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ABSTRACT 
 

Influence of Autoinducer 2 (AI-2) and AI-2 Inhibitors Generated from Processed 

Poultry on Virulence and Growth of Salmonella enterica Serovar Typhimurium. 

(May 2007) 

Kenneth W. Widmer, B.S., The University of Texas, El Paso;   

M.S., New Mexico State University 

Chair of Advisory Committee: Dr. Suresh Pillai 

 

Bacteria produce and respond to external stimuli using molecules termed 

autoinducers.  Poultry meat contains inhibitors which interfere with AI-2 

signaling.  The primary objective of this work was to understand the effects of 

AI-2 on the virulence and growth of Salmonella Typhimurium, and if the 

introduction of AI-2 inhibiting compounds would influence these effects.   

Using DNA microarray analysis, expression of 1136 virulence-related 

genes in a Salmonella Typhimurium wild type and a luxS mutant strain, PJ002 

(unable to produce AI-2), was monitored after exposure to treatments 

containing in vitro synthesized AI-2 (AI-2) and poultry meat (PM) inhibitors.  

Responding gene expression was unique in the presence of AI-2, with 23 genes 

differentially expressed at least 1.5-fold (p < 0.05).  The combined AI-2 + PM 

treatment resulted in 22 genes being differentially expressed.  Identification of 

inhibitory compounds was attempted using GC analysis on a hexane solvent 

extract obtained from a PM wash.  From this analysis, chemical standards of 
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linoleic, oleic, palmitic, and stearic acid were tested for inhibition using V. 

harveyi BB170.  Combined fatty acids (FA) demonstrated inhibition against AI-2 

at 60 % while 10-fold and 100-fold concentrations had inhibition of 84 % and 70 

%, respectively.  Growth of PJoo2, was studied using M-9 minimal medium with 

FA of varying concentrations, supplemented with either AI-2, or 1X phosphate 

buffered saline (PBS).  Comparative analysis was done calculating the growth 

constants based on OD 600 values for each treatment.  No significant difference 

in the combined FA + AI-2 treatments was observed against the AI-2 treatment.  

A significant increase in the growth rate constants of the AI-2 treatments was 

observed, however, compared to the PBS control (P = 0.01).  Bacterial 

invasiveness, using a murine macrophage cell line, RAW 264.7, was also studied.  

AI-2 decreased cell invasiveness (P = 0.02), while the addition of combined FA 

improved invasiveness to normal levels.  The results of these studies indicate 

that AI-2 does have an effect on the growth and virulence of Salmonella, but this 

is not uniformly modulated by the introduction of fatty acids, that inhibit AI-2 

activity, suggesting that inhibition may be based on species specific transport 

systems.  
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CHAPTER I  

INTRODUCTION 

Quorum sensing is a term that describes the overall processes of the production, 

secretion, and uptake of chemical signal molecules that bacteria may utilize for 

interspecies communication (94, 133, 148).  There has been an indication that 

these quorum sensing molecules have some influence on virulence gene 

expression (22, 31, 34, 98, 105, 127).  Additionally, because of the potential role 

quorum sensing may have on bacterial virulence, some species may utilize these 

signals for not only inter-species, but also intra-species, communication (38).  

Hence, the interaction of eukaryotic cells with bacterial pathogens, primarily by 

interfering with quorum sensing processes, may provide some understanding to 

host-pathogen interactions (25, 95). 

The role of quorum sensing in of foods has not been well established.  

Bacteria can produce quorum sensing signals in certain food matrixes (17), but 

the direct role of these signals for survival, or ability to colonize, on foods is not 

well understood (14).  A particular characteristic of some food matrixes is the 

ability to impede these quorum sensing signals (85).  The identification of these 

compounds which impede quorum sensing may help illuminate how certain 

foods may promote or retard bacterial proliferation, and potentially enhance 

pathogen survival.
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Relevance of Research 

Salmonella Typhimurium is a human pathogen that is associated with foods.  

Understanding the role of quorum sensing in relation to survival and virulence 

gene expression in Salmonella may illuminate how this pathogen interacts with 

bacterial flora on certain foods, and how the organism may adopt strategies to 

persist in food matrices.  Additionally, as certain foods contain inhibitors to 

quorum sensing signals, these inhibitors may provide a means to control 

Salmonella in foods.  Or conversely, if the interaction of these inhibitors with 

quorum sensing molecules inadvertently promotes survival, this interaction may 

indicate why Salmonella may be a prevalent pathogen with specific foods. 

Rationale 

Autoinducer 2 (AI-2) is a molecule that plays a role in bacterial communication 

in Gram negative bacteria.  AI-2 and similar quorum sensing signals appear to 

have a role in gene expression for different species of bacteria including  

Enterobacteriaceae (22, 31, 34, 96, 103, 125).  Poultry meat (and various other 

food matrices) apparently possess inhibitors of these signals and by interfering 

with quorum sensing, can modulate the effects of AI-2 (83).  The organism that 

was employed for this study was Salmonella enterica serovar Typhimurium.  

This organism is a common foodborne pathogen and is associated with poultry 

products (20, 21, 43, 97). 

Because this organism can produce AI-2, the construction of a mutant 

incapable of producing this signaling compound was needed, as it would have 
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been difficult to ascertain the role AI-2 has on survival and virulence.  A mutant 

with a deletion of the luxS gene was employed.  Previous studies have shown the 

deletion of this gene would not seriously affect cellular functions such as growth 

(128, 130, 140, 141, 146).   

To measure AI-2 activity, the reporter strain Vibrio harveyi BB170 was 

employed.  The V. harveyi wild-type strain is capable of up responding to both 

autoinducer-1 (AI-1) and autoinducer 2 (AI-2) in the environment.  V. harveyi 

BB170 (a constructed strain that has a luxN deletion) was used for the AI-2 

activity experiments, as this reporter strain is incapable of detecting 

autoinducer-1 (128, 130).  Additionally since, AI-2 induces bioluminescence in V. 

harveyi AI-2 or AI-2-like activity was easily quantifiable and inhibition could 

readily be determined (83). 

Experiments to determine the influence of AI-2 on Salmonella virulence 

were performed using cDNA microarrays.  Previous research indicated that AI-2 

had some impact on virulence gene expression in E. coli (34, 125)  and, more 

importantly, the introduction of furanone inhibitors could modulate the 

expression of AI-2-induced genes (112).  By using microarray analysis, it would 

be expected that potential targets for further analysis could quickly be 

determined if sufficient differences in expression could be observed.  To 

understand the impact of inhibitors on AI-2 gene expression, washes from 

poultry meat were used (PM).  The inhibition of these compounds had 

consistently demonstrated inhibition and served as a model for determining 
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their influence on Salmonella within in a poultry meat matrix.  Additionally, to 

date the effects of AI-2 on the gene expression in Salmonella using microarray 

techniques has not been studied. 

Although poultry meat washes were initially employed for the microarray 

experiments, it was necessary to better characterize these inhibitors.  Since in 

vitro synthesized AI-2 was available, controlled experiments could be designed 

to understand the interaction of poultry meat inhibitors on cell signaling using 

purified inhibitor compounds.  Although the poultry meat washes consistently 

expressed inhibition, there were likely also several chemical compounds that 

were present in these preparations that could have prevented accurate 

interpretation of the results.  Hence it was important to purify the poultry meat 

derived inhibitor compounds.   

Although the microarray work presented some insight to the effects of 

quorum sensing on Salmonella gene expression additional experiments were 

designed to determine the actual impact these signaling compounds had on 

virulence and survival.  Two primary characteristics were investigated for 

Salmonella, namely growth and infection.  The growth experiments were 

conducted using M-9 minimal medium supplemented with glucose.  By using a 

defined minimal medium, it was theorized that the influence of AI-2 (with and 

without purified inhibitor) on the growth of Salmonella could be more easily 

discernable.   
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Salmonella infection assays were employed using a murine macrophage 

cell line, RAW 264.7 (previous published studies have used this cell line for 

determining changes in virulence for Salmonella (23, 118)).  The assay employed 

in this work was very similar to other studies investigating Salmonella infection 

of eukaryotic cell lines (save for using different cell lines) (78, 106).  Another 

advantage was that the assay was relatively simple and cost-effective to conduct 

and interpret (by enumerating plate counts based pre and post-infection 

numbers).  Since the infection of macrophages is considered to be a critical 

element in the pathogenicity of Salmonella, this cell line served as an effective 

indicator that changes in virulence would be a function of the applied 

experimental treatments (13, 47, 56, 62, 63). 

The hypothesis of this work was that AI-2 affects the virulence and 

survival of Salmonella Typhimurium, and the introduction of AI-2 inhibitory 

factors result in altered virulence and survival profiles.  

Primary Objective 

The primary objective of this work was to understand the effects of AI-2 on the 

virulence and survival of Salmonella Typhimurium, and determine if these 

effects can be varied by the introduction of AI-2 inhibiting compounds obtained 

from processed poultry meat. 

Specific Objectives 

1. Determine the effect AI-2 and AI-2 inhibitors have on virulence gene 

expression in Salmonella enterica serotype Typhimurium.   
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2. Characterize the compounds present in the poultry meat which 

demonstrate inhibition to AI-2 activity. 

3. Determine the influence AI-2 and AI-2 inhibitors have on the growth of S. 

Typhimurium.  

4. Determine the effects AI-2 and AI-2 inhibitors have on the virulence of S. 

Typhimurium by using macrophage cell lines. 
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CHAPTER II 

LITERATURE REVIEW 

Morphology and Pathogenicity of Salmonella enterica serovar 

Typhimurium 

Salmonella is a Gram negative, flagellated rod and a facultative intracellular 

bacterial pathogen.  The current classification scheme of Salmonella is based on 

two species, bongori and enterica, where enterica is further classified by six 

subspecies, I-VI (15).  The Centers for Disease Control and Prevention further 

designate subspecies enterica I by serotypes, one of which is serovar 

Typhimurium (15).  Salmonella enterica serovar Typhimurium (Salmonella 

Typhimurium) has a wide variety of mammalian and avian hosts (107) and can 

survive in non-host environmental sources for prolonged periods (3, 145).   

The primary route of infection of Salmonella is through the fecal oral 

route, where the host ingests the bacteria.  Virulence of this organism is based on 

three primary functions, the ability to invade intestinal epithelial and 

macrophage cells, initiate an inflammatory response resulting in fluid secretion 

leading to diarrhea, and the ability to replicate and survive within host cells (62, 

115, 152).  Pathogenicity of Salmonella is primarily due to the function of several 

clusters of genes, defined as Salmonella Pathogenicity Islands (SPI).  Two of 

these clusters have particular importance in Salmonella, defined as 

pathogenicity islands 1 and 2 (SPI1 and SPI2, respectively) (78, 115, 152).  SPI1 is 

responsible primarily for encoding a type III secretion system (type III SS) 
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responsible for delivering effector proteins into host enterocytes and also aids in 

initiating an inflammatory response by the host cell.  SPI-2 encodes another type 

III SS, which appears responsible for secreting intracellular effector proteins 

required for survival and replication once within the host (47, 48, 56, 63, 78, 82, 

153). 

Salmonella Typhimurium is able to enter the intestinal epithelial cells by 

an amazing ability to rearrange the host cytoskeleton.  A 40-kb cluster of genes 

within SPI-1 encodes proteins that forms the type III secretion system, and is 

generally referred to as a needle structure.  The structure itself is a complex 

arrangement of more than 20 proteins, and is comprised of three main 

components.  The first component forms the needle base, comprised of an inner 

membrane and outer membrane structure.  The inner membrane structure is 

comprised of two proteins, PrgH and PrgK, while the outer membrane is 

comprised of InvG (29, 47, 49, 74, 76).  The second major component is a set of 

proteins that adhere to PrgH and serve as a complex to facilitate transport of 

invasion proteins through the needle complex.  These proteins include of InvA 

(likely an ATPase transport protein), SpaP, SpaQ, SpaR, and SpaS; however, the 

precise conformational interaction with the needle complex is unknown (29, 47, 

49, 74, 76).  The final component is the rather interesting protein, PrgI, which 

forms the ‘needle’ of the system used for delivering virulence proteins within the 

host.  This basic protein is suspected to have a structural orientation like flagellar 
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proteins and form a series of coils that fold over into a larger coiled confirmation 

forming an hollow channel (74). 

The main function of this needle complex is to deliver a series of effector 

proteins to the host cytoplasm after bacterial attachment.  These proteins induce 

a remarkable rearrangement of the host’s cytoskeleton, which initiates the 

engulfing of the bacterium within the host.  The rearrangement of the actin 

cytoskeleton is done through a series of at least 19 proteins by direct and indirect 

means (29, 82, 153).  Indirectly, the cytoskeleton is altered utilizing GTPases 

within the host cell, primarily Cdc42 and Rac1.  These proteins have regions that 

interact with GTP and, once bound, initiate other signaling molecules to begin 

sequences for altering the actin cytoskeleton (49, 74, 76, 81).  SopE and SopE2 

are Salmonella proteins which directly interact with Cdc42 initiating a 

conformational change making the GTP binding site more readily accessible.  

Another Salmonella protein that aids in cytoskeleton rearrangement is SopB, 

which modulates metabolism of phosphoinositide, indirectly altering Cdc42 

activity (49, 74, 76, 81).  The rearrangement of the actin cytoskeleton is done 

directly by a series of proteins which interact with the cytoskeleton, mainly 

proteins, SipC and SipA.   SipA is directly involved with binding to actin 

enhancing bundling.  The other protein, SipC is a protein that binds to the host 

membrane and functions primarily to assist in the transfer of invasion proteins 

within the host (49, 74, 76, 81).  The result of this alteration in the host 

cytoskeleton is a ‘ruffling’ of the host cell wall and enveloping the Salmonella 
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bacterium in a form of phagocytosis (49, 81, 82, 115, 153).   Once enveloped, the 

host’s cell wall is altered again to its original conformation using the same type 

III secretion system.  SptP is secreted by the bacteria into the host cell cytosol, 

reversing the altered cytoskeleton to its normal state by primarily interacting 

with Rac1 (76, 81, 115).  The infection of host epithelial tissue can be very rapid, 

and some studies have found the infection of mouse epithelial tissue by 

Salmonella Typhimurium can occur in as little as 40 seconds (115). 

Once the bacteria enters the host cell, the vacuole will migrate to the basal 

section of the epithelial tissue.  Additionally, the type III SS encoded in SPI1 also 

induces a cascade response resulting in an inflammatory response from the host 

cell and fluid accumulation (29, 47, 56, 82, 153).  A primary protein from 

Salmonella responsible for initiating the inflammatory response is SipB.  This 

protein activates caspase 1 in the host, initiating activity of interleukin-1β (IL-1β) 

(28, 30, 39, 152).  Additionally, the host cell responds to invasion by producing a 

chemokine, interleukin-8 (IL-8) however the precise series of events initiating 

this is not currently known.  These chemokines initiate an inflammatory 

response in the host, which attracts neutrophils and macrophages to the infected 

host tissue (28, 30, 39, 152).   Fluid accumulation and inflammatory response in 

the host is also mediated to a lesser degree by SipA, SopA, SopB, SopD, and 

SopE2.  As some of these proteins are responsible for altering the cytoskeleton of 

the host, it has been suggested that the initiation of the inflammatory response 
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may be also attributed to the increased activity of host GTPases, Cdc42 and Rac1 

(29, 47, 56, 82, 152, 153). 

One response of the host, induced by IL-1β and IL-8, results in 

macrophage phagocytosis of Salmonella.   Survival within macrophages is a key 

feature of Salmonella infection as the organism must be able to survive in a low 

pH, nutrient limited environment and be able to replicate within these 

phagosomes (13, 47, 56, 62, 63).  The type III SS encoded in SPI-2 is theorized to 

be primarily responsible for encoding these genes required for intracellular 

survival, however the precise functions of these genes and their roles are not well 

known as of yet (47, 56, 62, 63).  Some proteins have had their function 

determined, such as SSeB, SSeC, and SSeD which act as trans-locational proteins 

responsible for trafficking other pathogenic effector proteins (47, 56, 62).  There 

have been some proteins identified outside of SPI-2 that are required for 

macrophage survival.  One such protein is MgtC, whose function is to aid in 

Salmonella’s ability to replicate and survive in low Mg2+ conditions (13, 101).  

Another is SodA, a superoxide dismutase that is able to reduce the effectiveness 

of oxidated compounds released in phagosomes and improve survival of 

Salmonella under these conditions (137). 

Once inside the macrophage, apoptosis of the macrophage occurs 

primarily through the production of the protein, SipB, by Salmonella.  This 

protein binds, and activates, capase-1, which initiates macrophage apoptosis (47, 

115, 152).  As macrophage apoptosis occurs, an inflammatory response is 
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heightened.  Neutrophils pass through the epithelial layer, and eventually (as the 

inflammatory response continues) the epithelial monolayer detaches causing 

fluid to enter the intestinal lumen resulting in diarrhea (47, 115, 152).  In this 

nutrient rich environment, Salmonella can effectively propagate its numbers and 

shed in feces from the host (56, 115).  S. Typhimurium may also initiate a more 

severe systemic infection in the host.  As the bacteria are able to survive in 

macrophages, it is possible that the bacteria can spread to the liver and spleen 

(13, 86).  Additionally, some strains of Salmonella Typhimurium are able to 

produce hemolytic exotoxins, and can initiate inflammatory responses in these 

host tissues by the exotoxin, Lipid A, causing further tissue damage (86, 138). 

The regulation of these invasion genes is modulated by several regulatory 

factors closely associated with SPI1 and 2 and some global regulatory circuits.  

For SPI1, a common hyperinvasion locus (hil) was determined to be required for 

effective Salmonella infection in epithelial cells (78).  A major transcriptional 

regulator of several genes required for successful invasion is encoded in this 

region.  The protein, HilA has a transcriptional activation domain similar to a 

family of OmpR/ToxR transcriptional regulators and is required for the 

expression of three genes required for successful invasion, invF, sipC, and prg, 

where both invF and prg appear to be transcriptional promoters for other genes 

within SPI1 (7, 8, 47).  There are other genes associated with hilA that work in 

concert, and independently, to promote gene expression of SPI1, hilC and hilD 

(2, 56).  What is of particular interest with the activity of these genes is that their 
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expression can be affected by a variety of environmental conditions, including 

pH, osmotic potential, and oxygen availability (4, 8, 72, 86).  Additionally, other 

signal systems appear to influence the expression of many of these 

transcriptional factors.  One such system is the PhoP-PhoQ system that can 

influence hilA expression.  PhoQ acts a sensor kinase sensitive to magnesium 

levels and can selectively phosphorylate PhoP, which in turn, serves as a DNA-

binding protein that actively promotes several genes (up to 40) (58, 120, 121).  

Another global regulator that can influence type III SS expression is a DNA-

binding factor for inversion stimulation (fis) and this appears to have an impact 

on hilA expression (73).  It is unusual that several systems and environmental 

conditions appear to promote Salmonella virulence in an intricate, almost 

convoluted manner.  However it has been suggested that the combination of 

these events provide subtle clues to how Salmonella can gauge if the 

environment presents optimal conditions for invasiveness (4, 72, 86).  

Salmonella Typhimurium also possesses several other characteristics 

which enhance virulence.   S. Typhimurium expresses resistance to low pH, 

mediated by an interesting two stage system where a mild exposure (pH 5.5-6) 

can initiate a much higher acid resistance to pH values as low as 3-4 (45, 46, 75, 

135).  The bacteria also exhibit swarming motility, and this behavior has been 

suggested to aid in pathogenicity along with biofilm formation (144).  Aside from 

Mg2+ transport systems that increase the likelihood of the bacteria to survive in 

low magnesium environments such as within macrophages (13, 101), Salmonella 
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Typhimurium also possesses genes which impart resistance to high copper 

environments where copper is either bound (CutF) or exported out (CutC) of the 

cell (55).  Resistance to antibiotics is another important characteristic 

Salmonella possesses which can improve virulence.  A survey of clinical isolates 

collected from 10 European counties found that 40% of those isolates 

demonstrated multidrug resistance, of which S. Typhimurium accounted for 51% 

of the serotypes detected (126, 136).   In the United Kingdom in 1996, 98% of 

4006 clinical isolates of S. Typhimurium expressed resistance to multiple 

antibiotics (62), while in a similar UK survey from 1998-1999, 92% of clinical 

isolates surveyed expressed multidrug resistance (59). 

Salmonella Typhimurium and Food-Borne Illnesses 

In a survey conducted from 1992 to 1997, non-Typhi Salmonella infections 

accounted, annually, for 9.7% of all food-borne illnesses in the United States, 

resulting in over 1.4 million cases annually (97).  Salmonella Typhimurium as a 

source of food-borne illness is primarily associated with animal products, 

particularly poultry.  In the United Kingdom, a 2002 comprehensive annual 

survey of commercially available raw chicken product (frozen and fresh meats) 

consistently detected Salmonella in 8 to 9.7% of the samples (98).  A 1998 

survey of laboratory confirmed foodborne illnesses in the United States 

demonstrated that Salmonella was the second most common bacterial agent 

detected, with serotype Typhimurium accounting for the highest (30%) among 

salmonellosis infections (20).  In another 2002 survey conducted in the United 
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States, S. Typhimurium accounted for 12.3% of all the Salmonella serotypes 

identified from a variety of animal products including swine and poultry (21).   

Another annual survey of large broiler plants, conducted by the United States 

Department of Agriculture in 1998 to 1999, found that S. Typhimurium was the 

third most common serotype (accounting for 14.2% of the total isolates).  In the 

same study although, Salmonella isolates were found in swine (8.4%), ground 

turkey (23.5%), and ground beef products (4.6%), with most of the isolates  

found in broilers (63.5%) (43).  A Korean survey conducted on a wide variety of 

food products, including broiler carcasses (1334 samples total), found that 2.2% 

of those products were contaminated with Salmonella including the serotype 

Typhimurium (26).   A comprehensive survey conducted from 2000 to 2004 in 

Lithuania investigated the prevalence of Salmonella in chicken broilers to be 

between 1% and 3%, with Typhimurium to be the second highest serotype 

detected (second to Enteriditis) (104).  An additional survey in Alberta, Canada, 

of approximately 1,000 portions of ground beef obtained from commercial 

sources was completed in 1999, in which Salmonella was detected in 1.3% of the 

samples (122).  A more recent survey within the United States conducted by the 

USDA found Salmonella was detected in at least 10.5%, and upwards of 14 %, of 

broiler carcasses surveyed nationally from October 2005 through December 

2006, and Salmonella was present in at least 38.6% of ground chicken products 

surveyed in the same study (44).  Salmonella Typhimurium has also been 

detected in other non-animal food products such as sesame seed products (16) 
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and associated with an outbreak in Ohio due to the consumption of raw milk 

(94).  Because Salmonella sp. have the ability to overcome environmental 

stresses such as osmotic pressure and extreme acidity, it has been theorized that 

these stresses may induce the adaptability of Salmonella allowing it to remain 

virulent in a wide variety of uncooked food products (68). 

Quorum Sensing and Autoinducer 2 

Bacteria posses the ability to produce, export, and take up small chemical 

molecules that can serve as a form of bacterial communication.  These systems, 

and the type of chemical signals, are broadly classified on the transport systems 

used to take up these signals in Vibrio harveyi, a bioluminescent marine 

bacterium.   One system is designed for the uptake of one class of signal 

molecules, termed Autoinducer 1 (AI-1).  These chemical signals are generally 

homoserine lactones employed by Gram negative bacteria (Fig 2.1), while Gram 

positive bacteria utilize oligopeptides (9, 80, 92, 105, 131, 147).  The second 

quorum sensing system in V. harveyi is receptive to a furanosyl borate diester, 

Autoinducer 2 (AI-2), and this chemical signal is primarily produced by Gram 

negative bacteria (Fig 2.1) (1, 105, 116, 128, 130, 146).  

Autoinducer 2 is produced as a byproduct of the Activated Methyl Cycle, 

where S-adenosyl-methionine is created to serve as a methyl donor in cellular 

metabolism (Fig. 2.2) (18, 33, 127, 140, 146).  This cycle is important in 

providing methyl groups for the methylation of DNA, RNA, and proteins.  The 

precursor to AI-2 is formed as the hydrolysis of S-ribosyl-homocysteine is 
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converted into homocysteine by the enzyme, LuxS, creating 4,5-dihydroxyl-2,3-

pentanedione (DPD) as a byproduct.  DPD can spontaneously undergo several 

conformations by the removal or introduction of water, but the formation of 2- 

methyl-2,3,3,4-tetrahydroxytetrathydrofuran (S-THMF) acts as a precursor to 

AI-2.  As free boron interacts with S-THMF, a furanosyl borate diester is formed, 

AI-2 (18, 33, 100, 127, 140).   

Production of AI-2 is achieved by the enzyme, LuxS and cell culture 

suspensions of E. coli and Salmonella have demonstrated the ability to produce 

compounds that induce a response in AI-2 reporter strains (V. harveyi BB170, a 

luxN mutant) (57, 116, 128-130, 142).  Typically, maximal production of AI-2 is 

observed in the mid-late log phase and is promoted by the presence of glucose in 

liquid medium (128-130).  It is interesting that culture conditions appear to have 

some influence on the production of AI-2, despite no apparent differences in cell 

numbers as Salmonella (after initial growth in LB supplemented with 0.5% 

glucose) demonstrated increased AI-2 production once shifted into medium of 

0.1 M NaCl (high osmolarity) or lower pH (pH 5.0) (129).   By testing  E. coli 

suspensions from a chemostat culture, DeLisa et al. (35) also observed spikes in 

AI-2 production after introducing glucose into the continuous culture system 

(35).   There is some indication that AI-2 production may be influenced not by 

luxS expression, but due to signaling activity from potential metabolites (12, 57).  

A study from Beeston and Surette (12) showed that AI-2 production appeared 

independent of luxS expression, but was potentially tied to pfs expression and 
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the authors theorized that control of AI-2 production may be linked to 

methionine production. 

 

 

 

Figure 2.1.  Chemical Structures of Autoinducer Signals Recognized  
by V. harveyi 

A. B. 

A. – Autoinducer 2 (AI-2).  B. – Autoinducer 1 (AI-1) 
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The quorum sensing system in V. harveyi is modulated through a series 

of key proteins within the system and their respective phosphorylated states  (11, 

60, 80, 102).  When the signaling compounds are either absent or in low extra-

cellular concentrations, phosphate is transferred from LuxU to LuxO (which 

normally is in a phosphorylated state) and in turn, LuxO down-regulates other 

lux genes.  When the signaling compounds are present in high concentrations 

phosphate flow is reversed through the system, dephosphorylating LuxO, 

allowing lux genes to be expressed.  Hence the receptor proteins that are 

receptors to the autoinducer compounds can act both as kinases (in the absence 
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of signals), and as phosphatases (in the presence of signals) (11, 60, 80, 102).  A 

general schematic of the signaling pathways in V. harveyi is presented in Figure 

2.3.  Chemical signals bind to the receptor proteins and either allow LuxN (AI-1), 

or a combined complex of LuxP and LuxQ (AI-2), to dephosphorylate LuxU, 

which in turn, will dephosphorylate LuxO (11, 60, 80, 102).  The 

dephosporylated LuxO, in concert with σ54, helps destabilize another protein 

which acts as a small RNA (sRNA) chaperone (responsible for enhancing 

transcription), Hfq (80, 131, 140).  As the destabilized small RNA/Hfq complex 

occurs, this allows the Hfr protein to form a complex with existing LuxR mRNA 

transcripts, increasing its stability.  With increased transcription of LuxR, the 

protein further promotes the expression of the bioluminescence genes (60, 80, 

102).  In short, at lower concentrations of autoinducer, LuxR mRNA/Hfr 

complex is destabilized by the introduction of sRNAs and, in turn, reduces the  

expression of the bioluminescent genes (80, 102). 
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In Salmonella and E. coli, the uptake of AI-2 is mediated by another set of 

proteins, the lsrABC complex (1, 129, 132, 133, 148).  What is unique about this 

system is that it appears AI-2 is imported directly and modified by this complex 

(Fig 2.4).  AI-2 is bound and transported into the cell by the lsrABC complex 

(which shows similar function to a ribose transport system), by initially binding 

to LsrB, a periplasmic binding protein.  
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Figure 2.3.  General Schematic of Quorum Sensing 
Systems in Vibrio harveyi 
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The remaining proteins either form a channel structure (LsrC and LsrD) 

or serve as an ATP-mediated transport protein to shuttle AI-2 across the cellular 

membrane (LsrA) (132, 133, 148).  Once internalized, AI-2 is phosporylated by 

lsrK.  There appears to be other genes involved in further processing of AI-2, 

LsrF and LsrG, but their functions are yet unknown (132, 133, 148).  There is 
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evidence that AI-2 influences the regulation of this transport system encoded by 

the lsr operon (133, 140, 148).  Under normal conditions the operon is repressed 

by a DNA-binding regulatory protein, LsrR (encoded upstream from lsr operon) 

which binds to lsrA.   Internalized AI-2 (phosphorylated by the gene product of 

lsrK) is responsible for inactivating LsrR, allowing the expression of the lsr 

operon  (Fig. 2.5) (132, 133, 140, 148). 

 

 

 

 Because the lsrABC complex has functional similarity to the ribose 

transport system, some researchers have investigated similar transport systems 

to determine if they could be also used for the internalization of AI-2.  James et 

al. (71) demonstrated that the addition of purified His-tagged RbsB (a 

periplasmic ribose binding protein) selectively competed with LuxP for AI-2 
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Figure 2.5.  lsr Operon in Salmonella enterica 
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when cultured with V. harveyi BB170.   Additionally, the authors found that a 

rbsB mutation in a constructed Actinobacillus sp. strain reduced the ability for 

removal of AI-2 in culture suspensions compared to the wild-type, suggesting 

RbsB may serve as transport system for internalization of AI-2 (71).   

It has been suggested that bacteria may only be able to detect certain 

structural forms of AI-2.  AI-2 is formed initially as an unstable product, DPD, 

and undergoes various chemical configurations with the addition of water and 

free boron to make a final, stable configuration (18, 117).  A study by Miller et al. 

(100) found that when synthetic AI-2 was prepared under boron-free conditions, 

it was unable to stimulate a bioluminescent response in V. harveyi BB170, while 

the same AI-2 was detected using a Salmonella lsr-lacZ fusion reporter strain.   

The authors suggested that in the absence of boron, DPD may undergo an 

alternate configuration forming (2R, 4S)-2-methyl-2,3,4,-

tetrahydroxytetrahydrofuran, or R-THMF, as opposed to the boronated form of 

AI-2 (S-THMF-borate) (18, 100, 117).  Alternately, there may be other signaling 

molecules that are utilized for cellular communication as another compound, AI-

3, has been proposed (124, 141, 142).  This compound does not induce a typical 

response from the AI-2 reporter strain, V. harveyi BB170.  But utilizing a lacZ 

fusion to LEE1 (a promoter for a type III SS), the constructed E. coli reporter 

strain was able to detect this compound.   The chemical structure of AI-3 has yet 

to be determined, but it is suggested to be an aromatic compound and non-polar 

(124, 141, 142).  Despite varying opinions on whether unique signaling 
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compounds are indeed novel structures or merely variant forms of AI-2 (100, 

124, 141), and that the transport of AI-2 may be mediated by other systems aside 

from the lsrABC system (71), it is important to note that both Salmonella and E. 

coli have demonstrated the ability to produce AI-2 and have the ability to sense 

this chemical signal in their environment (128, 148). 

Quorum Sensing and Bacterial Virulence 

A particularly interesting facet to quorum sensing is the apparent influence these 

chemical signals may have on bacterial virulence (42, 60, 99, 103, 119, 125).   In a 

study conducted by Déziel et al. (36), the authors discovered that 3,4 hydroxy-

heptylquinoline (PQS) in Pseudomonas aeruginosa functioned in regulating 

quorum sensing genes as well as the production of hydroxy-alkyquinolines 

(HAQs).  HAQs in Pseudomonas are potent antibiotics.  The authors theorized 

that the diffused chemical signal, PQS, increased the expression of typical 

quorum sensing machinery (AI-1) and aided the organism through inhibiting 

competitive flora by inducing antibiotic production.  Other studies found that 

luxS mutants of Clostridium perfringens recovered from reduced production of 

alpha, kappa, and theta toxins when cell free supernatants of wild type cultures 

were introduced (103).  A particular interesting study was done by McNab et al. 

(96), where LuxS mutants of Streptococcus gordonii and Porphyromonas 

gingivalis as a mixed population were unable to produce a normal biofilm.  S. 

gordonii luxS mutant bacteria were unable to accumulate on saliva coated glass 

slides, leaving a poor foundation for P. gingivalis luxS mutants to form 
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expansive biolfilm structures (96).  Another study using a luxS deficient mutants 

of Serratia marcescnes were able to utilize AI-2 from wild type cell free 

supernatants, restoring production of prodigiosin.  Prodigiosin is a tripyrrole 

antibiotic which is theorized to allow Serratia sp. to overcome competitive 

bacterial and fungal flora, and may have immunosuppressant properties 

increasing the virulence of this opportunistic pathogen (31).   Using microarray 

analysis, when compared to a luxS mutant, Sperandio et al. (125) reported that 

404 genes were up-regulated at least five-fold in an enterohemorrhagic 

Escherichia coli wild type.   Another study found diminished transcriptional 

activity in a chromosomal region responsible for several pathogenic genes in 

enteropathogenic E. coli.  LuxS mutants were unable to effectively transcribe the 

locus of enterocyte effacement (LEE), a series of promoters responsible for the 

type III secretion system, in E. coli (119).   Another published report found 242 

genes in E. coli had a response to the introduction of AI-2 treatments (being 

either up regulated or down regulated) by over 2.3 fold (34).  There is some 

indication that quorum sensing may not induce virulence factors in bacteria, but 

rather repress virulence as Henke and Bassler (60) demonstrated that a type III 

SS in V. parahaemolyticus was repressed in the presence of elevated AI-2 levels.  

And another study of particular interest investigated the effect of a luxS deletion 

had on the virulence of Gram positive organisms.  While AI-2 (produced from 

LuxS) is typically considered a signaling compound for Gram negative bacteria, 

Lyon et al. (88) demonstrated that haemolytic activity (measured by an 
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increased streptolysin O activity) was increased in a Streptococcus pyogenes 

luxS mutant at stages of mid-late log growth, while demonstrating limited 

presence of AI-2. 

Inhibition of Quorum Sensing 

If quorum sensing signals are responsible for modulating bacterial virulence, 

conversely, the inhibition of these signals may reduce the efficacy of these 

bacterial pathogens (110, 123).   Mechanisms for interfering with quorum 

sensing systems may be varied, Rasmussen and Givskov (110) indicated in a 

review that interference with AHL signaling compounds (AI-1) can range from 

prevention of AHL production, blocking of AHL receptors, to the direct 

inactivation of the signals themselves (110).   Dong et al. (37) demonstrated that 

Erwinia carotovora were unable to initiate plant rot in plant tissue samples 

exposed for 20 seconds to high titer (5 X 108) suspensions of Bacillus 

thuringiensis.  B. thuringiensis produces a potent acyl-homoserine lactonase.  

The authors theorized this enzyme degraded acyl-homoserine lactone (AHL), 

which is known to be utilized by Erwinia to induce virulence genes (37).  It has 

been suggested that Pseudomonas aeruginosa utilizes AHL for pathogenicity in 

eukaryotic hosts.  In epithelial human cell culture studies, cell lines derived from 

human airway epithelia were able to inhibit bioassays used for detecting AHL 

produced by Pseudomonas aeruginosa (25).  Plant tissues are also able to 

produce inhibitors to autoinducer 2 signals.  After incubation of legume seeds 

with cell free supernatants (from bacterial suspensions previously demonstrating 
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AI-2 activity) washes of the seeds were extracted with equal volumes of ethyl 

acetate.  The aqueous phases of these extracts demonstrated upwards of 900 fold 

reduction in AI-2 activity utilizing the V. harveyi bioassay (93).  Another study 

working with extracts from various food matrixes also demonstrated inhibition 

to the AI-2 bioassay.  Lu et al. reported relative inhibition in a variety of 

processed food products such as turkey patties (99.8% relative inhibition), 

chicken breast (97.5%), cheeses (93.7%), beef steak (90.6%) and beef patties 

(84.4%) (83). 

Brominated furanones have also been discovered to inhibit AI-2 

compounds.  A study demonstrated reduced swarming in E. coli when exposed 

to furanones derived from algae (Delisea pulchra).  The same compounds 

reduced AI-2 activity in V. harveyi reporter strains by over 5000 fold (111).  

Combined with microarray analysis, Ren et al. found a 49% decrease in relative 

light unit production using the V. harveyi reporter strain when it was combined 

with a boronated furanone.  The authors found 56 genes were repressed (at least 

two fold) by the addition of bromonated furanone, while these same genes were 

up regulated by the introduction of AI-2 (112).  Unlike autoinducer I systems 

that are mediated primarily by AHL, the inhibition of AI-2 by bromonated 

furanones are not well understood.   

Quorum Sensing in Relation to Foods 

The interaction of microorganisms and food matrices, and potential inhibition of 

these signaling systems are important points to address as these interactions 
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may indicate importance in food spoilage and propensity of certain foods to be 

susceptible to foodborne pathogens (105).  Some studies have been conducted to 

determine the presence of autoinducer signals in foods, and even the presence of 

compounds that could inhibit these signaling systems.  Bruhn et al. (17) utilized 

a wild-type and AHL deficient mutant of Hafnia alevei to determine if AHL 

signaling compounds had an impact on food spoilage.   The authors found that 

there was no difference in spoilage properties when both strains were incubated 

in vacuum packed meat and AHL activity was detected in the wild-type after 7 

days incubation.  However at that time there was a predominance of lactic acid 

bacteria (LAB) also present in each sample in high numbers, with both strains of 

H. alevei cultured as a minor type, and no indication was made to determine if 

the LAB expressed any AHL signaling compounds (17).  Cloak et al. (27) also 

conducted a study to determine if AI-2 could be recovered in certain food 

matrixes after inoculation with different bacterial pathogens.   In both milk and 

chicken broth, at a variety of temperatures (4°C, 25°C, and 37°C), AI-2 activity 

was observed in Campylobacter jejuni, Campylobacter coli, Salmonella enterica 

serovar Typhimurium, and E. coli O157:H7 with temperature seemingly having 

the greatest impact on AI-2 production (27).  Another study found that certain 

foods had compounds capable of exhibiting AI-2-like activity.  Lu et al. (83) 

created washes of several different food products and found that some foods 

expressed relatively high amounts of AI-2 activity (carrots, cantaloupe, 

tomatoes, and fish) while other food products expressed inhibition to quorum 
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sensing systems (poultry and meat products).   To fully understand the 

interaction of quorum sensing signals and inhibitors on microbial populations in 

foods, the presence of these compounds simply should not be the only factor 

considered, but also bioavailability and diffusion of these compounds in food 

systems.  This idea has been presented by Horswill et al. (65) in a recent review 

and the authors suggest that further study of the transport behavior of quorum 

sensing compounds under environmental conditions is needed to truly deduct 

their impact on microbial communities, and this point is very applicable to food 

matrices. 
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CHAPTER III 

DIFFERENTIAL EXPRESSION OF VIRULENCE-RELATED GENES IN 

A Salmonella enterica SEROTYPE TYPHIMURIUM luxS MUTANT IN 

RESPONSE TO AUTOINDUCER 2 (AI-2) AND POULTRY MEAT-

DERIVED AI-2 INHIBITOR 

Introduction 

Quorum sensing, or bacterial cell signaling describes the overall process how 

bacteria utilize autoinducer molecules for bacterial cell-cell communication (92, 

131, 148).  A key cell signaling system involves the autoinducer AI-2, a furanosyl 

borate diester molecule produced primarily by Gram negative bacteria (1, 116, 

128, 146).  AI-2 is produced as a byproduct of the Activated Methyl Cycle, where 

S-adenosyl-methionine is created to serve as a methyl donor in cellular 

metabolism (140, 146).  The precursor to AI-2 is formed as the hydrolysis of S-

ribosyl-homocysteine is converted into homocysteine by the enzyme, luxS, 

creating 4,5-dihydroxyl-2,3-pentanedione (DPD) as a byproduct.  DPD can 

undergo several conformations spontaneously with the removal or introduction 

of water, but the formation of 2-methyl-2,3,3,4-tetrahydroxytetrathydrofuran (S-

THMF) acting as a precursor to AI-2, and the interaction of free boron with S-

THMF, results in the forming the final furanosyl borate diester structure (Sun et 

al. 2004).  Taga et al. (132) identified a luxS regulated operon (lsrACDBFGE) 

which encodes an ABC transporter system with similar functionality to ribose 

transport systems in E. coli.  The periplasmic binding protein, lsrB, is 
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responsible for binding with extracellular AI-2, and the compound is 

internalized using this transport system.  Normally the lsr operon is repressed by 

a DNA-binding regulatory protein, LsrR which is upstream from lsr operon and 

immediately upstream of lsrR is a gene which encodes a cytoplasmic 

phosphokinase (lsrK) (132, 140).  Once internalized, AI-2 is phosphorylated by 

the gene product of lsrK, and is responsible for inactivating LsrR, allowing the 

expression of the lsr operon (132).  There is increasing evidence that autoinducer 

molecules can influence virulence gene expression in bacteria (31, 34, 96, 103, 

125).  However, our knowledge about bacterial cell signaling in relation to food 

borne pathogens and food spoilage organisms is still in its infancy (14, 17, 105, 

109). 

Understanding the role of AI-2 and its function with food-borne bacterial 

pathogens and, in particular, understanding the interaction of food matrices 

with these signal molecules is vital (83-85).  It has been previously shown that 

ground beef and poultry meat contain compounds that can interfere with AI-2 

signaling (83). The underlying hypothesis of this study was that these inhibitory 

compounds by virtue of their interaction with AI-2 molecules would influence 

the expression of virulence genes in pathogenic bacteria.  The specific objectives 

of this study were to understand the influence of autoinducer AI-2 and poultry 

meat-derived inhibitory factor interaction on the expression of specific 

pathogenicity, and virulence-related, Salmonella genes.  Salmonella enterica 

serovar Typhimurium (S. Typhimurium) is a major causative agent in poultry-
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related food-borne illnesses and also accounts for almost 1.4 million cases of 

food-borne illnesses annually in the United States (97).  Understanding how 

poultry meat influences cell signaling in S. Typhimurium could provide insight 

into the factors controlling the pathogenicity of this organism on poultry 

products. 

Materials and Methods 

Bacterial Strains  

Salmonella enterica serovar Typhimurium (isolate # 87-26254) was 

obtained from the National Veterinary Service Laboratory (Ames, Iowa).  The E. 

coli strains BW25113 and BW25141, which were used in the generation of the 

luxS mutant with a chloramphenicol resistance marker (25 µg/ml), were 

obtained from the Coli Genetic Stock Center (Yale University, New Haven, CT).  

The luxS mutant, designated strain PJ002, was generated according to a 

protocol developed by Datsenko and Wanner (32).  Briefly, Red recombinase 

expression plasmid, pKD46 was propagated and extracted from E. coli BW25113.  

S. Typhimurium wild-type was made competent by electroporation.  

Transformation of pKD46 into the competent S. Typhimurium cells was 

confirmed by ampicillin resistance on Luria-Bertani (LB) agar plates.  The 

forward primer (5’-

cgcagtcgatcatacccggatgcaagcgccggcggtccgggtgtaggctggagctgcttc-3’) and reverse 

primer (5’-ctttcggcagcgccagctctttattgctgttcacgcgcacatgggaattagccatggtcc-3’) 

encoding the FLP recognition target (FRT) of the plasmid, and portions 
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homologous to the internal sequence, 30 bp downstream, of luxS were generated 

from a commercial source.  The plasmid, pKD3 (derived from BW25141), was 

extracted and used as a template for PCR, where the resulting product encoded a 

chloramphenicol resistance gene flanked by the FRT/luxS homologous regions.   

The PCR product was then incorporated into competent S. Typhimurium cells 

containing the pKD46 plasmid (that would facilitate recombination) by 

electroporation.  The Salmonella cells were then incubated at 37° C on LB plates 

amended with chloramphenicol, which would select for transformants and the 

elevated temperature ensured the removal of the heat sensitive pKD46 plasmid.  

E. coli strains containing the plasmids pVS212 and pVS214 were used for the in 

vitro production of AI-2 (a gift from Dr. V. Sperandio, University of Texas 

Southwestern Medical Center, Dallas). The wild-type strain (#87-26254) and the 

mutant (PJ002) were used in the microarray experiments. Vibrio harveyi BB170 

(a gift from Dr. B. Bassler, Princeton University) was used as the biosensor strain 

to detect the presence of AI-2 activity.     

Cell-Free Supernatant Preparation (CFS) 

Salmonella Typhimurium (wild-type strain # 87-26254) was grown in LB broth 

amended with 0.5% glucose (weight/vol) at 37° C to mid-late log phase (OD600 

~1).  The culture was centrifuged (10,000 X g for 10 min), and the supernatant 

filtered through a 0.2 µm sterile syringe filter (VWR, West Chester, PA).  AI-2 

like activity was confirmed in the cell-free supernatant as previously described 

(83). 
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Synthesis of Autoinducer 2 (AI-2) 

In vitro synthesized AI-2 was prepared according to a published protocol (124).  

Briefly, His-tagged LuxS and Pfs (proteins required for the formation of AI-2) 

were isolated and purified using a nickel resin column (Qiagen Inc., Valencia, 

CA).  The purified enzymes were incubated with 1 mM S-adenosyl-homocysteine 

(Sigma-Aldrich, St. Louis, MO) for one hour at 37° C, and AI-2 was further 

separated from the enzymes using a centrifuge filer column (Biomax-5, 

Millipore, Billerica, MA).  AI-2 activity was confirmed using V. harveyi BB170 as 

described by Lu et al. (83). 

Poultry Meat-Derived (PM) Inhibitors  

Poultry meat (50 g) was obtained from a commercial source  and stomached 

with 40 ml AB medium (11), centrifuged (10,000 X g for 10 min), and the 

supernatant filtered (0.2 µm).  Inhibition of AI-2 like activity was confirmed 

using Vibrio harveyi BB170 (83).  Autoinducer (AI-2) activity was expressed as 

Relative Light Units (RLU), a ratio of the bioluminescence of a sample compared 

to its negative control (the reporter strain only).   The bioluminescence was 

measured using a Wallac 1420 plate reader (Perkin Elmer, Shelton, CT).  

Inhibition was expressed as a % relative to a corresponding positive control 

(containing either, AI-2 or CFS, without the PM inhibitor) defined as: 100 – 

[(light unit measurement of sample/light unit measurement of positive control) 

x 100].    The V. harveyi bioluminescence assay was performed to confirm that 

the luxS mutant (PJ002) was unable to produce AI-2 activity.  
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Treatment Conditions, RNA Extraction, and cDNA Labeling 

The luxS mutant (PJ002) was initially grown overnight in LB amended with 

chloramphenicol (25 µg/ml). The culture was diluted (1:20) in fresh LB broth 

(with no antibiotics) and incubated for 4 hours at 37º C with moderate shaking.  

Portions (600 µl) were removed and centrifuged (10,000 X g). The cell pellets 

were subsequently exposed to the different experimental conditions. The pellets 

were re-suspended in 6 ml volumes consisting of 5.4 ml LB broth, with the 

remaining 0.6 ml containing the different experimental treatments (ie., 10% of 

the final total volume of the culture).   The different treatments were i) 0.6 mL of 

pH 7.4 phosphate buffer (PB treatment),  ii) 0.3 ml phosphate buffer + 0.3 mL in 

vitro synthesized AI-2 (AI-2 treatment), iii) 0.3 mL in vitro synthesized AI-2 + 

0.3 mL poultry meat inhibitor (AI-2 + PM treatment), iv) 0.3 mL phosphate 

buffer + 0.3 mL poultry meat inhibitor (PM treatment).  The four different 

treatments were incubated in LB medium for 3 hours (OD600 ~0.6) at 37º C.  

Two milliliter aliquots were removed from each treatment, centrifuged 

(12,000 X g for 5 min), and the pellets were flash frozen with liquid nitrogen, 

and stored at - 80º C until total RNA was extracted.  (Three replicate RNA 

extractions were performed from each treatment). The RNA was extracted using 

RiboPure kit (Ambion, Austin, TX), followed by DNase treatment per the 

manufacturer’s directions.  The triplicate RNA extractions were pooled and 

maintained at - 80º C.  The wildtype S. Typhimurium strain was grown for 3 

hours in LB at 37º C and total RNA was also extracted.  The RNA samples were 
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concentrated using Quick-Precip Plus Solution (Edge Biosystems, Gaithersburg, 

MD) by the manufacturer’s instructions and concentration determined by UV 

spectra.  The RNA samples were labeled using the LabelStar Array Kit (Qiagen 

Inc., Valencia, CA), using random nanomers according to the manufacturer’s 

instructions.  Briefly 2.5 µg RNA were combined with (final concentration) 5 µM 

random nanomer primers, 2 µl denaturation solution, and RNase free water to a 

final 25 µl reaction volume.  The reaction mixture was incubated for 5 minutes at 

65 ºC and then placed on ice for 5 minutes.  After sufficient incubation on ice, an 

additional 25 µl of prepared Reverse Transcriptase reaction solution (final 

concentration: 1X reaction buffer, 0.08 mM dCTP, 0.5 mM dNTPs, 0.02 mM 

either Cy3 or Cy5 labeled dCTP (Amersham Bioscience, Piscataway, NJ), 20 

units RNase inhibitor, and 2.5 µl RT enzyme, RNase free water to final 25 µl 

volume) was added and incubated for 15 minutes at 25 ºC, followed by an 

incubation at 37 ºC for 2 hours.  After incubation, 2 µl of stop solution were 

added, and the labeled cDNA was purified using the Label Star kit (Qiagen Inc., 

Valencia, CA) as per manufacturer instructions.  The cDNA from each of the 

treatments and the wild type strain were labeled in duplicate, but utilizing either 

Cy3 or Cy5 as labeled dCTP for dye swap technical controls (53). 

Microarray Preparation, Hybridization, and Scanning 

Sequences specific to virulence and pathogenicity genes in Salmonella were 

obtained from Genbank and used to design 45-mer oligo probes according to a 

previously published method (38).  Open reading frames for 1136 genes were 
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synthesized and normalized in concentration by Integrated DNA Technologies 

Inc. (Coralville, IA).  Oligos were resuspended in Epoxide Slide Spotting Solution 

and printed onto Epoxide Coated Slides (Corning Inc., Corning, NY) using a 

GeneMachine Omnigrid Accent microarray printer (Genomic Solutions Ann 

Arbor, MI).  Each spot printed in duplicate, and two copies of each array printed 

on each slide.  Arrays were immersed in a pre-hybridization buffer (25 ml 20X 

SSC, 1 ml 10% SDS, 100µl 0.1 g/ml Bovine Serum Albumin solution, and de-

ionized H2O up to a final volume of 100 ml) for 45 minutes at 42ºC.  Arrays were 

then immersed in 0.1 X SSC at room temperature with gentle agitation (5 min).   

The immersion and incubation were repeated twice and then the arrays 

transferred to DI H2O for 30 seconds.  The DI H2O rinsing was repeated once 

and then the arrays were spun in a swinging bucket centrifuge at roughly 500 X 

g for 5 minutes.  Pre-hybridized arrays were stored at room temperature until 

hybridization.   

The labeled cDNA samples were concentrated and dried in a speedvac 

system and resuspended in 20 µl pre-warmed 1X hybridization buffer (Universal 

Hybridization Solution, Corning Inc., Corning, NY) which was then added 

directly to the arrays after a 95ºC incubation for 5 minutes.  The arrays were 

hybridized overnight (16 hours) at 42ºC with a sufficient volume of hybridization 

buffer added to the cassette chambers (Universal Hybridization Solution, 

Corning Inc., Corning, NY).  After hybridization, the arrays were then 

transferred to a post-hybridization solution (2X SSC, 0.1% SDS) and incubated 
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for 10 minutes at 42ºC.  The arrays were then washed twice with 1X SSC by 

immersion for 10 minutes.  This was then followed by two washings with 0.1X 

SSC by immersion for 5 minutes.  The arrays were given a final rinse in 0.01X 

SSC for 30 seconds and then spun in a swinging bucket centrifuge at 1200 RPM 

for 5 minutes.   Arrays were scanned using a GenePix 4000B image scanner 

(Molecular Devices Corporation, Union City, CA) and saved as TIFF images.   

Data Analysis 

Array image analysis was done using GenePix Pro 5.1 (Molecular Devices 

Corporation, Union City, CA) and Acuity 4.0 (Molecular Devices, Sunnyvale. 

CA).  All images were normalized based on a Lowess ratio for the features (150).  

Additionally, features were selected as ideal spot images if they had a signal to 

noise ratio (SNR) of at least 3 for either channel (Cy3 or Cy5) (149).  By selecting 

features that met this SNR criterion, this would reduce error in data analysis 

taking into account potential variation due to dye labeling, and hybridization, 

efficiency.  The normalized log2 Cy5/Cy3 ratios were compiled and evaluated (t 

test, p < 0.05) with ratios expressing differences of at least 1.5-fold induction (or 

repression) being considered biologically significant (5, 67).  The following 

treatments were compared, namely, AI-2 vs PB, PM vs PB, and AI-2 + PM vs PB. 
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Results 

Influence of Poultry Meat Inhibitors on AI-2 Related 

Bioluminescence  

The CFS from the S. Typhimurium mutant strain, PJ002, was unable to elicit the 

characteristic bioluminescence signal with the AI-2 biosensor strain, V. harveyi 

BB170, while the CFS from the wild type strain (S. Typhimurium 87-26254) 

produced a mean 360-fold increase in bioluminescence (RLU) as compared to 

the corresponding negative control (Table 3.1).  The in vitro synthesized AI-2 

molecules exhibited a mean 139-fold increase in bioluminescence.  The poultry 

inhibitor treatment (PM) resulted in 87.5 % mean reduction in bioluminescence 

when compared to the CFS sample, and almost a 60% mean reduction when  

 

 

Table 3.1. Autoinducer Activity, and Inhibition from Poultry Meat Inhibitor 
(PM), of In Vitro Synthesized Autoinducer 2 (AI-2) and Cell Free Supernatants 
(CFS) Derived from S. Typhimurium Wild-type and S. Typhimurium luxS 

Mutant (PJ002) 
 
    Sample  Relative AI-2-like Activity (RLU)1         % Inhibition2  
Purified AI-2    139.6 ± 39.6             - 
 
S. Typhimurium CFS  360.6 ± 9.9             - 
 
S. Typhimurium luxS Mutant 1.6 ± 0.6             -  
PJ002 CFS 
 
AI-2 + PM    57.1 ± 4    59.0% ± 2.8 
 
S. Typhimurium CFS + PM  31.0 ± 3.5         87.5% ± 8.9 
1 Mean relative AI-2-like Activity (Relative Light Units) ± standard error (n = 3), based on 
negative control values.  
2 Mean percentage ± standard error (n = 3), based on positive control values. 
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compared to the in vitro synthesized AI-2 (Table 3.1). 

AI-2 and Poultry Meat Inhibitors Influence Virulence-Related Gene 

Expression  

Twenty three (23) genes had a significant difference (p<0.05) in the gene 

expression patterns for the AI-2 treatment compared to the control PB 

treatment, with roughly half the genes being up-regulated (Table 3.2).  Of the 13 

genes that were up-regulated, 6 of them were up-regulated 2-fold, or greater.  

Significant differences in gene expression were noted in the presence of the PM 

treatment, with 36 genes being either up-regulated, or down-regulated (Table 

3.3).  Out of these 36 genes, 19 genes were up-regulated 2-fold or greater, while 

most of the down-regulated genes expressed differences between 1.5 to 1.9-fold.   

The combined AI-2 + PM treatment showed that only 22 genes were being 

differentially expressed compared to the PB control (Table 3.4).  However, 

unlike the other treatment most of the genes were up-regulated (15 of the 22 

genes). Of these, 6 were up-regulated with a difference of 2-fold or greater, and 

of the 7 genes that were down-regulated, 5 were 2-fold or greater (Table 3.4). 

Discussion 

The S. Typhimurium luxS mutant, PJ002, generated in this study was (as 

expected) unable to synthesize AI-2 which was confirmed in the 

bioluminescence assay (Table 3.1). Taga et al. (132) had reported that even 

though AI-2 production may be lacking, luxS mutants are fully capable of 

responding to AI-2 activity. Therefore, it was fully expected that the mutant 
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strain (PJ002) would respond to AI-2 molecules, if present.  The poultry meat 

samples inhibited the AI-2 based response in V. harveyi BB170 (Table 3.1) which 

confirmed earlier published results demonstrating the ability of PM samples to 

interfere with AI-2 signaling (83). 

Twenty three genes exhibited significant induction or repression in the 

presence of AI-2 molecules.   Several genes that were up-regulated were putative 

cytoplasmic or outer membrane proteins, while the genes being down-regulated 

in the presence of AI-2 appear to be directly associated with bacterial virulence 

(rpoS, prgH).  The PM treatment appeared to have the greatest impact on gene 

expression with 36 genes being differentially expressed.   The PM matrix 

contains a variety of compounds in contrast to just AI-2 molecules that are 

probably influencing the gene expression.  Previous reports suggesting the 

modulation of gene expression by environmental conditions and food matrices 

provide supporting evidence for this observation (4, 8, 68).  What is interesting 

in these results is that we are demonstrating how a matrix that is known to 

interfere with AI-2 signaling is having a significant impact on gene expression. 

The up-regulation of only 1 gene (tolR) was common between the AI-2 treatment 

effect and the PM treatments.  In fact, tolR was the only gene that was common 

across all treatments.  When the cells were exposed to AI-2 + PM, Salmonella 

showed a unique response in its virulence gene expression (Table 3.4).  A total of 

22 genes were differentially expressed in the presence of the autoinducer 

molecule and its putative inhibitor.  A majority of the genes that were 
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Table 3.2. S. Typhimurium luxS Mutant (PJ002) Genes Influenced by In Vitro Synthesized Autoinducer 2 (AI-2) 
 
Fold Change1  Gene    Gene Function and/or Product              P Value 

-10.8  sitC  fur regulated Salmonella iron transporter     0.050 
-2.3  prgH  cell invasion protein         0.027 
-2.1  htpG  chaperone Hsp90, heat shock protein C 62.5     0.002 
-2.0  yhdV  putative outer membrane lipoprotein      0.003 
-1.9  prlC  oligopeptidase A         0.030 
-1.9  wzxE  O-antigen translocase in LPS biosynthesis     0.020 
-1.8  stiH  putative fimbriae         0.025 
-1.7  tldD  suppresses inhibitory activity of CsrA      0.045 
-1.6  stbE  putative fimbriae; chaperone       0.031 
-1.5  rpoS  sigma S (sigma 38) factor of RNA polymerase     0.026 
 1.5   cobT  nicotinate-nucleotide dimethylbenzimidazole-P phophoribosyl                      0.039 

transferase          
 1.7   STM1131 putative outer membrane protein       0.045 
 1.7   STM0305 putative outer membrane protein       0.033 
 1.8  ybdQ  putative universal stress protein UspA and related nucleotide-binding         0.022 

protein           
 1.8  tolR  tol protein, role in outer membrane integrity     0.039 
 1.8  yicJ  putative GPH family transport protein      0.023 
 1.8  hslJ  heat shock protein hslJ        0.028 
 2.1  STM2868 putative cytoplasmic protein       0.009 
 2.3  yjfR  putative Zn-dependent hydrolases of the beta-lactamase fold   0.039 
 2.3  yecA  putative metal-binding protein       0.039 
 2.5  malZ  maltodextrin glucosidase        0.020 
 3.1   STM4255 putative cytoplasmic protein       0.007 
 3.3  yjiS  putative cytoplasmic protein       0.019 

1 Calculation based on the difference of the mean ratio (treatment to reference strain) for the AI-2 treatment verses the PB negative 
control. 
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Table 3.3.  S. Typhimurium luxS Mutant (PJ002) Genes Influenced by Poultry Meat (PM) 
      
Fold Change1  Gene   Gene Function and/or Product                          P Value 

-9.4  res  DNA restriction (DNA helicase)       0.031 
-2.6  lpxA  UDP-N-acetylglucosamine acetyltransferase     0.028 
-2.2  alkB  DNA repair system specific for alkylated DNA     0.036 
-2.0  dcm  DNA cytosine methylase        0.041 
-1.9  invI  surface presentation of antigens       0.039 
-1.7  glnP  glutamine high-affinity transporter      0.004 
-1.7  nmpC  new outer membrane protein       0.022 
-1.7  stiH  putative fimbriae         0.015 
-1.7  yhgF  putative RNase R         0.040 
-1.6  stbE  putative fimbriae; chaperone       0.049 
-1.6  ybiO  putative transport protein        0.037 
-1.5  sipD  cell invasion protein         0.030 
-1.5  holC  DNA polymerase III, chi subunit       0.038 
-1.5  gabP  RpoS dependent gamma-aminobutyrate transport protein   0.009 
-1.5  mfd  transcription-repair coupling factor      0.046 
-1.5  cydD  cytochrome-related transporter       0.016 
-1.5  nagC  transcriptional repressor of nag (N-acetylglucosamine) operon                       0.023 

(NagC/XylR family)   
 1.5   sthA  putative fimbrial chaperone protein      0.048 
 1.5   sseA  secretion system effector        0.026 
 1.5   prpA  serine/threonine protein phosphatase      0.041 
 1.5   pqiA  paraquat-inducible protein A       0.032 
 1.6  bcfH  putative thiol-disulfide isomerase       0.030 
 1.7   pqaA  PhoPQ-regulated protein        0.000 
 1.7   hslJ  heat shock protein hslJ        0.035 
 1.7   fdx  [2FE-2S] ferredoxin         0.043 

1 Calculation based on the difference of the mean ratios (treatment to reference strain) for the PM treatment versus the PB control.  
 



  

 

4
5

Table 3.3.  Continued. 
       
Fold Change1  Gene    Gene Function and/or Product                      P Value 

 1.7   yojI  putative ABC-type multidrug/protein/lipid transport system   0.015 
 1.7   yiaD  putative outer membrane lipoprotein      0.032 
 2.2  speG  spermidine N1-acetyltransferase       0.013 
 2.3  rpoE  sigma E (sigma 24 ) factor of RNA polymerase     0.040 
 2.3  valS  valine tRNA synthetase        0.050 
 2.4  pagP  PhoPQ-activated gene        0.005 
 2.5  cutA  putative periplasmic divalent cation tolerance protein    0.032 
 2.8  cheM  methyl accepting chemotaxis protein II      0.024 
 3.5  tolR  tol protein, role in outer membrane integrity     0.029 
 4.0  ydgE  putative membrane transporter of cations and cationic drugs   0.047 
 5.2  uvrB  UvrB with UvrAC is a DNA excision repair enzyme    0.016 

1 Calculation based on the difference of the mean ratios (treatment to reference strain) for the PM treatment versus the PB control. 
 



  

 

4
6

Table 3.4. S. Typhimurium luxS Mutant (PJ002) Genes Influenced by the Interaction of Autoinducer 2 with Poultry 
Meat Inhibitor (AI-2 + PM) 

      
Fold Change1   Gene    Gene Function and/or Product              P Value 

-3.3  alkB  DNA repair system specific for alkylated DNA     0.024 
-2.2  invI  surface presentation of antigens       0.019 
-2.1  yhhA  putative outer membrane protein       0.043 
-2.0  yohG  putative outer membrane efflux protein      0.015 
-1.9  cyoC  cytochrome o ubiquinol oxidase subunit III     0.037 
-1.6  envR  transcriptional repressor for envCD (acrEF)     0.031 
-1.6  sseG  secretion system effector        0.016 
 1.5   pphB  serine/threonine specific protein phosphatase 2    0.016 
 1.5   sopB  Pathogenicity island encoded protein: SPI5     0.020 
 1.6  tolA  tol protein, membrane spanning protein      0.049 
 1.6  pagP  PhoPQ-activated gene        0.009 
 1.6  yifK  putative APC family amino-acid transport protein    0.032 
 1.6  nusB  transcription termination; L factor      0.036 
 1.7   tatC  component of sec-independent protein export     0.047 
 1.7   ssaR  secretion system apparatus protein      0.030 
 1.8  oxyR  regulatory protein sensor for oxidative stress     0.017 
 2.0  cutA  putative periplasmic divalent cation tolerance protein    0.046 
 2.2  tolR  tol protein, role in outer membrane integrity     0.030 
 2.4  cheM  methyl accepting chemotaxis protein II      0.014 
 2.6  valS  valine tRNA synthetase        0.033 
 2.6  recG  DNA helicase          0.016 
 5.9  uvrB  UvrB with UvrAC is a DNA excision repair enzyme    0.047  

1
Calculation based on the difference of the mean ratios (treatment to reference strain) for the AI-2 + PM treatment verses to the 

PB control. 
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differentially expressed were different from those that were expressed in the 

presence of PM alone.  Only 7 genes (i.e. 1/3 of the targeted genes, namely, alkb, 

cheM, cutA, invI, pagP, uvrB, and valS) showed a common response between 

the PM and AI-2+PM treatments (Table 3.3 and Table 3.4).   This supports our 

assertion that the interaction of AI-2+ PM elicits a unique gene expression 

response that is distinct from the response observed in the presence of either PM 

or AI-2 molecules.  Of the 23 genes that were differentially expressed in the 

presence of AI-2 molecules, only tolR, was observed in the presence of both AI-

2+PM or PM alone, with hsjI having only a similar response in the PM 

treatment. These results suggest that some genes in the PM and AI-2+PM 

treatments may have been suppressed or induced due to the lack of AI-2 or the 

interaction of AI-2 with the poultry meat derived inhibitors.   

When the gene expression among the different treatments is compared, 

only one gene, tolR was found to be represented in all of the treatments. This 

gene which plays a role in the outer membrane integrity was up-regulated 

significantly across all treatments (Tables 3.2, 3.3 and 3.4).  TolR is a component 

of the Tol-Pal system and the function of this complex is to provide outer 

membrane support, and possibly for the transport of macromolecules into the 

cell (52).  The Tol-Pal system is suggested to also be responsible for production 

of outer membrane vesicles which may have a function in pathogenticity by 

transporting virulence factors outside the cell (61).   It is possible that not only is 

this gene enhanced by the presence of AI-2 (1.6-fold), but it may also be 
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independently influenced by particular environmental conditions present in a 

food matrix, as the PM treatment produced over 3-fold induction of the gene 

(Table 3.3). The arrays used in this study represented only a portion of the genes 

comprising the entire Salmonella genome.  Thus it would be difficult to derive 

complete functional expression pathways from this data set.  Delineating the 

response of an organism to environmental stimuli based solely on 

transcriptional activity can be a daunting task, since it is likely that different 

regulatory circuits may be processing a variety of signaling compounds under 

different conditions to produce an in vivo response (19).  Nevertheless this work 

does provide some insight to the response of Salmonella due to AI-2 and the 

completely different gene expression response observed when the AI-2 

molecules are in the presence of a poultry matrix.  

Bacterial responses to AI-2 using microarrays have been investigated in 

the past.  Sperandio et al. (125) reported that out of 4,290 genes in E. coli, 404 

genes were regulated > 5-fold due to quorum sensing.  Under less stringent data 

analysis conditions, 736 genes (17%) were either up-regulated or down-regulated 

at least two-fold.  In another study roughly 5.6% of the genes were modulated ≥ 

2.3-fold when the responses of a luxS mutant and wild-type E. coli were 

compared (34).  A study by Ren et al. (112), involved treatments of a brominated 

furanone derived from the alga, Delisea pulchra, which was capable of 

interfering with quorum sensing.  The authors found 166 genes were regulated at 

least 2.5-fold using the AI-2 treatments (roughly 4% of the 4228 genes on the 
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array), and interestingly 79% of similar genes were differentially expressed in the 

quorum sensing inhibitor treatment (112).  Yuan et al (151), found 17 genes being 

differentially expressed (at least 1.5 fold compared to the wild type) in a luxS 

mutant of P. gingivalis.  When comparing the AI-2 treatment to the PB control, 

23 genes exhibited a significant difference in their expression.  Similar numbers 

were also seen in the AI-2 + PM treatment, with the highest number of genes 

having statistically significant differences in expression levels for the PM 

treatment.  These significant changes in gene expression ranged roughly between 

2% to 3% across all of the treatments (Tables 3.2, 3.3 and 3.4).   

However, the array utilized in this study contained approximately a 

quarter of the entire Salmonella genome (95) and there may be a larger portion 

of genes which may respond to AI-2, or AI-2 combined with the poultry meat-

derived inhibitors, that were not present on the designed array.  Additionally, 

these experiments monitored the late-log transcriptional activity of S. 

Typhimurium as total RNA was extracted after 3h incubation (OD600 ~0.6).  

Potentially, there may be a greater modulation of gene expression due to AI-2, 

and in combination with poultry meat-derived inhibitors, if RNA were extracted 

at earlier time points.  Yet other studies have employed similar approaches to 

what is presented here (34, 112, 125). 

In conclusion, this study suggests that AI-2 does have an impact on the 

expression of certain virulence genes in S. Typhimurium. Interestingly, the 

interaction of the AI-2 molecules with cell-signaling inhibitors found in poultry 
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meat influences the expression of a completely different set of genes. The 

responses from these two treatments are so distinct that there is no overlap 

except for just one gene (tolR).  Overall, these results suggest that virulence-

related genes in Salmonella appear to be differentially expressed depending on 

whether the organism is in contact with AI-2 molecules in the presence or 

absence of poultry meat matrix.  These findings support our original hypothesis 

that poultry meat based inhibitory compounds by virtue of their interaction with 

AI-2 molecules would influence the expression of virulence genes in Salmonella.  

Proteomic analysis is needed to elucidate the pathways in which these poultry 

meat inhibitors may be controlling global protein expression in this pathogen.  

Understanding the influence food matrices have on bacterial cell signaling and 

their ultimate virulence or growth is critical in the development of new food 

products and types that are not only safe, but are also capable of having 

extended shelf lives.  
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CHAPTER IV 

IDENTIFICATION OF POULTRY MEAT-DERIVED FATTY ACIDS 

THAT EXHIBIT INHIBITION OF AUTOINDUCER (AI-2) ACTIVITY 

Introduction 

A system of bacterial cell signaling utilizing autoinducer molecules, is referred to 

as quorum sensing (92, 131, 147).  One particular cell signaling system involves 

autoinducer 2 (AI-2), a furanosyl borate diester molecule produced primarily by 

Gram negative bacteria (1, 116, 128, 146).  AI-2 is produced as a by-product of 

the Activated Methyl Cycle, where S-adenosyl-methionine is created to serve as a 

methyl donor in cellular metabolism (140, 146).  Several studies have proposed 

that autoinducer molecules can influence virulence gene expression in bacteria 

(31, 34, 96, 103, 125).  However, the understanding of bacterial cell signaling in 

relation to food borne pathogens and food spoilage organisms is still limited (14, 

17, 105, 109). 

Previous research has identified compounds derived from a variety of 

sources that can inhibit bacterial cell signaling systems (50, 54, 90, 91).  

Additionally compounds derived from food matrixes can also demonstrate 

inhibition to these autoinducer signaling systems, in particular, matrixes derived 

from poultry meat (83, 84).  The primary focus of this study was to further 

define, and identify, compounds derived from a poultry meat wash that 

exhibited AI-2 inhibition.  By identifying these inhibitory compounds, it may be 
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possible to gain a better understanding on the interaction, of autoinducer signals 

with bacterial pathogens in food matrixes, particularly poultry meats.  

Materials and Methods 
 
Bacterial Strains and Cell-Free Supernatant Preparation (CFS) 

Reporter strain, Vibrio harveyi BB170 (generously donated from Dr. B. Bassler, 

Princeton University) was used as the biosensor strain to detect the presence of 

AI-2 activity.  In order to produce high yields of compounds that expressed AI-2-

like activity, an environmental E. coli strain #5, obtained from a groundwater 

source, was used to produce cell-free supernatant (CFS).  E. coli #5 was grown in 

LB broth media amended with 0.5% glucose (weight/vol) at 37° C to mid-late log 

phase (OD600 ~1).  The culture was centrifuged (10,000 X g for 10 min), and the 

supernatant filtered through a 0.2 µm sterile syringe filter (VWR, West Chester, 

PA).  AI-2-like activity was confirmed in the CFS as described by Lu et al. (83).  

Briefly described, 90 µl of a 1:5000 dilution from an overnight culture of V. 

harveyi BB170 grown in AB media was combined with 10 µl of CFS.  The 

reporter strain was incubated at 30° C, with moderate shaking, and 

bioluminescence measurements were taken at periodic intervals using a Wallac 

1420 plate reader (PerkinElmer, Shelton, CT).  

Synthesis of Autoinducer 2 (AI-2) 

In vitro synthesized AI-2 was prepared according to a published protocol (124).  

Briefly, His-tagged LuxS and Pfs (proteins required for the formation of AI-2) 

were isolated and purified using a nickel resin column (Qiagen Inc., Valencia, 
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CA).  The purified enzymes were incubated with 1 mM S-adenosylhomocysteine 

(Sigma-Aldrich, St. Louis, MO) for one hour at 37° C, and AI-2 was further 

separated from the enzymes using a centrifuge filter column (Biomax-5, 

Millipore, Billerica, MA).  AI-2 activity was confirmed using V. harveyi BB170 as 

previously described. 

Poultry Wash (PW) Derived Inhibitors  

Poultry meat (50 g) obtained from a commercial source was stomached with 40 

ml water, centrifuged (10,000 X g) for 10 min, and the supernatant filtered (0.2 

µm).  Inhibition of AI-2 like activity was confirmed using Vibrio harveyi BB170.  

Inhibition of AI-2 was expressed as a % relative to a corresponding positive 

control (100 – [(light unit measurement of sample/light unit measurement of 

positive control) x 100]).     

Molecular Size Exclusion and Reverse Phase Column 

Chromatography 

All column work was conducted on an ÄKTAFPLC system fitted with a UV 

detection system (Amersham Biosciences, Piscataway, NJ).  For molecular size 

exclusion chromatography, PW inhibitor was loaded into a pre-packed resin 

column with the matrix consisting of cross-linked copolymer of allyl dextran and 

N,N-methylenbisacrylamide (HiPrep 16/60 Sephacryl S-300, Amersham 

Biosciences, Piscataway, NJ).  Using a running buffer of 0.05 M sodium 

phosphate, 0.15 M NaCl, pH 7.2, and at a flow rate of 0.5 ml/minute, 1 ml 

fractions were collected after the void volume, and further concentrated to a final 
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0.1 ml volume under speed-vac.  To correlate collected fraction volumes with 

approximate molecular weight, protein standards (molecular weights ranging 

from 13,700 – 67,000 Daltons) were previously run through the column and 

peaks viewed by UV detection were associated with specific fractions (Low 

Molecular Weight Gel Filtration Calibration Kit, Amersham Biosciences, 

Piscataway, NJ).  Reverse phase chromatography was conducted using hand-

packed C18 resin column (octadecyl-functionalized silica gel, Sigma-Aldrich, St. 

Louis, MO).  PW inhibitor was loaded into the column under water-saturated 

conditions.  Water was used for the initial column conditions in order to reduce 

potential inhibition from residual chemicals that would be present in a running 

buffer.  Using an increasing linear gradient of methanol at 1 ml/minute up to a 

final concentration 100%, 5 ml fractions were collected, evaporated under 

nitrogen gas with heating block and resuspended in 0.5 ml water.   Selected 

fractions collected under both chromatography systems were tested for AI-2 

inhibition (described earlier in the text). 

Solvent Extraction and Fatty Acid Analysis of Poultry Meat-Derived 

Inhibitors 

Poultry meat obtained from a commercial source was stomached with an 

equivalent volume weight of DI water for 2 minutes.  The liquid from the 

stomached material was transferred to sterile polypropylene bottles and 

centrifuged (10,000 X g) for 10 min.  The supernatant was then removed and 

pooled.  Multiple preparations were made until one liter of wash was generated.  
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The poultry meat wash was  mixed with three sequential 500 ml volumes of 

hexane.  After the addition of a volume of solvent and mixing, the solution was 

allowed to separate, the solvent phase removed, and an additional solvent 

volume was added to the PW sample.  The pooled solvents were evaporated 

resulting in approximately 200, and 400, mg material (obtained from two 

preparations).  From the solvent extracted material, fatty acid composition was 

determined using gas chromatography (GC) as described in Hossen and 

Hernandez (66).  Briefly, methyl esters of the fatty acids were generated and 

further extracted in hexane.  Using hydrogen as a carrier gas, the extracted fatty 

acid esters were injected into a GC system with a flame ionization detector and 

passed through a fused silica capillary column.  Fatty acid concentrations for the 

second solvent extract were determined using a standard method, AOCS official 

method Ce 1h-05.  Briefly, methyl esters of the extracted fatty acids were 

prepared and then passed through a GC system with reference fatty acid methyl 

esters used to aid in quantifying the fatty acids present in the sample.   

Evaluation of AI-2 Inhibition by Selected Fatty Acids 

Four fatty acids were selected for further analysis based on percentage of 

composition in the extracted solvent.  Linoleic acid, oleic acid, palmitic acid, and 

stearic acid were obtained from a commercial source (Sigma-Aldrich, St. Louis, 

MO), and stock concentrations of 10 mM, 1 mM, and 0.1 mM were prepared in 

water.  AI-2 inhibition for these solutions were determined using CFS.  

Additionally, solutions were prepared in which linoleic acid, oleic acid, palmitic 
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acid, and stearic acid were combined in water at concentrations (0.014 mM, 

0.033 mM, 0.02 mM, and 0.0046 mM, respectively) similar to those determined 

in the chemical analysis (1X) and at concentrations of 10-fold (10X) and 100-fold 

(100X) to determine if these would demonstrate a corresponding increase in 

inhibition.  AI-2 inhibition was determined with these combined solutions using 

both CFS and in vitro prepared AI-2.   

 To determine if the fatty acids had a cytotoxic effect on the reporter 

strain, another AI-2 bioassay was run with the 100X fatty acid solution and a PW 

control.  After sufficient incubation to demonstrate inhibition, portions of the 

bioassay cultures were spread plated on LM media (10), incubated at 30° C, and 

plate counts of V. harveyi colonies determined after 24 hours.  

Results 

Molecular Size Exclusion and Reverse Phase Column 

Chromatography 

Initial experiments using centrifuge molecular weight cut-off filters indicated 

that inhibitory compounds in the poultry wash were greater than 50,000 

Daltons (data not shown).  From the molecular size exclusion chromatography 

experiments, several concentrated fractions demonstrated inhibition with the V. 

harveyi autoinducer assay (Fig. 4.1).   Fractions greater than the 67 kD (kilo 

Daltons) standard did express some activity, but the highest mean response was, 

at most, 61 % (fractions 30-79).  The highest number of fractions that 

consistently gave a 90 % or greater inhibition were 67 kD, or smaller, and most 
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of the collected fractions (fractions 91-119) were of sizes less than 13.7 kD (Fig. 

2.1) before a noticeable decrease in inhibition (mean 24 %) was seen in the later  
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Figure 4.1.  Mean AI-2-like Inhibition in Fractions Generated by Molecular Size 

Exclusion Liquid Chromatography 
 
% Inhibition - mean percentage inhibition of AI-2 bioassay (n = 10) in relation to a positive 
control (CFS) for each fraction group (bars represent ± one standard error).  Fraction Group -
fractions (1 ml) collected after passing through a gel filtration molecular size exclusion column.   
PW - untreated poultry wash as a comparative inhibition control for the AI-2 bioassay.  
Molecular weight standards corresponded to specific fraction groups as follows: 67 and 43 kD 
standards - fractions 70-79, 25 kD standard - fractions 80-89, and 13.7 kD standard – fractions 
90-99. 
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collected fractions (fractions 120-129).  As data indicated that the size of the 

compounds was less than the resolution of the column, additional experiments 

were conducted to further separate the compounds based on hydrophobic 

interaction using the C18 resin column. 

 The average UV spectra from the collected fractions indicated that most of 

the compounds were released from the column when the mobile solvent reached 

greater than 80 % (data not shown).  Based on UV absorbance, fractions were 

selected for concentration and further testing for inhibition.   Although the 

inhibition of the later selected fractions varied (roughly 19-83 %), the majority of 

fractions that demonstrated the most inhibition (over 70 %) were collected when 

the mobile solvent phase was at a concentration of 90%, or greater (fractions 21 

to 29), and none of the earlier fractions demonstrated any appreciable inhibition 

(Fig. 4.2).  From these results, it was expected that the inhibitory compounds 

had hydrophobic properties and might be extracted from the poultry meat wash 

using a non-polar solvent. 
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Figure 4.2.  Mean AI-2-like Inhibition in Fractions Generated by Reverse Phase 
Liquid Chromatography 

 
% Inhibition - bars represent the mean percentage inhibition of AI-2 bioassay (n = 3) in relation 
to a positive control (CFS) for each concentrated fraction (bars represent ± one standard error).  
% Solvent - curve represents the percentage of methanol used as the moving solvent phase.  
Fraction:  Fractions (5 ml) collected after passing through a C18 column.  PW - untreated poultry 
wash provided as a comparative % inhibition control for the AI-2 bioassay. 
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Fatty Acid Analysis Utilizing Gas Chromatography 

Analysis of the first solvent extracted material indicated that oleic (38.3 %), 

palmitic (29.7 %), and linoleic acid (12.3 %) were the three most common fatty 

acids present (Table 4.1).  Further analysis from the second solvent extracted 

material indicated these fatty acids were present in the highest concentrations 

ranging from 9.19, 5.13, and 3.95 µg/g, respectively (Table 4.1).  

 

Table 4.1.  Composition and Concentration of Fatty Acids Derived from Hexane 
Solvent Extract of Poultry Meat 

 
     Fatty Acid    %   µg/g 
Linoleic    12.3   3.95 

Myristic    3.6   0.13 

Oleic     38.3   9.19 

Palmitic    29.7   5.13 

Palmitoleic    9.9   1.40 

Stearic    6.2   1.31 

Percentage (%) and concentration (µg/g) of fatty acids based on gas chromatographic analysis. 
 
 
 

AI-2 Inhibition of Selected Fatty Acids 

Chemical standards of fatty acids were chosen based on those in a sufficiently 

high concentration within the solvent extracts.   From the 0.1, 1, and 10 mM 

preparation of fatty acid solutions all samples demonstrated some AI-2 
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inhibition (Fig. 4.3).  Interestingly, as the concentrations of stearic acid and 

palmitic acid increased there was some decline in inhibition.  While oleic acid 

and linoleic acid inhibition increased as higher concentrations were tested, with 

linoleic acid having the highest inhibition of over 99 % at 10 mM (Fig. 4.3). 

However, these higher concentrations were far greater than those 

observed in the solvent extracted PW, and could be construed as a higher 

artificial sample compared to actual concentrations found in a food matrix.  

Rather than just observe the inhibition of specific fatty acids separately, 

preparations were made with combinations of all the selected fatty acids (1X) in 

concentrations similar to those determined by GC analysis and, at higher 

concentrations (10X and 100X).  Inhibition was present in all the fatty acid 

solutions with the 1X, 10X, and 100X solutions averaging 65 %, 89 %, and 83 %, 

respectively, when CFS was used as the autoinducer signal (Table 4.2). 
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Figure 4.3.  Mean AI-2-like Inhibition for Selected Fatty Acids 

Bars represent mean percentage inhibition of AI-2 bioassay (n = 6) in relation to a positive 
control (CFS) for each fatty acid solution (± one standard error).  Solutions of fatty acids were 
stearic acid, palmitic acid, oleic acid, and linoleic acid in, 10 mM, 1 mM, or 0.1 mM 
concentrations.   
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Table 4.2.  AI-2 Inhibition for Combined Fatty Acid Treatments 

 
Sample        % Inhibition CFS      % Inhibition AI-2  

1 X Solution    64.5 (± 5.0)   59.5 (± 8.0) 
  
10X Solution    89.2 (± 3.6)   84.4 (± 3.0) 
  
100X Solution   83.2 (± 1.0)   69.5 (± 3.7) 
  
PW     97.6 (± 0.3)   99.0 (± 0.2)  
Sample - combined solutions of stearic acid, palmitic acid , oleic acid, and linoleic acid in various 
concentrations (1X, 10X, or 100X), or poultry meat wash (PW).  % Inhibition CFS - mean 
percentage inhibition of AI-2 bioassay (n = 3) in relation to a positive control (CFS).  Values in 
parenthesis represent the standard error in percentage.  % Inhibition AI-2 - mean percentage 
inhibition of AI-2 bioassay (n = 3) in relation to a positive control (CFS).  Values in parenthesis 
represent the standard error in percentage. 

 

When in vitro synthesized AI-2 was used as the autoinducer signal for the 

V. harveyi bioassay, the 1X, 10X, and 100X solutions demonstrated inhibition of  

59 %, 84 %, and 69 %, respectively (Table 4.2).  Plate counts from the 100X 

combined fatty acid solution averaged 7.5 log CFU/ml, while the PW treatment 

and positive control (AI-2) averaged 7.8 and 7.2 log CFU/ml, respectively, 

indicating there was no significant decrease in viability of the reporter strain 

despite increased autoinducer inhibition in the 100X treatment (Fig. 4.4). 

Discussion 

Previously published studies have described a variety of isolated compounds 

which can interfere with quorum sensing systems, and many of these 

compounds were derived from plant and algal species.  Gao et al. described the 
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Figure 4.4.  Mean Plate Counts for Combined Fatty Acid Treatment (100X), 

Poultry Wash Inhibitor (PW) and In Vitro Synthesized AI-2 (AI-2) 
 
Mean log colony forming units per ml (n = 3) of V. harveyi after 24 hour incubation on LM 
plates (bars represent ± one standard error).  Treatments were a combined solution of stearic, 
palmitic, oleic, and linoleic acid (100X FA), poultry wash inhibitor (PW), and in vitro 
synthesized autoinducer 2 positive control (AI-2 Control).  The mean AI-2 inhibition for the 
100X FA sample and PW sample were, 85.0 % (± 1.7 %) and 90.4 % (± 1.2 %), respectively. 
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isolation of several compounds obtained from solvent extracts of M. truncatula 

seedlings which could impede homoserine lactone signaling compounds (50).   

Halogenated furanones derived from the alga, Delisea pulchra, expressed 

similar characteristics of autoinducer inhibition (91) and appear to influence 

many bacterial processes from swarming motility (54, 64, 111) to production of 

intracellular cellulases and proteases (90).  Although these compounds interact 

primarily with acyl homoserine lactones (a class of quorum sensing compounds), 

there has also been published studies describing the ability of furanones to act as 

inhibitors for AI-2, as Ren et al. showed that furanones were capable of 

inhibiting response of the reporter strain, V. harveyi  BB170, by roughly 49 % 

(112).  Compounds, other than furanones, have demonstrated inhibitory 

properties to AI-2 cell signaling.  DeAnna et al. have described the influence of 

RbsB, a periplasmic ribose binding protein found in Actinobacillus sp., on AI-2 

activity where 50 % inhibition was seen with as little as 40 ng/ml of the protein 

(71). 

Rasmussen and Givskov have proposed that inhibition to quorum sensing 

systems likely employ different strategies: i) impede the production of the 

signaling compound ii) inactivate the signaling compound by direct interaction, 

or iii) competitively bind to (or interfere with) the quorum sensing receptors in 

the bacteria (110).  Although there has been substantial evidence of compounds 

which possess inhibitory properties, these compounds do not have a similar 

structure to the fatty acids employed in this study, particularly those isolated 
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compounds having a furanone structure.  Interestingly, the fatty acids employed 

in this study were similar in structure, with only small differences in the length 

of, or number of double bonds present in (oleic and linoleic acid), the CH side 

chains, indicating that fatty acids as a class of compounds may have inhibitory 

properties.  Also, the fatty acids employed in this study do not have a similar 

structure to AI-2 suggesting that inhibition may not be based on the fatty acids 

acting as a mimic compound, competitively binding to bacterial receptors (Fig. 

4.5).  Inhibition in the combined fatty acid samples did not equal that observed 

in the PW control samples, but there was appreciable amount of inhibition seen.  

However, this may be expected as only a select number of fatty acids were 

evaluated for inhibition.  As all of the selected fatty acids demonstrated some 

inhibition singly and have similar chemical structures, it may be expected that 

other fatty acids within the poultry meat wash are present but below the 

detection limits of chemical analysis, and these compounds could further 

enhance inhibition seen in poultry wash.  Additionally, it must be noted that 

there may be other compounds that were not retained in the initial hexane 

solvent extraction, which are present in the poultry wash and also contribute to 

AI-2 inhibtion.  

There have been published studies showing that mixed fatty acids in milk 

have antimicrobial properties (143).  Additionally, linoleic acid has also been 

show to inhibit the growth of food-borne bacterial pathogens (79) and it could be 

suggested that the inhibition seen is merely the reduction of the reporter strain 
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Figure 4.5.  Chemical Structures of AI-2 and Selected Fatty Acids 

linoleic acid (A), oleic acid (B), stearic acid (C), palmitic acid (D), and autoinducer 2 (E). 



 

 

68 

due to antimicrobial effects.  However the work conducted in this study does not 

indicate that the reduction of AI-2 signal in the reporter strain is a result of 

antimicrobial activity, as there was no significant reduction in plate counts for 

the inhibitor treatments compared to the untreated control despite the fatty acid 

treatments expressing over 80 % inhibition (Fig. 4.4).   

This study presents several long-chain fatty acids identified from poultry 

meat tissue which interfere with autoinducer 2 activity.  As these different fatty 

acids have similar structures, they may serve as a class of compounds that 

possess inhibitory characteristics.  Further research will be needed to better 

understand the mode of inhibition utilized by these fatty acids.  However as 

studies indicate quorum sensing plays a role in the virulence of bacterial 

pathogens, developing strategies to modulate such signaling systems could lead 

to novel means to control food spoilage bacteria or food-borne pathogens. 
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CHAPTER V 

INFLUENCE OF AUTOINDUCER 2 (AI-2) ON THE GROWTH AND 

INFECTION OF Salmonella enterica SEROVAR TYPHIMURIUM AND 

THE MODULATION OF THESE EFFECTS USING POULTRY MEAT-

DERIVED FATTY ACIDS CHARACTERIZED TO HAVE AI-2 

INHIBITORY PROPERTIES 

Introduction 

Salmonella Typhimurium is an enteric pathogen which can act as an agent of 

food-borne illness and is primarily associated with animal products, particularly 

poultry.  A survey conducted from 1992 to 1997 showed that, annually, non-

Typhi Salmonella infections accounted for 9.7% of all food-borne illnesses in the 

United States and resulted in over 1.4 million cases annually (97).  An annual 

survey of commercial raw chicken products (frozen and fresh meats) in the 

United Kingdom, Salmonella was detected in 8 to 9.7% of the samples (98).  

Another annual survey of large broiler plants conducted by the USDA in 1998 to 

1999, found that S. Typhimurium was the third most common serotype, 

accounting for 14.2% of the total isolates and most of the isolates were found in 

broilers (63.5%) (43).  Because Salmonella sp. have the ability to overcome 

environmental stresses such as osmotic pressure and acid tolerance, it has been 

theorized that these stresses may induce the adaptability of Salmonella allowing 

it to remain virulent in a wide variety of uncooked food products (68). 
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Bacteria possess the ability to produce, export, and take up small 

chemical molecules that can serve as a form of bacterial communication.  One 

common signaling compound is a furanosyl borate diester, Autoinducer 2 (AI-2), 

which is primarily produced by Gram negative bacteria (1, 116, 128, 130, 146).   

AI-2 is produced as a byproduct of the Activated Methyl Cycle, where S-

adenosyl-methionine is created to serve as a methyl donor in cellular 

metabolism (127, 140, 146).  The precursor to AI-2 is formed as the hydrolysis of 

S-ribosyl-homocystiene is converted into homocysteine by the enzyme, LuxS, 

creating 4,5-dihydroxyl-2,3-pentanedione (DPD) as a byproduct.  DPD can 

undergo several conformations spontaneously with the removal or introduction 

of water, but the formation of 2-methyl-2,3,3,4-tetrahydroxytetrathydrofuran (S-

THMF) acts as a the precursor to AI-2.  As free boron interacts with S-THMF, a 

furanosyl borate diester is formed, AI-2 (100, 127, 140).   

 Studies have indicated that AI-2 has an impact on bacterial virulence.  

Clostridium perfringens luxS mutants recovered from limited production of 

alpha, kappa, and theta toxins when cell free supernatants of wild type cultures 

were introduced (103).  LuxS mutants of the opportunistic pathogen, Serratia 

marcescnes were able to utilize AI-2 from wild type cell free supernatants, 

restoring production of prodigiosin, a compound suggested to have 

immunosuppresant properties (31).   Other studies using microarray analysis 

have shown that an enterohemorrhagic Escherichia coli wild type, when 

compared to a luxS mutant, had 404 genes were up-regulated at least five-fold 
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(125).   Also an enteropathogenic E. coli. luxS mutant were unable to effectively 

transcribe the locus of enterocyte effacement (LEE), a series of promoters 

responsible for the type III secretion system, in E. coli (119).  

 Compounds derived from plant tissues and brominated furanones have 

properties that inhibit AI-2 (93, 111, 112).  Additionally, extracts from various 

food matrices have been reported to inhibit AI-2 signaling system (83).  Previous 

experiments have indicated that fatty acids derived from a poultry meat wash 

also have inhibitory properties (Chapter IV).  The primary focus of this study was 

to determine the impact of AI-2 on the growth and virulence of Salmonella 

enterica serovar Typhimurium, and whether fatty acids could modulate any 

effects AI-2 had on these processes. 

Materials and Methods 

Bacterial Strains and Cell Culture Lines 

Vibrio harveyi BB170 (a gift from Dr. B. Bassler, Princeton University) was used 

as the biosensor strain to detect the presence of AI-2 activity.  Salmonella 

enterica serovar Typhimurium (isolate # 87-26254) was obtained from the 

National Veterinary Service Laboratory (Ames, Iowa).   A luxS mutant of this 

strain, designated PJ002, was subsequently generated as detailed previously 

(Widmer et al. 2006).  Briefly, Red recombinase expression plasmid, pKD46 was 

used to transform the S. Typhimurium wild-type by eletroporation.  An 

additional plasmid, pKD3, was used as a template for PCR with the resulting 

product encoded a chloramphenicol resistance gene flanked by the FLP 
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recognition target, and luxS homologous, regions.   The PCR product was then 

incorporated into competent S. Typhimurium cells containing the pKD46 

plasmid (that would facilitate recombination) by further electroporation.  The 

Salmonella cells were incubated at 37° C on LB plates amended with 

chloramphenicol, which would select for transformants and the elevated 

temperature ensured the removal of the heat sensitive pKD46 plasmid.  The 

murine macrophage cell line, RAW264.7, was obtained from a commercial 

source and was used for the infection assay experiments (ATCC: Number TIB-

71).  

Synthesis of Autoinducer 2 (AI-2)  

In vitro synthesized AI-2 was prepared according to a published protocol (REF).  

Briefly, His-tagged LuxS and Pfs (proteins required for the formation of AI-2) 

were isolated and purified using a nickel resin column (Qiagen Inc., Valencia, 

CA).  The purified enzymes were incubated with 1 mM S-adenosylhomocysteine 

(Sigma-Aldrich, St. Louis, MO) for one hour at 37° C, and AI-2 was further 

separated from the enzymes using a centrifuge filter column (Biomax-5, 

Millipore, Billerica, MA).  AI-2 activity was confirmed using V. harveyi BB170 as 

described by Lu et al. (REF).  Briefly, 90 µl of a 1:5000 dilution from an 

overnight culture of V. harveyi BB170 grown in AB media was combined with 10 

µl of CFS.  The reporter strain was incubated at 30° C, with moderate shaking, 

and bioluminescence measurements were taken at periodic intervals using a 

Wallac 1420 plate reader (PerkinElmer, Shelton, CT). 
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Fatty Acid Growth Experiments 

Linoleic acid, oleic acid, palmitic acid, and stearic acid were obtained from a 

commercial source (Sigma-Aldrich, St. Louis, MO).  As previously described in 

an earlier chapter (Chapter IV), it was determined that these fatty acids were 

present in a solvent fraction after extraction from washes of poultry meat 

samples at a particular concentration.  Stock solutions of linoleic acid, oleic acid , 

palmitic acid, and stearic acid were combined in water at concentrations (0.014 

mM, 0.033 mM, 0.02 mM, and 0.0046 mM, respectively) similar to those 

determined by previous chemical analysis (1X) and at concentrations of 10-fold 

(10X) and 100-fold (100X).  Additionally solutions of individual fatty acids were 

prepared in similar concentrations to those of the combined solutions to 

determine effects of a particular fatty acid singly. 

 A portion of an overnight culture of Salmonella PJ002 grown in LB was 

centrifuged and the cell pellet washed three times in 1X PBS.  One microliter of 

the washed cells was added to 80 µl M9 medium (supplemented with 0.2% 

glucose as the carbon source) in a 96 well clear flat bottom plate (Corning Inc, 

Corning, NY).  Then either (i) 20 µl 1X PBS (PBS control), (ii) 10 µl AI-2 + 10 µl 

of a fatty acid (FA) at a defined concentration (either 1X, 10X, or 100X), 10 µl 1X 

PBS + 10 µl FA (either 1X, 10X, or 100X), or (iv) 10 µl AI-2 + 10 µl 1X PBS (AI-2 

control) was added to bring the final concentration in each well to 100 µl.  The 

combinations of solutions were prepared as 8 replicates.  Additionally, blank 

controls were prepared (20 µl 1X PBS + 80 µl M9 medium) to provide a baseline 
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for OD600 readings.  The plates were incubated at 37° C for 12 hours with 

moderate shaking in a Tecan Spectrafluor Plus plate reader (Tecan Systems Inc., 

San Jose, CA).  The optical density of each well was measured at a wavelength of 

600 nm and at 15 minute intervals the values recorded automatically using 

Magellan software 4.0. 

 OD600 values were used to estimate cell numbers (69, 70, 134).  All 

OD600 values were corrected against the un-inoculated control, and then log 

transformed and graphed.  Time points were selected at the extreme endpoints, 

encompassing the entire the linear portion of the graphed data.  These points 

were then used to calculate the growth rate constant defined as: k = (ln(OD2) – 

ln(OD1))/(T2 – T1), where OD1 and OD2 were the OD600 values at time 1 (T1) and 

time 2 (T2), respectively.  The resulting growth rate constants (k) were then used 

for comparison analysis. To also determine if there was any difference in the 

growth rates of the luxS mutant versus the wild-type, an additional experiment 

was conducted.  Cultures were prepared from each strain as previously 

described, inoculated in 80 µl M9 medium + 20 µl 1X PBS and grown under 

similar conditions. 

Macrophage Infection Assay 

The RAW264.7 cells were maintained on modified Eagle medium with Earle's 

modified salts (MEME) supplemented with 2 mM Glutamine and 10% fetal 

bovine serum.  Six well plates were seeded with RAW cells and allowed to grow 

to confluence at 37° C in 5% CO2.  From an overnight culture of Salmonella 
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PJ002 was grown in LB broth, a portion was removed, centrifuged and the cell 

pellet resuspended in 400 µl MEME media (without FBS).   Either (i) 100 µl 1X 

PBS (PBS treatment), (ii) 50 µl 1X PBS + 50 µl AI-2 (AI-2 treatment), or (iii) 50 

ul AI-2 + 50 µl 100x of the combined fatty acids (100X FA + AI-2) were added to 

produce a final cell suspension volume of 500 µl.  The cell invasion assays were 

conducted in a manner similar to previously published studies were used with 

some modifications (23, 118).  In brief, the 500 µl cell suspensions (containing 

roughly 107 bacterial cells) were added to a single well and allowed to incubate 

for 1 hour at 37° C in 5% CO2.  Cells that had grown to confluence in selected 

wells were removed and counted using a hemocytometer.  Based on these counts 

of RAW cells, the ratio of macrophage cells to bacteria (MOI) was approximately 

1:100.  The wells were washed twice with 1X PBS and 300 ul MEM 

supplemented with ceftriaxone (100 µg/ml) and 10% FBS were added to each 

well.  The plates were then incubated for 2 hours at 37° C in 5% CO2.  After 

incubation the wells were washed 3 times with 1X PBS and 400 µl 1% Triton X-

100 was added.  The plates were incubated at room temperature for 10 minutes, 

and then 600 µl LB broth was added to each well.  Portions were removed, 

serially diluted in 1X PBS, and plated onto LB agar plates.  All LB agar plates 

were incubated at 37° C overnight.  Dilutions of the treatments and inoculum 

were maintained overnight at 4° C for additional confirmation of plating results, 

if needed.  Colonies were counted and infection efficiency calculated as the 

number of recovered cells (as CFU/ml) post-infection divided by the initial 
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inoculum multiplied by 100 (41, 108).  The assays were performed twice, with 3 

replications of each treatment.  Additional treatments prepared as negative 

controls (uninoculated wells seeded with RAW cells), and controls to 

demonstrate the bactericidal effectiveness of ceftriaxone (Salmonella cell 

suspension in MEME), were also plated onto LB agar.  To determine if the 

mutant strain PJ002 had a different efficacy of infection with the RAW cell line, 

both the mutant strain and the wild-type were used in infection assays in 

triplicates, where the cell suspensions were prepared in 400 µl MEM media with 

100 µl 1X PBS, as described previously.  

Statistical Analysis 

All statistical analysis was done using a commercially available statistical 

software program (SPSS 11.0).  Analysis included either an independent t test or, 

when applicable, by ANOVA with Dunnitt’s test used for post hoc analysis.  

Results were deemed statistically significant at a calculated P value of 0.05.  

Results 

Comparison of Growth Constants from Fatty Acid Growth 

Experiments 

AI-2 activity was confirmed using the V. harveryi reporter strain and showed 

typical relative activity of ≈ 200-fold relative light units (data not shown).  The 

growth constants for the different treatments were aranged into two sets for 

comparative analysis.  The first series were treatments of the fatty acids 

combined with AI-2 were compared directly to the AI-2 control.  As the 
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underlying assumption was that the AI-2 control would have a higher growth 

rate constant than the combined fatty acid-AI-2 treatments, a one-sided 

Dunnett’s test was used for statistical analysis (Table 5.1).  For the second set, 

the fatty acid treatments were compared to the blank control to determine if the 

fatty acids alone had an impact on Salmonella growth (Table 5.2).   

 

 

Table 5.1.  Mean Growth Constant, k, of Salmonella in M9 Media Supplemented 
with Fatty Acids in Combination with AI-2 

 
Fatty Acid(s)          Treatment    k     
   1X + AI-2   0.0054  (± 0.0003) 
Combined  10X + AI-2   0.0051 (± 0.0004) 
(All Fatty Acids)  100X + AI-2   0.0059 (± 0.0002) 

AI-2    0.0051 (± 0.0003)   
1X + AI-2   0.0038 (± 0.0003) 

Linoleic Acid  10X + AI-2   0.0038 (± 0.0005) 
   100X + AI-2   0.0043 (± 0.0003) 
   AI-2    0.0039 (± 0.0004)  

1X + AI-2   0.0026 (± 0.0006) 
Oleic Acid  10X + AI-2   0.0028 (± 0.0002) 
   100X + AI-2   0.0037 (± 0.0005) 
   AI-2    0.0025 (± 0.0006) 

1X + AI-2   0.0020 (± 0.0002) 
Palmitic Acid  10X + AI-2   0.0021 (± 0.0002) 
   100X + AI-2   0.0032 (± 0.0002) 
   AI-2    0.0023 (± 0.0003)  

1X + AI-2   0.0027 (± 0.0002) 
Stearic Acid  10X + AI-2   0.0026 (± 0.0003) 
   100X + AI-2   0.0031 (± 0.0002) 
   AI-2    0.0024 (± 0.0002) 

Treatment - fatty acids singly, or combined, at a nominal (1X + AI-2), 10-fold (10X + AI-2), or 
100-fold (100X + AI-2) concentration.  AI-2 comprises of M9 medium supplemented with 
Autoinducer 2.   k - mean growth constant (at least 7 replicates) with standard error in 
parenthesis.   
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Table 5.2. Mean Growth Constant, k, of Salmonella in M9 Media  
Supplemented with Fatty Acids 

 
Fatty Acid(s)          Treatment    k     
   1X    0.0045 (± 0.0003) 
Combined   10X    0.0050 (± 0.0002) 
(All Fatty Acids)  100X    0.0040 (± 0.0002) 

PBS     0.0044 (± 0.0003)   
1X    0.0009 (± 0.0002) 

Linoleic Acid   10X    0.0012 (± 0.0002) 
100X    0.0018 (± 0.0003) a 
PBS    0.0008 (± 0.0002)  
1X    0.0017 (± 0.0001) 

Oleic Acid   10X    0.0016 (± 0.0001) 
100X    0.0021 (± 0.0002) 
PBS    0.0017 (± 0.0003) 
1X    0.0010 (± 0.0003) 

Palmitic Acid   10X    0.0016 (± 0.0002) 
100X    0.0011 (± 0.0003) 
PBS    0.0015 (± 0.0001)  
1X    0.0013 (± 0.0001) 

Stearic Acid   10X    0.0019 (± 0.0001) 
100X    0.0016 (± 0.0001) 
PBS    0.0019 (± 0.0001)  

Treatment - fatty acids singly, or combined, at a nominal (1X), 10-fold (10X), or 100-fold (100X) 
concentration.  PBS comprises of M9 medium supplemented with 1X PBS.   k - mean growth 
constant (at least 7 replicates) with standard error in parenthesis.  a - significant difference in the 
mean values of k compared to the PBS control (P=0.05) 
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None of the calculated k values expressed any statistical significant differences 

(P > 0.05) for the combined FA + AI-2 treatments compared to the AI-2 control, 

indicating that the fatty acids had no effect on AI-2 which would impact the 

growth rate of Salmonella (Table 5.1).  A similar result was observed in most of 

the FA treatments when compared to the PBS control, with only linoleic acid at a 

100-fold concentration (100X) demonstrating a significant difference (Table 

5.2). 

 When the mean values of the OD600 values were plotted, an overall 

pattern was observed in each series of treatments.  Consistently, treatments with 

AI-2 (with and without fatty acids) had a more pronounced increase in OD600 

absorbance readings compared to treatments that had did not have AI-2 (Fig. 

5.1-5.5).  From this apparent difference, further statistical analysis was done 

directly comparing the growth rates of the AI-2 treatments against the PBS 

control.  There was a significant difference in the growth rates, where mean k 

values for the AI-2 and PBS controls were 0.0033 and 0.0021, respectively 

(Table 5.3).  Neither the wild-type, nor the mutant strain, demonstrated a 

significant difference in mean k values, indicating no difference in growth rates 

in M9 media (combined with PBS) (Table 5.4). 
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Figure 5.1. Mean OD 600 Values of Combined FA Treatments 
with, and without, AI-2 in M9 Minimal Medium 

Points represent the mean OD600 values. Treatments are 1x PBS (PBS), Autoinducer 2 
(AI-2) and combined fatty acids at a nominal concentration (1X), 10-fold (10X) or 100-fold 
(100X) without AI-2, or with AI-2 (1X + AI-2, 10x + AI-2, 100X + AI-2).  
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Figure 5.2. Mean OD 600 Values of Linoleic Acid Treatments 
with, and without, AI-2 in M9 Minimal Medium 

Points represent the mean OD600 values. Treatments are 1x PBS (PBS), Autoinducer 2 
(AI-2) and linoleic acid at a nominal concentration (1X), 10-fold (10X) or 100-fold (100X) 
without AI-2, or with AI-2 (1X + AI-2, 10x + AI-2, 100X + AI-2).  
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Figure 5.3. Mean OD 600 Values of Oleic Acid Treatments 
with, and without, AI-2 in M9 Minimal Medium 

Points represent the mean OD600 values. Treatments are 1x PBS (PBS), Autoinducer 2 
(AI-2) and oleic acid at a nominal concentration (1X), 10-fold (10X) or 100-fold (100X) 
without AI-2, or with AI-2 (1X + AI-2, 10x + AI-2, 100X + AI-2).  
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Figure 5.4. Mean OD 600 Values of Palmitic Acid Treatments 
with, and without, AI-2 in M9 Minimal Medium 

Points represent the mean OD600 values. Treatments are 1x PBS (PBS), Autoinducer 2 
(AI-2) and palmitic acid at a nominal concentration (1X), 10-fold (10X) or 100-fold (100X) 
without AI-2, or with AI-2 (1X + AI-2, 10x + AI-2, 100X + AI-2).  
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Figure 5.5. Mean OD 600 Values of Stearic Acid Treatments 
with, and without, AI-2 in M9 Minimal Medium 

Points represent the mean OD600 values. Treatments are 1x PBS (PBS), Autoinducer 2 
(AI-2) and stearic acid at a nominal concentration (1X), 10-fold (10X) or 100-fold (100X) 
without AI-2, or with AI-2 (1X + AI-2, 10x + AI-2, 100X + AI-2).  
 



 

 

85 

Table 5.3. Comparative Mean Growth Constant, k, of Salmonella in M9 Media 
Supplemented with AI-2 against PBS Control 

 
           Treatment       k 

  AI-2    0.0033 (± 0.0002)a 
 

 PBS              0.0021 (± 0.0002) 
Treatment –  Medium supplemented with either AI-2 or PBS, respectively.  k - mean growth 
constant (at least 39 replicates) with standard error in parenthesis.  a - significant difference in 
the mean values of k compared to the PBS control (P=0.01). 
 

 
 
 
 
 

Table 5.4. Comparative Mean Growth Constant, k, of Salmonella Wild-Type and 
luxS Mutant in M9 Media 

 
             Strain              k 

Wild-Type   0.0047 (± 0.0005) 
 

  Mutant               0.0051 (± 0.0002) 
k - mean growth constant (n = 8) with standard error in parenthesis.   No significant difference 
in the mean values of k observed (P=0.49). 
 
 
 
 

Impact of AI-2 and Combined Fatty Acids on Macrophage Infection 

The removal of the luxS gene had no significant impact on the infectivity of 

Salmonella Typhimurium mutant compared to the wild-type.  Although the luxS 

mutant did have a slight increase in infective efficiency compared to the wild-

type (0.74% and 0.34%, respectively), this was not statistically significant (Fig.  

5.6). There were some differences in infection efficiency that were observed to be 

statistically significant.  The AI-2 treatment demonstrated a reduced infection 

efficiency of 0.28% compared to the untreated PBS control of 0.67%, while the  
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combined FA + AI-2 treatment had an infectivity of 0.43% (Fig.  5.7).  Directly 

compared to the PBS control, the AI-2 treatment did express a statistically 

significant difference (P = 0.02).  However, the combined FA + AI-2 treatment 

did not have a significant difference to either the PBS control treatment, or the 

AI-2 treatment, when directly compared (P > 0.05).  Because of these results, 

further analysis was done to determine if the combined fatty acid treatment 

alone improved infection efficiency.  The 100X fatty acid treatment did have 

improved infection (1.4%) compared to the PBS control (0.67%), but this was not 

statistically significant (P > 0.05).  However the differences in mean % infection 

efficiency were significant compared to the AI-2 treatment (P = 0.02) (Fig 5.8).  
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Figure 5.6. Infection Efficiency of Salmonella Mutant 
and Wild-Type in RAW Macrophage Cells 

Bars represent means for each treatment (n = 3) ± standard error. 
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Figure 5.7. Infection Efficiency of Salmonella Mutant 
with AI-2, Fatty Acids + AI-2, and PBS in RAW 

Macrophage Cells  
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Infection 
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treatment 
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a, b 

FA + AI-2 AI-2 PBS 

Bars represent the means for each treatment (n = 6) ± standard error.   Treatments were 
Autoinducer 2 (AI-2), 100X combined fatty acids and AI-2 (FA + AI-2), and phosphate 
buffered saline control (PBS).  Letters (a, b) represent groups of statistically significant 
differences in the mean % infection compared to the PBS control (P = 0.02). 
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Discussion 

AI-2 has an impact on the growth of Salmonella, in such that, under minimal 

medium culture conditions growth during the exponential phase is increased 

(Table 5.2.).  Although it is a simplistic model and there are relatively better 

methods to estimate the growth constant, k, calculating the growth rate for the 

linear portion of the exponential growth phase can be a useful tool for 

understanding the growth kinetics of bacteria (24, 154).  These parameters have 

been used to compare the growth and survival of bacteria in certain food 

matrixes under varying environmental conditions (6, 89).  What is of particular 

interest is that the addition of varying fatty acids, solely and in combination, at 

0
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Figure 5.8. Infection Efficiency of Salmonella Mutant with 
AI-2, Fatty Acids, and PBS in RAW Macrophage Cells  

Bars represent the means for each treatment (n = 6) ± standard error.   Treatments were 
Autoinducer 2 (AI-2), 100X combined fatty acids (FA), and phosphate buffered saline 
control (PBS).  Letters (a, b) represent groups of statistically significant differences in the 
mean % invasion compared to the PBS control (P = 0.02). 
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different concentrations to the AI-2 treatments did nothing to impede the 

growth of Salmonella (Fig. 5.1-5.5).  Previous experiments indicated that these 

compounds possess characteristics that interfere with the AI-2 quorum sensing 

system (as discussed in the previous chapter).  It was expected that the 

introduction of these compounds would interfere with the influence of AI-2, in 

such that the growth would be impeded to mimic that of the PBS treatment.  

Furthermore, the addition of the fatty acids alone appeared to have little 

influence on the growth of Salmonella, as these treatments caused little 

difference in mean OD 600 values compared to the PBS treatment (Fig. 5.1-5.5).  

This point is further reinforced by the analysis of the growth constants, as only 

one treatment (linoleic acid at 100-fold concentration) had any significant 

difference in growth rates compared to the PBS control (Table 5.1).  It may not 

be surprising that AI-2 has influence on the exponential growth of Salmonella, 

as typical maximal production in enriched medium is at the mid-to-late log 

phase and the compound is slowly removed over time (128, 132, 133).  It is 

interesting to note that there were no differences in the growth rates of the 

mutant compared to the wild type, supporting the notion that the removal of the 

luxS gene does not significantly impact growth of Salmonella (Table 5.3).  

Although one may be surprised that there is no apparent difference in the growth 

rates for the mutant and wild-type, whereas, in the case of the luxS mutant, the 

addition of AI-2 does improve the growth rate.  Other studies have demonstrated 

that substantial production of AI-2 were in Luria Bertaini broth, a relatively 
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enriched medium, (133) and in some cases further supplemented with 0.5% 

glucose (128, 130).  It is likely that the levels of AI-2 produced by the wild-type in 

M9 medium were less that those seen in the AI-2 supplemented treatments and 

these elevated levels induced an improved growth rate in the luxS mutant (when 

compared to the PBS control) (Table 5.3). 

 How well Salmonella responds to host defenses, in particular survival in 

macrophages, is a key aspect of determining the efficacy and progression of 

Salmonella infection (114).   The ability to not only survive phagocytosis, but also 

replicate within macrophage vacuoles is a key aspect for the pathogenicity of 

Salmonella (51, 113).  This study demonstrates that AI-2 impedes infection of 

Salmonella in murine macrophages and such reduction in infectivity can be 

reversed with the addition of fatty acids (Fig. 5.7).  However, it is unlikely that 

improved infection is solely due to fatty acids interfering with AI-2 on the basis 

of cell signaling.  Rather, it is likely that fatty acids have an influence on 

virulence directly, and in turn counter-balance the effects AI-2.  This point of a 

lack of interaction with AI-2 on the basis of cell signaling is also supported by the 

growth experiments, where the addition of fatty acids had no impact on the 

response of the organism to AI-2 (Table 5.1). 

 There are several published studies indicating that fatty acids influence 

virulence of Salmonella, but these effects vary by inducing, or repressing, 

virulence depending on the compounds in question.  Lucas et al. (87) found that 

genes responsible for the metabolism and uptake of fatty acids also affected the 
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expression of hilA, which acts as a direct promoter (or a transcriptional effector 

for other promoters) of genes encoded in the Salmonella Pathogeniticy Island 1 

(SPI1).  The authors found that a mutation for FadD (responsible for the uptake 

and degradation of long chained fatty acids) resulted in reduced expression of 

hilA (87).  Using lacZ fusions, El-Gedaily et al. (40) also showed that short-

chained fatty acids induced gene expression of the spvABCD operon, which is 

utilized for initiating plasmid-mediated virulence.  Interestingly, the authors 

found that there was improved expression of spvB for fatty acids that had carbon 

side chains of C3 to C6, but higher carbon side chains (C8, C10) resulted in a 

severe reduction of spvB expression (40).  Lawhon et al. (77) suggested that 

different short chained fatty acids have a varying effect on Salmonella virulence 

gene expression.  The authors suggested that fatty acids may provide a unique 

environmental signal for Salmonella infection depending on the composition of 

the fatty acids present.  The authors found that propionate and butyrate reduced 

virulence gene expression, while another short chained fatty acid, acetate, 

improved expression.  They further commented that the presence of these fatty 

acids could be indicative of their location in a host, where the distal ileum (an 

effective site for Salmonella invasion) had typically higher concentrations of 

acetate, while other sites within the host (such as the colon), would contain 

higher concentrations of other fatty acids like butyrate (77).  This varying 

response of infection with different fatty acids was also seen by Van Immerseel 

et al. (139).    The authors demonstrated that proprionate and butyrate reduced 
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Salmonella enteritidis infection of an avian intestinal epithelial cell line.  

However when combined with other fatty acids that mimicked the contents and 

concentrations of an adult chicken caecum, infection was normalized (139).  The 

fatty acids employed in this study were long chained fatty acids (greater than 

C10) and their impact on Salmonella virulence has not been fully studied 

compared to previous work done with short chained fatty acids.  It may be likely 

that the metabolism of these long chained fatty acids, and their resulting 

products, may have some influence on Salmonella similar to that seen with 

particular short chained fatty acids. 

 As AI-2 is produced by Gram negative bacteria, it has been considered to 

be a ‘universal’ signal capable of being detected by different bacterial species (1, 

9, 124, 140).  Although the production of the signaling compound appears to be 

conserved, different bacterial species appear to utilize varying routes and 

transport systems for the uptake of AI-2.  For the internal transport of AI-2, 

Vibrio harveyi utilizes two proteins, LuxP and LuxQ.  These two proteins form a 

combined receptor complex which extra-cellular AI-2 binds to.  The bound 

signaling compound then initiates the dephosphorilization of LuxU, and LuxU, 

in turn, dephosphorylates LuxO.  The dephosporylated LuxO, in concert with 

σ54, help destabilize another protein which acts as a small RNA (sRNA) 

chaperone, responsible for enchaining transcription, Hfq (80, 131, 140).  As the 

destabilized small RNA/Hfq complex occurs, this allows the Hfr protein to form 

a complex with existing LuxR mRNA transcripts, increasing stability and further 
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transcription of LuxR which, further promotes the expression of the 

bioluminescence genes (80).  In Salmonella and E. coli, the uptake of AI-2 is 

mediated by another set of proteins, the lsrABC complex (1, 129, 132, 133, 148).  

Here, AI-2 is bound to LsrB, a periplasmic binding protein.  The compound is 

then taken up by LsrC and LsrD, both channel proteins, and finally taken inside 

the cell using an ATPase energy transport system protein, LsrA.  Internalized AI-

2 is then phosphorylated by LsrK, and it is theorized this form of AI-2 may then 

have some regulatory function for various quorum sensing genes (116, 133, 148).  

Recent studies have also indicated a ribose-binding transport system may have 

similar function to the lsrABC complex, where RbsB (a periplasmic ribose 

binding protein) has demonstrated the ability to also bind to AI-2 (71).  As more 

research is conducted on quorum sensing, it is becoming indicative that different 

species of bacteria may utilize varying binding, and transport systems, for the 

internalization of AI-2.  Sun et al. (127) has suggested this, as their research 

found that in a comparative study among 138 genomes, luxP was found to be  

commonly present in only three species, all of them Vibrio species. 

Compounds have been identified to be inhibitors to the AI-2 quorum 

sensing system, specifically furanones derived from algae (Delisea pulchra) 

which reduced AI-2 activity in V. harveyi reporter strains by over 5000 fold 

(111).  Ren et al. (112) also demonstrated a decrease of 49% in relative light units 

using a V. harveyi reporter strain when combined with a boronated furanone.  

Based on the inhibitory properties of the brominated furanones, the authors 
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wished to determine if varying gene expression could be observed in an E. coli 

K12 strain cultured under conditions that would promote AI-2 production, and 

also in combination of furanone inhibitors.  The authors found that out of the 56 

genes down-regulated in the quorum sensing inhibitor treatment, 44 were up-

regulated in conditions promoting AI-2 (112).  Initially, this idea of a direct 

impact on virulence due to the modulation of gene expression in Salmonella 

could be supported from the infection assay experiments presented in this study.  

Previous research indicates that fatty acids interfere with quorum sensing (as 

discussed in Chapter 4), and there was a statistical difference observed in the 

infection efficiency of the AI-2 treatment when compared to the PBS control 

while none was observed when the combined fatty acid and AI-2 treatment was 

similarly compared (Fig. 5.7).  However, cell signaling inhibition was based on 

the response of a Vibrio harveyi reporter strain.  Salmonella, as previously 

discussed, utilizes a different transport system for the importation of AI-2.  

Hence, it may be important to account for how AI-2 is taken up by a particular 

bacterial species when discussing quorum sensing inhibition, particularly if this 

inhibition is seen using the Vibrio harveyi reporter strain.  This may indicate the 

limitation of extrapolating the effects of inhibitory compounds when applied to 

other (non-Vibrio) bacterial species.  Thus, while the fatty acids employed in this 

study have characteristics of AI-2 inhibition, the response in Salmonella from 

these compounds may not be due to impeding the AI-2 signaling system.   
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This study establishes that AI-2 does have varying effects on Salmonella, 

improving the growth of Salmonella in minimal medium, while decreasing the 

infectivity of macrophages.  The addition of fatty acids had a limited effect on the 

growth of Salmonella, but did improve infection normalizing it to control levels.  

Although in the case of infection, there was an opposite effect in activity 

compared to the AI-2 treatments, it is likely that the increase in infection could 

be due to promotion of specific virulence genes rather than interfering with AI-2 

as a quorum sensing system.  To better understand inhibition of AI-2 in specific 

bacterial species, utilization of reporter strains that employ similar transport 

systems for the uptake of AI-2 may be needed to truly understand the impact 

these inhibitor compounds have on bacterial functions and processes mediated 

by AI-2. 
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CHAPTER VI 

SUMMARY 

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular 

pathogen and major causative agent in food-borne illnesses.  Bacteria are 

capable of producing, secreting, and utilizing chemical compounds for cell-to-

cell communication, generally termed as quorum sensing.  A key cell signaling 

system involves autoinducer AI-2, a furanosyl borate diester molecule produced 

primarily by Gram negative bacteria.  A constructed reporter strain, Vibrio 

harveyii BB170, is typically used to detect AI-2 activity by measuring 

bioluminescence of the organism.  Autoinducer signals bind to the receptor 

protein, LuxP and forms a complex with another membrane protein, LuxQ.  This 

protein complex then will dephosphorylate LuxU, and in turn, dephosphorylate 

LuxO.  The dephosporylated LuxO, in concert with σ54, help destabilize another 

protein which acts as a small RNA (sRNA) chaperone, responsible for enchaining 

transcription, Hfq.  As the destabilized small RNA/Hfq complex occurs, this 

allows the Hfr protein to form a complex with existing LuxR mRNA transcripts, 

increasing its stability, and in turn promoting luciferase genes.  In Salmonella 

there has been identified a luxS regulated operon (lsrACDBFGE) which encodes 

an ABC transporter system with similar functionality to ribose transport systems 

in E. coli.  The periplasmic binding protein, lsrB, is responsible for binding with 

extracellular AI-2, and the compound is internalized using this transport system.  

Once internalized, AI-2 is phosphorylated by the gene product of lsrK, and is 



 

 

97 

responsible for inactivating LsrR, allowing the expression of the lsr operon.  

However other functions are proposed to be affected by the phosphorylated AI-2 

complex and there is increasing evidence that AI-2 has a role in influencing gene 

expression and bacterial processes, including those processes involved with 

virulence. 

 Previous research studies have demonstrated that food matrices, 

particularly poultry meat extracts, have compounds which can interfere with AI-

2 activity.  This inhibition is primarily based on observing a reduction of light 

production in the V. harveyii reporter strain when comparing treatments 

containing inhibitors combined with autoinducer signals verses positive 

controls.  The objective of this work was to determine if AI-2 influenced 

virulence gene expression, and if combined with inhibitors in poultry meat, 

could those effects be modulated.  Experiments were also performed to define 

the compounds in the poultry meat matrix that had AI-2 inhibitory properties.  

Salmonella growth and virulence were studied directly to determine the impact 

AI-2 had on these processes, and if the implementation of inhibitory compounds 

could modulate these effects.   

AI-2 has limited influence on virulence gene expression, but this 

expression is modulated by poultry meat derived inhibitors.  Experiments were 

conducted to determine if there was varying expression of Salmonella 

Typhimurium genes (using spotted microarrays) in response to AI-2 in the 

presence, and absence, of poultry meat (PM) derived AI-2 inhibitors.   
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Expression of 1136 virulence-related genes in Salmonella Typhimurium wild 

type and its isogenic luxS mutant strain (unable to produce AI-2) was monitored 

when the cells were exposed (3 hours) to different treatments containing in vitro 

synthesized AI-2 and the PM inhibitor (AI-2, AI-2 + PM, or PM alone).  The 

responses of the genes were unique in the presence of in vitro synthesized AI-2.  

Out of 1136 genes on the array, 23 genes were differentially expressed (either up-

regulated or down-regulated) at least 1.5-fold (p < 0.05) in the presence of AI-2.  

Exposure to the PM inhibitor resulted in 36 genes being differentially expressed, 

while the combined AI-2 + PM treatment resulted in 22 genes being 

differentially expressed out of which only 7 genes showed overlap with the PM 

treatment suggesting a unique response when AI-2 interacts with the inhibitor 

molecules.  The results suggest that Salmonella gene expression can vary 

depending on the presence or absence of the poultry meat matrix and/or AI-2 

molecules.   

Fatty acids are key components in poultry meat extracts which 

demonstrate AI-2 inhibition.  Previous research has shown that certain food 

matrixes have the properties to inhibit this signaling compound.  Using the 

reporter strain, V. harveyi BB170, poultry meat wash (PW) samples were 

characterized by their molecular weight and hydrophobic properties using liquid 

chromatography systems and the resulting fractions tested for AI-2 inhibition.  

Based on a molecular size exclusion column, the majority of collected fractions 

that possessed inhibition to AI-2 were 13.7 k Daltons, or less, in size.  Using 
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reverse phase liquid chromatography, the majority of fractions which expressed 

inhibition were obtained when methanol solvent, acting as a mobile phase in a 

water-saturated C18 resin column, reached 100% in concentration.  Based on 

these initial experiments, hexane was used to extract the inhibitory compounds 

from a PW preparation.  With gas chromatography (GC) analysis, several fatty 

acids were identified and quantified.  Chemical standards of linoleic acid, oleic 

acid, palmitic acid, and stearic acid were obtained and singly tested for 

inhibition at 0.1 mM, 1 mM, and 10 mM concentrations.  All samples expressed 

inhibition (ranging from approximately 25-99 % inhibition).  When combined in 

concentrations determined by GC analysis, inhibition of AI-2 was approximately 

60 %.  At higher concentrations (10 and 100 fold), the combined fatty acids 

produced an inhibition of 84.4 % and 69.5 %, respectively.  At concentrations of 

100 fold, the samples of combined fatty acids did not demonstrate a significant 

decrease in plate counts, despite presenting high AI-2 inhibition, indicating that 

the reduction in AI-2 activity was due to interferance with cell signaling, rather 

than antimicrobial effects against the V. harveyi reporter strain.   

AI-2 promotes growth, but reduces infection in murine macrophages.  

When AI-2 is combined with fatty acids, there is no modulation of growth, but 

normalized infection was restored.  Fatty acids have demonstrated 

characteristics of AI-2 inhibition using the reporter strain, Vibrio harveyii, 

BB170.  The primary focus of this study was to determine the impact of AI-2 on 

the growth and virulence of Salmonella enterica serovar Typhimurium, and 
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whether fatty acids could modulate any effects of AI-2 observed.  A luxS mutant, 

PJoo2, was grown in M-9 minimal medium supplemented with glucose and 

long-chained fatty acids (FA) of varying concentrations.  In addition, treatments 

were supplemented with in vitro synthesized AI-2 or 1X PBS.  After a 12 h 

incubation recording OD600 values, comparative analysis was done calculating 

the growth constants for each treatment.   No significant difference was seen in 

the combined FA + AI-2 treatments compared to the AI-2 treatment.  

Additionally, the majority of FA treatments had no impact on the growth of 

Salmonella.  However, there was a significant increase in the growth rate 

constants of the AI-2 treatments when compared to the PBS control (P = 0.01).  

Bacterial invasiveness using a murine macrophage cell line, RAW 264.7 was also 

investigated.  AI-2 decreased cell invasiveness (P = 0.02), while the addition of 

combined FA restored invasiveness to normalized function.  Because literature 

suggests varying medium and short-chained fatty acids have an impact on 

virulence for Salmonella, it is likely the modulation of invasion is due to the 

direct promotion of virulence genes, rather than interfering with AI-2 signaling.  

The results of this study show that although AI-2 does have an effect on the 

growth and virulence of Salmonella, this cannot be modulated by fatty acids, 

although these compounds have AI-2 inhibitory characteristics.  This indicates 

that the validity of inhibition based on V. harveyi may have limited applicability 

when observing quorum sensing systems in other bacterial species. 
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Conclusions 

The results of the research conducted in these studies can be summarized as 

follows: 

1. AI-2 has some influence on virulence gene expression, and this expression 

is modulated by poultry meat-derived inhibitors. 

 

2.  Some genes were commonly expressed in treatments of poultry meat 

extracts singly, and in combination with AI-2, indicating that the food matrix 

itself has some influence on Salmonella virulence gene expression. 

 

3. Fatty acids are components in poultry meat extracts which demonstrate 

AI-2 inhibition, and may serve as a class of compounds that are quorum sensing 

inhbitors. 

 

4. AI-2 promotes growth of Salmonella in minimal medium.  The addition of 

fatty acid inhibitors does not affect the growth rate of Salmonella under similar 

conditions, even when combined with AI-2. 

 

5. AI-2 reduces the infection efficiency in murine macrophages.   When 

combined with fatty acids, infection is normalized to control levels.   
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6. Because the V. harveyi reporter strain, BB170, uses an AI-2 transport 

system that may be unique to that species, it is likely responses observed in the 

combined AI-2 + fatty acid treatments from these experiments may be due to 

other interactions other than those affiliated with quorum sensing. 

 

7. To better understand the impact of AI-2 inhibitors in enterobacteriaceae, 

there can be limitations to using V. harveryi BB170, and it may be more 

applicable to utilize other reporter strains that use similar internalization 

systems for these quorum sensing signals. 
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APPENDIX A 
 

PROTOCOLS AND SUPPORTING EXPERIMENTS 

AI-2 Bioluminescence Assay 

Vibrio harveyi BB170 was grown overnight in AB medium at 30 °C (with 

moderate shaking).  Two 2 µl was transferred into 10 ml fresh AB medium 

(1:5000 dilution).  AB (Autoinducer Bioassay) medium was prepared as follows: 

(per L) 17.5 g NaCl, 12.3 g MgSO4, 2 g Casamino acid, pH adjusted to 7.5 (1 N 

NaOH) and autoclaved at 121 °C for 15 min.   After cooling to room temperature 

the following was added: 10 ml 1M KH2PO4 pH adjusted to 7.0 (autoclaved), 10 

ml 0.1M L-arginine (fresh prepared and 0.2 µm filtered), and 20 ml 50% glycerol 

(autoclaved).  Ninty 90 µl of diluted reporter cells was added into a 96 well plate 

for each sample and the controls, all samples and controls were prepared as 

triplicates.  Inhibition assay samples were prepared as 5 µl sample, with 5 µl 

Preformed AI-2 CFS added to the 90 µl of diluted reporter cells for a total 

volume of 100 µl for each well.  For negative controls, 10 µl fresh AB medium 

was added to the wells.  For the positive controls, 5 µl fresh AB medium, and 5 µl 

Preformed AI-2 CFS were added.   

The well plate was incubated with a plate cover at 30 °C, 100 RPM.  After 

approximately 3 hours of incubation, the plate was removed for luminescence 

readings and at 30 minute intervals thereafter.  Readings were taken in a Perkin 

Elmer-Wallac Victor 2 plate reader set to measure luminescence, live display 

settings set to a logarithmic reading, high scale 0-100000.  At these settings the 
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plate reader measured light emitted (with no excitation) from each sample 

within the visible spectrum.  Measurements were taken until the average 

luminescence values of the negative controls approximately doubled from the 

previous 30 minute reading, at that point the assay was stopped and those values 

were used for determining inhibition.  Inhibition was determined as a 

percentage based on the positive control using the following equitation:  

Relative Percentage Activity: 100 – [(Average Negative Control/Average Sample 

Value) x 100]. 

Macrophage Cell Infection Assay 

The RAW264.7 cell line was maintained on modified Eagle medium with Earle's 

modified salts (MEME) supplemented with 2 mM Glutamine, 10 mg/ml 

streptomycin, 25 µg/ml amphotericin B, and 10% fetal bovine serum (FBS) in a 

T25 flask (a T75 flask was used for cell passage preceeding seeding experiments) 

at 37° C in 5% CO2.   Six well plates were seeded with RAW cells and allowed to 

grow to confluence at 37° C in 5% CO2.  Salmonella PJ002, was grown overnight 

at 35 °C in LB broth amended with 25 µg/ml choramphenicol.  One ml of the 

overnight culture was centrifuged at 12,000 x g for 5 minutes, the supernatant 

removed, and resuspended in 1 ml of MEME, with sodium bicarbonate (no 

serum).   Treatments were prepared as 400 µl cell suspension with 100 µl sample 

(example 100 µl 1x PBS, 50 µl 1 X PBS + 50 µl AI-2, 50 µl fatty acid mixture + 50 

µl AI-2, etc).  Media from the 6 well plates were removed and discarded, 500 µl 

of the Salmonella cell treatments were added to each well and incubated for 1 
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hour at 37° C in 5% CO2.   Two additional controls were prepared.  A blank 

control prepared from one well in each 6 well plate by adding 500 µl MEME 

media, without bacteria.  And an antibiotic (AB) control, where 500 µl of the 

Salmonella cell suspension that was prepared in a microcentrifuge tube 

(incubated under similar conditions as the infection assay well plates).   

To determine the original inoculum, a portion of the cell suspension was serially 

diluted in 1 X PBS and plated onto Luria Bertani agar plates (LBA).   

After incubation each well was washed with 300ul 1X PBS, 3 times.  For the AB 

control, the microcentrifuge tube was spun down at 12,000 x g for 5 min, the 

supernatant removed and discarded.  Three hundred µl MEME medium (with 

sodium bicarbonate and 10% FBS) amended with 100 µg/ml Ceftriaxone was 

added to each well (or the cell pellet resuspended in the case of the AB control).  

The well plates (and AB control) were incubated at 37° C in 5% CO2 for 2 hours.  

Following the incubation period, the media was removed from plate wells and 

each well was rinsed twice with 300 µl 1X PBS.  The AB control at this point was 

be directly plated onto LB plates.  Four hundred µl 1% Triton X-100 (in 1X PBS) 

was added to each well and incubated at room temperature for 10 minutes, 

followed by the addition of 600 µl LB broth.  The LB solution was drawn up 

dispersed several times to further remove the mono-cell layer and portions were 

removed for dilution (in 1X PBS) and plating onto LBA plates.   All LBA plates 

were incubated for 24H at 35 °C.  Colonies were counted on the plate the 

following day, converted to CFU/ml, and infection efficiency calculated as 
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follows: % infection = [cells in inoculum (CFU/ml) / cells recovered post-

infection (CFU/ml)] X 100.  The assay was considered successful if both the 

blank control samples and the AB control expressed no colonies after plating on 

LBA. 

Confirmation of Cell Infection by Microscopy 

To determine if Salmonella was capable infecting the RAW cells, despite the 

washing steps employed during the cell infection assay, an experiment was run 

to confirm the presence of Salmonella by bright-field microscopy.  RAW cells 

were seeded in 6 well plates, with the addition of 25 mm plastic coverslips 

(Thermanox coverslips, Nunc, Rochester, NY).  A cell infection assay was run as 

previously described except that after the final washing steps post-incubation 

with MEME medium amended with chloramphenicol, the RAW cells were not 

lysed with Triton-X 100.  Instead, the coverslips were removed for Giemsa 

staining. 

 The cover slips were air dried and then dehydrated with methanol (dipped 

twice in a methanol solution).  The cover slips were then submerged in a diluted 

Giemsa stain, modified, solution (1:20 dilution in water) for 20 minutes.  After 

sufficient staining, the cover slips were removed and briefly washed with water 

(dipped in solution 2-3 times), and air dried in a near vertical position.  The 

stained cover slips were mounted on glass slides and viewed at 1000 X total 

magnification under bright field using an oil immersion lens.  The Giemsa stain 

is typically used to differentiate nuclei from cytoplasmic morphology in 
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eukaryotic cells, and can be used to indicate if a cell line is contaminated with a 

Mycoplasma infection due to the presence of dark blue-purple nuclei within the 

cytoplasm (typically a pinkish stain).  The infected samples demonstrated 

several dark stained rod shaped bacteria, within the cytoplasm of the RAW host 

cells, and these were noticeably absent in the blank controls (Fig. A.1).  This 

indicated that despite several washings after incubation in the MEME 

supplemented antibiotic medium, Salmonella cells were still present and closely 

associated with the RAW host cells. 
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Figure A.1 Giemsa Stained RAW Cells after Salmonella  
enterica Infection Assay 

Top panel - negative control, Bottom panel – infected cells (selected sites demonstrating 
typical infection indicated by arrows). 
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