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ABSTRACT 
 

Modeling Toxic Endpoints for Improving Human Health Risk Assessment.  (May 2007) 

Erica Dawn Bruce, B.S., Texas A&M University; 
 

M.S., Texas A&M University 
 

Chair of Advisory Committee:  Dr. Robin L. Autenrieth 
 
 

 Risk assessment procedures for mixtures of polycyclic aromatic hydrocarbons 

(PAHs) present a problem due to the lack of available potency and toxicity data on 

mixtures and individual compounds.  This study examines the toxicity of parent 

compound PAHs and binary mixtures of PAHs in order to bridge the gap between 

component assessment and mixture assessment.  Seven pure parent compound PAHs and 

four binary mixtures of PAHs were examined in the Salmonella/Microsome 

Mutagenicity Assay, a Gap Junction Intercellular Communication (GJIC) assay and the 

7-ethoxyresorufin-O-deethylase assay (EROD).  These assays were chosen for their 

ability to measure specific toxic endpoints related to the carcinogenic process (i.e. 

initiation, promotion, progression).  Data from these assays was used in further studies to 

build Quantitative Structure-Activity Relationships (QSARs) to estimate toxic endpoints 

and to test the additive assumption in PAH mixtures.  These QSAR models will allow 

for the development of bioassay based potential potencies (PPB) or toxic equivalency 

factors (TEFs) that are derived not only from bioassay data, but also from structure, 

activity, and physical/chemical properties.  These models can be extended to any 

environmental media to evaluate risk to human health from exposures to PAHs. 
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CHAPTER I   
 

INTRODUCTION 
 
 
 

The Comprehensive Environmental Response, Compensation, and Liability Act 

(CERCLA) provides federal authority for the remediation of hazardous waste sites 

deemed severe by the U.S. Environmental Protection Agency’s (USEPA) National 

Priority List (NPL) (USEPA, 2006a, 2006b).  Currently 1245 hazardous waste sites are 

on the NPL and pose a risk to human health and the environment.  The contaminants on 

these sites have a potential to cause harm to those exposed and therefore an assessment 

of the potential hazards must be made.  The USEPA guidelines are the industry standard 

when performing environmental and human health risk assessment (Sims, P. et al., 

1974).  There are four major steps in this framework, (1) data collection and evaluation, 

(2) exposure assessment, (3) toxicity assessment, and (4) risk characterization.   

There are two basic approaches that the EPA gives guidance for when doing risk 

assessments of complex mixtures, a whole mixture approach and a component approach 

(USEPA, 1986, 1993, 2000).  These two methods are based on the nature and quality of 

the available data and the assumption that chemical toxicity among the PAHs in a 

mixture is additive.  An additive response occurs when the combined response or two 

chemicals is equal to the sum of the two chemicals individually.  PAHs in mixtures can 

also have a synergistic or inhibitory response.   

_____________________________________ 
The style and format of this dissertation follows that of the Journal of Toxicology and 
Environmental Health – Part B. 
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Synergistic responses occur when the combined effect of two chemicals are much 

greater than the sum of the two chemical individually.  While an inhibitory response 

occurs when two chemicals interfere with one another’s actions or one chemical 

interferes with the other chemical.   

Among environmental health scientists, the consensus is that current data will only 

support a quantitative risk assessment for the carcinogenic effects of PAHs (Schoeny, R. 

et al., 1998).  There are three approaches that are commonly used for evaluating the 

human health risks associated with the exposure to PAH containing mixtures: the 

surrogate mixture approach, the comparative potency approach, and the relative potency 

factor approach.   

The surrogate mixture approach is a mixture-based approach that should only be 

used to estimate the potency of the PAH component of the mixture of concern because 

benzo (a) pyrene (BAP) is not a consistent indicator of the concentration of “non-PAH” 

components of a mixture (Versar et al., 2002).  An inherent assumption with this method 

is that any PAH mixture is a dilution of a “surrogate” PAH mixture, where the surrogate 

mixture is characterized chemically and toxicologically.  The assumption that there is 

“sufficient similarity” both chemically and toxicologically between the mixture of 

concern and the surrogate mixture can be problematic if the mixture is not well 

characterized or sufficiency is questionable.  A second assumption is that the factor used 

to measure the extent of dilution of the mixture of concern (i.e. the BAP concentration) 

is a valid indicator of the concentration of all PAHs in the mixture and will influence the 
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carcinogenic potential.  The assumptions that are required to use this method lead to 

some specific advantages and disadvantages. 

An advantage of using this method is the relative ease for regulatory agencies to 

apply and its results are expected to be conservative as long as the mixture of concern is 

less potent than the surrogate mixture.  However, the criteria for determining “sufficient 

similarity” are vague and the selection of the surrogate mixture is difficult.  Further, this 

method does not take into consideration substituted versions of PAHs in the mixture that 

can represent a significant percent of the total mass.   

 Comparative potency is also a mixture-based approach that evaluates the potency 

of the whole mixture rather than just the PAH component(s) of the mixture.  A key 

underlying assumption is that similar mixtures in a data set act in a similar manner 

toxicologically and the relative potency in an in vivo or in vitro bioassay is directly 

proportional to the relative potency in humans (Versar et al., 2002).  This proportionality 

is represented by a scaling factor, k, that is assumed to be the same for different PAH 

containing mixtures.  Further, the mixtures used to derive the scaling factor and the 

mixtures of concern must be “sufficiently” similar.   

 The main advantage of this particular mixture-based approach is that it estimates 

the potency of the whole mixture and it uses existing epidemiological data on human 

carcinogenicity of mixtures (Schoeny, R., Muller, P., and Mumford, J., 1998).  However, 

mixtures from the same types of sources (i.e. diesel emissions) do not always have 

similar ratios of PAHs or equivalent toxicological potency in which case they are not 

considered “sufficiently” similar.  Currently, this method is only useful for inhalation 
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routes of exposure because epidemiological data for human oral and dermal exposures 

are not yet available.  Consequently, it is only feasible to use in cases where inhalation 

risk will be the dominant contributor to the overall risk estimates.  This method is not 

considered a viable option for mixtures that have originated from unknown sources or 

that are poorly characterized. 

A component- based approach that is commonly used to evaluate the risk of a 

complex mixture of PAHs is the relative potency factor approach.  This method for 

mixtures risk assessment relies on existing EPA risk assessment information on single 

chemical toxicity.  Generally, it is used to evaluate mixtures of polychlorinated 

biphenyls (PCBs), dioxins and PAHs (USEPA, 2000).  Relative potency factors (RPFs) 

or toxic equivalency factors (TEFs) are used to adjust a compounds toxicity based on a 

reference compound in the same class.  The term “relative potency factor” refers to 

toxicity comparisons from an individual experiment, while the term “toxic equivalency 

factor” is most commonly used for toxicity estimates determined by consensus (USEPA, 

2000)  Compounds are included for those which TEF values can be determined.  

Complete representation of all compounds in the mixture is not guaranteed.   

This method assumes that the toxicity of individual PAHs is additive and that all 

PAHs have the same mode of action.  Additionally, it assumes that the potency of the 

carcinogenic PAHs sufficiently reflects the potency of the entire mixture.  Commonly in 

practice, the mixture of concern is from an unknown source or the composition of the 

mixture is not fully characterized.  This method can be applied to such situations with 

relative simplicity because there are existing TEFs for PAHs.  A component-based 
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approach is generally considered less desirable than a whole mixture approach.  The 

most accurate representation of risk using this method can only be calculated for the oral 

exposure route because there are currently no cancer slope factors for dermal and 

inhalation routes.  Furthermore, it is not clear whether the toxicity of individual PAHs is 

additive.  The RPF method is the least desirable method for assessing the risk for a 

complex mixture of PAHs.  In most cases, however, this is the method that must be used 

due to the nature and available data for the PAH mixture of concern (Versar et al., 2002).   

The focus of the proposed research is on PAHs and chemical mixtures of PAHs.  

This group of chemicals represents a class of environmental organic pollutants to which 

we are regularly exposed (Afghan, B. and Chu, A., 1989).  Characterized by two or more 

fused  aromatic rings, PAHs are usually crystalline solid materials that have high melting 

points, low vapor pressures, low water solubility, and strong adsorption affinity for 

surfaces (Table 1) (Afghan, B. and Chu, A., 1989; Dabestani, R. and Ivanov, I., 1999).  

These physico-chemical  characteristics make this group of chemicals especially 

important when considering routes of exposure in a risk assessment.  Their 

characteristics are typical of contaminants that can be in high concentrations in 

environmental media (i.e., soils).   

Pyrolysis of any material containing carbon and hydrogen can lead to the 

formation of PAHs.  The product composition depends primarily on the temperature for 

a given source material.  At combustion temperature below 700°C the majority of the 

PAHs formed are alkyl substituted PAHs while temperature greater than 1000°C leads to 

the formation of unsubstituted compounds (Guerin, M. R., 1978).  Accordingly, PAHs 
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that stem from coal-derived products and crude oils have an abundance of alkyl 

substituted PAHs.   

Classification of PAHs is determined by the arrangement of the rings during 

formation.  There are numerous possibilities for PAH compounds therefore the 

International Union for Pure and Applied Chemistry (IUPAC) has delineated a set of 

rules for naming PAH compounds.  There are only a select number of compounds that 

are given trivial names such as fluorene, chrysene, and pyrene (Figure 1).  The 

numbering system is determined by orienting the compound so that the maximum 

numbers of rings are in a horizontal row and as many rings as possible are above and to 

the right of that row (Harvey, R. G., 1997).  Numbering starts with a carbon atom that is 

only part of one ring, is in the most counterclockwise position on the ring farthest to the 

right above the horizontal plane, and continues in a clockwise direction.  As not all 

compounds are given a trivial name, they are assigned a name by adding the name of the 

substituent to the base trivial name.  The base name takes into account the maximum 

number of rings (Harvey, R. G., 1997).   
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Table 1. Table of physical-chemical properties of selected PAHs. 
(ATSDR, 1990a, 2005; IARC, 1983) 

 
Molecular 

Weight  

Solubility Vapor 
Pressure 

Log Kow Carcinogenicity 

  at 25 °C at 25 °C (Log Koc)   

PAH 

(g) (µg/L) (mm Hg)     

Naphthalene 128.2 12500 to 
34000 

1.8x 10-2 3.37 NC 

Acenaphthylene 152.2 3420 10 -3 - 10-4 4.07 
(3.40) 

NC 

Acenaphthene 154.2     3.98 
(3.66) 

NC 

Fluorene 166.2 800   4.18 
(3.86) 

NC 

Anthracene 178.2 59 2.4x 10-4 4.5 (4.15) NC 
Phenanthrene 178.2 435 6.8x 10-4 4.46 

(4.15) 
NC 

2-Methylanthracene 192.3 21.3   4.77 NC 
9-Methylphenanthrene 192.3 261   4.77 NC 
1-Methylphenanthrene 192.3 269   4.77 NC 
Fluoranthene 202.3 260   4.90 

(4.58) 
NC 

9,10-
Dimethylanthracene 

206.3 56   5.13 NC 

Benzo[a]fluorene 216.3 45   5.34 NC 
Benzo[b]fluorene 216.3 29.6   5.34 NC 
Pyrene 202.1 133 6.9x 10-7 4.88 

(4.58) 
NC 

Benz[a]anthracene 228.3 11 1.1x 10-7 5.63 
(5.30) 

C 

Chrysene 228.3 1.9   5.63 
(5.30) 

WC 

Benzo[b]fluoranthene 252.3 2.4   6.04 
(5.74) 

C 

Benzo[j]fluoranthene 252.3 2.4   6.21 C 
Dibenzo[a,h]fluorene 266.3 0.8   6.57 WC 
3-Methylcholanthrene 267.3 0.7   6.64 SC 
Benzo[ghi]fluoranthene 214.2 0.5   6.78 NC 

Benzo[a]pyrene 252.3 3.8 5.5x 10-9 6.06 
(5.74) 

SC 

* NC= non-carcinogenic; WC=weakly carcinogenic; C=carcinogenic; SC=strongly carcinogenic; 

Kow=Octanol /water partition coefficient; Koc= partitioning coefficient for organic carbon 
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Naphthalene             Fluorene 

 

Anthracene         Phenanthrene 

 

Fluoranthene     Pyrene 

 

Chrysene 
 
 

Figure 1. Polycyclic aromatic hydrocarbons that are used as the basis for the 
International Union of Pure and Applied Chemists (IUPAC) nomenclature 

determinations. 
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The lower molecular weight PAHs (e.g., 2 to 3 ring group of PAHs such as 

naphthalenes, fluorenes, phenanthrenes, and anthracenes) are acutely toxic to aquatic 

organisms, whereas the high molecular weight PAHs, 4 to 7 ring (from chrysenes to 

coronenes) are not due to their solubility.  However, several members of the high 

molecular weight PAHs have been shown to be carcinogenic (Table 1).  The greatest 

concern about PAHs is their carcinogenic potential.  Carcinogenicity appears to increase 

with the molecular size until 4- and 5-ring molecules are reached (Afghan, B. and Chu, 

A., 1989).  The general relationship of structure to carcinogenic potential favors the 4-, 

5-, and 6-membered ring PAHs rather than smaller, 3-ring structures, or larger 7-ring 

structures (Afghan, B. and Chu, A., 1989).  For example, one of the most toxic PAHs, 

Benzo(a) pyrene, is a 5-ring PAH and has an oral cancer slope factor of 7.30, an 

indicator of a strong carcinogen (USEPA, 2006d).   

Although PAHs have been linked to a wide range of toxic effects (i.e., cancer, 

renal disease, circulatory disorders), the parent compounds are not believed to be the 

cause of these effects (ATSDR, 1990a).  It is the oxidized metabolites and their reactive 

intermediates that are more biologically active (Pitot, H. C. and Dragan, Y. P., 1996; 

Sims, P. et al., 1974).  Metabolism of the PAH family begins with oxidation by the 

cytochrome P450-family, specifically, CYP1A1 (Figure 2).  This induction process is 

initiated by the absorption of a PAH by a cell from systematic circulation.  Once the 

PAH is in the cytosol, it binds with the Aryl Hydrocarbon (Ah) receptor.  Upon binding 

with its ligand, the Ah receptor releases two heat shock proteins (hsp 90) which are 

normally associated with the receptor in its inactive state.  This disassociation of the heat 
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shock proteins allow the Ah receptor-ligand complex to be phosphorylated by tyrosine 

kinase.  Next, the Ah receptor and its  

 

 

 

 

Figure 2. BAP as a model of PAH metabolism (IARC, 1983) 
 
 

ligand enter the nucleus and form a heterodimer with the Ah receptor –nuclear 

translocator protein (Arnt).  The heterodimer then binds with a Xenobiotic Response 
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Element (XRE) or the Dioxin Response Element (DRE) in the upstream regulatory 

region of a gene to enhance transcription (Parkinson, A., 1996).   

PAHs are ubiquitous in the environment and are routinely found in food, water, 

air, and sediment.  PAHs have been identified at 600 of the 1,420 USEPA NPL 

sites(ATSDR, 1996).   A product of incomplete combustion, PAHs are prevalent and 

inconsistent, with respect to composition, in the environment.  Wild fires, volcanoes, 

transportation and smoking are among the many sources of PAHs (Baum, E. J., 1978).  

The U.S. EPA estimated that 40% of all BAP comes from home wood fires (ATSDR, 

1990b).  Accordingly, 98% of BAP emissions are to the air and only 1% is to the soil 

and water.  However, this number can be deceiving because it represents emissions only.  

BAP and other PAHs that are emitted into the air are eventually deposited on the soil 

and on surface waters.  Most PAHs do not dissolve easily in water, therefore binding to 

particles and depositing in soils are significant transport phases.  Some PAHs will 

eventually migrate through the soil and contaminant groundwater.   

Due to the extensive and persistent contamination of media by PAHs, the 

USEPA has many mechanisms in place to regulate and monitor these compounds.  

Congress enacted the Comprehensive Environmental Response, Compensation, and 

Liability Act (CERCLA), commonly known as Superfund, on December 11, 1980 to 

authorize two kinds of response actions: short-term removals and long-term remedial 

responses.  Long-term remedial responses can only be conducted on sites that are listed 

on the USEPA’s National Priority List (NPL).  The NPL is a list of sites among the 

known releases or threatened releases of hazardous substances, pollutants, or 
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contaminants throughout the United States and its territories.  Sites on the NPL have a 

hazard ranking score (HRS) greater than 28 (USEPA, 2006c).  Several factors are 

considered in the HRS including the potential for migration off site, magnitude of 

contamination, proximity to sensitive receptors, and the toxicity of compounds present.   

USEPA and the Agency for Toxic Substance and Disease Registry (ATSDR) 

must also maintain a list of chemicals and mixtures commonly occurring at NPL sites.  If 

a chemical or mixture is listed, then priority is given to gather and characterize the 

toxicological properties of these substances.  There are currently 275 compounds and 

mixtures on the ATSDR list of which 26 are PAHs or their source materials (ATSDR, 

2005).   

The release of PAH containing materials is regulated under the Resource 

Conservation and Recovery Act (RCRA) (USEPA, 2005).  RCRA also designates a code 

for hazardous wastes based on the hazard they represent.  This designation consists of a 

letter (F, K, D, U, or P) and three numbers.  For example, single PAHs are given a U 

code, meaning they are regulated for toxicity.  Most notably, this act provided the 

framework for the disposal of both hazardous and non-hazardous wastes.  The 

Hazardous and Solid Waste Amendments (HSWA) of 1984 further strengthened the 

EPA’s ability to regulate waste disposal.  The HSWA was responsible for the eventual 

removal of land disposal of hazardous wastes.   

Cancers, renal disease, circulatory disorders, reproductive disorders, and immune 

system dysfunction are among the more common endpoints observed from PAH 

exposure in mammals (ATSDR, 1990a; Ramos, K. S. et al., 1996).  The fields of 
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toxicology have focused on the high molecular weight PAHs because of their well-

characterized genetic toxicity (ATSDR, 1990a, 1996).   

Chronic PAH exposure resulted in liver tumor formation yet, cytotoxicity was 

not observed at low doses in experimental animals (Moslen, M. T., 1996).  The most 

commonly encountered non-cancer effects are enzyme induction and interference with 

cell-to-cell communication.  The induction of CYP1A1 is often used as a measure of the 

biological activity of Ah receptor ligands.  This is an essential set in the induction of 

Cytochrome p450 enzymes.  Till and colleagues (1999) studied PAH induction of 

CYP1A1 in male Wistar rat hepatocyctes.  Induction of this enzyme by PAHs was 

measured as a function of CYP1A1 catalyzed 7-ethoxyresorufin-O-deethylase (EROD) 

activity.  Some of the most active inducers of this enzyme were chrysene, BAP, indeno 

(1, 2, 3-cd) pyrene, and benzanthracene.  This same study also tested smaller PAH 

compounds such as anthracene and fluoranthene.  Interestingly, they found that the 

induction potential of the mixture of the tested PAHs was greater (i.e. synergistic) than 

what was expected based on the individual PAHs (Till, M. et al., 1999).  These results 

imply that the additive assumption used is mixture risk assessment is an inaccurate 

representation of the true toxicity. 

Gap junction intercellular communication (GJIC) is an important cellular 

mechanism for maintaining homeostasis in multicellular organisms.  Downregulation of 

GJIC is considered an important epigenetic effect (Barhoumi, R. et al., 1993).  Several 

PAHs are known to inhibit GJIC.  For example, 1- and 9-methylanthracene each 

significantly inhibited GJIC at 50% of the control value (IC50) at 22 and 36µM (Upham, 
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B. L. et al., 1998).  In this same study, anthracene and 2-methylanthracene did not inhibit 

GJIC at concentrations up to 350µM (Upham, B. L., Weis, L. M., and Trosko, J. E., 

1998).  In similar experiments, BAP significantly suppressed GJIC in Clone 9 

hepatocytes following dosing with 0.4µM BAP for 16hrs (Barhoumi, R. et al., 2000).  It 

has been suggested that PAHs that contain a bay region, or which have a methyl group 

that forms a “bay-like” region, are more potent inhibitors of GJIC than their linear 

counterparts (Upham, B. L., Weis, L. M., and Trosko, J. E., 1998). 

The most sensitive endpoint for PAH toxicity effects is carcinogenicity 

(Bostrom, C. E. et al., 2002; Schoeny, R., Muller, P., and Mumford, J., 1998; USEPA, 

1993) A challenge regularly faced with evaluation of PAH carcinogenicity is their 

occurrence in the environment as mixtures and rarely as individual compounds.  Some of 

the earliest evidence of carcinogenicity of PAH mixtures occurred over 200 years ago in 

London, England.  A London surgeon, Sir Percivall Pott, described a high frequency of 

what at the time was know as “soot-wart” in chimney sweeps.  “Soot-wart” was later 

discovered to be cancer of the scrotum due to their regular exposure to soot in the 

chimneys (Pitot, H. C. and Dragan, Y. P., 1996).  The USEPA’s Integrated Risk 

Information System (IRIS) database categorizes seven PAHs as probable human 

carcinogens (Table 2).   
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Table 2. Class B2 PAH carcinogens as classified by the USEPA. 
 
 

Chemical Name CASN 
Number of 

Rings 
Chrysene 218-01-9 4 
Benzanthracene 56-55-3 4 
Benzo(b)fluoranthene 205-99-2 5 
Benzo(k)fluoranthene 207-08-9 5 
Benzo(a)pyrene 50-32-8 5 
Dibenzo(a,h)anthracene 53-70-3 5 
Indeno(1,2,3-cd)pyrene 193-39-5 6 

 

 

One study examined the carcinogenicity of BAP and two different manufactured 

gas plant residues (MGPRs) (Rodriguez, L. V. et al., 1997).  MGPR, a complex mixture 

of PAHs, is generated as a by-product of coal gasification.  Fifteen-day-old male mice 

(B6C3F1) were dosed with a single IP injection of BAP or one of two MGPRs.  The 

mice were then sacrificed at 26, 39, and 52 weeks and examined for tumor presence.  

The most predominant tumors were seen in the liver.  At 39 weeks after exposure, mice 

dosed with the MGPR samples exhibited a liver tumor incidence of between 45% and 

82% depending on the amount of BAP present in the samples.   Mice that were treated 

with 250µg BAP showed a tumor incidence of 38% with 1.9 tumors/mouse, while mice 

that were treated with 375µg BAP exhibited 65% tumor incidence and 1.9 

tumors/mouse.  These results suggest that BAP is not responsible for the observed 

tumorgenicity of the MGPRs.  Instead, the MGPR tumorgenicity could be due to other 
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unidentified components of the mixture or synergistic interactions between mixture 

components (Rodriguez, L. V. et al., 1997).  In this case, the observed tumorgenicity of 

the MGPR was greater than what would have been expected based on the known 

carcinogenic PAH components of the mixture and on the additive assumption for PAHs. 

Additional research is needed to fully understand the carcinogenicity of 

individual PAHs, PAH mixtures, and substituted PAHs.  Improving the methods for risk 

assessment of PAHs and PAH mixtures is dependent upon increased knowledge of the 

toxicity and carcinogenicity of these compounds.  Methods to estimate toxicity of PAHs 

and PAH mixtures based on structure and known activity, is an inventive way to begin to 

further explain the observed toxicity.   

Quantitative structure-activity relationships (QSARs) are multi-variant statistical 

correlations between an expressed chemical property and the key geometric or chemical 

characteristics of a molecular system.  QSARs are constructed by analyzing known 

and/or calculated property information and a set of descriptors that represents the system 

attributes (Gombar, V. A., 1998). A QSTR, which is a QSAR developed for a toxicity 

metric, is a mathematical relationship between a given toxicity metric and numerical 

descriptors of molecular structure (Gombar, V. A., 1998).  These models allow for the 

prediction of toxicity solely from a chemical structure.  For example, Koenemann (1981) 

developed the following relation: 

Log (1/LC50) = 0.871logP – 4.87                                        Eqn. 1.1 

This equation relates the partition coefficient, P, of a chemical and its acute toxicity 

(LC50) in a guppy.  If the only available data for a chemical was the partition 
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coefficient, the value of the median lethal concentration for a guppy could be calculated 

using this equation (Koenemann, H., 1981).  QSAR models can predict toxicity using 

empirical relationships if (1) the predictive QSTR model is statistically robust and (2) 

the QSTR model is not only applicable to the query chemical but also chemicals 

“similar” to the query chemical (Gombar, V. A., 1998).   

 Building reliable QSTRs from bioassay data requires constraints in development.  

The bioassay data must be as uniform as possible because a QSTR can only predict what 

the bioassay results represent.  If a researcher develops a model for mutagenicity using a 

variety of mutagenicity assays, a variety of species, and different exposure durations and 

routes, the developed QSTR would not be valid for prediction.   The chemical might be 

mutagenic to some species but not all; likewise, the exposure time for a mutagenic 

response may be different for some species.  It is important that the criteria of uniformity 

in the bioassay protocols be strictly adhered to so that the developed database from 

which to derive the QSTR is valid and consistent for that scenario and for similar 

chemicals in the same bioassay (Debnath, A., 2001).    

 After selecting bioassay parameters and constraints and choosing information-

rich descriptors, the QSTR can now be developed.  Building a robust, relevant model 

begins with identifying a training set of chemicals to be analyzed.  The individual 

models are representative of the activity of similar compounds, for example, the family 

of PAH compounds or PCBs.  Thus a model developed for amino acids would not be 

valid for estimating toxicity of PAHs.  Next, for each of the molecules to be analyzed, 

their observed biological data is entered and the appropriate descriptors calculated.  
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There are thousands of descriptors that can be used to describe the biological activity of 

a compound; spatial, electronic, topological, information-content, thermodynamic, 

conformational, quantum mechanical, and shape descriptors are just a few 

(AccelrysSoftwareInc., 2005).  The descriptors are analyzed for correlation and 

uniformity from which appropriate dependent and independent variables are identified.  

Several statistical methods are available for generating a QSTR equation. These include 

multiple linear regressions, partial least squares (PLS), simple linear regression, stepwise 

multiple linear regression, principal components regression (PCR), or genetic function 

approximations (GFA).  Next, validation and analysis of the QSTR equation by applying 

techniques to identify outliers and leverage points are performed. Characterizing the 

robustness of the QSTR is accomplished using graphical analysis and cross-validation.  

The calculated QSTR equation can now be used to predict biological activity of 

compounds similar in structure to the training set of compounds. 

The hypotheses that have driven this research are: 

 (1) The toxicity of PAHs and substituted PAHs may be estimated using bioassay 

based QSAR models, and; 

(2) The additive assumption does not adequately estimate the true toxicity of PAHs 

in complex mixtures.   

  To test these hypotheses there were three objectives investigated.  The first 

research objective was to test seven PAH compounds and four PAH mixtures in a set of 

three bioassays.  Each bioassay measures a different toxic endpoint that is significant in 

human health risk assessment.  Secondly, the data that was generated from each bioassay 
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was used to generate QSAR models for each bioassay.  Each QSAR model can be used 

to estimate the specific toxic endpoints of each bioassay for PAHs, substituted versions 

of PAHs and mixtures of PAHs.  Finally, the additive assumption for mixtures that is 

commonly used in risk assessment practices was examined using these models.  The 

results from the specific models was used to determined if the additive effects from 

individual compounds was the same as the mixture results from the bioassays.  The 

combination of the responses from the three bioassays was used to generate an empirical 

weighted equation.  This equation can be used to estimate toxicity factors, such as 

relative potency factors or toxic equivalency factors. 
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CHAPTER II 

MODELING TOXIC ENDPOINT FOR IMPROVING HUMAN HEALTH RISK 

ASSESSMENT OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) – 

PARENT COMPOUNDS AND SIMPLE MIXTURES 

Overview 

 Risk assessments for mixtures of polycyclic aromatic hydrocarbons (PAHs) are 

problematic due to the lack of available potency and toxicity data on individual 

compounds and mixtures.  This paper examines the toxicity of parent compounds and 

designed mixtures of PAHs in order to bridge the gap between component assessment 

and mixture assessment of this class of ubiquitous compounds.  The objective for this 

research was to test seven parent PAH compounds and four PAH mixtures in a set of 

three bioassays to evaluate the toxicity of parent compound PAHs and binary mixtures 

of PAHs.  PAHs and mixtures were examined in the Salmonella/Microsome 

Mutagenicity Assay, a Gap Junction Intercellular Communication (GJIC) assay and the 

7-ethoxyresorufin-O-deethylase (EROD) assay.  These assays were chosen for their 

ability to measure specific toxic endpoints related to the carcinogenic process (i.e. 

initiation, promotion, progression).  Two compounds similar in structure, BAP and 

benzanthracene, consistently produced positive results in all three bioassays.  While a 

linear PAH, anthracene, produced negative results in all three bioassays.  An 

antagonistic response was observed for the mixtures in all three bioassays.  Chemical 

structure was important in explaining the observed responses.  Chemical structure 

relationships with activity and the steps of the carcinogenic process can be used to 
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improve estimates of toxicity for compounds and mixtures for human health risk 

assessments. 

Introduction 

 Chemical exposures for people commonly occur in the presence of multiple 

chemicals.  The effect on toxicity for one chemical in the presence of another is not well 

understood.  Currently, more than 7 million chemicals exist and approximately 70,000 

are in common use while 1000 are added each year worldwide 

(Government.Accountability.Office.(GAO), 1994).  Research efforts have focused 

primarily on the toxicology of individual chemicals.  As a result, risk assessment 

practices using available toxicity data have evaluated individual chemical exposures, 

ignoring the complexities of multiple chemical exposures.  Although the dilemma of 

predicting the human health risks of exposure to chemical mixtures is not new, the 

challenges presented by chemical mixtures risk assessment remain unmet.  This is due in 

part to the lack of a clear framework and methodology for mixtures assessment and 

because there are many individual components of mixtures that are not toxicologically 

characterized.  Rarely do single PAHs occur in the environment; rather exposures are to 

multiple compounds in mixtures.  There are more than 100 PAHs that can be quantified 

by GC/MS analysis but many more substituted PAHs, degradation products, and parent 

compounds that cannot yet be identified.  Of those that can be identified 16 are routinely 

quantified by the USEPA (USEPA, 1993).  How chemicals interact when an individual 

is exposed to a mixture is largely unknown.   
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To estimate the toxicity of mixtures, the USEPA developed standardized 

approaches to estimate risk (USEPA, 1993).  The three approaches commonly used are: 

(i) toxicity data for the specific mixture of concern; (ii) extrapolating data from a similar 

mixture; and, (iii) toxicity of the individual components of a mixture (Versar, I. and 

Associates, B. S., 2002).  Although mixture approaches for assessing risk are preferred, 

mixture specific toxicity data are not always available.  In such cases, component-based 

approaches are the most common technique for assessing risk.  In the case of PAHs, 

individual PAH toxicity data is lacking and component –based methods are necessary to 

perform risk assessment estimates.   

 One such component method used for PAHs is the relative potency factor 

approach, also known as the toxic equivalency factor (TEF) approach.  TEFs were first 

developed for polychlorinated biphenyls (PCBs) as a way to rank their potency relative 

to 2,3,7,8-tetrachlorodibenzodioxin (TCDD) (Safe, S. H., 1990).  Similar approaches 

have been used to develop TEFs for PAHs.  In the case of PAHs, TEFs are developed for 

cancer effects and therefore encompass a broad range of toxic endpoints.  Some of the 

first researchers to develop TEFs for PAHs were Chen and Chu (1984) and Clement 

Associates(1988) (Nisbet, I. and LaGoy, P., 1992).  These two works are limited in that 

they only address a small number of the PAHs that are commonly found at hazardous 

waste sites.  Further, they are unreasonably precise.  These two works were used as a 

basis for the commonly used set of TEFs developed by Nisbet and LaGoy (1992) which 

were order of magnitude estimates.   
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 In 1993, the Office of Environmental Health Assessment (OHEA) issued a 

provisional guidance document for implementing TEFs for PAHs (USEPA, 1993).  The 

state of knowledge for the implementation of TEFs for PAHs revealed the lack of 

information about PAH toxicity, interactions, and their promotional effects.  

Consequently, the TEF method for assessing risk is limited.  Under EPA’s guidance, the 

only logical alternative for PAHs is to use order of magnitude estimates called potential 

potencies (USEPA, 1993).  Prior to potential potencies, EPA separated PAHs into 

carcinogens and non-carcinogens and used the cancer slope factor assigned to BAP for 

all carcinogenic PAHs (Nisbet, I. C. and LaGoy, P. K., 1992; USEPA, 1993).     

Complex mixtures consist of tens, hundreds, or even thousands of constituents.  

Most often, their composition is not fully known and can change with time.  Adequate 

testing of such mixtures is virtually impossible because the mixture is unavailable for 

testing, the composition of the mixture is changing, and a sufficient number of doses 

cannot be applied.  Effort to determine if the toxicity of a mixture is different from the 

sum of the toxicities of the single constituents has been reported in several studies 

(ATSDR, 1990a; Barata, C. et al., 2005; Bostrom, C. E. et al., 2002; Reeves, W. R. et 

al., 2001).  The toxicity of a mixture depends on the exposure level, the mechanism of 

action, and the receptor for each of the mixture constituents (Feron, V. J., Woutersen, R. 

A. et al., 1995; Groten, J. P. et al., 2001; Henschler, D., 1996).  Another hurdle of 

mixture testing is the different types of effects that can occur at high-dose levels and 

low-dose levels, making low-dose extrapolation dubious (Feron, V. J., Groten, J. P. et 

al., 1995; Henschler, D., 1996).   The two hypotheses that drive this study are: (1) The 
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toxicity of PAHs, mixtures of PAHs, and substituted PAHs may be estimated using 

bioassay based TEFs that take into account the process of carcinogenesis; and, (2) the 

additive assumption does not adequately estimate the true toxicity of PAHs in complex 

mixtures.  To test these hypotheses seven parent PAH compounds and four PAH 

mixtures were evaluated in a set of three bioassays for their toxicity.    

In evaluating PAHs with regard to human health, carcinogenicity drives the risk 

assessment.  In recent years the TEF methodology has been used to assess the risk 

associated with exposure to a mixture of PAHs (Nisbet, I. C. and LaGoy, P. K., 1992; 

USEPA, 1993).  To develop bioassay based TEFs for PAHs the multistage process of 

cancer that involves genotoxic and epigenetic events should be considered.  In this study, 

bioassays were chosen for their ability to measure both initiation and promotion related 

effects of carcinogens.  Each bioassay measures a different toxic endpoint that is 

significant to the process of carcinogenicity (Pitot, H. C. and Dragan, Y. P., 1996; 

Reeves, W. R. et al., 2001).  The limitation of TEFs to accurately predict the toxicity of 

mixtures has been addressed by targeting initiation and promotion related effects to 

understand the relationship between mixture composition and toxicity.  

Bioassays were chosen for their ability to measure both initiation and promotion 

related effects of carcinogens.  Following initiation, a series of events leads to the 

initiated cells’ promotion and the eventual progression to a rapidly growing malignant 

cell.  A genotoxic event can be responsible for the initiation of cancer, however 

promotion and progression may include a variety of epigenetic events (Trosko, J. E. et 

al., 1998).  Each compound was tested in the Salmonella/microsome assay, the Gap 
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Junction Intercellular Communication assay (GJIC) and in the ethoxyresorufin-O-

deethylase assay (EROD). 

The Salmonella/microsome assay measures mutations of DNA which are linked 

to initiating events (Ames, B. N. et al., 1975a; McCann, J. and Ames, B. N., 1976; 

McCann, J. et al., 1975; Zeiger, E., 1998). Cytochrome P450 mono-oxygenases are 

active in the metabolism of many xenobiotics.  Alkoxyresorufin-o-deethylase substrates 

have been used to distinguish isoforms of P450 induced by various types of xenobiotics.  

Induction of the cytochrome P450 family of enzymes has been shown to be an essential 

step in the activation of carcinogens prior to initiation (Kennedy, S. W. and Jones, S. P., 

1994; Szklarz, G. D. and Paulsen, M. D., 2002). The impairment or elimination of a 

cell’s capability to communicate with other cells is believed to promote tumor growth by 

eliminating signals that instruct an initiated cell to stop dividing (Couch, D. B., 1996; 

Trosko, J. E. et al., 1998; Trosko, J. E. and Ruch, R. J., 1998).  Measuring GJIC between 

cells serves as an indicator of a PAH’s ability to impair this function.  Using bioassay 

based data from specifically targeted endpoints to estimate a TEF or potential potency 

will allow for a toxicity estimate specific to a chemical’s toxic potential in each step of 

carcinogenesis.  TEFs or potential potencies are only estimates of toxicity, however, 

failing to take into account both initiation and promotion effects limit their ability to 

predict toxicity.  Separation of initiation and promotion effects revealing the relationship 

between composition and toxicity of these compounds and mixtures of these compounds 

is a goal of this study.   
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The multistage carcinogenic process includes multiple mechanisms such as gene 

and/or chromosomal mutations (genotoxic events), altered gene expression at several 

(transcriptional, translational, post-translational) levels (epigenetic events), and changed 

cell survival (necrosis/apoptosis).  A toxicant could potentially bring about one or all of 

these mechanisms.  Using three different bioassays, each measuring a specific stage of 

carcinogenesis, may reveal the dominant mechanisms and lead to more appropriate 

toxicity estimation.   

Materials and Methods 

Cell Culture 

 The liver cell line, Clone 9 (ATCC, CRL 1439, passage 17) was used for the 

GJIC and EROD experiments.  The Clone 9 cell line exhibits gap junctions as detected 

by electron microscopy and is inducible for EROD (Barhoumi et al., 2000).  Cultures 

were used within 10 passages after being received and maintained in Ham’s Nutrient 

Mixture F-12 containing 10% fetal bovine serum.  For EROD measurements, cells were 

seeded at 90,000 cells/well in 2-well Lab-Tek chamber slides and incubated until they 

were approximately 80% confluent.  For the GJIC assay, cells were seeded in 2-well 

Lab-Tek Chamber slides at 50,000 cells/cm2 and incubated for 24 hours before use.   

Binary Mixture Preparation 

 Binary mixtures of BAP with 5-methylchrysene and BAP with chrysene were 

prepared in DMSO.  The ratio of constituents in the mixture was 1 to 1.  Each mixture 

was tested in two separate arrangements such that each chemical was held at a constant 

concentration and mixed with varying concentrations of the second chemical.  For 
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example, BAP was held at 10mM while varying concentrations (10mM to 0.5mM) of 

chrysene were added at a 1:1 ratio.  The second arrangement of these two chemical held 

chrysene constant at 10mM while varying BAP concentrations (10mM to 0.5mM) were 

added at a 1:1 ratio.  For the GJIC and EROD assays, these mixtures were diluted 

(DMSO final concentration less than 0.5%) in medium. 

EROD 

 EROD assays were performed in quadruplicate with Clone 9 cells using a 

modified version of the 48-well microplate fluorometric assay derived from Donato et 

al., 1993 and Kennedy et al., 1995.  Cells were seeded in 2-well Lab-Tek slides and 

allowed to incubate 24 hours before treatment was applied.  PAHs were dissolved in 

DMSO (final concentration less than 0.5%) to give final concentrations of 1µM and 

10µM.  After an exposure period of 24 hours, 50µl of EROD (10µM) was added to the 

treatment well to start the reaction.  The addition of 100µl of fluorescamine (150 µg/ml) 

stopped the reaction after a 10-minute period.  Following a 5-minute period for 

fluorescence stabilization, the resorufin concentrations were measured using a Zeiss 

Stallion system (Carl Zeiss, Thornwood, NY).  Excitation and emission wavelengths 

were set to 530/590 nm for measuring EROD.  Fluorescence intensity is proportional to 

resorufin formed  and responses were in the linear response range.  Results from each 

treatment were compared using a one-way ANOVA and Tukey’s test.  Significance was 

set at p< 0.05 (Appendix A). 

GJIC 
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GJIC was measured in the Clone 9 cells by dye coupling.  The rate constant of 

dye transfer between cells obtained using a fluorescence recovery after photobleaching 

(FRAP) technique used by Barhoumi et al, 1993.  Stock solutions of 2mg/ml 5-

carboxyfluorescein diacetate (CFDA) in DMSO were diluted to 10µg/ml in medium.  

PAH solutions (final concentrations ranging from 0.5µM to 10µM) were prepared in 

DMSO and diluted in medium such that the concentration of DMSO never exceeded 

0.1%.  Cells were seeded in 2-well Lab-Tek Chamber slides at 50,000 cells/cm2 and 

incubated for 24 hours.  Cells were dosed with 1µl/ml of chemical treatment at five 

doses.  Following 24 hours of incubation at 37.5oC the medium was removed; cultures 

were washed 3 times with PBS.  CFDA solution (10µg/ml) in serum free medium 

without phenol red was added (10µl) and the cells were again incubated at 37.5oC for 15 

min.  Loading times below saturation were used to avoid the presence of unconjugated 

dye that could lead to overestimation of GJIC.  After dye was loaded, cultures were 

washed three times in PBS and maintained in serum-free medium without phenol red.  A 

microscopic field of groups of cells was selected for analysis.  Within these groups of 

cells, single cells served as photobleached negative controls.  Similarly, single cells or 

small isolated groups of nonphotobleached cells were used as positive controls.  Positive 

controls were used to monitor background photobleaching from image scans and 

increases in fluorescence due to unconjugated dye.  Selected cells were photobleached to 

a level that allowed for observance of fluorescence recovery without damaging the cells.  

After Cells were scanned for fluorescence recovery and with a Meridian Ultima confocal 

workstation (Meridian Instruments, Okemos, MI).  Data was collected for at least 30 
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cells in two culture wells per treatment.  A rate constant (k) for the fluorescence 

recovery was estimated by fitting the percent fluorescence intensity at a given time, F(t), 

to the following equation: 

F(t) = Feq (1-e-kt) + F(0)                                         Eqn. 2.1 

Feq represents the percent fluorescence recovery of the bleached cell at 

equilibrium and F(0) represents the percent fluorescence intensity immediately following 

photobleaching.  The value of Feq is dependant on the number of cells contacting each 

other and their initial level of bleaching.  Therefore, data from at least 30 cells from each 

treatment were pooled to obtain the mean Feq and k values.  Extrapolation of 

fluorescence recovery over time was accomplished using curve fitting regression 

analysis (GraphPad Software).  Results from each treatment were compared using a one-

way ANOVA and Tukey’s test.  Significance was set at p< 0.05 (Appendix A).   

Salmonella/microsome Assay 

The Salmonella/microsome assay was used to test the mutagenicity of PAH 

compounds.  The Salmonella typhimurium strain TA98 was provided by Dr. B. N. Ames 

(University of California, Berkeley).  The samples were dissolved in DMSO (final 

concentrations ranging from 0.5mM to 30mM) and tested with and without metabolic 

activation using the S9 fraction of Aroclor 1254-induced Sprague-Dawley rat liver 

(Molecular Toxicology, Inc., Boone, NC).  Each pre-poured plate containing 25 ml of 

VBX bottom agar, 2.5ml of top agar (0.5mM histidine, 0.5mM biotin) received 1-2 x 109 

cells, 0.5 ml of 20% S9 (sodium phosphate buffer was used for plates without metabolic 

activation), and 50µl of chemical, mixture, or control.  Each sample was tested on 
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duplicate plates in two independent experiments.  The plates were then incubated for 72 

hours at 37°C.  The number of revertant colonies for each treatment was determined 

using an Artek Model 880 automatic colony counter (Dynatek Laboratories, Chantilly, 

VA).  A response was considered positive if the average number of revertants at two or 

more consecutive concentrations exceeded twice the average number of revertants in the 

corresponding negative solvent control, and at least two of these consecutive 

concentrations showed an increasing number of revertants with increasing dose (Chu, K. 

C. et al., 1981).  Media preparation and other methods followed those of Maron and 

Ames (1983).  All bioassays included positive, negative, and solvent controls.  Results 

from each treatment were compared using a one-way ANOVA and Tukey’s test.  

Significance was set at p< 0.05 (Appendix A). 

Materials 

 Ham’s Nutrient Mixture F-12, Dulbecco’s phosphate-buffered saline, serum, 

Dimethyl Sulfoxide (DMSO), methanol, acetonitrile, all general chemical reagents, and 

PAH compounds were purchased from Sigma Chemical Co. (St. Louis, MO).  

Fluorescamine, Resorufin, and 7-Ethoxyresorufin used in the EROD assay were also 

purchased from Sigma Chemical Co (St. Louis, MO).  Tissue culture flasks and dishes 

were obtained from BD Falcon (Bedford, MA).  Coverglass chambers were purchased 

from Nunc (Naperville, IL).  5-carboxyfluorescein diacetate (CFDA) was purchased 

from Molecular Probes (Eugene, OR).   
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Results  

Parent Compounds 

Salmonella/Microsome Assay 

A positive response in the Salmonella/microsome assay resulted if the average 

number of revertants at two or more consecutive concentrations exceeded twice the 

average number of revertants in the corresponding negative solvent control, and at least 

two of these consecutive concentrations showed an increasing number of revertants with 

increasing dose (Chu, K. C. et al., 1981).  Using this rule, naphthalene and anthracene 

failed to produce positive results at any of the doses tested with metabolic activation 

(Table 3).  The DMSO control produced 36 ± 7 revertants/plate while, naphthalene, and 

anthracene produced a maximum of 39 ± 2, and 47± 7 revertants, respectively.  

Chrysene produced a weakly positive result over three doses tested (Table 3).  5-

methylchrysene produced a positive result at the four doses tested greater than 0.5mM.  

BAP produced positive results at all five doses tested with the minimum response at 

30mM producing 243 ± 10 revertants/plate.  Benzanthracene also produced positive 

results at 30, 10, and 3mM.  The maximum response was observed at 10mM, which 

produced 199 ± 2 revertants/plate.    Chrysene and 5-methylchrysene were the only two 

chemicals tested at 20mM because these two compounds would not stay in solution at 

30mM.  All other compounds (Anthracene, Naphthalene, BAP, and Benzanthracene) 

tested were at a maximum concentration of 30mM.   
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GJIC 

 Intercellular communication in Clone 9 hepatic cells are reported as a rate of 

recovery (min-1) from the photobleaching process.  A significant reduction in the rate of 

recovery is relative to a standard and is compared to each treatment.  BAP showed 

strong inhibition at doses of 10, 5, and 2µM, where the rate of recovery (min-1) was 

0.3679 ± 0.002, 0.456 ± 0.003, and 0.532 ± 0.005, respectively (Figure 3).  Similarly, 5-

methylchrysene showed strong inhibition at all of the doses tested.  Benzanthracene also 

showed significant inhibition at doses of 10µM and 5µM where the rate of recovery 

(min-1) was 0.4441 ± 0.004 and 0.563 ± 0.007, respectively.  Chrysene did produce 

slight inhibition at the two low doses tested (1 and 0.5 µM) and at the highest dose tested 

(10µM).  Phenanthrene and anthracene did not produce any response that was 

significantly different from DMSO with the exception of phenanthrene at 0.5µM where 

the rate of recovery (min-1) was 0.543 ± 0.002.  However, the 0.5 µM phenanthrene dose 

is the lowest of these tested.   
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Figure 3. Inhibition of gap junction intercellular communication by parent compound 
PAHs in Clone 9 cells.  Values shown are mean k values for at least 30 cells tested from 

two culture dishes per treatment. 
 

 

EROD 

 The EROD assay measures the rate of the CYP1A-mediated deethylation of the 

substrate 7-ethoxyresorufin to form the product resorufin as indicated by an increase in 

fluorescence intensity relative to the control.  All of the chemicals tested induced 

responses that were significant when compared to control at both doses tested (Figure 4).  

Anthracene and 5-methylchrysene induced significantly lower responses (353.9±3.15 

and 369.2±7.2, respectively) than did the other chemicals tested at 10µM (Figure 4).  

Chrysene, benzanthracene, BAP, and phenanthrene all induced similar responses at 
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10µM (Figure 4).  Phenanthrene and BAP induced slightly lower responses (417.9±6.35 

and 436.5±8.93, respectively) than did chrysene and benzanthracene (468.2±4.72 and 

467.4±12.48, respectively).  At the lower dose tested (1µM), benzanthracene induced the 

greatest response (517.5±10.08) followed by phenanthrene and chrysene (477.3±2.98 

and 399.8±8.47, respectively) (Figure 4).  Anthracene, BAP, and 5-methylchrysene 

induced the three lowest responses (378.4±11.40, 350.5±6.24, and 333.1±5.99, 

respectively) among the chemicals tested at 1µM.  Chrysene, BAP, 5-methylchrysene, 

and benzanthracene were consistently among the highest inducers at both concentrations 

tested while anthracene was the lowest inducer tested at both concentrations.  BAP 

induced a higher response at the higher concentration tested than at the lower 

concentration.  One of the useful aspects of CYP1A induction for biomonitoring 

purposes is the enzyme’s tendency to increase in concentration upon chemical exposure.  

This is observed here with increased expression at the higher concentration of BAP, 

chrysene, and 5-methylchrysene.       

 
 
 
 
 
 
 
 
 
 
 
 
 
 



   36

0
100
200
300
400
500
600

Anth
rac

en
e 

Phe
na

nthr
en

e

Ben
za

nthr
ace

ne 
BAP 

Chry
se

ne 

5-M
eth

ylc
hry

se
ne

Fl
uo

re
sc

en
ce

 In
te

ns
ity

1µM
10µM
Control

 

Figure 4.  EROD activity for parent compound PAHs in Clone 9 cells.  Fluorescence 
intensity was measured in two culture dishes per treatment with cells at 90% confluency.  

Values represent the mean response for each treatment. 
 

 

PAH Mixtures 

Salmonella/Microsome Assay 

 Four mixture combinations of BAP, chrysene and 5-methylchrysene were tested 

in this bioassay (Table 4, Figure 5).  Using the 2-fold rule (Chu, K. C. et al., 1981),  both 

arrangements of the BAP and 5-methylchrysene mixtures produced positive results at the 

three doses tested when compared to the control (Table 4, Figure 5).  BAP alone at 

30mM produced 292±17 revertants, yet when 5-methylchrysene was added at varying 

concentrations the response was less than that for BAP alone resulted.  The addition of 

5-methylchrysene reduced the effective toxicity of BAP in this assay.  Less than additive 
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response in the mixture resulted as compared to the individually tested compounds 

which was statistically significant in Tukey’s Test at the p<0.05 level.   
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Figure 5. Salmonella/microsome assay results for parent compound PAHs and PAH 
mixtures. 

 

 

Similarly, when a constant concentration of 5-methylchrysene was amended with 

varying BAP concentrations, additivity was not observed (Table 4, Figure 5).  As a 

single compound, 5-methylchrysene was mutagenic (101±9 revertants) at 20mM.  
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Increasing the concentration of BAP in the presence of 20mM 5-methylchrysene did 

increase the mutagenicity but not in an additive manner.  There was approximately a 

50% decrease in the expected additive response (393 revertants) and the observed 

response (197 revertants).    

Two mixture arrangements for BAP and Chrysene were also compared and both 

resulted in positive responses over three consecutive doses (305±13, 299±17, and 

278±11, respectively) but the responses were not additive.  When varying amounts of 

Chrysene were added to BAP (30mM), there was a positive response (Table 4, Figure 5) 

that was not statistically significant from that of BAP alone.  The mixture response was 

significantly lower than that of the expected additive response (Table 4, Figure 5) 

showing that the additive assumption over-estimated the response in this case.   

Varying amounts of BAP added to Chrysene (20mM) show a 50-70% decrease in 

the expected additive response.  While chrysene (20mM) alone resulted in 87±2 

revertants, the addition of BAP resulted in an approximate doubling of revertants at the 

three highest doses test (30mM, 10mM and 3mM, respectively).  The results of the 

mixture response were less than additive.  There was an antagonistic effect observed in 

the mixture when compared to the response of BAP alone, indicating an interaction 

between Chrysene and BAP in this mixture that was statistically different at p<0.05.  

The additive assumption in this case over-estimated the response by more than double 

the number of revertants in some cases.  At lower doses of BAP (1mM and 0.5mM), the 

response was similar to that of Chrysene alone.  This could indicate that the toxicity 

expected due to BAP was inhibited by an interaction with Chrysene at these lower doses.   
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Chrysene and 5-methylchrysene were the only two chemicals tested at 20mM because 

these two compounds would not stay in solution at 30mM.  BAP was tested at a highest 

concentration of 30mM.  

GJIC 

 The response of each mixture arrangement was compared to the control response 

of 0.822±0.008 min-1.  BAP (10µM) mixed with varying concentrations of chrysene 

showed the most significant inhibition of cellular communication (Figure 6).  Increasing 

concentrations of Chrysene were added to BAP (10µM), resulted in a  statistically 

significant decrease in cellular communication.  Generally, the higher the chrysene 

concentration the slower the rate of recovery was.  Only at 0.5µM chrysene was the 

response similar to the control (Figure 6).  The largest decrease in communication was 

observed for BAP (10µM) mixed with chrysene at 5µM.  The rate of recovery for this 

combination was 0.037±0.005 min-1 compared to 0.822±0.008 min-1 for the control.  

When BAP was analyzed alone at 10µM (Figure 6) the rate of recovery was 

0.469±0.011 min-1, therefore the reduced communication cannot be attributed to BAP 

alone. 

 In comparison, chrysene at 10µM with varying concentrations of BAP responses 

did not show significant decreases in communication between 10, 5, and 2µM of BAP 

added (Figure 6).  The lowest rate of recovery was 0.607±0.011 min-1 and was observed 

when BAP at 10µM and 5µM was added to chrysene (10µM).  This rate was 

significantly different from the control rate (0.822±0.0083 min-1) at the p<0.05 level.  

Similarly, the rate was significantly different from chrysene tested alone at 10µM that 
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produced a 0.568±0.006 min-1 rate of recovery.  These responses indicate that some 

inhibition between the chemicals in this mixture could have prevented them from fully 

affecting the cellular communication.  When this combination is compared to the 

previous arrangement, chrysene appears to be the inhibiting compound and not BAP.  

When chrysene was added in varying concentrations, communication was significantly 

inhibited except at a concentration of 5µM chrysene.  However, when chrysene was held 

at a constant concentration and varying concentrations of BAP where added, the same 

inhibition was not observed.  

 Two arrangements of BAP and 5-methylchrysene mixtures were also tested.  

When 5-methylchrysene was added in varying concentrations to BAP (10µM), there 

were significant differences in the rates of recovery at two of the concentrations tested 

(Figure 6).  The lowest rates of recoveries (0.527±0.002 min-1 and 0.542±0.005 min-1, 

respectively) for this arrangement were observed for the addition of 0.5µM and 10µM 5-

methylchrysene were added to 10µM BAP.  These rates of recovery were lower than that 

observed for BAP (10µM) (0.603±0.011 min-1, respectively) tested alone.  These results 

suggest that when 5-methylchrysene was mixed with BAP (10µM), a chemical 

interaction alone was not likely to be causing the observed result, but a physiochemical 

(i.e. transport, solubility) phenomena could explain the observed results.   

  When varying concentrations of BAP were added to 10µM of 5-methylchrysene, 

the rates of recovery were significantly repressed (Figure 6).  The lowest rate of 

communication occurred when BAP at 10µM was mixed with 5-methylchrysene (10µM) 

(0.421±0.003 min-1).   
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EROD 

EROD activity describes the rate of the CYP1A mediated deethylation of the 

substrate 7-ethoxyresorufin to form the product resorufin which can be measured 

fluorometrically.  The induction of these enzymes is a vital step in the activation of 

carcinogens prior to initiation and increase in the fluorescence intensity is directly 

related to increased toxicity.  As in previous experiments with these mixtures, there were 

two arrangements of each mixture tested.  Typically, the additive assumption for mixture 

responses was not observed in any of the mixtures tested using the EROD assay. 

For the mixture of BAP and chrysene at 10µM each, the response (420.3±9.16) 

was similar to the response observed for each of the chemicals alone (Figure 7).  Neither 

there was an additive effect nor did the chemical mixture show any increase in induction 

when compared to the experiments with the single chemicals.  Similarly, this was 

observed in the mixture containing BAP and 5-methylchrysene at 10µM.  There was not 

an additive effect observed with these two chemicals.  The result (477.0±7.08) was not 

significantly different from the result produced by BAP alone.  

 In the case of BAP held at a constant concentration, (10µM) and 5-

methylchrysene added at 1µM, the result was similar to that observed for 5-

methychrysene tested alone at 1µM (Figure 7).  There was not an additive effect 

observed with this mixture; the result being similar to that of 5-methylchrysene alone 

might indicate an inhibition of the activity of BAP in the presence of 5-methylchrysene.  

The mixture arrangement composed of 5-methylchrysene held at a constant 
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concentration (10µM) and BAP added at 1µM showed the opposite result.  The result for 

the mixture was similar to the result for BAP tested alone at 1µM.   

 

 

0
0.2
0.4
0.6
0.8

1
1.2

BAP(10
µM

)/C
hry

se
ne

Chry
se

ne
(10

µM)/B
AP

BAP(10
µM

)/5
-M

eth
ylc

hry
se

ne

5-M
eth

ylc
hry

se
ne

(10
µM

)/B
AP

Chry
se

ne

5-M
eth

ylC
hry

se
ne

BAPR
at

e 
of

 R
ec

ov
er

y 
(m

in
-1
)

0.5µM
1µM
2µM
5µM
10µM
DMSO

 
 Figure 6. In Inhibition of gap junction intercellular communication by PAH 

mixtures in Clone 9 cells.  Values shown are mean k values for at least 30 cells tested 
from two culture dishes per treatment. 

 
 

The mixture of chrysene held at a constant concentration (10µM) and BAP added at 

1µM produced similar results as observed in the previous mixture of chrysene and BAP 

at 10µM each.  The result (419.8±14.2) was similar to that observed for chrysene alone 

at 10µM.  BAP did not produce an observable effect on chrysene in this mixture.  The 

mixture arrangement of BAP held at a constant concentration (10µM) combined with 

chrysene at 1µM showed significant inhibition when compared to the chemicals tested 
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alone.  Enzyme induction in this case (309.2±4.8) was significantly lower than either 

chemical tested alone and lower than the assumed additive effect (Figure 7). 

Discussion 

 To predict toxicity of carcinogens for assessing human health risk it is important 

to take into account each stage of carcinogenesis and the effect that two or more 

chemicals in mixture have on the process.  The Salmonella/microsome assay is a simple, 

quick, and inexpensive genotoxicity assay which is one of several required for product 

safety testing of a variety of materials including drugs, medical devices, food additives, 

industrial chemicals, and pesticides.  The Salmonella/microsome assay measures 

mutations of DNA, important initiating events of the carcinogenic process (Ames, B. N., 

McCann, J., and Yamasaki, E., 1975a; McCann, J. and Ames, B. N., 1976; McCann, J. et 

al., 1975; Zeiger, E., 1998).  There is considerable evidence, using this test and with few 

exceptions, that carcinogens are mutagens (Ames, B. N., McCann, J., and Yamasaki, E., 

1975a; Ames, B. N. et al., 1975b; McCann, J. and Ames, B. N., 1976; Miller, E. and 

Miller, J., 1971).  However, some disadvantages of this test were encountered.   
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The chemical concentrations needed to elicit a response in this strain of bacteria are not 

environmentally relevant.  In using such high concentrations, solubility limits are 

exceeded for some of the PAHs tested however the presence of DMSO kept the PAH in 

solution.  For example, chrysene, is known to be a weak carcinogen,  was dosed at its 

solubility limit of 20mM in DMSO and elicited a weak positive response.  Another 

concern with this assay is that the toxicity of some chemicals can mask genotoxic 

potential.  If a compound is toxic to the bacteria, then the bacteria is killed resulting in a 

false negative result.  The results observed in this assay followed the hypothesized 

response of the chemicals containing a bay region being mutagenic and those linear 

counterparts being non-mutagenic (Ames, B. N., McCann, J., and Yamasaki, E., 1975a; 

McCann, J. and Ames, B. N., 1976; McCann, J. et al., 1975).  Although chrysene has 

two bay regions, it is considered a weak carcinogen (McCann, J. et al., 1975; Donnelly, 

K. C. et al., 2004).  Due to the high concentration of chrysene used in this experiment, it 

is possible that the toxicity masked some of the genotoxic potential in this set of 

experiments.   

Evaluation of the mixture responses in the Salmonella/microsome assay yielded 

slightly antagonistic responses.  The mixture of chrysene held constant and BAP added 

in varying concentrations produced the most antagonistic effects among the mixtures of 

BAP and chrysene.  The expected additive response was as much as 30% higher than the 

observed response.  However, at the two highest doses of BAP and chrysene together, in 

two different assays, the response was 61% lower than the expected additive response.  

A similar response was seen when 5-methylchrysene was held constant and BAP was 
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added in varying concentrations.  Antagonistic effects were greater in the mixture of 5-

methylchrysene held constant and BAP added.  However, the response at the highest 

doses of the two chemicals did not show significant difference between the two 

experiments (approximately 13% difference).   

A greater antagonistic response in this assay would indicate that the interaction 

of these two chemicals in mixture reduces their initiation potency.  It has been 

documented that chrysene and BAP both bind with DNA at the N2 position.  

Competition for binding sites is an explanation for the observed results and was also 

observed by Warshawsky and Landolph (2006).  While the observed effects could 

indicate mixture interaction effects, the mechanism of this antagonistic behavior is most 

likely competition for binding sites on the DNA.  The Salmonella/microsome assay has 

been historically used to screen carcinogens as mutagens.  However, using the results 

from this assay alone to predict behavior of PAHs in mixture would not be accurate due 

to the limits of sensitivity in this assay.   

The GJIC experiments for the parent compounds with bay-regions were shown to 

cause inhibition.  Many investigators have shown that PAHs containing a bay or “bay-

like” region inhibit gap junction communication to a greater extent than do their linear 

counterparts (Rummel, A. et al., 1999; Weis, L. M. et al., 1998; Blaha, L. et al., 2002; 

Upham, B. et al., 1996).  Bay-like regions, as referred to in this study, represent the 

angular pocket formed at the top of the benzene ring by a methyl group.  The regions are 

structurally similar to the sterically hindered bay regions that are formed by angular 

benzene rings.  In this study, BAP and 5-methylchrysene were both strong inhibitors of 
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GJIC and both possess bay or “bay-like” regions.  Similar responses, at a lower level of 

inhibition, were seen for benzanthracene and chrysene.  In contrast, chrysene, with two 

bay regions, produced rates of recoveries higher than expected.  This could be due in 

part to the steric hindrances of the two bay regions of this molecule (Singer, B. and 

Grunberger, D., 1983). The two bay regions being in such close proximity to each other 

cause the molecular shape to change due to the strain of the atoms close together which 

results in the inhibition observed.  

 The mixture with BAP held constant and at varying concentrations of chrysene 

resulted in the most inhibited cellular communication.  When chrysene at 10, 5, and 

2µM was added to BAP (10µM) the communication results indicated a synergistic effect 

where the presence of both chemicals reduced the toxicity of each.  Conversely, the 

opposite combination of the same chemicals did not produce similar results.  Other 

investigators have shown that structural dependences such as higher molecular mass and 

higher lipophility (Kow) affect GJIC inhibition (Blaha, L. et al., 2002).  Both BAP and 

chrysene are similar in structure and are known to promote tumors.  An apparent effect 

is related to which compound is held at a constant concentration.  Inhibition potency 

could be contributed to one or many physiochemical characteristics of the individual 

PAHs in the mixture.  Another contributing factor could be the influence of total mixture 

concentration.  The higher the total concentration of the mixture the greater effect on 

communication was observed (Figure 6).   

 The mixtures of BAP and 5-methylchrysene were inhibitory to GJIC between 

cells when 5-methylchrysene was constant at 10µM and BAP was added.  There were 
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not significant differences between concentrations of BAP added, nor was there a dose 

related response.  An additive response was not observed in either arrangement of the 

mixture.  Alone, 5-methylchrysene inhibited communication (0.3212±0.002 min-1) to a 

greater extent than when mixed with varying concentrations of BAP.  An additive 

assumption to estimate the toxicity of this mixture would have resulted in a large 

inhibition of communication considering both compounds have bay regions.  The 

observed results suggest that BAP and 5-methylchrysene have an effect on one another 

that disables or reduces an additive effect on cellular communication.  Weiss et al, 

(1998) found that PAHs with bay regions inhibited cellular communication to a greater 

extent than did their linear counterparts (Weis, L. M. et al., 1998).   In the case of 5-

methylchrysene, a methylation of the parent compound, chrysene, creates the “bay-like 

region.”  It has been reported in other studies (Upham, B. et al., 1996; Weis, L. M. et al., 

1998; Upham, B. L. et al., 1994) that methylated PAHs inhibit gap junction 

communication more than the unmethylated versions.  Considering these previous 

studies and the results of this study, 5-methylchrysene induces only a slightly additive 

inhibitory effect on communication when mixed with BAP. 

Both 5-methylchrysene and BAP have been shown to be potent inhibitors of 

GJIC (Blaha, L. et al., 2002; Krutovskikh, V. et al., 1994; Trosko, J. E. et al., 1998).  

The inhibition observed in this study cannot be attributed solely to BAP or 5-

methylchrysene activity individually.  Rather, the observed response is most likely 

contributed to interactions between the two chemicals or a combination of interactions 

and physiochemical properties of the two chemicals.  If 5-methychrysene, with its “bay-
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like” region, acted differently than other PAHs containing a bay or “bay-like” regions 

then a purely additive response would not be expected.   

 The bay region of 5-methylchrysene is crowded by the methyl substitution and 

therefore can act as a non-planar compound.  The electrostatic and steric interactions 

between the protons across the crowded bay region can destabilize the planar structure 

resulting in a helical shaped molecule (Rabinowitz, J. et al., 2002).  These interactions 

between the proton across the bay region and the epoxide oxygen may decrease the 

reactivity of the diol-epoxide (Rabinowitz, J., Little, S., and Brown, K., 2002).  The 

energy needed to make 5-methylchrysene become planar is relatively small compared to 

other compounds but small perturbations such as the less ordered aqueous environments 

can cause 5-methylchrysene to act as if it were non-planar (Rabinowitz, J., Little, S., and 

Brown, K., 2002).  For these reasons, 5-methylchrysene cannot be expected to always 

act as a planar PAH in in vitro biological studies and less toxicity will be observed as 

was the case in this study.     

Several investigators have proposed the mechanism by which GJIC is disrupted.  

Due to the rapid occurrence of GJIC inhibition many believe that the mechanism of 

action is at the posttranslational level, specifically a modification of the gap junction 

proteins (Yamasaki, H., 1995; Rummel, A. et al., 1999; Upham, B. et al., 1996; Blaha, 

L. et al., 2002).  In this study, rapid occurrence of GJIC suppression was also observed 

suggesting that this mechanism is primarily at the posttranslational level as well.     

 EROD activity for these compounds and mixtures was not conclusive.  The 

induction of EROD was concentration dependent for BAP, chrysene, and 5-



   51

methylchrysene.  However, the same result was not seen for anthracene, phenanthrene, 

and benzanthracene.  Anthracene and phenanthrene induced similar amounts of EROD 

at both concentrations tested.  Both of these compounds are similar in structure and 

induced relatively similar amounts of EROD.  Anthracene has been shown to be a weak 

inducer of EROD in other studies (Falahatpisheh, M. et al., 2004).  It is known that 

induction of CYP1A is mediated through the binding of xenobiotics to a cytosolic aryl 

hydrocarbon receptor (AhR) (Safe, S., 2001).  Anthracene is not a strong AhR ligand 

and did not produce responses at either concentration that were significant when 

compared to control.  Although, phenanthrene is also not considered a strong AhR 

ligand, at the lower concentration of 1µM, one of the highest responses among the 

chemicals tested was observed. 

 There is an apparent similarity in protein inducability among structurally related 

PAHs.  The behavior of PAHs in the EROD assay seems to be influenced by the 

reactivity of the oxidative intermediates that are generated during the course of 

metabolism (Basu, N. et al., 2001; Safe, S., 2001; Falahatpisheh, M. et al., 2004).  

Therefore, each compound’s metabolic pathway plays an important role in the induction 

of EROD. 

 The mixture combinations of BAP and 5-methylchrysene, while showing there 

was not an additive effect on induction, did reveal increased induction over either of the 

chemicals tested alone.  This could be due in part to a saturation effect of the chemicals 

in the mixture.  There were similar responses with both arrangements of this mixture; 

increasing the concentration of either chemical did not affect the overall response.  
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Chrysene and BAP in a mixture at the same concentration showed the same effect as 

chrysene mixed with a smaller concentration of BAP.  Again, although the response was 

not additive, the slight inhibitory effects on the induction of enzymes cannot be 

attributed solely to one specific chemical.  Induction of the detoxifying enzyme, EROD, 

encoded by both CYP1A1 and CYP1B1, was inducible by all the chemicals and 

mixtures tested and should be proportional to the exposure concentration.  Other 

investigators have shown chrysene to inhibit the inducibility by BAP in mixtures and to 

yield irregular responses in this assay (Falahatpisheh, M. et al., 2004).  This could be due 

in part to chrysene or 5-methychrysene inhibiting the transformation of BAP to 

metabolites that are more toxic or the competition of the chemicals for metabolizing 

enzymes (Petrulis, J. R. et al., 2001; Brunstrom, B. et al., 1991; Falahatpisheh, M. et al., 

2004).  These interactions would cause antagonistic interactions that shield against 

additional chemical toxicity.   

 The helical structure of 5-methylchrysene supports a theory of antagonistic 

interaction.  The steric effect at the site of methyl substitution may alter the 

radioselectivity of oxidation by the metabolizing enzymes.  The radioselectivity would 

direct the metabolism at other regions of the molecule resulting in the production of 

metabolites that would inhibit the transformation of BAP to its ultimate carcinogen and 

thus producing more carcinogenic 5-methylchrysene metabolites (Rabinowitz, J., Little, 

S., and Brown, K., 2002; Schoeny, R., Muller, P., and Mumford, J., 1998; Shappell, N. 

W. et al., 2003).  Shappell, et al (2003) in a study of the metabolites of both chrysene 

and 5-methylchrysene in trout and rat liver microsomes confirmed this result.  They 
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concluded that metabolizing enzymes of trout and liver microsomes were more efficient 

in attacking the bay region double bond in chrysene and the non-bay region double bond 

of 5-methylchrysene resulting in different metabolites.  The radioselective differences of 

these two compounds may result in the ease of enzymatic activation to the ultimate 

carcinogenic bay region diol-epoxides thus inhibiting the transformation of BAP by the 

detoxifying enzyme, EROD, to its ultimate carcinogenic metabolite.   
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CHAPTER III 

USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARs) TO 

PREDICT TOXIC ENDPOINTS FOR POLYCYCLIC AROMATIC 

HYDROCARBONS (PAHs) 

 

Overview 
 
 Quantitative Structure-Activity Relationships (QSARs) offer a reliable, cost-

effective alternative to the time, money, and animal lives necessary to determine 

chemical toxicity by traditional methods.  Additionally, humans are exposed to tens of 

thousands of chemicals in their lifetime necessitating a need to predict chemical toxicity 

and screen for those posing the greatest risk to human health.  This study developed 

models to predict toxic endpoints for three bioassays specific to the stages of 

carcinogenesis.  The ethoxyresorufin- O-deethylase assay (EROD), Salmonella/ 

microsome assay and a gap junction intercellular communication (GJIC) assay were 

chosen for there ability to measure toxic endpoints specific to activation, induction, and 

promotion related effects of PAHs.  Shape-Electronic, Spatial, Information Content, and 

Topological descriptors proved to be important descriptors in predicting the toxicity of 

PAHs in these bioassays.  Predicting toxicity for a specific PAH compound, such as a 

bioassay-based potential potency (PPB) or a bioassay-based toxic equivalency factor 

(TEFB), is possible by combining the predicted behavior from the Quantitative Structure 

Toxicity Relationship (QSTR) models.  These toxicity estimates can then be 

incorporated into a risk assessment for compounds that lack toxicity data.  It is believed 
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that accurate toxicity predictions can be made by examining each type of endpoint 

important to the process of carcinogenicity and a clearer understanding between 

composition and toxicity can be obtained.   

Introduction 

   It is estimated that there is little to no toxicity data available for  more than 75% 

of  chemicals in use today (Gombar, V. A., 1998).  Experimental testing of new and 

existing chemicals require approximatly 730 days and $2,000,000 US to conduct 

carcinogenicity testing for one chemical (Gombar, V. A., 1998).  It is imperative in these 

times of shrinking resources for experimental research, that an efficient, timely, and less 

costly method be used to test chemicals for environmental and human health risks.  

 Using quantitative structure-activity relationships (QSARs) to estimate toxicity 

of chemicals is a practical an efficient approach, however limitations of use must be 

recognized.  QSARs developed for a specific toxicity metric are also referred to as 

quantitative structure-toxicity relationships (QSTRs), and serve to predict toxicity of a 

chemical based on that chemical’s structure.  QSARs can also reveal mechanisms of 

interaction.  One such example from Koenemann (1981) of a QSTR is the relationship 

between the partitioning coefficient, P, of a chemical and its acute toxicity to a guppy 

(Equation 3.1).  If only given a chemicals’ partitioning coefficient, P, can be 

approximated the value of the mean lethal concentration (LC50) to a guppy.   

 

log (1/LC50) = 0.871(log P) – 4.87                  Eqn.3.1 
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There have been QSTRs developed for some toxic endpoints of PAHs (Braga, R. S. et 

al., 2000; El-Alawi, Y. S. et al., 2002; Govers, H. et al., 1984; Lewis, D. F. V. and Parke, 

D. V., 1995) and models of physiochemical properties for PAHs (Abraham, M. H. et al., 

2005a).  The predictive equations are applicable for a family of compounds and may not 

be appropriate for a different family.   

 The driving hypothesis of this study was that PAH toxicity can be predicted 

using QSTRs and can further improve toxicity assessments in human health risk 

assessment.  The objective of this study was to develop QSTRs describing the toxic 

endpoint of PAHs in three individual bioassays.  Each bioassay was chosen based on the 

importance of the measured endpoint in the process of carcinogenicity.  Carcinogenicity 

is one of the driving force behind human health risk assessment of chemicals such as 

PAHs.  Due to the lack of toxicity information for several parent compound PAHs, 

methylated versions of the parent compounds, and mixtures of PAHs, QSTRs provide a 

means to estimate toxicity of these compounds and further reduce the uncertainty 

otherwise introduced into the risk assessment process.  These methods should be used 

with caution within a specific family of compounds.  Each QSTR is specific to the 

characteristics of the family of compounds to which it was trained.  If PAHs are 

chlorinated and the models were not trained with chlorinated PAHs, then the models 

may not reliably predict the behavior of chlorinated hydrocarbons.   

 The three bioassays chosen to generate data to train a QSTR model were the 

Salmonella/microsome assay, a gap junction intercellular communication (GJIC) assay, 

and the ethoxyresorufin-O-deethylase assay (EROD).  Results from the three bioassays 
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were interpreted with the QSTR models for applications in human health risk 

assessments.  The Salmonella/microsome assay measures mutations of DNA which are 

known to be important initiating events (Ames, B. N., McCann, J., and Yamasaki, E., 

1975a; McCann, J. and Ames, B. N., 1976; McCann, J. et al., 1975; Zeiger, E., 1998). 

Cytochrome P450 mono-oxygenases play a major role in the metabolism of many 

xenobiotics.  Alkoxyresorufin-o-deethylase substrates have been used to distinguish 

isoforms of P450 induced by various types of xenobiotics.  Induction of these enzymes 

of the cytochrome P450 family has been shown to be an essential step in the activation 

of carcinogens prior to initiation (Kennedy, S. W. and Jones, S. P., 1994; Szklarz, G. D. 

and Paulsen, M. D., 2002). The impairment or elimination of a cell’s capability to 

communicate with other cells is believed to promote tumor growth by eliminating 

signals that instruct an initiated cell to stop dividing (Couch, D. B., 1996; Trosko, J. E. et 

al., 1998; Trosko, J. E. and Ruch, R. J., 1998).  Measuring gap junction communication 

between cells serves as an indicator of a PAH’s ability to impair this function.  Using the 

data generated by these three bioassays, three major steps in the process of 

carcinogenicity are predicted and the combination of these responses for a given 

chemical can be used to estimate a bioassay based toxic equivalency factor (TEFB) or 

potential potency factor (PPB).   

 To assess the appropriateness of QSTRs for expressing toxicity as a linear 

relationship consider the initiation of cancer (Gombar, V. A., 1998).  For example, a 

necessary condition for the initiation of cancer is the formation of covalent conjugates 

with the macromolecule at the site of action.  This process leading to carcinogenesis can 
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be represented by equation 3.2 where, C is the concentration of a chemical reacting with 

Z, the concentration of the macromolecule that generates C:Z, the concentration of the 

covalent conjugate.   

    C + Z          (C:Z) = P              Eqn. 3.2 

The rate of the process of initiation could be rewritten as, 

     d(p) / dt = k3(C:Z)    Eqn. 3.3 

where k3 is the first order rate coefficient.  The resulting steady state equation will be, 

    d(p) / dt =k3 (C) * (Z) exp(-∆G/RT)              Eqn. 3.4 

where ∆G is the free energy associated with the formation of the C:Z conjugate.  

Integration of this equation over a given time period will result in,   

     P = k3 (C) * (Z) exp ( ∆G/RT) * t     Eqn. 3.5  

 

It is not feasible to measure C and Z at the reaction site, however if a set of  n chemicals 

are assumed to react with the same receptor, the R term could be considered constant.  

For a fixed value of P/t (i.e. a predefined response such as tumor formation over 5 years 

of exposure), equation 3.5 can be transformed into equation 6. 

 

  K = (Ci) exp (-∆Gi / RT)   for i = 1, 2,…, n                     Eqn. 3.6 

 

Using a simple log transformation and considering that the concentration C is 

proportional to some exposure concentration, C’, equation 3.6 can be written as, 
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  log (1/ (C’i)) = log A’i – ∆Gi / RT + K’’  for i = 1,2,…,n      Eqn. 3.7 

 

where the left-hand side of the equation is the toxicity metric, A’ is a factor which relates 

C and C’, ∆G is the free energy change associated with the formation of the conjugate 

and K’’ is the transformations on the constants.  The terms A’ and ∆G are both functions 

of a chemical’s molecular structure.  The linear free energy relationship (Equation 3.7) 

enables the expression of toxicity as a function of descriptors of the molecular structure 

(Purcell, W. P. et al., 1973).  By examining essential steps in the carcinogenic process 

(i.e. activation, initiation, and promotion), the relationship between chemical 

composition and toxicity can be obtained for a set of chemicals and applied to predict the 

toxicity of related chemicals.   

Methods and Materials 

 The datasets presented in Chapter II for PAHs in the  Salmonella/microsome 

assay, the gap junction intercellular communication (GJIC) assay, and the 

ethoxyresorufin-O-deethylase (EROD) assay were used as input data to develop QSARs.  

Biological data is normally skewed, as was the case with these datasets, and requires 

some form of transformation to normalize the data.  In this case, a logarithmic 

transformation was used to normalize the data.   

 Cerius2 4.10 molecular simulation package (Accelrys Inc., San Diego, CA) was 

used for QSAR development.  Each of the PAH molecules was imported into Cerius2 as 

a structure SD file for use in the training set.  The energy of each molecule was 

minimized using a CFF91 open forcefield (Maple, J. R. et al., 1994).  The training set of 
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molecules and its corresponding bioassay data was used to create a study table.  

Descriptors were added to the study table using Descriptor+, a module of the Cerius2 

package.  Typically, the descriptors were calculated using MOPAC7 due to the accuracy 

of this method as compared to other methods in Cerius2.  The final training set contained 

descriptors from several categories (i.e. conformational, electronic. spatial, among 

others.).  To develop QSARs for each of the bioassays, the corresponding parameter (i.e. 

revertants, rate of recovery, or fluorescence intensity) was set as the dependent variable 

and the descriptors as the independent variables.   

 QSARs were created using a genetic function approximation (GFA) algorithm 

built in the QSAR+ module of Cerius2 (Rogers, D. and Hopfinger, A. J., 1994).  The 

GFA algorithm is preferred over other traditional regression methods for two reasons.  

The GFA algorithm generates better quality equations and it provides, through study of 

the evolving models, additional information not available from standard regression 

analysis.  The algorithm generated 100 parent equations that include randomly selected 

descriptors.  Regressions were performed on the generated equations and equations were 

ordered according to their lack-of-fit (LOF) score (Friedman, J. H., 1991).   LOF scores 

are a measure of the statistical fit and an indicator of overfitting.  Crossover operations 

(repeated 20,000 times) used random pairs of parent equations and randomly mixed 

descriptors to produce offspring equations.  The offspring equation substituted the 

equation with the highest LOF if its LOF score was in the top 100, otherwise it was 

discarded.  The crossover procedures and recombination of equations resulted in an 
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improved final population of equations that were ordered according to the individual 

LOF scores.   

 Statistical analysis was performed on the final 100 equations generated by the 

GFA for each bioassay.  The relevant statistical parameters calculated were the 

correlation coefficient, R, the coefficient of determination, R2,   and the adjusted value, 

R2-adj, the lack-of-fit-score, LOF, and the least squares error, LSE.  The significance of 

the regression equations was tested using the F-test.  If the F-value is greater than a 

standard tabulated value, the equation is considered significant.  The significance level 

for the F-test was set at 0.05.   

 Validation testing was used to evaluate the generated QSARs for their 

uncertainties and predictive power using a bootstrap validation test and a randomization 

test.  The bootstrap test calculates the coefficient of determination (R2
bootstrap) and the 

uncertainty associated with it.  Repetitive analysis of random samples of the dataset with 

resampling was used.  Fisher’s randomization method was used to test the assumption 

that adequate random regressions exist for a parameter thus testing the validity of the 

model and the data that was used to generate it.  Each bioassay-specific value predicted 

by the QSAR was randomly reassigned 19 times (0.05 significance level) and statistical 

parameters were recalculated each time.  These parameters were then compared to the 

non-random QSARs for each bioassay.  There are four additional statistics along with 

the previously mentioned bootstrap coefficient of determination (R2
bootstrap) reported 

from the validation testing.  These include the sum of squared deviations of the 
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dependent variable values from their mean (SD), the predicted sum of squares (PRESS), 

the cross-validated R2, and the outliers. 

 

Results 

 The final QSTRs for each bioassay, potential potency factors, and TEFs are 

represented by equations 8 through 12.  These equations were among the most 

significant of the GFA equation output for each case.  The equations chosen were the 

lowest three LOF scores among the equations generated for each case.  This means that 

the GFA successfully converged to valid and useful equations.  The significant statistics 

are presented in Table 5 for each of the QSTRs.  Equations were selected based on high 

coefficients of determination and significance of the F-statistic.  To insure that equations 

were not overfitted, R2 was compared to R2-adj.  When observations were not sufficiently 

independent of one another,  even in cases with large numbers of observations,  the 

models generated can have poor explanatory and predictive power 

(AccelrysSoftwareInc., 2005).  A comparison of the R2 parameter and the R2
bootstrap 

parameter shows that the calculated R2 is accurate and the probability of it being low is 

small insuring the quality of fit for each equation.   

 

Log (Fluorescence Intensity) = 4.31258 + 0.484167 * Kappa-1           Eqn. 3.8 

                + 0.500625 * Jurs-WNSA-3 

 

Log (Net Revertants) = 8.4492 + 0.0009 * E-DIST-mag            Eqn. 3.9 
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     -0.0164 * Jurs-TASA 

 

 

Log (Rate of Recovery) (min-1) = -4.35035 + 0.426617 * CIC                            Eqn. 3.10 

                  + 5.44241 * Shadow-XYfrac   

                   - 0.00709 * Jurs-PNSA-1       

 

Log (Potential Potency) = -1.8891 – 0.0180 *Vm            Eqn. 3.11 

          + 0.0086 * PMI-mag 

 

Log (TEF) = -6.9378 +0.8266 * Jurs-WNSA-3           Eqn. 3.12 

            + 0.0219 * PMI-mag 

 

Comparison of measured and calculated toxic endpoints using equations 3.8-3.12 are 

shown with 95% confidence intervals for each bioassay in Figures 8-12.  The diagonal 

line on each graph represents the 1:1 relationship.  Proximity of the data to the line 

indicates that the predicted QSAR response was the same as the actual bioassay 

response. 
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Figure 8.  QSTR for EROD activity by PAHs in Clone 9 cells.  Actual bioassay response 
versus QSTR predicited response. 
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Figure 9.  QSTR for revertants in Salmonella /microsome assay.  Actual bioassay 
response versus QSTR predicted response. 
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Figure 10. QSTR for rate of recovery of Clone 9 cells in the GJIC assay.  Actual 
bioassay response versus QSTR predicted response. 
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Figure 11. QSAR model of potential potencies for PAHs.  Actual USEPA potential 
potencies versus QSAR predicted potential potencies.   
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Figure 12. QSAR of TEFs for PAHs. Actual versus QSAR predicted TEFs. 
 

 

 The significant descriptors used in equations 3.8-3.12 are from four categories: 

Shape-Electronic, Spatial, Information Content, and Topological.  The calculated values 

for the descriptors used in equations 8-12 are presented in Table 6.  The shape-electronic 

descriptors combine shape and electronic information to characterize molecules.  The 

descriptors are calculated by mapping atomic partial charges on solvent-accessible 

surface areas of individual atoms (AccelrysSoftwareInc., 2005; Stanton, D. T. and Jurs, 

P. C., 1990).  Jurs-TASA, Jurs-PNSA-1, and JURS-WNSA-3 are all shape-electronic 

descriptors.  Jurs-TASA is the total hydrophobic surface area that is the sum of solvent-

accessible surface areas of atoms with absolute value of partial charges less than 0.2.  

Jurs-PNSA-1 is the partial negative surface area that is calculated as the sum of the 

solvent-accessible surface areas of all negatively charged atoms.  Jurs-WNSA-3 is the 

surface-weighted charged partial surface area calculated as the solvent accessible surface 
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area multiplied by the partial charge for all negatively charged atoms multiplied by the 

total molecular solvent accessible surface area divided by 1000 (Stanton, D. T. and Jurs, 

P. C., 1990; Rohrbaugh, R. H. and Jurs, P. C., 1987).   

 There are three spatial descriptors that emerge as dominant: Shadow-XYfrac, 

Vm, and PMI-mag.  The Shadow-XYfrac, one of several shadow indices, is a set of 

geometric descriptors that characterizes the shape of the molecules.  The descriptors are 

calculated by projecting the molecular surface on three mutually perpendicular planes, 

XY, YZ, and XZ (Rohrbaugh, R. H. and Jurs, P. C., 1987).  These descriptors depend 

not only on conformation but also on the orientation of the molecule.  Specifically, 

Shadow-XYfrac is the fraction of the area of the molecular shadow in the XY plane over 

the area of the rectangle enclosing the projection of the molecule.  Vm is a 3D spatial 

descriptor that defines the molecular volume inside the contact surface (Hill, T. L., 

1960).  The molecular volume is calculated as a function of conformation and is related 

to binding and transport.  PMI-mag is the magnitude of the principle moments of inertia 

about the principle axes of the molecule (Hill, T. L., 1960).  Taken together these 

descriptors capture the influence of a molecule’s geometry on its behavior. 
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 Two information content descriptors that merged as significant are: E-DIST-mag, 

and CIC.  This set of descriptors is based on their calculations of the representation of 

molecular structures as graphs, where atoms are represented by vertices and covalent 

chemical bonds by edges (Bersohn, M., 1983; Muller, W. R., 1987).  E-DIST-mag is 

based on the edge adjacency and the edge distance matrices.  Specifically, it is the total 

edge distance of a molecule divided by the magnitude (Bonchev, D., 1983; Bonchev, D. 

et al., 1981; Katritzky, A. R. and Gordeeva, E. V., 1993).  CIC is referred to as the 

complementary information index.  This descriptor represents the deviation of the 

information content from its maximum possible value where the information content is 

an index of the partitioning of the valence and bonds of a chemical’s structure.  The 

Kappa indices are a set of topological descriptors that view molecule graphs as 

connectivity structures to which numerical invariants can be assigned.  Kappa indices 

specifically help to differentiate the molecules according to size, degree of branching, 

flexibility and overall shape.  Specifically, Kappa-1 describes the shape of the molecule 

in terms of the count of atoms (Kier, L. B., 1990; Kier, L. B. and Hall, L. H., 1991).  

Each of the descriptors appear in one QSTR except the PMI-mag and Jurs-WNSA-3, 

which appear in two (Equations 3.10, 3.11 and 3.12).   

Discussion 

 Enzymatic activation is a precursor to the initiation of chemicals to be DNA 

mutagens.  Induction of the enzymes of the cytochrome P450 family has been shown to 

be an essential step in the activation of carcinogens prior to initiation (Kennedy, S. W. 

and Jones, S. P., 1994; Szklarz, G. D. and Paulsen, M. D., 2002).  PAHs have been 
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linked to a broad range of toxic effects such as cancers, renal disease, circulatory 

disorders and immune system dysfunction (ATSDR, 1990a).  The parent compound 

PAHs are not believed to be the cause of these many effects.  Rather the oxidized 

metabolites and their reactive intermediates show a greater level of biological activity 

than do the unmetabolized parent compounds.  Metabolism of PAHs begins with 

oxidation by enzymes of the cytochrome P450 family, specifically CYP1A1.  The 

induction process begins with PAH absorption by a cell from systematic circulation.  

Once in the cytosol, PAHs bind with the aryl hydrocarbons (Ah) receptor and release 

two heat shock proteins (hsp 90).  The Ah receptor-ligand complex can then be 

phosphorylated by tyrosine kinase.  This allows the Ah receptor and ligand to enter the 

nucleus, bind with the Ah receptor-nuclear translocator protein (Arnt) and bind with the 

xenobiotics response element in the upstream region of a gene to enhance transcription 

(Parkinson, A., 1996).  The absorption and transport of a PAH by the cell, into the 

cytosol, can be a limiting factor in the metabolic activation process (Parkinson, A., 

1996).  Similarly, the structure of a molecule will dictate the path of metabolic 

transformation into more active intermediates.   

 The two descriptors that are used to represent the induction of P450 enzymes are 

both consistent with chemical transport and structure.  Jurs-WNSA-3 is a spatial 

descriptor that combines shape and electronic information about a molecule (Stanton, D. 

T. and Jurs, P. C., 1990).   Specifically, it is the surface weighted charged partial surface 

area.  This descriptor us highly correlated with the molecular area which is related to the 

binding, transport and solubility of a molecule (AccelrysSoftwareInc., 2005).  Recently, 
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the charged partial surface area (CPSA) descriptors have been found to be useful in the 

study of acute aquatic toxicity where they appear to provide an alternative to energy 

level measures for describing global and local electrophilicity in cases of non-covalent 

molecular interactions (Stanton, D. T. et al., 2002).   Local electrophilicity is also 

important in the metabolism of PAHs by the cytochrome P450 family of enzymes 

(Parkinson, A., 1996).  CYP1A1 contains a heme group capable of supplying singlet 

oxygen for insertion into the double bonds of PAHs.  This insertion produces epoxides.  

Cells attempt to excrete PAHs by increasing their polarity through electrophilic attacks 

using Phase II enzymes.  Unfortunately, this often results in a more biologically active 

compound.  The Jurs-WNSA-3 descriptor illustrates the importance of structure in the 

chosen position of attack to detoxify a compound by these metabolizing enzymes. 

 The Kappa-1 index or the Kier’s Shape Index-1 describes the induction of the 

metabolizing enzymes in the QSTR equation is.  This index differentiates the shape of a 

molecule based on the count of atoms.  This descriptor is also highly correlated with 

molecular volume, molecular weight, and molecular area (AccelrysSoftwareInc., 2005).   

The importance of a molecule’s shape and degree of branching and flexibility impacts 

detoxification/metabolism processes within cells (Vyas, K. P., Levin, W. et al., 1982; 

Vyas, K. P., Thakker, D. R. et al., 1982; Warshawsky, D. and Landolph, J. R., 2006; 

Szklarz, G. D. and Paulsen, M. D., 2002).  Recent studies demonstrate that absorption, 

distribution, metabolism, and excretion (ADME) properties are accurately predicted 

using topological descriptors such as the Kappa-1 index (Votano, J. R. et al., 2004).   
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 Of the three bioassays, the least amount of experimental data was available for 

the EROD assay.  A minimal dataset reduces the predictive power of equation 3.8 

somewhat because the more data that is used to train a model the more predictive power 

results.  Equation 3.8 did show a lower coefficient of determination and smaller F-

statistic (Table 5).  However, the lack-of-fit score was among the top three (Table 5).  

The result of this minimal dataset reduces the confidence in this equation.   

 The Salmonella/microsome assay measures mutations of DNA, which is an 

initiation, a critical step in the carcinogenic process  (McCann, J. and Ames, B. N., 1976; 

Zeiger, E., 1998).  Mutagenic activity is strongly influenced by several structural factors 

such as isomeric positioning, conformation, steric hindrances, physical dimension, and 

the ability to resonance stabilize the electrophilic metabolites (Ames, B. N., McCann, J., 

and Yamasaki, E., 1975b; Analogues, C. o. P. a. S. and Hazards, B. o. T. a. E. H., 1983; 

Ashurst, S. W. et al., 1983; Warshawsky, D. and Landolph, J. R., 2006).    These factors 

are consistent with the descriptors used in equation 9 for the number of revertants in the 

Salmonella/microsome assay (Table 6).  This result confirms that structure activity 

relationships can be good predictors of toxic endpoints relating to carcinogenesis.   

 The E-DIST-mag and Jurs-TASA descriptors in equation 3.9 correlate well with 

DNA revertants and have significant implication to the process of initiation.  E-DIST-

mag is an information content descriptor that represents a molecules’ physical dimension 

based on atoms and chemical bonds.  Jurs-TASA is a shape-electronic descriptor that 

characterizes the total hydrophobic surface area of a molecule.  Two important aspects in 

DNA mutation are intercalation and hydrophobicity (lypophilicity) (Pitot, H. C. and 
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Dragan, Y. P., 1996; Roy, D. R. et al., 2006; Singer, B. and Grunberger, D., 1983).  

Intercalation of PAHs with DNA is a fundamental process in which aromatic molecules 

associate directly with DNA by fitting into the minor and major groves of the helix 

(Geacintov, N. E., 1986).    The degree of intercalation is related to the lypophilicity 

(hydrophobicity) that determines the ease of transport within the cell.  Therefore, the 

negative coefficient of Jurs-TASA means that decreasing the total hydrophobic surface 

area of a molecule would increase the ease of transport within a cell.  Once a mutagen 

(e.g. a PAH) crosses the cell membrane, the controlling factor for binding with 

hydrophobic DNA is the hydrophobic nature of the mutagen and lowering of the energy 

of the system possibly through pi-driven (π-π interaction) intercalation.  The process of 

pi-driven intercalation is most efficient if aromatics are electron deficient.  This 

deficiency facilitates electrostatic attraction between electron rich centers on the 

nucleotides and the electron deficient centers on the aromatic.  PAHs are known to be 

efficient intercalators with the optimum size being three and four ringed structures.   

 The positive coefficient for E-DIST-mag means that a greater edge distance will 

increase the binding affinity resulting in a greater number of revertants.  A greater edge 

distance means there are more covalent chemical bonds and less steric hindrance.  Steric 

effects occur when atoms within a molecule, having and occupying a certain amount of 

space, are brought too close together (Harvey, R. G., 1991; Cancer), I. I. A. f. R. o., 

1983).  There is an associated cost in energy due to the electron clouds overlapping 

affecting the molecular shape and reactivity (Harvey, R. G., 1997).   
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 The spiral shape of DNA is such that one groove is bigger than the other.  This 

has some advantages for compounds or drugs that bind to it because they too are 

different sizes.  Bigger molecules bind in the major grooves of DNA, while small 

molecules bind in minor grooves.  PAHs and their metabolites intercalate between 

adjacent base pairs or can form adducts.  Therefore, less steric hindrance allows a 

molecule to readily intercalate with the DNA.  Similarly, the physical dimension of a 

molecule with less steric hindrance more readily bonds to the DNA.    

 The GJIC assay measures the impairment or elimination of a cell’s capability to 

communicate with other cells.  This communicative ability between cells controls 

several important functions such as growth control, homeostasis, and cellular apoptosis.  

The elimination of this communication between cells is believed to promote tumor 

growth by eliminating signals that instruct an initiated cell to stop dividing (Couch, D. 

B., 1996; Trosko, J. E. et al., 1998; Trosko, J. E. and Ruch, R. J., 1998).  The structure-

toxicity relationship for the rate of recovery in the GJIC assay is expressed in descriptors 

from three categories: information content, spatial and shape-electronic.  CIC is an 

information content descriptor that corresponds to the steric qualities of a molecule.  

Steric hindrance or strain will cause a molecule to change its shape and reactivity 

(Harvey, R. G., 1997).  These changes in shape and reactivity can modify the gap 

junction proteins which can extend the inhibition of GJIC (Rummel, A. et al., 1999).   

 The rate of recovery for GJIC is embodied in the Shadow-XYfrac.  This 

geometric descriptor characterizes the shape of the molecule and depends not only on the 

molecular conformation but on orientation as well.  Shadow-XYfrac is calculated by 
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projecting the molecular shape on the three Cartesian planes ( i.e. XY, YZ, XZ) and 

aligning the principle moments of inertia with the X, Y, and Z axes (Rohrbaugh, R. H. 

and Jurs, P. C., 1987).    The significance of this descriptor with regards to GJIC is that 

positions of methyl substitutions, which change the molecular shadow influence on GJIC 

(Upham, B. et al., 1996; Upham, B. L. et al., 1998).  This descriptor is also influential in 

describing the binding and transport of molecules as recently shown in a study 

conducted on numerous chemicals to explain estrogen receptor binding (Hong, H. et al., 

2002).   

 The third descriptor used in the QSTR for GJIC is Jurs-PNSA-1, the partial 

negative surface area.  This descriptor is a charged partial surface area descriptor that 

encodes spatial and electronic information that relates to the tendency of molecules to 

engage in polar interactions (Stanton, D. T. and Jurs, P. C., 1990).  With a negative 

coefficient, decreasing values of this descriptor results from decreasing molecular 

polarity for a molecule more or less likely to be moved through the gap junction of a cell 

(Equation 3.10).  This descriptor correlates with the spatial descriptor, density, which 

expresses transport behavior of a molecule (AccelrysSoftwareInc., 2005).  

 Two QSTRs were generated for previously developed TEFs and USEPA 

potential potencies (PPs) (Nisbet, I. C. and LaGoy, P. K., 1992; USEPA, 1993).  These 

two models were generated to determine the effectiveness of QSTRs to predict TEFs or 

PPs.  Equations 3.11 and 3.12 describe PPs and TEFs and contained only spatial 

descriptors.  Both of these equations contain the descriptor PMI-mag, the magnitude of 
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the principal moments of inertia about the principal axes of a molecule.  This descriptor 

evaluates the symmetry of the top of the molecule.   

 The QSTR describing potential potencies (equation 3.11) also contains a 

molecular volume descriptor (Vm).  This descriptor is a 3D spatial descriptor that 

defines the molecular volume inside the contact surface.  The molecular volume is 

calculated as a function of the molecules’ conformation and is related to binding and 

transport (AccelrysSoftwareInc., 2005).   

 TEFs are described by not only PMI-mag but also by a shape-electronic 

descriptor, Jurs-WNSA-3, a surface weighted charged partial surface area.  This 

descriptor refers to a negatively charged surface area and is highly correlated with the 

molecular area, another descriptor related to binding and transport.  The model for the 

PPs and for the TEFs showed a source of potential error because there were several 

observations that were the same (Figures 11and12).  The PPs and TEFs were order of 

magnitude estimates and resulted in generating the same estimate for chemicals of 

different size, shape, and activity.  This can result in a model that has poor predictive and 

explanatory power thus reinforcing the need for a better means to estimate toxicity 

factors.  Evaluating the relevant statistics for equations 11 and 12 reveals poor 

explanatory and predictive power (Table 5).  The lack-of-fit (LOF) scores as well as the 

sum of squared deviations of the dependent variable values from their mean (SD), for 

both equations, were high compared to the other equations (Table 5) indicating that the 

equations do not have much predictive power.   
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 QSTRs can be effective in rapidly assessing chemical toxicity solely from 

molecular structure.  However, not all QSTRs reliably assess toxicity.  In fact, the most 

meaningful QSTRs describe how variation in chemical structure relates to a specific 

response not overall toxicity.  This is demonstrated in the two developed QSTRs for 

TEFs and PPs (Figures 11 and 12).  TEFs and PPs refer to an overall toxicity and not to 

a specific toxic endpoint.  The order of magnitude estimates do not provide enough 

interpretation of the chemical attributes to make a toxicity estimate solely from these 

relationships.  The currently available TEFs for PAHs from Nisbet and Lagoy (1993) are 

order of magnitude estimates.  The TEFs predicted in this study reflect more precise 

estimates as they are made up of estimates of toxicity for specific toxic endpoints.     

 Improved predictions of toxicity for PAH compounds are possible if each 

compound is evaluated based on its ability to activate, initiate and/or promote cancer.  

TEF or PP values were estimated based on the QSTR predicted response from each 

bioassay.  A weighting factor was assigned to the appropriate toxic endpoint prediction 

for the PAHs ability to activate, initiate, and promote (Table 7) generating a TEFB or 

PPB relative to the toxicity of BAP.  An example of this concept is illustrated for 

chrysene in equation 3.13.  Chrysene, a complete carcinogen, activates detoxifying 

enzymes, is an initiator, and is shown to be a promoter of cancer. 

 

               TEFB (Chrysene) = 0.3(QSTR (EROD))                                              Eqn. 3.13 

    + 0.3 (QSTR (AMES)) + 0.4(QSTR (GJIC))   
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Therefore, each response is given an equal weight except the promotion response (0.4) 

where chrysene was shown to be a promoter and distant site tumors were observed.  This 

TEFB would still be an estimate of toxicity that is relative to BAP however; it would be 

based on specific knowledge of the chemical’s ability to act in each stage of 

carcinogenesis.  This would provide an improved estimate of toxicity over the currently 

available TEFs and PPs.  As QSTR models are improved and expanded the estimated 

toxic endpoint becomes more robust and reliable allowing for better predicted TEFs.     

 Shape-electronic descriptors were present in each of the QSTRs developed, 

indicating that these descriptors were effective in representing the toxicity of PAHs in 

the bioassays modeled.  Shape-electronic descriptors are a subset of spatial descriptors 

that symbolize the tendency of a molecule to engage in polar interactions.  Polar 

interactions are important in many processes of toxic action.  Polar and non-polar 

surface areas are commonly used to determine cell permeability.  Recently, modeling 

transport through the blood brain barrier was characterized using molecular flexibility, 

hydrophobicity, and polar surface areas (Winkler, D. A. and Burden, F. R., 2004).   
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Table 7.  QSTR predicted TEFs for selected PAHs. 
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CHAPTER IV 

RISK ASSESSMENT OF HARMFUL ALGAL BLOOMS: CHALLENGES AND 

PROGRESS IN ASSESSING TOXICITY 

 

Overview 
 
 There are six recognized poisoning syndromes that result from algal toxins 

affecting human health through their consumption of contaminated seafood or direct 

contact with bloom water or inhalation of aerosolized toxin.  Human health risk 

assessments (HHRAs) for harmful algal blooms (HABs) are hindered due to the lack of 

toxicity factors that describe the toxicological impact of the toxins based on exposure 

route.  A bioassay based reference dose (RfDB) for an inhalation exposure was 

developed for use in HHRAs.  The reference dose is the first step in assessing the risk to 

human health from in vitro cytotoxicity data rather than from shellfish bed closures.  The 

reference dose developed for PBTX-2 is based on several strains of Karenia brevis 

cultured under different salinities and temperatures.  A reference dose of 0.0571 mg/kg-

day dose was used in a HHRA to estimate the risk from inhaled aerosolized brevetoxin 

in a recreational setting.  The use of this reference dose showed that there was no 

significant non-carcinogenic risk from exposure to the brevetoxin in the exposure 

scenario examined herein. 
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Introduction 

 Varieties of harmful algal blooms (HABs) affect human and ecological health 

every year.  Algal blooms are reported in the waters of every U.S. coast and in many 

other parts of the world.  Recently, there has been an increase in the frequency and 

geographic occurrence of these HABs (Hallengraeff, G. M., 1993; Van Dolah, F. M., 

2000; Hallegraeff, G. M., 1993).  The increased incidence has magnified the need to 

assess impact to human and ecological health.  Currently, regulatory measures for the six 

recognized human poisoning syndromes are based mainly on epidemiologic data derived 

from poisoning incidents.  However, these data are seldom accurate and complete, and 

mainly restricted to acute toxicity.  Incident based data provide acute toxicity 

explanation, but to predict potential impact necessitates a more complete data set 

generated under controlled experimental conditions.  Improved assessment methods for 

HABs can then be used to develop appropriate regulatory measures.   

 An HHRA for brevetoxins is hampered by the lack of toxicity factors and 

measured exposure concentrations.  There are unidentified toxins (e.g Pfiesteria), in 

some cases, the indicators for effects and exposure are poorly defined, and there are no 

available reference doses or toxicity factors for these algal toxins.  The significant 

uncertainties in HHRAs currently include: unidentified toxins, lack of reference doses or 

toxicity factors, species and toxin variability, measured aerosol concentrations at points 

of exposure, and unknown environmental triggers causing the blooms.   

 Neurologic or neurotoxic shellfish poisoning (NSP) is caused by polyether 

brevetoxins produced by the unarmored dinoflagellate Karenia brevis.  The brevetoxins 
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are toxic to fish, marine mammals, birds and humans, but not to shellfish.  Until the year 

1993, neurologic shellfish poisoning was considered endemic only to the Gulf of Mexico 

and the east coast of Florida, where “red tides” had been reported as early as 1844 

(Pierce, R. H., 1986).  An unusual feature of Karenia brevis is the formation of toxic 

aerosols generated when wave action causes the release of toxin that then becomes 

aerosolized.  Asthma-like symptoms in humans can result upon exposure.  In 1987, a 

major Florida bloom event was dispersed by the Gulf Stream northward into North 

Carolina waters where it has since continued to be present.  In early 1993, more than 180 

human shellfish poisonings were reported from New Zealand caused by an organism 

similar to Karenia brevis.  It is likely that this was a member of the hidden plankton 

flora that was previously present in low concentrations.  This plankton flora then 

developed into bloom proportions triggered by unusual climatic conditions that can 

range from higher than usual rainfall to lower than usual water temperatures.  It has been 

hypothesized that this bloom was coincident with an El Niño event (Hallegraeff, G. M., 

1993). 

 The NSP toxins (PBTX) are tasteless, odorless, heat and acid stable, lipid-

soluble, cyclic polyether neurotoxins produced by the marine dinoflagellate Karenia 

brevis.  The molecular structure of the brevetoxins consists of 10 to 11 transfused rings 

with molecular weights are around 900 mass units (Figure 13).  Ten brevetoxins have 

been isolated and identified from field blooms and Karenia brevis cultures (Benson, J. 

M. et al., 1999). These brevetoxins show specific binding to site-5 of voltage-sensitive 
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Na+ channels leading to channel activation at normal resting potential causing toxic 

effects (Cembella, A. D. et al., 1995).   

 Karenia brevis produces a lipophilic toxin (brevetoxin; PBTX) that alters the 

normal function of excitable cell membranes.  This toxic action is accomplished by 

inducing persistent activation of sodium channels (Catterall, W. A. and Risk, M., 1981; 

Baden, D. G., 1989).  Brevetoxins are depolarizing substances that open voltage gated 

sodium (Na+) ion channels in cell walls.  This opening of the channel alters the 

membrane properties of excitable cell types to enhance the inward flow of Na+ ions into 

the cell (Fleming, L. E. et al., 1999). The toxin appears to produce its symptoms by 

transforming fast sodium channels into slower ones, resulting in persistent activation and 

repetitive firing (Watters, M. R., 1995). 
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Type 1 (A) brevetoxins: PBTX-1 R = CH2C(=CH2)CHO 
 PBTX-7 R=CH2C(=CH2)CH2OH
 PBTX-10 R=CH2CH(CH3)CH2OH
   
 

 

Type 2 (B) brevetoxins: PBTX-2 R = CH2C(=CH2)CHO 
 oxidized PBTX-2 R=CH2C(=CH2)COOH 
 PBTX-3 R=CH2C(=CH2)CH2OH 
 PBTX-8 R=CH2COCH2Cl 
 PBTX-9 R=CH2CH(CH3)CH2OH 
 PBTX-5 the K-ring acetate of PBTX-2 
 PBTX-6 the H-ring epoxide of PBTX-2
   

   

Figure 13.  Brevetoxin Structures (Adapted from Hua, et al, 1995) 
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Conformational analysis revealed that the unsaturated H-ring of brevetoxin B 

(Figure 13) favors the boat-chair conformation, as does the saturated G-ring of 

brevetoxin A (Figure 13) (Plakas, S. M. et al., 2002; Poli, M. A. et al., 2000; Radwan, F. 

F. and Ramsdell, J. S., 2006; Rein, K. S. et al., 1994).  After reduction has occurred, the 

H-ring of brevetoxin B shifts to a crown conformation.  This subtle change in 

conformational preference induces a significant change in the overall shape of the 

molecule, which is believed to be responsible for the loss of binding affinity and toxicity 

(Rein, K. S. et al., 1994). 

 Respiratory problems associated with the inhalation of aerosolized brevetoxins 

are believed to be due in part to opening of sodium channels.  In sheep, bronchospasm 

could be blocked by atropine while there appears to be a role for mast cells.  In sheep the 

bronchospasm could be effectively blocked by cromolyn, a mast cell stabilizer 

preventing histamine release and chlorpheniramine, a first generation antihistamine 

(Abraham, W. M. et al., 2005b).  It has been reported that brevetoxin could combine 

with a separate site on the gates of the sodium channel, causing the release of 

neurotransmitters from autonomic nerve endings (Fleming, L. E. et al., 1999).  In 

particular, this can release acetylcholine, leading to smooth tracheal contraction, as well 

as massive mast cell degranulation (Abraham, W. M. et al., 2005; Fleming, L. E. et al., 

1999; Fleming, L. E. et al., 2005).Brevetoxins are periodically responsible for marine 

animal mortalities, non-fatal human effects and occasional economic hardships.  Some 

of the known human health effects include respiratory distress upon exposures to 

seawater aerosols containing brevetoxins and seafood poisoning (neurotoxic seafood 
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poisoning; NSP) after consumption of brevetoxin-contaminated shellfish (Aune, T., 

1997; Pierce, R. H., 1986).  Although these health effects have been observed, the lack 

of brevetoxin toxicity factors prevents generating reliable HHRAs.  The current 

regulations for states along the Gulf of Mexico is based on shellfish bed closures at 

concentrations of 5000 Karenia brevis cell per liter, reopening is based on shellfish 

PBTX of <80 µg/100 g. 

 A bioassay based reference dose for brevetoxins was used to generate data for a 

HHRA on these HABs.  The hypothesis is that brevetoxin toxicity can be estimated 

using a bioassay based reference dose (RfDB) for the purpose of an initial attempt to 

evaluate human health risk.  The objectives of this study were to culture algal species 

that are common to the Gulf of Mexico in different salinities and temperatures to 

determine how stress affects toxin production.  Secondly, these cultures were extracted 

and there toxicity was evaluated using an in vitro cytotoxicity bioassay.  Finally, the 

dose response curves from the bioassay were used to develop bioassay based reference 

doses to be used in an initial human health risk assessment.  The results of the initial 

human health risk assessment are also presented herein.   

Materials and Methods 

Experimental Approach 

 Several species of HABs were grown and maintained for harvesting to be used in 

the toxicity assays.  Each species was maintained at different salinities and temperatures 

to examine the effects of temperature and salinity on toxin production.  Each species was 
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harvested and counted to estimate toxicity production.  These species were used in a 

traditional cytotoxicity assay, at different concentrations to determine there toxicity.  

Three controls were used in this assay to determine the cytotoxicity of the brevetoxins 

produced by these species.  The controls used are as follows:  cells only, solvent only 

(ethanol at less than 0.5%), and activator control (oubain and veratridine, O/V).  From 

this data, a reference dose was determined for PBTX-2 to be used in HHRAs.  A HHRA 

was developed to estimate the effects of inhaled brevetoxin on human in a recreational 

setting. 

Cell Culture 

 Mouse neuroblastoma cells (N2A) (ATCC-CCL131) were grown and maintained 

in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% fetal bovine serum 

(Sigma Co., St. Louis, MO).  Streptomycin (Sigma Co., St. Louis, MO.) and Penicillin 

(Sigma Co., St. Louis, MO.) were also added at 50µg and 50 units per milliliter.  

Cultures were maintained in an incubator at 37°C with humidified 5% CO2 and 95% air 

atmosphere.  Cells were harvested for the cytotoxicity assay with a solution of Trypsin 

(5%) and PBS.  The cells were then seeded in a 96-well plate (Costar, Cambridge, MA) 

at a density of 30,000 cells per well in 100µl of growth medium.  Cells were incubated 

for 24 hours in an incubator exposed to 5% CO2 before dosing.   

Algal Culture 

 Seven clonal isolates of Karenia brevis, five from the Texas coast and two from 

Florida (Table 8), were maintained in L1 medium (Guillard and Hargraves, 1993) at 22º 
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C,  70 ± 2  mol photons m-2 s-1 on 12:12h light:dark cycle, and salinity of 30 ppt.  These 

cultures were grown in the laboratory of Dr. Campbell of the Texas A&M University’s 

Department of Oceanography.  Prior to cytotoxicity assays, all clones were acclimated to 

a range of growth conditions for at least ten generations gradually (at increments of  2 oC 

; 2 salinity units) to experimental conditions (20 and 25 oC  ; salinities of 27 and 35).  

For each growth condition, glass culture flasks (100 mL) were inoculated with 

approximately 10 mL of dense, acclimated culture and allowed to grow until mid-

stationary phase.  All cultures were harvested within 17-20 days to prevent variable 

toxicity due to external variables (Pierce, R. et al., 2001).  Cell pellets from each culture 

were harvested by gentle centrifugation 3200 g / 5 min / 4º C, to create a soft pellet of 

cells.  Supernatant was then aspirated and the pellet was extracted immediately.  The 

supernatant volume was centrifuged at 3200rpm for approximately 5 minutes.  The 

supernatant was decanted to 5ml and the pellet re-suspended and deposited in its 

respective culture bottle.  The concentrated cell solution was then extracted using 3 

washes of equal parts ethyl acetate.  The extracted volume of ethyl acetate was dried 

down in the roto-evaporator unit, transferred to 4ml or 8ml amber glass vials via a 

pipette, and dried down manually with nitrogen.  Cultures were resuspended in ethanol 

for cytotoxicity testing. 
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Table 8. Karenia brevis clones at Texas A&M University. 
 

Clone Collection location and date Origin of isolate 
SP1 Brownsville, TX (Fall, 1999) T. Villareal 
SP2 Brownsville, TX (Fall, 1999) T. Villareal 
TSP3 Brownsville, TX (Fall, 1999) T. Villareal 
NTSP3 Brownsville, TX (variant) C. Hyatt 
TXB3 Brownsville, TX (Fall, 1999) K. Steidinger 
TXB4 Brownsville, TX (Fall, 1999) K. Steidinger 
CCMP2228 Sarasota, Florida (August, 2001) C. Higham 
CCMP 718 St. John’s Pass (1953) W.B. Wilson 

 

 

 

MTT Cytotoxicity Assay 

 Cultured wells received 10µl of each sample at concentrations of 8, 4, and 2 

µg/ml.  Additionally, 10µl of 10mM Ouabain (Sigma Co., St. Louis, MO.) and 10µl of  

1mM Veratridine, pH 2 (Sigma Co., St. Louis, MO.) were added to each well.  A cell 

control, solvent control, and ouabain/veratridine control (O/V) were run for each 

experiment.  Each concentration and control was run with 8 replicates.  Cultures were 

then incubated for an additional 24 hours following treatment in an incubator exposed to 

5% CO2 before running the assay.  MTT ( 3-[4,5-dimethylthiozol-2-yl]-2,5 –

triphenyltetrazolium) was prepared as a 2.5mg/ml stock solution in PBS, pH 7.4 and 

stored at 4°C until use.  Following the incubation with samples, the media was removed 

and 50µl of a 1:4 dilution of MTT and growth media was added to each well.  Cultures 

were incubated for 30 minutes at 37°C in 5% CO2.  Medium was then removed and 

100µl of dimethyl-sulfoxide (DMSO) was added to each well.  The plates were 

immediately read on a Biotek Synergy HT Plate Reader (Biotek Instruments Inc., 
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Winooski, VT) at a wavelength of 570nm.  Results from each treatment were compared 

using a one-way ANOVA.   

Chemical Analysis 

 Each sample and a set of 9 brevetoxin standards (Brevenal, PBTX-1, 2, 3, 6, 7, 9, 

11, PBTX-ca) samples were analyzed using a Matrix-assisted laser desorption/ionization 

time-of-flight (MALDI-TOF) instrument.  MALDI-TOF spectra were recorded in 

reflected ion mode with an Applied Biosystems Voyager DE-STR mass spectrometer 

(ABI, Framingham, MA).  Positive ions were generated by using a nitrogen laser pulse 

(λ = 337 nm, 20 Hz) and accelerated under 20 kV using delayed extraction (175 ns) 

before entering the time-of-flight mass spectrometer.  Laser strength was adjusted to 

provide minimal fragmentation and optimal signal-to-noise ratio.  An average of 200 

laser shots was used for each spectrum, and data were processed with the accompanying 

Voyager software package.  A dried droplet procedure was used with 2,4,6-

trihydroxyacetophenone (THAP).  A 1:1:1 mixture of analyte, a 10 mg/mL THAP 

solution in methanol, and a 1 mg/ml solution of LiCl (to assist with ionization) was 

spotted in 1µL aliquots on top of a stainless steal plate.  The most abundant ions 

observed for Brevetoxin B (PBTX-2) and Brevetoxin A (PBTX-3) correspond to 

(M+Li)+ at m/z 901 and m/z 903, respectively. 

 Samples were also analyzed via LC/MS.  The instrument was optimized using a 

standard solution of the eight brevetoxins and brevenal used in this study.  The APCI 

ionization technique was used to analyze the samples by both single ion monitoring, for 

increased sensitivity and by collision induced dissociation, for structure determination.   
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Results 

Cytotoxicity Assay 

 Toxicity assays performed on algal cultures at combinations of two temperatures 

and two salinities yielded data from which a reference dose value were determined.  This 

reference dose was used to generate an initial HHRA for the inhalation exposure to 

brevetoxin.  Cultures were determined to be toxic if their response fell below the 

activator response as indicated by the bold line on each figure.  Cultures of Karenia 

brevis raised at 25°C and either 35 ppt or 27 ppt salinity demonstrated significant 

changes in toxicity as measured by the mouse neuroblastoma cytotoxicity assay.  The 

cytotoxicity assay revealed that only SP1, NTSPE, and TXB3 (grown at 25°C and 

27ppt) resulted in a toxic response (Figure 14).  A dose response curve for SP1, NTSP3 

and TXB3 (25°C, 27 ppt) resulted with the most toxic response being at 8 µg/ml that 

decreased proportionally (Figure 14).  At 25°C and 35ppt, SP2 and NTSP3 elicited a 

toxic response at all concentrations tested.  However, TXB3 and 718 were toxic at 8 and 

4 µg/ml and a dose response was observed for both species (Figure 15).  The dose 

response curves for the species at 25°C and 35ppt were not as pronounced as was seen at 

other temperature and salinity.  For example, the higher salinity (35 ppt) resulted in 

greater toxicity at 20°C.    
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Figure 14.  Cytotoxicity of Karenia brevis species at 25°C and 27ppt. 
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 Figure 15.  Cytotoxicity of Karenia brevis species at 25°C and 35ppt. 
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For cultures grown at 20°C and 27ppt, three species showed significant toxicity 

to the N2A cells.  Cultures 718, SP2, NTSP3 and TXB3 all showed 30-50% more 

toxicity than the positive control response of O/V (Figure 16).  A dose response curve 

was observed for TXB4 at this temperature and salinity.  At 20°C and 35ppt, there was 

significant toxic response when compared to controls from 718, SP1, NTSP3 and TXB4.  

Also, SP2 showed toxic responses for 8 and 4 µg/ml and the toxicity at 2µg/ml was 

slightly less but within the standard error (Figure 17).  Dose response curves were 

determined for NTSP3 and TXB4 at this temperature and salinity.   
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Figure 16.  Cytotoxicity of Karenia brevis species at 20°C and 27ppt. 
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 Figure 17.  Cytotoxicity of Karenia brevis species at 20°C and 35ppt. 
 

 

At 25°C the toxicity of species of Karenia brevis was more obvious at 35 ppt.  

Species 718 and SP2 showed toxic responses that were not seen in cultures grown at 27 

ppt.  Similarly, for 20°C the toxic response of species was more pronounced at 35 ppt for 

718 and SP1.  SP1 showed significant increase in toxicity when compared to cultures 

grown at 27 ppt.  Interestingly, at this salinity (35ppt) NTSP3, TXB3, and TXB4 showed 

reduced toxicity when compared to cultures grown at 27ppt.  The 718 species showed 

toxic responses at two or more doses at all temperatures and salinities tested in this assay 

except at 25°C and 27ppt.  NTSP3 produced a toxic response at all temperatures and 

salinities tested in this assay.  SP1 elicited the most toxic response at 20°C and 35ppt, 

however there was not an obvious pattern for toxicity based on temperature or salinity 

for this species.  Similarly, SP2 elicited the most toxic response at 25°C and 35ppt, but 
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there was not an obvious correlation of toxicity with any one temperature or salinity.  

TXB3 showed the most toxic responses at 20 and 25°C when the salinity was held at 

27ppt.  This same species at higher salinity (35ppt) did not produce as significant a 

response.  Similarly, for TXB4 there was a toxic response observed when the 

temperature was held at 20°C and varying salinities, while at 25°C there was not a toxic 

response observed at either salinity tested.  TSP3 was the only species that did not elicit 

a toxic response at any of the salinities or temperatures tested. 

Chemical Analysis 

 The chemical analyses preformed in this study determined which species of 

brevetoxin were present in each of the cultures tested.  The MALDI-TOF technique 

detected brevetoxin species at femtamole quantities of molecules.  Although nine 

standard brevetoxins were scanned for in each of the cultured species only one 

brevetoxin was identified in the cultures, PBTX-2 (data not shown), using the MALDI-

TOF method.  There were not any other forms of brevetoxin detected.  Nor was 

brevenal, the brevetoxin inhibitor, detected in the cultured species.  PBTX-2 was 

detected only for the TXB4 culture at all temperatures and salinities.  NTSP3 (20°C and 

both 27 and 35ppt) had detectable amounts of PBTX-2 present.  SP2 at 20°C and 27ppt 

had detectable amounts of PBTX-2, however other variations of salinity and temperature 

did not yield any other species of brevetoxin or brevenal detectable in this method of 

analysis.  The chemical analyses did not correspond well with the observed cytotoxicity 

suggesting that PBTX was not the only contributor to overall toxicity.   
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 Data from the LC/MS method detected several other brevetoxin species present 

in the same cultures as were tested by the MALDI-TOF method as seen in Table 10.  

PBTX- 1, 2, 3, 7, 11, and brevenal were all detected in the cultures grown at varied 

temperature and salinity.  PBTX- 6, 9, and –ca were not detected in any of the cultures 

regardless of temperature or salinity.  Brevenal, the brevetoxin inhibitor was detected in 

all the cultures except SP1 grown at 25°C and 27ppt, SP2 and TSP3 grown at 20°C and 

27ppt, and SP2 grown at 20°C and 35ppt.   

Risk Assessment 

 A reference dose was calculated using the bioassay based no-observable-adverse-

effects-level (NOAEL) from cytotoxicity assay (2µg/ml) to calculate the risk due to 

inhalation of toxin aerosols in the beach environment.  The reference dose is adjusted 

using body weight and inhalation rate.  A reference dose was calculated based on the 

following equation: 

 

RfDB-Inh = NOAEL / (UF1 * UF2 * UF3 * MF)                          Eqn 4.1 

 

where NOAEL was 2000 mg/m3, the uncertainty factor UF1 is 10 for variations in 

population sensitivities, UF2 is 10 for extrapolation from animals to humans, UF3 is 10 

for using a subchronic NOAEL instead of a chronic NOAEL, and MF was a modifying 

factor (10) based on a qualitative professional assessment of the uncertainties in this 

study.  The scenario used in the risk assessment was a recreational exposure for adults 

and children.  The exposure factors used to calculate the risk are listed in Table 9.  The 
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concentration of PBTX-2 in air was assumed to be 2.7E-5 mg /m3 based on work 

reported by Cheng et. al (2005) which evaluated particle size distribution, concentration 

and toxic profile for PBTX in a beach environment.  This value was the highest daily 

mean observed during the previously mentioned study (Cheng, Y. S. et al., 2005).  The 

risk was calculated using the following equation: 

 

Risk =  [ EPC * IR *ET * EF * ED * FC/ ( BW * ATNC)] / RfDB-Inh                   Eqn 4.2 

 

where EPC is the expected concentration, IR is the ingestion rate, ET is the exposure 

time, ED is the exposure duration, FC is the fraction from the contaminated source, BW 

is the body weight, ATNC is the averaging time from non-carcinogens, and RfDB-Inh is the 

bioassay based reference dose for inhalation developed in this study (Table 9).   
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Table 9. Exposure factors used in HHRA. 
 

Adult 

Abbreviation Factor Value Units 

IR Inhalation Rate 0.833 m3/hour 
EF Exposure Frequency 56 days/year 
ED Exposure Duration 30 yr 
BW Body Weight 70 kg 

ATNC Averaging Time - Non-carcinogen 10950 days 
FC Fraction from Contaminated Source 1 unitless 

ET Exposure Time 6 hours/day 

Child 

Abbreviation Factor Value Units 

IR Inhalation Rate 0.5 m3/hour 
EF Exposure Frequency 56 days/year 
ED Exposure Duration 6 yr 
BW Body Weight 15 kg 

ATNC Averaging Time - Non-carcinogen 2190 days 
FC Fraction from Contaminated Source 1 unitless 

ET Exposure Time 6 hours/day 
 

Discussion 

Cytotoxicity Assays 

 Each of the tested clones has been reported to be capable of producing different 

forms of brevetoxin and are found in typical algal blooms in the Gulf of Mexico (Baden, 

D. G., 1989).  Each clone was evaluated in the bioassay and toxin profiles were 

examined.  It is known that brevetoxins exert their effects by interaction with voltage 

sensitive sodium channels in excitable membranes (Dickey, R. et al., 1999; Manger, R. 

L. et al., 1995; Manger, R. L. et al., 1993).  The brevetoxins responsible for NSP bind to 

a certain class of biological receptors namely to voltage-sensitive Na+ channels.  This 
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highly specific interaction with naturally occurring receptors forms the basis of this 

bioassay.  Detection is based on the functional activity of the toxin rather than on 

recognition of a structural component.  Moreover, the affinity of a toxin for its receptor 

is directly proportional to its toxic potency.  Thus, for a mixture of toxins (i.e. PBTX-2 

and PBTX-3), a receptor-based assay will yield a response representative of the 

integrated potencies of those toxins present (Cembella, A. D. et al., 1995).  This 

neuroblastoma cell assay cannot distinguish between individual brevetoxins (Hua, Y. et 

al., 1995).  Any modification to a toxin molecule that would alter its ability to bind to the 

receptor and thus its detection in a receptor-based assay, compromises its ability to elicit 

a toxic response.  Another consideration is the toxicity of other components in the 

cultures that could cause cytotoxicity.  The results from the bioassay analysis showed 

some toxicity even when brevetoxin was not detected in the culture (i.e. TXB3, Figures 

14, 15, 16).  Therefore, some other component caused cytotoxicity in the cells.   

 At a temperature of 25°C toxicity was observed in cultures SP1, NTSP3, and 

TXB4  when the salinity was 27ppt (Figures 14 and 15).  When the salinity was increase 

to 35ppt at this same temperature those cultures (SP1, NTSP3, and TXB4) showed a 

decrease in toxicity.  However, for the SP2 culture, toxicity increased at the higher 

salinity of 35ppt.  These results indicate that for the the species SP1, NTSP3, and TXB4 

the brevetoxin produced by these cultures was less at 35ppt.  For the SP2 culture, the 

increase in toxicity at 35 ppt would suggest that an increase in salinity could affect 

strains of Karenia brevis differently.  Therefore, in a bloom of mixed cultures there 
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could be different interactions due to temperature and salinity that affect the overall 

toxicity.    

 For cultures grown at 20°C, the species 718, SP1, and TXB4 showed an increase 

in toxicity at 35ppt when compared to 27ppt (Figure16 and 17).  At this temperature 

(20°C) there was more toxicity observed for cultures SP2, NTSP3, and TXB3 at 27ppt.  

These results indicate that the effects of temperature and salinity can be different 

depending on the different species of Karenia brevis.  The toxic effects of the same 

cultures were different at the temperatures and salinities in this study.  For the same 

cultures (SP1, NTSP3, and TXB4) at 25°C the toxicity decreased as salinity increased.  

However, at 20°C, as salinity increased the toxic response increased in some cases (718, 

SP1, and TXB4).  This would indicate a definite relationship between temperature and 

salinity that affects the amount of toxin produced.  Other researchers have shown 

differential physiologic effects with many of the natural toxins and their derivatives.  

Researchers have hypothesized that metabolism or modification of toxin structure 

modulates both the specific toxicity and potentially the molecular mechanism of toxic 

action (Baden, D. G. et al., 2005).  Similarly, the salinity and temperature could affect 

the specific toxicity or the mechanism of toxic action as seen in this study.   

 This assay was also run using two additional cell lines; Clone 9 rat liver cells 

(ATCC, CRL-1439, passage 17) and a human neuroblastoma cell line (ATCC, CRL-

2266, passage 23).  These two cell lines showed no toxic response to any of the cultures 

tested (data not shown).  The Clone 9 cell line and the human neuroblastoma cell lines 
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may not have sodium channels that are affected in the same manner as the mouse 

neuroblastoma cell line.  These toxins may not affect these two cell lines or the response 

was too low to detect given the sensitivity of the assay.   

 The cytotoxicity results were used to determine the NOAEL for those cultures 

with demonstrated toxic effects.  Nine brevetoxin standards (PBTX-1, 2, 3, 6, 7, 9, 11, -

ca, and brevenal) where analyzed for in each extracted culture.  A bioassay based 

reference dose for PBTX-2, the brevetoxin species detected in all of the cultures, to be 

used in human health risk assessment was developed using a NOAEL of 2µg toxin/ml.  

The NOAEL was derived from the results of the cytotoxicity assay dose response curves 

in this study.  HHRAs for non-carcinogens compare environmental exposure 

concentrations to a reference dose that is based on the NOAEL.   

Chemical Analysis 

 Analytical techniques for the identification of the brevetoxins and determining 

quantify the toxins are limited by availability of standards and the need for advanced 

analytical methods.  The MALDI-TOF method only identified PBTX-2 in some of the 

cultures examined.  Initial results using the LC/MS method revealed all except three 

(PBTX-6, -9, -ca) of the nine brevetoxin standards looked for to be present in some or all 

of the cultures (Table 10).  The brevetoxins identified for each of the algal species and 

their respective culture conditions are summarized in Table 10.  No distinct pattern of 

brevetoxin production based on temperature and salinity of these cultures was revealed.  

Temperature and salinity had no effect of the production of PBTX-6, -9, and –ca which 
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were not detected in any of the cultures (Table 10).  Similarly, temperature and salinity 

had no effect on the production of PBTX-2, one of the toxins found in all the cultures 

tested.  Brevenal was detected in all except four of the cultures tested (Table 10), yet 

there was observed toxicity in the cytotoxicity assay in these four cultures (Figures 14-

17).  Brevenal is supposed to be a natural inhibitor of brevetoxins.  That toxicity was 

observed in the presence of this blocking agent indicates that there is another compound 

or mechanism that is also eliciting toxicity in these cultures.  Initial results using this 

LC/MS method also revealed two unidentified peaks that are being further examined 

(data not shown).   

Risk Assessment 

 Karenia brevis produces brevetoxins that are readily aerosolized by wave action 

releasing the toxins into the air.  The most likely immediate route of exposure for 

humans is inhalation.  Similarities in the mechanism of toxic action of NSP and the 

inhalation of aerosolized brevetoxin justify the bioassay based reference dose for 

inhalation.  A reference dose was developed for an inhalation scenario to evaluate the 

risk to humans from the inhalation of aerosolized brevetoxins.  The reference dose for 

PBTX-2 aerosols was 0.0571 mg / kg-day, derived from the NOAEL divided by the 

appropriate uncertainty and modifying factors.  An estimated aerosol concentration of 

concentration of 2.7E-5 mg / m3 was used based on work done by Cheng et.al (2005).  

For an adult in a recreational setting the inhalation exposure scenario risk was estimated 

to be 5.17E-6 while that for a child was 1.45E-5.  Both estimates are well below the  
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Table 10.  Brevetoxin species identified by LC/MS in Karenia brevis cultures at various 
temperatures and salinities. 
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hazard index of 1.0 indicating that no adverse effects to humans at the concentration 

encountered in the evaluated scenario.  While this attempt at calculating the human 

health risk from exposures to aerosolized brevetoxin shows no risk at the concentration 

tested here, this is a first attempt at calculating a reference dose for these toxins.  The 

reference dose is traditionally calculated from a chronic animal study but the US 

Environmental Protection Agency (USEPA) has made provisions in the Risk 

Assessment Guidelines for Superfund (RAGS) to account for reference doses calculated 

from acute testing (USEPA, 1989).  The bioassay based reference dose for inhalation 

developed in this study does provide a first step at evaluating human health effects from 

something other than the current bed closure or tissue concentration guidelines set up for 

the ingestion route of exposure.   
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CHAPTER V 

CONCLUSIONS 

 By comparing the response of single PAH compounds and binary mixtures of 

PAHs, some insight was gained into how the structure of the compound can affect the 

carcinogenic process.  Structural differences can influence the carcinogenicity by simple 

effects on cellular uptake to metabolism and binding with critical proteins in the cell.  

We observed results that were not expected in some instances based on the bay region 

structure of some of the compounds.  Similarly, it was determined that compounds in 

mixtures affect each other producing a less than additive response (i.e. BAP mixed with 

5-methylchrysene); although additivity is a common assumption in the practice of risk 

assessment.  These responses reveal highly complex interactions that complicate 

predicting toxicity of PAHs or PAH mixtures. 

 Attempts to define toxicity of PAHs and PAH mixtures relative to BAP have 

been complicated by the fact that some carcinogenic PAHs are capable of both initiating 

and promoting tumors (ATSDR, 1990a).  Benzanthracene, chrysene, and BAP are 

reported to both initiate and promote (ATSDR, 1996).  The capability of these 

compounds to act via a distinct pathway to produce cancer results adds a great deal of 

uncertainty when attempting to predict toxicity based solely on responses in biological 

systems.  For this reason, the focus of this research was on three different assays each 

specific to a part of the carcinogenic process.  By evaluating a chemical’s response in 

each assay, an estimate of toxicity can be based on the observed response in each 

bioassay.  Taking into consideration the response of a chemical in each step of the 
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carcinogenic process (i.e. activation, initiation, and promotion), the mechanism, and 

toxic action of each chemical can be approximated.  Together these responses could be 

used to develop a bioassay based toxicity factor. 

 The lack of previous success in using a ranking system like TEFs or PPB for 

carcinogenic risk assessment of PAHs may be due to the complexity of behaviors 

exhibited among PAHs.  Success with the use of TEFs for dioxin-like compounds is due 

in part to toxicity being caused by a single, well-defined endpoint of AhR affinity.  The 

toxicity of PAHs and PAH mixtures may best be predicted by deriving a TEF or PPB    

from bioassays that measure specific toxic endpoints of the carcinogenic process while 

taking into consideration relevant physiochemical properties as well as structural 

properties of these compounds.  This study makes such estimates for PAHs using QSTR 

models that incorporate toxic responses for activation, initiation, and promotion stages of 

carcinogenesis, as well as structural properties of the compounds.  The predicted TEFs in 

this study provided a more precise estimate for PAH toxicity because they are based on 

specific toxic endpoints and are not order of magnitude estimates.  Using bioassay data 

and physiochemical properties to build QSTRs for classes of compounds which lack 

sufficient toxicity data will allow for more comprehensive risk assessments to be 

completed.  This method also reduces the time and expense of laboratory experiments 

for all the members of a class of chemicals. 

 This study developed QSTRs for three bioassays relating to specific endpoints 

important in the carcinogenic process for PAHs.  Application of QSTRs for assessing 

toxicity in a variety of bioassays can provide a reliable estimate of dose ranges for 
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animal testing and for toxicity factors for human health risk assessment.  QSTRs can 

also be used to prioritize costly and time intensive experimentation by predicting those 

compounds most likely to cause adverse effects.  There are limits to this approach for 

predicting toxicity from structure activity relationships.  It is important to train a QSAR 

model with chemicals within the same family and realize that the predictive power can 

only be applied within the family.  Also important is the quantity and diversity of the 

data used to create the model.  As much data as is available for each toxic endpoint 

should be used from as many compounds as possible from within the family.  The 

addition of more data to the training set for each bioassay will increase the explanatory 

and predictive power of each model.  Realizing the limitations of this procedure and 

carefully designing and training, the models can result in a robust QSTR that can lead to 

a more effective way to estimate toxicity and predict toxic response.  Using QSTRs 

developed from experimental data in this study allowed for a bioassay based TEF 

prediction.   

 Until this study, there has been insufficient data on which to base a human health 

risk assessment for brevetoxin exposure through an inhalation pathway.  Current risk 

management along the coasts of the Gulf of Mexico, is based on shellfish bed closures at 

5000 K. brevis  cells / liter with reopening based on determination of PBTX in shellfish 

at <80 µg/100 g.  Methods to develop a toxicity factor for these toxins were necessary to 

provide the basis of a risk assessment for brevetoxins.  Cell based detection methods for 

brevetoxins similar to the one used in this study provide a convenient method to evaluate 

biological activity of algal toxins.  Although in vitro methods cannot replace entirely the 
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data derived from animal studies, these methods do offer the potential to reduce cost, 

time, and the reliance upon animal testing.  This study employed a widely used 

cytotoxicity assay to predict an initial toxicity factor for one of the most prevalent forms 

of brevetoxin (PBTx-2).  The reference dose developed is a first attempt that provides a 

starting point for predicting human health effects from aerosolized brevetoxins.   

 Effects of the various exposure routes on humans are difficult to assess because 

toxicity data for brevetoxins are limited.  There are some acute studies in mice and data 

from poisoning cases in humans and (marine) mammals that are available but data on 

acute dermal and inhalation studies are lacking.  In addition, analytical reference 

materials are important to further develop and improve the analytical methodology and 

to allow analytical quality assurance.  Currently, varieties of obstacles stand in the way 

of reliable assessment of brevetoxin occurrence and exposure and thus the establishment 

of meaningful regulations.  In this study a bioassay based RfD was developed for PBTX-

2 and an initial HHRA was done to estimate the risk associated with exposure to inhaled 

aerosolized brevetoxin.  The developed RfD was used to calculate a non-carcinogenic 

risk for adults and children in a recreational scenario.  Using the developed RfD, the 

result observed was that there was no risk due to the inhaled aerosolized brevetoxin for 

the concentration used in this scenario.  This RfD was a bioassay based reference dose 

however, it provides an initial estimate to complete a HHRA. 

Risk assessment in general is a science that can be improved upon for many 

classes of chemicals.  Chemical analysis, bioassays, and QSARs can be used to improve 

the reliability and reduce the uncertainty in a risk assessment.  The combination of these 



   110

techniques to develop improved methods of toxicity assessment is a promising avenue 

for those classes of chemicals that are currently lacking sufficient toxicity data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   111

REFERENCES 

 

Abraham, M. H., Autenrieth, R., and Dimitriou-Christidis, P. 2005a. The estimation of 
physicochemical properties of methyl and other alkyl naphthalenes. J Environ 
Monit 7 (5):445-9. 

 
Abraham, W. M., Bourdelais, A. J., Ahmed, A., Serebriakov, I., and Baden, D. G. 

2005b. Effects of inhaled brevetoxins in allergic airways: toxin-allergen 
interactions and pharmacologic intervention. Environ. Health Perspect. 113 
(5):632-7. 

 
AccelrysSoftwareInc. 2005. Cerius2, Release 4.10. 
 
Afghan, BK, and Chu, ASY. 1989. Analysis of Trace Organics in the Aquatic 

Environment. Boca Rotan, FL: CRC Press Inc. 
 
Ames, B. N., McCann, J., and Yamasaki, E. 1975a. Methods for detecting carcinogens 

and mutagens with the Salmonella/mammalian-microsome mutagenicity test. 
Mutat. Res. 31 (6):347-64. 

 
Ames, B. N., McCann, J., and Yamasaki, E. 1975b. Proceedings: carcinogens are 

mutagens: a simple test system. Mutat. Res. 33 (1 Spec No):27-8. 
 
Analogues, Committee on Pyrene and Selected, and Hazards, Board on Toxicology and 

Environmental Health. 1983. Polycyclic Aromatic Hydrocarbons - Evaluation of 
Sources and Effects, ed. Academies, T. N. Washington, DC: National Academies 
Press. 

 
Ashurst, S. W., Cohen, G. M., Nesnow, S., DiGiovanni, J., and Slaga, T. J. 1983. 

Formation of benzo(a)pyrene/DNA adducts and their relationship to tumor 
initiation in mouse epidermis. Cancer Res. 43 (3):1024-9. 

 
ATSDR. 1990a. Toxicological Profile for Polycyclic Aromatic Hydrocarbons, United 

States Department of Health and Human Services. Atlanta, GA: ATSDR/TP-
Draft. 

 
ATSDR. 1990b. Toxicological Profile for Benzo(a)pyrene, United States Department of 

Health and Human Services, Atlanta, GA: ATSDR/TP-88/04. 
 
ATSDR. 1996. ToxFAQs: Polycyclic Aromatic Hydrocarbons (PAHs): United States 

Department of Health and Human Services, Public Health Services, Atlanta, GA. 
 



   112

ATSDR. 2006. CERCLA List of Priority  Hazardous Substances. United States 
Department of Health and Human Services 2005 [cited February 8 2006]. 
Available from http://www.atsdr.cdc.gov/cercla/. 

 
Aune, T. 1997. Health effects associated with algal toxins from seafood. Arch. Toxicol. 

Suppl. 19:389-97. 
 
Baden, D. G. 1989. Brevetoxins: unique polyether dinoflagellate toxins. FASEB J. 3 

(7):1807-17. 
 
Baden, D. G., Bourdelais, A. J., Jacocks, H., Michelliza, S., and Naar, J. 2005. Natural 

and derivative brevetoxins: historical background, multiplicity, and effects. 
Environ. Health Perspect. 113 (5):621-5. 

 
Barata, C., Calbet, A., Saiz, E., Ortiz, L., and Bayona, J. M. 2005. Predicting single and 

mixture toxicity of petrogenic polycyclic aromatic hydrocarbons to the copepod 
Oithona davisae. Environ. Toxicol. Chem. 24 (11):2992-9. 

 
Barhoumi, R., Bowen, J. A., Stein, L. S., Echols, J., and Burghardt, R. C. 1993. 

Concurrent analysis of intracellular glutathione content and gap junctional 
intercellular communication. Cytometry 14 (7):747-756. 

 
Barhoumi, R., Mouneimne, Y., Ramos, K.S., Safe, S. H., Phillips, T. D., Centonze, V., 

Ainley, C, Gupta, M.S., and Burghardt, R. C. 2000. Analysis of benzo(a)pyrene 
partitioning and cellular homeostasis in a rat liver cell line. Toxicol. Sci. 53:264-
270. 

 
Basu, N., Billiard, S., Fragoso, N., Omoike, A., Tabash, S., Brown, S., and Hodson, P. 

2001. Ethoxyresorufin-O-deethylase induction in trout exposed to mixtures of 
polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem. 20 (6):1244-51. 

 
Baum, E.J. 1978. Occurance and Surveillance of Polycyclic Aromatic Hydrocarbons. In 

Polycyclic Aromatic Hydrocarbons and Cancer, eds. Gelboin, H. V. and Tso, P. 
O. P. pp. 45-70. New York: Academic Press. 

 
Benson, J. M., Tischler, D. L., and Baden, D. G. 1999. Uptake, tissue distribution, and 

excretion of brevetoxin 3 administered to rats by intratracheal instillation. J 
Toxicol Environ Health A 57 (5):345-55. 

 
Bersohn, M. 1983. A fast algorithm for calculation of the distance matrix. J. Comput. 

Chem. 4:110-113. 
 



   113

Blaha, L, Kapplova, P, BVondracek, J, Upham, B., and Machala, M. 2002. Inhibiton of 
gap junctional intercellular communication by environmentally occuring  
polycyclic aromatic hydrocarbons. Toxicol. Sci. 65:43-51. 

 
Bonchev, D. 1983. Information theoretic indices for characterization of chemical 

structures. In Chemometrics Series, ed. Bawden, D. D. pp. 5-21. New York: 
Research Studies Press Ltd. 

 
Bonchev, D., Mekenyan, O., and Trinajstic, N. 1981. Isomer discrimination by 

topological information approach. J. Comput. Chem. 2:127-148. 
 
Bostrom, C.E., Gerde, P, Hanberg, A, Jernstrom, B, Johansson, C, Kyrklund, T, Rannug, 

A, Tornqvist, M, Victorin, K, and Westerholm, R. 2002. Cancer risk assessment 
indicators, and guidlines for polycyclic aromatic hydrocarbons in the ambient air. 
Environ. Health Perspect. 110 (3):451-488. 

 
Braga, R. S., Barone, P. M. V. B., and Galvao, D. S. 2000. Identifying carcinogenic 

activity of methylated and non-methylated polycyclic aromatic hydrocarbons 
(PAHs) through electronic and topological indices. Braz. J. Phys. 30 (3):560-568. 

 
Brunstrom, B., Broman, D., and Naf, C. 1991. Toxicity and EROD-inducing potency of 

24 polycyclic aromatic hydrocarbons (PAHs) in chick embryos. Arch. Toxicol. 
65 (6):485-9. 

 
 
Catterall, W. A., and Risk, M. 1981. Toxin T4(6) from Ptychodiscus brevis (formerly 

Gymnodinium breve) enhances activation of voltage-sensitive sodium channels 
by veratridine. Mol. Pharmacol. 19 (2):345-8. 

 
Cembella, A.D., Milenkovic, L., Doucette, G., and Fernandez, M. 1995. In vitro 

biochemical and cellular assays. In Manual on Harmful Marine Microalgae, eds. 
Hallegraeff, G. M., Anderson, D. M. and Cembella, A. D. pp. 1-82. New York: 
UNESCO. 

 
Cheng, Y. S., Zhou, Y., Irvin, C. M., Pierce, R. H., Naar, J., Backer, L. C., Fleming, L. 

E., Kirkpatrick, B., and Baden, D. G. 2005. Characterization of marine aerosol 
for assessment of human exposure to brevetoxins. Environ. Health Perspect. 113 
(5):638-43. 

 
Chu, K.C., Patel, K.M., Lin, A.H., Tarone, R.E., Linhart, M.S., and Dunkel, V.C. 1981. 

Evaluating statistical analysis and reproducibility of microbial mutagenicity 
assays. Mutat. Res. 85:119-132. 

 



   114

Couch, D.B. 1996. Carcinogenesis: basic principles. In Toxicology and Risk Assessment: 
Principles, Methods and Application, eds. Fan, A. M. and Chang, L. W. pp. 9-24. 
New York: Marcel-Dekker. 

 
Dabestani, R, and Ivanov, IN. 1999. A compilation of physical, spectroscopic and 

photophysical properties of polycyclic aromatic hydrocarbons. Photochem. 
Photobiol. 70 (1):10-34. 

 
Debnath, AK. 2001. Quantitative Structure-Activity Relationship (QSAR) paradigm - 

Hansch era to new millennium. Mini Rev Med Chem 1:187-195. 
 
Dickey, R., Jester, E., Granade, R., Mowdy, D., Moncreiff, C., Rebarchik, D., Robl, M., 

Musser, S., and Poli, M. 1999. Monitoring brevetoxins during a Gymnodinium 
breve red tide: comparison of sodium channel specific cytotoxicity assay and 
mouse bioassay for determination of neurotoxic shellfish toxins in shellfish 
extracts. Nat. Toxins 7 (4):157-65. 

 
Donnelly, K. C., Lingenfelter, R., Cizmas, L., Falahatpisheh, M. H., Qian, Y. C., Tang, 

Y., Garcia, S., Ramos, K., Tiffany-Castiglioni, E., and Mumtaz, M. M. 2004. 
Toxicity assessment of complex mixtures remains a goal. Environmental 
Toxicology and Pharmacology 18 (2):135-141. 

 
El-Alawi, Y. S., Huang, X. D., Dixon, D. G., and Greenberg, B. M. 2002. Quantitative 

structure-activity relationship for the photoinduced toxicity of polycyclic 
aromatic hydrocarbons to the luminescent bacteria Vibrio fischeri. Environ. 
Toxicol. Chem. 21 (10):2225-32. 

 
Falahatpisheh, M., Kerzee, J., Metz, R., Donnelly, K., and Ramos, K. 2004. Inducible 

cytochrome P450 activities in renal glomerular mesangial cells: biochemical 
basis for antagonistic interactions among nephrocarcinogenic polycyclic aromatic 
hydrocarbons. J Carcinog 3 (1):12. 

 
Feron, V. J., Groten, J. P., Jonker, D., Cassee, F. R., and vanBladeren, P. J. 1995. 

Toxicology of chemical mixtures: Challenges for today and the future. 
Toxicology 105 (2-3):415-427. 

 
Feron, V. J., Woutersen, R. A., Arts, J. H. E., Cassee, F. R., Devrijer, F., and 

Vanbladeren, P. J. 1995. Safety evaluation of the mixture of chemicals at a 
specific workplace - theoretical considerations and a suggested 2-step procedure. 
Toxicol. Lett. 76 (1):47-55. 

 
Fleming, L. E., Easom, J., Baden, D., Rowan, A., and Levin, B. 1999. Emerging harmful 

algal blooms and human health: Pfiesteria and related organisms. Toxicol. 
Pathol. 27 (5):573-81. 



   115

 
Fleming, L. E., Kirkpatrick, B., Backer, L. C., Bean, J. A., Wanner, A., Dalpra, D., 

Tamer, R., Zaias, J., Cheng, Y. S., Pierce, R., Naar, J., Abraham, W., Clark, R., 
Zhou, Y., Henry, M. S., Johnson, D., Van De Bogart, G., Bossart, G. D., 
Harrington, M., and Baden, D. G. 2005. Initial evaluation of the effects of 
aerosolized Florida red tide toxins (brevetoxins) in persons with asthma. Environ. 
Health Perspect. 113 (5):650-7. 

 
Friedman, J.H. 1991. Multivariate adaptive regression splines (with discussion). App. 

Statistics 19:1-141. 
 
Geacintov, N. E. 1986. Is intercalation a critical factor in the covalent binding of 

mutagenic and tumorigenic polycyclic aromatic diol epoxides to DNA? 
Carcinogenesis 7 (5):759-66. 

 
Gombar, V.A. 1998. Quantitative Structure-Activity Relationships in Toxicology: From 

Fundamentals to Applications. In Advances in Molecular Toxicology. pp. 125-
139. St. Louis: Elsevier. 

 
Government Accountability Office (GAO). 1994. Toxic Substances Control Act: 

Preliminary Observations on Legislative Changes to Make TSCA More 
Effective: Testimony. In GAO/T-RCED-94-263. 

 
Govers, H., Ruepert, C., and Aiking, H. 1984. Quantitative Structure Activity 

Relationships for polycyclic aromatic-hydrocarbons - Correlation between 
molecular connectivity, physicochemical properties, bioconcentration and 
toxicity in Daphnia-Pulex. Chemosphere 13 (2):227-236. 

 
Groten, J. P., Feron, V. J., and Suhnel, J. 2001. Toxicology of simple and complex 

mixtures. Trends Pharmacol. Sci. 22 (6):316-322. 
 
Guerin, M.R. 1978. Energy Sources of Polycyclic Aromatic  Hydrocarbons In Polycyclic 

Hydrocarbons and Cancer, eds. Gelboin, H. V. and Tso, P. O. P. pp. 3-44. New 
York: Academic Press. 

 
Guillard, and Hargraves. 1993. Stichochrysis immobilis is a diatom, not a chrysophyte. 

Phycologia 32:234-236. 
 
Hallegraeff, G.M. 1993. A review of harmful algal blooms and their apparent increase. 

Phycologia 32:79-99. 
 
Harvey, R.G. 1991. Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity. 

Cambridge, MA: Cambridge University Press. 
 



   116

Harvey, R.G. 1997. Polycyclic Aromatic Hydrocarbons. New York: Wiley-VCH. 
 
Henschler, D. 1996. Risk in environmental and health protection - Identification, 

assessment, and management. Interdisciplinary Science Reviews 21 (4):324-335. 
 
Hill, T.L. 1960. Introduction to Statistical Thermodynamics,. Boston, MA: Addison 

Wesley Reading. 
 
Hong, H., Tong, W., Fang, H., Shi, L., Xie, Q., Wu, J., Perkins, R., Walker, J. D., 

Branham, W., and Sheehan, D. M. 2002. Prediction of estrogen receptor binding 
for 58,000 chemicals using an integrated system of a tree-based model with 
structural alerts. Environ. Health Perspect. 110 (1):29-36. 

 
Hua, Y., Lu, W., Henry, M.S., Pierce, R.H., and Cole, R.B. 1995. On-line high-

performance liquid chromatography-electrospray ionization mass spectrometry 
for the determination of brevetoxins in “Red Tide” algae. Anal. Chem. 67:1815-
1823. 

 
IARC(International Agency for Research on Cancer). 1983. Certain Polycyclic Aromatic 

Hydrocarbons and Heterocyclic Compounds. Monographs on the Evaluation of 
Carcinogenic Risk of the Chemical to Man. Vol. 3. Lyon, France 

 
Katritzky, A. R., and Gordeeva, E. V. 1993. Traditional topological indices vs. 

electronic, geometrical, and combined molecular descriptors in QSAR/QSPR 
research. J. Chem. Inf. Comput. Sci. 33:835-857. 

 
Kennedy, S.W., and Jones, S.P. 1994. Simultaneuos measurement of cytochrome 

P4501A catalytic acitivity and total protein concnetration with a fluorescence 
plate reader. Anal. Biochem. 222:217-223. 

 
Kier, L. B. 1990. An electrotopological-state index for atoms in molecules. Pharm. Res. 

7 (8):801-7. 
 
Kier, L. B., and Hall, L. H. 1991. An index of electrotopological state of atoms in 

molecules. J. Math. Chem 7:229. 
 
Koenemann, H. 1981. Quantitative structure-activity relationships in fish toxicity studies 

1. Relationship for 50 industrial pollutants. Toxicology 19:209-211. 
 
Krutovskikh, V., Mazzoleni, G., Mironov, N., Omori, Y., Aguelon, A. M., Mesnil, M., 

Berger, F., Partensky, C., and Yamasaki, H. 1994. Altered homologous and 
heterologous gap-junctional intercellular communication in primary human liver 
tumors associated with aberrant protein localization but not gene mutation of 
connexin 32. Int. J. Cancer 56 (1):87-94. 



   117

 
Lewis, D. F. V., and Parke, D. V. 1995. The genotoxicity of benzanthracenes - a 

Quantitative Structure-Activity Study. Mutation Research-Fundamental and 
Molecular Mechanisms of Mutagenesis 328 (2):207-214. 

 
Manger, R. L., Leja, L. S., Lee, S. Y., Hungerford, J. M., Hokama, Y., Dickey, R. W., 

Granade, H. R., Lewis, R., Yasumoto, T., and Wekell, M. M. 1995. Detection of 
sodium-channel toxins - directed cytotoxicity assays of purified ciguatoxins, 
brevetoxins, saxitoxins, and seafood extracts. Journal of AOAC International 78 
(2):521-527. 

 
Manger, R. L., Leja, L. S., Lee, S. Y., Hungerford, J. M., and Wekell, M. M. 1993. 

Tetrazolium-based cell bioassay for neurotoxins active on voltage-sensitive 
sodium-channels - Semiautomated assay for saxitoxins, brevetoxins, and 
ciguatoxins. Anal. Biochem. 214 (1):190-194. 

 
Maple, J.R., Hwang, M.J., Stockfish, T.P., Dinur, U., Waldman, M., Ewig, C.S., and 

Hagler, A.T. 1994. Derivation of class II force fields. 1. Methodology and 
quantumforce field for the alkyl functional group and alkane molecules. J. 
Comput. Chem. 15:162-182. 

 
McCann, J., and Ames, B. N. 1976. Detection of carcinogens as mutagens in the 

Salmonella/microsome test: assay of 300 chemicals: discussion. Proc. Natl. 
Acad. Sci. U. S. A. 73 (3):950-4. 

 
McCann, J., Choi, E., Yamasaki, E., and Ames, B. N. 1975. Detection of carcinogens as 

mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc. Natl. 
Acad. Sci. U. S. A. 72 (12):5135-9. 

 
Miller, EC, and Miller, JA. 1971. Chemical Mutagens: Principles and Methods for their 

detection. ed. Hollaender, A. Vol. 1. New York: Plenum Press. 
 
Moslen, M.T. 1996. Toxic Response of the Liver. In Caserett and Doull's Toxicology: 

The Basic Science of Poisons, eds. Klaassen, C. D., Amdur, M. O. and Doull, J. 
pp. 403-416. New York: McGraw Hill. 

 
Muller, W.R. 1987. An algorithm for construction of the molecular distance matrix. J. 

Comput. Chem. 8:170-173. 
 
Nisbet, I.C.T , and LaGoy, P.K. 1992. Toxic equivalency factors for polycyclic aromatic 

hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 16:290-300. 
 



   118

Parkinson, A. 1996. Biotransformation of Xenobiotics. In Casarett and Doull's 
Toxicology: The Basic Science of Poisons, eds. Klaassen, C. D., Amdur, M. O. 
and Doull, J. pp. 113-186. New York: McGraw Hill. 

 
Petrulis, J. R., Chen, G., Benn, S., LaMarre, J., and Bunce, N. J. 2001. Application of the 

ethoxyresorufin-O-deethylase (EROD) assay to mixtures of halogenated aromatic 
compounds. Environ Toxicol 16 (2):177-84. 

 
Pierce, R. H. 1986. Red tide (Ptychodiscus brevis) toxin aerosols: a review. Toxicon 24 

(10):955-65. 
 
Pierce, R., Henry, M., Blum, P., and Payne, S. 2001. Gymnodinium breve Toxins 

without Cells:  Intra-Cellular and Extra-Cellular Toxins. In Harmful Algal 
Blooms:  Proceedings of the Ninth International Conference on Harmful Algal 
Blooms, at Hobart, Australia. pp.421-424. 

 
Pitot, H.C., and Dragan, Y.P. 1996. Chemical Carcinogenesis. In Casarett and Doull's 

Toxicology: The Basic Science of Poisons, eds. Klaassen, C. D., Amdur, M. O. 
and Doull, J. pp. 201-267. New York: McGraw Hill. 

 
Plakas, S. M., El Said, K. R., Jester, E. L. E., Granade, H. R., Musser, S. M., and 

Dickey, R. W. 2002. Confirmation of brevetoxin metabolism in the Eastern 
oyster (Crassostrea virginica) by controlled exposures to pure toxins and to 
Karenia brevis cultures. Toxicon 40 (6):721-729. 

 
Poli, M. A., Musser, S. M., Dickey, R. W., Eilers, P. P., and Hall, S. 2000. Neurotoxic 

shellfish poisoning and brevetoxin metabolites: a case study from Florida. 
Toxicon 38 (7):981-93. 

 
Purcell, W.P., Bass, G.E., and Clayton, J.M. 1973. Strategy of Drug Design: A Guide to 

Biological Activity. New York: John Wiley and Sons Inc. 
 
Rabinowitz, J., Little, S., and Brown, K. 2002. Why does 5-methylchrysene interact with 

DNA as both a planar and a nonplanar polycyclic aromatic hydrocarbon? 
Quantum Mechanical Studies. Int. J. Quantum Chem. 88:99-106. 

 
Radwan, F. F., and Ramsdell, J. S. 2006. Characterization of in vitro oxidative and 

conjugative metabolic pathways for brevetoxin (PbTx-2). Toxicol. Sci. 89 (1):57-
65. 

 
Ramos, K.S., Chacon, E, and Acosta, D. 1996. Toxic Responses of the Heart and 

Vascular Systems. In Casarett and Doull's Toxicology: The Basic Science of 
Poisons, eds. Klaassen, C. D., Amdur, M. O. and Doull, J. pp. 487-528. New 
York: McGraw Hill. 



   119

 
Reeves, W. R., Barhoumi, R., Burghardt, R. C., Lemke, S. L., Mayura, K., McDonald, 

T. J., Phillips, T. D., and Donnelly, K. C. 2001. Evaluation of methods for 
predicting the toxicity of polycyclic aromatic hydrocarbon mixtures. Environ. 
Sci. Technol. 35 (8):1630-1636. 

 
Rein, K.S., Lynn, B., Gawley, R.E., and Baden, D.G. 1994. Chemical modifications, 

synaptosome binding, toxicity, and an unexpected conformational effect. J. Org. 
Chem. 59:2107-2113. 

 
Rodriguez, L.V., Dunsford, H.A., Steinburg, M, Chaloupka, K.K., Zhu, L., Safe, S. H., 

Womack, J.E., and Goldstein, L.S. 1997. Carcinogenicity of benzo(a)pyrene and 
manufactured gas plant residues in infant mice. Carcinogenesis 21:1671-1676. 

 
Rogers, D., and Hopfinger, A.J. 1994. Application of genetic function approximation to 

quantitative structure-activity relationships and quantitative structure-property 
relationships. J. Chem. Inf. Comput. Sci. 34:854-866. 

 
Rohrbaugh, R. H., and Jurs, P. C. 1987. Descriptions of molecular shape applied in 

studies of structure/activity and structure/property relationships. Anal. Chim. 
Acta 199:99-109. 

 
Roy, D. R., Sarkar, U., Chattaraj, P. K., Mitra, A., Padmanabhan, J., Parthasarathi, R., 

Subramanian, V., Van Damme, S., and Bultinck, P. 2006. Analyzing toxicity 
through electrophilicity. Mol. Divers. 10 (2):119-31. 

 
Rummel, AM, Trosko, JE, Wilson, MR, and Upham, BL. 1999. Polycyclic aromatic 

hydrocarbons with bay-like regions inhibited gap junctional intercellular 
communication and stimulated MAPK activity. Toxicol. Sci. 49 (2):232-240. 

 
Safe, S. 2001. Molecular biology of the Ah receptor and its role in carcinogenesis. 

Toxicol. Lett. 120 (1-3):1-7. 
 
Safe, S. H. 1990. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), 

dibenzofurnas (PCDFs): Environmental and mechanistic considerations that 
support the development of toxic equivalency factors (TEFs). Crit. Rev. Toxicol. 
21:51-88. 

 
Schoeny, R, Muller, P, and Mumford, J. 1998. Risk Assessment for Human Health 

Protection - Applications to Environmental Mixtures. In Pollution Risk 
Assessment and Management, ed. Douben, P.E.T. pp. 51-83. Chichester, 
England: John Wiley & Sons Ltd. 

 



   120

Shappell, N. W., Carlino-MacDonald, U., Amin, S., Kumar, S., and Sikka, H. C. 2003. 
Comparative metabolism of chrysene and 5-methylchrysene by rat and rainbow 
trout liver microsomes. Toxicol. Sci. 72 (2):260-6. 

 
Sims, P, Grover, P.L., Swaisland, A, Pal, K, and Hewer, A. 1974. Metabolic activation 

of benzo(a)pyrene proceeds by a diol-epoxide. Nature 252:326-328. 
 
Singer, B., and Grunberger, D. 1983. Molecular Biology of Mutagens and Carcinogens. 

New York: Plenum Press. 
 
Stanton, D. T., Dimitrov, S., Grancharov, V., and Mekenyan, O. G. 2002. Charged 

partial surface area (CPSA) descriptors QSAR applications. SAR QSAR Environ. 
Res. 13 (2):341-51. 

 
Stanton, D.T., and Jurs, P.C. 1990. Development and use of charge partial surface area 

structural descriptors in computer-assisted Quantitative Structure-Property 
Relationship studies. Anal. Chem. 62:2323-2329. 

 
Szklarz, G.D., and Paulsen, M.D. 2002. Molecular modeling of cytochrome P450 1A1: 

enzyme-substrate interactions and substrate binding affinities. J. Biomol. Struct. 
Dyn. 20 (2):155-162. 

 
Till, M., Riebniger, D, Schmitz, H.J., and Schrenk, D. 1999. Potency of various 

polycyclic aromatic hydrocarbons as inducers of CYP1A1 in rat hepatocyte 
cultures. Chem.-Biol. Interact. 117:135-150. 

 
Trosko, J. E., Chang, C. C., Upham, B., and Wilson, M. 1998. Epigenetic toxicology as 

toxicant-induced changes in intracellular signalling leading to altered gap 
junctional intercellular communication. Toxicol. Lett. 102-103:71-8. 

 
Trosko, J. E., and Ruch, R. J. 1998. Cell-cell communication in carcinogenesis. Front. 

Biosci. 3:d208-36. 
 
Upham, B. L., Masten, S. J., Lockwood, B. R., and Trosko, J. E. 1994. Nongenotoxic 

effects of polycyclic aromatic-hydrocarbons and their ozonation by-products on 
the intercellular communication of rat-liver epithelial-cells. Fundam. Appl. 
Toxicol. 23 (3):470-475. 

 
Upham, B., Weis, L. M., Rummel, A. M., Masten, S. J., and Trosko, J. E. 1996. The 

effects of anthracene and methylated anthracenes on gap junction intercelluar 
communication in rat liver epithelial cells. Fundam. Appl. Toxicol. 34:260-264. 

 



   121

Upham, B.L., Weis, L.M., and Trosko, J.E. 1998. Modulated gap-junctional intercellular 
communication as a biomarker of PAH epigenetic toxicity. Environ. Health 
Perspect. 106: Suppl 4:975-81. 

 
USEPA. 1986. Guidelines for the Health Risk Assessment of Chemical Mixtures. Office 

of Research and Development, Washington, DC. 
 
USEPA. 1989. Risk Assessment Guidance For Superfund (RAGS), Volume 1 - Human 

Health Evaluation Manual, Part A. Interim Final Office of Emergency and 
Remedial Response, Washington, DC (EPA/540/1-89/002). 

 
USEPA. 1993. Provisional Guidance for Quantitative Risk Assessment of Polycyclic 

Aromatic Hydrocarbons: Office of Research and Development, Washington, DC. 
 
USEPA. 2000. Supplementary Guidance for Conducting Health Risk Assessment of 

Chemical Mixtures. Office of Research and Development, Washington, DC. 
 
USEPA. 2006a. RCRA Online. Office of Solid Waste 2005 [accessed February 8 2006]. 

http://www.epa.gov/rcraonline/. 
 
USEPA. 2006b. CERCLA Overview. [accessed February 8]. 

http://www.epa.gov/superfund/action/law/cercla.htm. 
 
USEPA. 2006c. Substance File - Benzo(a)pyrene. Integrated Risk Information File 

(IRIS) [accessed February 8 2006] http://www.epa.gov/iris/subst/0136.htm. 
 
USEPA. 2006d. Introduction to the HRS [accessed February 8 2006] 

http://www.epa.gov/superfund/programs/npl_hrs/hrsint.htm. 
 
Van Dolah, F. M. 2000. Marine algal toxins: origins, health effects, and their increased 

occurrence. Environ. Health Perspect. 108 Suppl 1:133-41. 
 
Versar, Inc., BR, Stern, and Associates. 2002. Peer Consultation Workshop on 

Approches to Polycyclic Aromatic Hydrocarbon (PAH) Health Assessment. 
National Center for Environmental Assessment. Office of Research and 
Development, Washington, DC (EPA/635/R-02/005). 

 
Votano, J. R., Parham, M., Hall, L. H., and Kier, L. B. 2004. New predictors for several 

ADME/Tox properties: aqueous solubility, human oral absorption, and Ames 
genotoxicity using topological descriptors. Mol. Divers. 8 (4):379-91. 

 
Vyas, K. P., Levin, W., Yagi, H., Thakker, D. R., Ryan, D. E., Thomas, P. E., Conney, 

A. H., and Jerina, D. M. 1982. Stereoselective metabolism of the (+)- and (-)-



   122

enantiomers of trans-1,2-dihydroxy-1,2-dihydrochrysene to bay-region 1,2-diol-
3,4-epoxide diastereomers by rat liver enzymes. Mol. Pharmacol. 22 (1):182-9. 

 
Vyas, K. P., Thakker, D. R., Levin, W., Yagi, H., Conney, A. H., and Jerina, D. M. 

1982. Stereoselective metabolism of the optical isomers of trans-1,2-dihydroxy-
1,2-dihydrophenanthrene to bay-region diol epoxides by rat liver microsomes. 
Chem. Biol. Interact. 38 (2):203-13. 

 
Warshawsky, D., and Landolph, J.R., eds. 2006. Molecular Carcinogenesis and the 

Molecular Biology of Human Cancer. Boca Raton, FL: CRC Press. 
 
Watters, M. R. 1995. Organic neurotoxins in seafoods. Clin. Neurol. Neurosurg. 97 

(2):119-24. 
 
Weis, L. M., Rummel, A. M., Masten, S. J., Trosko, J. E., and Upham, B. L. 1998. Bay 

or baylike regions of polycyclic aromatic hydrocarbons were potent inhibitors of 
gap junctional intercellular communication. Environ. Health Perspect. 106 
(1):17-22. 

 
Winkler, D. A., and Burden, F. R. 2004. Modelling blood-brain barrier partitioning using 

Bayesian neural nets. J. Mol. Graph. Model. 22 (6):499-505. 
 
Yamasaki, H. 1995. Non-geneotoxic mechanisms of carcinogenesis: studies of cell 

transformation and gap junctional intercellular communication. Toxicol. Lett. 
77:55-61. 

 
Zeiger, E. 1998. Identification of rodent carcinogens and noncarcinogens using genetic 

toxicity tests: premises, promises, and performance. Regul. Toxicol. Pharmacol. 
28 (2):85-95. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 



   123

APPENDIX A 
 
 

GJIC Statistical Analysis 
 

Error             
  10uM 5uM 2uM 1uM 0.5uM DMSO 
5-MethylChrysene 0.002926 0.003118 0.003048 0.003722 0.004146 0.004659
Anthracene 0.007044 0.01282 0.009483 0.008985 0.005957 0.004659
Benz(a)anthracene 0.00389 0.007859 0.006742 0.00235 0.003743 0.004659
BAP 0.001696 0.003048 0.005957 0.01282 0.007235 0.004659
Chrysene 0.003838 0.00643 0.004511 0.000972 0.002487 0.004659
Phenanthrene 0.01143 0.007235 0.003582 0.00238 0.002406 0.004659

 
 

Error             
  10uM 5uM 2uM 1uM 0.5uM DMSO
BAP(10uM)/Chrysene 0.0137 0.0119 0.0161 0.01421 0.0045 0.0081
Chrysene(10uM)/BAP 0.011 0.01266 0.008 0.00374 0.00309 0.0081
BAP(10uM)/5-
Methylchrysene 0.0056 0.00159 0.0013 0.00453 0.00794 0.0081

5-
Methylchrysene(10uM)/BAP 0.0026 0.00187 0.0005 0.00105 0.00284 0.0081
Chrysene 0.0016 0.00132 0.0045 0.00794 0.01421 0.0081
5-MethylChrysene 0.011 0.01266 0.008 0.00374 0.00453 0.0081
BAP 0.0011 0.00284 0.0081 0.01421 0.0045 0.0081

 
 

EROD Statistics 
BAP 

  
Mean 436.4652
Standard Error 8.930544
Median 447.56
Mode #N/A 
Standard Deviation 65.62583
Sample Variance 4306.749
Kurtosis -0.49572
Skewness -0.37711
Range 255.51
Minimum 306.14
Maximum 561.65
Sum 23569.12
Count 54
Largest(1) 561.65
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Smallest(1) 306.14
Confidence 
Level(95.0%) 17.9124

 
Phen 

  
Mean 417.9332
Standard Error 6.35214
Median 404.01
Mode #N/A 
Standard Deviation 44.91641
Sample Variance 2017.484
Kurtosis -0.00619
Skewness 1.01274
Range 164.69
Minimum 364.58
Maximum 529.27
Sum 20896.66
Count 50
Largest(1) 529.27
Smallest(1) 364.58
Confidence 
Level(95.0%) 12.7651

 
5-MC 

  
Mean 369.1677
Standard Error 7.208234
Median 372.04
Mode #N/A 
Standard Deviation 42.64448
Sample Variance 1818.552
Kurtosis -0.89621
Skewness 0.017192
Range 156.46
Minimum 311.08
Maximum 467.54
Sum 12920.87
Count 35
Largest(1) 467.54
Smallest(1) 311.08
Confidence 
Level(95.0%) 14.64889
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DMSO 
  
Mean 314.585
Standard Error 4.947319
Median 301.69
Mode #N/A 
Standard Deviation 32.06229
Sample Variance 1027.99
Kurtosis -0.39328
Skewness 0.926212
Range 116.31
Minimum 275.16
Maximum 391.47
Sum 13212.57
Count 42
Largest(1) 391.47
Smallest(1) 275.16
Confidence 
Level(95.0%) 9.991313

 
 
 

Anova: Single 
Factor       
       
SUMMARY       

Groups Count Sum Average Variance   
Column 1 6 2322 387.0641 3876.4   
Column 2 6 1502 250.3554 9.7E-28   
       
       
ANOVA       
Source of Variation SS df MS F P-value F crit 
Between Groups 56067.77 1 56067.77 28.9277 0.000311 4.964603 
Within Groups 19382.01 10 1938.201    
       
Total 75449.78 11         
       
Tukeys Test       
       
M1 476.9574      
M2 250.3554      
Msw 19382.01      
n 6      
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Statistic= 3.986941      
critical value 4.91      

 
BAP (10uM)/5-MC 
(10uM)   
  
Mean 476.9574
Standard Error 7.076193
Median 482.885
Mode 481.86
Standard Deviation 64.85438
Sample Variance 4206.09
Kurtosis 0.198314
Skewness -0.3067
Range 294.46
Minimum 344.61
Maximum 639.07
Sum 40064.42
Count 84
Largest(1) 639.07
Smallest(1) 344.61
Confidence 
Level(95.0%) 14.07426

 
Chryene 10uM)/BAP 
(10uM)   
  
Mean 420.2751
Standard Error 9.1573
Median 398.6
Mode #N/A 
Standard Deviation 77.16079
Sample Variance 5953.787
Kurtosis 5.942661
Skewness 2.170431
Range 407.55
Minimum 335.28
Maximum 742.83
Sum 29839.53
Count 71
Largest(1) 742.83
Smallest(1) 335.28
Confidence Level(95.0%) 18.26366
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BAP (10uM)/5-MC 
(1uM)   
  
Mean 348.7192
Standard Error 4.159283
Median 344.725
Mode #N/A 
Standard Deviation 28.81636
Sample Variance 830.3824
Kurtosis 3.313031
Skewness 1.505429
Range 130.15
Minimum 313.83
Maximum 443.98
Sum 16738.52
Count 48
Largest(1) 443.98
Smallest(1) 313.83
Confidence 
Level(95.0%) 8.367397

 
5-MC (10uM)/BAP 
(1uM)   
  
Mean 347.237
Standard Error 4.13452
Median 343.425
Mode #N/A 
Standard Deviation 28.04168
Sample Variance 786.3359
Kurtosis -0.65609
Skewness 0.175493
Range 106.36
Minimum 295.5
Maximum 401.86
Sum 15972.9
Count 46
Largest(1) 401.86
Smallest(1) 295.5
Confidence 
Level(95.0%) 8.327351
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Chrysene (10uM)/BAP 
(1uM)   
  
Mean 419.9706
Standard Error 14.17117
Median 460.33
Mode #N/A 
Standard Deviation 97.15265
Sample Variance 9438.637
Kurtosis -1.87709
Skewness 0.067739
Range 252.61
Minimum 315.68
Maximum 568.29
Sum 19738.62
Count 47
Largest(1) 568.29
Smallest(1) 315.68
Confidence Level(95.0%) 28.52508

 
BAP (10uM) /Chrysene 
(1uM)   
  
Mean 309.2254
Standard Error 4.821829
Median 300.215
Mode #N/A 
Standard Deviation 34.09548
Sample Variance 1162.502
Kurtosis 2.351046
Skewness 1.477162
Range 152.08
Minimum 270.09
Maximum 422.17
Sum 15461.27
Count 50
Largest(1) 422.17
Smallest(1) 270.09
Confidence Level(95.0%) 9.689828
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Anova: Single 
Factor       
       
SUMMARY       

Groups Count Sum Average Variance   
Row 1 2 867.9878 433.9939 2343.699   
Row 2 2 732.2671 366.1336 300.6438   
Row 3 2 984.9206 492.4603 1252.348   
Row 4 2 786.9811 393.4905 3693.639   
Row 5 2 865.278 432.639 432.5206   
Row 6 2 702.314 351.157 648.7717   
Row 7 2 469.3907 234.6953 0   
       
       
ANOVA       
Source of Variation SS df MS F P-value F crit 
Between Groups 80738.76 6 13456.46 10.86247 0.003007 3.865969
Within Groups 8671.621 7 1238.803    
       
Total 89410.38 13         
       
Tukeys Test       
       
M1 393.4905      
M2 432.639      
Msw 1238.803      
n 2      
Statistic= 1.572999      
critical value 3.34      
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