
IMPROVING SUPPORT FOR GENERIC PROGRAMMING IN C# WITH

ASSOCIATED TYPES AND CONSTRAINT PROPAGATION

A Thesis

by

ARAVIND SRINIVASA RAGHAVAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2007

Major Subject: Computer Science



IMPROVING SUPPORT FOR GENERIC PROGRAMMING IN C# WITH

ASSOCIATED TYPES AND CONSTRAINT PROPAGATION

A Thesis

by

ARAVIND SRINIVASA RAGHAVAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Jaakko Järvi
Committee Members, Bjarne Stroustrup

Marian Eriksson

Head of Department, Valerie Taylor

May 2007

Major Subject: Computer Science



iii

ABSTRACT

Improving Support for Generic Programming in C# with Associated Types and

Constraint Propagation. (May 2007)

Aravind Srinivasa Raghavan, B.E, University of Madras

Chair of Advisory Committee: Dr. Jaakko Järvi

Generics has recently been adopted to many mainstream object oriented lan-

guages, such as C# and Java. As a particular design choice, generics in C# and Java

use a sub-typing relation to constraint type parameters. Failing to encapsulate type

parameters within generic interfaces and inability to encapsulate type constraints as

part of an interface definition have been identified as deficiencies in the way this de-

sign choice has been implemented in these languages. These deficiencies can lead to

verbose and redundant code. In particular, they have been reported to affect the

development of highly generic libraries. To address these issues, extending object

oriented interfaces and sub-typing with associated types and constraint propagation

has been proposed and studied in an idealized small-scale formal setting. This the-

sis builds on this previous work and provides a design and implementation of the

extensions in full C#. We also present a proof of soundness of the Featherweight

Generic Java (FGJ) formalism extended with interfaces. This property was assumed

in a proof of type safety of associated types and constraint propagation, but no proof

for the property was provided.
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CHAPTER I

INTRODUCTION

Recently many mainstream programming languages have been extended with support

for generics. For example, C# included generics in C# 2.0 [1]. C# generics include

support for parameterized classes, interfaces and methods. Compared to C# 1.0,

these features provide stronger static type checking, require fewer explicit conversions

between data types, and reduce the need for boxing operations and run-time type

checks.

Generics provides a facility to create types that have type parameters, so that

concrete types can be constructed by substituting each type parameter by a type

argument during instantiation. In order to guarantee that the requirements imposed

by a generic component on its type arguments are satisfied, C# permits constraints

to be supplied for type parameters. These are expressed using where clauses in

generic classes, interfaces and methods. Constraining type parameters allows generic

definitions to be type checked separately from their use.

Although generics provides many benefits, certain shortcomings have been iden-

tified in the way in which C# generics constraints its type parameters [2]. These

problems can be summarized as follows:

• Type parameters are not encapsulated within interfaces and thus every reference

to an interface has to include all the type parameters explicitly.

• Inheriting a generic type does not mean inheriting constraints on its type pa-

rameters.

This thesis follows the style of Science of Computer Programming.
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These deficiencies may lead to verbose and redundant code. These problems have

been reported to affect the use C# for developing highly generic libraries [2].

Earlier work [3] proposes extending object-oriented interfaces and sub-typing

to include associated types and constraint propagation to address the problems of

verbose and redundant code. Associated types can be realized as member types in

C# interfaces. Member types resemble member typedefs of C++ and also share

similarities with type members of ML signatures and virtual types [4]. Constraint

propagation refers to a language mechanism that gathers type parameter constraints

that are implied by the use of type parameters of a generic component as arguments

to other generic types, and makes those constraints implicitly part of the constraints

of the generic component.

The work in [3] studied associated types and constraint propagation formally

as an extension to Featherweight Generic Java(FGJ) [5]. In this study, a translation

from an object oriented language with associated types and constraint propagation to

a standard object oriented language with generics, but no member types or constraint

propagation, was described. Also, the type safety of the extensions was established

— apart from a gap filled in this thesis — in the idealized setting of FGJ.

This thesis builds on the work described in [3], and describes the design and

implementation of associated types and constraint propagation in full C#. The design

is based on the translation described in [3]. The formal model developed to prove the

soundness of the extension assumes that FGJ extended with interfaces and multiple

interface inheritance — we denote this formalism FGJ+I — is type safe. This thesis

proves that FGJ+I is type safe and thus fills a gap left out in the formalization for

the proposed extensions. The main contributions of this thesis can be summarized as

• Design and implement associated types and constraint propagation in full C#.
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• Formally prove the type safety of FGJ+I.

The thesis is structured as follows: Chapter II describes the paradigm of generic

programming and discusses Featherweight Generic Java and the .NET Mono frame-

work [6], which we used in our implementation. Chapter III details on how generic

programming can be realized in C# and motivates the need for associated types

and constraint propagation. Chapter IV describes the C# syntax and semantics

we propose for associated types and constraint propagation. Chapter V discusses

the framework and algorithms required to implement associated types and constraint

propagation in the gmcs C# compiler [6]. Chapter VI discusses the FGJ+I formalism

and provides a proof of its type safety. Chapter VII surveys the related work and

Chapter VIII concludes the thesis and outlines future work.



4

CHAPTER II

BACKGROUND

This chapter explains relevant background for this thesis. We first discuss about

generic programming paradigm and terminologies in generic programming that we

use throughout the thesis. We then present a brief overview of Featherweight Generic

Java (FGJ) formalism and finally discuss about the Mono .NET framework which

was used to implement associated types and constraint propagation in C#.

A. Generic programming

The language features discussed in this thesis are motivated by improving support for

generic programming. Generic programming is a programming paradigm aimed at

developing efficient, reusable libraries of algorithms. According to Jazayeri et.al., [7]

Generic programming is a sub-discipline of computer science that deals

with finding abstract representation of efficient algorithms, data struc-

tures, and other software concepts, and with their systematic organiza-

tion.

Generic programming works on the principle that software can be decomposed into

components which make only minimal assumptions about other components, allow-

ing maximum flexibility in composition. Implementing software components in terms

of abstract properties of types, rather than particular types, results in generic com-

ponents whose single generic implementation can cover many concrete implementa-

tions. The C++ Standard Template Library (STL) [8] is the first extensive instance

of generic programming in wide use. The Boost Graph Library (BGL) [9] and the
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Matrix template library (MTL) [10] are other examples and rich sources of generic

programming idioms and techniques.

Central notion of generic programming is concept. In the terminology of generic

programming, a concept is the formalization of an abstraction as a set of syntactic

and semantic requirements on a type (or on several types) [11]. The Forward Iterator

or Container concepts of STL serve as examples. Concepts can be thought of as

a contract between the types instantiating a generic component and types expected

by the component. A type that satisfies the requirements of a concept is said to

be a model of the concept. A generic component specified in terms of concepts can

be instantiated with any types that model those concepts. Concepts thus provide a

concise means to describe the interfaces of generic components.

In the context of C++, a set of conventions has been developed to describe con-

cepts. Traditionally, a concept consists of four requirements: function signatures, as-

sociated types, semantic constraints, and complexity guarantees. Function signatures

specify the operations that must be implemented for the modeling types. Associated

types are auxiliary types required by the concept and must be defined by the types

that model the concept. As an example, vertex and edge types could be associated

types of a generic Graph type. Concepts may also include constraints on associated

types. Complexity guarantees specify limits for resource consumption (eg., execution

time, memory) for function signatures.

A concept may incorporate the requirements of another concept, in which case

the first concept is said to refine the second. For example, we could define the con-

cept Bidirectional Iterator that contains all the requirements of the Forward Iterator

concept and add the requirement to allow moving backward in a sequence.
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B. Comparative study

Languages such as C++, Eiffel, ML have supported various forms of genericity for

decades or more. Recently, other mainstream programming languages, Java and C#,

have introduced generics as new language extensions. To evaluate the effectiveness of

the different approaches to genericity, the current generic programming capabilities

of eight different languages are compared in [2]. The study implements a subset of

the BGL in eight different languages and identifies eight different language features

which must be supported by the language to support generic programming: support

for multi-type concepts, multiple constraints on type parameters, convenient associ-

ated type access, constraints on associated types, retroactive modeling, type aliases,

separate compilation of algorithms, and implicit argument type deduction for generic

algorithms. According to the study, partial or no support for the above language

features may lead to verbose code, poor maintainability, and awkward designs. In

this work we focus on particular findings of this study — insufficient support for asso-

ciated types and constraints on associated types in C# and Java — and demonstrate

how to improve the situation. These features are described in Chapter IV.

The study [2] showed how in C#, concepts can be realized as parameterized

interfaces. Associated types of a concept are represented in an indirect manner as

type parameters of interfaces and constraints concerning associated types as type pa-

rameter constraints of interfaces. Several problems, however, with this chosen repre-

sentation for generic programming constructs were identified. First, type parameters

are not encapsulated within interfaces; every reference to an interface must explicitly

list all of its type parameters. Due to this effect, the number of type parameters was

more than doubled in several generic algorithms of the BGL. Second, in C#, Java and

Eiffel, inheriting a generic interface or class does not inherit the constraints. As a re-
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sult, constraints on type parameters must be repeated in derived classes even though

they could be deduced by the uses of those type parameters in types of base classes

or other constraints. The consequence is more verbosity in generic interfaces, classes,

and methods. Chapter III explains these problems — the lack of language support for

direct representation of associated types and failure to encapsulate the constraints on

associated types as a part of an interface (concept) — in detail. The identification of

the above problems prompted the work described in [3] and subsequently this thesis.

C. Featherweight Generic Java

Formal modeling allows the study of complex artifacts like programming languages,

describing some aspect of a design precisely, to state and prove its properties. Com-

monly formal models cover lightweight versions of programming languages, dropping

out complex language features, to enable rigorous arguments about key properties

of the language, such as type safety. One of such formalism is the Featherweight

Java (FJ) [5]. It is a minimal core calculus for modeling the essential properties of

Java with respect to type checking. It bears a similar relation to Java as lambda-

calculus [12] does to languages such as ML and Haskell. FJ’s main application is

modeling extensions of Java.

FJ provides classes, methods, fields, inheritance and dynamic typecasts with

semantics closely following Java’s. In fact, every FJ program is an executable Java

program. FJ has five forms of expressions: object constructor, method invocation,

field access, casting and a variable reference. A FJ program consists of a set of class

definitions and an expression to be evaluated. Figure 1 shows a typical class definition

in FJ.
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class A extends Object {
A() { super() ; }
A clone() { return new A() ; }

}

class B extends Object {
Object b ;
B(Object b) { super(); this.b = b ; }
B clone (Object data) { return new B(data) ; }

}

Fig. 1. Class definition in Featherweight Java.

To keep the formalism simple, all syntactic sugar is eliminated. For example, the

superclass is always included in the class definition, constructors are always written,

the receiver this for accessing the method or field of the current object must be written

explicitly, and so forth. Constructors take one parameter for each field declared

in the class and its base classes, and initializes them. The fields of the superclass

are initialized by invoking the super() constructor. Constructors are the only place

where super or the assignment operator = appears in a FJ program. Note that the

assignment is not destructive, — FJ is a pure functional language. A method body

always consists of a single return statement as in the body of clone in B ’s definition

in Figure 1.

FJ’s semantics are defined via small-step operational semantics [13]. There are

only three computational rules: one for field access, one for method invocation and

one for casts. The normal forms of FJ are object constructor expressions, new N(w),

where w is a sequence of normal forms. A well-typed FJ program evaluates to a

normal form, or an expression containing a valid cast. A proof assuring us of this

behavior is detailed in [5]. A computation may get stuck in three different ways in

FJ: by attempting to access a field not declared for the class, by attempting to invoke
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a method not declared for the class; or by attempting to cast to something other than

a superclass of an object’s runtime class.

class A extends Object {
A() { super() ; }
A clone() { return new A() ; }

}

class B<X extends Object> extends Object {
X fst ;
B(X fst) {

super(); this.fst = fst ;
}
<Y extends Object> B<Y> clone (Y data) {

return new B<Y>(data) ;
}

}

Fig. 2. Class definition in Featherweight Generic Java.

Of particular interest to us is the FGJ formalism that extends FJ with generic

classes and methods. Figure 2 shows a typical class definition in FGJ, illustrating

both parameterized classes and methods: X is a type parameter of the class B , and

Y is a type parameter of the generic method clone. Each type parameter has a

bound, the uppermost bound being Object — here X and Y are bound by Object .

Type bounds can be type expressions involving type variables. Plain type variables,

however, cannot be used as type bounds. Note that type parameter inference, an

important aspect of Java generics, is not modeled in FGJ. Due to this, FGJ is not a

proper subset of Java generics; it is assumed to be an intermediate language — the

form that would result after type parameters are inferred.

This thesis uses the FGJ formalism for two purposes. First, it is the starting

point of the formal framework describing the extensions for C# we propose. Even

though, FGJ models Java and not C#, FGJ is close enough to C# to be a useful
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formalism. Second, we present a proof of type safety of the Featherweight Generic

Java (FGJ) formalism extended with Interfaces. This property was assumed in a

proof of type safety of associated types and constraint propagation extensions for

C# [3] but no proof for it has been provided earlier. Chapter VI details the syntax,

typing rules and proof of type safety of the FGJ+I formalism.

D. .NET framework and Mono

Microsoft .NET framework (.NET) [14] is a run-time environment that manages the

execution of programs. The .NET introduces a common type system which enables

inter-operability across various languages supported by .NET. The .NET framework

also provides a substantial class library catering for common programming needs such

as file reading and writing, database interaction, reflection etc.

The important component of the .NET framework is the Common Language

Infrastructure (CLI), which provides a language independent platform for applica-

tion development. The Microsoft implementation of the CLI specification is called

Common Language Runtime (CLR). Programs written in programming languages

supported by the .NET framework are compiled down to Common Intermediate Lan-

guage (CIL) and a just in time (JIT) compiler compiles the intermediate language to

architecture specific native code.

Mono [6] is an open development initiative to develop an open source implementa-

tion of CLI. The component of Mono relevant to this thesis is the free implementation

of the C# compiler that supports the C# 2.0 specification which includes generics.

We used the Mono C# compiler for implementing the associated types and constraint

propagation extensions to C#. The Shared Source Common Language Infrastructure
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(SSCLI) [14] and DotGNU [15] are other open or shared source implementations of

C# compilers.
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CHAPTER III

GENERIC PROGRAMMING IN C#

The C++ community has adopted a particular documenting style for describing con-

cepts and their requirements on type parameters of a generic component. The SGI

STL [16] and the BGL are well known examples of libraries following this style. We

first demonstrate these established notations for describing concepts and the conven-

tions used for describing constraints on type parameters of generic components. For

this purpose, we present a small hierarchy of concepts from the domain of graphs

taken from BGL [9]. We then show the corresponding definitions of these concept

descriptions with language features of C# and describe the problems arising from

lack of support for associated types and constraint propagation.

A. A simple hierarchy of concepts from the domain of graphs

GraphEdge concept. Type Edge is a model of GraphEdge if the following expressions are
valid. Object e is of type Edge.

Expression Return Type or Description

Edge::vertex type Associated vertex type
source(e) Edge::vertex type
target(e) Edge::vertex type

Iterator concept. Type Iter is a model of Iterator if the following expressions are valid.
Object i is of type Iter.

Expression Return Type or Description

Iter::value type Associated value type
next(i) Iter
at end(i) bool
current(i) Iter::value type

Fig. 3. C++ concept descriptions for GraphEdge and Iterator concepts. Only syntactic

requirements are shown here.
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IncidenceGraph concept. Type Graph is a model of IncidenceGraph if the following expres-
sions are valid. Object g is of type Graph and v is of type Graph::vertex type.

Expression Return Type or Description

Graph::vertex type Associated vertex type
Graph::edge type Associated edge type
Graph::out edge iterator Associated iterator type
edge type models GraphEdge
out edge iterator models Iterator
edge type::vertex type == vertex type

out edge iterator::value type == edge type

out edges(v,g) out edge iterator
out degree(v,g) int

Fig. 4. C++ concept descriptions for IncidenceGraph concept. Only syntactic require-

ments are shown here.

The GraphEdge concept in Figure 3 states the requirements for a type to serve as the

edge type in the graph data type. The concept requires the existence of an associated

type vertex type and the functions source and target, which return, respectively, the

source and target of an edge. The Iterator concept in Figure 3 requires an associated

type value type and functions for traversing a sequence of values. The Incidence-

Graph concept in Figure 4 has vertex type, edge type, out edge iterator as associated

types, and requires functions to find the out-degree and out-going edges of a vertex.

Additionally, it places the requirement that edge type must model the GraphEdge con-

cept, and that out edge iterator must model the Iterator concept. Furthermore, this

concept has two same-type constraints to ensure that out edge iterator iterates over

edges of correct type and that vertex type coincides with the edge type’s associated

type vertex type.

The BidirectionalGraph concept in Figure 5 refines the IncidenceGraph concept

and adds the ability to find the in-degree and the incoming edges of a vertex. The

refinement relation means that all the associated types, requirements on associated
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BidirectionalGraph concept refines IncidenceGraph. Type Graph is a model of Bidirection-
alGraph if the requirements below are satisfied along with the requirements imposed by
IncidenceGraph. Object g is of type Graph and v is of type Graph::vertex type

Expression Return Type or Description

Graph::in edge iterator Associated iterator type
in edge iterator models Iterator
in edge iterator::value type == edge type

in edges(v,g) in edge iterator
in degree(v,g) int

Fig. 5. C++ concept descriptions for BidirectionalGraph concept. Only syntactic re-

quirements are shown here.

types, and function signatures of the IncidenceGraph concept are also part of the Bidi-

rectionalGraph concept. Additionally, the BidirectionalGraph concept requires the

existence of the associated type in edge iterator, requires that in edge iterator model

Iterator concept, and establishes a same-type constraint that ensures in edge iterator

iterates over edges of correct type.

It should be noted that, the above concept descriptions are mere documenta-

tion and not analyzed by C++ compilers. Current C++ compilers do not support

constraints on type parameters.

B. C# concept descriptions

Interfaces in C# can partially capture the requirements of concepts. Figure 6 repeat

the GraphEdge, IncidenceGraph, and BidirectionalGraph concepts, now written us-

ing C# interfaces. The models relation between types and concepts is represented

as classes implementing interfaces. Function signature requirements of concepts are

naturally expressed as method signatures. Even though C# does not support the

direct representation of associated types, type parameters of interfaces can be used
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interface GraphEdge<Vertex> {
Vertex source();
Vertex target();
}

interface IncidenceGraph<Vertex, Edge, OutEdgeIterator>
where Edge : GraphEdge<Vertex>
where OutEdgeIterator : IEnumerable<Edge> {

OutEdgeIterator out edges(Vertex v);
int out degree(Vertex v);
}

interface BidirectionalGraph <Vertex, Edge, OutEdgeIterator, InEdgeIterator> :
IncidenceGraph <Vertex, Edge, OutEdgeIterator>

where Edge : GraphEdge <Vertex>
where OutEdgeIterator : IEnumerable <Edge>
where InEdgeIterator : IEnumerable <Edge> {

InEdgeIterator in edges (Vertex v) ;
int in degree (Vertex v) ;
}

Fig. 6. GraphEdge, IncidenceGraph and BidirectionalGraph concepts in C#.

to represent them. The requirement that associated types of concepts model other

concepts can be expressed using where clauses requiring that a type parameter is

a subtype of another interface or class. Concept refinement, for example between

the IncidenceGraph concept and the BidirectionalGraph concept, is represented us-

ing inheritance between interfaces as shown in Figure 6. Same type constraints are

implicit: for example the constraints out edge iterator::value type == edge type and

in edge iterator::value type == edge type are expressed by using the same type pa-

rameter Edge in the constraints of OutEdgeIterator and InEdgeIterator in Figure 6.

Similarly, the use of Vertex as type argument of GraphEdge in Figure 6 establishes the

other same-type constraint edge type::vertex type == vertex type of IncidenceGraph

concept.
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bool IsSameInOutDegree <G,GVertex, GEdge, GOutEdgeIter,GInEdgeIter> (G g, GVertex v)
where G : BidirectionalGraph <GVertex, GEdge, GOutEdgeIter, GInEdgeIter>
where GEdge : GraphEdge <GVertex>
where GOutEdgeIter : IEnumerable <GEdge>
where GInEdgeIter : IEnumerable <GEdge>

{
return g.out edges (v) == g.in edges (v) ;

}

Fig. 7. Example generic function in C#.

C. Problems in current generic C#

The main problem with representing associated types as type parameters is that

type parameters are not properly encapsulated within interfaces. Every reference to

an interface, either in a refinement relation or in a type parameter constraint, has

to specify all the interface’s type parameters explicitly. The IsSameInOutDegree in

Figure 7 is a generic algorithm, represented as a generic method in C#, that deter-

mines whether the ”in”-degree and ”out”-degree of a vertex in a graph are equal.

In this generic method, note the verbose constraint on type parameter G. The refer-

ence to BidirectionalGraph interface must qualify all its type parameters and becomes

BidirectionalGraph<GVertex, GEdge, GOutEdgeIter, GInEdgeIter>. This is regard-

less of whether the type parameters are otherwise needed or not. This verbosity

occurs within concept refinement, as shown in the declaration of BidirectionalGraph

concept in Figure 6, where the reference to IncidenceGraph interface is Incidence-

Graph<Vertex, Edge, OutEdgeIterator> instead of IncidenceGraph.

The lack of encapsulation of type parameters becomes clear by observing that

only two of the type parameters of the generic method IsSameInOutDegree, G and

GVertex, are used as types of method parameters. However, all the associated types of

the BidirectionalGraph concept, (edge type, out edge iterator, and in edge iterator)
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must nevertheless be declared as type parameters (GEdge, GOutEdgeIter, InEdgeIter)

for the generic method to type check. In IsSameInOutDegree, we never use GEdge,

GInEdgeIter or GOutEdgeIter type parameters, so those type parameters are un-

necessary and could be eliminated. This problem can be solved by providing direct

support for associated type as member types within interfaces. The syntax and se-

mantics of such member types are described in Chapter IV and the implementation

framework is detailed in Chapter V.

Another related problem is that interfaces fail to encapsulate the constraints on

type parameters. Consider the type parameter constraints in the where clause of

IsSameInOutDegree function in Figure 7. The constraints on GEdge, GOutEdgeIter,

and GInEdgeIter are repetition of the constraint list of the BidirectionalGraph inter-

face. This repetition seems unnecessary because no type can be bound to G unless it

inherits from BidirectionalGraph interface. This in turn requires that the types GVer-

tex, GEdge, GOutEdgeIter, and GInEdgeIter bound, respectively, to type parameters

Vertex, Edge, OutEdgeIterator, and InEdgeIterator, satisfy the constraints imposed

on these type parameters in the BidirectionalGraph interface. Thus based on the

constraint on G, the type checker could safely assume that type parameters GVertex,

GEdge, GOutEdgeIter and GInEdgeIter also satisfy the constraints of the Bidirec-

tionalGraph interface, avoiding thus repeating the constraints in the IsSameInOut-

Degree function. The same problem occurs with concept refinement. For example, in

Figure 6, when BidirectionalGraph concept refines the IncidenceGraph concept, the

constraints on type parameters Edge and OutEdgeIterator from IncidenceGraph are

repeated in the BidirectionalGraph interface.

The problem of repeated constraints can be solved by making the type checker a

little more ”intelligent”, by propagating constraints on a type parameter of a generic

component that are implied by the use of that type parameter as arguments to other
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generic types, and make those constraints implicitly part of the constraints of the

generic component. This language mechanism, constraint propagation as we name it,

is discussed in Chapter IV and the implementation framework for constraint propa-

gation is detailed in Chapter V.
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CHAPTER IV

EXTENSIONS TO C#

A. Associated types in C#

Direct language support for associated types would significantly improve support for

generic programming in C#. We claim that this support can be implemented without

drastic modifications to the language, by introducing member types to interfaces and

classes [3]. Member types are declared in interfaces and are essentially placeholders

for types. One can place constraints (subtype or same-type) on these members. As

an example, Figure 8 shows the graph concepts of Figure 6, now taking advantage of

member types.

The syntax of member types is as follows: Member types are declared using the

keyword type followed by the name of the member type. Constraints on member

types can be specified by the syntax A : B , as in type Edge : GraphEdge, directly at

a member type declaration. Alternatively, the syntax require A : B can be used to

specify constraints on member types. Same-type constraints are expressed with the

syntax require A == B, as in require Vertex == Edge::Vertex . The syntax T::A,

as in Edge::Vertex , is used to access the associated type A of some type T .

Interfaces with member types, concept interfaces as we name them, are not

traditional object oriented interfaces. In particular, these interfaces cannot be used

as a type of a variable, function parameter, or field, or used as type arguments to a

generic function or class.

Concept interfaces can directly represent concepts described in Chapter II. In

Figure 8, the GraphEdge interface declares the member type Vertex . The Incidence

Graph interface declares two member types Vertex and Edge, and places constraints
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on them. Note that these member types correspond directly to the associated types

in Figure 6, subtype constraints correspond to requirements that types model con-

cepts, and the same type constraints have direct equivalents as well. As discussed

in Chapter III, concept refinement can be expressed as inheritance between inter-

faces in C#. The BidirectionalGraph interface refines IncidenceGraph interface and

declares a member type InEdgeIterator and places constraints on it. Due to the re-

finement relation, all member type declarations and constraints on member types of

IncidenceGraph are part of the BidirectionalGraph interface as well.

interface GraphEdge {
type Vertex ;
Vertex source();
Vertex target();
}

interface IncidenceGraph {
type Vertex ;
type Edge : GraphEdge ;
type OutEdgeIterator : IEnumerable <Edge> ;
require Vertex == Edge :: Vertex ;

OutEdgeIterator out edges(Vertex v);
int out degree(Vertex v);
}

interface BidirectionalGraph : IncidenceGraph {
{

type InEdgeIterator : IEnumerable <Edge> ;
InEdgeIterator in edges (Vertex v) ;
int in degree (Vertex v) ;
}

Fig. 8. GraphEdge, IncidenceGraph and BidirectionalGraph concepts in C# extended

with associated types.

Classes that (model) implement (concepts) concept interfaces must bind concrete

types to the member types declared in the interface. A class that models a concept in-
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terface must thus provide a definition for every member type declared in the interface.

Figure 9 shows the AdjacencyList class modeling the BidirectionalGraph concept and

AdjListEdge class modeling the GraphEdge concept. The member type bindings in-

troduced by a class cannot be modified by any of its derived classes. Redefining or

leaving a member type unbound in a class is a type error. The semantics for associated

types in C# is described in detail in [3]. The syntax for member type declarations in

interfaces and definitions in classes are further discussed in Section V.A.

class AdjListEdge : GraphEdge {
type Vertex = int ;
. . .

}

class AdacencyjList : Graph {
type Vertex = int ;
type Edge = AdjListEdge ;
type OutEdgeIterator = IEnumerable <AdjListEdge> ;
type InEdgeIterator = IEnumerable <AdjListEdge> ;
. . .

}

Fig. 9. AdjListEdge models GraphEdge concept and AdjacencyList models Bidirec-

tionalGraph concept.

bool IsSameInOutDegree <G> (G g, G::Vertex v)
where G : BidirectionalGraph
where G::Edge : GraphEdge <G::Vertex>
where G::OutEdgeIter : IEnumerable <G::Edge>
where G::InEdgeIter : IEnumerable <G::Edge>

{
return g.out edges (v) == g.in edges (v) ;

}

Fig. 10. Example generic function in C# with associated type support but without

constraint propagation.
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bool IsSameInOutDegree <G,GVertex, GEdge, GOutEdgeIter,GInEdgeIter> (G g, GVertex v)
where G : BidirectionalGraph <GVertex, GEdge, GOutEdgeIter, GInEdgeIter>
where GEdge : GraphEdge <GVertex>
where GOutEdgeIter : IEnumerable <GEdge>
where GInEdgeIter : IEnumerable <GEdge>

{
return g.out edges (v) == g.in edges (v) ;

}

Fig. 11. Example generic function in C#.

The rewrite of IsSameInOutDegree function, shown in Figure 10, demonstrates

the effect of associated types. Compared to the generic function in Figure 11 repeated

from Figure 7 for convenience, the number of type parameters are significantly re-

duced. Also, the reference to BidirectionalGraph interface in the constraint on G does

not have to include all type parameters explicitly because member types encapsulate

the associated types within the BidirectionalGraph interface. Note, however, that the

constraints on member types are roughly as verbose as the constraints on the type

parameters. The remedy is constraint propagation.

B. Constraint propagation in C#

Constraint propagation refers to a language mechanism that gathers constraints on

a type parameter that are implied by the use of that type parameter as arguments

to other generic types, and makes those constraints implicitly part of the constraints

of the generic component being defined. Constraint propagation can apply when a

type parameter is constrained by a generic class or interface, or when a generic class

or interface inherits from another generic class or interface.

Consider the process of type checking the body of a generic class or method A.

Suppose X is a type parameter of A, and X is used as a type argument in some generic
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instantiation B<..., X ,...> occurring in one of the constraints of A, or as a base class

or base interface of A. Constraint propagation then means that any constraints the

definition of B places on X in the instantiation of B<..., X ,...> can be assumed to be

true while type-checking A. Note that even though fewer constraints must be written,

enough information is retained to preserve separate type checking.

As an example of constraint propagation, consider the function in Figure 11. The

type parameter GEdge is used as a type argument to the BidirectionalGraph interface.

The where clause of the BidirectionalGraph requires its second type parameter Edge

to be a subtype of GraphEdge <Vertex> . Substituting GEdge to Edge and GVertex

to Vertex , as the instantiation of BidirectionalGraph implies, the constraint GEdge :

GraphEdge<GVertex> can be assumed to hold while type checking the generic method

IsSameInOutDegree. Translation back to C# can be implemented by propagating the

constraints with appropriate substitutions of type arguments to type parameters. In

the example shown in Figure 11, constraints for GOutEdgeIter and GInEdgeIter can

be propagated as well.

bool IsSameInOutDegree <G,GVertex, GEdge, GOutEdgeIter,GInEdgeIter> (G g, GVertex v)
where G : BidirectionalGraph <GVertex, GEdge, GOutEdgeIter, GInEdgeIter>

{
return g.out edges (v) == g.in edges (v) ;

}

Fig. 12. Example generic function in C# with constraint propagation.

Extending C# with constraint propagation will enable writing the IsSameInOutDe-

gree function’s constraint set very concisely, as shown in Figure 12. Moreover using

member types for associated types avoids declaring the unwanted extra type param-

eters. With the combination of these two language extensions, we can improve even



24

further: the IsSameInOutDegree function in Figure 13 uses the desired constraints

without redundancy.

bool IsSameInOutDegree <G> (G g, G::Vertex v)
where G : BidirectionalGraph

{
return g.out edges (v) == g.in edges (v) ;

}

Fig. 13. Generic function in C# with constraint propagation and associated types.

Constraint propagation can also be applied when member types are constrained

by a generic class or interface, or when member types are used as type arguments

of generic type instantiation. Figures 14 to 17 show various scenarios illustrating

constraint propagation. The left columns list programs relying on constraint propa-

gation and the right columns list the corresponding programs after propagating the

constraints.

interface C { } interface C { }
interface B<X,Y> =⇒ interface B<X,Y>

where X : C propagate where X : C
where Y : new() { ... } where Y : new() { ... }

interface A<X,Y> : B<X,Y> {...} interface A<X,Y> : B<X,Y> {...}
where X : C
where Y : new() { ... }

Fig. 14. Constraint propagation when an interface has generic base types.

Figure 14 is an example of constraint propagation when a generic interface in-

herits from another generic interface. The constraints on type parameters X and Y

in the class A<X,Y> are implicitly propagated from the constraint of B<X,Y> . We

can safely omit the constraints in A as A cannot be instantiated if B ’s instantiation

does not succeed. Figure 15 shows example requiring substitution. This involves sub-

stituting type parameters with type arguments, and substitution of member types.
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interface C { } interface C { }
interface B<S,T> =⇒ interface B<S,T>

where S : C propagate where S : C
where T : new() { ... } where T : new() { ... }

interface A<X,Y> : B<X,Y> {...} interface A<X,Y> : B<X,Y> {...}
where X : C
where Y : new() { ... }

Fig. 15. Constraint propagation when an interface has generic base types, and when

substitution is required.

Type substitution may be necessary before bringing constraints to a new context. For

example, while propagating the constraints of B<S, T> to the interface A<X, Y> , we

have to substitute S with X and T with Y — type parameters S and T are obviously

invalid in the context of the interface A<X, Y> .

Figure 16 is an example of constraint propagation from a base type, as well

as from a constraint on a type parameter and a member type. The propagated

constraints for interface A<X,Y> include both the constraints from interface B and

interface D . We propagate the constraints from B , because it is a base interface of

A, and from D because it appears as a constraint of A’s type parameter as well as

member type. The propagated constraints on member type S and the same type

constraint S == T come from B . The constraints Z : new() and Z == Y originate

from interface D . Note the proper qualification W::Z, W::Y for the member types

Z and Y , illustrating member type substitution. The propagation of constraints for

generic classes and generic methods are similar to generic interfaces.

Note that C# does not allow same-type constraints (or member types), thus the

code in the right column is not valid C#. The constraint X::Z==X::Y in the method

foo in Figure 17 is shown here to portray the internal representation of the constraint

in the compiler.
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interface B { interface B {
type S : IEnumerable<T>; type S : IEnumerable<T>;
type T; type T;
require S==T; require S==T;

} }
interface D { interface D {

type Y; type Y;
type Z : new(); type Z : new();
require Y==Z; =⇒ require Y==Z;

} propagate }
interface A<X,Y> : B interface A<X,Y> : B

where X : D where X : D
{ {

type W : D; type W : D;
} type X::Z : new();

type W::Z : new();
type S : IEnumerable<T>;
require W::Y==W::Z;
require X::Y==X::Z;
require S==T;

}

Fig. 16. Constraint propagation when type parameters and member types are con-

strained by a generic type.

interface D { interface D {
type Y; type Y;
type Z : new(); type Z : new();
require Y==Z; =⇒ require Y==Z;
.... propagate ....

} }
class Test { class Test {

void foo<X,Y> where X : D void foo<X,Y> where X : D
{ ... } where X::Z : new()

} where X::Z==X::Y
{ ... }

}

Fig. 17. Constraint propagation for generic methods.
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To compile this internal representation to C# without member types or same

type constraints, further translation is carried out, explained in detail in Section V.C.

Figure 18 gives a glimpse of this with an example of compiling away member types and

same type constraints to generate valid C# code. The translation process involves

translating the headers and bodies of all interfaces, classes and methods. During

the translation process, all member types are converted to type parameters and the

constraints on member types are converted to constraints on the corresponding type

parameter. For example, in Figure 18, the member types S and U of interface B are

converted respectively to type parameters X0 and X1 , after the translation process.

interface B { interface B<X0,X1>
type S : IEnumerable<U>; where X0 : IEnumerable<X1>
type T; =⇒ {
type U; translate }
require S==T;

}

Fig. 18. A simple example of translation.

The same-type constraints specified in an interface are compiled away to valid

C# using a process of type canonicalization which generates the same type parameter

for those member types that are involved in a same type constraint. In the above

example, member types S and T are mapped to the same type parameter X0 . The

process of canonicalization is explained further in Section V.D. The framework for

implementing associated types and constraint propagation in current C# is described

in detail in Chapter V.
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CHAPTER V

IMPLEMENTATION FRAMEWORK

The following subsections describe how the mono-gmcs compiler must be modified to

support constraint propagation and associated types.

A. Syntax

Providing support for associated types in the form of member types requires parser

level modifications to the C# compiler. First, we need to allow declaration of mem-

ber types and specification of constraints on member types in interfaces. Second, we

must allow defining the bindings of member types in the classes that model concept

interfaces. Figure 19 shows the modifications in the interface member declaration and

class member declaration grammar clauses of C# [1] for supporting these additions.

The interface member declaration is modified to support associated type declaration

and require clause grammar rules. The associated type declaration introduces mem-

ber types in interfaces in two forms:type A, which introduces a member type A without

any constraints on it and type A : B , which introduces A as a member type and places

the constraint that A must be a sub-type of B . The require clause grammar rule is

used to introduce sub-type or same-type constraints on type parameters or member

types of the form require A==B or require A : B in an interface.

The class member declaration is modified to support member type definition of

the form type A = int in classes. The namespace or type name ASSIGN type clause,

a derivation of associated type declaration rule introduces member type definitions in

a class allowing the syntactic structure type A = .... to appear as class members. The

grammar clauses for type declaration are also modified to allow usage of associated

types as regular types. Currently, C# supports specification of sub-type constraints
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interface_member_declaration  

 :associated_type_declaration  

 |require_clause ; 

class_member_declaration 

 : associated_type_declaration 

 

associated_type_declaration 

 : TYPE  associated_type_list SEMICOLON 

associated_type_list 

 : associated_type 

 | associated_type_list COMMA associated_type 

associated_type 

 : IDENTIFIER 

 | IDENTIFIER COLON type_parameter_constraints 

 | namespace_or_type_name ASSIGN type 

 

require_clause 

 : REQUIRE  associated_type_constraints_list  SEMICOLON 

associated_type_constraints_list 

 : associated_type_constraint 

 | associated_type_constraints_list COMMA associated_type_constraint 

associated_type_constraint:  

 : namespace_or_type_name OP_EQ type_parameter_constraints  

 | namespace_or_type_name COLON type_parameter_constraints 

 

Fig. 19. Grammar modifications to support member types.
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in where clauses: but we allow same-type constraints to be specified in the where

clause of concept interfaces. So the where clause syntax is modified to allow such

same-type constraints.

In Figure 19, note that the associated type declartion rule is used to parse both

the declaration of member types in interfaces and their definition in classes. The

rationale behind having the same grammar rules for member type declaration and

definition is to favor simplicity and to avoid repetition. This, however, allows member

type bindings to be part of interfaces, which fails to maintain the semantics of member

types introduced in [3]. To avoid this, member type definitions in interfaces will be

rejected during the construction of the Abstract Syntax Tree (AST).

B. Framework for constraint propagation

Figure 20 illustrates the design of the constraint propagation framework. The con-

straint propagation module is invoked after the parser generates the abstract syntax

tree (AST) but before the type checker is invoked to check constraints on type pa-

rameters.

The constraint propagation framework consists of the following functions, env-

for-body, propag-c, ConstraintPropagate, subConstr, cConstr, GetConstraints and

Substitute functions. The AST is traversed once, and for every interface, class and

generic method, env-for-body is invoked to collect all the constraints that can be

propagated from either the constraints list or from the base classes or interfaces. The

ConstraintPropagate function, which is invoked by env-for-body is the main driver of

the constraint propagation process. It uses the GetConstraints function to retrieve

all directly accessible constraints. The ConstraintPropagate function then iterates

over this constraint set, and propagates the constraints using subConstr and cConstr
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Parser 

 

Generate AST 

    Env-for-body 

For every interface/class/generic 
method call env-for-body 

Update the class table with the new 

constraints. 

     Propag-c 

Weed out instance-to-instance 

constraints from the constraints set. 

       constr 

Return all possible constraints for 

this type/generic method collected 
by fixed-point algorithm. 

       cConstr      Sub-constr     GetConstraints 

      Cache Update the cache to create a type 

name to constraints set mapping. 

Call GetConstraints to collect the 

constraints for the current 

type/generic method that is being 

translated. 

 

GetConstraints for the RHS of a TP/AT: GI 

    Substitute 

Substitute type 

parameters with 

the type 

arguments in the 

collected 
constraints. 

For both LHS and RHS of instance-to-instance constraint. 

Return new constraints 

For all instance-instance 

constraint in the constraint set. 

For all TP/AT: GI constraint in 

the constraint set. 

TP :   TypeParameter 

AT:   Associated Type 

GI:    Generic Instance. 

Fig. 20. Constraint propagation framework.
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functions. These functions retrieve all directly accessible constraints using GetCon-

straints, and perform the appropriate substitutions for type parameters and member

types. These propagated constraints will later be added to the constraints list in

ConstraintPropagate function, avoiding, however, any duplicate constraints in the

set. The constraint propagation is a fixed point computation, in which the algorithm

will eventually stop when no more constraints can be added to the environment from

the existing constraints. Once the process completes, the class table is updated with

the new propagated constraints returned by env-for-body

Note that C# allows type parameters to be constrained by special constraints

such as class, struct and new. These constraints will not be substituted and they

remain as such in the new propagated list of constraints.

In the following, we describe the components of the constraint propagation frame-

work. The env-for-body given in Algorithm 1 is the entry point to the constraint

propagation module. This function builds the environment for type checking classes,

interfaces, or generic methods.

Algorithm 1 env-for-body

1: procedure env-for-body(sname)
2: ArrayList ctr ;
3: ctr = propag-c (sname) ;
4: return ctr ;
5: end procedure

The propag-c function given in Algorithm 2 uses ConstraintPropagate to collect

all the constraints that can be propagated for a generic class or interface. The collected

constraint set can also contain instance-instance (see below) constraints which are

deleted by this function.
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Algorithm 2 propag-c

1: procedure propag-c(sname)
2: ArrayList prop constraints ;
3: prop constraints = ConstraintPropagate (sname) ;
4: for i = 0 to prop constraints.size() do
5: Delete all instance-to-instance constraints.
6: end for
7: return prop constraints ;
8: end procedure

The GetConstraints function given in Algorithm 3 retrieves the set of constraints

directly specified on type parameters and member types of a generic class, generic

method or generic interface. The process of constraint propagation can lead to con-

straints of the form A<X,T> : B<T> , instance-instance — as we name it, when a

generic class or interface inherits from another generic class or interface. For example,

if a class P<X,Y> inherits from classes B<X> and C<Y,X> , then constraints P<X,Y>

: B<X> and P<X,Y> : C<Y,X> would be constructed and added to the constraint set

of P<X,Y> . C# does not allow such instance-instance constraints, and these extra

constraints will be deleted from the constraint set after the constraint propagation

is completed. Lines 3–6 construct the instance-instance constraints for every base

type and add them to the constraint set. Lines 7–9 collect the constraint on type

parameters and lines 10–14 collect the constraints on member types. The constraints

on member types are collected only if the type for which GetConstraints is invoked

for is an interface or a class and not a method.

The process of retrieving constraints for a particular type or method using Get-

Constraints involves a class table lookup to access the constraints and base types.

However, this collected set of constraints for a particular type will always be the

same, as these constraints are those given in the program text and do not include the

propagated constraints. To avoid repeated class table lookups and analyses for the
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Algorithm 3 Collect constraints for a particular type/generic method

1: procedure GetConstraints(sname)
2: ArrayList prop constraints ;
3: for i = 0 to sname.Bases.size() do
4: Construct the sname : sname.Bases[i] constraint;
5: Add the new constraint to prop constraints;
6: end for
7: for i = 0 to sname.TypeParameters.size() do
8: Add sname.TypeParameters[i].Constraint to prop constraints ;
9: end for
10: if sname is Interface or Class then
11: for i = 0 to sname.AssocType.size() do
12: Add sname.AssocType[i].Constraint to prop constraints ;
13: end for
14: end if
15: Maintain a global cache for prop constraints←sname mapping ;
16: return prop constraints;
17: end procedure

same classes and interfaces: we maintain a cache of the mappings from type names to

the constraint sets. The subConstr and ConstraintPropagate functions use this Cache

to improve run-time efficiency. Line 15 in Algorithm 3 updates this global cache.

The ConstraintPropagate function given in Algorithm 4 relies on GetConstraints :

line 3 accesses the global cache created by GetConstraints. Lines 4–5 invoke GetCon-

straints if the cache does not contain the constraint set for a given class, interface

or method. This collected constraint set will contain instance-instance constraints,

type parameter constraints and member type constraints; depending on the kind of

constraints, we either use subConstr or cConstr to propagate constraints. Lines 8–

9 in Algorithm 4 propagate constraints for both left-hand and right-hand sides of

instance-instance constraint. Lines 11–13 propagate constraints if the right side of

a type parameter or member type sub-type constraint is a generic class or interface.

The propagated constraint from subConstr or cConstr functions are added to the

existing constraint set, if not already in the set.
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Algorithm 4 Constraint Propagate function for a type or generic method

1: procedure ConstraintPropagate(sname)
2: ArrayList prop constraints ;
3: prop constraints = cache [sname] ;
4: if prop constraints == null then
5: prop constraints = GetConstraints (sname) ;
6: end if
7: for i = 0 to prop constraints.size() do
8: if prop constraints[i] is Instance-to-Instance constraint then
9: env = cConstr (prop constraints[i], prop constraints[i].Append) ;
10: else
11: if prop constraints[i].Rhs.isGeneric then
12: env = subConstr (prop constraints[i].Rhs, prop constraints[i].Lhs) ;
13: end if
14: end if
15: for j = 0 to env.size() do
16: if env[j] is not present in prop constraints then
17: Add the constraint to prop constraints ;
18: end if
19: end for
20: end for
21: return prop constraints ;
22: end procedure

Algorithm 5 Propagate for Instance to Instance Constraints .

1: procedure cConstr(ctr, append)
2: if ctr.Lhs.isGeneric then
3: ArrayList tempenv = subConstr (ctr.Lhs, append) ;
4: end if
5: if ctr.Rhs.isGeneric then
6: ArrayList env = subConstr (ctr.Rhs, append) ;
7: end if
8: for i = 0 to env.size() do
9: if (!tempenv.present (env[i])) then
10: Add env[i] to tempenv ;
11: end if
12: end for
13: return tempenv ;
14: end procedure
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The cConstr function given in Algorithm 5 propagates constraints for instance-

instance constraints. This function relies on subConstr to propagate constraints for

left-hand and right-hand side of the constraints. Lines 2–3 and 5–6 propagate con-

straints for the left-hand side and right-hand side of the constraints, provided they are

generic types. The propagated constraints are merged after checking for duplicated

constraints and returned to constr function.

Algorithm 6 Collect constraint with substitution

1: procedure subConstr(sname, append)
2: ArrayList prop constraints ;
3: prop constraints = cache[sname] ;
4: if prop constraints == null then
5: prop constraints = GetConstraints (sname) ;
6: end if
7: for i = 0 to prop constraints.size() do
8: if prop constraints[i].Lhs is Instance then
9: substitute (prop constraints[i].Lhs, append)
10: prop constraints[i].Append = append;
11: else if isTypeParameter (sname, prop constraints[i].Lhs) then
12: Substitute type parameter with the type argument from sname.
13: else
14: Append append to prop constraints[i].Lhs
15: end if
16: if prop constraints[i].Rhs is Instance then
17: substitute (prop constraints[i].Rhs, append)
18: else if isTypeParameter (sname, prop constraints[i].Rhs) then
19: Substitute type parameter with the type argument from sname.
20: else
21: Append append to prop constraints[i].Rhs
22: end if
23: end for
24: Delete all the constraints that has built-in types as Left hand side of the constraints.
25: return prop constraints;
26: end procedure

The subConstr function given in Algorithm 6 retrieves the set of constraints for

a generic class, interface or method with proper substitution for the type parameters
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and member types. Line 3 accesses the global cache created by GetConstraints. Lines

4–5 invoke GetConstraints if the cache does not contain the constraint set for a given

class or interface. Lines 7–24 traverse this collected constraint set and performs the

appropriate type substitution, type parameters are substituted for the corresponding

type arguments and the member types are prepended with the method parameter,

append, of the subConstr function. The append parameter denotes the left-hand side

of a type parameter or member type subtype constraint. This type substitution is

valid for any occurrences of type parameters or member types as left-hand side of a

constraint or as type arguments in a generic type instantiation. A substitute function

is used for ensuring proper type substitution for type parameters and member types

that occur as type argument in a generic type instantiation. Lines 8–15 and lines

16–24 perform this type substitution for the left-hand and right-hand side of the

constraint.

C. Translation of associated types

Our approach to support associated types is to translate associated types to type

parameters. The process is a bit more detailed, but as the first approximation, each

associated type declaration in an interface is translated into a new type parameter of

that interface. The subtype constraints on associated types are translated and added

to the constraint set of the corresponding type parameter. The same type constraints

in the interface are deleted, but the translation ensures that only one type parameter

is created for any two associated types equated with same type constraint.

Concept interfaces can occur as base interfaces of classes or interfaces and in

type parameter constraints. Any instance of a concept interface requires an extra

type argument for each associated type, so that the instance matches the translated
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definition of the interface. Also, references to associated types in class, interface,

or method bodies must be translated to references to the corresponding new type

parameter. The definition of associated types in classes that implement interfaces

will be translated to type arguments to those concept interfaces.

The translation occurs after the parser generates the abstract syntax tree (AST),

after constraint propagation, but before the type checker is executed. The associated

type translation involves two steps:

• Translating the interface, class and method headers

• Translating the interface, class and method bodies

The class, interface, and method headers include the name of the class, inter-

face, or method, the type parameter list and the constraints list specified in where

clauses. Translation of a header, for example for interfaces, thus involves collecting

constraints using constraint propagation, translating those constraints and generating

new type parameters for all the type parameters and associated types declared di-

rectly in the interface or accessible through the constraints and base interfaces. The

header translation for interfaces as explained here is also applicable to classes and

generic methods.

The translation of interface, class or method bodies involves translating all type-

expressions in these bodies: type parameters, associated types and class or interface

instances are translated to reflect the translation done to signatures.

Driver for the translation process: The translate function given in Algo-

rithm 7 is the main driver for the associated type translation module. This function

is invoked for every generic interface, class, or method given in the program. The

main functionalities of the translate algorithm are
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Algorithm 7 Interface, class and method translate .

1: procedure translate(sname)
2: ArrayList env, Eqenv ;
3: env = env-for-body (sname);
4: for i = 0 to env.Size() do
5: if (!env[i].IsSubType()) then
6: Eqenv.Add (env[i]) ;
7: end if
8: end for
9: Eqenv = getTransitiveClosure (env, Eqenv) ;
10: ArrayList full tparams = full-tparams (sname) ;
11: full tparams.Sort() ;
12: newTypeParameter = translatedConstrainableType (sname, full tparams) ;
13: if sname is class or interface then
14: translatedParents = translateParents (sname, env, Eqenv) ;
15: end if
16: translatedConstraints = translateEnv (sname, env, Eqenv) ;
17: Translate body of interface, class and method translating every occurrences of types.
18: end procedure

1. Propagating constraints from generic instances that occur as base types or as a

constraint for a type parameter or associated type. The env-for-body function

explained in Section B is used to propagate constraints.

2. Generating new type parameters for the translated interface, class or method.

The full-tparams function explained in Section D collects the set of all associated

types and type parameters used in the definition of an interface, class or generic

method, recursing to its constraints and ancestors. The set of types returned

by full-tparams function are then ordered by the Sort function, to maintain

the same ordering of type parameters and associated types in translation of

the definition of a type as well as during the translation of any instance of the

same type. The translated type or method then needs a type parameter for

every element in this set. The translatedConstrainableType function given in
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Algorithm 13 takes the ordered set of types returned by full-tparams function

and generates a valid list of new type parameters.

3. Translation of base types. The translateParents function given in Algorithm 15

translates the base types of interfaces and classes.

4. Translation of the propagated constraints. The translateEnv function given in

Algorithm 16 translates the set of propagated constraints obtained through

env-for-body.

5. Translating the bodies of the interface, class or generic method. The transla-

tion of interface, class or method bodies involve translating every occurrence of

type expressions using the translateType function which is explained further in

Section D.

6. Finally after translating the base types, constraints and the body of interface,

class or method, the class table is updated with the new translated construct.

7. The translate algorithm also relies on some auxiliary functions listed below.

(a) Helper functions to collect the declarations of member types in interfaces

and definitions of member types in classes.

• assoc-decl, assoc-def.

(b) Algorithm to generate the transitive closure of the same-type constraints.

• getTransitiveClosure.

(c) Type Canonicalization

• canonicalize weak, canonicalize.
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D. Framework for associated type translation

This section provides detailed algorithms for the main components of the associated

type translation framework.

Helper functions to collect member types: The assoc-decl and assoc-def are

helper functions used by other algorithms in the framework to collect the names

of member types. The assoc-decl function collects the names of all member types

declared in a given interface or in its ancestors. The assoc-def function collects the

names of member types defined and bound to types in a given class or in its base

class.

The translation process relies on generating transitive closure and type canon-

icalization process to reduce the number of type parameters to be generated. We

generate the transitive closure of same-type constraints to explore all possible same-

type relations from those specified by the user in the program text.

Generating the transitive closure: The getTransitiveClosure function gener-

ates the symmetric, transitive, congruence closure of the set of same-type constraints.

This function takes a set of same-type constraints as the method parameter Eqenv.

The getSymmetry helper function returns the symmetry of a same-type constraint.

For example, it would return B == A for the same type constraint A == B . First, for

the constraints in Eqenv, the symmetric relations are determined and added to Eqenv.

The getAssocCongruence function is used to collect the same type relations between

member types that can be accessed through the types equated in a same type con-

straint. For example, if the environment contains the same type constraint A==B ,

then getAssocCongruence would construct same-type relations between all member

types that can be accessed from A and B . The set of same-type constraints returned
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Algorithm 8 getTransitiveClosure

1: procedure getTransitiveClosure(env, Eqenv)
2: for i = 0 to Eqenv.Size() do
3: Eqenv.Add(getSymmetry(Eqenv[i]) ;
4: end for
5: for i = 0 to Eqenv.Size() do
6: ArrayList assocCongruence = getAssocCongruence (Eqenv[i], env) ;
7: for j = 0 to assocCongruence.Size() do
8: Eqenv.Add (assocCongruence[j]) ;
9: Eqenv.Add(getSymmetry(assocCongruence[j])
10: end for
11: end for
12: for i = 0 to Eqenv.Size() do
13: ArrayList transConstraints = getTransitivity(Eqenv[i], Eqenv) ;
14: for j = 0 to transConstraints.Size() do
15: Eqenv.Add (transConstraints[j]) ;
16: ArrayList assocCong = getAssocCongruence(transConstraints[j] ,env) ;
17: for k = 0 to assocCong.Size() do
18: transConstraints.Add(assocCong[k]) ;
19: end for
20: Eqenv.Add(getSymmetry(transConstraints[j]) ;
21: end for
22: end for
23: return Eqenv ;
24: end procedure

by getAssocCongruence are then populated into Eqenv. The symmetric relations are

also determined for every new constraint obtained from getAssocCongruence function

and are added to Eqenv.

The getTransitivity helper function is used to collect the set of constraints that

can be obtained through the transitivity of equality relations. For example, if the

environment contains the same type constraints A == B and B == C , then get-

Transitivity returns the new same type relation A == C . The set of constraints

returned by getTransitivity will be traversed, and for every constraint the symmetric

and associated type congruence relations will be determined and added to Eqenv.

Note that for every new equality relation, the symmetric, associated type congruence
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and transitivity are determined. This algorithm is a fixed point algorithm and it

eventually stops when no more new relations can be added to the closure based on

the existing equality relations. The algorithm for getTransitiveClosure is provided in

Algorithm 8.

Type canonicalization: The process of type canonicalization normalizes each

type belonging to a particular equivalence class of types into a canonical repre-

sentation of this equivalence class. This process relies on two main algorithms:

canonicalize-weak and canonicalize. The type canonicalization process is invoked

during the translation of a type, or while determining the set of new type parameters

for the translated interface, class, or method.

The canonicalize-weak function given in Algorithm 9 is used to determine the set

of equivalent types for a given type in the transitive closure of same-type constraints.

The expType parameter is the type and Eqenv is the set of same-type constraints.

The canonicalize-weak function works by ordering equivalent types into a list, with

all instances first, followed by type parameters, followed by member types. In Algo-

rithm 9, lines 12–22 determine the set of equivalent types for expType by traversing

the transitive closure of the same type constraints. The algorithm maintains separate

lists for equivalent types of instances, type parameters, and member types. A Sort

function is used to transform the set of types in each list into an ordered set of types.

A particular ordering scheme is not required, we chose to use lexicographic ordering

based on the alphabetical ordering of the characters in the type expressions. The

three sorted lists are then concatenated and the first element, what we call the weak

canonical form, is returned to the canonicalize function for further processing. The

returned type represents the weak canonical representation for the set of equivalent

types for expType in the transitive closure Eqenv.



44

Algorithm 9 canonicalize-weak

1: procedure canonicalize-weak(expType, Eqenv, sname)
2: ArrayList instances, typeParameters, aTypes ;
3: if expType is Instance then
4: instances.Add (expType) ;
5: else if sname.isTypeParameter (expType) then
6: typeParameters.Add (expType) ;
7: else
8: if sname.isAssocType (expType) then
9: aTypes.Add (expType) ;
10: end if
11: end if
12: for i = 0 to Eqenv.Size() do
13: if Eqenv[i].Lhs == expType then
14: if Eqenv[i].Rhs is Instance then
15: instances.Add (Eqenv[i].Rhs)
16: else if Eqenv[i].Rhs is TypeParameter then
17: typeParameters.Add (Eqenv[i].Rhs) ;
18: else
19: aTypes.Add (Eqenv[i].Rhs) ;
20: end if
21: end if
22: end for
23: instances.Sort() ;
24: instances.Add(typeParameters.Sort()) ;
25: instances.Add(aTypes.Sort()) ;
26: return instances[0] ;
27: end procedure

The canonicalize function determines the canonical representation of a type. The

canonicalize algorithm, given in Algorithm 10 starts by finding the ”weak” canoni-

cal representation of expType, using the canonicalize-weak function. Based on this

representation, we have three subcases.

1. If canonicalize-weak returns a type parameter, then it is the canonical form of

the input type expType.
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Algorithm 10 canonicalize
1: procedure canonicalize(expType, Eqenv, env, sname)
2: ArrayList newTargs ;
3: canon weak = canonicalize-weak (expType,Eqenv, sname) ;
4: if sname.isTypeParameter (canon weak) then
5: return canon weak ;
6: else if canon weak is an Instance then
7: ArrayList targs = canon weak.TypeArguments ;
8: for i = 0 to targs.Size() do
9: newTargs[i] = canonicalize (targs[i], Eqenv, env,sname);
10: end for
11: canon weak.TypeArguments = newTargs ;
12: return canon weak ;
13: else
14: if !canon weak.Contains (”::”) then
15: if sname is Interface then
16: return canon weak ;
17: else if sname is Class then
18: Get the member type binding for canon weak and populate atype bind.
19: return canonicalize(atype bind, Eqenv, env, sname) ;
20: else
21: return canon weak ;
22: end if
23: else
24: canon left = canonicalize(canon weak.Left, Eqenv, env, sname) ;
25: if canon left is a sub-type of a class then
26: Get member type binding for canon weak.Right and populate atype bind.
27: return canonicalize(atype bind, Eqenv, env, sname) ;
28: else
29: return canon left :: canon weak.Right ;
30: end if
31: end if
32: end if
33: end procedure

2. If canonicalize-weak returns an instance, then the canonical form is determined

by canonicalizing every type argument of the instance. Lines 6–12 find the

canonical form for an instance.

3. If canonicalize-weak returns a member type, then the canonical form can either

be a member type binding, or a member type itself. If the context in which
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the canonicalize is invoked is a class or if the member type has a class subtype

constraint, then the corresponding member type binding is canonicalized and

returned as the canonical form for the member type.

The process of canonicalization usually changes the number of type parameters

to be generated during associated type translation. In some cases, the number of

type parameters can even be reduced. For example, in Figure 21, X andY are

two associated types declared in interface A. With direct translation, the translated

interface must have two type parameters. However, since X and Y are declared to

be of the same type using the require clause, the canonicalize function ensures that

the translation generates only one type parameter.

interface D { interface D<X1> {
type Y; =⇒ ...
type Z ; translate }
require Y==Z;
....

}

Fig. 21. Translation of a simple interface declaration.

Generation of new type parameters: The generation of new type parame-

ters for the translated generic interface, class, or method relies on three algorithms:

fullassoctparams, full-tparams, translateConstrainableType and a mapping function,

generateTypeParameter.

The fullassoctparam function, given in Algorithm 11, collects the set of all type

parameters and member types used in the definition of a interface, class, or method

recursing to its ancestors and constraints. The type parameters declared in a inter-

face, class, or method are first collected and added to the list tparams. The set of

member types declared in the current type or in its ancestors are then collected and
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Algorithm 11 fullassoctparam

1: procedure fullassoctparam(sname)
2: ArrayList tparams, atypes ;
3: tparams.Add (sname.TypeParameters) ;
4: if (sname is Interface) then
5: tparams.Add (assoc-decl (sname)) ;
6: end if
7: if (sname is Class) then
8: tparams.Add (assoc-def (sname)) ;
9: end if
10: ArrayList env = env-for-body (sname) ;
11: for i = 0 to tparams.Size() do
12: for j = 0 to env.Size() do
13: Constraint ctr = env[j] ;
14: if (ctr.Lhs == tparams[i] && ctr.IsSubType()) then
15: if ctr.Rhs is Interface then
16: atypes = assoc-decl (ctr.Rhs) ;
17: end if
18: if ctr.Rhs is Class then
19: atypes = assoc-def (ctr.Rhs) ;
20: end if
21: for k = 0 to atypes.Size() do
22: AssocType t = atypes[k] ;
23: tparams.Add (tparams[i]::t)
24: end for
25: end if
26: end for
27: end for
28: return tparams ;
29: end procedure

added to tparams by using assoc-decl or assoc-def algorithms. The constraint set

collected using env-for-body is then traversed to collect the set of member types that

can be accessed through a type parameter or member type based on the sub-type

constraints on those type parameters or member types. In Algorithm 11, lines 21–24,

populate the list tparams with the collected set of member types qualifying every

member type in the collected set with the corresponding type parameter or member

type through which it can be accessed. The collected set of type parameters and
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member types are then returned to the full-tparams function.

Algorithm 12 full-tparams

1: procedure full-tparams(sname)
2: ArrayList full assoc tparams, full tparams, Eqenv;
3: ArrayList env = env-for-body (sname) ;
4: for i = 0 to env.Size() do
5: if (!env[i].IsSubType()) then
6: Eqenv.Add (env[i]) ;
7: end if
8: end for
9: full assoc tparams = fullassoctparams (sname) ;
10: ArrayList Eqenv = getTransitiveClosure(Eqenv, env) ;
11: for i = 0 to full assoc tparams.Size() do
12: canon ctr = canonicalize (tparams[i], env, Eqenv, sname) ;
13: if canon ctr is not an Instance then
14: full tparams.Add (canon ctr ) ;
15: end if
16: end for
17: return full tparams ;
18: end procedure

The full-tparams function, given in Algorithm 12, collects all type parameters and

member types required for the translated interface, class, or method. This function

maintains the semantics of the same-type constraints by canonicalizing every type in

the collected set of types returned by fullassoctparam. During the canonicalization

process, if a type parameter or member type canonicalizes to an instance, then such

types will not be added to the set of new type parameter for the translated type or

method.

The translateConstrainableType function, invoked from translate function, gener-

ates new type parameters for the translated interface, class, or method. The algorithm

relies on a mapping function generateTypeParameter, that maps member types and

type parameters to new type parameter name. The naming scheme for the new type

parameter can be arbitrary, however the mapping function ensures that each distinct
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type is mapped to a distinct name and to the same name every time. For the naming

scheme, we chose to use X1, X2, X3 .. XN , where N is the total number of type

parameters to be generated with the full-tparams function. The translateConstrain-

ableType algorithm is given in Algorithm 13.

Algorithm 13 translateConstrainableType

1: procedure translateConstrainableType(sname, typeParameters)
2: ArrayList newtypeParameter ;
3: for i = 0 to typeParameters.Size() do
4: newtypeParameter.Add(sname.generateTypeParameter(typeParameters[i]))
5: end for
6: return newtypeParameters ;
7: end procedure

Translation of types: The translateType algorithm given in Algorithm 14 is the

main function that translates any occurrences of types either as base types, constraints

or in the body of an interface, class, or method. The parameter expType is the type

to be translated. The translation process starts by finding a canonical representation

of the type using the canonicalize function. Based on the canonical representation

canon exp, of expType, we distinguish between two cases:

• If the canonical representation canon exp is a type parameter or member type

in the context in which the translateType is invoked, then generateTypeParam-

eter is used to get the mapping of canon exp to the corresponding new type

parameter which is returned as the translation of expType.

• If the canonical representation canon exp is an instance, then the translation is

more involved. The getTypeParameter function looks up set of type parameters

from the class table for canon exp. The full-tparams function gets the set of
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Algorithm 14 translateType

1: procedure translateType(expType, env, Eqenv, sname)
2: ArrayList full tparams ;
3: canon exp = canonicalize (expType, env, Eqenv, sname) ;
4: if sname.isTypeParameter(canon exp) OR sname.isAssocType (canon exp) then
5: return sname.generateTypeParameter (canon exp) ;
6: else
7: ArrayList targs = canon exp.TypeArguments ;
8: ArrayList tParams = getTypeParameters (canon exp) ;
9: ArrayList params= full tparams (canon exp) ;
10: params.Sort() ;
11: for i = 0 to params.Size() do
12: if (j = tParams.Contains(params[i])) != null then
13: full tparams.Add(translateType (targs[j], env, Eqenv, sname)) ;
14: else
15: full tparams.Add(translateType (params[i], env, Eqenv, sname)) ;
16: end if
17: end for
18: end if
19: canon exp.TypeArguments = full tparams;
20: return canon exp ;
21: end procedure

all possible type parameters or member types that can be used in canon exp,

recursing to its constraints and ancestors. The set of types returned by full-

tparams is then sorted by using Sort, to maintain the same ordering of type

parameters and member types in the definition of a interface or class and in its

use. The ordered set of types is then traversed and type parameters are substi-

tuted with the corresponding type arguments and then translated by invoking

translateType function, while the member types are mapped to the correspond-

ing new type parameters or the binding type by invoking translateType. The

type arguments of canon exp are updated and returned.

Note that, the translateType guarantees that the type argument list of the trans-

lation of any instance will match the type parameter list of the translation of the

definition of the class or interface.
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Translation of base types: The translateParents function given in Algorithm 15

uses translateType to translate all the base types of an interface or class.

Algorithm 15 translateParents

1: procedure translateParents(sname, env, Eqenv)
2: ArrayList translatedBases ;
3: for i = 0 to sname.Bases.Size() do
4: translatedBases.Add (translateType(sname.Bases[i]), env, Eqenv, sname)) ;
5: end for
6: return translatedBases ;
7: end procedure

Translation of constraints: The translateEnv function drives the translation of

the propagated constraints. The set of propagated constraints are first traversed and

only the sub-type constraints are translated. The same type constraints in the propa-

gated set of constraints are not added to the translated set of constraints. Constraint

translation involves translating both the left and right side of a sub-type constraint.

The algorithm first canonicalizes the left side of a sub-type constraint. C# do not

allow instances to occur in the left side of a sub-type constraint and so, if the canon-

icalized form is an instance, those constraints are not added to the translated list

of constraints. On the other hand, if the canonicalized form is a type parameter

or member type, then generateTypeParameter obtains the corresponding new type

parameter in the translated interface, class, or method.

C# allows type parameters to be constrained by SpecialConstraints such as class,

struct, new(). These were not considered in the idealized setting in [3]. The right side

of such constraints need not be translated. On the other hand, if the right side of

a sub-type constraint is an instance, translateRhs is used to translate this instance.

Finally, translateEnv function uses the helper function constructConstraint to create
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Algorithm 16 translateEnv

1: procedure translateEnv(sname, env, Eqenv)
2: ArrayList translateEnv ;
3: for i = 0 to env.Size() do
4: if env[i].isSubType() then
5: Lhs = canonicalize (env[i].Lhs, env, Eqenv, sname) ;
6: if Lhs is not a Instance then
7: newLhs = sname.generateTypeParameter(Lhs) ;
8: else
9: continue ;
10: end if
11: if env[i].Rhs is SpecialConstraint then
12: translateEnv.Add (constructConstraint(newLhs, env[i].Rhs));
13: else
14: newRhs = translateRhs(env[i].Rhs, env, Eqenv, sname, env[i].Lhs);
15: translateEnv.Add(constructConstraint(newLhs, newRhs)) ;
16: end if
17: end if
18: end for
19: return translateEnv ;
20: end procedure

a new translated constraint. After translating all constraints, they are returned to

translate function. The algorithm for translateEnv is given in Algorithm 16.

The translateRhs algorithm, given in Algorithm 17, is used to translate the in-

stance that appears in the right side of a sub-type constraint of a type parameter

or member type. The algorithm for translateRhs is similar to translateType function

except that, during the translation of type arguments of a type that are collected

by full-tparams function, all the member types are qualified with lhs, the left side

of the sub-type constraint for which translateRhs was invoked. This ensures that all

the member types collected using full-tparams function are mapped to the already

generated new type parameters and that no new type parameters are generated.

Method invocation translation: The translation of generic method header

introduces new type parameters for all the member types that can be accessed from
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Algorithm 17 translateRhs

1: procedure translateRhs(expType, env, Eqenv, sname, lhs)
2: ArrayList full tparams ;
3: canon exp = canonicalize (expType, env, Eqenv, sname) ;
4: ArrayList targs = canon exp.TypeArguments ;
5: ArrayList tParams = getTypeParameters (canon exp) ;
6: ArrayList params= full tparams (canon exp) ;
7: params.Sort() ;
8: for i = 0 to params.Size() do
9: if (j = tParams.Contains(params[i])) != null then
10: full tparams.Add(translateType (targs[j], env, Eqenv, sname) ;
11: else
12: if canon exp.isAssocType(params[i]) then
13: full tparams.Add(translateType (lhs::params[i], env, Eqenv, sname))
14: end if
15: end if
16: end for
17: canon exp.TypeArguments = full tparams;
18: return canon exp ;
19: end procedure

the existing type parameter list. For example, Figure 22 shows a method declara-

tion func1<X,Y> and a corresponding method invocation statement for this generic

method before the translation process and Figure 23 shows the same method decla-

ration and invocation statement after the translation process. Note that, the method

func1<X,Y> which has two type parameters gets translated to func1<X1, X2, X3,

X4> with four type parameters. This increase in type parameters makes it neces-

sary to determine the extra type arguments that have to be specified for the new

type parameters in the translated method invocation statement, first.func<Y1, int> .

Moreover during the translation process, the ordering of type parameters in a generic

method declaration will be modified and hence the type arguments in the method in-

vocation statement may not match the type parameter list in the method declaration.

Due to this, for example in Figure 23, the translated method invocation statement



54

first.func1<Y1, int> could be invalid. This example necessitates the need to solve

two problems listed below in the translation of method invocation statements.

• Determine the type arguments to be specified in the translated method invoca-

tion statement for the new extra type parameters.

• Ensure that the method invocation matches the translated method declaration

(i.e)., type argument match the corresponding type parameters.

This problem of method invocation translation, — as we name it, was overlooked

in [3] and this thesis proposes a solution to this problem and provides a implementa-

tion.

class first {
static bool func1 <X, Y> ()

where . . . . .
{

. . . . .
}

}

class second {
static bool func2 <Y> () {

first.func1 <Y, int>();
. . . . .

}
}

Fig. 22. A method invocation before translation.

The full-tparams, translateType, and a modified type canonicalization process can

be used to translate the method invocation statements. The type arguments for the

extra type parameters can be determined from the type arguments specified during

the invocation of a method in the program text. During the translation of method

invocation statement, a mapping between type parameters of the generic method
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class first {
static bool func1 <X1, X2, X3, X4> ()

where . . . . .
{

. . . . .
}

}

class second {
static bool func2 <Y1> () {

first.func1 <Y1, int>(); // Invocation does not match the translated definition
}

}

Fig. 23. A method invocation after translation.

m and the type arguments specified in the method invocation statement has to be

created.

The full-tparams function can be used to determine the set of type parameters

that were generated during the translation of the declaration of the generic method

m. This collected set of types has to be ordered to ensure the same ordering of type

parameters in the method declaration and in the method invocation. The ordered set

of types can then be traversed to determine the canonicalized representation of each

type. Based on the canonical representation returned,

• If the canonical form is a type parameter, we retrieve the corresponding type

argument for this type parameter using the mapping created between type pa-

rameters of method declaration and type arguments specified during method

invocation.

• If the canonical form is a member type or instance, the canonicalization process

is the same as explained before in canonicalize algorithm.
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The above process of finding the canonical representation for a type parameter

is a slight variation of the type canonicalization process explained in Section D. Here

in method invocation statements, the type arguments can even be type parameters

from the surrounding context. For example, in Figure 23, in the method invocation

first.func1<Y1, int> , type parameter Y1 declared in func2 is used as a type argu-

ment. The above variation of type canonicalization process gives preference to these

type arguments rather than to type parameters declared in the generic method m.

Now every type in this canonicalized list has to be translated using translateType

algorithm to ensure that the type parameters and member types are mapped to the

corresponding new type parameter or a binding type for the member type in the

context of method invocation. This translated list of types is the set of new type

arguments to be specified during the invocation of the generic method m.

E. Evaluation of the impact of the language extensions

Using our framework for associated types and constraint propagation, we performed

a preliminary evaluation of the impact of these extensions to developing generic li-

braries. Our experiments consisted of implementing a subset of a state-of-the-art

generic library, the Boost Graph Library. The development of this subset also served

as a source of testbed for the implementation framework. The subset includes con-

cepts GraphEdge, IncidenceGraph, BidirectionalGraph, VertexListGraph and Edge-

ListGraph, and the generic algorithms Graph Search, Breadth first search, Bellman

Ford, Relax, first neighbor, isSameInOutDegree, and data structures queue, and ad-

jacency list.

The three factors we used to compare the code verbosity for the subset of BGL in

current C# and C# with the proposed extensions are the number of type parameters
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or member types in concept descriptions or in generic methods, number of constraint

expressions, and character count for the constraint expressions. Tables I to VI list

the results.

Table I. Comparison of number of type parameter or member types in concept de-

scriptions in current C# and C# with proposed extensions.

Concepts current C# C# with proposed extensions

GraphEdge 1 1

IncidenceGraph 3 2

BidirectionalGraph 4 1

V ertexListGraph 1 1

EdgeListGraph 3 2

Table II. Comparison of number of constraints in concept descriptions in current C#

and C# with proposed extensions.

Concepts current C# C# with proposed extensions

GraphEdge 0 0

IncidenceGraph 2 2

BidirectionalGraph 3 1

V ertexListGraph 1 1

EdgeListGraph 2 2

The queue data structure and few other general concepts such as StrictWeakO-

rdering, Buffer, MutableBuffer were implemented using type parameters instead of

member types demonstrating that both these language features fit together seam-

lessly and can co-exist without one replacing the other. The verbosity of code while

defining concepts in current C# and with the proposed extensions were almost the
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Table III. Comparison of character count of constraints in concept descriptions in cur-

rent C# and C# with proposed extensions.

Concepts current C# C# with proposed extensions

GraphEdge 0 0

IncidenceGraph 50 44

BidirectionalGraph 80 30

V ertexListGraph 31 31

EdgeListGraph 50 42

Table IV. Comparison of number of type parameters or member types in generic meth-

ods in current C# and C# with proposed extensions.

Generic Methods current C# C# with proposed extensions

GraphSearch 8 4

Relax 8 7

BreadthF irstSearch 7 3

BellmanFord 10 7

first neighbor 4 1

isSameInOutDegree 5 1
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Table V. Comparison of number of constraints in generic methods in current C# and

C# with proposed extensions.

Generic Methods current C# C# with proposed extensions

GraphSearch 7 4

Relax 6 6

BreadthF irstSearch 6 3

BellmanFord 8 6

first neighbor 3 1

isSameInOutDegree 4 1

Table VI. Comparison of character count of constraints in generic methods in current

C# and C# with proposed extensions.

Generic Methods current C# C# with proposed extensions

GraphSearch 212 96

Relax 206 212

BreadthF irstSearch 191 74

BellmanFord 295 239

first neighbor 80 6

isSameInOutDegree 101 6
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same, though in the BidirectionalGraph concept descriptions, the number of type

parameters, constraints and character count of constraints was reduced considerably.

On the other hand, verbosity of code in generic methods reduced significantly as is

evident from Table IV to VI.

Generally, access to type parameters are shorter than member type access syn-

tax. For example, in one case the character count of constraints shown in Table VI,

for the generic method relax increased slightly. This effect is due to the repeated oc-

currence of member type access through type parameters in the constraint clause of

relax method, whereas these member types are represented as direct type parameters

in current C#. Also note from Table V, the number of constraints in relax method

remains the same because there are no constraints that can be possibly propagated

and hence constraint propagation does not compensate for the increase in character

count. In this case, the slight increase in character count is actually compensated by

the decrease in the number of type parameters required for the relax method written

with the proposed extensions. This slight increase in character count of constraints

was not found in other generic method implementations due to the significant de-

crease in the number of constraints that has to be repeated because of the constraint

propagation language extension.

In summary, the empirical results suggest that adding support for associated

types and constraint propagation does improve the generic programming capabilities

in C# by reducing the verbosity of the code.
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CHAPTER VI

FEATHERWEIGHT GENERIC JAVA EXTENDED WITH INTERFACES

The formal study of properties of associated types and constraint propagation in [3]

was based on the Featherweight Generic Java formalism extended with Interfaces

(FGJ+I). Unlike FGJ, FGJ+I formalism has no established proof of type safety, and

we prove the type soundness of FGJ+I in this chapter.

FGJ+I extends FGJ with generic interfaces. Interfaces in FGJ+I follow the

conventional object oriented behavior found in Java or C#. Classes in FGJ+I can

implement multiple interfaces but only inherit from a single class. Interfaces can

inherit from multiple interfaces. All the methods declared in an interface must be

defined by the class implementing that interface. Further, fields cannot be declared

inside interfaces. Interfaces in FGJ+I can be generic and bounds can be specified

on type parameters of generic interfaces. Similar to FGJ, a bound of a type variable

may not be another type variable. Figure 24 shows a simple program in FGJ+I.

Generics can in principle be realized by two implementation styles: type-passing,

augmenting the runtime system to carry information about type parameters, or era-

sure, removing all information about type parameters at runtime [17]. Generics im-

plementation of C# maintains the information about type parameters at run-time.

To stay close to the semantics of C#, this thesis explores only the type-passing imple-

mentation style, giving a direct semantics for FGJ+I and proving a type soundness

theorem.

A. Syntax

The abstract syntax of FGJ+I class declaration, interface declaration, constructor

declaration, method declaration, method definition and expressions are given in Fig-
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ure 25. Many of the rules are either directly from, or based on, FGJ [5]. For the sake

of conciseness of notation, we abbreviate the keyword extends to the symbol /. The

metavariables C, D range over class names; I, J range over interface names and E, F

range over both class and interface names; X, Y, and Z ranges over type variables;

S, T, U, and V range over types; N, P, and Q range over non-variable types (types

other than type variables); M ranges over interface instances; K ranges over class

instances; f and g range over field names; m ranges over method names; x ranges

over variables; d and e range over expressions; L ranges over class declarations; Id

ranges over interface declarations; kd ranges over constructor declarations; md ranges

over method definition; and ms ranges over method declarations.

interface convertibleTo<A extends Object> {
A convert() ;

}

class A extends Object {
A() { super() ; }

}

class B extends Object {
B() { super() ; }

}

class Pair <X extends Object, Y extends Object> implements convertibleTo<X> {
X fst ;
Y snd ;
Pair(X fst, Y snd) {

super() ; this.fst = fst ; this.snd = snd ;
}
<Z extends Object> Pair<Z,Y> setfst (Z newfst) {

return new Pair<Z,Y> (newfst, this.snd) ;
}
X convert() { return this.fst; }

}

Fig. 24. A simple FGJ+I program.
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Types in FGJ+I are either class or interface instances, or type variables. Bor-

rowing from FGJ, we use f as shorthand for a possibly empty sequence f1, . . . , fn

(and similarly for N, T , x, e, etc.). We also use X as shorthand for X1, . . . , Xn and

assume sequences of type variables contain no duplicate names. We abbreviate the

list of type parameters and their bounds, X1 / N1, . . . , Xn / Nn in a obvious way

as X / N . We write the empty sequence as • and denote the concatenation of se-

quences using a comma. The length of a sequence x is written as #(x). The oper-

ations on pairs of sequences are abbreviated in an obvious way, writing ”T f” for

”T1 f1, . . . , Tn fn”, where n is the length of T and f . Sequences of field declarations,

parameter names, method definitions, method declarations are assumed to contain

no duplicate names. Further we assume that inheritance does not cause method or

field duplication in the derived class or interface. Also, sometimes a class definition

is written as class C<X / P> : N . . ., in which case we assume that at most one Ni

is a class, and the other elements in N are interfaces. Further, we sometimes use

the syntax class/interface E<X / P> : N . . . when describing behavior common to

classes and interfaces; it is assumed that if E is an interface, all elements of N are

interfaces.

As in FGJ, we assume a class table CT as a mapping from a class or interface

names E to their corresponding declarations. A program is a pair (CT, e) of a class

table and an expression. The given class table is assumed to satisfy some sanity

conditions: (1) CT(E) = class/interface E... for every E ∈ dom(CT ); (2)Object

6∈ dom(CT ); (3) for every class/interface name E (exceptObject) appearing anywhere

in CT, we have E ∈ dom(CT ); and (4) there are no cycles in the subtype relation

(<:) induced by CT, i.e., the relation <: is antisymmetric.

For the typing and reduction rules we require a few auxiliary functions, given in

Figure 26. We write m 6∈ md to mean that the method definition of the name m is
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(interface def) Id ::= interface I<X / N> / M {ms}

(class def) L ::= class C<X / N> / M, K {T f ; kd md}

(constructor def) kd ::= C(T f) {super(f); this.f = f ; }

(method signature) ms ::=<X / N> T m(U x);

(method def) md ::=<X / N> T m(U x) {return e; }

(expression) e ::= x | e.f | e.m<T>(e) | new K(e) | (N)e

(instantiated interface) M,N ::= I<T>

(instantiated class) K, L ::= C<T>

(instantiated class or interface) N,P, Q ::= M | K

(Type Variables and non-variable types) S, T, U, V ::=X | N

Class names ::= C,D

Interface names ::= I, J

(class or interface name) E,F ::= C | I

Type Variable names ::= X, Y, Z

Field names ::= f, g

Method name ::= m

fields(K) ::=T f

mtype(m,N) ::=<X / N>U → U

mbody(m<V >,K) ::=x.e

Fig. 25. Syntax of FGJ+I.
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Subclassing
E E E

E E F F E G

E E G

class E<X / N> / F{...}

E E Fi

F-object
fields(object) = •

F-Class

class C<X / N> / M, K {S f ; kd md} fields([T/X]K) = U g

fields(C<T>) = U g, [T/X]S f

MT-Class

class C<X / N> / M, K {S f ; kd md} <Y / P>U m(U x){return e; } ∈ md

mtype(m, C<T>) = [T/X](<Y / P>U → U)

MT-Super

class C<X / N> / M, K {S f ; kd md} m 6∈ md

mtype(m,C<T>) = mtype(m, [T/X]K)

MT-Interface

interface I<X / N> / M {ms} <Y / P>U m(U x) ∈ ms

mtype(m, I<T>) = [T/X](<Y / P>U → U)

MT-super-interface

interface I<X / N> / M {ms} <Y / P>U m(U x) 6∈ ms <Y / P>U → U = mtype(m,M)

mtype(m, I<T>) = [T/X](<Y / P>U → U)

MB-Class

class C<X / N> / M, K {S f ; kd md} <Y / P>U m(U x){return e0; } ∈ md

mbody(m<V >, C<T>) = x.[T/X, V /Y ]e0

MB-Super

class C<X / N> / M, K {S f ; kd md} m 6∈ md

mbody(m<V >, C<T>) = mbody(m<V >, [T/X]K)

MT-Multiple

<Y / P>U → U = mtype(m, Ni)

mtype(m,N) = <Y / P>U → U

Fig. 26. FGJ+I auxillary functions.
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not included in md and the notation m 6∈ ms to mean that method declaration m is

not included in ms. The fields of a non-variable type (class) K, written fields(K),

is a sequence of corresponding types and field names T f . The type of the method

invocation on a non variable type obtained using the mtype(m, N) function is a type

of the form <Y / P>U → U . The body of the method invocation m at non-variable

type K with type parameters V , written mbody(m<V >, K), is a pair, written x.e, of a

sequence of parameters x and an expression e. Note that the mtype function is defined

for interfaces and classes whereas mbody is defined only for classes. Additionally the

typing and reduction rules use the following helper functions, whose definitions we

omit.

• name function takes a non-variable type N and returns the name of the class

or interface of which the type N is an instance.

• getclass function takes a sequence of non-variable types N and returns a class

K, if K ∈ N , otherwise returns an empty sequence

• msig decl names function collects the names of all methods declared in a given

interface or in its ancestors

• msig def names function collects the names of all methods defined in a class or

in its base class.

B. Typing

In our formalism, we use two typing environments Γ and ∆. The environment Γ

maps variables to their types, written as x : T . The type environment ∆ maps type

variables to non-variable types, written as X <: N . Note that, a type variable can

have multiple bounds in FGJ+I due to the inclusion of interfaces to the language.
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The forms of judgments in the FGJ+I type system consists of one for subtyping,

∆ ` S <: T , one for type well-formedness, ∆ ` T ok and one for typing, ∆; Γ `

e : T . Sequences of judgments are abbreviated in the obvious way: X <: N for

X <: N1 and X <: N2 . . . X <: Nn; ∆ ` S1 <: T1, T2, . . . , Tm, . . . . . . , ∆ ` Sn <:

T1, T2, . . . , Tm is abbreviated to ∆ ` S <: T ; ∆ ` T1 ok, . . . , ∆ ` Tn ok to ∆ ` T ok;

∆ ` S1 <: T1, ∆ ` S2 <: T2, . . . , ∆ ` Sn <: Tn to ∆ ` S <: T and ∆; Γ ` e1 : T1, . . . ,

∆; Γ ` en : Tn to ∆; Γ ` e : T .

The sub-typing and type well-formedness rules are given in Figure 27. The

function bound∆(T ), returns the upper bound of a type T . If T is a type variable

then bound returns a sequence of non-variable types given as bound for T . For non-

variable type N , bound∆(N) returns the non-variable type N itself or a singleton

sequence. Since FGJ+I does not support type variables to be constrained by another

type variable, the bound function always returns either a sequence of non-variable

types N or a single non-variable type N.

The subtyping relation ∆ ` S <: T , read as ”S is a subtype of T in ∆”, is the

reflexive and transitive closure of the extends relation. The rule s-class introduces

subtyping relation between a class and its base types in the environment ∆. Similarly,

rule s-interface introduces subtyping relation between an interface and its base types

in the environment ∆. The rule s-var introduces the subtyping relation between type

variables and its bounds.

A class or interface instance, C<T> or I<T>, is said to be well-formed only if

substituting T for X in C<X / N> respects the bounds N on every type parameter,

i.e., T <: N . The type Object is assumed to be well-formed in the environment ∆

and a type variable X is well-formed in ∆ if it belongs to the dom(∆). We use the

notation, ∆ ` T ok if the type T is well-formed in the environment ∆.
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bound∆(X) = ∆(X) bound∆(N) = N

s-refl
∆ ` T <: T

s-trans
∆ ` S <: T ∆ ` T <: U

∆ ` S <: U
s-var

∆ ` X <: ∆(X)

s-class

class C<X / P> / N {....}

∆ ` C<T> <: [T/X]Ni, for all i

s-interface

interface I<X / N> / M {....}

∆ ` I<T> <: [T/X]Mi, for all i

Wf-object
∆ ` Object ok

wf-var
X ∈ dom(∆)

∆ ` Xok

wf-Interface

interface I<X / N> / M{....} ∆ ` T ok ∆ ` T <: [T/X]N

∆ ` I<T> ok

wf-class

class C<X / N> / M, K {...} ∆ ` T ok ∆ ` T <: [T/X]N

∆ ` C<T> ok

valid-downcast

class/interface E<X / N> / F<T> {...} X = FV (T )

dcast(E,Fi), for all i

trans-downcast
dcast(E,F ) dcast(F,G)

dcast(E,G)

valid-method-override

mtype(m,N) = <Z / Q>U → U0 implies P , T = [Y /Z](Q,U) and Y <: P ` T0 <: [Y /Z]U0

override(m,N, <Y / P>T → T0)

override-multiple

override(m,Ni, <Y / P>T → T0)

override(m,N, <Y / P>T → T0)

Fig. 27. FGJ+I bound of types and subtyping rules.
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GT-class

X <: N ` N,M, T , K ok

fields(K) = U g kd = C(U g, T f){super(g); this.f = f ; } md ok in C<X / N>
A = msig decl names(C) B = msig def names(C) A−B = ∅

class C<X / N> / M, K {T f ; kd md} ok

GT-interface

ms ok in I<X / N> X <: N `M ok X <: N ` N ok

interface I<X / N> / M {ms} ok

GT-methoddecl

∆ = X <: N,Y <: P ∆ ` T , T, P ok

<Y / P> T m(T x) ok in I<X / N>

GT-Method

∆ = X <: N, Y <: P ∆ ` T, T , P ok ∆; x : T ; this : C<X> ` e0 : S

∆ ` S <: T class C<X / Q> / N{...} override(m,N, <Y / P>T → T )

<Y / P> T m(T x) {return e0; } ok in C<X / N>

Fig. 28. FGJ+I class, interface and method typing.
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gt-var
∆; Γ ` x : Γ(x)

gt-field
∆; Γ ` e0 : T0 T0 not interface fields(getclass(bound∆(T0))) = T f

∆; Γ ` e0.fi : Ti

gt-invk

∆; Γ ` e0 : T0 mtype(m, bound∆(T0)) = <Y / P>U → U

∆ ` V ok ∆ ` V <: [V /Y ]P ∆; Γ ` e : S ∆ ` S <: [V /Y ]U

∆; Γ ` e0.m<V >(e) : [V /Y ]U

gt-new
∆ ` K ok fields(K) = T f ∆; Γ ` e : S ∆ ` S <: T

∆; Γ ` new K(e) : K

gt-ucast
∆; Γ ` e0 : T0 N0 in bound∆(T0) ∆ ` N0 <: N

∆; Γ ` (N)e0 : N

gt-dcast
∆; Γ ` e0 : T0 ∆ ` N ok

N0 in bound∆(T0) ∆ ` N <: N0 N = E<T> N0 = F<U> dcast(E,F )

∆; Γ ` (N)e0 : N

gt-scast
∆; Γ ` e0 : T0 ∆ ` N ok N = bound∆(T0)

name(N) 5 name(Ni) name(Ni) 5 name(N) stupid warning

∆; Γ ` (N)e0 : N

Fig. 29. FGJ+I typing rules for expression.
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Similar to FGJ, FGJ+I allows co-variant overriding of methods. The override

(m,N, <Y / P>T → T0) helper function given in Figure 27 is used to check for valid

method overriding when type checking method definitions in class bodies.

The typing rules for type checking class, interface, method definition and method

declarations are given in Figure 28. Note that in the rule for typing class definition,

gt-class, the helper functions msig decl names and msig def names are used to check

if every method declaration has a corresponding definition.

The typing rules for expressions are given in Figure 29. The typing judgment for

expression typing is of the form ∆; Γ ` e : T, read as ”in the typing environment ∆

and the environment Γ, the expression e has type T”.

C. Reduction

The reduction relation is of the form e → e′, read as ”expression e reduces to ex-

pression e′ in one step”. We use the notation →∗ for the reflexive and transitive

closure of →. There are three reduction rules, one for field access, one for method

invocation, and one for casting. We use the notation [d/x, e/y]e0 for the result of

simultaneously replacing x1 by d1, . . . , xn by dn, and y by e in the expression e0.

Introducing interfaces to FGJ does not introduce any new forms of expressions; the

reduction rules thus remain the same as in FGJ. The reduction rules for FGJ+I are

given in Figure 30.

D. Properties of the formalization

FGJ+I programs enjoy the subject reduction and progress properties, and thus a

type soundness property like FGJ programs. Since the evaluation and reduction are

the same as FGJ, the structure of the type soundness proof did not change radically
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GR-field
fields(K) = T f

(new K(e)).fi → ei

Gr-invk
mbody(m<V >, K) = x.e0

(new K(e)).m<V >(d)→ [d/x, new K(e)/this]e0

Gr-cast
∅ ` K <: P

(P )(new K(e))→ new K(e)

GRC-field
e0 → e′

0

e0.f → e′
0.f

GRC-inv-recv
e0 → e′

0

e0.m<V >(e)→ e′
0.m<V >(e)

GRC-inv-arg
ei → e′

i

e0.m<V >(..., ei, ...)→ e0.m<V >(..., e′
i, ...)

GRC-new-arg
ei → e′

i

new N(...., ei, ....)→ new N(...., e′
i, ....)

GRC-cast
e0 → e′

0

(N)e0 → (N)e′
0

Fig. 30. FGJ+I reduction rule.



73

from that of FGJ [5]. However due to the addition of interfaces to the formalism, we

need to prove the preservation of sub-typing and well-formedness of interfaces under

type substitution lemmas, in order to reuse the proof structure from [5]. We proceed

by first proving the lemmas that need to change and then outline the entire proof,

relying on [5] where no change from the FGJ proof was necessary. The main lemmas

required are term substitution lemma, as in FGJ, and a similar lemma to prove the

preservation of typing under type substitution. The required lemmas are proved by

induction on derivation of ∆ ` S <: T or ∆; Γ ` e : T . The proof of type soundness

of FGJ+I follows by establishing the subject reduction and progress properties. We

assume that the underlying class table is ok in the following proofs.

Lemma 1 (Type substitution preserves Subtyping). If ∆1, X <: N, ∆2 ` S <: T

and ∆1 ` U <: [U/X]N with ∆1 ` U ok and none of X appearing in ∆1, then

∆1, [U/X]∆2 ` [U/X]S <: [U/X]T.

Proof. By induction on the derivation of ∆1, X <: N, ∆2 ` S <: T . The subtyping

rules for classes and variables and the transitivity and reflexivity remains the same as

in FGJ. It is straightforward to see that lemma holds for those cases. Now consider

the case of sub-typing rules for interfaces. By rule s-interface, we have

∆1, X <: N, ∆2 ` I<T> <: [T/Y ]M

S = I<T>

T = [T/Y ]M

interface I<Y / P> / M { ..... }

By rule Gt-interface, we have Y <: P ` M ok implies that M does not include

any of X as a free variable. Thus, [U/X][T/Y ]M = [[U/X]T/Y ]M . Now with

substitution, [U/X]I<T> <: [U/X][T/Y ]M implies I<[U/X]T> <: [[U/X]T/Y ]M .
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Finally by rule s-interface, we have ∆1, [U/X]∆2 ` [U/X]S <: [U/X]T finishing

the proof.

Lemma 2 (Type Substitution preserves Type Well-Formedness). If ∆1, X <: N, ∆2 `

T ok and ∆1 ` U <: [U/X]N with ∆1 ` U ok and none of X appearing in ∆1, then

∆1, [U/X]∆2 ` [U/X]T ok.

Proof. By induction on the derivation of ∆1, X <: N, ∆2 ` T ok, with a case anal-

ysis of the last rule used. The well-formedness rules for Objects and variables and

classes remains the same as in FGJ. It is straightforward to see that lemma holds

for those cases. Consider the case of well-formedness rules for interfaces. By rule

Wf-interface, we have

T = I<T>

∆1, X <: N, ∆2 ` T ok

∆1, X <: N, ∆2 ` T <: [T/Y ]P

interface I<Y / P> / M { ..... }

By induction hypothesis, we have

∆1, [U/X]∆2 ` [U/X]T ok

On the other hand by Lemma 1, we have ∆1, [U/X]∆2 ` [U/X]T <: [U/X][T/Y ]P .

Since Y <: P ` P ok by the rule Gt-interface, implies that P does not include any

of X as a free variable. Thus, [U/X][T/Y ]P = [[U/X]T/Y ]P and hence we have,

∆1, [U/X]∆2 ` [U/X]T <: [[U/X]T/Y ]P

This implies that all the type arguments with substitution satisfies the bounds on

the corresponding type parameters and that they are well formed. Therefore by rule

wf-interface, we have
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∆1, [U/X]∆2 ` I<[U/X]T> ok

Lemma 3 (Weakening). Suppose ∆, X <: N ` N ok and ∆ ` U ok.

(i) If ∆ ` S <: T, then ∆, X <: N ` S <: T.

(ii) If ∆ ` S ok, then ∆, X <: N ` S ok.

(iii) If ∆; Γ ` e : T, then ∆; Γ, x : U ` e : T and ∆, X <: N ; Γ ` e : T

Proof. Each of the above cases can be proved by induction on the derivation of ∆ `

S <: T and ∆ ` S ok and ∆; Γ ` e : T. The proof given in [5] does not change

except for the added cases wf-interface and s-interface which are trivial.

Lemma 4. If ∆ ` T ok and mtype(m, bound∆(T )) = <Y / P>U → U0, then for any

S such that ∆ ` S <: T and ∆ ` S ok, we have mtype(m, bound∆(S)) = <Y / P>U →

U ′
0 and ∆, Y <: P ` U ′

0 <: U0.

Proof. By induction on the derivation of ∆ ` S <: T with a case analysis of the last

rule used.

The subtyping rules for reflexivity and transitivity, s-refl and s-trans are the same

as in FGJ. It is straightforward to see that lemma holds for those cases. We now

provide the proof for all the other cases, s-var, s-interface, s-class.

Case s-var: Given ∆ ` X <: ∆(X) S = X T ∈ ∆(X) or T ∈ bound∆(S).

In our formalism, we assume that methods are not duplicated due to inheritance.

This implies that the method type of m returned by mtype(m, bound∆(T )) is the

same as mtype(m, bound∆(S)) since the lookup for m will resolve to the same type

T in both cases, where, T = bound∆(T ) and T ∈ bound∆(S). Therefore by reflexive

property of sub-typing relation, we have ∆, Y <: P ` U ′
0 <: U0.
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Case s-interface: Given

S = I<T> T ∈ [T/X]M

interface I<X / N> / M{ms; }

In our formalism, we do not allow overriding of method declarations in interfaces. So

if m is found in ms, then it will not be present in its base type T which contradicts

the induction hypothesis that the method is present in the base type T . So we can

safely omit this case.

On the other hand, if m 6∈ ms, then mtype(m, bound∆(S)) would return the type

of the method m in one of the base types Mi by MT-super-interface rule. Moreover

by the assumption that methods are not duplicated due to inheritance, we can be

sure that the method lookup will resolve to the same type T , where T = Mi while

determining the type of the method in bound∆(T ) as well as in bound∆(S). Hence by

reflexive property of the subtyping relation, we have ∆, Y <: P ` U ′
0 <: U0.

Case s-class:

S = C<T> T ∈ [T/X]N

class C<X / Q> / N{. . . md; }

If m 6∈ md, there are two sub-cases depending on whether T is a class or inter-

face. If T is a class, it is easy to show the conclusion as mtype(m, bound∆(S)) =

mtype(m, [T/X]K) for some K ∈ N by MT-Super rule. So by reflexivity property

of subtyping we have ∆, Y <: P ` U ′
0 <: U0. If T is an interface and m 6∈ md cannot

occur as every method declaration in the base interface must be given a definition in

the class that derives the interface. This property is checked while type checking the

definition of the class.

If m ∈ md, then by mtype(m,N), we have
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mtype(m,N) = [T/X](<Y / P ′>U ′ → U ′′
0 )

where (<Y / P ′>U ′ → U ′′
0 ) = mtype(m,Ni) and Ni = T . We can safely assume that

X and Y are distinct and in particular, that [T/X]U ′′
0 = U0. By Gt-method, it must

be the case that

<Y / P ′> W ′
0 m(U ′ x){. . .} ∈ md and

X / Q, Y / P ′ ` W ′
0 <: U ′′

0

Now by Lemma 1 and Lemma 3, we have

∆, Y <: P ` [T/X]W ′
0 <: U0

Since mtype(m, bound∆(S)) = mtype(m,S) = [T/X]<Y / P ′>U ′ → W ′
0 by mt-class,

letting U ′
0 = [T/X]W ′

0 finishes the case.

Lemma 5. If ∆ ` S <: T and fields(getclass(bound∆(T ))) = T f , then fields

(getclass(bound∆(S))) = S g and Si = Ti and gi = fi for all i ≤ #(f).

Proof. By straightforward induction on the derivation of ∆ ` S <: T .

The subtyping rules for reflexivity and transitivity, s-refl and s-trans are the same

as in FGJ. It is straightforward to see that the lemma holds for those cases. We now

provide the proof for all the other cases, s-var, s-interface, s-class.

Case s-var: Given S = X T ∈ ∆(X). If T is a class, the lemma holds since

getclass(bound∆(S)) <: getclass(bound∆(T )). The case where T is an interface is

trivial as #(f) = 0.

Case s-class:

S = C<T> T ∈ [T/X]N

class C<X / P> / N{S g; . . .}
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If T is a class, then T = K for some K ∈ N . By rule F-class, fields(C<T>) =

U f, [T/X]S g where U f = fields([T/X]K) for some K ∈ N . If T is an interface,

the lemma trivially holds as #(f) = 0.

Case s-interface: Since fields cannot be declared inside interface, this lemma triv-

ially holds for this case as fields(getclass(bound∆(T ))) and fields(getclass(bound∆(S)))

returns an empty sequence.

Lemma 6 (Type Substitution preserves Typing). If ∆1, X <: N, ∆2; Γ ` e : T

and ∆1 ` U <: [U/X]N with ∆1 ` U ok and none of X appearing in ∆1, then

∆1, [U/X]∆2; [U/X]Γ ` [U/X]e : S for some S such that ∆1, [U/X]∆2 ` S <:

[U/X]T.

Proof. By induction on the derivation of ∆1, X <: N, ∆2; Γ ` e : T with a case

analysis on the last rule used.

Case gt-var: Trivial

Case gt-field:

e = e0.fi ∆1, X <: N, ∆2; Γ ` e0 : T0

T0 not interface fields(getclass(bound
∆1,X<:N,∆2

(T0))) = T f T = Ti

By induction hypothesis, ∆1, [U/X]∆2; [U/X]Γ ` [U/X]e0 : S0 and ∆1, [U/X]∆2 `

S0 <: [U/X]T0. Assume ∆ = ∆1, [U/X]∆2.

If T0 is an instance, then bound∆1,[U/X]∆2
(S0) and [U/X]bound

∆1,X<:N,∆2
(T0) are

the same type. If T0 <: U0 where T0 <: U0 ∈ ∆1, ∆2, then bound∆1,[U/X]∆2
(S0) and

[U/X]bound
∆1,X<:N,∆2

(T0) will be the same sequence of types. On the other hand,

if T0 is a type parameter such that T0 ∈ X, then S0 = Ui. This implies that every

type Ti in [U/X]bound
∆1,X<:N,∆2

(T0) must have a type Si in bound∆1,[U/X]∆2
(S0) that
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is either the same type as Ti or ∆ ` Si <: Ti since Ui must satisfy the constraints

imposed by Xi(T0).

From the above, we can conclude that getclass(bound
∆1,X<:N,∆2

(T0)) and getclass(

bound∆1,[U/X]∆2
(S0)) must be same type or ∆ ` getclass(bound∆1,[U/X]∆2

(S0)) <:

getclass(bound
∆1,X<:N,∆2

(T0)) or empty sequence.

Now by Lemma 5, fields(getclass(bound∆1,[U/X]∆2
(S0))) = S g such that Sj = Tj

and fj = gj for all j ≤ #(T ). Therefore by the rule gt-field, ∆1, [U/X]∆2; [U/X]Γ `

[U/X]e0.fi : Si. Letting S = Si = ([U/X]Ti) finishes the case.

Case gt-invk:

e = e0.m<V >(e)

∆1, X <: N, ∆2; Γ ` e0 : T0

mtype(m, bound
∆1,X<:N,∆2

(T0)) = <Y / P>W → W0

∆1, X <: N, ∆2 ` V ok ∆1, X <: N, ∆2 ` V <: [V /Y ]P

∆1, X <: N, ∆2; Γ ` e : S ∆1, X <: N, ∆2 ` S <: [V /Y ]W

T = [V /Y ]W0

Let us consider that the method m is found in the type Tk where Tk ∈ bound
∆1,X<:N,∆2

(T0).

By induction hypothesis,

∆1, [U/X]∆2; [U/X]Γ ` [U/X]e0 : S0

∆1, [U/X]∆2 ` S0 <: [U/X]T0

and

∆1, [U/X]∆2; [U/X]Γ ` [U/X]e : S ′

∆1, [U/X]∆2 ` S ′ <: [U/X]S
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If T0 is an instance, then bound∆1,[U/X]∆2
(S0) and [U/X]bound

∆1,X<:N,∆2
(T0) are

the same type. If T0 <: U0 where T0 <: U0 ∈ ∆1, ∆2, then bound∆1,[U/X]∆2
(S0) and

[U/X]bound
∆1,X<:N,∆2

(T0) will be the same sequence of types. On the other hand, if

T0 is a type parameter such that T0 ∈ X, then S0 = Ui. This implies that every type Ti

in [U/X]bound
∆1,X<:N,∆2

(T0) must have a type Si in bound∆1,[U/X]∆2
(S0) that is either

the same type as Ti or ∆ ` Si <: Ti since Ui must satisfy the constraints imposed by

Xi(T0). By the assumption that methods are not duplicated due to inheritance and

by the above argument, the method lookup for m in bound∆1,[U/X]∆2
(S0) will resolve

to a type Tl such that ∆ ` Tl <: Tk. Now by Lemma 4,

mtype(m, Tl) = <Y / [U/X]P>[U/X]W → W ′
0

∆1, [U/X]∆2, Y <: [U/X]P ` W ′
0 <: [U/X]W0

By Lemma 2

∆1, [U/X]∆2 ` [U/X]V ok

Without loss of generality, we can assume that X and Y are distinct and that none

of Y appear in U , then [U/X][V /Y ] = [[U/X]V /Y ][U/X]. By Lemma 1, we have

∆1, [U/X]∆2 ` [U/X]V <: [U/X][V /Y ]P (= [[U/X]V /Y ][U/X]P )

∆1, [U/X]∆2 ` [U/X]S <: [U/X][V /Y ]W (= [[U/X]V /Y ][U/X]W )

By Lemma 1,

∆1, [U/X]∆2 ` [V /Y ]W ′
0 <: [U/X][V /Y ]W0 (= [[U/X]V /Y ][U/X]W0)

Finally by the rule gt-invk,

∆1, [U/X]∆2, [U/X]Γ ` ([U/X]e0).m<[U/X]V >([U/X]d) : S

where S = [V /Y ]W ′
0 finishes the case.

Case gt-new, gt-ucast: Easy.
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Case gt-dcast:

e = (N)e0 ∆ = ∆1, X <: N, ∆2

∆; Γ ` e0 : T0 ∆ ` N ok

N0 in bound∆(T0) ∆ ` N <: N0 N = E<T> N0 = G<U> dcast(E, G)

By induction hypothesis, ∆1, [U/X]∆2; [U/X]Γ ` [U/X]e0 : S0 for some S0 such that

∆1, [U/X]∆2 ` S0 <: [U/X]T0. Let ∆′ = ∆1, [U/X]∆2.

Subcase 1: ∆
′ ` N

′
0 <: [U/X]N where N

′
0 ∈ bound∆′ (S0)

By rule gt-ucast, we have ∆′; Γ ` [U/X]((N)e0) : [U/X]N

Subcase 2: ∆
′ ` [U/X]N <: N

′
0 where N

′
0 ∈ bound∆′ (S0) and [U/X]N 6= N

′
0.

By rule gt-dcast and valid-downcast, we have ∆′; Γ ` [U/X]((N)e0) : [U/X]N .

Subcase 3: ∆
′ ` [U/X]N 6<: bound∆′ (S0) and ∆

′ ` bound∆′ (S0) 6<: [U/X]N .

If none of the type in bound∆′ (S0) are related to [U/X]N implies name(N) 5

name(Ni) and name(Ni) 5 name(N) for all Ni in bound∆′ (S0). Now by gt-scast

rule, we have ∆′; Γ ` [U/X]((N)e0) : [U/X]N finishing this case.

Case gt-scast:

e = (N)e0 ∆ = ∆1, X <: N, ∆2

∆; Γ ` e0 : T0 ∆ ` N ok

name(N) 5 name(Ni) name(Ni) 5 name(N)

N = bound∆(T0) N = E<T> stupid warning

By induction hypothesis, ∆1, [U/X]∆2; [U/X]Γ ` [U/X]e0 : S0 for some S0 such

that ∆1, [U/X]∆2 ` S0 <: [U/X]T0. Let ∆′ = ∆1, [U/X]∆2..

If bound∆′ (S0) 6<: [U/X]N and [U/X]N 6<: bound∆′ (S0), i.e., none of the types

Ni in bound∆′ (S0) is related to [U/X]N , then by rule gt-scast we have ∆′; [U/X]Γ `

[U/X]((N)e0) : [U/X]N with a stupid warning. On the other hand, if for some type

Ni ∈ bound∆′ (S0), ∆
′ ` Ni <: [U/X]N , then by rule gt-ucast, we have ∆′; [U/X]Γ `
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[U/X]((N)e0) : [U/X]N . The case where for some type Ni ∈ bound∆′ (S0), ∆
′ `

[U/X]N <: Ni cannot occur as it implies a relationship between bound∆(T0) and N

which contradicts the assumption finishing the lemma.

Lemma 7 (Term Substitution preserves Typing). If ∆; Γ; x : T ` e : T and ∆; Γ `

d : S where ∆ ` S <: T then ∆; Γ ` [d/x] e : S for some S such that ∆ ` S <: T.

Proof. By induction on the derivation of ∆; Γ, x : T ` e : T with a case analysis on

the last rule used.

Case gt-var:

∆, Γ ` x : Γ(x)

If x ∈ dom(Γ), then the conclusion is immediate as the substitution do not have effect

and hence [d/x]x = x. On the other hand, if x = xi and T = Ti, then xi must be

substituted by di : Si and from given we have ∆ ` Si <: Ti which implies ∆ ` S <: T

finishing the case.

Case gt-field:

e = e0.fi ∆, Γ, x : T ` e0 : T0

T0 not interface fields(getclass(bound∆(T0))) = T f T = Ti

By induction hypothesis, ∆, Γ ` [d/x]e0 : S0 for some S0 such that ∆ ` S0 <:

T0. The case where T0 is a type of interface is vacuously true. Now by Lemma 5,

fields(getclass(bound(S0))) = S g such that Sj = Tj and fj = gj for all j ≤ #(T ).

Therefore by the rule gt-field, ∆; Γ ` [d/x]e0.fi : T .

Case gt-invk:

e = e0.m<V >(e) ∆, Γ, x : T ` e0 : T0

mtype(m, bound∆(T0)) = <Y / P>U → U
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∆ ` V ok ∆ ` V <: [V /Y ]P

∆; Γ ` e : S ∆ ` S <: [V /Y ]U

T = [V /Y ]U

By induction hypothesis, ∆, Γ ` [d/x]e0 : S0 for some S0 such that ∆ ` S0 <:

T0 and ∆; Γ ` [d/x]e : W for some W such that ∆ ` W <: S. By Lemma 4,

mtype(m, bound(S0)) = <Y / P>U → U ′ and ∆, Y <: P ` U ′ <: U . By Lemma 1,

we have ∆ ` [V /Y ]U ′ <: [V /Y ]U . By the rule gt-invk, ∆, Γ ` [d/x](e0.m<V >(e) :

[V /Y ]U ′. Letting S = [V /Y ]U ′. finishes the case.

Case gt-new:

e = new K(e) ∆; Γ, x : T ` e : S

∆ ` K ok fields(K) = T f ∆ ` S <: T

T = K

By induction hypothesis, ∆; Γ, x : T ` [d/x]e : W such that ∆ ` W <: S. By

transitivity of subtype relation, we have ∆ ` W <: T . Now by gt-new, ∆, Γ `

new K([d/x]e) : K, finishing this case.

Case gt-ucast:

e = (N)e0 ∆; Γ ` e0 : T0

N0 in bound∆(T0) ∆ ` N0 <: N T = N

By induction hypothesis, ∆, Γ ` [d/x]e0 : S0 for some S0 such that ∆ ` S0 <: T0. Now

from the gt-ucast rule we have, ∆ ` T0 <: N0. By transitivity of subtype relation,

this implies ∆ ` S0 <: N0 and ∆ ` S0 <: N . Now by gt-ucast rule, e = (N)[d/x]e0

: N, finishing the proof.

Case gt-dcast:

e = (N)e0 ∆; Γ, x : T ` e0 : T0 ∆ ` N ok



84

N0 in bound∆(T0) ∆ ` N <: N0 N = E<T> N0 = G<U> dcast(E, F )

By induction hypothesis, ∆; Γ ` [d/x]e0 : S0 for some S0 such that ∆ ` S0 <: T0.

Now we have three subcases according to the relation between S0 and N .

Subcase 1: ∆ ` N ′
0 <: N where N ′

0 ∈ bound∆(S0)

By rule gt-ucast, we have ∆; Γ ` [d/x]((N)e0) : N

Subcase 2: ∆ ` N <: N ′
0 where N ′

0 ∈ bound∆(S0) N 6= N ′
0.

By rule gt-dcast and valid-downcast, we have ∆; Γ ` [d/x]((N)e0) : N .

Subcase 3: ∆ ` N 6<: bound∆(S0) and ∆ ` bound∆(S0) 6<: N .

If none of the type in bound∆(S0) are related to N implies name(N) 5 name(Ni)

and name(Ni) 5 name(N) for all i in bound∆(S0). Now by gt-scast rule, we have

∆; Γ ` [d/x]((N)e0) : N with a stupid warning finishing this case.

Case gt-scast:

e = (N)e0 ∆; Γ, x : T ` e0 : T0 ∆ ` N ok

name(N) 5 name(Ni) name(Ni) 5 name(N)

N = bound∆(T0) N = E<T> stupid warning

By induction hypothesis, ∆; Γ ` [d/x]e0 : S0 for some S0 such that ∆ ` S0 <: T0.

If bound∆(S0) 6<: N and N 6<: bound∆(S0), (i.e)., none of the types Ni in

bound∆(S0) is related to N , then by rule gt-scast we have ∆; Γ ` [d/x]((N)e0) : N

with a stupid warning. On the other hand, if for some type Ni ∈ bound∆(S0),

∆ ` Ni <: N , then by rule gt-ucast, we have ∆; Γ ` [d/x]((N)e0) : N . The

case where for some type Ni ∈ bound∆(S0), ∆ ` [d/x]N <: Ni cannot occur as it

implies a relationship between bound∆(T0) and N which contradicts the assumption

finishing the lemma.
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Lemma 8. If mtype(m, C<T>) = <Y / P>U → U and mbody(m<V >, C<T>) = x.e0

where ∆ ` C<T> ok and ∆ ` V ok and ∆ ` V <: [V /Y ]P , then there exists some K

and S such that ∆ ` C<T> <: K and ∆ ` K ok and ∆ ` S <: [V /Y ]U and ∆ ` S ok

and ∆; x : [V /Y ]U, this : K ` e0 : S.

Proof. By induction on the derivation of mbody(m<V >, C<T>) = x.e using Lemma 1

and 6. The mb-class and mb-super rules did not change from FGJ and hence the

proof of this lemma directly falls out from the proof given in [5]. We now outline the

proof paraphrasing the proof given in [5].

Case mb-class:

class C<X / P> / N{. . . md}

<Y / Q> T0 m(S x){return e; } ∈ md

Let Γ = x : S, this : C<X> and ∆
′

= X <: P , Y <: Q. By the rules gt-class

and gt-method, we have ∆
′
; Γ ` e : S0 and ∆

′
; Γ ` S0 <: T0 for some S0. Since

∆ ` C<T>ok, we have ∆ ` T <: [T/X]P by rule wf-class. By Lemmas 3, 1 and 6,

we have

∆, Y <: [T/X]Q ` [T/X]S0 <: [T/X]T0

∆, Y <: [T/X]Q; x : [T/X]S, this : C<T> ` [T/X]e : S ′
0

∆, Y <: [T/X]Q ` S ′
0 <: [T/X]S0

Now we can assume X and Y are distinct without loss of generality. By the rule

mt-class, we have

[T/X]Q = P [T/X]S = U [T/X]T0 = U

Again, by rule s-trans and Lemmas 1 and 6,

∆ ` [V /Y ]S ′
0 <: [V /Y ]U
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∆; x : [V /Y ]U, this : C<T> ` [V /Y ][T/X]e : S ′′
0

∆ ` S ′′
0 <: [V /Y ]S ′

0

Since we can assume that any of Y does not occur in T without loss of generality,

e0 = [T/X, V /Y ]e = [V /Y ][T/X]e

Letting K = C<T> and S = S ′′
0 finishes the case.

Case mb-super:

class C<X / P> / N{. . . md} m 6∈ md

Immediate from the induction hypothesis and the fact that ∆ ` C<T> <: [T/X]K

for some K ∈ N .

Theorem 1 (Subject Reduction). If ∆; Γ ` e : T and e → e’, then ∆; Γ ` e’ : T’,

for some T’ such that ∆ ` T ′ <: T.

Proof. By induction on derivation of e → e′ with a case analysis of the reduction

rule used. The reduction rules did not change from FGJ and hence the proof of this

theorem directly falls out from the proof given in [5]. We now outline the proof para-

phrasing the proof given in [5].

Case gr-field:

e = new K(e).fi fields(K) = T f

e′ = ei T = Ti

By rule gt-field and gt-new, we have

∆, Γ ` new K(e) : K

∆, Γ ` e : S ∆ ` S <: T
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Now in ∆, Γ ` ei : Si and ∆ ` Si <: Ti. Letting T ′ = Si and T = Ti finishes the case.

Case gr-invk:

mbody(m<V >, K) = x.e0

e = new K(e).m<V >(d) e′ = [d/x, new K(e)/this]e0

By rules gt-invk and gt-new, we have

∆, Γ ` new K(e) : K

mtype(m, bound∆(K)) = <Y / P>U → U

∆ ` V ok ∆ ` V <: [V /Y ]P

∆; Γ ` d : S ∆ ` S <: [V /Y ]U

T = [V /Y ]U ∆ ` K ok

By Lemma 8, ∆; x; [V /Y ]U, this : P ` e0 : S for some P and S such that ∆ ` K <: P

where ∆ ` P ok and ∆ ` S <: [V /Y ]U where ∆ ` S ok. We know that term

substitution preserves typing by Lemma 7 and hence ∆; Γ ` [d/x, new K(e)/this]e0 :

T0 for some T0 such that ∆ ` T0 <: S. Now by transitivity of the subtyping relation,

we have ∆ ` T0 <: [V /Y ]U . Letting T ′ = T0 and T = [V /Y ]U finishes the case with

∆ ` T ′ <: T .

Case gr-cast:

∅ ` K <: P

e = (P )(new K(e)) e′ = new K(e)

By rules gt-ucast and gt-new, we have

∆; Γ ` new K(e) : K

N0 in bound∆(K) ∆ ` N0 <: P
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and hence T = P. Now T ′ = K since the type of new K(e) : K by gt-new. We also

know that ∆; Γ ` K <: N0. Then by transitivity of <:, we have K <: P , which

implies ∆ ` T ′ <: T finishing the case.

Case grc-field:

e = e0.f e′ = e′
0.f e0 → e′

0

By rule gt-field, we have

∆, Γ ` e0 : T0 T0 not interface

fields(getclass(bound∆(T0))) = T f T = Ti

By induction hypothesis, we have ∆, Γ ` e′
0 : T ′

0 for some T ′
0 such that T ′

0 <: T0. Now

by Lemma 5, we have fields(getclass(bound∆(T ′
0))) = T ′ g and for some j ≤ #(f),

we have gj = fj and T ′
j = Tj. Therefore by rule gt-field, ∆; Γ ` e′

0.f : T ′
j which is

the type of the field accessed from e0. Hence T ′ <: T by reflexivity of the subtyping

relation.

Case grc-invk-recv:

e = e0.m<V >(e) e′ = e′
0.m<V >(e)

e0 → e′
0

By rule gt-invk, we have

∆, Γ ` e0 : T0

mtype(m, bound∆(T0)) = <Y / P>T → U

∆ ` V ok ∆ ` V <: [V /Y ]P

∆; Γ ` e : S ∆ ` S <: [V /Y ]T

T = [V /Y ]U

By induction hypothesis, we have ∆; Γ ` e′
0 : T ′

0 for some T ′
0 such that T ′

0 <:

T0. Now by Lemma 4, we have mtype(m, bound∆(T ′
0)) = <Y / P>T → V and in
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∆, Y <: P ` V <: U . Since we already proved that type substitution preserves

subtyping by Lemma 1, we have ∆ ` [V /Y ]V <: [V /Y ]U . Therefore by gt-invk,

∆, Γ ` e′
0.m<V >(e) : [V /Y ]V . Letting T ′ = [V /Y ]V implies that ∆ ` T ′ <: T which

finishes the case.

Case grc-invk-arg:

e = e0.m<V >(....., ei, .....)

e′ = e0.m<V >(....., e′
i, .....) ei → e′

i

By rule gt-invk, we have

∆, Γ ` e0 : T0 mtype(m, bound∆(T0)) = <Y / P>T → U

∆ ` V ok ∆ ` V <: [V /Y ]P

∆; Γ ` e : S ∆ ` S <: [V /Y ]T

T = [V /Y ]U ∆; Γ ` ei : Ti

By induction hypothesis, we have ∆; Γ ` e′
i : T ′

i such that ∆ ` T ′
i <: Ti. Since a

method takes any argument that is a subtype of T , we can pass T ′ to the method

without affecting the type of the return type (i.e)., the type of the method body.

Therefore T ′ = [V /Y ]U which is a subtype of T by reflexive property of subtyping

relation.

Case grc-cast:

e = (N)e0 e0 → e′
0 e′ = (N)e′

0

There are three subcases according to the last typing rule: gt-ucast, gt-dcast, gt-

scast. These subcases are similar to the subcases in the case for gt-dcast in the

proof of Lemma 7.

Case grc-new-arg: Similar argument as grc-invk-arg
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Theorem 2 (Progress). Suppose e is a well-typed expression.

1. If e includes new K0(e).f as sub-expression, then fields(K0) = T f and f in f for

some T and f

2. If e includes new K0(e).m<V >(d) as sub-expression, then mbody(m<V >, K0) =

x.e0 and #(x) = #(d) for some x and e0

Proof. The reduction rules of FGJ did not change because of the inclusion of interface

to the formalism and hence the progress property trivially holds for FGJ+I. So we

outline the entire proof of this theorem as given in [5]. If e has new K0(e).f as

sub-expression, then by well-typedness of the subexpression, it is simple to check

that fields(K0) are well defined and f appears in it. On a similar line, if e has

new K0(e).m<V >(d) as sub-expression, then we have mbody(m<V >, K0) = x.e0 and

it is simple to show that #(x) = #(d) from the fact that mtype(m, K0) = U → U

where #(x) = #(U)

To state the type soundness formally, we give the definition of values, given by the

following syntax : v := new K(w).

Theorem 3 (FGJ+I Type Soundness). If ∅; ∅ ` e : T and e →∗ e’ with e’ a normal

form, then e’ is either (1) a FGJ+I value w with ∅; ∅ ` w : S and ∅ ` S <: T or an

expression containing (P) new K(e) where ∅ ` K 6<: P.

Proof. Immediate from the progress and preservation properties.
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CHAPTER VII

RELATED WORK

The earliest approach to member types was Beta’s virtual types. Variations of virtual

types has appeared in the literature, e.g., virtual types proposed to Java as a language

feature [4,18]. Unlike our approach, virtual types associate member types with objects

rather than classes. Without adding restrictions, run-time type checking is necessary

to ensure full type safety in that approach. By introducing suitable restrictions (see

e.g. [19]) total or partial static type safety can be guaranteed. These restrictions

are similar to the requirement we impose that associated types are not redefined in

subclasses of the class in which they are defined. Indeed, associated types as proposed

in this thesis can be viewed as type-safe variation of virtual types.

Often virtual types are viewed as an alternative to parameterized types; e.g.,

virtual types as described in [4,18] do not include type parameterization. Thorup and

Torgersen [20] argue that type parameterization is beneficial even in the presence of

virtual types. We agree with this view — this thesis combines type parameterization

and associated types, and advocates the importance of constraint propagation in

this combination. The translation implemented in this thesis precisely describes a

correspondence between parameterized types and associated types in Generic C#

and allows both of these language features to coexist rather than one replacing the

other.

Various related formalisms and language features for associated types have been

developed. Nested inheritance [21] is a Java extension that can be translated to

standard Java with techniques similar to those implemented in this thesis. Nested

inheritance closely follows our approach to associated types by associating nested

member types with classes rather than objects. Unlike our approach, nested inheri-
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tance does not support parameterized types, and nested types can only be bound to

newly defined classes, not to existing types.

Virtual Classes [18] are a language mechanism that allows part of the specifi-

cation of the class attributes to be deferred to a subclass. Virtual classes were first

introduced in Beta. Similar to the approach taken in our extensions to C#, virtual

classes cannot be redefined in a subclass, but the definition may be extended. Re-

cently, a formal object calculus Deep, which implements virtual classes in a type safe

manner, was introduced [22]. Deep’s type system is based on prototypes which blurs

the distinction between compile and run time. A vc calculus that captures the essence

of virtual classes and a proof of soundness of vc is presented in [23]. Similar to virtual

types, and unlike our approach, virtual classes are bound to objects rather a class.

Support for member types is also found in various languages including C++, ML,

Haskell, and Scala. C++ supports member types through typedefs inside classes.

Such typedefs are used to implement traits classes [24], which are an approach to

representing associated types. With the recent proposal for concepts as a first class

language feature for C++ [25], associated types are directly supported in the lan-

guage. ConceptGCC provides a prototype implementation of associated types, and

constraint propagation, for C++ [26].

Haskell’s functional dependencies among type classes’ parameters offer partial

support for associated types. Further, a recent extension of associated type synonyms

[27,28] to Haskell type classes allows a type class declaration to define member types.

An instance declaration gives a definition for these member types in a way similar to

how classes provide definition for associated types in our proposed extension. Similar

to our approach of implementing associated types, these extensions to Haskell can be

implemented in an existing Haskell compiler with changes only to the front-end. ML
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supports associated types through nested type declarations in ML signatures but not

in combination with parameterized types.

Scala [29] supports member types to be declared inside traits (these are unrelated

to C++ traits classes), which are essentially interfaces that allow methods with default

implementations. Scala’s type system is modeled after the µObj calculus [30], which

formally examines the properties and behavior of nested types. Member types of

Scala are associated to objects rather than classes. In Scala, same-type constraints

can only be specified between a type parameter and a member type and not between

two member types. This requires introducing type parameters for all member types

that are involved in same-type constraints. This round-about manner of specifying

same-type constraints has been reported to lead to verbose constraints in generic

methods [31].

In contrast to systems related to associated types, work on constraint propagation

is infrequent in the literature. The concepts mechanism for C++ supports constraint

propagation [25]. Java’s wildcards [32] allow a limited form of constraint propagation.

Scala partially supports constraint propagation when traits extend other traits. This

is, however, of limited usefulness: type parameters must be introduced for member

types that are involved in same-type constraints, and the constraints on member types

are not implicitly propagated as constraints on type parameters representing these

member types. In practice, this requires generic components to repeat constraints on

member types [31]. Except the concepts proposal for C++ [25], we are not aware of

any work combining associated types or type members with constraint propagation

in object oriented languages.

There are several works in the literature proving safety properties for subsets of

Java. A proof of type soundness for a fairly large subset of sequential Java including

interfaces but not generic interfaces is provided in [33]. Like FGJ, this formalism
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follows the small step semantics but omits the intricate details of stupid casts. Proof

of soundness for a larger subset of Java formulating the formalism in terms of big step

semantics was given in [34]. Neither of these formalism consider generic Java with

interfaces. A number of extensions to Java with generic classes, generic interfaces

and generic methods have been proposed [17, 35, 36]. While all these languages are

believed to be typesafe, FGJ was the first formalism, including a type safety proof for

a subset of Java with generics. FGJ omits interfaces for the sake of compactness. To

our knowledge, a type safety proof for a subset of generic Java including interfaces

has not been reported, a gap filled in this thesis.
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

Developing generic libraries in C# stretches the practical limits of its generics facili-

ties due to the high degree of parameterization on types, typical of generic libraries.

In particular, lack of direct support for associated types and constraint propaga-

tion leads to redundant and verbose code. This issue was partially addressed in [3],

where associated types and constraint propagation were proposed as extensions to

C#, mostly to avoid redundant and verbose code. In this thesis, we extend this work

by taking the proposal a step further by developing an initial version of C# compiler

supporting associated types and constraint propagation. Our approach to implement

these two language extensions is through translation at the abstract syntax tree level

of programs written with the extensions to current C#. Major contribution of this

thesis is the design and development of a framework of algorithms for implement-

ing constraint propagation and translation of associated types. Besides taking into

consideration many features intentionally left out from the treatment in [3], the im-

plementation of these language extensions in a real compiler revealed corner cases

that were not properly handled in the translation developed in [3].

With this initial implementation, we are able to evaluate the impact of the pro-

posed extensions to developing generic libraries. To demonstrate, we implemented a

subset of a state-of-the art generic library, the Boost Graph Library, which also served

as a testbed for the implementation framework. The experimental results confirmed

that the verbosity of the code reduces considerably if the proposed extensions can

be used. This assures that the language extensions implemented improve the generic

programming experience in C#.
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This thesis complements the work of [3] in another direction as well. We present

a proof of type safety for the Featherweight Generic Java extended with interfaces

(FGJ+I). The formal treatment of [3] was based on FGJ+I, but its type safety has

not been previously established formally.

There are three directions in which we have plans to extend this work. First,

improving the existing implementation closer to a production level compiler and re-

leasing it to the Mono open source community. This will enable the evaluation of

the true impact of these language extensions. Second, to provide support for type

aliasing, a mechanism to provide an alternative name for a type. C# provides type

aliasing to some extent with the using clause, but it cannot be used within a type or

a method. The support for associated types, especially the same-type constraints in-

troduced within type declarations, can be extended to provide language level support

for type aliasing. A simple example of type aliasing, with the syntax of the associated

types extension proposed in this thesis is given in Figure 31. We believe this feature

can be added seamlessly to the existing framework for associated type translation.

interface B<T, X, Y, V> { ... }
interface A<T, X, Y, V> {

type X1 == B<T, X, Y, V> ;
}

Fig. 31. Example of type aliasing. Further usage of X1 in the interface will be trans-

lated to B<T, X, Y, V> as the associated type translation favors the instances

to associated type during the canonicalization process.

Third, we plan to strengthen the support for implicit instantiation in C#, which

allows type argument deduction based on the constraints on type parameters of a

generic method. This will eliminate, apart from pathological cases, the need to ex-

plicitly specify the argument types during generic method invocations, which one
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often must do in current C#. Type aliases and implicit instantiation along with the

extensions proposed in this thesis will improve the support for generic programming

paradigm in C#.
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