
SPECULATIVE PARALLELIZATION FOR PARTIALLY PARALLEL LOOPS

A Thesis

by

FRANCIS HOAI DINH DANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2007

Major Subject: Computer Science

SPECULATIVE PARALLELIZATION FOR PARTIALLY PARALLEL LOOPS

A Thesis

by

FRANCIS HOAI DINH DANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Lawrence Rauchwerger
Committee Members, Nancy Amato

Marvin L. Adams
Head of Department, Valerie Taylor

May 2007

Major Subject: Computer Science

iii

ABSTRACT

Speculative Parallelization for Partially Parallel Loops. (May 2007)

Francis Hoai Dinh Dang, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Lawrence Rauchwerger

Current parallelizing compilers cannot identify a significant fraction of parallelizable

loops because they have complex or statically insufficiently defined access patterns.

In our previous work, we have speculatively executed a loop as a doall, and applied a

fully parallel data dependence test to determine if it had any cross–processor depen-

dences. If the test failed, then the loop was re–executed serially. While this method

exploits doall parallelism well, it can cause slowdowns for loops with even one cross-

processor flow dependence because we have to re-execute sequentially. Moreover, the

existing, partial parallelism of loops is not exploited.

We demonstrate a generalization of the speculative doall parallelization tech-

nique, called the Recursive LRPD test, that can extract and exploit the maximum

available parallelism of any loop and that limits potential slowdowns to the over-

head of the run-time dependence test itself. In this thesis, we have presented the

base algorithm and an analysis of the different heuristics for its practical applica-

tion. To reduce the run-time overhead of the Recursive LRPD test, we have im-

plemented on-demand checkpointing and commit, more efficient data dependence

analysis and shadow structures, and feedback-guided load balancing. We obtained

scalable speedups for loops from Track, Spice, and FMA3D that were not paralleliz-

able by previous speculative parallelization methods.

iv

ACKNOWLEDGMENTS

I am very fortunate to have had Dr. Lawrence Rauchwerger as my advisor and for

giving me an opportunity to do research under his guidance. Without his support,

inspiration and technical direction, this thesis would not have been possible. He was

a great role model for me with his dedicated efforts in his research. All those con-

versations with him at his office and outside the Bright building guided my research

and my life.

I would like to thank the members of my advisory committee, Nancy Amato

and Marvin Adams for reading my thesis and offering their advice and help.

I have had the opportunity to work with excellent students and researchers at

Texas A&M, especially the previous and current members of the Parasol group: Julio

Carvallo de Ochoa, Guobin He, Tao Huang, Alin Jula, William McClendon III, Lidia

Onica, Silvius Rus, Steven Saunders, Timmie Smith, Nageswar Tagarathi, Gabriel

Tanase, Nathan Thomas, Hao Yu, and Dongmin Zhang. I want to thank them for

the great environment filled with excitement, inspiration, and happiness.

Finally, I would like to thank my family and friends for their support and en-

couragement during my years at Texas A&M. I can only hope I can repay them in

kind.

v

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION AND MOTIVATION 1

II RUN TIME PARALLELIZATION 4

III SPECULATIVE PARALLELIZATION 8

A. The LRPD Test . 8

B. The Recursive LRPD Test (R-LRPD) 11

IV R-LRPD STRATEGIES . 13

A. The Non-Redistribution (NRD) Strategy 14

B. The Redistribution (RD) Strategy 14

C. The Sliding Window (SW) Strategy 16

D. Extracting Data Dependence Graphs 17

V MODELING THE RD AND NRD STRATEGIES 21

A. No Data Redistribution (NRD) 23

B. Data Redistribution (RD) 24

C. Experimental Model Validation 26

VI IMPLEMENTATION AND OPTIMIZATIONS 28

A. On-demand Checkpointing and Commit 28

B. Data Dependence Analysis 30

C. Shadow Data Structures 32

1. Sparse Shadow Structures 32

2. Parallel Shadow Processing 32

D. Feedback-Guided Load Balancing 33

VII EXPERIMENTAL RESULTS 35

VIII CONCLUSION . 45

A. Thesis Research . 45

B. Future Directions . 46

vi

CHAPTER Page

REFERENCES . 48

APPENDIX A . 52

APPENDIX B . 54

APPENDIX C . 56

VITA . 60

vii

LIST OF FIGURES

FIGURE Page

1 LRPD algorithm. 9

2 An example of the LRPD test on a DO loop. 10

3 R-LRPD algorithm. 12

4 R-LRPD example. 15

5 Sliding window example. 16

6 Example for DD graph extraction using the sliding window R-

LRPD test. 19

7 Wavefront scheduling of the DDG from Fig. 6. 20

8 Selection strategy between RD and NRD re-execution technique. . . 26

9 Dependence analysis with different traversal methods. 31

10 Shadow hash table. 33

11 Eight-byte shadow structure. 33

12 TRACK execution profile for entire program. 35

13 EXTEND 400: (a) Parallelism ratio and (b) speedup. 36

14 FPTRAK 300: (a) Parallelism ratio and (b) speedup. 37

15 NLFILT 300: (a) Parallelism ratio and (b) speedup. 38

16 NLFILT 300: Feedback guided load balancing. 39

17 (a) NLFILT 300: Optimization contributions and (b) TRACK

program speedup. 40

viii

FIGURE Page

18 NLFILT 300: Sliding window vs (N)RD strategy. Input: 15-250. . . . 41

19 NLFILT 300: Sliding window vs (N)RD strategy. Input: 16-400. . . . 42

20 SPICE 2G6 speedup for important loops and entire program for

(a) adder128, and (b) extended PERFECT input decks. 43

21 FMA3D speedup of quadrilateral loop. 44

1

CHAPTER I

INTRODUCTION AND MOTIVATION

To achieve a high level of performance for a particular program on today’s super-

computers, software developers are often forced to tediously hand–code optimizations

tailored to a specific machine. Such hand–coding is difficult, increases the possibility

of error over sequential programming, and the resulting code may not be portable to

other machines. The only avenue for bringing parallel processing to every desktop

is to make parallel programming as easy (or as difficult) as programming current

uniprocessor systems. This can be achieved through good programming languages

and, mainly, through automatic compilation. Restructuring, or parallelizing, compil-

ers can detect and exploit parallelism in programs written in conventional sequential

languages or parallel languages (e.g., HPF). Although compiler techniques for the

automatic detection of parallelism have been studied extensively over the last two

decades (see, e.g., [1, 2]), current parallelizing compilers cannot extract a significant

fraction of the available parallelism in a loop if it has a complex and/or statically

insufficiently defined access pattern. Typical examples are complex simulations such

as SPICE [3], DYNA–3D [4], GAUSSIAN [5], and CHARMM [6]. Run–time tech-

niques can succeed where static compilation fails because they have access to the

input data. For example, input dependent or dynamic data distribution, memory

accesses guarded by run–time dependent conditions, and subscript expressions can

all be analyzed unambiguously at run–time.

There are several known run-time parallelization methodologies. However, they

The journal model is IEEE Transactions on Parallel and Distributed Systems.

2

each have their strengths and weaknesses. Speculative techniques work well for fully

parallel loops but incurs a slowdown proportional to the speculative execution and its

overhead for sequential and partially parallel loops. Inspector/executor methods can

parallelize partially parallel loops but their major limitation is the assumption that

a proper inspector exists. If a dependence cycle exists between data and address

computation of the shared arrays, then a proper side-effect free inspector of the

traversed address space cannot be obtained (it would be most of the analyzed loop

itself). Furthermore, these inspectors often require large data structures proportional

to the memory reference trace.

In this thesis, we will present a run-time technique based on speculative paral-

lelization that can be applied to any loop and removes the limitations of previous

techniques. We will show several strategies for applying this technique to partially

parallel loops and model the performance of these strategies. We will also present

several optimizations to reduce the cost in using this technique.

This thesis is structured as follows:

• Review of run-time parallelization approaches (Chapter II)

• Review of speculative parallelizing loops at run-time (LRPD test) and trans-

formation of LRPD test to R-LRPD test (Chapter III)

• Strategies for applying the R-LRPD test (Chapter IV)

• Modeling the performance of the redistribution strategy (Chapter V)

• Discuss the implementation and optimization of the R-LRPD test (Chapter

VI)

3

• Present and discuss some experimental results for codes from the PERFECT

and SPEC2000 benchmark suites (Chapter VII)

• Summarize the techniques that have been developed and discuss possible ex-

tensions and improvements (Chapter VIII)

4

CHAPTER II

RUN TIME PARALLELIZATION

Loop parallelization is one of the most effective optimizations for scientific applica-

tions on today’s supercomputers. A loop can be safely executed in parallel if and

only if its later iterations do not use data that was computed in its earlier iterations,

i.e. there are no flow dependences. This transformation and others like it (e.g. pri-

vatization and reduction parallelization) are checked at compile time to determine

the safety of their application through data-dependence analysis. When compiler

analysis is not possible, the access pattern is analyzed at run-time either before

(inspector/executor) or after (speculation) the execution of the loop. A number of

techniques [7, 8, 9, 10, 11, 12, 13, 14] have been developed to detect and exploit loop

level parallelism at run-time. Several representative techniques are:

• A speculative execution technique to detect fully parallel loops [7, 13, 11, 14])

• An inspector/executor method to compute wavefronts (sequences of mutually

independent sets of iterations that can be executed in parallel) [10]

• Compiler techniques that generate simpler run-time tests that evaluate only a

small set of run-time values instead of an exhaustive memory reference analysis

[11, 12].

• A DOACROSS mechanism for enforcing data dependences using synchroniza-

tions whose locations are determined by performing an inspector on each iter-

ation [15].

Speculative execution methods such as the LRPD test [7, 11] execute a loop

as a doall and records the memory references for any statically unanalyzable data.

5

Subsequently, an analysis performs a data dependence test to determine if the exe-

cution was correct. If not, the program state is restored and the loop is re-executed

in a sequential manner. While for fully parallel loops the method performs very

well, partially parallel loops experience a slow-down equal to the speculative parallel

execution time and its overhead.

Gupta and Nim [11] proposed methods to address some of the deficiencies in the

LPD test (the LRPD test without reduction parallelization). If during speculative

execution, a processor discovers an uncovered read, it waits until all lower numbered

processors have completed execution using a signal-wait mechanism. This strategy

avoids the potentially expensive cost of restoring program state for incorrect specu-

lative execution but it can lead to serialization of the loop. In another strategy, they

set an error flag if a cross processor flow dependence is detected during speculative

execution. If this error flag is detected at the beginning of a loop iteration, the loop

is re-executed sequentially. This method shares the same flaw at the LRPD test, just

one cross processor dependence can lead to sequential re-execution.

Speculative execution methods that use software based data forwarding to re-

solve cross processor data dependences and thread squashing attempt to reduce the

cost of restoring program state for incorrect speculative execution. Cintra and Llanos

[13] used a blocked scheduled sliding window similar to our method. For an uncovered

read, the processor searches lower numbered processors for the latest written version

of the array element in their private copy of the array. For a store operation, the

writing processor triggers a squash operation on any higher numbered processor that

has performed a read operation on the corresponding array element. Also, the com-

mit operation (after loop execution) is only performed by the first (non-speculative)

processor. These strategies introduce additional overhead for each memory reference

6

to avoid the cost of speculative execution failure. However, these strategies could

scale poorly for loops with many memory references. Also the difference between

the overheads of the additional operations per memory reference and the restoration

of program state upon failed speculative execution could vary per loop. Rundberg

and Stenstrom [14] grouped the original shared variable under test, the private copy

of the variable processor, and shared shadow arrays. This increases locality but at

the potential cost of either additional synchronization for each memory reference or

possible contention for the shared shadow arrays in a shared memory system using

cache coherence.

Gupta [11] and Rus [12] developed comprehensive compile time techniques that

combine control flow and data flow analysis to generate run-time tests that are more

efficient that an exhaustive data dependence test at run-time. The tests evaluate a

small set of run-time values to determine if a loop is parallel or not. These techniques

can reduce run-time overhead dramatically, i.e. from proportional to the number of

dynamic memory references to proportional to the size of the data (or even constant).

However, they do not offer a solution for partially parallel loops.

For loops which were presumed to be partially parallel, an inspector/executor

technique [10] could be applied. The inspector is extracted from the actual loop and

records the relevant memory references. Then a sorting based technique is used to

construct the iteration dependence graph of the loop and schedule the iterations in

topological order for the executor. However, if there is a dependence cycle between

data and address computation of the shared arrays, then the address inspector may

not be parallelizable and/or side-effect free. The resulting inspector would contain

most of the analyzed loop. Furthermore, this method requires large additional data

structures to store the trace of memory references.

7

Kazi and Lilja [15] parallelize partially parallel loops by using a DOACROSS

mechanism for enforcing data dependences, executing in private storage and com-

mitting in order, after any possibility of further dependence violation has passed.

This method requires a setup phase for every iteration during which all potential de-

pendence causing addresses are pre-computed and then broadcast to all processors.

This information is used to set tags for future advance/await type synchronizations.

This method can never properly exploit large amounts of parallelism and does not

remove the need for address pre-computation, i.e., an inspector per iteration. Thus,

it cannot parallelize loops in which address and data depend upon one another.

8

CHAPTER III

SPECULATIVE PARALLELIZATION

This chapter will first describe the speculative LRPD test. A more detailed descrip-

tion can be found in [7]. Then we will show how to use the LRPD test recursively

for partially parallel loops.

A. The LRPD Test

The LRPD test [7] speculatively executes a loop as a doall and subsequently tested

whether there were any data dependences. If any dependences were found, then

the speculative execution was incorrect and the loop was re-executed sequentially.

To qualify more loops as parallel, array privatization and reduction parallelization

are speculatively applied and their validity tested after loop termination. Privatiza-

tion creates, for each processor executing the loop, privates copies of the program

variables. A shared variable is privatizable if it is always written in an iteration

before it is read. A reduction variable is a variable used in one operation of the

form x = x ⊗ exp, where ⊗ is an associative and commutative operator and x does

not occur in exp or anywhere else in the loop. There are known transformations for

implementing reductions in parallel [16, 17, 18]. For brevity, reduction paralleliza-

tion is not presented in the following discussion; it is tested in a similar manner as

independence and privatization. The algorithm for the LRPD test is shown in Fig. 1.

Consider the DO loop for which the compiler cannot statically determine the

access pattern of the shared array A in Fig. 2(a). The LRPD test allocates shadow

array Aw for marking write accesses, shadow array Ar for marking read accesses, and

shadow array Anp for marking non-privatizable elements. The loop is instrumented

9

Initialize Checkpoint
Speculative
Execution

Analyze Commit if failure success

Restore

Sequential
Execution

Fig. 1. LRPD algorithm.

with code, shown in Fig. 2(b), that records each reference of A to the shadow array

based on specific rules. Any shared arrays that may be modified during execution and

are not under data dependence test are copied to checkpoint arrays before the loop

is executed. The resulting marks in the shadow array can be seen in Fig. 2(c). For

the first write access of an element of A for an iteration, the corresponding element

in Aw is marked. If, during any iteration, an element of A is read but not written,

then the corresponding element in Ar is marked. If the array element has not been

written in this iteration before the read access, then the corresponding element in

Anp is marked.

After the speculative parallel execution, a post-execution analysis determines

whether there were any cross processor dependences for the array A. If any(Aw(:

)
∧

Ar(:))
1 is true, then at least one element of A is read and written in different

iterations (a flow or anti dependence) that was not removed by privatizing A. If

any(Anp(:)) is true, then A is not privatizable since at least one element is read

before being written in an iteration. If Atw, the total number of write accesses

marked during the speculative parallel execution, is not equal to Atm, the total

1any returns the ”OR” of its vector operand’s elements, i.e., any(v(1 : n) =
(v(1)

∨

v(2)
∨

...
∨

v(n)).

10

number of write marks in Aw, then there is at least one element that was written

concurrently in different iterations (an output dependence). However, these output

dependences can be removed by privatizing A if any(Anp(:)) is false. If the test fails

due to any unresolved dependences, then any modified shared data is restored from

checkpoint storage and the loop is re-executed sequentially. If there were no detected

cross-processor dependences, then any modified private copies of A are committed

by determining the last written value.

B(i) = f(i)
do i = 1,8

 z = A[K[i]]
 A[L[i]] = z + C[i]

enddo
K[1:8] = [1,2,3,4,1,2,4,2]
L[1:8] = [2,2,4,4,2,1,5,5]

(a)

checkpoint(B)

 B(i) = f(i)
 markread(K[i])
 z = pA[K[i]]
 markwrite(L[i])
 pA[L[i]] = z + C[i]

doall i = 1, 8

end doall
analyze(success, shadow)
if (success)
 commit(A)
else
 restore(B)
 execute sequential loop
endif

(b)

Aw

A r

Anp

twA
tmA

Anp(:)A r (:)
Aw(:) A r (:)

Value

8
4

|
|

1
1
1
1
1
1

1 0 1 1
2 3 4 5

0111
1 1 1 0

0101
1 1 1 0

(c)

Fig. 2. An example of the LRPD test on a DO loop.

The LRPD test is fully parallel and requires O(r/p + log(p), where p is the

number of processors, and r is the total number of references made to the array

being tested for data dependences in the loop. This method works well for fully

parallel loops but loops with even one cross-iteration flow dependence would have

a slowdown proportional to the speculative parallel execution time. Moreover, the

existing partial parallelism is not exploited.

11

B. The Recursive LRPD Test (R-LRPD)

We propose a technique to extract the maximum available parallelism from a partially

parallel loop that removes the limitations of previous techniques. It can be applied to

any loop and will require less memory overhead. The new technique will transform

a partially parallel loop into a sequence of fully parallel loops. At each stage, we

speculatively execute all remaining iterations in parallel with array privatization,

reduction parallelization, and static blocked scheduling.

To reduce the overhead and qualify even more dependent loops as parallel,

we test the copy-in condition instead of the privatization condition. That is, in-

stead of checking every Read is covered by a Write to a memory location, i.e.,

a ((Write|Read)∗) pattern, we check for a reference pattern of the form (Read ∗

|(Write|Read)∗). If the condition holds, then the memory location can be trans-

formed for safe parallel execution by initializing its private storage with the original

shared data. In practice, we need to test at run-time if the latest consecutive reading

iteration (maximum read) is before the earliest writing iteration (minimum write)

for all references in a loop.

In addition, we use a processor–wise test which checks only for cross-processor

dependences rather than loop carried dependences. In a processor-wise test (always

preferable), we have to schedule the loop statically (blocked). While this is a limi-

tation, it also simplifies the tested conditions: Highest reading processor <= lowest

writing processor. The initialization of the private arrays can be done either before

the start of the speculative loop or preferably as an ’on-demand copy-in’ (read-in if

the memory element has not been written before). Thus the only reference pattern

that can still invalidate a speculative parallelization is a flow dependence between

12

processors (a write on a lower processor matched by a read from a higher processor).

For this criteria, only two bits (write and read) are needed for each element in the

shadow array that corresponds to the element of the array under data dependence

test.

We now make the crucial observation that in any block-scheduled loop executed

under the processor-wise LRPD test, the iterations that are less than or equal to

the source of the first detected dependence arc are always executed correctly. Only

iterations larger or equal to the earliest sink of any dependence arc need to be re-

executed. This means that only the remainder of the work (of the loop) needs to be

re-executed, as opposed to the original LRPD test which would re-execute the entire

loop sequentially.

Initialize Checkpoint
Speculative
Execution

Analyze Commit if failure

Reinitialize Restore

success

Restart

Fig. 3. R-LRPD algorithm.

To re-execute the fraction of the iterations assigned to the processors that may

have worked off erroneous data, we repair the unsatisfied dependences by initializing

their privatized memory with the data produced by the lower ranked processors. Al-

ternatively, we can commit (i.e., copy-out) the correctly computed data from private

to shared storage and use on-demand copy-in during re-execution. We also restore

any shared data that was modified by iterations that need to be re-executed from

the checkpoint storage. We can then re-apply the LRPD test recursively on the re-

maining processors, until all processors have correctly finished their work. We call

this application of the LRPD test the Recursive LRPD test as shown in Fig. 3.

13

CHAPTER IV

R-LRPD STRATEGIES

There are several options for implementing the R-LRPD test. They differ in the

manner in which the iterations are assigned to the processors. The simplest strategy

is presented first and then other strategies with potential optimizations are described.

Experimental results will compare the different strategies.

Consider again the DO loop for which the compiler cannot statically determine

the access pattern of a shared array A in Fig. 2(a). A shadow array is allocated

for each array under test for marking the read and write accesses. Fig. 4(b) shows

the loop augmented with marking code and enclosed in a while loop that repeats

the speculative parallelization until the entire loop is completed successfully. The

marking algorithm is as follows:

• Two bits are used for Read and Write respectively.

• If on a processor, the Read occurs before the first Write, then the Read bit is

set. Any subsequent write access will not clear the read bit. (Read First)

• If the Write occurs first, then the Write bit is set and any subsequent Read

will not set the read bit. (Write First)

• Repeated references of the same type to an element on a processor will not

cause a change in the shadow array.

The array A is first privatized. Read-first references will copy-in on-demand the

content of the shared array A. Array B, which is not tested (it is statically analyz-

able), is checkpointed. The result of the marking after the first speculative doall

14

can be seen in Fig. 4(c). After the analysis phase, we copy (commit) the elements of

A that have been computed on processors 1 and 2 to their shared counterpart (by

taking their last written value). This step also insures that flow-dependences will be

satisfied during the next stage of parallel execution (we will read-in data produced

in the previous stage). We further need to restore the section of array B that is mod-

ified/used in processors 3 and 4 so that a correct state is established for all arrays.

(In our simple example this is not really necessary because we would overwrite B).

A. The Non-Redistribution (NRD) Strategy

In the non-redistribution strategy (NRD), the Re-Init step in Fig. 4(b) re-initializes

the shadow arrays on all processors that have not successfully completed their as-

signed iterations yet, which is processors 3 and 4 in this case. Then, a new parallel

loop is started on these processors for the remainder of the iterations (5-8 in this

case). The final state for the example is shown in Fig. 4(c). At this point all data

can be committed and the loop finishes in a total of two steps of two iterations each.

B. The Redistribution (RD) Strategy

Instead of re-executing only on the processors that have incorrect data and leaving

the rest of them idle (NRD), at every stage the remaining work is redistributed across

all processors. There are pros and cons for this approach. Through redistribution

of work, all processors are used all the time and thus decreases the execution time

of each stage (instead of staying constant, as in the NRD case). The disadvantage

is that new dependences may be uncovered across processors which were satisfied

before by executing on the same processor. Moreover, with redistribution, there

15

z = pA[K[i]]
B(i) = f(i)

markread (K[i])
pA{L{i}} = z + C[i}
markwrite (L[i])

Doall i = newstart, newend

End doall

Compute(newstart, newend)
Restore B(newstart, newend)
Re−Init (Shadows, pA)

If (.not. success) then

endif

Analyze (success, start, end)
Commit (A(start, newstart−1))

While (.not. success) do

End While

start = newstart = 1

Checkpoint B(:)
Initialize shadow arrays

end = newend = 8
success = .false.

(a)

0 1
1 0

1 1
0 1 1 0

0 1
1 0

0 1
1 0

1 1
10 1 0

10

W R W R W R W RA()

P1 P2 P3 P4

iter

1
2
3
4
5

W R W R W R W RA()

P1 P2 P3 P4

iter

1
2
3
4
5

W R W R W R W RA()

P1 P2 P3 P4

iter

1
2
3
4
5

10

1 0

1 0
0 11 0 1 0

10
1 0

P1 P3

P2 P4
1 0

P1 P2

W R W R W R W RA()

P1 P2 P3 P4

iter

1
2
3
4
5

1 0

10

0 1
1 0

1 0 1 0

(b) (c)
NRD Step 1

7−85−63−41−2 5−6 7−8

RD Step 1

8765

(d)

Success

Success

6 7 8

(e)

RD Step 2

Fig. 4. R-LRPD example.

is the potentially large cost of more remote misses. In the experimental results in

Chapter VII, the redistribution strategy is used until the number of restarts exceeds

the number of processors. Also, the redistribution method attempts to obtain the

most load balanced block scheduling based on the measured execution times of the

iterations from the previous stage.

Fig. 4(d) shows the state of the shadow arrays after the second LRPD test

when the remainder of the work is redistributed on all processors. Note, that work

redistribution resulted in newly uncovered dependences. Fig. 4(e) shows the final

state of the shadow arrays after the second (and successful) LRPD test with work

redistribution (RD).

16

C. The Sliding Window (SW) Strategy

The performance of the R-LRPD test is very dependent on the distribution and type

of data dependences. For codes with long distance data dependences, there is the

sliding window strategy. Instead of distributing the entire iteration space over all

the available processors, the entire speculative execution process can be strip-mined

and the R-LRPD test is applied on each strip of contiguous iterations.

After 1st Stage
431 2

1 2 3 4
1st Stage 2nd Stage

After 2nd Stage After 3rd Stage

3rd Stage
43

3 42143

3 4 1 2

Fig. 5. Sliding window example.

In Fig. 5 we illustrate a few execution stages when this technique is applied to a

loop. Assuming a total of 4 processors we schedule the first 4 contiguous iterations

(1–4) and speculatively execute them in parallel. The subsequent analysis phase

will commit iterations 1 and 2 and re-schedules iterations 3 and 4 because of a

dependence between processor two and three. The commit point is advanced to

iteration 3 and higher iterations (5 and 6) are scheduled. A new speculative R-

LRPD test is performed and all 4 iterations can be committed (3-6) because no

dependences have been uncovered. Finally the last two iterations are speculatively

executed on processors 3 and 4.

To increase memory reference locality we organize the sliding window in a cir-

cular manner such that iterations are re-executed (if necessary) on their originally

assigned processor. There are trade-offs to be made between the Sliding Window

17

(SW) and the previously presented strategies. For a fully parallel loop (N)RD meth-

ods execute all iterations in one stage, i.e., with one global synchronization, while

SW will have one synchronization per strip. If dependences are present, it is possible

that (N)RD techniques need to re-execute many more iterations than SW. The SW

strategy has potentially more analysis overhead because it may have to go over the

shadows of the memory elements that are reused in every iteration. So far we have

not devised a strategy to choose between the two techniques except through the use

of history based predictions.

The window size, i.e., the size of the block of contiguous iterations (super-

iteration) assigned to one processor affects the number of global synchronizations

(a larger window needs fewer global synchronizations) and the number of uncovered

dependences. So far we have been able to tune our technique only experimentally

(empirically). The scheduled block sizes can be dynamically adjusted by applying

history based prediction. When many close dependences are encountered, the block

size is increased. Alternatively, we can start with a very large block, equivalent

to (N)RD and, if dependences are uncovered, reduce it until no re-executions are

needed.

D. Extracting Data Dependence Graphs

Although the R-LRPD test can extract parallelism from loops for which a proper

inspector does not exist, it cannot always extract the maximum available parallelism

with the NRD, RD, or SW strategies. For some loops with complex dependence

graphs but significant intrinsic parallelism, the R-LRPD test may generate an al-

most sequential execution schedule. In such cases, it would be beneficial to extract

the (iteration) data dependence graph (DDG) and generate an optimized sched-

18

ule. Somewhat similar techniques have been previously presented in the literature

[8, 10, 15, 19, 20], but apply only to loops from which a proper inspector can be

extracted.

The Sliding Window R-LRPD test can be used to detect, window by window,

the edges of the DDG and store them as (Read, Write) pairs. The shadow arrays are

organized as n-level mark list where n is the number of iterations assigned to each

processor. A distributed last reference table maintains the last valid write for each

memory address. This is used to detect cross-window flow dependences between a

successfully completed iteration and an iteration inside the current window. After

each stage (a doall), we perform the SW R-LRPD test. Every cross-processor flow

dependence between multiply referenced memory elements is logged into the inverted

edge table. We also log each intra-processor flow dependence and each cross-window

flow dependence into the inverted edge table. We save the last valid write reference

of each memory address into the distributed last reference table in order to record the

latest write reference occurring before the current window of iterations. At the next

stage, we record the next set of references into the shadow array. After execution

is completed, we obtain the DDG by inverting the edges in the graph stored in the

inverted edge table.

Fig. 6 illustrates an application of this method for two processors and one

iteration assigned to each processor. InitWindow and AdvanceWindow control the

iteration window. Analysis applies the LRPD test for iterations within the window

and generates the DD graph edges. In Step 1, after iterations 1 and 2 are executed in

parallel, one cross-processor flow dependence is found and recorded in the inverted

edge table. In Step 2, no cross-processor flow dependences between processors are

found. In Step 3, two cross-window flow dependences are detected and recorded in

19

2 1

2 1

5 3

4 1

2 1

W

 CALL CommitDataAndLastRef(Flag)
 CALL AdvanceWindow(Done)
 CALL Reinitialize(Done)
EndWhile
CALL ReverseEdges

 CALL Analysis(Done, Flag)
 EndDoAll
 ... = pA(R(i), p)
 mark_read(shadow(R(i), p))
 pA(W(i), p) = ...
 mark_write(shadow(W(i), p))

 DoAll p = 1, np
 ! execute iteration i

While (NOT Done)
Call InitWindow

R(1:M) = (4 1 4 1 2 ...)
W(1:M) = (1 3 2 4 4 ...)
Pattern:
N = 4, NP = 2 Proc 1

iter = 1

Proc 2

W

1

Distributed Last
Reference Table

Inverted
Edge Table

RR

iter = 2

2

W R

iter = 3 iter = 2

R W

WR

iter = 4iter = 5

R W

1

3

5 4

2

2

3

1

Step 3: after iter 4, 5

Step 2: after iter 2, 3

Step 1: after iter 1, 2

Fig. 6. Example for DD graph extraction using the sliding window R-LRPD test.

the inverted edge table.

The so extracted DDG is then reduced by removing edges representing non-

essential dependences (through privatization, reduction recognition, etc). We can

also insert synchronizations in the DDG followed by copy-out or accumulate and

copy-out operations. Finally, the iteration space is scheduled using the DDG infor-

mation. These last optimizations have not yet been implemented. Instead we have

used the ’un-processed’ DDG to obtain a wavefront schedule (sets of independent

iterations separated by global synchronizations) and used them to parallelize some

important loops in SPICE 2G6 (Section VII). The wavefront schedule of the DDG

20

from the example in Fig. 6 is shown in Fig. 7.

1

2 4

3

5

Wavefront 1

Wavefront 2

Fig. 7. Wavefront scheduling of the DDG from Fig. 6.

The complexity of the DDG collection is essentially the same as that of the

SW R-LRPD test with some additional, constant overhead. It is important to note

that in the case of sparse reference patterns (e.g. in SPICE) we have to use shadow

hash-tables instead of shadow arrays. The result is an increased time per logging

operation but a much more compact representation which allows faster analysis.

Tuning the algorithm means finding the right number of iterations per sched-

uled block (during the R-LRPD test). A larger block size results in fewer steps but

possibly poorer parallelism (less possible overlap). If coarser granularity is desired,

then the mark list size must be increased. We believe that, due to the input sensi-

tivity of this method, more experiments are necessary before we can produce a good

performance model.

21

CHAPTER V

MODELING THE RD AND NRD STRATEGIES

In [7], if the LRPD test passes (fully parallel loop), then the obtained speedups

range from nearly 100% to at least 25% of the ideal. The overhead spent performing

the single stage (original) LRPD test scales well with the number of processors and

data set size of the parallelized loop. We can break down the time spent testing

and running a loop with the LRPD (single stage) test in the following fully parallel

phases:

The initialization of shadow structures is proportional to their dimension. For

dense access patterns the shadow arrays are conformable to the tested arrays.

The work associated with checkpointing the state of the program before entering

speculation is proportional to the number of distinct shared data structures that may

be modified by the loop. For dense access patterns it is proportional to the dimension

of all shared arrays that may be modified. The time spent saving the state of the

loop at every stage depends on the chosen checkpointing implementation: as a step

before loop execution or ’on-the-fly’, before the modification of a shared variable.

The overhead associated with the execution of the speculative loop is proportional

to the cost of marking relevant data references. For dense access patterns it can be

approximated by the number of distinct references under test.

The final analysis of the marked shadow structures will be, in the worst case,

proportional to the number of distinct memory references marked on each processor

and to the (logarithm of the) number of processors that have participated in the

speculative parallel execution. For dense access patterns this phase may involve the

merge operation of p (number of processors) shadow arrays.

22

The recursive application of the LRPD test adds some additional overhead com-

ponents which depend on the fraction of the successfully completed work which in

turn depends on the data dependence structure of the loop. If cross-processor depen-

dences are detected then a Data Restoration phase will restore the state of the shared

arrays that were modified by the processors whose work cannot be committed. Its

time is proportional to the number of elements of the shared arrays that need to be

copied from their checkpointed values. If dependences are detected and re-execution

is needed, then the shadow arrays will be re-initialized. The Commit phase transfers

the last data computed (last value) by the earlier processors from private to shared

memory. Its cost is proportional to the number of written array elements. Each

of these steps is fully parallel and scales with the number of processors and data

size. Furthermore, the commit, re-initialization of shadow arrays and restoration of

modified arrays can be done concurrently as two tasks on the two disjoint groups of

processors, i.e., those that performed a successful computation and those that have

to restart.

The number of times re-execution is performed, as well as the work performed

during each of them, depends on the strategy adopted: with or without work redis-

tribution. When we do not redistribute work (NRD), the time complexity equals the

cost of a sequential execution (worst case). We will have at most p steps performing

n/p work, where p is the number of processors and n is the number of iterations. In

the redistribution case (RD), each step will take progressively less time because we

execute in p processors a decreasing amount of work. Completion is guaranteed in a

finite number of steps because the first processor always executes correctly. Let us

now model more carefully the tradeoff between these two strategies.

Initially, there are n iterations equally distributed among the processors. The

23

computation time for each iteration is ω, yielding a total amount of (useful) work

in the loop as ωn. In the following discussion we assume that we know ω, the cost

of useful computation in an iteration, ℓ, the cost of redistributing the data for one

iteration to another processor, and s, the cost of a barrier synchronization.

For the purpose of an efficient speculative parallelization we classify loop types

based on their dependence distribution in the following two classes: (a) geometric

(α) loops where a constant fraction (1 − α) of the current remaining iterations are

completed during each speculative parallelization (step), and (b) Linear (β) loops

where a constant fraction (1−β) of the original iterations are completed during each

speculative parallelization (step).

A. No Data Redistribution (NRD)

If ω ≤ ℓ + s, then it does not pay to redistribute the remaining iterations among

the p processors after a dependence is detected during a speculative parallelization

attempt. That is, the overhead of the redistribution (per iteration) is larger than

work of the iteration. In this case, the total time required by the parallel execution

is simply

Tstatic(n) =
ks
∑

i=0

(

nω

p
+ s

)

=
nωks

p
+ kss (5.1)

where ks ≤ p is the number of steps required to complete the speculative paralleliza-

tion. Thus, to determine the time Tstatic(n) we need to compute the number of steps

ks (the number of speculative parallelization attempts needed to execute the loop).

We consider two cases (the α and β loops) and determine the value of ks for each.

For the α loops, we assume a constant fraction (1 − α) of the remaining work

is completed during each speculative parallelization step. In this case, nωαi work

24

remains to be completed after i steps. Thus, the final (ks-th) step will occur when

nωαks = nω
p

(since then all remaining iterations reside on one processor because we

do not redistribute). So, solving for ks, we get ks = log 1

α

p. For example, if α = 1
c
,

then ks = logc p, for constant c.

For the β loops, we assume a constant fraction (1 − β) of the original work

is completed successfully in each speculative parallelization step (i.e., a constant

number of processors successfully complete their assigned iterations). In this case,

nω(1 − β)i work is completed after i steps. Thus, all the work will be completed

when nω(1 − β)ks = nω, or when ks = 1
(1−β)

. For example, for a fully parallel loop,

β = 0 and so ks = 1 and Tstatic(n) = nω
p

+ s, and for a sequential loop, β = p−1
p

and

so ks = p and Tstatic(n) = nω + ps.

B. Data Redistribution (RD)

If ω > ℓ+s, then it may pay to redistribute the remaining iterations among the p pro-

cessors after a dependence is detected during a speculative parallelization attempt.

In this case, as opposed to the NRD case, in each subsequent step the processors will

have a smaller number of iterations assigned to them. Thus the total time required

by the parallel execution is

Tdyn(n) =
kd
∑

i=0

(

niω

p
+

niℓ

p
+ s

)

(5.2)

=
(ω + ℓ)

p

kd
∑

i=0

ni

+ kds (5.3)

where ni is the number of iterations remaining to be completed at the start of the

i-th step, and kd is the number of steps completed to this point using redistribution.

Even if redistribution is initially useful, there comes a point when it should

25

be discontinued. In particular, it should occur only as long as the time spent (per

processor) on useful computation is larger than the overhead of redistribution and

synchronization. That is, redistribution should occur as long as the first term in the

first sum in Eq. 5.2 is larger than the sum of the last two terms, i.e., as long as

nkd
≥

ps

ω − ℓ
. (5.4)

Note that this condition can be tested at run-time since it only involves the number

of uncompleted iterations which is known at run-time and p, s, ω, and ℓ, which we

assume are known a priori, and can be estimated through both static analysis and

experimental measurements.

In summary, for the first kd steps, the remaining iterations should be redis-

tributed among the processors. After that, no redistribution should occur. From

this point on, we are in the case described as Tstatic above, but starting from n′ = nkd

instead of n. Thus, the total time required will be

T (n) = Tdyn(n) + Tstatic(nkd
) (5.5)

= (ω+ℓ)
p

(

∑kd

i=0 ni

)

+
nk

d
ωks

p
+ (kd + ks)s (5.6)

where ni, kd and ks are as defined above.

To compute an actual value for T (n), we need to determine ni, kd, and ks, and

substitute them in Eq. 5.6. For example, consider the geometric loops in which a

constant fraction (1−α) of the current work is completed during each speculative par-

allelization attempt.1 In this case, ni = nαi, and
∑kd

i=0 ni =
∑kd

i=0 nαi = n
(

αkd+1
−1

1−α

)

.

1The case in which a constant fraction of the original work is completed during
each speculative parallelization is not realistic here since the number of iterations
each processor is assigned varies from one speculative parallelization to another.

26

Using nkd
= nαkd in Eq. 5.4, and solving for kd we obtain kd = logα

[(

s
ω−ℓ

)

p

n

]

.

Finally, ks = log 1

α

p as described above. Thus, the total time required will be

T (n) =
n

p
(ω + ℓ)

(

αkd+1 − 1

1 − α

)

+
nαkdωks

p
+ (kd + ks)s

where kd and ks are computed as defined above based on the known values of n,

ω, ℓ, s, and α. In general, one may not know α exactly, however, in many cases

reasonable estimates can be made in advance, and recomputed during execution

(e.g., as an average of the α values observed so far).

C. Experimental Model Validation

N
ev

er
A

lw
ay

s
A

da
pt

iv
e

N
ev

er
A

lw
ay

s
A

da
pt

iv
e

N
ev

er
A

lw
ay

s
A

da
pt

iv
e

N
ev

er
A

lw
ay

s
A

da
pt

iv
e

0

5

10

15

T
im

e
(s

ec
.)

Speculative Loop
Synchronization Overhead
Redistribution Overhead

Model Breakdown
8 Processors

LRPD
Stage 2
LRPD

Stage 1
LRPD

Stage 3
LRPD

Stage 4

(a)

0 1 2 3 4 5

LRPD Stage

0

10

20

30

40

T
im

e
(s

ec
.)

Always
Adaptive
Never

Redistribution Model
Time to Completion - 8 Processors

(b)

Fig. 8. Selection strategy between RD and NRD re-execution technique.

The graph in Fig. 8 illustrates the loop, testing overhead, and redistribution

overhead time (mostly due to remote cache misses) for each restart of the R-LRPD

test of a synthetic loop executed on 8 processors of an HP-V2200 system. We assume

27

that the fraction of remaining iterations is 1/2. The initial speculative run is assumed

not to incur a redistribution overhead. We have performed three experiments to

illustrate the performance of the following three strategies: The never case means

that we use the NRD strategy (never redistribute the remaining work). Adaptive

redistribution means that redistribution is done as long as the previous speculative

loop time is greater than the sum of the overhead and incurred delay times of the

previous run. Always redistribution means ’always’ redistribute. Fig. 8(a) shows the

execution time breakdown of our experiment. At each stage of the R-LRPD test we

measure the time spent in the actual loop and the synchronization and redistribution

overhead. In Fig. 8(b) we show the cumulative times spent by the test during its

four stages. The “adaptive” redistribution method begins to have shorter overall

execution times compared to the “always” redistribution method after the failure on

processor 8. The NRD method performs the worst, by a wide margin. It should be

noted that our synthetic loop assumes, for simplicity, that α and β are constant. In

practice we would have to adjust the model parameters at every stage of the R-LRPD

test.

28

CHAPTER VI

IMPLEMENTATION AND OPTIMIZATIONS

We have implemented the Recursive LRPD test in the NRD, RD, and SW flavors. We

have also applied several optimization techniques to reduce the run-time overhead

of checkpointing and the load imbalance caused by the required block scheduling

of the parallelized irregular loops. As previously mentioned block scheduling is a

requirement of the R-LRPD test and thus load balancing is an important issue.

The base implementation (code transformations) is mostly done by our run-time

pass in Polaris (it can automatically apply the simple LRPD test) and additional

manually inserted code for the commit phase and execution of the while loop shown

in Fig. 4(b).

A. On-demand Checkpointing and Commit

In Section V we have already mentioned the need to optimize checkpointing because

its work is approximately proportional to the working set of the loop. At every stage

of the test we find a contiguous number of processors (processors executing a con-

tiguous block of iterations) that have executed without uncovering any dependences

between them and a remainder block of processors which have to re-execute their

work. The data residing in the shared arrays needs to be saved before it is modified

by the speculative execution. There are two types of shared variables: Variables that

are under test because the compiler cannot analyze them and variables proven by

the compiler to be either independent (accessed in only one iteration (processor) or

read-only) or privatizable. Saving state or preserving a safe state can be done in two

ways:

29

• Write into un-committed private storage which we later either commit by copy-

ing it out to the shared area or delete.

• Copy the data that may be modified by the speculative loop to another, safe,

memory storage and then either delete it (if we commit the results of the

speculation) or copy back from the original variables (in case we have to restore

state).

Both the copy-in/copy-out mechanism and the copying to a safe area can be

done in two ways: before the speculative loop the entire working set of the loop is

saved or copied-in, or On-demand, during loop execution. Performing this activity

before the loop always adds to the critical path-length of the program and, in the

case of sparse reference patterns, generates more work and consumes more memory

than necessary. It is, however, fully parallel and the per operation cost is small

(block copy). The on-demand strategy has many advantages: It performs the copy

operations only when and if they are needed, which, for sparse codes, can be orders

of magnitude less than a ’wholesale’ approach. Moreover, because it is done during

loop execution, it may not actually add to the critical path of the program due to

the exploitation of low level parallelism. However, each operation has to be initiated

separately and may have to be guarded. We need to save data (or copy-in) only at

the first write (or read) reference. To accomplish this ’first access’ filter we have to

distinguish between variables under test, i.e., those variables that cannot be analyzed

by the compiler and which are shadowed during execution and shared variables that

have been analyzed statically. From these variables only the independent ones need

attention (read-only and privatized variables don’t modify state and don’t need to

be restored). An independent variable references its location in only one iteration

30

(or processor) and its location can be extracted by the compiler. The ’referenced

first’ filter can be generated also by the compiler either through peeling it off (in case

of nested loops) or using a guard and a very simple shadow (or tag). If the code is

such that there is only one statement per distinct reference in an iteration then the

filter becomes trivial.

The commit and restoration phase needed after the analysis region of each stage

of the R-LRPD test depends on the strategy used for checkpointing. For Commit-

ting data we need to copy out the last value written (in the sequential semantics).

For independent arrays (not under test) this is either accomplished by a compiler

generated loop (in case we used copy-in) or by simply deleting the corresponding

saved data (if the wholesale copy before the loop strategy is used).

In the experiments shown in Section VII we have implemented on demand copy-

in, last-value-out for the arrays under test and on-demand checkpointing with release

of back-up storage at commit phase because it proved to be the most cost-effective

for the application studied.

B. Data Dependence Analysis

Since the LRPD test does not have any scheduling restrictions, the LRPD test allows

for processors p1 and p2 to execute iterations i1 and i2 respectively where i1 > i2

and p1 < p2. This requires a comparison of the shadowed references in the shadow

arrays for all processors to determine the existence of a flow dependence as shown

in Fig. 9 (a). The horizontal arrows represent the cross-processor memory accesses

for the shadow arrays. For this horizontal analysis, the examination of the rows of

each shadow array are distributed among the processors. Since each process needs to

access the shadow arrays of the other processors, there could be many remote cache

31

W

R W

R

W

W

W

WR

R

W

W

P = 1 P = 2 P = 3 P = 4

P = 4P = 3P = 2P = 1

R

R

(a)

(b)

Fig. 9. Dependence analysis with different traversal methods.

misses with this analysis method.

Since the R-LRPD test uses static blocked scheduling, for any read first mark

on processor pi, a flow dependence can only occur if there is a write first mark on any

processor 1 to pi−1. During the dependence analysis, each processor, upon finding a

read first mark for an element in its shadow array, needs only to search for a write

first mark in the corresponding array index in the shadow arrays of processors that

are logically to its left as shown in Fig. 9 (b). With this vertical analysis method,

processors examine the shadow arrays of other processors only when necessary so the

remote cache misses are minimized.

32

C. Shadow Data Structures

1. Sparse Shadow Structures

If the access pattern is dense, then the shadows of the arrays under test are imple-

mented as shadow arrays because they are by far the most cost effective solution.

However, in the case of sparse applications, e.g., SPICE, the use of shadow arrays

is not viable. Because SPICE effectively does its own memory management using

a very large static array, the use of a shadow array would imply that the analysis

phase would have to traverse the entire work space of the program. Moreover the

shadows would use up a very large amount of memory. Our solution to this problem

has been the use of shadow hash tables. We have implemented private (per proces-

sor) conformable hash tables using arrays and a hash function that hashes the array

index with the modulus operator. Each row of the hash table is implemented as a

singly-linked list. The first element in the linked list is stored in the test section of

the array. Any additional elements in the linked list of the hash table row are stored

in the overflow section. Fig. 10 illustrates the implementation of the hash table

using arrays. Thus we can compact the entire access pattern and keep the algorithm

scalable with data size and number of processors. The cost of the scalability is that

every shadowed data access will be more expensive. This hash table implementation,

has also been used in [21, 22] for reduction optimizations.

2. Parallel Shadow Processing

For array-based shadow structures, the array elements are implemented as one-byte

integers. Using padding to ensure that the array size is a multiple of eight, these

one-byte shadow arrays in the R-LRPD library subroutines as formal arguments

33

P = 1 P = 2

W

overflow

main

R

W

P = 4

W

R

R

R

P = 3

W

Fig. 10. Shadow hash table.

R W R W R W R W

byte 1 byte 2 byte 8byte 7........

1 8−byte integer

Fig. 11. Eight-byte shadow structure.

and can be redefined as arrays of eight-byte integers. An example of eight one-byte

shadow elements redefined as a single eight-byte integer is shown Fig. 11. This allows

the library to process eight one-byte shadow structure elements simultaneously. This

method is used for initialization of the shadow structures and during data dependence

analysis. The vertical analysis can test simultaneously eight shadow elements using

eight-byte bitwise AND operations and bit-masks.

D. Feedback-Guided Load Balancing

One of the drawbacks of the R-LRPD test is the requirement that the speculative

loop needs to be statically block scheduled in order to commit partial work. Since

our techniques are intended for irregular codes, load balancing does indeed pose some

performance problems. We have independently developed and implemented a new

34

technique similar to [23] that adapts the size of the blocks of iterations assigned to

a processor such that load imbalance is minimal at every stage of the R-LRPD test.

At every instantiation of the loop, we measure the execution time of each iter-

ation. These execution times are saved for the next instantiation of the loop. At

the next instantiation of the loop, we compute the prefix sums of the total execution

time of the previous instantiation of the loop as well as the ’ideal’, perfectly bal-

anced, execution time per processor, i.e., the average execution time per processor

(total execution time
number of processors

). Using the prefix sums we can then compute a block distribution

of iterations that would have achieved perfect load balance. We use this result as

a first order predictor for the current instantiation of the loop. When the iteration

space changes from one instantiation to another, we scale the block distribution ac-

cordingly. The implementation is rather simple: We instrument the loop with low

overhead timers and then use a parallel prefix routine to compute the iteration as-

signments to the processors. A possible improvement for this technique is to use

higher order derivatives to better predict trends in the distribution of the execution

time of the iterations. The overhead of the technique is relatively small and can

be further decreased. Another advantage of the method is its tendency to preserve

locality.

35

CHAPTER VII

EXPERIMENTAL RESULTS

Our experimental test-bed is a 16 processor ccUMA HP-V2200 system running

HPUX11. It has 4GB of main memory and 4MB single level caches. We have

applied our techniques to the most important loops in TRACK, a PERFECT code,

SPICE 2G6, a PERFECT and SPEC code, and FMA3D, a SPEC 2000 code. The

codes (with the exception of Loop 15 in SPICE DCDCMP have been instrumented

with our run-time pass which was (and is) developed in the Polaris infra-structure

[24].

To better gauge the obtained speedups, we define a measure of the parallelism

available in a loop over the life of the program as the parallelism ratio

(total instantiations
total restarts + total instantiations

). For example, a fully parallel loop has a PR = 1 and

a partially parallel loop has a PR < 1. In the case of the NRD strategy, a fully

sequential loop has a PR = 1/p, while the RD strategy can have a much lower PR.

15-250 16-400 16-450 5-400 50-100

Input

0

20

40

60

80

P
er

ce
nt

 T
im

e
(%

)

FPTRAK_do300
EXTEND_do400
NLFILT_do300

TRACK Input Profile

Fig. 12. TRACK execution profile for entire program.

36

TRACK is a missile tracking code that simulates the capability of tracking

many boosters from several sites simultaneously. Its main loops, 400 in subroutine

EXTEND, 300 in NLFILT and 300 in FPTRAK, account for ≈ 95% of sequential

execution time. We have modified the original inputs which were too small for any

meaningful measurement. The execution profile of the entire TRACK code for

different input sets given in Fig. 12 shows how input sensitive this program is. We

have also created several input files to vary the degree of parallelism of some of its

loops.

0 4 8 12 16 20

Processors

0

0.5

1

1.5

P
ar

al
le

lis
m

 R
at

io

15-250
16-400
16-450
5-400
50-100

EXTEND_do400 Parallelism Ratio
with Feedback Guided Block Scheduling and Redistribution

(a)

0 4 8 12 16 20

Processors

0

1

2

3

4

5

6

S
pe

ed
up

15-250
16-400
16-450
5-400
50-100

EXTEND_do400 Speedup
with Feedback Guided Block Scheduling and Redistribution

(b)

Fig. 13. EXTEND 400: (a) Parallelism ratio and (b) speedup.

EXTEND 400. This loop reads data from a read-only section of an array

and always writes at the end of the same arrays that are being extended at every

iteration. It first extends them in a temporary manner by one slot. If some loop

variant condition does not materialize then the newly created slot (track) is re-used

(overwritten) in the next iteration. This implies that at most one element of the track

37

arrays needs to be privatized. These arrays are indexed by a counter (LSTTRK) that

is incremented conditionally and whose values cannot be precomputed.

We have all processors speculatively compute LSTTRK from an offset based on

its pre-loop value and collect the array reference ranges [21]. After the first parallel

execution we obtain the per processor offsets of the induction variable (the prefix

sums of LSTTRK) and show that all read references to the array do not intersect

any writes, i.e., maximum read index < minimum write. In the second doall we

repeat the execution using the correct offsets for LSTTRK. Last value assignment

commits the arrays to their shared storage. Figs. 13(a) and (b) show the PR and the

best obtained speedup for these inputs, which represents about 60% of the speedup

obtainable through hand-parallelization.

0 4 8 12 16 20

Processors

0.4

0.6

0.8

1

P
ar

al
le

lis
m

 R
at

io

15-250
16-400
16-450
5-400
50-100

FPTRAK_do300 Parallelism Ratio
with Feedback Guided Block Scheduling and Redistribution

(a)

0 4 8 12 16 20

Processors

0

1

2

3

4

5

6

S
pe

ed
up

15-250
16-400
16-450
5-400
50-100

FPTRAK_do300 Speedup
with Feedback Guided Block Scheduling and Redistribution

(b)

Fig. 14. FPTRAK 300: (a) Parallelism ratio and (b) speedup.

FPTRAK 300. This loop is very similar to, yet simpler than, EXTEND 400.

The array under test has a read-only front section which is conditionally extended by

38

appending a new element. The array under test is privatized with the copy-in/last-

value out method and shadowed. The same two stage approach as in EXTEND is

employed here. Figs. 14(a) and (b) show the PR and the best obtained speedup for

these inputs.

0 4 8 12 16 20

Processors

0.4

0.6

0.8

1

P
ar

al
le

lis
m

 R
at

io

15-250
16-400
16-450
5-400
50-100

NLFILT_do300 Parallelism Ratio
with All Optimizations

(a)

0 4 8 12 16 20

Processors

0

2

4

6

8

10

S
pe

ed
up

15-250
16-400
16-450
5-400
50-100

NLFILT_do300 Speedup
with All Optimizations

(b)

Fig. 15. NLFILT 300: (a) Parallelism ratio and (b) speedup.

NLFILT 300. The PF parameter in the input file has been set to 3 to make

the loop DO 300 in NLFILT 75% parallel (75% of the total of 56 instantiations are

parallel, while the rest have to restart once per instantiation). The chosen value

is realistic. The input file in the Perfect suite has PF = 6 which makes the loop

always parallel (there are a few dependences that are masked by the processor-wise

LRPD test). The compiler un-analyzable array that can cause dependences (mostly

short distances) is NUSED. Its write reference is guarded by a loop variant condition

so that a proper inspector cannot be obtained. Fig. 15(a) presents the effect of

39

the input sets on PR for different number of processors. PR is dependent on the

number of processors because only interprocessor dependences affect the number of

restarts (stages) of the R-LRPD test. With feedback guided scheduling, the length

of iteration blocks assigned to processors is variable which can lead to a variable PR.

Fig. 15(b) shows the best obtained speedups (all optimizations turned on) for the

tested input sets. The speedup numbers include all associated overhead.

0 4 8 12 16 20

Processors

0.01

0.1

1

10

T
im

e
(s

ec
.)

Full Checkpointing
On-demand Checkpointing

NLFILT_do300 - Checkpoint Overhead

(a)

Processor

0

0.02

0.04

0.06

0.08

0.1

T
im

e
(s

ec
.)

Without FB
With FB

Execution Time per Processor
NLFILT_do300 Instantiation

(b)

Fig. 16. NLFILT 300: Feedback guided load balancing.

The next figures, present the importance of our optimizations to the quality

of our parallelization. Fig. 16(a) illustrates the reduction in overhead when the

checkpointing is done before the speculative loop and on-demand, i.e., during the

speculative loop. It is quite obvious that the on-demand strategy generates much

less overhead and drastically reduces the overall execution time. Fig. 16(b) compares

the execution time per processor when the iteration space is equally distributed to the

processors with the time per processor when feedback guided scheduling is employed.

40

We can clearly see that our loop balancing technique ’flattens’ the distribution of

execution time and thus balances the irregular loop.

Fig. 17(a) compares the effectiveness of the various optimization techniques. The

input set is 16-400, i.e., a moderate number of dependences are uncovered almost

independent of the number of processors used in the experiment. Clearly, due to the

large state of the loop and its conditional modification the on-demand-checkpointing

is the most important optimization. The load balancing technique is very important

when redistribution (RD) is used. RD vs. NRD strategy has here a lesser impact

because we use only 16 processors.

0 4 8 12 16 20

Processors

0

1

2

3

4

5

6

7

S
pe

ed
up

No optimizations
FB only
RD only
RD and FB
RD, FB, and ODC

NLFILT_do300 Speedup
Optimization Comparison

(a)

0 4 8 12 16 20

Processors

0

1

2

3

4

5

6
S

pe
ed

up

15-250
16-400
16.450
5-400
50-100

TRACK Program Speedup

(b)

Fig. 17. (a) NLFILT 300: Optimization contributions and (b) TRACK program

speedup.

In Figs. 18 and 19, we show that both SW and (N)RD strategies are viable,

depending on the actual dependence structure of the loop. The resulting PR is also

strategy dependent. The effect on the obtained speedup is a bit skewed due to the

41

different levels of optimizations that could be applied. Scaling the analysis phase

for the SW technique is not always possible. The graphs also show how the PR

and speedup varies with the window size. Ideally, we want the largest window size

for which there is a minimum number of failures (restarts); this size can be adapted

based on previous loop instantiations. The overall program speedup of the entire

TRACK code shown in Fig. 17(b) is scalable and is quite impressive.

0 4 8 12 16 20

Processors

0.5

0.6

0.7

0.8

0.9

1

1.1

S
pe

ed
up

RLRPD
SW, chunksize = 256
SW, chunksize = 512

NLFILT_do300 Parallelism Ratio
RLRPD vs Sliding Window, Input: 15-250

(a)

0 4 8 12 16 20

Processors

0

2

4

6

8

S
pe

ed
up

RLRPD
SW, chunksize = 256
SW, chunksize = 512

NLFILT_do300 Speedup
RLRPD vs Sliding Window, Input: 15-250

(b)

Fig. 18. NLFILT 300: Sliding window vs (N)RD strategy. Input: 15-250.

SPICE 2G6 is a circuit simulator that spends most of its time in two distinct

loops: A loop in subroutine DCDCMP which implements a sparse solver (the decom-

position part) and several similar loops in subroutine LOAD, BJT, MOSFET, etc.,

which update the Y matrix of a circuit with the current evaluation of the device mod-

els. None of the arrays can be compiler analyzed because they are all equivalenced

to one large array (VALUE), the working space of the program and all references

have multiple levels of indirection. It is a ’total’ workspace aliasing problem.

42

0 4 8 12 16 20

Processors

0.6

0.7

0.8

0.9

1

1.1
P

ar
al

le
lis

m
 R

at
io

RLRPD
SW, chunksize = 256
SW, chunksize = 512

NLFILT_do300 Parallelism Ratio
RLRPD vs Sliding Window, Input: 16-400

(a)

0 4 8 12 16 20

Processors

0

2

4

6

8

10

S
pe

ed
up

RLRPD
SW, chunksize = 256
SW, chunksize = 512

NLFILT_do300 Speedup
RLRPD vs Sliding Window, Input: 16-400

(b)

Fig. 19. NLFILT 300: Sliding window vs (N)RD strategy. Input: 16-400.

To make parallelization profitable we have chosen larger input decks than the

ones available in the original PERFECT and SPEC codes, i.e., the circuit of a 128 bit

adder in BJT technology and a scaled up input deck from PERFECT codes. We have

parallelized the three most important loops in SPICE: Loops 70 and 15 in subroutine

DCDCMP and the main loop in BJT (which is similar to all the loops called from the

model evaluation routine LOAD). The technique to parallelize the main loop in BJT

(speculative linked list traversal distribution, sparse LRPD test on the remainder

couple with sparse reduction optimization) has been presented in [21, 22]. Loop 70

in DCDCMP is fully parallel with a premature exit and has been parallelized with

our techniques described in [9, 25]. Loop 15 in DCDCMP (LU decomposition) is

partially parallel due to the sparse nature of the circuit topology. We employ a

sparse version of the R-LRPD test that can extract the Data Dependence Graph

(DDG). Based on the DDG, we schedule in wavefronts. This schedule can be reused

43

2 3 4 5 6 7 8

Processors

0

2

4

6
S

pe
ed

up

(30.19%) DCDCMP DO15
(8.93%) DCDCMP DO70
(34.68%) BJT
(100.0%) Overall

Speedup - SPICE (128 bit ADDER)

(a)

2 3 4 5 6 7 8

Processors

0

2

4

6

S
pe

ed
up

(30.19%) DCDCMP DO15
(8.93%) DCDCMP DO70
(34.68%) BJT
(100.0%) Overall

Speedup - SPICE (Ext. from Perfect)

(b)

Fig. 20. SPICE 2G6 speedup for important loops and entire program for (a) adder128,

and (b) extended PERFECT input decks.

throughout the execution of the program because the access pattern does not change,

and thus fully amortizes the initial cost of generating the dependence graph.

For the adder.128 input deck the parallelized loop in DCDCMP has 14337

iterations with a critical path length of 334 (number of wavefronts). We believe we

will improve our speedup numbers by employing a better scheduling technique than

the use of wavefronts. Other input decks we have studied have similar characteristics.

Figs. 20 show the obtained speedups for each loop and the for the entire code for the

studied input decks.

FMA3D is a finite element method computer program designed to simulate

the inelastic, transient dynamic response of three-dimensional solids and structures

subjected to impulsively or suddenly applied loads. Its most important loop, (ac-

counting for 56% of the sequential execution time), contains array references (to

stress and state arrays) using indirection and its call graph is several levels deep.

44

0 4 8 12 16 20
Processors

0

5

10

15

S
pe

ed
up

FMA3D − Quadrilateral Loop�
Speedup�

Fig. 21. FMA3D speedup of quadrilateral loop.

This complexity makes the ’Quadrilateral’ loop statically un-analyzable (Theoreti-

cally this loop can be statically parallelized because it is input independent). As it

turns out the loop is fully parallel and thus the R-LRPD test has only one stage.

Fig. 21 shows the overall speedup of this loop.

45

CHAPTER VIII

CONCLUSION

A. Thesis Research

In this thesis, we have increased the applicability of speculative run-time paralleliza-

tion by adapting the LRPD test for partially parallel loops. This method can exploit

the performance of partially parallel loops which could not be parallelized previ-

ously with compiler analysis, inspector/executor methods, and/or the LRPD test.

We’ve addressed limitations in the R-LRPD test by reducing the speculation over-

head with optimizations such as on-demand checkpointing and reducing the load

imbalance from blocked scheduling with feedback guided scheduling. The R-LRPD

test limits the potential slowdown of speculation to the test overhead. Previously,

the performance slowdown of the LRPD test for failed speculation is proportional

to the sequential re-execution and the test overhead. We presented a speculative

execution approach to build the DDG for a loop where inspector/executors could

not (i.e. loops that have dependence cycles between address and data computation)

We presented different strategies capable of handling different dependence dis-

tributions with speculation: short dependences (R-LRPD test), long dependences

(SW R-LRPD test), and complex dependence distributions (DDG extraction using

the SW R-LRPD test). By applying the R-LRPD test to the entire loop, short de-

pendences between two iterations can be hidden if run on the same processor. The

SW R-LRPD strategy is suitable for long dependences since it is only affected by

inter-processor dependences. Any cross-window dependences are handled by an on-

demand copy-in/commit approach as in the R-LRPD test. For complex dependence

distributions, we’ve shown that the SW R-LRPD test is capable of extracting the

46

DDG during speculative execution from loops where a proper inspector cannot be

obtained. Then a schedule can be generated and possibly reused for future instanti-

ations.

There is recent work in developing simpler run-time tests for parallelization by

using comprehensive compile time techniques that combine control flow and data

flow analysis to generate efficient run-time tests to decide whether a loop is parallel

or not by evaluating a small set of run-time values. This approach could reduce the

need for an exhaustive memory reference analysis. However, if these simpler run-time

tests cannot prove a loop is parallel, we believe that the R-LRPD test will be needed

for more exhaustive data dependence analysis.

B. Future Directions

This thesis presented different strategies in applying the R-LRPD test. However, the

strategy selection was based on empirical experiments. We believe that heuristics

could be developed for choosing between the different R-LRPD (NRD, RD, and

SW) strategies based on the dependence distributions of prior loop instantiations.

Also, heuristics could be developed for selecting, adapting and/or predicting the

best possible window size for the SW R-LRPD test based on historical information

at run-time.

For the feedback guided scheduling, more accurate predictors of the execution

time distribution for future loop instantiations could reduce the load imbalance and

possibly avoid the overhead in measuring the execution time of each iteration.

With the DDG generated by the R-LRPD test, there may be more efficient

schedules that can avoid or reduce the global synchronizations inherent to using

wavefront schedules. However, the scheduling heuristics will need to reduce syn-

47

chronizations while not incurring large additional overhead in the scheduling itself

compared to wavefront scheduling.

We believe there will be cases where loops may have slowly changing dependence

distributions. If reuse of an exact schedule is not possible, there is a chance that

the difference in the dependence distribution may be slight so that the previous

schedule could be adjusted rather than extracting a new data dependence graph and

computing a new schedule.

48

REFERENCES

[1] D. A. Padua and M. Wolfe, “Advanced compiler optimizations for supercom-

puters,” Communications of the ACM, vol. 29, no. 12, pp. 1184–1201, Dec.

1986.

[2] M. Wolfe, Optimizing Compilers for Supercomputers, The MIT Press, Cam-

bridge, MA, 1989.

[3] L. Nagel, “Spice2: A computer program to simulate semiconductor circuits,”

Ph.D. dissertation, University of California at Berkeley, Berkeley, California,

May 1975.

[4] R. G. Whirley and B. Engelmann, DYNA3D: A Nonlinear, Explicit, Three-

Dimensional Finite Element Code for Solid and Structural Mechanics, Lawrence

Livermore National Laboratory, Nov. 1993.

[5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et. al,

Gaussian 98, Revision A.11, Gaussian, Inc., Pittsburgh PA, 2001.

[6] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and

M. Karplus, “Charmm: A program for macromolecular energy, minimization,

and dynamics calculations,” Journal of Computational Chemistry, vol. 4, no.

6, pp. 187, 1983.

[7] L. Rauchwerger and D. A.. Padua, “The LRPD Test: Speculative Run-

Time Parallelization of Loops with Privatization and Reduction Parallelization,”

IEEE Transactions on Parallel and Distributed Systems, vol. 10, no. 2, pp. 160,

1999.

49

[8] L. Rauchwerger, N. Amato, and D. A. Padua, “A scalable method for run-time

loop parallelization,” Int. J. Paral. Prog., vol. 26, no. 6, pp. 537–576, Jul. 1995.

[9] L. Rauchwerger and D. A.. Padua, “Parallelizing WHILE Loops for Multipro-

cessor Systems,” in Proc. of 9th International Parallel Processing Symposium,

pp. 347–356, Apr. 1995.

[10] J. Saltz, R. Mirchandaney, and K. Crowley, “Run-time parallelization and

scheduling of loops,” IEEE Trans. Comput., vol. 40, no. 5, pp. 603–612, May

1991.

[11] M. Gupta and R. Nim, “Techniques for Speculative Run-Time Parallelization

of Loops,” in Proc. of Supercomputing 1998, pp. 1–12, 1998.

[12] S. Rus and L. Rauchwerger, “Hybrid analysis: static & dynamic memory ref-

erence analysis,” International Journal of Parallel Programming, vol. 31, no. 3,

pp. 251–283, 2003.

[13] M. Cintra and D. R. Llanos, “Toward efficient and robust software specula-

tive parallelization in multiprocessors,” 2003 ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2003, pp. 13–24.

[14] P. Rundberg and P. Stenstrom, “Low-cost thread-level data dependence specu-

lation on multiprocessors,” 4th Workshop on Multithreaded Execution, Archi-

tecture and Compilation, Dec. 2000.

[15] I.H. Kazi and D. Lilja, “Coarse-grained speculative execution in shared-memory

multiprocessors,” in Proc. of the 12th ACM International Conference on Super-

computing, Jul. 1998, pp. 93–100.

50

[16] P. Tu and D. A. Padua, “Automatic array privatization,” 1993 Workshop on

Languages and Compilers for Parallel Computing, Portland, Ore., Aug. 1993,

number 768, Lecture Notes in Computer Science, pp. 500–521, Berlin: Springer

Verlag.

[17] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam, “Data dependence and

data-flow analysis of arrays,” 1992 Workshop on Languages and Compilers for

Parallel Computing, New Haven, Conn., Aug. 1992, number 757, Lecture Notes

in Computer Science, pp. 434–448, Berlin: Springer Verlag.

[18] Z. Li, “Array privatization for parallel execution of loops,” 1992 ACM In-

ternational Conference on Supercomputing, Washington, D.C., Jul. 1992, pp.

313–322.

[19] S. Leung and J. Zahorjan, “Improving the performance of runtime paralleliza-

tion,” 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, May 1993, pp. 83–91.

[20] C. Zhu and P. C. Yew, “A scheme to enforce data dependence on large multi-

processor systems,” IEEE Trans. Softw. Eng., vol. 13, no. 6, pp. 726–739, Jun.

1987.

[21] H. Yu and L. Rauchwerger, “Run-time parallelization overhead reduction tech-

niques,” Proc. of the 9th International Conference on Compiler Construction

(CC2000), Berlin, Germany, pp. 232–248, Mar. 2000.

[22] H. Yu and L. Rauchwerger, “Adaptive reduction parallelization,” Proceedings

of the 14th ACM International Conference on Supercomputing, Santa Fe, NM,

pp. 66–77, May 2000.

51

[23] J. M. Bull, “Feedback guided dynamic loop scheduling: Algorithms and exper-

iments,” in EUROPAR98, pp. 377–382, Sep. 1998.

[24] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J.

Lee, D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu, “Advanced

Program Restructuring for High-Performance Computers with Polaris,” IEEE

Computer, vol. 29, no. 12, pp. 78–82, Dec. 1996.

[25] J. A. Carvallo de Ochoa, “Optimizations enabling tranformations and code gen-

eration for the HP V Class,” M.S. thesis, Texas A&M University, Department

of Computer Science, Aug. 2000.

52

APPENDIX A

GENERAL PURPOSE ROUTINES FOR THE R-LRPD TEST

subroutine RT_STRIP(low, high, num, pos, slow, shigh)
integer*4 low, high, num, pos, slow, shigh

This routine partitions the given range of iteration numbers into contiguous

sub-ranges based on the number of processors. The low and high variables are the

original loop bounds. The num variable is the number of strips, usually the number

of processors. The pos variable is the strip number which is usually the processor

rank (0..num−1). The slow and shigh variables are the calculated sub-range bounds

for the given strip number.

subroutine RT_ZEROBYTES(array, numelems)
integer*4 numelems
integer*1 array(numelems)

subroutine RT_ZEROBYTES8(array, numelems)
integer*4 numelems
integer*8 array(numelems)

These routines initialize in parallel each element in the one dimensional array to

zero. The first routine expects an array of one byte integers while the second routine

expects an array of eight byte integers.

subroutine RT_COPYARRAY(source, dest, numelems)
integer*4 numelems
datatype source(numelems), dest(numelems)

These checkpointing routines save the entire state of an array in parallel before

the loop is speculatively executed. The source and dest arrays are expected to be

one dimensional arrays.

53

subroutine RT_RESTORE(array, check_array, numelems, istart, iend)
integer*4 numelems, istart, iend
datatype array(numelems), check_array(numelems)

This routine restores in parallel the selected range of elements in the original

arrays to their state before the loop was speculatively executed. The element range

is determined by the iteration assignments to each processor and the lowest ranked

processor which encountered a dependence.

subroutine RT_COPYIN(global_array, private_array, numelems, numproc,
padding)

integer*4 numelems, numproc, padding
datatype global_array(numelems + padding, numproc)
datatype private_array(numelems + padding, numproc)

In these routines, each processor in parallel copies all elements from the global

data array to their section in the expanded data array. The padding ensures that

the different processors do not access elements residing on the same cache line and

thus prevents cache line contention.

54

APPENDIX B

ROUTINES FOR THE R-LRPD WITH SHADOW ARRAYS

subroutine RLRPD_MARK_WRITE(shadow, writecount)
integer*1 shadow
integer*4 writecount

In this write reference marking routine, if the write bit is not already set in the

shadow element, the write bit is set in the shadow element and the write count is

incremented. Both the shadow and writecount variables are expected to be private

to the invoking processor.

subroutine RLRPD_MARK_READ(shadow, readfirst, private, global)
integer*1 shadow
integer*4 readfirst
datatype private, global

There is a marking routine for each data type (since it handles copy-in of data

from the public data element to the processor’s private data element) for recording

read references during speculative execution of the loop. If the write bit is not

already set in the shadow element, the read bit is set in the shadow element, the

readfirst flag is set, and the data is copied from the global array element to the private

array element. The shadow element, the readfirst flag, and the private element are

expected to be private to the invoking processor. The global variable is expected to

be an element of the original shared data array.

subroutine RT_A_RS_V(shadow_array, writecnt, numelems, numproc, nmf,
pfail)

integer*4 numelems, numproc, pfail
integer*1 shadow(numelems, numproc)
integer*4 writecnt(16, numproc), nmf(16, numproc)

subroutine RT_A_RS_V8(shadow_array, writecnt, numelems, numproc, nmf,

55

pfail)
integer*4 numelems, numproc, pfail
integer*8 shadow(numelems, numproc)
integer*4 writecnt(16, numproc), nmf(16, numproc)

The analysis is necessary only when both read and write references have been

recorded during speculative execution. If only read or write references are recorded,

the loop is fully parallel due to privatization with copy-in. The per-processor write

counts and readfirst flags are checked to determine if the full dependence analysis is

necessary. The first routine analyzes one shadow element as a time while the second

routine analyzes eight shadow elements simultaneously.

subroutine RT_LV_ARRAY(global_array, private_array, shadow_array,
write_counts, numelems, numproc, pstart, pfail)

integer*4 numproc, pstart, pfail, numelems
integer*1 shadow_array(numelems, numproc)
integer*4 write_counts(16, numproc)
datatype global_array(numelems), private_array(numelems, numproc)

This routine performs the last value assignment to determine the latest correctly

written value for each array element. The commit routine uses the reference infor-

mation from the shadow arrays and the list of processors that executed correctly as

determined by the dependence analysis. The commit routine is skipped if there are

no recorded write references during speculative execution.

56

APPENDIX C

ROUTINES FOR DDG EXTRACTION WITH HASH TABLES

The data dependence graph (DDG) is a directed graph that is implemented

as an array of Fortran derived types. This derived type represents a single node

(iteration) in the DDG. Each node maintains the number of incoming and outgoing

edges, the node weight, a list of edges, and a list of edge weights for each node. The

node weight of an iteration represents the total number of references recorded for

that iteration. The edge weight represents the number of flow dependences between

two iterations.

subroutine init_sw(wstart, wend, nstart, nend, iterperproc, np, its)
integer*4 wstart, wend, nstart, nend, iterperproc, np
integer*4 its(16, np)

This routine creates the initial window of iterations. The window size is de-

termined by the desired number of iterations per processor (iterperproc) and the

number of processors.

subroutine adv_sw(wstart, wend, nend, iterperproc, np, pfail, done,
its)

integer*4 wstart, wend, nend, iterperproc, np, pfail
logical*4 done
integer*4 its(16, np)

This routine advances the window of iterations. Correctly executed iterations

are removed from the window, incorrectly executed iterations remain in the window

to be re-executed, and new iterations are added to the window if any unscheduled

iterations remain. The window size is determined by the desired number of iterations

per processor (iterperproc) and the number of processors.

57

subroutine rt_m_r_ihq(nentry, nhash, tsize, np, pid, addr, iter,
numelems, overflow, of_ptr, hashidx, gdata, pdata, table, hlist)

integer*4 nentry, nhash, tsize, np, pid, addr, iter, numelems
integer*4 overflow, of_ptr, hashidx
logical*4 flag
integer*4 table(nentry, tsize, np), hlist(nhash+1, np)
datatype pdata(tsize, np), gdata(numelems)

This routine records the read reference into the processor’s shadow hash table.

If no reference data exists for the hashed address, reference type, and iteration, then

the reference information is added. The data from the global array is copied into the

processor’s private storage which is a two-dimensional array whose size resembles the

size of the shadow hash table.

subroutine rt_m_w_ihq(nentry, nhash, tsize, np, pid, addr, iter,
numelems, overflow, of_ptr, hashidx, table, hlist)

integer*4 nentry, nhash, tsize, np, pid, addr, iter, numelems
integer*4 overflow, of_ptr, hashidx
logical*4 flag
integer*4 table(nentry, tsize, np), hlist(nhash+1, np)

This routine records the write reference into the processor’s shadow hash table.

If no reference data exists for the hashed address, reference type, and iteration, then

the reference information is added.

subroutine rt_m_rw_ihq(nentry, nhash, tsize, np, pid, addr, iter,
numelems, overflow, of_ptr, hashidx, gdata, pdata, table, hlist)

integer*4 nentry, nhash, tsize, np, pid, addr, iter, numelems
integer*4 overflow, of_ptr, hashidx
logical*4 flag
integer*4 table(nentry, tsize, np), hlist(nhash+1, np)
datatype pdata(tsize, np), gdata(numelems)

This routine records the read and write reference into the processor’s shadow

hash table. If no reference data exists for the hashed address, reference type, and

iteration, then the reference information is added. The data from the global array is

copied into the processor’s private storage which is a two-dimensional array whose

size resembles the size of the shadow hash table.

58

subroutine rt_a_ihqv(nentry, nhash, tsize, np, pfail, niter,
iterperproc, wnentry, wnhash, wtsize, wstart,
its, table, wtable, hlist, dtype_redges)

integer*4 nentry, nhash, tsize, np, pfail, iterperproc
integer*4 niter, wnentry, wnhash, wtsize
integer*4 table(nentry, tsize, np), its(16, np)
integer*4 wtable(wnentry, wtsize, np), hlist(nhash+1, np)
type (graph_node), dimension(niter) :: dtype_redges

The analysis checks for cross-iteration dependences between iterations within

the current window. It also checks for dependences between successfully completed

iterations and iterations inside the current window by examining the distributed table

which contains the last write reference for each memory address. This routine also

tentatively stores any detected dependence (both cross-window and cross-processor)

edges. Any dependence edges occurring after the earliest cross-iteration dependence

within the current window are removed in the edge commit routine.

subroutine rt_c_ihq_r8(nentry, nhash, tsize, np, pstart, pfail,
numelems, wnentry, wnhash, wtsize,
wt_overflow_ptr, wtable, its, table, parray, garray, hlist)

integer*4 nentry, nhash, tsize, np, pstart, pfail, numelems
integer*4 wnentry, wnhash, wtsize
integer*4 table(nentry, tsize, np), its(16, np)
integer*4 wtable(wnentry, wtsize, np), hlist(nhash+1, np)
integer*4 wt_overflow_ptr(16, np)
real*8 parray(tsize, np), garray(numelems)

This routine performs the last value assignment using information from the

shadow hash tables. For any successfully executed iteration in the current window,

this routine also commits the latest valid write reference for each memory address

into a distributed hash table.

subroutine rt_c_e(iterperproc, niter, np, pfail, its, dtype_redges)
integer*4 iterperproc, niter, np, pfail
integer*4 its(16, np)
type (graph_node), dimension(niter) :: dtype_redges

Any cross-processor dependence within the current window of iterations can

produce invalid computations and edges in the DDG. This routine removes any edges

59

in the DDG that were extracted during the analysis phase for iterations that were

not completed successfully.

subroutine rt_zerotable_hl(nentry, nhash, tsize, np, hlist, table)
integer*4 nentry, nhash, tsize, np
integer*4 hlist(nhash+1, np), table(nentry, tsize, np)

This routine reinitializes the shadow hash table by zeroing only the hash indices

that were modified by each processor during the previous speculative execution.

subroutine rt_reverse_edges(ibeg, iend, niter, np, dtype_redges,
dtype_edges)

integer*4 ibeg, iend, niter, np
type (graph_node), dimension(niter) :: dtype_redges, dtype_edges

During the analysis, the edges in the DDG are collected as (read, write) pairs.

This routine converts the DDG into (write, read) pairs and calculates the number

of incoming and outgoing edges for each node in the DDG.

subroutine rt_sch_wf(ibeg, iend, niter, np, nlevels, maxiter,
dtype_edges, iqueue, wf_its)

integer*4 ibeg, iend, niter, np, nlevels, maxiter
integer*4 iqueue(maxiter), wfits(2, maxiter)
type (graph_node), dimension(niter) :: dtype_edges

This routine schedules the DDG as a series of wavefronts which can be executed

in parallel. The iterations in the same wavefront are stored contiguously in the

iqueue array. The wfits array maintains the starting and ending elements in the

iqueue array for each wavefront.

60

VITA

Francis Hoai Dinh Dang received his Bachelor of Science degree in Computer

Engineering from Texas A&M University at College Station, Texas in May 1999.

He entered the Computer Science graduate program at Texas A&M University in

September 1999. He has been working at the Texas A&M Supercomputing Facility

since 2001.

Mr. Dang can be reached at the Texas A&M Supercomputing Facility, Com-

puting and Information Services, 3363 TAMU, College Station, TX 77843-3363.

