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ABSTRACT 
 
 

Evaluation of Physiological and Pheromonal Factors Regulating Honey Bee, Apis 

mellifera L. (Hymenoptera: Apidae) Foraging and Colony Growth. (May 2007) 

Ramesh Reddy Sagili, B.S., Andhra Pradesh Agricultural University; 

M.S., Andhra Pradesh Agricultural University 

Chair of Advisory Committee: Dr. Tanya Pankiw 

 

This dissertation examines some important physiological and pheromonal factors 

regulating foraging and colony growth in honey bee colonies.  The first study analyzed 

effects of soybean trypsin inhibitor (SBTI) on the development of hypopharyngeal 

gland, midgut enzyme activity and survival of the honey bee. In this study newly 

emerged caged bees were fed pollen diets containing three different concentrations of 

SBTI.  Bees fed 1% SBTI had significantly reduced hypopharyngeal gland protein 

content.  This study indicated that nurse bees fed a pollen diet containing at least 1% 

SBTI would be poor producers of larval food. 

In the second study nurse bee biosynthesis of brood food was manipulated using 

SBTI, and the resulting effects on pollen foraging were measured.  Experimental 

colonies were given equal amounts of SBTI treated and untreated pollen.  SBTI 

treatments had significantly lower hypopharyngeal gland protein content than controls.  

There was no significant difference in the ratio of pollen to non-pollen foragers and 
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pollen load weights collected between the treatments. These results supported the pollen 

foraging effort predictions generated from the direct independent effects hypothesis. 

In the third study we tested whether brood pheromone (BP) regulated queen egg 

laying via modulation of worker-queen interactions and nurse bee rearing behaviors. 

This experiment had BP and control treatments. Queens in the BP treatment laid greater 

number of eggs, were fed for a greater amount of time and were less idle. Significantly 

more time was spent in cell cleaning by the bees in BP treatments. The results suggest 

that brood pheromone regulated queen egg-laying rate by modulating worker-queen 

interactions and nurse bee rearing behavior.   

The final study of this dissertation focused on how dose-dependent BP-mediated 

division of labor affected the partitioning of non-foraging and foraging work forces and 

the amount of brood reared. Triple cohort colonies were used and there were three 

treatments, Low BP, High BP and Control.  Low BP treatments had significantly higher 

ratio of pollen to non-pollen foragers and greater pollen load weights.  Low BP treatment 

bees foraged at a significantly younger age.  This study has shown that BP elicits dose-

dependent modulation of foraging and brood rearing behaviors. 

 

 

 

 

 

 



 v

ACKNOWLEDGEMENTS 
 
 
 
I would like to express my deep sense of gratitude and appreciation to my advisor and 

committee chair Dr. Tanya Pankiw for her constant encouragement, motivation and 

moral support throughout the course of this research. She has been an excellent mentor, 

a brilliant scientist and a perfect role model. I truly believe that her investment will have 

a significant impact on my future as a honey bee researcher. My sincere thanks to Dr. 

Keyan Zhu-Salzman who graciously allowed me to use her lab facilities for part of my 

experiments and provided with valuable suggestions and guidance throughout my 

research. I further extend my sincere appreciation and gratitude to my committee 

members Dr. Bradleigh Vinson and Dr. William Grant for their constant support and 

stimulating suggestions during the course of this research. 

I would like to thank Stephanie Walkup-Birkhead, Robert Vaughn, Swaroop, 

Haribhaskar, GW Burlin and Roman Roman for providing technical assistance during 

my research.  I am thankful to my colleagues Brad Metz, Lizette Peters and Stephen 

Bahr for their support and friendship.  I acknowledge the moral support and patience of 

my wife Suma, who has been a constant source of encouragement. Also, my two little 

boys Sai and Srikar have been a source of joy and inspiration for me.  I also extend my 

sincere thanks to my parents and in-laws for their understanding, support and 

encouragement.  I further express my gratitude to all my friends and relatives for their 

constant support and encouragement.  

 



 vi

 This research has been supported by funds from USDA grants to T. Pankiw, 

Texas Honey Bee Legislative Initiative and a scholarship to R.R. Sagili from The 

Foundation for the Preservation of Honey Bees.  Finally, I thank the Department of 

Entomology and Texas A&M University for providing the necessary resources and 

assistance to complete this dissertation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii

TABLE OF CONTENTS 

 

                                                                                                                                       Page 

ABSTRACT ..................................................................................................................... iii 

ACKNOWLEDGEMENTS ...............................................................................................v 

TABLE OF CONTENTS.................................................................................................vii 

LIST OF FIGURES............................................................................................................x 

LIST OF TABLES ...........................................................................................................xii 

CHAPTER 

I     INTRODUCTION .................................................................................................1

Division of labor.........................................................................................3 
Division of brood rearing labor..................................................................5 
Protease inhibitors ......................................................................................6 
Pheromones ................................................................................................7

II    EFFECTS OF SOYBEAN TRYPSIN INHIBITOR ON HYPOPHARYNGEAL 

GLAND PROTEIN CONTENT, TOTAL MIDGUT PROTEASE ACTIVITY 

AND SURVIVAL OF THE HONEY BEE (Apis mellifera L.) ...........................10 

Introduction ..............................................................................................10 
Methods....................................................................................................12 

Hypopharyngeal gland protein quantification..............................13 
Bradford assay..............................................................................13 
Total midgut proteolytic enzyme activity ....................................14 
Survival analysis ..........................................................................16 

Results ......................................................................................................16 
Hypopharyngeal gland development............................................16 
Total midgut protease activity......................................................18 
Survival ........................................................................................20 

Discussion ................................................................................................22 
 
 



 viii

CHAPTER                                                                                                                    Page 

III  EFFECTS OF PROTEIN CONSTRAINED BROOD FOOD ON HONEY     

BEE (Apis mellifera L.) POLLEN FORAGING AND COLONY GROWTH....25 

Introduction ..............................................................................................25 
Methods....................................................................................................29 

Hypopharyngeal gland protein analysis .......................................30 
Midgut proteolytic enzyme activity .............................................31 
Foraging behavior measurements.................................................32 
Statistical analyses........................................................................33 

Results ......................................................................................................33 
Hypopharyngeal gland protein content and midgut proteolytic 
enzyme activity ............................................................................33 
Foraging behavior ........................................................................36 

Discussion ................................................................................................40 

IV  BROOD PHEROMONE REGULATION OF QUEEN EGG-LAYING IN     

THE HONEY BEE (Apis  mellifera L.) ...............................................................44 

Introduction ..............................................................................................44 
Methods....................................................................................................45 

Queen observations ......................................................................47 
Observing larvae and nurse bees..................................................48 
Statistical analyses........................................................................49 

Results ......................................................................................................50 
Discussion ................................................................................................66 

V   BROOD PHEROMONE REGULATED FORAGING ONTOGENY     

EFFECTS ON BROOD REARING IN THE HONEY BEE (Apis mellifera L.) 69 

Introduction ..............................................................................................69 
Methods....................................................................................................71 

Measurements...............................................................................72 
Statistical analyses........................................................................73 

Results ......................................................................................................74 
Discussion ................................................................................................84 

 

 



 ix

CHAPTER                                                                                                                    Page 

VI  CONCLUSIONS..................................................................................................87 

REFERENCES.................................................................................................................90 

VITA ..............................................................................................................................104 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 x

LIST OF FIGURES 

 

FIGURE                                                                                                                        Page 

   1             Mean hypopharyngeal gland protein quantities of bees (±SE) fed  
                  with different concentrations of soybean trypsin inhibitor in pollen.   
                  Different letters indicate significant differences among the  
                  treatments (P < 0.0001)……………………………………………………..17 
   
   2       Mean midgut proteolytic enzyme activities of bees (+SE) fed with                   
                  different concentrations of soybean trypsin inhibitor in pollen.   
                  Different letters indicate significant differences among the  
                  treatments (P < 0.0001)……………………………………………………..19 
 
   3       Survival of bees fed with different concentrations of soybean trypsin   
                  inhibitor in pollen………………………………………………………….. 21     
 
   4             Mean hypopharyngeal gland protein quantities of bees (+SE) that  
                  received control and SBTI treatments.  Asterisk indicates significant       
                  difference (P<0.001)………………………………………………………..34  
 
   5 Mean midgut proteolytic enzyme activities (+SE) of bees that  
                  received control and SBTI treatments.  Asterisk indicates significant   
                  difference (P<0.0001)………………………………………………………35 
 
   6       Mean ratio of pollen to non-pollen foragers (+SE) entering the  
                  colonies (P>0.05).  ‘ns’ indicates no significant difference. Pollen   
                  foragers: n= 1765 (control) and n= 1708 (SBTI).  Non-pollen foragers:  
                  n=6070 (control) and n= 5594 (SBTI)………………………………………37 
 
   7       Mean pollen load weights (+SE) collected by control and SBTI fed   
                  colonies (P>0.05).  ‘ns’ indicates no significant difference………………...38 
 
   8 Mean brood area reared (±SE) in control and SBTI treated colonies  
                  over a period of 4 weeks…………………………………………………….39 
 
   9       Mean number of eggs laid by the queen in an hour (+SE).  Asterisks  
                  indicate significant difference and ‘nsd’ denotes no significant  
                  difference……………………………………………………………….…...50 
 
   10       Mean number of eggs laid by the queen in a period of 9 days (+SE).   
                  Asterisks indicate significant difference……………………………………52 



 xi

FIGURE                                                                                                                        Page 
 
   11       Mean number of feeding bouts received by the queen (+SE).   
                  Asterisks indicate significant difference.  No significant difference  
                   is denoted by ‘nsd’…………………………………………………….…... 54 
 
   12 Mean feeding time of queen per hour (+SE) (in seconds).  Asterisk   
                  indicates significant difference…………………………………………….. 56 
 
   13       Mean idle time of queen per hour (+SE) (in seconds). Asterisks  
                  indicate significant difference……………………………………………... 58 
 
   14 Mean patrol time of the queen per hour (+SE) (in seconds).  
                  Asterisks indicate significant differences………………………………….. 60 
 
   15 Mean cell inspection time in an observation period of 15 minutes  
                  (+SE).  Asterisks indicate significant differences………………………..…62 
 
   16 Mean nursing time of the nurse bees in an observation period of 15  
                  minutes (+SE). Asterisks indicate significant differences………………….63 
 
   17       Mean cell-cleaning time in an observation period of 15 minutes  
                  (+SE).  Asterisks indicate significant difference…………………………...64 
 
   18       Mean ratio of pollen to non-pollen foragers (+SE).  Different letters  
                  indicate significant differences……………………………………………. 75 
 
   19       Mean percentage of foragers and non-foragers in each of the three  
                  treatments…………………………………………………………………..76 
 
   20       Mean pollen load weights collected by the foragers (+SE).  Different   
                  letters indicate significant differences…………………………………….. 77 
 
   21 Mean brood area in cm2 (+SE). Asterisks indicate significant  
                  difference…………………………………………………………….……. 78 
 
   22       Mean pollen area in cm2 (+SE) for the three treatments…………………... 79 

   23 Mean hypopharyngeal gland protein content in micro grams (+SE).   
                  Different letters indicate significant difference…………………………….81 
 
   24 Mean age of first foraging in days (+SE).  Different letters indicate    
                  significant difference……………………………………………………….82 
 



 xii

LIST OF TABLES 

 

TABLE                                                                                                                          Page 

     1      ANOVA pertaining to number of eggs laid by the queen in an hour   
                 showing degrees of freedom, F-statistics and P-value for the four   
                 replications…………………………………………………………………...51 
 
     2      ANOVA of eggs laid by the queen in 9 days showing degrees of  
                 freedom, F-statistics and p-value for the four replications…………….…….53 
 
     3      Kruskal-Wallis test statistics pertaining to feeding frequency analysis  
                 of queen for the four replications (‘df’ denotes degrees of freedom,  
                 χ2 is the Chi-Square value and ‘P’ is the probability value)…………………55 
 
     4      ANOVA of queen feeding time analysis showing degrees of  
                 freedom, F-statistics and p-value for the four replications…………….…….57 
 
     5      ANOVA of queen idle time analysis showing degrees of freedom, F- 
                 statistics and p-value for the four replications………………………………59 
 
     6      ANOVA of queen patrol time analysis showing degrees of freedom,  
                 F-statistics and p-value for the four replications…………………………….61 
 
     7      ANOVA of nurse bee cell cleaning time showing degrees of freedom,  
                 F-statistics and p-value for the four replications………………………….....65 
 
     8      ANOVA pertaining to hypopharyngeal gland protein analysis  
                 showing degrees of freedom, F-statistic and p-value for each of the  
                 three cohorts…………………………………………………………………80 
 
     9      Cox regression statistics pertaining to age of first foraging showing   
                 degrees of freedom, Chi-Square value and p-value for each of the five                      
                 replications………………………………………………………………….83



 1

CHAPTER I 
 

INTRODUCTION 
 
 
 

Honey bees are important both economically and ecologically, and also serve as a model 

organism for studying social organization and behavior.  It has been estimated that 

honey bee pollination contributes approximately $15 billion in value annually to U.S 

agriculture (Morse and Calderone 2000).  An ordered caste system exists in honey bees 

and thus a typical honey bee colony consists of a single fertile queen, semi-sterile female 

workers ranging between ten to thirty thousand and few thousand males called drones, 

depending on time of the year.  Egg laying is the primary function of the queen and she 

is the mother of all other colony members.  Workers perform all the hive tasks both 

inside and outside the hive.  The queen and worker bees are diploid in origin, whereas 

drones are haploid and develop from unfertilized eggs by parthenogenesis.  Eggs, larvae, 

and pupae present in a colony are collectively referred to as brood.  Honey bee colonies 

reproduce by process of colony budding, commonly referred to as swarming (Winston 

1987).    

Colony growth is an important fitness trait in honey bees and many other social 

insects.  Behavioral change is considered to favor colony fitness, and thus the individual  

 
 
 
 
 
 
 
This dissertation follows the style and format of Behavioral Ecology and Sociobiology. 
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fitness in social insects (Page and Erber 2002).  Colonies with appropriate behavior 

survive and reproduce (Page and Erber 2002).  In general, a larger population increases 

colony survival and reproduction; fitness traits (Cole 1984; Lee and Winston 1987; Little 

1979; Michener 1964; Pomeroy 1979; Richards and Richards 1951; Seeley 1985; Seeley 

and Visscher 1985; Winston 1987).  Adult population size at swarming is highly variable 

and not the singular determinant for swarming (Winston 1987; Winston 1993).  Other 

factors such as time of year, adult age distribution, and foraging environment also affect 

the timing of swarming (Winston 1987).   

Colony growth rates and trajectories are critical to colony reproductive rate, the 

size of swarms and the timing of swarming (Lee and Winston 1985a; Lee and Winston 

1985b; Lee and Winston 1987).  Survival of swarms is likewise dependant on parental 

colony size and the timing of issue (Seeley 1978; Lee and Winston 1985a; Lee and 

Winston 1985b; Morales 1986; Lee and Winston 1987).  Lee and Winston (1985b) 

found a positive correlation between swarm size and both brood production and 

emergent worker weight in newly founded colonies.  Larger colonies invest more 

workers to swarms, which confers an increased probability of swarm survival (Lee and 

Winston 1987).  Larger swarms also produce more total brood comb, that area in which 

brood are reared (Lee and Winston 1985a).  The number of swarms that a colony 

produces is positively correlated with the amount of pupae at the time the first swarm 

issues (Winston 1979; Winston 1980).  Collectively these studies demonstrate that 

colony growth rate affects colony fitness. 
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It is the intensity with which individuals collect resources that profoundly affects 

colony growth and development (Farrar 1944; Moeller 1958; Moeller 1961; Free and 

Racey 1968; Nelson and Jay 1972; Smirl and Jay 1972).  It is generally assumed that 

various colony foraging strategies are adaptive (Robinson 1992).  How foraging 

strategies contribute to colony fitness is usually not addressed.  A principal focus of this 

thesis aims to addresses this gap in our knowledge by examining the relationship 

between protein content of nurse bee hypopharyngeal glands, brood pheromone 

regulated foraging behavior and their affects on the amount of colony brood rearing.   

 

Division of labor 

 
Division of labor is one of the striking features observed in social insects, where groups 

of individuals perform different tasks repeatedly to enhance individual and colony 

efficiency.  Plasticity is a key characteristic of division of labor, where colonies respond 

to changes in the internal and external environments by making adjustments to worker 

ratios involved in different tasks (Robinson 1992).  Individual worker plasticity also 

contributes to colony level behavior plasticity. 

 Temporal polytheism is an important phenomenon observed in honey bees 

where individuals perform different tasks as they age.  Worker honey bees perform 

within colony tasks early in their lives such as cell cleaning, brood and queen tending, 

nectar receiving, pollen packing, and then progress to tasks like ventilating and guarding 

before foraging outside the nest; final task before they die (Winston 1987).  Hence, the 
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adult work force can be categorized in to non-foraging hive bees that rear brood and 

maintain the nest and foraging bees that work outside collecting food for the colony. 

Foraging and mechanisms regulating the quantity of food collected are essential 

attributes for all organisms.  The honey bee scientific literature is dominated by studies of 

foraging division of labor (Calderone and Page 1991; Robinson 1992; Seeley 1995; 

Calderone 1998; Page and Mitchell 1998; Dreller and Page 1999; Pankiw and Page 2000; 

Beshers and Fewell 2001; Page and Erber 2002; Robinson 2002; and references therein).  

This is but a small sample of which there are so many, listing more is of no increased 

benefit to the reader.  In the ontogenetic profile of worker bees, virtually every task may 

be shifted by a change in colony conditions (Seeley 1985; Winston 1987; Robinson 1992; 

Seeley 1995; Page and Erber 2002; Robinson 2002).  Briefly, factors demonstrated to 

affect age of first foraging include genotype, hemolymph titers of juvenile hormone, 

perturbed demographic distributions of young and old adult bees, and primer pheromones.  

The foraging behavior of social insects is especially interesting because individuals do not 

forage to meet their own nutritional needs; rather they forage to meet the needs of the 

colony.  Foraging labor is also divided such that some individuals forage for nectar, some 

for pollen, some individuals return to the nest carrying both nectar and pollen, and a small 

proportion of the foraging force return with water.   

Equally robust is the literature demonstrating a division of foraging labor for 

pollen and non-pollen resources.  Briefly, factors that affect forage choice behavior 

include genotype, responsiveness to sucrose, amount of larvae and their pheromones 

called brood pheromone, amount of stored pollen, amount of honey and available empty 
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comb space, as well as quality and quantity of resources in the foraging environment 

(Frisch 1967; Seeley 1982; Winston 1987; Seeley 1989; Hunt et al. 1995; Seeley 1995; 

Dreller and Page 1999; Page and Erber 2002).  In stark contrast to the number of empirical 

studies on division of labor and individual foraging effort there is a paucity of studies 

demonstrating how foraging strategies affect an important life history trait of colonies; 

amount of brood rearing.  To place colony foraging strategies in both an evolutionary and 

apicultural context it is important to increase our understanding of how different foraging 

strategies affect colony growth.   

 

Division of brood rearing labor 

 
Pollen foragers collect pollen from available plant sources then return to the nest and 

deposit their loads of pollen directly into cells.  Stored pollen is consumed by nurse bees 

that use the proteins derived from the pollen to produce proteinaceous hypopharyngeal 

gland secretions that are fed to developing larvae (Crailsheim et al. 1992).  Brood food is 

composed of a clear secretion from hypopharyngeal gland that is presumably mixed with 

honey, digestive enzymes and water, and is fed to the developing larvae by the nurse bees 

(Winston 1987).  Nurse bees, aged about 7 to 14 days consume pollen and convert it to 

proteinaceous secretions provisioned to larvae.  In this way larvae consume pollen via 

nurse bees.   

Larval cues and pollen are necessary for hypopharyngeal gland development, 

activity, and protein production (Brouwers 1982; Brouwers 1983; Huang and Otis 1989; 

Huang et al. 1989; Mohammedi et al. 1996; Hrassnigg and Crailsheim 1998).  Larvae or 
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their fatty acid esters stimulate hypopharyngeal gland development even in the absence of 

a pollen diet.  However, a protein source is necessary for glandular protein biosynthesis 

resulting in greater amounts of extractable protein (Brouwers 1983; Huang and Otis 1989; 

Huang et al. 1989; Mohammedi et al. 1996).  Larvae and larval esters have clearly been 

demonstrated to prime hypopharyngeal gland development and pollen provides the protein 

source fueling brood-food production.  Addition of larval esters to average colonies also 

increases amount of protein extractable from hypopharyngeal glands (Pankiw et al. 2004).  

In second part of the dissertation research I manipulated protein biosynthesis of 

hypopharyngeal glands by using a protease inhibitor to examine the effects of protein 

constrained brood food on pollen foraging and colony growth.    

 

Protease inhibitors 

 

Protease inhibitors are compounds that inhibit digestion by preventing the break down of 

proteins.  Insecticidal properties of protease inhibitors have been established in 

transgenic plants. Plant protease inhibitor genes encode proteins that can inhibit insect 

protein digestive enzymes, resulting in starvation and even death of the insect (Michaud 

2000).  Along with the targeted pest, honey bees will also be exposed to the protease 

inhibitors when they are foraging in the field for nectar or pollen.  Hence it is important 

to assess possible effects of protease inhibitors on beneficial insects like the honey bee.  

Hence as a part of this dissertation research I studied the effects of SBTI, a serine 

protease inhibitor on hypopharyngeal gland development, midgut protease activity and 
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survival of the honey bee.  This study constitutes the first part of this dissertation 

research.  

 

Pheromones 

 

Social organization in honey bees is regulated to a greater degree by the pheromones.  

Pheromones are chemicals that are primary source of intraspecific communication in many 

organisms (Wyatt 2003) and cause changes in behavior and physiology.  Social insect 

pheromones are classified in to two categories, primer and releaser pheromones. Releaser 

pheromones elicit an immediate effect on the behavior of a receiver, and once the 

pheromone has dissipated or is removed individuals revert to their previous state (Pankiw 

2004b).  Primer pheromones physiologically alter reproductive, endocrine, and 

neurosensory systems (Pankiw 2004a).  Change occurs over a time scale of days and only 

incomplete reversion occurs if the pheromone is removed.  Primer pheromones are 

responsible for altering the behavioral state of an individual. This change results via 

putative shifts in response thresholds to different stimuli by altering reproductive, 

endocrine and neural systems (Pankiw and Page 2003; Pankiw 2004b).  

Honey bees have an extraordinary and highly intricate chemical communication 

system (Winston 1987).  Only two honey bee primer pheromones, queen mandibular 

pheromone (QMP) and brood pheromone (BP) have been isolated and chemically 

characterized.  Brood pheromone is a 10-component mixture of methyl and ethyl fatty 

esters that can be extracted from the surface of honey bee larvae (Le Conte et al. 1990). 

Brood pheromone communicates the presence of larvae in the colony.  Brood pheromone 
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is a tool that can be used to alter the foraging stimulus environment and change honey bee 

colony foraging strategies.  In the third study of this dissertation research, I examined 

effects of brood pheromone regulated queen egg laying by measuring worker-queen 

interactions, the larval nutritional environment and nurse bee rearing behaviors.  In the 

final study I examined how dose-dependent brood pheromone mediated division of labor 

affected the partitioning of foraging and non-foraging work force and the amount of brood 

reared.  

The goal of this study was to investigate the effects of some important 

physiological and pheromonal factors that regulate colony growth and foraging in the 

honey bee.  The following were the specific objectives:  

1) Analyze effects of soybean trypsin inhibitor on hypopharyngeal gland protein content, 

total midgut protease activity and survival of the honey bee (Apis mellifera L.). 

The hypothesis here was that SBTI would have deleterious effects on hypopharyngeal 

gland development, protein digestion, and length of life of adult bees. 

2) Evaluate the effects of protease inhibitor induced constrained hypopharyngeal gland 

protein content on honey bee (Apis mellifera L.) pollen foraging and colony growth.   

3) Examine how brood pheromone regulated queen egg-laying rate in the honey bee 

(Apis mellifera L.). 

The hypothesis here was that brood pheromone regulates queen egg-laying by 

modulating worker-queen interactions, increases nutritional environment and nurse bee 

rearing behaviors. 
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4) Examine the brood pheromone regulated foraging ontogeny effects on brood rearing 

in the honey bee. 

This dissertation is divided in to six chapters.  Chapter I is an introduction on 

honey bee colony growth and foraging, and also lists the objectives of the dissertation.  

Chapter II reports the effects of soybean trypsin inhibitor on hypopharyngeal gland 

protein content, total midgut protease activity and survival of the honey bee.  In chapter 

III effects of protein constrained brood food on honey bee pollen foraging and colony 

growth are reported.  Chapter IV examines how brood pheromone regulates egg laying 

in honey bee queen.  Chapter V focuses on brood pheromone regulated ontogeny effects 

on brood rearing.  Chapter VI provides an overall summary of the conclusions pertaining 

to each chapter. 
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CHAPTER II 

EFFECTS OF SOYBEAN TRYPSIN INHIBITOR ON HYPOPHARYNGEAL GLAND 

PROTEIN CONTENT, TOTAL MIDGUT PROTEASE ACTIVITY AND SURVIVAL 

OF THE HONEY BEE (Apis mellifera L.)*

 

Introduction 

 

Plant protease inhibitor genes encode proteins that can inhibit insect protein digestive 

enzymes, resulting in starvation and even death of the insect (Michaud, 2000).  Insect 

pests however, are capable of evolving biotypes with adaptations to protease inhibitors 

that overcome or bypass toxic effects of protease inhibitors (Roush and Mackenzie, 

1987).  Beneficial insects, that act as pollinators, are additional co-evolutionary members 

among many plant-insect interactors (Delaplane and Mayer, 2000).  The advent of 

genetic engineering techniques allows the transfer of plant insecticidal genes from one 

species to another (Gatehouse and Gatehouse, 1998).   

Pollen is the most likely channel through which the honey bee will be exposed to 

transgenic protease inhibitors (Malone and Pham-Delegue, 2001).  The honey bee has 

serine proteinases as digestive enzymes (Moritz and Crailsheim, 1987).  Two serine 

trypsin endopeptidase inhibitors, bovine pancreatic trypsin inhibitor (BPTI) and soybean  

  
*Reprinted with permission from “Effects of soybean trypsin inhibitor on 
hypopharyngeal gland protein content, total midgut protease activity and survival of the 
honey bee (Apis mellifera L.)” by Sagili, R.R., Pankiw, T., Zhu-Salzman, K., 2005. 
Journal of Insect Physiology, 51, 953-957, 2005 Elsevier Ltd. 
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trypsin inhibitor (SBTI), known to be effective against a range of insect pests, are also 

toxic to adult honey bees at 1% wt: vol in sugar solution (Malone et al., 1995).  There 

are very few published measurements of transgene expression levels in pollen; hence 

this limits our ability to design toxicity tests that mimic expression levels expected in the 

field.  Plants can be protected from pests when protease inhibitors are expressed at 

approximately 1% of total soluble leaf protein (Hilder et al., 1987; McManus et al., 

1994).  Protease inhibitor concentrations used in this study were estimates of the range 

of transgene product concentrations a bee is expected to encounter while foraging.  The 

lower concentration of 0.1 % SBTI in pollen used in this study may represent a value 

closer to field relevance and the higher concentrations are unlikely to be encountered in 

the field and thus represent a worst-case scenario. 

I hypothesized that SBTI would have deleterious effects on honey bee protein 

digestion.  In this study, I evaluated effects of soybean trypsin inhibitor (SBTI) on 

hypopharyngeal gland protein content, total midgut proteolytic enzyme activity and 

survival of adult honey bees.  This study is the first to measure the effects of a protease 

inhibitor on hypopharyngeal gland protein content of honey bees.  Hypopharyngeal 

glands are the brood food or protein-producing glands located in the head of worker 

honey bees called nurses (Patel et al., 1960).  The diameters of the acini of 

hypopharyngeal glands in hive bees are largest when the hive bees are 8 days old 

(Crailsheim and Stolberg, 1989).  Protein synthesis rates in hypopharyngeal glands are 

highest when the bees are 8-16 days old (Knecht and Kaatz, 1990).    Pollen is the only 

source of protein for adult honey bees and consumption is necessary for gland 
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development and protein production (Mohammedi et al., 1996).  Insufficient pollen 

consumption early in life results in poor gland development and a shorter worker length 

of life (Maurizio, 1950; Haydak, 1970).  

Protein digestion disruption affects hypopharyngeal gland protein production and 

consequently is expected to affect the ability of nurse bees to provision larvae with food.  

The combined effects of low larval food production and decrease in adult length of life 

could have serious consequences on colony population maintenance and growth.  

Hypopharyngeal glands in newly emerged bees treated with SBTI (0.1% and 1% w:v in 

sucrose solution) for 10 days have significantly reduced mean weights and acini 

diameter (Babendreier et al., 2005).  Malone et al. (2004) reported no significant effects 

on survival and hypopharyngeal gland development of honey bees during evaluation of 

potential effects of a Bt toxin, a biotin binding protein and a protease inhibitor. 

 

Methods 

 

Combs containing pupae were placed in an incubator maintained at 33ºC and 50% RH. 

Six hours later, newly emerged adults were placed in plexiglass-wire mesh cages (15 cm 

x 11 cm x 8 cm) and provisioned with gravity feeders containing sugar solution (40% 

w:v).  Powdered pollen and SBTI dissolved in a small volume of sugar solution were 

mixed thoroughly.  This uniform pollen mixture was packed into inverted vial caps and 

provided to the caged bees.  Cages were provisioned daily with fresh sucrose solution 

and pollen diet.   
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Hypopharyngeal gland protein quantification 

 

The caged bees were fed 3 different concentrations (0.1%, 0.5% and 1 % w: w) of SBTI 

(Sigma Aldrich product T-9003, St. Louis, MO, USA).  Controls were handled in the 

same way but without the inhibitor.  A randomized complete block design was used for 

this experiment.  Eighty bees were randomly assigned to each cage and the cages were 

randomly assigned to treatments.  The experiment was replicated four times for a total of 

16 cages (4 treatments × 4 replications).  On day 7, ten bees were removed from each 

cage. Bees were cold anaesthetized, their hypopharyngeal glands removed and stored in 

Tris buffer at -80ºC prior to analysis.  Frozen HP glands were homogenized and 

centrifuged at 10,000 rpm for 5 min.  The supernatant was used to determine the protein 

concentration after Bradford (1976), described below.  

 

Bradford assay 

 

Both hypopharyngeal glands from each bee were stored in 20 µl Tris Buffer pH 7.9 in 

1.5 ml microcentrifuge tubes.  Glands were homogenized using a homogenizer that 

tightly fitted onto each tube.  Subsequently, tubes were centrifuged at 1,000 rpm for 2 

min.  Supernatant from each tube was used for analysis.  I used the 500-0202 Quick Start 

Bradford Protein Assay Kit 2, containing all reagents and dyes (Bio-Rad Laboratories, 

Hercules, CA, USA).  Dye reagent was prepared by diluting 1 part Dye Reagent 

concentrate (Coomassie Brilliant Blue G-250) with 4 parts distilled water.  I added 2 µl 
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or 5 µl quantities of each sample to be analyzed to microcentrifuge tubes with 1 ml 

Bradford reagent.  Tubes were vortexed to homogenize the contents, then incubated for 5 

min at room temperature.  Standard-curves were prepared using bovine serum albumin 

(BSA).  Protein absorbance was measured at 595 nm against blank reagent using a 

Beckman Spectrophotometer (Model #D4-640, Beckman Instruments, Inc., Columbia, 

MD, USA).  Weight of protein (BSA) was plotted against the corresponding absorbance 

value to generate a linear regression equation (SAS PROC REG; SAS 2000).  To 

calculate micrograms of protein extracted from hypopharyngeal glands from measured 

absorbance values, we applied the linear regression equation generated from the BSA 

standard curve above.   

Protein quantity was further analyzed using analysis of variance (ANOVA) 

(Sokal and Rohlf, 1995; SPSS, 2000). The data were log transformed prior to analysis to 

normalize the distribution (Sokal and Rohlf, 1995). Least Significant Difference (LSD) 

was used to signify between treatment differences. Beta or Type II error is more 

important in case of risk assessment studies. Hence LSD which is a less conservative test 

for finding differences among treatments was used for multiple comparisons of 

treatments. 

 

Total midgut proteolytic enzyme activity 

 

The midguts of the same 7-day-old bees were excised from which the hypopharyngeal 

glands were removed above.  Midguts were placed in centrifuge tubes containing 100 µl 
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Tris-HCl buffer (pH 7.9) each and stored at -80ºC prior to further processing.  Frozen 

guts were crushed, homogenized in Tris-HCl buffer (pH 7.9) and, centrifuged at 10,000 

rpm for 5 min to remove particulate matter.  The supernatant was analyzed for total 

midgut proteolytic enzyme activity (casenolytic activity) as described by Michaud et al 

(1995). 

 Five microlitres of supernatant was used for each reaction.  Twenty microlitres of 

assay buffer (0.1 M Tris-HCl, pH 7.9) and 60 µl of 2% (w/v) azocasein diluted in assay 

buffer were added respectively to the supernatant and incubated for 6 h at 37ºC.  To 

remove the residual azocasein after proteolysis, 300 µl of 10 %( w: v) TCA was added to 

each mixture and centrifuged for 5 min at 10,000 rpm.  350µl of supernatant was added 

to 200 µl of 50% ethanol in water, and the absorbance of this mixture was measured at 

440nm using a Beckman DU 64 spectrophotometer. Absorbance of the sample without 

proteolysis (no incubation) was used to zero the machine. Total midgut proteolytic 

activity was expressed in terms of OD 440 . Data were log transformed prior to analysis to 

meet assumptions of ANOVA (Sokal and Rohlf, 1995).  Mean total midgut proteolytic 

enzyme activities from each treatment were analysed using ANOVA and LSD (Sokal 

and Rohlf, 1995; SPSS, 2000).  Correlation analysis (parametric) using SPSS was 

performed to measure the strength of linear association between midgut enzyme activity 

and hypopharyngeal gland protein quantity. 
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Survival analysis 

 

Daily, for 30 days, the number of dead bees per cage was recorded and bodies removed.   

Survival curves were generated by plotting the number of surviving bees against days 

from initiation of the experiment.  Kaplan-Meier survival curves were used to plot and 

interpret the survival data (Le, 1997).  Survival curves were compared using Log rank 

tests (Allison, 1998; SAS, 2000).  A Cox proportional hazard (PH) model was used to 

model the survival data using SPSS.  Bees that survived up to the termination of the 

experiment (day 30) and those that were removed from the cages for the Bradford Assay 

and midgut enzyme activity analysis were treated as censored cases. 

 

Results 
 
 
Hypopharyngeal gland development 
 
 
Dose-dependent effects of SBTI on amount of extractable protein from adult 

hypopharyngeal glands are summarized in Fig. 1.  Replicates were not significantly 

different and therefore pooled for subsequent analysis (F3,156=0.976, P=0.42).     
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 Fig. 1   Mean hypopharyngeal gland protein quantities of bees (±SE) fed with different 

concentrations of soybean trypsin inhibitor in pollen.  Different letters indicate 

significant differences among the treatments (P < 0.0001) 
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Significant differences were observed between 1% SBTI and remaining diets i.e. 0.1%, 

0.5% and control (ANOVA, F3,156=6.4, P<0.003).  1% SBTI diet had significantly lower 

hypopharyngeal gland protein quantity than all other diets (P<0.003). 

 

Total midgut protease activity 
 
 
 
Overall 1% SBTI resulted in significantly lower midgut protease activity compared to all 

the other doses.  Effects of SBTI on the total midgut protease activity of adult bees fed 

different doses of SBTI in a pollen diet are summarized in Fig. 2.  The four replicates 

were pooled because there were no significant differences between them (F3,156=0.654, 

P=0.582).  Pairwise comparisons of the SBTI treatments showed that there were 

significant differences among treatments (ANOVA, F3,156=237.5, P<0.0001).  1% SBTI 

treatment had significantly lower midgut protease activity (P<0.0001).  There were no 

significant differences between control, 0.1% and 0.5% SBTI.  Midgut enzyme activity 

explained 31.1% of the variation in hypopharyngeal gland protein quantity (correlation 

analysis rho = 0.311, P = 0.01). 
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Fig. 2  Mean midgut proteolytic enzyme activities of bees (+SE) fed with different 

concentrations of soybean trypsin inhibitor in pollen.  Different letters indicate 

significant differences among the treatments (P < 0.0001) 
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Survival 
 
 
Kaplan-Meier survival curves (SAS) were used to plot survival data. Log-Rank tests 

indicated that there were significant differences in survival among bees that were fed 

different doses of SBTI (χ2=87.27, df =3 and P<0.0001).  Kaplan-Meier curves showed 

that bees fed with 1% SBTI concentration had lowest survival, followed by 0.5% and 

0.1% SBTI (Fig. 3).  Control had the highest survival.  Cox proportional hazard (PH) 

model was used to model the survival data using SPSS.  Cox regression is a method for 

modeling time-to-event data in the presence of censored cases.  SBTI treatment had a 

significant effect on survival (χ2=81.75, df =3 and P<0.0001).  Hazard ratio (eβ ) was 

1.667.  The hazard ratio statistic eβ, was transformed to a more meaningful statistic 

indicating that with each dosage increase of SBTI used in this study, mortality increased 

by 66.7% over the 30-day experiment period.  This meaningful statistic was obtained by 

subtracting 1.0 from the risk ratio and multiplying by 100. 
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Fig. 3   Survival of bees fed with different concentrations of soybean trypsin inhibitor in 

pollen                                                                                              
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Discussion 

 

In this study, hypopharyngeal gland protein quantity, midgut protease activity and 

survival were significantly lower when bees were fed 1% SBTI in pollen, strongly 

suggesting a dose dependent effect. Nurse bees ingesting SBTI at higher concentrations 

may be poor producers of brood food as a result of poor development of hypopharyngeal 

glands.  Babendreier et al. (2005) reported that bees fed with 1% SBTI (w:v in sucrose 

solution) treatment did not rear any brood while there was brood rearing in other 

treatments.  

Hypopharyngeal glands in bees fed with 0.1% or 1% SBTI (w:v in sucrose 

solution) are lighter in weight and have smaller acini when compared to controls 

(Babendreier et al., 2005).  These results can not be directly compared to our results as 

the bees in the above study were fed SBTI in sucrose solution instead of pollen as in our 

study.  Malone (2004) reported that there was no effect of three transgene products a Bt 

toxin, a biotin-binding protein (avidin) and a protease inhibitor (aprotinin) on the 

hypopharyngeal gland development of bees.    

Bees fed 1% SBTI had significantly lower levels of midgut protease activity 

compared to controls.  Similar results were reported by Burgess et al (1996), where bees 

fed with a highest dose of 1% SBTI had significantly lower levels of three 

endopeptidases, chymotrypsin, elastase and trypsin.  Effects on survival may be 

attributed to a certain extent to lowered midgut protease activity levels.  Apart from 

reduced midgut proteolytic enzyme activity there may be some other factors which are 
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responsible for the reduced hypopharyngeal gland protein biosynthesis and bee survival, 

because midgut proteolytic enzyme activity accounted for only 31% of hypopharyngeal 

gland extractable protein.  Burgess et al. (1996) reported that in addition to lowered 

endopeptidase levels, decreased bee longevity may be also explained by additional 

metabolic cost incurred because of compensatory hyperproduction of proteolytic 

enzymes, to compensate for deactivation of enzymes by the protease inhibitor.  Hence 

we may infer that, additional metabolic cost incurred as a result of compensatory hyper 

production is the other major factor responsible for decrease in hypopharyngeal gland 

protein quantity apart from reduced midgut enzyme activity. 

 The higher concentration of SBTI used in this study or in other similar studies is 

unlikely to be encountered by the bees in the field and hence represent a worst-case 

scenario.  The lower concentration of SBTI (0.1%) used represents a value closer to field 

relevance if it is expressed in the pollen.  Expression levels of protease inhibitors like 

SBTI also depend upon the type of promoter used.  In our experimental design the bees 

didn’t rear any brood which is considered to be a factor stimulating hypopharyngeal 

gland development.  But this criterion doesn’t affect our study as we are comparing the 

hypopharyngeal gland development between treatments receiving different 

concentrations of SBTI, keeping all other factors constant.  Also Malone et al. (2004) 

observed measurable hypopharyngeal gland development in caged bees that were used in 

a study to evaluate potential impacts of transgene products on hypopharyngeal gland 

development.  
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In conclusion, this study has revealed that SBTI at 1% of pollen diet can 

negatively impact the hypopharyngeal gland development, midgut protease activity and 

survival of honey bees.  In contrast it also showed that lower doses of SBTI were not 

deleterious to adult bees.  Because honey bee larvae are completely dependent on the 

hypopharyngeal gland secretions of nurse bees for their nutritional needs, the deleterious 

effects of SBTI on hypopharyngeal glands could negatively impact colony growth and 

maintenance.  However, the threshold response shown in this study strongly suggests 

that pollen diets containing less than 1% SBTI are tolerated and unlikely to adversely 

affect colonies. 
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CHAPTER III 

EFFECTS OF PROTEIN CONSTRAINED BROOD FOOD ON HONEY BEE 

(Apis mellifera L.) POLLEN FORAGING AND COLONY GROWTH*

 

 

Introduction  

 
For the non-reproducing worker caste of social insect colonies, colony growth and 

reproduction are the principal sources of fitness.  Honey bee colonies reproduce through 

a process of colony budding, commonly referred to as swarming (Winston 1987).  In 

general, a larger adult population results in increased probabilities for colonies to 

reproduce and for swarms to survive; fitness traits (Cole 1984; Lee and Winston 1987; 

Little 1979; Michener 1964; Pomeroy 1979; Richards and Richards 1951; Seeley 1985; 

Seeley and Visscher 1985; Winston 1987).  The mechanism for colony growth is 

increased brood rearing.  The honey bee (Apis mellifera L.), like most social insects, 

have a division of labor whereby individuals perform different tasks as they age.  Brood 

rearing labor is divided among nurse bees and foragers.  Ordinarily, younger nurse bees 

work within the nest directly tending larvae.  Older bees are more probably found 

foraging for nectar or pollen outside the nest.  

 Nurse bees consume forager collected pollen to biosynthesize a proteinacious 

hypopharyngeal gland secretion called brood food that is progressively provisioned to 

larvae.  Pollen is the only source of protein available to bees and it is through nurse bees  

  
*This chapter has been recently accepted in the journal ‘Behavioral Ecology and 
Sociobiology’ and proofs are pending. 
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that larvae are the principal consumers of protein in a colony.   Pollen foragers collect 

pollen from flowers, carry it back to the colony on the outside of the body packed onto 

special structures of their hind legs called corbiculae, and directly deposit their loads into 

wax cells usually situated around brood rearing areas of the nest (Camazine 1991).  The 

allocation of the foraging force profoundly affects colony growth and development 

(Farrar 1944; Moeller 1958; Moeller 1961; Free and Racey 1968; Nelson and Jay 1972; 

Smirl and Jay 1972; Pankiw et al. 2004).  As such the mechanisms that regulate the 

allocation of the pollen foraging force are integral to an understanding of colony fitness. 

Two hypothetical mechanisms dominate studies of pollen foraging regulation.  

The first is an “information center” model and subsequent modifications (Seeley 1985; 

Seeley et al. 1991; Seeley 1995), here named the brood food hypothesis.  The second is a 

“stimulus-response threshold model”, here referred to as the direct independent effects 

of stored pollen and brood (Page and Mitchell 1998; Page and Erber 2002; Scheiner et 

al. 2004).  

 The brood food hypothesis predicts that brood and stored pollen indirectly affect 

the behavior of pollen foragers through a single inhibitory signal (Camazine 1993; 

Seeley 1995).  Bees are activated to collect pollen, thus regulation occurs through 

inhibition.  With excess pollen stored in a colony there is also an excess of inhibitor that 

is presumably distributed to foragers by trophallaxis with nurse bees.  If pollen is in 

surplus, it is hypothesized that nurse bees transfer more protein to foragers and inhibit 

pollen foraging.  Brood food is the most likely inhibitor, thus the brood food hypothesis 

for the regulation of pollen foraging.  Some information center based studies have 
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focused on trophallaxis as mechanism for the transmission of information that may 

regulate pollen foraging (Camazine et al. 1998; Weidenmuller and Tautz 2002). 

A competing hypothesis is that stored pollen and brood have direct, independent 

effects on pollen foraging.  Many studies have demonstrated the effects of quantities of 

brood and stored pollen.  Increasing the amount of larvae in colonies, or the chemical 

cues derived from larvae called brood pheromone, increases the number of pollen 

foragers and pollen load weights returned (Filmer 1932; Al-Tikrity et al. 1972; Free 

1979; Eckert et al. 1994; Pankiw et al. 1998b; Fewell and Bertram 1999; Pankiw and 

Page 2001a; Pankiw and Rubink 2002; Pankiw 2004a; Pankiw 2004b; Pankiw 2004c; 

Pankiw et al. 2004).  Pollen foraging activity level decreases in response to the addition 

of stored pollen ( Free 1967; Barker 1971; Moeller 1972; Danka et al. 1987; Fewell and 

Winston 1992; Camazine 1993; Fewell and Bertram 1999) and increases in response to 

the removal of stored pollen (Free 1967; Fewell and Winston 1992; Camazine 1993).  

Increasing the amount of stored pollen in colonies concurrently increases brood rearing 

and decreases pollen foraging activity to a homeostatic set point (Fewell and Winston 

1992).  Empty comb space near the brood also stimulates pollen foraging behavior while 

stored pollen clearly inhibits.  Dreller et al. (1999) demonstrated that pollen foraging 

decreases only when foragers have direct access to stored pollen, and direct access to 

brood is necessary for an increase in pollen foraging response to an increase in amount 

of brood.    

Using conventional colony-level manipulations is problematic because both the 

direct and indirect hypotheses predict the same pollen foraging outcomes.  But for the 
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different mechanistic reasons both hypotheses predict pollen foraging decreases with 

additional quantities of stored pollen and pollen foraging increases with additional 

amounts of brood.  Given a fixed amount of available comb area, there is an interaction 

between amount of stored pollen, number of larvae and empty space.  Changing one 

necessarily changes the others.  However, manipulating amount of brood pheromone, 

allows for a change in the perceived number of larvae without changing the allocation of 

comb area for larvae, pollen and empty storage space (Pankiw et al. 1998; Le Conte et 

al. 2001; Pankiw and Rubink 2002; Pankiw et al. 2004; Pankiw 2004b; Pankiw 2004c).  

With brood pheromone added to colonies, the brood food hypothesis predicts no change 

in pollen foraging due to no change in demand for brood food.  The direct independent 

effect of amount of brood and pollen hypothesis predicts an increase in amount of pollen 

foraging as a consequence of the increased pollen foraging stimulus of brood 

pheromone.  Colonies treated with supplemental amounts of brood pheromone foraged 

more for pollen than did control colonies containing the same amount of brood and 

stored pollen (Pankiw et al. 1998; Pankiw and Rubink 2002; Schulz and Robinson 2002; 

Pankiw 2004a; Pankiw 2004b; Pankiw 2004c; Pankiw et al. 2004). Results of these 

studies support the direct, independent effects hypothesis, such that colonies 

approximated amount of larvae from their chemicals and foraged for pollen accordingly.   

Direct experimental evidence of brood food protein as a feedback mechanism 

inhibiting pollen foraging has yet to be demonstrated.  In this study we manipulated 

nurse bee biosynthesis of brood food using a protease inhibitor that interferes with 

midgut protein digestion in adults, significantly decreasing the amount of protein 
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extractable from hypopharyngeal glands (Sagili et al. 2005).  Manipulating amount of 

hypopharyngeal gland protein and controlling for amount of stored pollen resulted in the 

following predictions tested here; 1) the direct, independent effects hypothesis predicts 

no difference in pollen foraging effort because amount of stored pollen is the same in 

treated and control colonies versus, 2) the brood food hypothesis predicts that protease 

inhibited colonies should allocate a greater pollen foraging effort due to a decreased 

amount of nurse produced protein.  The primary objective in this experiment was to 

measure the effects of manipulating hypopharyngeal gland protein (brood food) content 

in nurse bees on pollen foraging.    

 

Methods 

 

This experiment was replicated four times and had two treatments, 1% SBTI (soybean 

trypsin inhibitor) (Sigma Aldrich product T-9003, St. Louis, MO, USA) and control.  

Micro-nucleus hives made of styrofoam (25x19x14 cm) were used for this experiment 

and the experiment was conducted for a 30-day period.  Each hive consisted of 5 frames; 

2 frames pollen (476 cm2), 1 frame honey (238 cm2), ½ frame (119 cm2) with brood and, 

1½ empty frames empty space (357 cm2).  Fifteen hundred newly emerged worker bees 

were introduced in to each hive and colonies were allowed to establish for 7 days.  All 

the bees used in the experiment were obtained from a single colony source.   

Each experimental colony was headed by an unrelated queen.  Control colonies 

received powdered pollen without SBTI packed into 2 frames, whereas SBTI treated 
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colonies received powdered pollen mixed with 1% SBTI (wt:wt) packed into 2 frames.  

After packing the pollen into the cells, the surface was sprayed with 50 % sugar syrup 

(Dreller and Tarpy 2000).  Each week for a period of 4 weeks, 100 newly emerged bees 

from a common source were individually identified with a number tag glued to the 

thorax and released into each colony starting from initiation of the experiment. The 

brood consisted of 2-day-old eggs at the beginning of the experiment and abundant 

pollen was available in the environment during the entire experimental period. 

 

Hypopharyngeal gland protein analysis 

 

From each colony on days 7 and 14, fifteen tagged bees from the brood nest area were 

collected for estimating hypopharyngeal gland protein content.  Bees were cold 

euthanized, their hypopharyngeal glands dissected and stored in Tris buffer at -80°C for 

further analysis.  Protein content of hypopharyngeal glands was determined using 

Bradford assay as per Sagili et al. (2005).  Briefly, hypopharyngeal glands were 

homogenized using a homogenizer that tightly fits in microcentrifuge tubes used to store 

the glands.  Subsequently, tubes were centrifuged at 1000 rpm for 2 min. Supernatant 

from each tube was used for analysis.  We used the 500-0202 Quick Start Bradford 

Protein Assay Kit 2 (Bio-Rad Laboratories, CA, and U.S.A.).  We added 2 µl or 5 µl 

from each sample to be analyzed to microcentrifuge tubes containing 1 ml Bradford 

reagent.  Tubes were vortexed to homogenize the contents, then incubated for 5 min at 

room temperature.  Standard-curves were prepared using bovine serum albumin (BSA).  
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Protein absorbance was measured at 595 nm against blank reagent using a Beckman 

Spectrophotometer (Model #D4-640, Beckman Instruments, Inc., Columbia, MD, USA).  

Weight of protein (BSA) was plotted against the corresponding absorbance value to 

generate a linear regression equation (SAS PROC REG; SAS 2000).  Protein extracted 

from hypopharyngeal glands was calculated using the linear regression equation 

generated above.  Protein quantity was further analyzed using analysis of variance 

(ANOVA) (Sokal and Rohlf 1995; SPSS 2000).   

 

Midgut proteolytic enzyme activity 

 

The midguts were also excised from the same bees from which the hypopharyngeal 

glands were removed and midgut proteolytic enzyme activity was measured as per Sagili 

et al. (2005) briefly described below.  Frozen guts were crushed, homogenized in Tris-

HCl buffer (pH 7.9) and, centrifuged at 10,000 rpm for 5 min.  The supernatant was 

analyzed for total gut proteolytic enzyme activity (casenolytic activity) as described by 

Michaud et al (1995).  Five microlitres of supernatant was used for each reaction.  

Twenty microlitres of assay buffer (0.1 M Tris-HCl, pH 7.9) and 60 µl of 2% (w/v) 

azocasein diluted in assay buffer were added respectively to the supernatant and 

incubated for 6 h at 37ºC.  To remove the residual azocasein after proteolysis, 300 µl of 

10 %( w: v) TCA (Trichloro acetic acid) was added to each mixture and centrifuged for 

5 min at 10,000 rpm. 350µl of supernatant was added to 200 µl of 50% ethanol in water, 

and the absorbance of this mixture was measured at 440nm using a Beckman DU 64 
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spectrophotometer.  Total gut proteolytic activity was expressed in terms of OD440. 

Mean total gut proteolytic enzyme activities from each treatment were analyzed using 

ANOVA (Sokal and Rohlf 1995; SPSS 2000). 

 

Foraging behavior measurements 

 

The number of foragers returning with visible pollen loads (pollen foragers) and those 

returning with no visible pollen load (non-pollen foragers) was counted for a 5 minute 

period twice daily in the morning and afternoon beginning 24 hours after pollen 

treatments were applied.   Beginning on fifth day, to the termination of the experiment, 

colony entrances were blocked with wire mesh for 15 min intervals between 0900 h to 

1600 h for a total period of 2 h per day.  Wire mesh was removed for a minimum of 30 

minutes between each blocked interval.  

Foragers with tags were captured individually in small cylindrical wire cages and 

their identity recorded.  Pollen load weights of pollen foragers were measured by 

removing the pollen pellets from the corbicula of both the hind legs and weighing them.  

Age of first foraging was estimated by calculating the difference between the day of first 

observation as a returning forager and the day of emergence.  Each week the comb area 

occupied by eggs, larvae, pupae, pollen and honey was measured using a metered grid 

(Pankiw et al. 2004).  

 

 

 



 33

Statistical analyses 

 

Analysis of variance was used to analyze hypopharyngeal gland protein content, midgut 

enzyme activity, and pollen load weight. Correlation analysis (parametric) using SPSS 

was performed to measure the strength of linear association between midgut enzyme 

activity and hypopharyngeal gland protein quantity.  Contingency table analysis was 

used to analyze the ratio of pollen to non-pollen foragers observed (Sokal and Rohlf 

1995).  Cox proportional hazards regression was used to analyze treatment effects on age 

of first foraging (PROC PHREG in Allison 1998; SAS 2000).  Brood, pollen and honey 

areas were analyzed using repeated-measures ANOVA. 

 

Results 

 

Hypopharyngeal gland protein content and midgut proteolytic enzyme activity 

 

Hypopharyngeal gland protein content was significantly lower in bees treated with 1% 

SBTI versus the control for both 7 and 14 day old bees (7 days, ANOVA F1,118=14.6, 

P<0.001; 14 days, ANOVA F1,118=12.2, P<0.001 respectively; Fig. 4).  Midgut 

proteolytic enzyme activity was significantly lower in 1% SBTI treated bees than control 

bees that were 7 and 14 days old (7 days, ANOVA F1,118=167.5, P<0.0001; 14 days, 

ANOVA F1,118=139.5, P<0.0001; Fig. 5).  Midgut enzyme activity explained 29.3% of 

the variation in hypopharyngeal gland protein quantity (correlation analysis ρ = 0.293, P 

= 0.01). 
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Fig. 4   Mean hypopharyngeal gland protein quantities of bees (+SE) that received 

control and SBTI treatments.  Asterisk indicates significant difference (P<0.001) 
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Fig. 5  Mean midgut proteolytic enzyme activities (+SE) of bees that received control 

and SBTI treatments.  Asterisk indicates significant difference (P<0.0001) 
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Foraging behavior 

 

There was no significant difference in the ratio of pollen to non-pollen foragers entering 

the colonies both in the morning and afternoon (morning: χ2= 18.3, 1 df, P>0.05; 

afternoon: χ2= 16.9, 1 df, P>0.05; Fig. 6) between SBTI treatments and controls.  

Number of pollen foragers evaluated for control and SBTI treatments were 1765 and 

1708 respectively and the number of non-pollen foragers evaluated were 6070 and 5594 

respectively for control and SBTI treatments.  Pollen load weight was not significantly 

different between the 1% SBTI treatment and control (F1,6=1.9, P>0.05; Fig. 7).  

Number of pollen foragers evaluated for pollen load weight analysis were 600 each for 

the control and SBTI treatments.   

Bees that received 1% SBTI treatment foraged at a significantly younger mean 

age than the control bees (χ2= 9.3, P<0.01, eβ = 0.67).  The hazard ratio statistic eβ, was 

transformed to a more meaningful statistic indicating that bees ingesting 1% SBTI were 

33 % more at risk to forage than control bees over the 30-day experimental period 

(Allison 1998).  Mean age of first foraging in SBTI treatments and controls was 

11.3±0.4 (SE) days and16.2±0.7 (SE) days respectively.  
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Fig. 6  Mean ratio of pollen to non-pollen foragers (+SE) entering the colonies (P>0.05).  

‘ns’ indicates no significant difference. Pollen foragers: n= 1765 (control) and n= 1708 

(SBTI).  Non-pollen foragers: n=6070 (control) and n= 5594 (SBTI) 
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Fig. 7  Mean pollen load weights (+SE) collected by control and SBTI fed colonies 

(P>0.05).  ‘ns’ indicates no significant difference 

 

 

Colonies that received SBTI treatment reared significantly less brood area than 

control colonies (repeated measures F1,6= 14, P <0.003; Fig. 8).  Pollen and honey areas 

were not significantly different between the SBTI treatment and control colonies 

(repeated measures F1, 6=1.4, P= 0.1 and F1,6=0.9, P=0.3 respectively).  There was no 

significant difference in the mortality between 1% SBTI treatments and controls 
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(F1,6=4.8, P>0.05). The mean number of adult bees surviving at the termination of the 

experiment in SBTI treatments and controls were 1585 ± 8.89 (SE) and 1634.5 ± 20.66 

(SE) respectively. 
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Fig.  8  Mean brood area reared (±SE) in control and SBTI treated colonies over a period 

of 4 weeks.  
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Discussion 
 
 
The results of this study supported the prediction of no difference in pollen foraging 

effort between SBTI treated versus control colonies generated by the direct, independent 

effects hypothesis.  Equivalent amounts of stored pollen in SBTI and control colonies 

were maintained throughout the course of the experiment.  The ratio of pollen foragers 

and weight of pollen loads returned were similar between treatments.  Amount of protein 

extractable from the hypopharyngeal glands of bees reared in SBTI treated colonies was 

significantly lower than those reared in control colonies.  Hypopharyngeal glands in bees 

fed 0.1% or 1% SBTI (w:v in sucrose solution) are lighter in weight and have smaller 

acini when compared to controls (Babendreier et al. 2005).  In this experimental 

paradigm, foragers appeared to be assessing need for pollen based on amount of stored 

pollen in colonies rather than by amount of hypopharyngeal gland protein extractable 

from workers. 

The protease inhibitor used here inhibited midgut proteolytic enzyme activity of 

workers.  Interference with midgut protein digestion was strongly associated with 

decreased amounts of protein extractable from the hypopharyngeal glands of colony-

reared workers feeding on a pollen diet containing SBTI as well as caged-workers reared 

in an incubator (Sagili et al. 2005).  Similar results were reported by Burgess et al 

(1996), where bees fed the highest dose of SBTI (1%) had significantly lower levels of 

three endopeptidases, chymotrypsin, elastase and trypsin.  An inference of these 

physiological results is that bees ingesting SBTI were poor producers of brood food.   

This conclusion is supported by the significantly lower amount of brood area reared by 
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SBTI versus control colonies.  It is important to note that despite the greater amount of 

brood area reared by control colonies, measures of pollen foraging remained statistically 

similar between treatments.  This is further support for the direct, independent effects 

hypothesis such that there is a response threshold for amount of brood area at or beyond 

which increased pollen foraging is released (Page and Mitchell 1998).  Although there 

was more brood in control colonies, it was not sufficiently great to induce more pollen 

foraging.  This is consistent with results where brood pheromone amount is increased 

incrementally to a point where increased pollen foraging is observed (Pankiw et al. 

1998; Pankiw and Page 2001). 

SBTI interference of protein digestion in adults was associated with decreased 

age of first foraging.  This could be interpreted as a ‘stressor” effect of SBTI on adult 

length of life.  In general foraging behavior is the terminus on the honey bee behavioral 

ontogenetic pathway (Winston 1987).  Some factors associated with decreased age of 

first foraging may be viewed as stressors, for example, the handling of newly emerged 

adults (Pankiw 2003), removal of the foraging caste from colonies (Huang and Robinson 

1992), exposure to primer pheromones (Le Conte et al. 2001; Pankiw 2004b; Pankiw 

2004a), and mite infection (Korpela et al. 1992).  Schulz et al. (1998) reported that 

shortage of food in honey bee colonies accelerated behavioral development, and starved 

colonies had significantly greater proportions of precocious foragers.  Malone et al. 

(2001) demonstrated that bees fed aprotinin, a serine protease inhibitor, started flying 2.8 

days earlier than control bees.  Pollen and honey areas of control and SBTI treatments 

were identical which suggests that pollen and nectar foraging were similar in both the 
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treatments.  At the termination of the experiment SBTI treatments had fewer bees 

compared to the controls, but this difference was not significant.  This suggests that the 

SBTI treatment didn’t adversely effect the survival of the bees.  It is possible larvae were 

directly affected by the protease inhibitor, but only in the later stages, when they are fed 

small quantities of pollen along with the hypopharyngeal gland and mandibular gland 

secretions.  However, this effect is not expected to be significant.  In honey bee larvae 

pollen constitutes only a minor part of the protein supply (Babendreier et al 2004). 

Multiple methods have now been utilized to attempt to generate predictions that 

clearly point to specific mechanisms for the regulation of pollen foraging.  To date the 

majority of studies support the direct, independent effects hypothesis.  However, despite 

all efforts, the question of how honey bee colonies regulate pollen foraging remains 

controversial.  Models of behavioral organization in social insects all predict that 

workers will vary task performance in response to common environmental cues (Seeley 

1985; Tofts and Franks 1992). The specific hypotheses addressed in these studies were 

developed to address different foraging behaviors; the indirect hypothesis was originally 

developed to address nectar foraging and the direct hypothesis addressed pollen 

foraging.  They sometimes make different and competing assumptions about what 

produces variation in individual responses to stimuli and how individuals receive 

information about the colony environment that changes foraging responses.   

Pitting one hypothesis against the other has been largely intractable, making 

hypothesis falsification impossible or unresolved, because they generate the same 

predictions but for different reasons, or a model is modified to address an unexpected 
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result.  A philosophical resolution may be to adopt “integrative pluralism” (Mitchell 

2002).  Integrative pluralism recognizes that complex systems may comprise multiple 

causes.  Theories and explanations are not always competing (Sherman 1988). 

Integrative pluralism allows for models working at the same level of analysis to be 

combined for a more complete synthesis.  Fewell and Bertram (1999) generated 

predictions from central information and threshold models for honey bee foraging 

behavior responses to gradual increases in amount of stored pollen.  Although not 

demonstrated directly, their results suggested that the regulation mechanisms forwarded 

by both hypotheses may be operating concurrently and they proposed a model that 

integrated the two mechanisms.  Thus, there is recognition that factors identified through 

tests of models of colony organization may be at work concurrently or hierarchically.  

Integrative pluralism may be the next more fruitful direction to pursue insights to what is 

clearly a complex system. 
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CHAPTER IV 

BROOD PHEROMONE REGULATION OF QUEEN EGG-LAYING IN THE 

HONEY BEE (Apis  mellifera L.) 

 
Introduction 
 
 
Colony growth rates and trajectories are critical to colony reproductive rate, the size of 

swarms and the timing of swarming (Lee and Winston 1985a; Lee and Winston 1985b; 

Lee and Winston 1987).  Survival of swarms is likewise dependant on parental colony 

size and the timing of issue (Seeley 1978; Lee and Winston 1985a; Lee and Winston 

1985b; Morales 1986; Lee and Winston 1987).  Lee and Winston (1985b) found a 

positive correlation between swarm size and both brood production and emergent worker 

weight in newly founded colonies.  Larger colonies invest more workers in swarms, 

which confers an increased probability of swarm survival (Lee and Winston 1987).  

Larger swarms also produce more total brood comb, that area in which brood are reared 

(Lee and Winston 1985a).  The number of swarms that a colony produces is positively 

correlated with the amount of pupae at the time the first swarm issues (Winston 1979; 

Winston 1980).  It is the intensity with which individuals collect resources that 

profoundly affects colony growth and development (Farrar 1944; Moeller 1958; Moeller 

1961; Free and Racey 1968; Nelson and Jay 1972; Smirl and Jay 1972).  It is generally 

assumed that various colony foraging strategies are adaptive (Robinson 1992).  To place 

foraging strategies within an evolutionary context it is important to understand the 
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interaction between foraging strategies and colony growth that leads to increased colony 

growth. 

Pheromones are chemicals that are the primary source of intraspecific 

communication in many organisms.  Brood pheromone is a 10-component mixture of 

methyl and ethyl fatty esters that can be extracted from the surface of honey bee larvae (Le 

Conte et al. 1990).  Brood pheromone is a tool that can be used to alter the foraging 

stimulus environment and thus change honey bee foraging strategies (Pankiw et al. 1998; 

Pankiw and Page 2001; Pankiw and Rubink 2002). 

  Significantly greater brood area was reared by brood pheromone treated colonies 

compared to controls and increase in brood area was preceded by an increase in queen 

egg-laying rate (Pankiw et al. 2004).  Queen egg laying rate depends on the quantity and 

quality of the food donated by the workers to the queen (Chauvin 1956; Allen 1960).  

Queen feeding and cell preparation rate to facilitate egg laying are the two mechanisms 

that enable workers to regulate queen egg-laying rate (Free and Williams 1972).  Hence it 

is reasonable to hypothesize that one mechanism of colony growth is regulated by worker-

queen interactions that affects the egg-laying rate of the queen.  In this study we test 

whether brood pheromone regulates queen egg laying via modulation of worker-queen 

interactions, increased nutritional environment and nurse bee rearing behaviors.  

 

Methods 
 
 
This experiment was replicated 4 times and had two treatments, brood pheromone and 

control. A pair of colonies was derived by dividing a single colony.  Each colony pair 

http://www.bioone.org/perlserv/#I0022-0493-97-3-748-B13
http://www.bioone.org/perlserv/#I0022-0493-97-3-748-B11
http://www.bioone.org/perlserv/#I0022-0493-97-3-748-B12
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consisted of approximately 4,000 workers headed by naturally mated sister queens.  

Colonies were installed in 4-frame observation hives (Gary and Lorenzen 1976).  Five 

days prior to the onset of the experiment 200 newly emerged bees derived from the 

parental source were added to each pair.  Each individual bee was uniquely identified 

with a plastic colored number tag (BioQuip Products Inc. 1172, CA, USA) glued to the 

thorax and a color mark on the abdomen (Seeley and Kolmes 1991).  At the onset of the 

experiment each colony contained 1 frame of honey, ½ frame of pollen, and the 

remaining area comprised empty cell space.  The queen was confined to a single frame 

for a period of 3 days using queen excluding material.  This provided the queen with 

nearly 5,000 cells to deposit individual eggs.  On average, in larger colonies, queens lay 

fewer than 1500 eggs per day (Winston 1987), therefore we did not limit egg laying 

space in a 3-day period.  Worker bees were able to pass through the queen excluder 

material and freely move throughout the colony.  After the 3-day period the queen was 

switched to another empty frame for 3 more days.   

One colony of a pair received 336 µg of brood pheromone daily for 9 days 

(Pankiw and Page 2001).  The other colony received iso propanol (EMD Chemicals Inc. 

PX1835-5, Gibbstown, NJ, USA) rinsed glass plate.  The treatments were delivered on a 

glass plate (9.5 cm x 5 cm).  The glass plates were inserted through a port installed in a 

wall of each hive.  The glass plate was positioned against the hive wall in such a way 

that it didn’t interfere with bee activities or observations. 

 

 



 47

Queen observations  

 

Each day we digitally recorded (Sony DCR-TRV70) the queen for 2 hrs in the morning 

and 2 hrs in the afternoon for 1hr intervals alternating between treatments.  The 

following behavioral categories were recorded: 1) idle: the queen was motionless on the 

comb and moved only her antennae or individual legs.  Retinue bees groomed or licked 

her, but no food was given 2) Patrolling:  the queen walked across the comb at a speed 

greater than 5 mm per sec and (often) inspected cells. 3) Receiving food:  the queen 

extended her proboscis between the mandibles of a worker for more than 5 sec (Allen 

1960). 4) Egg laying:  after a brief inspection of an empty cell, the queen inserted her 

abdomen into the cell to lay an egg.  Each day a map tracing the area of eggs, larvae and 

pupae was drawn on a transparent sheet for each hive.  Daily mapping continued for 

about 9 days when the last larvae of the first frame pupated and were sealed over with 

wax.  Data from the maps was used to calculate egg laying rate, numbers of larvae, 

larvae surviving to pupation, and total brood area.   

Protein content of hypopharyngeal glands was measured using Bradford assay as 

per Sagili et al. (2005).  Briefly, hypopharyngeal glands were homogenized using a 

homogenizer that tightly fitted in microcentrifuge tubes used to store the glands.  

Subsequently, tubes were centrifuged at 1000 rpm for 2 min.  Supernatant from each 

tube was used for analysis.  We used the 500-0202 Quick Start Bradford Protein Assay 

Kit 2 (Bio-Rad Laboratories, CA, and U.S.A.).  We added 2 µl or 5 µl from each sample 

to be analyzed to microcentrifuge tubes containing 1 ml Bradford reagent.  Tubes were 
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vortexed to homogenize the contents, then incubated for 5 min at room temperature.  

Standard-curves were prepared using bovine serum albumin (BSA).  Protein absorbance 

was measured at 595 nm against blank reagent using a Beckman Spectrophotometer 

(Model #D4-640, Beckman Instruments, Inc., Columbia, MD, USA).  Weight of protein 

(BSA) was plotted against the corresponding absorbance value to generate a linear 

regression equation (SAS PROC REG; SAS 2000).  Protein extracted from 

hypopharyngeal glands was estimated using the linear regression equation generated 

from the BSA standard curve.   

 

Observing larvae and nurse bees 

 

Twice daily, once in the morning and once in the afternoon, we digitally recorded 4 

selected larvae for 30 minutes each and recorded all nursing acts, for a total of 8 larvae 

per day.  We observed larvae that were two and five days old to create two age classes 

for observation.  The reason for choosing these two ages was that 2-day old larvae are in 

an early stage of development but large enough to be seen and 5-day larvae are near the 

end of larval development and are the greatest food consumers.  Young larvae 

exclusively receive brood food, while older larvae receive some pollen and honey along 

with brood food (Winston 1987).  The map tracings were used to locate such larvae on a 

daily basis.  A bee was defined as nursing if she inserted her head and part of her thorax 

inside a cell containing a larva.  Additionally, a nursing bee was distinguished from one 

that was inspecting or cleaning an empty cell by duration of the act.  A nursing act is 
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defined as lasting between 3 seconds and 3 minutes (Lindauer 1952; Huang and Otis 

1991; Schmickl et al. 2003).   

The following variables were measured after Schmickl et al. (2003).  1) nursing 

time, calculated as the ratio of nursing time over total time observed.  Each day we 

randomly selected 5 number tagged workers per colony and observed each for a total of 

15 min, recording nursing bouts, cell inspections, and cell cleaning.  A bee was defined 

as 2) inspecting a cell if she inserted her head and part of her thorax in an empty cell for 

≤ 3 sec or less (Lindauer 1952).  Cell inspection may lead to cell cleaning behavior, an 

act that prepares a cell to accept an egg (Winston 1987).  3) Cell cleaning was defined as 

a bee entering an empty cell, as above, for a duration > 3 sec.  Ten nurse bees from the 

brood nest area were selected randomly from each colony on days 3, 6 and 9 for 

analyzing protein content of hypopharyngeal glands. 

 

Statistical analyses 

 

Frequency data was analyzed using the Kruskal-Wallis test, timed variables were 

analyzed using analysis of variance (Sokal and Rohlf 1995). Protein quantity of 

hypopharyngeal glands was analyzed using analysis of variance (ANOVA) and 

repeated-measures ANOVA was used to analyze brood area (Sokal and Rohlf 1995). 
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Results 
 
 
In 3 out of 4 colony-level replications, queen egg laying rate per hour was significantly 

higher in brood pheromone treatments than control (Fig. 9)(Table 1).   
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Fig. 9  Mean number of eggs laid by the queen in an hour (+SE).  Asterisks indicate 

significant difference and ‘nsd’ denotes no significant difference 
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Table 1  ANOVA pertaining to number of eggs laid by the queen in an hour showing 

degrees of freedom, F-statistics and P-value for the four replications  

 

 

 

       Rep1 

  

       Rep2 

  

       Rep3 

 

      Rep4 

 

       df 

 

        F 

 

        P 

 

       1, 38      
   
 
 
       30.56 
 
 
 
      0.0001 

 

       1, 38      
 
 
 
       1.43  
 
         
 
      0.83 

 

       1, 38      
 
 
 
       4.81 
 
 
 
        0.01 

 

        1, 38      
 
 
 
       10.32 
 
 
 
        0.001 
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In all the 4 replications total number of eggs laid by the queen over the 9-day 

experimental period was significantly greater in brood pheromone treated colonies 

(p<0.01) (Fig. 10)(Table 2).   
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Fig. 10  Mean number of eggs laid by the queen in a period of 9 days (+SE).  Asterisks 

indicate significant difference 
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Table 2  ANOVA of eggs laid by the queen in 9 days showing degrees of freedom, F-

statistics and p-value for the four replications  

 

 

 

       Rep1 

  

       Rep2 

  

       Rep3 

 

      Rep4 

 

       df 

 

       F 

 

       P 

 

        1, 38      
   
 
 
       46.37 
 
 
 
       0.0001 

 

       1, 38      
 
 
 
       9.47 
 
 
 
       0.01 

 

       1, 38      
 
 
 
       21.16 
 
 
 
       0.001 

 

        1, 38      
 
 
 
       28.58 
 
 
 
        0.001 
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Frequency of feeding bouts was not significantly different between treatments in 

all the 4 replications (Fig. 11)(Table 3).   
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Fig. 11  Mean number of feeding bouts received by the queen (+SE).  Asterisks indicate 

significant difference.  No significant difference is denoted by ‘nsd’. 
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  Table 3    Kruskal-Wallis test statistics pertaining to feeding frequency analysis of   

  queen for the four replications (‘df’ denotes degrees of freedom, χ2 is the Chi-Square   

  value and ‘P’ is the probability value) 

 

 

 

     Rep1 

  

       Rep2 

  

       Rep3 

 

      Rep4 

 

   df 

 

   χ2

 

    P 

 

         1      
   
 
 
     31.83 
 
 
 
     0.12 

 

          1      
 
 
 
       4.66 
 
 
 
        0.22 

 

          1      
 
 
 
       9.43 
 
 
 
        0.51 

 

         1      
 
 
 
     7.36 
 
 
 
     0.63 
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Total amount of time spent feeding the queen was significantly greater in brood 

pheromone treated colonies (P<0.01) (Fig. 12)(Table 4).   
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Fig. 12  Mean feeding time of queen per hour (+SE) (in seconds).  Asterisk indicates 

significant difference 
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   Table 4  ANOVA of queen feeding time analysis showing degrees of freedom, F-      

   statistics and p-value for the four replications  

 

 

 

     Rep1 

  

       Rep2 

  

       Rep3 

 

      Rep4 

 

   df 

 

    F 

 

    P 

 

     1, 38      
   
 
 
     5.14 
 
 
 
     0.01 

 

       1, 38      
 
 
 
       7.74 
 
 
 
      0.008 

 

       1, 38      
 
 
 
       7.16 
 
 
 
        0.01 

 

      1, 38      
 
 
 
      15.46 
 
 
 
      0.0001 
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Queen idle time was significantly lower in the brood pheromone treatments than 

the controls (P<0.01) (Fig. 13)(Table 5).   
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Fig. 13  Mean idle time of queen per hour (+SE) (in seconds). Asterisks indicate 

significant difference 
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Table 5  ANOVA of queen idle time analysis showing degrees of freedom, F-statistics 

and p-value for the four replications  

 

 

 

     Rep1 

  

       Rep2 

  

       Rep3 

 

      Rep4 

 

       df 

 

        F 

 

        P 

 

     1, 38      
   
 
 
     25.93 
 
 
 
     0.0001 

 

       1, 38      
 
 
 
       6.32 
 
 
 
        0.01 

 

       1, 38      
 
 
 
       10.12 
 
 
 
        0.003 

 

      1, 38      
 
 
 
      10.4 
 
 
 
      0.003 
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Queen patrolling time, presumably seeking a cell to lay an egg was significantly 

greater in the brood pheromone treatments (P<0.01)(Fig. 14)(Table 6).   
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 Fig. 14  Mean patrol time of the queen per hour (+SE) (in seconds). Asterisks indicate 

significant differences 
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Table 6  ANOVA of queen patrol time analysis showing degrees of freedom, F-statistics 

and p-value for the four replications 

 

 

 

     Rep1 

  

       Rep2 

  

       Rep3 

 

      Rep4 

 

       df 

 

        F 

 

        P 

 

     1, 38      
   
 
 
     31.83 
 
 
 
     0.0001 

 

       1, 38      
 
 
 
       4.66 
 
 
 
        0.01 

 

       1, 38      
 
 
 
       9.43 
 
 
 
        0.004 

 

      1, 38      
 
 
 
      7.36 
 
 
 
       0.01 
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Amount of time spent by nurse bees on inspecting and nursing larvae was not 

significantly different between the brood pheromone and control treatments 

(P>0.05)(Fig.15 & 16).   

 

 

Treatments

rep1 rep2 rep3 rep4M
ea

n 
ce

ll 
in

sp
ec

tio
n 

tim
e 

(s
ec

.) 
/ 1

5 
m

in
ut

es
 (+

se
)

0

100

200

300

400

500

600

700
Control
Brood pheromone

nsd

nsd
nsd

nsd

 

Fig. 15  Mean cell inspection time in an observation period of 15 minutes (+SE).  

Asterisks indicate significant differences 
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 Fig. 16  Mean nursing time of the nurse bees in an observation period of 15 minutes 

(+SE). Asterisks indicate significant differences 
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Bees in the brood pheromone treated colonies spent significantly more time 

cleaning cells, presumably meeting a demand due to the greater egg-laying rate (P<0.01) 

(Fig. 17)(Table 7).  
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Fig. 17   Mean cell-cleaning time in an observation period of 15 minutes (+SE).  

Asterisks indicate significant difference 
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Table 7  ANOVA of nurse bee cell cleaning time showing degrees of freedom, F-

statistics and p-value for the four replications 

 

 

 

     Rep1 

  

       Rep2 

  

       Rep3 

 

      Rep4 

 

     df 

 

      F 

 

      P 

 

     1, 70     
   
 
 
     12.1 
 
 
 
     0.001 

 

       1, 70      
 
 
 
       24.09 
 
 
 
        0.0001 

 

       1, 70      
 
 
 
       12.89 
 
 
 
        0.001 

 

     1, 70      
 
 
 
     28.34 
 
 
 
     0.0001 
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 Hypopharyngeal gland protein content was significantly higher in bees treated 

with brood pheromone compared to controls (ANOVA F1,238=139.6, P<0.001). Brood 

pheromone treated colonies reared significantly more brood than the controls (F1,6= 17, 

P=0.006).  In the BP treatments significant correlation was observed between queen 

feeding time and the total number of eggs laid by the queen (ρ= 0.61, P=0.001).  There 

was also a significant correlation between time spent cleaning cells and total number of 

eggs laid (ρ= 0.56, P=0.001).   

    

Discussion 
 
 
The results of this study support our hypothesis that brood pheromone regulates queen 

egg laying by modulating worker-queen interactions, increased queen nutritional 

environment, and multiple worker bee behaviors. Brood pheromone treated colonies 

contained significantly greater number of eggs compared to controls.  Queens in the 

brood pheromone treatment were fed for a greater amount of time compared to controls.  

In this study it appeared that BP modulated worker behaviors, such that workers fed the 

queen for a longer amount of time, possibly transferring greater amounts of food.  We 

may infer from this result that queens rapidly respond to a higher nutritional 

environment by greater rates of egg production.  Total duration of feeds per hour is a 

better approximation of the amount of food received by the queen (Allen 1960).  Though 

there was significant difference in total feeding time of the queens between the two 

treatments, there was no significant difference in the frequency of feeding.  This further 
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suggests that total duration of feeding is a reliable index of amount of food transferred 

rather than total number of feeding bouts.  

 Queens in the brood pheromone treatments were less idle compared to controls. 

This might be a result of queens spending more time seeking cells in which to lay eggs 

and in egg laying.  Queens in BP treatments patrolled for longer durations than controls, 

possibly searching for prepared cells to lay eggs.  Significantly more time was spent in 

cell cleaning by the bees in brood pheromone treated colonies. This strongly suggests 

that BP plays a role in the division of worker labor associated with brood rearing.  BP 

increases the brood rearing stimulus environment across a wide spectrum of workers; 

increases number of pollen foragers, increases pollen load weights returned, increases 

number of pollen grains extractable from non-pollen foragers, increases number of 

pollen foraging trips per unit time (Pankiw and Page 2001;Pankiw and Rubink 2002; 

Pankiw 2004c; Pankiw et al. 2004; Pankiw 2007). To this list we may add a long list of 

brood rearing behaviors by bees working in the nest such as cleaning cells, inspection of 

cells, nursing larvae, feeding the queen etc.  In conclusion, BP has far reaching effects 

on a colony that profoundly affects the course of colony development.   

Hypopharyngeal gland protein content was significantly greater in nurse bees 

sampled from brood pheromone treatments, indicating an increased nutritional 

environment.  This enhanced nutritional status might facilitate provisioning of larger 

quantities of brood food to the developing larvae.  Significantly higher brood area in 

brood pheromone treated colonies appears to be a consequence of higher egg laying and 

increased nutritional environment.  Pankiw et al. (2004) reported similar results, where 
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BP-treated colonies reared significantly more brood area, and also hypopharyngeal gland 

protein content of nurse bees was higher in BP treatments than controls.  Results here 

point to increases in multiple worker-queen interactions induced by brood pheromone as 

a proximate mechanism with domino effects leading to a steeper colony growth 

trajectory. Significant positive correlations observed in queen feeding times and nurse 

bee cell cleaning times with respect to total number of eggs laid by the queen further 

suggest that queen egg laying is regulated by worker-queen interactions and nurse bee 

rearing behaviors. 

 In conclusion, this study suggests that brood pheromone regulates queen egg-

laying rate by modulating worker-queen interactions and nurse bee rearing behavior.  

Larvae are principal organizers of colony life.  For example, BP has profound effects on 

age of first foraging either increasing or decreasing age of first foraging, depending on 

the amount.  Amount of larvae or BP rapidly rallies colonies to collect more pollen 

through multiple mechanisms.  Now we found that BP is organizing activities taking 

place in the center of the nest, including the queen.  Effects on pre-foragers are 

physiological and behavioral. Organization is centered on brood rearing and brood 

regulate virtually every aspect of colony life.  Everything that happens can be traced 

back to larvae.  Colonies are organized by larvae found in the center of the nest, with 

profound affects radiating outward. 
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CHAPTER V 

 

BROOD PHEROMONE REGULATED FORAGING ONTOGENY EFFECTS ON 

BROOD REARING IN THE HONEY BEE (Apis mellifera L.) 

 

Introduction 
 
 
Honey bee workers perform different tasks as they age and this phenomenon is referred 

to as temporal polyethism or division of labor (Robinson 1992; Beshers and Fewell 

2001; Anderson and Franks 2001). After emergence as adults, usually the worker bees 

first clean cells, and then as they age they feed the larvae and queen, process and store 

food, secrete wax and construct comb, and guard the entrance.  The most prominent 

behavioral change is observed when the bees are about three weeks old, the age when 

they start foraging (Lindauer 1952; Seeley and Kolmes 1991).  Plasticity is an important 

attribute of division of labor and colonies respond to changes in the internal and external 

environment by manipulating the ratios of individual workers involved in different tasks 

(Robinson 1992).  Such plasticity in division of labor can be partially attributed to the 

behavioral flexibility of the individual workers (Robinson 1992). 

Brood rearing in honeybees is accomplished by the combined labor of nurse and 

forager bees who directly or indirectly provision larvae, respectively.  Pollen and nectar 

are the two primary resources for which bees forage.  Nectar serves as a carbohydrate 

source for both adults and larvae, whereas pollen is the primary source of protein.  

Pollen is consumed by nurse bees to biosynthesize proteinaceous glandular secretions 
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that are progressively provisioned to larvae (Winston 1987).  Studies with brood 

pheromone have indicated that brood pheromone influenced suites of foraging and brood 

rearing behaviors.  

Pheromones are chemicals that are the primary source of intraspecific 

communication in many organisms (Wyatt 2003).  Social insect pheromones are broadly 

classified as primer and releaser pheromones.  Primer pheromones change individuals to 

an altered behavioral state.  Change occurs through putative response threshold shifts to 

different stimuli, altering reproductive, endocrine, and neurosensory systems (Höllbobler 

and Wilson 1990; Pankiw and Page 2003). Releaser pheromones elicit an immediate effect 

on the behavior of a receiver, and once the pheromone has dissipated or removed, 

individuals revert to their previous state (Pankiw 2004b).    

Brood pheromone (BP) is a 10-component mixture of fatty acid esters that can be 

extracted from the surface of honey bee larvae (Le Conte et al. 1990). One larval 

equivalent (LEq) of the BP blend contains; 5.6ng ethyl linoleate, 72.8ng ethyl linolenate, 

44.8ng ethyl oleate, 16.8ng ethyl palmitate, 39.2ng ethyl stearate, 11.2ng methyl linoleate, 

117.6ng methyl linolenate, 140.0ng methyl oleate, 16.8ng methyl palmitate, and 95.2ng 

methyl stearate (Trouiller 1993; Pankiw and Page 2001). Brood pheromone is a tool that 

can be used to alter the foraging stimulus environment and thus change honey bee foraging 

strategies (Pankiw et al 1998; Pankiw and Page 2001; Pankiw and Rubink 2002). 

Brood pheromone has dose-dependent effects on foraging ontogeny (LeConte et al. 

2001).  A relatively high amount of brood pheromone increases age of first foraging, 

whereas a relatively low amount of brood pheromone decreases age of first foraging 

http://www.bioone.org/perlserv/#I0022-0493-97-3-748-B11
http://www.bioone.org/perlserv/#I0022-0493-97-3-748-B12
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(LeConte et al. 2001).  Exposure of bees to relatively low amounts of brood pheromone 

for 2-4 hours resulted in increased number of pollen foragers and heavier pollen loads 

(Pankiw and Page 2001; Pankiw and Rubink 2002).  Brood pheromone treated colonies 

rear significantly greater amounts of brood, have significantly higher ratios of pollen to 

non-pollen foragers, foragers return with heavier pollen loads and take more foraging trips 

per unit time, and age of first foraging is significantly lower (Pankiw et al. 2004; Pankiw 

2004a; Pankiw 2004b; Pankiw 2007).  In this study I focused on how dose-dependent BP-

mediated division of labor affected the partitioning of non-foraging and foraging work 

forces and the amount of brood reared. 

 

Methods 
 
 
This experiment was replicated 5 times using triple-cohort colonies (Giray and Robinson 

1994; Le Conte et al. 2001).  A triple-cohort colony was comprised of three cohorts of 

700 bees per cohort in their first, second and third week of adult life, respectively and a 

naturally mated queen.  Beginning four weeks prior to establishing the triple cohort 

colony 2500 newly emerged bees were paint marked a unique color for each week and 

placed in a common foster colony for aging.  A total of 2500 bees per target cohort 

ensured that at least 700 bees for the combined age and behavioral classes were easily 

found and collected. Cohort 1 comprised of 700 newly emerged adult bees less than 24 

hours after emergence.  Newly emerged bees were derived from combs of pupae placed 

in an incubator maintained at 32º C and 55% RH for 6 hours.  Cohort 1 received a 

colored plastic number tag glued (BioQuip Products Inc. 1172, CA, USA) to the thorax 
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and was the focal cohort for age of first foraging.  Cohort 2 consisted of 700 nurse bees 

ranging in age from 8 to 11 days and selected from the brood nest area.  Cohort 3 

consisted of 700 foragers in their third week of adult life. Nurses and foragers were 

collected from their foster colony using a portable insect vacuum device (Gary and 

Lorenzen 1987).   

On a weekly basis 50 newly emerged bees were added to the triple cohort 

colonies to simulate natural emergence of an established colony.  Triple-cohort colonies 

have been recorded to demonstrate normal rates of behavioral development, with the 

benefit of a controlled adult demographic distribution (Giray and Robinson 1994; Le 

Conte et al. 2001).   At the onset of the experiment each colony was provided with 1 

frame of honey (1600 cm2), ¼ frame of pollen (400 cm2), and 2 frames of empty comb 

space (4800 cm2).  There were three treatments as follows for 30 days: 1) BP dose of 

336 µg per day 2) BP dose of 168µg per day, and 3) blank control. Treatments 1 and 2 

represent high and low doses of brood pheromone, respectively.  Empty comb space was 

added as necessary and equally to all treatments. 

 

Measurements 
 
 
 The ratio of pollen to non-pollen foragers was measured by daily counting the number 

of foragers of each type that enter colonies in a 5-minute period once in the morning and 

once in the afternoon.  Daily observations of foraging activity began 24 hours after onset 

of the experiment.  Every third day the comb area occupied by eggs, larvae, pupae, 

pollen, honey and empty space was measured with a metered grid (Pankiw et al. 2004). 
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Beginning on the third day, to the termination of the experiment, colony 

entrances were blocked with wire-mesh for 15 min intervals separated by at least 30 min 

to enable the capture of returning focal foragers. The entrances were blocked from 0800 

h to 1700 h for a total of 4 h per day.  Foragers were individually captured in small 

cylindrical wire cages.  The identity of the captured foragers was recorded and the 

individuals released.  Foragers were also classified as pollen or non-pollen foragers.  At 

the termination of the experiment all number tagged bees were collected.  Number of 

days from emergence to date of observation was used to estimate age of first foraging.  

Those that were not observed as foragers were categorized as censored cases in 

subsequent survival analysis.   

Every week 10 bees from each cohort were collected for hypopharyngeal gland 

protein analysis.  The Bradford assay was used to estimate the hypopharyngeal gland 

protein content (Sagili et al. 2005).  Bees that were sampled for hypopharyngeal gland 

protein analysis were also included as censored cases in the survival analysis data set. 

 

 Statistical analyses 

 

Contingency table analysis was used to analyze the ratio of pollen to non-pollen foragers 

observed and also to analyze proportion of foragers to non-foragers (Sokal and Rohlf 

1995).  ANOVA was used to analyze pollen load weights and protein extractable from 

hypopharyngeal glands (Sokal & Rohlf 1995).  Brood and pollen areas were analyzed 
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using repeated measures ANOVA.  Survival analysis was used to analyze age of first 

foraging data (Allison 1998). 

 

Results 
 
 
The ratio of pollen to non-pollen foragers entering the colonies in an interval of 5 

minutes was significantly higher in Low BP treated colonies during the experimental 

period (3x2 contingency table analysis χ2 = 81.5, 2df, P<0.001) (Fig. 18).  There was no 

significant difference in the ratio of pollen to non-pollen foragers entering the colonies 

between controls and High BP treatments (P>0.05).  The proportion of foragers and non-

foragers were significantly different between the treatments (3x2 contingency table 

analysis χ2 = 29.3, 2df, P<0.01).  Low BP treatments had higher percentage of foragers 

followed by control and High BP treatments (Fig. 19). 
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Bees in Low BP treated colonies returned with significantly heavier pollen loads 

than control and High BP treated colonies (F2,12 = 14.3, P< 0.001) (Fig. 20), and there 

was no significant difference in the pollen loads returned between High BP treatment 

colonies and controls.   
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 Fig. 20  Mean pollen load weights collected by the foragers (+SE).  Different letters 

indicate significant differences 
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Low BP treated colonies reared significantly more brood area than High BP 

treatment colonies and controls (repeated measures F2,12 =19, P<0.001)(Fig. 21).  There 

was no significant difference between the brood areas reared by High BP and control 

colonies (P>0.05).   
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Fig. 21  Mean brood area in cm2 (+SE). Asterisks indicate significant difference 
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Amount of stored pollen was not significantly different between treatments 

during all the four weeks (repeated measures F2,12 =1.3, P=0.3)(Fig. 22).   
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Fig. 22  Mean pollen area in cm2 (+SE) for the three treatments 
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Hypopharyngeal gland protein content of bees analyzed from cohort 1 was 

significantly lower in the control treatments compared to High BP and Low BP 

treatments (Fig 23) (Table 8), and there was no significant difference between the High 

and Low BP treatments (P>0.05).  Similar results were obtained for bees obtained from 

cohort 2 with respect to hypopharyngeal gland protein content.  In bees analyzed from 

Cohort 3, hypopharyngeal gland protein content was significantly different between the 

three treatments with Low BP treatments having highest protein content followed by 

High BP and controls respectively (P<0.001) (Table 8). 

 

Table 8  ANOVA pertaining to hypopharyngeal gland protein analysis showing degrees 

of freedom, F-statistic and p-value for each of the three cohorts 
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Fig. 23  Mean hypopharyngeal gland protein content in micro grams (+SE).  Different 

letters indicate significant difference 
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There were significant differences in the age of first foraging. In 4 out of 5 

replications, bees in the Low BP treatments foraged at significantly younger age 

compared to controls and High BP treatments (Fig. 24) (Table 9).  In all the five 

replications, bees from High BP treatment colonies foraged at a significantly older age 

than controls and Low BP treated colonies.  Overall, Low BP treatments foraged at a 

significantly younger age followed by controls and High BP treatments respectively. 
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Table 9  Cox regression statistics pertaining to age of first foraging showing degrees of 

freedom, Chi-Square value and p-value for each of the five replications 

 
  

     Rep1 

  

       Rep2 

  

       Rep3 

 

      Rep4 

 
 
  Rep5 

 

    df 

 

    χ2

 

     P 

 

        2      
   
 
 
      26.7 
 
 
 
     0.001 

 

        2      
 
 
 
      39.5 
 
 
 
     0.001 

 

         2      
 
 
 
       24.8 
 
 
 
       0.001 

 

        2      
 
 
 
      19.2 
 
 
 
       0.01 

 
 
        2 
 
 
 
      31.5 
 
 
 
     0.001 

 

 

 

 

 

 

 

 

 

 

 



 84

Discussion 
 
 
The results of this study suggest that brood pheromone at different dose levels 

differentially modulates the foraging division and brood rearing division of labor in the 

honey bee.  Colonies receiving Low BP treatments had significantly higher ratio of 

pollen to non-pollen foragers and greater pollen load weights than controls and High BP 

treatments, indicating greater pollen collection by Low BP colonies.  There was no 

significant difference in the amounts of stored pollen between the three treatments in 

spite of significant differences in pollen collection, as previously observed (Jeffree and 

Allen 1957; Fewell and Winston 1992; Camazine 1993; Eckert et al. 1994; Pankiw et al. 

2004).  Proportion of foragers was significantly high in Low BP treatments when 

compared to controls and High BP treatments.  This suggests that Low BP induced the 

colonies to field greater number of foragers and thus increased colony growth. 

 Brood rearing was significantly higher in the Low BP treated colonies.  The 

increased brood rearing appeared to be a result of greater pollen intake and presumably 

consumption given that amount stored was not different between treatments.  Pankiw et 

al. (2004) reported similar findings, where increased brood rearing in brood pheromone 

treatments was attributed in part to an increased pollen intake rather than increased 

consumption of stored pollen.  They concluded that increase in pollen intake induced by 

brood pheromone was directly utilized for raising a greater number of bees. 

Hypopharyngeal gland protein content was significantly greater in Low BP and 

high BP treated bees compared to controls in both cohort 1 and cohort 2 indicating an 

increased nutritional environment.  In cohort 3 significant differences in the 
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hypopharyngeal gland protein content were observed between all the three treatments 

with High BP treatment having the highest protein content followed by Low BP and 

control treatments.  LeConte et al. (2001) speculated that exposure to high BP dose 

delayed the behavioral development in bees, thus resulting in a lengthened nursing 

phase. The results from cohort 3 appear to support the above speculation of extended 

nursing phase as a result of exposure to higher dose of BP.  The presence of greater 

number of non-foragers than foragers in the High BP treatment indicated that High BP 

dose extended the nursing phase in the bees such that these colonies fielded less number 

of foragers. 

Bees from Low BP treatment foraged at a significantly younger age, whereas the 

bees from High BP treatments foraged at significantly older age.  Foraging age of the 

bees from control colonies was in-between the low and high BP treatments.  These 

results are in agreement with findings of Le Conte et al. (2001), where they found that a 

relatively high amount of brood pheromone increased age of first foraging and a 

relatively low amount of brood pheromone decreased age of first foraging.  Brood 

pheromone exerts dose dependent effects on sucrose response threshold modulation and 

regulation of foraging ontogeny (Pankiw and Page 2001). 

In conclusion, this study has shown that brood pheromone elicits dose-dependent 

modulation of foraging and brood rearing behaviors. This clearly shows that colonies 

manipulated their work force extensively depending on the amount of BP. Hence the 

amount of BP or the number of larvae present in the colony at a point of time appears to 

be the driving force in organizing activities in the colony, either directly or indirectly.  It 
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is known that BP is multifunctional, as it brings about many physiological and 

behavioral changes such as increase in hypopharyngeal gland protein in nurse bees, 

increase in number of pollen foragers, increase in pollen load weights, increase in pollen 

foraging trips, increase or decrease in age of first foraging, increase in cell cleaning 

behavior, increase in queen feeding etc., and now this study further suggests that BP is 

not only multifunctional, but also elicits dose dependent effects. 
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CHAPTER VI 

CONCLUSIONS 

The goal of this dissertation was to examine some important physiological and 

pheromonal factors regulating foraging and colony growth in honey bee colonies.  The 

results shown in the preceding chapters provide new insights into the less known 

mechanisms that pheromonal and physiological factors employ to regulate foraging and 

colony growth in honey bee colonies.  In the first study of this dissertation I studied the 

effects of soybean trypsin inhibitor (SBTI) on the development of hypopharyngeal 

gland, midgut enzyme activity and survival of the honey bee.  In this study newly 

emerged caged bees were fed pollen diets containing three different concentrations 

(0.1%, 0.5% and 1% w: w) of soybean trypsin inhibitor (SBTI).  Hypopharyngeal gland 

protein content, total midgut proteolytic enzyme activity of these bees, and survival were 

measured. Bees fed 1% SBTI had significantly reduced hypopharyngeal gland protein 

content and midgut proteolytic enzyme activity.  There were no significant differences 

between control, 0.1% and 0.5% SBTI treatments.  I concluded that nurse bees fed a 

pollen diet containing at least 1% SBTI would be poor producers of larval food. 

The primary objective of the second study was to measure the effects of 

manipulating hypopharyngeal gland protein (brood food) content in nurse bees on pollen 

foraging.  In this study nurse bee biosynthesis of brood food was manipulated using 

SBTI, significantly decreasing the amount of protein extractable from hypopharyngeal 

glands.  Experimental colonies were given equal amounts of SBTI treated and untreated 

pollen.  Colonies receiving protease inhibitor treatment had significantly lower 
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hypopharyngeal gland protein content than controls (P<0.001).   There was no 

significant difference in the ratio of pollen to non-pollen foragers between the treatments 

(P>0.05).  Pollen load weights were also not significantly different between treatments 

(P>0.05).  The results supported the pollen foraging effort predictions generated from 

the direct independent effects of pollen on the regulation of pollen foraging and did not 

support the prediction that nurse bees regulate pollen foraging through amount of 

hypopharyngeal gland protein biosynthesis. 

The third study tested whether brood pheromone (BP) regulated queen egg laying 

via modulation of worker-queen interactions and nurse bee rearing behaviors. This 

experiment had two treatments, BP and control.  Brood pheromone treated colonies 

contained significantly greater number of eggs compared to controls.  Queens in the 

brood pheromone treatment were fed for a greater amount of time and were less idle 

compared to controls.  Queens in BP treatments patrolled for longer durations than 

controls, possibly searching for prepared cells to lay eggs.  Significantly more time was 

spent in cell cleaning by the bees in brood pheromone treated colonies. The results 

suggested that BP played a role in the division of worker labor associated with brood 

rearing.  Hypopharyngeal gland protein content was significantly greater in nurse bees 

sampled from brood pheromone treatments, indicating an increased nutritional 

environment.  This study suggested that brood pheromone regulated queen egg-laying 

rate by modulating worker-queen interactions and nurse bee rearing behavior.   

The final study focused on how dose-dependent BP-mediated division of labor 

affected the partitioning of non-foraging and foraging work forces and the amount of 
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brood reared. Triple cohort colonies were used in this study, and there were three 

treatments, Low BP, High BP and Control.  Colonies receiving Low BP treatments had 

significantly higher ratio of pollen to non-pollen foragers and greater pollen load weights 

than controls and High BP treatments, indicating greater pollen collection by Low BP 

colonies.  There was no significant difference in the amounts of stored pollen between 

the three treatments in spite of significant differences in pollen collection.  Bees from 

Low BP treatment foraged at a significantly younger age, whereas the bees from High 

BP treatments foraged at significantly older age.  Foraging age of the bees from control 

colonies was in-between the low and high BP treatments.  This study has shown that 

brood pheromone elicits dose-dependent modulation of foraging and brood rearing 

behaviors.  
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