
GENERIC IMPLEMENTATION OF PARALLEL PREFIX SUMS AND THEIR

APPLICATIONS

A Thesis

by

TAO HUANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2007

Major Subject: Computer Science

GENERIC IMPLEMENTATION OF PARALLEL PREFIX SUMS AND THEIR

APPLICATIONS

A Thesis

by

TAO HUANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Lawrence Rauchwerger
Committee Members, Nancy M. Amato

Jennifer L. Welch
Marvin L. Adams

Head of Department, Valerie E. Taylor

May 2007

Major Subject: Computer Science

iii

ABSTRACT

Generic Implementation of Parallel Prefix Sums and Their Applications.

(May 2007)

Tao Huang, B.E.; M.E., University of Electronic Science and Technology of China

Chair of Advisory Committee: Dr. Lawrence Rauchwerger

Parallel prefix sums algorithms are one of the simplest and most useful building

blocks for constructing parallel algorithms. A generic implementation is valuable

because of the wide range of applications for this method.

This thesis presents a generic C++ implementation of parallel prefix sums. The

implementation applies two separate parallel prefix sums algorithms: a recursive

doubling (RD) algorithm and a binary-tree based (BT) algorithm.

This implementation shows how common communication patterns can be sepa-

rated from the concrete parallel prefix sums algorithms and thus simplify the work

of parallel programming. For each algorithm, the implementation uses two different

synchronization options: barrier synchronization and point-to-point synchronization.

These synchronization options lead to different communication patterns in the algo-

rithms, which are represented by dependency graphs between tasks.

The performance results show that point-to-point synchronization performs bet-

ter than barrier synchronization as the number of processors increases.

As part of the applications for parallel prefix sums, parallel radix sort and four

parallel tree applications are built on top of the implementation. These applications

are also fundamental parallel algorithms and they represent typical usage of parallel

prefix sums in numeric computation and graph applications. The building of such

applications become straighforward given this generic implementation of parallel

prefix sums.

iv

ACKNOWLEDGMENTS

My respect and gratitude go to my adviser Dr. Lawrence Rauchwerger and

co-adviser Dr. Nancy Amato for their guidance, support, and generous help since

the very first day I met them.

I want to thank Dr. Marvin L. Adams, who helped me in the Generic Particle

Transport Code project.

I also want to thank Dr. Jennifer L. Welch, a great professor who gave me the

knowledge of algorithms needed for this work.

I want to acknowledge the work of Tim Smith and Gabriel Tanase, both of whom

spent a lot of time working on the implementation platform.

v

TABLE OF CONTENTS

Page

CHAPTER

I INTRODUCTION . 1

A. Parallel Computation . 1

B. Prefix Sums Problem . 2

C. Contribution . 4

D. Thesis Structure . 5

II PRELIMINARIES . 6

A. Parallel Computation Models 6

B. Parallel Algorithmic Techniques 9

C. Parallel Algorithm Design Issues 9

D. Synchronization in Parallel Algorithms 11

1. Barrier Synchronization 12

2. Point-to-Point Synchronization 12

E. Parallel Library - STAPL 15

III COMMUNICATION PATTERNS 19

A. Communication Pattern I: Barrier Sequence 19

B. Communication Pattern II 21

1. Recursive Doubling Pattern 21

2. STAPL FormulaDDG for Pattern II 23

C. Communication Pattern III 29

1. Balanced Binary-Tree Based Pattern 29

2. STAPL FormulaDDG for Pattern III 30

IV PREFIX SUMS ALGORITHMS IMPLEMENTATION 40

A. 3-step Technique for p < n 40

B. RD Algorithm . 42

1. RD Algorithm and Theoretical Complexity 42

2. Barrier Synchronization Implementation for RD

Algorithm . 44

3. Point-to-point Synchronization Implementation for

RD Algorithm . 50

C. BT Algorithm . 54

vi

CHAPTER Page

1. BT Algorithm and Theoretical Complexity 54

2. Barrier Synchronization Implementation for BT

Algorithm . 57

3. Point-to-point Synchronization Implementation for

BT Algorithm . 59

D. Complexity of RD and BT Algorithms with Synchronizations 61

V PERFORMANCE OF IMPLEMENTATION 63

A. Optimization for Step 1 in the Implementation 63

B. Experimental Results . 63

VI APPLICATIONS . 66

A. Parallel Radix Sort . 67

B. Tree Applications . 72

1. Euler Tour Technique 73

2. Rooting a Tree . 76

3. Three Other Tree Applications 81

4. Performance of Tree Applications 82

VII CONCLUSION AND FUTURE WORK 84

A. Conclusion . 84

B. Future Work . 85

REFERENCES . 86

VITA . 89

vii

LIST OF TABLES

TABLE Page

1 Theoretical Complexity of RD Algorithm with Sync. Options 62

2 Theoretical Complexity of BT Algorithm with Sync. Options 62

viii

LIST OF FIGURES

FIGURE Page

1 Example communication structure using barrier synchronization . . . 13

2 Example communication structure using point-to-point synchronization 14

3 STAPL components . 16

4 Communication pattern II example 22

5 Communication pattern III in BT algorithm 30

6 Example of applying three-step technique 41

7 Example of using the RD algorithm on 8 processors 44

8 Example using the BT algorithm on 8 processors 56

9 Processors’ actions in the BT algorithm with barrier synchroniza-

tion option . 60

10 Example of the generic implementation with optimization in step

1 (p=3, n=8) . 64

11 Speedup of parallel prefix sums (input size: 512M integers) 65

12 Speedup of parallel radix sort (input size is 128M integers) 70

13 Example of Euler circuit with successor function s [1] 75

14 Example of building an Euler tour in parallel 77

15 Example of “rooting a tree” . 80

16 Performance of Euler tour applications 83

1

CHAPTER I

INTRODUCTION

A. Parallel Computation

As computers become ever faster, user demands for solving very large problems are

growing at an even faster rate. Such demands include not only high-end scien-

tific computing needs motived by numerical simulations of complex systems (e.g.,

weather, physics, and biological processes), but also emerging commercial applica-

tions that require computers to be able to process large amounts of data in sophisti-

cated ways (e.g., video conferencing, computer-aided medical diagnosis, and virtual

reality) [2].

At the same time, the speed of a uni-processor computer is limited by the physi-

cal size and speed of its transistors. To circumvent these limitations, computer hard-

ware designers have been utilizing internal concurrency in chips, including pipelining,

multiple function units, and multi-core processors.

Another important trend changing the face of computing is an enormous increase

in the capabilities of the networks that connect computers, which enables applications

to use physically distributed resources as if they were part of the same computer [2].

There is undeniable growing importance and interest in parallel computing.

However, most existing algorithms are designed specifically for single processor

computers. In order to design and implement algorithms that can exploit multiple

processors located inside a computer, and the additional processors available across

This thesis follows the style and format of IEEE Transactions on Parallel and
Distributed Computing.

2

a network, the emphasis in algorithm designs has shifted from sequential algorithms

to parallel algorithms, the algorithms in which multiple operations are performed

simultaneously.

The basic idea behind parallel computing is to carry out multiple tasks simul-

taneously, thereby reducing execution time and handling larger scale problems. But

the design and development of parallel algorithms are still far from well-understood.

This is because there are some major issues in parallel algorithms that are not found

in sequential algorithms. These include task decomposition, allocation, communica-

tion and synchronization, as well as performance issues such as scalability, speedup,

and load balancing.

Fortunately, similar to sequential problems, many parallel problems can be

solved based on a small set of essential parallel problems. Researchers have been

working hard to design and develop the best parallel algorithms for these essential

problems.

One of these essential problems is the parallel prefix sums problem. It has been

shown that parallel prefix sums can be applied to a wide variety of parallel problems,

as listed in Section B. This thesis deals with this problem by providing the generic

implementation of two algorithms, handling the synchronization issues by building

reusable communication patterns, and studying performance and applications.

B. Prefix Sums Problem

Parallel prefix sums might be the most heavily used routine in parallel algorithms [3].

They are one of the most important building blocks for parallel algorithms.

The definition of the prefix sums problem is [4]:

Given a binary associative operator ⊕, and an ordered set of n elements

3

[a0, a1, ..., an−1], return the ordered set [a0, (a0⊕a1), ..., (a0⊕a1⊕an−1)].

For example, if the operator ⊕ is addition, and the input set is [3, 5, -2, 6, 2, 0,

4, 8], then the prefix sums of this ordered set are [3, 8, 6, 12, 14, 14, 18, 26].

Even though the problem is called “prefix sums,” the operator ⊕ could be any

binary associative operation that can be applied to two input elements. That is,

prefix sums can be used for more than just addition. But for simplicity, the remainder

of this thesis uses + to represent the operator, except in the pseudo-code where bin op

is used.

Different applications of prefix sums problems are possible by using different

operators and different types of input elements. The applications include, but are

not limited to, the following [4]:

• Lexically compare strings of characters;

• Solve recurrences;

• Implement radix sort;

• Implement quick sort;

• Implement tree applications.

Given the simplicity and wide application, a generic implementation of a par-

allel algorithm that supports different input element types, different operators, and

different physical distribution of input elements would be valuable for solving many

other parallel problems.

Due to the importance of prefix sums problems in parallel computing, there has

been considerable research devoted to building effective parallel prefix sums algo-

rithms, including [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

4

This thesis builds a generic implementation using two parallel prefix sums algo-

rithms to build a generic implementation: a recursive doubling (RD) algorithm and

a binary-tree based (BT) algorithm. The reason for selecting these two is that they

utilize two important techniques widely used in parallel problems. Therefore, their

implementation can be directly used to solve many other parallel problems.

C. Contribution

In order to make parallel programming efficient, portable, and reusable, a generic

and efficient implementation of two important parallel algorithms for prefix sums in a

parallel library is provided. These two algorithms, a prefix sums algorithm based on

the recursive doubling technique (RD) and a balanced binary tree based prefix sums

algorithm (BT), are implemented in C++ and analyzed using the Coarse Grained

Multicomputer (CGM) model. This generic implementation supports a general linear

sequence of any data structure as input, as long as the operation ⊕ for prefix sums

computation to be applied to the data structure is defined. There is no assumption

about the distribution of input sequences across multiple processors.

Three pre-built reusable communication patterns are decomposed from these

concrete parallel algorithms and they can be directly used by any parallel algorithm

that follows the same communication pattern. These three pre-built communication

patterns simplify the work of parallel algorithm implementation to a great extent.

The usage of these communication patterns on the two prefix sums algorithms results

in two different synchronization options used for each algorithm, thus producing four

implementations for the two algorithms. All of them show reasonably good speedup

in experimental results, while the point-to-point synchronization option has better

performance than the barrier synchronization.

5

A few applications for parallel prefix sums are also implemented on top of the

generic implementation, and they also perform well in experiments.

D. Thesis Structure

This chapter, Chapter I, introduces the prefix sums problem, motivates a generic

implementation for parallel prefix sums algorithms, and summarizes this thesis’ con-

tributions.

Chapter II gives the preliminaries of parallel algorithm design, including some

basic parallel computation models, parallel algorithmic techniques, and the major

design phases and issues. For one of the main communication issue, synchroniza-

tion, there are two typical techniques: barrier synchronization and point-to-point

synchronization.

Chapter III introduces the three pre-built communication patterns.

Chapter IV presents the design and implementation of the two prefix sums

algorithms using the three pre-built communication patterns. The implementations

using the barrier synchronization use the first communication pattern with the global

barrier operation supported by the library; the implementations using the point-

to-point synchronization use communication patterns II and III to guarantee the

minimal required synchronizations between tasks, represented by a directed graph.

Chapter V describes the performance study for the implementation of two algo-

rithms with two different synchronization options.

Chapter VI provides a few other parallel problems’ solutions through the appli-

cation of parallel prefix sums. The performance results of these applications are also

presented.

Chapter VII concludes this thesis and briefly discusses future work.

6

CHAPTER II

PRELIMINARIES

This chapter presents the basic ideas and issues in parallel algorithm design. The

first two sections give a preliminary introduction to parallel computation models

and important parallel algorithmic techniques. Section C briefly explains the major

issues in parallel algorithm design. Section D introduces synchronization, the major

issue in the design and implementation of parallel prefix sums this research deals

with. The last section is a high level introduction of the implementation platform, a

parallel / distributed standard template C++ library, STAPL.

A. Parallel Computation Models

A computation model is required to serve two major purposes. First, it is used to

describe a computer. So, a computational model attempts to capture the essential

features of a machine while ignoring the less important details of its implementation.

Second, it is used as a tool for analyzing problems and expressing algorithms [16].

In the realm of sequential computation, the Random Access Machine (RAM)

is a standard model that has succeeded in both of these purposes. It serves as an

effective model for hardware designers, algorithm developers, and programmers alike.

However, when it comes to parallel computation, there is no such unifying stan-

dard model. This is due to the complex set of issues inherent in parallel computation.

Three important principles have emerged for successful parallel computation

models: Work-Efficiency, Emulation, and Modeling Communication [17].

• Work-Efficiency: In sequential computation, an algorithm’s work (or total num-

ber of operations) is equivalent to its execution time. On a parallel machine,

7

an algorithm taking t time on a p-processor machine performs work W=p*t.

An algorithm is work-efficient if it performs the same amount of work, within

a constant factor, as the fastest known sequential algorithm.

• Emulation: A parallel computation model can be useful without mimicking

any real or even realizable machine. Instead, it suffices that any algorithm

that runs efficiently in the model can be translated into an algorithm that runs

efficiently on real machines.

• Modeling Communication: To get the best performance out of a parallel ma-

chine, it is often helpful to explicitly model the communication capabilities of

the machine, such as its latency.

One of the oldest parallel computation models is the PRAM model [18]. It

assumes that the number of processors p is polynomial in the input size n, such

that each processor only needs to work on partial input of a constant size. It is

a simplistic model for parallel computation and is mainly of theoretical interest.

Although it fails to capture the features of existing parallel computers by making the

above unrealistic assumption, it does represent an upper bound for the performance

of parallel algorithms. More importantly, any algorithm that runs efficiently in a

p-processor PRAM model can be translated into an algorithm that runs efficiently

on a p/L-processor machine with a latency L.

The BSP model [19] was proposed to serve as standard bridging model for

hardware (machine architecture) and software (algorithm design and programming).

As opposed to the PRAM model, parallel algorithms in the BSP model are organized

in distinct computation and communication phases. Moreover, unlike the PRAM,

the BSP model makes parallel computation coarse grained. In particular, it assumes

that the number of processors and the input size are orders of magnitude apart. Due

8

to this assumption, the coarse grained model maps better on existing architectures

where, in general, the number of processors is in the order of hundreds and the size of

input data to be handled could be in the billions. This model uses four parameters:

n, p, L and g. Parameter n is the input size; p is the number of processors; L is

the minimal time between synchronous steps (measured in basic computation units);

and g is the ratio of overall system computational capacity per unit time divided by

the overall system communication capacity per unit time.

The introduction of the BSP model marks the beginning of increased research

interest in coarse grained parallel computation. This model has been modified along

different directions. For example, Culler et al. [20] suggest the LogP model as an

extension in which asynchronous execution is modeled and a parameter is added

to better account for communication overhead. In an effort to define a parallel

computation model that retains the advantage of coarse grained models, while at

the same time being simple to use (involving few parameters), Dehne et al. [21]

suggest the CGM model.

The CGM model uses only two parameters: n and p. This model is a set of

p processors, each with O(n/p) local memory, interconnected by a router that can

deliver messages in a point-to-point fashion. A CGM algorithm consists of an alter-

nating sequence of “computation rounds” and “communication rounds” separated

by barrier synchronizations (barrier synchronizations are introduced in Section 1).

This thesis uses the CGM model. The input for the parallel prefix sums problem

is a linear sequence of n elements, and each of the p processors gets O(n/p) input

elements. How these elements are distributed to the processors is not assumed.

9

B. Parallel Algorithmic Techniques

There are some fundamental algorithmic techniques that are widely used in parallel

algorithms. Some of these techniques are used by sequential algorithms as well,

but they become much more important in parallel algorithms; others are unique to

parallelism. Blelloch gives a brief description of three of the techniques in [17]:

• Divide-and-Conquer: By dividing a problem into two or more subproblems, the

subproblems can be solved in parallel. Typically the subproblems are solved

recursively and thus the next divide yields even more subproblems to be solved

in parallel.

• Randomization: This is an algorithmic technique unique to parallel algorithms.

It allows processors to make local decisions which, with high probability, add

up to good global decisions.

• Parallel Pointer Manipulations: Many of the traditional sequential techniques

for manipulating lists, trees, and graphs do not easily translate into parallel

techniques. But such techniques can be replaced by efficient parallel techniques

such as recursive doubling, the Euler-tour technique, ear decomposition, and

graph contraction.

The algorithms implemented in this work use recursive doubling and Euler-

tour techniques. Details of these techniques are introduced when the design and

implementation are presented.

C. Parallel Algorithm Design Issues

Following the notation in [22], “task” represents a sequential program fragment that

runs on a single processor together with its local storage. The basic point of parallel

10

computing is to let two or more tasks execute concurrently. And “communication

channel” means the logical link between two tasks over which they can exchange

information (either through shared memory or explicit message).

The parallel algorithm design process is divided into four steps [22]:

• Partitioning: Decompose a problem into fine-grained tasks, maximizing the

number of tasks that can be executed concurrently.

• Communicating: Determine the communication pattern among fine-grained

tasks, yielding a “task graph” with nodes and communication channels as edges.

• Agglomerating: Combine groups of fine-grained tasks to form fewer, but larger,

coarse-grained tasks thereby reducing communication requirements. This makes

the algorithm execute efficiently on the physical target parallel computer.

• Mapping: Assign coarse-grained tasks to processors, subject to tradeoff be-

tween communication costs and concurrency.

The work presented in this thesis focuses mainly on the second step. Although

a bad partitioning / agglomerating / mapping strategy may produce an imbalanced

load and decrease performance, the correctness of the algorithm is not affected.

However, if communication between tasks is not correctly designed and implemented,

the whole program will fail.

In terms of communication, different problems have different inherent patterns:

• Local versus Global Communication: In local communication, each task com-

municates with a small set of other tasks (or “neighbors”). In global commu-

nication, each task is required to communicate with many tasks (if not exactly

all others).

11

• Synchronous versus Asynchronous: In synchronous communication, producers

and consumers of communicated data execute in a pair-wise fashion to perform

the data transfer operations; while in asynchronous communication, producers

and consumers are not required to cooperate in this way.

• Structured versus Unstructured: In structured communication, a task and its

neighbors form a regular structure, e.g., a tree or a grid. Unstructured com-

munication may form an arbitrary graph.

• Static versus Dynamic: In static communication, each task’s communication

partners do not change over time. Dynamic communication may decide com-

munication partners at runtime and change them frequently.

In this thesis, all the algorithms have structured static communication patterns.

This means all the communication channels are independent from the runtime con-

text and can be represented in a pre-determined regular structure. In the following

sections it is shown that such regular structures in the algorithms can be a sequence

of global communication operations or a mathematically formulated graph. Addi-

tionally, asynchronous communication is used, i.e., producer tasks do not need to

be aware when consumer tasks require data; hence, consumer tasks must explicitly

request data from producer tasks.

The next section discusses the synchronization issue in parallel algorithm design,

focusing on two different synchronization options using global and local communica-

tions, barrier synchronization and point-to-point synchronization.

D. Synchronization in Parallel Algorithms

Synchronization is the coordination of simultaneous tasks to ensure correctness and

avoid unexpected race conditions. There are two types of synchronization, barrier

12

and point-to-point.

1. Barrier Synchronization

A barrier is a point in parallel program code where a processor must wait until all

the other processors participating the program have also reached the same point.

After all of the processors reach the barrier, the processors continue issuing program

code.

A typical place to use barriers is between parallel loop iterations which perform

operations on the same set of data. These barriers guarantee that the processors

associated with an iteration finish the operations in the iteration before any of them

continue with other program instructions. This is necessary if one processor in a

later iteration needs the results achieved on a process in a previous iteration.

Barrier synchronization is also useful for organizing the execution of a parallel

program into a sequence of loosely coordinated phases. This matches the idea of the

BSP and CGM computation models and there have been many parallel algorithms

that utilize barrier synchronization for different domains of problems.

Basically, a parallel algorithm can be represented by a few parallel steps (e.g.,

loop iterations or loosely coordinated phases) with barrier synchronization as a reg-

ular sequence of alternating parallel steps and barrier points, as shown in Figure

1.

2. Point-to-Point Synchronization

Point-to-point synchronization happens only between two tasks, corresponding to

only one communication channel in one direction. It typically means that only one

single task needs data from another task in order to proceed. The whole communi-

cation pattern can be represented as a graph, with nodes as tasks and directed edges

13

technique of alternating parallel steps and barrier points.

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

����������������������������������

�����������������
�����������������
�����������������
�����������������

Parallel Loop 1

Parallel Loop i

Last Parallel Loop

Parallel Loop 2

Barrier Synchronization

Barrier Synchronization

Barrier Synchronization

Barrier Synchronization

P0 P1 Pj Pp−1

processors

Example communication structure using the barrier synchronization

Figure 1: Example communication structure using barrier synchronization

as the required point-to-point synchronizations between the tasks. Figure 2 shows

an example of such a structure.

Point-to-point synchronization gives a fine-grained description that matches the

minimal synchronization requirements. However, it is difficult to program this way

because it requires a very careful design to guarantee all the minimal synchronization

requirements are satisfied. The advantage is intuitively obvious: all the processors do

not need to be synchronized just because a few tasks may need data from a single task

on one processor. In such cases, barrier synchronization is too conservative, while

14

point−to−point synchronization techniques;

task 1

task 3

task 4

task 5

task 2

task 4

P2 P3P1P0

Example communication structures using

and their point−to−point synchronizations (directed edges).
Directed graph of communication are composed by tasks (nodes)

Figure 2: Example communication structure using point-to-point synchronization

the point-to-point technique can reduce the cost for communication operations.

In order to take advantage of the point-to-point synchronization technique, and

to simplify parallel programming, a regular communication structure (the graph

representing tasks and synchronizations) is decomposed from the parallel algorithms

themselves. This regular structure defines a communication pattern, which can be

pre-built separately and used by any parallel algorithm that follows the same com-

munication pattern. For the two parallel prefix sums algorithms in this thesis, three

different communication patterns using barrier synchronization and point-to-point

synchronization are built. These communication patterns are not limited to the

parallel prefix sums algorithms; instead, any parallel algorithms that follow similar

communication patterns can directly use them to simplify design and implementa-

15

tion.

Before the details of these communication patterns are presented in Chapter

III, a brief introduction of the implementation platform, a parallel library STAPL,

is given.

E. Parallel Library - STAPL

The generic implementation of parallel prefix sums is built in STAPL (Standard

Template Adaptive Parallel Library), which is a framework for parallel C++ code.

Its core is a library of ISO Standard C++ components with interfaces similar to the

sequential ISO C++ standard library (STL).

STAPL includes a run-time system, design rules for extending the provided

library code, and optimization tools. Its goal is to allow a user to work at a high

level of abstraction and hide many details specific to parallel programming. This is

to allow a high degree of portability and performance adaptability across different

computer systems. The components and their relationships are described in Figure

3.

Distributed data are stored in “pContainers”. STAPL hides the details of phys-

ical distribution of data across processors from the user and provides flexible logical

“Views” to access the distributed data in pContainers. When implementing paral-

lel algorithms, programmers can always access the data in the way the algorithms

require by creating logical Views accordingly. One View can hide the physical dis-

tribution of data in a pContainer.

STAPL has a collection of “pAlgorithms,” which includes the parallel counter-

parts for most generic sequential algorithms in STL and some numeric and graph

parallel algorithms. Parallel prefix sums is one of them, and is used by many other

16

 (3) pAlgorithms: parallel algorithms;

Pthreads

pAlgorithms

OpenMP MPI Native

pRange

User Code

pContainers
View

Run−time System (including ARMI)

 (2) pRange: access to data through View; work function to apply
 independent from physical distribution);

STAPL components:
 (1) pContainers: parallel / distributed containers of data;
 View: the view of pContainer (how to visit data in pContainer,

 to data; and Task Dependence Graph (DDG);

 (4) Run−time system: it hides details of communications, scheduling,
 and so on.

Figure 3: STAPL components

pAlgorithms.

A “pRange” connects pAlgorithms and pContainers together and enables pAl-

gorithms to be generic. Its core function call p for all(pRange&pr) is the main entry

point to execute parallel programs. A pRange provides access to chunks of data

(or “subviews”) in one or more Views, so each task will operate on one chunk (sub-

view) of the View(s). A pRange also has a work-function object that describes the

operation for each task, and a Data Dependence Graph (“DDG”) object which rep-

resents the tasks and their synchronizations (and could be an instance of a pre-built

communication pattern). A pRange corresponds to a whole View of pContainer(s),

and is a collection of subranges where each subrange has access to one chunk of

the View. The function call p for all(pRange &pr) applies the work function of the

17

input pRange on each “subrange” of the pRange. Each such application is called as

a “task”. The orderings of all tasks on the p processors follow the synchronizations

in the DDG.

In the parallel prefix sums algorithms implementation this collection (pRange)

corresponds to the View of a linear sequence of subranges. That is, subranges are

organized as a sequence, with each subrange having an offset from the global begin-

ning of the whole pRange and each subrange has a preceding neighbor subrange and

a succeeding neighbor subrange (except the first and last subranges).

The run-time system, including the Adaptive Remote Method Invocation (ARMI)

communication library, hides all the details of communication, scheduling, and so on.

To support barrier synchronization, ARMI provides an rmi fence() function call

that guarantees every processor stops there until all processors have reached the same

place. More details and usage of rmi fence() will be introduced in Chapter III.

To support point-to-point synchronization, the pRange follows the directed

edges in its DDG to pick up tasks that have no predecessors or those whose all

predecessors have been finished. A task X is a predecessor of task Y if task X must

be finished before task Y can start, due to the synchronization requirement of X to

Y, and task Y is a successor of task X. This ordering is represented by a directed

edge from task X to task Y in the DDG.

The DDG can be represented by a parallel graph (pGraph), which is one type of

the pContainers implemented in STAPL and physically contains vertices and edges.

It can also be any class that can compute the predecessor / successor relationships

between tasks given unique IDs. Since the tasks and synchronizations in the two

parallel prefix sums algorithms (RD and BT) can both be determined statically (by

mathematically expressing the preceding / succeeding relationships) based on the

input size n, this determination function is provided as a class using formulas to

18

represent the DDG (or “FormulaDDG” in STAPL). The FormulaDDG can be pre-

built out of concrete parallel algorithms and reused to represent inherent common

communication patterns. The construction of the DDG is explained briefly in the

following two sections when presenting the pre-built communication patterns.

19

CHAPTER III

COMMUNICATION PATTERNS

As one of the main issues unique to parallel algorithms, communication needs to be

carefully designed in order to be correct and efficient. When tasks should communi-

cate with other tasks, which tasks should be the destination, what the communication

data size would be, and all such characteristics compose a specific pattern for the

algorithm.

There have been observations [23] showing that some parallel algorithms share

the same or similar communication patterns. Optimizing the design and implemen-

tation of such communication patterns gives insight into improving the performance

of parallel algorithms. Pre-built tuned-up communication patterns can dramatically

simplify the work for parallel programmers and guarantee good performance in the fi-

nal parallel programs as well. With that motivation, this thesis attempts to decouple

the usually embedded communication patterns from the whole parallel algorithms

and build a library of reusable communication patterns; this library can then be

used directly when programmers try to build parallel algorithms that follow similar

communication patterns.

In this section, it is assumed that the input size n is equal to the number of

processors p. This assumption only holds for this section and more general cases will

be discussed later.

A. Communication Pattern I: Barrier Sequence

The simplest and most intuitive communication pattern supported is a sequence of

alternating parallel steps and barrier synchronization operations, as introduced in

Section 1. In STAPL, this is supported by the function calls p for all(pRange) and

20

rmi fence(), exposed by ARMI.

Rmi fence is a collective operation as the superset of a barrier. It does not release

until all processors arrive (as the barrier requires) and complete all outstanding

communication requests [24].

If a parallel algorithm follows this pattern, i.e., the algorithm can be divided into

a few parallel steps with barrier synchronizations between each two adjacent steps,

then the only thing specific to the algorithm is what operations are applied to each

local set of data (or subrange in STAPL) in each parallel step. If these operations

are put to work in function objects, the typical framework for this algorithm would

be:

Framework of a parallel algorithm using

Communication Pattern I:

template <typename PRange,

typename Workfunction1,

typename Workfunction2>

palgorithm_foo(PRange& pr, WorkFunction1 wf1,

Workfunction2 wf2)

{

// parallel step 1

pr.set_task(wf1);

p_for_all(pr);

rmi_fence();

21

// parallel step 2

pr.set_task(wf2);

p_for_all(pr);

rmi_fence();

...

}

As introduced in Section E, p for all() applies the work function object (set

by PRange’s set task function) to each local set of input data (subrange), which

composes one parallel step. Then rmi fence applies barrier synchronization.

B. Communication Pattern II

1. Recursive Doubling Pattern

The second communication pattern represents a commonly used parallel algorith-

mic technique, recursive doubling. This technique is used in parallel problems that

first appear unavoidably sequential. “Recursive doubling” is also known as “pointer

jumping” or “shortcutting”. It means replacing a pointer with the pointer it points

to, in a linked structure. This technique is used for various algorithms on lists and

trees.

An example of this communication pattern for a prefix sums problem with 8

input elements x0-x7 is shown in Figure 4. Each processor keeps one input element

x[i] and its copy y[i]; (y[i] is used to avoid unnecessary waiting for computation on

x[i] during communicating, as explained by a later example). In this figure, the lines

with arrows represent the synchronizations. For example, task x4=y2+x4 needs to

22

read the value of y2, so it has to wait for task y2=x2; it also needs to write to x4, so it

has to wait until task y4=x4 correctly reads the old value of x4. Solid lines represent

the synchronizations required by flow dependencies and output dependencies, while

dotted lines represent the synchronizations required by anti-dependencies.

 These data are communicated in order for processors to execute computations.

x0 x1 x2 x3 x4 x5 x6 x7

x1=y0+x1 x2=y1+x2 x3=y2+x3 x4=y3+x4 x5=y4+x5 x6=y5+x6 x7=y6+x7

y1=x1 y4=x4 y5=x5 y6=x6 y7=x7y3=x3

x2=y0+x2 x3=y1+x3 x4=y2+x4 x5=y3+x5 x6=y4+x6 x7=y5+x7

y2=x2

y2=x2 y3=x3 y4=x4 y6=x6 y7=x7

x4=y0+x4 x5=y1+x5 x7=y3+x7

y5=x5

x6=y2+x6

y4=x4 y5=x5 y6=x6 y7=x7

Flow or Output Dependence

Anti−dependence

level #0

level #1

level #2

level #3

level #4

level #5

 Each processor (P) owns one input element (x[i] and copy y[i]) in local memory.

Figure 4: Communication pattern II example

Note that this pattern is not specific for the prefix sums problem. Any par-

allel problem using the recursive doubling technique has a similar synchronization

structure.

Basically, this pattern is composed of a few levels of task pairs and synchro-

nizations between tasks, as shown in Figure 4. The distances between source (or

producer) tasks and destination (or consumer) tasks for synchronizations, called

23

“synchronization distances”, are different at different levels.

For example, in Figure 4, there are six levels of computations. Tasks in the

j-th level, where j is even, apply addition operations x[i] = y[i-d]+x[i], where d, the

synchronization distance from the source task at the previous level, equals to 2j/2.

Tasks in the j-th level, where j is odd, apply saving operations y[i] = x[i], and these

tasks have synchronization distances from the source task at the previous level as

2(j−1)/2. From a different perspective, the same d for input synchronization distance

and output synchronization distance could be used for the tasks at even levels.

The value of synchronization distance d is decided by the underlying idea of

the recursive doubling strategy: “replacing a pointer with the pointer it points to,”

which leads to log2(n) times of replacing. At each instance of replacing, the distance

doubles; thus, the synchronization distance is doubled.

The reason to keep a copy y[i] for x[i] after each update step is to parallelize

the reading and writing to the i-th element. For example, in the fourth step, x[11]

needs to read y[7] (because d2=24/2=4), but x[7] needs to be updated to x[3]+x[7].

Without a copy y[7] for x[7], the update to x[7] has to wait until x[11] has read the

correct value of x[7].

2. STAPL FormulaDDG for Pattern II

This pattern in STAPL is provided as a pre-built FormulaDDG rd dependence oracle.

A FormulaDDG is constructed through three functions: construct tasks to determine

how many tasks need to be created for which subranges; enables and depends on de-

cide the successor tasks and predecessor tasks for each task, i.e., the synchronizations.

The following are the three functions for Communication Pattern II:

Function "construct_tasks" for

24

rd_dependence_oracle:

(This function creates the vertices of DDG.)

Input: A subrange of the owner pRange for a

DDG instance of rd_dependence_oracle.

Output: A vector of pointers to the tasks (with

unique Ids) created for this subrange.

template < typename PRange >

vector<task_type*>

construct_tasks (PRange& subrange)

{

int i = the subrange’s offset;

// since input pRange is a sequence of

// subranges, each subrange has an offset

// from the beginning.

int tasknum;

// #tasks for this subrange

if (i == 0) {

// subrange 0 is never updated

tasknum = 0;

} else {

tasknum = 2 * log2(i+1);

// processor i has 2*log(i+1) tasks

vector<task_type*> new_tasks;

25

new_tasks.reserve(tasknum);

// the vector to store the tasks to

// be created

if (tasknum == 0)

return new_tasks;

for (int j = 0; j < tasknum; j = j+1) {

// for each level

int taskid = j * p + i;

// a unique id for this task, meaning

// that this task is for subrange i,

// at j-th level in the whole DDG

if (j is even) {

// the task should do:

// x[i] = bin_op(y[i-d], x[i])

d = 2 ^ (j/2);

} else {

// the task should do:

// y[i] = x[i]; no need for d

d = 0;

}

new_tasks.push_back(

new task_type(taskid, subrange, d, bin_op));

// create a new task with this "taskid"

26

// that will work on this "subrange",

// whose task-sepcific data is "d",

// and operation is "bin_op".

}

return new_tasks;

}

The class task type in the pseudo code for construct tasks is a class that has a

unique Id (a reference to the subrange it works on), a data member to save data

specific to the task (like the synchronization distance d for this task), and a work

function to specify the operation to be applied.

The following two functions, depends on and enables, take a task Id as an input

parameter and return a vector of task Ids as this task’s predecessors and succes-

sors. The computation is based on the dependencies required by the RD algorithm.

The “upper”, “lower”, “left”, and “right” neighbors in the pseudo-code refer to the

geometric locations in Figure 4. The locations for these neighbors are always com-

putable based on the input task Id and the type of dependences to/from the task.

Mathematic details are not covered in this thesis.

Function "depends_on" to find predecessors

for input task in rd_dependence_oracle:

(This function creates input edges to a

vertex in DDG.)

Input: The task Id for a task in a DDG

instance of rd_dependence_oracle.

27

Output: A vector of task Ids for the pre-

decessors of the task.

void

depends_on(int taskid,

vector<task_id_type>& v)

{

int i = taskid % n;

// the index for the subrange

// for this input task

int level = taskid / n;

// the level of the task in the DDG

v.push_back(the upper neighbor task

for same subrange);

// flow dependence to this task

if (level is even) {

v.push_back(the left upper neighbor

that has non-vertical flow

dependence to the task);

} else {

v.push_back(the right upper neighbor

that has anti-dependence

to the task);

}

}

28

Function "enables" to find successors

for input task in rd_dependence_oracle:

(This function creates output edges from

a vertex in DDG.)

Input: The task Id for a task in a DDG

instance of rd_dependence_oracle.

Output: A vector of task Ids for the

successors of the task.

void

enables(int taskid,

vector<task_id_type>& v)

{

int i = taskid % n;

//the index for the subrange

int level = taskid / n;

//the level of the task in DDG

v.push_back(the vertically lower neighbor

that has flow dependence from

this task);

if (level is even) {

v.push_back(the left neighbor that has

anti-dependence from this task);

} else {

v.push_back(right lower neighbors that have

29

flow dependences from this task);

}

}

Given the pre-built FormulaDDG rd dependence oracle, any parallel problem

using the recursive doubling technique only needs to build its own work function

(i.e., the computation operation) for the tasks. It directly uses this DDG as its

pRange’s DDG and thus the correct synchronizations between tasks are guaranteed.

C. Communication Pattern III

1. Balanced Binary-Tree Based Pattern

This pattern first follows a balanced binary tree to compute partial results, and

then follows another tree structure to pass these partial results back in order to get

the final results. An example is shown in Figure 5. Similar to Figure 4, the solid

lines represent the synchronizations required by the flow dependencies and output

dependencies, while the dotted lines represent the synchronizations required by anti-

dependencies.

This pattern includes two sweeps, the up sweep and the down sweep. As labeled

in Figure 4, there are in total 2*log2(p)-1 levels of tasks, and the value of synchro-

nization distance d at level j is: 2j if the level is in the up sweep; or 22∗log2(p)−2−j if

the level is in the down sweep.

This is a general communication pattern which has both the up sweep and

the down sweep. A specific parallel algorithm could specify whether and which

processors have tasks in the down sweep. If all the processors do not have tasks in

the down sweep, then the communication pattern is specialized as a simple binary

tree structure.

30

level: j = 3

x0

x1=x0+x1

x2=x1+x2

x3=x2+x3

x3=x1+x3

x4=x3+x4

x1 x2 x3 x4

x5=x4+x5

x5

x5=x3+x5

x6=x5+x6

x7=x6+x7

x6 x7

d=1
x1,x3,x5,x7 updated

x3,x7 updated
d=2

Flow or Output Dependence

d=4
x7 updated

Up Sweep

Down Sweep

d=2
x5 updated

d=1
x2,x4,x6 updated

Anti−dependence

x7=x5+x7

x7=x3+x7

level: j = 0

level: j = 1

level: j = 2

level: j = 4

Figure 5: Communication pattern III in BT algorithm

2. STAPL FormulaDDG for Pattern III

A helper function compute distance is used to compute the value for synchronization

distance d for given level j:

Helper function "compute_distance":

Input: the level j of some task.

Output: The synchronization distance d for

this level (such that the task should

update its element by adding neighbor

at d places away: x[i] = y[i-d]+x[i]).

task_id_type

31

compute_distance(int j)

{

if (j < log2(p)) {

// this is an up sweep task

return 2^j;

} else {

// this is a down sweep task

return 2^(2*log2(p) - 2 - j);

}

}

Similar to Communication Pattern II, this pattern is represented by a pre-built

FormulaDDG bt dependence oracle. The condition to decide whether this subrange

(with offset i) has task(s) in the down sweep, i >= 3*(2nt) -1, comes from the BT

algorithm since this communication pattern is currently used only for the implemen-

tation of parallel prefix sums. However, this can be modified to match the needs of

other similar parallel algorithms.

Function "construct_tasks" for

bt_dependence_oracle:

(This function creates the vertices of DDG.)

Input: A subrange of the owner pRange for a DDG

instance of bt_dependence_oracle.

Output: A vector of pointers to the tasks (with

unique Ids) created for this subrange.

32

vector<task_type*>

construct_tasks (PRange& subrange)

{

bool has_downsweep_task = false;

int i = subrange’s offset;

int nt = #times that (i+1) can be

divided exactly by 2;

// #tasks for this subrange in the up sweep

// Refer to mathematic issue (a) below.

int tasknum = nt;

if (i >= 3 * (2^nt) - 1) {

// condition for the subrange to own

// down sweep task, coming from BT algorithm;

has_downsweep_task = true;

}

if (has_downsweep_task)

// if the subrange does have down sweep

// task, then it only has one such task.

// Refer to mathematic issue (b) below.

tasknum++;

vector<task_type*> new_tasks;

new_tasks.reserve(tasknum);

// the vector to store the tasks to be

// created

33

for (int j = 0; j < nt; ++j) {

// for each level in the up sweep

int taskid = j * p + i;

// a unique id for this task, meaning

// this task is for subrange i, at

// level j in the whole DDG

int d = 2^j;

// the distance for this level in up sweep

new_tasks.push_back(

new task_type(taskid, subrange, d, bin_op));

// create a new task with this "taskid"

// that will work on this "subrange",

// whose task-specific data is "d",

// and operation is "bin_op"

}

if (has_downsweep_task) {

//create the down sweep task

int j = 2 * log2(p) - 2 - nt;

// the down sweep task is at level

// 2*log2(p)-2-nt.

// Refer to mathematic issue (c) below.

int taskid = j * p + i;

int d = 2^(2*log2(p) - 2 - j);

new_tasks.push_back(

34

new task_type(taskid, subrange, d, bin_op));

// create a new task with this "taskid"

// that will work on this "subrange",

// whose task-specific data is "d",

// and operation is "bin_op"

}

return new_tasks;

}

There are three mathematical issues in construct tasks that require detailed

explanations.

• (a) For a subrange with offset i, its number of tasks in the up sweep is the

number of times that (i+1) can be divided exactly by 2. In other words, it is

the number of occurrences of 2 as (i+1)’s factor.

• (b) A subrange has either 0 or 1 tasks in the down sweep of the BT algorithm.

• (c) If a subrange does have a down sweep task, then the task’s level can be

computed based on the offset i.

The following are the detailed explanations for these claims.

(1) The number of tasks in the up sweep can be observed based on the balanced

binary tree structure of the up sweep. At any level in the up sweep, only when

(i+1)/dj is even can the subrange (with offset i) have a task at the level.

So, for a subrange to have tasks from level 0 to level j but not at level j+1, it

must have: i+1 = (2*α1) * dj = α1 * 2j+1, but i+1 6= (2*α2) * dj+1 = α2 * 2j+2,

where α1 and α2 are both natural numbers. In other words, (i+1) must be multiple

35

of 2j+1, but not a multiple of 2j+2. This means the subrange’s number of tasks is

equal to the number of times that i+1 can be divided exactly by 2.

(2) Parts of the subranges have their results computed in the up sweep, so they

do not need down sweep tasks at all. If a subrange has a down sweep task, it cannot

have more than one such task (proved below). In (2) and (3), the symbol m is used

to represent the value of 2 * log2(p) - 2, for clearer expression.

Based on the BT algorithm (introduced in Chapter IV), the condition for the

subrange with offset i to own a down sweep task at down sweep level j1 is: i+1 =

3*dj1, or 5*dj1, or 7*dj1, i.e., i+1 = (3+2*β1)*dj1 = (3+2*β1)*2m−j1, where β1 is

a constant non-negative integer.

Suppose there exists another task at any other down sweep level j2, then i+1 =

(3+2*β2)*dj2 = (3+2*β2)*2m−j2, where β2 is also a constant non-negative integer.

Since (3+2*β1) and (3+2*β2) are both odd, the times that (i+1) can be divided

by 2 cannot be both m-j1 and m-j2 since j16=j2. Therefore, this subrange can have

only one down sweep task.

(3) The level for the down sweep task of a subrange with offset i, if it exists,

is equal to the number of its up sweep tasks (nt in the pseudo-code). Because in

(1) it is known that the last level (level j) of an up sweep task for subrange with

offset i satisfies: i+1 = α * 2j+1, where α is an odd integer; and based on (2) it is

known that this subrange’s down sweep task must be at level j1 which satisfies: i+1

= (3+2*β)*2m−j1. So α * 2j+1 = (3+2*β)*2m−j1. Since both α and (3+2*β) are

odd, we conclude that j+1 = m-j1, that is, j1 = m - (j+1) = m - the number of the

subrange’s up sweep tasks.

The depends on and enables functions for bt dependence oracle are briefly de-

scribed by the following pseudo-code. The left, right, upper, and lower neighbors

refer to the geometric locations in Figure 8.

36

In these two functions, to decide whether a task is an up sweep task or a down

sweep task, simply compare the task’s level with the number of up sweep tasks for

the subrange i (as explained in construct tasks function).

Function "depends_on" to find predecessors

for input task in bt_dependence_oracle:

(This function creates input edges to

a vertex in DDG.)

Input: A taskid for a task in a DDG instance

of bt_dependence_oracle.

Output: A vector of taskids for the predecessors

of the task.

void

depends_on(int taskid,

vector<task_id_type>& v)

{

int i = taskid % n;

//the index for the subrange

int j = taskid / n;

//the level of the task in DDG

v.push_back(the vertically upper neighbor

that has flow dependence to

this task);

if (this task is an up sweep task) {

37

v.push_back(the left upper neighbor

that has flow dependence to

this task);

} else {

//this task is a down sweep task

v.push_back(the left upper neighbor

that has flow dependence to

this task);

v.push_back(the right first-pass

neighbor that has anti-

dependence to this task);

}

}

Function "enables" to find successors

for input task in bt_dependence_oracle:

(This function creates output edges

from a vertex in DDG.)

Input: A taskid for a task in a DDG instance

of bt_dependence_oracle;

Output: A vector of taskids for the successors

of the task.

void

enables (int taskid,

38

vector<task_id_type>& v)

{

int i = taskid % n;

//the index for the subrange

int j = taskid / n;

//the level of the task in DDG

if (this task is an up sweep task) {

v.push_back(the vertically lower neighbor

that has flow dependence from

this task);

v.push_back(the right lower neighbor that

has flow dependence from

this task);

if (this task is the lowest up sweep task

for the subrange)

{

v.push_back(some right neighbors’ down

sweep tasks that have flow

dependences from this task);

}

v.push_back(the left neighbor’s down sweep

task that has anti-dependence

from this task);

} else {

//this task is a down sweep task

v.push_back(some right neighbors’ down sweep

39

tasks that have flow dependences

from this task);

}

}

Given the above pre-built FormulaDDG, the BT prefix sums algorithm only

needs to specify its work function for the tasks and it uses this FormulaDDG as its

own DDG, so all the synchronizations between tasks are guaranteed.

Other parallel algorithms using a similar communication pattern can use this

FormulaDDG with only slight modifications.

40

CHAPTER IV

PREFIX SUMS ALGORITHMS IMPLEMENTATION

A. 3-step Technique for p < n

When the pre-built communication patterns were introduced in the previous chapter,

it was assumed that each processor owns and works on only one input element. This

means the number of processors p is equal to the number of input elements n, which

is an over-simplified assumption.

However, there is a standard 3-step technique for solving the more general sit-

uation where p < n:

• Step 1: Each processor applies the fastest sequential algorithm on its own local

chunk of data, of size O(n/p), and gets some intermediate results.

• Step 2: Processors communicate with each other and do global computation

on these p intermediate results using PRAM parallel algorithms.

• Step 3: Each processor does left-over local computations to get the final results

based on the results of the previous global computations.

The underlying logic of this three-step technique is that after the first step, there

are only p intermediate results, one for each processor; so a parallel problem using

these intermediate results as input has input size equal to p. Then the algorithms

introduced in the following sections of this chapter can be applied to the input

set of size p and use the pre-built communication patterns to guarantee correct

synchronizations.

In the STAPL generic implementation of parallel prefix sums, the three-step

technique is used as follows:

41

Step 3 finalizes local computation based on the output of step 2.

Input: 3 5 −2 6 2 0 4 8

Processor 0 Processor 1 Processor 2

Step 1: local sequential prefix sums => p intermediate results

3 8 6 6 8 8 4

Step 2: Input size = p: 6 8 12

Output for step 2 6 14

Step 3: local update based on output of step 2

3 8 6 12 14 14 18 26

12

26

Recursive Doubling Algorithm OR Binary−tree Based Algorithm

Output:

Step 1 applies sequential prefix sums on each processor;
Step 2 applies RD or BT algorithm on p intermediate results;

Figure 6: Example of applying three-step technique

• Step 1: Each processor applies a sequential prefix sums algorithm on its own

O(n/p) input elements, and gets its own local total sum as the processor’s

intermediate result.

• Step 2: The RD or BT algorithms are applied to compute the prefix sums of

the p intermediate results, along with corresponding communication pattern

to guarantee correct synchronizations.

• Step 3: Each processor uses the globally computed prefix sums of intermediate

results to update its own O(n/p) elements.

Figure 6 follows the three steps for computing prefix sums of an input set of 8

integers, [3, 5, -2, 6, 2, 0, 4, 8], on 3 processors, rather than the 8 processors needed

in the PRAM model.

42

The input size is n for both Step 1 and Step 3. Each processor simply scans

O(n/p) elements one by one. So the complexity in these two steps is Time = Θ(n/p)

and Work = Θ(n), assuming the input data are distributed evenly across the p

processors.

The input size for Step 2 is p. Different algorithms (RD or BT), together with

different communication patterns used for implementation, have different effects on

the complexity of this step.

B. RD Algorithm

1. RD Algorithm and Theoretical Complexity

The recursive doubling technique was first used by Kruskal, Rudolph, and Snir [25] to

solve parallel prefix sums problem. The input sequence x can be regarded as a linked

list of elements with links representing their preceding / succeeding relationships.

This algorithm can be described by the following pseudo-code. d is used to

represent the distance for the update operation x[i] = y[i-d]+x[i]. Bin op is the

binary associative operator, which could also be as simple as addition, but could

be very complicated. Parallel for means every processor executes this for-loop in

parallel, with each working on one iteration.

Recursive doubling (RD) Algorithm:

Input: A set of elements "x" a copy "y";

A binary associative operator "bin_op".

Output: Prefix sums of original input elements

stored in "x".

begin

43

for (d = 1; d < n; d = d * 2)

{

parallel_for (i=d; i<n; i=i+1) {

// parallel_for: each processor

// works on one "i" of the for-loop

// at the same time, i.e., i-th

// processor does:

// x[i] = bin_op(y[i - d], x[i])

// bin_op: the binary associative op

}

parallel_for (i=0; i<n; i=i+1) {

// parallel_for: each processor works

// on one "i" of the for-loop at the

// same time, i.e., i-th processor does:

// y[i] = x[i];

}

}

end

Figure 7 exemplifies how to use the RD algorithm to compute the prefix sums of

the input set [3, 5, -2, 6, 2, 0, 4, 8] on 8 processors in parallel. The binary associative

operator is simple addition in this example.

The distance d for each step changes from 1 to 2, then to 4, to 8, and so on until

p/2. So it takes Θ(log2(p)) iterations to finish the work. In each iteration, processor

i updates x[i] or writes y[i] once; both are constant time operations. So, the total

44

an addition operation

Input: (x) 3 5 −2 6 2 0

(y) 3 5 −2 6 2 0 4 8

4 8

8 3 4 8 2 4

8 3 4 8 2 4

6 12 11

6 12 11

6 12

6 12

14

14 14 26

18

18

26

14

14

12

12

14

P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7

(x)

(the owner processor for x[0] and y[0])
processor with id 0P 0

8

3 5Legend:

(y)

(x)

(y)

(x)

(y)

Figure 7: Example of using the RD algorithm on 8 processors

complexity for the RD algorithm in Step 2 is Time = Θ(log2(p)) and Work = Θ(p*

log2(p)).

2. Barrier Synchronization Implementation for RD Algorithm

As explained in Section A, in order to implement the RD algorithm with barrier

synchronization, global barriers are put at the beginning and end of each parallel

iteration using Communication Pattern I. The only thing that needs to be specified

is the operation for each task, i.e., the work function object of the pRange. After

that, the synchronizations between tasks are correctly guaranteed.

The RD algorithm’s framework looks like the following pseudo-code.

Framework of RD algorithm with

45

Barrier Synchronization option:

(Using Communication Pattern I)

Assumption: p = n (for step 2 only)

Input set "x" and its copy "y" are stored

in 2 pContainers.

Input: A pRange "pr" which has access to two views,

one for "x" and the other for "y";

A binary functor "bin_op" for prefix sums.

Output: Prefix sums of elements in "x" stored in

the view0 of "pr", which is the View for

input pContainer "x".

template <typename PRange, typename BinaryFunction>

p_prefixsums_RD_Barrier (PRange& pr,

BinaryFunction bin_op)

{

for (d = 1; d < n; d = d*2)

{

plus_workfunction<PRange,

BinaryFunction> plus_wf(d);

// work function: x[i]=bin_op(y[i-d],x[i]);

// the "distance" d for this level is

// passed as an argument to this work

// function because all the tasks at this

// level have same "d"s.

46

pr.set_task(plus_wf);

p_for_all (pr);

// applies plus_wf on each element of

// ’x’ and ’y’

rmi_fence();

// barrier to guarantee every processor

// has updated x[i]

save_workfunction<PRange> save_wf;

// work function for y[i] = x[i];

pr.set_task(save_wf);

p_for_all(pr);

// applies save_wf on each element of

// ’x’ and ’y’

rmi_fence();

// barrier to guarantee every process

// has saved updated x[i] to y[i]

}

}

Since the RD algorithm needs to operate on the elements of the copy y, the

input pRange object pr for the algorithm has to support access to two Views, one for

x’s View and the other for y’s View. This is supported by STAPL’s combined-view

pRange.

Similar to the original algorithm’s pseudo-code, the STAPL generic implemen-

tation applies a work function on a pRange in each parallel step by calling p for all.

47

A DDG does not need to be specified explicitly for the pRange object here, because

Communication Pattern I by default uses the DDG including one task per subrange

and no orderings between tasks.

The first work function type plus workfunction has its operator() applying the

input binary operator on y[i-d] and x[i] on one subrange in each task. This only

deals with the second step; with p=n, each local chunk on one processor has only

one single element. That is why only the first element in view0 and view1 in the

subrange are worked on. The following is the pseudo-code for this work function.

Work function "plus_workfunction" in RD

Algorithm’s Barrier implementation:

(Operator() applies bin_op on each subrange.)

template <typename PRange, typename BinaryFunction>

class plus_workfunction :

public work_function_base<PRange>

{

private:

BinaryFunction bin_op;

// the input binary associative operator

int d;

// the distance for this parallel step

public:

workfunction(BinaryFunction _bin_op, int _d) :

bin_op(_bin_op), d(_d) {}

48

void operator() (typename

PRange::subview_set_type& subrange_data)

{

int offset = at<0>(subrange_data)->offset();

// the offset for this subrange, i.e., "i"

if (i < d) {

; // no-op

} else {

x_iterator xit =

at<0>(subrange_data)->begin();

// the element x[i]

y_iterator yit =

at<1>(subrange_data)->begin() - d;

// the element y[i-d]

*xit = bin_op(*yit, *xit);

// x[i] = bin_op(y[i-step], x[i])

}

}

};

In order for each task to know whether it should apply the binary operation (like

addition) or just do no-op, the task has to make a decision based on the distance d

for the current step and the subrange’s index i. Basically, if i < d, this task should

do no-op. Since each call for p for all is working for only one single step, this step’s

distance d is simply passed as an argument for this work function.

The save workfunction is very similar, but simpler.

49

Work function "save_workfunction" in RD

Algorithm’s Barrier implementation:

(Operator() saves x[i] to y[i].)

template < typename PRange >

class save_workfunction :

public work_function_base<PRange>

{

private:

// no more need for bin_op and d

public:

void operator() (typename

PRange::subview_set_type& subrange_data)

{

x_iterator xit =

at<0>(subrange_data)->begin();

// the element x[i]

y_iterator yit =

at<1>(subrange_data)->begin();

// the element y[i]

*yit = *xit;

// y[i] = x[i]

}

};

Since there are Θ(log2(p)) parallel steps in the RD algorithm, the number of

50

barriers is also Θ(log2(p)). Each processor is required to participate in each step, so

the total number of synchronizations is Θ(p*log2(p)).

3. Point-to-point Synchronization Implementation for RD Algorithm

As explained in the previous section, barrier synchronization causes some processors

to do unnecessary no-ops at some parallel steps based on the algorithm itself.

Alternately, point-to-point synchronization eliminates the requirement for all

processors to participate in all parallel steps, i.e., it avoids the unnecessary no-ops.

Basically, when implementing a parallel algorithm using point-to-point synchro-

nization, it is necessary to only respect the point-to-point synchronizations between

tasks. For the RD algorithm, this is guaranteed by simply using Communication

Pattern II in Section B.

The following is the pseudo-code for the implementation of the RD algorithm

with point-to-point synchronization.

Framework of RD algorithm with

Point-to-point Synchronization option:

(Using Communication Pattern II)

Assumption: p = n (for step 2 only);

Input "x" and its copy "y" are stored in 2

pContainers.

Input: A pRange "pr" which has access to two views,

whose view0 is for "x", view1 is for "y";

A binary functor "bin_op" for prefix sums

operation.

51

Output: Prefix sums of elements in "x" are stored

into view0 of "pr".

template <typename PRange, typename BinaryFunction>

p_prefixsums_RD_Point2point (PRange& pr,

BinaryFunction bin_op)

{

Build a new pRange "ipr" with same views

as "pr", using an instance of "rd_dependence_

oracle" as its DDG;

workfunction wf(bin_op);

// if the task-specific data "d" of the task

// is 0, then the task does: y[i] = x[i];

// else it does: x[i] = bin_op(y[i-d], x[i]).

ipr.set_task(wf);

p_for_all(ipr);

}

Point-to-point synchronization does not care about single parallel steps; instead,

it builds and applies the DDG for the whole algorithm. Tasks in different parallel

steps could run at the same time and tasks in later parallel steps could also run

earlier as long as all synchronizations (caused by data dependences) are respected.

This is why the value of d as task-specific data needs to be stored; it is statically

computed based on the level for a task in construct tasks.

Therefore, a unified work function object wf will work for any task. It does x[i]

= bin op (y[i-d], x[i]) if the task is at an even level, otherwise it does y[i] = x[i].

52

The following is the definition of the work function class. As mentioned before,

since the p=n situation is assumed, each subrange has only one single element for x

and one single element for y.

Work function "workfunction" in RD

Algorithm’s Point-to-point implementation:

(Operator() either updates x[i] or saves it to y[i].)

template < typename PRange, typename BinaryFunction >

class workfunction :

public work_function_base<PRange>

{

private:

BinaryFunction bin_op;

public:

workfunction(BinaryFunction _bin_op) :

bin_op(_bin_op) {}

bool use_ddg_vertex_data() { return true; }

// this method tells the run-time system

// to pass task-specific data to the work

// function’s operator()

void operator() (

typename PRange::subview_set_type& subrange_data,

typename PRange::DDGType::VERTEX& task_data)

53

{

int d = task_data.d;

// retrieve the "d" statically computed

// and saved in the task during

// "construct_tasks"

if (d > 0)

// this is an even-level task

{

x_iterator xit =

at<0>(subrange_data)->begin();

// the element for "x" in this subrange

y_iterator yit =

at<1>(subrange_data)->begin() - d;

// the element for "y" in subrange of

// "d" distance away

*xit = bin_op (*yit, *xit);

// x[i] = bin_op(y[i-d], x[i])

} else {

// this is an odd-level task

x_iterator xit =

at<0>(subrange_data)->begin();

// the element for "x" in this subrange

y_iterator yit =

at<1>(subrange_data)->begin();

// the element for "y" in this subrange

// at same position

54

*yit = *xit;

// y[i] = x[i]

}

}

};

When p for all is executed by the run-time system of STAPL, those tasks that

do not depend on any others are ready to be picked to run. When all of a task’s

predecessors are finished, it becomes ready to run. When all the tasks of a DDG are

finished, the execution is complete.

C. BT Algorithm

1. BT Algorithm and Theoretical Complexity

[1] introduces another parallel prefix sums algorithm based on a balanced binary-tree

structure which consists of two passes (the up sweep and the down sweep).

As introduced in Section C, in the up sweep, a binary-tree based pair-wise sum-

mation is applied: x[1] = x[0]+x[1], x[3] = x[2]+x[3], ..., x[2*i+1] = x[2*i]+x[2*i+1],

..., x[n-1] = x[n-2]+x[n-1]. This up sweep composes a balanced binary-tree. In the

down sweep, sums are passed back from parents to children to compute the final

results. The following pseudo-code describes how the BT algorithm works.

Binary-tree based (BT) Algorithm:

Input: A set of elements "x";

A binary associative operator "bin_op".

Output: Prefix sums of original input elements

stored in "x".

55

begin

for (d = 1; d <= n/2; d = d*2) {

// up sweep

parallel_for (i = 2*d-1; i < n; i = i+2*d)

{

x[i] = bin_op(x[i-d], x[i]);

}

// each processor is in charge of summation

// of one pair of elements in each step

}

for (d = n/4; d >= 1; d = d/2) {

// down sweep

parallel_for (i = 3*d-1; i < n; i = i+2*d)

{

x[i] = bin_op(x[i-d], x[i]);

}

}

end

Figure 8 shows an example of the BT algorithm used to compute prefix sums

of the same input set [3, 5, -2, 6, 2, 0, 4, 8] on 8 processors in parallel. The binary

associative operator is still simple addition. This figure is essentially the same as

Figure 5 except for the layout of tasks which focuses on the two-pass algorithms

rather than the synchronization structure.

56

P3P0 P4 P5 P6 P7Processors:

3Input: 5 −2 6 2 0 8

8 4 2 12

1412

26

14

18

4

6 14

Output: 3 8 6 12 14 14 18 26

P1

up sweep step 1

up sweep step 2

Up Sweep:

up sweep step 3

Down Sweep:

down sweep step 1

down sweep step 2

P2

Figure 8: Example using the BT algorithm on 8 processors

In the up sweep of the BT algorithm, the synchronization distance d changes

from 1 to 2, 2 to 4, 4 to 8, and so on until p/2 (same as the RD algorithm). It

also takes at least Θ(log2(p)) iterations to finish. However, based on the example,

many processors only need to do operations in a few iterations. In the first step of

the up sweep, p/2 operations are executed; in the second step, p/4 operations are

executed, and so on. Following a balanced binary tree, only p/2 + p/4 + p/8 + ...

+ 1 = Θ(p) operations are executed. At the end of this up sweep, p/2 elements have

already been updated to their final results. In the down sweep, only the other p/2

elements need to compute their final results by executing one operation. This leads

to constant time on each processor and p/2 work in total only. So, all together, Time

= Θ(log2(p)) and Work = Θ(p).

57

2. Barrier Synchronization Implementation for BT Algorithm

In Section C, it was assumed that the input size n is a power of 2. For an arbitrary

natural number n, the second for-loop needs to be modified by rounding up its loop

limit from n to the next power of 2.

This is the same for the implementation of the RD algorithm with barrier syn-

chronization. Implementing the BT algorithm with Barrier synchronization simply

means building the work function for each task and applying Communication Pat-

tern I (p for all and barrier operation rmi fence) to compose a sequence of parallel

steps.

Similar to the algorithm’s original pseudo-code description, the implementation

is composed of two for-loops, one for each sweep. In each for-loop, each parallel step

(parallel for) is implemented as a p for all on a pRange, whose work function always

does x[i] = bin op(x[i-d], x[i]). The pRange object does not need to specify a DDG

because it by default uses a DDG which has only one task on each subrange and no

orderings between tasks based on Communication Pattern I. Rmi fence() guarantees

that processors finish each parallel step at the same time.

Framework of BT algorithm with

Barrier Synchronization option:

(Using Communication Pattern I)

Assumption: p = n (for step 2 only)

Input set "x" is stored in a pContainer.

Input: A pRange "pr" which has access to a View

for "x";

A binary functor "bin_op" for prefix sums.

58

Output: Prefix sums of original elements stored

in view0 of "pr", which is the View for "x".

template < template PRange, typename BinaryFunction >

p_prefixsums_BT_Barrier (PRange& pr,

BinaryFunction bin_op)

{

for (d = 1; d <= n/2; d = d*2) {

// up sweep

Workfunction<PRange, BinaryFunction>

wf (bin_op, d);

// work function for

// x[i] = bin_op(x[i-d], x[i]);

pr.set_task(wf);

p_for_all(pr);

// one up-sweep step

rmi_fence();

// barrier to guarantee this step’s

// computations are all finished

}

for (d = n/4; d >= 1; d = d/2) {

// down sweep

Workfunction<PRange, BinaryFunction>

wf(bin_op, d);

// same work function as in up sweep:

59

// x[i] = bin_op(x[i-d],x[i]);

pr.set_task(wf);

p_for_all(pr);

// each function does down-sweep

// computation

rmi_fence();

// barrier to guarantee each level’s

// down-sweep computations are all finished

}

}

Again, in order for each task to decide whether it should apply the binary operation

or do a no-op, the synchronization distance d for each step is passed as an argument

to the work function.

The processors’ actions in the BT algorithm with barrier synchronization are

shown in Figure 9. Compared with Figure 8, this figure has many no-ops where

processors do not need to do any operations required by the algorithm; but they

have to participate due to the requirement of barrier synchronization.

In the barrier implementation of the BT algorithm, there are also Θ(log2(p))

steps, and Θ(log2(p)) barriers. So the total number of synchronizations is also

Θ(p*log2(p)) since every processor has to participate in each parallel step.

3. Point-to-point Synchronization Implementation for BT Algorithm

The implementation of the BT algorithm using point-to-point synchronization uses

Communication Pattern III as its pRange’s DDG to guarantee the synchronizations

between tasks. Its framework is represented by the following pseudo-code:

60

Every processor has to participate in each parallel step.

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

��

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

������������

x0 x1 x2 x3 x4 x5 x6 x7

x1=x0+x1 x3=x2+x3 x5=x4+x5 x7=x6+x7

x7=x3+x7

x3=x1+x3no−op

no−op no−op no−op

no−op

no−op

no−op

no−op

no−op

no−op

no−op

no−op

no−op

P1 P2 P3 P4 P5 P6 P7

Input:

no−op no−op no−op

no−op

no−op

no−op

no−op no−op x5=x3+x5 no−op no−op

x7=x5+x7no−op

no−op no−op x2=x1+x2 no−op x4=x3+x4 no−op x6=x5+x6 no−op

Barrier
no−op: does nothing real work but has to participate the step

up sweep
step 1

up sweep
step 2

up sweep
step 3

down sweep
step 1

down sweep
step 2

P0

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

Figure 9: Processors’ actions in the BT algorithm with barrier synchronization option

Framework of BT algorithm with

Point-to-Point Synchronization option:

(Using Communication Pattern III)

Assumption: p = n (for step 2 only)

Input set "x" is stored in a pContainer.

Input: A pRange "pr" which has access to a View

for "x";

A binary functor "bin_op" for prefix sums.

Output: Prefix sums of original elements stored in

view0 of "pr", which is the View for "x".

template < typename PRange, typename BinaryFunction >

p_prefixsums_BT_Point2point (PRange& pr,

61

BinaryFunction bin_op)

{

Build a new pRange "ipr" with the same view as "pr",

but whose DDG is an instance of "bt_dependence_oracle";

workfunction wf(bin_op, step);

// this workfunction does:

// x[i]=bin_op(x[i-d], x[i])

ipr.set_task(wf);

p_for_all(ipr);

}

The usage of pre-built communication patterns significantly simplifies the im-

plementation of the parallel algorithm. The only issue for a parallel programmer is

to implement the work function object, which is extremely simple.

In the BT algorithm, as shown in Figure 5, each task has roughly two outgoing

dependence edges. The number of synchronizations is roughly twice of the number

of tasks. In the j-th parallel step (j=0,1,2..., log2(p)-1), there are p/2j tasks, so the

total number of synchronizations is: 2 *
∑log2(p)−1

j=0 (p/2j) = Θ(p*log2(p) - p).

Although asymptomatically speaking, Θ(p* log2(p) - p) = Θ(p* log2(p)), it will

be shown in Section B that this makes some performance difference,

D. Complexity of RD and BT Algorithms with Synchronizations

As shown in Section A, Step 1 (local sequential prefix sums on each processor) and

Step 3 (local updates for elements on each processor) have complexity Time = Θ(n/p)

and Work = Θ(n). This is independent from synchronization options.

The choice of synchronization options affects the theoretical complexity of Step

62

Table 1: Theoretical Complexity of RD Algorithm with Sync. Options

Complexity Without sync. Barrier sync. Point-to-point sync.

Time Ω(n/p+log2(p)) Θ(n/p+log2(p)) Θ(n/p+log2(p))

Work Ω(n+p*log2(p)) Θ(n+p*log2(p)) Θ(n+p*log2(p))

Table 2: Theoretical Complexity of BT Algorithm with Sync. Options

Complexity Without sync. Barrier sync. Point-to-point sync.

Time Ω(n/p+log2(p)) Θ(n/p+log2(p)) Θ(n/p+log2(p))

Work Ω(n+p) Θ(n+p*log2(p)) Θ(n+p)

2 in the implementation. The theoretical complexity considering synchronization

options is described in Table 1 and Table 2, listed together with the complexity

without synchronization cost.

Based on the two tables, it is obvious that for the BT algorithm, the point-to-

point synchronization option is more efficient than the barrier synchronization option.

It is expected that better performance will occur with point-to-point synchronization.

63

CHAPTER V

PERFORMANCE OF IMPLEMENTATION

A. Optimization for Step 1 in the Implementation

As analyzed in Section A each parallel prefix sums implementation scans each input

element twice, once in Step 1 and Step 3. Theoretically speaking, if the time spent

on synchronization is small enough, the best speedup compared to sequential prefix

sums would be p/2.

However, a simple optimization can be applied to the implementation to get a

practical speedup better than p/2. Rather than applying the sequential prefix sums

algorithm on each processor’s local chunk of data in Step 1, let each processor read

every local element and sum them up. Since Step 3 always needs to read and write

each local element, the update operations in Step 1 can be avoided. This simply

modifies the example in Figure 6 to Figure 10.

B. Experimental Results

The experimental performance results of the generic implementation of parallel prefix

sums algorithms are compared with the sequential prefix sums algorithm in STL.

The parallel version’s input was a parallel container in STAPL, pArray, while the

sequential version used an STL vector. Both containers had 512M integers, which

needed 2GB storage on the experimental platform.

Experiments were done on a machine at the National Energy Research Scientific

Computing Center (NERSC), a 712-CPU Opteron cluster running Linux. It has 356

dual-processor nodes interconnected with an InfiniBand network. The memory size

for each node is 6GB, and the cache size for each processor is 1MB. The input set

64

Step 2: Intermediate results of size p

Input: 3 5 −2 6 2 0 4 8

Processor 0 Processor 1 Processor 2

Step 1: local sequential sums (rather than prefix sums)

3 5 −2 6 2 0

6 8 12

Output for step 2 6 14

Step 3: local update based on output of step 2

3 8 6 12 14 14 18 26

8

26

Recursive Doubling Algorithm OR Binary−tree Based Algorithm

Output:

4

Figure 10: Example of the generic implementation with optimization in step 1 (p=3,

n=8)

chosen for the experiments does not fit in the cache, but always fits in the memory.

Experiments are repeated at least three times on 1, 2, 8, 16 and 64 processors

respectively. In order to avoid the effects of memory contention, all processors used

in the experiments reside on separate nodes.

Figure 11 shows the speedup for four combinations of algorithms and synchro-

nization options in the generic implementation: the RD algorithm + barrier synchro-

nization, the BT algorithm + barrier synchronization, the RD algorithm + point-to-

point synchronization, and the BT algorithm + point-to-point synchronization.

Based on this figure, the speedup for any of the four combinations is as good as

can be expected and higher than p/2. When comparing the four combinations in the

implementation, it is found that when p is smaller, there is not much difference in

performance because Step 1 and Step 3 dominate the total running time. However,

when using more processors, the figure shows the following order in performance.

• The BT algorithm + point-to-point synchronization is the best, and much

65

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Speedup of parallel prefix sums over sequential version (with sequential container) in STAPL

number of processors

S
pe

ed
up

RD+Barrier

RD+Point−to−point

BT+Barrier

BT+Point−to−point

Figure 11: Speedup of parallel prefix sums (input size: 512M integers)

66

better than the other three (because it has less synchronization to perform);

• The RD algorithm + point-to-point synchronization is faster than the RD

algorithm + barrier synchronization when p is big enough; as shown in Section 3

its number of synchronizations is actually Θ(p*log2(p) - p), rather than exactly

Θ(p*log2(p)).

It is concluded that for both the BT and RD algorithms, the point-to-point

synchronization leads to better performance than barrier synchronization. For the

RD algorithm, the point-to-point option does not show an advantage until p grows

large enough; for the BT algorithm, the point-to-point option has obvious advantages

because it enables the implementation to approach the lower bound for the number

of synchronizations required by the algorithm.

67

CHAPTER VI

APPLICATIONS

A. Parallel Radix Sort

As listed in Section B, parallel prefix sums can be used to implement a parallel radix

sort. This section briefly describes the implementation of a parallel radix sort as a

numeric application of the parallel prefix sums implementation presented above.

Since radix sort is a sequential loop over a stable sort (typically counting sort)

on each r bits of the input integers starting from the least significant bits, the parallel

implementation in STAPL is simply a loop around a parallel counting sort.

The basic idea of counting sort is, if the range for the input values to sort is [0,

2r], count the occurrences of each value and remember the numbers of occurrences in

an array count of size 2r. Then apply the prefix sums algorithm on the array count,

such that the value of count[j] is the total occurrences of values less than j ; i.e., it

is the correct place to put the first element of value j in the final sorted sequence.

Finally, for each value j, every input element with this value is written to the position

count[j] of the final sequence and count[j] is incremented by 1 each time.

This sequential algorithm can be modified to the following parallel algorithm:

• Step 1. Each processor applies the sequential counting sort on its local chunk

of data with size O(n/p). The counting results are saved in a sequential vector

local count of size 2r. All of the p local count vectors compose a pContainer

(pArray<vector>) pcount, with each local count as one element of pcount.

• Step 2. Processors use the generic implementation of the RD or the BT par-

allel prefix sums algorithms on the pContainer pcount by specifying a binary

associative operator on two local count vectors.

68

• Step 3. Each processor i goes through each of its local elements, writes it to

the global position pcount[i][j] if its value is j, and increments pcount[i][j] by 1.

At the end of Step 1, pcount[i][j] remembers the number of occurrences of value

j on processor i. Parallel prefix sums on pcount in Step 2 change pcount[i][j] to the

number of occurrences of value j on all processors 0 to i-1. These can be converted

to the total number of occurrences of all values less than j on processor 0 to i-1 by

a sequential prefix sums computation.

The binary associative operation used in Step 2 simply adds up the correspond-

ing elements (at the same position) from two vectors and returns another vector.

Binary associative function object

for parallel radix sort:

Functionality: Given two "local_count" vectors,

the operator() returns a vector whose each

element is the sum of corresponding elements

in the two vectors.

class p_radix_sort_vectorplus : public binary_function<

vector<int>, vector<int>, vector<int> >

{

public:

vector<int> operator()(const vector<int>& v1,

const vector<int>& v2)

{

int len = std::min(v1.size(), v2.size());

vector<int> v;

69

for (int i=0; i<len; ++i) {

v.push_back(v1[i] + v2[i]);

}

}

};

Speedups of the parallel algorithms on pArray compared to sequential radix sort

on an equivalent STL vector are shown in Figure 12. The experiments were done on

the same machine used in Section B. The input dataset has 128M integers, which

still does not fit in the cache, but always fits in the memory.

Since the computation of Step 1 and Step 3 in the parallel radix sort dominates

the total running time, there is only a slight difference in the performance of using

any of the four combinations (in Section B) in Step 2. Since both the sequential

version and the parallel version need to scan all input elements twice, a speedup

close to p would be expected. However, the experimental results did not achieve this

theoretical expectation due to the overhead of reading and writing the pContainer

pcount repeatedly. This is much heavier than reading and writing a STL sequential

container.

An issue that has to be clarified for this result is that the speedup is valid only

for a special kind of input data, where the distribution of chunks on processors makes

every element not need to be moved across processors when being sorted. That is,

the input chunks of elements are already sorted between processors. The reason to

choose this kind of input data for the experiments is to compare the real speedup

of a parallel implementation over a sequential version, excluding the cost of moving

elements across processors, which is heavily dependent on the properties of the input

data and the underlying interconnection of processors.

70

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Speedup of parallel Radix Sort over sequential version (with sequential container) in STAPL

number of processors

S
pe

ed
up

Figure 12: Speedup of parallel radix sort (input size is 128M integers)

71

Another numeric application that can be built on top of the implementation

for parallel prefix sums algorithms is p partition, which is implemented similarly

to the parallel radix sort. P partition is the parallel equivalent of STL’s partition

algorithm. This algorithm reorders the elements in the input sequence based on

an input function object pred, such that the elements that satisfy pred precede the

elements that fail to satisfy it.

Similar to parallel radix sort, p partition has three steps:

• Step 1. Each processor applies the sequential partition algorithm on its own

chunk of data, remembering the sizes of each left and right parts in a pair of inte-

gers <left-size, right-size>. All the p pairs compose a pContainer (pArray<pair>)

pcount.

• Step 2. Processors use the generic parallel prefix sums implementation on all

the left-sizes in pcount, and again on all the right-sizes in pcount, to decide the

total number of elements that should occur previous to each part.

• Step 3. Each processor copies its own left and right parts to the correct posi-

tions based on the result of pcount in Step 2.

This is very similar to parallel radix sort. Essentially, p partition can be con-

verted to a simplified parallel radix sort with an input value range of only [0,1].

When an element satisfies the pred condition, it is regarded as 0, otherwise it is 1.

The simplicity in implementing parallel radix sort and parallel partition algo-

rithm comes from the generic nature of the implementation of parallel prefix sums. In

the next section, another category of parallel applications is introduced that can also

be built using this generic implementation together with another important parallel

technique, the parallel Euler tour.

72

B. Tree Applications

This section presents four parallel tree applications. All of them are similar to each

other, and all use two important techniques in parallel computation, the Euler tour

technique and parallel prefix sums.

These four applications and their algorithms are introduced in [1]:

• Rooting a Tree: Given a tree and a vertex r as its root, compute the parent

for each vertex in the tree.

• Post-order Numbering: Compute the post-order number of each vertex in a

binary rooted tree.

• Computing the Vertex Level: Compute the level of each vertex, the distance

(number of edges) between the vertex to the root r.

• Computing the Number of Descendants: For each vertex, compute the number

of vertices in the sub-tree rooted at the vertex.

All of these are based on the Euler tour technique; the algorithm and implemen-

tation in STAPL are introduced in Section 1. Since the last three applications all use

the information computed in rooting a tree and follow the same strategy, the second

subsection presents the implementation of rooting a tree and the third subsection

briefly introduce the other three applications.

Since the goal of this section is to further show the wide application of the par-

allel prefix sums implementation, the implementation details of the tree applications

are not covered. For the same reason, the complexity analysis and performance re-

sults are only briefly presented because they are dependent on other factors besides

the prefix sums step; e.g., the properties of input tree, the selection of root r, the

distribution of the tree, and so on.

73

1. Euler Tour Technique

The following is the definition for Euler tour from [1]:

Let T=(V,E) be a given tree and T’=(V,E’) be the directed graph ob-

tained from T when each edge (u,v) ∈ E is replaced by two arcs <u,v>

and <v,u>. Since the indegree of each vertex of T’ is equal to its out-

degree, T’ is an Eulerian graph; that is, it has a directed circuit that

traverses each arc exactly once. It turns out that an Euler circuit of T’

can be used for the optimal parallel computation of many functions on

T.

An Euler circuit of T’=(V, E’) can be defined by specifying the successor

function s mapping each arc e∈E’ into the arc s(e)∈E’ that follows e on

the circuit.

A suitable successor function is: For each vertex v∈V, we fix a certain

ordering on the set of vertices adjacent to v - say, adj(v) = <u0, u1, ...,

ud−1 >, where d is the degree of v. We define the successor of each arc

e=<ui, v> as: s(<ui, v>) = <v, u(i+1) mod d >, for 0≤i≤d-1.

This definition for successor function is implemented as [1]:

A successor function to build Euler tour:

Input: An euler_arc <u,v> (from u to v)

Output: Another euler_arc <v,w> which will occur

next to <u,v> in an Euler tour

procedure successor(<u,v>)

74

{

if u is not the last one on v’s adjacency list

w = the next one following u on v’s adjacency list

else

w = the 1st one on v’s adjacency list

return <v,w>

}

An example of an Euler tour is shown in Figure 13. The thick lines represent

the edges of the input tree, while lines with arrow compose an Euler circuit. The

table in the figure shows the successor function s for each arc.

The implementation of finding the Euler tour in the input parallel tree (a pCon-

tainer, pTree) in STAPL takes two steps.

• Step 1: Each processor applies the successor function on its local vertices and

edges, trying to find sequences of edges as long as possible.

• Step 2: Processors communicate with each other to connect their sequences

together to get the whole Euler tour.

The total Euler tour is stored in a parallel list (pList<euler arc>), in which each

element is an object of class euler arc with three data members.

• first: the starting vertex ID.

• second: the ending vertex ID.

• weight: an integer to store the weight of the arc in applications, originally -1.

An execution example is given in Figure 14. The input tree has 10 vertices

distributed across 3 processors.

75

Tree:
5

6

8 7

9

2 1

3

4

4

5

7

8

9

1

2

3

2 3 4

1 5 6

1

1

2

7

7

8 9

7

2

6

<u,v>

<1, 2>

<1, 3>

2

1>

<1, 4> <4, 1>

<2, 1> <1, 3>

<2, 5> <5, 2>

<2, 6>

<2, 7> <7, 8>

<3, 1> <1, 4>

<4, 1> <1, 2>

<5, 2> <2, 6>

s(<u,v>)

<3,

<2, 5>

<6, 2>

<6, 2> <2, 7>

<7, 2> <2, 1>

<7, 8> <8, 7>

<7, 9> <9, 7>

<8, 7> <7, 9>

<9, 7> <7, 2>

Adjacency Lists
of every vertex

successor for each arc

Input

Figure 13: Example of Euler circuit with successor function s [1]

76

In the first step, each processor applies successor function s to build local se-

quences of euler arcs. When a processor encounters an out-going cross-processor

arc (called cut-arc in STAPL), it stops the construction for this sequence and starts

working on other arcs. These local sequences are connected together in Step 2 by

communicating among processors.

Since the number of communications in this step is equal to the number of local

sequences, these sequences should be as long as possible. This is achieved by starting

and finishing local sequences at cut-arcs.

In Figure 14, the vertical solid lines connect euler arcs to local sequences, while

the dotted lines connect these sequences together to become an Euler circuit. When

the starting arc is specified (<7,0> in the example), the circuit is broken to become

an Euler tour.

Since the number of edges in a tree is Θ(n), where n is the number of vertices

of the tree, the total work to build a list of all edges is also Θ(n). Suppose the tree

is distributed evenly across processors, then the theoretical complexity for parallel

implementation to build an Euler tour would be Θ(n/p).

2. Rooting a Tree

The following definition and algorithm for rooting a tree comes from [1].

Consider a tree T=(V, E) rooted at vertex r, where V is the set of vertices

in T, E is the set of edges in T, r is a vertex in V that is named as the tree’s

root. The problem of “rooting a tree” is to find the parent vertex p(v)

of each vertex v except r, which is the vertex that stands immediately

previous to v on the path from r to v.

Input: A tree T defined by the adjacency lists of

77

connects these sequences, and

processor 0 processor 1 processor 2

3

5 7

9

0

8 1 4

2

6

<3, 7>

<7, 9>

<9,7>

<7, 0>

<7, 5>

<5, 7>

<7, 3>

<3, 2>

<0, 1> <1, 0>

<0, 8>

<8, 0>

<0, 7>

<1, 4>

<2, 6>

<6, 2>

<4, 1>

<2, 3>

(2 local sequences) (2 local sequnces)(2 local sequences)

*start

*end

Each processor builds local sequences,

specifies the global ’start’ and ’end’.

<0,1>

<1,4>

a local sequence of

connection
sequences

between local

"euler_arc"s

Figure 14: Example of building an Euler tour in parallel

78

its vertices;

A special vertex r

Output: For each vertex v except r, the parent p(v).

begin

1. Find an Euler tour in T defined by function s;

2. Identify the last vertex u appearing on the

adjacency list of r, and set s(<u,r>) = 0;

3. Assign a weight of 1 to each arc <x, y> on the

Euler tour, and apply parallel prefix sums on

the list of arcs defined by s;

4. For each arc <x, y>, set x=p(y) whenever the

prefix sum of <x, y> is smaller than the prefix

sum of <y,x>.

end

Step 1 is explained in previous section. Step 2 can simply be specified when

connecting the local sequences for the whole Euler tour.

For Step 3, apply the generic implementation of parallel prefix sums algorithms

on the Euler tour as a pList<euler arc>. The binary associative operation is defined

as follows to add up the two arcs’ weights and return an euler arc with the sum as

its weight. For example, given a sequence (with each euler arc’s weight as 1):

<7,0>[1] − <0,1>[1] − <1,4>[1] − <4,1>[1]

applying prefix sums on this binary operation will return:

<7,0>[1] − <0,1>[2] − <1,4>[3] − <4,1>[4].

Binary associative function to add

79

up two "euler_arcs".

Functionality: Given two "euler_arcs":

<u,v>[weight1] and <v,w>[weight2],

return an euler_arc <v,w>[weight1+weight2].

class weight_plus : public binary_function<

euler_arc, euler_arc, euler_arc>

{

public:

weight_plus() {}

weight_plus(const weight_plus& rp) {}

euler_arc operator()(const euler_arc& e1,

const euler_arc& e2) const {

return euler_arc(e2.first, e2.second,

e1.weight+e2.weight);

}

};

For Step 4, the prefix sums of pairs of arcs <x,y> and <y,x> are compared to

decide whether x is the parent of y or the reverse. If both x and y are on the same

processor, this comparison is trivial. If they are located on two different proces-

sors, then these two processors do some communication and have only one processor

compare them.

Figure 15 exemplifies Step 3 and Step 4 for rooting a tree for the same input

tree as in Figure 14. The weights of euler arcs are represented by the numbers in

brackets beside the arcs; the parent of each vertex is in { } beside the vertex.

80

<0,1>[2]: the prefix sums of the weight for arc <0,1> is 2

processor 0 processor 1 processor 2

7

9

0

8 1 4

2

6

<7, 9>

<9,7>

<7, 5>

<5, 7>

<7, 3> <8, 0>

<6, 2>

<2, 3>

*start

*end
[18]

[17]

<3, 7>[16]

[15]

[14]

<2, 6>
[13]

[12]

[11]

[10]

<0, 7>[8]

[7]

<0, 8>[6]

<1, 0>[5] <4, 1>[4]

<1, 4>[3]

<0, 1>[2]

<7, 0>[1]

Rooting a Tree: set initial weight 1 to every arc in Euler tour, but 0 to the last one;
 apply generic implementation of prefix sums algorithm on the arcs.

[9]

<3, 2>

3{7}

5{7}

[{7}

root {7}

{0} [0]

{3}

{2}

{1}

compare prefix−sum<x,y> and prefix−sum<y,x> to decide parents.

3{7}: vertex 3’s parent is 7

Figure 15: Example of “rooting a tree”

81

3. Three Other Tree Applications

The other three tree applications all follow a similar strategy as following [1]:

Input: A rooted tree (a rooted binary tree if computing post-order numbers),

an Euler tour defined by the successor function, root vertex r, and parent p(v) for

each vertex v.

• Postorder Numbering:

– 1. For each vertex v 6= r, assign the weights of <v, p(v)> as 1 and weights

of <p(v), v> as 0;

– 2. Perform prefix sums on the list of arcs;

– 3. For each vertex v 6= r, set post(v) = prefix-sum(<v, p(v)>), for v =

r, set post(r) = n;

• Computing the Vertex Level:

– 1. For each vertex v 6= r, assign the weights of <v, p(v)> as -1 and weights

of <p(v), v> as 1;

– 2. Perform prefix sums on the list of arcs;

– 3. For each vertex v 6= r, set level(v) = prefix-sum(<p(v), v>), for v =

r, set level(r) = 0;

• Computing the number of Descendants:

– 1. For each vertex v 6= r, assign the weights of <v, p(v)> as 1 and weights

of <p(v), v> as 0;

– 2. Perform prefix sums on the list of arcs;

82

– 3. For each vertex v 6= r, set size(v) = prefix-sum(<v, p(v)>) - prefix-

sum(<p(v), v>), for v = r, set size(r) = n.

All the three applications, together with rooting a tree, are actually implemented

in one generic framework in STAPL which includes the following steps:

• Step 1. Initialization: Setting the initial weights in each arc’s weight.

• Step 2. Prefix Sums: Applying the generic implementation of parallel prefix

sums on the weighted Euler tour.

• Step 3. Finalization: Computing final results using the prefix sums of arcs,

based on the requirement of each application.

4. Performance of Tree Applications

Experimental results are shown in Figure 16. When n (number of vertices in the

input tree) becomes as big as 4,000 or 8,000, the speedup is super-linear, probably

due to the fact that the distributed graphs now fit in the cache.

83

1000 2000 4000 8000
0

20

40

60

80

n

ru
nn

in
g

tim
e

(#
se

cs
) rooting a tree

sequential
2 threads
4 threads

1000 2000 4000 8000
0

20

40

60

80

100

n

ru
nn

in
g

tim
e

(#
se

cs
) post order numbering

sequential
2 threads
4 threads

1000 2000 4000 8000
0

20

40

60

80

100

n

ru
nn

in
g

tim
e

(#
se

cs
) level of vertices

sequential
2 threads
4 threads

1000 2000 4000 8000
0

20

40

60

80

100

n

ru
nn

in
g

tim
e

(#
se

cs
) number of descendants

sequential
2 threads
4 threads

Figure 16: Performance of Euler tour applications

84

CHAPTER VII

CONCLUSION AND FUTURE WORK

A. Conclusion

In this thesis, the design and implementation of a generic implementation of parallel

prefix sums in STAPL is presented.

The implementation has no extra assumptions about the input element type, the

binary associative operator to be applied to these elements, the physical distribution

of the input data on multiple processors, or the relationship between input size n

and number of available processors p.

This implementation supports two different commonly-used prefix sums algo-

rithms, the recursive doubling (RD) algorithm and the binary-tree based (BT) al-

gorithm. It provides good examples for other parallel problems following similar

techniques.

The implementation uses two different synchronization options: barrier synchro-

nization and point-to-point synchronization. While the former is easier to implement,

the latter has fewer synchronizations and thus better performance. All four combi-

nations of algorithms and synchronization options give a reasonably good speedup

in experiments.

Isolating the fixed communication patterns in concrete parallel algorithms, three

pre-built communication patterns are designed to simplify the work of parallel pro-

grammers to a great extent. At the same time, they help to guarantee correct

synchronizations in parallel algorithms.

The implementation is easily extended to two different categories of parallel ap-

plications. For numeric applications, a parallel radix sort algorithm is implemented.

85

For tree applications, four applications that also use Euler tour technique are imple-

mented.

B. Future Work

This generic implementation is the first and currently the only pAlgorithm that uses

point-to-point synchronization in STAPL. This actually motivates the implementa-

tion of FormulaDDG (rather than using a physical pGraph as DDG). All others use

only barrier synchronization.

However, it is believed that there will be other kinds of algorithms that re-

quire group-based processor synchronization. In such cases, group-based barrier

synchronization would benefit the algorithms the most. But a group-based barrier

synchronization is not yet supported in STAPL.

When a run-time system’s task scheduler picks ready tasks from a DDG, cur-

rently it just randomly picks any ready task to run. The scheduler may be made

smarter by considering the impact of each task on its successors in the DDG. There-

fore it may be able to make better decisions that will expedite the execution of the

overall tasks.

86

REFERENCES

[1] S. G. Akl, Parallel Computation: Models and Methods. Prentice Hall, Upper

Saddle River, NJ, 1997.

[2] Blelloch, “Prefix sums and their applications,” in Synthesis of Parallel Algo-

rithms, J. H. Reif, Ed. Morgan Kaufmann, San Francisco, CA 1993.

[3] G. E. Blelloch and B. M. Maggs, “A brief overview of parallel algorithms,”

http://www.cs.cmu.edu/∼scandal/html-papers/short/short.html, 1994.

[4] V. Bokka, K. Nakano, S. Olariu, J. L. Schwing, and L. Wilson, “Optimal algo-

rithms for the multiple query problem on reconfigurable meshes, with applica-

tions.” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 9, pp. 875–887, 2001.

[5] R. Cole and U. Vishkin, “Faster optimal parallel prefix sums and list ranking,”

Information and Computation, vol. 81, pp. 334–352, 1989.

[6] D. Culler, R. Karp, D. Patterson, K. E. S. A. Sahay, E. Santos, R. Subramo-

nian, and T. von Eicken, “Logp: Towards a realistic model of parallel computa-

tion,” Tech. Rep. UCB/CSD-92-713, EECS Department, University of Califor-

nia, Berkeley, 1992.

[7] P. de la Torre and C. P. Kruskal, “Towards a single model of efficient computa-

tion in real parallel machines,” Future Gener. Comput. Syst., vol. 8, no. 4, pp.

395–408, 1992.

[8] F. Dehne, A. Fabri, and A. Rau-Chaplin, “Scalable parallel computational ge-

ometry for coarse grained multicomputers,” International Journal on Compu-

tational Geometry and Applications, vol. 6, no. 3, pp. 379–400, 1996.

87

[9] Ö. Eǧecioǧlu and Ç. K. Koç, “Parallel prefix computation with few processors,”

CMA, vol. 24, no. 4, pp. 77–84, 1992.

[10] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for

Parallel Software Engineering. Addison-Wesley Longman Publishing Co., Inc.,

Reading, MA, 1995.

[11] I. Foster, “Parallelism and computing,” http://www-unix.mcs.anl.gov/dbpp/

text/node7.html, 1995.

[12] T. Hagerup, “The parallel complexity of integer prefix summation,” Information

Processing Letters, vol. 56, pp. 59–64, 1995.

[13] W.-J. Hsu and C. V. Page, “Parallel tree contraction and prefix computations

on a large family of interconnection topologies,” Acta Inf., vol. 32, no. 2, pp.

145–153, 1995.

[14] J. JaJa, An Introduction to Parallel Algorithms. Addison Wesley, Reading,

MA, 1992.

[15] R. Karp and V. Ramachandran, “Parallel algorithms for shared-memory ma-

chines,” in Handbook of Theoretical Computer Science, vol. A, J. van Leeuwen,

Ed. MIT Press, Cambridge, MA, pp. 869–941, 1990.

[16] J. Kim and D. J. Lilja, “Characterization of communication patterns in message-

passing parallel scientific application programs,” in CANPC ’98: Proceedings

of the Second International Workshop on Network-Based Parallel Computing.

Springer-Verlag, London, UK, pp. 202–216, 1998.

[17] C. P. Kruskal, L. Rudolph, and M. Snir, “The power of parallel prefix,” IEEE

Transactions on Computers, vol. C-34, no. 10, pp. 965–968, October 1985.

88

[18] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Com-

puting: Design and Analysis of Algorithms. Benjamin-Cumming Publishing

Co., Inc., Redwood City, CA, 1994.

[19] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” Journal of the

ACM (JACM), vol. 27, no. 4, pp. 822–830, October 1980.

[20] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes. Morgan Kaufmann, San Francisco, CA, 1992.

[21] A. Ping, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Am-

ato, and L. Rauchwerger, “Stapl: An adaptive, generic parallel c++ library.”

Int. Workshop on Languages and Compilers for Parallel Computing, 2001.

[22] C. P. K. L. Rudolph and M. Snir, “The power of parallel prefix,” IEEE Trans-

actions on Computers, vol. 34(10), pp. 965–968, 1985.

[23] L. G. Valiant, “A bridging model for parallel computation,” Communications

of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[24] U. Vishkin, “U. vishkin. thinking in parallel: Some basic dataparallel

algorithms and techniques.” Monograph, in preparation. http://citeseer.ist.psu.

edu/vishkin02thinking.html, 2002.

[25] S. G. Ziavras and A. Mukherjee, “Data broadcasting and reduction, prefix com-

putation, and sorting on reduced hypercube parallel computers,” Parallel Com-

put., vol. 22, no. 4, pp. 595–606, 1996.

89

VITA

Tao Huang received her B.E. and M.E. in Computer Science and Engineering at

the University of Electronic Science and Technology of China (UESTC), Chengdu,

in 2000 and 2003, respectively. She completed her M.S. in computer science at the

Department of Computer Science, Texas A&M University in May 2007. Tao Huang

may be reached at 301 Harvey R. Bright Building, College Station, TX, 77843-3112.

Her email address is thuang@cs.tamu.edu.

