of the red spruce stand shifting into a 

mixed spruce-hardwood stand.  I believe that the 1919 fire was so severe, that it caused 

high mortality on the east side of the stand and the 1939 fire was a less severe fire that 

killed any young spruce that may have germinated after the 1919 fire.  As a result, the 

1939 fire set back succession, promoting yellow birch to densely establish once again.  

 

e. Saplings 

 Small gap dynamics best explain the pulse in sapling establishment after the 

1960s.  Gaps in the canopy are formed by the dieback and windthrow damage done to 

mature, older tress.  As these older trees begin to die, understory growth is promoted 

(Foster and Reiners, 1986; Battles and Fahey, 2000) because of the excess light 
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available.  Once the dead trees fall, little damage is done to the understory, allowing 

small seedlings and saplings to persist. This study presents a classic example of gap 

dynamics and canopy recruitment which is the principal process in sub-alpine canopy 

replacement (Runkle, 1981; Battles and Fahey, 1996; Wu et al. 1999).   

 

Dendroclimatic Relationships 

 Red spruce was dependent on previous year’s moisture availability for the 

current year’s growth pattern.  Correlations with PDSI and precipitation suggest that red 

spruce depends on the previous year’s moisture for the following year’s growth pattern.  

The PDSI correlation in this study, extending from May to October of previous year, 

shows that above average moisture will result in high ring width growth the following 

year.  Additionally, high precipitation will also result in high growth in ring patterns.  

Previous year’s temperature negatively correlated with ring widths, which suggests that 

high temperatures in the previous year will result in low growth the following year.   The 

results in this study correspond well with what is known about red spruce growth 

(Conkey, 1979; Adams et al., 1985; Cook, 1987), which is that red spruce requires cool, 

moist sites that have adequate sunlight and cool soil temperatures. This study coincides 

well with others indicating that previous year’s temperatures are negatively correlated to 

following year’s growth (Conkey, 1979; Cook et al., 1987; McLaughlin, Downing, 

Blasing, Cook and Adams, 1987).  Negative correlations with temperature suggest that 

high temperatures are not in favor of spruce because of their influence on moisture 

availability.   
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 The results in this thesis compare to other studies that have examined Picea 

response to inter-annual climatic variability.  Abrams, Copenheaver, Black and van de 

Gevel (2001) examined the old growth bogs of Pennsylvania and found that black spruce 

(Picea mariana) showed few growth releases due to inter-annual climatic variability.  P. 

mariana was highly correlated with average monthly temperature (February, April, July 

and August) and few correlations found with precipitation (November) and PDSI 

(current October; previous July was negatively correlated).  In northern China, Liang, 

Shao, Hu and Lin (2001) found that Meyers spruce (Picea meyeri) correlates to February 

and March rainfall of the current year and September of the previous year correlated 

significantly with ring growth.  Additionally, previous August and October precipitation 

positively correlated, but not significantly.   

 

Red Spruce Successional Dynamics 

I propose a model (Fig. 22), to represent the successional dynamics of the red 

spruce stand that is intermixed with hardwoods atop Whitetop Mountain.  When mature 

spruce trees die, they typically fall and leave canopy gaps, resulting in regeneration of 

spruce saplings (Battles and Fahey, 2000).  These saplings are able to withstand many 

years of suppression and release until they become mature spruce trees.  However within 

larger gaps, from fire for instance, spruce is limited in its growth capability by the higher 

competitive ability of invasive hardwoods.  The faster growing hardwoods, such as 

yellow birch, limit spruce establishment and result in a more inter-mixed forest.   
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Fig. 21 – Model representing the growth of red spruce (black line) inter-mixed with yellow birch (red line) 
after a severe disturbance.   

 
 
In the case of Whitetop Mountain, yellow birch invaded the east side of the 

stand, limiting the spruce establishment after the 1919 fire.  In this model, the x-axis will 

represent time, starting at time zero with no trees present.  The y-axis will represent 

abundance to show the stand development and replacement over time.  As time 

progresses, yellow birch abundance increases more than red spruce because of its 

growing capabilities, resulting in a birch dominated forest.  Red spruce maintains an 

increase in its abundance over time, yet it does not exceed the birch abundance until later 

in its life cycle.  

When the 100 year interval approaches, birch abundance begins to decrease 

because of its short life span.  As a result, the understory spruce that have been 

suppressed for many years begin to release rapidly, taking full advantage of the canopy 

room left by the dying birch.  Between 200 and 300 years, red spruce abundance levels 

off because of the stand carrying capacity coming to full potential.   
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This model represents conditions with no major disturbances occurring, such as 

fire or logging.  However, in the case of this thesis, a severe fire did occur in the stand, 

which resulted in the cycle to start over at time zero.  In the case of smaller, more 

frequent disturbances, such as windthrow, the abundance of red spruce changes very 

little.  If one tree is to fall as a result of wind, then the underlying saplings will soon take 

its place if it is a smaller gap (Battles and Fahey, 2000), maintaining the abundance 

level.  In the case of larger gaps, abundance will vary, depending on the size of the gap.   

The model presented here coincides with previously constructed models of red 

spruce life histories (Urban et al., 1991; Laroucque, 2006).  Red spruce maintains an 

increase in its abundance throughout time while other species fluctuate in their 

establishment.  Yellow birch is a mid successional species that has poor regeneration 

characteristics, limiting its establishment capability when other species are competing 

(Larocque, Archambault and Delisle, 2006).   
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CHAPTER VIII 

CONCLUSIONS 

 

 The purpose of this study is to provide insight into post-disturbance successional 

patterns and forest dynamics of red spruce forests due to fire in the southern 

Appalachians.  Additionally, I investigate the impacts of climate on red spruce radial 

growth and determine what climatic variables the species depends on for growth.  Little 

information is available on the fire regime within these forests, making management 

decisions difficult in the event of such disturbances. By filling this knowledge gap, 

managers will be able to better understand the implications of fire exclusion in these 

forests.  This study has demonstrated that fire is an important component in the stand 

structure of Whitetop Mountain, in addition to logging and climate.  Despite the notion 

that local conditions, such as cooler temperatures and wetter conditions, would seem to 

discourage fire events, this study has demonstrated that fire, along with climate patterns 

and logging activities, is an important component in spruce stand structure.

 Whitetop Mountain and surrounding areas sustained logging, tourism and 

grazing throughout its known land use history.  These activities probably contributed to 

the stand structure we see today (i.e. stand composition, tree age distribution and 

density).  Beginning in the late 19th century, tourism activity increased as a result of a 

hotel on the summit and the aesthetic appeal of the red spruce forests upon Whitetop’s 

Mountain.  Based on my results, the first severe fire was in 1919, causing substantial 

mortality that resulted in a new cohort of hardwoods to be established.  This fire was 
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most likely the result of logging practices within the red spruce stands on Whitetop 

Mountain, even though logging was selective (Pyle and Schafale, 1988).  The service 

road likely acted as a firebreak, protecting the west side of the stand from more 

mortality.   

 This study is similar to other studies (i.e. Cook and Jacoby, 1977; Adams et al. 

1985; Cook et al., 1987; Battles and Fahey, 2000) in investigating stand structure of red 

spruce forests and their climatic responses.  This thesis shows that red spruce is moisture 

dependent and any alteration in its moisture regime can result in excess growth or 

suppression for many years.  PDSI and precipitation had the highest correlation to ring 

width growth; supporting the claim that normal to above normal reception of moisture 

stimulates red spruce growth in the following year. 

 Forest Service personnel face a challenging task in maintaining biodiversity in 

these stands.  In order to properly restore the red spruce to historic levels, severe, large 

scale fires must be excluded.  Fire was shown to have negative impacts on the sampled 

stand, resulting in a sudden composition shift which will take time to reverse.  In 

addition to protecting red spruce, forest managers must also monitor the endangered 

species that use these stands as their natural habitats (i.e. Carolina northern flying 

squirrel and the Weller’s salamander).   

 Four fires were recorded in the tree ring record, three of which occurred in the 

early 1900’s.  One of these fires, the 1919 fire, was severe enough to cause a long-term 

shift in stand structure from spruce to disturbance-dependent hardwoods.  As a result of 
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these fires, red spruce has been unable to fully recover, establishing less than 20 trees 

after 1939.  

In addition to fire disturbances, red spruce stands were also impacted by logging 

during this time.  Unlike fires, however, logging has been shown to have had a positive 

effect on spruce stands.  Logging was probably the major cause of the radial growth 

releases between 1910 and 1919.  The removal of select red spruce trees would have 

opened up the canopy, promoting understory trees to grow into the canopy.  Together, 

fire and logging were more damaging than either of these disturbances would have been 

separately.  The combination of intensive logging and deliberately ignited fires allwed 

the cohort of yellow birch to establish and has prevented the re-establishment of spruce.   

 The response to the other fires found in this study is thought to be minimal as no 

major shifts in composition or radial growth releases were detected.  The fires appear to 

be low intensity, causing low mortality.  These fires may have been small surface fires, 

never reaching the canopy, that were quickly extinguished due to moist conditions.  

Finally, the response of red spruce to inter-annual climatic variability is dependent on 

moisture and temperatures from the previous year.  A combination of higher moisture 

and low temperatures provides optimal growth conditions for red spruce.  Changes in 

any of these variables results in suppression of red spruce for extended periods of time.  

The long term climate response of red spruce will be interesting to investigate in future 

years, because of rising global temperatures and the elevation restrictions of red spruce 

in the southern Appalachian Mountains.   
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