THE EXPERIMENTAL AND THEORETICAL DETERMINATION OF COMBINATORIAL KINETIC ISOTOPE EFFECTS FOR MECHANISTIC ANALYSIS

A Dissertation by
CHAD F. CHRISTIAN
Submitted to the Office of Graduate Studies of
Texas A\&M University
in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

May 2007

Major Subject: Chemistry

THE EXPERIMENTAL AND THEORETICAL DETERMINATION OF COMBINATORIAL KINETIC ISOTOPE EFFECTS FOR MECHANISTIC ANALYSIS

A Dissertation
by
CHAD F. CHRISTIAN
Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee,	Daniel A. Singleton
Committee Members,	David E. Bergbreiter Frank M. Raushel
	Andy C. LiWang
Head of Department,	David H. Russell

May 2007

Major Subject: Chemistry

ABSTRACT
The Experimental and Theoretical Determination of Combinatorial Kinetic Isotope Effects for Mechanistic Analysis. (May 2007)
Chad F. Christian, B.A., Texas A\&M University Chair of Advisory Committee: Dr. Daniel A. Singleton

Unfortunately, chemists can never experimentally unravel a full reaction pathway. Even our ability to define key aspects of mechanisms, such as short-lived intermediates and the even more ephemeral transition states, is quite limited, requiring subtle experiments and subtle interpretations. Arguably the most important knowledge to be gained about the mechanism of a reaction is the structure and geometry of the transition state at the rate-limiting step, as this is where a reaction's rate and selectivity are generally decided. The Singleton group has developed a methodology for predicting the combinatorial kinetic isotope effects (KIEs) at every atomic position, typically carbon or hydrogen, at natural abundance. A combination of experimental isotope effects and density functional theory (DFT) calculations has greatly aided our ability to predict and understand a reaction's pathway and transition state geometries. Precise application of this method has allowed for the mechanistic investigation of a myriad of bioorganic, organic, and organometallic reactions. The technique has been applied in the analysis of the catalytic borylation of arenes via C-H bond activation, dynamic effects in the enyne allene cyclization, palladium catalyzed allylic alkylation, the nature of proton transfer in orotate decarboxylase, and the epoxidation of enones with t-butyl hydroperoxide.

DEDICATION

To Grandmama and Honey

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Singleton, for his guidance, patience, and support throughout my tenure as a graduate student under his tutelage.

I would like to thank my committee members, Dr. Bergbreiter, Dr. Raushel, and Dr. LiWang for their time and direction.

A special thanks to the past and current Singleton group members that I have provided me a fruitful arena for learning and discussion; I am indebted to their friendship and encouragement. I am thankful for the many friends, acquaintances, and experiences that have had so far in my career.

Last, and most important, I have to thank my family who have always supported and encouraged me.

TABLE OF CONTENTS

Page
ABSTRACT iii
DEDICATION iv
ACKNOWLEDGMENTS v
TABLE OF CONTENTS vi
LIST OF FIGURES X
LIST OF TABLES xiv
CHAPTER
I INTRODUCTION 1
Purpose 1
Fundamental Origin of Kinetic Isotope Effects 2
Methodology for Determining Kinetic Isotope Effects 6
Experimental Kinetic Isotope Effects 8
Predicting Kinetic Isotope Effects 11
Conclusion 13
II ISOTOPE EFFECTS AND THE NATURE OF SUBSTRATE SELECTIVITY IN THE IRIDIUM CATALYZED BORYLATION OF ARYL C-H BONDS 14
Introduction 14
Results 22
Experimental 22
Experimental ${ }^{13} \mathrm{C}$ Kinetic Isotope Effects 22
H/D KIES and H/D Exchange 24
Theoretical Calculations 29
Theoretical Calculations 29
Predicted Isotope Effects 37
Calculated versus Experimental Regioselectivity in Borylations of Arenes. 39
Discussion 42
Conclusions 44
CHAPTER Page
III "CONCERTED" TRANSITION STATE, STEPWISE MECHANISM. DYNAMICS EFFECTS IN C ${ }^{2}-\mathrm{C}^{6}$ ENYNE ALLENE CYCLIZATIONS 45
Introduction 45
Results 52
Experimental 52
Experimental Kinetic Isotope Effects 52
Theoretical Calculations 53
Theoretical Pathways from 9 53
Predicted Isotope Effects 56
Theoretical Pathways in a Model Reaction 58
Dynamics 60
Discussion 65
Conclusions 70
IV ISOTOPE EFFECTS AND THE MECHANISM OF PALLADIUM-CATALYZED ALLYLIC ALKYLATION 73
Introduction 73
Results 75
Experimental 75
Experimental Kinetic Isotope Effects 75
Theoretical Calculations 77
Theoretical Calculations and Predicted Kinetic Isotope Effects 77
Discussion 80
Conclusions 82
CHAPTER Page
V ISOTOPE EFFECTS AND THE NATURE OF DECARBOXYLATION / PROTON TRANSFER IN OROTIDINE DECARBOXYLASE 84
Introduction 84
Results 89
Experimental 89
Experimental Decarboxylation in $\mathrm{D}_{2} \mathrm{O}$ 89
Competition Isotope Effects in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ 91
Theoretical Calculations 92
C5 Protonation / Decarboxylation / Rearrangement 92
$\mathrm{S}_{\mathrm{E}} 2$ Mechanism versus "Simple" Decarboxylation 95
Decarboxylative Elimination 103
Predicted Isotope Effects 105
Discussion 111
Conclusions 113
VI ISOTOPE EFFECTS AND THE MECHANISM OF EPOXIDATION OF CYCLOHEXENONE WITH TERT-BUTYLHYDROPEROXIDE 114
Introduction 114
Results 117
Experimental 117
Experimental Isotope Effects 117
Theoretical Calculations 119
Theoretical Mechanisms 119
Predicted Isotope Effects 123
Discussion 123
Conclusions 128
CHAPTER Page
VII EXPERIMENTAL 130
Experimental 130
Borylation of 1,3 Dibromobenzene \& m-xylene 130
Example Procedure 130
Preparation of m-Xylene-5-d 131
Borylation of m-Xylene-5-d example procedure 131
NMR Measurements 131
${ }^{13} \mathrm{C}$ Results 132
$C^{2}-C^{6}$ Enyne Allene Cyclization 135
NMR Kinetic Studies 135
Palladium Catalyzed Allylic Alkylation 135
Allylic Alkylation of 1,1 Dimethyallyl Acetate with Dimethylmalonate 135
NMR Measurements 136
Results for All Reactions 137
Decarboxylation of Orotodine 139
Decarboxylations in Mixed $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ 139
Epoxidation of 2-Cyclohexenone 140
Epoxidation of 2-Cyclohexenone with tert-Butylhydroperoxide and DBU 140
NMR Measurements 141
Results for All Reactions 141
VIII CONCLUSIONS 144
REFERENCES 145
APPENDIX 173
VITA 659

LIST OF FIGURES

FIGURE Page
1-1 The origin of a kinetic isotope effect arises from a difference in the ZPE of the reacting isotopomers as a reaction proceeds from starting material to the transition state 3
1-2 Illustrates the relationship between the isotopic ratio, R / R_{0}, and the fractional conversion, F, and their effect on the KIE 11
2-1 Several of the proposed pathways for the activation of C-H bonds 17
2-2 Methods for synthesizing arylboranes 18
2-3 Experimental ${ }^{13} \mathrm{C}$ KIEs $\left(\mathrm{k}_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{C}}\right)$ for borylation of $\mathbf{1}$ and $\mathbf{3}$ with $\operatorname{Ind}(\operatorname{Ir})(\operatorname{cod}) /$ dppe as catalyst precursor. Numbers in parentheses are 95% confidence limits for the last digit 24
2-4 Proposed catalytic cycles 30
2-5 Key structures and energies ($\mathrm{kcal} / \mathrm{mol}$, relative to $\mathbf{1 0}$ and freestarting materials) in the calculated catalytic cycle for the borylationof benzene via (dmpe) $\operatorname{Ir}(\mathrm{Beg})_{3}$. Higher-energy stereoisomers andminor stationary points are given in the Appendix35
2-6 Key structures and energies ($\mathrm{kcal} / \mathrm{mol}$) in the calculated catalyticcycle for the borylation of benzene via (bpy) $\operatorname{Ir}(\mathrm{Beg})_{3}$.
Higher-energy stereoisomers and minor stationary points are given in the Appendix 37
2-7 Predicted ${ }^{13} \mathrm{C}\left(\mathrm{k}_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{C}}\right)$ and deuterium $\left(\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}\right)$ kinetic isotopeeffects at $150^{\circ} \mathrm{C}$. The group X is hydrogen in the calculationalstructures, compared to bromine or methyl groups in the experimentalsystems. To facilitate comparison with the experimental ${ }^{13} \mathrm{C}$ KIEs,the predicted ${ }^{13} \mathrm{C}$ KIEs have been adjusted to be relative to C_{4}.The predicted deuterium KIEs are absolute values and do notinclude a tunneling correction. (a) Isotope effects based ontransition structure 12. (b) Isotope effects based ontransition structure 14.39

3-3 Bifurcating surfaces in which dynamic effects would control selectivity. (a) The surface is symmetrical and the MEP bifurcates at a second transition state. Real trajectories would tend to diverge from the MEP in the area of the VRI. (b) The surface is unsymmetrical and the MEP does not bifurcate. However, some possible trajectories afford a product not on the MEP.

3-4 $\begin{aligned} & \text { Predicted pathways for the cyclization of } \mathbf{9} \text { in }(\mathrm{U}) \mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p}) \\ & \text { calculations. Structures } \mathbf{1 2 , 1 3} \mathbf{1 3}^{\ddagger}, \mathbf{1 4}^{\ddagger} \text {, and } \mathbf{1 5} \text { were obtained using } \\ & \text { unrestricted calculations, while the remaining structures were identical in } \\ & \text { restricted and unrestricted calculations. Relative energies are in kcal/mol } \\ & \text { and include zpe.. }\end{aligned}$ 55
3-5 Predicted pathways for the cyclization of 16. Structures 19 and 20^{\ddagger} were obtained using unrestricted calculations. The relative energies $(\mathrm{kcal} / \mathrm{mol})$ shown are $(\mathrm{U}) \mathrm{BD}(\mathrm{T}) / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{B} 3 \mathrm{LYP} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})+$ zpe . Relative (U)B3LYP/6-31G(d,p) energies are shown in parentheses for comparison

3-6 Qualitative energy surface for the cyclizations of 9 and 16.
3-7 Graph of $\mathrm{C}^{2}-\mathrm{C}^{6}$ versus $\mathrm{C}^{7}-\mathrm{H}$ distances for selected dynamics trajectories starting from 17^{\ddagger}, along with the steepest-descent pathway through 17 is mass-weighted coordinates (the minimum energy path)

3-8 More O'Ferrall-Jencks diagram for ene reactions. The approximate minimum-energy path expected for reaction of $\mathbf{9}$ or $\mathbf{1 6}$ is shown as a solid bold line. Possible qualitative trajectories are shown as dotted lines..

4-1 a) Experimental ${ }^{13} \mathrm{C}$ KIEs ($\mathrm{k}_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{C}}$) for the allylic alkylation reaction of 4 with 5 at $25^{\circ} \mathrm{C}$. The top three KIEs in each group arise from the 75%-conversion reaction. Standard deviations ($\mathrm{n}=6$) are shown in parentheses. (b) Predicted ${ }^{13} \mathrm{C}$ KIEs for three calculational models. Plain numbers are based on transition structure 10, numbers in parentheses are based on transition structure 12, and numbers in brackets are based on transition structure 13

4-3 Transition structures for the ionization of $\mathbf{4}$ using solent models. Structure 12 used an Onsager model for THF. Structure 13 used six HCN molecules. Most hydrogens have been removed for clarity
5-1 Recently postulated mechanisms for the decarboxylation of orotidine 5'- monophosphate 1. 87
5-2 A schematic representative of the active site of ODCase. The numbering is Bacillus subtilis. 89
5-3 Calculated C5-protonation / decarboxylation / 1,2-rearrangement pathway for the decarboxylation of model 9. Relative energies (B3LYP/6-31+G(d,p) + zpe ($\mathrm{kcal} / \mathrm{mol}$) are shown in parentheses. 93
5-4 Transition structures for decarboxylation of $\mathbf{9}$ assisted by one molecule of a proton donor. Energies relative to separate 9 and proton donor are given in parentheses (B3LYP/6-31+G(d,p) + zpe, $\mathrm{kcal} / \mathrm{mol}$) 98
6-1 General mechanism for the addition of peroxide to α, β-unsaturated carbonyl 115
6-2 House found that Z-E isomerization occurred at rates comparable to epoxidation in the reaction of Z-3-methyl-3-penten-2-one with alkaline hydrogen peroxide 116
6-3 The epoxidation of cyclohexenone with tert-butyl hydroperoxide with DBU 117
6-4 Lowest energy axial (top) and equatorial (bottom) pathways for the epoxidation of cyclohexenone with t - BuOOH mediated by DBU model 9 in B3LYP/6-31+G**/PCM calculations. Energies (B3LYP/6-31+G**/PCM + zpe) are in $\mathrm{kcal} / \mathrm{mol}$ relative to separate starting materials 122
6-5 ${ }^{13} \mathrm{C}$ KIEs for other additions to α, β-unsaturated carbonyl compounds(a) Base-catalyzed β-addition of dimethyl malonate in methanol at $64^{\circ} \mathrm{C}$.See ref 186. (b) Free-radical polymerization at $60^{\circ} \mathrm{C}$. See ref 187125

FIGURE

6-6 Examples of stereoselective epoxidations... 128

LIST OF TABLES

TABLE Page
2-1 Intermolecular and intramolecular H/D KIEs for borylation reations at $150{ }^{\circ} \mathrm{C}$ 27
2-2 Active catalyst explored for C-H activation 31
2-3 Calculated and experimental regioselectivity in borylations of arenes 41
5-1 Experimental versus predicted kinetic isotope effects $\left(k_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{C},}, \mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}, \mathrm{k}_{14 \mathrm{~N}} / \mathrm{k}_{15 \mathrm{~N}}\right)$ for orotate decarboxylation by various mechanisms 110
6-1 Experimental and predicted ${ }^{13} \mathrm{C}$ kinetic isotope effects $\left(\mathrm{k}_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{C}}\right)$ for the epoxidation of cyclohexenone with $t-\mathrm{BuOOH} / \mathrm{DBU}$ 119
7-1 Average ${ }^{13} \mathrm{C}$ integrations for 1,3 dibromobenzene and m-xylene, with standard deviations (in parentheses) 133
7-2 $\mathrm{R} / \mathrm{R}_{\mathrm{O}}$ for ${ }^{13} \mathrm{C}$ for 1,3 dibromobenzene and m-xylene 134
7-3 ${ }^{13} \mathrm{C}$ KIEs for 1,3 dibromobenzene and m-xylene, with standard deviations (in parentheses) 134
7-4 Average ${ }^{13} \mathrm{C}$ integrations for 1,1-dimethylallyl acetate, with standard deviations (in parentheses) 138
7-5 $\quad \mathrm{R} / \mathrm{R}_{\mathrm{O}}$ for ${ }^{13} \mathrm{C}$ for 1,1-dimethylallyl acetate 139
7-6 ${ }^{13} \mathrm{C}$ KIEs for 1,1-dimethylallyl acetate, with standard deviations (in parentheses). 139
7-7 Average ${ }^{13} \mathrm{C}$ integrations for cyclohexenone, with standard deviations (in parentheses) 142
7-8 R / R_{0} for ${ }^{13} C$ for cyclohexenone 142
7-9 ${ }^{13} \mathrm{C}$ KIEs for cyclohexenone, with standard deviations (in parentheses) 143

CHAPTER I

INTRODUCTION

Purpose

Chemists have the ability to relatively easily determine the products of a reaction and define the reaction's thermodynamics, kinetics, and selectivity. These directly observable properties are important but the understanding of what happens in chemical reactions also requires a knowledge of how it works, that is, the reaction's mechanism. Ideally, chemists would like to be able to follow a molecule along the reaction pathway through all of the short lived reactive intermediates and transition states involved in the mechanism. Armed with such complete knowledge of the reaction pathway, chemists would be able to deduce the rationales underlying the diverse experimental observations of reactions. Unfortunately, chemists can never experimentally unravel a full reaction pathway. Even our ability to define key aspects of mechanisms, such as short-lived intermediates and the even more ephemeral transition states, is quite limited, requiring subtle experiments and subtle interpretations. Nonetheless, obtaining such knowledge is a central goal of physical organic chemistry, because the insight obtained can allow the rational control of reactions and inspire the rational design of new reactions.

[^0]Arguably the most important knowledge to be gained about the mechanism of a reaction is the structure and geometry of the transition state at the rate-limiting step, as this is where a reaction's rate and selectivity are generally decided. The Singleton group studies at the atomic level the changes in bonding and/or hybridization at the ratelimiting step of a reaction by looking at the small changes in the rates of reactions that occur on isotopic substitution. These kinetic isotope effects (KIEs) have been developed and established as an effective tool in probing the rate-determining step of a reaction. ${ }^{1,2,3,4}$ Most of the studies in this dissertation will make use of KIEs, including the development of novel methodology used in the determination of KIEs and its application in several important organic reactions. ${ }^{5}$ Sometimes, however, even a complete knowledge of the transition states and intermediates in a mechanism is not enough to understand how a reaction works or its selectivity. In such cases, chemistry must fall back on a full consideration of a mechanistic pathway, including the positions and momenta of atoms. These dynamics considerations are conventionally ignored but will play an important role in this dissertation.

Fundamental Origin of Kinetic Isotope Effects

The simplest change that can be made in a chemical reaction without greatly affecting the molecular structure, the chemical environment, and the potential energy surface of a reaction is isotopic substitution, (e.g. D for $\mathrm{H},{ }^{13} \mathrm{C}$ for ${ }^{12} \mathrm{C}$, ect.). Isotopologues, for example XH and XD , follow an identical pathway on a reaction potential energy surface, but one can observe differences in the rate constants, eq 1-1
and 1-2. The effect on the ratio of the rate constants for the two chemically identical components that only differ by their isotopic composition represents the KIE (eq 1-3). ${ }^{6}$

$$
\begin{align*}
& \mathrm{XH}+\mathrm{Y} \xrightarrow{\mathrm{k}_{\mathrm{H}}} \mathrm{X}+\mathrm{YH} \tag{1-1}\\
& \mathrm{XD}+\mathrm{Y} \xrightarrow{\mathrm{k}_{\mathrm{D}}} \mathrm{X}+\mathrm{YD} \tag{1-2}\\
& \mathrm{KIE}=\frac{\mathrm{k}_{\mathrm{H}}}{\mathrm{k}_{\mathrm{D}}} \tag{1-3}
\end{align*}
$$

Isotope effects arise mainly from the effect of isotopic substitution on changes in zero-point energies (ZPEs) as a reaction proceeds from starting material to the transition state (Figure 1-1). It should be noted factors other than ZPE are found to play a role in KIEs when full conventional transition state theory is considered, but ZPE is usually the major factor.

Figure 1-1. The origin of a kinetic isotope effect arises from a difference in the ZPE of the reacting isotopomers as a reaction proceeds from starting material to the transition state.

Classically, the vibrational modes of molecules are treated like a harmonic oscillator, for which the vibrational frequency, v, can be determined (eq 1-4). ${ }^{7}$ Isotopic substitutions do not alter the electronic structure of a molecule which makes the force constants, k, for the reacting isotopomers the same. Any difference that arises is due to the change in the mass, m, and its effect on the vibrational frequencies.

$$
\begin{equation*}
v=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \tag{1-4}
\end{equation*}
$$

The quantum-mechanical treatment of the frequencies for the vibrational modes leads to the energy, E , in eq 1-5.

$$
\begin{equation*}
\mathrm{E}=(\mathrm{n}+1 / 2) \mathrm{h} v \quad \mathrm{n}=0,1,2, \ldots . \tag{1-5}
\end{equation*}
$$

This energy is measured from the lowest point in a potential energy curve. Because a molecule always retains some energy when $\mathrm{n}=0$, the lowest possible energy lies at a level $1 / 2 h$ upabe the minimum of the well (eq 1-6).

$$
\begin{equation*}
\mathrm{ZPE}=1 / 2 h v \tag{1-6}
\end{equation*}
$$

Simple math and previously described assumptions provide that the ZPE is inversely proportional to the square root of the mass (eq 1-7).

$$
\begin{equation*}
\mathrm{ZPE}=\sqrt{\frac{1}{\mathrm{~m}}} \tag{1-7}
\end{equation*}
$$

Therefore, the ZPE is always lower for molecules containing heavier isotopes than molecules containing lighter isotopes. The difference in ZPE between the two will depend on the detailed structure of the molecule and will in general change as a structure changes from starting material to transition state. This model is used to rationalize the observed trends in KIEs.

Isotope effects are categorized as either primary isotope effects or secondary isotope effects. A primary KIE involves the loss of a stretching frequency as a vibrational mode becomes a translational motion over the potential energy surface. Primary isotope effects occur when a σ-bond is being broken or formed in the ratedetermining step (rds), with typical values of between 2-7 for $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ and 1.01-1.05 for $\mathrm{k}_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{C}}$. Secondary isotope effects arise from changes in the force constants for an atom that is not undergoing σ-bond breaking or formation as a reaction proceeds from ground state to transition state. Because a secondary KIE involves only small changes in the stretching or bending frequencies, the values are small. Secondary KIEs can either be classified as normal (>1) or inverse (<1) with values between $0.7-1.4$ for $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ and 0.99-1.01 for $\mathrm{k}_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{C}}$. A normal secondary KIE is generally observed for hydrogen / deuterium atoms attached to a reactive center that is undergoing a hybridization change from sp^{3} to sp^{2}; inverse secondary KIEs are observed for the corresponding case where hybridization changes from sp^{2} to sp^{3}. Normal secondary KIEs are also generally
observed at atoms undergoing a weakening of their bonds in the transition state, while inverse secondary can result from crowding of an atom at the transition state. From such simple rules, KIEs can be interpreted qualitatively to provide valuable information about the nature of atoms being transferred and/or the geometry of transition state for the ratelimiting step. In addition, KIEs can also be calculated in detail from the combination of theoretical calculations and conventional transition state theory, and this can allow a more quantitative interpretation of KIEs.

Methodology for Determining Kinetic Isotope Effects

For the reasons described above, kinetic isotope effects are a powerful tool for studying reaction mechanisms, but the precise and accurate measurement of KIEs can be difficult. Commonly, isotope effects are measured either non-competitively or competitively.

Non-competitive KIEs are determined by separately measuring the rate constants for a reaction for unlabeled material and isotopically labeled material, with the ratio of these two rate constants yielding the KIE, eq 1-3. This is simple in principle but there are notable obstacles in practice, including, the tedious and difficult synthesis of isotopically labeling substrates, the challenge of precisely and accurately measuring the absolute kinetics for a reaction, and the difficulty of controlling and maintaining identical reaction conditions for separate reaction vessels.

Methods that competitively determine isotope effects alleviate some of the limitations associated with non-competitive measurements. First, because both isotopic substrates are in the same reaction flask, they are subjected to the same reaction
conditions. Qualitatively the unlabeled and labeled will react identically, but quantitatively they should react at different rates. As a reaction proceeds toward completion, the product becomes enriched in the faster reacting isotopomer while the reactants become enriched in the slower reacting isotopomer. The KIE can then be calculated from the change in the isotopic composition and an accurate measurement of the percent conversion. This method is often preferred because it limits experimental errors.

Competitive measurements require the accurate and precise measurement of the ratio of labeled and unlabeled material. Three techniques are commonly employed, scintillation counting, isotopic mass spectrometry, and NMR methodology. The last of these is employed and developed further in this dissertation.

NMR spectra exhibit separate peaks for each non-equivalent position in a molecule and the size of the peaks is proportional to the amount of the particular isotope being examined at each position. Because NMR is nucleus-specific, it can be used to look at trace nuclei in the presence of large amounts of alterntive isotopes. For almost two decades, it has been recognized that these properties of NMR allow its use to determine deuterium kinetic isotopic effects at natural abundance, at least in special cases. ${ }^{8}$

In 1995, the Singleton group reported a general methodology for the simultaneous determination of KIEs at natural abundance. ${ }^{5}$ This method takes advantage of nature's labeling of all substrates to a certain percentage, and avoids the laborious synthesis of labeling substrates. Conveniently, it allows for the combinatorial determination of ${ }^{2} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ KIEs at every atomic position within a molecule very effeciently and precisely.

The Singleton methodology takes advantage of the previously discussed idea that as a reaction proceeds the product will become enriched in faster reacting isotopomers and the starting material will become enriched in slower reacting isotopomers. After taking the reaction to a high conversion (usually $>70 \%$), the unreacted isotopically enriched starting material is recovered and purified. High precision NMR spectra of identically prepared samples are obtained for the enriched starting material and compared to a standard sample containing starting material of the same lot that has not been exposed to the reaction conditions. An atom whose isotopic composition is assumed not to be changing over the course of the reaction, $\mathrm{KIE}=1$, and is distant from the reaction center is typically chosen as the internal standard. The changes in isotopic composition of the other atoms are obtained from comparing changes in the integration to that of the internal standard. By NMR methods, the relative isotopic composition $\left(\mathrm{R} / \mathrm{R}_{0}\right)$ is determined by calculating the ratio of the average integrations. The KIE can then be calculated from $\mathrm{R} / \mathrm{R}_{\mathrm{O}}$ and the fractional conversion.

Experimental Kinetic Isotope Effects

Standard studies measuring competitive intermolecular KIEs assume that two isotopic molecules \mathbf{A} and \mathbf{B} with concentration a and b undergo identical irreversible reactions, ${ }^{6}$ then the reaction rates can be expressed as eq 1-8 and 1-9 and the ratio of the rate constants is expressed in eq 1-10.

$$
\begin{align*}
& \mathrm{A}_{(1)}+\mathrm{B} \xrightarrow{\mathrm{k}_{1}} \mathrm{P}_{(1)} \\
& \mathrm{A}_{(2)}+\mathrm{B} \xrightarrow{\mathrm{k}_{1}} \mathrm{P}_{(2)} \\
& -\frac{\mathrm{da}_{1}}{\mathrm{dt}}=\mathrm{k}_{1} \mathrm{a}_{1} \mathrm{~b} \tag{1-8}\\
& -\frac{\mathrm{da}_{2}}{\mathrm{dt}}=\mathrm{k}_{2} \mathrm{a}_{2} \mathrm{~b} \tag{1-9}\\
& \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\log \left(\frac{\mathrm{a}_{1}}{\mathrm{a}_{1}{ }^{0}}\right)}{\log \left(\frac{\mathrm{a}_{2}}{\mathrm{a}_{2}{ }^{0}}\right)} \tag{1-10}
\end{align*}
$$

The fractional conversion, F , is introduced and defined into the ratio of rates when $\mathrm{a}_{1} / \mathrm{a}_{1}{ }^{0}=1-\mathrm{F}_{1}$ and $\mathrm{a}_{2} / \mathrm{a}_{2}{ }^{0}=1-\mathrm{F}_{2}$. Substitution of the terms in eq $1-10$ yields eq $1-11$, and taking the natural log and rearranging gives eq 1-12.

$$
\begin{align*}
& \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\log \left(1-\mathrm{F}_{1}\right)}{\log \left(1-\mathrm{F}_{2}\right)} \tag{1-11}\\
& \mathrm{F}_{2}=1-\left(1-\mathrm{F}_{1}\right)^{\mathrm{k}_{2} / \mathrm{k}_{1}} \tag{1-12}
\end{align*}
$$

From an experimental analysis the direct ratio of the isotopic composition can be expressed as $a_{2}{ }^{0} / a_{1}{ }^{0}=R_{0}$ and $a_{2} / a_{1}=R$. Substitution of the terms into and solving eqs 1-

10 and 1-11 affords eqs 1-13 and 1-14. Simple rearrangement affords the term used in the calculation of experimental KIE (eq 1-15).

$$
\begin{align*}
& \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\log \left(1-\mathrm{F}_{1}\right)}{\log \left[\left(1-\mathrm{F}_{1}\right) \mathrm{R} / \mathrm{R}_{0}\right]} \tag{1-13}\\
& \mathrm{R} / \mathrm{R}_{0}=(1-\mathrm{F})^{(1 / \mathrm{KIE}-1)} \tag{1-14}\\
& \mathrm{KIE} \tag{1-15}\\
& \text { calcd }
\end{align*}=\frac{\ln (1-\mathrm{F})}{\ln \left[(1-F) \mathrm{R} / \mathrm{R}_{0}\right]} .
$$

In most competitive KIE measurements, the isotopic ratio is small and F_{1} can be replaced by the overall conversion F with a negligible effect on the KIE. Error analysis of eq 1-13 indicates that the uncertainty in the KIE decreases significantly as F increases, in spite of the relatively low precision of NMR integrations. ${ }^{5}$ This is because the changes in isotope composition in recovered starting material can greatly exceed the size of the isotope effect. Figure 1-2 illustrates the relationship between the isotopic ratio, $\mathrm{R} / \mathrm{R}_{0}$, and the fractional conversion, F .

Figure 1-2. Illustrates the relationship between the isotopic ratio, R / R_{0}, and the fractional conversion, F, and their effect on the KIE.

Predicting Kinetic Isotope Effects

The ability to computationally explore complex reaction mechanisms is improving rapidly. Applying density functional theory calculations in combination with experimental KIEs provides a powerful tool in elucidating a reaction path. Theoretical calculations can now be applied to reasonably large systems which not only allow for the
detailed exploration of a reaction mechanism, but also a quantitative interpretation of the experimental isotope effects.

Kinetic isotope effects for each transition state located along a reaction path can be predicted from the scaled vibrational frequencies ${ }^{9}$ by apply conventional transition state theory using a method described by Bigeleisen and Mayer. ${ }^{10}$ Conventional transition state theory makes no allowance for tunneling, and the prediction of KIEs is improved by including a one-dimensional tunneling correction (eqs 1-16-1-18). ${ }^{11}$ Such predictions have proven highly accurate in reactions not involving hydrogen transfer, as long as the calculation accurately depicts the mechanism and the transition state geometries. ${ }^{2}$

$$
\begin{align*}
& \left(\mathrm{S}_{2} / \mathrm{S}_{1}\right) \mathrm{f}_{\mathrm{GS}}=\prod_{\mathrm{i}}^{3 \mathrm{~N}-6}\left\{\frac{\mathrm{u}_{\mathrm{i}(2)}}{u_{i(1)}} \times \frac{\operatorname{EXP}\left[(1 / 2) \mathrm{u}_{\mathrm{i}(1)}\right]}{\operatorname{EXP}\left[(1 / 2) \mathrm{u}_{\mathrm{i}(2)}\right]} \times \frac{1-\operatorname{EXP}\left(-\mathrm{u}_{\mathrm{i}(1)}\right)}{1-\operatorname{EXP}\left(-\mathrm{u}_{\mathrm{i}(2)}\right)}\right\} \tag{1-16}\\
& \left(\mathrm{S}_{2} / \mathrm{S}_{1}\right) \mathrm{f}_{\mathrm{TS}}=\prod^{3 \mathrm{~N}^{\ddagger}-6}\left\{\xrightarrow{\mathrm{u}_{\mathrm{i}}{ }^{\ddagger}{ }_{(2)}} \mathrm{X} \xrightarrow{\operatorname{EXP}\left[(1 / 2) \mathrm{u}_{\mathrm{i}}{ }^{\ddagger}{ }_{(1)}\right]} \mathrm{X} \xrightarrow{1-\operatorname{EXP}\left(-\mathrm{u}_{\mathrm{i}}{ }^{\ddagger}{ }_{(1)}\right)}\right\} \tag{1-17}\\
& i \quad u_{i(1)} \quad \operatorname{EXP}\left[(1 / 2) u_{i(2)}\right] \quad 1-\operatorname{EXP}\left(-u_{i(2)}\right) \\
& \mathrm{KIE}_{\mathrm{TST}}=\frac{v_{\mathrm{L}(1)}^{\ddagger}}{v_{\mathrm{L}(2)}^{\ddagger}} \times \frac{\left(\mathrm{S}_{2} / \mathrm{S}_{1}\right) \mathrm{f}_{\mathrm{GS}}}{\left(\mathrm{~S}_{2} / \mathrm{S}_{1}\right) \mathrm{f}_{\mathrm{TS}}} \tag{1-18}
\end{align*}
$$

where
$\mathrm{u}_{\mathrm{i}}=\mathrm{h} v_{\mathrm{i}} / \mathrm{kT}$
$v_{i}=$ frequency of the $i^{\text {th }}$ vibrational mode
k : Boltzmann constant
h: Planck's constant
T : temperature in Kelvin
f: force constant

Conclusion

Despite the simplicity in the approach, transition state theory can be effectively and accurately applied in the prediction of isotope effects. The Singleton group has effectively used a combination of experimental KIEs and computational theory as an extremely powerful tool in mechanistic investigations. This dissertation focuses on applying the above described theories and methodology to obtain a qualitative and quantitative picture of the transition state for the rate-limiting step. This aid will provide valuable clues in determining a reaction's path.

CHAPTER II

ISOTOPE EFFECTS AND THE NATURE OF SUBSTRATE

SELECTIVITY IN THE IRIDIUM CATALYZED BORYLATION OF ARYL C-H BONDS

Introduction

Carbon-hydrogen bonds are the most ubiquitous in Nature. The selective functionalization of inert $\mathrm{C}-\mathrm{H}$ bonds is a long standing goal with far reaching implications. Hydrocarbons are the major constituent of petroleum feedstock, but currently there lacks efficient processes for their direct conversion into more valuable chemical commodities. Our fundamental understanding of the limited chemical reactivity of C-H bonds can be attributed to their high bond energies, low acidity, and low basicity. Despite the difficulty in cleaving inactivated C-H bonds, relative to carbon-halogen bonds, they are not completely inert.

The selective functionalization of $\mathrm{C}-\mathrm{H}$ bonds is attractive owing to their ubiquity in organic molecules. This was recognized as early as 1834, when Mitscherlich reported on nitrations of substituted benzenes. ${ }^{12}$ Indeed, the rules of electrophilic aromatic substitution that are taught today were established in the early $20^{\text {th }}$ century. ${ }^{13}$ Nevertheless, significant challenges in the functionalization of aromatic $\mathrm{C}-\mathrm{H}$ bonds remain despite important advances, such as nucleophilic aromatic substitution and
directed ortho metalation. ${ }^{14,},{ }^{15}$ The development of new processes that complement existing methods are critical because functionalized aromatic compounds pervade chemistry, biology, and materials science.

Nature has formulated a process for the direct oxidation of hydrocarbons. Enzymes known as monooxygenases, such as methane monooxygenase (MMO) ${ }^{16}$ and cytochrome P450 monooxygenase (P450), ${ }^{17}$ have attracted attention because of their ability to oxidize saturated hydrocarbons. Despite intense study on the mechanisms of MMO and P450, agreement is limited as to the definitive mechanistic details. However, iron is known to play a critical role in the enzyme's catalysis, which has led to the intense study of structural and fuctional mimics performing similar processes. ${ }^{18}$

Transformations of alkanes have been limited to radical processes in the gas and solution phase, until recently. The activation of C-H bonds by transition metal complexes has been a major goal in organometallic chemistry, and over the past 20 years, metal-mediated C-H activation has emerged. ${ }^{19}$ While C-H activation is requisite for generating species with M-C bonds, catalytic examples that further elaborate the MC bond selectively are limited. ${ }^{20,21,22,23}$

The role of transition metals in the elaboration of $\mathrm{C}-\mathrm{H}$ bonds has developed more recently. ${ }^{24}$ While Chatt reported the first $\mathrm{C}-\mathrm{H}$ oxidative addition to a transition metal in $1965,{ }^{25}$ the implications for aromatic $\mathrm{C}-\mathrm{H}$ functionalization were not evident until later when Ittel et al. reported the oxidation addition of toluene to low valent iron. ${ }^{26}$ Specifically, they found the activation of toluene's aromatic $\mathrm{C}-\mathrm{H}$ bonds to be strongly preferred over the weaker benzylic $\mathrm{C}-\mathrm{H}$ bonds. In terms of regioselectivity, meta and
para aryl $\mathrm{C}-\mathrm{H}$ insertion products formed in a 2:1 ratio. The absence of ortho activation and the statistical mixture of meta and para isomers suggested that the regiochemistry of $\mathrm{C}-\mathrm{H}$ insertion was sterically determined. This selectivity was particularly significant since it complemented electrophilic aromatic substitution and directed ortho metalation whose regioselectivities have electronic origins.

Despite numerous examples of sterically directed C-H insertion that followed Ittel's work, it was not until 1998, when Berry disclosed Rh-catalyzed silylation of mxylene at the 5-position, that this feature was deployed in a catalytic system. ${ }^{27}$ Unfortunately, the substrate scope in this system was limited. ${ }^{28}$

The fundamental mechanistic processes for C-H bond activation have been studied extensively and are well developed in many stoichiometric reactions. Several pathways for the activation of C-H bonds have been postulated and studied (Figure 2-1), including (i) oxidative addition of R-H to the transition metal, ${ }^{29}$ (ii) σ bond metathesis between MR^{\prime} and $\mathrm{R}-\mathrm{H},{ }^{30}$ (iii) 1,2-addition of $\mathrm{R}-\mathrm{H}$ to $\mathrm{M}=\mathrm{X}\left(\mathrm{X}=\mathrm{O}, \mathrm{NR}, \mathrm{CR}_{2}\right)^{31}$ (iv) electrophilic activation of M-X ($\mathrm{X}=$ halide, hydroxide, triflate, ect. $)$ and $\mathrm{R}-\mathrm{H}$ to generate $\mathrm{M}-\mathrm{R}$ and HX , and (v) metalloradical activation. ${ }^{32}$

Oxadative Addition

Sigma-bond Metathesis

$\mathrm{L}_{\mathrm{n}} \mathrm{M}^{\mathrm{X}}-\mathrm{R}+\mathrm{R}^{\prime}-\mathrm{H} \longrightarrow \mathrm{L}_{\mathrm{n}} \mathrm{M}^{\mathrm{X}}-\mathrm{R}^{\prime}+\mathrm{R}-\mathrm{H}$

1,2 Addition

Electrophilic Activation

$\mathrm{L}_{\mathrm{n}} \mathrm{M}^{\mathrm{X}}-\mathrm{X}+\mathrm{R}-\mathrm{H} \longrightarrow \mathrm{L}_{\mathrm{n}} \mathrm{M}^{\mathrm{X}}-\mathrm{R}^{\prime}+\mathrm{H}-\mathrm{X} \quad \mathrm{X}=$ halide, hydroxide, triflate, ect.

Metalloradical Activation

$\left\{(\text { porphyrin }) \mathrm{Rh}^{\mathrm{II}}\right\}_{2} \rightleftharpoons 2$ (porphyrin) $\mathrm{Rh}^{\mathrm{II}} \bullet \xrightarrow{\mathrm{R}-\mathrm{H}}$ (porphyrin) $\mathrm{Rh}^{\mathrm{II}}(\mathrm{R})+($ porphyrin $) \mathrm{Rh}^{\mathrm{III}}(\mathrm{H})$
Figure 2-1. Several of the proposed pathways for the activation of C-H bonds.

Despite the tremendous progress with stoichiometric activations, the challenge to develop catalytic systems that could activate and selective functionalize C-H bonds for practical applications remained a "Holy Grail". In 1994, Hartwig et al. computationally determined the bond dissociation energies (BDEs) for a series of boranes. ${ }^{33}$ From the calculated BDEs for $\mathrm{B}-\mathrm{H}, \mathrm{C}-\mathrm{H}$, and $\mathrm{B}-\mathrm{C}$ bonds, the synthesis of alkyl boronic esters directly from boranes and alkanes should be thermodynamically feasible because the transformation is essentially thermoneutral (eq 2-1).

$$
\begin{align*}
& \mathrm{CH}_{4}+\mathrm{HBCat} \rightleftharpoons \mathrm{CH}_{3} \mathrm{BCat}+\mathrm{H}_{2} \quad \Delta \mathrm{H}^{\circ}=-2.1 \mathrm{kcal} / \mathrm{mol} \tag{2-1}\\
& \mathrm{CH}_{4}+\mathrm{HBCat} \rightleftharpoons \mathrm{CH}_{3} \mathrm{BCat}+\mathrm{H}_{2} \quad \Delta \mathrm{H}^{\circ}=-3.1 \mathrm{kcal} / \mathrm{mol} \tag{2-2}
\end{align*}
$$

Applications utilizing boronic acids or esters in Miyaura-Suzuki cross-coupling are expansive and demonstrate the catalytic significance of eq 2-1 and eq 2-2. ${ }^{34}$ Typically, alkylboron or arylboron reagents are synthesized in multistep processes (Figure 2-2).

Traditional Method

Suzuki et al.

Direct Borylation

Figure 2-2. Methods for synthesizing arylboranes.

A substantial advance in recent years has been the development of the direct borylations of hydrocarbons. Borylations have been mediated by iron, ${ }^{35},{ }^{36}, 37$ ruthenium, ${ }^{35}$ tungsten, ${ }^{35}$ manganese,,${ }^{37}$ molybdenum, rhenium, ${ }^{37,}{ }^{38}$ rhodium, ${ }^{39},{ }^{40},{ }^{41},{ }^{42}$ and iridium ${ }^{39,}{ }^{43},{ }^{44},{ }^{45}, 46,47,{ }^{48}, 49$ complexes, and efficient catalytic systems have been developed. This diversity of metal complexes and the versatility of the products suggest that a very rich chemistry of these reactions is emerging.

In 1999, Smith and coworkers reported a thermal, Ir-catalyzed conversion of benzene and pinacolborane (HBPin) to phenylpinacolatoborane (PhBPin) and
dihydrogen. ${ }^{43}$ Smith et al. discovered substantial amounts of arylborone products produced from solvent activation while investigating the stoichiometric $\mathrm{B}-\mathrm{C}$ bond formation of pre-catalyst $\mathrm{Cp} * \operatorname{Ir}\left(\mathrm{PMe}_{3}\right)(\mathrm{Ph})(\mathrm{H})$ and HBPin in $\mathrm{C}_{6} \mathrm{D}_{6}{ }^{43}$ Subsequent characterization and synthesis of the active organometallic borane complex, $\mathrm{Cp} * \operatorname{Ir}\left(\mathrm{PMe}_{3}\right)(\mathrm{BPin})(\mathrm{H})$, led to development of the first catalytic borylation of arenes. Intrigued by Marder's synthesis of of $\left(\eta^{6}-\operatorname{arene}\right) \operatorname{Ir}(\mathrm{BCat})_{3}$ from (Ind) $\operatorname{Ir}(\operatorname{cod})$ in HBCat in arene solvents, ${ }^{50}$ led to Smith et al. developing an analogous route that is catalytically viable and quantitatively forms arylboranes. ${ }^{44}$ The reaction exhibits excellent chemoselectivity and interesting regioselctivity trends. ${ }^{48}$ The borylation does not follow traditional electrophilic aromatic substitution patterns. Mono-substituted arenes yield a mixture of ortho, meta, and para regioisomers; interestingly, meta substitution is favored. The borylations seem to be sterically directed. ${ }^{51}$ These direct borylations have allowed for the simple synthesis of usually difficult arylboranes that can be used in the production of more complex structures. ${ }^{44}$

Although the initial catalytic system was inefficient, it was nevertheless the first thermal conversion of its type. Subsequent work showing that chemoselectivities in Ircatalyzed transformations ${ }^{40}$ were superior to those arising from a seemingly more efficient Rh system ${ }^{39}$ provided the impetus to identify the catalytically relevant species in the Ir catalytic manifold. In 2002, Smith and coworkers reported the results of these efforts, which strongly implicated $\mathrm{Ir}^{\text {III }}$ phosphinoboryl complexes as the species responsible for catalysis. ${ }^{44}$ Now generated from much more efficient precatalysts, the bisphosphine ${ }^{44}$ and closely related dipyridyl Ir species ${ }^{46}$ are efficient and compatible
with a broad range of functional groups. Consequently, Ir-catalyzed borylation is emerging as a practical means of functionalizing sp^{2}-hybridized $\mathrm{C}-\mathrm{H}$ bonds in aromatic and heteroaromatic molecules. ${ }^{44,46,47,48,52,53,54,55,56,57,58,59}$

The unique features of Ir-catalyzed borylations make the quest for a detailed understanding of its mechanism an important one. To date the most thorough computational study is the one reported by Sakaki and co-workers, ${ }^{60}$ and the most detailed mechanistic study is that recently disclosed by Hartwig and co-workers. ${ }^{61}$ Though these two studies agree on certain common features, there are points of computational and experimental dissonance. For example, Sakaki's computed barrier for the $\mathrm{C}-\mathrm{H}$ insertion is nearly $10 \mathrm{kcal} / \mathrm{mol}$ higher than the barrier Hartwig estimates from his experimental data.

Further features of Ir-mediated borylations have yet to be addressed. For instance, even though steric effects dominate, electronic effects can contribute significantly to regioselectivities. Understanding the origins of these selectivities is critical to designing improved catalysts for the functionalization of more advanced substrates. For this reason, we have undertaken a unified computational and experimental approach to shed additional light on the underlying mechanism. In particular, we have focused on computationally evaluating ${ }^{13} \mathrm{C}$ and ${ }^{2} \mathrm{H}$ isotope effects and regioselectivities for monosubstituted benzenes, determined experimentally, in the context of potential mechanisms for Ir-mediated $\mathrm{C}-\mathrm{H}$ functionalizations. This contribution is based on the findings from this study.

A critical issue in the ultimate utility of catalytic borylations is the understanding and control of selectivity. In some ways, these reactions are surprisingly selective, for example in specifically borylating methyl groups of alkanes. However, borylations of arenes are surprisingly unselective, generating mixtures of ortho, meta, and para isomers from mono-substituted arenes (Scheme 2-2). ${ }^{46}$ One might expect C-H activation in arenes to be in essence an electrophilic process, but the regioselectivity differs greatly from conventional electrophilic aromatic substitutions. A detailed mechanistic understanding of selectivity in these reactions has been lacking.

Scheme 2-2

Examples of catalytic reactions that will selective functionalize the terminal position of a linear alkane have been limited to the photochemical and thermal production of alkylboranes. ${ }^{38,42}$ The thermal reaction between n-octane and pinacolborane (HBpin) catalyzed by either iridium or rhodium transition metal complex exploits the regiospecific borylation of n-alkane methyl groups to afford a terminal alkylboronate ester. Interestingly, the linear product is not the result of an isomerization
from initially formed internal alkylboronate ester, but the steric preference for formation of a linear transition state metal-alkyl complex. ${ }^{39,}{ }^{62,}, 63$

Despite the importance of the iridium-catalyzed aryl borylation, the mechanism and the structure of the active catalytic species remains unknown. Several mechanistic proposals have been suggested, but none with fruitful evidence as to the catalytic cycle or the nature of selectivity for the C-H activation. ${ }^{44}$ Several groups agree that C-H bond activation is rate-limiting, but their ${ }^{2} \mathrm{H}$ isotope effects are difficult to interpret. ${ }^{35,44} \mathrm{~A}$ more quantitative and qualitative picture of the transition state for the rate-determining step will confirm or disprove previous postulates. Determining ${ }^{13} \mathrm{C}$ KIEs should alleviate isotopic scrambling and allow for the determination of the catalytic cycle as well as understanding the nature of the selectivity for $\mathrm{C}-\mathrm{H}$ activation.

We describe here a study of the mechanism of iridium-catalyzed borylation of arenes with pinacolborane (HBpin) using a combination of kinetic isotope effects (KIEs) and DFT calculations. The results delineate a surprising rate-limiting step and provide insight into the nature of selectivity in these reactions.

Results

Experimental

Experimental ${ }^{13}$ C Kinetic Isotope Effects. The measurement of high-precision and high-accuracy kinetic isotope effects by a competition reaction typically requires a comparison of product from a reaction taken to partial conversion with product from a clean reaction taken to complete conversion, or else a comparison of starting material
from a reaction taken to high conversion with original starting material. Because many C-H activation reactions require a large excess of reactant, with the products subject to further conversions in reactions taken to high conversion, many such reactions, particularly including borylations, are not readily amendable to best-quality isotope effect measurements. However, the selective borylations of arenes catalyzed by iridium complexes work well in this regard. For example, the borylation of 1,3-dibromobenzene (1) with pinacolborane (HBPin) using (Ind)Ir(cod)/dppe as catalyst precursor occurs cleanly in nonane at $150^{\circ} \mathrm{C}$ and affords the borylarene 2 as the only observable product. m-Xylene (3) is less reactive and subject to reaction at the benzylic methyl groups, but its borylation to afford 5 can still be taken to over 70% conversion with only $\approx 5 \%$ reaction at the methyl groups. ${ }^{64}$

The complete set of ${ }^{13} \mathrm{C}$ kinetic isotope effects for the borylations $\mathbf{1}$ and $\mathbf{3}$ were determined at natural abundance by NMR methodology. Two borylations of $\mathbf{1}$ employing $2 \mathrm{~mol} \%$ of (Ind)Ir(cod), $2 \mathrm{~mol} \%$ of dppe, and 1.5 eq of HBPin were taken to 75 and 73.5% conversion at $150{ }^{\circ} \mathrm{C}$. The unreacted $\mathbf{1}$ was recovered after an aqueous
workup followed by fractional distillation, then analyzed by ${ }^{13} \mathrm{C}$ NMR. Changes in isotopic composition relative to the original $\mathbf{1}$ were determined using the aromatic para carbon as a standard, assuming that its isotopic composition does not change. From the changes in isotopic composition, the ${ }^{13}$ C KIEs were calculated as previously described. ${ }^{5}$ An analogous process was applied in a reaction of 3 taken to 73% conversion.

The isotope effects obtained are summarized in Figure 1. The $\operatorname{Ind}(\operatorname{Ir})(\operatorname{cod})$ catalyzed borylation with $\mathbf{1}$ and $\mathbf{3}$ exhibits a substantial ${ }^{13} \mathrm{C}$ KIE at the meta aryl carbon and negligible KIEs at the remaining aromatic ring carbons. The large isotope effect at the meta aryl carbon qualitatively suggests a substantial bond breaking or bond formation to this carbon in the rate-limiting step. In fact, the ${ }^{13} \mathrm{C}$ KIEs by themselves would not qualitatively delineate between $\mathrm{C}-\mathrm{H}$ bond breaking or $\mathrm{C}-\mathrm{B}$ bond formation. The isotope effects observed for the (Ind) $\operatorname{Ir}(\operatorname{cod})$ catalyzed borylation with $\mathbf{1}$ and $\mathbf{3}$ are within experimental error of another suggesting a similar transition state geometry.

Figure 2-3. ${ }^{13} \mathrm{C}$ Kinetic isotope effects $\left(\mathrm{k}_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{C}}, 150{ }^{\circ} \mathrm{C}\right)$ for borylations of $\mathbf{1}$ and 3 with pinacolborane using (Ind) $\operatorname{Ir}($ cod $) /$ dppe as catalyst precursor. Numbers in parentheses are 95% confidence limits for the last digit.

H/D KIEs and H/D Exchange. Ishiyama, Miyaura, and Hartwig have reported H/D KIEs for both stoichiometric and catalytic borylations mediated by the bipyridine-
ligated iridium trisboryl complex 5, based on both competition reactions $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right.$ versus $\mathrm{C}_{6} \mathrm{D}_{6}$ or $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ versus $o-\mathrm{C}_{6} \mathrm{D}_{4} \mathrm{Cl}_{2}$) or absolute kinetics $\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}\right.$ versus o$\left.\mathrm{C}_{6} \mathrm{D}_{4} \mathrm{Cl}_{2}\right) .{ }^{46,61}$ All of the H/D KIEs observed have been within a range associated with primary hydrogen isotope effects, suggesting rate-limiting cleavage of the aryl $\mathrm{C}-\mathrm{H}$ bond. However, the variability of the observed KIEs has been notable: 2.0 ± 0.4 for a o$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} / o-\mathrm{C}_{6} \mathrm{D}_{4} \mathrm{Cl}_{2}$ competition reaction, 3.3 ± 0.6 for a o $-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} / o-\mathrm{C}_{6} \mathrm{D}_{4} \mathrm{Cl}_{2}$ absolute kinetics, and ranging from 3.6 ± 0.2 to 5.0 ± 0.4 for catalytic and stoichiometric reactions of 5 with $\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{C}_{6} \mathrm{D}_{6}$. Such a large variation in the KIEs is unusual and suggests experimental or mechanistic complexities. Our results will define two such complexities.

5
The H/D KIEs here have been measured in several ways, using (Ind) $\operatorname{Ir}(\operatorname{cod}){ }^{65}$ (6) / dmpe, $6 / 2 \mathrm{PMe}_{3}$, or $(\mathrm{MesH}) \operatorname{Ir}(\mathrm{Bpin})_{3}{ }^{66}(7) / 2 \mathrm{PMe}_{3}$ as pre-catalysts in catalytic reactions of HBPin or using fac- $\left(\mathrm{PMe}_{3}\right)_{3} \operatorname{Ir}(\mathrm{Bpin})_{3}{ }^{66}$ (8) in stoichiometric thermolysis reactions. In all cases, the borylation reaction was carried out at $150^{\circ} \mathrm{C}$ using excess arene as solvent. The experiments using PMe_{3} as the phosphine co-ligand under catalytic conditions were undertaken to facilitate comparison with the stoichiometric reaction employing the fully characterized complex 8. Both intermolecular and intramolecular KIEs were measured, the former using a 1:1 mixture of $\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{C}_{6} \mathrm{D}_{6}$,
and the latter using 1,3,5-trideuterobenzene. Intermolecular KIEs are the measure of the impact of isotopic substitution on the overall reactivity of a molecule, reflecting the transition state for the first irreversible step undergone by the arene substrate in a catalytic reaction. Intramolecular KIEs reflect the relative facility of two branches of a mechanism that are equivalent, except for isotopic substitution. As such, intramolecular KIEs characterize the selectivity-determining step in a reaction, the step determining regioselectivity in the current case. When the intermolecular and intramolecular KIEs are both determined at the same transition state, the two should correspond in a logical fashion, though they will not necessarily be equal due to secondary isotope effects.

The results are summarized in Table 1. In each case the H/D KIE is substantial and consistent with a primary KIE resulting from rate-limiting and selectivitydetermining C-H bond cleavage. The large observed KIE in borylations of $\mathrm{C}_{6} \mathrm{H}_{6}$ / $\mathrm{C}_{6} \mathrm{D}_{6}$ argue against rate-determining arene coordination, which Jones found to be the case for $\mathrm{C}-\mathrm{H}$ activations mediated by $\mathrm{Rh}(\mathrm{I})$ intermediates. ${ }^{67}$ The similar KIEs for borylations in 1,3,5-trideuterobenzene corroborate this conclusion - if arene coordination was even partially rate limiting, it would be expected that the intramolecular KIE would be larger than the intermolecular KIE. The general similarity of the KIEs observed in the stoichiometric reactions of $\mathbf{8}$ with those observed in the catalytic reactions supports is consistent with a common active species in $\mathrm{C}-\mathrm{H}$ activation.

However, two trends in the magnitude of the KIEs should be noted. The first is that the H / D KIEs with the dmpe and PMe_{3} are all smaller than those observed in
reactions of 5 with $\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{C}_{6} \mathrm{D}_{6}$. The second is that the intramolecular KIEs observed using 1,3,5-trideuterobenzene are all somewhat smaller than the intermolecular KIEs observed using $\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{C}_{6} \mathrm{D}_{6}$.

Table 2-1. Intermolecular and intramolecular H/D KIEs for borylation reactions at 150 ${ }^{\circ} \mathrm{C}$.

Conditions	Substrate ${ }^{\text {a }}$	KIE
$\begin{aligned} & 0.02 \text { (Ind) } \operatorname{Ir}(\mathrm{COD})(\mathbf{6}): \\ & 0.02 \text { dmpe }: 1 \mathrm{HBPin} \end{aligned}$	$1: 1 \mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{C}_{6} \mathrm{D}_{6}$	2.37 ± 0.10
0.02 (Ind) $\operatorname{Ir}(\mathrm{COD})(6)$ $0.04 \mathrm{PMe}_{3}: 1 \mathrm{HBPin}$	$1: 1 \mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{C}_{6} \mathrm{D}_{6}$	$2.28{ }^{\text {b }}$
	1,3,5-C $\mathrm{C}_{6} \mathrm{D}_{3} \mathrm{H}_{3}$	$1.94{ }^{\text {c }}$
$\begin{aligned} & 0.02(\mathrm{MesH}) \operatorname{Ir}(\mathrm{Bpin})_{3}(7): \\ & 0.04 \mathrm{PMe}_{3}: 1 \mathrm{HBPin} \end{aligned}$	$1: 1 \mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{C}_{6} \mathrm{D}_{6}$	$2.29{ }^{\text {b }}$
	1,3,5-C $\mathrm{C}_{6} \mathrm{D}_{3} \mathrm{H}_{3}$	$2.06{ }^{\text {c }}$
fac-($\left.\mathrm{PMe}_{3}\right)_{3} \mathrm{Ir}(\mathrm{Bpin})_{3}(\mathbf{8})$	$1: 1 \mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{C}_{6} \mathrm{D}_{6}$	$2.53{ }^{\text {b }}$
	1,3,5-C ${ }_{6} \mathrm{D}_{3} \mathrm{H}_{3}$	$1.93{ }^{\text {c }}$

${ }^{\text {a }}$ The substrate was used in a 15 - to 22 -fold excess versus the HBPin for the catalytic reactions and used in a 140 -fold excess versus the $f a c-\left(\mathrm{PMe}_{3}\right)_{3} \operatorname{Ir}(\mathrm{Bpin})_{3}$ for stoichiometric thermolysis. ${ }^{\mathrm{b}}$ The intermolecular KIE measurements were based the ratio of the baseline-separated peaks for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Bpin}$ and $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Bpin}$ in gas chromatographic analysis. ${ }^{\text {c }}$ The intramolecular KIE measurements were based on ${ }^{1} \mathrm{H}$ NMR integrations for the aromatic hydrogens in the crude mixture of $\mathrm{C}_{6} \mathrm{D}_{3} \mathrm{H}_{2} \mathrm{BPin}$ and $\mathrm{C}_{6} \mathrm{D}_{2} \mathrm{H}_{3} \mathrm{BPin}$.

A complicating factor in the observation of H/D KIEs in these reactions was brought to light in an attempt to measure the isotope effect for borylation of m-xylene. m-Xylene-5-d (9) with $\approx 80 \%$ deuterium at C 5 was prepared by forming the Grignard
reagent from 5-bromo-m-xylene, followed by quenching with $\mathrm{D}_{2} \mathrm{O}$. This material was borylated to $40-50 \%$ conversion using (Ind) $\operatorname{Ir}(\operatorname{cod}) /$ dmpe in dodecane at $150{ }^{\circ} \mathrm{C}$, followed by NMR analysis of the unreacted 9 . Surprisingly, the deuterium incorporation in the recovered 9 was consistently less than that in the original 9 . If a normal primary isotope effect were operative, it might be expected that the deuterium incorporation would increase in recovered 9 . The observed decrease would thus suggest a difficultly rationalized inverse isotope effect. A better explanation for this observation is that the borylation is accompanied by competitive H / D exchange with the HBPin. In a kinetic simulation that assumes that the borylation and H/D exchange have identical rate laws (except for rate constants) and assumes an H/D KIE of 2.3 for borylation, the observed decrease in deuterium incorporation can be modeled if H/D exchange is $8-15$ times slower than borylation.

H/D exchange under these reaction conditions was verified in a study of the borylation of pure $\mathrm{C}_{6} \mathrm{D}_{6}$. In a reaction employing $2 \mathrm{~mol} \%(\operatorname{Ind}) \operatorname{Ir}(\mathrm{Cod}) /$ dmpe versus HBPin with excess (26 equiv) $\mathrm{C}_{6} \mathrm{D}_{6}$ taken to 80% conversion of HBPin at $150{ }^{\circ} \mathrm{C}$, NMR analysis of the reaction mixture revealed that 17% of the H in the original HBPin was present as $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$, and that the ratio of DBPin to HBPin was $3: 1$. The exchange increases at further borylation conversion - at 93% conversion of the HBPin, 20\% of the

H in the original HBPin was present as $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ and the ratio of DBPin to HBPin was 6.7:1. In a kinetic simulation of these results, the observed $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ and DBPin / HBPin ratio could be modeled with H / D exchange roughly 2 - 10 times slower than borylation (the best-fit value depends on the unknown DBPin / HBPin reactivity isotope effect).

The experimental complexity of competitive H/D exchange may account for some of the variability in the other H/D KIE measurements. Because the attempted measurement of the KIE with $\mathbf{9}$ depended on analysis of recovered starting material and because only one deuterium was present, this reaction was highly sensitive to H / D exchange. The KIE measurements with $\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{C}_{6} \mathrm{D}_{6}$ are much less sensitive to exchange, as they depend on product analysis and this analysis cannot distinguish between $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{BPin}$ and $\mathrm{C}_{6} \mathrm{D}_{4} \mathrm{HBPin}$. The measurement with 1,3,5-trideuterobenzene is somewhat more sensitive to exchange than the $\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{C}_{6} \mathrm{D}_{6}$ experiment because H / D exchange in either product or starting material can affect the NMR analysis of the apparent products ratios. Under any circumstances, the operation of competitive H/D exchange will have to be considered in the mechanistic analysis of these reactions.

Theoretical Calculations

Theoretical Calculations. The reaction pathway for the iridium catalyzed borylation was studied in B3LYP calculations employing a SDD basis set and effective core potential on iridium and a $6-31 \mathrm{G}^{* *}$ basis set on all remaining atoms. Calculated energies associated with the catalytic cycle are presented here in two ways, either as potential energy with a zero-point energy correction ($\mathrm{E}+\mathrm{zpe}$) or as a free energy estimate including an estimated relative entropy. Previous work has supported the
ability of these calculations to adequately predict ground-state structures and reasonable mechanistic pathways for transition metal boryl complexes. ${ }^{68,69,70,71}$ The accuracy of these calculations to predict the transition state structures for the iridium catalyzed borylations will be gauged by comparison of the theoretically predicted and experimental isotope effects. Several mechanistic pathways for the iridium-catalyzed borylation of benzene were modeled, but only the cycles that accurately predict the KIEs and are energetically viable will be discussed here.

Smith ${ }^{44}$ proposed a mechanism based upon Marder's ${ }^{42 a}$ synthesis of $\left(\eta^{6}\right.$-arene $) \operatorname{Ir}(\mathrm{BCat})_{3}(\mathrm{Cat}=$ ortho-catecholate $)$ from $(\operatorname{Ind}) \operatorname{Ir}(\mathrm{COD})$. Initial meachanistic studies excluded a simple phosphine dissociative pathway which narrowed possible active catalytic cycles to loss of Cp (Figure 2-4).

Figure 2-4. Proposed catalytic cycles.

Initially we began modeling the Ir (I-III) cycle, until it was discovered that the iridium tris-BPin was catalytically viable. Table 2-2 briefly summarizes some of the Ir (I) $/ \mathrm{Ir}(\mathrm{III})$ and $\operatorname{Ir}(\mathrm{III} / \operatorname{Ir}(\mathrm{V})$ catalysts that were explored along with their corresponding
relative energies and KIEs. Eventhough the calculational models mostly discussed here involve (dmpe) or (bpy) and the tris-BPin, it is our hypothesis that $(\mathrm{dmpe}) \operatorname{Ir}(\mathrm{BPin})_{2}(\mathrm{H})$ or (dmpe) $\operatorname{Ir}(\mathrm{BPin})(\mathrm{H})_{2}$ may be involved in the catalytic cycle. The two species involvement in the reaction is being explored, and we believe they are directly responsible for the experimentally observed deuterium exchange.

Table 2-2. Active catalyts explored for C-H activation.

Initial Catalyst	C-H Activation TS	Relative Energies	Calculated KIE
$C_{P}^{\mathrm{P} / / / / /, \ldots, n} \operatorname{Ir}-\mathrm{H}$		$\begin{gathered} \text { zpe }=9.12 \\ \Delta \mathrm{G}_{423}=8.60 \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C} \mathrm{KIE}=1.017 \\ k_{\mathrm{H}} / k_{\mathrm{D}}=3.218 \end{gathered}$
$C_{\mathrm{P}}^{\mathrm{P} / / / 1 /, \ldots, \mathrm{I}} \mathrm{Ir}-\mathrm{BPin}$		$\begin{gathered} \text { zpe }=9.70 \\ \Delta \mathrm{G}_{423}=9.59 \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C} \mathrm{KIE}=1.016 \\ k_{\mathrm{H}} / k_{\mathrm{D}}=3.230 \end{gathered}$
		$\begin{gathered} \mathrm{zpe}=12.48 \\ \Delta \mathrm{G}_{423}=15.97 \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C} \mathrm{KIE}=1.017 \\ k_{\mathrm{H}} / k_{\mathrm{D}}=3.232 \end{gathered}$
		$\begin{gathered} \mathrm{zpe}=14.37 \\ \Delta \mathrm{G}_{423}=16.70 \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C} \mathrm{KIE}=1.016 \\ k_{\mathrm{H}} / k_{\mathrm{D}}=3.241 \end{gathered}$

The calculational model reactions here were chosen to be reasonably complete, including the use of bypyridine as a model for the ligand in reactions employing dtbpy and dmpe as the ligand or model ligand for reactions employing dmpe, dppe, or PMe_{3} as
ligand. The parent 1,3,2-dioxaborolane, HBeg (eg (ethyleneglycolato) $=\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), was used as a model for HBPin, except as noted. A variety of catalytic cycles were explored, including $\operatorname{Ir}(\mathrm{I}) / \mathrm{Ir}(\mathrm{III})$ cycles and $\operatorname{Ir}(\mathrm{III}) / \operatorname{Ir}(\mathrm{V})$ cycles with various substituent on the iridium - important aspects of the cycles judged non-experimentally relevance are given in the Appendix. The cycles described here involve iridium coordinated to a chelating ligand (dmpe or bpy in the calculations) and three BPins (three 1,3,2dioxaborolanes in the calculations), as in $\mathbf{1 0}$ and $\mathbf{2 0}$, as a key intermediate. Such cycles have received substantial support from the mechanistic work of Hartwig and coworkers, and will be found here to be consistent with our experimental studies in a variety of ways. Extensive effort was made to broadly explore the stereochemical diversity of possible minima and transition structures for the catalytic cycle. However, the conformational complexity of the cycles, particularly with dmpe as ligand, required some selection of conformations considered energetically competitive. For example, a total of five transition structures were located for C-H activation in the reaction of $\mathbf{1 0}$ with benzene, all within $2 \mathrm{kcal} / \mathrm{mol}$ of the best structure 11. A great many more possibilities might be envisioned, arising from the cant of the chelating dmpe and possible orientations and arrangements of the Beg ligands and the incoming benzene versus the dmpe, but these possibilities were excluded based either on observations with the five located structures or based on model studies employing $\mathrm{H}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PH}_{2}$ as ligand. The discussion here will focus on the key structures for the lowest-energy catalytic cycle - higher-energy structures and mechanistically minor stationary points are given in the Appendix.

The preferred structure for $(\mathrm{dmpe}) \operatorname{Ir}(\mathrm{Beg})_{3}$ is the square pyramidal 10 (Figure 2). The empty axial site of $\mathbf{1 0}$ is not electrophilic - a complex of benzene at this site was located (see the Appendix) but it was extremely loose with an $\operatorname{Ir}-\mathrm{C}$ distance of $3.44 \AA$. At a complexation energy of $-4.6 \mathrm{kcal} / \mathrm{mol}(\mathrm{E}+\mathrm{zpe})$, it is questionable whether such a complex is a real minimum on a free energy surface. The C-H activation step faces the highest barrier in the catalytic cycle at $19.7 \mathrm{kcal} / \mathrm{mol}(\mathrm{E}+$ zpe $)$. The transition structure 11 for C-H activation is quite late with a nearly complete broken C-H bond (at $1.68 \AA$) and essentially fully formed C-Ir and H-Ir bonds. The C-H activation is not a simple oxidative addition leading to a heptacoordinate $\operatorname{Ir}(\mathrm{V})$ intermediate, but is better described as a metal-assisted σ-bond metathesis involving a hydrogen transfer from carbon to boron to afford the $\eta 2$-HBeg structure 12.

The reductive elimination of PhBeg from 12 might be envisioned as occurring directly by C-B bond formation with the equatorial Beg ligand, but this would require either formation of an $\operatorname{Ir}(\mathrm{I}) \eta 2$ - HBeg intermediate or full oxidative addition of the $\eta 2$ HBeg. The latter occurred in a search for such a transition structure, but the barrier was high ($25.7 \mathrm{kcal} / \mathrm{mol}$) and considerable ligand reorganization is involved (the transition structure itself, in the Appendix, resembles structure 23 in the bpy cycle below). Instead, reductive elimination occurs via transition structure 13 for rotation of the equatorial $\eta 2-\mathrm{HBeg}$ ligand. This places the boron of the $\eta 2-\mathrm{HBeg}$ ligand near the phenyl group. After this rotation, there is no barrier to formation of the PhBeg, so that the transition structure for "reductive elimination" is best understood as simply the
transition structure for ligand rotation. Loss of PhBeg (via a very weak complex - see the Appendix) leads to (dmpe $) \operatorname{Ir}(\mathrm{H})(\mathrm{Beg})_{2} 14$.

The regeneration of $\mathbf{1 0}$ from $\mathbf{1 4}$ starts with axial coordination of HBeg to afford the $\eta 2$-HBeg complex 15. Ligand reorganization can then occur in an intriguing fashion involving transfer of a Beg group from an axial hydride to an equatorial hydride with simultaneous rotation of the transient equatorial $\eta 2-\mathrm{HBeg}$ structure via transition structure 16. No local minimum can be located for a equatorial $\eta 2-\mathrm{HBeg}$ complex unless the boron atom of the $\eta 2-\mathrm{HBeg}$ is rotated away from the axial hydrogen. The process affords the equatorial $\eta 2$-HBeg complex 17. Transfer of a hydrogen from HBeg to the axial hydride via transition structure 18 affords axial $\eta 2-\mathrm{H}_{2}$ complex 19. Loss of H_{2} from 19 reforms 10 . There is no potential energy saddle point associated with the loss of H_{2}, but an approximate canonical variational transition was located and is shown in the Appendix.

The most striking feature of the calculated catalytic cycle with dmpe as ligand is the absence of clear $\operatorname{Ir}(\mathrm{V})$ intermediates. Instead, the catalytic cycle proceeds by a series of $\eta 2 \operatorname{Ir}(\mathrm{III})$ intermediates, though some of the transition states interconverting these intermediates may interestingly be described as $\operatorname{Ir}(\mathrm{V})$. The rate-limiting C-H activation transition structure $\mathbf{1 1}$ is of this type. It is notable for the isotope effect analysis below that the rotational transition structure $\mathbf{1 3}$ is only modestly lower in energy than 11, particularly in the estimated free energy, so that this transition structure is predicted to be partially rate limiting.

Figure 2-5. Key structures and energies ($\mathrm{kcal} / \mathrm{mol}$, relative to $\mathbf{1 0}$ and free starting materials) in the calculated catalytic cycle for the borylation of benzene via (dmpe) $\operatorname{Ir}(\mathrm{Beg})_{3}$. Higher-energy stereoisomers and minor stationary points are given in the Appendix.

The calculated catalytic cycle via (bpy) $\operatorname{Ir}(\mathrm{Beg})_{3}$ (Figure 2-6) differs from that previously described in the thorough work of Sakaki in some ways, but eight of the twelve key structures are effectively identical to those reported by Sakaki. The cycle will be discussed here tersely as a background for comparison with experimental observations. In contrast to the dmpe cycle, the bpy cycle is predicted to involve
intermediates best described as $\operatorname{Ir}(\mathrm{V})$. Thus, the C-H activation transition structure 21, while similar to 11, leads to $\operatorname{Ir}(\mathrm{V})$ intermediate 22. This appears to be true even when the full steric requirements of the BPin ligand are taken into account - optimization of the dodecamethyl $\left[(\mathrm{BPin})_{3}\right]$ analog of 22 retained the $\operatorname{Ir}(\mathrm{V})$ structure with a $\mathrm{B}-\mathrm{H}$ distance of $1.64 \AA$ (see the Appendix). No minimum could be located for the corresponding $\eta 2$-HBPin structure, even in the dodecamethyl analog. Sakaki had reported that reductive elimination of PhBeg occurs by a transition structure equivalent to $\mathbf{2 5}$, but prior to $\mathbf{2 5}$ there is a significant barrier for ligand reorganization, occurring via transition structure 23. Once the ligands are arranged correctly as in intermediate 24, reductive elimination affording PhBeg and 26 is nearly barrierless. The pathway for reformation of 20 from 26 requires formation of the Sakaki $\operatorname{Ir}(\mathrm{Beg})_{3}(\mathrm{H})(\mathrm{H})(\mathrm{bpy})$ intermediate 29 followed by formation of the axial $\eta 2-\mathrm{H}_{2}$ complex 31 and loss of H_{2}, but the formation of $\mathbf{2 9}$ is complicated. It was previously reported that this occurs via a process resembling the conversion of $\mathbf{1 5}$ to 17 , with an equatorial $\eta 2$-HBeg in the key transition structure (see the Appendix). However, the reorganization of 27 to 29 has a $11.8 \mathrm{kcal} / \mathrm{mol}$ lower barrier via transition structure 28 , which is analogous to 23 in the reductive elimination process.

Figure 2-6. Key structures and energies ($\mathrm{kcal} / \mathrm{mol}$) in the calculated catalytic cycle for the borylation of benzene via (bpy) $\operatorname{Ir}(\mathrm{Beg})_{3}$. Higher-energy stereoisomers and minor stationary points are given in the Appendix.

Predicted Isotope Effects. For comparison with the experimental ${ }^{13} \mathrm{C}$ KIEs for borylation of 1 and 4 along with the diverse deuterium KIEs observed in other measurements, the ${ }^{13} \mathrm{C}$ and deuterium KIEs were predicted for the borylation of benzene
based on transition structures 12 and 14. The KIEs associated with these transition structures were predicted from the scaled theoretical vibrational frequencies ${ }^{72}$ using conventional transition state theory by the method of Bigeleisen and Mayer. ${ }^{73}$ For ${ }^{13} \mathrm{C}$ KIEs, tunneling corrections were applied using the one-dimensional infinite parabolic barrier model. ${ }^{74}$ Such KIE predictions have proven highly accurate in reactions not involving hydrogen transfer, so long as the calculation accurately depicts the mechanism and transition state geometry. ${ }^{2}$ Due to the difficulty of accurately predicting the effect of tunneling on deuterium KIEs, no tunneling correction was used for the deuterium KIE predictions. Tunneling generally increases deuterium KIEs, so the deuterium KIEs here will be considered as lower-bound predictions for the calculated transition structures.

The results are summarized in Figure 2-7. The ${ }^{13} \mathrm{C}$ KIE predicted for the C_{1} position of the C-H activation transition structure 12, at 1.017, is somewhat larger than the experimental values with $\mathbf{1}$ and $\mathbf{4}$ of 1.012. In addition, the lower-bound prediction of the deuterium KIE based on transition structure 12 is higher than the $1.9-2.5$ range observed using either $7 / 2 \mathrm{PMe}_{3}$ or $\mathbf{8} / 2 \mathrm{PMe}_{3}$ in catalytic reactions or using 9 in stoichiometric thermolysis reactions. The predicted ${ }^{13} \mathrm{C}$ KIE of 1.013 for C_{1} of transition structure $\mathbf{1 4}$ seems surprisingly large since this carbon is undergoing no bonding change in $\mathbf{1 4}$, but is understandable since the C_{1}-Ir bond is much weaker than the aromatic $\mathrm{C}_{1}-\mathrm{H}$ bond in the starting material. Similarly, the deuterium KIE for $\mathbf{1 4}$ may seem large since 14 is undergoing a stereochemical reorganization, not a hydrogen transfer, but the KIE may be understood from the weakness of the H-Ir bond in $\mathbf{1 4}$ compared to the starting aromatic $\mathrm{C}_{1}-\mathrm{H}$ bond. Overall, transition structure 14 leads to a
better fit with experiment. However, due to the difficulty of predicting the impact of tunneling on the deuterium KIE for 14 , it is uncertain whether 14 can account for the magnitude of the experimental deuterium KIE.
(a) KIEs based on 12
(b) KIEs based on 14

Figure 2-7. Predicted ${ }^{13} \mathrm{C}\left(\mathrm{k}_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{C}}\right)$ and deuterium $\left(\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}\right)$ kinetic isotope effects at $150{ }^{\circ} \mathrm{C}$. The group X is hydrogen in the calculational structures, compared to bromine or methyl groups in the experimental systems. To facilitate comparison with the experimental ${ }^{13} \mathrm{C}$ KIEs, the predicted ${ }^{13} \mathrm{C}$ KIEs have been adjusted to be relative to C_{4}. The predicted deuterium KIEs are absolute values and do not include a tunneling correction. (a) Isotope effects based on transition structure 12. (b) Isotope effects based on transition structure 14.

Calculated versus Experimental Regioselectivity in Borylations of Arenes.

The calculated barriers and regioselectivities for the borylation of arenes were compared with either new or literature experimental selectivities for a series of reactions. On the calculational side, this involved locating various C-H activation transition structures, treating the C-H activation step as fully rate-limiting and selectivity determining. With dmpe as ligand, this process was complicated by the combination of regioisomeric and stereoisomeric transition states - there would be at least 25 possible transition structures for C-H activation of each mono-substituted arene. Only those structures considered potentially energetically competitive were explored, and eleven, eleven, and nine structures were located for C-H activation of toluene, anisole, and chlorobenzene, respectively. For calculating the regioselectivity with dmpe as ligand, only the lowest-
energy transition structure for para reaction was considered along with the two lowestenergy transition structures for meta reaction. The situation is stereochemically simpler with bpy as ligand and only a single para transition structure and two meta transition structures were located for each reaction. Complete structures are given in the Appendix. For comparison with the calculational dmpe ligand, some experimental selectivities that had been previously determined with PMe_{3} or dppe as ligand were redetermined using dmpe as ligand in reactions employing (Ind)Ir(cod) as precatalysts.

The results are summarized in Table 2-2. The selectivities were calculated in two ways, either based on the $\mathrm{E}+$ zpe or based on the estimated free-energy barrier (including entropy). It is not clear which of these should be more accurate - reality obviously includes entropy but the real entropy differences between the quite similar regioisomeric transition structures are likely to be smaller than the random error introduced by including a questionably accurate entropy estimate based on the harmonic frequencies. The predictions based on free-energy are sometimes slightly better and sometimes slightly worse, but overall the two sets of predicted selectivities are quite similar.

The agreement between the calculated and experimental regioselectivities is striking. The greatest error in the relative barriers for para versus meta substitution was $0.3 \mathrm{kcal} / \mathrm{mol}$ in the case of borylation of PhBin (calculationally, PhBeg), and even in this case the calculations correctly predict the energetic preference for para substitution. The calculated barriers also fit with the experimental observation that alkyl groups decrease reactivity while BPin or halogen substituents increase reactivity. Finally, the
heteroaromatic pyrrole is predicted to be highly reactive, and experimentally the borylation of pyrrole is complete within a few minutes at room temperature.

Table 2-3. Calculated and experimental regioselectivity in borylations of arenes.

Arene	Catalyst and	$\Delta \mathrm{E}^{\star}$ $\mathrm{TS}{ }^{\star}{ }^{\mathrm{a}}$$\left[\Delta \mathrm{G}^{\ddagger}\right] \quad$ of	Calc'd Selectivity	Observed Selectivity
	$\begin{aligned} & \text { (Ind)Ir(COD) } \\ & \text { dmpe, } 150{ }^{\circ} \mathrm{C} \end{aligned}$	para: 19.8 $[38.5]$ meta: 19.8 $[38.4]$ meta': 20.1 $[39.2]$ ortho: 26.2 $[47.5]$	$\begin{aligned} & \hline \text { p:m:o } \\ & 38: 62: 0 \\ & {[38: 62: 0]^{\mathrm{c}}} \end{aligned}$	$\begin{aligned} & \text { p:m:o } \\ & \text { 32:67:1 } \end{aligned}$
	$\begin{aligned} & \text { (Ind) Ir(COD) } \\ & \text { dmpe, } 150{ }^{\circ} \mathrm{C} \end{aligned}$	para: 20.0 $[40.5]$ meta: 19.2 $[40.0]$ meta': 19.9 $[40.5]$ ortho: $20.8[42.3]$	$\begin{aligned} & \text { p:m:o } \\ & 17: 70: 13 \mathrm{~b} \\ & {[24: 70: 6]^{\mathrm{c}}} \end{aligned}$	$\begin{aligned} & \text { p:m:o } \\ & \text { 19:76:5 } \end{aligned}$
	$\begin{aligned} & \text { (Ind) Ir(COD) } \\ & \text { dmpe, } 150{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{lcc} \text { para: } & 18.4 & {[38.6]} \\ \text { meta: } & 17.8 & {[38.4]} \\ \text { meta': } & 18.3[38.1] \end{array}$	$\mathrm{p}: \mathrm{m}$ 22:78 [24:76] ${ }^{\text {c }}$	$\begin{aligned} & \mathrm{p}: m \\ & 23: 77 \end{aligned}$
	$\begin{aligned} & {[\operatorname{Ir}(\mathrm{OMe})(\mathrm{COD})]_{2}} \\ & \text { dtbpy, } 25^{\circ} \mathrm{C} \end{aligned}$	para: 18.4 $[31.7]$ meta: 18.5 $[31.8]$ meta': 18.5 $[32.1$ ortho: 23.3 $[36.9]$	$\begin{aligned} & \text { p:m:o } \\ & 36: 64: 0^{\mathrm{b}} \\ & \text { [43:57:0] } \end{aligned}$	$\begin{aligned} & \text { p:m:o } \\ & \text { 31:69:0 } \end{aligned}$
	$\begin{aligned} & {[\operatorname{Ir}(\mathrm{OMe})(\mathrm{COD})]_{2}} \\ & \text { dtbpy, } 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{lcc} \text { para: } & 17.8 & {[31.4]} \\ \text { meta: } & 18.3 & {[31.4]} \\ \text { meta': } & 18.3[32.1] \end{array}$	$\begin{aligned} & \mathrm{p}: \mathrm{m} \\ & 51: 49^{\mathrm{b}} \\ & {[44: 56]^{\mathrm{c}}} \end{aligned}$	$\begin{aligned} & \mathrm{p}: \mathrm{m} \\ & 64: 36^{\mathrm{f}} \end{aligned}$
$\mathrm{N}_{\mathrm{N}}-\mathrm{H}$	$\begin{aligned} & {[\operatorname{Ir}(\mathrm{OMe})(\mathrm{COD})]_{2}} \\ & \text { dtbpy, } 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 2-: \quad 12.6 \quad[27.9] \\ & 3-: 17.1[31.2] \end{aligned}$	$\begin{aligned} & \text { 2-:3- } \\ & \text { 99.9:0.1 } \end{aligned}$	$\begin{aligned} & 2-: 3- \\ & 100: 0 \end{aligned}$
	$150{ }^{\circ} \mathrm{C}$		99.1:0.9	99.8:0.2

${ }^{\text {a Barriers }}$ are B3LYP with an SDD basis set on Ir and a $6-31 \mathrm{G}^{* *}$ basis set on the remaining atoms, including zpe, in $\mathrm{kcal} / \mathrm{mol}$. Estimated activation free-energies are shown in brackets. ${ }^{\mathrm{b}}$ Calculated selectivities have allowed for an assumed factor of 2 entropy effect on the ortho reactions. ${ }^{c}$ Calculated from the estimated relative free energies. ${ }^{\mathrm{d}}$ Taken from ref 46. EIn calculations PhBeg was used as the model. ${ }^{\mathrm{f}}$ Taken from ref 52 .

Discussion

For a catalytic reaction, the observed KIEs may not necessarily reflect the ratelimiting or turnover-limiting step in the catalytic cycle. However, the KIEs should reflect the first irreversible step between free substrate and the product. Qualitatively, the ${ }^{13} \mathrm{C}$ KIE (~ 1.012) at the meta position indicates that a bonding change is occurring at this position. Typically one would expect the processes discernable, but in this case the results seem ambiguous. The interpretation of these experimental results is difficult because of the minuscule difference between the theoretically predicted ${ }^{13} \mathrm{C}$ KIE for C H activation (1.016) and reductive elimination of aryl borane (1.013). Further complicating the interpretation of this result is the magnitude of the experimental deuterium KIE (1.9-2.5), that indicates that a C-H bond may be undergoing a bonding a change at the rate limiting step, and the experimentally observed deuterium exchange.

Numerous studies have concluded that $\mathrm{C}-\mathrm{H}$ activation is rate limiting, and typically the large deuterium KIEs (3.5-5) reported have supported this conclusion. But, if the mechanism for this borylation were similar, then one would expect the experimental deuterium KIEs to be similar in magnitude to the results described previously. For example, several of Hartwig's results strongly support rate-limiting C-H activation with bpy, and the computational results reported here support this overall conclusion. ${ }^{61}$ So why are the experimental deuterium KIEs for the Ir bisphosphine complexes notably smaller in magnitude?

Several results indicate that mixed rate-limiting steps are involved. First, recall in Figure 2-5 that transition structure 13 is $\sim 0.9 \mathrm{kcal} / \mathrm{mol}$ lower in energy than 11. This
is within the errors of the calculation, and since no attempt was made to find the global minimum for either structure due to the numerous rotational isomers, it is difficult to discern which if not both of transition structures could be contributing to the KIE. If there were mixed rate-limiting steps then that could explain the lower observed ${ }^{13} \mathrm{C}$ KIE from what is predicted for $\mathrm{C}-\mathrm{H}$ activation ($\mathrm{KIE}=1.016$). Additionally, if the deuterium KIE is corrected for the rate of exchange, the maximum observed value is still significantly smaller than what is predicted $\left(k_{\mathrm{H}} / k_{\mathrm{D}}=3.5\right)$. A simple comparison of the Ir bpy and dmpe structures one can rationalize the observed deuterium exchange as simply arising from the large difference in steric encumbrance.

Sterics alone cannot explain the preferred meta selectivity. Even if C-H activation is rate-limiting, the origin of selectivity can be best understood from the fully formed $\mathrm{Ir}-\mathrm{C}$ bond that is formed during C-H activation. Since Ir is less electronegative than H , explains why substituent effects in these reactions are limited and do not follow the expected regioselectivy of simple aromatic substitutions. Why then is there a rate enhancement with electron withdrawing groups (EWG) if substituent effects are limited? This is best understood as a polarity effect. Since Ir is less electronegative than H, EWG is going to favor and stabilize a C-Ir bond over a C-H bond. All of the substituent effects arise not from π effects, but purely arise through σ effects. Interestingly, using both transition structures $\mathbf{1 1}$ and $\mathbf{1 3}$ one can statistically predict the observed experimental selectivity! This observation can be further attributed to the small differences in polarity for $\mathrm{C}-\mathrm{H}$ and Ir-C bond, which is further explains the rate enhancement and regiochemical preference at the meta position.

Conclusions

The experimental ${ }^{13} \mathrm{C}$ and deuterium KIE were determined for the Ir (dmpe) catalyzed borylation of arenes. Qualitatively the KIEs appear to be too small for the rate-limiting step of the borylation to be purely C-H activation, and the theoretically predicted energies and KIEs support this conclusion. The observed deuterium KIE value 1.9-2.5 is relatively small for a primary H/D KIE where are C-H bond is being broken, and it appears inconsistent with the predicted value of ~ 3.5 based upon 11. From the isotope effect alone one can not rule out a mixture of 11 and 13 influencing the magnitude of the deuterium KIE. The simplest interpretation of the isotope effects is that the reaction has mixed rate-limiting steps that contribute to the observed KIEs.

CHAPTER III

"CONCERTED" TRANSITION STATE, STEPWISE MECHANISM. DYNAMICS EFFECTS IN $C^{2}-C^{6}$ ENYNE ALLENE CYCLIZATIONS*

Introduction

Reaction mechanisms are often qualitatively described in the context of transitionstate theory and illustrated with a two dimensional potential energy diagram. The curve in a potential energy diagram represents a reaction's lowest-energy path from reactants to products. Such diagrams make clear the differences in reactivity and selectivity associated with reaction barriers between reactants, transition states, intermediates, and products. Despite, transition-state theory's well-recognized complications and limitations, such as tunneling, recrossing, and variational transition-state theory, it is widely used in the interpretation of experimental evidence.

Transition-state theory implicitly assumes that a reaction's selectivity arises from the intrinsic barriers associated with separate transition states (Figure 3-1).

[^1]

Figure 3-1. The potential energy diagram illustrates transition state theory's description for predicting a reaction's selectivity.

This assumption fails when product selectivity is determined by dynamics where rates are affected by a non-statistical recrossing. Selectivity is then determined by the random motions inherent to any molecule. Illustrated in Figure 3-2, as a reaction proceeds in three dimensional space along the potential energy surface from a single transition state down the minimum energy path it reaches a col where the pathway bifurcates leading to the non-statistical distribution of separate products.

Figure 3-2. Three dimensional energy surface illustrating the premise of dynamics.

When exploring a potential energy surface of a reaction it is important to understand the stationary points, a point on the potential energy surface where the partial first derivatives of the potential energy with respect to all geometrical coordinates is simultaneously zero. Two topological features on the potential energy surface correspond to stationary points, transition states (maxima) and intermediates or products (minima). Typically, the potential energy surface near the transition state usually follows the steepest path of descent to a single reactant in one direction or a single product or intermediate in the other. But occasionally a transition state geometry is shared by more than one of the reactants or products creating a valley ridge inflection (VRI) point on the potential energy surface. ${ }^{75}$ At the valley ridge inflection point the partial second derivative is equal to zero, and is located adjacent to two transition states. On a potential energy surface with a VRI, reactants that pass through the ratedetermining transition state can descent into two distinguishable products without barrier, despite there being an energetic barrier for interconversion of one product to another. Transition state theory is unable to accurately predict the observed product ratio and the dynamic trajectories must be studied in reactions that have a valley ridge inflection point on the potential energy surface.

When the surface is symmetrical, the minimum energy path (MEP) bifurcates to afford an equal product ratio. However, when the pathway is asymmetric, the minimum energy path may not bifurcate, but there still will be trajectories that lead to each product. Figure 3-3 illustrates a symmetrical and unsymmetrical potential energy surface.

Figure 3-3. Bifurcating surfaces in which dynamic effects would control selectivity. (a) The surface is symmetrical and the MEP bifurcates at a second transition state. Real trajectories would tend to diverge from the MEP in the area of the VRI. (b) The surface is unsymmetrical and the MEP does not bifurcate. However, some possible trajectories afford a product not on the MEP.

There are numerous examples of dynamic effects in the gas phase and in symmetrical systems where symmetry is broken after the transition state. ${ }^{76}$ Reactions that are unsymmetrical are the most interesting, but there are very few examples and little is understood.

The $\mathrm{C}^{2}-\mathrm{C}^{6}$ (Schmittel) / ene cyclization of enyne-allenes was studied by a combination of kinetic isotope effects, theoretical calculations, and dynamics trajectories. The formation of reactive diradical intermediates in the thermal cyclizations of enediynes and enyne-allenes is both fundamentally intriguing and biologically momentous. ${ }^{77,78}$ Myers ${ }^{79}$ and Saito ${ }^{80}$ showed that enyne-allenes (1) undergo thermal C^{2} C^{7} cyclizations to afford $\alpha, 3$-tolyl diradicals (2), and this is thought to be the key step in
the biological activation of neocarzinostatin $\mathrm{A} .^{78 \mathrm{~b}}$ The ability of simple reactants to form such highly reactive intermediates is usually attributed to the aromaticity gained on cyclization. Schmittel, however, established a second reaction motif for enyne-allenes in which $\mathrm{C}^{2}-\mathrm{C}^{6}$ cyclization affords products apparently derived from fulvenyl diradicals (3). ${ }^{81,82,83}$ This cyclization gains no aromaticity but is still promoted by the formation of a strong $\mathrm{sp}^{2}-\mathrm{sp}^{2}$ sigma bond from sp-hybridized carbons. The Schmittel cyclization motif has proven valuable in synthesis and has received extensive interest. ${ }^{84}$

Scheme 3-1

Evidence for the intermediacy of a diradical in the $\mathrm{C}^{2}-\mathrm{C}^{6}$ cyclization of enyneallenes has included trapping with 1,4-cyclohexadiene ${ }^{83}$ (Scheme 3-2) as well as the observation of double stranded DNA cleavage by structures known to undergo the Schmittel-type cyclization. Schmittel found that changing solvent polarity did not affect the rate of reaction or product ratios, leading him to rule out zwitterionic intermediates.

Scheme 3-2

Theoretical studies on the cyclization of the parent (Z)-1,2,4-heptatrien-6-yne have supported a diradical mechanism for the $\mathrm{C}^{2}-\mathrm{C}^{6}$ cyclization. ${ }^{85}$ In this system the $\mathrm{C}^{2}-\mathrm{C}^{7}$ cyclization is predicted to be favored over $\mathrm{C}^{2}-\mathrm{C}^{6}$ by approximately $10 \mathrm{kcal} / \mathrm{mol}$, consistent with the experimental observation of exclusive $\mathrm{C}^{2}-\mathrm{C}^{7}$ cyclization. ${ }^{86}$ The C^{2} C^{6} cyclization is predicted to be relatively favored by benzannulation, ${ }^{87}$ and it is also favored by bulky terminal substituents and radical stabilizing groups at C^{7}. Studies in one of our laboratories have demonstrated an interesting acceleration of the $\mathrm{C}^{2}-\mathrm{C}^{6}$ cyclization by oxyanion substituents. ${ }^{88}$

When the enyne-allene is substituted by an alkyl group at C^{1}, the ultimate product of the $\mathrm{C}^{2}-\mathrm{C}^{6}$ cyclization has undergone hydrogen transfer from the alkyl substituent to C^{7} and the overall conversion is formally an ene reaction (Scheme 3-3). The ene reaction is allowed as a concerted pericyclic process, but as a whole, ene reactions have been notably mechanistically diverse. Concerted mechanisms have been experimentally supported often,,${ }^{89,90}$ yet many ene reactions have been found to involve more complex mechanisms. ${ }^{90,}{ }^{91}, 92$ The mechanism of any given ene reaction may be considered uncertain in the absence of evidence, but the mechanistic ambiguity of these reactions of enyne-allenes seems particularly interesting. In this case, the two-step mechanism
involving a diradical intermediate is imminently credible based on the chemistry in Scheme 3-2. In a theoretical study by Engels, the two-step and concerted mechanisms were predicted to have nearly equal free energies of activation. ${ }^{93}$ Engels suggested that the two mechanisms could be distinguished using kinetic isotope effects, as have been applied to many ene reactions.

Scheme 3-3

The energetic similarity of concerted and two-step mechanisms in these reactions raises fundamental issues. By the Thornton hypothesis, ${ }^{94}$ when the intermediate for a potential two-step mechanism is low in energy, the transition state for the corresponding concerted process should geometrically approach the stepwise process. As the intermediate goes lower in energy, the concerted mechanism ultimately transitions into the stepwise pathway. However, the nature of mechanisms at the concerted / stepwise boundary is not well understood. Should such reactions involve a mixture of
mechanisms? ${ }^{95}$ What is the effect of intrinsic entropic differences between a two-step mechanism and a more organized concerted process?

We describe here a combined experimental and theoretical study of the $\mathrm{C}^{2}-\mathrm{C}^{6}$ / ene cyclization of enyne-allenes, a reaction with a mechanism at the concerted / stepwise boundary. We find that this reaction is not well-described by either concerted or twostep labels, and that the consideration of dynamic effects is necessary to understand the nature of these intriguing reactions.

Results

Experimental

Experimental Kinetic Isotope Effects. The allenol acetate 9 was chosen for study owing to its clean conversion to the cyclized product $\mathbf{1 0}$ at a moderate temperature and rate. Both the unlabeled substrate $9 \mathbf{a}$ and the deuterium labeled $\mathbf{9 b}$ were prepared by the addition of the appropriate Gilman reagent to the acetylenic ketone $\mathbf{8}$ by a previously reported procedure. ${ }^{88}$ The deuterium incorporation in $\mathbf{9 b}$ prepared in this way is $>98 \%$ based on ${ }^{1} \mathrm{H}$ NMR analysis.

Scheme 3-4

The cyclization of 8 in toluene- d_{8} at $50{ }^{\circ} \mathrm{C}$ was conveniently followed by ${ }^{1} \mathrm{H}$
NMR. The conversion of $9 \mathbf{a}$ versus time was consistent with a first-order process over
the course of the reaction with a half-life of $\approx 9000 \mathrm{~s}$, and first-order kinetics were assumed in rate-constant determinations. The conversion of $\mathbf{9}$ to $\mathbf{1 0}$ was monitored by the intensity of characteristic aromatic signals for each relative to the residual methyl signal of toluene- d_{8} used as an internal standard. The signals corresponding to the acetate and TMS groups were unsuitable due to peak overlap. ${ }^{1} \mathrm{H}$ NMR spectra were collected at 30 -minute intervals until no further change in relative peak heights was observable, and the resulting data were fit directly as a first-order process. The isotope effect for the reaction was determined from both the disappearance of $\mathbf{9}$ and appearance of $\mathbf{1 0}$ in two reactions each for labeled and unlabeled materials, affording a total of four measurements with an average $\mathrm{k}_{\mathrm{CH} 3} / \mathrm{k}_{\mathrm{CD} 3}$ of 1.43 and a standard deviation of 0.12 . This standard deviation may underestimate the uncertainty in $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ because only two completely independent reactions are involved.

This isotope effect will be discussed in more detail below, but we note here that the $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ is smaller than normally observed in concerted ene reactions. ${ }^{89} \mathrm{~d},{ }^{90} \mathrm{a},{ }^{91} \mathrm{~g},{ }^{2} \mathrm{f}$ However, the $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ is qualitatively too large to support a stepwise ene process. This is in line with the idea that the mechanism is near the concerted / stepwise boundary.

Theoretical Calculations

Theoretical Pathways from 9. Engels has previously reported extensive careful calculations on the $\mathrm{C}^{2}-\mathrm{C}^{6}$ cyclization of a series of enyne-allenes capable of undergoing the overall ene conversion. ${ }^{93}$ The focus here is in two areas - the reaction of the experimental system $\mathbf{9}$ and a more detailed study of a model system. The results of these
studies suggested a more complex picture of the reaction mechanism than would conventionally be considered.

Three possible pathways for the $\mathrm{C}^{2}-\mathrm{C}^{6}$ cyclization of $\mathbf{9}$ were explored in restricted and unrestricted B3LYP calculations employing a $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set (Figure 3-3). The first is direct formation of $\mathbf{1 0}$ by a concerted process. Transition structure $\mathbf{1 1}^{\ddagger}$ was located for this conversion, and the predicted barrier of $23.8 \mathrm{kcal} / \mathrm{mol}$ is well consistent with a reaction that proceeds in a few hours at $50^{\circ} \mathrm{C}$. (The predicted half-life at $50^{\circ} \mathrm{C}$ after inclusion of an entropy estimate based on the unscaled harmonic frequencies is a fortuitous 8900 s .) The second possible pathway is cyclization of $\mathbf{9}$ with an "inward" rotation of the methyl group on C^{1} to afford diradical 12. Intramolecular hydrogen transfer in $\mathbf{1 2}$ could then afford product $\mathbf{1 0}$ via transition structure $\mathbf{1 3}^{\ddagger}$. As will be considered in greater detail below, no transition structure could be located for the formation of 12 from 9 . The third possible pathway is cyclization of $\mathbf{9}$ with an "outward" rotation of the methyl group on C^{1} to afford diradical 15 via transition structure $\mathbf{1 4}$. This cyclization has the effect of running together the two trimethylsilyl groups and is rather sterically encumbered. As a result, the predicted barrier for this cyclization is $8.8 \mathrm{kcal} / \mathrm{mol}$ above that for the ene pathway. Based on this result and the absence of experimental support for long-lived diradicals in this reaction, ${ }^{88}$ this pathway is unlikely to be experimentally relevant.

It should be noted that the predicted energies of $\mathbf{1 2}$ and $\mathbf{1 5}$ are dubious due to spin contamination ($<\mathrm{S}^{2}>$ is $0.43,0.09,0.04$, and 0.47 for $\mathbf{1 2}, \mathbf{1 3}, \mathbf{1 4}$, and $\mathbf{1 5}$, respectively). The diradical energies will be considered further for a model reaction. Structure $\mathbf{1 1}^{\ddagger}$ was
identical for restricted and unrestricted calculations and its wavefunction was spinunrestricted stable.

$15 E_{\text {rel }}=19.4$

Figure 3-4. Predicted pathways for the cyclization of 9 in (U)B3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ calculations. Structures $\mathbf{1 2}, \mathbf{1 3}^{\ddagger}, \mathbf{1 4}$, and $\mathbf{1 5}$ were obtained using unrestricted calculations, while the remaining structures were identical in restricted and unrestricted calculations. Relative energies are in $\mathrm{kcal} / \mathrm{mol}$ and include zpe.

All attempts to locate a transition structure for formation of 12 failed, using both restricted and unrestricted calculations. Instead, the saddle-point searches invariably converged on 11. This is in agreement with the observations of Musch and Engels, who reported for a similar cyclization that a transition structure for formation of a diradical could not be located when the C^{7} methyl group twists toward the alkyne. ${ }^{93}$ An attempt
to locate a transition structure for formation of 12 in UBPW91/6-31G(d,p) calculations also converged instead on a transition structure similar to $\mathbf{1 1}$.

How could there be no transition structure for formation of $\mathbf{1 2}$? Both $\mathbf{1 1}^{\ddagger}$ and a hypothetical transition structure for formation of 12 would involve formation of the C^{2} C^{6} bond, and the difference between the two is that $\mathbf{1 1}^{\ddagger}$ also involves hydrogen transfer. However, the degree to which hydrogen transfer has progressed in $\mathbf{1 1}^{\ddagger}$ is very minor the breaking $\mathrm{C}-\mathrm{H}$ bond is only slightly elongated compared to 9 . As a result, the structure of $\mathbf{1 1}^{\ddagger}$ is very close to that expected for a transition structure forming $\mathbf{1 2}$. Rather than involving two separate transition structures with extremely similar geometries, it appears that the stepwise and concerted pathways have merged in the single transition structure $\mathbf{1 1}^{\ddagger}$. The significance of this observation will be explored in more detail after the interpretation of the experimental kinetic isotope effect is considered.

Predicted Isotope Effects. To aid in interpreting the experimental H/D isotope effect, predicted isotope effects based on transition structures $\mathbf{1 1}^{\ddagger}$ and $\mathbf{1 4}^{\ddagger}$ were calculated. These predictions used the scaled theoretical vibrational frequencies ${ }^{9}$ in conventional transition state theory by the method of Bigeleisen and Mayer. ${ }^{10}$ For the secondary H / D isotope effect associated with transition structure $\mathbf{1 4}$, a tunneling correction was applied using a one-dimensional infinite parabolic barrier model. ${ }^{11}$ No tunneling correction was applied for the prediction of the primary H / D isotope effect associated with transition structure $\mathbf{1 1}^{\ddagger}$, and the resulting prediction is likely a lower
bound compared to a complete treatment of tunneling and variational transition state effects (impractical in this case).

The idea behind the prediction of an isotope effect for transition structure 14 is that $\mathbf{1 4}$ may serve as a surrogate for a transition structure that would lead to diradical 12. The predicted $\mathrm{k}_{\mathrm{CH} 3} / \mathrm{k}_{\mathrm{CD} 3}$ at $50^{\circ} \mathrm{C}$ for $\mathbf{1 4}$ is 1.06 . This is slightly greater than unity because the adjacent radical character in $\mathbf{1 4}$ has the effect of weakening the $\mathrm{C}-\mathrm{H}$ bonds in the methyl group on C^{1}, but this prediction is much smaller than the experimental isotope effect. This appears to exclude rate-limiting formation of the diradical, but for reasons that will soon be clear, we opt for a more careful wording: the experimental isotope effect is inconsistent with a predominant rate-limiting transition state involving $\mathrm{C}^{2}-\mathrm{C}^{6}$ ring closure without partial $\mathrm{C}-\mathrm{H}$ bond breakage.

The predicted $\mathrm{k}_{\mathrm{CH} 3} / \mathrm{k}_{\mathrm{CD} 3}$ based on $\mathbf{1 1}^{\ddagger}$ is 1.54 . Qualitatively, both this predicted isotope effect and the experimental isotope effect of ≈ 1.43 are in the realm of very small primary isotope effects. The difference is perhaps small enough to ignore - the experimental isotope effect is consistent with the qualitative nature of $\mathbf{1 1}$ in which $\mathrm{C}-\mathrm{H}$ bond breakage has progressed to a minimal extent. However, it is enlightening for the discussion later to consider possible origins for the difference between the experimental and predicted isotope effects. Aside from experimental error, the simplest explanation is inaccuracy in $\mathbf{1 1}^{\ddagger}$. In this regard, the smaller observed isotope effect suggests that the progress of $\mathrm{C}-\mathrm{H}$ bond breaking in the experimental transition state is less than in $\mathbf{1 1}^{\ddagger}$.

An alternative, more complex, explanation is that the observed isotope effect represents a mixture of concerted and two-step mechanisms. These two possibilities are
distinct in classical physical organic terms, but the difference will be less well defined when dynamics are considered below.

Theoretical Pathways in a Model Reaction. In order to explore the $C^{2}-C^{6}$ / ene cyclization in more detail and with higher-level calculations, the model cyclization of $\mathbf{1 6}$ was studied. Stationary-point geometries for the reaction path were optimized in restricted or unrestricted B3LYP calculations employing a $6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. Single-point energies were then computed using Brueckner orbitals including double excitations and a perturbative estimate of triple excitations $(\mathrm{BD}(\mathrm{T})),{ }^{96}$ employing a 6$31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. An unrestricted wavefunction was employed for diradical structures; for other structures the difference between unrestricted and restricted $\mathrm{BD}(\mathrm{T})$ results was negligible. The applicability and accuracy of this calculational approach was supported by studies of the thermodynamics of cyclizations of cis-hex-3-en-1,5-diyne to p-benzyne (1) and hepta-1,2,4-trien-6-yne to $\alpha, 3$-didehydrotoluene (2), which can be compared with reported experimental data. ${ }^{97,98}$ In both cases, the predicted cyclization energies $[(\mathrm{U}) \mathrm{BD}(\mathrm{T}) / / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p}) / /(\mathrm{U}) \mathrm{B} 3 \mathrm{LYP} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})+$ thermal correction for 25 $\left.{ }^{\circ} \mathrm{C}\right]$ are within the uncertainty of the experimental values.

$$
\begin{aligned}
& \Delta \mathrm{H}_{\text {expt }}=-15 \pm 4 \mathrm{kcal} / \mathrm{mol}(\mathrm{ref} 26) \\
& \Delta \mathrm{H}_{\text {calcd }}=-11.6 \mathrm{kcal} / \mathrm{mol}
\end{aligned}
$$

The results for the cyclization of $\mathbf{1 6}$ are summarized in Figure 3-4. Transition structure 17^{\ddagger} was located for the concerted formation of product $\mathbf{1 8}$ from $\mathbf{1 6}$. This structure is similar to $\mathbf{1 1}^{\ddagger}$, with substantial $\mathrm{C}^{2}-\mathrm{C}^{6}$ bond formation but little progress in the hydrogen transfer from the methyl group on C^{1} to C^{7}. As was the case for $\mathbf{9}$, no transition structure could be located for formation of diradical 19 from 16. Our search for such a transition structure included imposing constraints to preclude hydrogen transfer in the transition structure. Invariably, when the constraints were removed, the transition structure converged to $\mathbf{1 7}^{\ddagger}$. An attempt to locate a transition structure for formation of $\mathbf{1 9}$ in MP2/6-31G(d,p) calculations also converged instead on a transition structure similar to $\mathbf{1 7}^{\ddagger}$. Two transition structures for the formation of $E-Z$ isomers of $\mathbf{1 9}$ were located, and these are shown in the appendix. Since our focus is on the energy surface in the area of $\mathbf{1 7}, \mathbf{1 9}$, and $\mathbf{2 0}$ as a model for the experimental reaction of $\mathbf{9}$ and the energy surface in the area of $\mathbf{1 1}, \mathbf{1 2}$, and $\mathbf{1 3}{ }^{\ddagger}$, we did not explore the likely-favored $\mathrm{C}^{2}-\mathrm{C}^{7}$ cyclization of $\mathbf{1 6}$.

Figure 3-5. Predicted pathways for the cyclization of 16. Structures 19 and 20^{\ddagger} were obtained using unrestricted calculations. The relative energies ($\mathrm{kcal} / \mathrm{mol}$) shown are $(\mathrm{U}) \mathrm{BD}(\mathrm{T}) / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{B} 3 \mathrm{LYP} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})+$ zpe. Relative (U)B3LYP/6-31G(d,p) energies are shown in parentheses for comparison.

Figure 3-4 also shows how the $\mathrm{BD}(\mathrm{T}) / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p}) / /(\mathrm{U}) \mathrm{B} 3 \mathrm{LYP} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ energies compare with those obtained for $\mathbf{1 6 - 2 0}$ in (U)B3LYP/6-31G(d,p) calculations (the calculations used for $\mathbf{9 - 1 5}$, and for dynamics below). The DFT approach performs well in predicting the reaction barrier, as previously suggested by the comparison with experiment, but slightly overestimates the stability of diradical 19. This is unsurprising as 19 is subject to spin contamination $\left(\left(<S^{2}\right\rangle=0.28\right)$. The barrier for product formation from 19 is estimated reasonably. Overall, the DFT calculations appear to reproduce the key features of the energy surface.

Dynamics. The fascinating common feature in the $\mathrm{C}^{2}-\mathrm{C}^{6}$ cyclization of $\mathbf{9}$ and the model 16 is the absence of a separate transition state for formation of diradicals 12 and
19. This observation is reminiscent of recent discussions in the literature, by one of us and by others, of reactions in which a single initial transition state can lead to two separate products. ${ }^{92,99,100,101}$ We hypothesized that the energy surface in these cyclizations has the qualitative features shown in Figure 3-5. From the rate-limiting transition structures $\mathbf{1 1}^{\ddagger}$ or $\mathbf{1 7}^{\ddagger}$, the steepest-descent path in mass-weighted coordinates (the "minimum energy path") affords the ene product. A standard theoretical analysis would thus conclude that the ene reaction occurs in a concerted fashion. However, continued formation of the new $\mathrm{C}^{2}-\mathrm{C}^{6}$ bond from $\mathbf{1 1}^{\ddagger}$ or $\mathbf{1 7}^{\ddagger}$ without concomitant hydrogen transfer could lead in a downhill process to 12 or 19. It was thus possible that trajectories passing through the "concerted" ene transition state could lead to the diradical intermediate. In such a situation, whether a significant proportion of the reaction involves a stepwise process, and the competition between concerted and stepwise mechanisms, becomes a question of dynamics.

Figure 3-6. Qualitative energy surface for the cyclizations of 9 and 16.

To study this issue, $\mathbf{1 7}^{\ddagger}$ was used as the starting point for quasiclassical direct dynamics trajectories on the UB3LYP/6-31G(d,p) surface. With all atomic motions freely variable, the trajectories were initialized by giving each vibrational mode a random sign for its initial velocity, along with an initial energy based on a random Boltzmann sampling of vibrational levels appropriate for 323.15 K , including zero point energy. The mode associated with the imaginary frequency was treated as a translation and given a Boltzmann sampling of translational energy "forward" over the col. Two processes were explored for assigning the starting atomic positions. In the first, the geometry of $\mathbf{1 7}^{\ddagger}$ was used as the starting point, forcing all trajectories to go through $\mathbf{1 7}^{\ddagger}$ exactly. In the second, the starting atomic positions on the potential energy ridge in the area of $\mathbf{1 7}^{\ddagger}$ were randomized using a linear sampling of possible harmonic classical displacements for each normal mode, adjusting the kinetic energy for each mode
accordingly. The two processes ultimately gave similar results. Forces were calculated directly at the UB3LYP/6-31G(d,p) level at each point, and employing a Verlet algorithm, 1-fs steps were taken until either the ene product 18 was formed (defined by a $\mathrm{C}^{2}-\mathrm{C}^{6}$ distance $<1.5 \AA$ with a $\mathrm{C}^{7}-\mathrm{H}$ distance $<1.1 \AA$) or diradical 19 was formed (defined by a $\mathrm{C}^{2}-\mathrm{C}^{6}$ distance $<1.5 \AA$ with the $\mathrm{C}^{7}-\mathrm{H}$ distance increased to $>2.1 \AA$). The median time for product formation was 30 fs , and all trajectories were complete within 85 fs. With such short simulation times, the effect of intramolecular vibrational energy redistribution ${ }^{102}$ should be minimal. A graph of $\mathrm{C}^{2}-\mathrm{C}^{6}$ versus $\mathrm{C}^{7}-\mathrm{H}$ distances for some typical dynamics trajectories is shown in Figure 4.

The results were striking. Although the minimum energy path from 17^{*} smoothly affords 18, 29 out of 101 trajectories afforded diradical 19. Five of the 29 trajectories entering the area of $\mathbf{1 9}$ were followed for an additional 100 fs , but none of these went on to 18. It thus appears that an intermediate is formed in a substantial portion of trajectories proceeding via the transition structure for the concerted ene reaction. These intermediate diradicals would ultimately go on to 18, but since the barrier (via 20*) is substantial, the time scale for the simulation is insufficient to observe this transformation.

Figure 3-7. Graph of $\mathrm{C}^{2}-\mathrm{C}^{6}$ versus $\mathrm{C}^{7}-\mathrm{H}$ distances for selected dynamics trajectories starting from 17^{\ddagger}, along with the steepest-descent pathway through $\mathbf{1 7}$ is mass-weighted coordinates (the minimum energy path).

A second remarkable observation was that many trajectories underwent rapid hydrogen transfer to C^{7} without simultaneous $\mathrm{C}^{2}-\mathrm{C}^{6}$ bond formation. Out of 101 trajectories, 29 saw the $\mathrm{C}^{7}-\mathrm{H}$ distance decrease to $<1.1 \AA$ while the $\mathrm{C}^{2}-\mathrm{C}^{6}$ distance was still $>1.8 \AA$. Seven trajectories had the $\mathrm{C}^{7}-\mathrm{H}$ distance decrease to $<1.1 \AA$ while the C^{2} -
C^{6} distance increased to $>2.0 \AA$. Such trajectories pass through a geometry resembling structure 21. No potential-energy minimum associated with this structure could be located, and all of the trajectories go on rapidly to 18. The intervention of structures resembling 21 thus has no outward consequence. Nonetheless, the surprising prevalence of trajectories through the area of 21 would seem to impact the conception of asynchronicity in pericyclic reactions. Structure $\mathbf{1 7}^{\ddagger}$ would be described as highly asynchronous, with the $\mathrm{C}^{2}-\mathrm{C}^{6}$ bond formation preceding hydrogen transition, but despite this, many trajectories complete the hydrogen transfer first.

21

Discussion

Within conventional physical organic chemistry, much has been made of the distinction between concerted and stepwise mechanisms for reactions with multiple bonding changes. This is seemingly a well-defined problem - concerted mechanisms occur by a pathway involving a single transition state and no intermediate, while a stepwise mechanism passes through at least two transition states with an intervening intermediate. The steps of a stepwise mechanism are always conceivably kinetically distinguishable, that is, separately influenceable. A concerted mechanism, in contrast, has a single kinetic barrier, and any factor that influences product formation or
selectivity must equivalently influence starting material disappearance. A sufficiently detailed characterization of a reaction's transition state, whether it be experimental (substituent effects, isotope effects, entropy of activation, volume of activation, spectroscopic observation, etc.) or theoretical, is considered adequate to distinguish between stepwise and concerted mechanisms, at least in principle. The possibility that a mixture of separate stepwise and concerted mechanisms can be operative is well recognized, but this adds no essential complication. The borderline between stepwise and concerted mechanisms is classically straightforward - does the mechanistic pathway involve an intermediate, or does it not?

Dynamic effects complicate the situation. Carpenter and others have discussed extensively the situation in which dynamic trajectories pass through the area of an intermediate without equilibration of vibrational energy. $103,104,105$ As a result, the product selectivity doesn't reflect the presence of an intermediate or the presence of a second kinetically distinguishable step. In effect, the mechanistic pathway follows the energy surface of a stepwise mechanism but the reaction "acts" concerted in observables, for example in stereochemistry.

Recent work by Yamataka, Aida, and Dupuis has further complicated the distinction between stepwise and concerted mechanisms. ${ }^{106}$ In theoretical calculations on the ionization of $\mathbf{2 2}$, the minimum-energy path on the potential energy surface passes through transition structure 23 to afford the tertiary cation 24. In this conversion, loss of the water leaving group and methyl-group rearrangement occur in a concerted fashion. However, dynamics simulations found that most trajectories at 400 K afforded initially
the secondary cation 25 . This cation is not "connected" to the starting material by a minimum-energy path, but can be formed readily by a process that simply breaks the $\mathrm{C}-\mathrm{O}$ bond without concurrent methyl rearrangement. In effect, the reaction proceeds by a stepwise process while a classical analysis would predict a concerted process. A thermodynamic interpretation of this observation is that, in contrast to the potential energy surface, the canonical variational transition state on the free-energy surface leads to the secondary cation.

The results here suggest a new wrinkle on the impact of dynamics on the idea of stepwise versus concerted mechanisms, a wrinkle that is potentially widespread. The observed kinetic isotope effect and the calculational results both support the idea that the $\mathrm{C}^{2}-\mathrm{C}^{6}$ / ene cyclization of 9 is near the stepwise/concerted boundary. It might be envisioned that in such cases, separate stepwise and concerted mechanisms could be competitive. Here, such a competition cannot be ruled out from the experimental isotope effect alone, but the calculations support a merging of the stepwise and concerted pathways as far as the rate-limiting transition state. Under these circumstances, experimental mechanistic probes of this transition state would appear to implicate an
exclusively concerted reaction. Going on from this transition state, however, an intermediate may or may not be formed, depending on the dynamics of individual trajectories. The intermediate could in principle be trapped or detected, implicating the stepwise mechanism. Kinetic observations and trapping experiments would appear contradictory.

It is enlightening to qualitatively consider the ene reactions of $\mathbf{9}$ or $\mathbf{1 6}$ within the context of a More O'Ferrall-Jencks diagram (Figure 3-5). ${ }^{107}$ Ene reaction mechanisms can be very complicated, but here we restrict our consideration to having carbon-carbon bond formation and hydrogen transfer as the dominant dimensions for the More O'Ferrall-Jencks diagram. ${ }^{89}$ a Because the overall reaction is exothermic, it would be expected that the transition state would be relatively early, and since the diradical intermediate after carbon-carbon bond formation is relatively stable (as evidenced by the chemistry of Scheme I), the transition state should be shifted toward the edge of the diagram, as shown. This is consistent with the predicted transition structures $11 \star$ and 17 \ddagger, as well as the experimental isotope effect with 9 . The normal qualitative understanding of these reactions would then be based on a smooth reaction path passing through the transition state. However, a broad range of structures are energetically downhill from the transition state, and it is possible for trajectories to depart drastically from the qualitative reaction path. This can include reaching an intermediate in the corner of the More O'Ferrall-Jencks diagram that is not on the reaction path.

Figure 3-8. More O'Ferrall-Jencks diagram for ene reactions. The approximate minimum-energy path expected for reaction of $\mathbf{9}$ or $\mathbf{1 6}$ is shown as a solid bold line. Possible qualitative trajectories are shown as dotted lines.

The concept of a reaction path between starting material and product is fundamental in the chemistry paradigm. In the absence of bifurcations, such paths can be mathematically well-defined, the common definition as the steepest-descent path in mass-weighted coordinates being only one example out of many possibilities. It is of course well understood that real trajectories do not follow exactly the reaction path. However, qualitative discussions of reaction mechanisms implicitly assume the existence of a path that is chemically representative of the ensemble of trajectories connecting starting material and product. The technical justification for this view is that trajectories should tend to regress toward a minimum-energy path. However, such regression will not necessarily overcome the thermal divergence of trajectories, outside of the bottleneck area of a transition state. When trajectories vary sufficiently, no single
reaction path can adequately describe the mechanism. This appears to be the case for the current reaction.

It is fascinating to consider the possible applicability of the ideas here in other pericyclic reactions. Many cycloadditions, for example, have been predicted to occur by concerted processes through highly asynchronous transition states. In many such cases, both the cycloaddition product and the intermediate for a stepwise cycloaddition may be downhill from the rate-limiting transition state. ${ }^{108}$ If so, trajectories passing through the "concerted transition state" could conceivably lead to intermediates in substantial amounts. A theoretical study that merely characterized the stationary points and minimum-energy paths in a mechanism could not resolve whether intermediates were formed, no matter how accurate the calculation. Notably, kinetic mechanistic probes of such reactions would be completely incapable of deciding whether intermediates were formed. Stereochemical and trapping probes could still be applied, though the conventional limitations of such probes have been discussed extensively ${ }^{109}$ and, as described above, dynamic effects can make stepwise mechanisms appear stereochemically concerted. ${ }^{103,},{ }^{104} \mathrm{a}-\mathrm{c},{ }^{110}$ It should be of considerable interest to explore the degree to which such dynamic effects complicate diverse pericyclic mechanisms.

Conclusions

The KIE $\left(\mathrm{k}_{\mathrm{CH}_{3}} / \mathrm{k}_{\mathrm{CD}}\right)$ for the $\mathrm{C}^{2}-\mathrm{C}^{6} /$ ene cyclization of $\mathbf{9}$ is approximately 1.43. This appears qualitatively too large to be a secondary isotope effect for formation of a diradical, and the theoretically predicted KIE based on diradical-forming 14^{\ddagger} supports
this conclusion. The 1.43 value is very small for a primary H/D KIE, but it appears roughly consistent with the predicted isotope effect of 1.54 based on $\mathbf{1 1}^{\ddagger}$. From the observed isotope effect alone, we cannot rule out a mixture of standard concerted and two-step mechanisms. However, the theoretical calculations do not support a conventional mixture of mechanisms, and the simplest interpretation of the isotope effect is that the ene reaction involves a highly asynchronous transition state, near the concerted / stepwise boundary, in which hydrogen transfer has progressed to a minimal extent.

No transition structure could be located for formation of diradical 12 from 9 or diradical 19 from 16. The initial geometry changes associated with these stepwise processes would be expected to be very similar to those for the highly asynchronous concerted mechanism, and the stepwise and concerted pathways have apparently merged as far as the rate-limiting transition structures. From these structures, the minimumenergy path leads to the ene product, but it is also downhill to the diradical intermediates.

Quasiclassical direct dynamics trajectories emanating from $17 \ddagger$ vary greatly. Although $17 \ddagger$ would normally be considered the transition state for a concerted reaction, many trajectories lead to an intermediate. A large alternative portion of the trajectories complete hydrogen transfer before full carbon-carbon bond formation, in contrast to what would be expected from the asynchronicity of the transition structure. The single minimum-energy path from starting material to product does not adequately describe the mechanism.

The ideas of transition state theory and reaction paths are so entwined in the mechanistic understanding of chemistry that they limit the questions that may be asked regarding a mechanism and the answers that may arise from mechanistic studies. When a reaction involves multiple bonding changes, a standard question has been whether the bonding changes occur by a stepwise or concerted pathway. When the question is asked this way, the only possible answers are that the reaction proceeds by a concerted pathway, or by a stepwise pathway, or by a mixture of the two separate pathways. Advances in the understanding of dynamic effects in mechanisms $92,99,103,104,105,106$ have shown that the question of concerted versus stepwise is too simple, and that the answer to the question may be very complicated indeed. The consideration of a possible role for dynamic effects, even for complex reactions in solution, should be incorporated into the mechanistic chemistry paradigm.

CHAPTER IV

ISOTOPE EFFECTS AND THE MECHANISM OF PALLADIUMCATALYZED ALLYLIC ALKYLATION*

Introduction

The carbon-carbon (C-C) bond represents the "foundation" of organic chemistry. Developing methodologies for the inter- and intra-molecular formation of carbon-carbon bonds remains fundamentally intriguing. The carbonyl group represents one of the more important functional groups for the formation of C-C bonds, but alkenes represent an attractive isoelectronic alternative.

Several organometallic complexes catalyze the nucleophilic or electrophilic formation of new C-C bonds with allylic functionalities. ${ }^{111}$ Allylic carbonates, esters, and halides react in situ with metal complexes to generate a π-allylorganometallic complexes. In 1965, Tsuji et al. reported the addition of carbon nucleophiles (malonates, acetoacetates, and enamines) to π-allylpalladium complexes providing a new synthetic strategy for carbon-carbon bond formation. The mildness of the allylic alkylation reaction conditions and their broad chemoselectivity has allowed the application of these reactions to diverse complex structures. ${ }^{112}$ Highly enantioselective

[^2]allylations have now emerged as a powerful tool in the synthesis of optically active products. ${ }^{113}$

Much is known in general terms about the mechanism of Pd-catalyzed allylations. Under most reaction conditions, the products are the result of a double-inversion process, consistent with an $\mathrm{S}_{\mathrm{N}} 2$-like nucleophilic displacement of the leaving group by Pd, followed by a second displacement of Pd by an incoming nucleophile. The support for initial formation of a $\eta^{2}-\operatorname{Pd} \pi$-complex 1 and the intermediacy of a $\eta^{3}-\operatorname{Pd} \pi$-allyl complex 2 is extensive (Scheme 4-1). However, a more detailed knowledge of the selectivity-determining transition states would aid in addressing subtle selectivity issues, as would allow, for example, the design of new ligands for enantioselective reactions. The theoretical study of these reactions can in principle provide such detail. ${ }^{114}$ However, this is a challenging reaction for theory, as most experimental reactions involve key steps that either generate or annihilate ions. This problem has been addressed using both solvent models and neutral nucleophiles/leaving groups, ${ }^{114}$ but the experimental relevance of the results is often difficult to judge.

Scheme 4-1

The mechanism of the Pd-catalyzed allylic alkylation was studied using a combination of theoretical calculations and experimental kinetic isotope effects (KIES). The KIEs not only provide a qualitative view of the rate-limiting transition state but also
allow us to assess the accuracy of calculational models. The combination of theory and experiment supports a transition state that is η^{2}-like and $\mathrm{S}_{\mathrm{N}} 1$-like in character, providing insight into the nature of selectivity in these reactions.

Results

Experimental

Experimental Kinetic Isotope Effects. The allylic alkylation reaction of dimethylallyl acetate (4) with dimethyl malonate (5) was chosen for study because it is a prototypical example and allylations via the intermediate 3-methylbutenyl palladium complexes have been well-studied previously (Scheme 4-2). ${ }^{115}$ The reaction of $\mathbf{4}$ with 5 at $25^{\circ} \mathrm{C}$ in THF was catalyzed by a combination of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and triphenylphosphine (≈ 3 equiv phosphine per Pd), using O, N-bis(trimethylsilyl)acetamide (BSA) as base. Under these conditions, a 76:24 mixture of substitution products $\mathbf{6}$ and $\mathbf{7}$ is formed in nearly quantitative yield over the course of a few hours. The preference for nucleophilic attack at the more substituted allylic carbon in this particular reaction is in line with most previous observations. ${ }^{115}$ Andersson and Bäckvall have reported that these products can equilibrate under certain conditions, ${ }^{115 e}$ but no significant equilibration could be observed under the mild conditions here. Allylic isomerization of 4 to afford 1-acetoxy-3-methyl-2-butene was observable but it was very slow ($\approx 2.5 \%$ in recovered 4 after 71% conversion).

Scheme 4-2

The ${ }^{13} \mathrm{C}$ KIEs of $\mathbf{4}$ were determined by NMR methodology at natural abundance. ${ }^{2,5}$ Two reactions of 4 at $25^{\circ} \mathrm{C}$ were taken to 71% and 75% conversion, and the starting 4 was recovered by an extractive workup followed by fractional distillation. The recovered 4 was analyzed by ${ }^{13} \mathrm{C}$ NMR along with standard samples that had not been subjected to the reaction conditions. The change in isotopic composition in each position was determined relative to the methyl carbons of the dimethylallyl group, with the assumption that isotopic fractionation in these carbons was negligible. From the changes in isotopic composition, the KIEs were calculated as previously described. ${ }^{5}$

The results from six separate determinations on the two independent reactions are summarized in Figure 1. A very large ${ }^{13} \mathrm{C}$ KIE of ≈ 1.037 was observed at the tertiary carbon C 3 of 4, indicative of this carbon undergoing a substantial bonding change in the transition state for the rate limiting step. Very small normal isotope ${ }^{13} \mathrm{C}$ KIEs were observed at C 1 and C 2 . These small KIEs are consistent with π-complexation to the olefin during the rate-limiting step, but suggest that these carbons are not undergoing a significant bonding change. Overall, the KIEs appear qualitatively consistent with ratelimiting $\mathrm{C}-\mathrm{O}$ bond cleavage ionizing the acetoxy group in a $\eta^{2}-\mathrm{Pd}$ complex.

Figure 4-1. (a) Experimental ${ }^{13} \mathrm{C}$ KIEs ($k_{12 \mathrm{C}} / k_{13 \mathrm{C}}$) for the allylic alkylation reaction of 4 with 5 at $25^{\circ} \mathrm{C}$. The top three KIEs in each group arise from the 75%-conversion reaction. Standard deviations $(n=6)$ are shown in parentheses. (b) Predicted ${ }^{13} \mathrm{C}$ KIEs for three calculational models. Plain numbers are based on transition structure 10, numbers in parentheses are based on transition structure 12, and numbers in brackets are based on transition structure 13.

If ionization of the acetoxy group were reversible, followed by rate-limiting nucleophilic attack on the $\eta^{3}-\operatorname{Pd} \pi$-allyl complex, then the isotope effects at C 3 versus C 1 would reflect the $76: 24$ product mixture. The low KIE averaging 1.005 at C 1 does not seem consistent with this scenario. Together with the low amount of allylic isomerization of 4 observed, the results do not support reversibility of ionization as the major mechanistic pathway.

Theoretical Calculations

Theoretical Calculations and Predicted Kinetic Isotope Effects. Theoretical calculations were used to interpret the isotope effects in greater detail. As introduced above, the challenge in studying these reactions theoretically is the formation of ionic intermediates from a neutral η^{2}-Pd complex. In the gas phase, the ionization of a complex of 4 with $\operatorname{Pd}\left(\mathrm{PMe}_{3}\right)_{2}$ into separate acetate anion and $\eta^{3}-\mathrm{Pd}$ cation is uphill by
$\approx 70 \mathrm{kcal} / \mathrm{mol}$. The high-energy ionization is accordingly disdained in favor of processes affording neutral products, such as elimination of a molecule of acetic acid.

To circumvent this problem, three distinct approaches to calculationally modeling this reaction were explored. The first was to study the reaction of the amidinium ion 8. With 8, the neutral acetamidine is the leaving group and the 'ionization' process in the gas phase is not dominated by Coulombic effects. A drawback is that the energetics for ionization of 8 are unlikely to match those for ionization of 4 in solution, except by accident. However, this approach is straightforward, making practical the use of a relatively complete theoretical model including two PHPh_{2} ligands. In the event, transition structure 10 and intermediates $\mathbf{9}$ and $\mathbf{1 1}$ were located in B3LYP/BS1 ${ }^{116}$ calculations (Figure 4-2).

Figure 4-2. Calculated pathway ($\mathrm{B} 3 \mathrm{LYP} / \mathrm{BS} 1^{116}$) for the ionization of 8 catalyzed by $\mathrm{Pd}\left(\mathrm{PHPh}_{2}\right)_{2}$. Free energies are relative to separate $\mathbf{8}$ and $\mathrm{Pd}\left(\mathrm{PHPh}_{2}\right)_{2}$ at standard state, based on unscaled harmonic frequencies at $25^{\circ} \mathrm{C}$, and are given in $\mathrm{kcal} / \mathrm{mol}$. Complete structures are given in the Appendix.

The second approach used an implicit solvent model. Transition structure 8 (Figure $4-3$) for the ionization of $\mathbf{8}$ mediated by $\mathrm{Pd}\left(\mathrm{PMe}_{3}\right)_{2}$ was located using B3LYP/BS2 2^{116} calculations and an Onsager solvent model for THF. (See the Appendix for calculational procedures.)

Figure 4-3. Transition structures for the ionization of 4 using solvent models. Structure 12 used an Onsager model for THF. Structure 13 used six HCN molecules. Most hydrogens have been removed for clarity.

The third theoretical model used explicit solvent molecules. It is normally difficult to use enough solvent molecules to sufficiently stabilize ion formation. Our strategy to attack this problem used 6 discrete HCN molecules. HCN was chosen because it is small, has a large dipole moment, and does not strongly interact with itself. As a result, a relatively small number of HCN molecules can greatly stabilize ionization. Transition structure $\mathbf{1 3}$ was located for the ionization of $\mathbf{4}$ mediated by $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}$ in $\mathrm{B} 3 \mathrm{LYP} / \mathrm{BS} 2^{116}$ calculations. Many arrangements of the HCN molecules are possible and no effort was made to find the global-optimum arrangement. The goal was to model ionization as an
aid in the interpretation of the KIEs, and 13 may serve that purpose despite its limitations.

Theoretical KIEs were calculated based on each of the transition structures 10, 12, and 13. The KIEs were predicted from the scaled theoretical vibrational frequencies ${ }^{117}$ using conventional transition state theory by the method of Bigeleisen and Mayer. ${ }^{10}$ Tunneling corrections were applied using an infinite parabolic barrier model. ${ }^{11}$ The results are shown in Figure 4-1b.

Discussion

In many reactions, KIE predictions have proven highly accurate, often within the uncertainty of the experimental measurement. ${ }^{2 \mathrm{i}}$ This is not true in the current case, and the difference between experiment and prediction may reflect the difficulty of modeling the ionization. The acetyl group carbons in particular exhibit experimental isotope effects near unity, but the predicted isotope effects are all in the 1.004-1.009 range. The predicted acetyl group KIEs in the three models are mainly the result of a mass effect on the moment of inertia, ${ }^{118}$ not zero-point energy changes, and it is possible that this component of the isotope effect is not correctly predicted for an ionization in a solvent cage. Another issue is that the experimental KIEs assume that the dimethylallyl methyl carbons do not undergo isotopic fractionation-an error in this assumption would depress the KIEs, which are almost all smaller than predictions.

Within the dimethylallyl group, the experimental and predicted isotope effects are in qualitatively better accord. The predicted C3 KIEs fit perfectly with experiment. The calculations overestimate the olefinic carbon KIEs, though the scatter in the
experimental results is large and the pattern of KIEs predicted for $\mathbf{1 0}$ appears to fit reasonably. As structural models for the ionization, 10, 12, and 13 are qualitatively supported, though the low experimental olefinic KIEs suggest that these carbons may be undergoing less bonding change in the actual transition state than in the calculated transition structures.

In calculations of nucleophilic attack on (allyl) $\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2}$, Norrby has previously noted that the transition structures are very product-like in character. ${ }^{114 \mathrm{a}}$ This makes the transition structures resemble closely the corresponding η^{2} complexes. Our KIEs and calculated structures support and amplify this idea. In 10, 12, and 13, the Pd has not significantly begun to approach the ionizing carbon. The C2-C3 bond has shortened significantly at the transition structure (from $1.53 \AA$ in 9 to 1.43 A in $\mathbf{1 0}$) and the $\mathrm{Pd}-$ $\mathrm{C} 2-\mathrm{C} 3$ angle bends downward (from 119.3° in 9 to 106.7° in 10) as C 3 becomes planar, and these changes have the effect of moving C3 toward the Pd atom, but the Pd coordination is still almost purely η^{2}. The $\mathrm{Pd}-\mathrm{C} 2$ distance is greater at the transition structure than in the η^{2} precursor, and the two phosphine ligands along with C 1 and C 2 are still nearly planar in their coordination of the Pd. In the ultimate η^{3} structure 11, the allyl moiety has twisted so that C 1 and C 3 are in the plane of the phosphines, but this process has not significantly commenced in the transition structures. There is no such twisting motion in the transition vectors associated with 10, 12, and 13, and the slight approach of C3 and the Pd atom appears to be incidental. The Pd atom is not carrying out an $S_{\mathrm{N}} 2$ displacement!

How then is the Pd catalyzing the ionization? A clue comes from looking at the charge distribution in 11 versus 12. In the process of forming 12, the acetamidine moiety
transfers $+0.28 e$ (Mulliken charges) to the remainder of the molecule. The dimethylallyl moiety gains $+0.14 e$ between 11 and 12 , while the $\operatorname{Pd}\left(\mathrm{PHPh}_{2}\right)_{2}$ moiety gains $+0.14 e$. The $\operatorname{Pd}\left(\mathrm{PHPh}_{2}\right)_{2}$ moiety is thus serving to delocalize a large portion of the incipient positive charge. This stabilization does not require $\mathrm{S}_{\mathrm{N}} 2$ character in the ionization; rather, the ionization seems best understood as $\mathrm{S}_{\mathrm{N}} 1$ in character.

Conclusions

The results here have implications in understanding selectivity in palladiumcatalyzed allylic alkylation reactions. Both the experimental isotope effects and the calculated structures suggest that the Pd center is not substantially migrating in the transition state. The transition state for ionization thus more closely resembles a η^{2} complex than the ultimate η^{3} intermediate. This idea may be useful in ligand design, for example, the effects of chiral ligands on the reactivity of enantiomeric allylic acetates should be reasonably understood from steric effects in the η^{2} complex.

In many Pd-catalyzed allylations, the important selectivity issues arise at the stage of nucleophilic attack on the $\eta^{3} \pi$-allyl complex rather than initial ionization. However, the transition state for nucleophilic attack on the $\eta^{3} \pi$-allyl complex should be similar to that for ionization, and the Norrby observations ${ }^{114 a}$ are consistent with this idea. Nucleophilic attack on a η^{3} intermediate should thus involve considerable reorganization of the allyl moiety toward a η^{2} geometry. This would account for the often-observed attack of unhindered nucleophiles on the more substituted π-allyl carbon, as in the preferential formation of $\mathbf{6}$ from 5 . In considering enantioselective reactions, the twisting
of the PdL_{2} moiety between the η^{3} intermediate and the η^{2}-like transition state provides a mechanism by which chiral ligands can induce enantioselective attack on a prochiral η^{3} allyl complex without directly interacting with the incoming nucleophile. A similar twisting has recently been invoked in Pd-catalyzed enantioselective hydroaminations. ${ }^{118}$ All of these ideas suggest further investigations.

CHAPTER V

ISOTOPE EFFECTS AND THE NATURE OF DECARBOXYLATION / PROTON TRANSFER IN OROTIDINE DECARBOXYLASE

Introduction

Orotidine 5'-monophosphate decarboxylase (ODCase) catalyzes the decarboxylation of orotidine 5^{\prime}-monophosphate (OMP, 1) in the last step of the de novo biosynthesis of uridine 5'-monophosphate (UMP, 2), a nucleotide of RNA Scheme 51). ${ }^{119}$

Scheme 5-1

The chemical transformation is unique because the expected carbanion lacks stabilizing resonance; the carbanion generated is localized in an sp 2 orbital perpendicular to the p - system of the pyrimidine. ${ }^{120,121}$ In all other decarboxylases, the carbanion is either stabilized by delocalization into an adjacent carbonyl or covalently
bonded to a cofactor. This lack of stabilization results in an extremely slow uncatalyzed decarboxylation, taking 78 million years to be half complete. The enzyme is able to achieve remarkable catalytic efficiency, $k_{\text {cat }} / \mathrm{K}_{\mathrm{M}} / k_{\text {non }}$ of $2.0 \times 10^{23} \mathrm{M}^{-1}$, with $k_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}} \simeq 10^{17}$ (this corresponds to the reaction occurring about 39 times per second in the enzyme). ${ }^{119}$ But how does nature's most proficient enzyme achieve such awe-inspiring catalytic efficiency?

Because of its unique efficiency, avid interest has developed in the mechanism of ODCase. ${ }^{122,}{ }^{123}, 124,{ }^{125},{ }^{126}, 127,{ }^{128}, 129,{ }^{130},{ }^{131}$ Several controversial hypotheses have been proposed to explain the mechanism and catalytic efficiency of ODCase. Debate over the mechanism of ODCase was piqued in 2000 when four research groups reported similar crystal structures for the enzyme complexed with uridine 5^{\prime}-monophosphate (2) or with analogs of orotidine 5^{\prime} '-monophosphate (1). ${ }^{132},{ }^{133},{ }^{134},{ }^{135}$ The structures appear to exclude several proposed mechanisms in which the orotate ring undergoes an initial chemical conversion. ${ }^{129,136,137}$ For example, in contrast to some expectations, the active site did not contain groups positioned to protonate the C-2 or C-4 carbonyls. Attention has therefore focused on a straightforward sequential decarboxylation / protonation process (Figure 5-1, eq 1). The active site places aspartate and lysine residues to interact with the carboxylate of $\mathbf{1}$ (Figure 5-2), but the nature of the exceptional catalytic acceleration provided by the enzyme is not obvious from the crystal structures. Based on QM/MM calculations, Gao and Pai proposed that the catalytic effect results from "electrostatic stress" in which the proximity of the orotate carboxylate to an aspartate induces strain that is relieved on decarboxylation. ${ }^{133}$ This ground-state destabilization proposal has
been criticized in detail by Warshel. ${ }^{138}$ Warshel applies a combination of ab initioparameterized empirical valence bond and free-energy perturbation calculations to the problem, and attributes the catalysis to the enzyme stabilizing the increased dipole moment of the transition state for decarboxylation through its preorganization of complimentary charges. Gao has more recently criticized this analysis and emphasized the importance of transition-state relaxation of a distorted ODCase-substrate conformation in the catalytic effect of the enzyme. ${ }^{139}$

Two alternatives to the simple decarboxylation / protonation mechanism have been proposed to be consistent with the crystal structures. Ealick proposed an electrophilic substitution $\left(\mathrm{S}_{\mathrm{E}} 2\right)$ mechanism, in which the decarboxylation is aided by concerted protonation of C-6 (Figure 5-1, eq 5-2). This type of process has not yet been established for simpler chemical analogs, but was proposed to be favored by the groundstate destabilization by the proximal aspartate. An attractive feature of this mechanism is that it avoids the intermediacy of a high-energy localized vinylic anion. A more radical departure from the decarboxylation / protonation mechanism was suggested by Lee. ${ }^{140}$ Based on quantum mechanical-free energy calculations and molecular dynamics simulations, Lee proposed that the orotate ring is initially protonated at C-5 (Figure 5-1, eq 5-3). Decarboxylation would then afford an ylide (or carbene-like) intermediate which could afford the product by either a direct 1,2-hydrogen shift or an indirect combination of protonation at C-6 and deprotonation at C-5.
decarboxylation / protonation

C5-protonation / decarboxylation / rearrangement

Figure 5-1. Recently postulated mechanisms for the decarboxylation of orotidine 5'monophosphate 1.

One might expect that the mechanisms of Figure 5-1 could be readily distinguished by a combination of isotope effects and labeling studies. Much of the data that would be expected to delineate the correct mechanism has in fact already been acquired. However, experimental observations can readily fail to allow a convincing qualitative
interpretation when the observations are in an intermediate range. For example, the observed deuterium solvent kinetic isotope effect (KIE) of 1.3 ± 0.2 is very difficult to interpret. The interpretation of this value is complicated by the uncertainty in the measurement, the potential impact of deuterated solvent on the enzyme's rate in ways that are unrelated to the mechanistic proton transfer, ${ }^{141}$ and the possibility that proton transfer is occurring at a very late stage of the reaction coordinate with a resulting minimal effect on the rate.

The approach that is taken here is to first more explicitly define experimentally labeling observations and the solvent H/D KIE for this reaction, then apply DFT calculations to develop models for possible reaction mechanisms. By their nature, the simple calculational models explored cannot well address the question of the origin of the catalytic effect of ODCase. However, the calculational models can be used to interpret in detail the current and previous isotope effect observations in this reaction. The results serve to substantially resolve the basic ODCase mechanism and the nature of the proton transfer and decarboxylation processes.

Figure 5-2. A schematic representative of the active site of ODCase. The numbering is Bacillus subtilis (see ref 134).

Results

Experimental

Experimental Decarboxylation in $\mathbf{D}_{\mathbf{2}} \mathbf{O}$. The C5-protonation / decarboxylation mechanism of Lee led to an interesting prediction for reactions carried out in $\mathrm{D}_{2} \mathrm{O} .{ }^{140}$ After C5-deuteration and decarboxylation, the intermediate $\mathbf{6 b}$ can in principle afford $\mathbf{2}$ by a 1,2-migration. This is alternatively viewable as a carbene insertion into the adjacent C-H bond. Such processes are highly exothermic and usually fast, though the rearrangements can exhibit substantial orbital-alignment effects. ${ }^{142}$ If this migration occurs directly, one might expect that both H and D would migrate, leading to the formation of both 7 and 8 (Scheme 5-2).

Scheme 5-2

To check this issue, the decarboxylation of $\mathbf{1}$ with ODCase from Saccharomyces cerevisiae was carried out in $\mathrm{D}_{2} \mathrm{O}(99.8 \% \mathrm{D}$ initially, before equilibration with $\mathbf{1}$ and ODCase). The reaction mixture after completion was analyzed directly by ${ }^{1} \mathrm{H}$ NMR, and C6 was found to 99.3% deuterated. The residual proton signal at C6 was a doublet at $\delta 8.0$ with a coupling constant of 8.1 Hz , just as is observed for the unlabeled 2 . Compound 8 would exhibit a singlet in this area, but this was not observed, and we estimate an upper bound for formation of 8 at 0.2%. The total hydroxylic ${ }^{1} \mathrm{H}$ content in the $\mathrm{D}_{2} \mathrm{O}$ was analyzed after the reaction was complete and found to be 1.4% (by NMR using the ${ }^{1} \mathrm{H}$ signal of $\mathbf{2}$ as an internal standard). Thus the observed signal at $\delta 8.0$ is consistent with residual ${ }^{1} \mathrm{H}$ in the solvent. It should be noted that this analysis does not exclude the presence of small amounts ($<5 \%$) of 5,6-dideuterio product, which can result from a very slow exchange of deuterium into the C5 position of 7. However, the absence of $\mathbf{8}$ is the mechanistically significant observation - this excludes the uncatalyzed direct rearrangement of $\mathbf{6 b}$.

A related experiment using 5-deuterated $\mathbf{1}$ has been reported recently with essentially the same conclusion. ${ }^{143}$ There are two advantages for the simple experiment
here. First, it is highly sensitive - since $\mathbf{8}$ would show up in a portion of the spectrum that has signal (due to the preponderance of 7), very small amounts of $\mathbf{8}$ could be readily detected. Secondly, rearrangement here would be detected by transfer of H, not D, so that the possible operation of a large H / D isotope effect in the rearrangement would increase the detectability of 1,2-migration, rather than decrease detectability with 5deuterated 1.

Competition Isotope Effects in Mixed $\mathbf{H}_{\mathbf{2}} \mathbf{O} / \mathbf{D}_{\mathbf{2}} \mathbf{O}$. As introduced by O'Leary, ${ }^{144}$ the use of a one-pot competition reaction employing mixed $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ solvent can avoid can avoid some of the general problems with solvent deuterium isotope effects, under the special condition that the proton transfer in a reaction is irreversible and occurs to a non-exchangeable site in the product. Such experiments effectively afford 'intramolecular' isotope effects and this leads to some complications in their interpretation, ${ }^{144,}{ }^{145}$ but the O'Leary approach helps substantially in the example of the ODCase mechanism.

The decarboxylation of $\mathbf{1}$ with ODCase was carried out in $50: 50$ mixtures of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ and buffered at pH 6 or pH 7 . After the reaction was complete, the solvent was removed under vacuum and the product 2 was analyzed by NMR in $\mathrm{d}_{6}{ }^{-}$ DMSO. Some of the ribose ring protons were invariably obscured by residual $\mathrm{H}_{2} \mathrm{O}$ but the uridine ring protons at C 5 and C 6 as well as the C 1 ' anomeric proton on the ribose were readily observable at $\delta 5.6,8.0$, and 5.8 , respectively. From the relative integrations of the signals at $\delta 8.0$ versus $\delta 5.8$ the incorporation of hydrogen versus deuterium at C 6 was calculated. For comparison, the ${ }^{1} \mathrm{H}$ NMR of 2 derived from a
reaction in pure $\mathrm{H}_{2} \mathrm{O}$, but otherwise carried out identically, exhibited integrations for the signals at $\delta 5.6,8.0$, and 5.8 within 2% of $1: 1: 1$. For four determinations at pH 6 the ratio of H to D at C 6 was 0.98 with a standard deviation of 0.03 .

Theoretical Calculations

C-5-Protonation / Decarboxylation / Rearrangement. The mechanistic pathway of eq 3 was previously explored calculationally by Lee using a combination of methods, and Lee discussed isotope effect expectations for $\mathrm{N}-1$ and $\mathrm{H}-5$ based on these calculations. ${ }^{140}$ Our focus here is on the development of detailed transition structure models for the prediction of isotope effects. We also explore possible mechanisms for the effective 1,2-hydrogen migration in 6. The decarboxylation of 1-methylorotate (9) was chosen as a computational model and its decarboxylation was studied in B3LYP calculations employing a $6-31+G(d, p)$ basis set. ${ }^{146}$ In accord with the observations of Lee, ${ }^{140}$ the gas-phase proton affinity of $\mathbf{9}$ at C 5 (forming 10) is predicted to be greater than the proton affinity at the C4 carbonyl oxygen, by $1 \mathrm{kcal} / \mathrm{mol}$ (290 versus 289 $\mathrm{kcal} / \mathrm{mol}$ at $\mathrm{B} 3 \mathrm{LYP} / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})+$ zpe $)$. Also in agreement with Lee, the decarboxylation of $\mathbf{1 0}$ would be facile, with a gas-phase barrier of $8.9 \mathrm{kcal} / \mathrm{mol}$ for the transition structure 11. The zwitterion / carbene $\mathbf{1 2}+\mathrm{CO}_{2}$ is predicted to be only 8.6 $\mathrm{kcal} / \mathrm{mol}$ above 10. Solvation and specific stabilization by the enzyme would have a substantial effect on these energetics, ${ }^{140}$ but the calculations support the viability of decarboxylation of 5, if it were formed. They cannot address realistically the plausibility of the formation of 5 .

9
10 (0)
11^{\ddagger} (8.9)
12 (8.6)

13 (30.3)

15

Figure 5-3. Calculated C5-protonation / decarboxylation / 1,2-rearrangement pathway for the decarboxylation of model 9. Relative energies (B3LYP/6-31+G(d,p) + zpe, $\mathrm{kcal} / \mathrm{mol}$) are shown in parentheses.

The last step in this mechanism is the conversion of zwitterion / carbene 6 to form uracil 2. The direct rearrangement process has a high barrier in the gas phase (21.7 $\mathrm{kcal} / \mathrm{mol}$ B3LYP/6-31+G(d,p) + zpe, 21.9 in MP2/6-31+G(d,p) single-point calculations). This is consistent with the experimental observations in $\mathrm{D}_{2} \mathrm{O}$ above excluding an uncatalyzed direct rearrangement of $\mathbf{6 b}$. However, in transition structure 13 there is protonic character in the migrating hydrogen, raising the possibility that the proximity of a lysine residue could catalyze the concerted 1,2-migration. To explore this possibility, transition structure 15 was located for a migration mediated by a molecule of NH_{3}. This reduces the barrier to $16.0 \mathrm{kcal} / \mathrm{mol}$ in the gas phase. Since this catalyzed migration can be stereospecific and involve the same proton that was added to C-5 in the
first place, it is consistent with the experimental absence of $\mathbf{8}$ in the product of $\mathrm{D}_{2} \mathrm{O}$ reactions.

Two-step processes may be considered as an alternative to the direct rearrangement of 6 to 2 . One possibility is the deprotonation of 6 at $\mathrm{C}-5$ to form the uridine anion 3 followed by protonation at C-6 to afford 2 . This would seem anti-intuitive from the standpoint that the mechanism would have arrived at 3 by a circuitous route when, alternatively, $\mathbf{3}$ can be formed directly from 1. The barrier for direct decarboxylation of $\mathbf{1}$ would just be the endothermicity inherent in formation of the unstable anion 6, since there is apparently no barrier for the reverse process, ${ }^{2 g}$ so it is not clear how the indirect route could be advantageous. A more attractive possibility is the protonation of $\mathbf{6}$ to form 21 followed by deprotonation to form 2. To gauge crudely the basicity of $\mathbf{6}$ at C6, one may compare it with thiamine. Thiamine and related thiazolium ions (e.g., 22) have pK_{a} 's of 17-19, ${ }^{147}$ but the high acidity of such structures is the result of a combination of stabilizing effects for the conjugate base (23). Stabilization by the ylide/carbene character of the structures would be expected to be similar for 2 versus 23, but 6 lacks the stabilizing adjacent sulfur atom present in 23. Addition of a phenylthio group to simple structures containing a single electron-withdrawing group decreases the pK_{a} by about $10,{ }^{148}$ so we would estimate the pK_{a} of the conjugate acid of $\mathbf{6 (2 1)}$ at C 6 to be 2729. As an alternative approach to this issue, we calculated the energetics for protonation of 12 by $\mathrm{Me}_{3} \mathrm{NH}^{+}$, and this is predicted to be downhill by $14.2 \mathrm{kcal} / \mathrm{mol}$. From either the qualitative argument above or the calculational results, protonation of $\mathbf{6}$ should be
extremely rapid if a proton donor is available. It should be noted, however, that the formation of 21 requires the overall donation of two protons from the enzyme.

Scheme 5-3

21

$\mathrm{S}_{\mathrm{E}} 2$ Mechanism versus "Simple" Decarboxylation. For comparison with experimental observations, we required reasonable models in high-level calculations for both the electrophilic substitution of the $\mathrm{S}_{\mathrm{E}} 2$ process and the direct decarboxylation mechanism. This modeling is fraught with both specific and general difficulties. In the process of dealing with the problems, it became apparent that the seemingly distinct $\mathrm{S}_{\mathrm{E}} 2$ and direct decarboxylation mechanisms are better understood as the extremes of a mechanistic continuum. This idea will provide insight into both the uncatalyzed process in water and the enzymatic catalysis.

No potential energy saddle point could be located for the gas-phase decarboxylation of $\mathbf{9}$ to afford the N -methyluracil anion $\mathbf{2 4}+\mathrm{CO}_{2}$; the reverse reaction is apparently enthalpically barrierless. The variational transition state for decarboxylation,
at approximately the free-energy saddle point, would be extremely late, and its enthalpy should be reasonably approximated by separated 24 and CO_{2}. Formation of $\mathbf{2 4}+\mathrm{CO}_{2}$ is predicted to be uphill by $36.4 \mathrm{kcal} / \mathrm{mol}(\mathrm{B} 3 \mathrm{LYP} / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})+$ zpe $)$. This is similar to results from other theoretical calculations. ${ }^{129,133,149}$

Scheme 5-4

It has been noted previously that the predicted barrier for decarboxylation corresponds closely to the experimental barrier for decarboxylation of $\mathbf{1}$ in water (38.5 $\mathrm{kcal} / \mathrm{mol}^{119}$). This correspondence should not be misinterpreted; it certainly does not imply that solvation plays no role in the decarboxylation or that the gas-phase decarboxylation is a good model for the solution reaction. Rather, the correspondence implies that the solvation of the decarboxylation transition state is roughly similar in energetic magnitude to the solvation of the starting material. The starting carboxylate would be strongly solvated in water; an estimated enthalpy of solvation of $\mathbf{9}$, based on the pK_{a} of its conjugate acid $\left(0.4^{150}\right)$ and values for other carboxylates in water, is 74 $\mathrm{kcal} / \mathrm{mol} .{ }^{151}$ The transition state solvation must be approximately the same. However, the nature of the strong transition state solvation is unclear, particularly since the decarboxylation transition state is presumably very late with modest negative charge left on the CO_{2}.

Insight into the nature of solvation of the decarboxylation transition state was provided by a series of calculations aimed originally at examining the $\mathrm{S}_{\mathrm{E}} 2$ mechanism. The transition structures 25-30 (Figure 5-4) were located for the decarboxylation of 9 assisted by single molecules of HF , formic acid, fluoromethanol, vinyl alcohol, methanol, and water. The proton donors in this series span a range of gas-phase acidity of about $50 \mathrm{kcal} / \mathrm{mol}$. In each case the decarboxylation is highly advanced, and the $\mathrm{H}-\mathrm{O}$ or $\mathrm{H}-\mathrm{F}$ bond is only slightly elongated from its value in the isolated proton donor. However, all of the structures are substantially stabilized compared to separated proton donor / $\mathbf{2 4} / \mathrm{CO}_{2}$ (at a relative energy of $36.4 \mathrm{kcal} / \mathrm{mol}$). (It should be understood clearly that this transition state stabilization would not engender catalysis for these simple reactions, as there would be equal or greater stabilization of the starting materials.)

$25\left(E^{\ddagger}=8.9\right)$

$26\left(E^{\ddagger}=12.1\right)$

$29\left(E^{\ddagger}=16.8\right)$

Figure 5-4. Transition structures for decarboxylation of 9 assisted by one molecule of a proton donor. Energies relative to separate $\mathbf{9}$ and proton donor are given in parentheses (B3LYP/6-31+G(d,p) + zpe, kcal/mol).

Looking at the detailed geometries, the series of structures are clearly a continuum. As the energetic assistance by the proton donor decreases, the C6--H distance increases and the decarboxylation transition state becomes later. The trends are highly consistent, despite the fact that 29 and 30 are not transition structures for an $S_{E} 2$ mechanism. While 25-28 ultimately undergo proton transfer to afford the uracil 14, 29 and 30 lead to a solvated uracil anion, never consummating the proton transfer. This is not surprising;
the gas phase proton affinity of $24(364 \mathrm{kcal} / \mathrm{mol})$ is less than that of hydroxide or methoxide (388 and $378 \mathrm{kcal} / \mathrm{mol}$, respectively, predicted at B3LYP/6-31+G(d,p) + zpe). The structures 25-30 appear to be best understood as "solvated decarboxylations" rather than "electrophilic substitutions." This is most obvious for 29 and $\mathbf{3 0}$, but even with 2528, the proton transfer is an "afterthought," proceeding long after the transition state. ${ }^{152}$ The stronger acids solvate the transition state to a greater extent, aiding in the decarboxylation, but the range of activation barriers is much smaller than the range of acidities in the solvating acids.

To explore the decarboxylation in water further, the decarboxylation transition state and the starting 9 were each optimized in a cluster of 8 water molecules. The best ground-state and transition-state structures located were 31 and 32; some others are given in the Appendix. The structures studied were chosen to model minimal expectations for solvation in bulk water, including a network of water molecules supporting the transition state solvation and the hydrogen bonding to the carboxylate oxygens in 9. Otherwise, the structures are not meant to be realistic. No effort was made to identify the best of the many possible cluster structures, and even if the best were found, it would be questionably representative of bulk water. The solvated transition structure 32 is $30.1 \mathrm{kcal} / \mathrm{mol}$ above the solvated 9 . Considering the complications, this is in very reasonable agreement with the experimental barrier in water. The breaking of the $\mathrm{C} 6---\mathrm{CO}_{2}$ bond has proceeded to a somewhat greater extent in 32 than in 30, but otherwise the structures are similar. However, 32 is now formally
an $\mathrm{S}_{\mathrm{E}} 2$ transition state - the extra water molecules stabilize the formation of a hydroxide anion allowing protonation of the uracil at C6 (Scheme 5-5).

Scheme 5-5

H

31 ($\mathrm{E}_{\mathrm{rel}}=0$)

Overall, these calculations support the idea that the decarboxylation transition state in water is in fact tremendously stabilized by solvation. In order to achieve catalysis, the enzyme must "solvate" (bind to) the transition state to an even greater extent than water.

In the enzyme, a lysine residue (Lys62 in Bacillus subtilis numbering ${ }^{134}$ - see Figure 5-2) would likely play the key role in solvating the decarboxylation transition state and donating a proton in the formal $\mathrm{S}_{\mathrm{E}} 2$ process. To model this process, the transition structure 33 was located for the decarboxylation of 9 stabilized by a
trimethylammonium cation. ${ }^{153}$ Because of its positive charge, a trimethylammonium ion is much more acidic in the gas phase than any of the neutral proton donors used in structures 25-30. The gas phase structure then has the appearance of being the extreme of the continuum, with shorter $\mathrm{C} 6--\mathrm{H}$ and $\mathrm{C} 6--\mathrm{CO}_{2}$ distances than 25 . This is misleading relative to the solution chemistry, and the transition structure was also optimized using a polarizable continuum (PCM) solvent model for acetone $(\varepsilon=20.7)$ or water $(\varepsilon=78.39) .{ }^{154}$ The resulting structures have much less $\mathrm{S}_{\mathrm{E}} 2$ character, with the C6--H distance increasing to $1.96-2.00 \AA$. For comparison, structure 34 results when 30 is reoptimized using a PCM solvent model in water - the change in C6--H is small with water as the proton donor. Based on the large C6--H distance in 33 in solvent, it seems unlikely that a lysinium-mediated decarboxylation in the enzyme would have much more $\mathrm{S}_{\mathrm{E}} 2$ character than the uncatalyzed reaction in water (Scheme 5-6).

The $\mathrm{S}_{\mathrm{E}} 2$ character for 33 in solvent is low, but this does not address the basic energetic question of how much the presence of the ammonium stabilizes the decarboxylation transition state. Because of the large charge-charge interaction effects, there is no simple adequate way to calculate the stabilization energy in high-level calculations - the fundamental problem is that there is no "fair" starting material with which to compare 33 to calculate a barrier. At one extreme, 33 is $65 \mathrm{kcal} / \mathrm{mol}$ below separate 1-methylorotate and trimethylammonium ion in the gas phase. At the other extreme, it may be recognized that ammonium ions do not catalyze the decarboxylation at all in free solution - solvation of the starting carboxylate would be expected to exceed solvation of the transition structure. In an attempt to mimic the starting state in the
enzyme, a geometry-optimized trimethylammonium ion was placed directly above C_{6} of a geometry-optimized 9 with a $\mathrm{C}_{6}-\mathrm{H}$ separation of $2.3 \AA$. The energy was then calculated without further geometry optimization (which would ultimately lead to proton transfer to the carboxylate). From this structure, the barrier to formation of 33 was 13.9 $\mathrm{kcal} / \mathrm{mol}$. The inadequacy of this calculation is plain, but it does serve to show that preorganization of ammonium ion near an orotate can plausibly decrease the barrier for the decarboxylation.

Scheme 5-6

Warshel concludes that these types of electrostatic interactions in the protein account for the enzyme's ability to promote decarboxylation. ${ }^{138}$ These electrostatic effects are due to repulsions between the carboxylates of two aspartate residues (Asp-60 \& Asp-65, Figure 5-2) rather than protein carboxylate repelling the substrate carboxylate. This carboxylate electrostatic repulsion stabilizes the lysinium residue at the transition state. In the enzyme the carboxylates are preorganized to repel each other
in the ground state so that their repulsion is not part of the reaction barrier. ${ }^{152}$ Alternatively, when the same reaction is considered in water, the water molecules that stabilize the proton donor in the transition state also repel each other. This water-water repulsion is part of the activation barrier. The net effect is a very large transition-state stabilization in the enzyme relative to water.

Another clue suggesting some transition state stabilization by the presence of a proximal ammonium cation is the surprisingly short $\mathrm{C} 6--\mathrm{CO}_{2}$ distances in 33 . If the ammonium cation were providing no more stabilization to the transition state than a water molecule as in 34 , then one would expect the loss of CO_{2} to be similarly late. The much shorter C6-- CO_{2} distance of $2.24 \AA$, signaling an earlier decarboxylation transition state, is similar to the corresponding distances in 25 and 26 . This supports the idea that an ammonium cation can provide greater transition state stabilization than water.

Decarboxylative Elimination. In 1982, Silverman and Groziak proposed a mechanism for ODCase in which an initial Michael addition to C_{5} of OMP is followed by a decarboxylative elimination to afford UMP. ${ }^{137}$ Within the context of the crystal structures, this mechanism is conceivable if a neutral Lys62 residue acts as the nucleophile, as in Scheme 5-7. To account for the observation of a substantial ${ }^{13} \mathrm{C}$ KIE in the carboxylate carbon, the formation of intermediate 35 would have to be rapidly reversible. A key test of this mechanism was the measurement by Wolfenden and coworkers of a near unity H/D KIE $\left(1.00 \pm 0.06\right.$ on $\left.\mathrm{k}_{\mathrm{cat}} / \mathrm{k}_{\mathrm{M}}\right)$ at C_{5} of OMP. ${ }^{122}$ Because an inverse H/D KIE would be expected if an sp^{3}-hybridized C_{5} (as in 35) were involved, the Silverman mechanism has been largely dismissed in the literature. This dismissal
seems hasty, since the uncertainty on the $\mathrm{C}_{5} \mathrm{H} / \mathrm{D}$ KIE is large (particularly after consideration of commitment, vide infra) and a late elimination transition state could conceivably exhibit a low H/D KIE. For this reason, we briefly investigated the mechanism theoretically with the goal of providing a basis for the quantitative comparison of predicted and experimental KIEs.

Scheme 5-7

35
As a model for the decarboxylative elimination, transition structure 37 was located in B3LYP/6-31+G** calculations in the gas phase and including acetone and water PCM solvent models. This reaction involves the concerted formation of three neutral products from a zwitterion, and the gas-phase reaction would be highly exothermic (47.2 $\mathrm{kcal} / \mathrm{mol}$). The gas-phase transition structure is accordingly very early with a barrier of only $1.3 \mathrm{kcal} / \mathrm{mol}$. The transition structures obtained in solvent models are later, with barriers of 12.5 and $13.6 \mathrm{kcal} / \mathrm{mol}$ for acetone and water, respectively (Scheme 5-8). These barriers suggest that the decarboxylative elimination step can be energetically viable if the formation of the intermediate zwitterion is sufficiently facile. The latter point is tricky to theoretically evaluate and no attempt was made to do so - transition structure 37 was sufficient for our purpose of experimentally accessing the mechanism using isotope effects.

Scheme 5-8

Predicted Isotope Effects. The qualitative interpretation of kinetic isotope effects has long been a standard mechanistic tool, but this approach is often limited in its ability to distinguish between similar mechanisms. This is true for ODCase. For example, the observation of a large ${ }^{13} \mathrm{C}$ KIE of 1.049^{123} at the carboxylate carbon of OMP does not qualitatively distinguish between any of the mechanisms involving rate-limiting cleavage of the $\mathrm{C}_{6}-\mathrm{CO}_{2}$ bond. In recent years, a considerable advance in the interpretation of isotope effects has been the comparison of experimental KIEs with predicted KIEs based on high-level theoretical calculations. Predictions of heavy-atom KIEs in particular have proven highly accurate, so long as the underlying calculation accurately depicts the mechanism and transition state geometry. ${ }^{155,156}$ Thus, comparison of experimental isotope effects with those predicted for a choice of mechanisms can be used to distinguish between the possibilities.

Appropriate ${ }^{13} \mathrm{C},{ }^{2} \mathrm{H}$, and ${ }^{15} \mathrm{~N}$ KIEs for the various mechanisms were predicted from the scaled theoretical vibrational frequencies ${ }^{157}$ using conventional transition state theory by the method of Bigeleisen and Mayer. ${ }^{158}$ Tunneling corrections were applied
using the one-dimensional infinite parabolic barrier model. ${ }^{159}$ The results are summarized in Table 1, along with the experimental KIEs for comparison.

The experimental KIEs require comment. The value of 1.049 for the carboxylate carbon was the maximum obtained at pH 4 . Smaller values were obtained at higher pH 's, indicative of a commitment to catalysis, and it is unclear whether this commitment is fully relieved at pH 4 . The full intrinsic isotope effect may thus be higher than 1.049. The H/D KIE at C_{5} was measured at pH 6 and presumably some commitment to catalysis is involved in this measurement, as the ${ }^{13} \mathrm{C}$ KIE for the carboxylate carbon is only 1.0272 at ph 6 . This has the effect of increasing the uncertainty of the measurement to 1.00 ± 0.11 for the intrinsic isotope effect. The experimentally observed ${ }^{15} \mathrm{~N}$ KIE at N_{1} of 1.0036 was at pH 6.5 , and extrapolation of this value based of the commitment observed in the ${ }^{13} \mathrm{C}$ KIE at pH 6.5 leads to an intrinsic ${ }^{15} \mathrm{~N}$ KIE of 1.0068 . ${ }^{131}$ However, there are two problems with this extrapolation. The first is that there is a relatively high uncertainty in the effect of commitment. ${ }^{131}$ The second is that with such a small KIE, any small isotope effect for binding of substrate ${ }^{160}$ will lead to a relatively large error in the extrapolation. For example, if the binding isotope effect were 1.003 , the correct extrapolated intrinsic ${ }^{15} \mathrm{~N}$ KIE would be 1.0041 . A significant uncertainty in the ${ }^{15} \mathrm{~N}$ KIE should therefore be recognized.

Many comments on the KIE predictions are in order. The carboxylate $\mathrm{CO}_{2}, \mathrm{C}_{5}$ H / D, and N_{1} isotope effects for the $S_{E} 2, C_{5}$-protonation / decarboxylation, and decarboxylative elimination mechanisms are all based on the decarboxylation transition structures, assuming that this step is fully rate limiting. Calculation of isotope effects for
the direct decarboxylation is complicated by the lack of a potential-energy saddle point for loss of CO_{2}. The approach of Lee and Phillips was to base the KIE on the equilibrium isotope effect for orotate versus uridine anion. ${ }^{149}$ The rationalization for such an "equilibrium model" would be that the endothermic loss of CO_{2} would have a very late transition state. Their resulting N_{1} KIE was strikingly close to the extrapolated experimental value. However, if this model is applied to the carboxylate carbon, the predicted isotope effect would be 0.997 , obviously far from experiment. The alternative approach here is to assume that the enzymatic transition state is earlier to an unknown degree, calculate isotope effects for a series of $\mathrm{C}_{6}-\mathrm{CO}_{2}$ separations, ${ }^{161}$ and pick the best match with the experimental carboxylate isotope effect. Applying this procedure, the predicted ${ }^{13} \mathrm{C}$ KIE reaches a maximum plateau of 1.039 centered on a $\mathrm{C}_{6}-\mathrm{CO}_{2}$ distance of $2.2 \AA$. This distance is intuitively short, but an accurate calculation is difficult because of the formation of an anion at the transition state. There is not accurate method to address this difficulty, without employing intrinsic solvent molecules that would stabilize the incipient charge. Unfortunately, this would not accurately depict a direct decarboxylation.

The most complicated KIE predictions are those for H / D transfer to C_{6}. The reference state used for predicting H/D KIEs from the $\mathrm{S}_{\mathrm{E}} 2$ and decarboxylative elimination transition structures (33 and 37, respectively) was liquid HOD. A reduced isotopic partition ratio for liquid HOD that is applicable for comparison with B3LYP/6$31+\mathrm{G}^{* *}$ calculations was calculated by correcting the gas-phase theoretical result for HOD by the experimental vapor pressure isotope effect for HOD. ${ }^{162}$ The use of liquid
water as a reference state in these two mechanisms, as opposed to a lysinium ion that is presumably effecting the actual proton transfer to C_{6}, assumes that H / D equilibration of the lysinium ion (Lys62) with solvent is faster than the decarboxylation itself. This seems reasonable since the catalyzed reaction still has a substantial barrier and the Lys62 is near the surface of the enzyme.

The H/D isotope effect at C_{6} for the C_{5}-protonation / decarboxylation mechanism depends on whether C_{6} is protonated by the same proton that was initially added to C_{5} (as in the conversion of $\mathbf{1 2}$ to $\mathbf{1 4}$) or by an external proton (as in the conversion of $\mathbf{6}$ to 21). In the former case, the isotope effect would be determined by transition structure 11. (It is necessary to assume that H -transfer from C_{5} to C_{6} is stereospecific to account for the ultimate absence of deuterium at C_{5}.) The isotope effect if an external proton is transferred to C_{6} was based on a transition structure for transfer of a proton from trimethylammonium cation to 6 (see Appendix). For this primary H/D isotope effect, no tunneling correction was applied, and the calculated KIE is likely a lower limit.

In the sequential decarboxylation/protonation mechanism, the transfer of a proton to C_{6} of the uracil anion would presumably have a very low barrier. The observed isotope effect will reflect the concentration of H / D in a position or positions capable of transferring the proton to $\mathrm{C}_{6}\left(\mathrm{~K}_{\text {fract }}\right)$, along with a competition isotope effect if more than one position can transfer the proton $\left(\mathrm{k}_{\mathrm{H} / \mathrm{D}, \text { compet }}\right)$. From the crystal structures and previous studies of the sequential decarboxylation/protonation mechanism, we assume that a lysine residue (Lys62) is transferring the proton. If this transfer is so fast that rotation about the $\mathrm{C}-\mathrm{N}$ bond of the lysinium ion doesn't have time to occur, the observed
isotope effect would be $K_{\text {fract }}$ Little appears to be known about H / D fractionation factors for lysinium ion within enzymes, but the fractionation factor for a primary alkylammonium ion in water is $\approx 1.08 .{ }^{163}$ This fractionation factor is decreased by hydrogen bonding in water - the predicted fractionation factor for gas-phase $\mathrm{MeNH}_{3}{ }^{+}$ versus liquid HOD (B3LYP/6-31+G**) is 1.23 . In previous modeling of the proton transfer step for this mechanism, the lysinium proton undergoing transfer to C_{6} starts with no apparent hydrogen bonding, and the fractionation factor for this position would be expected to be ≥ 1.08. Based on this, the expected H / D isotope effect at C_{6} for the sequential decarboxylation/protonation mechanism would be ≤ 0.92.

Alternatively, if the proton transfer from the lysinium ion to C_{6} of the uracil anion has a barrier of a few $\mathrm{kcal} / \mathrm{mol}$, the observed isotope effect would in part reflect a competition between protium and deuterium in the $\mathrm{R}-\mathrm{NH}_{\mathrm{n}} \mathrm{D}_{3 \text {-n }}$ groups. Lysinium ions containing either 3 deuterium or 3 protium ($\approx 1 / 4$ of the total) would not contribute to the isotope effect, excepts as reflected in $\mathrm{K}_{\text {fract }}$. The remaining lysinium ions, consisting of either $\mathrm{NH}_{2} \mathrm{D}$ or NHD_{2} groups, would contribute to the observed isotope effect in a way that depends on an intrinsic rate difference for transfer of H versus D corrected by a statistical factor. If the intrinsic rate difference is assumed to be 2.0 and $\mathrm{K}_{\text {fract }}$ is 0.92 , the overall predicted isotope effect would be 1.46.

Table 5-1. Experimental versus predicted kinetic isotope effects $\left(k_{12}{ }^{C} / k_{13} \mathrm{C}, k_{\mathrm{H}}, k_{\mathrm{D}}\right.$, k_{14}, k_{15}) for orotate decarboxylation by various mechanisms.

	CO_{2}	H/D on C_{5}	N_{1}	$\begin{gathered} \mathrm{H} / \mathrm{D} \\ \text { transferred } \\ \text { to } \mathrm{C}_{6} \end{gathered}$
		Experimental		
	$1.049^{\text {a }}$	$1.00 \pm 0.06^{\text {b }}$	$\begin{gathered} 1.0036 \\ {[1.0068]^{\mathrm{c}}} \end{gathered}$	0.98 ± 0.03
Mechanism		Predicted		
$\begin{aligned} & \text { Decarboxylation / } \\ & \text { protonation } \\ & \text { (equilibrium model) }^{\mathrm{d}} \end{aligned}$	0.997	1.02	1.0056	$\begin{aligned} & 0.92^{\mathrm{e}} \\ & 1.46^{\mathrm{e}} \end{aligned}$
$\begin{gathered} \text { Decarboxylation / } \\ \text { protonation } \\ \left(\mathrm{C}_{6}--\mathrm{CO}_{2}=2.2 \AA\right)^{\mathrm{f}} \end{gathered}$	1.039	1.00	1.0041	$\begin{aligned} & 0.92^{\mathrm{e}} \\ & 1.46^{\mathrm{e}} \end{aligned}$
$\mathrm{S}_{\mathrm{E}} 2^{\mathrm{g}}$	1.052	1.00	1.0039	0.97
C_{5}-Protonation decarboxylation ${ }^{h}$	1.038	$1.03{ }^{\text {i }}$	1.0036	$\begin{aligned} & 1.23 \mathrm{j} \\ & 3.78 \mathrm{k} \end{aligned}$
Decarboxylative	1.049^{m}	0.838^{m}	0.9969 m	$1.08{ }^{\mathrm{m}}$
elimination ${ }^{1}$	1.050^{n}	$0.851^{\text {n }}$	$0.9969^{\text {n }}$	$1.09{ }^{\text {n }}$

${ }^{\text {a }}$ See ref 123 . bSee ref 122 . 'see ref 131. The first value is experimental. The value in brackets is extrapolated based on an expected commitment to catalysis. dAssumes a very late decarboxylation transition state, modeled as $\mathbf{2 4}+\mathrm{CO}_{2}$ versus starting material
9. eSee text. fKIEs predicted based on a transition structure in which the $\mathrm{C}_{6}---\mathrm{CO}_{2}$ distance in $\mathbf{9}$ is elongated to $2.2 \AA$. This distance was chosen to best fit the experimental ${ }^{13}$ C KIE. gKIEs based on transition structure 33 (in acetone PCM solvent model) versus starting materials $\mathbf{9}$ / liquid HOD. hKIEs based on transition structure $\mathbf{1 1}$ versus starting materials 9 / liquid HOD. iRef 140 had predicted 1.012, but that calculation was debatably based on the intermediate prior to the decarboxylation transition state. jKIE if rate-limiting decarboxylation is followed by a stereospecific hydrogen shift from C_{5} to
 Supporting Information.) This KIE does not include a tunneling correction. ${ }^{1}$ KIE based on transition structure 37 versus starting materials 9 / liquid HOD. mAcetone PCM solvent model. ${ }^{\mathrm{n}}$ Water PCM solvent model.

Discussion

In considering the mechanistic implications of the experimental isotope effects, the most critical observation would appear to be the very large ${ }^{13} \mathrm{C}$ KIE for the carboxylate carbon. The ${ }^{13} \mathrm{C}$ KIEs for decarboxylations have been extensively studied and it is worthwhile to consider known structural effects on the isotope effects observed. ${ }^{164}$ (See Appendix for a series of examples.) Simple decarboxylations of carboxylate anions typically exhibit ${ }^{13} \mathrm{C}$ KIEs in a range from 1.01 to 1.04 . Such reactions generally afford less stable anions, making the reactions uphill processes enthalpically. The magnitude of the KIE in these cases is limited by the late transition state, since the equilibrium isotope effect for decarboxylations is invariably near unity or slightly inverse, and limited by the absence of an enthalpic barrier through which tunneling can occur. Many examples of decarboxylation KIEs > 1.04 are known, but these invariably involve formation of either a highly stabilized anion or a neutral product. Such large decarboxylation KIEs thus suggest an exothermic decarboxylation process with a discrete barrier.

These ideas are mirrored in the predicted ${ }^{13} \mathrm{C}$ KIEs in Table $5-1$. In both the decarboxylation / protonation and C_{5}-protonation / decarboxylation mechanisms, the decarboxylation step itself is an uphill process and the predicted ${ }^{13} \mathrm{C}$ KIE is, at its maximum, 1.039. We do not believe that a simple uphill decarboxylation to form a uracil anion can account for the experimental intrinsic KIE of 1.049 (or greater). On the other hand, the downhill $\mathrm{S}_{\mathrm{E}} 2$ and decarboxylative elimination mechanisms lead to predicted ${ }^{13} \mathrm{C}$ KIE that fit well with experiment.

The H/D KIE on C_{5} does not fit with the decarboxylative elimination mechanism. This is in agreement with the original interpretation of Wolfenden and coworkers, ${ }^{122}$ though we believe the isotope effect calculation strengthens their conclusion. The remaining mechanisms are consistent with an H/D KIE near unity.

The best ${ }^{15} \mathrm{~N}$ KIE prediction, 1.0056 , arises from an "equilibrium model" for simple decarboxylation that is untenable due to its poor ${ }^{13} \mathrm{C}$ KIE prediction. The ${ }^{15} \mathrm{~N}$ KIE does rule out the decarboxylative elimination mechanism, but considering the uncertainties in the extrapolation of the observed KIE, it is arguably consistent with any of the other mechanistic models.

Traditionally, the $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ of 0.98 for transfer of H / D to C_{6} might be interpreted as ruling out the $\mathrm{S}_{\mathrm{E}} 2$ mechanism. After all, the $\mathrm{S}_{\mathrm{E}} 2$ mechanism formally involves the transfer of H / D in the rate-limiting step, and a primary H / D isotope effect, typically >2, would be expected. This qualitative interpretation would be overly simplistic for two reasons. The first is that the $\mathrm{S}_{\mathrm{E}} 2$ transition states, as described above, are best understood as solvated decarboxylations rather than electrophilic substitutions. The degree of proton transfer in transition structure 33 is quite small, and the H/D being transferred is in an only modestly looser position at the transition state than it was in the starting ammonium ion. The second reason is that the appropriate reference state for the H/D transfer is bulk water rather than ammonium ion, and due to hydrogen bonding the water reference state is itself a looser position than ammonium ion. The predicted $\mathrm{S}_{\mathrm{E}} 2$ KIE of 0.97 may thus be viewed as resulting from the combination of a normal KIE for the $\mathrm{S}_{\mathrm{E}} 2$ process and an inverse isotope effect for formation of a lysinium ion. Overall,
the H / D KIE predicted for the $\mathrm{S}_{\mathrm{E}} 2$ mechanism ends up in striking agreement with experiment.

It is difficult to see how either the C_{5}-protonation / decarboxylation mechanism or the decarboxylative elimination mechanism could account for the H / D KIE at C_{6}, but the sequential decarboxylation / protonation mechanism requires further consideration. At one mechanistic extreme, in which protonation of the uracil anion is too fast to allow an isotopic selection, the expected isotope effect would be more inverse than observed. However, if, for unknown reasons, the highly exothermic transfer of a proton from a lysinium ion to a uracil anion faces a significant barrier, it would probably be possible to rationalize a wide range of experimental results H / D KIEs, including that observed. Overall, the strongest evidence against the decarboxylation / protonation mechanism is not the $\mathrm{C}_{6} \mathrm{H} / \mathrm{D}$ KIE but its difficulty in rationalizing the carboxylate ${ }^{13} \mathrm{C}$ KIE.

Conclusions

The combination of theoretical calculations, isotope effects, and a cumulative interpretation of all the experimental results available supports a very simple $\mathrm{S}_{\mathrm{E}} 2$ mechanism for the ODCase catalyzed decarboxylation. A protonated lysinium ion stabilizes the transition state for decarboxylation. A high energy vinyl carbanion is avoided by a proton transfer at a stage where negative charge develops during decarboxylation. When C-6 becomes sufficiently basic proton transfer occurs rapidly.

CHAPTER VI

ISOTOPE EFFECTS AND THE MECHANISM OF EPOXIDATION OF CYCLOHEXENONE WITH TERT-BUTYLHYDROPEROXIDE

Introduction

The epoxidation of α, β-unsaturated carbonyls with hydroperoxides under basic conditions, the Weitz-Scheffer reaction, is valuable transformation in organic synthesis. ${ }^{165},{ }^{166}$ The mildness of the reaction conditions and the high selectivity for the oxidation of electron-poor alkenes has allowed the application of these reactions to diverse complex structures. ${ }^{167}$ The oldest and simplest reaction conditions utilize alkaline hydrogen peroxide, but reactions using alkyl hydroperoxides have advantages in many circumstances. ${ }^{168,}{ }^{169}$ Diverse approaches to enantioselective epoxidations have been developed, ${ }^{170}$ including catalysis by polyamino acids (the Juliá-Colonna epoxidation) ${ }^{171}$ and chiral phase-transfer catalysts, ${ }^{172}$ reactions employing chiral alkyl hydroperoxides, ${ }^{173}$ and reactions using zinc reagents and O_{2} in the presence of a chiral alcohol. ${ }^{174}$

The accepted two-step mechanism of these reactions (Scheme 6-1), first proposed by Bunton and Minkoff, ${ }^{166} \mathrm{a}$ involves the conjugate addition of a hydroperoxy or alkylperoxy anion 2 to afford a peroxyenolate $\mathbf{3}$ followed by ring-closing intramolecular nucleophilic substitution of C_{2} of the enolate on the $\mathrm{O}-\mathrm{O}$ bond to afford the epoxide 4.

Strong evidence for an intermediate in these reactions includes their nonstereospecificity; unlike epoxidations of electron-rich alkenes with peracids, the stereochemistry of the starting alkene is not necessarily retained in the epoxide. For example, the epoxidations of E - and Z-3-methyl-3-penten-2-one with basic $\mathrm{H}_{2} \mathrm{O}_{2}$ in methanol both afford predominantly the E epoxide product. ${ }^{175}$

Figure 6-1. General mechanism for the addition of peroxide to α, β-unsaturated carbonyl.

While the overall mechanism is well-established, a consistent picture of the ratelimiting step has been elusive. In the reaction of Z-3-methyl-3-penten-2-one (5) with alkaline hydrogen peroxide, House found that Z-E isomerization occurred at rates comparable to epoxidation (Scheme 6-2). ${ }^{175}$ This suggests significant reversibility of the initial addition under these conditions. On the other hand, substituent effect studies of the epoxidation of 4-aryl-3-buten-2-ones under similar conditions have been interpreted as favoring a rate-limiting addition step. ${ }^{176}$ In a careful study of the epoxidation of β-deuterium labeled phenyl vinyl ketone with hydrogen peroxide, Kelly and Roberts found that Z-E isomerization was much faster than epoxidation under JuliáColonna conditions using polyleucine as catalyst. ${ }^{177}$ This strongly supports rate-limiting ring closure. In contrast, isomerization and epoxidation were comparable in the absence
of the polyleucine. This suggests that the rate-limiting step may vary depending on the detailed reaction conditions.

Figure 6-2. House found that $Z-E$ isomerization occurred at rates comparable to epoxidation in the reaction of Z-3-methyl-3-penten-2-one with alkaline hydrogen peroxide.

This uncertainty in the rate-limiting step and a lack of knowledge of the structural characteristics of the transition state thwarts a detailed understanding of diastereoselectivity or enantioselectivity in these reactions. This is particularly true for epoxidations with alkyl hydroperoxides under typical synthetic conditions and for epoxidations of cyclic enones, where little mechanistic information is available. We describe here a study of the epoxidation of cyclohexenone with tert-butyl hydroperoxide $(t-\mathrm{BuOOH}) / \mathrm{DBU}$ (Figure 6-3) using a combination of experimental kinetic isotope effects (KIEs) and theoretical calculations. The results provide insight into the stereoselectivity of these reactions and should aid the further development of stereocontrolled epoxidations.

Figure 6-3. The expoxidation of cyclohexenone with tert-butyl hydroperoxide with DBU.

Results

Experimental

Experimental Isotope Effects. The epoxidation of an enone using a combination of an alkyl hydroperoxide and DBU in an aprotic solvent was first reported by Schlessinger and Poss. ${ }^{167} \mathrm{~b}$ Yadav demonstrated the utility of these conditions with a range of α, β-unsaturated carbonyls, ${ }^{169}$ and they have been commonly applied in enantioselective reactions using chiral alkyl hydroperoxides. ${ }^{173}$ Under the prototypical epoxidation conditions employed here (stoichiometric DBU and t - BuOOH in dichloroethane at $22{ }^{\circ} \mathrm{C}$), cyclohexenone is converted to $\mathbf{8}$ cleanly and essentially quantitatively.

The ${ }^{13} \mathrm{C}$ KIEs for the epoxidation of cyclohexenone were determined combinatorially by NMR methodology at natural abundance. ${ }^{5}$ Two reactions of cyclohexenone were taken 83.4% and 89.1% conversion, and the unreacted cyclohexenone was recovered by an extractive workup followed by flash chromatography and fractional distillation. The samples of recovered cyclohexenone were analyzed by ${ }^{13} \mathrm{C}$ NMR, along with standard samples that had not been subjected to the reaction conditions. The change in isotopic composition in each position was
determined relative to the α-methylene carbon in cyclohexenone, ${ }^{178}$ with the assumption that isotopic fractionation in this position was negligible. From the percentage conversions and the changes in isotopic composition, the KIEs were calculated as previously described.

Table 6-1 shows the results of two separate KIE determinations (each based on six sets of spectra) for each of the two reactions. The independent sets of ${ }^{13} \mathrm{C}$ KIEs agree within the standard deviation of the measurements, though the KIEs here are more variable than in previous KIE determinations on cyclohexenone due to the presence of an interfering trace impurity in the samples. Despite the variability, the qualitative features of the KIEs are apparent. Only the C_{2} and C_{3} KIEs differ significantly from unity, with a relatively large C_{3} isotope effect and a smaller KIE at C_{2}. The qualitative interpretation of the C_{3} KIE is that the rate-limiting step involves a substantial bonding change at C_{3}, as would be expected for a rate-limiting addition of $t-\mathrm{BuOO}^{-}$to cyclohexenone. The medium-sized C_{2} KIE is less readily interpreted. A more detailed interpretation of these KIEs will be possible with the aid of theoretical calculations.

Table 6-1. Experimental and predicted ${ }^{13} \mathrm{C}$ kinetic isotope effects $\left(k_{12}{ }^{C} / k_{13} \mathrm{C}\right)$ for the epoxidation of cyclohexenone with t - $\mathrm{BuOOH} / \mathrm{DBU}$.

	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
Experimental KIEs	0.998	1.010	1.033	1.005	0.996
	1.003	1.009	1.027	1.002	0.999
average std dev	1.001	1.010	1.032	1.004	0.998
Predicted KIEs	b	1.010	1.037	1.002	0.995
axial	1.004	1.008	1.027	0.997	0.999
addition (10) equatorial addition (13) axial ring closure (12)	1.004	1.007	1.031	1.001	1.001
equatorial ring closure (15)	1.006	1.012	0.997	0.996	0.999

${ }^{\text {a Experimental }}$ isotope effects are for $22{ }^{\circ} \mathrm{C}$. Predicted isotope effects are for $25{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ The NMR data was collected with a time between pulses inadequate for relaxation of the carbonyl carbon, precluding an accurate integration.

Theoretical Calculations

Theoretical Mechanisms. The epoxidation of cyclohexenone with t - BuOOH mediated by the simplified DBU model 9 was studied in B3LYP calculations using 6$31 \mathrm{G}^{*}$ and $6-31+\mathrm{G}^{* *}$ basis sets and using a PCM solvent model with full geometry optimization in all cases. The involvement of charged species limits the reliability of a calculational mechanistic study of this reaction by itself, but consideration of the experimental isotope effects allows assessment of the calculational predictions. In turn, the prediction of isotope effects from the theoretical models facilitates a detailed interpretation of the experimental isotope effects.

A series of conformationally varying pathways for the epoxidation were explored. The diastereotopic faces of a half-chair cyclohexenone may undergo addition of the tertbutylperoxy anion in either an "axial" or an "equatorial" orientation. (The discussion here will consistently use the axial / equatorial notation to denote epoxidation pathways and products, always basing the description on the orientation of the initial addition.) The pathways explored allowed for axial versus equatorial attack on the cyclohexenone, allowed for two possible orientations of 9 , and allowed for an anti ($\mathrm{O}-\mathrm{O}--\mathrm{C}=\mathrm{C}$ of approximately 180°) versus gauche ($\mathrm{O}-\mathrm{O}-\mathrm{C}=\mathrm{C}$ of approximately 75°) orientation of the attacking oxygen atoms versus the carbon-carbon double bond. Only the lowest-energy axial and equatorial pathways from the B3LYP/6-31+G**/PCM calculations are presented here (Figure 6-4); structures and energies associated with the full set of pathways as well as gas-phase and $6-31 \mathrm{G}^{*}$ calculations are given in the Appendix.

The lowest-energy calculated pathway involves an axial addition of the peroxide with oxygens oriented anti versus the carbon-carbon double bond, as in transition structure 10. This transition structure leads by a minimum-energy path to the zwitterionic enolate/iminium intermediate 11. As a side process, $\mathbf{1 1}$ could readily undergo proton transfer to afford neutrals 9 and 4-t-butylperoxycyclohexanone. However, 4-t-butylperoxycyclohexanone is predicted to be $9.6 \mathrm{kcal} / \mathrm{mol}$ uphill in free energy (B3LYP/6-31+G**/PCM + zpe + harmonic entropy and enthalpy estimates at 25 ${ }^{\circ} \mathrm{C}$) from separate starting materials. From this, 4-t-butylperoxycyclohexanone should not build up under the reaction conditions and its formation must be reversible.

There is predicted to be a low barrier for $\mathbf{1 1}$ to complete the epoxidation by ringclosure via transition structure 12. The alternative equatorial process via 13, 14, and 15
is similar but $2-3 \mathrm{kcal} / \mathrm{mol}$ higher in energy. The calculations are predicting that the addition step for the axial attack should be rate limiting, since 10 is $0.7 \mathrm{kcal} / \mathrm{mol}$ higher in energy than 12. In notable contrast, the equatorial pathway would have the ringclosure step as mainly rate limiting. In either case, these relative energies should not be taken too seriously due to the limitations of the calculational model, the solvent model, and the calculational method itself. A more reasonable conclusion from the calculational results is that the addition and ring-closure steps should be crudely comparable in barrier, which supports the idea that the rate-limiting step may depend on the detailed reaction conditions.

The formation of termolecular transition structures such as $\mathbf{1 0}$ from separate reactants should involve a substantial entropic penalty. Including an entropy estimate based on the harmonic frequencies at $25^{\circ} \mathrm{C}$, the free-energy barrier (at standard state) for reaction via 10 would be $37.1 \mathrm{kcal} / \mathrm{mol}$. This is too high by about $12-15 \mathrm{kcal} / \mathrm{mol}$ for a reaction that proceeds in less than at day at $25^{\circ} \mathrm{C}$. However, the consideration of two issues may ameliorate this problem. The first issue is that the gas phase entropy of compounds is decreased on dissolution in organic solvents, typically by 15 e.u. ${ }^{179}$ From this, the entropy loss for forming a termolecular transition state might be expected to be decreased compared to a gas-phase calculation by roughly 30 e.u., decreasing the freeenergy barrier by $9 \mathrm{kcal} / \mathrm{mol}$. The second issue is that t - BuOOH may form a complex with DBU. The formation of a complex between $t-\mathrm{BuOOH}$ and 9 is predicted to be downhill by $4.2 \mathrm{kcal} / \mathrm{mol}$ in dichloroethane (B3LYP/6-31+G**/PCM + zpe) but is predicted to be endergonic by $5.6 \mathrm{kcal} / \mathrm{mol}$ after inclusion of the gas-phase entropy estimate. However, as evidence for a significant amount of complex formation, addition
of 1 M DBU to a 1 M solution of $t-\mathrm{BuOOH}$ in dichloroethane leads to a temperature rise of $4{ }^{\circ} \mathrm{C}$. Estimating the heat capacity of the solution as that of dichloroethane (129 J $\left.\mathrm{mol}^{-1} \mathrm{~K}^{-1}\right),{ }^{180}$ this translates into a heat of mixing at 1 M of $1.5 \mathrm{kcal} / \mathrm{mol}$, suggesting that a substantial portion of the $t-\mathrm{BuOOH} / \mathrm{DBU}$ mixture forms a complex. The predicted free-energy barrier for reaction of a $t-\mathrm{BuOOH} / \mathbf{9}$ complex with cyclohexenone is only $31.5 \mathrm{kcal} / \mathrm{mol}$. Considering these issues along with the limitations of the calculational and solvent models, the calculated barrier is reasonably consistent with the facility of the experimental reaction.

Figure 6-4. Lowest energy axial (top) and equatorial (bottom) pathways for the epoxidation of cyclohexenone with t-BuOOH mediated by DBU model 9 in B3LYP/6$31+\mathrm{G}^{* *} / \mathrm{PCM}$ calculations. Energies (B3LYP/6-31+G**/PCM + zpe) are in $\mathrm{kcal} / \mathrm{mol}$ relative to separate starting materials.

Predicted Isotope Effects. The ${ }^{13} \mathrm{C}$ KIEs associated with the transition structures in Figure 1 were predicted from the scaled theoretical vibrational frequencies ${ }^{181}$ using conventional transition state theory by the method of Bigeleisen and Mayer. ${ }^{182}$ Tunneling corrections were applied using the one-dimensional infinite parabolic barrier model. ${ }^{183}$ Such KIE predictions have proven highly accurate in reactions not involving hydrogen transfer, so long as the calculation accurately depicts the mechanism and transition state geometry. ${ }^{184}$

The results are summarized in Table 6-1. The addition transition structures 10 and 13 lead to predicted KIEs of about 1.03 at C_{3} and 1.008 at C_{2}, with small isotope effects predicted for the remaining carbons. In contrast, ring-closure transition structures $\mathbf{1 2}$ and 15 lead to predicted KIEs at C_{3} near unity and 1.012 at C_{2}. These predictions fit well with conventional expectations. In the addition step, C_{3} is undergoing a major σ bonding change and is expected to exhibit a substantial normal isotope effect, while the bonding change at C_{2} is more minor and the predicted KIE, while still significantly greater that unity, is low. In the ring-closure step, little change is occurring at C_{3} so the predicted isotope effect is near unity. The predicted isotope effect for C_{2} at 1.012 is near the low end of primary carbon KIEs (KIEs associated with a σ-bonding change in the rate-limiting step) but is in keeping with the relatively low KIEs observed in other epoxidation reactions. ${ }^{184} \mathrm{~d},{ }^{185}$

Discussion

The natural-abundance ${ }^{13} \mathrm{C}$ KIE determination did not work as well as normal for the current reaction. Aside from the relatively high run-to-run variability in the ${ }^{13} \mathrm{C}$ KIE,
particularly at C_{3} where the standard deviation is 0.004 , it is bothersome that the C_{4} and C_{5} KIEs were not consistently close to their expected values near unity. Nonetheless, the overall pattern in the KIEs was sufficiently reproducible for the purpose at hand of distinguishing the rate-limiting step in the epoxidation reaction.

Some care must be taken in the qualitative interpretation of these isotope effects. The observed C_{3} KIE fits well with conventional expectations and with the $\beta{ }^{13} \mathrm{C}$ KIEs observed in other additions to α, β-unsaturated carbonyl compounds (Figure 6-5). ${ }^{186,187}$ However, we have previously reported that the presence of weak bonds in reactive intermediates can result in secondary ${ }^{13} \mathrm{C}$ KIEs $\left({ }^{13} \mathrm{C}\right.$ KIEs that are not the result of a σ-bonding change in the rate-limiting step) that are so large as to mimic primary ${ }^{13} \mathrm{C}$ KIEs. ${ }^{188}$ Because the $\mathrm{C}_{3}-\mathrm{O}$ bond in intermediates resembling 3 should be weak, the KIE to be expected at C_{3} if ring closure were the rate-limiting step was not clear. In addition, the observed C_{2} KIE of 1.010 is ambiguously diagnostic. As noted above, epoxidation reactions tend to exhibit small primary ${ }^{13} \mathrm{C}$ KIEs, in part because the equilibrium isotope effect for an epoxidation is significantly inverse. ${ }^{184 \mathrm{~d}}$ Because of this, the 1.010 is qualitatively consistent with rate-limiting ring closure. However, the α carbon in other additions to α, β-unsaturated carbonyl compound can exhibit a significantly normal ${ }^{13} \mathrm{C}$ KIEs (Figure 6-5), such as 1.007 in free-radical polymerization.
(a) β-Michael addition of
dimethyl malonate

- 1.006

(b)
free-radical polymerization
- 1.002

Figure 6-5. ${ }^{13} \mathrm{C}$ KIEs for other additions to α, β-unsaturated carbonyl compounds. (a) Base-catalyzed β-addition of dimethyl malonate in methanol at $64^{\circ} \mathrm{C}$. See ref 186. (b) Free-radical polymerization at $60^{\circ} \mathrm{C}$. See ref 187 .

The theoretically predicted isotope effects serve to pin down the rate-limiting step. Despite the concerns expressed above, the predicted $\mathrm{C}_{3}{ }^{13} \mathrm{C}$ KIEs based on 12 and $\mathbf{1 5}$ for rate-limiting ring closure are near unity. The large observed ${ }^{13} \mathrm{C}$ KIE of approximately 1.030 is thus inconsistent with rate-limiting closure of the epoxide ring. In comparing the experimental KIEs with the predicted KIEs based on 10 and 13 for rate-limiting addition, the match-up is not as good as typically observed in other examples. ${ }^{184}$ However, considering the difficulty of accurately modeling this reaction due to the involvement of charged intermediates, along with the spread of the experimental KIEs, the correspondence of experimental and predicted KIEs is quite reasonable, particularly for the key C_{3} and C_{2} positions. Overall, the KIEs very strongly support rate-limiting addition to the enone.

The choice of rate-limiting step and the factors affecting this choice may be best understood by considering the relative facility of forward versus backward reactions for the enolate intermediates such as $\mathbf{1 1}$ or $\mathbf{1 4}$. The ring closure of $\mathbf{1 1}$ faces a very low barrier because of the weakness of the $\mathrm{O}-\mathrm{O}$ bond and because its geometry is well
positioned for the $\mathrm{S}_{\mathrm{N}} 2$ displacement by C_{2}. A slight repositioning of the $\mathbf{9} \cdot \mathrm{H}^{+}$ counterion to hydrogen bond with the tert-butoxy oxygen appears to aid in catalyzing the displacement. On the other hand, the cleavage of $\mathbf{1 1}$ back to starting materials is also understandably facile. From the isotope effect analysis above, we know that the barrier for the backward cleavage of the enolate in reality is higher than that for ring closure. If the ring-closure step were 20% rate-limiting, as would be expected from the calculated relative energies of $\mathbf{1 0}$ and $\mathbf{1 2}$, the predicted KIE for C_{3} would be 1.022 , at the limit of consistency with experiment. From this, it appears that the difference in energy between addition and ring-closure transition states in reality is at least as high as the calculated difference between 10 and 12.

The higher energy of $\mathbf{1 4}$ along the equatorial pathway versus $\mathbf{1 1}$ on the axial pathway may be ascribed to a near eclipsing interaction of C_{3} and C_{4} in $\mathbf{1 4}$ versus the nearly perfectly staggered 11. The barrier for backward cleavage of $\mathbf{1 4}$ via 13 is slightly lower than ring closure via $\mathbf{1 5}$, so that ring closure in this case would be predicted to be mainly rate limiting. The difference in predicted rate limiting steps for the axial and equatorial pathways may be thought of as resulting from the ease of backward cleavage of 14 via 13 , since this loses the strain of the eclipsing interaction.

With the knowledge that the addition step is rate limiting, consideration of the calculated transition structures provides insight into the stereochemistry of these epoxidations with substituted cyclohexenones. For 5-substituted cyclohexenones, there is a substantial preference for both hydrogen peroxide- and alkyl hydroperoxidemediated reactions to afford axial epoxidation. ${ }^{189},{ }^{190}$ This is illustrated by the widely-
used epoxidation of carvone (16) to afford 17. ${ }^{169,190} 6$-Substituted cyclohexenones also tend to epoxidized axially, ${ }^{191}$ though there has been one report of an exception. ${ }^{192}$ The observation of axial epoxidation in these cases is in agreement with the calculated preference for axial transition structure 10 over 13 and 15 in the equatorial pathway. However, the epoxidation of other substituted cyclohexenones has been stereochemically more enigmatic. With 4-monosubstituted cyclohexenones as in $\mathbf{1 8}$ and 20, there is a tendency for epoxidation to occur on the face opposite the 4 -substituent, as in 19 and 21. ${ }^{193}$ This would be considered equatorial epoxidation if the 4 -substituent is equatorial during the reaction. However, when the 4 -substituent is held rigidly equatorial, as in 23, axial epoxidation predominates. ${ }^{194}$ This observation suggests that the epoxidations of 18 and 20 may be occurring through conformers in which the 4substituent has flipped to axial. Consideration of analogs of $\mathbf{1 0}$ and $\mathbf{1 3}$ with an added group at C_{4} supports this idea. If the equatorial hydrogen at C_{4} of $\mathbf{1 0}$ is replaced by a methyl group, there is a substantial steric interaction with the tert-butoxy oxygen with an unrelaxed O---H distance of about $1.6 \AA$. This hindered conformation would lead to the minor product 22 from 20 . The major product 21 could in principle be formed in two ways, either by placing the methyl group axial in an axial transition state analogous to $\mathbf{1 0}$ or by placing the methyl group equatorial in an equatorial pathway analogous to $\mathbf{1 3} / \mathbf{1 5}$. The former should be favored because the energy cost of putting a methyl group axial should only be about $1 \mathrm{kcal} / \mathrm{mol},{ }^{195}$ while the predicted cost of the equatorial pathway is $2.3 \mathrm{kcal} / \mathrm{mol}$.

Figure 6-6. Examples of stereoselective epoxidations.

Conclusions

In epoxidations of electron-deficient alkenes mediated by hydroperoxides under basic conditions, reactivity and stereoselectivity will be controlled by the energy of the transition state for the rate-limiting step. Either the addition step or the ring-closure step may in principle be rate limiting, with no obvious qualitative reason to favor one over
the other. In the work of Kelly and Roberts on the epoxidation of phenyl vinyl ketone under Juliá-Colonna conditions, it appears clear that the ring-closure step is rate limiting. ${ }^{177}$ Here, in the first detailed mechanistic study with a cyclic enone, the experimental kinetic isotope effects supplemented by theoretically predicted isotope effects strongly support the addition step as being rate limiting.

While the theoretical calculations here correctly predict that the addition step should be rate-limiting, it seems best to emphasize that the addition and ring-closure steps are fairly similar in barrier. Because of this, it is reasonable to suppose that the rate-limiting step may change depending of the detailed reaction conditions and substrate structure. Indeed, the rate-limiting step for the equatorial epoxidation pathway is predicted to be ring closure instead of addition. This overall mechanistic uncertainty complicated the understanding and control of diastereoselectivity or enantioselectivity in these reactions, as it may be uncertain what combination of transition states along major and minor pathways is deciding the selectivity. However, it appears that kinetic isotope effects are a readily applicable tool for determining the rate-limiting step is systems of interest.

CHAPTER VII

EXPERIMENTAL

Experimental

Borylation of 1,3-Dibromobenzene \& m-xylene

Example Procedure. All reagents were purified and prepared for airless conditions. A mixture of $8.02 \mathrm{~g}(33 \mathrm{mmol})$ of 1,3-dibromobenzene, $6.53 \mathrm{~g}(51 \mathrm{mmol})$ of pinacolborane, $282.6 \mathrm{mg}(0.68 \mathrm{mmol})$ of (Ind) $\operatorname{Ir}(\mathrm{Cod})$, and $270.9 \mathrm{mg}(0.68 \mathrm{mmol})$ of bis(diphenylphosphino)ethane in $4.36 \mathrm{~g}(34 \mathrm{mmol})$ of nonane was heated to $150^{\circ} \mathrm{C}$ for 12.5 h. At this time, NMR analysis of an aliquot indicated a percentage conversion of the 1,3-dibromobenzene of 74.9%, based on the ratio unreacted starting material versus the nonane methyl groups, and corroborated by the ratio of starting material to product. The reaction mixture was cooled to room temperature and passed through a silica gel plug to remove iridium metal complexes, then diluted with 25 mL of nonane and rinsed with three $100-\mathrm{mL}$ portions of water. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and fractionally distilled through a 15 cm Vigreaux column under reduced pressure $(0.05 \mathrm{~mm} \mathrm{Hg})$ to afford 270 mg of 1,3-dibromobenzene contaminated by 6.6% nonane.

In a second analogous reaction, 8.10 g of 1,3-dibromobenzene was reacted for 12.5 h at $150{ }^{\circ} \mathrm{C}$ to achieve 73.5% conversion, and 269 mg of 1,3-dibromobenzene was recovered. In another similar procedure using 11.63 g (68 mmol) of dodecane in place of nonane, 7.25 g of m-xylene, $549 \mathrm{mg}(1.32 \mathrm{mmol})$ of $(\operatorname{Ind}) \operatorname{Ir}(\mathrm{Cod})$, and $198 \mathrm{mg}(1.32$
mmol) of bis-(dimethylphosphino)ethane was reacted for 16 h at $150{ }^{\circ} \mathrm{C}$ to achieve 72.7% conversion, and 364 mg of m-xylene was recovered.

Preparation of \boldsymbol{m}-Xylene-5-d. To a stirred mixture of $15 \mathrm{~g}(0.62 \mathrm{~mol})$ of Mg turnings in 100 mL of dry ether was added dropwise over 4 h a solution of $52.5 \mathrm{~g}(0.284$ mol) of 5-bromo-m-xylene in 400 mL of ether. Stirring was continued until no further reaction of the Mg could be discerned, then 50 mL of $\mathrm{D}_{2} \mathrm{O}(99.9 \% \mathrm{D})$ was added dropwise. The ether layer was decanted, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and fractionally distilled to afford $17.41 \mathrm{~g}(58 \%)$ of m-xylene-5d. The deuterium incorporation in this material was calculated as 79.8%, based on the ${ }^{1} \mathrm{H}$ NMR integration at 500 Mhz for the 5 position versus the integration for the methyl groups, corrected for the analogous ratio observed with unlabeled 3.

Borylation of m-Xylene-5-d Example Procedure. A mixture of 1.07 g (10 $\mathrm{mmol})$ of m-xylene- $5 \mathrm{~d}, 1.92 \mathrm{~g}(15 \mathrm{mmol})$ of pinacolborane, $83 \mathrm{mg}(0.2 \mathrm{mmol})$ of (Ind) $\operatorname{Ir}(\mathrm{Cod})$, and $30 \mathrm{mg}(0.2 \mathrm{mmol})$ of bis-(dimethylphosphino) ethane in 5 mL g (3.75 $\mathrm{g}, 22 \mathrm{mmol}$) of dodecane was heated to $150^{\circ} \mathrm{C}$ for 8 h . At this time, NMR analysis of an aliquot indicated a overall percentage conversion of 42.5%, based on the integration for the multiplet at $\delta 7.0$ (H's in the 2, 4, and 6 positions) versus the dodecane methyl groups, corrected for the ratio from a time $=0$ aliquot.

NMR Measurements. For 1,3-dibromobenzene, NMR samples were prepared using 270 mg in 1.21 g of CDCl_{3} in a $5-\mathrm{mm}$ NMR tube. For m-xylene, NMR samples were prepared using 364 mg in 1.34 g of CDCl_{3} in a $5-\mathrm{mm}$ NMR tube. The ${ }^{13} \mathrm{C}$ spectra were recorded at 125.701 MHz using inverse gated decoupling, 85 s delays between
calibrated $\pi / 2$ pulses, and a 6 s acquisition time to collect 300,000 points. Integrations were determined numerically using a constant integration region for each peak. A zeroth-order baseline correction is generally applied, but in no case was a first-order (tilt) correction applied. Twelve spectra were obtained for each 1,3-dibromobenzene sample along with six spectra for the corresponding 1,3-dibromobenzene standards. Six spectra were obtained for each of the m-xylene samples and standards. The resulting ${ }^{13} \mathrm{C}$ integrations for these spectra are given in Supporting Information. From the ${ }^{13} \mathrm{C}$ integrations, the KIEs and uncertainties were calculated as previously described. ${ }^{5}$
${ }^{13} \mathrm{C}$ Results. For the ${ }^{13} \mathrm{C}$ spectra of 1,3 dibromobenzene the integrations of the ortho carbon (C1) were set at 1000 . For the ${ }^{13} \mathrm{C}$ spectra of m-xylene the integrations of the ortho carbon (C2) were set at 1000.The average integrations and standard deviations (in parentheses) for the other carbons are shown in Table 7-1 along with the number of spectra recorded for each sample (n). The values for R / R_{0}, calculated as the ratio of average integrations in Table 1 relative to standard, are shown in Table 7-2. The ${ }^{13} \mathrm{C}$ KIEs for 1,3 Dibromobenzene and m-xylene were then calculated (Table 7-3).

Table 7-1. Average ${ }^{13} \mathrm{C}$ integrations for 1,3 dibromobenzene and m-xylene, with standard deviations (in parentheses).

\% conversion	C_{1}	C_{2}	C_{3}	C_{4}	N
1,3 Dibromobenzene					
Standard	1000	$\begin{aligned} & 1002.4 \\ & (3.4) \end{aligned}$	$\begin{aligned} & 2008.2 \\ & (5.9) \end{aligned}$	$\begin{aligned} & 1985.6 \\ & (6.5) \end{aligned}$	6
MSU 27 - 1	1000	$\begin{aligned} & 1018.7 \\ & (5.4) \end{aligned}$	$\begin{aligned} & 2009.7 \\ & (9.3) \end{aligned}$	$\begin{aligned} & 1986.8 \\ & (6.4) \end{aligned}$	6
$74.9 \pm 1 \%$					
MSU 27-2	1000	$\begin{aligned} & 1018.1 \\ & (6.6) \end{aligned}$	$\begin{aligned} & 2011.2 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 1979.9 \\ & (4.2) \end{aligned}$	6
$\begin{aligned} & 74.9 \pm 1 \% \\ & \text { MSU } 29-1 \end{aligned}$	1000	1017.3	2011.1	1986.0	6
$73.5 \pm 1 \%$		(5.6)	(13.6)	(11.3)	
Standard	1000	$\begin{aligned} & 1002.8 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 1988.4 \\ & (7.6) \end{aligned}$	$\begin{aligned} & 1962.2 \\ & (5.5) \end{aligned}$	6
MSU $28-1$	1000	1023.5	1975.6	1972.5	6
$78.9 \pm 1 \%$		(3.9)	(4.9)	(6.1)	
Standard	1000	$\begin{aligned} & 999.1 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 1975.7 \\ & (5.0) \end{aligned}$	$\begin{aligned} & 1972.6 \\ & (5.2) \end{aligned}$	6
MSU 29-2	1000	1015.9	1976.3	1974.0	6
$73.5 \pm 1 \%$		(3.1)	(8.8)	(8.6)	

\% conversion	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	N
m-xylene						
Standard	1982.7	1000	1002.0	2002.1	1891.7	6
	(3.8)		(1.0)	(4.2)	(2.0)	
	1980.8	1000	1017.3	2004.7	1886.7	6
MSU $23-1$	(2.2)		(1.5)	(2.4)	(2.6)	
$72.7 \pm 1 \%$						

Table 7-2. $\mathrm{R} / \mathrm{R}_{\mathrm{O}}$ for ${ }^{13} \mathrm{C}$ for 1,3 dibromobenzene and m-xylene.

	C_{2}	C_{3}	C_{4}	
1,3 Dibromobenzene				
MSU 27-1 74.9\%	1.016	1.001	1.001	
$\mathrm{R} / \mathrm{R}_{0}$				
Stand dev	0.006	0.006	0.005	
MSU 27-2 74.9\%	1.016	1.001	0.997	
$\mathrm{R} / \mathrm{R}_{\mathrm{O}}$				
Stand dev	0.007	0.004	0.004	
MSU 29-1 73.5 \%	1.015	1.001	1.000	
$\mathrm{R} / \mathrm{R}_{\mathrm{O}}$				
Stand dev	0.007	0.007	0.007	
MSU 28-1 78.9\%	1.020	0.994	1.005	
$\mathrm{R} / \mathrm{R}_{\mathrm{O}}$				
Stand dev	0.007	0.005	0.004	
MSU 29-2 73.5\%	1.017	1.000	1.001	
$\mathrm{R} / \mathrm{R}_{\mathrm{O}}$				
Stand dev	0.005	0.005	0.005	
	C_{1}	C_{3}	C_{4}	C_{5}
m-xylene				
MSU 23-1 72.7\%	0.999	1.015	1.001	0.997
$\mathrm{R} / \mathrm{R}_{\mathrm{O}}$				
Stand dev	0.002	0.002	0.002	0.002

Table 7-3. ${ }^{13} \mathrm{C}$ KIEs for 1,3 dibromobenzene and m-xylene, with standard deviations (in parentheses).

	C_{2}	C_{3}	C_{4}
1,3 Dibromobenzene			
MSU 27-1 74.9 $\pm 1 \%$	$1.012(5)$	$1.001(4)$	$1.000(3)$
MSU 27-2 74.9 $\pm 1 \%$	$1.011(5)$	$1.001(3)$	$0.998(3)$
MSU 29-1 73.5 $\pm 1 \%$	$1.011(5)$	$1.001(6)$	$1.000(5)$
MSU 28-1 78.9 $\pm 1 \%$	$1.013(4)$	$0.996(3)$	$1.003(3)$
MSU 29-2 73.5 $\pm 1 \%$	$1.013(4)$	$1.000(4)$	$1.001(4)$
	C_{1}	C_{3}	C_{4}

m-xylene
MSU 23-1 72.7 $\pm 1 \% \quad 0.999(2) \quad 1.012(1) \quad 1.001(2) \quad 0.998(1)$

$C^{2}-C^{6}$ Enyne Allene Cyclization

NMR Kinetic Studies. The unlabelled allenol acetate $\mathbf{9 a}{ }^{88}(10 \mathrm{mg}, 0.028 \mathrm{mmol})$ was dissolved in toluene- $d_{8}(0.075 \mathrm{~mL})$ and transferred to an NMR tube and immediately placed into the probe of a Varian Inova 300 MHz NMR spectrometer to minimize spontaneous cyclization of 9a (Scheme 3-4). Prior to the experiment, the variable temperature thermostat of the NMR was calibrated using an ethylene glycol standard by measuring its chemical shift at $50^{\circ} \mathrm{C}$. The heights of selected aromatic protons of $9 \mathbf{a}$ and the cyclization product 10a were monitored by ${ }^{1} \mathrm{H}$ NMR at $50^{\circ} \mathrm{C}$ over 6 h until no further change in the heights of the aromatic protons was observed. Data were collected every 30 min and normalized to the height of the residual methyl signal of toluene- d_{8}. The same procedure was carried out for the deuterated allenol acetate $\mathbf{9 b}$, and both experiments were repeated. In each case no side products were observable and the formation of product appeared essentially quantitative. Kinetic isotope effect values were computed by plotting the selected ${ }^{1} \mathrm{H}$-NMR peak heights against time and fitting the data to a first-order simulation to obtain rate constants for the cyclization of both $\mathbf{9 a}$ and $\mathbf{9 b}$. The two replications were used to obtain averaged values and standard deviations for the observed kinetic isotope effects.

Palladium Catalyzed Allylic Alkylation

Allylic Alkylation of $\mathbf{1 , 1}$ Dimethyallyl Acetate with Dimethylmalonate. As an example procedure, to a dry 500 mL three neck round bottom flaske equipped with a magnetic stir bar containing 200 mL of purified THF (distilled from $\mathrm{Na} /$ benzophenone)
was added $57.4 \mathrm{mg}(0.125 \mathrm{mmol})$ of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(\mathrm{Strem}), 80.34 \mathrm{mg}(0.375 \mathrm{mmol})$ of triphenylphosphine, $32.0 \mathrm{~g}(250 \mathrm{~mol})$ of 1,1-dimethylallyl acetate, $24.77 \mathrm{~g}(187.5 \mathrm{~mol})$ of dimethylmalonate, $20.34 \mathrm{~g}(100 \mathrm{~mol}) \mathrm{N}, \mathrm{O}$,-bis(trimethylsilyl)acetamide, and 8.64 g (62.5 mol) 1,4-dimethoxybenzene asn internal standard. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$. After 2 h and 4 h , an additional $100 \mathrm{mg}(109 \mathrm{mmol})$ of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and 150 mg (703 mmol) triphenylphosphine were added to the reaction. After 5 h the conversion was determined to be $75 \pm 3 \%$ conversion by NMR analysis of an aliquot (comparing the integrations of the dimethyl and the internal and terminal vinylic peaks of unreacted 1,1-dimethylallyl acetate versus the methoxy peak of 1,4dimethoxybenzene). The reaction mixture was passed through a silica gel column (5 inch height, 2 inch diameter), to remove the Pd. The reaction mixture was then washed with water, $\mathrm{NaHSO} 4(\mathrm{aq}), \mathrm{NaHCO}_{3}(\mathrm{aq})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Impure 1,1Dimethylallyl acetate was then collected by fractional distillation with a 20 cm Vigreaux column in the second and third fraction (GC analysis). 1,1-Dimethylallyl acetate was further purified by fractional distillation. 367 mg of 1,1-dimethylallyl acetate was collected with a 24% siloxane impurity.

An analogous reaction (Exp. 2) using 32.0 g of styrene each were taken to $71 \pm$ 3%. For experiment $2,292 \mathrm{mg}$ with a 21% siloxane impurity, of 1,1-dimethylallyl acetate was recovered.

NMR Measurements. NMR measurements were taken on 367:539 (mg:mg) 1,1dimethyallyl acetate: CDCl_{3} at $75 \pm 3 \%$ conversion and on 292:522 (mg:mg) 1,1dimethyallyl acetate: CDCl_{3} at $71 \pm 3 \%$ conversion. Samples of 1,1-dimethylallyl acetate
in CDCl_{3} in $5-\mathrm{mm}$ NMR tubes filled to a constant height of 5 cm . A T1 determination by the inversion-recovery method was carried out for each NMR sample, and the T1 for each NMR signal remained constant within experimental error from sample to sample.

The ${ }^{13} \mathrm{C}$ spectra were recorded at 125.69 MHz with inverse gated decoupling, using 185 s delays between calibrated 45° pulses and an acquisition time of 6.000 s collecting 300000 points. Integrations were determined numerically using a constant region for each peak and using only a zeroth order baseline correction.

Results for All Reactions. The relative integrations, R/Ro's, and KIEs (standard deviations are in parentheses) for the palladium-catalyzed allylic alkylation of 1,1dimethylallyl acetate are shown in Table 7-4, 7-5, and 7-6, respectively. For the ${ }^{13} \mathrm{C}$ spectra of 1,1-dimethylallyl acetate the integrations of the 2 methyl carbons were set at 2000.

Table 7-4. Average ${ }^{13} \mathrm{C}$ integrations for 1,1-dimethylallyl acetate, with standard deviations (in parentheses).

\% conversion	$\underline{\mathrm{C}}=\mathrm{O}$	C-quat	- $\mathrm{CH}=\mathrm{CH}_{2}$	- $\mathrm{CH}=\mathrm{CH}_{2}$	$\begin{aligned} & \hline 2 \\ & \mathrm{Me} \end{aligned}$	$\begin{aligned} & \mathrm{O}=\mathrm{C}- \\ & \mathrm{CH}_{3} \\ & \hline \end{aligned}$	n
1,1-Dimethylallyl acetate							
Standard 1	959.69	1081.28	1046.09	1086.19	2000	981.69	6
run a, b	(3.7)	(2.2)	(3.2)	(1.9)		(2.3)	
Exp. 1 run a	a 953.21	1137.52	1047.63	1091.34	2000	974.96	6
($75 \pm 3 \%$)	(3.6)	(4.5)	(3.3)	(4.9)		(2.2)	
Exp. 1 run b	b 959.72	1139.11	1050.47	1097.45	2000	981.83	6
($75 \pm 3 \%$)	(4.9)	(3.9)	(3.8)	(5.8)		(3.3)	
Standard	958.18	1083.25	1043.15	1086.58	2000	983.14	6
run c	(3.1)	(2.2)	(2.3)	(1.9)		(3.0)	
Exp. 1 run c	c 960.19	1142.23	1055.22	1094.00	2000	984.98	6
($75 \pm 3 \%$)	(3.4)	(4.0)	(2.8)	(5.6)		(5.8)	
Standard 2	2966.29	1075.58	1050.76	1085.40	2000	978.37	6
run a	(2.7)	(3.9)	(2.1)	(3.9)		(3.8)	
Exp. 2 run a	a 966.81	1123.00	1053.97	1091.97	2000	978.15	6
(71 $\pm 3 \%$)	(3.4)	(3.1)	(3.0)	(4.9)		(3.2)	
Standard 2	2954.48	1078.35	1050.76	1089.78	2000	979.42	6
run b	(4.1)	(4.0)	(2.1)	(4.1)		(4.4)	
Exp. 2 run b	b 952.01	1122.8	1048.46	1092.21	2000	980.94	6
(71 $\pm 3 \%$)	(3.1)	(2.1)	(4.3)	(3.9)		(2.7)	
Standard 2	2952.23	1076.48	1050.76	1089.73	2000	978.37	6
run c	(4.7)	(3.1)	(2.1)	(4.2)		(3.7)	
Exp. 2 run c	c 951.84	1125.44	1054.34	1101.28	2000	977.01	6
(71 $\pm 3 \%$)	(2.6)	(2.7)	(3.0)	(6.0)		(3.5)	

Table 7-5. $\mathrm{R} / \mathrm{R}_{\mathrm{O}}$ for ${ }^{13} \mathrm{C}$ for 1,1-dimethylallyl acetate.

	$\underline{\mathrm{C}}=\mathrm{O}$	$\mathrm{C}-q u a t$	$-\underline{\mathrm{C}}=\mathrm{CH}_{2}$	$-\mathrm{CH}=\underline{\mathrm{CH}}_{2}$	2 Me	$\mathrm{O}=\mathrm{C}-\mathrm{CH}_{3}$
1,1-Dimethylallyl Acetate		assumed				
Exp. 1a R/R	0.993	1.052	1.001	1.005	1.000	0.993
Standard dev	0.004	0.004	0.003	0.004	0	0.002
Exp. 1b R/R	1.000	1.053	1.004	1.010	1.000	1.000
Standard dev	0.005	0.003	0.003	0.004	0	0.003
Exp. 1c R $/ \mathrm{R}_{0}$	1.002	1.054	1.011	1.007	1.000	1.002
Standard dev	0.003	0.004	0.003	0.004	0	0.005
Exp. 2a R $/ \mathrm{R}_{0}$	1.005	1.044	1.003	1.006	1.000	1.000
Standard dev	0.004	0.004	0.003	0.004	0	0.004
Exp. 2b R/R	0.997	1.041	0.997	1.002	1.000	1.001
Standard dev	0.004	0.004	0.004	0.004	0	0.004
Exp. 2c R/R	1.000	1.045	1.003	1.010	1.000	0.999
Standard dev	0.004	0.003	0.003	0.005	0	0.004

Table 7-6. ${ }^{13} \mathrm{C}$ KIEs for 1,1-dimethylallyl acetate, with standard deviations (in parentheses).

	$\underline{\mathrm{C}=0}$	C-quat	- $\mathrm{CH}=\mathrm{CH}_{2}$	$-\mathrm{CH}=\mathrm{CH}_{2}$	2 Me	$\mathrm{O}=\mathrm{C}-\mathrm{CH}_{3}$
1,1-Dimethylallyl acetate					assumed	
Exp. 1a ($75 \pm 3 \%$)	0.995 (4)	1.038 (4)	1.001 (3)	1.003 (4)	1.000	0.995 (2)
Exp. 1b ($75 \pm 3 \%$)	1.000 (5)	1.039 (3)	1.003 (3)	1.007 (4)	1.000	1.000 (3)
Exp. 1c ($75 \pm 3 \%$)	1.002 (3)	1.040 (4)	1.008 (3)	1.005 (4)	1.000	1.001 (5)
Exp. 2a ($71 \pm 3 \%$)	1.000 (4)	1.035 (4)	1.002 (3)	1.005 (5)	1.000	1.000 (4)
Exp. 2b ($71 \pm 3 \%$)	0.998 (4)	1.033 (4)	0.998 (4)	1.002 (4)	1.000	1.001 (4)
Exp. 2c ($71 \pm 3 \%$)	1.000 (4)	1.036 (3)	1.003 (3)	1.008 (5)	1.000	0.999 (4)

Decarboxylation of Orotodine

Decarboxylations in Mixed $\mathbf{H}_{\mathbf{2}} \mathbf{O} / \mathbf{D}_{\mathbf{2}} \mathbf{O}$. A stock solution of 50 units of ODCase (Sigma) in 100 mL of 1:1 $\mathrm{H}_{2} \mathrm{O}: \mathrm{D}_{2} \mathrm{O}$ was prepared and allowed to equilibrate for 12 h . A solution of $3.5 \mathrm{mg}(7.8 \mu \mathrm{~mol})$ of orotidine 5^{\prime}-monophosphate trisodium salt in $240 \mu \mathrm{~L}$ of 50 mM phosphate buffer at pH 6.0 or pH 7.0 in $1: 1 \mathrm{H}_{2} \mathrm{O}: \mathrm{D}_{2} \mathrm{O}$ was prepared, and $10 \mu \mathrm{~L}$
of the ODCase solution was added. After mixing, the resulting mixture was allowed to stand at $25^{\circ} \mathrm{C}$. After 10 h the starting material could no longer be observed by NMR analysis of the reaction mixture. The solvent was removed from the reaction mixture under vacuum at $25^{\circ} \mathrm{C}$. To minimized residual protons, the residue was thrice dissolved in $\mathrm{D}_{2} \mathrm{O}$ and the volatiles removed under vacuum. The residue was then dissolved in $\mathrm{d}_{6}{ }^{-}$ DMSO for NMR analysis.

Epoxidation of 2-Cyclohexenone

Epoxidation of 2-Cyclohexenone with tert-Butylhydroperoxide and DBU. A mixture of $19.2 \mathrm{~g}(0.20 \mathrm{~mol})$ of 2-cyclohexenone, 3.4 g of dodecane (internal standard). $27.6 \mathrm{~g}(0.16 \mathrm{~mol})$ of DBU , and $50 \mathrm{~mL}(0.21 \mathrm{~mol})$ of 4.1 M tert- BuOOH in dichloroethane was prepared at $0{ }^{\circ} \mathrm{C}$ and allowed to warm slowly to $22{ }^{\circ} \mathrm{C}$. Aliquots were periodically removed and the conversion was checked by GC. After 18 h at room temperature, the conversion was determined to be 83.4%. The reaction mixture was diluted with 300 mL of chloroform and 300 mL of water and stirred for 30 min . The organic layer separated and washed with $\mathrm{H}_{2} \mathrm{O}$, dried (anhydrous MgSO_{4}), and concentrated under vacuum below $30{ }^{\circ} \mathrm{C}$. The residue was then chromatographed on a 5 $\mathrm{cm} \times 45 \mathrm{~cm}$ flash silica gel column using 10% ethyl acetate $/ 30-60^{\circ}$ petroleum ether as eluent to afford 9.5 g of a mixture of 2-cyclohexenone and 2,3-epoxy-2-cyclohexenone in the approximate ratio of 17: 83. Vacuum transfer of the volatiles from this mixture on a water aspirator followed by fractional distillation using a $10-\mathrm{cm}$ Vigreux column afforded a 5.2 g fraction (bp $90-95{ }^{\circ} \mathrm{C}$) of an approximately 45: 55 mixture of 2-
cyclohexenone and 2,3-epoxy-2-cyclohexenone. This fraction was chromatographed on a $4 \mathrm{~cm} \times 30 \mathrm{~cm}$. flash silica gel column using $1: 1$ chloroform / hexanes as eluent to afford 0.5 g of 2-cyclohexenone ($>99 \%$ purity by GC) along with mixtures of 2cyclohexenone and 2,3-epoxy-2-cyclohexenone in various ratios. A second reaction performed by an analogous procedure proceeded to 89.1% conversion.

NMR Measurements. NMR samples were prepared using 200 mg of cyclohexenone in a $5-\mathrm{mm}$ NMR tube filled to a $5-\mathrm{cm}$ sample height with CDCl_{3}. The ${ }^{13} \mathrm{C}$ spectra were recorded at 100.5 MHz using inverse gated decoupling, 60 s delays, and a 5.0 s acquisition time to collect 400,000 points. Integrations were determined numerically using a constant equal integration region for peaks compared. A zerothorder baseline correction is generally applied, but in no case was a first-order (tilt) correction applied. Six spectra were obtained for each of two independent samples of cyclohexenone.

Results for All Reactions. The relative integrations, R/Ro's, and KIEs (standard deviations are in parentheses) for the epoxidation of cyclohexenone are shown in Table 7-7, 7-8, and 7-9, respectively. For the ${ }^{13} \mathrm{C}$ spectra of cyclohexenone the integrations of the methylene carbons were set at 2000 .

Table 7-7. Average ${ }^{13} \mathrm{C}$ integrations for cyclohexenone, with standard deviations (in parentheses).

\% conversion	$\underline{\mathrm{C}}=\mathrm{O}$	$\underline{\mathrm{C} H=\mathrm{CH}} \mathrm{CH}=\underline{\mathrm{CH}}$	$\mathrm{O}=\mathrm{C}-$ CH_{2}	$-\mathrm{CH}_{2}-$ CH_{2}	$=\mathrm{CH}-$ CH_{2}	n	
Cyclohexenone							
Standard 1400	866.35	972.25	945.51	1000	1005.63	1009.24	6
MHz	(8.0)	(8.2)	(5.2)		(5.1)	(3.5)	
Exp. 1A $(89.1 \pm$	861.90	1044.11	965.74	1000	996.30	1020.08	6
3\%)	(13.4)	(5.9)	(8.8)		(5.2)	(2.7)	
Exp. 2A $(83.4 \pm$	871.24	1019.89	960.82	1000	1004.63	1011.98	6
3\%)	(9.9)	(4.9)	(5.1)		(2.9)	(5.5)	
Standard 2 500	765.22	1031.66	1022.46	1000	990.08	988.54	5
MHz	(1.1)	(4.4)	(3.2)		(2.3)	(2.9)	
Exp. 1B $(89.1 \pm$	802.77	1097.52	1044.80	1000	997.53	1006.67	5
3\%)	(3.1)	(2.9)	(3.1)		(4.1)	(2.1)	
Exp. 2B $(83.4 \pm$	790.19	1100.65	1041.03	1000	981.61	992.29	5
3\%)	(4.1)	(5.7)	(7.2)		(5.1)	(4.9)	

Table 7-8. $\mathrm{R} / \mathrm{R}_{\mathrm{O}}$ for ${ }^{13} \mathrm{C}$ for cyclohexenone.

	$\underline{\mathrm{C}=\mathrm{O}}$	- $\mathrm{CH}=\mathrm{CH}-$	$-\mathrm{CH}=\mathrm{CH}-$	$\mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}$	$-\mathrm{CH}_{2}-\mathrm{CH}_{2}$	$=\mathrm{CH}-\underline{\underline{\mathrm{C}}} \mathbf{H}_{2}$
Cyclohexenone	assumed					
Exp. 1A R/R	0.995	1.074	1.021	1.000	0.991	1.011
Standard dev	0.008	0.007	0.005	0	0.003	0.002
Exp. 1B R/R	1.006	1.049	1.016	1.000	0.999	1.003
Standard dev	0.008	0.007	0.004	0	0.003	0.003
Exp. 2A R/R	1.049	1.064	1.021	1.000	1.008	1.018
Standard dev	0.003	0.004	0.002	0	0.002	0.002
Exp. 2B R/R	1.032	1.067	1.018	1.000	0.991	1.004
Standard dev	0.004	0.006	0.005	0	0.003	0.003

Table 7-9. ${ }^{13} \mathrm{C}$ KIEs for cyclohexenone, with standard deviations (in parentheses).

	$\underline{\mathrm{C}=\mathrm{O}}$	- $\mathrm{CH}=\mathrm{CH}-$	- $\mathrm{CH}=\underline{\mathrm{CH}}$ -	$\mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}$	$\mathrm{CH}_{2}-\mathrm{CH}_{2}$	$=\mathrm{CH}-\mathrm{CH}_{2}$
Cyclohexenone				assumed		
$\begin{aligned} & \text { Exp. } 1 \mathrm{~A}(89.1 \pm \\ & 3 \%) \end{aligned}$	0.998 (8)	1.033 (7)	1.010 (5)	1.000	0.996 (3)	1.004 (2)
$\begin{aligned} & \text { Exp. 1B }(83.4 \pm \\ & 3 \%) \end{aligned}$	1.003 (8)	1.027 (7)	1.010 (4)	1.000	0.999 (3)	1.002 (3)
$\operatorname{Exp.}_{3 \%)^{*}} 2 \mathrm{~A}(89.1 \pm$	1.022 (3)	1.028 (4)	1.010 (2)	1.000	1.003 (2)	1.008 (2)
$\begin{aligned} & \text { Exp. 2B }(83.4 \pm \\ & 3 \%)^{*} \end{aligned}$	1.018 (4)	1.037 (6)	1.010 (5)	1.000	0.995 (3)	1.002 (3)

* Due to time constraints, the recycle time was only 30 s . This did not allow for adequate relaxation of the carbonyl center, but was adequate for all other positions.

CHAPTER VIII

CONCLUSIONS

The Singleton group has developed a methodology for predicting the combinatorial kinetic isotope effects (KIEs) at every atomic position, typically carbon or hydrogen, at natural abundance. KIEs alone provide knowledge about the transition state structure and geometry may not provide the complete reaction path. A combination of experimental isotope effects and density functional theory (DFT) calculations has greatly aided our ability to predict and understand the geometry of the transition state at the ratelimiting step. Additionally, it has improved our ability to completely describe a reaction's mechanism. This dissertation has highlighted several examples where the determination of the kinetic isotope effects alone did not lead to the complete determination of a reaction's mechanism and understanding of selectivity.

REFERENCES

1. (a) Timokhin, V. I.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 17888-17893. (b) Leach, A. G.; Houk, K. N. J. Am. Chem. Soc. 2002, 124, 14820-14821. (c) Sicinska, D.; Truhlar, D. H.; Paneth, P. J. Am. Chem. Soc. 2001, 123, 7683-7686. (d) Beno, B. R.; Wilsey, S.; Houk, K. N. J. Am. Chem. Soc. 1999, 121, 48164826. (e) Gajewski, J. J.; Wojciech, B.; Harris, N. J.; Olsen, L. P.; Gajewski, J. P. J. Am. Chem. Soc. 1999, 121, 326-334. (f) Bockman, T. M.; Hubig, S. M.; Kochi, J. K. J. Am. Chem. Soc. 1998, 120, 2826-2830. (g) Chen, J. S.; Houk, K. N.; Foote, C. S. J. Am. Chem. Soc. 1997, 119, 9852-9855. (h) Hess, R. A.; Hengge, A. C.; Cleland, W. W. J. Am. Chem. Soc. 1997, 119, 6980-6983. (i) Yoo, H. Y.; Houk, K. N. J. Am. Chem. Soc. 1997, 119, 2877-2884. (j) Goldstein, E.; Beno, B; Houk, K. N. J. Am. Chem. Soc. 1996, 118, 6036-6043. (k) Yoo, H. Y.; Houk, K. N. J. Am. Chem. Soc. 1994, 116, 12047-12048. (1) Hengge, A. C.; Hess, R. A. J. Am. Chem. Soc. 1994, 116, 11256-11263. (m) Wiest, O.; Black, K. A.; Houk, K. N. J. Am. Chem. Soc. 1994, 116, 10336-10337.
2. (a) Nowlan, D. T. III.; Singleton, D. A. J. Am. Chem. Soc. 2005, 127, 6190-6991.
(b) Singleton, D. A.; Wang, Z. J. Am. Chem. Soc. 2005, 127, 6679-6685. (c) Nowlan, D. T. III.; Gregg, T. M.; Davies, H. M. L.; Singleton, D. A. J. Am. Chem. Soc. 2003, 125, 15902-15911. (d) Saettel, N. J.; Wiest, O.; Singleton, D. A.; Meyer, M. P. J. Am. Chem. Soc. 2002, 124, 11552-11559. (e) Franz, D. E.; Singleton, D. A. J. Am. Chem. Soc. 2000, 122, 3288-3295. (f) Singleton, D. A.;

Hang, C. J. Org. Chem. 2000, 65, 7554-7560. (g) Singleton, D. A.; Merrigan, S. R.; Kim, B. J.; Beak, P.; Phillips, L. M.; Lee, J. K. J. Am. Chem. Soc. 2000, 122, 3296-3300. (h) Singleton, D. A.; Hang, C. Tetrahedron Letters. 1999, 40, 89398943. (i) Meyer, M. P.; Delmonte, A. J.; Singleton, D. A. J. Am. Chem. Soc. 1999, 121, 10865-10874. (j) Singleton, D. A.; Szymanski, M. J. J. Am. Chem. Soc. 1999, 121, 9455-9456. (k) Singleton, D. A.; Schulmeier, B. E. J. Am. Chem. Soc. 1999, 121, 9313-9317. (1) Singleton, D. A.; Merrigan, S. R.; Beno, B. R.; Houk, K. N.; Tetrahedron Letters. 1999, 40, 5817-5821. (m) Keating, A. E.; Merrigan, S. R.; Singleton, D. A.; Houk, K. N. J. Am. Chem. Soc. 1999, 121, 3933-3938. (n) Singleton, D. A.; Merrigan, S. R.; Thomas, A. A. Tetrahedron Letters. 1999, 40, 639-642. (o) DelMonte, A. J.; Haller, J.; Houk, K. N.; Sharpless, B. K.; Singleton, D. A.; Strassner, T.; Thomas, A. A. J. Am. Chem. Soc. 1997, 119, 9907-9908
3. Gaussian 98, Revision A.11.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C.
Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2001.
4. Gaussian 03, Revision B.04, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
5. Singleton, D. A.; Thomas, A. A. J. Am. Chem. Soc. 1995, 117, 9357-9358.
6. Melander, L.; Saunders, W. H. Reaction Rates of Isotopic Molecules; John Wiley \& Sons: New York, 1980.
7. Lowery, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; $3^{\text {rd }}$ ed., HarperCollins: New York, 1987.
8. Pascal, R. A., Jr.; Baum, M. W.; Wagner, C. K.; Rodgers, L. R.; Huang, D. S. J. Am. Chem. Soc. 1986, 108, 6477-6482.
9. The calculations used the program QUIVER (Saunders, M.; Laidig, K. E.; Wolfsberg, M. J. Am. Chem. Soc. 1989, 111, 8989-8994). Frequencies were scaled by 0.9614 (Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 1650216513).
10. (a) Bigeleisen, J.; Mayer, M. G. J. Am. Chem. Soc. 1947, 15, 261-267. (b) Wolfsberg, M. Acc. Chem. Res. 1972, 5, 225-233. (c) Bigeleisen, J. J. Chem. Phys. 1949, 17, 675-678.
11. Bell, R. P. The Tunnel Effect in Chemistry; Chapman \& Hall: London, 1980; pp 60-63.
12. Mitscherlich, E. Justus Liebigs Ann. Chem. 1834, 12, 308.
13. Holleman, A. F. Chem. Rev. 1924, 1, 187-230.
14. Chupakhin, O. N.; Charushin, V. N.; van der Plas, H. C., Nucleophilic Aromatic Substitution of Hydrogen; Academic Press: San Diego, 1994.
15. Directed ortho metallation has recently been reviewed within the context of complex induced proximity effects. See the following article and references therein: Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem. Int. Edit. 2004, 43, 2206-2225.
16. (a) Brazeau, B. J.; Wallar, B. J.; Lipscomb, J. D. J. Am. Chem. Soc. 2001, 123, 10421-10422. (b) Gherman, B. F.; Dunietz, B. D.; Whittington, D. A.; Lippard, S. J.; Friesner, R. A. J. Am. Chem. Soc. 2001, 123, 3836-3837. (c) Choi, S.; Eaton, P. E.; Kopp, D. A.; Lippard, S. J.; Newcomb, M.; Shen, R. J. Am. Chem. Soc. 1999, 121, 12198-12199. (d) Kopp, D. A.; Gassner, G. T.; Blazyk, J. L.; Lippard, S. J. Biochemistry 2001, 40, 14932-14941. (e) Nesheim, J. C.; Lipscomb, J. D. Biochemistry 1996, 35, 10240-10247.
17. (a) Manshester, J. I.; Dinocenzo, J. P.; Higgens, L.; Jones, J. P. J. Am. Chem. Soc. 1997, 119, 5069-5070. (b) Newcomb, M.; Shen, R.; Choi, S.; Toy, P. S.; Hollenberg, P. F.; Vaz, A. D. N.; Coon, M. J. J. Am. Chem. Soc. 2000, 122, 2677-2686. (c) Ogliaro, F.; Harris, N.; Cohen, S.; Filatov, M.; Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2000, 122, 8977-8989. (d) Toy, P. H.; Dhanabalasingham, B.; Newcomb, M.; Hanna, I. H.; Hollenberg, P. F. J. Org. Chem. 1997, 62, 9114-9122.
18. Kitajima, N.; Fukui, H.; Moro-oka, Y. J. Am. Chem. Soc., Chem. Commun. 1988, 7, 485-486.
19. (a) Bengali, A. A.; Arndtsen, B. A.; Burger, P. M.; Schultz, R. H.; Weiller, B. H.; Kyle, K. R.; Moore, C. B.; Bergman, R. G. Pure Appl. Chem. 1995, 67, 281288. (b) Crabtree, R. H. Chem. Rev. 1995, 95, 987-1007. (c) Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879-2932. (d) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Agnew. Chem., Int. Ed. Engl. 1998, 37, 2181-2192.
20. Crabtree, R. H.; Mihelcic, J. M.; Quirk, J. M. J. Am. Chem. Soc. 1979, 101, 7738-7739.
21. (a) Fisher, B. J.; Eisenberg, R. Organometallics 1983, 2, 764-767. (b) Sakakura, T.; Sodeyama, T.; Sasaki, K.; Wada, K.; Tanaka, M. J. Am. Chem. Soc. 1990, 112, 7721-7729.
22. Sakakura, T.; Tanaka, M. J. Am. Chem. Soc., Chem. Commun. 1987, 10, 758759.
23. (a) Jenson, C. M. J. Chem. Soc., Chem. Commun. 1999, 22, 2443-2449. (b) Liu, F. C.; Pak, E. B.; Singh, B.; Jensen, C. M.; Goldman, A. S. J. Am. Chem. Soc. 1999, 121, 4086-4087.
24. A recent overview of $\mathrm{C}-\mathrm{H}$ functionalization has appeared: Goldberg, K. I.; Goldman, A. S., Activation and Functionalization of $C-H$ Bonds. American Chemical Society: Washington DC, 2004.
25. Chatt, J.; Davidson, J. M. J. Chem. Soc. 1965, 843-845.
26. Ittel, S. D.; Tolman, C. A.; English, A. D.; Jesson, J. P. J. Am. Chem. Soc. 1976, 98, 6073-6075.
27. Ezbiansky, K.; Djurovich, P. I.; LaForest, M.; Sinning, D. J.; Zayes, R.; Berry, D. H. Organometallics 1998, 17, 1455-1457.
28. For example, dechlorination was observed during attempted silylations of 1,3dichlorobenzene.
29. Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104, 352-354.
30. (a) Watson, T. L. J. Am. Chem. Soc. 1983, 105, 6491-6493. (b) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem. Soc. 1987, 109, 203-219.
31. (a) Cummins, C. C.; Baxter, S. M.; Wolczanski, P. T. J. Am. Chem. Soc. 1988, 110, 8731-8733. (b) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 8729-9731. (c) Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. 1997, 119, 10696-10719. (d) Schaefer, W. P.; Wolczanski, P. T. J. Am. Chem. Soc. 1998, 120, 4881-4882.
32. (a) Sherry, A. E.; Wayland, B. B. J. Am. Chem. Soc. 1990, 112, 1259-1261. (b) Wayland, B. B.; Sherry, A. E. J. Am. Chem. Soc. 1991, 113, 5305-5311.
33. (a) Rablen, P. R.; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 4121-4122. (b) Rablen, P. R.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 4648-4653.
34. (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483. (b) Suzuki, A. J. Organomet. Chem. 1999, 576, 147-168.
35. Waltz, K. M.; Hartwig, J. F. Science 1997, 277, 211-213.
36. Waltz, K. M.; Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 11358-11369.
37. Waltz, K. M.; Muhoro, C. N.; Hartwig, J. F. Organometallics 1999, 18, 33833393.
38. Chen, H.; Hartwig, J. F. Angew. Chem. Int. Ed. 1999, 38, 3391-3393.
39. Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000, 287, 19951997.
40. Cho, J. -Y.; Iverson, C. N.; Smith, M. R., III. J. Am. Chem. Soc. 2000, 122, 12868-12869.
41. Tse, M. K.; Cho, J. -Y.; Smith, M. R., III. Org. Lett. 2001, 3, 2831-2833.
42. (a) Westcott, S. A.; Blom, H. P.; Marder, T. B.; Baker, R. T. J. Am. Chem. Soc. 1992, 114, 8863-8869. (b) Burgess, K.; van der Donk, W. A.; Westcott, S. A.; Marder, T. B.; Baker, R. T.; Calabrese, G. C. J. Am. Chem. Soc. 1992, 114, 9350-9359.
43. Iverson, C. N.; Smith, M. R., III. J. Am. Chem. Soc. 1999, 121, 7696-7697.
44. Cho, J. -Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E. Jr.; Smith, M. R., III. Science 2002, 295, 305-308.
45. Kawamura, K.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 8422-8423.
46. Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N. Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390-391.
47. Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N. Angew. Chem. Int. Ed. 2002, 41, 3056-3058.
48. Maleczka, R. E. Jr.; Shi, F.; Holmes, D.; Smith, M. R., III. J. Am. Chem. Soc. 2003, 125, 7792-7793.
49. Takagi, J.; Sato, K.; Hartwig, J. F.; Ishiyama, T.; Miyaura, N. Tetrahedron Lett. 2002, 43, 5649-5651.
50. Despite arene activation not being mentioned in the journal text, small peaks in the gas chromatography - mass spectrometry trace are consistent with toluene activation provided in the supplementary material. Nguyen, P.; Blom, H. P.;

Westcott, S. A.; Taylor, N. J.; Marder, T. B. J. Am. Chem. Soc. 1993, 115, 9329-9230.
51. Chotana, G. A.; Rak, M. A,; Smith M. R., III. J. Am. Chem. Soc. 1995, 127, 10539-10544.
52. Chotana, G. A.; Rak, M. A.; Smith, M. R., III J. Am. Chem. Soc. 2005, 127, 10539-10544.
53. Holmes, D.; Chotana, G. A.; Maleczka, R. E.; Smith, M. R. Org. Lett. 2006, 8, 1407-1410.
54. Shi, F.; Smith, M. R., III; Maleczka, R. E., Jr. Org. Lett. 2006, 8, 1411-1414.
55. Ishiyama, T.; Nobuta, Y.; Hartwig, J. F.; Miyaura, N. Chem. Commun. 2003, 2924-2925.
56. Ishiyama, T.; Takagi, J.; Yonekawa, Y.; Hartwig, J. F.; Miyaura, N. Adv. Synth. Catal. 2003, 345, 1103-1106.
57. Takagi, J.; Sato, K.; Hartwig, J. F.; Ishiyama, T.; Miyaura, N. Tetrahedron Lett. 2002, 43, 5649-5651.
58. Coventry, D. N.; Batsanov, A. S.; Goeta, A. E.; Howard, J. A. K.; Marder, T. B.; Perutz, R. N. Chem. Commun. 2005, 2172-2174.
59. Mkhalid, I. A. I.; Coventry, D. N.; Albesa-Jove, D.; Batsanov, A. S.; Howard, J. A. K.; Perutz, R. N.; Marder, T. B. Angew. Chem. Int. Edit. 2006, 45, 489-491.
60. Tamura, H.; Yamazaki, H.; Sato, H.; Sakaki, S. J. Am. Chem. Soc. 2003, 125, 16114-16126.
61. Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; Miyaura, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 14263-14278.
62. Wentzel, T. T.; Bergman, R. G. J. Am. Chem. Soc. 1986, 108, 4856-4867.
63. Jones, W. D.; Feher, F. J. Organometallics 1983, 2, 562-563.
64. This is based on the integration of the $\mathrm{Ar}-\mathrm{CH}_{2}$-Bpin signal in the ${ }^{1} \mathrm{H}$ NMR. For isotope effects based on analysis of recovered starting material, any benzylic C-H insertion that occurs after arene C-H borylations will not affect the measured KIE.
65. Merola, J. S.; Kacmarcik, R. T. Organometallics 1989, 8, 778-784.
66. For a preliminary report of the synthesis of these complexes, see ref 44 .
67. Jones, W. D. Accounts Chem. Res. 2003, 36, 140-146.
68. Tamura, H.; Yamazaki, H.; Sato, H.; Shigeyoshi, S. J. Am. Chem. Soc. 2003, 125, 16114-16126.
69. (a) Webster, C. E.; Fan, Y.; Hall, M. B.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 858-859. (b) Hartwig, J.F.; Cook, K. S.; Hapke, M.; Incarvito, C. D.; Fan, Y.; Webster, C. E.; Hall, M. B. J. Am. Chem. Soc. 2005, 127, 2538-2552.
70. Wan, X.; Wang, X.; Lou, Y.; Takami, S.; Kubo, M.; Miyamoto, A. Organometallics 2002, 21, 3703-3708.
71. Lam, W. H.; Lam, K. C.; Lin, Z.; Shimada, S.; Perutz, R. N.; Marder, T. B. Dalton Trans. 2004, 10, 1556-1562.
72. The calculations used the program QUIVER (Saunders, M.; Laidig, K. E.; Wolfsberg, M. J. Am. Chem. Soc. 1989, 111, 8989-8994). B3LYP frequencies
were scaled by 0.9614 (Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 1650216513).
73. (a) Bigeleisen, J.; Mayer, M. G. J. Chem. Phys. 1947, 15, 261-267. (b) Wolfsberg, M. Acc. Chem. Res. 1972, 5, 225-233. (c) Bigeleisen, J. J. Chem. Phys. 1949, 17, 675-678.
74. Bell, R. P. The Tunnel Effect in Chemistry; Chapman \& Hall: London, 1980; pp 60-63.
75. Metiu, H.; Ross, J.; Silbey, R.; George, T. F. J. Chem. Phys. 1974, 61, 3200
76. (a) Campos, L. M.; Warrier, M. V.; Peterfy, K.; Houk, K. N.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2005, 127, 10178-10179. (b) Metiu, H.; Ross, J.; Silbey, R.; George, T. F. J. Chem. Phys. 1974, 61, 3200-3209. (c) Valtazanos, P.; Ruedenberg, K. Theor. Chim. Acta 1986, 69, 281-307. (d) Kraus, W. A.; DePristo, A. E. Theor. Chem. Acta 1986, 69, 309-322. (e) Windus, T. L.; Gordon, M. S.; Burggraf, L. W.; Davis, L. P. J. Am. Chem. Soc. 1991, 113, 43564357. (f) Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 1992, 114, 58795881. (g) Yanai, T.; Taketsugu, T.; Hirao, K. J. Chem. Phys. 1997, 107, 11371146. (h) Caramella, P.; Quadrelli, P.; Toma, L. J. Am. Chem. Soc. 2002, 124, 1130-1131. (i) Zhou, C.; Birney, D. M. Org. Lett. 2002, 4, 3279-3282. (j) Yamataka, H.; Aida, M. Dupuis, M. Chem. Phys. Lett. 1999, 300, 583-587. (k) Bakken, V.; Danovich, D.; Shaik, S.; Schlegel, H. B. J. Am. Chem. Soc. 2001, 123, 130-134. (1) Mann, D. J.; Hase, W. L. J. Am. Chem. Soc. 2002, 124, 32083209.
77. (a) Nicolaou, K. C.; Maligres, P.; Shin, J.; de Leon, E.; Rideout, D. J. Am. Chem. Soc. 1990, 112, 7825-7826. (b) Grissom, J. W.; Slattery, B. J. Tetrahedron Lett. 1994, 35, 5137-5140. (c) Wang, K. K.; Wang, Z.; Sattsangi, P. D. J. Org. Chem. 1996, 61, 1516-1518. (d) Liu, B.; Wang, K. K.; Petersen, J. L. J. Org. Chem. 1996, 61, 8503-8507. (e) Wang, K. K. Chem. Rev. 1996, 96, 207-222.
78. (a) Myers, A. G.; Proteau, P. J., J. Am. Chem. Soc. 1989, 111, 1146-1147. (b) Myers, A. G. Tetrahedron Lett. 1987, 28, 4493-4496. (c) Myers, A. G.; Proteau, P. J.; Handel, T. M. J. Am. Chem. Soc. 1988, 110, 7212-7214. (d) Ishida, N.; Miyazaki, K.; Kumagai, K.; Rikimaru, M. J. Antibiot. 1965, 18, 68-76. (e) Koide, Y.; Ishii, F.; Hasuda, K.; Koyama, Y.; Edo, K.; Katamine, S.; Kitame, F.; Ishida, N. J. Antibiot. 1980, 33, 347-351.
79. (a) Myers, A. G.; Kuo, E. Y.; Finney, N. S. J. Am. Chem. Soc. 1989, 111, 80578059. (b) Myers, A. G.; Dragovich, P. S. J. Am. Chem. Soc. 1989, 111, 91309132. (c) Myers, A. G.; Dragovich, P. S.; Kuo, E. Y. J. Am. Chem. Soc. 1992, 114, 9369-9386.
80. (a) Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I. Tetrahedron Lett. 1989, 30, 4995-4998. (b) Nagata, R.; Yamanaka, H.; Murahashi, E.; Saito, I. Tetrahedron Lett. 1990, 31, 2907-2910.
81. (a) Schmittel, M.; Strittmatter, M.; Vollmann, K.; Kiau, S. Tetrahedron Lett. 1996, 37, 999-1002. (b) Schmittel, M.; Maywald, M.; Strittmatter, M. Synlett 1997, 165-166. (c) Schmittel, M.; Strittmatter, M.; Kiau, S. Tetrahedron Lett. 1995, 36, 4975-4978. (d) Schmittel, M.; Keller, M.; Kiau, S.; Strittmatter, M.

Chem.-Eur. J. 1997, 3, 807-816. (e) Schmittel, M.; Steffen, J. -P.; Auer, D.; Maywald, M. Tetrahedron Lett. 1997, 38, 6177-6180.
82. Schmittel, M.; Strittmatter, M.; Kiau, S. Angew. Chem., Int. Ed. 1996, 35, 18431845.
83. Engels, B.; Lennartz, C.; Hanrath, M.; Schmittel, M.; Strittmatter, M. Angew. Chem., Int. Ed. 1998, 37, 1960-1963.
84. (a) Zhang, H. -R.; Wang, K. K. J. Org. Chem. 1999, 64, 7996-7999. (b) Li, H.; Zhang, H. -R.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2001, 66, 6662-6668. (c) Li, H.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2001, 66, 7804-7810. (d) Yang, Y.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2003, 68, 5832-5837. (e) Yang, Y.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2003, 68, 8545-8549.
85. (a) Engels, B.; Hanrath, M. J. Am. Chem. Soc. 1998, 120, 6356-6361. (b) Schreiner, P. R.; Prall, M. J. Am. Chem. Soc. 1999, 121, 8615-8627.
86. Myers, A. G.; Dragovich, P. S.; Kuo, E. Y. J. Am. Chem. Soc. 1992, 114, 93699386.
87. Wenthold, P. G.; Lipton, M. A. J. Am. Chem. Soc. 2000, 122, 9265-9270.
88. Brunette, S. R.; Lipton, M. A. J. Org. Chem. 2000, 65, 5114-5119.
89. (a) Gajewski, J. J. In Secondary and Solvent Isotope Effects by Isotopes in Organic Chemistry; Buncel, E., Lee, C. C., Eds.; Elsevier: New York, 1987; Vol 7, 115-176. (b) Dai, S. -H.; Dolbier, W. R., Jr. J. Am. Chem. Soc. 1972, 94, 3953-3954. (c) Achmatowicz, O., Jr.; Szymoniak, J. J. Org. Chem. 1980, 45, 1228-1232. (d) Achmatowicz, O., Jr.; Szymoniak, J. J. Org. Chem. 1980, 45,

4774-4776. (e) Jenner, G.; Papadopoulos, M. J. Org. Chem. 1982, 47, 42014204. (f) Singleton, D. A.; Hang, C. Tetrahedron Lett. 1999, 40, 8939-8942.
90. (a) Song, Z.; Beak, P. J. Am. Chem. Soc. 1990, 112, 8126-8134. (b) Stephenson, L. M.; Orfanopoulos, M. J. Org. Chem. 1981, 46, 2200-2201.
91. (a) Seymour, C. A.; Greene, F. D. J. Org. Chem. 1982, 47, 5226-5227. (b) Leach, A. G.; Houk, K. N. Org. \& Biomol. Chem. 2003, 1, 1389-1403. (c) Stephenson, L. M.; Speth, D. R. J. Org. Chem. 1979, 44, 4683-4689. (d) Singleton, D. A.; Hang, C. J. Org. Chem. 2000, 65, 7554-7560. (e) Snider, B. B.; Ron, E. J. Am. Chem. Soc. 1985, 107, 8160-8164. (f) Singleton, D. A.; Hang, C. J. Org. Chem. 2000, 65, 895-899. (g) Cheng, C. -C.; Seymour, C. A.; Petti, M. A.; Greene, F. D.; Blount, J. F. J. Org. Chem. 1984, 49, 2910-2916. (h) Singleton, D. A.; Hang, C. J. Am. Chem. Soc. 1999, 121, 11885-11893. (i) Frimer, A. A.; Stephenson, L. M. In Singlet O_{2}; Frimer, A. A., Ed.; CRC Press: Boca Raton, Fl, 1985; pp 68-87. (j) Song, Z.; Chrisope, D. R.; Beak, P. J. Org. Chem. 1987, 52, 3938-3940. (k) Starflinger, W.; Kresze, G.; Huss, K. J. Org. Chem. 1986, 51, 37-40.
92. (a) Singleton, D. A.; Hang, C.; Szymanski, M. J.; Greenwald, E. E. J. Am. Chem. Soc. 2003, 125, 1176-1177. (b) Singleton, D. A.; Hang, C.; Szymanski, M. J.; Meyer, M. P.; Leach, A. G.; Kuwata, K. T.; Chen, J. S.; Greer, A.; Foote, C. S.; Houk, K. N. J. Am. Chem. Soc. 2003, 125, 1319-1328.
93. Engels, B.; Musch, P. W. J. Am. Chem. Soc. 2001, 123, 5557-5562.
94. Thornton, E. R. J. Am. Chem. Soc. 1967, 89, 2915-2927.
95. For examples in Diels-Alder reactions, see: Bartlett, P. D.; Mallet, J. J. -B. J. Am. Chem. Soc. 1976, 98, 143-151. Bartlett, P. D.; Jacobsen, B. M.; Walker, L. E. J. Am. Chem. Soc. 1973, 95, 146-150.
96. Handy, N.; Pople, J. A.; Head-Gordon, M.; Raghavachari, K.; Trucks, G. W. Chem. Phys. Lett. 1989, 154, 185-192.
97. (a) Roth, W. R.; Hopf, H.; Horn, C. Chem. Ber. 1994, 127, 1765-1779. (b)

Wenthold, P.; Squires, R. R. J. Am. Chem. Soc. 1994, 116, 6401-6412. (c)
Cramer, C. J.; Squires, R. R. Org. Lett. 1999, 1, 215-218.
98. (a) Wenthold, P. G.; Wierschke, S. G.; Nash, J. J.; Squires, R. R. J. Am. Chem. Soc. 1994, 116, 7378-7392. (b) In ref 87, it was suggested by one of the coauthors of ref 97a that the experimental heat of formation of $\alpha, 3-$ didehydrotoluene may be too low. An error in the direction suggested would bring the energetics of eq 2 into even closer agreement with the $(\mathrm{U}) \mathrm{BD}(\mathrm{T}) / 6$ $31+G(d, p)$-predicted energetics.
99. (a) Yamataka, H.; Aida, M. Dupuis, M. Chem. Phys. Lett. 1999, 300, 583-587.
(b) Bakken, V.; Danovich, D.; Shaik, S.; Schlegel, H. B. J. Am. Chem. Soc. 2001, 123, 130-134.
100. Debbert, S. L.; Carpenter, B. K.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 2002, 124, 7896-7897.
101. For other discussions of one transition state giving rise to two products, see: (a) Valtazanos, P.; Ruedenberg, K. Theor. Chim. Acta 1986, 69, 281-307. (b) Kraus, W. A.; DePristo, A. E. Theor. Chem. Acta 1986, 69, 309-322. (c) Yanai, T.;

Taketsugu, T.; Hirao, K. J. Chem. Phys. 1997, 107, 1137-1146. (d) Windus, T. L.; Gordon, M. S.; Burggraf, L. W.; Davis, L. P. J. Am. Chem. Soc. 1991, 113, 4356.
102. Ben-Nun, M.; Levine, R. D. J. Chem. Phys. 1994, 101, 8768-8783.
103. Carpenter, B. K. Angew. Chem. Int. Ed. 1998, 37, 3340-3350.
104. (a) Carpenter, B. K. J. Am. Chem. Soc. 1995, 117, 6336-6344. (b) Reyes, M. B.; Carpenter, B. K. J. Am. Chem. Soc. 2000, 122, 10163-10176. (c) Reyes, M. B.; Lobkovsky, E. B.; Carpenter, B. K. J. Am. Chem. Soc. 2002, 124, 641-651. (d) Carpenter, B. K. J. Am. Chem. Soc. 1996, 118, 10329-10330.
105. (a) Doubleday, C., Jr.; Bolton, K.; Hase, W. L. J. Am. Chem. Soc. 1997, 119, 5251-5252. (b) Doubleday, C.; Nendel, M.; Houk, K. N.; Thweatt, D.; Page, M. J. Am. Chem. Soc. 1999, 121, 4720-4721. (c) Doubleday, C. J. Phys. Chem. A 2001, 105, 6333-6341. (d) Doubleday, C., Jr.; Bolton, K.; Hase, W. L. J. Phys. Chem. A 1998, 102, 3648-3658.
106. Ammal, S. C.; Yamataka, H.; Aida, M.; Dupuis, M. Science 2003, 299, 15551557.
107. (a) More O'Ferrall, R. A. J. Chem. Soc. B 1970, 274-277. (b) Jencks, W. P. Chem. Rev. 1972, 72, 705-718.
108. For an example of a diradical intermediate that is lower in energy than the transition structure for a concerted cycloaddition, see: Li, Y.; Houk, K. N. J. Am. Chem. Soc. 1993, 115, 7478-7485.
109. (a) Firestone, R. A. Heterocycles 1987, 25, 61-64. (b) Firestone, R. A. Tetrahedron 1977, 33, 3009-3039.
110. (a) Carpenter, B. K. J. Am. Chem. Soc. 1985, 107, 5730-5732. (b) NewmanEvans, R. H.; Simon, R. J.; Carpenter, B. K. J. Org. Chem. 1990, 55, 695-711.
111. (a) Trost, B. M. Acc. Chem. Res. 1980, 13, 385-393. (b) Tsuji, J. Tetrahedron 1986, 42, 4361-4401. (c) Atkins, K. E.; Walker, W. E.; Manyik, R. M. Tetrahedron Lett. 1970, 11, 3821-3824.
112. (a) Trost, B. M.; Verhoeven, T. R. J. Am. Chem. Soc. 1976, 98, 630-632. (b) Trost, B. M.; Matsumura, Y. J. Org. Chem. 1977, 42, 2036-2038. (c) Trost, B. M.; Godleski, S. A.; Genet, J. P. J. Am. Chem. Soc. 1978, 100, 3930-3931.
113. (a) Bosnich B.; Mackenzie, P. B. Pure Appl. Chem. 1982, 54, 189-195. (b) Trost, B. M.; Murphy, D. J. Organometallics 1985, 4, 1143-1145. (c) Trost, B. M. Acc. Chem. Res. 1996, 29, 355-364. (d) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395-422. (e) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 4545-4554. (f) Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc. 1999, 121, 6759-6760. (g) Weiss, T. D.; Helmchen, G.; Kazmaier, E. Chem. Commun. 2002, 12, 1270-1271. (h) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921-2943.
114. (a) Hagelin, H.; Akermark, B.; Norrby, P.-O. Chem. Eur. J. 1999, 5, 902-909.
(b) Delbecq, F.; Lapouge, C. Organometallics 2000, 19, 2716-2723. (c) Branchadell, M.; Moreno- Mañas, M.; Pleixats, R. Organometallics 2002, 21, 2407-2412. (d) Norrby, P.-O. Organometallics 2003, 22, 1849-1855. (e)

Hallman, K.; Frölander, A.; Wondimagegn, T.; Svensson, M.; Moberg, C. Proc. Natl. Acad. Sci. 2004, 101, 5400-5404.
115. Trost, B. M.; Schmuff, N. R.; Miller, M. J. J. Am. Chem. Soc. 1980, 102, 59795981. (b) Akermark, B.; Hansson, S.; Krakenberger, B.; Vitagliano, A.; Zetterberg, K. Organometallics 1984, 3, 679-682. (c) Cuvigny, T.; Julia, M.; Rolando, C. J. Organomet. Chem. 1985, 285, 395-413. (d) Trost, B. M.; Merlic, C. A. J. Org. Chem. 1990, 55, 1127-1129. (e) Nilsson, Y. I. M.; Andersson, P. G.; Bäckvall, J. E. J. Am. Chem. Soc. 1993, 115, 6609-6613.
116. BS1 and BS2 each used an SDD basis set and core potential for Pd. BS1 used 631 G on the phenyl-group carbons and $6-31 \mathrm{G}^{*}$ on the remaining atoms. BS2 used $6-31+\mathrm{G}^{* *}$, except using $6-31 \mathrm{G}^{*}$ for HCN molecules.
117. Becke3LYP frequencies were scaled by 0.9614
118. Vo, L. K.; Singleton, D. A. Org. Lett. 2004, 6, 2469-2472.
119. Radzicka, A.; Wolfenden, R. Science 1995, 267, 90-93.
120. Bruice, T. C.; Benkovic, S. Bioorganic Mechanisms; W. A. Benjamin: New York, 1966; Vol. 2.
121. Bender, M. L. Mechanisms of Homogeneous Catalysis from Protons to Proteins; Wiley-Interscience: New York, 1971.
122. Acheson, S. A.; Bell, J. B.; Jones, M. E.; Wolfenden, R. Biochemistry 1990, 29, 3198-3202.
123. Smiley, J. A.; Paneth, P.; O’Leary, M. H.; Bell, J. B.; Jones, M. E. Biochemistry 1991, 30, 6216-6223.
124. Levine, H. L.; Brody, R. S.; Westheimer, F. H. Biochemistry 1980, 19, 49934999.
125. Smiley, J. A.; Benkovic, S. J. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 8319-8323.
126. Smiley, J. A.; Jones, M. E. Biochemistry 1992, 31, 12162-12168.
127. Ehrlich, J. I.; Hwang, C. -C.; Cook, P. F.; Blanchard, J. S. J. Am. Chem. Soc. 1999, 121, 6696.
128. Cui, W.; DeWitt, J. G.; Miller, S. M.; Wu, W. Biochem. Biophys. Res. Comm. 1999, 259, 133-135.
129. Lee, J. K.; Houk, K. N. Science 1997, 276, 942-945.
130. Miller, B. G.; Traut, T. W.; Wolfenden, R. J. Am. Chem. Soc. 1998, 120, 26662667.
131. Rishavy, M. A.; Cleland, W. W. Biochemistry 2000, 39, 4569-4574.
132. Miller, B. G.; Hassell, A. M.; Wolfenden, R.; Milburn, M. V.; Short, S. A. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 2011.
133. Wu, N.; Mo, Y.; Gao, J.; Pai, E. F. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 2017.
134. Appleby, T. C.; Kinsland, C.; Begley, T. P.; Ealick, S. E. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 2011.
135. Harris, P.; Poulsen, J. -C. N.; Jensen, K. F.; Larsen, S. Biochemistry 2000, 39, 4217.
136. Beak, P.; Siegel, B. J. Am. Chem. Soc. 1976, 98, 3601-3606.
137. Silverman, R. B.; Groziak, M. P. J. Am. Chem. Soc. 1982, 104, 6434.
138. Warshel, A.; Strajbl, M.; Villa, J.; Florian, J. Biochemistry 2000, 39, 14728.
139. Gao, J. Current Opinion Struct. Biol. 2003, 13, 184-192.
140. Lee, T. -S.; Chong, L. T.; Chodera, J. D.; Kollman, P. A. J. Am. Chem. Soc. 2001, 23, 12837-12848.
141. Kresge, A. J. J. Am. Chem. Soc. 1973, 95, 3065-3067.
142. Nickon, A.; Huang, F.; Weglein, R.; Matsuo, K.; Yagi, H. J. Am. Chem. Soc. 1974, 96, 5264. Nickon, A. Acc. Chem. Res. 1993, 26, 84-89.
143. Smiley, J. A.; DelFraino, B. J.; Simpson, B. A. Arch. Biochem. Biophys. 2003, 412, 267-271.
144. Yamada, H.; O'Leary, M. H. J. Am. Chem. Soc. 1977, 99, 1660.
145. Northrop, D. B. J. Am. Chem. Soc. 1981, 103, 1208.
146. Gaussian 98, Revision A.11.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2002.
147. Washabaugh, M. W.; Jencks, W. P. Biochemistry 1988, 27, 5044.
148. Bordwell, F. G. Accounts Chem. Res. 1988, 21456.
149. Phillips, L. M.; Lee, J. K. J. Am. Chem. Soc. 2001, 123, 12067.
150. Sievers, A.; Wolfenden, R. J. Am. Chem. Soc. 2002, 124, 13986.
151. (a) Benoit, R. L.; Louis, C.; Frechette, M. Thermochimica Acta 1991, 176, 221. (b) This estimate is based on an apparent correlation of the pK_{a} for carboxylic acids and the enthalpy of solvation of the corresponding carboxylates. The estimate ignores the unreacting functionality of $\mathbf{9}$ or $\mathbf{1}$, assuming that the solvation of the unreacting functionality changes little between starting carboxylate and the transition state for decarboxylation. It should be noted that most of the solvation enthalpy is due to the anionic charge on the carboxylate the solvation enthalpy for the corresponding neutral carboxylic acids is <20 $\mathrm{kcal} / \mathrm{mol}$.
152. Warshel concludes that electrostatic effects due to protein-protein interactions between two carboxylate residues stabilize the positive charge on the lysinium at the transition state. This transition state stabilization results in the large rate enhancement for the decarboxylation versus water.
153. The trimethylammonium cation was chosen instead of a primary ammonium cation for three reasons: it is a single-proton donor, it is C_{3}-symmetric, and it is a weaker acid in the gas phase. These traits simplified the calculational studies but otherwise, the trimethylammonium cation should be a reasonable model for the lysinium ion.
154. This is an integral eq formalism PCM model using the default parameters in Gaussian03.
155. (a) Beno, B. R.; Houk, K. N.; Singleton, D. A. J. Am. Chem. Soc. 1996, 118, 9984-9985. (b) Meyer, M. P.; DelMonte, A. J.; Singleton, D. A. J. Am. Chem. Soc. 1999, 121, 10865-10874. (c) DelMonte, A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.; Singleton, D. A.; Strassner, T.; Thomas, A. A. J. Am. Chem. Soc. 1997, 119, 9907-9908. (d) Singleton, D. A.; Merrigan, S. R.; Liu, J.; Houk, K. N. J. Am. Chem. Soc. 1997, 119, 3385-3386.
156. There has been a report of difficulty in predicting the ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ isotope effects in the decarboxylation of 3-carboxybenisoxazole (Czyryca, P.; Paneth, P. J. Org. Chem. 1997, 62, 7305-7309). However, by including a PCM solvent model, we have been able to predict the ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ isotope effects to within 0.003 and 0.001, respectively. See Supporting Information for the relevant transition structures and predicted KIEs.
157. The calculations used the program QUIVER (Saunders, M.; Laidig, K. E.; Wolfsberg, M. J. Am. Chem. Soc. 1989, 111, 8989-8994). The Becke3LYP frequencies were scaled by 0.9614 .
158. (a) Bigeleisen, J.; Mayer, M. G. J. Chem. Phys. 1947, 15, 261-267. (b) Wolfsberg, M. Acc. Chem. Res. 1972, 5, 225-233. (c) Bigeleisen, J. J. Chem. Phys. 1949, 17, 675-678.
159. Bell, R. P. The Tunnel Effect in Chemistry; Chapman \& Hall: London, 1980; pp 60-63.
160. Rakowski, K.; Paneth, P. J. Mol. Struct. 1996, 378, 35-43. Gawlita, E.; Paneth, P.; Anderson, V. E. Biochemistry 1995, 34, 6050-6058. Bush, K; Mahler, H. R.; Shiner, V. J. Jr. Science 1971, 172, 478-480.
161. This calculation of isotope effects treats a "slope" of a potential energy surface as if it were a potential-energy saddle point. Such calculations appear to work reasonably well for heavy-atom KIEs in other cases, though a likely important factor in this success is the relatively low amount of tunneling involved for heavy atoms. See refs 2 and Singleton, D. A.; Hang, C.; Szymanski, M. J.; Meyer, M. P.; Leach, A. G.; Kuwata, K. T.; Chen, J. S.; Greer, A.; Foote, C. S.; Houk, K. N. J. Am. Chem. Soc. 2003, 125, 1319-1328. Keeting, A. E.; Merrigan, S. R.; Singleton, D. A.; Houk, K. N. J. Am. Chem. Soc. 1999, 121, 3933-38.
162. Van Hook, W. A. J. Phys. Chem. 1972, 76, 3040-3043. Pupezin, J.; Jakli, G.; Jancso, G.; Van Hook, W. A. J. Phys. Chem. 1972, 76, 743-749.
163. Guo, H. -X. Kresge, A. J. J. Chem. Soc., Perkin Trans. 2 1997, 295-298. Reuben, J. J. Am. Chem. Soc. 1986, 108, 1082-1083.
164. (a) Dunn, G. E. In Isotope Effects in Organic Chemistry Buncel, E., Lee, C. C., Eds.; Elsevier: New York, 1977;Vol. 3, pp 1-40. (b) (a) Willi, A. V. In Isotope Effects in Organic Chemistry; Buncel, E., Lee, C. C., Eds.; Elsevier: New York, 1977;Vol. 3, pp 257-266. (c) O’Leary, M. H. In Isotope Effects on EnzymeCatalyzed Reactions; Cleland, W. W., O’Leary, M. H.; Northrop, D. B., Eds.; University Park Press: Baltimore, 1977; pp 238-243. (d) O’Leary, M. H. Accounts Chem. Res. 1988, 21, 450. (e) Melander, L.; Saunders, W. H. Jr.

Reaction Rates of Isotopic Molecules; Wiley: New York, 1980; pp 225-234. (f) Swanson, T.; Brooks, H. B.; Osterman, A. L.; O’Leary, M. H.; Phillips, M. A. Biochemistry 1998, 37, 14943-14947. (g) Jordan, F.; Kuo, D. J.; Monse, E. U. J. Am. Chem. Soc. 1978, 100, 2872-2878. (h) Riesz, P.; Bigeleisen, J. J. Am. Chem. Soc. 1959, 81, 6187-9. (i) Grissom, C. B.; Cleland, W. W. J. Am. Chem. Soc. 1986, 108, 5582.
165. Weitz, E.; Scheffer, A. Chem. Ber. 1921, 54, 2327-2344.
166. (a) Bunton, C. A.; Minkoff, G. J. J. Chem.Soc. 1949, 665670. (b) Payne, G. B.; Pagano, A. S. J. Am. Chem. Soc. 1955, 77, 89. (c) Payne G. B.; Williams, P. H. J. Org. Chem. 1961, 26, 651. (d) Yang, N. C.; Finnegan, R. A. J. Am. Chem. Soc. 1958, 80, 5845.
167. (a) Still, W. C. J. Am. Chem. Soc. 1979, 101, 2493. (b) Schlessinger, G. R.; Bebernitz, G. R.; Lin, P.; Poss, A. J. J. Am. Chem. Soc. 1985, 107, 1777. (c) Danishefsky, S.; Hirama, M.; Gombatz, K.; Harayama, T.; Berman, E.; Schuda, P. F. J. Am. Chem. Soc. 1979, 101, 7020. (d) Mehta, G.; Pan, S. C. Tetrahedron Lett. 2005, 46, 5219-5223. (e) Wada, S. -i. Tanaka, R. Bioorg. Med. Chem. Lett. 2005, 15, 2966-2969. (f) Rodeschini, V.; Boiteau, J. -G.; Van de Weghe, P.; Tarnus, C.; Eustache, J. J. Org. Chem. 2004, 69, 357-373.
168. (a) Yang, N. C.; Finnegan, R. A. 1958, 80, 5845-5848. (b) Payne, G. B. J. Org. Chem. 1960, 25, 275-276.
169. Yadav, V. K., Kapoor, K. K. Tetrahedron. 1995, 51, 8573-8584.
170. For a review, see: Porter, M. J.; Skidmore, J. Chem. Commun. 2000, 1215-1225.
171. Juliá, S.; Masana, J.; Vega, J. C. Angew. Chem. Int. Ed. 1980, 19, 929-931. Colonna, S.; Molinari, H.; Banfi, S.; Juliá, S.; Masana, J.; Alvarez, A. Tetrahedron 1983, 39, 1635-1641. Banfi, S.; Colonna, S.; Molinari, H.; Juliá, S.; Guixer, J. Tetrahedron 1984, 40, 5207-5211. Geller, T.; Roberts, S. M. J. Chem. Soc., Perkin Trans. 1 1999, 1397-1398.
172. Helder, R.; Hummelen, J. C.; Laane, R. W. P. M.; Wiering, J. S.; Wynberg, H. Tetrahedron Lett. 1976, 1831-1834. Wynberg, H.; Greijdanus, B. Chem. Commun. 1978, 427-428. Wynberg, H.; Marsman, B. J. Org. Chem. 1980, 45, 158-161.
173. (a) Adam, W.; Bheema Rao, P.; Degen, H. -G.; Saha-Möller, C. R. J. Am. Chem. Soc. 2000, 122, 5654-5655. (b) Adam, W.; Bheema Rao, P.; Degen, H. -G.; Saha-Möller, C. R. Eur. J. Org. Chem. 2002, 630-639. (c) Aoki, M.; Seebach, D. Helv. Chim. Acta 2001, 84, 187-207. (d) Lattanzi, A.; Cocilova, M.; Iannece, P.; Scettri, A. Tetrahedron: Asymmetry 2004, 15, 3751-3755.
174. Enders, D.; Zhu, J.; Raabe, G. Angew. Chem. Int. Ed. 1996, 35, 1725. Yu, H. B.; Zheng, X. -F.; Lin, Z. -M.; Hu, Q. -S.; Huang, W. -S.; Pu, L. J. Org. Chem. 1999, 64, 8149-8155.
175. House, H. O.; Ro, R. S. J. Am. Chem. Soc. 1958, 80, 2428-2433.
176. Temple, R. D. J. Org. Chem. 1970, 35, 1275-1280.
177. Kelly, D. R.; Caroff, E.; Flood, R. W.; Heal, W.; Roberts, S. M. Chem. Commun. 2004, 2016-2017.
178. The α-carbon of cyclohexenone is more separate from other peaks in the ${ }^{13} \mathrm{C}$ NMR rather than the β or γ methylene carbons, and it use as a standard gives a lower variance in the isotope effects. .
179. Wilhelm, E.; Battino, R. Chem. Rev. 1973, 73, 1-9.
180. Rastorguev, Y. L.; Ganiev, Y. A. Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 1967, 10, 79-82.
181. The calculations used the program QUIVER (Saunders, M.; Laidig, K. E.; Wolfsberg, M. J. Am. Chem. Soc. 1989, 111, 8989-8994). B3LYP frequencies were scaled by 0.9614 (Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 1650216513). The exact choice of scaling factor makes little difference in the calculated KIE - varying the scaling factor from 0.93 to 0.97 changes the ${ }^{13} \mathrm{C}$ KIEs by less than 0.001 .
182. (a) Bigeleisen, J.; Mayer, M. G. J. Chem. Phys. 1947, 15, 261-267. (b) Wolfsberg, M. Acc. Chem. Res. 1972, 5, 225-233. (c) Bigeleisen, J. J. Chem. Phys. 1949, 17, 675-678.
183. Bell, R. P. The Tunnel Effect in Chemistry; Chapman \& Hall: London, 1980; pp 60-63.
184. (a) Beno, B. R.; Houk, K. N.; Singleton, D. A. J. Am. Chem. Soc. 1996, 118, 9984-9985. (b) Meyer, M. P.; DelMonte, A. J.; Singleton, D. A. J. Am. Chem. Soc. 1999, 121, 10865-10874. (c) DelMonte, A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.; Singleton, D. A.; Strassner, T.; Thomas, A. A. J. Am. Chem.

Soc. 1997, 119, 9907-9908. (d) Singleton, D. A.; Merrigan, S. R.; Liu, J.; Houk, K. N. J. Am. Chem. Soc. 1997, 119, 3385-3386.
185. Singleton, D. A.; Merrigan, S. R. J. Am. Chem. Soc. 2000, 122, 11035-11036.
186. Singleton, D. A.; Wang, Z. J. Am. Chem. Soc. 2005, 127, 6679-6685.
187. Singleton, D. A.; Wang, Z. J. Am. Chem. Soc. 2005, 127, 6679-6685.
188. Singleton, D. A.; Wang, Z. J. Am. Chem. Soc. 2005, 127, 6679-6685.
189. (a) Gravel, D.; Bordeleau, J. Tetrahedron Lett. 1998, 39, 8035-8038. (b) Kreiser, W.; Körner, F. Helv. Chim. Acta 1999, 82, 1610-1629. (c) Hanazawa, T.; Wada, T.; Masuda, T.; Okamoto, S.; Sato, F. Org. Lett. 2001, 3, 3975-3977. (d) Hatcher, M. A.; Peleg, S.; Dolan, P.; Kensler, T. W.; Sarjeant, A.; Posner, G. H. 2005, 13, 3964-3976.
190. (a) Daniewski, A. R.; Garofalo, L. M.; Hutchings, S. D.; Kabat, M. M.; Liu, W.;

Okabe, M.; Radinov, R.; Yiannikouros, G. P. J. Org. Chem. 2002, 67, 15801587. (b) Okamura, W. H.; Aurrecoechea, J. M.; Gibbs, R. A.; Norman, A. W. J. Org. Chem. 1989, 54, 4072-4083. (c) Pogrebnoi, S.; Saraber, F. C. E.; Jansen, B. J. M.; de Groot, A. Tetrahedron 2006, 62, 1743-1748. (d) Zhao, X. Z.; Tu, Y. Q.; Peng, L.; Li, X. Q.; Jia, Y. X. Tetrahedron Lett. 2004, 45, 3713-3716. (e) Mehta, G.; Kumaran, R. S. Tetrahedron Lett. 2003, 44, 7055-7059.
191. Solladie, G.; Hutt, J. J. Org. Chem. 1987, 52, 3560-3566.
192. Barrett, A. G. M.; Capps, N. K. Tetrahedron Lett. 1986, 27, 5571-5574.
193. (a) Rodeschini, V.; Van de Weghe, P.; Salomon, E.; Tarnus, C.; Eustache, J. J. Org. Chem. 2005, 70, 2409-2412. (b) Hoke, M. E.; Brescia, M. -R.; Bogaczyk,
S.; DeShong, P.; King, B. W.; Crimmins, M. T. J. Org. Chem. 2002, 67, 327335.
194. Moreno-Dorado, F. J.; Guerra, F. M.; Aladro, F. J.; Bustamante, J. M.; Jorge, Z. D.; Massanet, G. M. Tetrahedron Lett. 1999, 55, 6997-7010.
195. Rickborn, B.; Lwo, S. -Y. J. Org. Chem. 1965, 30, 2212-2216.

APPENDIX

GEOMETRIES AND ENERGIES OF CALCULATED STRUCTURES

All structures and energies were obtained using standard procedures in Gaussian 98^{3} and Gaussian03. ${ }^{4}$

Iridium-Catalyzed Arene C-H Borylation

B3LYP//SDD on Ir, 6-31G** on all other atoms unless otherwise noted

H,0,0.,0.,0.371478
H,0,0.,0.,-0.371478

Benzene

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-232.253117949$

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
0.100633 (Hartree/Particle)
0.105022
0.105966

Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
0.073170
-232.152485
-232.148096
-232.147152
-232.179948

E (Thermal)	CV	S	
KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
65.902	17.142	69.024	

$\begin{array}{llll}\text { TOTAL } & 65.902 & 17.142 & 69.024\end{array}$

$$
\begin{aligned}
& \mathrm{C}, 0,-0.0143582981,0 .,-1.3965983824 \\
& \mathrm{C}, 0,-1.2165519591,0 .,-0.686043202 \\
& \mathrm{C}, 0,-1.2023086577,0 ., 0.7107489284 \\
& \mathrm{C}, 0,0.0141062514,0 ., 1.3965985425 \\
& \mathrm{C}, 0,1.2166514282,0 ., 0.6858656666 \\
& \mathrm{C}, 0,1.2024406046,0 .,-0.7105315203 \\
& \mathrm{H}, 0,-2.1378694919,0 ., 1.2632171425 \\
& \mathrm{H}, 0,-0.0249643079,0 .,-2.4830394272 \\
& \mathrm{H}, 0,0.0253400902,0 ., 2.4830366452 \\
& \mathrm{H}, 0,2.1630303804,0 ., 1.2195695726 \\
& \mathrm{H}, 0,2.1376713665,0 .,-1.2635492108 \\
& \mathrm{H}, 0,-2.163084253,0 .,-1.2194749193
\end{aligned}
$$

HBPin

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-254.602039032$

C,0,-0.9440490034,0.,-0.724884269
С,0,-0.8580456639,0.,0.8249130945
O, $0,0.4229804405,0 .,-1.1735108352$
H, $0,-1.4469561594,-0.8886229556,-1.1200123719$
H,0,-1.4469561594,0.8886229556,-1.1200123719

```
H,0,-1.3138930432,0.8886820776,1.2734382017
H,0,-1.3138930432,-0.8886820776,1.2734382017
O,0,0.550251005,0.,1.1193554365
B,0,1.2273330661,0.,-0.0680880401
Н,0,2.4117495143,0.,-0.1333412223
PhBPin
E(RB+HF-LYP ) = -485.674761514
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.161425 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.169788 \\
Thermal correction to Enthalpy \(=\) & 0.170732 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.126860 \\
Sum of electronic and zero-point Energies \(=\) & -485.513337 \\
Sum of electronic and thermal Energies= & -485.504974 \\
Sum of electronic and thermal Enthalpies \(=\) & -485.504029 \\
Sum of electronic and thermal Free Energies= & -485.547902
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{E (Thermal)} & \multicolumn{2}{|l|}{CV} & \\
\hline \multirow[b]{2}{*}{TOTAL} & KCAL/MOL & \multicolumn{2}{|l|}{CAL/MOL-KELVIN} & \\
\hline & 106.544 & & & \\
\hline \multicolumn{5}{|l|}{C,0,-3.1523829832,0.,-0.6014847062} \\
\hline \multicolumn{5}{|l|}{O,0,-1.7903190037,0.,-1.0500204825} \\
\hline \multicolumn{5}{|l|}{B,0,-0.9705585604,0.,0.0543040123} \\
\hline \multicolumn{5}{|l|}{O,0,-1.6620611743, 0., 1.2431473073} \\
\hline \multicolumn{5}{|l|}{C,0,-3.0656505317,0.,0.9492917089} \\
\hline \multicolumn{5}{|l|}{H,0,-3.6601859152,-0.8877313295,-0.9936020545} \\
\hline \multicolumn{5}{|l|}{H,0,-3.6601859152,0.8877313295,-0.9936020545} \\
\hline \multicolumn{5}{|l|}{H,0,-3.5265569278,0.8877317954,1.3955909204} \\
\hline \multicolumn{5}{|l|}{H,0,-3.5265569278,-0.8877317954,1.3955909204} \\
\hline \multicolumn{5}{|l|}{C, \(0,0.5784182589,0 .,-0.0323456537\)} \\
\hline \multicolumn{5}{|l|}{C, 0,1.3667661174,0., 1.1324718871} \\
\hline \multicolumn{5}{|l|}{C, \(0,2.7591787163,0 ., 1.057527824\)} \\
\hline \multicolumn{5}{|l|}{C,0,3.3891200335,0.,-0.1895879201} \\
\hline \multicolumn{5}{|l|}{C, \(0,2.6240065894,0 .,-1.3586587438\)} \\
\hline \multicolumn{5}{|l|}{C,0,1.2319237812,0.,-1.2778278163} \\
\hline \multicolumn{5}{|l|}{H,0,0.8777540989,0.,2.1027864373} \\
\hline \multicolumn{5}{|l|}{H,0,3.3538296665,0., 1.9669480001} \\
\hline \multicolumn{5}{|l|}{H,0,4.474210188,0.,-0.2502930354} \\
\hline \multicolumn{5}{|l|}{H,0,3.1135118905,0.,-2.3287306437} \\
\hline \multicolumn{4}{|l|}{Н,0,0.6377341774,0.,-2.1875426289} & \\
\hline
\end{tabular}
```

$\begin{aligned} & \mathbf{I r}(\mathbf{d m p e})(\mathbf{B P i n})_{3} \\ & \mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1787.53406933 \end{aligned}$	
Zero-point correction $=\quad 0.4222$	0.422265 (Hartree/Particle)
Thermal correction to Energy= 0.	0.452674
Thermal correction to Enthalpy= 0.	0.453618
Thermal correction to Gibbs Free Energy=	$y=0.358714$
Sum of electronic and zero-point Energies=	es $=\quad-1787.111805$
Sum of electronic and thermal Energies=	$=-1787.081396$
Sum of electronic and thermal Enthalpies=	s= -1787.080451
Sum of electronic and thermal Free Energies=	rgies $=\quad-1787.175355$

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	284.057	107.871	199.742

C,0,-0.0998131177,3.2568065064,-1.1552701002
С, $0,-1.53510628,3.1758412935,-0.6082769419$
P,0,-1.7485392914,1.6962272453,0.5346572546
Ir,0,-0.2754951103,-0.0662230201,-0.2156894707
B,0,-1.0755465087,-1.5239398737,1.0484418065
О,0,-0.5839766411,-2.1808422998,2.1700741798
C,0,-1.5817699311,-3.0809984012,2.6641008626
C,0,-2.6302920835,-3.154014752,1.5381042893
O,0,-2.367316897,-1.9907671463,0.7418762704
P,0,0.4736036486,1.5923924697,-1.7936993464
B,0,0.9400309886,-1.5958866449,-0.968973738
O, $, 2.2844852697,-1.4788362592,-1.3532793715$
C, $0,2.7765585758,-2.7735430525,-1.7219486515$
C,0,1.50588777,-3.6156850644,-1.9375677668
O,0,0.4758978209,-2.8812307237,-1.265874026
B, $0,1.2320940715,0.3337536033,1.0443468917$
O, $0,1.6275225251,1.6592903401,1.3417142442$
C,0,2.6258908048,1.6099369763,2.3715706276
C,0,3.0842310265,0.1384932015,2.3833864848
O,0,2.0324245486,-0.5677467169,1.7263975732
C,0,2.2715409997,1.8610427246,-2.1014058035
C,0,-0.2111595926,1.5393848358,-3.5177571117
Н,0,-0.0140308356,4.0293683758,-1.9290731359
H,0,0.5956993026,3.5068778012,-0.3468481106
C,0,-1.5040128154,2.4169878822,2.2185331801
C,0,-3.5782536981,1.4229436078,0.4933314916
Н,0,-1.8154924832,4.1036590793,-0.0959002577
H,0,-2.2468426843,3.0397804773,-1.4324692408

```
H,0,-3.6612726232,-3.1259977852,1.9070436487
H,0,-2.5075725048,-4.0522133236,0.9194475068
H,0,-2.0046701925,-2.6804337317,3.5959039472
H,0,-1.1253471235,-4.0513280443,2.8854031672
H,0,1.5810985793,-4.6207370518,-1.5099032033
H,0,1.2493634305,-3.7128679146,-3.0013258492
H,0,3.3983946246,-3.168895203,-0.9083818245
H,0,3.3957994676,-2.69353832,-2.6219543291
H,0,3.2211567115,-0.2568616815,3.3949771746
H,0,4.0197590543,-0.0032257885,1.826003086
H,0,2.1730819854,1.9059851991,3.3273378541
H,0,3.4335706585,2.312132087,2.1402564159
H,0,2.4531376452,2.6749743011,-2.8109826595
H,0,2.7489630116,2.0899345681,-1.1462137224
H,0,2.6986286922,0.9281862065,-2.4760307203
H,0,0.0927100535,2.4119639534,-4.105965506
H,0,0.1482361305,0.6332850918,-4.0136237471
H,0,-1.3035550198,1.4928816315,-3.487511442
H,0,-4.1375945339,2.3230439508,0.7695239
H,0,-3.8767789712,1.1061538315,-0.5098568302
H,0,-3.8249025403,0.609818897,1.1804060133
H,0,-2.146742446,3.2876280983,2.3861495683
H,0,-1.7307528906,1.6511895897,2.9655268481
H,0,-0.4542820861,2.6973650053,2.3246329488
Ir(dmpe)(BPin)3( }\mp@subsup{}{}{2}\mathbf{-PhH}
E(RB+HF-LYP})=-2019.79555903
Zero-point correction= 0.523859 (Hartree/Particle)
Thermal correction to Energy= 0.560872
Thermal correction to Enthalpy=}0.56181
Thermal correction to Gibbs Free Energy= 0.449088
Sum of electronic and zero-point Energies= -2019.271700
Sum of electronic and thermal Energies= -2019.234687
Sum of electronic and thermal Enthalpies= -2019.233743
Sum of electronic and thermal Free Energies= -2019.346471
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 351.952 & 130.644 & 237.255
\end{tabular}
C,0,-2.2916822971,1.5759029348,1.6622833517
C,0,-2.7741112471,0.5550243263,2.4887691367
C,0,-4.1158303591,0.1684724725,2.4183904767
```

C,0,-4.9798742715,0.8027545169,1.5218878869 C,0,-4.5024739349,1.8260163218,0.6970093003 C,0,-3.1610208746,2.2101410135,0.7671995676 Ir,0,0.1802273989,-0.1082158897,-0.0458592637 В,0,0.5867050299,1.9060302909,-0.4825691087
O,0,0.6116994925,2.4505172295,-1.7764759802
C,0,0.8350518697,3.8629218705,-1.7077366293
C,0,1.1166245715,4.144990506,-0.215265736
O,0,0.7984685195,2.9207344787,0.4543239648
P,0,-0.3434414243,-2.4413616558,0.3242255597
C, $0,-0.9244988879,-3.1417068582,-1.3136744736$
C, $0,-1.8424660438,-2.1472196606,-2.0423539574$
P,0,-1.0825103243,-0.4317014703,-2.0900660165
C, $0,-0.0904695112,-0.4437864937,-3.6486851782$
C,0,0.9563669436,-3.6438464887,0.8431395383
С,0,-1.7348668485,-2.8750046669,1.4710430607
С, $0,-2.5183065164,0.6244226795,-2.5794924383$
B, $0,1.2287213893,0.1388999664,1.7445476872$
O,0,2.5741402083,-0.115478236,2.0199427914
C,0,2.8796904567,0.3306549328,3.3450416474
C,0,1.5047744432,0.5540413378,4.007097625
O,0,0.577172491,0.5589332677,2.9154474477
B,0,1.9673626693,-0.460211098,-0.8897642096
Н, $0,-1.4217833487,-4.1088222334,-1.1706196506$
H,0,-0.0153118977,-3.3169080409,-1.8990897964
H,0,-2.0796018348,-2.4956895743,-3.0547572863
H,0,-2.7940023277,-2.0487249954,-1.5049079169
H,0,3.4838280537,-0.4237936507,3.8606946538
H,0,3.4632372414,1.2584901491,3.2881947688
H,0,1.2441725387,-0.255315859,4.7029233415
H,0,1.4425424723,1.5035699988,4.5489658976
H,0,1.6757904906,4.1358189797,-2.3548856528
H,0,-0.0579802871,4.3900915992,-2.069192234
H,0,2.1701644434,4.3898787197,-0.0331119851
H,0,0.5017312837,4.9575520543,0.1874661671
H,0,1.2828051311,-3.3978770873,1.8572202558
H,0,0.5910990963,-4.6760270225,0.8202443505
H,0,1.8087365538,-3.5310861872,0.1710301614
H,0,-1.4488221621,-2.5999086751,2.4899313327
H,0,-2.6285444338,-2.3014993054,1.2131941699
H,0,-1.9659961489,-3.9452658966,1.4399607029
H,0,-2.1480321004,1.6375739173,-2.7558784936
H,0,-3.0039858135,0.2543205521,-3.4888211478
H,0,-3.2453415182,0.6624304698,-1.7647728303

```
H,0,0.3375373895,0.5536964066,-3.7766772785
H,0,0.7277382714,-1.1599994151,-3.5461108695
H,0,-0.7016812065,-0.7016413749,-4.5201008121
Н,0,-2.0906840044,0.0808443539,3.1855964699
H,0,-4.4910288556,-0.618815586,3.0672680743
H,0,-6.0247355389,0.5077245783,1.4718053402
H,0,-5.1777457626,2.3266546887,0.0079284272
H,0,-2.7887473231,3.0075428456,0.1302136607
H,0,-1.2534916568,1.8831239582,1.7377226492
O,0,3.0199060004,0.4358791341,-1.0346351262
O,0,2.311746835,-1.704699504,-1.4584748535
C,0,4.1693253639,-0.2649999087,-1.5097252468
C,0,3.607781915,-1.5898456969,-2.06259774
H,0,4.6805400121,0.331746132,-2.2721810794
H,0,4.8612852299,-0.4306828565,-0.6740201438
H,0,3.495956256,-1.5661079542,-3.1550936682
H,0,4.2190158268,-2.4586088779,-1.797448366
```

dmpeBpin3n2PhH2nd
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-2019.79458162$
Zero-point correction $=\quad 0.524007$ (Hartree/Particle)
Thermal correction to Energy $=\quad 0.560930$
Thermal correction to Enthalpy $=\quad 0.561874$
Thermal correction to Gibbs Free Energy= 0.448007
Sum of electronic and zero-point Energies= -2019.270575
Sum of electronic and thermal Energies $=\quad-2019.233652$
Sum of electronic and thermal Enthalpies $=\quad-2019.232708$
Sum of electronic and thermal Free Energies $=\quad-2019.346575$

	E (Thermal	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	351.989	130.544	239.653

C,0,-3.089996002,1.9896355956,0.8749470094
C,0,-2.1805983876,1.5092291397,1.8248088884
C, $0,-2.6129057599,0.5954809253,2.7925720448$
C, $0,-3.9414812816,0.1629156935,2.8108776055$
C,0,-4.8447558417,0.6423164791,1.8578434105
C,0,-4.4191076929,1.5573437093,0.8904038184
Ir,0,0.1499834675,-0.0428335071,-0.0919024786
В, $0,1.9630684022,-0.5341314303,-0.8088743835$
О,0,2.1716517432,-1.6246183893,-1.6804290854
C,0,3.5427526946,-1.6163371685,-2.1023707323
$\mathrm{C}, 0,4.240029459,-0.6700422207,-1.1061859278$
$\mathrm{O}, 0,3.1759725049,0.0856041186,-0.5279065192$
$\mathrm{~B}, 0,0.6067792152,1.9360152739,-0.615536944$
$\mathrm{O}, 0,0.0682001111,3.0549001224,0.0304316997$
$\mathrm{C}, 0,0.6181349731,4.2491114876,-0.535562343$
$\mathrm{C}, 0,1.3257762677,3.7789931688,-1.8242719985$
$\mathrm{O}, 0,1.3615116554,2.351831818,-1.7203699844$
$\mathrm{P}, 0,-0.4478240364,-2.3523483211,0.3071598566$
$\mathrm{C}, 0,-1.8557720904,-2.7949852496,1.4297526359$
$\mathrm{P}, 0,-1.0805961777,-0.3566957828,-2.1523692115$
$\mathrm{C}, 0,-2.5105372814,0.7178322091,-2.6302654467$
$\mathrm{~B}, 0,1.2123662422,0.1547299152,1.7065978716$
$\mathrm{O}, 0,2.0182929953,-0.8358840302,2.2952967367$
$\mathrm{C}, 0,2.6616432194,-0.2901785717,3.4528948842$
$\mathrm{C}, 0,1.85329746,0.9803604099,3.7701632942$
$\mathrm{O}, 0,1.1489483845,1.263280294,2.5563074569$
$\mathrm{C}, 0,-0.9935370907,-3.0564145241,-1.342164006$
$\mathrm{C}, 0,-1.8694345996,-2.0594133209,-2.1156749327$
$\mathrm{C}, 0,0.8454302973,-3.5574055293,0.8343123932$
$\mathrm{C}, 0,-0.0885031536,-0.3592463416,-3.709670706$
$\mathrm{H}, 0,-1.5108473443,-4.0136288695,-1.2041232507$
$\mathrm{H}, 0,-0.068931147,-3.2512404206,-1.8961370058$
$\mathrm{H}, 0,-2.0716697733,-2.413897187,-3.133539884$
$\mathrm{H}, 0,-2.8399694603,-1.9411037164,-1.6174338676$
$\mathrm{H}, 0,2.4837525145,1.8341615791,4.0385872389$
$\mathrm{H}, 0,1.131158656,0.8186764922,4.5823857002$
$\mathrm{H}, 0,3.7078418192,-0.0610296428,3.211494325$
$\mathrm{H}, 0,2.6479843928,-1.0229459369,4.2669433316$
$\mathrm{H}, 0,2.3454073586,4.1689552123,-1.9136869642$
$\mathrm{H}, 0,0.7722764656,4.0640137776,-2.7294017351$
$\mathrm{H}, 0,1.3180055586,4.6974040557,0.1807406021$
$\mathrm{H}, 0,-0.1829341006,4.9714951013,-0.7280235002$
$\mathrm{H}, 0,1.2405797363,-3.2405623946,1.8014863337$
$\mathrm{H}, 0,0.4520176991,-4.5773964116,0.8977212702$
$\mathrm{H}, 0,1.6603285601,-3.519382945,0.1084314918$
$\mathrm{H}, 0,-1.5790052859,-2.5484632368,2.4583986259$
$\mathrm{H}, 0,-2.7408721228,-2.2060318638,1.177426362$
$\mathrm{H}, 0,-2.0968573211,-3.8619186274,1.3713870658$
$\mathrm{H}, 0,-2.1425111149,1.728492135,-2.8282788926$
$\mathrm{H}, 0,-3.0183733877,0.3427980973,-3.525219569$
$\mathrm{H}, 0,-3.221249352,0.7716901481,-1.8022264126$
$\mathrm{H}, 0,0.3702774853,0.626865651,-3.8217294387$
$\mathrm{H}, 0,0.7124164997,-1.0943758144,-3.6136769769$
$\mathrm{H}, 0,-0.7076238089,-0.5839148427,-4.5845391868$

```
H,0,-1.9086374432,0.2320908327,3.5358359593
Н,0,-4.2759636077,-0.5403626755,3.5690979949
H,0,-5.8799052997,0.3114576429,1.8755407753
H,0,-5.1264667772,1.9410621237,0.1594332271
H,0,-2.7484127645,2.7101819571,0.1386094949
H,0,-1.1564349036,1.8684161155,1.8251115379
H,0,4.9546615467,0.0041657352,-1.5891955201
H,0,4.7634677662,-1.2227867122,-0.3147649938
H,0,3.6004531858,-1.2426242333,-3.1331616982
H,0,3.9433123905,-2.6351570178,-2.0808957707
```


dmpeBpin3n2PhHGood

$\mathrm{E}($ RB+HF-LYP $)=-2019.79555903$

Zero-point correction $=$	0.523859 (Hartree/Particle)
Thermal correction to Energy $=$	0.560872
Thermal correction to Enthalpy $=$	0.561816
Thermal correction to Gibbs Free Energy=	0.449088
Sum of electronic and zero-point Energies $=$	-2019.271700
Sum of electronic and thermal Energies=	-2019.234687
Sum of electronic and thermal Enthalpies $=$	-2019.233743
Sum of electronic and thermal Free Energies=	-2019.346471

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	351.952	130.644	237.255

C,0,-2.2916822971,1.5759029348,1.6622833517
C, $0,-2.7741112471,0.5550243263,2.4887691367$
C,0,-4.1158303591,0.1684724725,2.4183904767
C,0,-4.9798742715,0.8027545169,1.5218878869
C, $0,-4.5024739349,1.8260163218,0.6970093003$
C, $0,-3.1610208746,2.2101410135,0.7671995676$
Ir,0,0.1802273989,-0.1082158897,-0.0458592637
B,0,0.5867050299,1.9060302909,-0.4825691087
O,0,0.6116994925,2.4505172295,-1.7764759802
C, $0,0.8350518697,3.8629218705,-1.7077366293$
C,0,1.1166245715,4.144990506,-0.215265736
O,0,0.7984685195,2.9207344787,0.4543239648
P,0,-0.3434414243,-2.4413616558,0.3242255597
C,0,-0.9244988879,-3.1417068582,-1.3136744736
C, $0,-1.8424660438,-2.1472196606,-2.0423539574$
P,0,-1.0825103243,-0.4317014703,-2.0900660165
C,0,-0.0904695112,-0.4437864937,-3.6486851782

C, $0,0.9563669436,-3.6438464887,0.8431395383$
С,0,-1.7348668485,-2.8750046669,1.4710430607
C,0,-2.5183065164,0.6244226795,-2.5794924383
B, $0,1.2287213893,0.1388999664,1.7445476872$
O,0,2.5741402083,-0.115478236,2.0199427914
C,0,2.8796904567,0.3306549328,3.3450416474
С,0,1.5047744432,0.5540413378,4.007097625
O,0,0.577172491,0.5589332677,2.9154474477
B, $0,1.9673626693,-0.460211098,-0.8897642096$
H,0,-1.4217833487,-4.1088222334,-1.1706196506
H,0,-0.0153118977,-3.3169080409,-1.8990897964
H,0,-2.0796018348,-2.4956895743,-3.0547572863
H,0,-2.7940023277,-2.0487249954,-1.5049079169
H,0,3.4838280537,-0.4237936507,3.8606946538
H,0,3.4632372414,1.2584901491,3.2881947688
H,0,1.2441725387,-0.255315859,4.7029233415
H,0,1.4425424723,1.5035699988,4.5489658976
H,0,1.6757904906,4.1358189797,-2.3548856528
$\mathrm{H}, 0,-0.0579802871,4.3900915992,-2.069192234$
H,0,2.1701644434,4.3898787197,-0.0331119851
$\mathrm{H}, 0,0.5017312837,4.9575520543,0.1874661671$
H,0,1.2828051311,-3.3978770873,1.8572202558
H,0,0.5910990963,-4.6760270225,0.8202443505
H,0,1.8087365538,-3.5310861872,0.1710301614
H,0,-1.4488221621,-2.5999086751,2.4899313327
H,0,-2.6285444338,-2.3014993054,1.2131941699
H,0,-1.9659961489,-3.9452658966,1.4399607029
H, $0,-2.1480321004,1.6375739173,-2.7558784936$
H,0,-3.0039858135,0.2543205521,-3.4888211478
H,0,-3.2453415182,0.6624304698,-1.7647728303
H,0,0.3375373895,0.5536964066,-3.7766772785
H,0,0.7277382714,-1.1599994151,-3.5461108695
$\mathrm{H}, 0,-0.7016812065,-0.7016413749,-4.5201008121$
H,0,-2.0906840044,0.0808443539,3.1855964699
H,0,-4.4910288556,-0.618815586,3.0672680743
H,0,-6.0247355389,0.5077245783,1.4718053402
H,0,-5.1777457626,2.3266546887,0.0079284272
H,0,-2.7887473231,3.0075428456,0.1302136607
H,0,-1.2534916568,1.8831239582,1.7377226492
O,0,3.0199060004,0.4358791341,-1.0346351262
O,0,2.311746835,-1.704699504,-1.4584748535
C,0,4.1693253639,-0.2649999087,-1.5097252468
C,0,3.607781915,-1.5898456969,-2.06259774
H,0,4.6805400121,0.331746132,-2.2721810794

H,0,4.8612852299,-0.4306828565,-0.6740201438
H,0,3.495956256,-1.5661079542,-3.1550936682
H,0,4.2190158268,-2.4586088779,-1.797448366

dmpeBpin2HPhHCHactTS

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1766.33817527$

Zero-point correction $=$	0.457975
(Hartree/Particle)	
Thermal correction to Energy $=$	0.488483
Thermal correction to Enthalpy $=$	0.489428
Thermal correction to Gibbs Free Energy=	0.395496
Sum of electronic and zero-point Energies $=$	-1765.880200
Sum of electronic and thermal Energies=	-1765.849692
Sum of electronic and thermal Enthalpies $=$	-1765.848748
Sum of electronic and thermal Free Energies $=$	-1765.942680

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} / \mathrm{Mol-Kelvin}$	Cal/Mol-Kelvin
Total	306.528	112.423	197.696

C,0,-1.4113980182,-2.889770394,2.498108917
С,0,-0.6256955146,-2.0728633679,1.6806707522
С, $0,-0.9966191976,-0.7462931242,1.38022892$
С,0,-2.1716883774,-0.2699010063,1.9913608474
С,0,-2.9638508671,-1.0819680628,2.8107040135
C,0,-2.590511238,-2.4015517273,3.0642999339
Ir,0,0.172773075,0.3731371944,-0.1925135085
B,0,1.9434496339,1.0511850985,0.7526180279
О,0,2.9461346287,0.2403412752,1.2550779552
C,0,4.0486148403,1.0607843688,1.6516576836
C,0,3.4603271293,2.4841726252,1.7250611391
O,0,2.2375735309,2.4018787221,0.9765468128
B, $0,1.4363550976,0.9282784024,-1.8163954427$
O,0,2.7990395953,0.6617132673,-1.9164243117
C,0,3.2861552086,1.0498714455,-3.2042762261
C,0,2.1432623344,1.8810905772,-3.8162702464
O,0,1.007945333,1.5867415697,-2.9874699354
P,0,-0.8941034704,2.5277713368,-0.1308819528
С,0,-0.0492302547,3.9261404971,-0.9927541655
P,0,-1.511951661,-0.1523513376,-1.8220853018
C,0,-1.0779503513,-0.8945237382,-3.4540659372
C, $0,-1.3808941374,3.3780137371,1.440487942$
С, $0,-2.5103192407,2.3746796492,-1.0686288147$
C,0,-2.3482513282,1.4542805104,-2.2911608508

> C, $0,-2.9163728286,-1.2319614385,-1.2982444564$
> $\mathrm{H}, 0,-3.6694417324,-1.3035901999,-2.0897692366$
> $\mathrm{H}, 0,-2.5328884347,-2.2297876963,-1.0701672324$
> $\mathrm{H}, 0,-3.3701570425,-0.8423045361,-0.3854532532$
> $\mathrm{H}, 0,-0.6582892031,-1.8904105565,-3.2873278935$
> $\mathrm{H}, 0,-0.3239457633,-0.2690084706,-3.9331404604$
> $\mathrm{H}, 0,-1.9579576614,-0.9793672473,-4.0997893067$
> $\mathrm{H}, 0,-1.7002220171,1.9254417138,-3.0377715374$
> $\mathrm{H}, 0,-3.3161258702,1.2547973863,-2.766228071$
> $\mathrm{H}, 0,-2.8773871547,3.3635604558,-1.367853285$
> $\mathrm{H}, 0,-3.2442875831,1.9523611149,-0.3718067023$
> $\mathrm{H}, 0,0.1735050137,3.6315701968,-2.0194828497$
> $\mathrm{H}, 0,-0.6636623135,4.8326164233,-0.9827601418$
> $\mathrm{H}, 0,0.8945179652,4.1113671702,-0.4745584616$
> $\mathrm{H}, 0,-1.9451751455,4.2953550023,1.2425331494$
> $\mathrm{H}, 0,-0.4618607704,3.6340093214,1.9749685578$
> $\mathrm{H}, 0,-1.9729588897,2.721574272,2.0802442747$
> $\mathrm{H}, 0,0.9423519523,-1.0256869064,-0.3954434394$
> $\mathrm{H}, 0,3.23180883314,2.7852552485,2.7557202576$
> $\mathrm{H}, 0,4.1143067698,3.2414147473,1.2809061593$
> $\mathrm{H}, 0,4.4428463716,0.7106407683,2.6108999404$
> $\mathrm{H}, 0,4.8429419921,0.9826456919,0.8988128996$
> $\mathrm{H}, 0,0.2945453695,-2.4693563759,1.2641454671$
> $\mathrm{H}, 0,-1.0948955402,-3.9111934559,2.6964936505$
> $\mathrm{H}, 0,-3.2011483201,-3.0349046455,3.7020570622$
> $\mathrm{H}, 0,-3.8721286447,-0.6771736858,3.2519107519$
> $\mathrm{H}, 0,-2.4990757838,0.7503652373,1.8192092555$
> $\mathrm{H}, 0,4.214088865,1.6199274556,-3.0923286254$
> $\mathrm{H}, 0,3.5053120948,0.1496989209,-3.7923927898$
> $\mathrm{H}, 0,2.3460898941,2.9590259832,-3.7764389464$
> $\mathrm{H}, 0,1.9234940202,1.6111379407,-4.8543801252$
> $\mathrm{H}, 0,0.373324809,0.2341306459,1.4159871372$

Ir(dmpe)(BPin) $\left.\mathbf{3}_{\mathbf{(P h}} \mathbf{(P h}\right) \mathbf{C - H}$ Activation TS

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-2019.75161969$
Zero-point correction $=\quad 0.520550$ (Hartree/Particle)
Thermal correction to Energy= 0.556183

Thermal correction to Enthalpy= 0.557127

Thermal correction to Gibbs Free Energy=
0.451442

Sum of electronic and zero-point Energies= -2019.231069
Sum of electronic and thermal Energies $=\quad-2019.195437$
Sum of electronic and thermal Enthalpies= -2019.194492
Sum of electronic and thermal Free Energies= -2019.300177

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	349.010	129.835	222.433
C, $0,-0$	394906,-3.487	37447,0.01067	
C, $0,0$.	$37207,-3.217$	02301,1.009638	
P, $0,0.6$	6834,-1.4778	9057,1.6941851	
Ir, $0,0.0$	94169,-0.026	468695,-0.11610	
B, $0,0.2$	81677,1.6240	39733,1.17080302	
O,0,0.	50645,2.9464	97731,0.8446960	
C, $0,0$.	83561,3.7594	11319,2.018710	
C, $0,0$.	66329,2.7538	63821,3.18644002	
O,0,0.	663165,1.49459	13603,2.573698	
P, $0,-0$	714744,-2.1309	492135,-1.27513636	3649
B, $0,-0$	222067,1.192	75946,-1.558124	
O,0,-1	221053,0.654	$740557,-2.524312$	
C,0,-2	350877,1.723	46908,-3.271470	689
C,0,-1	038071,2.986	$774862,-2.825971$	6627
O,0,-0	30524,2.5602	51015,-1.714804	
B,0,-1	277613,0.043	2379,0.6254265	
O,0,-2	968716,-1.07	328881,1.059308	
C, $0,-3$	740647,-0.63	440891,1.622877	123
C,0,-4	021133, 0.837	14613,1.195106	
O, $0,-2$	175723,1.189	103396,0.7606156	449
C,0,-2	597946,-2.42	495053,-1.90097	4332
C, $0,0$.	6149,-2.7761	1472,-2.727383	
H,0,-0	601235,-4.46	984761,-0.4722	2802
H,0,-1	621644,-3.49	$363563,0.536761$	8731
C, $0,-0$	67317,-1.669	15918,3.174773	
C,0,2.3	76436,-1.221	18103,2.480585829	299
H,0,0.	839957,-3.943	824146,1.830702806	
H,0,1.	56721,-3.308	902778,0.5189888	401
H,0,-0	121865,2.981	232156,3.955725	
H,0,1.	831265,2.693	84051,3.6686448	
H,, ,-0	638224,4.357	288,2.000205539	
H,0,1.	15501,4.4429	25135,2.0337760	
H,0,-2	577055,3.798	3183,-2.5120935	
H,0,-0	161659,3.3693	402054,-3.611794	568
H,0,-3	48771,1.7814	37078,-3.0273706	
H, $0,-2$	871789,1.519	060285,-4.343237	239
H,0,-4	936015,1.4962	127078,2.01412768	846
H,0,-4	168238,0.972	992594,0.3631118	031
H,0,-3	40294,-0.749	61223,2.7140238	

```
H,0,-4.757080909,-1.2605980068,1.2426117266
H,0,-2.3296570468,-3.4539339593,-2.2592006271
H,0,-2.91476286,-2.2309837843,-1.0897497649
H,0,-2.4105682646,-1.7189267182,-2.7079547502
H,0,0.0932092875,-3.75760254,-3.040946322
H,0,0.3471881489,-2.0720111719,-3.556326208
H,0,1.5295023643,-2.8509715677,-2.504076596
H,0,2.5611930301,-2.0272806153,3.1850979118
H,0,3.1061364724,-1.1653909119,1.7139728319
H,0,2.2995390988,-0.2694242897,3.0153146309
H,0,0.0199353663,-2.4033511546,3.87111433394
H,0,-0.4664919355,-0.6929252622,3.6592771421
H,0,-1.3955613698,-1.9741294086,2.8563008387
H,0,0.7711373351,0.6055100575,-1.4218688747
C,0,2.2409970682,0.2018068572,-0.7102976822
C,0,3.0511548132,-0.9105596868,-1.0110444122
C,0,4.4306039491,-0.7944719181,-1.2139191348
C,0,5.0478519574,0.4547446913,-1.1505092988
C,0,4.2641658295,1.5780542421,-0.8853409516
C,0,2.887253683,1.4538826766,-0.6745455463
H,0,2.6154088646,-1.9016696346,-1.06748327
H,0,5.0189302634,-1.6850449002,-1.4246182028
H,0,6.1178310278,0.5510813871,-1.3139851137
H,0,4.7224056515,2.5637075948,-0.846343622
H,0,2.3031602448,2.3453191212,-0.4743158764
```


dmpeBpin3PhHCHactTSSptSptBack11

```
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-2019.75362566\)
\begin{tabular}{lc} 
Zero-point correction= & 0.520806 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.556124 \\
Thermal correction to Enthalpy \(=\) & 0.557069 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.453517 \\
Sum of electronic and zero-point Energies= & -2019.232820 \\
Sum of electronic and thermal Energies= & -2019.197501 \\
Sum of electronic and thermal Enthalpies \(=\) & -2019.196557 \\
Sum of electronic and thermal Free Energies \(=\) & -2019.300108
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 348.973 & 129.740 & 217.942
\end{tabular}
C,0,3.0590310152,-1.1722052726,0.7278761158
C,0,2.2224844971,-0.046916182,0.865985636
```

```
C,0,2.8164881658,1.1042022645,1.4204950026 C,0,4.1714772967,1.1427353768,1.7649149776 C,0,4.9839638341,0.0235016275,1.5844389562 C,0,4.4159438976,-1.1403282781,1.0664428275 Ir,0,0.0677090561,-0.0340407579,0.0608750295 P,0,0.8459503376,-0.2146060172,-2.2173248726 C,0,0.5159163445,-1.9672143978,-2.7864256439 C,0,0.7208602502,-3.0030501218,-1.6692385575 P,0,-0.1743204978,-2.4719549637,-0.1117248334 B,0,-1.8904136592,0.2870915673,-0.7107434801 O, \(0,-2.3927714439,-0.2949912123,-1.8910013748\) C,0,-3.6877340946,0.250777151,-2.1836220329 C,0,-4.0939437931,0.9806332961,-0.8900629651 O, \(0,-2.877587168,1.094881794,-0.1453586736\) B,0,-1.1389420278,-0.0137202848,1.8166720049 O,0,-1.8210076815,-1.1612347589,2.2526155861 C,0,-2.4622954756,-0.8653476993,3.5025622907 C, \(0,-2.3893702518,0.6696928142,3.6066740872\) O,0,-1.367479787,1.0400095305,2.6785279372 B,0,0.0892517052,2.0687648063,-0.0102979827 O,0,0.25534787,2.9381384697,1.0624430334 C,0,0.3250989932,4.286988793,0.5952465976 C,0,-0.1181959351,4.2075391453,-0.878134726 O,0,-0.0381067875,2.8127378529,-1.1978905529 Н,0,-3.6055116167,0.9360867799,-3.0370411439 \(\mathrm{H}, 0,-4.3752470338,-0.5567884166,-2.4555039425\) H,0,-4.5081746086,1.9768512417,-1.0744987341 \(\mathrm{H}, 0,-4.8237961183,0.4070282943,-0.3043436724\) Н, \(0,-3.4879301341,-1.2480012498,3.4915648676\) Н, 0,-1.9151553448,-1.3621362148,4.3144496838 H,0,-3.332526872,1.1462683685,3.310661759 H,0,-2.1214972097,1.0197149632,4.6084340666
H,0,-1.1517494489,4.5499430693,-1.0167020068 H,0,0.5280244079,4.7800739602,-1.5521226916 H,0,-0.3276671195,4.9209395323,1.2037803298 H,0,1.3551317778,4.6545847628,0.6980421404 H,0,0.69777474,-0.071555093,1.5624813343
H,0,2.665333049,-2.0983126218,0.3252363608 H,0,5.0255518851,-2.0302551044,0.9248971784 H,0,2.2031572325,1.9802416449,1.5980872602 H,0,4.5884146372,2.0548245412,2.1860843923 \(\mathrm{H}, 0,6.0365009872,0.0527503393,1.8530459516\) C,0,0.1208038977,0.7675981578,-3.5978535306 C,0,2.6522130673,0.029537755,-2.5165306839
```

$\mathrm{C}, 0,-1.8740970339,-3.1468961188,-0.3790812596$
$\mathrm{C}, 0,0.4307235667,-3.6516146831,1.1812206091$
$\mathrm{H}, 0,0.3768320202,-3.9937649983,-1.9898204617$
$\mathrm{H}, 0,1.7852363618,-3.0956097486,-1.4251663189$
$\mathrm{H}, 0,-0.5312014016,-1.9686063456,-3.1071807588$
$\mathrm{H}, 0,1.1322953909,-2.2010603739,-3.6625558446$
$\mathrm{H}, 0,2.9104885073,-0.1983666961,-3.5557798338$
$\mathrm{H}, 0,2.8998535303,1.0731843814,-2.3046529101$
$\mathrm{H}, 0,3.24078341,-0.5922515559,-1.8408536294$
$\mathrm{H}, 0,0.5840939043,0.4942942982,-4.5513944467$
$H, 0,-0.9514313521,0.5729107682,-3.6343938835$
$\mathrm{H}, 0,0.2764131436,1.8263912234,-3.3874261751$
$\mathrm{H}, 0,0.3416690941,-4.6921846005,0.8516987214$
$H, 0,1.4665880306,-3.4428953936,1.4531206043$
$H, 0,-0.1912655768,-3.5017500172,2.0675180759$
$H, 0,-1.8509323249,-4.2292124971,-0.5449480405$
$\mathrm{H}, 0,-2.4600838641,-2.9215101958,0.5147220427$
$H, 0,-2.3361442424,-2.6444956997,-1.2300217964$
dmpeBpin3PhHCHactTSParSptBack
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-2019.75310567$
Zero-point correction $=\quad 0.520791$ (Hartree/Particle)
Thermal correction to Energy= 0.556120
Thermal correction to Enthalpy= 0.557065
Thermal correction to Gibbs Free Energy= 0.453312
Sum of electronic and zero-point Energies $=\quad-2019.232315$
Sum of electronic and thermal Energies $=\quad-2019.196985$
Sum of electronic and thermal Enthalpies= -2019.196041
Sum of electronic and thermal Free Energies= -2019.299794

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	348.971	129.731	218.366

C,0,2.891351283,1.1939365057,-0.2357381002
C, $0,2.1588766654,0.1853664459,0.395665178$
C, $0,2.7851053326,-0.8391692412,1.1323166771$
C,0,4.1827825832,-0.7450497441,1.2641701756
C,0,4.9250363614,0.2640730164,0.6401607978
C,0,4.2826703908,1.2348161196,-0.1269990806
Ir,0,1.5709680628,-2.5960432904,1.9360026943
B,0,-0.1930323796,-1.4645937586,1.954050739
О,0,-1.432243962,-1.89864642,1.4555939839

C, $0,-2.4356731769,-0.9311920454,1.7924616027$
C,0,-1.638133946,0.3128104328,2.2347990187
O,0,-0.3072905333,-0.1677085991,2.4374487869
$\mathrm{H}, 0,4.8523455333,2.0220506514,-0.6134330793$
P,0,1.1971208618,-3.4222835756,-0.3057594867
С,0,1.8795643351,-2.4272927722,-1.7062405151
P,0,3.3959147319,-4.2800169512,1.9084901327
C,0,5.185400071,-4.0211728764,2.3221010264
B, $0,0.2091293834,-4.083873952,2.6323975726$
O, $,,-0.1129267668,-5.2682196919,1.9391550535$
C,0,-1.1926207322,-5.9361528884,2.6086716338
С,0,-1.2583544505,-5.2586313042,3.9890768096
O,0,-0.5010789948,-4.0552125072,3.8330329901
B, $0,1.7350024811,-2.402420129,4.0473870107$
O,0,0.9878649463,-1.588603983,4.8770327293
C,0,1.270047178,-1.9293274913,6.2359533431
C,0,2.5821884467,-2.7338224109,6.1637861747
O,0,2.6724397733,-3.1349237466,4.7877219007
C, $0,2.1201113113,-5.0334518799,-0.4878874084$
C,0,3.508643087,-4.9464800278,0.1620235804
C,0,-0.4866051164,-3.8374048416,-0.9252689339
C,0,3.0708743637,-5.8106089901,2.8953476817
H,0,-0.802183331,-5.8752398413,4.7745817978
H,0,-2.2804920401,-5.0137282536,4.294631266
H,0,-0.9843899052,-7.0096259929,2.664611476
H,0,-2.1161975855,-5.7913487055,2.0340941912
H,0,2.5788988222,-3.6196844795,6.8069806298
H,0,3.4581714678,-2.1232905502,6.418133745
H,0,0.442456232,-2.5299519111,6.6341218895
H,0,1.3591121931,-1.0169292078,6.8338322397
H,0,-3.06029953,-1.3292659137,2.6019497772
H,0,-3.0757731132,-0.7441721103,0.9234785875
$\mathrm{H}, 0,-2.0157265414,0.7518262706,3.1637814411$
$\mathrm{H}, 0,-1.6285223017,1.0959290559,1.464694287$
H,0,2.201241262,-1.2903949853,2.6657156462
H,0,1.0775969618,0.2064890539,0.3195496195
H,0,2.3682930908, 1.9577040336,-0.8070515843
H,0,4.7082178814,-1.4575692122,1.888937221
H,0,6.0048897642,0.2947461268,0.7681064911
H,0,4.0067839947,-5.9233060383,0.1569203853
Н,0,4.1484995977,-4.2556357552,-0.4000909284
H,0,1.5078679552,-5.7881843006,0.014733627
H,0,2.1947375505,-5.3066723924,-1.5472142686
H,0,1.7483395198,-2.9612157952,-2.6532339788

```
H,0,1.3695387556,-1.4638495276,-1.7613300925
H,0,2.9397513118,-2.2256316042,-1.5405994867
H,0,-0.440818366,-4.2352697101,-1.9441136069
H,0,-0.9257508133,-4.573940385,-0.2523733713
\(\mathrm{H}, 0,-1.1066641221,-2.9397365518,-0.8982868226\)
H,0,5.7363118604,-4.9657012956,2.2631139543
H,0,5.642312612,-3.3041896432,1.6375096736
H,0,5.2556996484,-3.6309994951,3.3406400611
H,0,3.8491039973,-6.5634376827,2.7319962767
H,0,3.0454047115,-5.52786452,3.9496678054
H,0,2.0968423348,-6.2177067341,2.6186813622
```


dmpeBpin3PhHCHactTSParWrdBack

$\mathrm{E}($ RB+HF-LYP $)=-2019.75100331$

Zero-point correction $=$	0.521093 (Hartree/Particle)
Thermal correction to Energy $=$	0.556395
Thermal correction to Enthalpy $=$	0.557339
Thermal correction to Gibbs Free Energy=	0.452880
Sum of electronic and zero-point Energies=	-2019.229911
Sum of electronic and thermal Energies=	-2019.194608
Sum of electronic and thermal Enthalpies $=$	-2019.193664
Sum of electronic and thermal Free Energies $=$	-2019.298124

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	349.143	129.407	219.854

C,0,-2.6600629804,1.207915644,-0.4011663438
C,0,-1.9444945855,-0.0027490882,-0.5062878704
C,0,-2.6839839291,-1.1351072444,-0.8961299082
C,0,-4.0678791094,-1.0846228657,-1.097596278
С, $0,-4.7591346902,0.1151053042,-0.9347018808$
C,0,-4.0428674917,1.2644174345,-0.594620048
Ir,0,0.2802631172,-0.0234575698,0.030578203
P,0,-0.0000058687,0.8216853644,2.2703082969
C, $0,0.4872488067,-0.5445733975,3.4442821479$
С, $0,-0.1159275156,-1.8846007672,3.0046606567$
P,0,0.1984871758,-2.2177818991,1.1855465691
B, $0,2.3537635321,0.3151925144,0.4015178123$
O,0,3.0693998163,1.4135838304,-0.0677741608
C,0,4.4573220763,1.256489386,0.2340755266
C,0,4.4925490239,0.1347623739,1.289860475
O,0,3.1965186041,-0.4757958905,1.201716189

B, $0,1.2101919549,-1.0012699938,-1.6064945413$
О,0,0.8425028948,-2.2978666089,-1.9981052237
C,0,1.7374646734,-2.7441294769,-3.0278243175
C, $0,2.477800256,-1.4655736027,-3.463934019$
O,0,2.2527173447,-0.5409097326,-2.3941432827
B,0,0.4275007691,1.8773137161,-0.8434145262
O,0,0.4878145079,2.116328103,-2.210702442
C,0,0.404906396,3.522262634,-2.4572896472
C, $0,0.5767092536,4.168267459,-1.0685799333$
O,0,0.3494842988,3.0927164506,-0.1476466949
H,0,4.9952409132,0.9791950631,-0.6811385518
H,0,4.8668068328,2.2028290219,0.6024032622
H,0,5.2669081596,-0.6140901248,1.094877003
H,0,4.6399962508,0.5233232553,2.3064264742
H,0,2.4204781271,-3.4967162422,-2.6117049395
H,0,1.1647114469,-3.2072783185,-3.8370379372
H,0,3.5531131586,-1.6176120241,-3.6000879832
H,0,2.0661300795,-1.0461944134,-4.3902894817
H,0,1.5912192273,4.5589004758,-0.9194600368
H,0,-0.1386146905,4.9753943742,-0.878243966
H,0,1.1867221823,3.8207464295,-3.1631564082
H,0,-0.5711130049,3.7535702561,-2.9035867639
$\mathrm{H}, 0,-0.5480487945,-0.2238652499,-1.3491973059$
H,0,-2.1325987943, 2.1258047078,-0.1604203435
H,0,-4.5601091335,2.2152599049,-0.4857972517
H,0,-2.1693576384,-2.0720701998,-1.0779726256
H,0,-4.5996884042,-1.9846941505,-1.3979628275
H,0,-5.8335504439,0.1600540059,-1.0911190647
C,0,1.0101656908,2.2440018826,2.864021341
C,0,-1.6887924315,1.2881216465,2.8617243832
C,0,1.727708229,-3.25800216,1.2070489722
C,0,-1.0607587417,-3.538064276,0.8631640883
H,0,0.2705641903,-2.7104575919,3.6130622142
H,0,-1.2044642965,-1.8707690839,3.1381143958
H,0,1.580713988,-0.5951196973,3.4096381485
H,0,0.1919469834,-0.2891038689,4.4691327601
H,0,-1.6760536993, 1.5083513507,3.9341813902
H,0,-2.0347277018,2.1697250272,2.3183734627
H,0,-2.3921268119,0.4777876571,2.6594099495
H,0,0.7925883014,2.4755890771,3.9115711194
H,0,2.0706194627,2.0052635757,2.7573443087
H,0,0.7920467506,3.102187114,2.2262626982
Н,0,-0.9335602483,-4.3677281401,1.5666870691
H,0,-2.0712986345,-3.1366038973,0.9577981635
H, $0,-0.9273803612,-3.9121804539,-0.1549983008$
H,0,1.6098960269,-4.1200606947,1.872166635
H,0,1.9094348541,-3.6121521967,0.1889668226
H,0,2.5758686445,-2.6464101188,1.5149943678

dmpeBpin3PhHCHactTSSptParBack

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-2019.75119685$

Zero-point correction $=$	0.520306 (Hartree/Particle)
Thermal correction to Energy $=$	0.555888
Thermal correction to Enthalpy $=$	0.556832
Thermal correction to Gibbs Free Energy=	0.452440
Sum of electronic and zero-point Energies $=$	-2019.230891
Sum of electronic and thermal Energies=	-2019.195309
Sum of electronic and thermal Enthalpies $=$	-2019.194365
Sum of electronic and thermal Free Energies $=$	-2019.298757

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	348.825	129.864	219.712

C,0,-2.9679686767,-1.3176188993,-0.6004005485
C, $0,-2.0930665967,-0.2725223462,-0.955803379$
С, $0,-2.6145730063,0.7064440687,-1.8257081452$
С,0,-3.9383639691,0.6683241174,-2.2731866144
C,0,-4.7910839054,-0.3628760953,-1.8789421279
C,0,-4.2950654495,-1.3604955511,-1.0395688897
Ir, $0,-0.0064117173,-0.0774396752,-0.0178992983$
P,0,-0.8584822208,0.0511522216,2.2255733243
С,0,-0.5415948128,-1.6009257374,3.0558816852
С,0,-0.6763555679,-2.7873885353,2.0882660609
P,0,0.2696442277,-2.4662205796,0.5000284875
B, $0,1.8968429124,0.5300713091,0.7331327522$
O,0,2.1840171823,1.8052482052,1.2242769739
C,0,3.5947387524,1.9384414271,1.4266626881
C,0,4.1308189048,0.4951966747,1.3559253086
O,0,3.0526774143,-0.26008951,0.7887186403
B,0,1.3759963507,-0.2510967816,-1.626230436
О,0,1.6798297635,-1.4858302155,-2.2162726641
C,0,2.7740216109,-1.3061761558,-3.1256389989
C,0,2.8677929108,0.2213019288,-3.3071296457
O,0,2.1198992308,0.7591090735,-2.2116089181
B,0,-0.2644465269,1.9905349593,-0.2681056554
О,0,-0.0307720713,2.7337202863,-1.4206213887

[^3]

```
H,0,3.6134338939,-2.017187026,-2.3826659017
H,0,2.6037000748,-2.3688130879,-3.8059298433
H,0,3.870920503,0.1617680465,-3.3831013178
H,0,2.3996732125,-0.0296565694,-4.3634530234
\(\mathrm{H}, 0,-0.7884760153,4.9615378305,0.2928056483\)
H,0,-2.3213113,4.2598870226,-0.2750550675
H,0,0.3026618998,4.4876128952,-1.7875432556
H,0,-1.3271414404,4.2391895711,-2.456190559
H,0,-0.103016567,-0.1637373864,-1.7414110117
H,0,-3.037886236, 1.4104543392,0.4221989823
H,0,-5.3492021011,1.0975141759,-0.2972910673
H,0,-1.8681551085,-2.0537625713,-1.8323349659
H,0,-4.1748061827,-2.3566665157,-2.566590265
H,0,-5.9661313048,-0.7981681326,-1.7972198107
C,0,0.4292240131,1.6303819781,3.1015745693
C,0,-2.1777829293,0.5176337065,2.8790391144
C,0,1.8940060796,-3.1677607012,0.7262351
C, \(0,-0.7348519211,-3.8642393068,-0.1163371132\)
H,0,0.0147361918,-3.419883664,2.8822874497
Н,0,-1.4598161745,-2.5796516943,2.3923251761
H,0,1.1861764728,-1.2133355758,3.180778203
H,0,-0.2809959193,-1.2301077121,4.171274161
H,0,0.1173108357,1.6873840631,4.1490354937
H,0,1.5059072888,1.4594621173,3.0536479103
H,0,0.2009715215,2.5645242245,2.5861162356
H,0,-2.1696625143,0.4450135954,3.9714104292
H,0,-2.5323403478, 1.5084605302,2.5898012964
H,0,-2.8576934197,-0.2250701682,2.4596154903
H,0,1.8813277731,-4.1264986244,1.255640329
H,0,2.2685928057,-3.3143471469,-0.2882591542
H,0,2.5552936123,-2.4590905783,1.226673482
H,0,-0.54439246,-4.783169542,0.4480120532
\(\mathrm{H}, 0,-1.8051890432,-3.6506475612,-0.1182461092\)
Н,0,-0.408934453,-4.0085347605,-1.1497249755
```

$\operatorname{Ir}($ dmpe $)(\mathrm{BPin})_{2}(\mathbf{H})(\mathbf{P h}-\mathrm{Bpin})$ Reductive Elimination TS
$\mathrm{E}($ RB+HF-LYP $)=-2019.77073889$

Zero-point correction $=$	0.522052 (Hartree/Particle)
Thermal correction to Energy $=$	0.557082
Thermal correction to Enthalpy $=$	0.558026
Thermal correction to Gibbs Free Energy=	0.454334
Sum of electronic and zero-point Energies=	-2019.248686
Sum of electronic and thermal Energies=	-2019.213657

$\begin{array}{lc}\text { Sum of electronic and thermal Enthalpies }= & -2019.212713 \\ \text { Sum of electronic and thermal Free Energies }= & -2019.316405\end{array}$

C, $0,-4.0737126198,-1.0096046351,1.2465683863$C,0,-3.0166203928,-0.9771064391,0.3335901212C, $0,-2.253488567,0.1868384355,0.1160322364$C, $0,-2.6376497066,1.3407690414,0.8277125824$C,0,-3.6933214968,1.3205978718,1.7416686883C,0,-4.4090183608,0.1415750634,1.9629506802Ir,0,0.1917157006,-0.0608539667,-0.097847614B,0,0.5520315799,1.9810152113,0.246027211O,0,0.2742220955,2.6683074585,1.4372649147C,0,0.7956949122,4.0026605574,1.3459744839C,0,1.1386774296,4.1767284663,-0.1459011483O,0,1.1548344163,2.8435478576,-0.6658881975B,0,2.1788652761,0.0879360528,-0.6429371725O,0,3.2954432909,0.1996433536,0.1991537996C,0,4.4884307112,0.23160189877,-0.5975357559C,0,3.9794718675,0.408876559,-2.0423162455O,0,2.5891263406,0.0816827096,-1.9742933122P,0,0.2836220789,-2.486376251,-0.4452135765C,0,-0.9711750986,-3.5634717595,-1.2837278248P,0,0.6651560375,-0.5956585478,2.133538417C,0,-0.7636715169,-0.5584981069,3.2991711952B,0,-1.4838074337,0.3958446844,-1.6084706241O,0,-1.7706465974,1.6786902125,-2.1353552754C,0,-2.6865537602,1.5006619221,-3.2098528577C,0,-2.4604294211,0.046900551,-3.6599696403O,0,-1.9773913547,-0.6103989835,-2.4890882837C,0,0.4277534764,-3.2656055318,1.2534971183C,0,1.2461770374,-2.3730507512,2.2004566014C,0,1.8308957701,-3.0713154856,-1.2790121994C,0,1.9576514081,0.30513455881,3.0817386848H,0,-0.0278391494, 0.3278116749,-1.696929013H,0,1.2077572776,-2.7478971043,3.2300519444H,0,2.29941149,-2.3602123262,1.8967623598H,0,0.8618220642,-4.270197611,1.1848319517H,0,-0.5948103898,-3.3804788593,1.6328628461H,0,-1.7070039869,-0.0106765242,-4.4595584093H,0,-3.3764669044,-0.4413673093,-4.0115017166			

```
H,0,-2.481412052,2.2315317617,-3.9994948979
H,0,-3.7178613395,1.6517474171,-2.8557622358
H,0,2.112842386,4.6495115799,-0.3075835384
H,0,0.3778405779,4.7595990271,-0.6797411907
H,0,1.6827529874,4.0871585183,1.9875868731
H,0,0.0453071854,4.716652426,1.7004524188
H,0,4.4823908031,-0.2528045877,-2.7554884385
H,0,4.0881927062,1.4425727379,-2.3925769774
H,0,5.037781586,-0.7095974742,-0.4626550191
H,0,5.1304511874,1.0536838964,-0.2657550541
H,0,-2.1058048264,2.2696114574,0.66219259
H,0,-3.9630892154,2.2283425323,2.2760106433
H,0,-5.2335606507,0.1255077986,2.6711995576
H,0,-4.6462135864,-1.9240013416,1.384616826
H,0,-2.8133937826,-1.8571551371,-0.2639904384
H,0,1.6158158212,1.3334835339,3.2172249754
H,0,2.1287885857,-0.1604668386,4.0576739759
H,0,2.8755917942,0.31630341,2.4927911433
H,0,-1.1083424199,0.4740960383,3.3864642495
H,0,-1.5911514314,-1.1515225279,2.9049752682
H,0,-0.4741636797,-0.9324704199,4.2867754792
H,0,1.8800230371,-2.6406863876,-2.2817241797
H,0,2.703915992,-2.7177594479,-0.724877819
H,0,1.8609986404,-4.1638029883,-1.3417082468
H,0,-1.2726651024,-3.0815104606,-2.2164535206
H,0,-0.5673732863,-4.5607668587,-1.4850032327
H,0,-1.8591356828,-3.6658760914,-0.6559923755
```

dmpeBpin2PhHBinRotTS13
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-2019.76042936$

Zero-point correction=
0.523546 (Hartree/Particle)

Thermal correction to Energy= 0.558287

Thermal correction to Enthalpy= 0.559232

Thermal correction to Gibbs Free Energy= 0.457245
Sum of electronic and zero-point Energies= -2019.236884
Sum of electronic and thermal Energies $=\quad-2019.202142$
Sum of electronic and thermal Enthalpies $=\quad-2019.201198$
Sum of electronic and thermal Free Energies $=\quad-2019.303185$

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} / \mathrm{Mol}-$ Kelvin	Cal/Mol-Kelvin
Total	350.331	127.897	214.650

$\mathrm{C}, 0,4.351997731,0.2437421785,1.3298526185$
$\mathrm{C}, 0,2.9520534567,0.2012598651,1.2930583825$
$\mathrm{C}, 0,2.2086771934,-0.0381570776,0.1166168091$
$\mathrm{C}, 0,2.9992833601,-0.2364327636,-1.0395931552$
$\mathrm{C}, 0,4.3968426995,-0.1968715232,-1.0242494884$
$\mathrm{C}, 0,5.088675068,0.0440485315,0.1639733062$
$\mathrm{Ir}, 0,-0.0229912657,-0.0717433124,-0.0298533948$
$\mathrm{~B}, 0,0.2085315234,-1.8567694328,-1.1252451354$
$\mathrm{O}, 0,0.1597731858,-3.1638896489,-0.6282994637$
$\mathrm{C}, 0,0.3060199031,-4.0886940343,-1.7166303303$
$\mathrm{C}, 0,0.7623023156,-3.2168154426,-2.9036296626$
$\mathrm{O}, 0,0.4927321576,-1.8744865717,-2.4870561316$
$\mathrm{~B}, 0,-2.1144061207,-0.2242558828,-0.4402926021$
$\mathrm{O}, 0,-3.170455635,0.0488289861,0.4551024364$
$\mathrm{C}, 0,-4.4249947936,-0.2596584317,-0.1733214966$
$\mathrm{C}, 0,-4.0667036726,-0.4605420006,-1.6570604107$
$\mathrm{O}, 0,-2.6473102721,-0.6369084153,-1.6602112815$
$\mathrm{P}, 0,-0.2453115883,1.8071725297,1.5022959709$
$\mathrm{C}, 0,1.0409872717,3.1294546584,1.5983184091$
$\mathrm{P}, 0,-0.3782756367,-1.3752671039,1.8661461249$
$\mathrm{C}, 0,1.0275086506,-2.375166556,2.5141500409$
$\mathrm{~B}, 0,-0.0219172533,1.6643179565,-1.4797442533$
$\mathrm{O}, 0,-1.1942863753,2.2131564115,-1.9697452588$
$\mathrm{C}, 0,-0.8700388016,3.4227604893,-2.6713652943$
$\mathrm{C}, 0,0.6044140702,3.7036964189,-2.3005917982$
$\mathrm{O}, 0,1.0636131242,2.4895426375,-1.6927710767$
$\mathrm{C}, 0,-0.213504103,1.0947832969,3.2313355824$
$\mathrm{C}, 0,-0.9082584433,-0.2698051335,3.2780543875$
$\mathrm{C}, 0,-1.8023918092,2.8014839486,1.4916993323$
$\mathrm{C}, 0,-1.7301755672,-2.6266161576,1.8521825276$
$\mathrm{H}, 0,0.2174041688,0.352652029,-1.6398256977$
$\mathrm{H}, 0,-0.7312338932,-0.7775933936,4.233142876$
$\mathrm{H}, 0,-1.9906739314,-0.1464669611,3.1642849114$
$\mathrm{H}, 0,-0.6764751191,1.7998842614,3.9313390162$
$\mathrm{H}, 0,0.8392412521,0.9994520421,3.5169612667$
$\mathrm{H}, 0,0.7033434798,4.5258578753,-1.5803737566$
$\mathrm{H}, 0,1.2294963795,3.9326441798,-3.1683737554$
$\mathrm{H}, 0,-1.5501024292,4.2208847036,-2.3576304276$
$\mathrm{H}, 0,-1.0055063539,3.2547851022,-3.7459470937$
$\mathrm{H}, 0,0.2131610586,-3.4331124022,-3.8253773738$
$\mathrm{H}, 0,1.8358302643,-3.3223287809,-3.1045372932$
$\mathrm{H}, 0,-0.6593941002,-4.5742642116,-1.9066735903$
$\mathrm{H}, 0,1.0352482661,-4.8591245775,-1.4468868768$
$\mathrm{H}, 0,-4.3224855074,0.4171761041,-2.2643558975$

```
H,0,-4.55072114,-1.337969589,-2.0980768749
H,0,-5.1319913466,0.5599502891,-0.0088407041
H,0,-4.8425279142,-1.1691395775,0.2797674271
H,0,2.5112198732,-0.4323495922,-1.9906669779
H,0,4.9473729804,-0.3556377591,-1.9498365455
H,0,6.1751347487,0.074871735,0.1800786738
H,0,4.8616220916,0.4344837115,2.2729129876
H,0,2.4360153505,0.3681356302,2.2373505659
H,0,-1.5011576616,-3.3622137969,1.0805810843
H,0,-1.8022160175,-3.1189258639,2.8274941655
H,0,-2.6722969403,-2.1296125579,1.6176843882
H,0,1.2739861651,-3.114601477,1.7488140034
H,0,1.9066639494,-1.7524676633,2.6780728917
H,0,0.7439833836,-2.8831556704,3.4415164732
H,0,-1.8819523634,3.3198308964,0.5327451765
H,0,-2.6530342594,2.1224515587,1.5686826466
H,0,-1.8165385846,3.5343007064,2.30516314
H,0,0.970154641,3.7662967744,0.7142207718
H,0,0.9070541593,3.7425051492,2.4954685202
H,0,2.030323437,2.6691528922,1.5988392161
dmpeBpin2PhHBinRotTSPar
E(RB+HF-LYP})=-2019.75561076
Zero-point correction= 0.524111 (Hartree/Particle)
Thermal correction to Energy= 0.558614
Thermal correction to Enthalpy= 0.559559
Thermal correction to Gibbs Free Energy= 0.458170
Sum of electronic and zero-point Energies= -2019.231500
Sum of electronic and thermal Energies= -2019.196996
Sum of electronic and thermal Enthalpies= -2019.196052
Sum of electronic and thermal Free Energies= -2019.297441
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 350.536 & 127.768 & 213.390
\end{tabular}
C,0,4.3327897286,0.1114674991,1.2436928794
C,0,2.935281133,0.066132237,1.1858355068
C,0,2.206748804,0.0237338295,-0.0258933098
C,0,3.0158971141,0.0064313068,-1.1837330755
C,0,4.4140403692,0.0571096812,-1.1477769955
C,0,5.0879725361,0.1164918119,0.0715748525
Ir,0,-0.0338915653,-0.0666645354,-0.058877448
```



```
H,0,2.4024678741,0.0575819729,2.1333958522
H,0,-1.1543389046,1.2648632253,3.3269733187
H,0,-1.5382672252,2.9792046555,2.9691541428
H,0,-2.4658644722,1.6641330074,2.1892745898
H,0,1.5558991995,2.119499544,2.7372491762
H,0,1.9923071457,2.8152076949,1.176611165
H,0,0.9121102545,3.7182769166,2.287384114
H,0,-2.0595511909,0.3660430776,-3.3275208697
H,0,-2.7541512086,1.481382118,-2.151299479
H,0,-2.0154287737,2.1274352732,-3.655221677
H,0,0.8460984662,0.6269185196,-3.9981976183
H,0,0.5186967333,2.3711932287,-4.0973245363
H,0,1.8461901061,1.7576866466,-3.0729947745
Ir(dmpe)(BPin)2(H)(\eta}\mp@subsup{}{}{2}-\mathbf{PhBPin}
E}(\mathrm{ RB+HF-LYP })=-2019.79892754
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.522787 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.559141 \\
Thermal correction to Enthalpy \(=\) & 0.560086 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.449410 \\
Sum of electronic and zero-point Energies \(=\) & -2019.276141 \\
Sum of electronic and thermal Energies= & -2019.239786 \\
Sum of electronic and thermal Enthalpies \(=\) & -2019.238842 \\
Sum of electronic and thermal Free Energies \(=\) & -2019.349518
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 350.867 & 130.060 & 232.937
\end{tabular}
C,0,-4.3189210515,-2.2507777429,1.0531167713
C, \(0,-4.6020063533,-2.0054477829,-0.2942294314\)
C,0,-4.1342564758,-0.8397953451,-0.9019108131
С,0,-3.3825921942,0.1063586065,-0.1807210259
С,0,-3.1044204651,-0.1581286261,1.1741071697
С, \(0,-3.568517446,-1.327129889,1.7845287383\)
Ir, \(0,0.4575433037,-0.1034602725,-0.0747645751\)
B,0,-2.8796624009,1.4112899627,-0.8696923236
О,0,-2.8697411668,1.5714483779,-2.234091932
C,0,-2.3220864062,2.8673393413,-2.5244990972
С,0,-1.9613662318,3.4719960757,-1.1424383888
O,0,-2.4599748433,2.5236117535,-0.1817580919
B,0,0.3497876858,1.6327363381,1.0804226653
O,0,0.8652254072,2.9054684161,0.8148639206
```



```
H,0,1.6336207542,-1.5053344795,-3.413294078
H,0,2.7899909427,-2.0963521522,-2.2149142765
H,0,1.8040912662,-3.2637303882,-3.1379800026
H,0,-1.2143593762,-2.1273904671,-3.072645532
H,0,-0.8091753029,-3.8094918427,-2.6355611219
H,0,-1.8404780466,-2.8091073741,-1.570034073
dmpeBpin2H\eta2PhBin
E(RB+HF-LYP})=-2019.7990823
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.522932 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.559216 \\
Thermal correction to Enthalpy \(=\) & 0.560160 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.449291 \\
Sum of electronic and zero-point Energies= & -2019.276151 \\
Sum of electronic and thermal Energies= & -2019.239867 \\
Sum of electronic and thermal Enthalpies \(=\) & -2019.238923 \\
Sum of electronic and thermal Free Energies= & -2019.349791
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 350.913 & 129.995 & 233.342
\end{tabular}
C,0,-4.735273632,-1.6283398293,0.5762622349
C,0,-4.1624565981,-1.009423025,-0.5353393473
C,0,-3.3591542183,0.1377618575,-0.3970235494
C,0,-3.13914326,0.6430968937,0.8987674575
C,0,-3.7083981571,0.0225864482,2.014767115
C,0,-4.5080798759,-1.1116111606,1.8557494923
Ir,0,0.4489240713,-0.1719223898,0.0402554115
B,0,0.4555459173,1.9156522018,0.067727561
O,0,-0.2723236411,2.626898877,1.0414738955
C,0,-0.3145664134,4.0103062894,0.6599707112
C,0,0.8452892668,4.1536744643,-0.3387690686
O,0,1.0866302014,2.8164771916,-0.7946489907
B,0,2.2505573998,-0.0296301609,-0.8216180854
O,0,3.4677130172,-0.1355842385,-0.12207734
C,0,4.5433560842,-0.1270589902,-1.0691909139
C,0,3.889483311,0.3521527128,-2.3797003713
O,0,2.4927195118,0.124048685,-2.184047975
P,0,0.3563417567,-2.5787755697,0.078167496
C,0,-1.1518473463,-3.5384901614,-0.3938812457
P,0,1.1709219592,-0.3860947154,2.2886596329
C,0,-0.1117675945,-0.0534276161,3.5831416143
```

```
B,0,-2.7382782659,0.8264942055,-1.6503845058 O,0,-2.2494405295,2.1100697,-1.6517985113
C,0,-1.6464571373,2.3476966699,-2.936887602
С,0,-2.0354251189,1.1147573236,-3.7931910179
O,0,-2.6825432041,0.2147386981,-2.879346512
C,0,0.6534917173,-3.127820628,1.8532199534
C,0,1.6274602762,-2.1822008552,2.5793275825
C, \(0,1.6775766425,-3.4799991852,-0.8535828267\)
C, \(0,2.6251256671,0.5273396243,2.9601967931\)
H,0,-0.0772324064,-0.0554622448,-1.4895828475
H,0,1.6694732829,-2.4084774568,3.6516569631
H,0,2.6413879137,-2.3028418401,2.1796486331
H,0,1.0107274467,-4.1641468967,1.886010274
H,0,-0.3250632699,-3.1120495577,2.3493037872
Н,0,-1.1605160607,0.6176787272,-4.2215944012
H,0,-2.733966275,1.3626023525,-4.6009735123
H,0,-0.5655081241,2.4334428735,-2.796124186
H,0,-2.0371640218,3.2860976064,-3.3444249581
H,0,1.7546013304,4.5460685165,0.1367999612
H,0,0.5992477014,4.7959414134,-1.1907875573
H,0,-0.202259781,4.6433992031,1.5462138707
H,0,-1.2839785217,4.2209180641,0.1923428232
H,0,4.2380537376,-0.2008227822,-3.2582777993
H,0,4.0603048127,1.4225833505,-2.5533022338
H,0,4.9539414572,-1.1421784183,-1.1611768462
H,0,5.3415853769,0.5356590259,-0.7194877492
H,0,-2.5112961669,1.5198649343,1.029292025
H,0,-3.5353035548,0.4302766748,3.0073671921
H,0,-4.9589694334,-1.5874749287,2.7229158107
H,0,-5.3626839458,-2.5066822264,0.4482389513
H,0,-4.341358796,-1.4114262941,-1.5289184903
H,0,2.3773734344,1.5917885422,2.9978012687
H,0,2.8937753277,0.1846074829,3.9650080332
H,0,3.4611569516,0.3906325481,2.272341115
H,0,-0.4018186244,0.9977224086,3.5044858157
H,0,-1.0017394021,-0.6602736009,3.3981152683
H,0,0.2642077478,-0.257595363,4.5912932068
H,0,1.5709187937,-3.2576325261,-1.9185476834
H,0,2.6578597395,-3.1205658315,-0.530600519
H,0,1.6177905206,-4.5625386863,-0.6990117173
H,0,-1.3157896522,-3.418093335,-1.4682869546
H,0,-1.0496066116,-4.6040574618,-0.1619535705
H, \(0,-2.0253292186,-3.132115491,0.1221115396\)
```

dmpeBpin2HeqA	
$\mathrm{E}($ RB+HF-LYP $)=-1534.11389776$	
	0.360084 (Hartree/Particle)
Zero-point correction $=$	0.385198
Thermal correction to Energy $=$	0.386142
Thermal correction to Enthalpy $=$	0.304221
Thermal correction to Gibbs Free Energy=	-1533.753814
Sum of electronic and zero-point Energies=	-1533.728700
Sum of electronic and thermal Energies=	-1533.727755
Sum of electronic and thermal Enthalpies=	-153.809677
Sum of electronic and thermal Free Energies=	-153.

E (Thermal)	CV	S
KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin

```
H,0,4.227251923,-2.2876879877,-0.2368553972
H,0,4.4882678664,-1.443734712,-1.77818881
H,0,4.6837735121,-0.1604338197,0.7879451263
H,0,4.3834953617,0.7143673589,-0.7300741394
H,0,-4.7728272784,0.5956958705,-0.8296503342
H,0,-3.3113404191,1.6030814022,-1.0351859278
H,0,-3.6640994229,0.3138752369,-2.2000540508
H,0,-4.7045740943,-2.0226522564,-0.0822930888
H,0,-3.5570159417,-2.5073508789,-1.356989096
H,0,-3.2218027214,-2.9194651609,0.3288968746
H,0,0.2438390545,0.6730191023,4.0556419226
H,0,1.4056585167,0.860792489,2.7012751382
H,0,-0.1556225654,1.6929177691,2.6361238198
H,0,0.1634680364,-2.0445278442,4.0462118273
H,0,0.0187042173,-3.0228432954,2.5627509283
H,0,1.4748965416,-2.0545785908,2.8408220522
dmpeBpin2Hn2HBPinaxBest15
E(RB+HF-LYP) =-1788.74091500
```

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy= 0.376217
Sum of electronic and zero-point Energies $=\quad-1788.301169$
Sum of electronic and thermal Energies $=\quad-1788.270354$
Sum of electronic and thermal Enthalpies= $\quad-1788.269410$ Sum of electronic and thermal Free Energies $=\quad-1788.364698$

```
\begin{tabular}{cccl} 
& E (Thermal & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}\) & \(\mathrm{Cal} /\) Mol-Kelvin \\
Total & 295.281 & 110.324 & 200.551
\end{tabular}
C,0,2.022029144,-2.3052553126,-1.7094167201
P,0,1.3491853815,-0.5937535339,-1.6959529333
Ir,0,-0.0707049973,0.1935817192,0.0407706391
B, \(0,-1.9927383959,1.2779917053,-0.2642291357\)
O,0,-2.1361592527,2.6398507049,0.0044649713
C, \(0,-3.5340384423,2.923723732,0.1324511164\)
C,0,-4.2029214129,1.5358191285,0.2204862719
О,0,-3.2245654977,0.6371490438,-0.3092688123
C,0,0.6759608594,-0.4338760582,-3.4097449699
C,0,2.8825314184,0.4829432647,-1.7243827333
C,0,2.5434124298,1.9497889768,-1.4049167345
```

[^4]
dmpeBpin2Hn2HBPinax2ndBestRev

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1788.74085531$

Zero-point correction=	0.439952 (Hartree/Particle)
Thermal correction to Energy $=$	0.470563
Thermal correction to Enthalpy $=$	0.471507
Thermal correction to Gibbs Free Energy=	0.377398
Sum of electronic and zero-point Energies $=$	-1788.300903
Sum of electronic and thermal Energies=	-1788.270292
Sum of electronic and thermal Enthalpies $=$	-1788.269348
Sum of electronic and thermal Free Energies $=$	-1788.363457

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	295.283	110.351	198.070

C,0,1.0100061783,2.9591849596,-1.6041473159
P,0,1.3760584956,1.6389256522,-0.3674018122
Ir,0,-0.0286292414,-0.3305222484,-0.172983524
B,0,1.3032996833,-1.7318359429,-1.2905001578
O,0,2.2573697429,-1.2489410331,-2.1898315721
C,0,2.677173744,-2.3396309982,-3.0193080706
С, $0,1.6417242465,-3.4493620172,-2.7442562584$
O,0,1.0502565433,-3.0776150227,-1.496609201
C,0,3.2087426277,1.4451639965,-0.5489555598
C,0,1.2097810376,2.5365021632,1.2648816289
C,0,1.2551342236,1.5457133688,2.4421076154
P,0,0.0829875349,0.1080904055,2.1633073958
C,0,-1.4585159689,0.6044346372,3.041713896
C,0,0.7473523405,-1.2104169568,3.2685155863
B,0,-1.7508213009,0.8350542077,-0.4058757388
O,0,-1.8947051069,2.1388606912,0.1199352435
C, $0,-3.228548816,2.6059225234,-0.1316225044$
С,0,-3.7888444219,1.6110268975,-1.1653357858
О,0,-2.9037716678,0.4905147997,-1.1019127457
В,0,-1.4249881541,-1.8770457808,0.1032274677
О, $0,-1.9165910166,-2.2702089178,1.3658046302$
C,0,-2.7751462259,-3.4070262747,1.2003292774
C,0,-3.0214557187,-3.4812614114,-0.3203095248
O,0,-2.0197921576,-2.639702138,-0.8900632889
H,0,-0.3154047345,-0.5065356351,-1.7614140767
$\mathrm{H}, 0,1.9809410617,3.3091418047,1.3703422461$
H,0,0.2322803297,3.0280796473,1.227276811
H,0,1.0277033742,2.047334489,3.3899657001

```
H,0,2.260498581,1.1170163409,2.539798255
H,0,-3.1972383801,3.6369713386,-0.4986581494
H,0,-3.7986669859,2.5923362752,0.8068234382
H,0,-3.7780240778,2.0235602275,-2.1826806147
H,0,-4.8103675504,1.2897992867,-0.9375991507
H,0,-3.6957911997,-3.2642325384,1.7766359748
H,0,-2.2666494391,-4.3026005396,1.5810609141
H,0,-4.0140793842,-3.1007165218,-0.5953609424
H,0,-2.9219424759,-4.4979264656,-0.7159317159
H,0,1.1867509737,2.5613111469,-2.6071647901
H,0,1.6339811002,3.8465447974,-1.4538339888
H,0,-0.0437767858,3.2313985202,-1.5178387201
H,0,3.4081103866,0.8875477985,-1.4664841659
H,0,3.5951486939,0.854632422,0.2867027375
H,0,3.7230609595,2.4118827155,-0.5733512128
H,0,0.0625058038,-2.0595366174,3.2104088973
H,0,0.830953588,-0.8722789142,4.3067464713
H,0,1.7281962324,-1.5303407961,2.9073698178
H,0,-2.1650059455,-0.2242102935,2.9523166178
H,0,-1.8786791959,1.4828340393,2.5483458771
H,0,-1.2684297178,0.8208720267,4.0979309205
H,0,1.3967751843,-1.3866138099,0.0010677561
H,0,0.8628111026,-3.4840478966,-3.5166568433
H,0,2.0901707861,-4.4439087115,-2.6571513598
H,0,2.6946250591,-2.0219631496,-4.0666737784
H,0,3.6931170543,-2.641800548,-2.7312966065
dmpeBpin2Hn2HBPinax3rdBest
E(RB+HF-LYP) =-1788.73990099
\begin{tabular}{lc} 
Zero-point correction= & 0.439821 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.470593 \\
Thermal correction to Enthalpy \(=\) & 0.471537 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.375995 \\
Sum of electronic and zero-point Energies= & -1788.300080 \\
Sum of electronic and thermal Energies= & -1788.269308 \\
Sum of electronic and thermal Enthalpies \(=\) & -1788.268364 \\
Sum of electronic and thermal Free Energies \(=\) & -1788.363906
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol}-\) Kelvin & Cal/Mol-Kelvin \\
Total & 295.301 & 110.358 & 201.085
\end{tabular}
C,0,-1.3536125954,-2.3817545502,2.2080413906
```

[^5]```
H,0,-1.0169123825,3.8941534605,0.4424421843
H,0,-2.4517001238,1.5129232619,-2.6285349681
H,0,-3.3029853141,0.3285033685,-1.6284671824
H,0,-3.8526321495,2.0306261158,-1.6504358674
H,0,0.9632296924,1.3611841384,0.9961972114
H,0,4.7684903583,2.4722978386,-0.1413642426
H,0,4.1061385663,1.8148785052,-1.6569447158
H,0,3.1351228673,4.2464307957,-0.0839462153
H,0,2.957768378,3.9213466825,-1.8235970358
```


## $\operatorname{Ir}($ dmpe $)(\mathrm{BPin})_{\mathbf{2}}(\mathbf{H})\left(\eta^{2}-\mathrm{BPinH}\right)$ axial BPinH

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1788.73351004$

| Zero-point correction $=$ | 0.441293 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.471952 |
| Thermal correction to Enthalpy $=$ | 0.472896 |
| Thermal correction to Gibbs Free Energy= | 0.377827 |
| Sum of electronic and zero-point Energies= | -1788.292218 |
| Sum of electronic and thermal Energies= | -1788.261558 |
| Sum of electronic and thermal Enthalpies $=$ | -1788.260614 |
| Sum of electronic and thermal Free Energies= $=$ | -1788.355683 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 296.154 | 109.812 | 200.089 |

C,0,1.6089528706,1.7419401038,-2.8485866407
P,0,1.8322979142,0.6910185751,-1.3460108948
Ir,0,-0.1121988345,-0.2395367816,-0.2914585452
B,0,0.792703331,0.656587749,1.7036071846
О,0,1.941172376,0.1360395765,2.2846510273
C,0,2.4849111916,1.1197069975,3.1806347973
С,0,1.5912665248,2.3706302961,2.987132923
O,0,0.5420665019,1.9463862941,2.1078079076
C,0,3.1173946772,1.6821713214,-0.4444839865
С,0,2.8165679091,-0.7652983509,-1.9854087564
С, $0,2.8524612304,-1.9015753549,-0.9499672963$
P,0,1.1287825259,-2.2815156837,-0.3096447165
С,0,0.5545816803,-3.6537776144,-1.4012791724
C,0,1.4819669797,-3.180406383,1.2675723018
B, $0,-0.9047910269,-0.4893045929,-2.2087989937$
O,0,-0.2314911185,-1.0699220186,-3.3034418366
C,0,-1.1343917451,-1.1863658411,-4.4124428031
C,0,-2.3538839022,-0.3336740019,-4.0059915121

O,0,-2.1740194831,-0.0838585743,-2.6109932271
B,0,-1.9621186886,-1.1536765415,0.1695210715
O,0,-2.9371106708,-0.5958450514,0.9881144597
C,0,-4.0964142877,-1.4334456209,0.9954605724
C,0,-3.6393771806,-2.7421781328,0.3157131927
O, $,--2.3674821036,-2.423741495,-0.2637972321$
H,0,-0.9688160829, 1.1283794933,-0.3750452026
H,0,3.8286612973,-0.4544086521,-2.2716555188
H,0,2.2918354564,-1.0963716301,-2.8872069329
H,0,3.3125548535,-2.8025170273,-1.3728159756
H,0,3.45273466,-1.6078399492,-0.0803465367
Н,0,-0.6463704141,-0.8284038296,-5.325468265
H,0,-1.3951845024,-2.2426990096,-4.5542780298
H,0,-2.3882866571,0.6229065308,-4.5433700044
H,0,-3.3050022604,-0.8510528659,-4.1698678307
H,0,-4.435392043,-1.5861554855,2.0258999812
H,0,-4.9018982722,-0.9382949579,0.4390743505
$\mathrm{H}, 0,-3.5137573143,-3.5627095496,1.0343270406$
H,0,-4.3275515853,-3.0771340733,-0.4677923538
H,0,1.1028788813,2.6673411475,-2.5603506788
H,0,2.5692872262,1.9851268581,-3.3152316286
H,0,0.9803372303,1.2077782844,-3.5624340021
H,0,2.6527689619,2.5877605216,-0.0443770409
$\mathrm{H}, 0,3.5125715423,1.0983144619,0.3892591439$
H,0,3.9395815845,1.9671040006,-1.1089661841
H,0,0.541275076,-3.5709329706,1.666223276
H,0,2.1751838949,-4.0145393544,1.1143356556
H,0,1.9013305415,-2.4792550871,1.9926087326
Н,0,-0.4485517,-3.9418803882,-1.0782770242
H,0,0.4845515079,-3.2785216288,-2.424043487
H,0,1.2291824196,-4.5151675851,-1.3579841425
H,0,-0.1993928333,-0.136360042,1.4589531541
H,0,2.1335565787,3.2034400414,2.5251640496
H,0,1.1517970098,2.7261207554,3.9243961789
H,0,3.5331391484,1.3060714746,2.9240032629
H,0,2.4457111235,0.727499642,4.202689188

## IrDMPEBpin2Hŋ2BpinH

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1788.73462397$
Zero-point correction $=\quad 0.440155$ (Hartree/Particle)
Thermal correction to Energy= 0.471004

Thermal correction to Enthalpy= 0.471948

Thermal correction to Gibbs Free Energy=
0.375644

| Sum of electronic and zero-point Energies $=$ | -1788.294469 |
| :--- | :---: |
| Sum of electronic and thermal Energies= | -1788.263620 |
| Sum of electronic and thermal Enthalpies $=$ | -1788.262676 |
| Sum of electronic and thermal Free Energies $=$ | -1788.358980 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 295.559 | 110.182 | 202.689 |

C,0,-3.0583677491,1.8599640225,-0.6047588609
P,0,-2.2838804597,0.4053436263,0.2174360081
C,0,-3.4306662776,-0.9603087001,-0.2838620553
C, $0,-2.7065268401,0.6692926608,2.0290041947$
C, $0,-1.7564538132,-0.1058076871,2.9562192164$
P,0,0.0288995818,0.1790682092,2.4655229669
C,0,0.9320530735,-1.1175227239,3.4189035036
Ir,0,0.1027615545,0.2553462775,0.0596607319
B, $0,0.1765231769,0.5222319442,-2.0249161612$
O,0,1.2197180582,0.0923297798,-2.8437681868
C,0,0.8842741097,0.326759162,-4.2137738091
С,0,-0.3491995244,1.2495715365,-4.1562692722
O,0,-0.8093863198,1.1467997822,-2.8026741324
B, $0,2.1269562945,0.8479297076,-0.0170152105$
O,0,2.5913649698,2.111477488,-0.373251676
C,0,4.0132053823,2.156293004,-0.2143763987
C,0,4.4260100425,0.6881240278,0.0124072781
O,0,3.1987689818,0.0177097601,0.3270692459
C,0,0.4772064544,1.7220935748,3.3817242028
H,0,-0.0794410929,1.8611363063,0.0801948256
H,0,-3.7526154203,0.4007535254,2.2171483402
H,0,-2.614388674,1.7466042897,2.2120580666
H,0,-1.9278429627,0.1610027528,4.0062128574
H,0,-1.9241142884,-1.1840564641,2.854927214
$\mathrm{H}, 0,-1.145157738,0.9415683724,-4.842918453$
H,0,-0.094015664,2.2953386653,-4.3715953093
H,0,0.6611139345,-0.6313969313,-4.7011122282
H,0,1.7342262478,0.7853842651,-4.7302360405
H,0,5.1374442905,0.5649919025,0.8360047878
H,0,4.8604073129,0.2378237616,-0.8889494842
H,0,4.2618515534,2.7939166982,0.6448602401
H,0,4.4707467793,2.5942572216,-1.1075792418
H,0,-2.8354241415,1.7989826347,-1.6719973243
H,0,-4.1395931261,1.8979755208,-0.4361679867
H,0,-2.5908809858,2.769726681,-0.2201585532

```
H,0,-3.2778893922,-1.1740574088,-1.3450316267
H,0,-3.1966330536,-1.861208345,0.2882123532
H,0,-4.4782744748,-0.6891993158,-0.1174378848
H,0,2.0059962239,-0.9781791761,3.2678428973
H,0,0.7082885225,-1.0768266587,4.4903160291
H,0,0.6528959279,-2.093539628,3.0162562161
H,0,1.5313867107,1.9466097554,3.1982207069
H,0,-0.1095711785,2.5583063349,2.9932908126
H,0,0.3107397482,1.6254816686,4.4598915133
B,0,-0.2282467413,-1.9452550862,-0.2116877468
H,0,0.9216179161,-1.2377026117,-0.0893763634
O,0,-0.4634627153,-2.5566277355,-1.4309710351
O,0,-0.5946798481,-2.7803623016,0.8485141707
C,0,-1.1007747384,-3.8184294993,-1.2070150456
C,0,-0.9714503679,-4.0585111131,0.3136274833
H,0,-2.1479146081,-3.7561944546,-1.5286757302
H,0,-0.6034859691,-4.5892198052,-1.8035746497
H,0,-1.9072965689,-4.3900970687,0.7752021221
H,0,-0.1907095338,-4.7902799869,0.5536767956
```


## DMPE_BPinH_rotTS

```
\(\mathrm{E}(\) RB+HF-LYP \()=-1788.72079115\)
\begin{tabular}{lc}
Zero-point correction \(=\) & 0.439968 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.469688 \\
Thermal correction to Enthalpy= & 0.470633 \\
Thermal correction to Gibbs Free Energy= & 0.379299 \\
Sum of electronic and zero-point Energies \(=\) & -1788.280823 \\
Sum of electronic and thermal Energies= & -1788.251103 \\
Sum of electronic and thermal Enthalpies= & -1788.250159 \\
Sum of electronic and thermal Free Energies= \(=\) & -1788.341492
\end{tabular}
\begin{tabular}{cccc}
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 294.734 & 108.419 & 192.227
\end{tabular}
Ir,0,0.0705124255,-0.0205829459,-0.4375441744
P,0,1.4490321462,1.817153812,-0.113275942
C,0,0.4053829467,3.2790322898,0.3921797062
C,0,-0.9155947675,3.2893331948,-0.3820808916
P,0,-1.7075480378,1.5962023982,-0.3528222335
C,0,2.3840587348,2.4107970318,-1.5859498767
C,0,2.7381880799,1.7768653683,1.1980965816
C,0,-2.809423565,1.6632045393,1.1297516807
```

C,0,-2.9038921054,1.7247655978,-1.753167045
B, $0,-1.7050218654,-1.3853332553,-0.5491979796$
O,0,-2.3332605707,-1.8843851644,0.5801468576
C,0,-3.527707129,-2.5662081387,0.1736142976
C, $0,-3.7323365591,-2.1441830362,-1.2982672838$
O,0,-2.4809347674,-1.5619743575,-1.6842882241
B, $0,1.8043261096,-1.1716868336,-0.7685775994$
О,0,3.1290316809,-0.7088228071,-0.760537033
С, $0,4.0186577274,-1.8184632905,-0.9447644793$
C,0,3.1027204122,-2.973720447,-1.3956782353
O,0,1.7817984469,-2.5287880977,-1.0797739746
B,0,0.1672689975,-0.4552486576,1.6676359128
O,0,-0.0604813973, $0.4767056888,2.705702587$
C, $0,0.1882911236,-0.1486681234,3.9747581248$
C,0,0.3061739969,-1.6482141179,3.644057123
O,0,0.4932386704,-1.6893459161,2.2267907378
H,0,0.0938647692,0.2099986281,-2.1164017279
H,0,-0.3833297793,-1.5982228345,-0.7624850631
H, $0,0.9646147654,4.2111344047,0.2500611712$
$\mathrm{H}, 0,0.2177171701,3.1597233303,1.4647342918$
H,0,-1.6097378071,4.0384142517,0.0158086489
$\mathrm{H}, 0,-0.739924258,3.5326212254,-1.436256679$
H,0,-4.5280362765,-1.3954946945,-1.4085262454
H,0,-3.9609036536,-2.9856259629,-1.9588126548
H,0,-4.3579849212,-2.2714992936,0.823000601
H,0,-3.3728055587,-3.6465539817,0.2789069256
H,0,3.312881992,-3.9109131515,-0.8702071926
H,0,3.1744254781,-3.1593051004,-2.4753455617
H,0,4.5227765961,-2.0376152876,0.0052902474
H,0,4.7802200495,-1.5606402035,-1.6882486988
H,0,-0.6066304378,-2.1995470795,3.9049217913
H,0,1.1527346929,-2.1300455408,4.1445772104
H,0,-0.6320606188,0.0749561231,4.6649181392
H,0,1.1154152075,0.2558181036,4.4035692321
H,0,3.4413916382,0.9798836326,0.9528204855
H,0,3.2632609953,2.7356888826,1.2584792997
H,0,2.255503036,1.5564445802,2.1517477163
H,0,3.0649966917,1.6115568198,-1.8849852164
H,0,1.6875086565,2.5946999653,-2.4066525336
H,0,2.952643622,3.3198690614,-1.3629371752
H,0,-3.378055899,0.7311908443,1.1845747065
H,0,-2.1803149169,1.7128730839,2.021292322
H,0,-3.4997681187,2.5126498939, 1.0969684448
H,0,-3.465862199,0.7935950151,-1.840022787

```
H,0,-3.5935642515,2.5644165553,-1.6183725831
H,0,-2.3378111387,1.8514561624,-2.6789705426
```


## dmpeBpin3HHint17

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1788.73274845$

| Zero-point correction $=$ | 0.439466 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.469802 |
| Thermal correction to Enthalpy $=$ | 0.470746 |
| Thermal correction to Gibbs Free Energy $=$ | 0.378039 |
| Sum of electronic and zero-point Energies= | -1788.293282 |
| Sum of electronic and thermal Energies= | -1788.262946 |
| Sum of electronic and thermal Enthalpies $=$ | -1788.262002 |
| Sum of electronic and thermal Free Energies $=$ | -1788.354710 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 294.805 | 110.508 | 195.120 |

C,0,2.6541172174,2.3484341115,-1.3188889605
P,0,1.4306561402,1.8461387463,-0.0362744508
С,0,2.4862685693,1.6939887951,1.463373627
Ir,0,-0.0295106697,0.117625319,-0.6498280867
B,0,-0.0543972632,-0.4628607477,1.4359339043
О,0,0.9302709865,-1.2453237777,2.0305975712
C,0,0.5830248785,-1.4954421602,3.3954000129
С,0,-0.5329782901,-0.4761464146,3.7004848565
O,0,-0.9561311533,-0.0136054711,2.4095973753
P,0,-1.723876939,1.8608697954,-0.6748975706
С, $0,-2.816731864,2.0302296773,-2.152812493$
B, $0,-1.5118837642,-1.3709763804,-0.2291739627$
О, $,,-2.8855528736,-1.088490893,-0.3096350122$
C, $0,-3.604370586,-2.1813281247,0.2724842126$
С,0,-2.5793580922,-3.329742234,0.298563335
О,0,-1.3116424942,-2.6740144087,0.2162082773
B,0,1.5815153808,-1.2002356565,-0.904045944
O, $0,1.5022034724,-2.4730424992,-1.4533867134$
C, $0,2.8144761568,-3.0221335617,-1.5906193907$
С,0,3.7273168037,-2.0540435525,-0.8096988636
O,0,2.9197178841,-0.8877838032,-0.6079151405
C,0,0.4318044598,3.3962000921,0.27564712
С,0,-0.7756965319,3.4766991698,-0.6718311649
C,0,-2.9290182402,2.0838089007,0.7090371446
H,0,0.3734299581,0.6226723199,-2.1902938973

```
H,0,-0.8481069556,-1.0067267479,-1.5438376865
H,0,1.0731957397,4.2808845554,0.1854772051
H,0,0.0925152931,3.3468052454,1.3172928606
H,0,-1.4299583432,4.313885556,-0.401938568
\(\mathrm{H}, 0,-0.4368078145,3.6440449145,-1.7008194213\)
H,0,-3.933842077,-1.9027845478,1.2824575613
H,0,-4.4883540032,-2.406205085,-0.3328363073
H,0,-2.6279504659,-3.9283309768,1.2137712533
H,0,-2.6938017218,-4.0022125656,-0.5618151246
H,0,2.8335648593,-4.0398418993,-1.186714845
H,0,3.0779392809,-3.0699751742,-2.6555199039
H,0,4.0216474924,-2.4616791117,0.1658467855
H,0,4.6357126059,-1.7856770634,-1.3602784291
\(\mathrm{H}, 0,0.234055418,-2.5311448956,3.4925632378\)
H,0,1.4645268411,-1.3677347648,4.0325413103
Н,0,-1.383178187,-0.9161696722,4.2317597372
H,0,-0.1682476214,0.3767136049,4.2884680021
H,0,3.0753579047,0.7820241104,1.3506055506
H,0,3.1443982877,2.5617401349,1.5733435797
H,0,1.8595447226,1.5976218242,2.352345331
H,0,3.2835246222,1.4805322192,-1.5261381517
H,0,2.1254329871,2.6198379252,-2.2350350469
H,0,3.2714544111,3.1867545881,-0.9797239916
H,0,-3.6039633771,1.2255536231,0.7026323656
H,0,-2.3940588667,2.0736817828,1.6606970565
H,0,-3.5045273695,3.0098766315,0.6038225811
H,0,-3.4760681766,1.1591791399,-2.1874370883
H,0,-3.4227188562,2.9418349182,-2.115806468
H,0,-2.202378776,2.0313714886,-3.0564311711
```


## dmpeBpin2PhHtoHTS

$\mathrm{E}($ RB+HF-LYP $)=-1766.33026375$

| Zero-point correction $=$ | 0.457835 |
| :--- | :---: |
| (Hartree/Particle) |  |
| Thermal correction to Energy $=$ | 0.488028 |
| Thermal correction to Enthalpy $=$ | 0.488972 |
| Thermal correction to Gibbs Free Energy $=$ | 0.396770 |
| Sum of electronic and zero-point Energies $=$ | -1765.872429 |
| Sum of electronic and thermal Energies= | -1765.842236 |
| Sum of electronic and thermal Enthalpies $=$ | -1765.841292 |
| Sum of electronic and thermal Free Energies= $=$ | -1765.933494 |

E (Thermal) CV S
$\mathrm{KCal} / \mathrm{Mol} \quad \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin} \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}$

| Total | 306.24 | 112.3 | 194.055 |
| :---: | :---: | :---: | :---: |
| C,0,0.1824238598,3.1912397834,0.96925833 |  |  |  |
| C,0,0.7373678804,1.8967739954,0.950533519 |  |  |  |
| C, $0,2.0775187522,1.7643169066,1.3579920074$ |  |  |  |
| C, 0,2.843022073,2.884333038,1.6961520132 |  |  |  |
| C,0,2.288989848,4.165176428,1.6609397247 |  |  |  |
| C, $0,0.9480586228,4.3118364386,1.3045756628$ |  |  |  |
| Ir,0,-0.4404849845, $0.2101885934,0.1364035454$ |  |  |  |
| H,, ,-1.8431665797, 1.1359261052,0.3034314218 |  |  |  |
| P,0,-1.9051170802,-1.314543836,-0.879918202 |  |  |  |
| C, $0,-2.3468410384,-0.6464429433,-2.5710783515$ |  |  |  |
| C,0,-1.1180676357,-0.0102661022,-3.2418064986 |  |  |  |
| P,0,-0.3024666443,1.1899768262,-2.0698351783 |  |  |  |
| В, $0,-0.3635546673,-1.0648085272,1.8188932076$ |  |  |  |
| O,0,-0.9132010164,-2.3576150913,1.8575913774 |  |  |  |
| C, $0,-0.7495448688,-2.8929832304,3.1792545794$ |  |  |  |
| C, $0,0.2676659535,-1.9491530335,3.845910145$ |  |  |  |
| O,0,0.2337556257,-0.7701101279,3.0395355774 |  |  |  |
| B,0,1.3134845163,-0.9785812922,-0.272189674 |  |  |  |
| O,0,2.3231903485,-1.3678524802,0.6102928325 |  |  |  |
| C, $0,3.3709206986,-2.0364096653,-0.1027032816$ |  |  |  |
| C,0,2.7496982036,-2.3671324485,-1.4698329894 |  |  |  |
| O,0,1.598134974,-1.5120118294,-1.5496591578 |  |  |  |
| H,0,-0.3905860507,0.8949771625,1.5889867397 |  |  |  |
| H,0,4.2328919449,-1.3626140535,-0.1929095844 |  |  |  |
| H,0,3.6857824224,-2.9256702286,0.4521345789 |  |  |  |
| H,0,3.4227361134,-2.1625356421,-2.3086931778 |  |  |  |
| H,0,2.4267809351,-3.4146018842,-1.5345409159 |  |  |  |
| H,0,-0.3984637992,-3.9279964817,3.1171074152 |  |  |  |
| H,0,-1.7194919417,-2.8858396491,3.6939612293 |  |  |  |
| H,0,1.2831663069,-2.3650937128,3.8332239189 |  |  |  |
| H,0,0.0069175757,-1.6985452087,4.8789724077 |  |  |  |
| H,0,-0.8696804822,3.3177261104,0.7319236081 |  |  |  |
| H,0,0.4877746663,5.2973079598,1.3002490362 |  |  |  |
| H,0,2.5235051274,0.7785224614,1.4128970233 |  |  |  |
| H,0,3.8799337359,2.7497293657,1.9959846204 |  |  |  |
| H,0,2.8870488544,5.0326865331,1.9270225185 |  |  |  |
| C, $0,-1.3576594684,-3.0372191705,-1.2446734144$ |  |  |  |
| C,0,-3.5421198484,-1.5731111857,-0.0799562764 |  |  |  |
| C,0,1.3333880291,1.5338324246,-2.8441610074 |  |  |  |
| C, $0,-1.2097137939,2.7707792327,-2.3725293943$ |  |  |  |
| H,0,-0.3663311441,-0.7771208975,-3.4577442888 |  |  |  |
| H,0,-1.3852179976,0.4779923335,-4.1862203323 |  |  |  |

$\mathrm{H}, 0,-2.7707458105,-1.4437167596,-3.1923861307$
$\mathrm{H}, 0,-3.1315326398,0.1042967819,-2.4211858683$
$\mathrm{H}, 0,-1.1515491318,3.0725859448,-3.4236240513$
$\mathrm{H}, 0,-2.2552987992,2.6522216964,-2.0788192564$
$\mathrm{H}, 0,-0.7711308226,3.5538907624,-1.7492747614$
$\mathrm{H}, 0,1.228357586,1.9140080783,-3.8653416601$
$\mathrm{H}, 0,1.858134297,2.2753058913,-2.2352002566$
$\mathrm{H}, 0,1.9129493825,0.6092598627,-2.8447236828$
$\mathrm{H}, 0,-4.1888586841,-2.2203152978,-0.6814241677$
$\mathrm{H}, 0,-3.3658293938,-2.0333146429,0.894343827$
$\mathrm{H}, 0,-4.0196865505,-0.6030492793,0.0727429268$
$\mathrm{H}, 0,-2.1332871411,-3.5967064827,-1.7776368481$
$\mathrm{H}, 0,-0.4437673789,-2.9996263723,-1.8406843919$
$\mathrm{H}, 0,-1.1355872263,-3.5214644814,-0.292195509$

## dmpeBpin3HHTSforn2H2form18

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1788.72215537$

| Zero-point correction $=$ | 0.436230 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.466972 |
| Thermal correction to Enthalpy $=$ | 0.467916 |
| Thermal correction to Gibbs Free Energy= | 0.372940 |
| Sum of electronic and zero-point Energies $=$ | -1788.285925 |
| Sum of electronic and thermal Energies= | -1788.255183 |
| Sum of electronic and thermal Enthalpies $=$ | -1788.254239 |
| Sum of electronic and thermal Free Energies $=$ | -1788.349216 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 293.029 | 110.807 | 199.895 |

C,0,-1.0749873519,-3.6607987997,-0.6074233405
P,0,-0.4168062761,-2.3232923504,0.4840888702
C,0,-1.5259007428,-2.4617804818,1.9476965832
Ir,0,0.0154898299,-0.2071356539,-0.5198800063
B,0,-0.2235884283,0.6264818662,1.4403921289
O,0,-1.4296087291,1.0550337915,1.9855567147
C, $0,-1.1846305845,1.7097837069,3.2327080646$
C,0,0.2513379527,1.2945647537,3.6070563909
O,0,0.801313558,0.7793054919,2.386471907
P,0,2.3438720513,-0.8626036641,-0.3550253654
С,0,3.3666203096,-0.8591400859,-1.8934332613
B,0,0.5775307696,1.8375183636,-0.6936364219
O,0,1.7982376448,2.2242294384,-1.2693483357

> C, $0,1.9650421496,3.6394207221,-1.10894505$ $\mathrm{C}, 0,0.5740589094,4.1384022128,-0.6729964006$ $\mathrm{O}, 0,-0.11363341,2.9562591232,-0.2509382634$ $\mathrm{~B}, 0,-2.0279079043,0.22207254,-0.7583981465$ $\mathrm{O}, 0,-2.5574851318,1.2369177185,-1.5484840404$ $\mathrm{C}, 0,-3.9825721374,1.1266533603,-1.5824785192$ $\mathrm{C}, 0,-4.317326806,0.0916013085,-0.4901082438$ $\mathrm{O}, 0,-3.0675997283,-0.5536990117,-0.219231814$ $\mathrm{C}, 0,1.2127539247,-2.9969335556,1.1104417665$ $\mathrm{C}, 0,2.3649499191,-2.672663973,0.1454138754$ $\mathrm{C}, 0,3.4946662631,-0.0663041984,0.8500914267$ $\mathrm{H}, 0,-0.0783117836,-0.9795456813,-2.0192535682$ $\mathrm{H}, 0,0.1357033627,0.2021495492,-2.1038411083$ $\mathrm{H}, 0,1.1378562915,-4.0753261637,1.2952482071$ $\mathrm{H}, 0,1.3857516917,-2.5095866568,2.0773467843$
> $\mathrm{H}, 0,3.3317366359,-2.9447233958,0.5850006937$
> $\mathrm{H}, 0,2.2571698538,-3.2541759031,-0.7784699489$
> $\mathrm{H}, 0,2.7308130266,3.8301190821,-0.3451825385$
> $\mathrm{H}, 0,2.3026684477,4.0803489257,-2.0523695979$
> $\mathrm{H}, 0,0.6164175427,4.8555555452,0.1531738874$
> $\mathrm{H}, 0,0.0209244421,4.5981876368,-1.5016198051$
> $\mathrm{H}, 0,-4.4346190987,2.1056895213,-1.3918620491$
> $\mathrm{H}, 0,-4.2970592024,0.7916391516,-2.5802361306$
> $\mathrm{H}, 0,-4.6830585952,0.5680623753,0.4286215374$
> $\mathrm{H}, 0,-5.056393416,-0.6494030665,-0.8140321602$
> $\mathrm{H}, 0,-1.2759880681,2.7941992212,3.0925907592$
> $\mathrm{H}, 0,-1.9284226856,1.3929068798,3.9714314348$
> $\mathrm{H}, 0,0.8609998802,2.1316545969,3.9625604721$
> $\mathrm{H}, 0,0.2708116765,0.5079158884,4.3736197697$
> $\mathrm{H}, 0,-2.4993367856,-2.0631044391,1.6551462786$
> $\mathrm{H}, 0,-1.6212502742,-3.4998054144,2.2824147715$
> $\mathrm{H}, 0,-1.1373059904,-1.8488878502,2.7639606951$
> $\mathrm{H}, 0,-2.0566188456,-3.3425160262,-0.9674872543$
> $\mathrm{H}, 0,-0.4185696341,-3.784621578,-1.472103499$
> $\mathrm{H}, 0,-1.1717325125,-4.6142967689,-0.0770793096$
> $\mathrm{H}, 0,3.632258046,0.9732409108,0.5418445802$
> $\mathrm{H}, 0,3.0323006325,-0.0597341372,1.838256773$
> $\mathrm{H}, 0,4.4666694482,-0.5703257941,0.8784578039$
> $\mathrm{H}, 0,3.4621442199,0.1772510932,-2.2266361215$
> $\mathrm{H}, 0,4.3623150502,-1.2851559393,-1.7302265793$
> $\mathrm{H}, 0,2.8522145924,-1.4242671859,-2.6752692968$
$\operatorname{Ir}($ dmpe $)(\mathrm{BPin})_{3}\left(\eta^{2}-\mathbf{H}_{2}\right)$ axial $\mathbf{H}_{\mathbf{2}}$ $\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1788.73068328$

| Zero-point correction= | 0.438508 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.469795 |
| Thermal correction to Enthalpy $=$ | 0.470739 |
| Thermal correction to Gibbs Free Energy= | 0.374074 |
| Sum of electronic and zero-point Energies= | -1788.292176 |
| Sum of electronic and thermal Energies= | -1788.260889 |
| Sum of electronic and thermal Enthalpies $=$ | -1788.259945 |
| Sum of electronic and thermal Free Energies $=$ | -1788.356610 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} / \mathrm{Mol-Kelvin}$ | $\mathrm{Cal} / \mathrm{Mol-Kelvin}$ |
| Total | 294.801 | 112.233 | 203.449 |
| C, 0,2 | 846974,2.709 | 707,-1.7479508 |  |
| P,0,1. | 22527,1.5065 | 46089,-0.38544278 |  |
| C, 0,3 | 314,0.50463 | 044,-0.30855829 |  |
| C, 0,3 | 7879,-0.820735 | 56306,0.4419003 |  |
| $\mathrm{P}, 0,1$. | 23708,-1.710 | 48525,-0.175767 | 469 |
| C, 0,1 | 5396,-3.0486 | 1719,1.07126082 |  |
| Ir,0,0. | 32878,-0.043 | 06033,-0.5239791 |  |
| B,0,-1 | 511907,-1.46 | 294529,-0.51824 | 6673 |
| O,0,-2 | 226676,-1.77 | 198229,-1.6442 | 63968 |
| C,0,-3 | 146582,-2.86 | 035788,-1.3471 | 0955 |
| C,0,-3 | 917494,-3.04 | 6022488,0.1804647 | 7441 |
| O,0,-1. | 503439,-2.30 | 103234,0.54380398 | 9891 |
| C,0,2. | 776151,2.5933 | 95293,1.101845 |  |
| B,0,-0 | $122053,0.096$ | 745252,1.508161 | 317 |
| O,0,- | 451737,0.518 | 197755,2.104011 | 812 |
| C, $0,-1$ | 92085,0.59063 | 72733,3.5207023 |  |
| C,0,-0. | 162559,-0.12 | 201431,3.795794 | 7738 |
| O,0,0 | 10079,-0.200 | 426885,2.511492 | 981 |
| B,0,-1 | 510521,1.528 | 777865,-0.561868 |  |
| O,0,-2 | 050221,1.438 | 095347,-0.918837 | 5084 |
| C, $0,-3$ | 204187,2.690 | $779376,-0.679506$ | 0281 |
| C, $0,-2$ | 643263,3.688 | 031661,-0.453833 | 2316 |
| O,0,- | 366015,2.862 | 293612,-0.248207 | 5349 |
| C,0,2 | 592736,-2.6612 | $769047,-1.6355277$ | 7419 |
| H, 0,0 | 412236,-0.168 | 692998,-2.351863 | 8002 |
| H, 0,4 | 74631,1.091 | 95886,0.1524018 |  |
| H, 0,3 | 01427,0.309 | $77252,-1.345385$ | 628 |
| H,0,4 | 425895,-1.465 | 025129,0.368310 | 631 |
| H, 0,3 | 579679,-0.625 | 936024,1.503141 | 458 |
| H,0,-2 | 396638,4.3303 | 367752,0.419969 |  |

```
H,0,-2.0072344834,4.3335283924,-1.3270382613
H,0,-3.9728858993,2.6003322111,0.2045059498
H,0,-3.9572480216,2.952342048,-1.5375995697
H,0,-2.8821790726,-4.0965164821,0.4797694876
H,0,-3.8728747123,-2.6393056965,0.7092514713
H,0,-2.7813047923,-3.7600302797,-1.8949658423
H,0,-4.13377883,-2.6294713264,-1.672813706
H,0,1.4208610869,3.4031653262,-1.8004205662
H,0,3.187319249,3.2739177511,-1.5822822007
H,0,2.331504388,2.1776001397,-2.7012534074
H,0,1.1370586895,3.232424928,1.0955932276
H,0,1.993728184,1.9691852359,1.9974110679
H,0,2.9306060245,3.2059569582,1.1013986049
H,0,0.6735464923,-3.6514017286,0.7897216054
H,0,2.4270533729,-3.6855405927,1.1523167766
H,0,1.3263651474,-2.5786407231,2.0327373682
H,0,1.592102324,-3.2644366065,-2.0498474718
H,0,2.7361457594,-1.9672924235,-2.4129203842
H,0,3.2368534876,-3.320866607,-1.3651922876
H,0,-0.397161521,-0.0358366231,-2.2738703337
H,0,-1.3152633843,1.6436891508,3.8311834035
H,0,-2.1862280809,0.1051526232,4.0148700381
H,0,0.6429653205,0.4230887165,4.493586771
H,0,-0.1484270088,-1.1383958633,4.1865046514
dmpeBpin3\eta2H219
E(RB+HF-LYP})=-1788.7306832
Zero-point correction= 0.438508 (Hartree/Particle)
Thermal correction to Energy= 0.469795
Thermal correction to Enthalpy=}\quad0.47073
Thermal correction to Gibbs Free Energy= 0.374074
Sum of electronic and zero-point Energies= -1788.292176
Sum of electronic and thermal Energies= -1788.260889
Sum of electronic and thermal Enthalpies= -1788.259945
Sum of electronic and thermal Free Energies= -1788.356610
 E (Thermal) CV S
Total
 KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin
C,0,2.2635846974,2.70917707,-1.7479508981
P,0,1.9223522527,1.5065246089,-0.3854427897
C,0,3.50921314,0.5046350044,-0.3085582933
```

$\mathrm{C}, 0,3.294317879,-0.8207356306,0.4419003416$
$\mathrm{P}, 0,1.7682523708,-1.7107548525,-0.1757672469$
$\mathrm{C}, 0,1.539885396,-3.0486941719,1.071260827$
$\mathrm{Ir}, 0,0.0729132878,-0.043006033,-0.5239791707$
$\mathrm{~B}, 0,-1.4782511907,-1.4637294529,-0.5182476673$
$\mathrm{O}, 0,-2.2442226676,-1.7740198229,-1.6442763968$
$\mathrm{C}, 0,-3.1160146582,-2.8686035788,-1.3471650955$
$\mathrm{C}, 0,-3.0030917494,-3.0496022488,0.1804647441$
$\mathrm{O}, 0,-1.8356503439,-2.3038103234,0.5438039891$
$\mathrm{C}, 0,2.0229476151,2.5933395293,1.1018459633$
$\mathrm{~B}, 0,-0.3139122053,0.0965745252,1.5081617317$
$\mathrm{O}, 0,-1.5003451737,0.5182197755,2.1040113812$
$\mathrm{C}, 0,-1.338292085,0.5906372733,3.5207023076$
$\mathrm{C}, 0,-0.0002162559,-0.1237201431,3.7957947738$
$\mathrm{O}, 0,0.6329810079,-0.2001426885,2.5114924981$
$\mathrm{~B}, 0,-1.3432510521,1.5289777865,-0.561868245$
$\mathrm{O}, 0,-2.6824050221,1.4386095347,-0.9188375084$
$\mathrm{C}, 0,-3.3290204187,2.6904779376,-0.6795060281$
$\mathrm{C}, 0,-2.1747643263,3.6888031661,-0.4538332316$
$\mathrm{O}, 0,-1.0221366015,2.8626293612,-0.2482075349$
$\mathrm{C}, 0,2.4050592736,-2.6612769047,-1.6355277419$
$\mathrm{H}, 0,0.4208412236,-0.1685692998,-2.3518638002$
$\mathrm{H}, 0,4.3122274631,1.0917595886,0.1524018901$
$\mathrm{H}, 0,3.8107301427,0.3092777252,-1.3453850628$
$\mathrm{H}, 0,4.1786425895,-1.4653025129,0.3683104631$
$\mathrm{H}, 0,3.1070579679,-0.6254936024,1.5031417458$
$\mathrm{H}, 0,-2.3318396638,4.3303367752,0.419969175$
$\mathrm{H}, 0,-2.0072344834,4.3335283924,-1.3270382613$
$\mathrm{H}, 0,-3.9728858993,2.6003322111,0.2045059498$
$\mathrm{H}, 0,-3.9572480216,2.952342048,-1.5375995697$
$\mathrm{H}, 0,-2.8821790726,-4.0965164821,0.4797694876$
$\mathrm{H}, 0,-3.8728747123,-2.6393056965,0.7092514713$
$\mathrm{H}, 0,-2.7813047923,-3.7600302797,-1.8949658423$
$\mathrm{H}, 0,-4.13377883,-2.6294713264,-1.672813706$
$\mathrm{H}, 0,1.4208610869,3.4031653262,-1.8004205662$
$\mathrm{H}, 0,3.187319249,3.2739177511,-1.5822822007$
$\mathrm{H}, 0,2.331504388,2.1776001397,-2.7012534074$
$\mathrm{H}, 0,1.1370586895,3.232424928,1.0955932276$
$\mathrm{H}, 0,1.993728184,1.9691852359,1.9974110679$
$\mathrm{H}, 0,2.9306060245,3.2059569582,1.1013986049$
$\mathrm{H}, 0,0.67354649923,-3.6514017286,0.7897216054$
$\mathrm{H}, 0,2.4270533729,-3.6855405927,1.1523167766$
$\mathrm{H}, 0,1.3263651474,-2.5786407231,2.0327373682$
$\mathrm{H}, 0,1.592102324,-3.2644366065,-2.0498474718$

```
H,0,2.7361457594,-1.9672924235,-2.4129203842
H,0,3.2368534876,-3.320866607,-1.3651922876
H,0,-0.397161521,-0.0358366231,-2.2738703337
H,0,-1.3152633843,1.6436891508,3.8311834035
H,0,-2.1862280809,0.1051526232,4.0148700381
H,0,0.6429653205,0.4230887165,4.493586771
H,0,-0.1484270088,-1.1383958633,4.1865046514
dmpeBpin3H2rotTS
E(RB+HF-LYP})=-1788.7297585
\begin{tabular}{lc}
Zero-point correction= & 0.438165 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.468791 \\
Thermal correction to Enthalpy \(=\) & 0.469735 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.375094 \\
Sum of electronic and zero-point Energies \(=\) & -1788.291594 \\
Sum of electronic and thermal Energies= & -1788.260967 \\
Sum of electronic and thermal Enthalpies \(=\) & -1788.260023 \\
Sum of electronic and thermal Free Energies \(=\) & -1788.354665
\end{tabular}
\begin{tabular}{cccl}
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 294.171 & 110.427 & 199.190
\end{tabular}
C,0,1.6295710712,1.4257627731,-3.2722635071
P,0,1.7516811638,0.6954627073,-1.5782951755
C,0,2.7137208302,1.9956481183,-0.6885350432
C,0,2.9954513749,-0.692526472,-1.8050412119
C,0,2.9162348301,-1.7040789755,-0.6487060774
P,0,1.1432234248,-2.198742414,-0.3118677995
C,0,0.8456583558,-3.540103653,-1.5586306248
Ir,0,-0.182636691,-0.1960675422,-0.4578576442
B,0,-1.1786520339,1.6662344266,-0.483138757
О,0,-0.5703359353,2.8638849931,-0.8996857059
C,0,-1.5363456465,3.9221251241,-0.8734548879
C,0,-2.758018069,3.3129318203,-0.1542644044
O,0,-2.5043522538,1.9060914696,-0.1403593539
C,0,1.2754736598,-3.1672062184,1.2517264998
В,0,-1.7963688085,-0.9308162118,0.6825684226
O,0,-1.8476813797,-1.078620862,2.0710101734
C,0,-3.1650728112,-1.4858559787,2.4552685679
C,0,-3.8384885589,-1.9176188982,1.1352910999
O,0,-2.976097771,-1.4165826817,0.1094594724
B,0,0.5062904121,0.5017849244,1.3720890204
```

O,0,1.6402649727,-0.0070081734,2.0380993975
C,0,1.734769491,0.6000814311,3.3335752813
C,0,0.7831493782,1.8104260937,3.2570982413
O,0,-0.0229028813,1.5602294374,2.1054353447
H,0,-0.9806947127,-0.3695123105,-2.115189113
H,0,4.0096158884,-0.2887420568,-1.9077975956
H,0,2.7485927041,-1.1833222998,-2.7549739401
H,0,3.5380026108,-2.5849985991,-0.8494287996
H,0,3.2698755997,-1.2446403791,0.2805428617
H, $0,-1.1224428182,4.7888145619,-0.3468284248$
H,0,-1.7701493544,4.2258702752,-1.9026940834
H,0,-2.8488002911,3.6732106045,0.8783050515
H, $0,-3.7014211812,3.5138345498,-0.6734297034$
H,0,-3.1022550378,-2.2977816706,3.1883112051
H,0,-3.6823639333,-0.6391032207,2.9238601708
H,0,-3.9136834447,-3.0099311658,1.0464294545
Н,0,-4.8414979595,-1.4953285606,1.0134385237
H,0,0.9814809335,2.3033668302,-3.2073720623
H,0,2.6061816846,1.7230764222,-3.6691288902
H,0,1.1678744746,0.7045945559,-3.9527026331
H,0,2.0538986425,2.8559488598,-0.5529856539
H,0,2.9987876883,1.6167126593,0.295629153
H,0,3.609184833,2.2939894137,-1.2437803293
H,0,0.2958697501,-3.5869769879,1.4949597869
H,0,2.0082471584,-3.9768688918,1.168930503
H,0,1.5622436862,-2.4785375844,2.0478073469
H,0,-0.1614529897,-3.94170109,-1.4142394666
H, $0,0.8983944461,-3.1252230225,-2.5690970146$
Н, $0,1.5716213677,-4.3551575643,-1.4671851926$
H,0,-1.203632041,-1.0606828925,-1.7215121579
H,0,1.3266727573,2.7554123381,3.1226762866
H,0,0.1455691108,1.9042060481,4.1421689549
H,0,2.7737748332,0.8818538026,3.5359489706
H,0,1.4178326765,-0.1234664262,4.0951683621
$\operatorname{Ir}($ dmpe $)(\mathrm{BPin})_{3}\left(\mathbf{H}_{\mathbf{2}}\right)$ axial Variational TS for loss of $\mathbf{H}_{\mathbf{2}}$
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1788.71478555$

| Zero-point correction= | 0.434422 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy= | 0.466920 |
| Thermal correction to Enthalpy $=$ | 0.467864 |
| Thermal correction to Gibbs Free Energy= | 0.369153 |
| Sum of electronic and zero-point Energies= | -1788.280364 |
| Sum of electronic and thermal Energies= | -1788.247866 |

$\begin{array}{ll}\text { Sum of electronic and thermal Enthalpies }= & -1788.246921 \\ \text { Sum of electronic and thermal Free Energies }= & -1788.345632\end{array}$

| al) | C | S |
| :---: | :---: | :---: |
| $\mathrm{KCal} / \mathrm{Mol}$ | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total 292.997 | 114.903 | 207. |
| C,0,1.8446262685,-3.0828545762,0.1593887434 |  |  |
| P,0,1.810680153,-1.4756047897,-0.7436307849 |  |  |
| Ir,0,0.0165384058,0.090905304,-0.3576509368 |  |  |
| B, $0,-1.5227176251,-1.3178548049,-0.5715717202$ |  |  |
| O,0,-1.4625007019,-2.6672619558,-0.1867465285 |  |  |
| C, $0,-2.7454573207,-3.2699692447,-0.3972478265$ |  |  |
| C, $0,-3.4774516853,-2.2890370926,-1.3314267071$ |  |  |
| O,0,-2.7391747964,-1.0679624073,-1.2124447582 |  |  |
| C,0,2.2137143541,-2.002157527,-2.4774816463 |  |  |
| С,0,3.3895828492,-0.6419163967,-0.1769479968 |  |  |
| C,0,3.427961773, $0.8315427823,-0.6151367817$ |  |  |
| P,0,1.8117868992,1.7041855036,-0.2092281357 |  |  |
| C,0,2.1560456902,2.5148762034,1.4152180677 |  |  |
| C, $0,1.838328554,3.1467013501,-1.3684962125$ |  |  |
| B,0,-0.0452313694,-0.387438912,1.5924662677 |  |  |
| O,0,1.120782011,-0.467368202,2.3895462989 |  |  |
| C, $0,0.7233984162,-0.6884121816,3.7506697777$ |  |  |
| С,0,-0.7484576133,-1.1347496834,3.6481016432 |  |  |
| O,0,-1.1607687204,-0.7093749808,2.3501454753 |  |  |
| B, $0,-1.5004995694,1.5098843299,-0.1064549795$ |  |  |
| O,0,-2.2980864785,1.8228585489,0.9895155615 |  |  |
| C,0,-3.1469995466,2.9265164741,0.6585096769 |  |  |
| C,0,-3.0160725515,3.072127221,-0.8693585484 |  |  |
| O,0,-1.8193861188,2.3508020074,-1.1889190422 |  |  |
| H,0,4.2731571401,-1.1846566661,-0.5341484439 |  |  |
| $\mathrm{H}, 0,3.3707559131,-0.7056394235,0.9162721301$ |  |  |
| H,0,4.2766175263,1.3570567841,-0.161676472 |  |  |
| H,0,3.5548124627,0.8994662196,-1.7031136533 |  |  |
| H,0,-2.9207857811,4.1135544129,-1.1954363295 |  |  |
| Н,0,-3.8640464784, 2.6194442525,-1.3992278908 |  |  |
| H,0,-2.8012672274,3.8245029556,1.18943734 |  |  |
| H,0,-4.1717092389,2.7132295637,0.9801786385 |  |  |
| H,0,-4.5196012001,-2.1201585803,-1.0415246874 |  |  |
| H,0,-3.4613348499,-2.6233925197,-2.377689495 |  |  |
| H,0,-3.2567707308,-3.3767735701,0.5682010463 |  |  |
| H,0,-2.6209671841,-4.2665462525,-0.8345562249 |  |  |
| H,0,-1.3863650098,-0.6741760636,4.4092727898 |  |  |

```
H,0,-0.8520820519,-2.2255354338,3.7229921666
H,0,0.829468976,0.2482074207,4.3139920172
H,0,1.372115034,-1.4420416237,4.2092727296
H,0,2.7317046046,-3.6773171606,-0.0828465264
H,0,1.8251225835,-2.8703765867,1.2305936208
H,0,0.935071547,-3.6326401305,-0.0918556246
H,0,3.1211506569,-2.6141422954,-2.5165810722
H,0,1.3765433904,-2.5819404122,-2.876403499
H,0,2.3487088114,-1.124175114,-3.1154900763
H,0,2.743027548,3.7531447647,-1.2539861912
H,0,1.7728132462,2.7872510003,-2.3990698624
H,0,0.9567534565,3.7639761591,-1.1776262062
H,0,3.0669602937,3.1217669025,1.3820453181
H,0,1.3066157591,3.1518472038,1.6775400813
H,0,2.2464501998,1.7371740195,2.1757529583
H,0,-0.3877472589,0.9071199399,-3.2160256608
H,0,-0.0156290325,0.2808499997,-3.0420140128
```


## $\operatorname{Ir}($ dmpe $)(\mathrm{BPin})_{2}(\mathrm{H})$ equatorial $\mathbf{H}$

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1534.11454072$

| Zero-point correction= | 0.359756 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.385069 |
| Thermal correction to Enthalpy $=$ | 0.386013 |
| Thermal correction to Gibbs Free Energy $=$ | 0.302825 |
| Sum of electronic and zero-point Energies $=$ | -1533.754785 |
| Sum of electronic and thermal Energies $=$ | -1533.729472 |
| Sum of electronic and thermal Enthalpies= | -1533.728527 |
| Sum of electronic and thermal Free Energies= $=$ | -1533.811716 |


|  | $\mathrm{E}($ Thermal $)$ | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 241.634 | 90.546 | 175.085 |

C,0,-3.0908270668,-0.2034950365,1.6085086627
С,0,-2.1125533729,-0.8864667766,2.5799144256
P,0,-0.3236234788,-0.6040937708,2.067610353
Ir, $0,-0.2650876174,-0.4499660251,-0.3437365977$
В,0,-0.1840587006,1.5485975777,-0.4002988167
O,0,0.8332082568,2.3164613763,-0.9505569214
C,0,0.4373082141,3.6888641044,-0.9345790761
C, $0,-0.728894896,3.7416612346,0.0720774595$
O,0,-1.1674407162,2.3793709901,0.1762893662
P,0,-2.6244103953,-0.5512189594,-0.1740050796

```
B,0,-0.1794673097,-0.393747027,-2.4248149469
О,0,-0.6900778638,0.5744651517,-3.2964764983
C,0,-0.2976614081,0.245732961,-4.6352188185
C,0,0.1482029132,-1.2261844841,-4.5517755781
O,0,0.3767077606,-1.4490242551,-3.1551437715
H,0,1.3570864299,-0.3767728445,-0.4399983812
C,0,-3.7013023135,0.6087963623,-1.1184174066
C,0,-3.4419015773,-2.1863648087,-0.498800391
H,0,-4.1245871196,-0.5089069842,1.8107442649
H,0,-3.0364617041,0.8849898502,1.7198320502
C,0,0.1510634362,0.9090674623,3.019785358
C,0,0.5620032129,-1.9312465997,3.0097266455
H,0,-2.2796579768,-0.5506940884,3.6102814901
H,0,-2.2702924111,-1.9726008907,2.5705928682
H,0,-1.5576134904,4.3740538143,-0.2623319461
H,0,-0.4038897167,4.0929960735,1.0609309444
H,0,0.120189174,3.9856935251,-1.9427526467
H,0,1.2842520929,4.3165882844,-0.6390932837
H,0,1.0668000611,-1.4275998554,-5.1124961164
H,0,-0.6302002917,-1.9139804942,-4.9101203809
H,0,0.5222868283,0.9065710756,-4.9456579557
H,0,-1.1405938965,0.4005488936,-5.3173710631
H,0,-4.7588977277,0.4876075889,-0.8616551459
H,0,-3.3747188269,1.6266455777,-0.8967106739
H,0,-3.5568559624,0.4308873887,-2.1868664146
H,0,-4.5147391619,-2.1540598826,-0.2809132468
H,0,-3.3002046203,-2.4550054918,-1.5493237247
H,0,-2.9785372206,-2.9668214462,0.1117355572
H,0,-0.0279125064,0.7919713731,4.0937773395
H,0,1.2115658525,1.113501586,2.8487670509
H,0,-0.4239778106,1.7557618975,2.6380877594
H,0,0.3121085519,-1.9171245893,4.0759691057
H,0,0.3072350908,-2.9109669289,2.5956791763
H,0,1.6394632846,-1.78683091,2.8923840049
IrDMPE_Bpin2_H
E(RB+HF-LYP})=-1534.10362895
Zero-point correction= 0.359390 (Hartree/Particle)
Thermal correction to Energy=
 0.385038
Thermal correction to Enthalpy= 0.385982
Thermal correction to Gibbs Free Energy=
 0.301400
Sum of electronic and zero-point Energies= -1533.744239
Sum of electronic and thermal Energies= -1533.718591
```

$\begin{array}{ll}\text { Sum of electronic and thermal Enthalpies }= & -1533.717647 \\ \text { Sum of electronic and thermal Free Energies }= & -1533.802229\end{array}$

|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 241.615 | 91.251 | 178.017 |

C, $0,-2.8648647651,0.4645886701,1.9304694162$
P,0,-2.4166779648,0.0456416457,0.1522277106
Ir,0,-0.0274203529,-0.0453603326,0.022839083
B,0,2.0554028506,-0.0310732189,-0.094549144
O,0,2.8126376785,-1.1597712614,0.2557608872
C, $0,4.1728548822,-0.9422125286,-0.1444136196$
C, $0,4.2593144817,0.5779431528,-0.3774916502$
O,0,2.8969135319,0.9970930337,-0.5188233936
С,0,-1.9402784214,-0.2551487071,2.9276640442
P,0,-0.1353950232,-0.0988771989,2.4191850635
B, $0,0.0879854698,0.1161112745,-2.0540531624$
O,0,-0.3450070973,1.193319828,-2.8338373821
C,0,0.0402265426,0.9667317549,-4.1952856667
С,0,0.4001699879,-0.5302544997,-4.2485847001
O,0,0.5931775777,-0.8980597354,-2.8771703984
H,0,0.0536145534, 1.4925392966,-0.0092783509
С, $0,-3.3236315487,1.3384884024,-0.8043821065$
C, $0,-3.4458652578,-1.4635766875,-0.1800856203$
H,0,-3.9183133872,0.2369022436,2.1330585072
H,0,-2.7461185075,1.5506934819,2.0263398021
C,0,0.4125874027,1.4339551444,3.2994377424
C,0,0.6782529759,-1.4240819422,3.4222831773
H,0,-2.0957311505,0.1153972158,3.9479815062
Н,0,-2.1662552947,-1.3289951885,2.9403636723
H,0,-0.7857722575,1.232347869,-4.8639854237
H,0,0.89893424,1.6054251227,-4.439717054
H,0,-0.410017914,-1.1352256797,-4.6782274751
Н, $0,1.3141974109,-0.7309794192,-4.8171623802$
H,0,4.8509711633,-1.2963568572,0.6393248466
H,0,4.3767673158,-1.5116293263,-1.0604021769
H,0,4.7150406308,1.1006812639,0.4747116824
H,0,4.822156964,0.840612544,-1.2792392193
H,0,-3.1645880762,1.1613006701,-1.8706534427
H,0,-4.3960528788,1.3431605121,-0.5829201495
H,0,-2.8958104325,2.3165918506,-0.5703218491
$\mathrm{H}, 0,-3.3103581366,-1.7631979634,-1.2231132735$
H,0,-3.1080063168,-2.2903158752,0.4514907394

```
H,0,-4.5104456844,-1.2850467482,0.005405727
H,0,1.7556345075,-1.3817245473,3.2428802606
H,0,0.4800648007,-1.3190604713,4.4942686853
H,0,0.3252786016,-2.40271384,3.0850101844
H,0,1.4786126278,1.585702418,3.1107724469
H,0,-0.1213785153,2.29647137,2.8923843205
H,0,0.2387249204,1.3742572119,4.3791351363
```

IrDMPE_Bpin2_H_n2Ph
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1766.36443853$

| Zero-point correction= | 0.461251 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.492047 |
| Thermal correction to Enthalpy $=$ | 0.492991 |
| Thermal correction to Gibbs Free Energy $=$ | 0.396899 |
| Sum of electronic and zero-point Energies= | -1765.903187 |
| Sum of electronic and thermal Energies= | -1765.872392 |
| Sum of electronic and thermal Enthalpies $=$ | -1765.871448 |
| Sum of electronic and thermal Free Energies $=$ | -1765.967539 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 308.764 | 111.446 | 202.242 |

C,0,-3.3742302775,2.0381236017,-0.6916854346
P,0,-2.4603352407,0.4392279992,-0.8190744037
С,0,-2.7603394604,-0.008435641,-2.5976166904
C,0,-3.6030530002,-0.7445665267,0.0984236521
C,0,-2.8672691655,-2.0224602725,0.536331256
P,0,-1.225867761,-1.6052309456,1.3495980118
С,0,-0.3692589608,-3.2395167185,1.4416162101
Ir,0,-0.3143342984,0.3155361918,0.2407810248
B,0,0.4540203836,2.1071845655,-0.5212724195
O,0,1.6532516807,2.2135566889,-1.2442967219
C,0,1.8222712759,3.5650687033,-1.6895857863
C,0,0.7715814016,4.3628859025,-0.894027942
O,0,-0.1359992227,3.3697739815,-0.403099618
B,0,1.4056839768,0.3458902778,1.4365589429
O,0,1.8255951955,1.41228505,2.2376550277
C,0,2.963018415,1.0131627932,3.0086711899
C,0,3.4138605001,-0.3144654564,2.3707456266
O,0,2.2865115681,-0.7349689737,1.5919588314
С,0,-1.7084473963,-1.3430515981,3.1180288915
H,0,-0.8503568916,1.2556173211,1.350952472

```
H,0,-4.482654819,-0.9826522303,-0.5114982343
H,0,-3.9633378114,-0.2007676784,0.980065662
H,0,-3.4943414097,-2.6310573374,1.1992684626
H,0,-2.632891715,-2.6396672196,-0.3398887098
H,0,0.2302333681,5.0890128988,-1.51021144995
H,0,1.2172072979,4.8967251957,-0.0448454031
H,0,1.6485179094,3.616564405,-2.773013446
H,0,2.8477232846,3.8940916663,-1.4912767627
H,0,3.6618861542,-1.0838891202,3.1097976963
H,0,4.2811665506,-0.1818618835,1.7106234168
H,0,2.6649068878,0.8868657404,4.0584801299
H,0,3.732468602,1.7911872657,2.9647486769
H,0,-2.8331563128,2.7981155933,-1.2600113816
H,0,-4.4025645733,1.9582379065,-1.0596691979
H,0,-3.3803402529,2.357500317,0.353142478
H,0,-2.1913787909,0.6734926082,-3.2361076221
H,0,-2.4064547146,-1.0241014103,-2.7949243032
H,0,-3.8208775148,0.0565776555,-2.8635837542
H,0,0.5572651811,-3.1015924919,2.0050003154
H,0,-0.9855945657,-4.0050166425,1.9249144321
H,0,-0.0963017008,-3.5649490408,0.4350317264
H,0,-0.804516855,-1.1565110927,3.7040176748
H,0,-2.3435285998,-0.4571641804,3.1979344926
H,0,-2.2355792828,-2.2086339882,3.5333676012
H,0,0.3627104031,-0.3301119262,-1.742551174
C,0,1.0322915297,-1.1997071099,-1.8614929737
C,0,0.5106937504,-2.4576286501,-2.1807166905
C,0,1.3736007467,-3.5248529941,-2.4402539736
C,0,2.7560446074,-3.3302116799,-2.3816660963
C,0,3.274572124,-2.0698262137,-2.0741812925
C,0,2.4151403645,-1.0014475583,-1.8129254753
H,0,-0.5642668068,-2.6043746706,-2.238996077
H,0,0.9712311443,-4.5020864599,-2.6931875586
H,0,3.4283449176,-4.1596559607,-2.5840499546
H,0,4.3501689152,-1.9212324992,-2.0366284842
H,0,2.7948437007,-0.0138769949,-1.5770543037
IrDMPE_BPin2_H_PhH_CHAct_TS
E(RB+HF-LYP})=-1766.3381178
Zero-point correction= 0.457836 (Hartree/Particle)
Thermal correction to Energy=}0.48833
Thermal correction to Enthalpy=}0.48927
Thermal correction to Gibbs Free Energy= 0.396013
```

| Sum of electronic and zero-point Energies $=$ | -1765.880282 |
| :--- | :---: |
| Sum of electronic and thermal Energies= | -1765.849785 |
| Sum of electronic and thermal Enthalpies $=$ | -1765.848841 |
| Sum of electronic and thermal Free Energies $=$ | -1765.942105 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 306.434 | 112.490 | 196.292 |
| C, $0,1.5420154597,-0.7795153375,-2.4609146449$ |  |  |  |
| C,0,0.4770124936,-1.1147522095,-1.6013719013 |  |  |  |
| C,0,-0.372300773,-2.1516929149,-2.0354376221 |  |  |  |
| C,0,-0.2118313725,-2.7768166649,-3.2760220027 |  |  |  |
| C, 0, 0.8292112628,-2.3987879812,-4.1239361295 |  |  |  |
| C,0,1.7091706596,-1.4018429138,-3.7015189706 |  |  |  |
| Ir,0,-0.0112349356,0.1014950164,0.2310148249 |  |  |  |
| B, $0,1.4791835412,1.5176846634,-0.1768601656$ |  |  |  |
| O,0,1.262117465,2.8996590083,-0.2662047501 |  |  |  |
| C,0,2.5214601882,3.5744280976,-0.3732600441 |  |  |  |
| C,0,3.5368941426,2.4531244628,-0.673351253 |  |  |  |
| O,0,2.8315619865,1.2427405117,-0.3842354531 |  |  |  |
| P,0,-1.8808656913,-1.2374935909,1.0629337171 |  |  |  |
| C,0,-1.9322258376,-3.078182102,1.2548103844 |  |  |  |
| P,0,-1.7364684122,1.2848430421,-0.9631732499 |  |  |  |
| C, $0,-1.8149087222,1.132236249,-2.8001724123$ |  |  |  |
| B,0,1.1286100225,-0.4061450756,1.9340629166 |  |  |  |
| O,0,0.9562430713,-1.5990468809,2.6488134469 |  |  |  |
| C,0,1.752951371,-1.5472668022,3.8415097079 |  |  |  |
| C, 0,2.6855660352,-0.3395765636,3.6237937173 |  |  |  |
| O,0,2.0761578911,0.392659501,2.555784125 |  |  |  |
| C, 0, -3.3647494919,-0.8565924436,-0.0152622596 |  |  |  |
| C, 0,-3.4031745031,0.6362462882,-0.3831375229 |  |  |  |
| C, $0,-2.458842511,-0.7209577516,2.742658665$ |  |  |  |
| C,0,-1.9147368007,3.0987980669,-0.7012598145 |  |  |  |
| H,0,-2.7018721834,1.6303437274,-3.204666283 |  |  |  |
| H,0,-0.9176925116,1.5885118972,-3.2261457182 |  |  |  |
| H,0,-1.8167857913,0.0779707765,-3.0848174311 |  |  |  |
| H,0,-0.9789525812,3.5800397003,-0.9907194941 |  |  |  |
| H,0,-2.0643619534,3.2877835696,0.3646888909 |  |  |  |
| H,0,-2.7538534659,3.5105190218,-1.2712386245 |  |  |  |
| H,0,-3.6688741953,1.2307677077,0.4988815786 |  |  |  |
| H,0,-4.1681328996,0.8347971688,-1.1427902544 |  |  |  |
| H,0,-4.2968991926,-1.1605249693,0.4764971475 |  |  |  |
| H,0,-3.2608333547,-1.4649251333,-0.9208230621 |  |  |  |

$\mathrm{H}, 0,-2.6305944316,0.3576790664,2.7568910346$
$\mathrm{H}, 0,-3.3727727841,-1.2445074806,3.0426276922$
$\mathrm{H}, 0,-1.6610872978,--9.9438673427,3.4553235397$
$\mathrm{H}, 0,-2.9039695866,-3.4187132215,1.6277494786$
$\mathrm{H}, 0,-1.1509106424,-3.3492034832,1.9695710531$
$\mathrm{H}, 0,-1.7138275817,-3.5792242412,0.3097063047$
$\mathrm{H}, 0,-0.3873604862,1.1837287588,1.3906245382$
$\mathrm{H}, 0,2.2932671573,-2.4910580968,3.9640683788$
$\mathrm{H}, 0,1.0953138358,-1.4104960774,4.7102960523$
$\mathrm{H}, 0,3.6946857877,-0.6468328583,3.3209811379$
$\mathrm{H}, 0,2.7704250719,0.3000910226,4.5079933049$
$\mathrm{H}, 0,2.2601088492,-0.0330149914,-2.1432656176$
$\mathrm{H}, 0,2.5410515457,-1.1069929948,-4.3372044668$
$\mathrm{H}, 0,0.9609307469,-2.8831250582,-5.0876411692$
$\mathrm{H}, 0,-0.9014808594,-3.5637454687,-3.5735373272$
$\mathrm{H}, 0,-1.1897642591,-2.4789754732,-1.4038661007$
$\mathrm{H}, 0,4.4339688387,2.5137602506,-0.0487272104$
$H, 0,3.8509872681,2.4484778207,-1.7258073517$
$\mathrm{H}, 0,2.7376596944,4.0848501223,0.5736627644$
$\mathrm{H}, 0,2.4716456343,4.3285369465,-1.1663429504$
$\mathrm{H}, 0,1.0184024836,-1.1269006318,-0.0485584519$

## IrDMPE_Bpin2_n2BpinH_Ph_goodgsC

$\mathrm{E}($ RB+HF-LYP $)=-2019.76524937$

| Zero-point correction= | 0.524029 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.559180 |
| Thermal correction to Enthalpy $=$ | 0.560124 |
| Thermal correction to Gibbs Free Energy $=$ | 0.456708 |
| Sum of electronic and zero-point Energies $=$ | -2019.241220 |
| Sum of electronic and thermal Energies= | -2019.206069 |
| Sum of electronic and thermal Enthalpies $=$ | -2019.205125 |
| Sum of electronic and thermal Free Energies= | -2019.308541 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 350.891 | 129.482 | 217.657 |

C,0,-4.5085209495,0.5984562211,-0.7243304511
С,0,-3.2012559851,0.6296480109,-0.2246578457
C,0,-2.223509312,-0.3221890556,-0.5817575985
С,0,-2.647496307,-1.2865601803,-1.5235440866
C,0,-3.9486257811,-1.3281495674,-2.0354202596
C,0,-4.8967691432,-0.3888314175,-1.6290528298

Ir,0,-0.1020143753,-0.2511605662,0.0441444351
B,0,-0.2755411531,1.7952799817,-0.326213911
O,0,-0.6908626553,2.7400208556,0.6244987775
С, $0,-0.8674206802,4.0053652268,-0.0297902913$
C,0,-0.2061831923,3.8175463653,-1.4100102687
O,0,-0.080987357,2.4005018847,-1.5572515772
P,0,-0.5779562199,0.0262224958,2.3383165355
C,0,-2.2937592455,0.4140686399,2.8988417457
P, $0,-0.0652771697,-2.6817878967,0.6515663279$
C, $0,-1.0701241291,-3.9865110927,-0.1912994303$
B,0,1.9147247177,0.2317284044,0.6604182226
O,0,2.4229380254,1.5259878746,0.6728863926
C,0,3.8016281614,1.5026532947,1.0517488901
C,0,4.0149637455,0.0914607899,1.6349649548
O,0,2.8585957994,-0.6480274909,1.2120096724
B,0,1.3243950285,-0.6920257931,-1.5339238898
O,0,2.2477203982,0.1665563103,-2.1156751461
C,0,3.007858877,-0.5659300966,-3.0813844479
C, $0,2.7321906919,-2.0436197458,-2.74585903$
O,0,1.5234448275,-2.007319147,-1.9763548903
C,0,-0.2196478577,-1.5798857209,3.2131264032
С,0,-0.7389217342,-2.7664552071,2.3926564785
C, $, 0.0 .390028253,1.2533269974,3.3134334016$
C, $0,1.5531196164,-3.5602534327,0.8259511055$
H,0,4.0584026455,0.0956495956,2.7321497566
H,0,4.9206117262,-0.3960898349,1.2602601542
H,0,4.0000010501,2.2987111233,1.7769909288
H,0,4.420774359,1.6819402436,0.1641186974
H,0,3.534423585,-2.4842813158,-2.1392088295
H,0,2.5833081113,-2.6670203507,-3.6326782754
H,0,4.0657864195,-0.2977902395,-2.9991885828
H,0,2.6597458556,-0.299717058,-4.0874475764
H,0,-0.3995519108,4.7970786442,0.5644787928
H,0,-1.940795172,4.2198268791,-0.1120430105
H,0,0.7912247379,4.2730520518,-1.4530931323
H,0,-0.8094502244,4.2216680168,-2.2291029832
H,0,-0.0249372923,-0.309697713,-1.6232626274
H,0,-2.9360034466,1.4428526297,0.4431937472
H,0,-5.2205276405,1.3597473488,-0.4109282856
H,0,-1.9378136209,-2.0211465734,-1.8927578451
H,0,-4.2155857506,-2.0929437801,-2.762271742
H,0,-5.9096833815,-0.4156058818,-2.0222935492
H,0,-0.4696782452,-3.7201235955,2.8613438482
H,0,-1.8326660073,-2.7344669868,2.3216943644

```
H,0,0.8693855407,-1.6409810291,3.3175260771
H,0,-0.6511744962,-1.560836324,4.2205969997
H,0,0.0224732849,1.3009229003,4.343215481
H,0,1.4457946092,0.9776013137,3.320085887
H,0,0.2844319762,2.2245585898,2.8277348821
H,0,-2.3582514821,0.3005677749,3.985816684
H,0,-2.5305343739,1.4457470635,2.6327989784
H,0,-3.016878335,-0.2400634074,2.4099993575
H,0,1.4267434519,-4.5288289298,1.3214088918
H,0,1.9660926903,-3.7107947271,-0.1730747613
H,0,2.2472379902,-2.9297714317,1.3831172939
H,0,-0.9996118761,-4.9371628865,0.3476928654
H,0,-2.1146042344,-3.6755429927,-0.2508402395
H,0,-0.6920214385,-4.1258350597,-1.2074356363
```

IrDMPE_Bpin2_Ph_H2_TSlossH2
$\mathrm{E}($ RB+HF-LYP $)=-1766.31805399$

| Zero-point correction= | 0.454522 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.486964 |
| Thermal correction to Enthalpy= | 0.487908 |
| Thermal correction to Gibbs Free Energy= | 0.390236 |
| Sum of electronic and zero-point Energies= | -1765.863532 |
| Sum of electronic and thermal Energies= | -1765.831090 |
| Sum of electronic and thermal Enthalpies $=$ | -1765.830146 |
| Sum of electronic and thermal Free Energies= | -1765.927818 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 305.574 | 117.466 | 205.568 |

C,0,0.3765703776,-2.2196092172,4.0295738812
С,0,-0.8595199694,-1.7477847153,3.5840957291
С,0,-0.9804021337,-1.0706019669,2.3683554896
C,0,0.139296253,-0.8353678842,1.5474750971
C,0,1.3763359362,-1.3201128436,2.0140822855
C,0,1.4974751794,-1.9989788375,3.2327599694
Ir,0,-0.0040846225,0.1520972388,-0.2351437242
P,0,1.8012694302,1.7509938514,0.1958612013
C,0,2.5008916861,1.985065517,1.892732493
B,0,-1.5373703099,-1.114326778,-0.8577451865
O,0,-1.8222244933,-2.4149303182,-0.4485449074
C, $0,-3.0236905375,-2.8556982343,-1.0929068345$
C,0,-3.2328284433,-1.8522525943,-2.2429465362

O,0,-2.410185567,-0.732629748,-1.8884812745
B, $0,-1.563310143,1.4159257935,0.3252128761$
О, $0,-1.7317923175,2.5823625847,-0.4471761437$
С, $0,-3.0150260297,3.1507879974,-0.1469447539$
C, $0,-3.4071348023,2.4962399003,1.1893247306$
O,0,-2.5841931353,1.3255776036,1.2662227164
P,0,1.740739464,-1.0899277898,-1.3819093447
C,0,3.4055310061,-0.2990684778,-1.007814814
C,0,3.2819994181,1.2271255812,-0.8504300066
C,0,1.6372220019,-0.9399868936,-3.2269262459
С,0,2.0653685539,-2.8958010762,-1.1691914496
C,0,1.5861291799,3.5067247701,-0.3476808061
H,0,3.4041477766,2.603417043,1.874152438
H,0,1.7426633719,2.4739342561,2.511025191
H,0,2.7196153465,1.0171366594,2.3463529546
H,0,0.7862247069,3.9609896238,0.2411293173
H,0,1.2764500618,3.5320526197,-1.3953036247
H,0,2.5071198395,4.0866038631,-0.2259955255
H,0,3.1242330868,1.6868545579,-1.8340796626
H,0,4.2076324434, 1.6551916029,-0.44803905
H,0,4.1341657891,-0.5509904443,-1.7880832583
H,0,3.7691810767,-0.7496192535,-0.0774015314
H,0,1.5680208597,0.112854119,-3.5137220537
H,0,2.5037094071,-1.3907724847,-3.7219434422
H,0,0.7262380298,-1.4367338601,-3.571384857
H,0,2.9463087138,-3.2261253742,-1.7293234949
Н, $0,1.1852193175,-3.4446376648,-1.5144255522$
H,0,2.1966172331,-3.1166428486,-0.1077315357
H,0,-0.3595517941,2.1877590316,-3.3511712688
H,0,-3.8503036987,-2.8326369178,-0.3710673994
H,0,-2.8997793108,-3.886737625,-1.4399786915
$\mathrm{H}, 0,-4.2732294671,-1.5276199252,-2.3461175121$
H,0,-2.9023093623,-2.2562515559,-3.2095583382
H,0,-1.9542241907,-0.7128790739,2.0646368151
H,0,-1.7510855963,-1.9070311961,4.1864903308
H,0,0.4630592815,-2.7472107933,4.9752744889
H,0,2.47624961,-2.3534613868,3.5493120214
H,0,2.2784269035,-1.1691352084,1.4292196445
H,0,-4.4621529727,2.2079108042,1.2319998875
H,0,-3.1918985827,3.1470710929,2.047131065
H,0,-3.7194328652,2.9001742425,-0.9503019368
H,0,-2.9318311459,4.2407323126,-0.0850611469
H,0,-0.7338410334,2.2932032659,-2.7140963019

| IrDMPE_Bpin2_Ph |  |
| :--- | :---: |
| E(RB+HF-LYP) $=-1765.13849868$ |  |
|  |  |
| Zero-point correction= | 0.441653 (Hartree/Particle) |
| Thermal correction to Energy= | 0.472381 |
| Thermal correction to Enthalpy | 0.47325 |
| Thermal correction to Gibbs Free Energy= | 0.377284 |
| Sum of electronic and zero-point Energies= | -1764.696845 |
| Sum of electronic and thermal Energies= | -1764.666118 |
| Sum of electronic and thermal Enthalpies= | -1764.665174 |
| Sum of electronic and thermal Free Energies= | -1764.761214 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 296.423 | 110.797 | 202.134 |

C,0,-0.899171589,-1.2979418575,3.7409484584
С,0,-1.0078541597,-0.7643931448,2.4545616874
C, $0,0.1179622943,-0.6433362758,1.6177390545$
C,0,1.3464998803,-1.0880376993,2.1417556892
С,0,1.4552103345,-1.6230634482,3.4310682953
C,0,0.3288454678,-1.732894453,4.2431185358
Ir, $0,-0.0057083248,0.1287077518,-0.26839179$
B, $0,-1.5517687629,-1.1754045996,-0.7644865066$
O,0,-2.2923445192,-0.9651471061,-1.9389897408
C,0,-3.1657188525,-2.08335238,-2.1466906002
C, $0,-3.1336550744,-2.8454591571,-0.8073665422$
O,0,-1.9722844484,-2.3433589398,-0.1361161616
B, $0,-1.550766814,1.4711937757,0.1270114247$
O,0,-2.6070369634,1.4698680358,1.0338918395
C,0,-3.4007318635,2.6469495986,0.839041511
С,0,-2.9480716236,3.1878489175,-0.5289740963
O,0,-1.6682489103,2.5740509056,-0.7385505275
P,0,1.7396577681,-1.2469715785,-1.2518019456
С,0,1.6416769351,-1.2939905279,-3.1030219161
P,0,1.8048081884,1.7566752875,-0.0137668916
C, $0,1.5911486331,3.4310594633,-0.7702228038$
C, $0,2.0653594555,-3.0197356328,-0.8455340758$
С,0,3.4062592756,-0.4242930494,-0.9645342661
C,0,3.2886560002,1.1100933721,-0.9849019688
C,0,2.4984988472,2.1893096314,1.6463958189
H,0,3.4114127753,2.7877866091,1.5612711228
H,0,1.7441488218,2.7610179893,2.1944083474
H,0,2.7002002404,1.281066583,2.2172388098

```
H,0,0.8008105902,3.9611722996,-0.2347481962
H,0,1.2637238543,3.3213897394,-1.8072318374
H,0,2.5166568395,4.0153922635,-0.7387334509
H,0,3.1387003249,1.4545312559,-2.015750346
H,0,4.2138339213,1.5783330219,-0.6288762678
H,0,4.1361218526,-0.7678885782,-1.7077860148
H,0,3.7660451087,-0.7633932696,0.0133548511
H,0,1.5981065883,-0.2760558193,-3.5011464181
H,0,2.499288051,-1.8124370105,-3.5443524691
H,0,0.7201172374,-1.803722016,-3.3961810593
H,0,2.9592120867,-3.4010169244,-1.3501697676
H,0,1.1966851935,-3.6091333372,-1.1509222326
H,0,2.1757987414,-3.1272085788,0.2357556407
H,0,-4.0219472159,-2.6410657813,-0.1957660968
H,0,-3.0469868178,-3.9297103763,-0.9334644036
H,0,-4.1656957739,-1.726440169,-2.4137954278
H,0,-2.7865962174,-2.6928985428,-2.9783378883
H,0,-1.9758049667,-0.4352147997,2.1038928306
H,0,-1.7943319635,-1.3744319754,4.3541338711
H,0,0.4048492815,-2.1483085955,5.2440789859
H,0,2.4277238097,-1.9530281543,3.7904851385
H,0,2.2499085295,-1.0182807248,1.5442644219
H,0,-4.4628291639,2.3837126138,0.8661488184
H,0,-3.2001165297,3.3578972009,1.6515217203
H,0,-3.6299065428,2.8893585029,-1.335598009
H,0,-2.8440641452,4.2776948664,-0.5487988431
IrDMPE_Bpin_H2_PhH_CHActTS
E}(\mathrm{ RB +HF-LYP })=-1512.9221608
\begin{tabular}{lc}
Zero-point correction= & 0.395459 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.420876 \\
Thermal correction to Enthalpy \(=\) & 0.421821 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.339893 \\
Sum of electronic and zero-point Energies= & -1512.526702 \\
Sum of electronic and thermal Energies= & -1512.501284 \\
Sum of electronic and thermal Enthalpies \(=\) & -1512.500340 \\
Sum of electronic and thermal Free Energies \(=\) & -1512.582268
\end{tabular}
\begin{tabular}{cccl}
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 264.104 & 94.985 & 172.430
\end{tabular}
C,0,2.3803112119,-3.6466652298,0.3265114665
```

[^6]Н, 0,-0.239911886,-4.3206994898,2.3769585622
H,0,-0.7935516005,-2.0054267954,1.7906246957
H,0,1.2299196079,-0.1759971067,0.8816788366

## dmpe Bpin3 Para Toluene CH Activation Transition Structure $\mathrm{E}($ RB+HF-LYP $)=-2059.07157717$

| Zero-point correction $=$ | 0.547979 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.585395 |
| Thermal correction to Enthalpy $=$ | 0.586339 |
| Thermal correction to Gibbs Free Energy= | 0.476339 |
| Sum of electronic and zero-point Energies $=$ | -2058.523598 |
| Sum of electronic and thermal Energies $=$ | -2058.486182 |
| Sum of electronic and thermal Enthalpies $=$ | -2058.485238 |
| Sum of electronic and thermal Free Energies $=$ | -2058.595238 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} / \mathrm{Mol-Kelvin}$ | Cal/Mol-Kelvin |
| Total | 367.341 | 135.820 | 231.516 |

C, $0,0.38701651,-3.4759758873,-0.6564136945$
С,0,-0.603165575,-2.9436645948,-1.7029375922
P,0,-0.3362049001,-1.1211300039,-2.0351536361
Ir,0,0.123920817,-0.0623684474,0.0745081106
B,0,0.0553971415,1.8087145399,-0.8872805345
О, $,,-0.2560433989,3.0486234946,-0.3476150132$
C,0,-0.0650026755,4.0703205798,-1.3282457011
С, $0,0.065678165,3.3073783574,-2.660721944$
O,0,0.3030656515,1.9491381868,-2.2698226433
P,0,0.5157585162,-2.359784485,0.8514342141
B,0,0.9649604879,0.8163884048,1.8310516061
O,0,1.6941717123,0.0690913004,2.7669896864
C, $0,2.0418253166,0.9201771901,3.869052581$
C,0,1.7214572672,2.3408392683,3.3651703903
O,0,0.8716390014,2.1345104394,2.2345804881
B,0,2.1879914462,0.131790902,-0.4099773993
O,0,2.9849236247,-0.867897959,-0.9961099429
C,0,4.284413691,-0.3375320897,-1.2957303254
C,0,4.3290825541,1.0098187046,-0.5500079085
O,0,2.9675241459,1.2700065651,-0.1960553218
C,0,2.1795338863,-2.8324830054,1.5010631011
С, $0,-0.5514146645,-3.1853780775,2.1278082213$
H,0,0.1288103144,-4.4973281193,-0.3530047258
H,0,1.3950049825,-3.5112605679,-1.0844699944

[^7]| dmpeBpin3ParaTolHCHactTSParSptBack |  |
| :--- | :---: |
| E(RB+HF-LYP) $=-2059.07268038$ |  |
|  |  |
| Zero-point correction $=$ | 0.547875 (Hartree/Particle) |
| Thermal correction to Energy $=$ | 0.585281 |
| Thermal correction to Enthalpy $=$ | 0.586225 |
| Thermal correction to Gibbs Free Energy $=$ | 0.476722 |
| Sum of electronic and zero-point Energies= | -2058.524806 |
| Sum of electronic and thermal Energies= | -2058.487399 |
| Sum of electronic and thermal Enthalpies= | -2058.486455 |
| Sum of electronic and thermal Free Energies= | -2058.595959 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 367.269 | 135.891 | 230.469 |

C,0,2.9062517144,1.1425164943,-0.2536046443
C,0,2.157395365,0.1266244391,0.372531151
C,0,2.8959320484,-0.7962087576,1.1325203947
C,0,4.2929540091,-0.7562703218,1.2070079466
C,0,5.0249037733,0.229267114,0.5395027551
C,0,4.2992122062,1.182794944,-0.1878140824
Ir,0,-0.0962193641,-0.0170884851,0.0428182541
P,0,0.2081436188,-0.5345311485,-2.300736162
С, $0,-0.3335402527,-2.3002206923,-2.568838231$
C,0,0.1615154049,-3.204998385,-1.4315579785
P,0,-0.2650245364,-2.4817777714,0.2421609887
B, $0,-2.1913825842,0.1109782788,-0.3374624092$
O,0,-3.1259687698,0.8238649669,0.4146076262
C,0,-4.443046177,0.6098443293,-0.1005285606
C,0,-4.2186022379,-0.0807103722,-1.4577818406
O,0,-2.8552043929,-0.5261589504,-1.40557639
B, $0,-0.8967576193,0.2314097116,1.9975110731$
О,0,-1.2527664047,-0.8651631079,2.7954482343
С,0,-1.7037261791,-0.3754496725,4.0682597653
C,0,-1.9086495463,1.1335119405,3.837398285
O,0,-1.1507960944,1.4169631109,2.6598978632
В,0,-0.2251597588,2.0473476204,-0.3022894823
O, $0,0.3692975325,3.0232763485,0.4869877104$
C, $0,0.1439576899,4.3145770431,-0.082023751$
C,0,-0.897738873,4.0710998211,-1.1927865561
O,0,-0.891508961,2.6496249976,-1.3824536804
H,0,-5.0066961167,-0.0235581812,0.5969186017
Н,0,-4.9634741899,1.5684841639,-0.1914441821

```
H,0,-4.8810548991,-0.9372651348,-1.620049846
H,0,-4.3380097924,0.6138738857,-2.2988913857
Н,0,-2.6225749504,-0.8946835448,4.3590238543
H, \(0,-0.9349643886,-0.5790845945,4.8248366338\)
H,0,-2.9620096025,1.3794882727,3.6522899453
H,0,-1.545845819,1.7480537708,4.6671552109
Н,0,-1.903853174,4.388087092,-0.8907426361
H,0,-0.6469265292,4.571225353,-2.1344652145
H,0,-0.2129838548,5.0009000302,0.6924849846
H,0,1.0901352473,4.7065208541,-0.4789634575
H,0,0.7913250491,0.4551949751, 1.3164823877
H,0,2.3934757707,1.9229217055,-0.8051502094
H,0,4.8329720036,1.9786214618,-0.7052413638
H,0,2.3751232226,-1.5548971128,1.7051004987
H,0,4.8170393859,-1.4985844291,1.8068668564
C,0,6.5313875154,0.2969978679,0.6336648987
С,0,-0.6884363523,0.3762759509,-3.6264128694
C, \(0,1.9371262105,-0.5405505333,-2.9545052879\)
C, \(0,-1.9651551388,-3.1468342667,0.5420767873\)
C,0,0.705949118,-3.5847745846,1.3728713338
H,0,-0.2530557875,-4.2159693163,-1.5235592935
H,0,1.2538163961,-3.2992113678,-1.4675843895
H,0,-1.4273307842,-2.271515383,-2.586407468
H, \(0,0.0145165939,-2.6609072982,-3.5441673185\)
H,0,1.9569690551,-0.9306712017,-3.977207183
H,0,2.3344677564,0.4764903334,-2.9491614607
H,0,2.5820860769,-1.1443977389,-2.3131140945
H,0,-0.4228447174,-0.0108880893,-4.6153737171
H,0,-1.7591555075,0.264528051,-3.4538587257
Н,0,-0.4422040972,1.4367616176,-3.5548758741
H,0,0.3956102263,-4.6284138625,1.2556149345
H,0,1.7740435734,-3.5078956273,1.1613895132
\(\mathrm{H}, 0,0.5271175819,-3.2738720583,2.4054101466\)
H,0,-1.9840211171,-4.239699457,0.4730086803
H,0,-2.2744727017,-2.832781054,1.5415524195
H,0,-2.6529094761,-2.7167043976,-0.1880187061
H,0,6.9858242077,0.5241978383,-0.3369974313
H,0,6.8549975523,1.0814709166,1.3297729498
H,0,6.952907353,-0.6482644503,0.98902446
```


## dmpeBpin3ParaTolHCHactTSSptSptBack

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-2059.07335991$
Zero-point correction $=\quad 0.548090$ (Hartree/Particle)

| Thermal correction to Energy $=$ | 0.585419 |
| :--- | :---: |
| Thermal correction to Enthalpy $=$ | 0.586363 |
| Thermal correction to Gibbs Free Energy $=$ | 0.476856 |
| Sum of electronic and zero-point Energies $=$ | -2058.525270 |
| Sum of electronic and thermal Energies $=$ | -2058.487941 |
| Sum of electronic and thermal Enthalpies $=$ | -2058.486997 |
| Sum of electronic and thermal Free Energies $=$ | -2058.596504 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 367.356 | 135.742 | 230.477 |

C,0,3.0166580311,-0.7521370957,0.6671377335
C,0,2.0891921562,0.3067148105,0.6211297733
C,0,2.619854649,1.5915743157,0.8475770714
C,0,3.9853500332,1.8015351976,1.0596355734
C,0,4.8981877473,0.7412439938,1.0756812679
C,0,4.3834613733,-0.5438952101,0.8733939334
Ir,0,-0.105276116,-0.0411379711,0.04332239
P,0,0.5170667952,-0.782591758,-2.1729617878
С, $0,0.2950782592,-2.6408848248,-2.2290473804$
C,0,0.6832469173,-3.3200650097,-0.9060784409
P, $0,-0.1258042553,-2.4474026465,0.5417272758$
B, $0,-2.1337102276,-0.0880707988,-0.6018716114$
О,0,-2.6589852372,-1.0071813752,-1.5311767993
С,0,-4.0165996191,-0.656398351,-1.8387376196
C,0,-4.400464879,0.3657756693,-0.7531609573
O,0,-3.1515619247,0.7703720801,-0.1844910523
B,0,-1.20241937,0.3836118661,1.8177563786
О,0,-1.7865676762,-0.6345659619,2.5863138706
С,0,-2.3732436983,-0.0475785054,3.7574447202
C, $0,-2.3772746434,1.4639737459,3.458535616$
O,0,-1.4402291348,1.6175922955,2.3904991263
В,0,-0.2844905316,1.9599168903,-0.5785126337
О,0,-0.0620400382,3.0965781046,0.1923939234
С,0,-0.1724047708,4.2681321009,-0.6187503412
C,0,-0.8081019527,3.7678758334,-1.9288884076
O,0,-0.6337430566,2.3462333331,-1.8861566648
H,0,-4.0573347158,-0.2239023909,-2.8467256231
$\mathrm{H}, 0,-4.6421170605,-1.5548006508,-1.8233638693$
H,0,-4.9228137067,1.2395289007,-1.1553727967
H,0,-5.0266610696,-0.0802365374,0.0303046586
H,0,-3.3762990554,-0.4576675527,3.9133318473
H,0,-1.757868044,-0.2958830684,4.6320475822

```
H,0,-3.362387667,1.813962995,3.1249769106
H,0,-2.0635850728,2.070971096,4.3135885574
H,0,-1.8801372823,3.9977235818,-1.9803365174
H,0,-0.3243761774,4.1746862897,-2.8234311412
H,0,-0.7847646421,5.015518727,-0.1042315398
H,0,0.8274563542,4.6934488135,-0.7806643325
H,0,0.6273156159,0.3580997297,1.4398102193
H,0,2.6878263006,-1.7728244535,0.5080179972
H,0,5.0579858006,-1.3989602152,0.8769536365
H,0,1.9501072833,2.443822566,0.8651657024
H,0,4.3442953718,2.8163346405,1.2238718917
C,0,6.3682450585,0.9680284933,1.339727802
C,0,-0.3896569078,-0.2424094192,-3.6838261899
C,0,2.2673568254,-0.5218867095,-2.7037955712
C,0,-1.7673165994,-3.292262731,0.639336991
C,0,0.6964663968,-3.1836984873,2.0285664857
H,0,0.4042191993,-4.3805332867,-0.9159765412
H,0,1.7682283938,-3.2755933373,-0.7588264904
H,0,-0.7700175465,-2.7953474548,-2.4322939392
H,0,0.8581939246,-3.0613227418,-3.0707162022
H,0,2.4578517587,-1.0078981332,-3.6662784307
H,0,2.443107949,0.5526427458,-2.8035235674
H,0,2.9601610754,-0.9011825174,-1.9516852517
H,0,0.028071153,-0.7164856602,-4.5778961896
H,0,-1.4403791392,-0.5119167201,-3.5741430019
H,0,-0.3167178782,0.8434551859,-3.7573461296
H,0,0.6963793429,-4.2781149019,1.9895115684
H,0,1.7205680502,-2.8212432932,2.1309625931
H,0,0.1303772249,-2.8577519397,2.9052530355
H,0,-1.6508883643,-4.3741463268,0.7636814857
H,0,-2.3016776948,-2.8754839421,1.4958696144
H,0,-2.340316506,-3.0767453447,-0.2638301413
H,0,6.986046504,0.204894498,0.8553019909
H,0,6.6944603869,1.947516736,0.975712807
H,0,6.5929236946,0.9316292671,2.4137609971
dmpeBpin2ParaTolHBpinRotTS
E(RB+HF-LYP})=-2059.07985901
Zero-point correction= 0.551022 (Hartree/Particle)
Thermal correction to Energy= 0.587616
Thermal correction to Enthalpy=}\quad0.58856
Thermal correction to Gibbs Free Energy= 0.482114
Sum of electronic and zero-point Energies= -2058.528837
```

| Sum of electronic and thermal Energies= |  |  | -2058.492243 |
| :---: | :---: | :---: | :---: |
| Sum of electronic and thermal Enthalpies= |  |  | -2058.491299 |
| Sum of electronic and thermal Free Energies= |  |  | -2058.597745 |
|  | E (Thermal) | CV | S |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 368.734 | 133.896 | 224.033 |

C,0,4.4173326201,0.3625978223,0.9954038387
C,0,3.0189540421,0.2918381615,1.0674860373
C,0,2.1927922792,0.0160734705,-0.0410520215
С,0,2.9049023598,-0.1863825636,-1.2473909909
С,0,4.2964521796,-0.1182001367,-1.3343681338
C, $0,5.0882557663,0.1578672061,-0.2114657843$
Ir, $0,-0.0422756121,-0.0707471581,-0.0259483028$
B,0,0.1548935098,-1.875536309,-1.0951196417
О,0,0.1655199896,-3.1710932648,-0.5662182407
C,0,0.2550458452,-4.119077823,-1.6404673606
C, $, 0,0.6140830047,-3.2681919746,-2.8750738216$
O, $0,0.3466547243,-1.9212396738,-2.4723676336$
В,0,-2.153200804,-0.2832414369,-0.2792510912
О,0,-3.1490832458,-0.0076588659,0.6820163637
С,0,-4.4371844583,-0.3633280624,0.1547586955
C, $0,-4.1811731426,-0.5988759315,-1.3449690367$
O, $0,-2.7617887187,-0.7438816721,-1.4456223542$
P,0,-0.1943425746,1.840092644,1.4737785905
C,0,1.0662640749,3.1896691296,1.4427413943
P,0,-0.2297724215,-1.3348952886,1.9209004081
C, $0,1.2373970134,-2.2964079944,2.48362644$
B,0,-0.185270502,1.6287048064,-1.5088412976
О,0,-1.4030705493,2.1455836941,-1.9167060092
C, $0,-1.1585228042,3.3397806549,-2.6745247249$
C, $0,0.3371115528,3.6520795992,-2.4366372855$
O,0,0.864386584,2.4647686064,-1.8314633578
C,0,-0.0172535106,1.1718226902,3.2118758403
С,0,-0.6759725127,-0.2049180393,3.3424892375
C,0,-1.7706879272,2.8000511092,1.5542592134
С,0,-1.5560834971,-2.6082896625,2.0352627171
H,0,0.0686603499,0.3171628443,-1.6578786268
H,0,-0.4172474151,-0.6848702959,4.2933527159
Н,0,-1.7662932286,-0.1061122992,3.3077507474
H,0,-0.441928747,1.8844823499,3.9283265883
H,0,1.0559692152,1.105428495,3.4188469019
H,0,0.4828368445,4.4989043183,-1.7539633285

```
H,0,0.8842047784,3.8603890434,-3.3605526166
H,0,-1.8230311905,4.1365377198,-2.3258140837
H,0,-1.3806402481,3.1405147582,-3.7291501238
H, \(0,0.0091804462,-3.5166701096,-3.7527452443\)
H,0,1.6737511512,-3.3593494563,-3.144871641
H,0,-0.711882466,-4.6252966796,-1.7534714779
H,0,1.0149075429,-4.8705023696,-1.40353499
H,0,-4.500739249,0.2551645505,-1.9558467469
H,0,-4.6742501735,-1.4990819826,-1.7259829308
H,0,-5.151102878,0.4439947142,0.3476279409
H,0,-4.7980336704,-1.2688770893,0.6613298675
H,0,2.3562211837,-0.4088282862,-2.15887099
H,0,4.777441649,-0.2827158346,-2.2984070639
C,0,6.595008793,0.2231306798,-0.3079102633
H,0,4.9900170608,0.5820852331,1.8962061444
H,0,2.5779927809,0.4681219413,2.0477606575
H,0,-1.3749630047,-3.3539861605,1.2606748438
H,0,-1.5429323555,-3.0837602976,3.0214619213
H, \(0,-2.5222390676,-2.1310968448,1.8666627026\)
H,0,1.4259514596,-3.062114918,1.727702725
H,0,2.1190882781,-1.6595222548,2.5474299047
H,0,1.0401851194,-2.7715778471,3.4499622971
H,0,-1.934850087,3.2858633166,0.5890628395
H,0,-2.5967050447,2.1053567419,1.7151411549
H,0,-1.7412835804,3.5571169812,2.3447810565
H,0,0.9187196459,3.8001921601,0.5495811804
H,0,0.9834198983,3.8243907169,2.3309120614
H,0,2.0626429375,2.7485199378,1.384196502
H,0,7.0257208403,-0.7460040757,-0.5900140984
H,0,6.9212801104,0.9471392489,-1.0644322786
H,0,7.0434940554,0.5165113132,0.6465000638
```

dmpe Bpin3 Meta Toluene CH Activation Transition Structure $\mathrm{E}($ RB+HF-LYP $)=-2059.07150335$

| Zero-point correction= | 0.548183 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.585458 |
| Thermal correction to Enthalpy $=$ | 0.586403 |
| Thermal correction to Gibbs Free Energy $=$ | 0.477453 |
| Sum of electronic and zero-point Energies= | -2058.523321 |
| Sum of electronic and thermal Energies= | -2058.486045 |
| Sum of electronic and thermal Enthalpies $=$ | -2058.485101 |
| Sum of electronic and thermal Free Energies= | -2058.594050 |

```
 E (Thermal) CV S
 KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin
 367.381 135.728 229.304
C,0,-0.3985423567,-3.4603559903,0.0487040878
C,0,0.7138206953,-3.1505022413,1.0616679545
P,0,0.5511942421,-1.4162172205,1.7465151097
Ir,0,-0.0978247471,0.0197944133,-0.0678755992
B,0,0.1174454376,1.6779811135,1.2086001764
O,0,0.3892465443,2.9953495262,0.8690144324
C,0,0.3383786046,3.8221222427,2.0329928057
C,0,0.3369872271,2.8299686305,3.2126862307
O,0,0.0335746241,1.5644049499,2.6124690193
P,0,-0.6212750119,-2.0895268154,-1.2172588403
B,0,-1.0968155,1.2229036877,-1.5249928738
O,0,-1.9254553128,0.6715892204,-2.5118401677
C,0,-2.3593681084,1.7210003475,-3.3893877546
C,0,-1.9845735128,3.0144063547,-2.6417634273
O,0,-1.0260727254,2.5954536191,-1.6675054236
B,0,-2.0979160872,0.1203447804,0.6561987303
O,0,-2.8477073325,-0.9748460847,1.121360596
C,0,-4.1011603382,-0.5132994135,1.6468768567
C,0,-4.2033550605,0.9444812735,1.1615895721
O,0,-2.8762008944,1.2762022115,0.7418665171
C,0,-2.3426963628,-2.421611249,-1.8007158416
C,0,0.3206008084,-2.6857832152,-2.7027010991
H,0,-0.2189952437,-4.4182443292,-0.4537014457
H,0,-1.3607334525,-3.5410827901,0.566752846
C,0,-0.5485712628,-1.6278962634,3.2109157126
C,0,2.1824116306,-1.1223382841,2.5528128322
H,0,0.7152931139,-3.8793114166,1.8812481497
H,0,1.6966214732,-3.2066863257,0.5804643627
H,0,-0.4154131244,3.0695449506,3.9715410545
H,0,1.3166338388,2.7719544225,3.7056896607
H,0,-0.5749164264,4.4296364765,2.0024934983
H,0,1.2005842952,4.4974092818,2.0453350729
H,0,-2.8476668042,3.4567785771,-2.1283000448
H,0,-1.5404460472,3.7737449666,-3.2929067267
H,0,-3.4341975805,1.6266017342,-3.574704989
H,0,-1.8328787347,1.6285974985,-4.3483097441
H,0,-4.5250924532,1.6346287806,1.9479130753
H,0,-4.8876586493,1.0486216602,0.3097936114
H,0,-4.0807754534,-0.5856081371,2.7419421436
H,0,-4.9126521056,-1.1473147529,1.2751590556
```

```
H,0,-2.4433647336,-3.4453361002,-2.176753403
H,0,-3.0290820777,-2.2607556447,-0.9681500477
Н,0,-2.5791221517,-1.705367325,-2.5892640365
H,0,0.0091694078,-3.695275906,-2.9915790559
H,0,0.11385613,-2.0014796387,-3.5308900364
H,0,1.396682384,-2.6769159688,-2.5256427221
H,0,2.4247739755,-1.9231370016,3.2589977254
H,0,2.9619612833,-1.0472313401,1.7928697063
H,0,2.1218524022,-0.1715579843,3.0869668814
H,0,-0.1258807353,-2.3494321237,3.9176334275
H,0,-0.645777562,-0.6505989277,3.6886582475
H,0,-1.5349457226,-1.953160358,2.8788075301
H, \(0,0.6383675979,0.6449334361,-1.3776136878\)
C, \(0,2.1051888847,0.2556744846,-0.6765188047\)
C,0,2.926236833,-0.8553543203,-0.9536962338
C,0,4.3086347145,-0.7522295313,-1.1692776748
C,0,4.8975338809,0.5181660393,-1.1389655323
C,0,4.1082090171,1.6403584592,-0.9000503631
C, \(0,2.733250137,1.5149910311,-0.6768773891\)
Н, \(0,2.4955949147,-1.8510126396,-0.9867512986\)
C,0,5.1490762517,-1.9841510201,-1.4228153005
H,0,5.9662310389,0.6250526615,-1.3122918437
H,0,4.5622202144, 2.6288136926,-0.8936217104
H,0,2.1412939093,2.4057285207,-0.5001925744
H,0,5.8645414042,-2.1578309377,-0.6095230601
H,0,4.5293771765,-2.8816887702,-1.5139713364
H,0,5.7332430008,-1.8882869815,-2.345330932
```


## dmpe Bpin3 Meta Toluene CH Activation Transition Structure - Isomer 2

$\mathrm{E}($ RB+HF-LYP $)=-2059.07155341$
Zero-point correction $=\quad 0.547854$ (Hartree/Particle)
Thermal correction to Energy=
0.585338

Thermal correction to Enthalpy $=\quad 0.586282$
Thermal correction to Gibbs Free Energy= 0.476260
Sum of electronic and zero-point Energies $=\quad-2058.523699$
Sum of electronic and thermal Energies $=\quad-2058.486216$
Sum of electronic and thermal Enthalpies= $\quad-2058.485272$
Sum of electronic and thermal Free Energies $=\quad-2058.595294$

|  | E (Thermal $)$ | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 367.305 | 135.935 | 231.561 |

C,0,-0.4156538602,-3.4311505041,-0.994954503
C, $0,-1.3150937123,-2.6256883738,-1.9439596914$
P,0,-0.7054858194,-0.865232959,-2.1162944108
Ir,0,0.0412098132,-0.1418082357,0.0563997757
B, $0,0.3871985026,1.7735625205,-0.7401275115$
O,0,0.3488218257,2.9984774768,-0.0886585425
C,0,0.7599924462,4.0394489637,-0.9763610029
C, $0,0.7397900922,3.3873649822,-2.3727977249$
O,0,0.6676043112,1.9812728018,-2.1068775588
P,0,-0.108159989,-2.5371366595,0.6257183471
B,0,1.1414866937,0.3748839209,1.8122851787
О,0,1.7314227102,-0.5864994187,2.644054458
C, $0,2.314302943,0.0752253437,3.7760583787$
C, $0,2.304757523,1.5656504423,3.3870348659$
O,0,1.3697095857,1.6447972161,2.3088055898
B,0,2.0703233108,-0.4390068583,-0.5155394067
О, $0,2.5615661188,-1.5726813654,-1.1914248227$
C,0,3.9433347777,-1.371905851,-1.525503945
C,0,4.3597900994,-0.1371444216,-0.7041434358
O,0,3.1237808978,0.4439782036,-0.2776733537
C,0,1.3837481663,-3.4298675191,1.249727081
С,0,-1.3821380943,-3.2361794871,1.7824304846
H,0,-0.8261221655,-4.4314609983,-0.8132208976
H,0,0.5765848834,-3.5555246958,-1.4422499123
C,0,0.4787369624,-0.9588751359,-3.5262322102
C,0,-2.1287592473,0.0129356549,-2.8912050226
H,0,-1.3719812209,-3.1007021491,-2.9308497736
H,0,-2.337927992,-2.5730535752,-1.5545596615
H,0,1.6375603983,3.6072563709,-2.9601336252
H,0,-0.1376385998,3.6916121882,-2.9592943647
H,0,1.7645766306,4.3777301694,-0.6926708846
H,0,0.0743394571,4.8895421613,-0.8931107806
H,0,3.2871984119, 1.9045248478,3.0347472014
H,0,1.9829598708,2.2208146206,4.2026272851
H,0,3.3211255181,-0.3161290643,3.954130733
H,0,1.7025962569,-0.1258532486,4.6652616665
H,0,4.9271954705,0.5925869532,-1.2905150818
H,0,4.9546151165,-0.4082848887,0.1774613886
H,0,4.0300005618,-1.1990369542,-2.6059479332
H,0,4.5178180077,-2.2690453625,-1.2730059202
H,0,1.1995562759,-4.5072514455,1.3187124068
H,0,2.2130349252,-3.2366044218,0.5680974222
H,0,1.6409358936,-3.0263217795,2.2302968526
H,0,-1.3233031138,-4.3290911657,1.8215875593

```
H,0,-1.1892908904,-2.83658212,2.782502801
H,0,-2.3923826263,-2.9408042381,1.4971807637
H,0,-2.4638719377,-0.4988677562,-3.799247142
H,0,-2.9519498583,0.0842021938,-2.1785618779
H,0,-1.7992326216,1.023018776,-3.1460484078
H,0,-0.0115778752,-1.3519738378,-4.4226479053
H,0,0.8456881172,0.0524835138,-3.7135637416
H,0,1.3218049876,-1.5914340944,-3.2463008698
H,0,-0.6717570813,0.3111106686,1.4460599063
C,0,-2.0980330036,0.5003577052,0.595487077
C,0,-3.1806340509,-0.394098032,0.4988632114
C,0,-4.5010476292,0.0317589683,0.6719963393
C,0,-4.7786510535,1.3623444033,0.9796237197
C,0,-3.7285267035,2.2772532638,1.1192646819
C,0,-2.4114813011,1.8326750224,0.9259417615
H,0,-3.0086985792,-1.436451705,0.2575752418
H,0,-5.3153795383,-0.6818600255,0.5646701902
H,0,-5.8070102837,1.688732027,1.1183764717
C,0,-4.0023570658,3.7136521435,1.5050843414
H,0,-1.6037280022,2.5496589891,1.031335421
H,0,-3.1914118368,4.3740325328,1.1845799062
H,0,-4.9353735016,4.0782358408,1.06225249
H,0,-4.0981714105,3.8210674542,2.5933073961
dmpeBpin2MetaTolHBpinRotTS
E(RB+HF-LYP) = -2059.07961048
Zero-point correction= 0.551049 (Hartree/Particle)
Thermal correction to Energy= 0.586674
Thermal correction to Enthalpy=}0.58761
Thermal correction to Gibbs Free Energy= 0.483944
Sum of electronic and zero-point Energies= -2058.528562
Sum of electronic and thermal Energies= -2058.492937
Sum of electronic and thermal Enthalpies= -2058.491992
Sum of electronic and thermal Free Energies= -2058.595666
\begin{tabular}{cccc}
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol}-\) Kelvin & Cal/Mol-Kelvin \\
Total & 368.143 & 131.833 & 218.200
\end{tabular}
С,0,-4.1460399052,-0.4854612355,1.0118661644
C,0,-2.7424137976,-0.4327919401,1.0427544049
С,0,-1.9357820076,0.0296790346,-0.0196091343
C, \(0,-2.6565473734,0.4511848551,-1.1593800965\)
```

C,0,-4.052160338,0.4069539181,-1.2250887954
C,0,-4.8029325732,-0.0589057878,-0.1467842273
Ir, $0,0.2977849334,0.0831420357,-0.0149713723$
B,0,0.1057874788,2.0518761055,-0.7361700184
О, $0,0.085128705,3.2272029322,0.0240985919$
C,0,-0.0128141141,4.3568919106,-0.8564285702
C,0,-0.3683531111,3.7459902976,-2.2263022399
O,0,-0.0812602439,2.3515403779,-2.0819054552
B, $0,2.4100717364,0.3007536825,-0.2574112724$
O,0,3.404101031,-0.1124727475,0.658138195
C,0,4.6949966754,0.2995665172,0.1803130587
C,0,4.4405615899,0.7286774885,-1.2757113504
O,0,3.0231495647,0.9053904311,-1.3525746959
P, $0,0.4554153145,-2.0653467994,1.1276682246$
C,0,-0.81657511,-3.3817031928,0.8811126971
P,0,0.5350977133,0.9830438796,2.1233572401
C,0,-0.912627095,1.8266615865,2.8908784209
B, $0,0.3790834836,-1.3334122227,-1.7704596064$
О,0,1.5810278311,-1.8118728187,-2.2648691903
C,0,1.2976450829,-2.8393597584,-3.2267120279
C, $0,-0.2057886639,-3.1438639219,-3.0370356839$
O,0,-0.6966556064,-2.0608481689,-2.2369060537
C, $0,0.3183401124,-1.7089769617,2.9568208476$
C, $0,1.007390719,-0.3857789494,3.3054384215$
C,0,2.0265988081,-3.0306664344,1.0129539408
C,0,1.8681212108,2.2159189529,2.4325318987
H,0,0.167699124,-0.0067432429,-1.6873888348
H,0,0.7939235479,-0.080009719,4.3360448488
H,0,2.0928691171,-0.4907296524,3.2056566283
H,0,0.7447920711,-2.5409536565,3.5292888951
H,0,-0.7490843109,-1.6636334101,3.1973226556
H, $0,-0.3753727435,-4.0889899145,-2.5054355357$
$\mathrm{H}, 0,-0.7598964613,-3.1776860316,-3.9793904573$
H,0,1.9379278831,-3.7062939748,-3.0357067789
H,0,1.5228110902,-2.4567911731,-4.2289053085
H,0,0.2273806394,4.161718629,-3.0449334387
H,0,-1.4309996927,3.8706719435,-2.4696383137
H,0,0.9503473602,4.8824576378,-0.874938774
H,0,-0.7772992579,5.0461644166,-0.4842036798
H,0,4.7470345361,-0.0447876212,-1.9916564854
H,0,4.945690878,1.6632623548,-1.5401920268
H,0,5.4037726646,-0.5303587549,0.2669717118
H,0,5.0616754385,1.1299903688,0.7990686749
H,0,-2.1187690485,0.8235604699,-2.0271369546

```
H,0,-4.5579097332,0.7371235398,-2.1308288305
H,0,-5.8891907416,-0.0923819201,-0.203094161
C,0,-4.9326016291,-0.9714959508,2.2097799404
H,0,-2.2724975646,-0.784261897,1.9615414739
H,0,1.6674337205,3.0917647871,1.8144102372
H,0,1.8837127869,2.5008991519,3.4895565109
H,0,2.8275134783,1.7796646791,2.1523018597
H,0,-1.1189143559,2.7169224032,2.2928812389
H,0,-1.7945883731,1.1873980225,2.8635523622
H,0,-0.6864500116,2.1178366359,3.9217052856
H,0,2.1761704424,-3.3360269872,-0.0256552543
H,0,2.8583913909,-2.3789559117,1.2860921542
H,0,2.0003688495,-3.915873047,1.656832073
H,0,-0.6944542947,-3.8206215604,-0.1114113726
H,0,-0.7218771275,-4.1689717226,1.6361417752
H,0,-1.8102281076,-2.9325007012,0.9264252422
H,0,-5.3965276511,-0.138274254,2.7538800725
H,0,-5.7428750718,-1.6473407321,1.9137528399
H,0,-4.2938948933,-1.5076202715,2.9199224103
```


## dmpeBpin3MetaTolHCHactTSParSptBackA

```
\(\mathrm{E}(\) RB+HF-LYP \()=-2059.07262857\)
\begin{tabular}{lc}
Zero-point correction \(=\) & 0.547885 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.585245 \\
Thermal correction to Enthalpy \(=\) & 0.586190 \\
Thermal correction to Gibbs Free Energy= & 0.477328 \\
Sum of electronic and zero-point Energies \(=\) & -2058.524744 \\
Sum of electronic and thermal Energies= & -2058.487383 \\
Sum of electronic and thermal Enthalpies= & -2058.486439 \\
Sum of electronic and thermal Free Energies= \(=\) & -2058.595301
\end{tabular}
\begin{tabular}{cccl}
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 367.247 & 135.944 & 229.119
\end{tabular}
C,0,4.3165615883,1.6686453645,0.4078675601
C, \(0,2.9461795443,1.4706397645,0.1908883317\)
C,0,2.2550356315,0.334145006,0.652213992
C,0,2.9973120743,-0.5776331054,1.4230244243
C,0,4.3647399663,-0.3992400457,1.6583017532
С,0,5.027988365,0.7118471332,1.1441279134
Ir,0,0.0737828891,-0.0047389304,0.0750360624
B,0,-0.24874126,2.0483649431,-0.18493918
```

[^8]```
H,0,2.614021597,-0.4181629815,-3.748652071
H,0,2.7134075558,0.9437969152,-2.6015939404
H,0,3.0923913573,-0.6814241381,-2.0445057224
H,0,0.2137631704,0.2185120804,-4.5910980965
H,0,-1.2524539036,0.2892819068,-3.5638121663
H,0,-0.0718692544,1.600749411,-3.483330666
H,0,0.8770894469,-4.6301343632,1.1016266966
H,0,2.1410498339,-3.3891158882,1.2616247187
H,0,0.7248800605,-3.3544902219,2.3348316594
H,0,-1.4129508603,-4.4048357487,0.064416337
H,0,-1.970510552,-3.0812906822,1.1342630236
H,0,-2.1322047676,-2.9156708949,-0.6236246125
H,0,5.7468673777,3.2906259899,0.5598237422
H,0,5.5632282304,2.6517205664,-1.0726542728
H,0,4.3031791445,3.6829180584,-0.3864969827
```


dmpeBpin3MetaTolHCHactTSSptSptBackA

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-2059.07295561$

Zero-point correction=	0.548271 (Hartree/Particle)
Thermal correction to Energy $=$	0.585473
Thermal correction to Enthalpy $=$	0.586417
Thermal correction to Gibbs Free Energy=	0.478173
Sum of electronic and zero-point Energies $=$	-2058.524684
Sum of electronic and thermal Energies=	-2058.487482
Sum of electronic and thermal Enthalpies $=$	-2058.486538
Sum of electronic and thermal Free Energies $=$	-2058.594783

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	367.390	135.717	227.820

C,0,3.1785021226,-0.7314130814,0.8103514527
C,0,2.2780651627,0.3371141176,0.6257708354
С,0,2.8304831789,1.630105123,0.6725375008
C,0,4.2053870078,1.8293756282,0.8348073285
С,0,5.072083038,0.7489063993,0.9774906526
C,0,4.5602340822,-0.5542969571,0.9758157716
Ir,0,0.0744872766,-0.0065311865,0.0798464901
P,0,0.7212552516,-0.7319488384,-2.1312237477
C,0,0.5177066866,-2.592740408,-2.2089068753
С, $0,0.8828497351,-3.2740039531,-0.8794130665$
P,0,0.0300357787,-2.4198442714,0.5524371992
B,0,-1.9533989456,-0.0341476348,-0.56629976


```
H,0,-1.2075491067,-0.4440788617,-3.5669024839
H,0,-0.0806544077,0.9117145596,-3.7131945201
H,0,0.7303180166,-4.3059678231,1.9907420879
H,0,1.800404791,-2.8946505122,2.2088714907
H,0,0.1777955499,-2.8829155839,2.9129116024
H,0,-1.5377096859,-4.3228466758,0.6562832712
H,0,-2.1855672716,-2.8368912109,1.4147028292
H,0,-2.1654259736,-2.9788557503,-0.3512880398
H,0,6.3391821807,-1.6977463965,0.4890572866
H,0,5.8762341944,-1.7814305471,2.1867299568
H,0,4.9567976379,-2.6867962606,0.9804566352
dmpeBpin3MetaTolHCHactTSSptSptBackS
E}(\mathrm{ RB +HF-LYP })=-2059.0732781
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.548025 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.585359 \\
Thermal correction to Enthalpy \(=\) & 0.586303 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.476661 \\
Sum of electronic and zero-point Energies \(=\) & -2058.525253 \\
Sum of electronic and thermal Energies \(=\) & -2058.487919 \\
Sum of electronic and thermal Enthalpies \(=\) & -2058.486975 \\
Sum of electronic and thermal Free Energies \(=\) & -2058.596617
\end{tabular}
        E (Thermal) CV S
        KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin
Total }303.318 135.851 230.762 
C,0,2.998928971,-0.9724501502,0.5379430825
C,0,2.1666197986,0.1560018674,0.4077302461
C,0,2.8116301577,1.4069474644,0.3819005765
C,0,4.2072803138,1.5459658967,0.4328205643
C,0,4.9989175286,0.3954905592,0.5221724962
C,0,4.3917822029,-0.8572893049,0.5806048055
Ir,0,-0.1001266906,-0.0335255111,0.0618482305
P,0,0.2618572704,-0.9889419992,-2.1256726904
C,0,-0.1029437903,-2.8223425894,-2.0110431718
C,0,0.3385875074,-3.4259764986,-0.6682193871
P,0,-0.2909031481,-2.3821813212,0.7543654173
B,0,-2.1783401257,0.0618067904,-0.3923851069
O,0,-2.8658979713,-0.8589423835,-1.2049883337
C,0,-4.2160329875,-0.4137196517,-1.4032283621
C,0,-4.4032374871,0.7098613956,-0.3664628909
O,0,-3.0757928456,1.0298213758,0.0606467588
```

```
B,0,-0.9711629058,0.6094560686,1.8967873638
О,0,-1.5455204393,-0.3036549496,2.7945788471
C,0,-1.9704617418,0.4082040344,3.9661806083
C,0,-1.8932051468,1.8908979147,3.5536082272
O,0,-1.0598419365,1.8947466294,2.3926042
В,0,-0.18756882,1.923216815,-0.7039992805
O,0,0.1616848353,3.0946601138,-0.0392614294
C, \(0,0.0587076133,4.211527104,-0.9245303204\)
C,0,-0.6953155966,3.661622307,-2.1498593888
O,0,-0.6061601064,2.2382138857,-2.0104447468
H,0,-4.328343075,-0.0506121437,-2.4327963806
H,0,-4.9053284529,-1.2517542307,-1.2567811404
H,0,-4.8802547725,1.6013978769,-0.7857349659
\(\mathrm{H}, 0,-4.9918499135,0.3791187192,0.4989105971\)
H,0,-2.9810484156,0.0918458164,4.2440991515
H,0,-1.2929808733,0.1720372492,4.7971778521
H,0,-2.8785644638,2.2948251759,3.2890606202
H,0,-1.4514831927,2.5284567842,4.3258316628
H,0,-1.752205299,3.9577759993,-2.1491807145
H,0,-0.2509107756,3.9699695391,-3.1022377236
H,0,-0.4736096354,5.0280516416,-0.4262583758
H,0,1.0662015508,4.5652513402,-1.1834013609
H,0,0.7906630166,0.4148973203,1.3499066247
H,0,2.5749200251,-1.9685966669,0.5829632757
H,0,5.003574803,-1.7537091954,0.6583239629
H,0,2.2065430702,2.3058810028,0.3338482075
C,0,4.8399180371,2.919720832,0.4292830987
H,0,6.0828064857,0.4810338393, 0.5568378891
C,0,-0.730809478,-0.4911906605,-3.5961919986
С,0,1.9758952637,-0.9147580693,-2.8089633304
C,0,-1.9865963713,-3.0695986321,1.0190661228
C,0,0.5610110922,-3.0822594406,2.2427318843
H, \(,-0.0160106311,-4.4591235785,-0.5701497932\)
H,0,1.4321877651,-3.4516515718,-0.6038118839
H,0,-1.1895579458,-2.9064299419,-2.1194829736
H,0,0.3569704583,-3.3512805983,-2.8541868638
H,0,2.0436898438,-1.473933009,-3.7477035699
H,0,2.231572473,0.1319913907,-2.9933375282
H,0,2.6935253513,-1.30753183,-2.0875804675
H,0,-0.4273858523,-1.0584754497,-4.4820320519
H,0,-1.7844232578,-0.6704133584,-3.3796510571
H,0,-0.5877755562,0.5779272267,-3.7587933096
H,0,0.4635467702,-4.1720778251,2.2880828518
H,0,1.6173590395,-2.8098586627,2.2589675194
```

```
H,0,0.0825415629,-2.6428311145,3.1219488982
H,0,-1.9495128534,-4.1455770287,1.2200817611
H,0,-2.4243871569,-2.5484077425,1.8732697148
H,0,-2.6023018881,-2.8720626451,0.1404152977
H,0,5.7979360065,2.9206048385,-0.1014959457
H,0,4.1875227737,3.6589816419,-0.0447155286
H,0,5.0365210119,3.2687162981,1.451254656
```

dmpeBpin3MetaTolHCHactTSSptSptFrntA
$\mathrm{E}($ RB+HF-LYP $)=-2059.07150335$

Zero-point correction=	0.548183 (Hartree/Particle)
Thermal correction to Energy $=$	0.585458
Thermal correction to Enthalpy $=$	0.586403
Thermal correction to Gibbs Free Energy $=$	0.477453
Sum of electronic and zero-point Energies $=$	-2058.523321
Sum of electronic and thermal Energies=	-2058.486045
Sum of electronic and thermal Enthalpies $=$	-2058.485101
Sum of electronic and thermal Free Energies $=$	-2058.594050

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	367.381	135.728	229.304

С,0,-0.3985423567,-3.4603559903,0.0487040878
C,0,0.7138206953,-3.1505022413,1.0616679545
P,0,0.5511942421,-1.4162172205,1.7465151097
Ir,0,-0.0978247471,0.0197944133,-0.0678755992
B,0,0.1174454376,1.6779811135,1.2086001764
O,0,0.3892465443,2.9953495262,0.8690144324
C,0,0.3383786046,3.8221222427,2.0329928057
C,0,0.3369872271,2.8299686305,3.2126862307
O, $0,0.0335746241,1.5644049499,2.6124690193$
P,0,-0.6212750119,-2.0895268154,-1.2172588403
В,0,-1.0968155,1.2229036877,-1.5249928738
О,0,-1.9254553128,0.6715892204,-2.5118401677
C, $0,-2.3593681084,1.7210003475,-3.3893877546$
С,0,-1.9845735128,3.0144063547,-2.6417634273
O,0,-1.0260727254,2.5954536191,-1.6675054236
B,0,-2.0979160872,0.1203447804,0.6561987303
O,0,-2.8477073325,-0.9748460847,1.121360596
С,0,-4.1011603382,-0.5132994135,1.6468768567
C,0,-4.2033550605,0.9444812735,1.1615895721
O,0,-2.8762008944,1.2762022115,0.7418665171

C, $0,-2.3426963628,-2.421611249,-1.8007158416$
C, $, 0,0.3206008084,-2.6857832152,-2.7027010991$
H,0,-0.2189952437,-4.4182443292,-0.4537014457
H,0,-1.3607334525,-3.5410827901,0.566752846
С, $0,-0.5485712628,-1.6278962634,3.2109157126$
C,0,2.1824116306,-1.1223382841,2.5528128322
H,0,0.7152931139,-3.8793114166,1.8812481497
H,0,1.6966214732,-3.2066863257,0.5804643627
H,0,-0.4154131244,3.0695449506,3.9715410545
H,0,1.3166338388,2.7719544225,3.7056896607
H,0,-0.5749164264,4.4296364765,2.0024934983
H,0,1.2005842952,4.4974092818,2.0453350729
H,0,-2.8476668042,3.4567785771,-2.1283000448
H,0,-1.5404460472,3.7737449666,-3.2929067267
H,0,-3.4341975805,1.6266017342,-3.574704989
Н,0,-1.8328787347,1.6285974985,-4.3483097441
H,0,-4.5250924532,1.6346287806,1.9479130753
H,0,-4.8876586493,1.0486216602,0.3097936114
Н, $0,-4.0807754534,-0.5856081371,2.7419421436$
H,0,-4.9126521056,-1.1473147529,1.2751590556
H,0,-2.4433647336,-3.4453361002,-2.176753403
H,0,-3.0290820777,-2.2607556447,-0.9681500477
H,0,-2.5791221517,-1.705367325,-2.5892640365
H,0,0.0091694078,-3.695275906,-2.9915790559
H,0,0.11385613,-2.0014796387,-3.5308900364
H,0,1.396682384,-2.6769159688,-2.5256427221
H,0,2.4247739755,-1.9231370016,3.2589977254
H,0,2.9619612833,-1.0472313401,1.7928697063
H,0,2.1218524022,-0.1715579843,3.0869668814
H,0,-0.1258807353,-2.3494321237,3.9176334275
Н,0,-0.645777562,-0.6505989277,3.6886582475
H,0,-1.5349457226,-1.953160358,2.8788075301
H,0,0.6383675979,0.6449334361,-1.3776136878
C, $0,2.1051888847,0.2556744846,-0.6765188047$
C,0,2.926236833,-0.8553543203,-0.9536962338
С,0,4.3086347145,-0.7522295313,-1.1692776748
C,0,4.8975338809,0.5181660393,-1.1389655323
C,0,4.1082090171,1.6403584592,-0.9000503631
C,0,2.733250137,1.5149910311,-0.6768773891
H,0,2.4955949147,-1.8510126396,-0.9867512986
C,0,5.1490762517,-1.9841510201,-1.4228153005
H,0,5.9662310389,0.6250526615,-1.3122918437
H,0,4.5622202144,2.6288136926,-0.8936217104
H,0,2.1412939093,2.4057285207,-0.5001925744

H,0,5.8645414042,-2.1578309377,-0.6095230601
H,0,4.5293771765,-2.8816887702,-1.5139713364
H,0,5.7332430008,-1.8882869815,-2.345330932

dmpeBpin3MetaTolHCHactTSSptSptFrntS

$\mathrm{E}($ RB+HF-LYP $)=-2059.07155341$

Zero-point correction $=$	0.547854 (Hartree/Particle)
Thermal correction to Energy $=$	0.585338
Thermal correction to Enthalpy $=$	0.586282
Thermal correction to Gibbs Free Energy $=$	0.476260
Sum of electronic and zero-point Energies $=$	-2058.523699
Sum of electronic and thermal Energies $=$	-2058.486216
Sum of electronic and thermal Enthalpies $=$	-2058.485272
Sum of electronic and thermal Free Energies $=$	-2058.595294

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	367.305	135.935	231.561

C, $0,-0.4156538602,-3.4311505041,-0.994954503$
C,0,-1.3150937123,-2.6256883738,-1.9439596914
P, $,-0.7054858194,-0.865232959,-2.1162944108$
Ir,0,0.0412098132,-0.1418082357,0.0563997757
B,0,0.3871985026,1.7735625205,-0.7401275115
O,0,0.3488218257,2.9984774768,-0.0886585425
C,0,0.7599924462,4.0394489637,-0.9763610029
C, $0,0.7397900922,3.3873649822,-2.3727977249$
O,0,0.6676043112,1.9812728018,-2.1068775588
P,0,-0.108159989,-2.5371366595,0.6257183471
B,0,1.1414866937,0.3748839209,1.8122851787
O,0,1.7314227102,-0.5864994187,2.644054458
C, $0,2.314302943,0.0752253437,3.7760583787$
C, $0,2.304757523,1.5656504423,3.3870348659$
O,0,1.3697095857,1.6447972161,2.3088055898
B,0,2.0703233108,-0.4390068583,-0.5155394067
O, $0,2.5615661188,-1.5726813654,-1.1914248227$
C,0,3.9433347777,-1.371905851,-1.525503945
С, $0,4.3597900994,-0.1371444216,-0.7041434358$
O,0,3.1237808978,0.4439782036,-0.2776733537
C,0,1.3837481663,-3.4298675191,1.249727081
С, $0,-1.3821380943,-3.2361794871,1.7824304846$
H,0,-0.8261221655,-4.4314609983,-0.8132208976
H,0,0.5765848834,-3.5555246958,-1.4422499123

```
C,0,0.4787369624,-0.9588751359,-3.5262322102 С,0,-2.1287592473,0.0129356549,-2.8912050226 H,0,-1.3719812209,-3.1007021491,-2.9308497736 H,0,-2.337927992,-2.5730535752,-1.5545596615 H,0,1.6375603983,3.6072563709,-2.9601336252 H,0,-0.1376385998,3.6916121882,-2.9592943647
H,0,1.7645766306,4.3777301694,-0.6926708846
H,0,0.0743394571,4.8895421613,-0.8931107806
H,0,3.2871984119,1.9045248478,3.0347472014
H,0,1.9829598708,2.2208146206,4.2026272851
H,0,3.3211255181,-0.3161290643,3.954130733
H,0,1.7025962569,-0.1258532486,4.6652616665
H,0,4.9271954705,0.5925869532,-1.2905150818
H,0,4.9546151165,-0.4082848887,0.1774613886
H,0,4.0300005618,-1.1990369542,-2.6059479332
H,0,4.5178180077,-2.2690453625,-1.2730059202
H,0,1.1995562759,-4.5072514455,1.3187124068
H,0,2.2130349252,-3.2366044218,0.5680974222
H,0,1.6409358936,-3.0263217795,2.2302968526
H,0,-1.3233031138,-4.3290911657,1.8215875593
H,0,-1.1892908904,-2.83658212,2.782502801
H,0,-2.3923826263,-2.9408042381,1.4971807637
H,0,-2.4638719377,-0.4988677562,-3.799247142
H,0,-2.9519498583,0.0842021938,-2.1785618779
H,0,-1.7992326216,1.023018776,-3.1460484078
H,0,-0.0115778752,-1.3519738378,-4.4226479053
H,0,0.8456881172,0.0524835138,-3.7135637416
H,0,1.3218049876,-1.5914340944,-3.2463008698
H,0,-0.6717570813,0.3111106686,1.4460599063
C,0,-2.0980330036,0.5003577052,0.595487077
C,0,-3.1806340509,-0.394098032,0.4988632114
C, \(0,-4.5010476292,0.0317589683,0.6719963393\)
C, \(0,-4.7786510535,1.3623444033,0.9796237197\)
C,0,-3.7285267035,2.2772532638,1.1192646819
C,0,-2.4114813011,1.8326750224,0.9259417615
Н,0,-3.0086985792,-1.436451705,0.2575752418
H, \(0,-5.3153795383,-0.6818600255,0.5646701902\)
H,0,-5.8070102837,1.688732027,1.1183764717
C,0,-4.0023570658,3.7136521435,1.5050843414
H,0,-1.6037280022,2.5496589891,1.031335421
H,0,-3.1914118368,4.3740325328,1.1845799062
H,0,-4.9353735016,4.0782358408,1.06225249
H,0,-4.0981714105,3.8210674542,2.5933073961
```



```
Н,0,-0.2595796558,2.8897461775,4.0066751742
H,0,1.1986342233,3.4142887184,3.1357496865
H,0,-1.7101907519,3.7717831294,2.3055885491
H,0,-0.299216935,4.721629892,1.7868012325
Н,0,-2.6170914312,3.2969773616,-2.4433522537
H,0,-1.476539576,3.2065956268,-3.8061130726
H,0,-3.6209653436,1.3270047283,-3.3893837719
H,0,-2.1797045683,0.9745360055,-4.3687715004
\(\mathrm{H}, 0,-4.637892041,0.9794818658,1.8292319634\)
\(\mathrm{H}, 0,-4.8326447061,0.5388911052,0.1181366355\)
\(\mathrm{H}, 0,-4.0192599028,-1.2631696854,2.4311131498\)
H,0,-4.723021396,-1.7381724815,0.8696322163
H,0,-1.8492381358,-3.7954475678,-2.2517823187
\(\mathrm{H}, 0,-2.6563091679,-2.5737772563,-1.2203369189\)
H,0,-2.0477155126,-2.104933753,-2.8117877699
H,0,0.6709144326,-3.9481855273,-2.7413680824
H,0,0.7265539769,-2.299993256,-3.4085403343
H,0,1.9374766466,-2.8009702874,-2.2304064343
H,0,2.4442518536,-1.7194358811,3.4793087118
H,0,3.0607772459,-0.9494805779,1.985043576
\(\mathrm{H}, 0,2.131429778,0.0136851421,3.148773617\)
H,0,-0.1117252298,-2.137241408,4.0308746257
H,0,-0.6572260736,-0.4780072828,3.6521219566
Н, \(0,-1.4695361688,-1.8668810898,2.8941238937\)
\(\mathrm{H}, 0,0.7470412272,0.5476925434,-1.4246137799\)
C,0,2.266668319,0.2664380191,-0.5912747861
C,0,3.0808587135,-0.8838335474,-0.6520189172
C,0,4.4694513706,-0.8416461311,-0.7983884998
C,0,5.1062987231,0.3899063346,-0.9207127813
C,0,4.3283269443,1.5430422245,-0.9009600308
C,0,2.9296475609,1.5133912897,-0.7460482239
H,0,2.6293737657,-1.8632594436,-0.5604972362
H,0,5.0396002682,-1.7676918208,-0.8201751145
Н,0,6.1840984037,0.4535971417,-1.0439424368
Н,0,4.8117608094,2.5108135266,-1.0178244614
C,0,2.2212918895,2.8495279545,-0.7566525713
Н,0,2.8416198269,3.6024569494,-1.2543560506
\(\mathrm{H}, 0,1.2529252357,2.8106953323,-1.255437716\)
H,0,2.0342850745,3.2085253615,0.2615162715
```


dmpeBpin3OrthoTolHCHactTSParSptBackA

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-2059.05413039$

Thermal correction to Energy $=$	0.585794
Thermal correction to Enthalpy $=$	0.586739
Thermal correction to Gibbs Free Energy $=$	0.480885
Sum of electronic and zero-point Energies $=$	-2058.504978
Sum of electronic and thermal Energies $=$	-2058.468336
Sum of electronic and thermal Enthalpies $=$	-2058.467392
Sum of electronic and thermal Free Energies $=$	-2058.573245

E (Thermal)	CV	S
KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	367.591	135.286

$\mathrm{H}, 0,3.4773154071,2.386861302,-2.7650417844$
$\mathrm{H}, 0,3.1351610206,3.9674857688,-0.1880632356$
$\mathrm{H}, 0,2.4132033004,4.3007203199,-1.7771533483$
$\mathrm{H}, 0,1.1527993235,-3.9422691695,-3.0563830826$
$\mathrm{H}, 0,2.6286844106,-2.970027927,-2.8559742988$
$\mathrm{H}, 0,0.0780510218,-2.2203933343,-4.3350831206$
$\mathrm{H}, 0,1.7095699405,-1.5484438619,-4.5584928391$
$\mathrm{H}, 0,-1.094565894,2.8874492424,0.077407362$
$\mathrm{H}, 0,-3.1319418055,4.1490663846,-0.4188994918$
$\mathrm{C}, 0,-2.4938984248,-0.7910716412,-2.5367866974$
$\mathrm{H}, 0,-4.5364922753,0.8441080595,-2.7641787149$
$\mathrm{H}, 0,-4.913948386,3.1054391586,-1.8459329017$
$\mathrm{C}, 0,1.3458622673,-2.930859429,1.6754417596$
$\mathrm{C}, 0,3.4419200863,-1.3906593299,0.5423054041$
$\mathrm{C}, 0,-1.8147709054,1.5636480011,2.9144253017$
$\mathrm{C}, 0,0.6661841328,2.896317191,2.4108555544$
$\mathrm{H}, 0,0.0081810096,-0.6066977914,3.6559221123$
$\mathrm{H}, 0,0.8837027451,0.7795095166,4.3313229595$
$\mathrm{H}, 0,2.4787570806,-1.0654141293,3.5433370171$
$\mathrm{H}, 0,2.7351064364,0.4506805812,2.6794971274$
$\mathrm{H}, 0,0.5338122442,3.2345185789,3.4440541882$
$\mathrm{H}, 0,1.7329430428,2.8081762268,2.1921857273$
$\mathrm{H}, 0,0.2579080823,3.6443442109,1.7287734492$
$\mathrm{H}, 0,-1.711748988,1.9905471185,3.9175835717$
$\mathrm{H}, 0,-2.3854769768,2.2504199435,2.284863246$
$\mathrm{H}, 0,-2.3447545003,0.6121118617,2.9621754871$
$\mathrm{H}, 0,4.0931846056,-1.8254738752,1.3076253157$
$\mathrm{H}, 0,3.3950180797,-2.0619519196,-0.3174897046$
H,0,3.8270875411,-0.428614226,0.2059075322
H, $, 2,2.1974549121,-3.3866123959,2.1909831447$
$\mathrm{H}, 0,0.4717889721,-2.9510603053,2.3287395501$
$\mathrm{H}, 0,1.1229490357,-3.4838712738,0.7612706156$
$\mathrm{H}, 0,-3.4346546518,-1.0581761155,-3.0291262815$
H,0,-1.7168427122,-0.7249719002,-3.3036272533
$\mathrm{H}, 0,-2.2173206402,-1.5954414648,-1.855523447$

dmpeBpin3OrthoTolHCHactTSSptSptBack

$\mathrm{E}($ RB+HF-LYP $)=-2059.06343158$

Zero-point correction $=$	0.548427 (Hartree/Particle)
Thermal correction to Energy $=$	0.585310
Thermal correction to Enthalpy=	0.586254
Thermal correction to Gibbs Free Energy=	0.479921
Sum of electronic and zero-point Energies=	-2058.515005

Sum of electronic and thermal Energies $=$	-2058.478122
Sum of electronic and thermal Enthalpies $=$	-2058.477177
Sum of electronic and thermal Free Energies $=$	-2058.583511

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	367.288	135.740	223.797

C,0,3.149868173,-0.7022192723,0.5344583738 C,0,2.2569510986,0.3816714867,0.6635881627 C,0,2.8150010289,1.6118093183,1.1009126148 С,0,4.2013300628,1.7077184296,1.321052608 С,0,5.062073287,0.6289897564,1.1435802164 C,0,4.5253645796,-0.5943251874,0.7505017362 Ir,0,0.0419675857,0.0140006615,0.0501397041
P,0,0.6298586747,-0.6901572117,-2.1778101742
C,0,0.3736901435,-2.54330127,-2.2651291842
С, $0,0.7691180049,-3.2552262208,-0.9606554566$
P,0,0.0370688177,-2.3893867437,0.5341776395
B, $0,-2.0114851074,-0.1006028054,-0.5050644537$
О,0,-2.5200490217,-0.938231401,-1.5214309039
C,0,-3.9245200222,-0.6923090678,-1.6885506072
С,0,-4.3155698483,0.1221704583,-0.4423109931
O,0,-3.0705003197,0.583978261,0.0856868061
B,0,-0.9759012401,0.4565432941,1.8743073984
О,0,-1.566199809,-0.5494162788,2.6506751794
C,0,-2.1207044957,0.0463170808,3.8329162257
C,0,-2.0609881158,1.562070824,3.5587255096
O,0,-1.1323489299,1.6898757083,2.4786297176
B,0,-0.1407202094,1.978962465,-0.6887151187
О,0,-1.0172182935,2.980873322,-0.2965415225
С, $0,-0.7362425295,4.1825724069,-1.0144074658$
C, $0,0.1835242038,3.7383110924,-2.1684254332$
O,0,0.6325651236,2.4343698527,-1.7781503132
H,0,-4.0846674104,-0.1298580625,-2.6176103857
Н,0,-4.459278541,-1.6445066804,-1.7667020933
H,0,-4.9578300036,0.9774504101,-0.6747382965
Н,0,-4.8222193354,-0.4958772593,0.3105576716
H,0,-3.1411067752,-0.3194255402,3.9858469263
H,0,-1.514289611,-0.2442465684,4.7006391127
H,0,-3.0320771429,1.961091409,3.2420589638
H,0,-1.7079094724,2.1402918044,4.4183219308
H,0,-0.3559313973,3.6667918054,-3.1231272224
H,0,1.0445584044,4.3996152454,-2.3114201867

```
H,0,-1.6715318137,4.6342358341,-1.3615448318
H,0,-0.2392818254,4.8967532967,-0.3444289649
H,0,0.755562398,0.3776577258,1.4656721554
H,0,2.7738111579,-1.6720294851,0.2310166057
H,0,5.1650163825,-1.4637143584,0.6161935214
C,0,1.9979415444,2.8599210629,1.3582094389
H,0,4.6064488824,2.6612363271,1.6539527885
H,0,6.1276792531,0.7390607324,1.3259838689
C,0,-0.309898963,-0.0932628673,-3.6474352542
C,0,2.3615928458,-0.4176098849,-2.7545765787
C,0,-1.6013392707,-3.2256001788,0.7100858721
C,0,0.9421998734,-3.1436963689,1.9625621303
H,0,0.4516049522,-4.3048135336,-0.9794678104
H,0,1.8585696363,-3.2552498766,-0.842559138
H,0,-0.6968476947,-2.6741721479,-2.4542037751
H,0,0.9175714264,-2.9600018652,-3.1211614076
H,0,2.5152570118,-0.8658933874,-3.7416963222
H,0,2.5185746653,0.6622060451,-2.8115255748
H,0,3.0818059444,-0.8251639094,-2.0453299062
H,0,0.02255975,-0.6056196356,-4.5559104348
H,0,-1.3721872765,-0.2732835554,-3.4840359526
H,0,-0.1305776723,0.9789496009,-3.7459301359
H,0,0.9386560736,-4.2376014093,1.9097748275
H,0,1.9710631243,-2.7819472074,2.0025135439
H,0,0.4334656781,-2.8293802486,2.8779581011
H,0,-1.4855631988,-4.3073726848,0.8347963539
H,0,-2.097353873,-2.8002638591,1.5851926666
H,0,-2.2083867614,-3.0139453402,-0.1717023625
H,0,2.527587776,3.5266597654,2.0467127097
H,0,1.8382386267,3.4172969294,0.4285431415
H,0,1.0160007897,2.6408919615,1.7805400373
dmpeBpin2OrthoTolHBpinRotTS
E(RB+HF-LYP) =-2059.05413039
Zero-point correction= 0.549152 (Hartree/Particle)
Thermal correction to Energy= 0.585794
Thermal correction to Enthalpy=}0.58673
Thermal correction to Gibbs Free Energy= 0.480885
Sum of electronic and zero-point Energies= -2058.504978
Sum of electronic and thermal Energies= -2058.468336
Sum of electronic and thermal Enthalpies= -2058.467392
Sum of electronic and thermal Free Energies= -2058.573245
```

```
        E (Thermal) CV S
        KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin
            367.591 135.286 222.787
C,0,-1.875427757,2.4018444122,-0.4949547449
C,0,-1.6667776116,1.079723446,-0.938913675
C,0,-2.6331637462,0.5339125828,-1.8248808177
C,0,-3.789629959,1.2846194983,-2.1072135073
C,0,-4.0059275477,2.5621571694,-1.5982218104
C,0,-3.0224101938,3.1358741085,-0.797976603
Ir,0,0.1111872461,0.0178537492,-0.0040746273
B,0,1.6001959171,1.4806938223,-0.6936627702
O,0,1.4387361322,2.8648634164,-0.6403411906
C,0,2.6497160627,3.5092933612,-1.0598534458
C,0,3.4934103248,2.373507041,-1.6688426362
O,0,2.8569412643,1.1706364656,-1.2088140764
P,0,1.7319433896,-1.1893474123,1.1982052553
C,0,2.0127167695,-0.3575005918,2.8476050726
C,0,0.7010555139,0.2051403785,3.415456113
P,0,-0.1656413475,1.2576618648,2.1396545308
B,0,0.6022395796,-1.1953805246,-1.6341890852
O,0,1.0814261611,-2.5122125051,-1.5537522097
C,0,1.5306767105,-2.936620494,-2.8464187765
C,0,0.9778651792,-1.8711268018,-3.8110705165
O,0,0.6342020077,-0.7704867763,-2.9653233149
B,0,-1.2815752593,-1.4769725261,0.75237977
O,0,-1.8208907971,-2.5478272051,0.0448434303
C,0,-2.8025000044,-3.2287205526,0.8345406036
C,0,-2.6015814481,-2.6752189211,2.2575664941
O,0,-1.7633413918,-1.523434281,2.076295832
H,0,-0.0653175618,1.0756484018,-1.2435480888
H,0,-3.8014567189,-3.0054865841,0.4396226322
H,0,-2.6404786492,-4.3093958953,0.7692235918
H,0,-3.5387192614,-2.3769468017,2.738228061
H,0,-2.0922595855,-3.392552469,2.9146693313
H,0,4.5365469,2.3876859382,-1.3373106781
H,0,3.4773154063,2.3868613011,-2.7650417864
H,0,3.1351610203,3.967485769,-0.1880632383
H,0,2.4132032996,4.3007203192,-1.777153351
H,0,1.1527993216,-3.9422691703,-3.0563830822
H,0,2.6286844089,-2.970027928,-2.8559742994
H,0,0.0780510196,-2.2203933352,-4.3350831201
H,0,1.7095699382,-1.5484438631,-4.5584928395
H,0,-1.094565894,2.8874492424,0.0774073618
```

$\mathrm{H}, 0,-3.1319418057,4.1490663844,-0.4188994914$
$\mathrm{C}, 0,-2.493898426,-0.7910716419,-2.536786696$
$\mathrm{H}, 0,-4.5364922767,0.8441080587,-2.7641787129$
$\mathrm{H}, 0,-4.9139483869,3.1054391581,-1.8459329001$
$\mathrm{C}, 0,1.3458622678,-2.9308594286,1.6754417598$
$\mathrm{C}, 0,3.4419200865,-1.390659333,0.5423054027$
$\mathrm{C}, 0,-1.8147709038,1.563648002,2.9144253022$
$\mathrm{C}, 0,0.6661841341,2.8963171917,2.4108555532$
$\mathrm{H}, 0,0.0081810114,-0.6066977904,3.6559221125$
$\mathrm{H}, 0,0.8837027474,0.7795095177,4.3313229588$
$\mathrm{H}, 0,2.4787570824,-1.0654141284,3.5433370161$
$\mathrm{H}, 0,2.7351064378,0.4506805818,2.6794971259$
$\mathrm{H}, 0,0.5338122461,3.2345185798,3.444054187$
$\mathrm{H}, 0,1.732943044,2.8081762274,2.1921857256$
$\mathrm{H}, 0,0.2579080832,3.6443442114,1.7287734481$
$\mathrm{H}, 0,-1.7117489859,1.9905471196,3.9175835721$
$\mathrm{H}, 0,-2.3854769755,2.2504199442,2.2848632466$
$\mathrm{H}, 0,-2.3447544987,0.6121118625,2.9621754882$
$\mathrm{H}, 0,4.0931846061,-1.8254738752,1.3076253142$
$\mathrm{H}, 0,3.3950180794,-2.0619519201,-0.3174897057$
$\mathrm{H}, 0,3.8270875412,-0.4286142263,0.2059075303$
$\mathrm{H}, 0,2.1974549129,-3.3866123954,2.1909831446$
$\mathrm{H}, 0,0.471788973,-2.9510603046,2.3287395507$
$\mathrm{H}, 0,1.1229490358,-3.4838712736,0.7612706161$
$\mathrm{H}, 0,-3.4346546533,-1.0581761163,-3.0291262796$
$\mathrm{H}, 0,-1.7168427138,-0.7249719011,-3.3036272523$
$\mathrm{H}, 0,-2.2173206411,-1.5954414653,-1.8555234455$

dmpe Bpin3 Para Anisole CH Activation Transition Structure

 $\mathrm{E}($ RB+HF-LYP $)=-2134.27375331$Zero-point correction $=\quad 0.552920$ (Hartree/Particle)
Thermal correction to Energy=
0.591250

Thermal correction to Enthalpy=
0.592194

Thermal correction to Gibbs Free Energy= 0.479774
Sum of electronic and zero-point Energies $=\quad-2133.720834$
Sum of electronic and thermal Energies $=\quad-2133.682504$
Sum of electronic and thermal Enthalpies $=\quad-2133.681560$
Sum of electronic and thermal Free Energies $=\quad-2133.793979$

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	371.015	138.967	236.607


```
C,0,-0.7376000541,1.2490295579,-3.462492766
C,0,1.9284081971,0.3419667451,-2.9474365162
C,0,-1.5913509182,-3.5863084907,-0.2684308016
C,0,1.1781297324,-3.628742048,0.3003764416
H,0,-0.0091016298,-3.7012484803,-2.6438173029
H,0,1.4301327824,-2.7283693205,-2.3480317945
H,0,-1.3326603514,-1.6390318429,-3.1483081575
H,0,0.1154705152,-1.6413658824,-4.1682994541
H,0,1.1383530388,-4.6257347391,-0.151249947
H,0,2.1776922706,-3.2109533904,0.1676367411
H,0,0.976742811,-3.7165675667,1.3710262179
H,0,-1.4099628781,-4.5984258744,-0.6454721634
H,0,-1.8310977244,-3.6345951908,0.796735059
H,0,-2.4343380953,-3.1256083838,-0.7831276488
H,0,2.0168120728,0.2096821379,-4.0307928755
H,0,2.2363289687,1.3560833691,-2.6843484216
H,0,2.5969253254,-0.3506912765,-2.4321532652
H,0,-0.4895395411,1.0997522388,-4.5183263852
H,0,-1.8101623426,1.1179907038,-3.3069779997
H,0,-0.4816961526,2.261825159,-3.1480961656
C,0,6.7360965884,1.6285469836,1.2175395187
H,0,7.7482063131,1.473143942,1.5961750531
H,0,6.7722191465,1.7146208079,0.1229294458
H,0,6.337682687,2.5643959353,1.6320672937
dmpeBpin3ParaAnisCHactTSParSptBackA
E(RB+HF-LYP})=-2134.2758536
Zero-point correction= 0.553088 (Hartree/Particle)
Thermal correction to Energy= 0.591233
Thermal correction to Enthalpy= 0.592177
Thermal correction to Gibbs Free Energy= 0.481323
Sum of electronic and zero-point Energies= -2133.722766
Sum of electronic and thermal Energies= -2133.684620
Sum of electronic and thermal Enthalpies= -2133.683676
Sum of electronic and thermal Free Energies= -2133.794531
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 371.004 & 138.981 & 233.314
\end{tabular}
C,0,3.9590141604,1.6562994104,0.3834842086
C,0,2.5857277235,1.4599786227,0.1899621019
C,0,1.9218434143,0.285677192,0.5822092227
```

$\mathrm{C}, 0,2.7144634009,-0.6591501417,1.264515773$
$\mathrm{C}, 0,4.0818804484,-0.4871660692,1.4735519659$
$\mathrm{C}, 0,4.7206321687,0.6720674671,1.0203387361$
$\mathrm{Ir}, 0,-0.2578238803,-0.0782294948,0.0185234413$
$\mathrm{~B}, 0,-0.5966062085,1.9714020641,-0.2585890779$
$\mathrm{O}, 0,-1.207262474,2.5441019155,-1.3875655895$
$\mathrm{C}, 0,-1.4147045226,3.9424112713,-1.1484742214$
$\mathrm{C}, 0,-0.5443377821,4.2535129137,0.0856888524$
$\mathrm{O}, 0,-0.2253654138,2.9719232487,0.6313073402$
$\mathrm{O}, 0,6.067605846,0.7536735308,1.2624477088$
$\mathrm{P}, 0,0.3516207404,-0.4393030075,-2.2908544874$
$\mathrm{C}, 0,2.1311872508,-0.2015137547,-2.7276407202$
$\mathrm{P}, 0,-0.1991376057,-2.5548583269,0.0983514497$
$\mathrm{C}, 0,0.7021164315,-3.6337685481,1.3094364569$
$\mathrm{~B}, 0,-2.3034914644,-0.1448236132,-0.5853128663$
$\mathrm{O}, 0,-2.774227359,-0.7630484521,-1.7606568672$
$\mathrm{C}, 0,-4.1686820408,-0.4704885717,-1.9329051001$
$\mathrm{C}, 0,-4.6102408861,0.0840723658,-0.5664955507$
$\mathrm{O}, 0,-3.3871980217,0.4016359232,0.1038194695$
$\mathrm{~B}, 0,-1.2703802,-0.0183839302,1.8902011038$
$\mathrm{O}, 0,-1.7237935044,1.0949687433,2.5703773979$
$\mathrm{C}, 0,-2.5560871394,0.6679588477,3.6504341138$
$\mathrm{C}, 0,-2.20671245,-0.8208355972,3.8357279144$
$\mathrm{O}, 0,-1.5772128542,-1.1886343679,2.5981304019$
$\mathrm{C}, 0,0.0632831656,-2.2403497524,-2.6902466852$
$\mathrm{C}, 0,0.5077449982,-3.1463914237,-1.5324745849$
$\mathrm{C}, 0,-0.4917110952,0.4269439822,-3.6795433778$
$\mathrm{C}, 0,-1.8547853427,-3.3811985681,0.1342672825$
$\mathrm{H}, 0,-5.1627001809,-0.6602650415,0.021791918$
$\mathrm{H}, 0,-5.2285856808,0.9833349949,-0.6510647645$
$\mathrm{H}, 0,-4.7039099391,-1.3813974783,-2.2206146125$
$\mathrm{H}, 0,-4.2852975282,0.2680070643,-2.7361260229$
$\mathrm{H}, 0,-3.0858733725,-1.4510189185,4.0041848095$
$\mathrm{H}, 0,-1.5002880682,-0.9820495602,4.6602058715$
$\mathrm{H}, 0,-3.6073915123,0.8097965853,3.3694178995$
$\mathrm{H}, 0,-2.3466068909,1.2717723604,4.53888853$
$\mathrm{H}, 0,-2.4803765936,4.1195910012,-0.9560218395$
$\mathrm{H}, 0,-1.1244884002,4.5166679085,-2.034947205$
$\mathrm{H}, 0,-1.0689585067,4.853125616,0.8363408264$
$\mathrm{H}, 0,0.3842745322,4.7753857734,-0.1829242383$
$\mathrm{H}, 0,0.4299883159,0.3894792169,1.4134664709$
$\mathrm{H}, 0,2.0264663717,2.2656308594,-0.2721121752$
$\mathrm{H}, 0,4.4119534606,2.5825116892,0.0462198675$
$\mathrm{H}, 0,2.2527256784,-1.5503110899,1.6715409341$

```
H,0,4.6692347401,-1.2330832797,2.0015025274
H,0,0.2187275774,-4.188110756,-1.7165184847
H,0,1.5997596023,-3.1282378232,-1.4316346533
H,0,-1.014140904,-2.3362016686,-2.8579994559
H,0,0.5758565239,-2.5082030436,-3.621952657
H,0,2.3244369349,-0.5350739108,-3.7523535076
H,0,2.3873380396,0.856380391,-2.6382757165
H,0,2.7676001452,-0.748816424,-2.029888333
H,0,-0.0817130284,0.1105151151,-4.6440460175
H,0,-1.5563814072,0.1988035462,-3.6288979981
H,0,-0.368496389,1.5032297366,-3.5497048167
H,0,0.4759668709,-4.6895932421,1.1278249274
H,0,1.7814363879,-3.4896699434,1.2338616701
H,0,0.3791299943,-3.3683995494,2.3191898802
H,0,-1.7588630809,-4.4683980981,0.0455442009
H,0,-2.332312256,-3.129275817,1.0836615381
H,0,-2.4698732599,-2.9956911326,-0.6805278965
C,0,6.743774658,1.9290284146,0.856369104
H,0,7.7878251963,1.7953157153,1.1462810554
H,0,6.6898800342,2.0770299819,-0.2308981033
H,0,6.3444285967,2.8228450409,1.3542185188
```


dmpeBpin3ParaAnisCHactTSSptSptBackA

$\mathrm{E}($ RB + HF-LYP $)=-2134.27646546$

Zero-point correction=	0.553391 (Hartree/Particle)
Thermal correction to Energy $=$	0.591415
Thermal correction to Enthalpy $=$	0.592359
Thermal correction to Gibbs Free Energy $=$	0.482422
Sum of electronic and zero-point Energies=	-2133.723074
Sum of electronic and thermal Energies=	-2133.685050
Sum of electronic and thermal Enthalpies $=$	-2133.684106
Sum of electronic and thermal Free Energies $=$	-2133.794044

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	371.119	138.825	231.383

C,0,2.839403597,-0.7616116838,0.6240291087
C,0,1.9144704741,0.2948222778,0.5966940935
С,0,2.4501061561,1.5767706288,0.850892328
C,0,3.8096586963,1.7869217067,1.0673993046
C,0,4.7076642881,0.7130873113,1.0553136791
C,0,4.2134730034,-0.5745762153,0.8338889773

```
Ir,0,-0.2797538294,-0.0362679709,0.0115606724 P,0,0.336929885,-0.7648412316,-2.2085379109 C,0,0.1083847895,-2.622223059,-2.2780683217 C,0,0.4952025874,-3.3126410429,-0.9604814491 P,0,-0.3103005595,-2.4490380914,0.494981702
B,0,-2.3080546513,-0.069020007,-0.6347944013
O,0,-2.8411442785,-0.9939827271,-1.5539539198
C, \(0,-4.1966742745,-0.6373093972,-1.8639630381\)
C, \(0,-4.5693790924,0.4086053633,-0.7967207865\)
O,0,-3.3170759023,0.8054514767,-0.2302097593
B,0,-1.3752323296,0.3850758082,1.7868782146
O,0,-1.9663696991,-0.6351793339,2.547737052
C, \(0,-2.5482775713,-0.053740002,3.7237913574\)
C, \(0,-2.542361438,1.4601733084,3.4370071948\)
O,0,-1.6060888243,1.616142989,2.3686445507
B,0,-0.4340910453,1.9701378109,-0.5968421832
O,0,-0.2176131809,3.0978150808,0.1887288003
C, \(0,-0.2996753581,4.2775224919,-0.6138773369\)
C, \(0,-0.9093844605,3.7946365493,-1.9429270073\)
O,0,-0.7511687213,2.3707270609,-1.9082555272
\(\mathrm{H}, 0,-4.2372825206,-0.2242506371,-2.8800881589\)
H,0,-4.8296816124,-1.529967894,-1.8295320399
\(\mathrm{H}, 0,-5.0779105303,1.2827137143,-1.2156201848\)
H, \(0,-5.204839413,-0.0147424484,-0.0082120596\)
Н,0,-3.5539480483,-0.4583689834,3.8772509738
Н, \(0,-1.9340848575,-0.3131711224,4.5960428352\)
H,0,-3.5256591387,1.8196793332,3.1082584786
\(\mathrm{H}, 0,-2.2230321423,2.0579914113,4.2964268115\)
H,0,-1.9773752428,4.0365183383,-2.0179846567
H,0,-0.4000481413,4.2034416604,-2.8221895801
\(\mathrm{H}, 0,-0.91759612,5.0252419613,-0.1065217952\)
\(\mathrm{H}, 0,0.7070557711,4.6958337354,-0.7487588226\)
\(\mathrm{H}, 0,0.4483092987,0.3439531773,1.4158114211\)
\(\mathrm{H}, 0,2.5100342051,-1.779532486,0.4486084187\)
H,0,4.8726439633,-1.436061036,0.8234051456
Н,0,1.7819009437,2.429602024,0.8882295365
\(\mathrm{H}, 0,4.1967541826,2.7835780189,1.2594890321\)
O,0,6.024717546,1.0213942171,1.2758047958
C, \(0,-0.5693331287,-0.2116103255,-3.7151239523\)
C,0,2.0870586832,-0.5030694861,-2.7389545443
C, \(0,-1.9523780739,-3.2923754828,0.5916813916\)
C,0,0.5169112232,-3.1939174786,1.9747749443
\(\mathrm{H}, 0,0.2134733163,-4.3723147458,-0.9786546786\)
Н,0,1.5804679486,-3.2719012005,-0.8139220612
```

```
H,0,-0.9575520399,-2.7708297892,-2.4807517204
H,0,0.6687362415,-3.0389006104,-3.1234498743
H,0,2.2781314633,-0.9850698826,-3.703337978
H,0,2.2613175324,0.5720747445,-2.8341980614
H,0,2.7801191916,-0.8839845635,-1.9879695468
H,0,-0.1600965488,-0.687950531,-4.611936636
H,0,-1.6226103145,-0.4701143219,-3.6025794769
\(\mathrm{H}, 0,-0.4842754131,0.8735344024,-3.7858952669\)
\(\mathrm{H}, 0,0.5216538023,-4.2879685219,1.9280573375\)
H,0,1.5396387781,-2.8277792099,2.0780141801
H,0,-0.0488870916,-2.8766369712,2.8548608745
H,0,-1.8377934833,-4.375548457,0.7060899989
H,0,-2.4819774013,-2.8814271078,1.4538731871
H,0,-2.5291007084,-3.0675316829,-0.30688715
C,0,6.9611922757,-0.0394914062,1.2847473567
H,0,7.9349385062,0.4147567649,1.4778417214
H,0,6.7434715146,-0.7706760385,2.0751507292
H,0,6.9951694443,-0.5631299533,0.3194545317
```

dmpeBpin3ParaAnisCHactTSSptSptFrntS
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-2134.27536754$

Zero-point correction=	0.553494 (Hartree/Particle)
Thermal correction to Energy $=$	0.591500
Thermal correction to Enthalpy $=$	0.592445
Thermal correction to Gibbs Free Energy=	0.482400
Sum of electronic and zero-point Energies=	-2133.721874
Sum of electronic and thermal Energies=	-2133.683867
Sum of electronic and thermal Enthalpies $=$	-2133.682923
Sum of electronic and thermal Free Energies $=$	-2133.792967

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} / \mathrm{Mol-Kelvin}$	Cal/Mol-Kelvin
Total	371.172	138.766	231.608

C, $0,0.0418590209,-3.4592430759,-0.6226109997$
C,0,-1.0301249323,-2.9092395683,-1.5756373618
P,0,-0.7483650742,-1.0971003797,-1.951267415
Ir,0,-0.0211741474,-0.0398809512,0.0823286188
B,0,-0.1131624935,1.8195285958,-0.895528921
О,0,-0.3183272168,3.0764411711,-0.3441988019
C,0,-0.1933199115,4.0801910026,-1.3533712505
C,0,-0.2241710491,3.2993778287,-2.6820097877
O,0,-0.0054149603,1.9362978545,-2.2979857444

P,0,0.334535089,-2.3427755274,0.8590847368
B, $0,1.0563912662,0.8264438668,1.7109968902$
O, $0,1.8437623649,0.0615020572,2.5825474739$
C, $0,2.3558380947,0.9178195291,3.6138976945$
C, $0,2.0702818139,2.3410060774,3.0980440667$
O,0,1.083371244,2.1580836026,2.0802852411
B, $0,1.9882948243,0.032144191,-0.6214353643$
O,0,2.6578017893,-1.0193644394,-1.2740607382
C, $0,3.9442187318,-0.5676226949,-1.7218126332$
C,0,4.1553001354,0.7678816446,-0.9851508312
O,0,2.8541826504,1.1217102116,-0.5061746855
C,0,2.0200170775,-2.8918797708,1.3812428953
C,0,-0.6666432709,-3.1120600067,2.2209942461
H, $0,-0.2068385221,-4.4748445435,-0.2927151676$
H,0,1.0058455483,-3.5120952729,-1.1407128004
C,0,0.3450966857,-1.1273279642,-3.4351340817
C,0,-2.3504554271,-0.5608094996,-2.6882182375
H,0,-1.0596699504,-3.4850778091,-2.5085608798
H,0,-2.0243126904,-2.985281323,-1.1221766701
H,0,0.5558007609,3.6167735987,-3.3821749277
H,0,-1.1952506329,3.382725681,-3.1884038701
H,0,0.753502664,4.6162878384,-1.2112137126
H,0,-1.0136103326,4.8003224751,-1.2630529336
H,0,2.961050077,2.8039510782,2.6548022694
H,0,1.6808329149,3.0086495335,3.8730130496
H,0,3.4224076337,0.7200528192,3.7618765572
H,0,1.8302099626,0.703498365,4.5536057983
H,0,4.5365403148,1.559708713,-1.6376725755
H,0,4.8381305576,0.6646816239,-0.1320133525
H,0,3.9212584429,-0.4403555258,-2.8118716246
H,0,4.7037966922,-1.3175397521,-1.4783730685
H,0,2.0488767331,-3.9736766505,1.5503279556
$\mathrm{H}, 0,2.7307883646,-2.6178636822,0.6003783595$
H,0,2.2878438631,-2.3611805348,2.2961564698
Н,0,-0.4277867869,-4.1744092132,2.3382258822
H,0,-0.4245022551,-2.590904735,3.1520119194
H,0,-1.7372478792,-2.9992957896,2.0470216635
H,0,-2.6458708045,-1.2178514306,-3.5125818679
H,0,-3.126849252,-0.5530733143,-1.9215729091
H,0,-2.2191454524,0.4565598506,-3.0635976921
H,0,-0.1249926541,-1.6784619435,-4.2560171458
H, $0,0.5187322074,-0.0908935312,-3.7322488655$
H,0,1.3014843745,-1.5799267802,-3.1713077944
H,0,-0.7103163764,0.4126199791,1.483861029

C, $0,-2.2041978354,0.238057043,0.7331565472$
С, $0,-3.1105786733,-0.8390387305,0.8257018386$
С,0,-4.4695220089,-0.6579363789,1.0776459629
C, $0,-4.9824325337,0.6287403962,1.2814895553$
C,0,-4.1102356756,1.7186255711,1.2254552788
C,0,-2.7499645371,1.5135396466,0.9599991587
H,0,-2.7673116167,-1.8566893019,0.6749235967
H,0,-5.1501740405,-1.503297465,1.1261666349
O,0,-6.3275514351,0.7083704952,1.53125905
H,0,-4.4665865085,2.729455486,1.3918252962
H,0,-2.0996545905,2.3808474221,0.925460183
C,0,-6.8831964745,1.990783616,1.7600867353
Н,0,-7.9488688994,1.8334725566,1.9373336643
H,0,-6.4403391309,2.476213215,2.6400308736
H,0,-6.7568928676,2.6511699494,0.8916545191

dmpeBpin2ParaAnisHBpinRotTS

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-2134.28247165$

Zero-point correction=	0.555886
(Hartree/Particle)	
Thermal correction to Energy $=$	0.593325
Thermal correction to Enthalpy $=$	0.594269
Thermal correction to Gibbs Free Energy=	0.485887
Sum of electronic and zero-point Energies $=$	-2133.726585
Sum of electronic and thermal Energies=	-2133.689147
Sum of electronic and thermal Enthalpies $=$	-2133.688203
Sum of electronic and thermal Free Energies $=$	-2133.796584

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	372.317	137.111	228.108

C,0,4.0782813136,0.3535866897,1.0163597168
C,0,2.6744892257,0.2826613414,1.0626330957
C,0,1.85596129,0.0032542705,-0.0463967979
С,0,2.5780573961,-0.2048602851,-1.2481634777
C,0,3.9671337718,-0.1415457508,-1.3319004529
C,0,4.734172829,0.1385069803,-0.1951598281
Ir,0,-0.3794600323,-0.0906347437,-0.0441280805
B,0,-0.1672386951,-1.898529663,-1.1036571661
O,0,-0.1484975497,-3.1919895456,-0.5696289127
С, $0,-0.0475505974,-4.143110988,-1.6402891174$
C,0,0.3123957847,-3.2942700705,-2.875920264
O,0,0.0311381316,-1.948058787,-2.4799126668

```
B, 0,-2.4875175237,-0.3045091103,-0.3070208725 О, \(0,-3.4866337899,-0.0313969277,0.6517345377\) C,0,-4.7731713464,-0.3837491126,0.1181965437 C, \(0,-4.5114937942,-0.6157423775,-1.3810985298\) O, \(0,-3.0919061629,-0.7621852618,-1.4766593684\) P,0,-0.5462306475,1.8239126754,1.4504954384 C,0,0.7138723863,3.1741976599,1.4218317004 P,0,-0.5735910848,-1.3495626782,1.9037088687 C, \(0,0.8967807397,-2.2973728051,2.4824283413\)
B, \(0,-0.5163071331,1.6037261929,-1.5363854745\)
О,0,-1.73141335,2.1179020811,-1.9549707853
C,0,-1.4821191439,3.312872666,-2.7103764689 C,0,0.0112470211,3.6270503778,-2.4606987455 O,0,0.5350283925,2.4407948724,-1.8503490186
C, \(0,-0.3818620204,1.1595712312,3.191528007\)
C,0,-1.0388405847,-0.2191264805,3.3178802834
C,0,-2.1237021323,2.7837524478,1.5214350068
С, \(0,-1.8899081015,-2.6343660933,2.0107865807\)
H,0,-0.2618058054,0.2932442617,-1.677614569
H,0,-0.7898087471,-0.6965786049,4.2725672035
H,0,-2.1288772121,-0.123154744,3.2693638326
H,0,-0.8154975754,1.8719412052,3.9028670828
H,0,0.6895873189, 1.0969134558,3.4091794199
H,0,0.1506728598,4.4746665133,-1.7776118947
H,0,0.5655242183,3.8351928878,-3.3803275881
H,0,-2.1503056135,4.1086786901,-2.3665163271
H,0,-1.6956447223,3.1137606363,-3.7667527002
H,0,-0.2849637063,-3.5509598907,-3.7563802801
H,0,1.3744374642,-3.3775105007,-3.1387727346
H,0,-1.0108172328,-4.655551546,-1.756654264
H,0,0.7155986982,-4.8890803359,-1.3969203109
Н, \(0,-4.8277550494,0.2402575439,-1.9909875088\)
\(\mathrm{H}, 0,-5.0041444153,-1.5143455986,-1.7664252159\)
H,0,-5.4865479146,0.424325651,0.3100739732
H,0,-5.1377028284,-1.289885246,0.6210217124
H,0,2.03719729,-0.4317988961,-2.1628871046
H,0,4.4809610008,-0.3069651747,-2.2753246235
O,0,6.09772953,0.1773207094,-0.375061667
H,0,4.6306425025,0.5748294436,1.9241763033
H,0,2.2269054683,0.4634291909,2.0389072066
H,0,-1.6907038138,-3.3873546768,1.247414927
H,0,-1.887796713,-3.0987559319,3.0023725505
H,0,-2.857869631,-2.1681110543,1.8227736323
H,0,1.1150991677,-3.0463885232,1.7178635814
```

```
H,0,1.7665605906,-1.6481353047,2.5776399774
H,0,0.6859852898,-2.7920520005,3.4360491924
H,0,-2.2818812647,3.2730816042,0.5569701729
H,0,-2.9506997969,2.0885966158,1.6758327781
H,0,-2.099613873,3.5386874694,2.3142206715
H,0,0.5724343617,3.7779746311,0.5230935472
H,0,0.625814325,3.8157710714,2.3046613146
H,0,1.7110763458,2.7336126517,1.3722632749
C,0,6.9006239578,0.4521574211,0.7540101358
H,0,7.935783996,0.4379664834,0.4058222802
H,0,6.681727273,1.4399120657,1.1838713146
H,0,6.7777233941,-0.3059256909,1.5405530001
```

dmpe Bpin3 Meta Anisole CH Activation Transition Structure
dmpeBpin3MetaAnisCHactTSParParBackA
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-2134.27447502$
Zero-point correction= 0.553169 (Hartree/Particle)
Thermal correction to Energy=
0.591298
Thermal correction to Enthalpy= 0.592242
Thermal correction to Gibbs Free Energy= 0.479907
Sum of electronic and zero-point Energies $=\quad-2133.721306$
Sum of electronic and thermal Energies $=\quad-2133.683177$
Sum of electronic and thermal Enthalpies $=\quad-2133.682233$
Sum of electronic and thermal Free Energies= $\quad-2133.794568$

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	371.045	138.796	236.430

C,0,2.713461871,1.1913254302,0.3891227466
C,0,1.9790035187,0.0507420332,0.7777685978
C, $0,2.6360485012,-0.9018355885,1.5732458151$
C,0,3.9897812146,-0.7612675026,1.9064967693
C,0,4.7161780127,0.3417303918,1.4781555427
C,0,4.0660849485,1.3292983224,0.7247304023
Ir,0,-0.1857907159,-0.1755833113,0.0373545434
P,0,0.3250900006,-0.0018739105,-2.3178925168
С,0,0.1026971435,-1.6954245075,-3.0754416376
C,0,0.6824537834,-2.7819683109,-2.1615064244
P,0,0.0361409515,-2.6141425313,-0.4117530617
В, $0,-2.2389928438,-0.0285794663,-0.5168581548$
О,0,-2.8532003787,1.156605111,-0.9346295781
C,0,-4.2712962722,0.9704711741,-0.9953311412

> C, $0,-4.45773027,-0.5581486291,-0.9468323007$ $\mathrm{O}, 0,-3.1880436,-1.0593619668,-0.5088472145$ $\mathrm{~B}, 0,-1.2531669776,-0.6604879024,1.8028123164$ $\mathrm{O}, 0,-1.0639119162,-1.8821206871,2.4646528837$ $\mathrm{C}, 0,-2.0337825898,-1.9941262574,3.5166478449$ $\mathrm{C}, 0,-2.6195219205,-0.5737918012,3.647429106$ $\mathrm{O}, 0,-2.219923559,0.0927534349,2.4457328374$ $\mathrm{~B}, 0,-0.4041330805,1.8997824529,0.2297657249$ $\mathrm{O}, 0,-0.7758231836,2.5813849218,1.3792177253$
> $\mathrm{C}, 0,-0.6484341058,3.9891842909,1.1706368362$
> $\mathrm{C}, 0,-0.4156367589,4.13799683,-0.3463636751$
> $\mathrm{O}, 0,-0.0686350291,2.8167603041,-0.7825417965$
> $\mathrm{H}, 0,-4.7348756207,1.4698886746,-0.1360008938$
> $\mathrm{H}, 0,-4.6655252754,1.421601284,-1.9121303668$
> $\mathrm{H}, 0,-5.2381181095,-0.870718185,-0.2455468525$
> $\mathrm{H}, 0,-4.6936694567,-0.9807366768,-1.9325268824$
> $\mathrm{H}, 0,-2.7948184409,-2.7304715289,3.2278497846$
> $\mathrm{H}, 0,-1.5443754359,-2.3426275182,4.4315050401$
> $\mathrm{H}, 0,-3.711340558,-0.5688059215,3.7260235005$
> $\mathrm{H}, 0,-2.2079671731,-0.033845067,4.5092580832$
> $\mathrm{H}, 0,-1.3213407917,4.4646490847,-0.8728870199$
> $\mathrm{H}, 0,0.3953254538,4.8329909426,-0.5902158299$
> $\mathrm{H}, 0,-1.5562045213,4.4974965208,1.5119284198$
> $\mathrm{H}, 0,0.1985234624,4.3665312045,1.7586627036$
> $\mathrm{H}, 0,0.5084253533,0.0793180165,1.4847032767$
> $\mathrm{H}, 0,2.2186645954,1.9685883362,-0.1785015135$
> $\mathrm{O}, 0,4.8465352882,2.3980581315,0.3637556566$
> $\mathrm{H}, 0,2.0828205447,-1.7440171556,1.9710606002$
> $\mathrm{H}, 0,4.474541168,-1.515554211,2.5221055945$
> $\mathrm{H}, 0,5.7633299893,0.4759759699,1.729368578$
> $\mathrm{C}, 0,-0.6811118941,1.0706684399,-3.4282294906$
> $\mathrm{C}, 0,2.0398544171,0.4465880214,-2.8456300341$
> $\mathrm{C}, 0,-1.4897173851,-3.6573598369,-0.4415857598$
> $\mathrm{C}, 0,1.1790565707,-3.7649746441,0.4825786624$
> $\mathrm{H}, 0,0.4712257084,-3.7840170725,-2.5532400132$
> $\mathrm{H}, 0,1.7731049248,-2.6821736677,-2.1023316116$
> $\mathrm{H}, 0,-0.9758842635,-1.8444783888,-3.2063176641$
> $\mathrm{H}, 0,0.5588360096,-1.7247417526,-4.0723403001$
> $\mathrm{H}, 0,2.1632576405,0.300708903,-3.9237305052$
> $\mathrm{H}, 0,2.220833877,1.4960222783,-2.6040782204$
> $\mathrm{H}, 0,2.7718182205,-0.1533331153,-2.3019802576$
> $\mathrm{H}, 0,-0.3916574242,0.9343291475,-4.4752952216$
> $\mathrm{H}, 0,-1.7408312722,0.8453567995,-3.2976441434$
> $\mathrm{H}, 0,-0.5231686159,2.1061199266,-3.1226297713$
$\mathrm{H}, 0,1.144569555,-4.7632028175,0.0334973808$
$\mathrm{H}, 0,2.2027972485,-3.38846858,0.4485615439$
$\mathrm{H}, 0,0.8642227443,-3.8320097457,1.5267677956$
$\mathrm{H}, 0,-1.2754156871,-4.6560162265,-0.8365892137$
$\mathrm{H}, 0,-1.859462591,-3.7413080465,0.5829656168$
$\mathrm{H}, 0,-2.2650906487,-3.165347932,-1.0284133248$
$\mathrm{C}, 0,4.2380573192,3.4690400496,-0.3335535641$
$\mathrm{H}, 0,5.0202460814,4.2158368764,--4.4843410399$
$\mathrm{H}, 0,3.8504906691,3.1545395085,-1.3119925196$
$\mathrm{H}, 0,3.4169403937,3.9169848837,0.2415057696$

dmpeBpin3MetaAnisCHactTSParSptBackA

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-2134.27655396$

Zero-point correction $=$	0.553193 (Hartree/Particle)
Thermal correction to Energy $=$	0.591257
Thermal correction to Enthalpy $=$	0.592201
Thermal correction to Gibbs Free Energy $=$	0.481746
Sum of electronic and zero-point Energies $=$	-2133.723361
Sum of electronic and thermal Energies=	-2133.685297
Sum of electronic and thermal Enthalpies $=$	-2133.684353
Sum of electronic and thermal Free Energies $=$	-2133.794808

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	371.019	138.951	232.473

C,0,4.0455379452,1.4527487208,0.4006472369
C,0,2.6744200814,1.2759936771,0.1620896593
C,0,1.9649701409,0.1854851784,0.6801074033
C,0,2.6789236489,-0.691820484,1.5242124895
C,0,4.0393071877,-0.514015622,1.7739427326
C,0,4.7457965686,0.5500244612,1.2071148581
Ir,0,-0.2087794231,-0.1427969742,0.0715655326
B,0,-0.5126765357,1.9154079732,-0.1860282409
О,0,-1.1044356869,2.5122005468,-1.3115870012
С,0,-1.2753413267,3.9138736835,-1.0586815276
С,0,-0.4027486043,4.1895448589,0.1826656683
O,0,-0.1219730218,2.8940848484,0.7169859642
H,0,5.8027372128,0.6721531538,1.4125108919
P,0,0.4000313886,-0.4760549391,-2.2520593586
С, $0,2.1706486341,-0.2325665335,-2.7257074272$
P,0,-0.125462743,-2.61908936,0.1212814542
С,0,0.8048751895,-3.6890682286,1.3150799766

```
B,0,-2.2513716338,-0.1907419566,-0.5406503021
O,0,-2.7308507591,-0.8563004087,-1.6870381929
C,0,-4.1161006306,-0.5375098598,-1.8848511863
C,0,-4.5503069576,0.1119377334,-0.5577515149
O,0,-3.3236435308,0.4193732922,0.1104441834
В,0,-1.2544650632,-0.1091475401,1.9217546086
O,0,-1.6658972368,1.0003694045,2.6353631103
C, \(0,-2.5165733747,0.5761688611,3.7021557249\)
C, \(0,-2.2332326372,-0.9317919977,3.8390879287\)
O, \(0,-1.6177384118,-1.2867924918,2.5911441316\)
C,0,0.120446941,-2.2761729458,-2.6613562706
С,0,0.5885834746,-3.1828585985,-1.5147055368
C,0,-0.4702329149,0.3935213891,-3.6232605229
C, \(0,-1.7681892024,-3.4678939838,0.1542404246\)
H,0,-5.1406751352,-0.5728958035,0.0647662504
H,0,-5.1298027856,1.0291775224,-0.7032188762
H,0,-4.6743312244,-1.4496610613,-2.120213063
H,0,-4.2087965262,0.1532908466,-2.7324066124
H,0,-3.1392554683,-1.5282672563,3.9867943489
H,0,-1.5360010285,-1.1500308741,4.6583142997
H,0,-3.5608161123,0.7736476433,3.4283638592
H,0,-2.2804159954,1.141095939,4.6093280563
Н, \(0,-2.3369876346,4.1165045294,-0.8692106017\)
H,0,-0.9655862463,4.4888872165,-1.9379258669
H,0,-0.9157571579,4.7951830882,0.9366453187
H,0,0.541295834,4.6876720808,-0.0750859734
H,0,0.4761073623,0.3634741608,1.4492778243
H,0,2.1819842818,2.0296048492,-0.4409030777
O,0,4.6094187785,2.5471751708,-0.2062400322
H,0,2.1604492634,-1.5020506183,2.0219863664
H,0,4.5618249804,-1.2057508218,2.4310836145
Н, \(0,0.3193913094,-4.2285632076,-1.7061563204\)
H,0,1.6802870835,-3.1430403094,-1.4168294115
H,0,-0.9581923681,-2.3808509278,-2.8138142008
H,0,0.6232425357,-2.5306850126,-3.601980729
H,0,2.3390124863,-0.5804804321,-3.7502275394
H,0,2.4295939554,0.8262054374,-2.6602495553
H,0,2.8247554003,-0.7716156325,-2.0380937251
H,0,-0.0491321437,0.111980155,-4.5937393039
H,0,-1.527392476,0.1294100093,-3.5821668804
Н,0,-0.3825864131,1.4700091482,-3.4679947338
H,0,0.6426251355,-4.7485743464,1.0906105206
H,0,1.8743028428,-3.4761495825,1.2700923826
H,0,0.4444862618,-3.4812908799,2.3258808319
```

```
H,0,-1.6608146195,-4.5529124816,0.0534687035
H,0,-2.2430587839,-3.2270358939,1.1077680335
H,0,-2.3905440893,-3.0769637508,-0.6524472243
C,0,5.9779966899,2.8118565914,0.0389964164
H,0,6.2155294879,3.7243989029,-0.5113355665
H,0,6.1770932134,2.9744950761,1.1068181078
H,0,6.6237534441,1.9989439451,-0.3207044204
```

dmpeBpin3MetaAnisCHactTSSptSptBackA
$\mathrm{E}($ RB+HF-LYP $)=-2134.27770407$

Zero-point correction=	0.553243 (Hartree/Particle)
Thermal correction to Energy $=$	0.591316
Thermal correction to Enthalpy $=$	0.592261
Thermal correction to Gibbs Free Energy $=$	0.482004
Sum of electronic and zero-point Energies $=$	-2133.724461
Sum of electronic and thermal Energies $=$	-2133.686388
Sum of electronic and thermal Enthalpies $=$	-2133.685444
Sum of electronic and thermal Free Energies $=$	-2133.795700

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	371.057	138.917	232.055

C,0,3.1755398497,-0.6961767473,0.7900930997
С,0,2.275751457,0.3678075002,0.6339856849
C,0,2.8169117111,1.6692400848,0.7183239772
C,0,4.1844488093,1.8708165132,0.8981361379
C,0,5.0750597373,0.7996817456,1.0180080474
C,0,4.5539801028,-0.4948869928,0.9668911289
Ir,0,0.0797699321,0.0072154989,0.0788919832
P,0,0.7227799292,-0.7240342544,-2.1309869502
С, $0,0.5233824276,-2.5854572396,-2.1998828493$
C,0,0.9022847177,-3.2618900216,-0.8719675947
P,0,0.061404722,-2.4056343714,0.5651595365
B, $0,-1.9492065338,-0.0453748459,-0.5634837943$
O,0,-2.458187879,-0.9192066899,-1.542301675
C, $0,-3.8223526728,-0.5783299716,-1.8296904643$
С,0,-4.2247815053,0.3736784813,-0.6882414727
O,0,-2.9839742899,0.765144429,-0.0936581927
B,0,-1.008432933,0.3971370273,1.867546524
О,0,-1.5504785294,-0.6423278029,2.6394615988
С,0,-2.1420809166,-0.0779973445,3.8191030342
C,0,-2.1984671488,1.4333910618,3.5251409557
$\mathrm{O}, 0,-1.2789975473,1.6207585729,2.447036225$
$\mathrm{~B}, 0,-0.1541149946,2.0052442794,-0.5342951119$
$\mathrm{O}, 0,0.0638440487,3.1425671863,0.2367661208$
$\mathrm{C}, 0,-0.1139623519,4.3168312176,-0.5579695751$
$\mathrm{C}, 0,-0.7613456383,3.8064256881,-1.8596724296$
$\mathrm{O}, 0,-0.5542536428,2.3889373423,-1.8276907238$
$\mathrm{H}, 0,-3.8726270579,-0.0912430009,-2.8118700537$
$\mathrm{H}, 0,-4.4300917809,-1.4884466229,-1.8644572944$
$\mathrm{H}, 0,-4.760340596,1.2604936714,-1.041637855$
$\mathrm{H}, 0,-4.8455407919,-0.1261649657,0.0665200388$
$\mathrm{H}, 0,-3.1295224213,-0.5207278825,3.9852494469$
$\mathrm{H}, 0,-1.5087673389,-0.308896078,4.6856597499$
$\mathrm{H}, 0,-3.1982223469,1.7519267011,3.2038227956$
$\mathrm{H}, 0,-1.8950481567,2.0476151597,4.3787363698$
$\mathrm{H}, 0,-1.8389037486,4.0124881629,-1.8923884867$
$\mathrm{H}, 0,-0.3025794194,4.2278903587,-2.7606197759$
$\mathrm{H}, 0,-0.7440107887,5.0323545566,-0.0199656608$
$\mathrm{H}, 0,0.8630438971,4.7856418604,-0.7377567722$
$\mathrm{H}, 0,0.8203615355,0.4441725095,1.4622006789$
$\mathrm{H}, 0,2.852854155,-1.7290777498,0.7606808593$
$\mathrm{O}, 0,5.3028025195,-1.6417959249,1.0739421465$
$\mathrm{H}, 0,2.1560655609,2.5252599462,0.6632224435$
$\mathrm{H}, 0,4.5712574054,2.8857890231,0.9563369058$
$\mathrm{H}, 0,6.1338298877,0.9827920072,1.1588980327$
$\mathrm{C}, 0,-0.1592359111,-0.1786281346,-3.6543840333$
$\mathrm{C}, 0,2.4818258828,-0.4512099056,-2.6252135046$
$\mathrm{C}, 0,-1.5920382338,-3.2312188236,0.6003756168$
$\mathrm{C}, 0,0.8279234639,-3.1826941959,2.0614356538$
$\mathrm{H}, 0,0.6398673286,-4.3265600085,-0.8879470307$
$\mathrm{H}, 0,1.9839275649,-3.1971037419,-0.7073947247$
$\mathrm{H}, 0,-0.5350203451,-2.7587016073,--2.423192837$
$\mathrm{H}, 0,1.1086868872,-2.9937154771,-3.0322675957$
$\mathrm{H}, 0,2.6894690361,-0.9165394834,-3.5942505888$
$\mathrm{H}, 0,2.6615910226,0.624802789,-2.6956229183$
$\mathrm{H}, 0,3.1577566142,-0.8496862695,-1.867371805$
$\mathrm{H}, 0,0.2793544686,-0.642209074,-4.5439175774$
$\mathrm{H}, 0,-1.2102108195,-0.454676128,-3.5668513625$
$\mathrm{H}, 0,-0.0923342695,0.9083860208,-3.7192905833$
$\mathrm{H}, 0,0.8025645023,-4.2757891649,2.0003237905$
$\mathrm{H}, 0,1.8580752577,-2.8517442884,2.2004539657$
$\mathrm{H}, 0,0.2447075984,--2.85829154744,2.9272019673$
$\mathrm{H}, 0,-1.494407502,-4.3164040357,0.7118608255$
$\mathrm{H}, 0,-2.1449311377,-2.8191206703,1.4473555516$
$\mathrm{H}, 0,-2.1344396291,-2.9939308824,-0.3161480769$

C,0,6.6973406444,-1.5065275371,1.2771801724
H,0,7.0960453734,-2.5208162817,1.3424884789
H,0,7.1833353969,-0.9834740466,0.4424024486
H,0,6.9236094309,-0.9711565851,2.2090523771

dmpeBpin3MetaAnisCHactTSSptSptFrntA

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-2134.27607120$

Zero-point correction $=$	0.553291
(Hartree/Particle)	
Thermal correction to Energy $=$	0.591369
Thermal correction to Enthalpy=	0.592313
Thermal correction to Gibbs Free Energy=	0.481633
Sum of electronic and zero-point Energies=	-2133.722780
Sum of electronic and thermal Energies=	-2133.684702
Sum of electronic and thermal Enthalpies $=$	-2133.683758
Sum of electronic and thermal Free Energies=	-2133.794438

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	371.090	138.867	232.945

C, $0,0.0054220221,-3.4478032636,-0.6156472746$
C, $0,-1.0841638483,-2.8921187372,-1.5448429875$
P,0,-0.7932291614,-1.0838271194,-1.9270450291
Ir,0,-0.0378847631,-0.0277043638,0.0982585519
B,0,-0.1207780571,1.8355839646,-0.8764128365
О, $0,-0.2863401085,3.0946381084,-0.3173237298$
C,0,-0.1660880727,4.098555621,-1.3265048123
С,0,-0.2448832914,3.3223984205,-2.6557826294
O,0,-0.0440857248,1.9541740954,-2.2803111492
P,0,0.318330974,-2.336396942,0.8659306003
B, $0,1.0449474518,0.8353419387,1.725965396$
O,0,1.8449392664,0.0709900527,2.5861888673
C,0,2.3447000699,0.9199148452,3.6295445735
С,0,2.0386478004,2.3457471097,3.133331245
O,0,1.0560505698,2.1624773982,2.1114178353
B, $0,1.9629427425,0.0390151645,-0.6246173145$
О,0,2.6284690098,-1.0172709381,-1.2721572107
C,0,3.9136055669,-0.5708118358,-1.7293706202
C,0,4.1228818529,0.7797526784,-1.0193216681
O,0,2.825195438,1.1330641694,-0.5311093212
C,0,2.0077146294,-2.8860902655,1.3735119859
C,0,-0.6756284814,-3.1102193041,2.2301451946
H,0,-0.2387585122,-4.4644136558,-0.2854949504

H, $0,0.9605370482,-3.4995535133,-1.1503110737$
С, $0,0.2918876861,-1.1257771788,-3.4169207368$
C, $0,-2.3947141685,-0.5371682749,-2.6573263685$
H, $,-1.1391236136,-3.4675055843,-2.4769381182$
H,0,-2.0679224429,-2.961175287,-1.0668024932
H,0,0.5241379267,3.6259120847,-3.3740619298
H,0,-1.2262304443,3.4259887147,-3.1379186615
H,0,0.79427374,4.6157031646,-1.2062187649
H,0,-0.9695441374,4.8344460624,-1.2144711994
H,0,2.923092138,2.8281933191,2.6983280618
H,0,1.6380540068,2.9964337395,3.916970017
H,0,3.4138645835,0.7351754091,3.7755852074
$\mathrm{H}, 0,1.8218651307,0.6851778342,4.5659524194$
H,0,4.4901188092,1.5622617197,-1.6909475673
H,0,4.8171070389,0.698201795,-0.1731189511
H,0,3.8903145404,-0.4660702181,-2.8217184486
H,0,4.6750645358,-1.3138366307,-1.4709249563
H,0,2.0319629772,-3.9636651194,1.5677302999
$\mathrm{H}, 0,2.7086815267,-2.6344556092,0.576344606$
H,0,2.2914776971,-2.3343645002,2.2711795601
H,0,-0.423393486,-4.1692120344,2.3505506071
H,0,-0.4431150525,-2.5834777689,3.1603857503
H,0,-1.7471840511,-3.0138053065,2.051983479
H,0,-2.7035124014,-1.1990285593,-3.4729887272
H,0,-3.1643417282,-0.5165123516,-1.8840584473
H,0,-2.2568587706,0.4755419822,-3.042780158
H,0,-0.1800687432,-1.6871915419,-4.2297917223
H,0,0.4609449903,-0.0920521562,-3.7262135512
H, $0,1.2507407334,-1.5723826829,-3.1526809997$
$\mathrm{H}, 0,-0.7354408775,0.413797616,1.5012937625$
C,0,-2.2153961011,0.2649159044,0.7569753505
C,0,-3.105458404,-0.8140215385,0.8501629746
C,0,-4.4773452424,-0.633394895,1.0918107681
C,0,-4.99602784,0.6501564438,1.2775682526
C,0,-4.1125837278,1.7325362245,1.2184853487
C,0,-2.7529637385,1.5535325584,0.9695397518
H,0,-2.7790431102,-1.8383226431,0.7175277487
O,0,-5.221994368,-1.7869749116,1.1226607764
H,0,-6.0490153534,0.8154984613,1.4729394476
H,0,-4.4987223328,2.7368212221,1.3775554043
H,0,-2.0981360588,2.4161928827,0.9384453243
С,0,-6.6103746184,-1.6738138559,1.3766153735
Н,0,-7.0070854466,-2.6908349087,1.3620591861
Н,0,-6.810027823,-1.2247808314,2.3588075013

H,0,-7.1196183995,-1.0792003777,0.6061541794

dmpeBpin2MetaAnisHBpinRotTS

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-2134.28483325$

Zero-point correction=	0.556138 (Hartree/Particle)
Thermal correction to Energy $=$	0.593495
Thermal correction to Enthalpy $=$	0.594439
Thermal correction to Gibbs Free Energy $=$	0.486545
Sum of electronic and zero-point Energies=	-2133.728696
Sum of electronic and thermal Energies=	-2133.691338
Sum of electronic and thermal Enthalpies $=$	-2133.690394
Sum of electronic and thermal Free Energies $=$	-2133.798288

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	372.424	137.015	227.082

C,0,4.1147736561,0.3349048576,0.8472836479
C,0,2.7127528254,0.2658582853,0.9150338727
C,0,1.895988222,-0.0349444289,-0.188043864
С,0,2.5974496909,-0.2721273397,-1.3971911254
C,0,3.9867779779,-0.2072906795,-1.4775325598
C,0,4.7723249979,0.0968290521,-0.3594758139
Ir,0,-0.3335913482,-0.110152303,-0.1392198873
B,0,-0.1458486722,-1.921093444,-1.1969080806
О,0,-0.083783391,-3.2086285095,-0.6508045276
C, $0,0.0058640984,-4.1688882382,-1.7141295455$
C,0,0.305885295,-3.3250253092,-2.9687873472
O,0,0.0001658379,-1.9824801474,-2.5792940951
B, $0,-2.4500781245,-0.3037194367,-0.3660348226$
O, $0,-3.4269719736,-0.07868712,0.6290073645$
С, $0,-4.7244271138,-0.4131272131,0.1104519578$
C,0,-4.4992386436,-0.5641359886,-1.4045922979
O,0,-3.0823569908,-0.7031128102,-1.5420062094
P,0,-0.4731822478,1.8040097203,1.3671878878
C,0,0.7737257258,3.1657719382,1.3182002336
P, $0,-0.5013602467,-1.3723200892,1.81603092$
C,0,0.9751179264,-2.3121656321,2.3923077755
B,0,-0.4540551247,1.5931152436,-1.6132407745
О,0,-1.6667028756,2.1663974312,-1.9594931219
C,0,-1.4051949123,3.3420433443,-2.740811866
C,0,0.1122337258,3.5874587932,-2.576169678
O,0,0.6145837098,2.3771209551,-1.9964835261

```
C,0,-0.27772742,1.1330726212,3.1001835248 С, \(0,-0.9548434134,-0.2353464654,3.2277786884\) C,0,-2.0576662093,2.7484736904,1.4672205126 C, \(0,-1.815847596,-2.6563286661,1.9376971148\)
H,0,-0.2648340666,0.268652803,-1.7741029053
H,0,-0.7178033378,-0.7138582637,4.1848663832
H,0,-2.0428039808,-0.1234445281,3.1698267556
H,0,-0.6872246754,1.8481802931,3.8230582306
H,0,0.796515179,1.0521184448,3.2963130848
H,0,0.3279773474,4.4257315146,-1.9014750349
H,0,0.6227122005,3.7728570574,-3.5255735504
H,0,-2.0161653364,4.1712937534,-2.3704111976
H,0,-1.6852887193,3.1438314284,-3.7818173534
H,0,-0.3087909387,-3.608061227,-3.8289980923
H,0,1.3621374261,-3.3824393796,-3.2605499626
H,0,-0.9474741269,-4.706447641,-1.7945718978
H,0,0.7946351816,-4.8932232108,-1.4876165079
H,0,-4.8303945932,0.322948984,-1.9597384387
H,0,-5.0005455613,-1.4416961712,-1.8255621602
H,0,-5.4386388568,0.3773389265,0.3628613296
H,0,-5.0691713666,-1.347802863,0.5735221817
H,0,2.0446433656,-0.5115293178,-2.3008000901
H,0,4.4793191331,-0.3953199537,-2.4298893336
H,0,5.8519671197,0.1423750043,-0.4436725359
O,0,4.7466683391,0.6475468653,2.0315895561
H,0,2.2918357407,0.4683321347,1.8969654401
H,0,-1.6252520848,-3.4066747054,1.1698577487
H,0,-1.8008058434,-3.1231014615,2.9279431025
H,0,-2.7850824046,-2.1881353898,1.7625541738
H,0,1.1737846943,-3.0875667292,1.6493973965
H,0,1.849726941,-1.6646647298,2.4508155792
H,0,0.7794081992,-2.7745564572,3.3651504316
H,0,-2.2421223851,3.2265672332,0.5020334076
H,0,-2.8735586909,2.0463491945,1.6465626813
H,0,-2.021697829,3.5086919454,2.2543852667
H,0,0.6198715549,3.7617534632,0.4159640157
H,0,0.6823388519,3.8129456571,2.1964534174
H,0,1.776043833,2.7369955254,1.2690894585
C,0,6.1571406642,0.7444365345,2.0192488552
H,0,6.4569362828,0.9995315637,3.038158166
H,0,6.6310028843,-0.2049886104,1.733946704
H,0,6.5080214691,1.5298185075,1.3354656629
```


$$
\begin{aligned}
& \mathrm{H}, 0,-4.602991,1.077680,-2.158941 \\
& \mathrm{H}, 0,-3.568347,2.523690,-2.167899 \\
& \mathrm{H}, 0,-3.405098,-1.826472,3.518699 \\
& \mathrm{H}, 0,-1.776388,-2.161131,4.150187 \\
& \mathrm{H}, 0,-3.128335,0.548294,3.782626 \\
& \mathrm{H}, 0,-1.811272,0.126157,4.902231 \\
& \mathrm{H}, 0,-0.605932,4.691064,0.561772 \\
& \mathrm{H}, 0,0.962599,4.873680,-0.252578 \\
& \mathrm{H}, 0,0.657519,4.231800,2.546028 \\
& \mathrm{H}, 0,2.141661,3.936431,1.615973 \\
& \mathrm{H}, 0,0.664301,-0.271005,1.458545 \\
& \mathrm{O}, 0,2.950058,1.208264,-0.184156 \\
& \mathrm{H}, 0,5.300219,0.093743,0.462672 \\
& \mathrm{H}, 0,1.345050,-2.649518,1.524712 \\
& \mathrm{H}, 0,3.592978,-3.521103,2.017182 \\
& \mathrm{H}, 0,5.598304,-2.126171,1.476675 \\
& \mathrm{C}, 0,0.086773,1.680041,-3.244116 \\
& \mathrm{C}, 0,2.167964,-0.247833,-2.854905 \\
& \mathrm{C}, 0,-2.737294,-2.571172,-0.775204 \\
& \mathrm{C}, 0,-0.377348,-3.987760,-0.059807 \\
& \mathrm{H}, 0,-1.079116,-3.259212,-3.015090 \\
& \mathrm{H}, 0,0.586487,-2.898208,-2.560390 \\
& \mathrm{H}, 0,-1.556552,-0.803092,-3.285085 \\
& \mathrm{H}, 0,-0.150260,-1.232532,-4.277928 \\
& \mathrm{H}, 0,2.219572,-0.318277,-3.946427 \\
& \mathrm{H}, 0,2.832205,0.541604,-2.503702 \\
& \mathrm{H}, 0,2.502591,-1.187773,-2.411106 \\
& \mathrm{H}, 0,0.378518,1.580245,-4.294567 \\
& \mathrm{H}, 0,-0.980900,1.887422,-3.169538 \\
& \mathrm{H}, 0,0.626113,2.503081,-2.773347 \\
& \mathrm{H}, 0,-0.839114,-4.801402,-0.629004 \\
& \mathrm{H}, 0,0.708903,-4.087293,-0.108028 \\
& \mathrm{H}, 0,-0.690463,-4.061478,0.984733 \\
& \mathrm{H}, 0,-3.007348,-3.530415,-1.229348 \\
& \mathrm{H}, 0,-3.109453,-2.525422,0.249914 \\
& \mathrm{H}, 0,-3.183070,-1.754361,-1.346054 \\
& \mathrm{C}, 0,4.044298,2.106407,-0.236742 \\
& \mathrm{H}, 0,3.639277,3.051447,-0.603781 \\
& \mathrm{H}, 0,4.488724,2.261138,0.754470 \\
& \mathrm{H}, 0,4.827672,1.764079,-0.927357
\end{aligned}
$$

dmpeBpin3OrthoAnisCHactTSParSptBackA
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-2134.27489358$

$\mathrm{H}, 0,-1.7763879604,-2.1611310366,4.1501869512$
$\mathrm{H}, 0,-3.1283349604,0.5482939634,3.7826259512$
$\mathrm{H}, 0,-1.8112719604,0.1261569634,4.9022309512$
$\mathrm{H}, 0,-0.6059319604,4.6910639634,0.5617719512$
$\mathrm{H}, 0,0.9625990396,4.8736799634,-0.2525780488$
$\mathrm{H}, 0,0.6575190396,4.2317999634,2.5460279512$
$\mathrm{H}, 0,2.1416610396,3.9364309634,1.6159729512$
$\mathrm{H}, 0,0.6643010396,-0.2710050366,1.4585449512$
$\mathrm{O}, 0,2.9500580396,1.2082639634,-0.1841560488$
$\mathrm{H}, 0,5.3002190396,0.0937429634,0.4626719512$
$\mathrm{H}, 0,1.3450500396,-2.6495180366,1.5247119512$
$\mathrm{H}, 0,3.5929780396,-3.5211030366,2.0171819512$
$\mathrm{H}, 0,5.5983040396,-2.1261710366,1.4766749512$
$\mathrm{C}, 0,0.0867730396,1.6800409634,-3.2441160488$
$\mathrm{C}, 0,2.1679640396,-0.2478330366,-2.8549050488$
$\mathrm{C}, 0,-2.7372939604,-2.5711720366,-0.7752040488$
$\mathrm{C}, 0,-0.3773479604,-3.9877600366,-0.0598070488$
$\mathrm{H}, 0,-1.0791159604,-3.2592120366,-3.0150900488$
$\mathrm{H}, 0,0.5864870396,-2.8982080366,-2.5603900488$
$\mathrm{H}, 0,-1.5565519604,-0.8030920366,-3.2850850488$
$\mathrm{H}, 0,-0.1502599604,-1.2325320366,-4.2779280488$
$\mathrm{H}, 0,2.2195720396,-0.3182770366,-3.9464270488$
$\mathrm{H}, 0,2.8322050396,0.5416039634,-2.5037020488$
$\mathrm{H}, 0,2.5025910396,-1.1877730366,-2.4111060488$
$\mathrm{H}, 0,0.3785180396,1.5802449634,-4.2945670488$
$\mathrm{H}, 0,-0.9808999604,1.8874219634,-3.1695380488$
$\mathrm{H}, 0,0.6261130396,2.5030809634,-2.7733470488$
$\mathrm{H}, 0,-0.8391139604,-4.8014020366,-0.6290040488$
$H, 0,0.7089030396,-4.0872930366,-0.1080280488$
$H, 0,-0.6904629604,-4.0614780366,0.9847329512$
$\mathrm{H}, 0,-3.0073479604,-3.5304150366,-1.2293480488$
$\mathrm{H}, 0,-3.1094529604,-2.5254220366,0.2499139512$
$\mathrm{H}, 0,-3.1830699604,-1.7543610366,-1.3460540488$
$\mathrm{C}, 0,4.0442980396,2.1064069634,-0.2367420488$
$\mathrm{H}, 0,3.6392770396,3.0514469634,-0.6037810488$
$\mathrm{H}, 0,4.4887240396,2.2611379634,0.7544699512$
$\mathrm{H}, 0,0,4.8276720396,1.7640789634,-0.9273570488$
dmpeBpin3OrthoAnisCHactTSSptSptBackS
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-2134.27130714$
Zero-point correction= 0.552663 (Hartree/Particle)
Thermal correction to Energy=
Thermal correction to Enthalpy=
0.590695
0.591639

Thermal correction to Gibbs Free Energy=
0.482176

Sum of electronic and zero-point Energies= $\quad-2133.718644$
Sum of electronic and thermal Energies $=\quad-2133.680612$
Sum of electronic and thermal Enthalpies= $\quad-2133.679668$
Sum of electronic and thermal Free Energies $=\quad-2133.789131$

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	370.667	139.012	230.384

C,0,3.19753338,-0.6942817488,0.5976640227
С,0,2.2573495147,0.3473053818,0.625005926
C,0,2.7747454179,1.6316444524,0.9251472697
C,0,4.1473756042,1.8521496567,1.1056340072
C,0,5.0470368912,0.7878185833,1.0261746208
C,0,4.5722596455,-0.4953065056,0.7792642027
Ir,0,0.0551053458,-0.0157943072,0.0439980564
P,0,0.6358161972,-0.7379938864,-2.177111761
C, $0,0.3627418302,-2.5875565119,-2.264144731$
C,0,0.7491981915,-3.290190668,-0.9517590806
P,0,0.0026390179,-2.4109102437,0.5271621326
В,0,-1.9995041859,-0.066678251,-0.4930286194
O,0,-2.5363525255,-0.84290664,-1.5432764069
C,0,-3.9353325254,-0.5558170971,-1.684358971
С,0,-4.2983377105,0.1955109225,-0.3910930742
O,0,-3.0400616277,0.6037915127,0.1473027064
B,0,-0.9149830384,0.4654892881,1.8879536511
О, $0,-1.4752468944,-0.5357252785,2.6962697694$
C,0,-2.0076302807,0.0754216788,3.8800591568
С,0,-1.9860203866,1.5840780753,3.5670529965
O,0,-1.0762042561,1.7061069019,2.4719987126
B, $0,-0.0675567276,1.9653526346,-0.6734062701$
O,0,-0.939742972,2.9801779071,-0.3036264572
C,0,-0.6369306988,4.168523578,-1.0301475681
C, $0,0.3242349244,3.713802647,-2.1491711112$
O,0,0.7115183631,2.3899730251,-1.7710795586
H,0,-4.0891221432,0.0626002283,-2.5783125675
H,0,-4.4934042664,-1.489278504,-1.8120033395
H,0,-4.926698921,1.0739322027,-0.5695020554
Н,0,-4.8100384007,-0.4539387058,0.3316583985
Н,0,-3.0150844912,-0.3072790004,4.0733563823
H,0,-1.3698015797,-0.1803100116,4.736666729
H,0,-2.9715375476,1.9515553028,3.2552818398
H,0,-1.6359894488,2.1916850679,4.4078317151

```
H,0,-0.1687862915,3.6840479834,-3.1310062941
H,0,1.2112860244,4.3513209052,-2.2353194753
H,0,-1.5610721884,4.6121009975,-1.4172551136
H,0,-0.1670369595,4.8995212467,-0.3584803174
H,0,0.8275185298,0.3486210337,1.4361929509
H,0,2.8613346852,-1.7073272312,0.4057887401
H,0,5.2554658968,-1.3390268083,0.7286001019
O,0,1.8578170252,2.6402594692,1.0482342658
H,0,4.5201948416,2.8482142656,1.3155850223
H,0,6.1086178643,0.9699140088,1.1696798664
C,0,-0.2703152659,-0.1259384071,-3.6606738832
C,0,2.3844691437,-0.4971652713,-2.7141359724
С,0,-1.6570625391,-3.2093920734,0.6742826105
C, \(0,0.8654341051,-3.1836039907,1.9721551218\)
H,0,0.4407289912,-4.3426046876,-0.9659109212
H,0,1.8377915555,-3.2774541495,-0.821348241
H,0,-0.7072477988,-2.7164839265,-2.4586042904
H,0,0.9085662728,-3.0131304302,-3.1146387291
Н, \(0,2.5442910322,-0.9097849251,-3.7156292628\)
H,0,2.5751664409,0.5785566546,-2.7204032572
H,0,3.0772349455,-0.956920026,-2.0084717779
H,0,0.0756456537,-0.6316440062,-4.5680320273
H,0,-1.3365017211,-0.3006318901,-3.5172720355
H,0,-0.084562073,0.9465677776,-3.7448672164
H,0,0.8334525274,-4.2774843796,1.9287098811
H,0,1.9040003764,-2.8519116391,2.0261950486
H,0,0.3532188565,-2.8463603943,2.8771700394
H,0,-1.5731299648,-4.2936405692,0.802856607
H,0,-2.1562561511,-2.7694589257,1.5406720406
H,0,-2.2446500729,-2.9834506954,-0.2174259637
C,0,2.2771062619,3.9068308815,1.5179381231
Н, \(0,1.3653638311,4.494459397,1.6343216776\)
H,0,2.7840768738,3.8312938759,2.4889198087
H,0,2.9464495958,4.4091232431,0.8058431488
```


dmpeBpin2OrthoAnisHBpinRotTS

$\mathrm{E}($ RB+HF-LYP $)=-2134.28193795$

Zero-point correction $=$	0.556049 (Hartree/Particle)
Thermal correction to Energy $=$	0.593057
Thermal correction to Enthalpy=	0.594001
Thermal correction to Gibbs Free Energy=	0.488122
Sum of electronic and zero-point Energies=	-2133.725889
Sum of electronic and thermal Energies=	-2133.688881

Sum of electronic and thermal Enthalpies $=$	-2133.687937
Sum of electronic and thermal Free Energies $=$	-2133.793816

	E (Thermal	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	372.149	136.967	222.842

C,0,4.2465340955,0.4781333172,1.2774849193
C,0,2.8467708647,0.3783820532,1.2528411594
C,0,2.0875338357,0.0578227107,0.1145681497
С,0,2.8683726347,-0.1683219448,-1.0464603668
C,0,4.2660879379,-0.0739155415,-1.060337903
C,0,4.9601721441,0.2511250277,0.1085148873
Ir,0,-0.1508802594,-0.0439702208,0.0823611112
B,0,-0.0253377902,-1.859493528,-0.9850715843
О,0,0.4422796788,-3.0655800141,-0.4403986184
C,0,0.3014878808,-4.105728128,-1.4178654843
С, $0,-0.0074963519,-3.355316119,-2.7278870796$
O,0,-0.400141725,-2.0482798755,-2.3088696083
B, $0,-2.2677676836,-0.2144650087,-0.1185950124$
О,0,-3.2013071006,-0.04908471,0.9362013475
С,0,-4.522275259,-0.339054142,0.4518627345
C,0,-4.3627609394,-0.3708306116,-1.0782136355
O,0,-2.9572651588,-0.51797595,-1.2859899315
P,0,-0.3332423746,1.8618910376,1.6119399204
C,0,0.9191237008,3.2202271379,1.6403104883
P,0,-0.3227562536,-1.3295677154,2.0253265887
C,0,1.166984825,-2.209795875,2.6567733533
B,0,-0.2807648347,1.643862224,-1.4013425864
О,0,-1.4861992658,2.1571507662,-1.846437792
С,0,-1.2231175853,3.3509877532,-2.5968581897
C, $0,0.2605151031,3.6745248719,-2.3063463586$
O,0,0.775378116,2.4893523263,-1.6874592005
C,0,-0.238969964,1.1668055213,3.3472536203
C,0,-0.8895542989,-0.2200933522,3.416447035
C,0,-1.908045819,2.8298447947,1.6408490824
C,0,-1.5755852485,-2.6807885975,2.0920874124
Н,0,-0.0038660388,0.3252673381,-1.5460049839
Н,0,-0.7046740284,-0.7021897187,4.3834070279
H,0,-1.9721774104,-0.1326105851,3.2796902003
H,0,-0.7147992832,1.8607555001,4.0498262803
H,0,0.8208695512,1.1106620343,3.6186319446
H,0,0.3757226691,4.5207414297,-1.6166567714
H,0,0.8365658004,3.8914026119,-3.2107666843

```
H,0,-1.9056113453,4.1440510563,-2.2751195313
H,0,-1.4054649609,3.1483180271,-3.6586047336
H,0,-0.8151734526,-3.8178463317,-3.3045148292
H,0,0.8786165262,-3.2804417487,-3.3722508535
H,0,-0.5185731666,-4.7734585412,-1.1209108547
H,0,1.2242697268,-4.6925151176,-1.4655113908
H,0,-4.7024864477,0.5623474726,-1.546559353
H,0,-4.8965872408,-1.204502358,-1.5459995937
H,0,-5.2214498658,0.4291870067,0.7981064146
H,0,-4.851036421,-1.3076367275,0.8533797872
O,0,2.1656287894,-0.4994702374,-2.1889107286
H,0,4.8259918907,-0.2522763655,-1.9717190222
H,0,6.0446851309,0.3213473524,0.0911227898
H,0,4.7608814361,0.7321363926,2.2016299551
H,0,2.3311668753,0.5677272637,2.1921757678
H,0,-1.2934661912,-3.4471428721,1.3686370238
H,0,-1.6058766999,-3.118913987,3.0951112621
H,0,-2.5551005086,-2.2748100329,1.8373151842
H,0,1.4678981127,-2.9196725667,1.883413813
H,0,1.9930186401,-1.5192984111,2.8230043997
H,0,0.9290153088,-2.7429266163,3.5829897689
H,0,-2.0384780149,3.317587323,0.6713721484
H,0,-2.7434047501,2.1423592744,1.781795963
H,0,-1.8958345758,3.587145389,2.4316203857
H,0,0.8041446457,3.825056642,0.7381519701
H,0,0.7897898189,3.8585419131,2.520453282
H,0,1.9229284061,2.7939096187,1.6273350201
C,0,2.8648318548,-0.6961839143,-3.3989706419
H,0,2.1067822787,-0.9319259041,-4.1488956178
H,0,3.4104610114,0.2058067721,-3.7090455819
H,0,3.5777203698,-1.5306920197,-3.3337707109
```

dmpe Bpin3 Para Chlorobenzene CH Activation Transition Structure
$\mathrm{E}($ RB+HF-LYP $)=-2479.34400826$
Zero-point correction= 0.510604 (Hartree/Particle)
Thermal correction to Energy= 0.547560
Thermal correction to Enthalpy $=\quad 0.548505$
Thermal correction to Gibbs Free Energy= 0.439155
Sum of electronic and zero-point Energies= $=2478.833405$
Sum of electronic and thermal Energies $=\quad-2478.796448$
Sum of electronic and thermal Enthalpies= $\quad-2478.795504$
Sum of electronic and thermal Free Energies $=\quad-2478.904854$

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	343.599	133.843	230.146
C, $0,2$.	2488,1.28676	2781,0.3174180378	
C, $0,1$.	41435,0.1704	$78753,0.708489$	
C, $0,2.5$	56334,-0.770	49422,1.53101465	
C, $0,3$.	$26866,-0.661$	53235,1.8831023	
C,0,4.	54261,0.428	42235,1.42284081	
C,0,3.	20214,1.4147	25025,0.649554	
Ir, $0,-0$	346212,-0.048	018294,-0.06325	0769
P, $0,0.2$	73421,0.1498	35503,-2.4174991	
C, $0,-0$	102046,-1.52388	800295,-3.19403	9576
C, $0,0.5$	53564,-2.639	17728,-2.3111940	
P, $0,-0$.	343192,-2.479	485367,-0.534973	0359
B, $0,-2$	00991,0.0819	2061,-0.6394308	
O,0,-2	132346,1.271	480138,-1.02377	
C,0,-4	481994,1.063	97245,-1.1172677	
C, $0,-4$	54844,-0.468	54949,-1.137450	956
O,0,-3	$719443,-0.96$	804264,-0.6932	7203
B,0,-1	640503,-0.52	348252,1.706288	274
O,0,-1	924305,-1.68	$709969,2.445475$	
C, $0,-2$	98564,-1.815	90028,3.479570	
C, $0,-2$	829237,-0.4435	449651,3.50820	
O,0,-2	482939,0.179	18865,2.2763348	209
B, $0,-0$	661525,2.025	78138,0.139472232	
O,0,-0	894941,2.696	883598,1.2974633	
C, $0,-0$	597524,4.107	19915,1.096897200	008
C, $0,-0$	479902,4.267	71098,-0.419179	876
O,0,-0	486743,2.947	39925,-0.8665296	
H,0,-4	474104,1.517	93203,-0.245766	
H,0,-4	312745,1.546	14583,-2.020815	8677
H,0,-5	981922,-0.82	399904,-0.46725	5671
H,0,-4	011261,-0.85	700574,-2.14537	0152
H,0,-2	850173,-2.62	187948,3.218399	626
H,0,-1	$172154,-2.06$	403556,4.425189	8871
H,0,-3	$387645,-0.52$	423145,3.560024	366
H,0,-2	$723313,0.179$	17372,4.34379116	678
H,0,-1	170016,4.601	671283,-0.943523	108
H,0,0.2	16535,4.958	$87174,-0.6570045$	
H,0,-1	669477,4.607	06271,1.438730	509
H,0,0.0	96274,4.486	21303,1.6892455	
H,0,0.	04426,0.2173	8236,1.38481639	
H,0,2.	400189,2.0812	$33342,-0.261512$	

```
H,0,4.5580553007,2.2759222085,0.31756602
H,0,1.9487982721,-1.6006960558,1.9390778361
H,0,4.3341896151,-1.4057129258,2.5185136216
Cl,0,6.3022543683,0.5808557201,1.8469611799
C,0,-0.7359298239,1.2731773183,-3.5064817049
C,0,1.9650762684,0.5479608878,-2.9405033644
C,0,-1.5608720213,-3.5504271402,-0.4867593061
C,0,1.1494590096,-3.6039619926,0.3118904081
H,0,0.267120587,-3.6294382199,-2.7070393845
H,0,1.6165035978,-2.5733976544,-2.2898950948
H,0,-1.1363728861,-1.6385527483,-3.2977580503
H,0,0.3786819247,-1.5527608605,-4.2025580452
H,0,2.0707737556,0.4557721015,-4.0263446418
H,0,2.1983620614,1.5734427154,-2.6461845899
H,0,2.6783824119,-0.1136468468,-2.4448149821
H,0,-0.4619699758,1.1350137007,-4.5572086977
H,0,-1.80178119,1.0873071704,-3.3665573772
H,0,-0.5353180204,2.298100339,-3.1909924159
H,0,1.1314081311,-4.5990615231,-0.1450528322
H,0,2.1607746159,-3.1981819542,0.250231533
H,0,0.8707727969,-3.691609999,1.3650202066
H,0,-1.3432270666,-4.5531209165,-0.869287577
H,0,-1.8894635168,-3.6209805928,0.5531043204
H,0,-2.3655183439,-3.0827248347,-1.0536236209
dmpeBpin3ParaClPhHCHactTSParSptBack
E(RB+HF-LYP})=-2479.3463883
\begin{tabular}{lc} 
Zero-point correction= & 0.510729 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.547642 \\
Thermal correction to Enthalpy \(=\) & 0.548586 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.439853 \\
Sum of electronic and zero-point Energies \(=\) & -2478.835659 \\
Sum of electronic and thermal Energies= & -2478.798747 \\
Sum of electronic and thermal Enthalpies \(=\) & -2478.797803 \\
Sum of electronic and thermal Free Energies \(=\) & -2478.906535
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 343.650 & 133.827 & 228.847
\end{tabular}
```

C,0,2.9956609793,-0.5566119336,1.44393424 C,0,4.3646407599,-0.3979946146,1.6851394024 C,0,5.0182982788,0.709337523,1.154633216 Ir,0,0.0764916223,-0.0064073172,0.0597917673
B,0,-0.2573284189,2.0480160236,-0.2099710652
О,0,-0.933809626,2.6207560876,-1.2980549768
C,0,-1.1107600956,4.0229188125,-1.0530769853
C,0,-0.1662924139,4.3297761128,0.1273559768
O, $0,0.1853561914,3.045466121,0.6490943997$
$\mathrm{Cl}, 0,6.7470209656,0.924871743,1.4368782487$
P,0,0.6899131982,-0.3552017733,-2.2520286818
C,0,2.4755068494,-0.1747438932,-2.6951114843
P,0,0.1351147984,-2.480405594,0.1233752968
C, $0,1.080385332,-3.5509241445,1.3062179187$
B, $0,-1.9653295552,-0.0698575407,-0.5473629817$
О,0,-2.4311650572,-0.6658421486,-1.7355859412
C,0,-3.8242455947,-0.3649294498,-1.9077794348
C,0,-4.2723041712,0.149261605,-0.5280480284
O,0,-3.0518467776,0.4531203985,0.1538596061
B,0,-0.9432411806,0.0530400062,1.9286055515
О,0,-1.3944910773,1.1714238416,2.601244936
C,0,-2.2356936714,0.7513932813,3.678115255
С, $0,-1.8904340462,-0.7372594731,3.8730517132$
O,0,-1.2514935941,-1.1127663041,2.6415505503
C,0,0.3568609939,-2.143552063,-2.6684333445
С, $0,0.8052377859,-3.0655931963,-1.5251573749$
С,0,-0.1299232069,0.5549204121,-3.6262326575
C, $0,-1.5157201062,-3.3102778982,0.2015072554$
Н,0,-4.8234583014,-0.6130009461,0.0379489431
H,0,-4.8934800447,1.0482873686,-0.5896084204
Н,0,-4.3595474411,-1.2649033591,-2.227337675
H,0,-3.932780754,0.3989920693,-2.6878468263
H,0,-2.772130645,-1.3648795402,4.0367837104
H,0,-1.1905936475,-0.8963309085,4.7032990554
H,0,-3.2840916173,0.8936205857,3.3874222472
H,0,-2.0314307298,1.3593606495,4.5647352468
H,0,-2.1613411311,4.2126688477,-0.8004149352
Н,0,-0.8659841243,4.5898474655,-1.9576633599
H,0,-0.6448777172,4.9254329683,0.9109691558
H,0,0.7444664398,4.8527372541,-0.1936644066
H,0,0.7728009374,0.4852372595,1.4430850187
H,0,2.4124488311,2.254294393,-0.3391594955
H,0,4.8249768893,2.5376699256,0.0349887803
H,0,2.4982800442,-1.4031329717,1.9020622511

```
```

H,0,4.9094624815,-1.1181202739,2.2873286901
H,0,0.4994709048,-4.1016089109,-1.7129034714
H,0,1.8988303447,-3.063928939,-1.4413823004
H,0,-0.7242209368,-2.2170625424,-2.8208000548
H,0,0.8519399251,-2.410832079,-3.6096807827
H,0,2.6438044313,-0.4800254513,-3.732892259
H,0,2.7847833475,0.8652181778,-2.5726701366
H,0,3.0931079439,-0.7805430374,-2.0290338349
H,0,0.2440624091,0.2147964822,-4.59730248
H,0,-1.2042339337,0.3858672088,-3.5540997027
H,0,0.0549685971,1.6235944065,-3.5054320806
H,0,0.8771964698,-4.6101023792,1.1170512865
H,0,2.1540420136,-3.3768867149,1.2120993022
H,0,0.7700143882,-3.3054747955,2.3252107934
H,0,-1.422205021,-4.3953149535,0.0879509516
H,0,-1.9604833234,-3.0763858786,1.170961863
H,0,-2.1579419532,-2.909345549,-0.5845644441

```
dmpeBpin3ParaCIPhHCHactTSSptSptBack
\(\mathrm{E}(\) RB+HF-LYP \()=-2479.34686349\)
Zero-point correction= 0.511073 (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.547752\)
Thermal correction to Enthalpy \(=\quad 0.548696\)
Thermal correction to Gibbs Free Energy= 0.440999
Sum of electronic and zero-point Energies= \(=2478.835790\)
Sum of electronic and thermal Energies \(=\quad-2478.799111\)
Sum of electronic and thermal Enthalpies= \(\quad-2478.798167\)
Sum of electronic and thermal Free Energies \(=\quad-2478.905864\)
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol}-\) Kelvin & Cal/Mol-Kelvin \\
Total & 343.720 & 133.644 & 226.668
\end{tabular}

C,0,3.1871492815,-0.6999062885,0.8158054872
C,0,2.2746309282,0.3570803018,0.6316751555
C,0,2.8204922608,1.6553017042,0.6795086173
C,0,4.1895411238,1.8869070069,0.8414551502
C,0,5.0551552286,0.8059136967,0.9798002902
C,0,4.5614588167,-0.4952407347,0.9752179435
Ir,0,0.0752981809,-0.0137138205,0.0904945679
P,0,0.6939664136,-0.8433708936,-2.0951031404
C, \(0,0.4940836466,-2.7059066273,-2.0774093716\)
С, \(0,0.8695502924,-3.3237991149,-0.7207291883\)

P,0,0.0325400788,-2.398962181,0.6773006941
B, \(0,-1.9576336793,-0.0670661035,-0.5377469825\)
O, \(0,-2.4884429434,-0.9904395065,-1.4571728135\)
C,0,-3.8507784682,-0.6466691292,-1.7525146136
С,0,-4.2257733795,0.3843162474,-0.6718186213
O,0,-2.9724056463,0.7910862343,-0.1137644178
B, \(0,-1.0030336899,0.473959702,1.8622741068\)
О, \(0,-1.5651761935,-0.5183031102,2.6789483185\)
C, \(0,-2.1439372945,0.1109455085,3.83274907\)
C,0,-2.16717025,1.6088101905,3.4720561037
O,0,-1.2445030982,1.7277003109,2.3863042292
В,0,-0.1277124848,1.9588933658,-0.6166394096
O, \(0,0.1077233444,3.1303227933,0.0954682175\)
C, \(,,-0.0519363843,4.2653353427,-0.7603440517\)
C,0,-0.7057640504,3.697345523,-2.0342147159
O,0,-0.5146865877,2.280405396,-1.929993677
H,0,-3.9042280077,-0.2245799913,-2.7640422345
H,0,-4.4725991299,-1.5471875646,-1.7209502183
H,0,-4.748731007,1.2561276395,-1.0772132353
H,0,-4.8477079456,-0.0541142835,0.1191075578
Н,0,-3.1406450525,-0.3023159783,4.0174739461
H,0,-1.51534612,-0.0955432108,4.7086607534
H,0,-3.1595062543,1.9349251624,3.1362061542
H,0,-1.8491855592,2.2535797654,4.2971443541
H,0,-1.7809248414,3.9129151285,-2.0769525517
H,0,-0.2427359296,4.0669890033,-2.9552727296
H,0,-0.6713953075,5.0166693471,-0.2606970991
\(\mathrm{H}, 0,0.9322833062,4.7087801998,-0.962493015\)
\(\mathrm{H}, 0,0.8300061767,0.4638068489,1.4529403327\)
H,0,2.8423383455,-1.7269550269,0.8190719921
H,0,5.2364871997,-1.3366155386,1.0966239168
H,0,2.1589526555,2.5104004319,0.6029570196
H,0,4.5761190035,2.9008006024, 0.8686212929
C1,0,6.7860595783,1.0838286991,1.1796995401
C,0,-0.2112960674,-0.3744050791,-3.629640254
С, \(0,2.4453657795,-0.5908721914,-2.6261762397\)
C,0,-1.6226185666,-3.2157767711,0.7570886151
C,0,0.7996397307,-3.1017765179,2.2096533425
H,0,0.6040983427,-4.3873309486,-0.6900286989
H,0,1.9517855561,-3.25759167,-0.5610064215
H,0,-0.5637027114,-2.8893186843,-2.2952761761
H,0,1.0796712829,-3.151794391,-2.8900072651
H,0,2.6425632619,-1.1070999218,-3.5712645499
H,0,2.6185198811,0.4802044223,-2.7604317122

H,0,3.1371950311,-0.9445259664,-1.8604241322
H,0,0.2119570688,-0.8857436939,-4.5001856625
\(\mathrm{H}, 0,-1.2607193315,-0.6442824276,-3.5094861558\)
H,0,-0.1441636958,0.7073955382,-3.7527941617
H,0,0.7631238477,-4.1962039853,2.2118885763
H,0,1.8335617962,-2.7736436236,2.3269392407
H,0,0.2244848565,-2.7220621686,3.0581537079
H,0,-1.5270958317,-4.2948545213,0.9169496735
H,0,-2.1701677417,-2.764324869,1.5872937921
H,0,-2.1684690458,-3.0165075785,-0.1659322425

\section*{dmpeBpin3ParaClPhHCHactTSSptSptFrnt}
\(\mathrm{E}(\) RB+HF-LYP \()=-2479.34507493\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.511058 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.547797 \\
Thermal correction to Enthalpy \(=\) & 0.548741 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.440853 \\
Sum of electronic and zero-point Energies \(=\) & -2478.834017 \\
Sum of electronic and thermal Energies \(=\) & -2478.797278 \\
Sum of electronic and thermal Enthalpies \(=\) & -2478.796334 \\
Sum of electronic and thermal Free Energies \(=\) & -2478.904222
\end{tabular}

Total
E (Thermal) CV S

C, \(0,0.3351068865,-3.5152407194,-0.6947319552\)
C, \(0,-0.7391873014,-2.9491073402,-1.6348514026\)
P,0,-0.4406988187,-1.140800309,-2.012913244
Ir,0,0.2894146118,-0.0879725862,0.0232670416
B, \(0,0.1815847164,1.7770986399,-0.9486685833\)
О,0,-0.0305365163,3.0299629925,-0.3921769307
C,0,0.0831166247,4.0376841317,-1.4002566012
C,0,0.048696878,3.2596991648,-2.7302324988
O,0,0.28063746,1.8965869023,-2.3506538081
P,0,0.6747419411,-2.3978108866,0.7789150885
B, \(0,1.3607663447,0.7755343586,1.6581573542\)
O,0,2.1895660357,0.0174994037,2.4954360363
C,0,2.6871821141,0.8632941573,3.5434781326
C,0,2.3185023607,2.2887875461,3.0874747921
O,0,1.3337320115,2.0940274957,2.0689063288
B,0,2.2918180823,0.0199348648,-0.6885684629
О,0,2.9778807774,-1.0163634069,-1.3447354294

C, \(0,4.2581850888,-0.5428579839,-1.7891827788\) C,0,4.4376587739,0.807278213,-1.0690020245 O,0,3.132752005,1.127849034,-0.5764203227 C, \(0,2.3783960867,-2.935533106,1.2480903042\)
C,0,-0.278110673,-3.1702298757,2.1738137465
H,0,0.0695769624,-4.5230670354,-0.3548026123
H,0,1.2886333799,-3.5949064124,-1.2283076675
C,0,0.6596497748,-1.1833359796,-3.4910717668
C, \(0,-2.0359604274,-0.5969387822,-2.7601163898\)
H,0,-0.7860427109,-3.5229768115,-2.5682555614
H,0,-1.7297002836,-3.0129915946,-1.1720891241
H,0,0.8212432714,3.5841691708,-3.4351165697
H,0,-0.9265559667,3.3357596164,-3.2293306223
H,0,1.0280210976,4.5776440525,-1.2616829687
H, \(0,-0.7403828002,4.7528393647,-1.3027019163\)
H,0,3.1776588313,2.818923051,2.6580585704
H,0,1.8989750324,2.9012921934,3.8915753784
H,0,3.7659014968,0.714371527,3.6555136027
H,0,2.2002537966,0.5892296322,4.4882463852
H,0,4.7852987863,1.6027526546,-1.7356990154
H,0,5.1345530063,0.7363610069,-0.2242720237
H,0,4.2406956257,-0.4320372686,-2.8808627227
Н, \(0,5.0309463646,-1.2735274525,-1.5294167895\)
H,0,2.4151029691,-4.0136061394,1.4370863657
H,0,3.0601049711,-2.6743221901,0.4375425921
H,0,2.6759403994,-2.3851087055,2.1421438236
H,0,-0.0358565621,-4.233023638,2.2787868129
H,0,-0.0007640206,-2.6521765657,3.0966605145
H,0,-1.3549408522,-3.0583265872,2.04111562
H,0,-2.3270402934,-1.2498308105,-3.5893617649
H,0,-2.8214227282,-0.5914076078,-2.0024475147
H,0,-1.900299121,0.4211741118,-3.1317938683
H,0,0.1934952029,-1.7430137166,-4.3083179987
H, \(0,0.8334378552,-0.1500351287,-3.7988845502\)
H,0,1.6158760001,-1.6311897004,-3.2186989697
H,0,-0.4202899542,0.3385513223,1.4248768542
C, \(0,-1.890789553,0.1690999866,0.6874889268\)
C,0,-2.7706497682,-0.9243751393,0.7937020631
С,0,-4.1404185691,-0.7704262423,1.0312381135
C,0,-4.657069839,0.5110149281,1.1995790285
C,0,-3.8212107958,1.6227521117,1.1372918023
C, \(0,-2.4573906225,1.4437261494,0.8892059784\)
H,0,-2.3992211156,-1.934664603,0.6686065854
Н,0,-4.7941172267,-1.6351857309,1.0875683441

C1,0,-6.3814929411,0.7236688646,1.506465193
H,0,-4.2272902529,2.6182287839,1.286109682
H,0,-1.8193252471,2.3197015786,0.8476996185

\section*{dmpeBpin2ParaClHBpinRotTS}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-2479.35526755\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.514092 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.550096 \\
Thermal correction to Enthalpy \(=\) & 0.551040 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.445733 \\
Sum of electronic and zero-point Energies \(=\) & -2478.841175 \\
Sum of electronic and thermal Energies \(=\) & -2478.805172 \\
Sum of electronic and thermal Enthalpies \(=\) & -2478.804228 \\
Sum of electronic and thermal Free Energies \(=\) & -2478.909534
\end{tabular}
\begin{tabular}{lccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 345.190 & 131.765 & 221.636
\end{tabular}

C,0,4.4284745757,0.3571629502,1.0039214458
C,0,3.0305640071,0.2808181578,1.0673697752
C, \(0,2.2022057833,0.0171816097,-0.04442317\)
C,0,2.9073862176,-0.170019965,-1.2561935016
C,0,4.2998300136,-0.1002109365,-1.3599088711
C,0,5.0553687258,0.1647147108,-0.2211318031
Ir, \(0,-0.0323191153,-0.0719995413,-0.0230706844\)
B, \(0,0.1619363626,-1.879866028,-1.0896605917\)
O,0,0.1492239851,-3.174171242,-0.5607216546
C, \(0,0.2475554506,-4.1241672872,-1.6333071083\)
С,0,0.6292274529,-3.2772354678,-2.8642612536
O,0,0.3779278368,-1.9259351715,-2.4627099537
B, \(0,-2.1417670549,-0.2861976691,-0.2754403645\)
O,0,-3.1377401102,0.0022793811,0.6805639701
C,0,-4.4254417045,-0.3596026175,0.1552567091
C,0,-4.1667440336,-0.6139429311,-1.3409587136
О,0,-2.7467901672,-0.761600105,-1.4367406824
P,0,-0.182881368,1.8459721059,1.4724032048
C, \(0,1.081171741,3.1919276063,1.44010355\)
P,0,-0.2331607112,-1.3305902585,1.927914465
C,0,1.226115484,-2.2993988166,2.4987554239
B, \(0,-0.1863701919,1.6210490983,-1.5152464821\)
O,0,-1.4051774013,2.1243175872,-1.932692636
C,0,-1.1667411624,3.3202283475,-2.6909634139
```

C,0,0.3268145011,3.6427345451,-2.4514035832
O,0,0.8590595442,2.4630597016,-1.8335865656
C,0,-0.010343737,1.1794405134,3.2115667084
C,0,-0.677634187,-0.1930383856,3.3435487239
C,0,-1.7569518339,2.8095363312,1.5476075816
C,0,-1.5658374093,-2.5967397843,2.0408986895
H,0,0.0744643316,0.3103605415,-1.6564697223
H,0,-0.4263425685,-0.671424436,4.2971327493
H,0,-1.7670625307,-0.0872704369,3.3035426742
H,0,-0.4313258757,1.8954454332,3.9267457423
H,0,1.06231365,1.1077593086,3.4206058967
H,0,0.4667036521,4.4960332104,-1.7760035388
H,0,0.8757674117,3.8447985233,-3.3754420648
H,0,-1.8367997823,4.1125566166,-2.3431033404
H,0,-1.3866937125,3.1187031143,-3.7454252074
H,0,0.0276701366,-3.5156271435,-3.7468416806
H,0,1.6893601165,-3.3830972746,-3.1259389662
H,0,-0.7208660577,-4.6241595349,-1.7582756425
H,0,0.9994051877,-4.8797142432,-1.3847638758
H,0,-4.4834178679,0.2327855112,-1.9631377478
H,0,-4.6594755059,-1.518401678,-1.7118139845
H,0,-5.1390672123,0.4503463341,0.3370361813
H,0,-4.7869556039,-1.258638544,0.6725838757
H,0,2.3563055471,-0.3858296398,-2.1672613161
H,0,4.7916326942,-0.2500364714,-2.3164340242
Cl,0,6.8193597188,0.255360399,-0.3319856768
H,0,5.016339388,0.5638620456,1.8933943194
H,0,2.5917877174,0.443396874,2.050207711
H,0,-1.387703942,-3.3440220904,1.2672004084
H,0,-1.5561658625,-3.0711640573,3.0275663929
H,0,-2.5293814748,-2.1148239969,1.8711819625
H,0,1.4133276846,-3.0692445616,1.7466903867
H,0,2.1124181873,-1.6697101905,2.5678639741
H,0,1.0214133953,-2.7707719947,3.4652892243
H,0,-1.9156705582,3.2997964483,0.5837078061
H,0,-2.58564045,2.1166851365,1.7026611074
H,0,-1.7289042156,3.5639367642,2.3406268067
H,0,0.943341757,3.7937725153,0.5395953452
H,0,0.9915751752,3.8350051883,2.3214499347
H,0,2.0782399754,2.7509208904,1.3951850753

```
dmpe Bpin3 Meta Chlorobenzene CH Activation Transition Structure dmpeBpin3MetaClPhHCHactTSParParBackA
\(\mathrm{E}(\) RB+HF-LYP \()=-2479.34487672\)

```

H,0,-2.8191302913,-2.736979311,3.2053340588
H,0,-1.5711466042,-2.3555794029,4.4137666676
H,0,-3.7388611926,-0.5793841761,3.7131973299
H,0,-2.2389491663,-0.0479873551,4.5052258537
H,0,-1.2644805574,4.5104402513,-0.922049848
H,0,0.4430691812,4.8247662389,-0.5352624034
H,0,-1.6566976404,4.5035220575,1.4394359429
H,0,0.0800646734,4.3805692339,1.7946123421
H,0,0.4931216599,0.0944385326,1.473215577
H,0,2.1821430356,2.0096548959,-0.15503433
Cl,0,4.8968808711,2.7802041557,0.1754298176
H,0,2.0883198739,-1.7357156789,1.9566358996
H,0,4.4790273097,-1.4936621862,2.4904327871
H,0,5.7519336927,0.5017738775,1.6935175791
C,0,-0.6530408183,1.1185683305,-3.4363725587
C,0,2.0560512705,0.4663259438,-2.813277119
C,0,-1.5246352007,-3.6302139703,-0.4848705624
C,0,1.1369613379,-3.7557041275,0.4619018927
H,0,0.4455072101,-3.753509815,-2.5839934189
H,0,1.7567501421,-2.6715387302,-2.1158235844
H,0,-0.9699741296,-1.7986666083,-3.2470743213
H,0,0.5797777883,-1.6810059663,-4.0847965141
H,0,2.1861710372,0.3591251001,-3.8950693097
H,0,2.2609710286,1.5009112534,-2.5305944184
H,0,2.7712326298,-0.1720506261,-2.2908628504
H,0,-0.3606878837,0.9748995304,-4.4815290801
H,0,-1.716897316,0.9130139235,-3.3077441948
H,0,-0.4764215606,2.1513012275,-3.1319049213
H,0,1.0998835144,-4.753018369,0.011157838
H,0,2.1641901238,-3.3877469973,0.43206582222
H,0,0.8165424173,-3.8229254617,1.5043804183
H,0,-1.3093667728,-4.6321065714,-0.8710090365
H,0,-1.9124748293,-3.7054537613,0.5335261079
H,0,-2.2883913764,-3.1384546646,-1.0874025012

```

\section*{dmpeBpin3MetaClPhHCHactTSParSptBack}
```

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-2479.34706746$

Zero-point correction $=$	0.511026 (Hartree/Particle)
Thermal correction to Energy $=$	0.547750
Thermal correction to Enthalpy $=$	0.548694
Thermal correction to Gibbs Free Energy=	0.440586
Sum of electronic and zero-point Energies=	-2478.836042
Sum of electronic and thermal Energies=	-2478.799318

```
\(\begin{array}{lc}\text { Sum of electronic and thermal Enthalpies }= & -2478.798373 \\ \text { Sum of electronic and thermal Free Energies }= & -2478.906482\end{array}\)

```

H,0,-3.2661426442,0.9349646556,3.4261505617
H,0,-1.9805327654,1.3049229555,4.6008221583
H,0,-2.1202573631,4.238847632,-0.7842465928
H,0,-0.8284890838,4.6011633816,-1.9509968056
H,0,-0.5795222374,4.9417506809,0.911228737
H,0,0.802999435,4.8324951411,-0.1995745157
H,0,0.7693436868,0.5211586243,1.4301631932
H,0,2.4536300188,2.1626113515,-0.4580026952
Cl,0,5.1764269257,2.9346055384,-0.3416111728
H,0,2.4374993653,-1.3342255945,2.0442847466
H,0,4.840248531,-1.0496321284,2.4538472656
H,0,0.5806821795,-4.0883484329,-1.7191484965
H,0,1.9467065908,-3.0060308035,-1.4445860927
H,0,-0.7068433173,-2.233647893,-2.8077387345
H,0,0.86346352,-2.3919945211,-3.6178977695
H,0,2.6014758182,-0.451098984,-3.7693834829
H,0,2.7073627541,0.9497488986,-2.6765122257
H,0,3.0931591486,-0.6547534964,-2.0621758383
H,0,0.2011765216,0.2369190002,-4.6042763729
H,0,-1.2616608209,0.3076902733,-3.5724313865
H,0,-0.0788113404,1.6175488201,-3.4946404347
H,0,0.9568198437,-4.5970591207,1.0865988293
H,0,2.1783928664,-3.3129887718,1.2444979651
H,0,0.760307837,-3.3237460647,2.3158238259
H,0,-1.3721010804,-4.4172380855,0.0846386587
H,0,-1.9491311744,-3.0785631571,1.1259638621
H,0,-2.1112374827,-2.9537244836,-0.6352568438
dmpeBpin3MetaClPhHCHactTSSptSptBackA
E(RB+HF-LYP) = -2479.34811590
Zero-point correction= 0.511216 (Hartree/Particle)
Thermal correction to Energy=
0.547887
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy= 0.441665
Sum of electronic and zero-point Energies= -2478.836900
Sum of electronic and thermal Energies= -2478.800229
Sum of electronic and thermal Enthalpies= -2478.799285
Sum of electronic and thermal Free Energies= -2478.906451

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	343.804	133.613	225.549

```

C,0,3.1776275189,-0.6980090913,0.7932446795 C,0,2.274359219,0.3698717472,0.6295483791 C,0,2.8163326022,1.6684012851,0.7056139544 C, \(0,4.1854542088,1.8842041166,0.8822480381\) C,0,5.0748898393,0.8166087608,1.0076960347 C,0,4.5434130509,-0.468164925,0.9638490932 Ir,0,0.076566125,-0.008730716,0.076438804 P,0,0.6949687618,-0.84904029,-2.1014933274 C, \(0,0.4661736637,-2.7077710004,-2.0826647194\) C, \(0,0.8441607212,-3.3311704664,-0.7293154066\) P,0,0.0315939514,-2.3967193806,0.6753240075 В,0,-1.9551160528,-0.0728356503,-0.549233154 O,0,-2.4805678498,-0.9958444888,-1.470835411 C, \(0,-3.8469246651,-0.6635601119,-1.7601984637\) С,0,-4.2262036645,0.3658264142,-0.6788110648 O,0,-2.9752410338,0.7749609881,-0.1173252503 B,0,-0.9933523913,0.4840425332,1.8535036624 О,0,-1.5535339724,-0.5096395153,2.6702957263 C,0,-2.1247868267,0.1170479102,3.8290745837
C,0,-2.1424973521,1.6169045053,3.4760752596 O,0,-1.2289773258,1.7366497653,2.3821734047
B, \(0,-0.1368446839,1.9633441839,-0.6280653424\) O,0,0.1063010966,3.1323042762,0.0857177772
C,0,-0.0690615882,4.2711335571,-0.7607419661 С,0,-0.7315606748,3.7072224726,-2.0327453195 O,0,-0.5432489551,2.2897074549,-1.9338796767 H,0,-3.9088029115,-0.2438481798,-2.772176803
\(\mathrm{H}, 0,-4.4608881012,-1.5693390374,-1.7244840785\)
H,0,-4.7498885645, 1.2368268154,-1.0851472907
H,0,-4.8494192058,-0.0741909105,0.1101020225
H,0,-3.1228110633,-0.2921998312,4.0156897934
H,0,-1.4937481591,-0.0967541521,4.701405555
H,0,-3.1358421851,1.9511168767,3.1514592653
H,0,-1.8128290228,2.2553513493,4.301538814
H,0,-1.8063809544,3.92554646,-2.0693578295
Н,0,-0.2727619762,4.0782870368,-2.955436564
H,0,-0.6892644876,5.0148185797,-0.25044188
H,0,0.9098145404,4.7235595423,-0.969048573
H,0,0.8363342994,0.4602321449, 1.4409293612
H,0,2.8425477965,-1.7258804542,0.7709424554
Cl,0,5.6288689151,-1.8589331964,1.127218219
H,0,2.1514602759,2.5210982332,0.6398440432
H,0,4.5660961544,2.9015195042,0.9319211253
H,0,6.1388768283,0.9725858709,1.1465924896
```

C,0,-0.189433347,-0.3643407595,-3.6435872623
C,0,2.4545715305,-0.6245638212,-2.6186367032
C,0,-1.6290558472,-3.1993347753,0.7782288024
C,0,0.8180372279,-3.1005578807,2.1972143908
H,0,0.5617400657,-4.3901961592,-0.6958192174
H,0,1.9287327247,-3.2832689806,-0.5774642735
H,0,-0.5967308324,-2.8724200602,-2.2899170692
H,0,1.0375954626,-3.1624228482,-2.9004381993
H,0,2.6473100302,-1.1333239134,-3.5685813737
H,0,2.6501166371,0.4445421723,-2.7368413096
H,0,3.1342000261,-1.0023790805,-1.8535357257
H,0,0.2314788997,-0.8842597526,-4.5102173713
H,0,-1.2448357334,-0.6141779206,-3.5334209937
H,0,-0.1009638047,0.715747264,-3.7680344107
H,0,0.7832833923,-4.1949734982,2.1946123185
H,0,1.8536059549,-2.773272482,2.3017749949
H,0,0.2539067023,-2.7263930294,3.0555675582
H,0,-1.5407603915,-4.2767659068,0.9526972737
H,0,-2.166823449,-2.7307113125,1.6050778723
H,0,-2.17870615,-3.0103672419,-0.144988729

```

\section*{dmpeBpin3MetaCIPhHCHactTSSptSptBackS}
```

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-2479.34749715$

Zero-point correction=	0.511514 (Hartree/Particle)
Thermal correction to Energy $=$	0.547983
Thermal correction to Enthalpy $=$	0.548927
Thermal correction to Gibbs Free Energy $=$	0.442409
Sum of electronic and zero-point Energies=	-2478.835983
Sum of electronic and thermal Energies $=$	-2478.799514
Sum of electronic and thermal Enthalpies $=$	-2478.798570
Sum of electronic and thermal Free Energies $=$	-2478.905088

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	343.864	133.432	224.186

C,0,3.0231817342,0.0095220643,0.4548179083
C,0,1.8896092014,0.8460482024,0.4586469087
C,0,2.1275139681,2.2283586207,0.5879030689
C,0,3.4301701306,2.7230164946,0.6516060519
C,0,4.5460505942,1.8912166652,0.6143840826
C,0,4.3232992271,0.5180963097,0.5196157164
Ir,0,-0.2201093253,0.0226165546,0.0568040787

```
```

P,0,0.3416701226,-0.4226177287,-2.2501655921
C,0,0.5739837427,-2.2698446181,-2.4459940892
C,0,1.2163120911,-2.9169751796,-1.2076714643
P,0,0.3430601094,-2.3561177261,0.3529573214
B,0,-2.2452700654,-0.4443177186,-0.3938662105
O,0,-2.6603987757,-1.3408547217,-1.3951023977
C,0,-4.0897689879,-1.291385135,-1.5212152462
C,0,-4.5561997355,-0.5365869654,-0.2628414471
O,0,-3.3692257494,0.0793082168,0.2460575923
B,0,-1.1724241918,0.0698122856,1.9632123958
O,0,-1.3829452808,-1.0997320421,2.7076502426
C,0,-1.9691365223,-0.7400901326,3.9686752691
C,0,-2.3887561178,0.7312191047,3.7833073021
O,0,-1.6470859612,1.1721506073,2.6432950136
B,0,-0.9429877569,1.9477548798,-0.3859042913
O,0,-0.8685718186,3.0692724554,0.4321263465
C,0,-1.3597899,4.2181913158,-0.2652082103
C,0,-2.0437875459,3.6413741879,-1.5192590797
O,0,-1.5582374671,2.2942468482,-1.6013928012
H,0,-4.350828805,-0.7581087068,-2.4440034241
H,0,-4.4893861925,-2.3086337371,-1.5852100795
H,0,-5.3053709355,0.2313208771,-0.4795206599
H,0,-4.966118969,-1.2142543546,0.4970204476
H,0,-2.812748982,-1.4031294676,4.1855593325
H,0,-1.2197297584,-0.8616482544,4.7614355464
H,0,-3.4609418415,0.8289749012,3.5720683186
H,0,-2.1445978323,1.3588364474,4.6459195826
H,0,-3.1367525438,3.6240155173,-1.422548851
H,0,-1.7867703141,4.1834682791,-2.4354405786
H,0,-2.0479542393,4.7719509276,0.3808189165
H,0,-0.5173155839,4.8754690676,-0.517145757
H,0,0.5545669189,0.5386456946,1.3961182914
H,0,2.9060867715,-1.0641404765,0.3774319308
H,0,5.1718609516,-0.1617277191,0.4974438762
H,0,1.2946307228,2.9173024156,0.6536320917
Cl,0,3.676612448,4.4695124233,0.7919264635
H,0,5.5476138649,2.3027851205,0.6684737839
C,0,-0.8010311429,-0.0242511429,-3.6388153216
C,0,1.9261284044,0.2933940103,-2.8740967344
C,0,-1.0750869687,-3.5372188549,0.4519469568
C,0,1.3944510904,-3.0197151979,1.7261029171
H,0,1.1960759235,-4.0105967614,-1.2854003083
H,0,2.2677774526,-2.6189350006,-1.1257901107
H,0,-0.4305566948,-2.6768309044,-2.6035200514

```
```

H,0,1.1588123594,-2.47818662,-3.3495406166
H,0,2.1401240004,-0.0596066988,-3.8880724213
H,0,1.8352034751,1.3827474173,-2.884480617
H,0,2.7524120972,0.0377876686,-2.2094042553
H,0,-0.3654309677,-0.3178185695,-4.5993425136
H,0,-1.7413770719,-0.5512335567,-3.474967424
H,0,-0.9994479068,1.0484253775,-3.6216374494
H,0,1.6002834414,-4.0870363813,1.5942654657
H,0,2.3366285241,-2.4755412733,1.8073415176
H,0,0.8359854226,-2.8730021029,2.6542764843
H,0,-0.7294384308,-4.5762881827,0.4462935182
H,0,-1.6121331431,-3.3325246803,1.3808036162
H,0,-1.7521982645,-3.3597773467,-0.3848733535

```
dmpeBpin3MetaCIPhHCHactTSSptSptFrntA
\(\mathrm{E}(\) RB \(+\mathrm{HF}-\mathrm{LYP})=-2479.34623238\)
Zero-point correction= 0.511150 (Hartree/Particle)
Thermal correction to Energy= 0.547884
Thermal correction to Enthalpy= 0.548828
Thermal correction to Gibbs Free Energy= 0.440672
Sum of electronic and zero-point Energies \(=\quad-2478.835082\)
Sum of electronic and thermal Energies \(=\quad-2478.798349\)
Sum of electronic and thermal Enthalpies= \(\quad-2478.797405\)
Sum of electronic and thermal Free Energies= \(\quad-2478.905561\)
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 343.802 & 133.639 & 227.634
\end{tabular}

C,0,-0.0001133377,-3.4838665412,-0.6231532743
C,0,-1.0860060532,-2.9191148702,-1.551626317
P,0,-0.7862159635,-1.1125429877,-1.9351061665
Ir,0,-0.0407196668,-0.0543539472,0.0944830118
B,0,-0.1307220081,1.8120023053,-0.8734278375
О,0,-0.373915864,3.0597269926,-0.3166600071
C,0,-0.2277456457,4.0766381513,-1.3106320581
С,0,-0.1937806318,3.3093953456,-2.6473651757
O,0,0.0215979979,1.9437407207,-2.2688226251
P,0,0.3446596764,-2.3661126262,0.8482195847
В,0,1.0256202355,0.8144631581,1.732570851
O,0,1.8391744479,0.0592589343,2.5855513297
C,0,2.3243214057,0.9109210854,3.6346805577
C,0,1.9885583645,2.3341639136,3.1501403722

> \begin{tabular}{l} \(\mathrm{O}, 0,1.009084457,2.138729419,2.1263577707\) \\ \(\mathrm{~B}, 0,1.9587739417,0.0517587523,-0.6227767346\) \\ \(\mathrm{O}, 0,2.6412830769,-0.9775264171,-1.2932441687\) \\ \(\mathrm{C}, 0,3.9195351767,-0.4994550626,-1.7389004915\) \\ \(\mathrm{C}, 0,4.1040187467,0.8415399472,-1.0032698678\) \\ \(\mathrm{O}, 0,2.8022143286,1.1569420001,-0.5001849893\) \\ \(\mathrm{C}, 0,2.0537149628,-2.8944839048,1.3099243734\) \\ \(\mathrm{C}, 0,-0.5958901536,-3.1509240777,2.2447450204\) \\ \(\mathrm{H}, 0,-0.2612161553,-4.4920624327,-0.2811314332\) \\ \(\mathrm{H}, 0,0.9490609964,--3.5620158872,-1.164568091\) \\ \(\mathrm{C}, 0,0.304916352,-1.1498185291,-3.4191813971\) \\ \(\mathrm{C}, 0,-2.3851730264,-0.5593267724,-2.6663694699\) \\ \(\mathrm{H}, 0,-1.1458450689,-3.4946604945,-2.4831398895\) \\ \(\mathrm{H}, 0,-2.0702740531,-2.9812248595,-1.0739825294\) \\ \(\mathrm{H}, 0,0.613108571,3.6408672008,-3.3093229645\) \\ \(\mathrm{H}, 0,-1.142569772,3.3887004106,-3.195137104\) \\ \(\mathrm{H}, 0,0.7030440077,4.6270311259,-1.125744912\) \\ \(\mathrm{H}, 0,-1.0635999783,4.7811834674,-1.2445427763\) \\ \(\mathrm{H}, 0,2.8620355124,2.8385346686,2.718302414\) \\ \(\mathrm{H}, 0,1.5742457271,2.9699548957,3.9386820797\) \\ \(\mathrm{H}, 0,3.3972182632,0.7465822247,3.7763646079\) \\ \(\mathrm{H}, 0,1.8085130416,0.6581951703,4.5700727461\) \\ \(\mathrm{H}, 0,4.4489192588,1.6448215927,-1.6620580037\) \\ \(\mathrm{H}, 0,4.8056880752,0.759651055,-0.1634659287\) \\ \(\mathrm{H}, 0,3.8959954401,-0.3750403127,-2.8289389928\) \\ \(\mathrm{H}, 0,4.6931524333,-1.2337796008,-1.492330294\) \\ \(\mathrm{H}, 0,2.0966853498,-3.9728902372,1.4956579287\) \\ \(\mathrm{H}, 0,2.7315053666,-2.6275355894,0.4979352228\) \\ \(\mathrm{H}, 0,2.3506877165,-2.3466402206,2.2060230595\) \\ \(\mathrm{H}, 0,-0.3071084025,-4.199635139,2.3716367076\) \\ \(\mathrm{H}, 0,-0.3570252563,-2.605635965,3.162543559\) \\ \(\mathrm{H}, 0,-1.6747365862,-3.095093302,2.0949287455\) \\ \(\mathrm{H}, 0,-2.6912342632,-1.2146087675,-3.4881134502\) \\ \(\mathrm{H}, 0,-3.1600292399,-0.544426411,-1.8981292154\) \\ \(\mathrm{H}, 0,-2.2475611681,0.4563649573,-3.0445386848\) \\ \(\mathrm{H}, 0,-0.1627653852,-1.7079186064,-4.2366781962\) \\ \(\mathrm{H}, 0,0.475382489,-0.1143305632,-3.7217513016\) \\ \(\mathrm{H}, 0,1.2633483443,-1.5953788629,-3.1517774193\) \\ \(\mathrm{H}, 0,-0.7498801236,0.3805335032,1.4949434393\) \\ \(\mathrm{C}, 0,-2.2217201666,0.2031499499,0.7623081045\) \\ \(\mathrm{C}, 0,-3.0803655852,-0.9044608096,0.8936818123\) \\ \(\mathrm{C}, 0,-4.4454426141,-0.7328529319,1.1288733408\) \\ \(\mathrm{C}, 0,-5.0149882528,0.528001017,1.2745474269\) \\ \(\mathrm{C}, 0,-4.1670480728,1.6325655576,1.1813949024\) \\ \hline \end{tabular}

\author{
C,0,-2.8005036457,1.476485061,0.9365488744 \\ Н,0,-2.7087832342,-1.9155273863,0.7981132608 \\ \(\mathrm{Cl}, 0,-5.4779717756,-2.1673674428,1.2462200806\) \\ H,0,-6.0769833124,0.6381021654,1.4637092587 \\ H,0,-4.5789612636,2.6308143765,1.307736863 \\ H,0,-2.1700668318,2.3560064334,0.8772004605
}

\section*{dmpeBpin2MetaClHBpinRotTS}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-2479.35701584\)
\begin{tabular}{lc} 
Zero-point correction= & 0.513991 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.550032 \\
Thermal correction to Enthalpy \(=\) & 0.550976 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.445651 \\
Sum of electronic and zero-point Energies= & -2478.843025 \\
Sum of electronic and thermal Energies= & -2478.806984 \\
Sum of electronic and thermal Enthalpies \(=\) & -2478.806040 \\
Sum of electronic and thermal Free Energies \(=\) & -2478.911365
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 345.150 & 131.824 & 221.675
\end{tabular}

C,0,4.3882267554,0.3683900119,0.9521811218
C,0,2.9959710598,0.2982481332,1.0423140788
C,0,2.1826075469,0.0106489547,-0.0742744717
С,0,2.8906966192,-0.2015266981,-1.2806035426
C, \(0,4.2826916793,-0.1303553048,-1.3672345962\)
C,0,5.0617060266,0.1580425102,-0.2442160553
Ir, \(0,-0.0480702368,-0.0735777098,-0.0333540161\)
B,0,0.1552881432,-1.8846169511,-1.09000715
O,0,0.2047608525,-3.1712510415,-0.5436186088
C, \(0,0.3172885141,-4.1322836272,-1.6048409325\)
C,0,0.6295272207,-3.2882637086,-2.857209023
O,0,0.3307280131,-1.9431898974,-2.46835641
B, \(0,-2.1596003861,-0.2755351586,-0.2763695052\)
O,0,-3.1466753149,-0.0389702323,0.7032290509
С,0,-4.4382544381,-0.3806718022,0.1737312793
С,0,-4.1944901472,-0.557507385,-1.3359910893
O,0,-2.7749127969,-0.691700112,-1.4547527263
P,0,-0.2025346755,1.8418689171,1.4735252608
С,0,1.0472601778,3.200956203,1.4325045898
P,0,-0.2333164456,-1.337129221,1.9223870497
С,0,1.2372933731,-2.27690237,2.5144420894
```

B,0,-0.1680308688,1.6277585554,-1.5116351036
O,0,-1.3794412321,2.2028751816,-1.8545723481
C,0,-1.1172519221,3.3780840763,-2.6376937737
C,0,0.4030198849,3.6155995794,-2.4848722329
O,0,0.9025266707,2.4055198135,-1.9000283463
C,0,-0.02333449941,1.1688986501,3.2082074032
C,0,-0.7018014586,-0.1997717091,3.3279760959
C,0,-1.7850380237,2.7900279161,1.5599681788
C,0,-1.5475262243,-2.6223084707,2.0298747815
H,0,0.0151533384,0.301357545,-1.6688920466
H,0,-0.4756593304,-0.6779112202,4.2878125669
H,0,-1.788999269,-0.0876004249,3.2581696482
H,0,-0.4405130564,1.8830534602,3.9274164602
H,0,1.0487481545,1.0894531951,3.4172587866
H,0,0.6292123984,4.4567269124,-1.8176151422
H,0,0.9080204765,3.7905210345,-3.4390448151
H,0,-1.7207969957,4.2100757447,-2.261657101
H,0,-1.4070537451,3.1815626805,-3.6761570527
H,0,0.0167585102,-3.56575784,-3.7204605266
H,0,1.6863319101,-3.3522128591,-3.1449277226
H,0,-0.6303539869,-4.6773144752,-1.6974810445
H,0,1.1083714949,-4.8497545481,-1.365358948
H,0,-4.5230626863,0.3175212894,-1.9110397591
H,0,-4.6859947582,-1.4452561412,-1.7467535484
H,0,-5.1538772542,0.4151385954,0.4037611349
H,0,-4.7898835132,-1.3065689668,0.6486864883
H,0,2.3393617557,-0.4314788082,-2.187526485
H,0,4.7735855523,-0.3004495795,-2.3233105868
H,0,6.1431442729,0.2171115762,-0.2954780725
Cl,0,5.3241198737,0.7423785588,2.4175842842
H,0,2.5617607685,0.4802882299,2.0204267662
H,0,-1.3492340951,-3.3729632186,1.264342619
H,0,-1.5415921909,-3.0885274288,3.0204046987
H,0,-2.5155476203,-2.1551024678,1.8457618028
H,0,1.447433701,-3.0504701187,1.772777283
H,0,2.1122017041,-1.6319225212,2.591540922
H,0,1.0283233988,-2.7427177271,3.4827242095
H,0,-1.9559985201,3.2782584789,0.5974258986
H,0,-2.6056480868,2.0896857773,1.7235390535
H,0,-1.7561843711,3.5432272215,2.3540301026
H,0,0.911496853,3.7845163543,0.5193146086
H,0,0.9392107314,3.8595595313,2.3000924536
H,0,2.051994213,2.7759830569,1.4090160154

```

\section*{dmpeBpin3MetaBr2PhHCHactTSSptSptBack \(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-7161.36208279\)}
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.500325 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.538029 \\
Thermal correction to Enthalpy \(=\) & 0.538973 \\
Thermal correction to Gibbs Free Energy= & 0.428857 \\
Sum of electronic and zero-point Energies= & -7160.861758 \\
Sum of electronic and thermal Energies= & -7160.824054 \\
Sum of electronic and thermal Enthalpies \(=\) & -7160.823110 \\
Sum of electronic and thermal Free Energies= & -7160.933226
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 337.618 & 136.306 & 231.759
\end{tabular}

C,0,2.2032267017,-0.8744206449,0.6384472503
C, \(0,1.3125867207,0.2036088104,0.4797174369\)
C, \(0,1.8576053729,1.5007154226,0.5498675699\)
C,0,3.2287946486,1.6842713466,0.7147348033
C,0,4.1189470972,0.6201443332,0.8397525125
C,0,3.5702914907,-0.6576398731,0.8024695732
Ir, \(0,-0.8812055694,-0.1564735809,-0.1081788641\)
P,0,-0.2299463476,-0.8852386728,-2.3204371774
С, \(0,-0.4313679376,-2.7451389419,-2.3974852531\)
C,0,-0.0736248387,-3.4285752007,-1.0671174088
P,0,-0.9255188964,-2.5736822473,0.3656759495
B, \(0,-2.9038678794,-0.1834653018,-0.7586406278\)
O,0,-3.4130592304,-1.0453076844,-1.7455694191
C,0,-4.7770943001,-0.6975503426,-2.0298649233
С,0,-5.1740676798,0.2540458437,-0.8854961599
O,0,-3.9313056445,0.6300624845,-0.283410289
B, \(0,-1.9693066812,0.238136717,1.6835749824\)
О,0,-2.5142685942,-0.7972127255,2.4562170521
С,0,-3.1062422369,-0.2251926645,3.6339536058
С,0,-3.1561500088,1.2851119172,3.3340843676
O,0,-2.2318560248,1.4646868561,2.2572980873
В,0,-1.0941807938,1.8464837852,-0.7196787147
О,0,-0.8345528481,2.9782011836,0.044655219
C,0,-0.9950111066,4.1560232944,-0.753366491
С,0,-1.6745708532,3.6560551845,-2.0425713986
O,0,-1.5016397714,2.2324714574,-2.0075318356
\(\mathrm{H}, 0,-4.8266774543,-0.2092521551,-3.0111520555\)
H,0,-5.3880558277,-1.6052950458,-2.0643801567
```

H,0,-5.6980379713,1.1482448653,-1.2371108077
H,0,-5.8026922172,-0.2417809529,-0.1349679923
H,0,-4.0954066897,-0.6636578557,3.7993682873
H,0,-2.4747885434,-0.4557653928,4.5015948973
H,0,-4.1528172323,1.6059745498,3.0064700861
H,0,-2.8529440409,1.9021115476,4.1853892747
H,0,-2.7471134031,3.887013426,-2.0603013914
H,0,-1.2189625091,4.0612330102,-2.9521585226
H,0,-1.5993027531,4.8871351025,-0.2077238902
H,0,-0.0090626825,4.5978166023,-0.9473936436
H,0,-0.1193383166,0.2703754906,1.2712865086
H,0,1.8483295054,-1.8939936687,0.6155337018
Br,0,4.739565977,-2.1722048832,0.9739654652
H,0,1.2049723353,2.3616749944,0.488546082
Br,0,3.9313198459,3.4693952805,0.7775564186
H,0,5.1811401877,0.7790598366,0.9690427763
C,0,-1.100010277,-0.3316922155,-3.8465120034
C,0,1.5351078744,-0.6192523187,-2.7970705231
C,0,-2.5877094842,-3.3782605374,0.3808752078
C,0,-0.1813912391,-3.3642782198,1.8664395581
H,0,-0.3409056762,-4.4917241157,-1.0922811876
H,0,1.0068644979,-3.3742365462,-0.8899853431
H,0,-1.4852046626,-2.9192659371,-2.6397742593
H,0,0.1673005892,-3.1507869661,-3.2214511649
H,0,1.7433838523,-1.0633366922,-3.7756497654
H,0,1.7302271969,0.4554005213,-2.8413204285
H,0,2.2049306184,-1.0479671023,-2.0501328564
H,0,-0.6660396846,-0.8063206812,-4.7323461513
H,0,-2.1548040781,-0.5928648372,-3.7590599574
H,0,-1.0173675767,0.7538529467,-3.9180041263
H,0,-0.2364461643,-4.456283454,1.8089288872
H,0,0.8584578068,-3.0659681532,2.009412106
H,0,-0.7569380626,-3.0208064497,2.7299757856
H,0,-2.5038072143,-4.4638078974,0.4962775909
H,0,-3.1464683156,-2.9574669968,1.21949598
H,0,-3.1143078017,-3.1355361043,-0.5428983055

```
dmpeBpin2Br2PhHBinRotTS
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-7161.37356865\)
Zero-point correction= 0.503439 (Hartree/Particle)
Thermal correction to Energy= 0.541450
Thermal correction to Enthalpy \(=0.542394\)
Thermal correction to Gibbs Free Energy= 0.430658
\begin{tabular}{lc} 
Sum of electronic and zero-point Energies \(=\) & -7160.870130 \\
Sum of electronic and thermal Energies \(=\) & -7160.832119 \\
Sum of electronic and thermal Enthalpies \(=\) & -7160.831174 \\
Sum of electronic and thermal Free Energies \(=\) & -7160.942911
\end{tabular}
\begin{tabular}{lcc} 
E (Thermal) & CV & S \\
Kal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 339.765 & 136.393
\end{tabular}
```

H,0,-0.5914882975,4.4839225863,-1.719009238
H,0,-0.1104877954,3.8466879443,-3.3046152796
H,0,-2.8623573607,4.0257537652,-2.3589771813
H,0,-2.3352187402,3.0481962357,-3.7462097818
H,0,-0.9390996979,-3.525034233,-3.7231539253
H,0,0.7277048707,-3.3914036619,-3.1162490109
H,0,-1.6631723995,-4.6570648652,-1.7394001617
H,0,0.0605499847,-4.8926879107,-1.3690701509
H,0,-5.4228096344,0.2191679796,-1.9110907979
H,0,-5.6140103968,-1.5308739306,-1.6596137421
H,0,-6.0773835724,0.4381891635,0.3901101907
H,0,-5.7270340608,-1.27107521,0.727117137
H,0,1.413902399,-0.4547464158,-2.1393804689
Br,0,4.228654493,-0.4504164343,-2.9732153555
H,0,5.2126375687,0.1696579048,-0.2337811183
Br,0,4.4690956084,0.7031532262,2.613864307
H,0,1.6179499981,0.4208580379,2.0812680618
H,0,-2.3160013159,-3.381767284,1.2999122851
H,0,-2.5005330013,-3.1054113168,3.0590455128
H,0,-3.4731587904,-2.1615364781,1.8931859901
H,0,0.5130384698,-3.0459468974,1.7832225902
H,0,1.1490961746,-1.6589567073,2.6766362162
H,0,0.0575653616,-2.8132819803,3.4963996617
H,0,-2.8162870311,3.3078340955,0.6192461034
H,0,-3.5184215908,2.1094463529,1.7035156994
H,0,-2.6627777723,3.5382385038,2.3830079026
H,0,0.0825908469,3.7106767565,0.5595181935
H,0,0.0186250362,3.8470338852,2.3391134581
H,0,1.1573204365,2.7208056992,1.5419777345
dmpeBpin3MetaXyleneHCHactTSSptSptBack
E(RB+HF-LYP) =-2098.39259645

Zero-point correction=	0.575435 (Hartree/Particle)
Thermal correction to Energy= $=$	0.614683
Thermal correction to Enthalpy $=$	0.615627
Thermal correction to Gibbs Free Energy $=$	0.500928
Sum of electronic and zero-point Energies $=$	-2097.817161
Sum of electronic and thermal Energies=	-2097.777914
Sum of electronic and thermal Enthalpies $=$	-2097.776969
Sum of electronic and thermal Free Energies $=$	-2097.891668

 E (Thermal) CV S
 KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin
    ```
\begin{tabular}{l} 
Total \(\quad 385.719 \quad 141.806\) \\
C, \(, 3.1788883104,-0.7302499198,0.7077118435\) \\
\(\mathrm{C}, 0,2.2581994406,0.3368661673,0.6626214089\) \\
\(\mathrm{C}, 0,2.7775570083,1.6203441131,0.8964085955\) \\
\(\mathrm{C}, 0,4.1458281049,1.8467514797,1.1242012539\) \\
\(\mathrm{C}, 0,5.0228403766,0.7613078,1.1267197629\) \\
\(\mathrm{C}, 0,4.549496458,-0.5406487122,0.9213960168\) \\
\(\mathrm{Ir}, 0,0.0632495366,-0.0118654285,0.0728948957\) \\
\(\mathrm{P}, 0,0.6960028948,-0.7524135921,-2.1407398804\) \\
\(\mathrm{C}, 0,0.4660578934,-2.6092103602,-2.1994502428\) \\
\(\mathrm{C}, 0,0.8496969709,-3.2917064109,-0.8768483677\) \\
\(\mathrm{P}, 0,0.0374583281,-2.4204680196,0.5696647048\) \\
\(\mathrm{~B}, 0,-1.9617043966,-0.0574920311,-0.5831956434\) \\
\(\mathrm{O}, 0,-2.482704254,-0.9777127623,-1.5136460174\) \\
\(\mathrm{C}, 0,-3.8389779812,-0.6276798292,-1.8279435419\) \\
\(\mathrm{C}, 0,-4.2268977388,0.3995568209,-0.7483946254\) \\
\(\mathrm{O}, 0,-2.9805913654,0.8034495496,-0.1735847975\) \\
\(\mathrm{~B}, 0,-1.0417910145,0.4111587223,1.8426893009\) \\
\(\mathrm{O}, 0,-1.6328745455,-0.6083784186,2.604420496\) \\
\(\mathrm{C}, 0,-2.2235261361,-0.0244274996,3.7750137456\) \\
\(\mathrm{C}, 0,-2.2222560516,1.4881801249,3.4817762422\) \\
\(\mathrm{O}, 0,-1.2792236533,1.6434359253,2.419392902\) \\
\(\mathrm{~B}, 0,-0.1125492178,1.9888122849,-0.5479214179\) \\
\(\mathrm{O}, 0,0.0900563631,3.1247767496,0.2296872488\) \\
\(\mathrm{C}, 0,-0.0101887822,4.297589982,-0.5802107526\) \\
\(\mathrm{C}, 0,-0.6202452062,3.7983035022,-1.902859235\) \\
\(\mathrm{O}, 0,-0.4407611547,2.3774273286,-1.8605465604\) \\
\(\mathrm{H}, 0,-3.875805891,-0.1999493004,-2.8381159015\) \\
\(\mathrm{H}, 0,-4.4649147662,-1.5257760418,-1.8108340184\) \\
\(\mathrm{H}, 0,-4.7447436345,1.2730210868,-1.1570629994\) \\
\(\mathrm{H}, 0,-4.8589516529,-0.0419035871,0.0329173117\) \\
\(\mathrm{H}, 0,-3.2283261476,-0.4325531336,3.9247576111\) \\
\(\mathrm{H}, 0,-1.6128638934,-0.2775500735,4.6515721292\) \\
\(\mathrm{H}, 0,-3.2047501629,1.8418474399,3.1443393595\) \\
\(\mathrm{H}, 0,-1.911709994,2.0912389917,4.3407866015\) \\
\(\mathrm{H}, 0,-1.6921354827,4.0240176317,-1.9727770839\) \\
\(\mathrm{H}, 0,-0.1223632876,4.2094834101,-2.787607528\) \\
\(\mathrm{H}, 0,-0.6343218507,5.0416723988,-0.0750785813\) \\
\(\mathrm{H}, 0,0.9908132146,4.7273306131,-0.7233839896\) \\
\(\mathrm{H}, 0,0.7895089308,0.3843115723,1.4739773777\) \\
\(\mathrm{H}, 0,2.8403912491,-1.7471472361,0.542958405\) \\
\(\mathrm{C}, 0,5.5059783404,-1.7127859284,0.9227856321\) \\
\(\mathrm{H}, 0,2.1005971535,2.4679153288,0.91335578\) \\
\hline
\end{tabular}
```

C,0,4.647357311,3.2475396203,1.396445941
H,0,6.0851303959,0.9265009453,1.2999667205
C,0,-0.2001324514,-0.2070079617,-3.6561513623
C,0,2.4502117564,-0.4990692049,-2.6621617171
C,0,-1.6050632824,-3.2648037094,0.6608887829
C,0,0.8534657845,-3.1593051017,2.0587454536
H,0,0.5691024315,-4.3517474216,-0.8896724922
H,0,1.9341825979,-3.2484205947,-0.7264789427
H,0,-0.5996485383,-2.757827559,-2.4035104962
H,0,1.0280617012,-3.0312745085,-3.0410731134
H,0,2.644326437,-0.9858238288,-3.6235582719
H,0,2.6316345367,0.5746653098,-2.7603010377
H,0,3.1356129185,-0.881873162,-1.9050251067
H,0,0.2174528545,-0.6858074123,-4.5477917287
H,0,-1.2535194691,-0.4677876694,-3.5506860829
H,0,-0.1179786167,0.8780468496,-3.7308760079
H,0,0.8587765353,-4.2535216008,2.0154440106
H,0,1.8749764025,-2.7919974731,2.1687276758
H,0,0.2801511218,-2.8395705342,2.9330562798
H,0,-1.4891308356,-4.34687213,0.7842963485
H,0,-2.1419941908,-2.8493169672,1.5164437829
H,0,-2.1758171783,-3.0487898424,-0.2436586203
H,0,6.226531683,-1.646365692,0.0982723326
H,0,6.0880528869,-1.7544822087,1.8508076212
H,0,4.9745926621,-2.6643284851,0.8214406226
H,0,5.732142521,3.3179978867,1.2695163419
H,0,4.1791512005,3.9775780956,0.7280307757
H,0,4.415271512,3.5592126216,2.4226958492
dmpeBpin2MetaXyleneHBinRotTS
E(RB+HF-LYP) = -2098.39908753
Zero-point correction= 0.578508 (Hartree/Particle)
Thermal correction to Energy=}0.61782
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy= 0.504494
Sum of electronic and zero-point Energies= -2097.820579
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies= -2097.780320
Sum of electronic and thermal Free Energies= -2097.894594

| | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
| | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} / \mathrm{Mol}-$ Kelvin | Cal/Mol-Kelvin |
| Total | 387.690 | 141.891 | 240.511 |

```

\footnotetext{
C,0,4.1675964349,0.334111745,1.0241401024
C,0,2.7661737276,0.2618610182,1.0764528669
C, \(0,1.9469775827,0.0088868618,-0.0441158973\)
C,0,2.6502118649,-0.176607658,-1.2540873238
C,0,4.0476958234,-0.1173034505,-1.3552584903
C,0,4.8014967164,0.1411043473,-0.2057475577
Ir, \(0,-0.2846404182,-0.0771361538,-0.0197827154\)
B, \(0,-0.0836310069,-1.8808240687,-1.084995552\)
O, \(0,-0.0435583623,-3.1706370217,-0.5426415813\)
C, \(0,0.0392493798,-4.1276431383,-1.6093232625\)
C,0,0.3673361341,-3.283892837,-2.8572210486
O,0,0.0833339692,-1.9374720569,-2.4647166357
B, \(0,-2.3973047887,-0.2867271202,-0.2704317659\)
O,0,-3.3898029666,0.0061313933,0.6888699789
С,0,-4.6809541586,-0.3497459666,0.1691869614
C,0,-4.4280531163,-0.6155941035,-1.3260638884
O, \(0,-3.0092918496,-0.7668365085,-1.4267672374\)
P,0,-0.4270305186,1.8356141297,1.4895337251
C, \(0,0.8391224701,3.1801077473,1.4682576195\)
P,0,-0.4913818963,-1.3419039136,1.9299298302
C,0,0.9674778505,-2.3044659849,2.5159799008
B,0,-0.4549589597,1.6150787521,-1.4947233184
О,0,-1.6799435252,2.1067863222,-1.9137692915
C,0,-1.4519586007,3.2948596305,-2.6864811643
C,0,0.0314195717,3.6446234814,-2.4305051583
O,0,0.58039435,2.469350259,-1.8208856203
C, \(0,-0.2689332058,1.160517915,3.2259761887\)
С,0,-0.9501866312,-0.2068737131,3.3422050773
C,0,-2.0002421906,2.8023819012,1.5593786858
С,0,-1.8193426099,-2.6143618624,2.0404309206
Н,0,-0.1667855943,0.3063609137,-1.6488694101
H,0,-0.7185463972,-0.690994561,4.2979011591
H,0,-2.0379015164,-0.0915558176,3.2831130972
H,0,-0.6893940815,1.875859874,3.9424041533
H,0,0.8018187329, 1.0773497372,3.44110482
H,0,0.1466232318,4.4934542092,-1.7441694763
H,0,0.5843204503,3.8686075877,-3.3471998939
H,0,-2.1401685049,4.0811831504,-2.3610552882
H,0,-1.6522821376,3.0738944084,-3.7412806198
H,0,-0.2451299152,-3.5513913681,-3.7239998148
H,0,1.4246712493,-3.3607789002,-3.1403459262
H,0,-0.923392085,-4.6462371207,-1.7021199333
Н, \(0,0.8117274259,-4.8680277862,-1.3784685428\)
}
```

H,0,-4.7463622178,0.2271281485,-1.9530189312
H,0,-4.924192115,-1.521774689,-1.6885684807
H,0,-5.3886175644,0.4665715224,0.3468174665
H,0,-5.0488188949,-1.2423158355,0.6934762875
H,0,2.094756885,-0.3800073562,-2.166760325
C,0,4.7350216052,-0.3531202006,-2.6825600563
H,0,5.8879392516,0.1922281733,-0.2691341201
C,0,4.9794602787,0.6291744744,2.2669702256
H,0,2.3135177538,0.4199401487,2.0552668014
H,0,-1.623806386,-3.3792147641,1.2880938831
H,0,-1.8266185621,-3.0674784269,3.0371858967
H,0,-2.7825069258,-2.1421204883,1.8434677396
H,0,1.1496892211,-3.0889960259,1.7781823858
H,0,1.8545399708,-1.6735115914,2.566954458
H,0,0.7650973558,-2.7558483114,3.4927269158
H,0,-2.1618154876,3.2787831885,0.5891273156
H,0,-2.8297128976,2.1128179649,1.7252745906
H,0,-1.9676041075,3.5662426321,2.3430504483
H,0,0.7413913015,3.7495138224,0.5417075149
H,0,0.7140159175,3.8524777205,2.3232952694
H,0,1.8367435408,2.7378078743,1.4803292645
H,0,5.7748069291,-0.1109101481,2.4146795811
H,0,5.4669882539,1.6107437563,2.2090456542
H,0,4.353388884,0.6266461428,3.1654932529
H,0,5.5377878317,0.3726304917,-2.8561058802
H,0,5.1920032194,-1.3504959406,-2.7272770564
H,0,4.0283336985,-0.2790898914,-3.5146604255

```
\(\operatorname{Ir}(\mathrm{bpy})(\mathrm{BPin})_{3}\)
\(\mathrm{E}(\) RB+HF-LYP \()=-1361.88604005\)
Zero-point correction= 0.371266 (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.398025\)
Thermal correction to Enthalpy \(=\quad 0.398970\)
Thermal correction to Gibbs Free Energy= 0.308975
Sum of electronic and zero-point Energies= \(=1361.514774\)
Sum of electronic and thermal Energies \(=\quad-1361.488015\)
Sum of electronic and thermal Enthalpies \(=\quad-1361.487070\)
Sum of electronic and thermal Free Energies \(=\quad-1361.577065\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 249.765 & 96.398 & 189.409
\end{tabular}

Ir, \(0,0.1635529963,-0.0019094733,-0.3550644187\)
\(\mathrm{N}, 0,-1.6842220373,-1.3242024742,-0.3021789652\)
C, \(0,-1.6256370623,-2.6645757355,-0.3534373128\)
C, \(0,-2.7634429459,-3.4671133061,-0.3567002198\)
С,0,-4.0120662192,-2.850196709,-0.3178834255
С,0,-4.0771453459,-1.460367922,-0.2837350353
C,0,-2.8927170904,-0.7133997067,-0.2741108335
C, \(0,-2.8769697537,0.7727534562,-0.2485551209\)
C, \(0,-4.0399715543,1.5393847251,-0.1068660274\)
C, \(0,-3.9501671081,2.9283665343,-0.0957830814\)
C,0,-2.6970568276,3.5234925114,-0.220905321
C,0,-1.577029354,2.7050171787,-0.350527355
N,0,-1.6619781442,1.3631004046,-0.3661778484
\(\mathrm{H}, 0,-0.6272553316,-3.0831748911,-0.4117908427\)
H,0,-2.6644566116,-4.5465073703,-0.3943192874
H,0,-4.9243368776,-3.4388223782,-0.3231714212
H,0,-5.0417444668,-0.9677926489,-0.2744218921
H,0,-5.0060173682,1.0622849603,0.0048971541
H,0,-4.8459147062,3.5319721479,0.0146066334
H,0,-2.5781267236,4.6016437793,-0.2128689361
H,0,-0.5689868252,3.1020477523,-0.429607818
B,0,1.6178556436,-1.421365855,-0.4417094845
O,0,1.5694137791,-2.409250205,-1.4468809594
C,0,2.655211665,-3.3264759146,-1.2670842422
C,0,3.5114341307,-2.704496194,-0.1410901345
O,0,2.7010996382,-1.6632724251,0.4036356553
H,0,3.7678717277,-3.4257634036,0.6432478285
H,0,4.4434804406,-2.2720535592,-0.5269004419
H,0,3.2067247901,-3.4364883299,-2.2070309954
H,0,2.2560693642,-4.3119243577,-0.9898754063
H,0,2.5546383656,-0.1494755472,3.7241725914
H,0,1.7241588098,1.3376963939,4.2393296195
C, \(0,0.3660479798,-0.360954298,3.8267241368\)
H,0,0.5421253971,-1.270617768,4.410605262
H,0,-0.410655612,0.2283672293,4.3337189737
О,0,-0.0833650325,-0.7068422912,2.5122959171
B, \(0,0.6163648935,0.0787194677,1.5840153612\)
O,0,1.5629434267,0.8714867851,2.2239470178
B,0,1.6601240438,1.349395882,-0.6708013671
O,0,2.9000269003,1.1053276589,-1.2698762643
C,0,3.6766342648,2.3031729144,-1.2779826212
C,0,2.6664399321,3.4230846142,-0.9548401305
O,0,1.5254329132,2.7345559308,-0.4363748757
H,0,4.4640426897,2.2296571702,-0.5162487195

H,0,4.1557006179,2.4313683395,-2.2550353844
H,0,3.0419319346,4.1335178567,-0.2102943564
H,0,2.3766735708,3.9880415964,-1.8521626357
C,0,1.6510621992,0.4591371613,3.5894623135
\(\mathbf{I r}(\mathbf{b p y})(\mathbf{B P i n})_{3}\left(\quad{ }^{\mathbf{2}} \mathbf{- P h H}\right)\)
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1594.14747822\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.472651 (Hartree/Particle) \\
Thermal correction to Energy= \(=\) & 0.504986 \\
Thermal correction to Enthalpy \(=\) & 0.505930 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.402049 \\
Sum of electronic and zero-point Energies= & -1593.674827 \\
Sum of electronic and thermal Energies= & -1593.642492 \\
Sum of electronic and thermal Enthalpies \(=\) & -1593.641548 \\
Sum of electronic and thermal Free Energies= & -1593.745429
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 316.883 & 117.313 & 218.636
\end{tabular}

Ir,0,-0.3281355405,-0.009959939,-0.0074661745
\(\mathrm{N}, 0,1.2735572334,-1.5861961954,0.2173081074\)
C,0,1.1123179409,-2.6990356973,0.9503029795
C,0,2.0841102484,-3.6902095659,1.0439101569
C,0,3.2781520335,-3.516669888,0.3464675287
C,0,3.4532503376,-2.362419736,-0.4094330788
C, \(0,2.4321681558,-1.4042844939,-0.4590357637\)
C,0,2.5411186639,-0.1525147582,-1.2521005658
N,0,1.4604516954,0.664797847,-1.2366490529
C,0,1.4815527933,1.7975524184,-1.959568744
C,0,2.5828329713,2.1791778322,-2.7217381944
C, \(0,3.705825775,1.3546769509,-2.7340732413\)
C, \(0,3.6828547641,0.176885414,-1.9941711102\)
B,0,-1.7804268193,-0.7427877012,1.2191071778
О,0,-1.6063624067,-0.7886971467,2.6192559623
C, \(0,-2.7414592413,-1.4174787909,3.2238985071\)
С, \(,,-3.7617230123,-1.5677893262,2.0749131034\)
O,0,-3.0110452139,-1.3181570481,0.8872417167
B,0,-1.6131728418,1.5539551811,-0.2991169095
O,0,-2.6442856207,1.9690690898,0.5564010401
C, \(0,-3.3596947313,3.0526688901,-0.0394813338\)
C,0,-2.4502225488,3.5313150928,-1.1901617308
O,0,-1.5052950466,2.4725023893,-1.363407164
\(\mathrm{B}, 0,-1.3122066995,-0.9790294288,-1.4565314603\)
\(\mathrm{O}, 0,-2.3891580079,-0.5246815618,-2.2124954424\)
\(\mathrm{C}, 0,-2.8923249328,-1.612144819,-2.9901796096\)
\(\mathrm{C}, 0,-1.7546698336,-2.6532906651,-2.9730160107\)
\(\mathrm{O}, 0,-0.9393733503,-2.2710419797,-1.8607276887\)
\(\mathrm{C}, 0,1.3426062865,2.8009514938,1.7214264005\)
\(\mathrm{C}, 0,0.6165992643,1.7624331245,2.3191014399\)
\(\mathrm{C}, 0,1.2948755695,0.7277681893,2.9752120381\)
\(\mathrm{C}, 0,2.6917833969,0.7376833003,3.0380478153\)
\(\mathrm{C}, 0,3.4116225879,1.7762158784,2.4429511191\)
\(\mathrm{C}, 0,2.7366535141,2.8081929865,1.7822106545\)
\(\mathrm{H}, 0,0.8152580229,3.6017457108,1.2111142864\)
\(\mathrm{H}, 0,0.1689231856,-2.7775078221,1.4774591802\)
\(\mathrm{H}, 0,4.375671267,-2.2151025443,-0.9574598376\)
\(\mathrm{H}, 0,1.9016695986,-4.5723587594,1.6480412871\)
\(\mathrm{H}, 0,4.0622668363,-4.266404645,0.3886728519\)
\(\mathrm{H}, 0,4.5468420728,-0.4762631535,-1.9984951669\)
\(\mathrm{H}, 0,4.5855290188,1.6182987381,-3.3134271415\)
\(\mathrm{H}, 0,2.5505186822,3.1017915931,-3.2914625998\)
\(\mathrm{H}, 0,0.5689319822,2.3844701633,-1.9207497824\)
\(\mathrm{H}, 0,-2.4404087325,-2.3884954033,3.6413638497\)
\(\mathrm{H}, 0,-3.1162692943,-0.7968263232,4.045146744\)
\(\mathrm{H}, 0,-4.2073204039,-2.5680614892,2.0314266939\)
\(\mathrm{H}, 0,-4.5740622094,-0.8334422507,2.1512468822\)
\(\mathrm{H}, 0,3.297917332,3.6171917309,1.3224311209\)
\(\mathrm{H}, 0,4.4971330808,1.7872955048,2.4987008043\)
\(\mathrm{H}, 0,3.2178922238,-0.0595504759,3.5565723938\)
\(\mathrm{H}, 0,-0.4681987686,1.7671923859,2.2986817858\)
\(\mathrm{H}, 0,0.7176867905,-0.070730167,3.4290498606\)
\(\mathrm{H}, 0,-1.1533713115,-2.6212651736,-3.8922470259\)
\(\mathrm{H}, 0,-2.1159906972,-3.6779712541,-2.8348063649\)
\(\mathrm{H}, 0,-3.1399266413,-1.2656143619,-3.9992889895\)
\(\mathrm{H}, 0,-3.8063716186,-1.9987069725,-2.5207085299\)
\(\mathrm{H}, 0,-1.9184796153,4.4594640593,-0.936876199\)
\(\mathrm{H}, 0,-2.9980983864,3.6963254231,-2.1241972781\)
\(\mathrm{H}, 0,-3.548047434,3.8321478154,0.7072396511\)
\(\mathrm{H}, 0,-4.3275119082,2.688338228,-0.4074820091\)

\section*{\(\operatorname{Ir}(\mathrm{bpy})(\mathrm{BPin})_{3}(\mathbf{P h}-\mathrm{H}) \mathbf{C - H}\) Activation TS}
\(\mathrm{E}(\) RB+HF-LYP \()=-1594.10718476\)
Zero-point correction \(=\quad 0.468878\) (Hartree/Particle)
Thermal correction to Energy=
Thermal correction to Enthalpy=
0.500951
0.501896
\begin{tabular}{lc} 
Thermal correction to Gibbs Free Energy \(=\) & 0.401240 \\
Sum of electronic and zero-point Energies \(=\) & -1593.638306 \\
Sum of electronic and thermal Energies= & -1593.606233 \\
Sum of electronic and thermal Enthalpies \(=\) & -1593.605289 \\
Sum of electronic and thermal Free Energies \(=\) & -1593.705944
\end{tabular}
\begin{tabular}{ccccc} 
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 314.352 & 118.627 & 211.847
\end{tabular}

C,0,-3.1488959587,3.0024722008,-2.6260586062
С,0,-2.3480037554,3.5389683806,-1.6160863832
C,0,-1.3401889858,2.768909144,-1.0283888314
C,0,-1.1209579837,1.432658029,-1.4116503175
С,0,-1.9217123737,0.9217277399,-2.4484893358
C,0,-2.9261751663,1.6900488548,-3.044818907
Ir,0,0.2261427672,0.1380044766,-0.1778117126
\(\mathrm{N}, 0,-1.242776276,-1.5986742643,-0.4876133999\)
C, \(0,-2.2728811956,-1.6760772232,0.384446917\)
C,0,-3.2249212868,-2.7009870847,0.290367618
C,0,-3.1119338244,-3.6526130077,-0.7165265914
C,0,-2.0458511843,-3.5627336789,-1.6085800733
C, \(0,-1.1341061112,-2.5216951479,-1.4563289667\)
C,0,-2.3216235924,-0.6354449741,1.4390374084
N,0,-1.3107312616,0.268604591,1.4511937031
C,0,-1.288703656,1.2193363967,2.4025150771
C,0,-2.2752424935,1.3233249279,3.3785458513
C, \(0,-3.3259176944,0.4094792961,3.371305914\)
С,0,-3.3458066751,-0.5784385261,2.3935516679
B,0,1.3483984575,-1.0422182173,1.2055543175
O,0,1.3274923845,-2.43973934,1.2259065046
C,0,2.0779808414,-2.9072587986,2.3545229381
C, \(0,2.7810371991,-1.6472946948,2.9022339125\)
O,0,2.1230984264,-0.554813676,2.2506506593
B,0,1.7928176349,-0.6679371611,-1.2768925149
О,0,3.1470813853,-0.6855771368,-0.9694285559
C,0,3.8727651748,-1.2720162611,-2.0525224081
C,0,2.7947728107,-1.9696891993,-2.9031369838
O,0,1.5673692119,-1.3627576365,-2.4778397744
B,0,1.4459151553,1.7141537658,0.3030835297
O,0,1.2734042805,2.5231674366,1.4397262099
C,0,2.1741190307,3.6348962142,1.3767412255
C,0,3.1396962035,3.2758513669,0.2298533396
O,0,2.4792884373,2.2267367833,-0.4783374996
```

H,0,0.3990761114,0.8017565506,-1.6348834681
H,0,-0.2803017765,-2.4018284297,-2.114788313
H,0,-4.0455958862,-2.7610373646,0.9942322719
H,0,-1.9138671768,-4.2824862649,-2.4093401278
H,0,-3.8440124818,-4.4501443878,-0.7991605351
H,0,-4.1552354099,-1.2969726914,2.3728784919
H,0,-4.1170665913,0.4604817714,4.1130924232
H,0,-2.2108718583,2.1094183014,4.1230667215
$\mathrm{H}, 0,-0.4442983701,1.898325419,2.3607196091$
H,0,2.7511055005,-3.0497174461,-2.7096309889
H,0,2.9273499307,-1.814488161,-3.9783956369
Н,0,4.6234331426,-1.9664981728,-1.6616968462
H,0,4.3896171364,-0.4803524588,-2.6098567591
H,0,-0.7281025644,3.2122379404,-0.2477276784
H,0,-2.5024618292,4.564010079,-1.2862611959
H,0,-3.9272173276,3.6035088449,-3.0886952254
H,0,-1.7558834075,-0.0911825463,-2.8054510837
H,0,-3.5289588904,1.2626905232,-3.8430852301
H,0,1.3902726393,-3.3512702769,3.0861794694
H,0,2.7820968814,-3.6823096418,2.0337539432
H,0,2.6837352699,-1.5422679451,3.9880295761
H,0,3.8480614098,-1.6260056595,2.6480246366
H,0,1.6046803421,4.5503574623,1.1667609878
H,0,2.6797398668,3.7556755328,2.3403111745
H,0,3.3305898835,4.1169563479,-0.4449271614
H,0,4.1034499582,2.9086185741,0.6059368903

```

\section*{bpyBpin2PhHBpinRotTS}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1594.09606502\)
\begin{tabular}{lc} 
Zero-point correction= & 0.471260 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.502948 \\
Thermal correction to Enthalpy \(=\) & 0.503892 \\
Thermal correction to Gibbs Free Energy= \(=\) & 0.403993 \\
Sum of electronic and zero-point Energies= & -1593.624805 \\
Sum of electronic and thermal Energies= & -1593.593117 \\
Sum of electronic and thermal Enthalpies \(=\) & -1593.592173 \\
Sum of electronic and thermal Free Energies \(=\) & -1593.692072
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 315.605 & 117.518 & 210.256
\end{tabular}

C,0,-3.0963950744,0.6526592537,-2.613015284
\begin{tabular}{l} 
C, \(0,-2.1552316372,0.147266271,-1.7075057213\) \\
\(\mathrm{~N}, 0,-0.9879022488,0.8027135517,-1.4616929813\) \\
\(\mathrm{C}, 0,-0.7519456307,1.9539701677,-2.1274521111\) \\
\(\mathrm{C}, 0,-1.6455454146,2.4943330573,-3.0428853268\) \\
\(\mathrm{C}, 0,-2.8476449373,1.8370089768,-3.2908139667\) \\
\(\mathrm{C}, 0,-2.3608006018,-1.1138660848,-0.981804821\) \\
\(\mathrm{~N}, 0,-1.3909985328,-1.4471744345,-0.1000750627\) \\
\(\mathrm{C}, 0,-1.4981076229,-2.6194844467,0.5511818929\) \\
\(\mathrm{C}, 0,-2.5696801084,-3.4875837247,0.388846021\) \\
\(\mathrm{C}, 0,-3.5837254777,-3.1392325858,-0.5026780151\) \\
\(\mathrm{C}, 0,-3.4698302454,-1.9451480928,-1.1992312072\) \\
\(\mathrm{Ir}, 0,0.3065232653,0.0673338887,0.0834606153\) \\
\(\mathrm{~B}, 0,1.840824445,1.451997147,-0.1058564653\) \\
\(\mathrm{O}, 0,1.9492893093,2.4353115599,-1.0924015442\) \\
\(\mathrm{C}, 0,3.2066822754,3.1128203713,-0.9608803135\) \\
\(\mathrm{C}, 0,3.7666454806,2.63050438,0.3950794918\) \\
\(\mathrm{O}, 0,2.9303714113,1.5311870607,0.7590740421\) \\
\(\mathrm{C}, 0,-0.9059267906,1.3330579224,1.4331314718\) \\
\(\mathrm{C}, 0,-1.8396548117,0.8058533826,2.3484739299\) \\
\(\mathrm{C}, 0,-2.6720298501,1.6167722141,3.1273912922\) \\
\(\mathrm{C}, 0,-2.5990598643,3.0068077856,3.023416228\) \\
\(\mathrm{C}, 0,-1.6837803012,3.5660233071,2.131324945\) \\
\(\mathrm{C}, 0,-0.860761588,2.7404048945,1.3561774593\) \\
\(\mathrm{~B}, 0,1.0107180098,-1.1508669412,1.7306921927\) \\
\(\mathrm{O}, 0,0.7338589965,-0.94376562,3.0650813288\) \\
\(\mathrm{C}, 0,1.033665118,-2.141202416,3.7911264837\) \\
\(\mathrm{C}, 0,1.809486442,-3.0204069952,2.7847180968\) \\
\(\mathrm{O}, 0,1.568343014,-2.4018721184,1.5100710235\) \\
\(\mathrm{~B}, 0,1.4543906849,-1.0873880955,-1.303451449\) \\
\(\mathrm{O}, 0,0.8611912933,-1.8558525546,-2.3130227253\) \\
\(\mathrm{C}, 0,1.8845348351,-2.4131257772,-3.1501138116\) \\
\(\mathrm{C}, 0,3.1960768798,-2.1489263193,-2.3837168123\) \\
\(\mathrm{O}, 0,2.8425748259,-1.1819007814,-1.3878548759\) \\
\(\mathrm{H}, 0,1.5002986356,0.0103987029,1.1715843665\) \\
\(\mathrm{H}, 0,-4.2337192829,-1.6650604709,-1.9131161298\) \\
\(\mathrm{H}, 0,-4.438630861,-3.7889955162,-0.6609226563\) \\
\(\mathrm{H}, 0,-2.5972702121,-4.4172994502,0.9467087709\) \\
\(\mathrm{H}, 0,-0.6736041125,-2.8775609884,1.2011406364\) \\
\(\mathrm{H}, 0,-4.0250553881,0.1224827949,-2.7799867333\) \\
\(\mathrm{H}, 0,-3.5743176787,2.2348092798,-3.9919489478\) \\
\(\mathrm{H}, 0,-1.3903574958,3.4223631874,-3.5426753315\) \\
\(\mathrm{H}, 0,0.1906347529,2.4375858109,-1.9142425681\) \\
\(\mathrm{H}, 0,3.5755278188,-3.0527058329,-1.8896624851\) \\
\(\mathrm{H}, 0,3.9904413758,-1.7486458204,-3.0226559905\) \\
\hline
\end{tabular}
```

H,0,1.8663282568,-1.9111940233,-4.1264451225
H,0,1.6911651767,-3.4791609967,-3.3102406271
H,0,-0.1628223435,3.2197293625,0.6704528786
H,0,-1.9174363387,-0.2721492184,2.4772199529
H,0,-3.3763781029,1.1598187567,3.8207300125
H,0,-3.2411017016,3.6418104686,3.6289978549
H,0,-1.6059383692,4.6479365654,2.0376421149
H,0,0.0944448936,-2.6062943103,4.1162377946
H,0,1.6180536164,-1.8898285033,4.6808503528
H,0,1.4612090108,-4.0579093721,2.760347178
H,0,2.8887009681,-3.0214257436,2.9753791235
H,0,3.7027575671,3.4044513574,1.169620909
H,0,4.8061850115,2.2944727074,0.3256610686
H,0,3.8515537211,2.8309584178,-1.8015225191
H,0,3.0427631328,4.194753078,-0.9951848117

```
\(\left.\mathbf{I r}(\mathbf{b p y})(\mathbf{B P i n})_{3} \mathbf{( P h}\right)(\mathbf{H})\)
\(\mathrm{E}(\) RB+HF-LYP \()=-1594.12080695\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.471227 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.503172 \\
Thermal correction to Enthalpy \(=\) & 0.504117 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.404809 \\
Sum of electronic and zero-point Energies \(=\) & -1593.649580 \\
Sum of electronic and thermal Energies= & -1593.617635 \\
Sum of electronic and thermal Enthalpies \(=\) & -1593.616690 \\
Sum of electronic and thermal Free Energies \(=\) & -1593.715998
\end{tabular}
            E (Thermal) CV S
\(\begin{array}{llll}\text { Total } & 315.745 & 119.135 & 209.011\end{array}\)
C,0,-2.8055939266,-1.5654994903,2.4395703342
C,0,-1.9674507461,-1.2412593949,1.3654448844
N,0,-1.1043043185,-0.1949118581,1.4528452027
C,0,-1.0599186721,0.5306890804,2.5870491932
C,0,-1.8719332165,0.2546096338,3.6819767746
С, \(0,-2.7609885167,-0.8144420679,3.6079648709\)
C,0,-1.9599648627,-2.0134074594,0.1019760715
N,0,-1.0932292629,-1.5940520281,-0.8458858954
C,0,-1.0348776378,-2.2482634842,-2.0149770712
C, \(0,-1.8287369307,-3.3567343177,-2.2967121671\)
С,0,-2.7172683722,-3.805785948,-1.3225407446
C,0,-2.784809909,-3.126206337,-0.1115433821

Ir,0,0.1699583868,0.2300914453,-0.2755238175
B,0,1.1002911323,1.9612372229,0.3079599847
O,0,1.9255583611,2.7434093229,-0.4918603698
C,0,2.4448802825,3.8260592638,0.2817699474
C,0,1.5561291062,3.8606249752,1.5404433207
O,0,0.9238100162,2.5744368002,1.5569689499
C,0,-1.4333741744,1.5034759703,-0.9770183579
C,0,-2.0567817002,2.4819363796,-0.178630972
C, \(0,-3.1056100229,3.2778654964,-0.6536656539\)
C,0,-3.5675627196,3.1276376222,-1.9612204114
C,0,-2.9648851428,2.1728172694,-2.7822178582
C,0,-1.9205345062,1.3808204499,-2.294874265
B,0,1.4967721579,-0.9875930755,0.9318836037
O,0,2.1931867735,-0.4835235952,2.0182372354
C, \(0,2.8181123705,-1.5655706549,2.718810281\)
C,0,2.1618798432,-2.834893184,2.135730671
O,0,1.5002829515,-2.3818519365,0.9455381669
B, \(0,1.9246193461,-0.4804029163,-1.1802005825\)
О, \(0,1.8624519557,-1.4393151938,-2.2037310442\)
C,0,3.198676525,-1.7933283541,-2.5720873132
C,0,4.0539862527,-0.6421727623,-2.0143312777
O,0,3.2408990321,-0.0696487982,-0.985904356
H,0,0.8178391,0.6951343233,-1.661930176
H,0,-0.3008759923,-1.8805688281,-2.7202501894
H,0,-3.4698513802,-3.4648981112,0.6555315759
H,0,-1.739170917,-3.8547322535,-3.2561016801
Н,0,-3.3467888802,-4.6726322766,-1.498452787
H,0,-3.488807091,-2.4017745454,2.3647009845
H,0,-3.4082038589,-1.0634517369,4.443260231
H,0,-1.7972611403,0.8723948842,4.5701554199
H,0,-0.3449834724,1.3456717922,2.5900841949
H,0,3.4573877893,-2.7569061966,-2.1131292913
H,0,3.2681452577,-1.8947065534,-3.6598168152
H,0,5.0045610179,-0.9785263018,-1.5887904029
H,0,4.2630749682,0.1208541082,-2.7753924568
H,0,-1.7079413166,2.6485169381,0.8382715492
H,0,-3.5544524246,4.023690986,-0.0001942852
H,0,-4.3767795579,3.7485957337,-2.3371358154
H,0,-1.4705004944,0.6547561257,-2.9694042339
H,0,-3.3034666416,2.0461324437,-3.8087294842
H,0,1.4175017618,-3.268905596,2.8155805134
H,0,2.8865628535,-3.6140866148,1.8789741318
H,0,2.6497685924,-1.4533134301,3.7946996358
H,0,3.8988034908,-1.5350106172,2.5331294094
```

H,0,0.7853134962,4.6400369823,1.480239655
H,0,2.1255555311,4.003912433,2.464511364
H,0,2.3966343269,4.7531122895,-0.2985746593
H,0,3.4957084233,3.6243148649,0.5276774728

```
\begin{tabular}{lc} 
Irbpy_Bpin2_H2_Ph_gsIr5 \\
E(RB+HF-LYP) \(=-1340.69986438\) \\
& \\
Zero-point correction= & 0.409372 (Hartree/Particle) \\
Thermal correction to Energy= & 0.436194 \\
Thermal correction to Enthalpy= & 0.437138 \\
Thermal correction to Gibbs Free Energy= & 0.348960 \\
Sum of electronic and zero-point Energies= & -1340.290493 \\
Sum of electronic and thermal Energies= & -1340.263670 \\
Sum of electronic and thermal Enthalpies= & -1340.262726 \\
Sum of electronic and thermal Free Energies= & -1340.350904
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & Cal/Mol-Kelvin \\
Total & 273.716 & 101.497 & 185.587
\end{tabular}

C,0,-2.3391409725,-2.1948086579,0.0660636947
C,0,-1.7328985507,-1.3280592701,-0.864715578
C,0,-2.4422942341,-1.111687116,-2.062146617
C,0,-3.6858510566,-1.7020744409,-2.3103180162
C,0,-4.2631772095,-2.5502893739,-1.3637598929
C, \(0,-3.5791585784,-2.7981287506,-0.1732650409\)
Ir, \(0,0.1746661529,-0.3746437316,-0.4866656487\)
B,0,2.0526074424,-1.2671981866,-0.2401161632
О,0,3.031920601,-1.4626744793,-1.21333333962
C,0,4.0790570709,-2.2594835044,-0.6514209184
C,0,3.840546921,-2.1858803273,0.8686436575
O,0,2.4644006556,-1.8120761938,0.9859427236
N,0,-0.9747055796,1.4237955651,-0.4249162212
C,0,-1.5644844749,1.7501654913,0.7551737499
C,0,-2.4218452251,2.8542592329,0.8384685091
С,0,-2.6673505725,3.6265154978,-0.2903977634
C, \(0,-2.041010775,3.2869214773,-1.4897926483\)
С,0,-1.2028270766,2.1800311049,-1.5150453181
C,0,-1.2225140267,0.8932223412,1.9085370815
N,0,-0.3609407514,-0.1240432825,1.6527981862
C,0,0.03195186,-0.9166405099,2.6652265232
C, \(0,-0.4291825898,-0.7518663263,3.9672937549\)
C,0,-1.3282283036,0.2790870383,4.2380359833
```

C,0,-1.7221409633,1.1131821343,3.1985689019
B,0,1.844767335,0.9930809534,-0.4843783881
O,0,2.6480451639,1.3809778594,0.5852739004
C,0,3.4142203881,2.5337949803,0.2064166634
C,0,3.1786819572,2.6755270378,-1.3127203406
O,0,2.0766071879,1.8022175471,-1.5901967787
H,0,0.4083470043,-0.4288098212,-2.0434196225
H,0,0.6482182404,-1.9130029201,-0.5916639396
H,0,0.7544293763,-1.6795526949,2.4016540702
H,0,-2.4121439455,1.9257250763,3.3908456807
H,0,-0.0837579125,-1.4213084135,4.7476652418
H,0,-1.7118671134,0.4359765799,5.2412647696
H,0,-2.8954385087,3.1070424114,1.7788611347
H,0,-3.3341282155,4.4810374621,-0.233395299
H,0,-2.1962102948,3.8633061743,-2.3949882975
H,0,-0.6797228285,1.8715892565,-2.4103758553
H,0,4.4653571844,-1.4188758806,1.3444901196
H,0,4.0094981573,-3.1404873154,1.3771965136
H,0,5.0517296318,-1.8579673361,-0.9528295979
H,0,3.9960520648,-3.2865793319,-1.0308189889
H,0,-2.0115311654,-0.4725073669,-2.8305273309
H,0,-4.1990281146,-1.5060313986,-3.2497674957
H,0,-5.2266170532,-3.0162207044,-1.5546593558
H,0,-1.8338747915,-2.4186251463,1.0038491212
H,0,-4.0081409149,-3.4647122605,0.5725464265
H,0,3.0528345592,3.4043893095,0.768121923
H,0,4.4669102993,2.37539847,0.4623379089
H,0,2.9237375995,3.6979713491,-1.610774321
H,0,4.0467930016,2.3518457988,-1.8996287616
bpyBpin3HPhPrecursorRedElimSak
E}(\mathrm{ RB +HF-LYP })=-1594.11786833

| Zero-point correction $=$ | 0.471480 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.503443 |
| Thermal correction to Enthalpy $=$ | 0.504387 |
| Thermal correction to Gibbs Free Energy $=$ | 0.404760 |
| Sum of electronic and zero-point Energies $=$ | -1593.646389 |
| Sum of electronic and thermal Energies= | -1593.614425 |
| Sum of electronic and thermal Enthalpies $=$ | -1593.613481 |
| Sum of electronic and thermal Free Energies $=$ | -1593.713109 |

 E (Thermal) CV S
 KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin
    ```
\begin{tabular}{|c|c|c|c|}
\hline Total & 315.91 & 119 & \\
\hline \multicolumn{4}{|l|}{C,0,-3.9341268455,-1.3763598785,0.2605743499} \\
\hline \multicolumn{4}{|l|}{C, \(0,-2.5964776463,-0.9736060608,0.3723492551\)} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{N}, 0,-1.8801093445,-0.6612502016,-0.7338391037\)} \\
\hline \multicolumn{4}{|l|}{C,0,-2.4553918603,-0.7358560536,-1.945004945} \\
\hline \multicolumn{4}{|l|}{C,0,-3.7747510276,-1.1349091726,-2.1218508158} \\
\hline \multicolumn{4}{|l|}{C,0,-4.5270129295,-1.4611200562,-0.9935249796} \\
\hline \multicolumn{4}{|l|}{C, \(0,-1.8938265989,-0.8436913681,1.6691674792\)} \\
\hline \multicolumn{4}{|l|}{N,0,-0.6308197491,-0.354258386,1.619383624} \\
\hline \multicolumn{4}{|l|}{C,0,0.0514150909,-0.179521613,2.762787074} \\
\hline \multicolumn{4}{|l|}{C, \(0,-0.484971202,-0.4927676792,4.0081518634\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,-1.7757987117,-1.0138716896,4.0716455074\)} \\
\hline \multicolumn{4}{|l|}{C,0,-2.4869133122,-1.1893932206,2.8897954269} \\
\hline \multicolumn{4}{|l|}{Ir,0,0.1783354414,0.0511358046,-0.415258946} \\
\hline \multicolumn{4}{|l|}{B, \(0,2.1084277032,-0.6634444493,-0.0028484288\)} \\
\hline \multicolumn{4}{|l|}{O,0,3.2350194167,-0.5632016396,-0.8149606691} \\
\hline \multicolumn{4}{|l|}{C, \(0,4.3262867358,-1.2207299628,-0.1706769203\)} \\
\hline \multicolumn{4}{|l|}{C,0,3.879206839,-1.3418991846,1.29704768} \\
\hline \multicolumn{4}{|l|}{O,0,2.4535940287,-1.2312732073,1.2338924588} \\
\hline \multicolumn{4}{|l|}{C, \(0,-0.7926237261,2.0010173576,-0.4721149106\)} \\
\hline \multicolumn{4}{|l|}{С, \(0,-1.2870531646,2.6520290304,0.6747558794\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,-2.0523474063,3.8213317234,0.5946494509\)} \\
\hline \multicolumn{4}{|l|}{C,0,-2.3494284488,4.3831422829,-0.6469118951} \\
\hline \multicolumn{4}{|l|}{C, \(0,-1.858075983,3.7700874402,-1.8018353615\)} \\
\hline \multicolumn{4}{|l|}{C,0,-1.0864004853,2.6087279125,-1.710198956} \\
\hline \multicolumn{4}{|l|}{B, \(0,1.5801851076,1.5773515902,-0.130435926\)} \\
\hline \multicolumn{4}{|l|}{O,0,2.1663060845,2.3445133828,-1.1218064002} \\
\hline \multicolumn{4}{|l|}{C,0,3.0853966958,3.2543709918,-0.5155453604} \\
\hline \multicolumn{4}{|l|}{С,0,2.729866707,3.2182278119,0.9843105161} \\
\hline \multicolumn{4}{|l|}{O,0,1.9940942826,1.9967561681,1.1397614958} \\
\hline \multicolumn{4}{|l|}{В, \(0,0.5698900689,-2.0391608719,-0.8103832078\)} \\
\hline \multicolumn{4}{|l|}{O,0,-0.0445989858,-3.0258834655,-0.0407485607} \\
\hline \multicolumn{4}{|l|}{C, \(0,0.0743843691,-4.2896040316,-0.7066675736\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,1.0292050204,-4.0172958449,-1.8913613277\)} \\
\hline \multicolumn{4}{|l|}{O,0,1.1591636566,-2.5917655087,-1.9358658796} \\
\hline \multicolumn{4}{|l|}{H,0,0.6052079542,0.2648127357,-1.9146506609} \\
\hline \multicolumn{4}{|l|}{H,0,-3.4906682506,-1.5949915612,2.9200048236} \\
\hline \multicolumn{4}{|l|}{H,0,-2.2244033558,-1.2786323367,5.0241510556} \\
\hline \multicolumn{4}{|l|}{H,0,0.1061041319,-0.3321889477,4.9032632154} \\
\hline \multicolumn{4}{|l|}{H,0,1.0509202731,0.2197131593,2.6507513531} \\
\hline \multicolumn{4}{|l|}{H,0,-4.5113980383,-1.6126608988,1.145674745} \\
\hline \multicolumn{4}{|l|}{H,0,-5.5629372869,-1.7716780576,-1.0874708475} \\
\hline \multicolumn{4}{|l|}{Н,0,-4.1961397484,-1.1815619432,-3.1198948059} \\
\hline
\end{tabular}
```

H,0,-1.8205452249,-0.4638434515,-2.779669962
H,0,2.0198858558,-4.4631603366,-1.739616605
H,0,0.6365763545,-4.3783850466,-2.8475551954
H,0,-0.9185034562,-4.6181652529,-1.0391868306
H,0,0.4650012347,-5.0363388605,-0.0075528607
H,0,-0.6868883718,2.1730200259,-2.6218361126
H,0,-1.0623747875,2.252498495,1.6599243241
H,0,-2.4131208289,4.2928588581,1.5067181453
H,0,-2.9445432974,5.2903681167,-0.7142192746
H,0,-2.0651720748,4.2039769703,-2.7779195513
H,0,2.9670481108,4.2495047719,-0.9559102725
H,0,4.1111339101,2.9103277414,-0.7041588302
H,0,2.0891416815,4.0605276847,1.2746971566
H,0,3.6085154842,3.2065152787,1.6376129719
H,0,4.2780451504,-0.5256922942,1.9146443469
H,0,4.1566257555,-2.2951626144,1.7584085556
H,0,4.481338729,-2.2042460501,-0.6350099415
H,0,5.2413098407,-0.6330626188,-0.296162112

```
bpyBpin3HPhTStoPrecRedElimSak
\(\mathrm{E}(\) RB+HF-LYP \()=-1594.11405597\)
Zero-point correction= 0.471423 (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.502488\)
Thermal correction to Enthalpy= 0.503433
Thermal correction to Gibbs Free Energy= 0.407062
Sum of electronic and zero-point Energies \(=\quad-1593.642633\)
Sum of electronic and thermal Energies \(=\quad-1593.611568\)
Sum of electronic and thermal Enthalpies= \(\quad-1593.610623\)
Sum of electronic and thermal Free Energies= \(\quad-1593.706994\)
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCal/Mol & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) \\
\hline Total & 315.316 & 117.028 & 202.829 \\
\hline C,0,-1 & 44175,1.42 & 80207,-2.35472 & 187 \\
\hline C, \(0,-1\) & 58345,1.3825 & 07722,-0.961430018 & \\
\hline C, \(0,-2\) & 12994,2.127 & 24353,-0.1727055 & \\
\hline C, \(0,-3\) & 621779,2.853 & \(760447,-0.7309361\) & 407 \\
\hline C,0,-3 & 706558,2.862 & 200349,-2.11099 & 544 \\
\hline C,0,-2 & 819527,2.144 & 192061,-2.9219365 & 572 \\
\hline Ir,0,0. & 62276,0.2063 & 16579,-0.159184 & \\
\hline B,0,1. & 03734,-1.050 & 582069,-0.6754922 & 448 \\
\hline O,0,2. & 6871,-0.6748 & 09572,-1.4534580 & \\
\hline
\end{tabular}

C, \(0,3.6824173627,-1.8344362686,-1.7436745488\) С,0,2.7342412315,-3.0118842861,-1.4489645672
O,0,1.7297849974,-2.4460857167,-0.5974143615
\(\mathrm{N}, 0,-1.1620255827,-0.2538495435,1.5675515459\)
C,0,-2.0267257546,-1.287198337,1.4337763693
С,0,-2.8896947847,-1.6449802067,2.4791194205
С,0,-2.8770854227,-0.9175453481,3.6623007112
C, \(0,-2.0024799618,0.1616682794,3.7763242617\)
C, \(0,-1.1607422957,0.4555327156,2.7097840979\)
C, \(0,-2.0166364391,-1.9894213511,0.1318581858\)
N,0,-1.1020006853,-1.5625078519,-0.7671173561
C,0,-1.0648823664,-2.1280568789,-1.982961704
C, \(0,-1.9229118679,-3.1514708227,-2.3666156708\)
C, \(0,-2.8634752327,-3.6091578466,-1.4442422653\)
C, \(0,-2.9117641131,-3.0211849218,-0.1866303133\)
B, \(0,0.9478205005,2.0672274946,0.2863415508\)
O,0,0.6926865159,2.7145884491,1.5058701381
C,0,1.1696840632,4.064894029,1.4147169611
C,0,2.0596494811,4.0670800204,0.1549876226
O,0,1.684789986,2.8830001928,-0.5525132614
B,0,1.7699875444,-0.2000836681,1.2281676978
O,0,1.4987461853,-0.9103859693,2.3991999203
C, \(0,2.5311637625,-0.6564014387,3.3568671394\)
C,0,3.6404113368,0.05570388,2.5531528089
O,0,3.0204171725,0.4083995019,1.3143204034
H,0,0.8820095116,0.640737808,-1.4916793756
H,0,-0.3168451087,-1.7365530397,-2.6622382502
H,0,-3.6465893023,-3.355406585,0.5350155382
H,0,-1.85218995,-3.5733442318,-3.3632155483
Н,0,-3.553584791,-4.4064815276,-1.7019437034
H,0,-3.5659523218,-2.4834733916,2.3696117096
Н, \(0,-3.5424276755,-1.1861146749,4.4770447048\)
H,0,-1.9640906062,0.7686743341,4.6743735689
H,0,-0.4679220397,1.2888009655,2.7392966891
H,0,3.2233931262,-3.8458768484,-0.9361496299
H,0,2.2595298425,-3.3997357915,-2.3611658676
H,0,4.5680752629,-1.8486035321,-1.0940717986
H,0,4.0196695949,-1.8023794214,-2.7843912166
H,0,-2.2197123238,2.1628350822,0.906479518
Н,0,-4.0708708535,3.4160812469,-0.0805248931
H,0,-4.4245048064,3.4244911532,-2.548047766
H, \(0,-0.9844888652,0.9028605353,-3.0212152149\)
H,0,-2.8507935379,2.1484027921,-4.0024621997
H,0,2.1313364836,-0.0242164612,4.1604021137
```

H,0,2.8617904706,-1.6027746455,3.7971879516
H,0,4.0114338722,0.959388832,3.0474402145
H,0,4.4964849142,-0.6007572446,2.3521392192
H,0,0.3117343583,4.741920462,1.3161551302
H,0,1.7162004649,4.3262993337,2.3269693886
H,0,1.8945945586,4.9437966231,-0.4792239325
H,0,3.126941465,4.0142881123,0.4050866631

```

\section*{\(\operatorname{Ir}(\mathbf{b p y})(\mathbf{B P i n})_{\mathbf{2}}^{\mathbf{( H}} \mathbf{( H ) ( P h - B P i n )}\) Reductive Elimination TS}
\(\mathrm{E}(\) RB+HF-LYP \()=-1594.11735189\)
\begin{tabular}{lc} 
Zero-point correction= & 0.471078 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.502294 \\
Thermal correction to Enthalpy \(=\) & 0.503238 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.405871 \\
Sum of electronic and zero-point Energies= & -1593.646274 \\
Sum of electronic and thermal Energies= & -1593.615058 \\
Sum of electronic and thermal Enthalpies \(=\) & -1593.614114 \\
Sum of electronic and thermal Free Energies \(=\) & -1593.711481
\end{tabular}
\begin{tabular}{ccccc} 
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 315.194 & 117.195 & 204.927
\end{tabular}

C,0,-2.0811960685,4.4835345582,-0.4897087005
C,0,-1.7873462351,3.8871556079,0.7367239464
C,0,-1.0295743084,2.7120786771,0.7844633094
С, \(0,-0.54360042,2.0915651761,-0.3822082038\)
С,0,-0.8285698083,2.7353067712,-1.6042775128
C,0,-1.5920958816,3.902829746,-1.6628218578
Ir,0,0.1769637368,-0.0011115368,-0.430942081
B, \(0,1.5630947504,1.5462634146,-0.1251068733\)
O,0,2.032882679,1.8852514555,1.1553257441
C,0,2.8852105333,3.0285541299,1.0168009422
C,0,3.2641683428,3.031103243,-0.476420667
O,0,2.232796002,2.2709852764,-1.1031838639
N,0,-0.6386438253,-0.3924981726,1.6005597922
C,0,-1.9486178638,-0.7369728298,1.658693475
С,0,-2.5573112652,-1.0559882675,2.8787725385
C,0,-1.8118198056,-1.0066065,4.0514825615
C,0,-0.470332329,-0.6369952277,3.9797015519
С, \(0,0.0781013514,-0.3408136375,2.7352934125\)
C,0,-2.682418393,-0.7414993705,0.37217193
N,0,-1.956934982,-0.4563702988,-0.7350493027
```

C,0,-2.5562938726,-0.427820154,-1.9358814425 C,0,-3.9114949036,-0.6879653712,-2.1014860734 C,0,-4.6736172012,-0.9829525791,-0.9713808245 C, $0,-4.0548506761,-1.0067632488,0.2727410264$ B, $0,0.3793483727,-2.0974754904,-0.8313528836$ О,0,1.1361467888,-2.7333305649,-1.8063241461 C,0,0.9241343285,-4.1474484865,-1.727189457 C,0,-0.2791149603,-4.3104902274,-0.774524401 O,0,-0.4328826515,-3.020617105,-0.1682599915 B,0,2.1065284689,-0.7115006045,-0.0766818381 O,0,2.4481625011,-1.3830808495,1.1093758542 C,0,3.8630832078,-1.6047724712,1.1104155904 C,0,4.2715773394,-1.3979443451,-0.3588485519 O,0,3.2152846841,-0.6093673712,-0.9072964308 H,0,0.606123123,0.193933388,-1.9346737006 Н,0,-3.6009571665,-1.3429084405,2.9159864098 H,0,-2.2729043564,-1.2519453608,5.0032335926 H,0,0.1504225988,-0.5798027811,4.867280595 H,0,1.1164157303,-0.0607227064,2.6161946393
H,0,-4.6379662443,-1.2236080484,1.1590329241
Н,0,-5.7363426245,-1.1876366188,-1.056092689
H,0,-4.3516926841,-0.6545349573,-3.0919278552
H,0,-1.9111584314,-0.1880775621,-2.7726794275
H,0,1.8306144028,-4.6251852377,-1.3345496081
H,0,0.7343098628,-4.5460499863,-2.7289874186
H,0,-1.2011958387,-4.5704188005,-1.3103993834
H,0,-0.1100105342,-5.0636780564,0.0019179063
$\mathrm{H}, 0,-0.4257217038,2.3215452891,-2.524129995$
H,0,-0.7977912396,2.2849713536,1.7558521686
H,0,-2.1433326193,4.3375135814,1.6609967615
H,0,-2.67021855,5.3962060016,-0.5312548552
H,0,-1.7951774408,4.3673200767,-2.6253164514
H,0,3.2991165156,4.0378962886,-0.9054801902
H,0,4.2320130967,2.5423552416,-0.6532809131
H,0,2.3276095853,3.9319601062,1.2982713642
H,0,3.7485636831,2.9296331734,1.6830567142
H,0,4.3432289695,-0.8755327327,1.7770581457
H,0,4.0799928038,-2.6110367864,1.4833845835
H,0,4.3310720701,-2.349114513,-0.904425868
H,0,5.2257262522,-0.8731487652,-0.4715655439
$\operatorname{Ir}($ bpy $)(\text { BPin })_{2}(H)\left({ }^{2}\right.$-PhBPin)
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1594.14737468$

```

```

C,0,0.0589315913,-4.3697688122,-1.4943799801 С,0,1.5943011571,-4.2414184855,-1.4185997098 O,0,1.8295665087,-2.8460759979,-1.222155857 H,0,1.3060001288,0.0218225466,-1.4609339328
H,0,-4.5668226885,-1.0219532431,1.4487341079
H,0,-4.0245649867,-1.6768067131,3.7733815382
Н, $0,-1.6045896322,-1.7879169416,4.4647485128$
H,0,0.1498297631,-1.2262292425,2.7617819988
$\mathrm{H}, 0,-4.9072002825,-0.5672347652,-0.5110477631$
H,0,-5.1677870335,0.0668451013,-2.8869549598
H,0,-3.1100612321,0.5983798075,-4.2377908693
H,0,-0.8787627067,0.458179455,-3.0991674799
H,0,2.0104147031,-4.803948561,-0.5716205105
H,0,2.0963241557,-4.5778298097,-2.3320364257
H,0,-0.2958663004,-4.4498069939,-2.531051175
H,0,-0.3269765877,-5.2274837085,-0.9330972216
H,0,-1.2068778253,3.5629276951,-1.4262669526
H,0,0.8575084644,2.5535412924,2.202213835
H,0,-1.2708629108,2.7297522655,3.4667578037
H,0,-3.3697437384,3.3377044919,2.2832782636
H,0,-3.335402713,3.7573230321,-0.1667983272
H,0,3.1203490609,3.4960600409,-2.9344684365
H,0,2.8055820988,1.7574053737,-2.6825875151
H,0,4.2078892594,3.6506049225,-0.7907993901
H,0,4.1296908291, 1.8614789664,-0.7184023369
H,0,3.6013806311,-0.299124643,3.2752119326
H,0,3.8165958554,-2.0356738328,2.9633047398
H,0,4.8535852632,-1.6244834015,0.8414081347
H,0,5.092462044,0.0360664541,1.4295800355

```

IrbpyBpin2H
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-1108.46367666\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.309360 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.330815 \\
Thermal correction to Enthalpy \(=\) & 0.331759 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.254547 \\
Sum of electronic and zero-point Energies \(=\) & -1108.154317 \\
Sum of electronic and thermal Energies \(=\) & -1108.132862 \\
Sum of electronic and thermal Enthalpies \(=\) & -1108.131917 \\
Sum of electronic and thermal Free Energies= \(=\) & -1108.209130
\end{tabular}

E (Thermal) CV S
\(\mathrm{KCal} / \mathrm{Mol} \quad \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin} \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}\)
\(\begin{array}{llll}\text { Total } & 207.590 & 78.944 & 162.508\end{array}\)

C,0,-2.8544778367,2.3976242721,0.8857578303
C, \(0,-2.1061216051,1.3748867969,0.2923856407\)
\(\mathrm{N}, 0,-0.7493926476,1.4400843936,0.2386570308\)
C,0,-0.1246241751,2.5131527297,0.7575392513
C,0,-0.81319916,3.5603694872,1.3636871824
C, \(0,-2.203349749,3.5000150509,1.4316121531\)
C, \(0,-2.7286368615,0.166785244,-0.308610476\)
\(\mathrm{N}, 0,-1.8722898713,-0.7278321687,-0.8604122532\)
C, \(0,-2.3571712275,-1.8515451121,-1.4134439095\)
C,0,-3.7177994669,-2.1426693057,-1.4527186971
C,0,-4.608606066,-1.2290710976,-0.8910566105
C, \(0,-4.1096855585,-0.0654144129,-0.3125787673\)
Ir,0,0.3190687325,-0.2540409197,-0.7007646773
B,0,2.2548592512,0.3621718181,-0.5896948054
O,0,2.6134855816,1.7256885365,-0.7037095747
C,0,4.0415248705,1.8376593259,-0.7190638297
C,0,4.5376022817,0.4569595815,-0.2453209638
O,0,3.4088568989,-0.4031435714,-0.3983296699
B,0,0.7831828888,-1.2743009833,0.9433023015
O,0,1.1831618559,-0.6837921035,2.1484460736
C, \(0,1.5315256052,-1.7238764153,3.0670775441\)
C,0,0.9283801149,-3.0026090641,2.4482165382
O,0,0.6735744911,-2.6575401998,1.0841044519
H,0,0.9258059963,-1.5077815815,-1.4651615155
H,0,0.9547779713,2.5128013463,0.654797635
H,0,-0.2619992567,4.4019568443,1.7690900717
H,0,-2.7749163301,4.2971826535,1.8967601276
H,0,-3.9354490901,2.3385628696,0.9233819815
H,0,-4.7922972889,0.6484046121,0.1322907839
H,0,-5.6775475758,-1.4184460336,-0.8992789172
H,0,-4.0623259733,-3.063491747,-1.9105499918
\(\mathrm{H}, 0,-1.6120528147,-2.5241501162,-1.8228256828\)
H,0,5.3767547765,0.0803124927,-0.8404425251
H,0,4.8467574365,0.4722403324,0.8090212551
H,0,4.35878502,2.6551602905,-0.0620134658
H,0,4.3762701715,2.0690839812,-1.7390583091
H,0,2.6248697281,-1.7846031913,3.1465371901
H,0,1.1261080992,-1.4964415593,4.0589882354
H,0,1.6096771255,-3.8587912621,2.4925920349
H,0,-0.0147410807,-3.2892726418,2.9340127538
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Irbpy_Bpin2_H} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-1108.46355912\)} \\
\hline \multicolumn{4}{|r|}{0.309266 (Hartree/Particl} \\
\hline Ther & rrection to E & & 0.329830 \\
\hline Therm & rrection to En & lpy \(=0\) & 0.330775 \\
\hline Therm & rrection to Gi & s Free Energy= & 0.256534 \\
\hline Sum of & tronic and ze & -point Energies= & -1108.154294 \\
\hline Sum of & tronic and the & mal Energies= & -1108.133729 \\
\hline Sum of & tronic and th & mal Enthalpies= & -1108.132785 \\
\hline \multicolumn{4}{|l|}{Sum of electronic and thermal Free Energies \(=\quad-1108.20\)} \\
\hline & E (Thermal) & CV & \multirow[t]{3}{*}{\begin{tabular}{l}
S \\
Cal/Mol-Kelvin 156.252
\end{tabular}} \\
\hline & \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & \\
\hline Total & 206.972 & 76.977 & \\
\hline \multicolumn{4}{|l|}{\(\mathrm{N}, 0,-1.9315469977,-0.6083347111,-0.7318981071\)} \\
\hline \multicolumn{4}{|l|}{C,0,-2.7095240145, 0.2929890111,-0.0839937834} \\
\hline \multicolumn{4}{|l|}{C,0,-4.0850400455,0.0781716907,0.0664407652} \\
\hline \multicolumn{4}{|l|}{C,0,-4.6608344002,-1.0744368323,-0.4606996044} \\
\hline \multicolumn{4}{|l|}{C, \(0,-3.8502642725,-1.9946465194,-1.12370627\)} \\
\hline \multicolumn{4}{|l|}{C,0,-2.489469863,-1.7221367783,-1.2333774638} \\
\hline \multicolumn{4}{|l|}{С, \(0,-2.0065686238,1.4856332276,0.4550444889\)} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{N}, 0,-0.6546879098,1.501592719,0.3109159869\)} \\
\hline \multicolumn{4}{|l|}{C,0,0.0409668632,2.5556250384, 0.7771876241} \\
\hline \multicolumn{4}{|l|}{C,0,-0.5690291554,3.6329702322,1.4139672837} \\
\hline \multicolumn{4}{|l|}{C,0,-1.9535443816,3.6258998238,1.5686777751} \\
\hline \multicolumn{4}{|l|}{C,0,-2.6778663056,2.5427831468,1.0795166897} \\
\hline \multicolumn{4}{|l|}{Ir,0,0.2809940415,-0.2074553437,-0.7382789495} \\
\hline \multicolumn{4}{|l|}{B, \(0,0.7262134886,-1.3843121801,0.8030038\)} \\
\hline \multicolumn{4}{|l|}{O,0,0.4153433383,-2.7438391085,0.8750899606} \\
\hline \multicolumn{4}{|l|}{C,0,0.7229440139,-3.2151315709,2.1904071211} \\
\hline \multicolumn{4}{|l|}{C,0,1.5734725088,-2.0897555813,2.815345855} \\
\hline \multicolumn{4}{|l|}{O,0,1.3087339749,-0.946480007,1.9967496396} \\
\hline \multicolumn{4}{|l|}{B,0,2.2513361219,0.3037540152,-0.6936709261} \\
\hline \multicolumn{4}{|l|}{O,0,3.3661511749,-0.5351967935,-0.6129744464} \\
\hline \multicolumn{4}{|l|}{C,0,4.5483250635,0.2492512078,-0.4559441126} \\
\hline \multicolumn{4}{|l|}{C,0,4.1149805435,1.6818537781,-0.8229454222} \\
\hline \multicolumn{4}{|l|}{O,0,2.6850365992,1.6501801934,-0.741636554} \\
\hline \multicolumn{4}{|l|}{H,0,0.7870212537,-1.4412069518,-1.6013030585} \\
\hline \multicolumn{4}{|l|}{H,0,1.111158297,2.5129642405,0.6058900007} \\
\hline \multicolumn{4}{|l|}{H,0,0.0372016942,4.4571861728,1.7739765184} \\
\hline \multicolumn{4}{|l|}{H, 0, -2.4650660398,4.449928762,2.056412129} \\
\hline \multicolumn{4}{|l|}{H,0,-3.7563554837,2.5267982984,1.179997932} \\
\hline
\end{tabular}
```

H,0,-4.7026286251,0.7936498847,0.5958382045
H,0,-5.7261419837,-1.2513470843,-0.3492540391
H,0,-4.2560760806,-2.9078669281,-1.5451268969
H,0,-1.8027164484,-2.4028471805,-1.7230988648
H,0,5.3404247455,-0.135178843,-1.1078430723
H,0,4.8980473226,0.1813226968,0.583541212
H,0,4.5114241284,2.4385656526,-0.1367604229
H,0,4.4140697548,1.9550432317,-1.8437588058
H,0,2.6463858969,-2.3198243614,2.7785337404
H,0,1.3021418848,-1.8749269796,3.8545820906
H,0,1.2576430999,-4.1686301789,2.1267646235
H,0,-0.2105865966,-3.3813177197,2.7459438125
Ir(bpy)(BPin)2(' }\mp@subsup{}{}{\mathbf{B}}\mathbf{BPinH}
E(RB+HF-LYP})=-1363.0816736
Zero-point correction= 0.389493 (Hartree/Particle)
Thermal correction to Energy=}0.41628
Thermal correction to Enthalpy=}0.41722
Thermal correction to Gibbs Free Energy= 0.328929
Sum of electronic and zero-point Energies= -1362.692180
Sum of electronic and thermal Energies= -1362.665390
Sum of electronic and thermal Enthalpies= -1362.664446
Sum of electronic and thermal Free Energies= -1362.752744

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	261.222	98.729	185.841

C,0,-4.0413554853,-1.7854336315,-0.498514921
C,0,-2.9010051062,-0.9828003987,-0.3530849666
$\mathrm{N}, 0,-1.6622951296,-1.5311173158,-0.3859885388$
C, $0,-1.5319925341,-2.8610082265,-0.5337853196$
С,0,-2.6233659872,-3.710300369,-0.6808276224
C,0,-3.9028800815,-3.1577995606,-0.6702739328
С,0,-2.9725258834,0.4827986982,-0.1309068639
$\mathrm{N}, 0,-1.7946795891,1.1154650911,0.078213801$
C,0,-1.7916961061,2.43736391,0.3090348574
C,0,-2.9601006612,3.1949771107,0.3376189203
C,0,-4.1780352601,2.5574897132,0.112948828
С,0,-4.1841742798,1.1871298356,-0.1245443405
Ir, $0,0.0978479928,-0.1558736976,-0.2075616663$
B,0,0.9144809553,0.3815189278,1.7504933658
O,0,0.2261462493,1.3063428999,2.5410929142

```
```

C,0,1.1963708629,2.0120500611,3.3203009402
C,0,2.4320147855,1.0914964652,3.3051998283
O,0,2.2408839797,0.2610852467,2.1563547478
B,0,1.5307374782,1.3086541241,-0.5104515429
O,0,2.7914884505,1.181376306,-1.0735898536
C,0,3.4620256549,2.4399683009,-1.0392737158
C,0,2.349023434,3.4607080538,-0.7363910265
O,0,1.2822537769,2.6644497838,-0.207038325
B, $0,1.525886204,-1.5194288359,-0.7384969547$
O,0,2.2115687376,-1.6074762646,-1.9453573213
C,0,2.9535388631,-2.8257584374,-1.9915238379
С,0,2.8647697963,-3.3938268825,-0.5593376327
O,0,1.8049563743,-2.6503620934,0.0528807777
$\mathrm{H}, 0,-0.5136602996,-3.2334290282,-0.5113087077$
$\mathrm{H}, 0,-2.4654080014,-4.7769187029,-0.7970542999$
H,0,-4.7816089171,-3.7851875147,-0.7837851685
H,0,-5.030326555,-1.3455811954,-0.4689989209
H,0,-5.1225559404,0.6776520107,-0.3060776645
H,0,-5.109841653,3.114760588,0.1202880037
H,0,-2.9059061139,4.2615991351,0.5276832271
H,0,-0.8131502097,2.8789897795,0.4552265078
H,0,2.631295553,-4.4642812728,-0.5351098388
H,0,3.7909252032,-3.232918185,0.0068720947
H,0,3.9837249553,-2.6218716269,-2.3031893811
H,0,2.5015029487,-3.4997411051,-2.7325682711
H,0,2.4861965129,0.4602150565,4.2023174012
H,0,3.3744151826,1.6409104378,3.2126992981
H,0,0.8033195642,2.1918999077,4.3260721749
H,0,1.4052327378,2.9792667765,2.844304252
H,0,4.2276952555,2.4223840154,-0.251816017
H,0,3.9592373209,2.6227892166,-1.9976195457
H,0,2.6464839915,4.2190716316,-0.0040073742
H,0,2.0032463307,3.9747323975,-1.6432160079
H,0,0.2559980867,-0.7342131313,1.4533848809
H,0,0.0001358258,0.1823351308,-1.7797282016

```

\section*{bpyBpin2Hn2HBPinaxPrecConfInt}
```

$\mathrm{E}($ RB+HF-LYP $)=-1363.08374806$
Zero-point correction= 0.389898 (Hartree/Particle)
Thermal correction to Energy $=\quad 0.416773$
Thermal correction to Enthalpy $=\quad 0.417717$
Thermal correction to Gibbs Free Energy $=0.328781$
Sum of electronic and zero-point Energies $=\quad-1362.693851$

```
\begin{tabular}{lc} 
Sum of electronic and thermal Energies \(=\) & -1362.666975 \\
Sum of electronic and thermal Enthalpies \(=\) & -1362.666031 \\
Sum of electronic and thermal Free Energies \(=\) & -1362.754967
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 261.529 & 98.620 & 187.181
\end{tabular}

H,0,-0.4196167865,-1.7632175518,-1.0267265858
Ir, \(0,-0.1201012572,-0.0381336575,-0.5202151843\)
B,0,0.3332480961,1.9412559767,-0.1071358988
О,0,-0.4676341803,3.0689232439,-0.2724935046
C,0,0.2081070957,4.2104337591,0.2613355923
C,0,1.6648689497,3.7436528545,0.4528774582
O,0,1.5908563066,2.3139866028,0.3896763051
\(\mathrm{N}, 0,0.8727887047,-0.8474540214,1.3037662372\)
C,0,2.2010651973,-1.1071508813,1.2051675079
C,0,2.9143636525,-1.6331462019,2.2893268431
C,0,2.2555240381,-1.8902317289,3.4870646305
C,0,0.8931462849,-1.6138772687,3.5766601876
C,0,0.2396614388,-1.0927941968,2.4632788759
C,0,2.8344748522,-0.8170967045,-0.1050790662
\(\mathrm{N}, 0,2.0089515254,-0.3830651347,-1.0860632631\)
C, \(0,2.5089024894,-0.1114152545,-2.3014774804\)
С,0,3.8576489295,-0.2571613833,-2.6078107732
C,0,4.7214383929,-0.6974307384,-1.6055220666
C,0,4.205592738,-0.9795972799,-0.3456124944
B, \(0,-1.7015224623,-1.5836452591,-0.9383921197\)
О,0,-2.3877974988,-2.2128946489,0.1050442862
C,0,-3.6232660401,-2.7107747113,-0.4250596724
C,0,-3.749999271,-2.0327391258,-1.8049571253
O, \(0,-2.4150459353,-1.6312463843,-2.1244120225\)
B, \(0,-1.8936513932,0.6453301494,0.2817474716\)
О,0,-2.0677841088,0.8393698155,1.6650283862
C,0,-3.4189482284,1.2394695641,1.9132901029
C,0,-3.9549202113,1.6346006158,0.5248536173
O,0,-3.0604532384,1.0043002531,-0.3933828449
H,0,-0.65626671,0.5562773494,-1.8833308753
H,0,1.7875936817,0.2341908696,-3.0330128489
H,0,4.8674218856,-1.3165288815,0.4426104441
H,0,4.2148653666,-0.0264817367,-3.6054689573
H,0,5.7825774272,-0.8185977552,-1.8001818606
H,0,3.9726673651,-1.8459830631,2.2014120548
H,0,2.7994095294,-2.2988171043,4.3331830969
```

H,0,0.3367249555,-1.7941100631,4.4900881956
H,0,-0.8127479207,-0.8350524166,2.4774585685
H,0,2.0900811701,4.0507872993,1.4141995428
H,0,2.3239963132,4.1085148491,-0.3463053523
H,0,-0.2597261714,4.4973865027,1.2126263199
H,0,0.1168101265,5.0525276658,-0.4327068757
H,0,-3.9753880369,0.3962248977,2.345651984
H,0,-3.4360533909,2.0666640572,2.6309711748
H,0,-4.9793356582,1.2892593982,0.3471411079
H,0,-3.9249660786,2.7207829599,0.3694005746
H,0,-3.5648842746,-3.8048031756,-0.5032221386
H,0,-4.4458271373,-2.4573018505,0.2517351566
H,0,-4.1287388046,-2.705376157,-2.5811239753
H,0,-4.3863871659,-1.1411264063,-1.7614768355
bpyBpin2Hn2HBPinax2ndBest
E(RB+HF-LYP})=-1363.0857418

Zero-point correction $=$	0.389134 (Hartree/Particle)
Thermal correction to Energy $=$	0.416356
Thermal correction to Enthalpy=	0.417300
Thermal correction to Gibbs Free Energy=	0.326749
Sum of electronic and zero-point Energies=	-1362.696608
Sum of electronic and thermal Energies=	-1362.669386
Sum of electronic and thermal Enthalpies $=$	-1362.668442
Sum of electronic and thermal Free Energies=	-1362.758993

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} / \mathrm{Mol-Kelvin}$	Cal/Mol-Kelvin
Total	261.267	98.868	190.581

$\mathrm{N}, 0,-1.7529815228,1.2325729741,-0.0855802061$
C, $0,-2.8708638976,0.4956813401,-0.2864122602$
С,0,-4.1302853331,1.1059498902,-0.3583982415
C,0,-4.232144958,2.4851610681,-0.2076319694
C,0,-3.0754855571,3.2278036053,0.0254704612
C,0,-1.855546331,2.5598088583,0.0795101315
C, $0,-2.6680654732,-0.9686785635,-0.4164541819$
N,0,-1.3857171189,-1.4103640162,-0.3499847592
C,0,-1.1383631627,-2.7298711615,-0.4298308991
C,0,-2.1506445299,-3.6706223575,-0.5932808732
С, $0,-3.4690237086,-3.230192484,-0.6825201033$
C,0,-3.7282266849,-1.8671860824,-0.5877638925
Ir,0,0.205268239,0.1130694435,-0.3068768286

```
```

B,0,1.2155796049,0.9955974437,1.462047143
O,0,2.5375034268,0.7416886496,1.8092620015
C,0,3.0357390343,1.8577121403,2.5488485178
C,0,1.9510319374,2.9466517369,2.3934342515
O,0,0.7895385142,2.2378207272,1.9494051898
B,0,1.8490678326,-1.0455251131,-0.6783096037
О,0,2.9732253988,-0.702668527,-1.4281029861
C,0,3.8388157691,-1.8322315783,-1.545378959
C,0,3.2685625243,-2.8717432073,-0.5560299727
O,0,1.9707651398,-2.3700097262,-0.2182757049
B,0,0.1297870421,0.2394688418,-2.3715128613
О,0,-0.1999273926,-0.833294122,-3.2074623898
C, $0,-0.0932591989,-0.4147298473,-4.5729336609$
С, $0,0.0553926078,1.1208290335,-4.4988231678$
O,0,0.3232032901,1.396192655,-3.120776226
H,0,-0.0924843501,-3.0097935931,-0.3618932308
H,0,-1.8986043166,-4.7237203175,-0.6545411994
H,0,-4.2845875167,-3.9333202012,-0.8209223955
H,0,-4.748175002,-1.5079461324,-0.6470794383
Н,0,-5.0220017373,0.5167902008,-0.5344761921
H,0,-5.2017305139,2.9699416116,-0.2677507949
H,0,-3.1100047628,4.3034307755,0.1601091885
H,0,-0.9219815241,3.0746003956,0.2724893614
H,0,-0.984175665,-0.7306772379,-5.126852549
Н,0,0.7818542409,-0.8937206204,-5.0298480483
H,0,0.8772975627,1.4971672248,-5.1168475577
H,0,-0.8641035519,1.6404593996,-4.8001296041
H,0,3.1775085995,1.5625731387,3.5970278824
H,0,4.005013002,2.1678887067,2.1445755391
H,0,1.728714629,3.4678472362,3.3304140122
H,0,2.2323905262,3.6941479196,1.6394320811
H,0,3.8725759862,-2.9493565309,0.3567534281
H,0,3.177966351,-3.871957008,-0.9942929959
H,0,4.866151148,-1.5387624492,-1.3036792307
H,0,3.8226115049,-2.1973221153,-2.5810691871
H,0,0.3797326395,-0.0051063216,1.5251615373
H,0,1.2037552583, 1.3170092971,-0.5736495554

```
bpyBpin3HHprecrsrToH2comp
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1363.07220511\)
Zero-point correction= 0.388306 (Hartree/Particle)
Thermal correction to Energy=
Thermal correction to Enthalpy=
0.414989
0.415934
\begin{tabular}{lc} 
Thermal correction to Gibbs Free Energy \(=\) & 0.329129 \\
Sum of electronic and zero-point Energies \(=\) & -1362.683899 \\
Sum of electronic and thermal Energies= & -1362.657216 \\
Sum of electronic and thermal Enthalpies \(=\) & -1362.656272 \\
Sum of electronic and thermal Free Energies= & -1362.743076
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 260.410 & 99.543 & 182.695
\end{tabular}

Н,0,-1.5284671466,1.3422366632,-1.0376503061
Ir,0,-0.3108264869,0.3598675448,-0.4719215585
B, \(0,0.9754711194,-0.893768566,-1.5564823093\)
O,0,2.1199822739,-0.5307174507,-2.2532635309
C,0,2.7478003271,-1.7132299098,-2.7427042279
С,0,1.6334249142,-2.7748543448,-2.7059914085
O,0,0.6960001928,-2.2589147348,-1.7521336446
\(\mathrm{N}, 0,-1.0824775167,0.9690698087,1.4629798795\)
C, \(0,-2.0901357718,0.228155376,1.9951976031\)
C,0,-2.6637755272,0.5821501946,3.2237939587
C,0,-2.2016511935,1.6957704378,3.9124095938
C,0,-1.1635150255,2.4411457288,3.3568538508
C, \(0,-0.6321175595,2.046841837,2.1349319222\)
С,0,-2.5372601222,-0.9488703594,1.2199412856
N,0,-1.869751854,-1.1894866138,0.0682548298
C,0,-2.2093202206,-2.2532656856,-0.6767962111
C,0,-3.241544082,-3.1168265939,-0.3253719288
С, \(0,-3.9482110474,-2.8703970195,0.8509637118\)
C,0,-3.5895814413,-1.7787863422,1.632426515
B,0,0.8851477764,1.969694707,-0.9000007783
О,0,1.4714230374,2.8072019772,0.0682474049
C,0,2.0940635012,3.9172705972,-0.5900800608
C,0,2.1489749086,3.4920636859,-2.0696159422
O,0,1.1895688533,2.4407446224,-2.1726190309
B,0,1.2410299721,-0.6075212669,0.7195078299
O,0,0.8394135006,-1.3533426348,1.8302111222
C,0,2.0010714762,-1.8442800579,2.5135141627
C,0,3.1707914283,-1.0586589655,1.8885839979
O,0,2.6231281052,-0.4876232323,0.6938807885
H,0,-0.2338638965,0.155788518,-2.0591950455
H,0,-1.6053630888,-2.4114479644,-1.5617625688
Н,0,-4.1262637355,-1.5775653986,2.5511906637
Н,0,-3.4788107614,-3.961620056,-0.9629893632
Н,0,-4.7627839268,-3.5188491007,1.1585695753
```

H,0,-3.4659026555,-0.0128477701,3.6415269284
H,0,-2.6430469175,1.9732533616,4.8646479076
H,0,-0.7629112792,3.3174464977,3.8547344476
H,0,0.178917959,2.5839977492,1.655076611
H,0,1.9838087127,-3.7604581041,-2.3828548502
H,0,1.1383893365,-2.8842578325,-3.6807243894
H,0,3.585370578,-1.9795591224,-2.083598234
H,0,3.1395112861,-1.536914395,-3.7495739739
H,0,1.8967047332,-1.672951044,3.5899588233
H,0,2.0873355757,-2.9250216128,2.3431403168
H,0,3.524237469,-0.2504070444,2.5412862321
H,0,4.0262168513,-1.6929341405,1.634472381
H,0,1.4829721866,4.8184440431,-0.4420372447
H,0,3.0836029493,4.095653747,-0.1567232407
H,0,1.8875082373,4.3042478441,-2.7562805938
H,0,3.1395669951,3.108586422,-2.347630901
Irbpy_B2_H_n2BH_rotTS
E(RB+HF-LYP})=-1363.0475314
Zero-point correction= 0.388242 (Hartree/Particle)
Thermal correction to Energy=}0.41460
Thermal correction to Enthalpy=}\quad0.41554
Thermal correction to Gibbs Free Energy= 0.328143
Sum of electronic and zero-point Energies= -1362.659289
Sum of electronic and thermal Energies= -1362.632930
Sum of electronic and thermal Enthalpies= -1362.631986
Sum of electronic and thermal Free Energies= -1362.719388

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	260.166	97.807	183.953

C,0,-4.1015873507,-0.1759820811,-0.2945060932
C,0,-2.7164491057,-0.3922437038,-0.3720250998
N,0,-1.8484052837,0.6372279562,-0.5180898649
C,0,-2.3519359051,1.8801935882,-0.6488218542
C,0,-3.7080493775,2.1635610674,-0.5877019952
C,0,-4.6050048589,1.1118251354,-0.3901964265
C,0,-2.1101507847,-1.7265712384,-0.353204935
N,0,-0.7542399409,-1.7719602584,-0.485355279
C,0,-0.1617698275,-2.9883471313,-0.533009206
C,0,-0.8695600421,-4.1770241742,-0.4389250001
C,0,-2.2554152036,-4.1386958896,-0.2856138239

```

> C, \(0,-2.8720960239,-2.898680543,-0.2476976925\) \(\mathrm{Ir}, 0,0.3426151042,0.0657577193,-0.4712873186\) \(\mathrm{~B}, 0,0.3758726686,-0.0696952956,1.6791142619\) \(\mathrm{O}, 0,1.4715785715,0.1233925307,2.5155418324\) \(\mathrm{C}, 0,1.0435853883,0.0673754859,3.8808730751\) \(\mathrm{C}, 0,-0.379642805,-0.522524114,3.8178210394\) \(\mathrm{O}, 0,-0.752549237,-0.4088041352,2.4366509993\) \(\mathrm{~B}, 0,2.2603529228,-0.709939483,-0.64356236\) \(\mathrm{O}, 0,2.6029329883,-2.0593447464,-0.7857219546\) \(\mathrm{C}, 0,4.0293421705,-2.1941881392,-0.7649641762\) \(\mathrm{C}, 0,4.5487969151,-0.7554443373,-0.9526811165\) \(\mathrm{O}, 0,3.41889921,0.0690115649,-0.6661567712\) \(\mathrm{~B}, 0,0.6828154862,2.1875584379,-0.3250845768\) \(\mathrm{O}, 0,0.6810031224,3.0466041021,-1.4120241901\) \(\mathrm{C}, 0,0.771989483,4.3934557735,-0.92559213\) \(\mathrm{C}, 0,0.4885863482,4.2769878759,0.5892420207\) \(\mathrm{O}, 0,0.6228382292,2.8792191987,0.8724962129\) \(\mathrm{H}, 0,-1.6325002775,2.6647614761,-0.8383817184\) \(\mathrm{H}, 0,-4.0484987704,3.1873547273,-0.6986518932\) \(\mathrm{H}, 0,-5.6736519847,1.2913755389,-0.3282897588\) \(\mathrm{H}, 0,-4.779406296,-1.0101149062,-0.1646268312\) \(\mathrm{H}, 0,-3.9471413505,-2.8345424335,-0.13874375\) \(\mathrm{H}, 0,-2.8396339956,-5.0496891515,-0.2034849005\) \(\mathrm{H}, 0,-0.3285018942,-5.1159031417,-0.4854142158\) \(\mathrm{H}, 0,0.9136199942,-2.9818274288,-0.6459497868\) \(\mathrm{H}, 0,-0.4045041558,-1.5798252987,4.1137915003\)
> \(\mathrm{H}, 0,-1.0964674121,0.0234517078,4.4404876782\)
> \(\mathrm{H}, 0,1.0514627217,1.0804995504,4.3035675812\)
> \(\mathrm{H}, 0,1.7364573234,-0.5512545976,4.4613678971\)
> \(\mathrm{H}, 0,4.8830729031,-0.5693135034,-1.9817029213\)
> \(\mathrm{H}, 0,5.3700289206,-0.5085623486,-0.2722505156\)
> \(\mathrm{H}, 0,4.3449769594,-2.8726871683,-1.5640205338\)
> \(\mathrm{H}, 0,4.336080684,-2.6224059558,0.1978627019\)
> \(\mathrm{H}, 0,1.778176344,4.7763357994,-1.1326408238\)
> \(\mathrm{H}, 0,0.0483078989,5.0239437805,-1.4519821377\)
> \(\mathrm{H}, 0,1.1953565357,4.8434737774,1.2028449636\)
> \(\mathrm{H}, 0,-0.527976551,4.5993938761,0.8496708702\)
> \(\mathrm{H}, 0,0.4360314533,0.1786083138,-2.163550137\)
> \(\mathrm{H}, 0,1.5652019154,1.1242772506,-0.383268901\)

IrBpy5_B3H2
\(\mathrm{E}(\) RB+HF-LYP \()=-1363.07263387\)
Zero-point correction \(=\quad 0.388119\) (Hartree/Particle)
\begin{tabular}{lc} 
Thermal correction to Energy \(=\) & 0.414981 \\
Thermal correction to Enthalpy \(=\) & 0.415925 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.328341 \\
Sum of electronic and zero-point Energies \(=\) & -1362.684515 \\
Sum of electronic and thermal Energies \(=\) & -1362.657653 \\
Sum of electronic and thermal Enthalpies \(=\) & -1362.656709 \\
Sum of electronic and thermal Free Energies \(=\) & -1362.744293
\end{tabular}
\begin{tabular}{lcc} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 260.404 & 99.679
\end{tabular}
```

H,0,-4.5775632674,-1.7997722866,0.3854445751
H,0,-3.9195039338,-4.0993729798,1.0198547574
H,0,-1.4733848684,-4.7093630418,0.9755327161
H,0,0.1792212027,-2.9656731947,0.2770225247
H,0,-0.9331705648,0.141100046,4.0573908565
H,0,0.2007517531,1.4877355384,4.2905113284
H,0,2.1031247591,0.0671673892,3.9263840312
H,0,0.9895133138,-1.296576035,4.1658807852
H,0,3.9811189435,-2.1762859553,-2.73481788
H,0,4.9422764311,-1.544926701,-1.380163999
H,0,3.3118650924,-3.9223064073,-1.2325120983
H,0,3.8676421171,-3.0056899508,0.1871419086
H,0,1.8722568829,4.7526989534,-0.1767171514
H,0,1.424055301,4.1495009106,1.4375499045
H,0,3.7353505326,3.2269365893,-0.3426906255
H,0,3.6424893139,3.1969900052,1.4335608995
H,0,-0.1601869592,-0.5653195972,-2.2020576514
H,0,1.0414123751,0.9867933889,-1.6145391529

```
bpyBpin3HHtsFormn2H2
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1363.06518340\)
Zero-point correction= 0.385767 (Hartree/Particle)
Thermal correction to Energy=
    0.412560
Thermal correction to Enthalpy= 0.413504
Thermal correction to Gibbs Free Energy= 0.325554
Sum of electronic and zero-point Energies \(=\quad-1362.679416\)
Sum of electronic and thermal Energies \(=\quad-1362.652623\)
Sum of electronic and thermal Enthalpies \(=\quad-1362.651679\)
Sum of electronic and thermal Free Energies= \(\quad-1362.739630\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{3}{*}{Total} & E (Thermal) & CV & S \\
\hline & KCal/Mol & Cal/Mol-Kelvin & \\
\hline & 258.885 & 99.166 & \\
\hline \multicolumn{4}{|l|}{H,0,-1.4788404854,1.1306243453,-1.2529163214} \\
\hline \multicolumn{4}{|l|}{Ir,0,-0.2662326891,0.2883936523,-0.4265561489} \\
\hline \multicolumn{4}{|l|}{B, \(0,0.9149397576,-0.8488110285,-1.7134763459\)} \\
\hline \multicolumn{4}{|l|}{O,0,2.0188446169,-0.4369291105,-2.4412886627} \\
\hline \multicolumn{4}{|l|}{C,0,2.6399506292,-1.5801111547,-3.0288524531} \\
\hline \multicolumn{4}{|l|}{C,0,1.5607627055,-2.6773416845,-2.9615954039} \\
\hline \multicolumn{4}{|l|}{O,0,0.6437331657,-2.2038814701,-1.9663373188} \\
\hline \multicolumn{4}{|l|}{N,0,-1.1976716665,1.0038364026,1.4504195993} \\
\hline \multicolumn{4}{|l|}{C,0,-2.1985009172,0.2569718252,1.9774151167} \\
\hline
\end{tabular}

> C, \(0,-2.8208522099,0.6375546384,3.174306877\) \(\mathrm{C}, 0,-2.4100351684,1.7904604206,3.8312604902\) \(\mathrm{C}, 0,-1.3702261202,2.5399525668,3.2841672033\) \(\mathrm{C}, 0,-0.7879773196,2.1090405651,2.0976244143\) \(\mathrm{C}, 0,-2.5759197182,-0.9701896498,1.2386266776\) \(\mathrm{~N}, 0,-1.8245456052,-1.2721878119,0.1538331176\) \(\mathrm{C}, 0,-2.0933608407,-2.3896891896,-0.5416264065\) \(\mathrm{C}, 0,-3.1341054699,-3.2500477225,-0.2048695086\) \(\mathrm{C}, 0,-3.9288340946,-2.9394444947,0.8973427379\) \(\mathrm{C}, 0,-3.6445884138,-1.79092786,1.6269154422\) \(\mathrm{~B}, 0,0.9828210963,1.8651336946,-0.7991201956\) \(\mathrm{O}, 0,1.7057106142,2.5531057115,0.1957892692\) \(\mathrm{C}, 0,2.3145364206,3.7121687301,-0.3872398616\) \(\mathrm{C}, 0,2.1772122977,3.4891950566,-1.9055564177\) \(\mathrm{O}, 0,1.1598954779,2.4957664689,-2.0278938091\) \(\mathrm{~B}, 0,1.2420330887,-0.5448682367,0.8597019835\) \(\mathrm{O}, 0,0.9584876253,-0.8625257416,2.1923319485\) \(\mathrm{C}, 0,2.1092402741,-1.4693134366,2.7947399331\) \(\mathrm{C}, 0,3.2380325944,-1.2695886289,1.7620612799\) \(\mathrm{O}, 0,2.5687813237,-0.845449481,0.569736983\) \(\mathrm{H}, 0,-0.6777523191,0.4538689747,-1.9797191205\) \(\mathrm{H}, 0,-1.4266818062,-2.5848173251,-1.3744057781\) \(\mathrm{H}, 0,-4.2536783611,-1.5359100258,2.4853112714\)
> \(\mathrm{H}, 0,-3.3111831839,-4.140283249,--0.7988547035\)
> \(\mathrm{H}, 0,-4.7553138451,-3.5808088214,1.187835763\)
> \(\mathrm{H}, 0,-3.6127325943,0.031872772,3.5966748916\)
> \(\mathrm{H}, 0,-2.8878150226,2.0912688801,4.7586000502\)
> \(\mathrm{H}, 0,-1.0048740404,3.440694355,3.7652868428\)
> \(\mathrm{H}, 0,0.0452307079,2.6312647448,1.6400989013\)
> \(\mathrm{H}, 0,1.9579393514,-3.6533145967,-2.664054191\)
> \(\mathrm{H}, 0,1.0306711361,-2.7949393067,-3.9165017638\)
> \(\mathrm{H}, 0,3.529568635,-1.8463762473,-2.4435620483\)
> \(\mathrm{H}, 0,2.9516925142,-1.3489632788,-4.0526827016\)
> \(\mathrm{H}, 0,2.3205571,-0.9864397908,3.7548665358\)
> \(\mathrm{H}, 0,1.9000467419,-2.5302297042,2.9833211508\)
> \(\mathrm{H}, 0,3.948994133,-0.4924128237,2.0693721635\)
> \(\mathrm{H}, 0,3.7998813893,-2.1884751082,1.5628353777\)
> \(\mathrm{H}, 0,1.7796979782,4.612142827,-0.0525426314\)
> \(\mathrm{H}, 0,3.355450464,3.7886249041,-0.0564461128\)
> \(\mathrm{H}, 0,1.8805060257,4.3955303992,-2.4443010608\)
> \(\mathrm{H}, 0,3.108044027,3.1121340449,-2.3493270556\)
bpyBpin3HHconfIntTS
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1363.06647565\)
\begin{tabular}{lc} 
Zero-point correction= & 0.388449 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.414342 \\
Thermal correction to Enthalpy \(=\) & 0.415286 \\
Thermal correction to Gibbs Free Energy= & 0.330561 \\
Sum of electronic and zero-point Energies= & -1362.678027 \\
Sum of electronic and thermal Energies= & -1362.652134 \\
Sum of electronic and thermal Enthalpies \(=\) & -1362.651190 \\
Sum of electronic and thermal Free Energies \(=\) & -1362.735915
\end{tabular}
\begin{tabular}{lcc} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 260.003 & 97.381
\end{tabular}
```

H,0,-1.8147638694,-1.6167067367,-2.4065244875
H,0,-4.4439248186,-1.816680155,1.7154045657
H,0,-3.8597893484,-3.0455975135,-2.360570175
H,0,-5.1976095828,-3.1498247662,-0.2267451769
H,0,-3.7445780663,-0.6610759879,3.2361092696
H,0,-2.8736527785,0.8860812431,4.9602141863
H,0,-0.8521779085,2.2885631622,4.413393283
H,0,0.2001719584,2.0335788183,2.1593792892
H,0,1.4514307566,-4.4227353641,-1.1794935926
H,0,0.2898754067,-3.891391496,-2.4156017247
H,0,3.1556634524,-2.9197110264,-1.9903029858
H,0,2.2148876298,-2.9189677747,-3.4983110159
H,0,2.7818979549,0.3415264365,3.1533188515
H,0,3.0226224178,-1.4135715674,3.0130341999
H,0,4.4503779013,0.5650128397,1.4470195134
H,0,4.3443343824,-1.1562976778,1.0244870735
H,0,1.3106523832,4.8997529214,-0.0288263725
H,0,2.8334910198,4.2507777871,0.6210207771
H,0,2.2602744514,4.4486733795,-2.1904005864
H,0,3.4657618017,3.333543796,-1.507905577
bpyBpin3HHconfIntTS2
E(RB+HF-LYP})=-1363.0648961
Zero-point correction= 0.385848 (Hartree/Particle)
Thermal correction to Energy= 0.412667
Thermal correction to Enthalpy=}\quad0.41361
Thermal correction to Gibbs Free Energy= 0.325674
Sum of electronic and zero-point Energies= -1362.679048
Sum of electronic and thermal Energies= -1362.652229
Sum of electronic and thermal Enthalpies= -1362.651284
Sum of electronic and thermal Free Energies= -1362.739222
E (Thermal) CV S
Total
KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin
C,0,-4.1023100101,1.2083612297,-0.4982207969
C,0,-2.8628303232,0.5581525075,-0.4152585973
N,0,-1.705137038,1.2469690218,-0.5445806749
C,0,-1.745107219,2.5770427137,-0.7279596165
C,0,-2.941524052,3.2834593591,-0.8099815189
C,0,-4.142149382,2.5833160469,-0.7000199808
C,0,-2.7308492771,-0.8967817219,-0.168442173

```
\(\mathrm{N}, 0,-1.4730218943,-1.4068438833,-0.1943899679\)
C,0,-1.2828096164,-2.7124337664,0.0701777132
С,0,-2.3373415752,-3.5765001771,0.3477386342
C, \(0,-3.6357003872,-3.0711671251,0.3643792468\)
C,0,-3.8310026867,-1.7186271517,0.1104034896
Ir,0,0.1979562685,0.004577057,-0.5997488807
B,0,0.3995927131,0.0409495946,1.5398296676
O,0,0.6251241162,-1.0777095255,2.3342525044
C,0,0.5273911018,-0.7073858051,3.7152874653
C,0,0.4976424187,0.8338834712,3.7019882999
O,0,0.213998152,1.1727495567,2.338371426
B,0,1.7648631339,-1.304179785,-0.7930434283
O,0,1.7723913503,-2.615281437,-0.2920635779
C,0,3.0272605732,-3.2332673227,-0.5909554557
C,0,3.6943686421,-2.2792248734,-1.6055265492
O,0,2.9210662266,-1.0817063913,-1.5408921527
B,0,1.6104324093,1.4824892944,-0.2072029306
O,0,1.4025114167,2.8246956631,-0.5612320566
C, \(0,2.4427464815,3.6213031478,0.0186864466\)
C,0,3.5220553117,2.5965102437,0.4156675308
O,0,2.8317273694,1.344556206,0.4408035142
H,0,-0.7768650975,3.0614874672,-0.8029167889
H,0,-2.9240322838,4.3575910116,-0.9602159727
H,0,-5.0957836709,3.097803222,-0.768535665
H,0,-5.0264648609,0.6498145805,-0.4132805815
H,0,-4.8308196299,-1.3037572732,0.1410660918
H,0,-4.4830552146,-3.7146327053,0.5806343073
H,0,-2.1327247582,-4.622088287,0.5506567595
H, \(0,-0.2494228785,-3.0411726523,0.0592472688\)
H,0,-0.2734474397,1.2545599957,4.3559658052
H,0,1.465204833,1.2672589536,3.9861328792
H,0,1.3823781425,-1.1130422695,4.2657525471
H,0,-0.3895807733,-1.1361810143,4.1410193461
H,0,3.6637613604,-2.6783554643,-2.6284011761
H,0,4.7387471204,-2.0615875729,-1.3561515231
H,0,2.8599495616,-4.2374213301,-0.9966517381
H,0,3.6103518867,-3.3288037832,0.3338819
H,0,2.7955656963,4.3559731395,-0.7124461589
H,0,2.0450661492,4.1583777405,0.8896883119
H,0,4.3340531015,2.5464196864,-0.3214785245
H,0,3.9600196026,2.7979341058,1.3987372996
H,0,-0.0369704562,-0.2564449677,-2.2544308447
H,0,0.7605191314,0.6783853066,-1.9544338628
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathbf{I r}(\mathbf{b p y})(\mathbf{B P i n})_{3}\left({ }^{2}-\mathbf{H}_{2}\right) \\
& \mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1363.07458254
\end{aligned}
\]}} \\
\hline & \\
\hline Zero-point correction= 0.387 & 0.387170 (Hartree/Particle) \\
\hline Thermal correction to Energy= 0. & 0.414658 \\
\hline Thermal correction to Enthalpy= 0, & 0.415602 \\
\hline Thermal correction to Gibbs Free Energy= & \(g y=0.325650\) \\
\hline Sum of electronic and zero-point Energies= & gies \(=\quad-1362.687412\) \\
\hline Sum of electronic and thermal Energies= & \(=\quad-1362.659925\) \\
\hline Sum of electronic and thermal Enthalpies= & ies \(=\quad-1362.658981\) \\
\hline Sum of electronic and thermal Free Energies= & ergies \(=\quad-1362.748932\) \\
\hline
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 260.202 & 101.361 & 189.319
\end{tabular}

C,0,1.8316466801,-3.678366044,1.4023515373
C, \(0,1.4987374022,-2.4294026213,0.8609151595\)
\(\mathrm{N}, 0,0.2166535811,-2.1276280126,0.542928061\)
C,0,-0.7507506536,-3.0299049097,0.7797277507
С,0,-0.4873029723,-4.2831336171,1.3276055175
C,0,0.8301570717,-4.6148595232,1.6367484732
C, \(0,2.5075984938,-1.3683114287,0.6146504209\)
\(\mathrm{N}, 0,2.071723891,-0.2599087651,-0.0282038439\)
C,0,2.9215573758,0.7593359532,-0.2329198645
C,0,4.2556441456,0.7140072635,0.1592073387
C,0,4.7219483891,-0.4283362975,0.8069094257
С, \(0,3.8373795468,-1.4746342306,1.0437466635\)
Ir, \(0,-0.1238309159,-0.1216068331,-0.5153667771\)
В,0,-0.1484234961,1.6487305975,-1.5289640564
О,0,0.3529036719,2.8697147631,-1.0412248463
C, \(0,0.1126503541,3.8922006251,-2.0143903125\)
C,0,-0.2213090423,3.1208794647,-3.307721132
О,0,-0.5166420426,1.7941829842,-2.8696728345
B,0,-0.381087077,0.989487115,1.1942768057
O,0,0.6583441131,1.2096955159,2.1100457529
C, \(0,0.2077860625,2.1292768023,3.1095049496\)
C,0,-1.3247147438,2.1504170959,2.9468433113
O,0,-1.5536445114,1.5902741072,1.6524921537
B,0,-2.18541982,-0.0492290795,-0.6002190387
O,0,-2.9916598572,-1.1045511193,-0.1227444003
C,0,-4.3686529617,-0.7920189985,-0.3607424885
C,0,-4.3565716267,0.702087149,-0.7394306386
O,0,-2.9975609449,0.97380646,-1.0778188715
```

H,0,0.3587299365,-1.0412764009,-2.1386869765
H,0,-0.4478889908,-0.9818279491,-2.1481407466
H,0,-1.7535690334,-2.7061107802,0.5173780283
H,0,2.8615077914,-3.9231867574,1.6317421804
H,0,-1.3023515906,-4.9778535263,1.5002250621
H,0,1.0777700654,-5.585998289,2.0544994464
H,0,4.1770622375,-2.3566096189,1.5727797079
H,0,5.7541927074,-0.5006863441,1.1355158098
H,0,4.9036045526, 1.5623913153,-0.0325100067
H,0,2.4922399989, 1.6357458793,-0.7055141033
H,0,-4.7490417481,-1.4228160921,-1.1760558674
H,0,-4.9583772112,-1.0001780177,0.538553784
H,0,-5.0065019481,0.9307449613,-1.590994111
H,0,-4.65269858,1.3390089557,0.1044293386
H,0,0.6288871504,3.0959340247,-4.0038002903
H,0,-1.0838596501,3.5378402341,-3.8386076032
H,0,0.9981894076,4.5303642658,-2.111464041
H,0,-0.7259600876,4.5168066934,-1.6810336707
H,0,0.5291648049,1.7890222047,4.1000034037
H,0,0.6535291433,3.1149591595,2.9214896974
H,0,-1.8279104694,1.5340176592,3.7045587266
H,0,-1.7444728571,3.1608470646,2.9936836949

```

Bpy_lossH2TS
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-1363.06627172\)
Zero-point correction \(=\quad 0.383505\) (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.412344\)
Thermal correction to Enthalpy \(=\quad 0.413288\)
Thermal correction to Gibbs Free Energy= 0.319255
Sum of electronic and zero-point Energies= \(=1362.682767\)
Sum of electronic and thermal Energies \(=\quad-1362.653928\)
Sum of electronic and thermal Enthalpies \(=\quad-1362.652984\)
Sum of electronic and thermal Free Energies \(=\quad-1362.747017\)
\begin{tabular}{cccc} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 258.750 & 103.364 & 197.909
\end{tabular}

C,0,-4.0715287284,-1.451661716,-0.288556466
C,0,-2.8874934499,-0.7041691337,-0.2664659105
N,0,-1.678272228,-1.3141465766,-0.2812810718
C,0,-1.6193486148,-2.6548105178,-0.3278431175
C, \(0,-2.7565730915,-3.4577660517,-0.3425469189\)
\(\mathrm{C}, 0,-4.0059014079,-2.8413490005,-0.3200782439\)
\(\mathrm{C}, 0,-2.8730083511,0.7816259308,-0.2385148472\)
\(\mathrm{~N}, 0,-1.6570729105,1.372687941,-0.3412259269\)
\(\mathrm{C}, 0,-1.5727288939,2.7145758516,-0.3171096884\)
\(\mathrm{C}, 0,-2.6942204999,3.5321299432,-0.1955067435\)
\(\mathrm{C}, 0,-3.9486350755,2.9362153707,-0.0877839522\)
\(\mathrm{C}, 0,-4.0377681681,1.5473686596,-0.1061540395\)
\(\mathrm{Ir}, 0,0.1680121832,0.0085259962,-0.3295978337\)
\(\mathrm{~B}, 0,0.5938215305,0.0759601998,1.6163618115\)
\(\mathrm{O}, 0,-0.1079767925,-0.7249154495,2.5296918673\)
\(\mathrm{C}, 0,0.3243328936,-0.3871226986,3.8519871229\)
\(\mathrm{C}, 0,1.6035595241,0.4476393482,3.6358881196\)
\(\mathrm{O}, 0,1.5255696161,0.8720682227,2.2734008926\)
\(\mathrm{~B}, 0,1.6639440702,1.3650308597,-0.6334757204\)
\(\mathrm{O}, 0,2.8969175269,1.1278878645,-1.2492081146\)
\(\mathrm{C}, 0,3.6741666149,2.3257332321,-1.2541766541\)
\(\mathrm{C}, 0,2.6727417662,3.4414227649,-0.8891841629\)
\(\mathrm{O}, 0,1.5338054218,2.7456277124,-0.3756157974\)
\(\mathrm{~B}, 0,1.623692744,-1.4064157764,-0.4093249138\)
\(\mathrm{O}, 0,1.6026486374,-2.3746106626,-1.4388339483\)
\(\mathrm{C}, 0,2.8077302654,-3.1474176122,-1.364982892\)
\(\mathrm{C}, 0,3.3457669649,-2.8717021366,0.0519231902\)
\(\mathrm{O}, 0,2.6821393512,-1.6749175018,0.4612000509\)
\(\mathrm{H}, 0,-0.6209724359,-3.0748737428,-0.3720472284\)
\(\mathrm{H}, 0,-2.6564675578,-4.5371702438,-0.3764398299\)
\(\mathrm{H}, 0,-4.9178211687,-3.4303187513,-0.3353057832\)
\(\mathrm{H}, 0,-5.0362249407,-0.9591962283,-0.2906817047\)
\(\mathrm{H}, 0,-5.004728821,1.0694033121,-0.0068406801\)
\(\mathrm{H}, 0,-4.8457259387,3.5390862398,0.0154134865\)
\(\mathrm{H}, 0,-2.575532949,4.610226301,-0.1802272682\)
\(\mathrm{H}, 0,-0.5641002481,3.1124656246,-0.3824052895\)
\(\mathrm{H}, 0,3.0992921117,-3.6841266366,0.7501114297\)
\(\mathrm{H}, 0,4.4303564449,-2.7212132322,0.0723384397\)
\(\mathrm{H}, 0,3.5047817813,-2.806907026,-2.14148438\)
\(\mathrm{H}, 0,2.5833440502,-4.2049384933,-1.5425495458\)
\(\mathrm{H}, 0,2.511592175,-0.1534845518,3.7742033259\)
\(\mathrm{H}, 0,1.6614290024,1.3207035471,4.2946037784\)
\(\mathrm{H}, 0,0.5032260948,-1.3004948297,4.4291886227\)
\(\mathrm{H}, 0,-0.4634101929,0.1897618988,4.3562088111\)
\(\mathrm{H}, 0,4.47883955527,2.2381657315,-0.5124609974\)
\(\mathrm{H}, 0,4.1306061606,2.4701403793,-2.2397208288\)
\(\mathrm{H}, 0,3.0605775382,4.1293758509,-0.1299721325\)
\(\mathrm{H}, 0,2.375473245,4.0321672866,-1.7670334656\)
\(\mathrm{H}, 0,0.0582094105,-0.8875753237,-3.9642248741\)

Н, \(0,0.4590622494,-1.2237596739,-3.4323459701\)

```

C,0,-0.2160880938,-1.189357619,3.6568832851 O,0,0.236146422,-1.1944397907,2.299904638 H,0,0.3546218798,0.6202195876,-3.0632759484 H, $0,-0.3111277777,0.3735049438,-2.8150172427$
H,0,0.5022482134,-2.9909416522,-0.3804083109
H,0,4.9876549845,-1.0454343054,-0.1009471911
H,0,2.4758913408,-4.5304290324,-0.2442576786
H,0,4.774262957,-3.5115173206,-0.1055314201
H,0,5.0472387837,0.989952304,-0.3918006072
H,0,4.9813846269,3.4628460923,-0.2956677938
H,0,2.7468724406,4.6113226264,-0.1316350318
H,0,0.6731227462,3.1847033893,-0.0991516257
H,0,-2.5670674494,-4.0650827761,-1.06622076
H,0,-3.9100801843,-3.2786939092,-0.2117349825
H,0,-3.2615173888,-2.8186455911,-2.994321361
H,0,-4.278127253,-1.7436594634,-2.0088167116
Н,0,-4.5766529104,2.6210390751,-0.6746436332
H,0,-4.1066967341,2.4772964253,1.0346551702
H,0,-2.7469735854,4.1018064837,-1.1513373123
H,0,-2.6641812338,4.344649657,0.6081297665
Н,0,-0.2972300565,-2.2176418872,4.0253697278
H,0,0.5149565906,-0.6573613845,4.2811931463
H,0,-2.4188883579,-1.1632221404,3.6453450755
H,0,-1.6985960729,0.266378932,4.4195780337

```
\(\operatorname{Ir}(\) bpy \()(\mathbf{B P i n})_{\mathbf{3}}\left(\mathbf{H}_{\mathbf{2}}\right)\) TS Loss of \(\mathbf{H}_{\mathbf{2}}\)
\(\mathrm{E}(\) RB+HF-LYP \()=-1363.07344231\)
\begin{tabular}{lc} 
Zero-point correction= & 0.386640 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.414382 \\
Thermal correction to Enthalpy \(=\) & 0.415326 \\
Thermal correction to Gibbs Free Energy= & 0.324104 \\
Sum of electronic and zero-point Energies \(=\) & -1362.686802 \\
Sum of electronic and thermal Energies= & -1362.659061 \\
Sum of electronic and thermal Enthalpies \(=\) & -1362.658116 \\
Sum of electronic and thermal Free Energies \(=\) & -1362.749338
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 260.028 & 101.749 & 191.992
\end{tabular}

C,0,-4.0315064848,-1.5082024458,-0.5120889578
C, \(0,-2.8437606896,-0.7705165411,-0.4150428683\)
\(\mathrm{N}, 0,-1.6367042925,-1.3808734473,-0.4905710004\)

C, \(0,-1.582263526,-2.7168220179,-0.6249609821\)
C, \(0,-2.7249215354,-3.5082046809,-0.7128561722\)
C,0,-3.97238572,-2.8893971223,-0.6645281702
C, \(0,-2.8286161633,0.699437339,-0.2133262204\)
C, \(0,-3.9904858934,1.4373091351,0.050070981\)
C,0,-3.9022003359,2.8079783933,0.2644876259
C,0,-2.647901486,3.4144447013,0.2283101285
С, \(0,-1.5328049504,2.6245640664,-0.0316970458\)
\(\mathrm{N}, 0,-1.6175615263,1.3037250625,-0.2646236413\)
Ir,0,0.1920921172,0.0012779482,-0.5148265718
B,0,1.6263343565,1.4501210918,-0.6090978819
O,0,2.494465527,1.6447195413,-1.6867945644
C,0,3.4012857762,2.7031442756,-1.3772050399
C, \(0,2.755739791,3.4253820812,-0.1774061962\)
O,0,1.7821379685,2.4984261853,0.3172108001
B,0,1.7330859961,-1.3768116029,-0.4228955835
О,0,3.1040188673,-1.1524069956,-0.4820268661
C, \(0,3.7975114113,-2.3585717044,-0.1649956726\)
C, \(0,2.7345764719,-3.4639178428,-0.3138126752\)
O,0,1.4888433617,-2.758539717,-0.2729764876
B,0,0.4747186062,-0.0206573866,1.5186331572
O,0,1.6363158992,-0.3410604825,2.2189821393
C, \(0,1.4247028485,-0.117948625,3.6145742802\)
C,0,-0.1024907795,0.0512040163,3.7548279781
O,0,-0.563062697,0.2687660916,2.4172083888
H,0,-0.0775449098,0.0228978651,-2.4592981546
H,0,0.6481903149,-0.2875949458,-2.2961656078
H, \(0,-0.5278139515,3.0320042661,-0.0318312049\)
H,0,-4.9538164929,0.9455522096,0.1063132973
H,0,-2.5257710203,4.4772452169,0.4071101521
H,0,-4.7966353796,3.3879207136,0.4702524611
H,0,-4.9934849289,-1.0117088657,-0.4768982372
H,0,-4.8867153731,-3.4698728658,-0.7419284999
H,0,-2.629009842,-4.5834000557,-0.8201232593
H,0,-0.5805924594,-3.1349592849,-0.6483039097
H,0,2.2532452041,4.355977205,-0.4769736104
\(\mathrm{H}, 0,3.4740611787,3.6655451083,0.6134818117\)
H,0,3.5275704324,3.3544861536,-2.2490233022
H,0,4.3798917421,2.2771153702,-1.1201805587
H,0,4.6474935864,-2.489865798,-0.8432495647
H,0,4.1794177384,-2.2958959297,0.862464733
H,0,2.8212879396,-3.9947607916,-1.272066687
H,0,2.7695619361,-4.2036500631,0.4931658401
H,0,-0.3799853777,0.902123062,4.3863419838

\author{
Н,0,-0.5827951408,-0.8487254144,4.1621236241 \\ H,0,1.969019899,0.7846943217,3.9211656687 \\ H,0,1.8138739965,-0.9652864614,4.1894998509
}
\begin{tabular}{lc} 
bpy Bpin3 Para Toluene CH Activation Transition Structure \\
E(RB+HF-LYP) \(=-1633.42680750\) \\
& \\
Zero-point correction \(=\) & 0.496401 (Hartree/Particle) \\
Thermal correction to Energy= & 0.530295 \\
Thermal correction to Enthalpy= & 0.531239 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.426328 \\
Sum of electronic and zero-point Energies= & -1632.930407 \\
Sum of electronic and thermal Energies= & -1632.896513 \\
Sum of electronic and thermal Enthalpies \(=\) & -1632.895569 \\
Sum of electronic and thermal Free Energies= & -1633.000480
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol}-\) Kelvin & Cal/Mol-Kelvin \\
Total & 332.765 & 124.585 & 220.804
\end{tabular}

C,0,-3.0681886977,2.9015918505,-2.5380174005
С,0,-2.2553131836,3.4264743389,-1.5253813477
C, \(0,-1.2436612232,2.6634805539,-0.9375572242\)
С,0,-1.0164993117,1.3272556869,-1.3130634425
С,0,-1.8236406958,0.8156806534,-2.3439690712
С,0,-2.8306323907,1.5811850511,-2.9373533082
Ir,0,0.3389422593,0.0365045258,-0.0888122676
\(\mathrm{N}, 0,-1.1326091003,-1.6981863366,-0.4010226012\)
C,0,-2.1729096085,-1.7633224784,0.4594266748
C,0,-3.1389708147,-2.7734506726,0.3509638234
C,0,-3.0275725916,-3.7246714485,-0.6566977754
C,0,-1.9479874951,-3.6499783305,-1.5339597684
C, \(0,-1.0236117218,-2.6218962591,-1.3687634228\)
С,0,-2.2154312217,-0.7281812658,1.5200824111
\(\mathrm{N}, 0,-1.1912290551,0.160536017,1.5459064905\)
C,0,-1.1595936148,1.1022801838,2.506001345
C,0,-2.1507122243,1.2129981152,3.4767662529
C,0,-3.2156081521,0.3159062461,3.4545392215
C,0,-3.244329982,-0.6637802783,2.4688800047
B,0,1.4632127569,-1.1579213866,1.2813133421
O,0,1.4486258895,-2.5564962163,1.2748547685
C,0,2.1862389702,-3.0409753625,2.4047188057
С,0,2.8952025989,-1.7919924809,2.9668998468
O,0,2.2321619819,-0.6890122748,2.3389163932
\(\mathrm{B}, 0,1.9143423841,-0.7530276708,-1.186801512\)
\(\mathrm{O}, 0,3.2722215199,-0.7256892615,-0.893719781\)
\(\mathrm{C}, 0,4.0013978464,-1.3056565233,-1.978244514\)
\(\mathrm{C}, 0,2.935885799,-2.0601046793,-2.7943089982\)
\(\mathrm{O}, 0,1.6965052405,-1.4758759457,-2.3719726044\)
\(\mathrm{~B}, 0,1.5515452053,1.6179902169,0.3870891741\)
\(\mathrm{O}, 0,1.4383354408,2.3733868899,1.5659415127\)
\(\mathrm{C}, 0,2.3183601406,3.5008209087,1.501661305\)
\(\mathrm{C}, 0,3.1976803054,3.2291899207,0.2630225528\)
\(\mathrm{O}, 0,2.5194091511,2.1873011713,-0.4384519795\)
\(\mathrm{H}, 0,0.5077543619,0.7030465452,-1.54461536\)
\(\mathrm{H}, 0,-0.1594724308,-2.5135223065,-2.0157425477\)
\(\mathrm{H}, 0,-3.9691558553,-2.8222761613,1.044457975\)
\(\mathrm{H}, 0,-1.8155456656,-4.3709779784,-2.3335225425\)
\(\mathrm{H}, 0,-3.7706925615,-4.510660268,-0.7507092802\)
\(\mathrm{H}, 0,-4.064434083,-1.3700128133,2.4385236822\)
\(\mathrm{H}, 0,-4.0107315149,0.3731899629,4.1916216272\)
\(\mathrm{H}, 0,-2.0790338236,1.9914114554,4.2286575469\)
\(\mathrm{H}, 0,-0.3044692081,1.7688239809,2.4752078745\)
\(\mathrm{H}, 0,2.9262973282,-3.1342929632,-2.5664483158\)
\(\mathrm{H}, 0,3.0517955255,-1.9345829694,-3.8753500286\)
\(\mathrm{H}, 0,4.7854358471,-1.9625742572,-1.5881309503\)
\(\mathrm{H}, 0,4.47635593,-0.5060630662,-2.5610578229\)
\(\mathrm{H}, 0,-0.6361823652,3.1154174979,-0.1581623657\)
\(\mathrm{H}, 0,-2.4115558738,4.4516185621,-1.1931544641\)
\(\mathrm{C}, 0,-4.1321321471,3.7431671749,-3.2038225802\)
\(\mathrm{H}, 0,-1.6655574296,-0.1997405426,-2.6977255792\)
\(\mathrm{H}, 0,-3.4373644586,1.1449673554,-3.7293438233\)
\(\mathrm{H}, 0,1.4887555009,-3.4837961192,3.1280060045\)
\(\mathrm{H}, 0,2.8851464342,-3.8203153324,2.0830911258\)
\(\mathrm{H}, 0,2.8088254287,-1.704528557,4.0550742493\)
\(\mathrm{H}, 0,3.9595800815,-1.7676662233,2.7016032256\)
\(\mathrm{H}, 0,1.7248670501,4.4189745477,1.3961430534\)
\(\mathrm{H}, 0,2.8969388401,3.5696712008,2.4287610071\)
\(\mathrm{H}, 0,3.3011649906,4.1061147213,-0.3849522686\)
\(\mathrm{H}, 0,4.2023126356,2.885081407,0.5409394953\)
\(\mathrm{H}, 0,-4.9623570602,3.128155242,-3.5660299159\)
\(\mathrm{H}, 0,-4.5409439894,4.491023139,-2.5165882178\)
\(\mathrm{H}, 0,-3.7308195418,4.2859715644,-4.0696878427\)

\section*{bpy Bpin3 Meta Toluene CH Activation Transition Structure \(\mathrm{E}(\) RB+HF-LYP \()=-1633.42666181\)}
\begin{tabular}{lc} 
Thermal correction to Energy \(=\) & 0.530267 \\
Thermal correction to Enthalpy \(=\) & 0.531211 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.426791 \\
Sum of electronic and zero-point Energies \(=\) & -1632.930252 \\
Sum of electronic and thermal Energies= & -1632.896395 \\
Sum of electronic and thermal Enthalpies \(=\) & -1632.895451 \\
Sum of electronic and thermal Free Energies= & -1632.999871
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol}-\) Kelvin & Cal/Mol-Kelvin \\
Total & 332.748 & 124.594 & 219.771
\end{tabular}

\footnotetext{
C,0,-3.0773853199,2.9442794147,-2.4887063653
С, \(0,-2.2763056047,3.4910118131,-1.4863125318\)
C,0,-1.2540121803,2.7373603629,-0.9041578361
С,0,-1.0299659213,1.4035959337,-1.2905909989
С,0,-1.8352796537,0.8874288383,-2.3203462621
C,0,-2.856854629,1.6329850385,-2.9269531073
Ir,0,0.3276747939,0.1099516232,-0.0659758254
N,0,-1.1531180286,-1.6205394394,-0.3690817558
C,0,-2.1915849936,-1.6779057593,0.4942617733
С,0,-3.1666289943,-2.6796036409,0.3868743457
C, \(0,-3.064881236,-3.6306028536,-0.6220727851\)
C,0,-1.9858815291,-3.5651689911,-1.5008320329
C, \(0,-1.0525636229,-2.5449007937,-1.3371712944\)
C,0,-2.2202801928,-0.644871528,1.5575403542
\(\mathrm{N}, 0,-1.1906829312,0.2376762736,1.5773741582\)
C,0,-1.1429425195,1.1743504949,2.5413887158
C,0,-2.1236955249,1.2870167226,3.5224066941
C,0,-3.1948456786,0.3973100559,3.506045459
C,0,-3.239732072,-0.5777946955,2.5162162359
B, \(0,1.4507459097,-1.0891400438,1.3010359907\)
O,0,1.4729239646,-2.4867172121,1.2651768409
C,0,2.1996643519,-2.9784699537,2.3987292265
C,0,2.8438242565,-1.7219496278,3.0214903349
O,0,2.1781453182,-0.6232323821,2.3887958125
B, \(0,1.8948761839,-0.6799924901,-1.1744737131\)
О,0,3.2554537057,-0.6337540236,-0.8969244215
C,0,3.9789750122,-1.2209231105,-1.9812431116
С,0,2.9125080327,-1.9962398523,-2.7762909046
O,0,1.6716927323,-1.4186355355,-2.3487499973
B,0,1.5457993828,1.6910521333,0.3978064288
O,0,1.4478497384,2.4433078354,1.5803345087
C,0,2.3146721358,3.5799530095,1.4993085813
}
\(\mathrm{C}, 0,3.1836420748,3.3083938315,0.2539568179\)
\(\mathrm{O}, 0,2.4995339228,2.2655262175,-0.440522118\)
\(\mathrm{H}, 0,0.4829109802,0.7713437547,-1.5263672518\)
\(\mathrm{H}, 0,-0.1880246973,-2.443627794,-1.9851061143\)
\(\mathrm{H}, 0,-3.9964190675,-2.7219775929,1.0813555655\)
\(\mathrm{H}, 0,-1.8608420125,-4.2875801939,-2.3003390959\)
\(\mathrm{H}, 0,-3.8147347883,-4.4102707905,-0.715505451\)
\(\mathrm{H}, 0,-4.0640167109,-1.2793216429,2.4912239542\)
\(\mathrm{H}, 0,-3.9822886591,0.456251052,4.2512011333\)
\(\mathrm{H}, 0,-2.0393485804,2.0610282668,4.2775059965\)
\(\mathrm{H}, 0,-0.2829309718,1.8340963892,2.5042372797\)
\(\mathrm{H}, 0,2.9157133631,-3.0672447815,-2.5340857021\)
\(\mathrm{H}, 0,3.0159656419,-1.883775476,-3.8600445853\)
\(\mathrm{H}, 0,4.7733304114,-1.86525533047,-1.5909756606\)
\(\mathrm{H}, 0,4.4403211523,-0.42456223,-2.5793407019\)
\(\mathrm{H}, 0,-0.6420743387,3.1900094711,-0.1290305105\)
\(\mathrm{H}, 0,-2.4472120047,4.5132364094,-1.1556180563\)
\(\mathrm{H}, 0,-3.8677837042,3.5396246786,-2.9407655088\)
\(\mathrm{H}, 0,-1.6639118589,-0.1272071867,-2.6728328776\)
\(\mathrm{C}, 0,-3.6767280289,1.046194416,-4.0542392586\)
\(\mathrm{H}, 0,1.5021193262,-3.4732815025,3.0871599442\)
\(\mathrm{H}, 0,2.9380398988,-3.717983371,2.0710812996\)
\(H, 0,2.7034399605,-1.6633940389,4.1060705787\)
\(\mathrm{H}, 0,3.918475955,-1.6599411769,2.8094330171\)
\(\mathrm{H}, 0,1.7099133088,4.4905570798,1.3915969896\)
\(\mathrm{H}, 0,2.9010305633,3.6628467126,2.4202974022\)
\(H, 0,3.2814094592,4.1848539339,-0.3954089891\)
\(H, 0,4.1906349675,2.9644289488,0.5237512042\)
\(\mathrm{H}, 0,-3.6945254225,-0.0472635034,-4.0102391781\)
\(\mathrm{H}, 0,-4.7119106235,1.4026183372,-4.02660611\)
\(H, 0,-3.2658453683,1.3253067838,-5.0330976632\)
bpy Bpin3 Meta Toluene CH Activation Transition Structure, Isomer 2
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1633.42667684\)
\begin{tabular}{lc} 
Zero-point correction= & 0.496336 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.530236 \\
Thermal correction to Enthalpy \(=\) & 0.531180 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.426396 \\
Sum of electronic and zero-point Energies= & -1632.930341 \\
Sum of electronic and thermal Energies= & -1632.896441 \\
Sum of electronic and thermal Enthalpies \(=\) & -1632.895497 \\
Sum of electronic and thermal Free Energies= & -1633.000281
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCal/Mol & Cal/Mol-Kelvin & \(\mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}\) \\
\hline Total & 332.728 & 124.646 & 220.537 \\
\hline C, \(0,-3\) & 66046,2.85 & 56986,-1.03812 & \\
\hline C, \(0,-2\) & 90774,3.3150 & 6461,-0.154472 & \\
\hline C, \(0,-1\) & 961405,2.578 & 63962,-0.03157 & 602 \\
\hline C, \(0,-1\) & 791425,1.383 & 99065,-0.740911 & \\
\hline C, \(0,-2\) & 224016,0.970 & 63452,-1.636361 & 885 \\
\hline C,0,-3 & 571008,1.695 & 51081,-1.777578 & \\
\hline Ir, \(0,0\). & 662357,0.0842 & 73624,-0.2059301 & 894 \\
\hline N,0,-1 & 844039,-1.75 & \(216927,-0.55516\) & 9386 \\
\hline C,0,-1 & 066849,-2.15 & 199552,0.494068 & \\
\hline C, \(0,-2\) & 760609,-3.2705 & 371146,0.39098 & \\
\hline C, \(0,-2\) & 53171,-3.96707 & 14243,-0.809680 & 747 \\
\hline C,0,-1 & 528277,-3.539 & 001325,-1.88367 & 1678 \\
\hline C,0,-1 & 596857,-2.42908 & 816034,-1.7120 & 027 \\
\hline C,0,-1 & 56199,-1.37402 & 18963,1.7447025 & \\
\hline N,0,-0 & 180096,-0.35 & 462479,1.729398 & 603 \\
\hline C, \(0,-0\) & 308311,0.373 & 31063,2.844517 & 659 \\
\hline C, \(0,-1\) & 245673,0.131 & 71121,4.02251979 & 07 \\
\hline C, \(0,-2\) & 047291,-0.903 & 996079,4.049412 & \\
\hline C, \(0,-2\) & 121492,-1.662 & 085677,2.900357 & 426 \\
\hline B, \(0,1\). & 047916,-1.184 & 20796,0.538185679 & \\
\hline O,0,1.8 & 256683,-2.544 & 098987,0.22598136 & 669 \\
\hline C, \(0,2\). & 47287,-3.128 & 71814,0.98718892 & 244 \\
\hline C,0,3. & 49597,-1.927 & 365105,1.640455531 & \\
\hline O,0,2. & 360477,-0.824 & 862963,1.4472805 & 164 \\
\hline B, \(0,1\). & 94647,-0.234 & 42036,-1.804434 & 446 \\
\hline O,0,2. & 61433,-0.099 & 0349,-1.843413 & \\
\hline C,0,3.3 & 24074,-0.333 & 884579,-3.175879 & 984 \\
\hline C,0,2. & 66528,-1.017 & 32471,-3.877221 & 884 \\
\hline O,0,1.05 & 376696,-0.705 & 609604,-3.043082 & 322 \\
\hline B,0,1.3 & 11226,1.6881 & 83489,0.3276761 & \\
\hline O,0,1. & 157069,2.189 & 43436,1.6374484 & \\
\hline C, \(0,2.2\) & 36717,3.4093 & 02459,1.630517500 & \\
\hline C, \(0,2.8\) & 41011,3.4728863 & 3281,0.21536403 & \\
\hline O,0,2. & 151751,2.515928 & 87309,-0.5385858 & \\
\hline H,0,-0 & 144427,1.046 & 706987,-1.464501 & 098 \\
\hline H,0,-0 & 544073,-2.05 & \(705489,-2.50855\) & 1611 \\
\hline H,0,-3 & 3309377,-3.59 & 840635,1.236364 & 229 \\
\hline H,0,-2 & 110947,-4.05 & 871209,-2.83984 & 5381 \\
\hline H,0,-3 & 782878,-4.82 & 793172,-0.90116 & 5738 \\
\hline H,0,-3 & 491886,-2.47 & 724972,2.903983 & 922 \\
\hline
\end{tabular}
```

H,0,-2.8236457764,-1.1208411784,4.9478573283
H,0,-1.1349678858,0.7492383222,4.8939592746
H,0,0.1173594355,1.1626980753,2.7652502011
H,0,2.3011338413,-2.107986888,-3.9267476004
H, $0,2.0004912673,-0.6414527927,-4.8893612357$
H,0,4.2655600743,-0.9579421927,-3.1517519701
H,0,3.6229429706,0.6263240033,-3.6421349505
H,0,-0.9684664926,2.9468582692,0.6505745159
C,0,-3.1273987837,4.5832990141,0.6422191329
Н,0,-4.8282153971,3.4183308432,-1.1548248624
H,0,-2.3598050279,0.0793809526,-2.2406425063
H,0,-4.454457579,1.3532565851,-2.4761661575
$\mathrm{H}, 0,2.5276144715,-3.8161130445,1.7311396942$
$\mathrm{H}, 0,3.6049491661,-3.7044499118,0.3238920423$
H,0,3.8497896222,-2.0704019946,2.710734583
H,0,4.6240874335,-1.7019846869,1.154409469
H,0,1.5625353765,4.2514528525,1.8276291257
H,0,2.9961909947,3.3826296765,2.4216557978
H,0,2.7558590393,4.4625679794,-0.2440989243
H,0,3.9105582089,3.1904473088,0.2138774902
H,0,-2.2587078608,4.8100690487,1.2672923735
H,0,-3.2997898466,5.4446852703,-0.0140684233
H,0,-4.0006125804,4.5044459413,1.3012459641

```

\section*{bpyBpin3MetaTolHCHactTS}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1633.42666181\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.496410 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.530267 \\
Thermal correction to Enthalpy \(=\) & 0.531211 \\
Thermal correction to Gibbs Free Energy= & 0.426791 \\
Sum of electronic and zero-point Energies= & -1632.930252 \\
Sum of electronic and thermal Energies= & -1632.896395 \\
Sum of electronic and thermal Enthalpies \(=\) & -1632.895451 \\
Sum of electronic and thermal Free Energies= & -1632.999871
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 332.748 & 124.594 & 219.771
\end{tabular}

C,0,-3.0773853199,2.9442794147,-2.4887063653
С, \(0,-2.2763056047,3.4910118131,-1.4863125318\)
C,0,-1.2540121803,2.7373603629,-0.9041578361
C,0,-1.0299659213,1.4035959337,-1.2905909989

C, \(0,-1.8352796537,0.8874288383,-2.3203462621\)
C, \(0,-2.856854629,1.6329850385,-2.9269531073\)
Ir,0,0.3276747939,0.1099516232,-0.0659758254
\(\mathrm{N}, 0,-1.1531180286,-1.6205394394,-0.3690817558\)
C,0,-2.1915849936,-1.6779057593,0.4942617733
C,0,-3.1666289943,-2.6796036409,0.3868743457
С,0,-3.064881236,-3.6306028536,-0.6220727851
C, \(0,-1.9858815291,-3.5651689911,-1.5008320329\)
C,0,-1.0525636229,-2.5449007937,-1.3371712944
C,0,-2.2202801928,-0.644871528,1.5575403542
\(\mathrm{N}, 0,-1.1906829312,0.2376762736,1.5773741582\)
C,0,-1.1429425195,1.1743504949,2.5413887158
C, \(0,-2.1236955249,1.2870167226,3.5224066941\)
C, \(0,-3.1948456786,0.3973100559,3.506045459\)
C,0,-3.239732072,-0.5777946955,2.5162162359
B,0,1.4507459097,-1.0891400438,1.3010359907
O,0,1.4729239646,-2.4867172121,1.2651768409
C,0,2.1996643519,-2.9784699537,2.3987292265
C,0,2.8438242565,-1.7219496278,3.0214903349
O, \(0,2.1781453182,-0.6232323821,2.3887958125\)
B, \(0,1.8948761839,-0.6799924901,-1.1744737131\)
О,0,3.2554537057,-0.6337540236,-0.8969244215
C,0,3.9789750122,-1.2209231105,-1.9812431116
C,0,2.9125080327,-1.9962398523,-2.7762909046
O,0,1.6716927323,-1.4186355355,-2.3487499973
B, \(0,1.5457993828,1.6910521333,0.3978064288\)
O,0,1.4478497384,2.4433078354,1.5803345087
C,0,2.3146721358,3.5799530095,1.4993085813
C,0,3.1836420748,3.3083938315,0.2539568179
O,0,2.4995339228,2.2655262175,-0.440522118
H,0,0.4829109802,0.7713437547,-1.5263672518
H,0,-0.1880246973,-2.443627794,-1.9851061143
H,0,-3.9964190675,-2.7219775929,1.0813555655
H,0,-1.8608420125,-4.2875801939,-2.3003390959
Н,0,-3.8147347883,-4.4102707905,-0.715505451
H,0,-4.0640167109,-1.2793216429,2.4912239542
H,0,-3.9822886591,0.456251052,4.2512011333
H,0,-2.0393485804,2.0610282668,4.2775059965
H,0,-0.2829309718,1.8340963892,2.5042372797
H,0,2.9157133631,-3.0672447815,-2.5340857021
H,0,3.0159656419,-1.883775476,-3.8600445853
H,0,4.7733304114,-1.8652553047,-1.5909756606
H,0,4.4403211523,-0.42456223,-2.5793407019
H,0,-0.6420743387,3.1900094711,-0.1290305105
```

H,0,-2.4472120047,4.5132364094,-1.1556180563
H,0,-3.8677837042,3.5396246786,-2.9407655088
H,0,-1.6639118589,-0.1272071867,-2.6728328776
C,0,-3.6767280289,1.046194416,-4.0542392586
H,0,1.5021193262,-3.4732815025,3.0871599442
H,0,2.9380398988,-3.717983371,2.0710812996
H,0,2.7034399605,-1.6633940389,4.1060705787
H,0,3.918475955,-1.6599411769,2.8094330171
H,0,1.7099133088,4.4905570798,1.3915969896
H,0,2.9010305633,3.6628467126,2.4202974022
H,0,3.2814094592,4.1848539339,-0.3954089891
H,0,4.1906349675,2.9644289488,0.5237512042
H,0,-3.6945254225,-0.0472635034,-4.0102391781
H,0,-4.7119106235,1.4026183372,-4.02660611
H,0,-3.2658453683,1.3253067838,-5.0330976632

```
bpy Bpin3 Ortho Toluene CH Activation Transition Structure \(E(\) RB + HF-LYP \()=-1633.41948141\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.496800 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.530416 \\
Thermal correction to Enthalpy \(=\) & 0.531360 \\
Thermal correction to Gibbs Free Energy= & 0.427337 \\
Sum of electronic and zero-point Energies \(=\) & -1632.922682 \\
Sum of electronic and thermal Energies= & -1632.889065 \\
Sum of electronic and thermal Enthalpies \(=\) & -1632.888121 \\
Sum of electronic and thermal Free Energies \(=\) & -1632.992144
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 332.841 & 124.494 & 218.935
\end{tabular}
```

C,0,-3.422835,2.445731,-2.809270
C,0,-2.744491,3.171590,-1.831515
C,0,-1.645711,2.642578,-1.134258
C,0,-1.232558,1.311568,-1.395365
C,0,-1.904646, 0.617509,-2.418704
C,0,-2.987263,1.159492,-3.115581
Ir,0,0.244993,0.107332,-0.155795
N,0,-1.272478,-1.632863,-0.325652
C,0,-2.272498,-1.640037,0.582616
C,0,-3.286333,-2.607217,0.536883
C,0,-3.255596,-3.586093,-0.450126
C,0,-2.206506,-3.582809,-1.366192

```
\[
\begin{aligned}
& \mathrm{C}, 0,-1.237729,-2.587269,-1.268120 \\
& \mathrm{C}, 0,-2.199612,-0.610180,1.646699 \\
& \mathrm{~N}, 0,-1.125955,0.217727,1.617517 \\
& \mathrm{C}, 0,-0.944710,1.094655,2.622246 \\
& \mathrm{C}, 0,-1.848002,1.225890,3.672375 \\
& \mathrm{C}, 0,-2.980554,0.415394,3.688979 \\
& \mathrm{C}, 0,-3.149983,-0.517075,2.672400 \\
& \mathrm{~B}, 0,1.444631,-1.164083,1.079289 \\
& \mathrm{O}, 0,1.552469,-2.543259,0.874177 \\
& \mathrm{C}, 0,2.315405,-3.128545,1.936468 \\
& \mathrm{C}, 0,2.827077,-1.925400,2.760031 \\
& \mathrm{O}, 0,2.130840,-0.793410,2.226553 \\
& \mathrm{~B}, 0,1.702789,-0.673925,-1.408086 \\
& \mathrm{O}, 0,3.082657,-0.568739,-1.287317 \\
& \mathrm{C}, 0,3.701480,-1.175346,-2.424974 \\
& \mathrm{C}, 0,2.580980,-2.013993,-3.067335 \\
& \mathrm{O}, 0,1.375368,-1.457977,-2.524717 \\
& \mathrm{~B}, 0,1.539178,1.629108,0.287845 \\
& \mathrm{O}, 0,1.708087,2.184319,1.565811 \\
& \mathrm{C}, 0,2.562405,3.328424,1.477797 \\
& \mathrm{C}, 0,3.189627,3.224007,0.074440 \\
& \mathrm{O}, 0,2.332375,2.323990,-0.629269 \\
& \mathrm{H}, 0,0.387209,0.811314,-1.591844 \\
& \mathrm{H}, 0,-0.400922,-2.529058,-1.956065 \\
& \mathrm{H}, 0,-4.088894,-2.602791,1.263638 \\
& \mathrm{H}, 0,-2.133389,-4.331572,-2.147669 \\
& \mathrm{H}, 0,-4.035529,-4.340042,-0.496303 \\
& \mathrm{H}, 0,-4.014185,-1.169193,2.680855 \\
& \mathrm{H}, 0,-3.714551,0.495994,4.484912 \\
& \mathrm{H}, 0,-1.657777,1.952747,4.454570 \\
& \mathrm{H}, 0,-0.037591,1.686669,2.562288 \\
& \mathrm{H}, 0,2.647643,-3.073410,-2.787474 \\
& \mathrm{H}, 0,2.559733,-1.941355,-4.159115 \\
& \mathrm{H}, 0,4.556079,-1.779198,-2.103501 \\
& \mathrm{H}, 0,4.065231,-0.389124,-3.098899 \\
& \mathrm{C}, 0,-0.939007,3.548704,-0.151401 \\
& \mathrm{H}, 0,-3.064897,4.186739,-1.604955 \\
& \mathrm{H}, 0,-4.264859,2.889013,-3.334475 \\
& \mathrm{H}, 0,-1.566473,-0.376819,-2.693536 \\
& \mathrm{H}, 0,-3.475134,0.580187,-3.896018 \\
& \mathrm{H}, 0,1.667377,-3.79203,, 2.523185 \\
& \mathrm{H}, 0,3.128237,-3.731171,1.516771 \\
& \mathrm{H}, 0,2.609288,-2.019145,3.829520 \\
& \mathrm{H}, 0,3.906439,-1.770383,2.642622
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{H}, 0,1.961770,4.241377,1.593378 \\
& \mathrm{H}, 0,3.303346,3.298366,2.283264 \\
& \mathrm{H}, 0,3.229718,4.185591,-0.448184 \\
& \mathrm{H}, 0,4.204331,2.806314,0.109168 \\
& \mathrm{H}, 0,0.094187,3.726367,-0.465112 \\
& \mathrm{H}, 0,-1.441949,4.518905,-0.087357 \\
& \mathrm{H}, 0,-0.900856,3.122739,0.853765
\end{aligned}
\]

\section*{bpy Bpin3 Para PhenylBPin CH Activation Transition Structure \(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-1847.52939887\)}
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.529713 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.566732 \\
Thermal correction to Enthalpy \(=\) & 0.567676 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.454454 \\
Sum of electronic and zero-point Energies= & -1846.999686 \\
Sum of electronic and thermal Energies= & -1846.962667 \\
Sum of electronic and thermal Enthalpies \(=\) & -1846.961723 \\
Sum of electronic and thermal Free Energies \(=\) & -1847.074945
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol}-\) Kelvin & Cal/Mol-Kelvin \\
Total & 355.630 & 135.398 & 238.296
\end{tabular}

C,0,-2.8586555812,-0.9756233803,2.7353900821
С,0,-1.8136481896,-1.0672729407,1.8068405887
N,0,-0.7748621611,-0.1962494568,1.8446936812
C, \(0,-0.7376520637,0.746543384,2.8028743407\)
C,0,-1.7426351965,0.881686112,3.7561597972
C,0,-2.8270568467,0.0089996434,3.7164666727
С,0,-1.7643893405,-2.1170272436,0.7604240537
\(\mathrm{N}, 0,-0.7061402179,-2.0765656984,-0.0796728424\)
C, \(0,-0.5844776426,-3.0182236778,-1.0284158945\)
C,0,-1.5153999252,-4.0401514454,-1.1949565033
C,0,-2.6141317394,-4.0888965806,-0.3399044097
С,0,-2.7377126547,-3.1198605244,0.6492845875
Ir, \(0,0.771238413,-0.3471022342,0.2303679991\)
B, \(0,1.9904722928,1.2281712413,0.7085187249\)
O,0,2.921080121,1.8271778238,-0.1389585427
C,0,3.6154706226,2.8588951641,0.5621196585
C,0,2.7788170213,3.0925301409,1.8374146769
O,0,1.9168932703,1.9514361446,1.9096608346
С, \(0,-0.5611925175,0.9471693545,-1.0125198475\)
C,0,-0.738743618,2.3035916275,-0.6771445457

C,0,-1.7396139189,3.0737033612,-1.2689593254 C, \(0,-2.5960174142,2.5363405567,-2.2470500754\) С,0,-2.3979160505,1.1923283301,-2.6094200353 C, \(0,-1.4011118184,0.4206976602,-2.0124888869\) В, \(0,1.8625867816,-1.5581651195,1.6152182895\)
O,0,2.5353783008,-1.1053178368,2.7417571949
C,0,3.1820076957,-2.207466358,3.3882104956
C,0,2.6127897279,-3.4616083614,2.689245206
O,0,1.9125655008,-2.9535309223,1.5464079852
B, \(0,2.3601269936,-1.1442868788,-0.8442287232\)
O,0,2.1598645185,-1.9035354009,-2.0087188357
C,0,3.4120702835,-2.4760251037,-2.4095463166
C,0,4.4601931678,-1.6789656584,-1.6115127714 O,0,3.7158326766,-1.080291359,-0.5475508289
\(\mathrm{H}, 0,0.9365784902,0.2941345712,-1.2400746963\)
H,0,0.2939121495,-2.9284933828,-1.6589214938
H,0,-3.5818760203,-3.1495500153,1.326806026
H,0,-1.3737199823,-4.7764177541,-1.9788573101
Н,0,-3.3626975917,-4.869367515,-0.4365611099
H,0,-3.692820794,-1.6645591449,2.6929455038
H,0,-3.6347147739,0.0875848926,4.4377799855
H,0,-1.6668307782,1.6601389386,4.5075514064
H,0,0.1348464216,1.3905773383,2.785786789
H,0,3.4211133894,-3.5431092078,-2.151031438
H,0,3.5300984155,-2.378858019,-3.493264352
H,0,5.2538228087,-2.3101652055,-1.1989314487
H,0,4.9239219844,-0.8885476558,-2.2155392409
H,0,-0.0963357778,2.7627958864,0.0689057929
H, \(0,-1.8590843346,4.1136021478,-0.9733991965\)
B,0,-3.6980797909,3.3926092512,-2.9117664587
H,0,-1.27151068,-0.6081798334,-2.3371357007
H,0,-3.0308462723,0.7502523901,-3.3755597069
H,0,1.9097329407,-4.0120981721,3.3276394633
H,0,3.3934160248,-4.1572861847,2.3631428562
H,0,2.9652289837,-2.1830800325,4.4616086543
H,0,4.2668655926,-2.1148880301,3.2549385952
H,0,2.1698071751,4.0042598578,1.7721307358
H,0,3.3892579095,3.1508023226,2.7445425731
H,0,3.6876894989,3.7516467302,-0.0681297667
H,0,4.6324760665,2.5178977323,0.7954661946
O,0,-4.5819025838,2.9030038842,-3.8511427077
O,0,-3.9037441955,4.7270461269,-2.6301073501
C,0,-5.4011297651,3.9859638883,-4.3046848385
C,0,-5.042682317,5.1734565963,-3.3738967403
```

H,0,-5.168734481,4.1962227345,-5.3556160724
H,0,-6.4559629339,3.6994095468,-4.2376923047
H,0,-4.7840997583,6.0818178637,-3.9280020365
H,0,-5.8542385891,5.4157779,-2.6770814747

```
\begin{tabular}{lc} 
bpy Bpin3 Meta PhenylBPin CH Activation Transition Structure \\
E(RB+HF-LYP) \(=-1847.52860836\) \\
& \\
Zero-point correction \(=\) & 0.529596 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.566664 \\
Thermal correction to Enthalpy \(=\) & 0.567608 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.453681 \\
Sum of electronic and zero-point Energies \(=\) & -1846.999012 \\
Sum of electronic and thermal Energies= & -1846.961945 \\
Sum of electronic and thermal Enthalpies= & -1846.961000 \\
Sum of electronic and thermal Free Energies= & -1847.074927
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 355.587 & 135.472 & 239.780
\end{tabular}
C,0,-2.9398723002,-0.5689183751,2.8335411284
С,0,-1.8890357345,-0.6519329291,1.9105477942
\(\mathrm{N}, 0,-0.8508042867,0.2192338466,1.9624291807\)
C,0,-0.822461034,1.1562866513,2.9269450643
C,0,-1.8342789081,1.2835107186,3.8740331266
C, \(0,-2.9162352523,0.4082236068,3.8220076143\)
C, \(0,-1.836025345,-1.689757426,0.8526803375\)
N,0,-0.7727051123,-1.6427128346,0.0193595399
C,0,-0.6508746015,-2.5699933511,-0.9430837856
C,0,-1.5855854437,-3.5849366733,-1.1294929277
C, \(,,-2.6881794632,-3.641613936,-0.2803792205\)
C, \(0,-2.8126748526,-2.6866314217,0.7223714785\)
Ir, \(0,0.710118975,0.0732594362,0.3615893281\)
B,0,1.9270641094,1.6449451338,0.8571953358
O,0,2.8847645295,2.2307954517,0.0306442152
C, \(0,3.5681200863,3.2633466142,0.7408994851\)
C,0,2.7053097674,3.5086476268,1.9968961413
O,0,1.8269761486,2.379454665,2.0505250016
С,0,-0.6049427663,1.3823180587,-0.8923919203
C,0,-0.7824376332,2.735582832,-0.5474424423
C, \(,-1.7754297022,3.5187456195,-1.1449469671\)
C,0,-2.6018865498,2.9760184401,-2.1263168628
C, \(0,-2.4374151235,1.6385877251,-2.5264233724\)
\(\mathrm{C}, 0,-1.4336936355,0.8703958105,-1.9039876176\)
\(\mathrm{~B}, 0,1.7812266328,-1.1458361056,1.7516275831\)
\(\mathrm{O}, 0,2.451018921,-0.6983772394,2.8827887365\)
\(\mathrm{C}, 0,3.0926277415,-1.8053890558,3.5259127049\)
\(\mathrm{C}, 0,2.504504314,-,-3.0542210347,2.8344083882\)
\(\mathrm{O}, 0,1.8193308359,-2.5418407356,1.6844598034\)
\(\mathrm{~B}, 0,2.310529446,-0.7231406664,-0.6952978384\)
\(\mathrm{O}, 0,2.1234077008,-1.4662807315,-1.872204295\)
\(\mathrm{C}, 0,3.3746980559,-2.0512008493,-2.2560516917\)
\(\mathrm{C}, 0,4.418181172,-1.2793439213,-1.4274633199\)
\(\mathrm{O}, 0,3.6616016879,-0.6805455875,-0.3723233753\)
\(\mathrm{H}, 0,0.8932120493,0.7115578178,-1.1069237282\)
\(\mathrm{H}, 0,0.2307833063,-2.4745674479,-1.568088843\)
\(\mathrm{H}, 0,-3.6608643156,-2.7221924191,1.3946405833\)
\(\mathrm{H}, 0,-1.4444356291,-4.3082683276,-1.9252832896\)
\(\mathrm{H}, 0,-3.440023777,-4.4168879919,-0.3924435474\)
\(\mathrm{H}, 0,-3.7724244271,-1.2591296503,2.7808961447\)
\(\mathrm{H}, 0,-3.7282683333,0.4798043172,4.5391559364\)
\(\mathrm{H}, 0,-1.7653311344,2.057438094,4.6307773494\)
\(\mathrm{H}, 0,0.0479794765,1.8033975302,2.919910472\)
\(\mathrm{H}, 0,3.3638848292,-3.1216194063,-2.0116543182\)
\(\mathrm{H}, 0,3.5152285885,-1.941917828,-3.3359693986\)
\(\mathrm{H}, 0,5.1930788027,-1.9275879456,-1.0056851675\)
\(\mathrm{H}, 0,4.9069692228,-0.4901389949,-2.0130756917\)
\(\mathrm{H}, 0,-0.1480828518,3.1868914382,0.2105762167\)
\(\mathrm{H}, 0,-1.8955340125,4.5568486638,-0.842929733\)
\(\mathrm{H}, 0,-3.3695774081,3.5857766042,-2.595059368\)
\(\mathrm{H}, 0,-1.3013568757,-0.1558937584,-2.2340882061\)
\(\mathrm{~B}, 0,-3.331481675,1.0261873747,-3.6321463231\)
\(H, 0,1.7881881435,-3.5863523532,3.4738994479\)
\(\mathrm{H}, 0,3.2735601932,-3.7669741888,2.5178896278\)
\(\mathrm{H}, 0,2.8865156015,-1.7768744758,4.6012445633\)
\(\mathrm{H}, 0,4.177063304,-1.7243086396,3.3812179415\)
\(\mathrm{H}, 0,2.1103894073,4.4286942876,1.9183745781\)
\(\mathrm{H}, 0,3.2963927201,3.5594464386,2.91727228\)
\(\mathrm{H}, 0,3.6583282611,4.1523290725,0.1074453036\)
\(\mathrm{H}, 0,4.5784558293,2.9196564717,0.9979864932\)
\(\mathrm{O}, 0,-3.2576335541,-0.2907275372,-4.0373589369\)
\(\mathrm{O}, 0,-4.2924601972,1.7407046698,-4.3167805473\)
\(\mathrm{C}, 0,-4.1596889391,-0.4723993657,-5.1345359198\)
\(\mathrm{H}, 0,-3.5808493203,-0.6472076091,-6.0495648117\)
\(\mathrm{H}, 0,-4.7866140065,--3.3515188601,-4.9519758727\)
\(\mathrm{C}, 0,-4.9758430616,0.8434160512,-5.1986601727\)
\(\mathrm{H}, 0,-5.0086318114,1.2732179059,-6.2050602266\)

H,0,-6.0066570126,0.7110667646,-4.8476849032
\begin{tabular}{lc} 
bpy Bpin3 2Pyrrole CH Activation Transition Structure \\
E(RB+HF-LYP) \(=-1572.03532752\) \\
& \\
& \\
Zero-point correction= & 0.451410 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.481894 \\
Thermal correction to Enthalpy= & 0.482838 \\
Thermal correction to Gibbs Free Energy= & 0.387151 \\
Sum of electronic and zero-point Energies= & -1571.583917 \\
Sum of electronic and thermal Energies= & -1571.553433 \\
Sum of electronic and thermal Enthalpies= & -1571.552489 \\
Sum of electronic and thermal Free Energies= \(=\) & -1571.648177
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 302.393 & 113.804 & 201.391
\end{tabular}

C, \(0,-2.4040211185,1.50070161,-3.5863334747\)
С,0,-1.8596726823,2.6667746142,-3.0891314073
N,0,-0.9546810249,2.3209446222,-2.1138160341
C,0,-0.918191193,0.9510913236,-1.9366414536
C, \(0,-1.805193865,0.4221133499,-2.872054319\)
Ir,0,0.2133932144,0.0614033533,-0.2750709866
\(\mathrm{N}, 0,-1.4071373638,-1.5710288919,-0.2230811591\)
C,0,-2.5231459427,-1.2723782517,0.4808771087
С,0,-3.6267031938,-2.1365588519,0.4909990466
C, \(0,-3.5763728209,-3.3243662403,-0.2292051597\)
C, \(,--2.4186860138,-3.6263396822,-0.941387582\)
C, \(0,-1.3589816782,-2.7231318715,-0.9110507294\)
C,0,-2.5077500252,0.0022272177,1.2371526037
\(\mathrm{N}, 0,-1.4111781348,0.7856355549,1.0944246405\)
C, \(0,-1.3423523838,1.9486448777,1.7646192935\)
C,0,-2.3551614379,2.3896089535,2.6096300432
C,0,-3.4847851881,1.5914783477,2.7722698166
C,0,-3.5587898711,0.3887419276,2.08028725
B, \(0,1.1259226554,-0.643778313,1.5193234963\)
O,0,1.3345563046,-1.9784496361,1.8650116037
C, \(0,1.830685395,-2.0549678996,3.2072817548\)
C,0,2.1103734335,-0.5896923293,3.6065070973
O,0,1.4935778871,0.1908548521,2.5743549885
B, \(0,1.78317918,-1.1480161213,-0.9160172821\)
O,0,3.1412880243,-1.035385642,-0.6709345546
C,0,3.8411626501,-2.0575097287,-1.3826314153
```

C,0,2.7426118558,-3.0447224606,-1.8183057318
O,0,1.5325593733,-2.2866585969,-1.7015032397
B,0,1.4795539577,1.6712983036,-0.1334179914
O,0,0.9585037063,2.9911897227,-0.0098580713
C,0,2.041368166,3.9335117257,-0.0400001157
C,0,3.2990447855,3.0628741668,0.1381511599
O,0,2.8626508897,1.7351154389,-0.1457493942
H,0,0.5371041796,0.1311234991,-1.8552630445
H,0,-0.43138134,-2.9047541878,-1.4419854392
H,0,-4.5220302619,-1.8837664037,1.0448135893
H,0,-2.3287549889,-4.5414942673,-1.5167735657
H,0,-4.4276018348,-3.9983156576,-0.2326491639
H,0,-4.427371636,-0.2459007094,2.2008934467
H,0,-4.2957901925,1.8967688836,3.4263019843
H,0,-2.2497743065,3.3383495577,3.1244521284
H,0,-0.4496994125,2.5347186193,1.5885924074
H,0,2.6873647147,-3.9183853563,-1.1559556384
H,0,2.8594913881,-3.3942066476,-2.8490647633
H,0,4.5910437528,-2.5150679267,-0.7293532301
H,0,4.3584031323,-1.6104871436,-2.2417296111
H,0,-0.4307562655,2.9487559898,-1.5174861831
H,0,-2.0451964363,3.7011522336,-3.3431612576
H,0,-3.1388376924,1.4306122686,-4.3777605807
H,0,-1.9875173757,-0.6320737429,-3.0344809219
H,0,1.0703605859,-2.5228955239,3.8457560416
H,0,2.7294911234,-2.6801135243,3.2323360229
H,0,1.678941223,-0.3235517454,4.5774932303
H,0,3.183580196,-0.3650338536,3.6327809597
H,0,2.0332660066,4.458810387,-1.003903911
H,0,1.9114217593,4.6728992476,0.7570554412
H,0,4.1085001286,3.3413468248,-0.5445770874
H,0,3.6844400299,3.1051387301,1.1652284921

```
bpy Bpin3 3Pyrrole CH Activation Transition Structure \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1572.02768754\)
Zero-point correction= 0.450991 (Hartree/Particle)

Thermal correction to Energy= 0.482539

Thermal correction to Enthalpy= 0.483483

Thermal correction to Gibbs Free Energy=
0.384732

Sum of electronic and zero-point Energies \(=\quad-1571.576696\)
Sum of electronic and thermal Energies \(=\quad-1571.545148\)
Sum of electronic and thermal Enthalpies= \(\quad-1571.544204\)
Sum of electronic and thermal Free Energies \(=\quad-1571.642956\)
\begin{tabular}{lcc} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 302.798 & 116.303
\end{tabular}
```

H,0,4.2396876225,-2.5171561917,3.1484156582
H,0,2.0529561603,-3.7354274917,2.8594649535
H,0,0.2558572571,-2.6489657861,1.490314719
H,0,-2.5210000312,4.0668823496,-0.8780987395
H,0,-2.8392232144,3.5943731311,-2.5650038792
H,0,-4.4563676989,2.7319728326,-0.3631288486
H,0,-4.3366758961,1.8315151932,-1.8923424241
H,0,-0.7495438541,-2.566168291,-2.743012442
H,0,1.1041114147,-3.2973363424,-4.2870374324
H,0,3.2169134407,-1.9454395763,-4.0668745508
H,0,2.7601874816,-0.0860063762,-2.1501019612
H,0,-0.4132319579,2.5116837522,3.9342521297
H,0,-1.9488042211,3.1511463898,3.3133313629
H,0,-1.6481693928,0.5674216658,4.6045181957
H,0,-3.0485678127,1.0458215068,3.6216753579
H,0,-2.6058200502,-4.3761571855,0.6423508863
H,0,-3.6328502361,-3.0745815853,1.2833904061
H,0,-3.0476520351,-3.727004547,-1.6215799884
H,0,-4.3847791352,-2.7576407718,-0.968681973

```

\section*{\(C^{2}-C^{6}\) Enyne Allene Cyclization}

\section*{B3LYP//6-31G** unless otherwise noted}

4thmodelBirad
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-1508.41113773\)
\begin{tabular}{lc} 
Zero-point correction= & .421551 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & .450543 \\
Thermal correction to Enthalpy \(=\) & .451487 \\
Thermal correction to Gibbs Free Energy= & .362131 \\
Sum of electronic and zero-point Energies= & -1507.989587 \\
Sum of electronic and thermal Energies= & -1507.960595 \\
Sum of electronic and thermal Enthalpies \(=\) & -1507.959651 \\
Sum of electronic and thermal Free Energies= & -1508.049006
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 282.720 & 107.748 & 188.065
\end{tabular}

C,0,1.6539169668,4.0971440398,-0.2658661267
C,0,0.3005816138,4.4561239005,-0.3263347307

C,0,-0.700814282,3.4874748172,-0.2984413978 C,0,-0.3276582525,2.137984796,-0.2083248019 C,0,1.0406100451,1.7781471122,-0.1548378762 C, \(0,2.0300858947,2.7513682577,-0.1808783841\) С,0,-1.0944348903,0.9250526066,-0.1838564258 O, \(0,-2.4626198098,0.8782265636,-0.3587485322\) C,0,1.1446268754,0.2934528202,-0.0950522578 C, \(0,2.2826554862,-0.3803431275,-0.0048539529\) Si,0,4.0239637534,-0.9398645995,0.1332153692 C, \(0,-0.2754454185,-0.2379714769,-0.1379875518\) C,0,-0.6461627289,-1.5834926435,-0.1400312942 C, \(0,0.4555990361,-2.6216209569,-0.1368893005\) Si,0,-2.4327964278,-2.2512972558,-0.109670261 C, \(0,-3.3417078912,-1.7240299676,1.4742084938\) C, \(0,-2.3861469507,-4.1494199587,-0.0436878843\) С, \(0,-3.392582544,-1.8330980914,-1.6923532202\) C,0,5.2236578095,0.5280322355,0.1737132174 C, \(0,4.4287736759,-2.0241500606,-1.3636041505\) C,0,4.2096944189,-1.9338185033,1.7322443374 C,0,-3.2939403044,1.5820793165,0.4906602449 O,0,-2.9132658541,2.1263296798,1.4947642936 C,0,-4.7063752377,1.5523289963,-0.0323422951 H,0,2.4171782207,4.8691506832,-0.2873075001 H,0,0.0270897799,5.5050843529,-0.3926046416 H,0,-1.7440700362,3.779210062,-0.3324369625 H,0,3.0782770004,2.473489747,-0.1420588332 H,0,0.0743619149,-3.6399023288,-0.2192088603 H, \(0,1.1579610077,-2.4596156962,-0.9647861138\) H,0,1.0511760775,-2.5663334921,0.7852674222 H,0,-4.418741771,-1.9105231532,1.3866451576 H,0,-2.978284056,-2.3297126865,2.3120628469 H,0,-3.1968778932,-0.678601915,1.753097609 H,0,-3.4155621051,-4.5230965229,0.0139708353
H,0,-1.9321592955,-4.5944073878,-0.9354479584
Н,0,-1.8542673391,-4.5319273836,0.8337836759
H,0,-4.4155424695,-2.2239950783,-1.630519031
H,0,-3.4409811467,-0.7614772116,-1.8902358603
H,0,-2.9138824707,-2.3127088381,-2.5536040109
H,0,6.2547632784,0.1677674097,0.2708746513
H,0,5.1653894972,1.1219915529,-0.7441604976
H,0,5.0224672289,1.1910672346,1.0212911033
H,0,5.4707007907,-2.3617654923,-1.3213464175
H,0,3.7905498586,-2.9126193635,-1.4001619439
H,0,4.2934459978,-1.4755098799,-2.3012591177
```

H,0,5.244384507,-2.273761817,1.8558958454
H,0,3.9489026127,-1.3308674344,2.6079337021
H,0,3.5645818978,-2.8181158947,1.7304218596
H,0,-4.7524170736,2.0455001385,-1.0080099582
Н,0,-5.0374265317,0.5200797958,-0.1718618633
H,0,-5.359874662,2.0639519537,0.6730993973

```
\begin{tabular}{lc} 
4thmodelBiradTS - UB3LYP//6-31G** \\
E(UB+HF-LYP) \(=-1508.44206941\) \\
& \\
& \\
Zero-point correction \(=\) & 0.419118 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.448695 \\
Thermal correction to Enthalpy \(=\) & 0.359101 \\
Thermal correction to Gibbs Free Energy= & -1508.022952 \\
Sum of electronic and zero-point Energies \(=\) & -1507.993374 \\
Sum of electronic and thermal Energies \(=\) & -1507.992430 \\
Sum of electronic and thermal Enthalpies \(=\) & -1508.082968 \\
Sum of electronic and thermal Free Energies= &
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}\) & Cal/Mol-Kelvin \\
TOTAL & 281.561 & 109.541 & 190.554
\end{tabular}

C, \(0,-0.3603628844,-0.1757387289,-0.3808474133\)
С,0,-1.0924849276,1.0051729517,-0.3544794447
C,0,-0.258193296,2.1588671423,-0.0955360613
C,0,1.0765534863,1.6977957342,0.0380192017
C, \(0,1.1023403682,0.2253274449,-0.1429044376\)
C,0,2.1112621468,2.5936936283,0.2804608763
C,0,1.8211285416,3.9587836298,0.3694260491
C,0,0.5049313664,4.4154721985,0.232919485
C,0,-0.5445177142,3.5258046211,0.0031760183
O, \(0,-2.407668887,1.0623279916,-0.7917758086\)
С,0,-3.3541591698,1.7465212113,-0.0690768403
С,0,-4.6562565448,1.7867220017,-0.8274091608
C,0,2.1222118506,-0.6159440102,-0.0437987884
Si,0,3.905754453,-1.0751828527,0.0845564319
C,0,4.1686485624,-1.9379850067,1.7471813237
C,0,-0.7456990384,-1.5278776081,-0.4831952089
Si,0,-2.3819299574,-2.2446162639,0.159277691
C,0,-3.7091151965,-2.1345472333,-1.1921633469
C,0,5.1010821799,0.3928423766,-0.046447881
C,0,4.2787113316,-2.270614033,-1.3357622663
C,0,0.3243052018,-2.4297659491,-0.9134561725
```

C,0,-2.9370562707,-1.3919387362,1.7549600208
C,0,-2.1242325782,-4.0805088551,0.5604133412
O,0,-3.153317787,2.2220100946,1.0213884916
H,0,2.6243214969,4.6695661288,0.5390532308
H,0,0.2946427608,5.4780184363,0.3128804029
H,0,-1.562342767,3.8893242249,-0.0637565764
H,0,3.1311655461,2.2415677277,0.3810555282
H,0,0.1518146355,-3.4950241026,-0.7544809883
H,0,0.6893150365,-2.256141302,-1.9321839964
H,0,1.273718043,-2.0441943389,-0.3055357493
H,0,-3.9312068494,-1.747440661,2.050158514
H,0,-2.2461611725,-1.6436197446,2.5673247582
H,0,-2.9744373069,-0.3018508934,1.6921842809
H,0,-3.0459295014,-4.4930875741,0.9867533544
H,0,-1.881474273,-4.6761209059,-0.3255992173
H,0,-1.328213697,-4.2321270098,1.2972739421
H,0,-4.6825590638,-2.4691471788,-0.8147128003
H,0,-3.8143210534,-1.1143549841,-1.5695458487
H,0,-3.4453486763,-2.7738138857,-2.0416980821
H,0,6.1328054422,0.0243640478,-0.0979555882
H,0,4.9173772826,0.9895267596,-0.9455654722
H,0,5.033759884,1.0553872653,0.8224250411
H,0,5.3212105443,-2.605594621,-1.2901245537
H,0,3.6404040941,-3.1588495225,-1.2935979444
H,0,4.1255252669,-1.7932249463,-2.3092037726
H,0,5.2112084067,-2.2590564999,1.8530119115
H,0,3.9388917657,-1.2693319844,2.5830990997
H,0,3.5329710425,-2.823718636,1.8436669056
H,0,-4.4951463778,2.1419457395,-1.8483785116
H,0,-5.0775418113,0.7788694994,-0.8926036699
H,0,-5.3546827338,2.4381152274,-0.3033991467
4thmodelBiradUB
E(UB+HF-LYP) = -1508.44810618
Zero-point correction=
Thermal correction to Energy=
.422109 (Hartree/Particle)
.452698
Thermal correction to Enthalpy= . }45364
Thermal correction to Gibbs Free Energy= . }35920
Sum of electronic and zero-point Energies= -1508.025997
Sum of electronic and thermal Energies= -1507.995408
Sum of electronic and thermal Enthalpies= -1507.994464
Sum of electronic and thermal Free Energies= -1508.088901

```


H,0,6.2547632784, \(0.1677674097,0.2708746513\)
H,0,5.1653894972,1.1219915529,-0.7441604976
H,0,5.0224672289,1.1910672346,1.0212911033
H,0,5.4707007907,-2.3617654923,-1.3213464175
H,0,3.7905498586,--2.9126193635,--1.4001619439
H,0,4.2934459978,-1.4755098799,--2.3012591177
H,0,5.244384507,-2.273761817,1.8558958454
H,0,3.9489026127,-1.3308674344,2.6079337021
H,0,3.5645818978,-2.8181158947,1.7304218596
H,0,-4.7524170736,2.0455001385,--1.0080099582
H,0,-5.0374265317,0.5200797958,--0.1718618633
H,0,-5.359874662,2.0639519537,0.6730993973
4thmodelBiradUB - B3LYP//6-31G**
\(\mathrm{E}(\mathrm{UB}+\) HF-LYP \()=-1508.44810618\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & .422109 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & .452698 \\
Thermal correction to Enthalpy \(=\) & .453643 \\
Thermal correction to Gibbs Free Energy \(=\) & .359205 \\
Sum of electronic and zero-point Energies= & -1508.025997 \\
Sum of electronic and thermal Energies= & -1507.995408 \\
Sum of electronic and thermal Enthalpies \(=\) & -1507.994464 \\
Sum of electronic and thermal Free Energies \(=\) & -1508.088901
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}\) & \(\mathrm{Cal} /\) Mol-Kelvin \\
TOTAL & 284.073 & 111.608 & 198.761
\end{tabular}

C,0,1.6539169668,4.0971440398,-0.2658661267
C,0,0.3005816138,4.4561239005,-0.3263347307
C,0,-0.700814282,3.4874748172,-0.2984413978
C,0,-0.3276582525,2.137984796,-0.2083248019
C, \(0,1.0406100451,1.7781471122,-0.1548378762\)
C,0,2.0300858947,2.7513682577,-0.1808783841
C,0,-1.0944348903,0.9250526066,-0.1838564258
O, \(0,-2.4626198098,0.8782265636,-0.3587485322\)
C,0,1.1446268754,0.2934528202,-0.0950522578
C,0,2.2826554862,-0.3803431275,-0.0048539529
Si,0,4.0239637534,-0.9398645995,0.1332153692
C, \(0,-0.2754454185,-0.2379714769,-0.1379875518\)
C, \(0,-0.6461627289,-1.5834926435,-0.1400312942\)
C, \(0,0.4555990361,-2.6216209569,-0.1368893005\)
Si,0,-2.4327964278,-2.2512972558,-0.109670261
\(\mathrm{C}, 0,-3.3417078912,-1.7240299676,1.4742084938\)
\(\mathrm{C}, 0,-2.3861469507,-4.1494199587,-0.0436878843\)
\(\mathrm{C}, 0,-3.392582544,-1.8330980914,-1.6923532202\)
\(\mathrm{C}, 0,5.2236578095,0.5280322355,0.1737132174\)
\(\mathrm{C}, 0,4.4287736759,-2.0241500606,-1.3636041505\)
\(\mathrm{C}, 0,4.2096944189,-1.9338185033,1.7322443374\)
\(\mathrm{C}, 0,-3.2939403044,1.5820793165,0.4906602449\)
\(\mathrm{O}, 0,-2.9132658541,2.1263296798,1.4947642936\)
\(\mathrm{C}, 0,-4.7063752377,1.5523289963,-0.0323422951\)
\(\mathrm{H}, 0,2.4171782207,4.8691506832,-0.2873075001\)
\(\mathrm{H}, 0,0.0270897799,5.5050843529,--3.3926046416\)
\(\mathrm{H}, 0,-1.7440700362,3.779210062,-0.3324369625\)
\(\mathrm{H}, 0,3.0782770004,2.473489747,-0.1420588332\)
\(\mathrm{H}, 0,0.0743619149,-3.6399023288,-0.2192088603\)
\(\mathrm{H}, 0,1.1579610077,-2.4596156962,-0.9647861138\)
\(\mathrm{H}, 0,1.0511760775,-2.5663334921,0.7852674222\)
\(\mathrm{H}, 0,-4.418741771,-1.9105231532,1.3866451576\)
\(\mathrm{H}, 0,-2.978284056,-2.3297126865,2.3120628469\)
\(\mathrm{H}, 0,-3.1968778932,-0.678601915,1.753097609\)
\(\mathrm{H}, 0,-3.4155621051,-4.5230965229,0.0139708353\)
\(\mathrm{H}, 0,-1.9321592955,-4.5944073878,-0.9354479584\)
\(\mathrm{H}, 0,-1.8542673391,-4.5319273836,0.8337836759\)
\(\mathrm{H}, 0,-4.4155424695,-2.2239950783,-1.630519031\)
\(\mathrm{H}, 0,-3.4409811467,-0.7614772116,-1.8902358603\)
\(\mathrm{H}, 0,-2.9138824707,-2.3127088381,-2.5536040109\)
\(\mathrm{H}, 0,6.2547632784,0.1677674097,0.2708746513\)
\(\mathrm{H}, 0,5.1653894972,1.1219915529,--0.7441604976\)
\(\mathrm{H}, 0,5.0224672289,1.1910672346,1.0212911033\)
\(\mathrm{H}, 0,5.4707007907,-2.3617654923,-1.3213464175\)
\(\mathrm{H}, 0,3.7905498586,-2.9126193635,-1.4001619439\)
\(\mathrm{H}, 0,4.29344599978,-1.4755098799,-2.3012591177\)
\(\mathrm{H}, 0,5.244384507,-2.273761817,1.8558958454\)
\(\mathrm{H}, 0,3.9489026127,-1.3308674344,2.6079337021\)
\(\mathrm{H}, 0,3.5645818978,-2.8181158947,1.7304218596\)
\(\mathrm{H}, 0,-4.7524170736,2.0455001385,-1.0080099582\)
\(\mathrm{H}, 0,-5.0374265317,0.5200797958,-0.1718618633\)
\(\mathrm{H}, 0,-5.359874662,2.0639519537,0.6730993973\)

4thmodelProd
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-1508.52060319\)
Zero-point correction \(=\quad 0.424179\) (Hartree/Particle)
Thermal correction to Energy=
Thermal correction to Enthalpy=
0.454476
0.455420
\begin{tabular}{lc} 
Thermal correction to Gibbs Free Energy \(=\) & 0.361547 \\
Sum of electronic and zero-point Energies \(=\) & -1508.096424 \\
Sum of electronic and thermal Energies \(=\) & -1508.066127 \\
Sum of electronic and thermal Enthalpies \(=\) & -1508.065183 \\
Sum of electronic and thermal Free Energies \(=\) & -1508.159056
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 285.188 & 110.412 & 197.572
\end{tabular}

C, \(0,0.802706903,-3.8579444049,1.524104052\)
С,0,-0.5766901022,-4.0421499814,1.4110003259
С, \(0,-1.3852852048,-3.0427982366,0.85967805\)
C, \(0,-0.7833242367,-1.865257522,0.4292858414\)
C, \(0,0.6126131712,-1.6638533505,0.5438827869\)
C,0,1.4037877491,-2.667963252,1.0924613064
C,0,-1.3410470906,-0.6543328004,-0.1653530045
O, \(0,-2.6992313737,-0.4424587385,-0.3566064295\)
C, \(, 0,0.9268752682,-0.3090021379,0.0167157249\)
C, \(0,2.1072239861,0.350371811,-0.0540639135\)
Si,0,3.891286891,-0.0686400449,0.4098675664
C,0,-0.3813403607,0.2699927943,-0.424561927
C, \(0,-0.5679176752,1.623144751,-0.9892765831\)
C, \(0,0.0683093552,1.971054167,-2.1229545622\)
Si,0,-1.646778472,2.9149965902,-0.0800768442
C, \(0,-3.3110579804,3.1265727847,-0.9593216449\)
С, \(0,-0.7313323207,4.5742741406,-0.1013218634\)
C, \(0,-1.9277547211,2.3706021371,1.7062293459\)
С,0,4.5533709361,-1.5382778209,-0.5868473592
C,0,4.0828198974,-0.3533502029,2.2744197744
C,0,4.9047786469,1.4608571756,-0.0565726303
C, \(0,-3.3529089846,-1.206987531,-1.2989935818\)
O, \(0,-2.8038101834,-2.0292338757,-1.9855249117\)
C, \(0,-4.8154214006,-0.8433478096,-1.3368522678\)
H,0,1.4189916506,-4.6440052039,1.9499384217
H,0,-1.0264450054,-4.9702491387,1.7512384139
H, \(0,-2.4563287609,-3.1892132713,0.7670971234\)
H,0,2.4752699267,-2.548239529,1.1910045313
H,0,2.015483434,1.3540417141,-0.4755729192
H,0,-0.0188509172,2.9680174499,-2.548816177
H,0,0.6869381625,1.2699602618,-2.6799696581
H,0,-3.9025102353,3.9188749254,-0.4862894369
H,0,-3.1751805761,3.3948675522,-2.012286246
H,0,-3.8951167279,2.202571003,-0.9186456169
```

 H,0,-1.3158196375,5.3421227292,0.4182993856
 H,0,0.2398560759,4.4994534552,0.3987091862
 H,0,-0.5533388845,4.9338680905,-1.1202429947
 H,0,-2.5070042122,3.1236143408,2.2522519724
 H,0,-2.478959715,1.426648554,1.7484644802
 H,0,-0.9808978015,2.2292287721,2.2377974417
 H,0,5.592866195,-1.7484190904,-0.3095293734
 H,0,3.975874461,-2.45522017,-0.4422624962
 H,0,4.5372438118,-1.3075959676,-1.6574562697
 H,0,5.1274276072,-0.5773680239,2.5198263857
 H,0,3.8002328919,0.5494666326,2.826533389
 H,0,3.4664745116,-1.1735103108,2.6519183189
 H,0,5.9640587722,1.319017405,0.1840396882
 H,0,4.8356130688,1.6749986523,-1.1287721911
 H,0,4.5603200901,2.3501975995,0.4826401889
 H,0,-5.23099601,-0.8075661013,-0.326924031
 H,0,-4.9338836181,0.151382505,-1.7781918994
 H,0,-5.3505389795,-1.572023825,-1.9447662194

```
4thmodelSM
\(\mathrm{E}(\) RB+HF-LYP \()=-1508.47276852\)
Zero-point correction \(=\quad 0.421576\) (Hartree/Particle)
Thermal correction to Energy= \(\quad 0.453560\)
Thermal correction to Enthalpy= 0.454504
Thermal correction to Gibbs Free Energy= 0.355897
Sum of electronic and zero-point Energies \(=\quad-1508.051192\)
Sum of electronic and thermal Energies \(=\quad-1508.019209\)
Sum of electronic and thermal Enthalpies \(=\quad-1508.018264\)
Sum of electronic and thermal Free Energies \(=\quad-1508.116872\)
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 284.613 & 113.716 & 207.536
\end{tabular}

C,0,-2.381237053,3.8838974659,0.8784074189
C, \(0,-1.1139896079,4.394352073,1.1646422089\)
C, \(0,0.0087178244,3.6333532255,0.8661173775\)
C,0,-0.0999639271,2.3524772398,0.2853216257
C,0,-1.3915867486,1.8219137792,0.0168904489
C,0,-2.5101189914,2.620689041,0.3113634075
C,0,1.126968058,1.6919640061,-0.0311280471
C,0,2.2517597976,1.2748865583,-0.2678913809
Si,0,3.9874711281,0.7597197133,-0.5919329434

\footnotetext{
C,0,-1.6117159588,0.4784812084,-0.5471703868 O,0,-2.83777568,0.3819338562,-1.2658908838
C, \(0,-0.8269237868,-0.5774647564,-0.4717212409\)
C,0,-0.1514492732,-1.6905548896,-0.3692993334
Si,0,-0.4940825427,-2.8288997709,1.1338213691
C,0,-1.590934547,-4.2593477488,0.5611642383
С,0,0.8803274976,-2.1000904202,-1.4064212001
C, \(0,1.1746732275,-3.4996081059,1.7339226752\)
C, \(0,-1.3314230918,-1.8483546376,2.5056910565\)
C,0,4.1513610487,0.1720431702,-2.3804725239
C,0,4.4654858131,-0.6250714264,0.6029427901
C,0,5.1059709855,2.2572322487,-0.3085098877
H,0,1.8677317308,-2.2096405217,-0.9449242989
H, \(, 0.0 .9548645679,-1.3686028947,-2.2143595893\)
H,0,0.6214881608,-3.0735197041,-1.840145936
C,0,-3.750460547,-0.5811498215,-0.9523738952
H,0,-3.497370418,2.2334521166,0.0911384228
H,0,-3.2706222086,4.4668324381,1.098637561
Н,0,1.002578174,4.0207653569,1.0636789282
H,0,-1.0009146497,5.3788686821,1.6078695373
H,0,-1.7564587909,-4.9715533126,1.377715673
H,0,-2.5641810772,-3.8777156518,0.2387977372
H,0,-1.1437223322,-4.8114974055,-0.2725728025
H,0,-1.5395950211,-2.4904723579,3.3689822147
H,0,-0.7016045388,-1.0202965629,2.8467978726
H,0,-2.2776505455,-1.4359771272,2.1465004011
H,0,1.0317126338,-4.1362793821,2.6145448093
H,0,1.6759792548,-4.1050301207,0.9711264264
H,0,1.8530276441,-2.6888096295,2.0205047619
H,0,6.1561504282,1.9959604944,-0.481914884
H,0,4.8482630911,3.0774992118,-0.98608054
H,0,5.0189144685,2.6305589199,0.7169093993
H,0,5.5016678338,-0.9410294031,0.4361118891
H,0,4.3806970522,-0.2922907544,1.6425049699
H,0,3.8247899935,-1.5042760609,0.4818784485
H,0,5.1864804237,-0.1146031614,-2.5987188231
H,0,3.5144993407,-0.6951169701,-2.5799157629
H,0,3.8682630796,0.9630179039,-3.0823553315
O,0,-3.640945492,-1.3763416571,-0.0489460096
C,0,-4.9145389043,-0.5074590035,-1.9119100644
Н,0,-5.3187835871,0.5077527276,-1.9470135023
H,0,-4.5738557702,-0.7566825722,-2.9215252409
H,0,-5.6855506495,-1.2106662822,-1.5993068752
}

```

 H,0,-0.5111228746,1.7292576604,2.2320876321
 H,0,3.0415381738,4.7139000726,-0.4210296755
 H,0,1.9321162001,4.526559756,0.9440528732
 H,0,3.3027820047,3.4241695805,0.762833153
 H,0,3.1043438677,2.5348298729,-2.6834531146
 H,0,3.2616451518,1.2099524471,-1.517178841
 H,0,1.9391742433,1.2034757892,-2.6886000204
 H,0,0.6724580441,4.5364484007,-2.4609628517
 H,0,-0.4636014135,3.1817156248,-2.3882844147
 H,0,-0.4645609855,4.4100619283,-1.1156578602
 H,0,-5.9372077096,-1.1836877519,0.1387405213
 H,0,-4.7400565239,-1.5279929419,-1.1166158195
 H,0,-4.5465668717,-2.2168553678,0.5038025409
 H,0,-5.1860352273,0.6405995155,2.5700290041
 H,0,-3.7686552804,-0.3589203758,2.923949731
 H,0,-3.584177733,1.3836545297,2.6818287887
 H,0,-5.5526159029,1.8669894571,-0.3417218985
 H,0,-3.9525657899,2.6120645844,-0.2065270089
 H,0,-4.323160513,1.554412807,-1.5745155261
 O,0,2.4869864586,-1.6651434902,2.4002757354
 C,0,4.7445509382,-1.0160648922,1.7974503848
 H,0,5.0149594323,0.043405845,1.7655920757
 H,0,5.0385445855,-1.4461155368,2.7540329541
 H,0,5.2781480596,-1.513091224,0.982294606
4threversedBiradUB - UB3LYP//6-31G**
E}(\textrm{UB}+\mathrm{ HF-LYP })=-1508.4423621
Zero-point correction= 0.421634 (Hartree/Particle)
Thermal correction to Energy= 0.452512
Thermal correction to Enthalpy=}0.45345
Thermal correction to Gibbs Free Energy= 0.358080
Sum of electronic and zero-point Energies= -1508.020728
Sum of electronic and thermal Energies= -1507.989850
Sum of electronic and thermal Enthalpies= -1507.988906
Sum of electronic and thermal Free Energies= -1508.084282

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	283.955	111.902	200.736

C, $0,0.6706497456,0.5617933614,-0.0508663259$
C,0,1.9803394816,0.0265118707,-0.1113639943
С, $0,1.9850392522,-1.3911207182,-0.3457983778$

```
\(\mathrm{C}, 0,0.6375954811,-1.8206566576,-0.402507794\)
\(\mathrm{C}, 0,-0.2440014597,-0.6423948226,-0.1527132665\)
\(\mathrm{C}, 0,0.3353221416,-3.1507743865,-0.6604026012\)
\(\mathrm{C}, 0,1.3839490877,-4.0579736271,-0.8596794949\)
\(\mathrm{C}, 0,2.7172510929,-3.6334207208,-0.800160533\)
\(\mathrm{C}, 0,3.0323885715,-2.2992351416,-0.5450273149\)
\(\mathrm{O}, 0,3.1211772299,0.8044525861,-0.1956163543\)
\(\mathrm{C}, 0,4.1177469375,0.6495545411,0.7407613312\)
\(\mathrm{C}, 0,5.2799258674,1.5467682833,0.3990673875\)
\(\mathrm{C}, 0,-1.5453879788,-0.7072107313,0.0957379306\)
\(\mathrm{Si}, 0,-3.2006760092,-1.4151101304,0.5019882209\)
\(\mathrm{C}, 0,-3.489591505,-1.1876506869,2.3577929036\)
\(\mathrm{C}, 0,0.3045953212,1.908367418,0.0796644973\)
\(\mathrm{Si}, 0,-1.347875112,2.679703107,-0.4518459864\)
\(\mathrm{C}, 0,-2.6091258022,2.6959027414,0.9655396672\)
\(\mathrm{C}, 0,-3.3002368474,-3.2658784408,0.0966756116\)
\(\mathrm{C}, 0,-4.5387334731,-0.523733898,-0.4924388157\)
\(\mathrm{C}, 0,1.3436317421,2.9057452153,0.5675490151\)
\(\mathrm{C}, 0,-2.0431046654,1.8960656344,-2.0300726846\)
\(\mathrm{C}, 0,-1.0142158735,4.4978027702,-0.8986657513\)
\(\mathrm{O}, 0,4.0373896851,-0.0905759007,1.6874928045\)
\(\mathrm{H}, 0,1.1596077103,-5.0999296867,-1.0672224704\)
\(\mathrm{H}, 0,3.5163783949,-4.3521977677,-0.9559379219\)
\(\mathrm{H}, 0,4.0667055807,-1.9774606162,-0.4937111955\)
\(\mathrm{H}, 0,-0.6945190032,-3.4829574467,-0.7231028292\)
\(\mathrm{H}, 0,0.8684420833,3.8001756595,0.9796718371\)
\(\mathrm{H}, 0,1.9739561347,2.4809794809,1.3536842587\)
\(\mathrm{H}, 0,2.008737457,3.2451651743,-0.2380463079\)
\(\mathrm{H}, 0,-2.9969177255,2.3676823587,-2.2942448412\)
\(\mathrm{H}, 0,-1.351400968,2.066311951,-2.862679449\)
\(\mathrm{H}, 0,-2.2075348853,0.8209087717,-1.9476635503\)
\(\mathrm{H}, 0,-1.9213191725,4.9309539729,-1.336244688\)
\(\mathrm{H}, 0,-0.7466572528,5.1134237061,-0.0342342966\)
\(\mathrm{H}, 0,-0.214965458,4.5979884088,-1.6408872546\)
\(\mathrm{H}, 0,-3.5436136602,3.1737588252,0.6486112791\)
\(\mathrm{H}, 0,-2.8437971133,1.6908534271,1.3227003028\)
\(\mathrm{H}, 0,-2.2191241508,3.2665553287,1.8157153801\)
\(\mathrm{H}, 0,-4.3037199126,-3.6367700794,0.3380145686\)
\(\mathrm{H}, 0,-3.1240482786,-3.4613348244,-0.9660412297\)
\(\mathrm{H}, 0,-2.5818279498,-3.8521045614,0.6776119128\)
\(\mathrm{H}, 0,-5.522636589,--0.9402171255,-0.2475884216\)
\(\mathrm{H}, 0,-4.5641984964,0.5478143777,-0.2763626886\)
\(\mathrm{H}, 0,-4.3855676423,-0.6450062619,-1.5695667252\)
\(\mathrm{H}, 0,-4.4573122824,-1.6143101303,2.6460495669\)
```

 H,0,-2.7133901552,-1.6929800562,2.9412698068
 H,0,-3.4906754305,-0.1326040532,2.6470999739
 H,0,5.6358061295,1.3361851442,-0.6132486579
 H,0,4.959459984,2.5927275158,0.420593062
 H,0,6.081090325,1.3903013253,1.1202093536

```
4threversedTS - UB3LYP//6-31G**
\(\mathrm{E}(\mathrm{UB}+\) HF-LYP \()=-1508.42134865\)
\begin{tabular}{lc} 
Zero-point correction= & 0.419613 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.450275 \\
Thermal correction to Enthalpy \(=\) & 0.451219 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.356828 \\
Sum of electronic and zero-point Energies \(=\) & -1508.001736 \\
Sum of electronic and thermal Energies= & -1507.971074 \\
Sum of electronic and thermal Enthalpies \(=\) & -1507.970130 \\
Sum of electronic and thermal Free Energies \(=\) & -1508.064520
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 282.552 & 111.380 & 198.662
\end{tabular}

C,0,-0.1464490195,2.1318696514,-0.0118659322
C,0,0.4283195243,3.3803473591,0.2174726805
C,0,-0.3825956833,4.5193799793,0.2253174446
С,0,-1.7616433406,4.4143745824,-0.0014768371
C,0,-2.3499549091,3.1730301413,-0.232064143
C,0,-1.539978571,2.0290171887,-0.2365340943
С,0,-1.9298204562,0.6620043738,-0.4319781767
О,0,-3.2854181478,0.3709741095,-0.5564763964
С,0,-3.9378692186,-0.2724379748,0.4742625191
O,0,-3.4065923654,-0.6124411034,1.499001752
C, \(0,0.5245041679,0.8235057937,-0.0632308998\)
C,0,1.7791966475,0.4916085498,-0.0298100348
Si,0,3.6175235633,0.5649262887,0.0514320097
C,0,4.3116191361,0.3306601487,-1.6924052485
C,0,-0.908281518,-0.2838981558,-0.407583257
С, \(0,-0.8952489141,-1.641691067,-0.6397231065\)
C,0,-2.0280273595,-2.2573581616,-1.4477988174
Si,0,0.3737256857,-2.8653938514,0.0633133555
C,0,-0.466870026,-4.5641192575,0.1595522831
C, \(0,0.892238433,-2.3970963955,1.8180741212\)
C,0,1.8522347384,-3.0239669595,-1.114651362
C,0,4.2743862571,-0.7772431815,1.2081984559
```

C,0,4.1692244245,2.256033117,0.7115244003
C,0,-5.3843901768,-0.4820179896,0.1027020257
$\mathrm{H}, 0,1.4941298609,3.4635701459,0.4022755187$
$\mathrm{H}, 0,0.0601963848,5.4925733248,0.4147755696$
H,0,-3.4158157852,3.0844173733,-0.4151784295
H,0,-2.3771938631,5.3091724485,0.0042943944
$\mathrm{H}, 0,-2.7315387799,-2.8030412088,-0.8035026551$
$\mathrm{H}, 0,-2.5927151319,-1.5128734797,-2.0124953324$
H,0,-1.6373919795,-2.992937668,-2.1611513287
H,0,2.6153722983,-3.6935215449,-0.7011716091
H,0,1.5335609686,-3.4397305576,-2.0768577923
H,0,2.3165226767,-2.0542364017,-1.3099224202
H,0,1.6252813991,-3.1117904887,2.2098137459
H,0,1.3270987146,-1.3970892784,1.8706748023
$\mathrm{H}, 0,0.0200233076,-2.4148115303,2.4804028376$
H,0,0.2286397944,-5.2956352768,0.5870356032
Н,0,-1.3518617903,-4.5398687527,0.804281209
H,0,-0.7750153472,-4.941612682,-0.8206911953
H,0,5.2610269398,2.2812503288,0.8108958823
Н,0,3.8804460174,3.0677940996,0.0360929599
$\mathrm{H}, 0,3.7409736771,2.4646516662,1.6971763532$
H,0,5.3668940632,-0.7141596707,1.2706446103
$\mathrm{H}, 0,3.8751017038,-0.6646121712,2.2209929953$
H,0,4.0146254903,-1.7790697101,0.8550719344
H,0,5.4043148089,0.4167088397,-1.6801044518
H,0,4.0591938016,-0.6508350689,-2.1052360532
H,0,3.9241761665,1.0916769436,-2.3773669509
H,0,-5.4512590939,-1.1400788376,-0.7689361797
Н,0,-5.9115763073,-0.9291963369,0.9444990414
Н,0,-5.8481801918,0.469556871,-0.1708431444

```

5BBBiradTS - UB3LYP//6-311+G**
\(\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-348.915179034\)
Zero-point correction= 0.151613 (Hartree/Particle)
Thermal correction to Energy= 0.160009
Thermal correction to Enthalpy= 0.160953
Thermal correction to Gibbs Free Energy= 0.118876
Sum of electronic and zero-point Energies \(=\quad-348.763566\)
Sum of electronic and thermal Energies \(=\quad-348.755170\)
Sum of electronic and thermal Enthalpies \(=\quad-348.754226\)
Sum of electronic and thermal Free Energies= \(=348.796303\)
E (Thermal) CV S
\begin{tabular}{|c|c|c|c|}
\hline Total & \(\mathrm{KCal} / \mathrm{Mol}\) 100.407 & Cal/Mol-Kelvin 32.649 & Cal/Mol-Kelvin
\[
88.560
\] \\
\hline \multicolumn{4}{|l|}{C, \(0,-1.1348927375,-1.7913598576,-0.1784865552\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,0.0636097596,-1.0452668253,-0.2031591674\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,-0.3188713427,0.3891250253,0.0403865999\)} \\
\hline \multicolumn{4}{|l|}{С, \(0,-1.7550469327,0.3910142037,0.1803503704\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,-2.2131063211,-0.9182549178,0.0713738713\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,1.3813535114,-1.4373233191,-0.2911917644\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,2.4218779268,-0.4374327492,-0.4553424893\)} \\
\hline \multicolumn{4}{|l|}{C,0,0.5606936156,1.348153433, 0.3983719213} \\
\hline \multicolumn{4}{|l|}{C,0,0.3712195966,2.8138586902,0.4358556783} \\
\hline \multicolumn{4}{|l|}{H,0,-1.2156014893,-2.8510705337,-0.3794977116} \\
\hline \multicolumn{4}{|l|}{H,0,-3.2487638937,-1.2221972197,0.1516818975} \\
\hline \multicolumn{4}{|l|}{H,0,-2.3511184433, 1.2548498236,0.4379336471} \\
\hline \multicolumn{4}{|l|}{H,0,1.6427920638,-2.4720042277,-0.082635587} \\
\hline \multicolumn{4}{|l|}{H,0,3.4263530511,-0.7593750121,-0.1790859228} \\
\hline \multicolumn{4}{|l|}{H,0,1.9978119586, \(0.4897157776,0.2006012588\)} \\
\hline \multicolumn{4}{|l|}{H,0,2.4364810852,0.0445421059,-1.4360923621} \\
\hline \multicolumn{4}{|l|}{H,0,0.6655185094,3.2282686334,1.4055322498} \\
\hline \multicolumn{4}{|l|}{H, 0, 1.0383360841,3.2765654677,-0.3031141552} \\
\hline \multicolumn{4}{|l|}{H,0,-0.6528313811,3.135623086,0.1957258961} \\
\hline \multicolumn{4}{|l|}{5BBbiradTSBrk - BD (T)//6-31+G**} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{E}(\mathrm{RHF})=-346.464341085\)} \\
\hline \multicolumn{4}{|l|}{C,0,-1.1348927375,-1.7913598576,-0.1784865552} \\
\hline \multicolumn{4}{|l|}{C, \(0,0.0636097596,-1.0452668253,-0.2031591674\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,-0.3188713427,0.3891250253,0.0403865999\)} \\
\hline \multicolumn{4}{|l|}{С,0,-1.7550469327,0.3910142037,0.1803503704} \\
\hline \multicolumn{4}{|l|}{C, \(0,-2.2131063211,-0.9182549178,0.0713738713\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,1.3813535114,-1.4373233191,-0.2911917644\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,2.4218779268,-0.4374327492,-0.4553424893\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,0.5606936156,1.348153433,0.3983719213\)} \\
\hline \multicolumn{4}{|l|}{C,0,0.3712195966,2.8138586902,0.4358556783} \\
\hline \multicolumn{4}{|l|}{H,0,-1.2156014893,-2.8510705337,-0.3794977116} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{H}, 0,-3.2487638937,-1.2221972197,0.1516818975\)} \\
\hline \multicolumn{4}{|l|}{H,0,-2.3511184433, 1.2548498236,0.4379336471} \\
\hline \multicolumn{4}{|l|}{H,0,1.6427920638,-2.4720042277,-0.082635587} \\
\hline \multicolumn{4}{|l|}{H,0,3.4263530511,-0.7593750121,-0.1790859228} \\
\hline \multicolumn{4}{|l|}{H,0,1.9978119586, \(0.4897157776,0.2006012588\)} \\
\hline \multicolumn{4}{|l|}{H,0,2.4364810852,0.0445421059,-1.4360923621} \\
\hline \multicolumn{4}{|l|}{H,0,0.6655185094,3.2282686334,1.4055322498} \\
\hline & 60841,3.2765 & 54677,-0.303114 & \\
\hline
\end{tabular}
```

H,0,-0.6528313811,3.135623086,0.1957258961

```

\section*{5BBBiradUB - UB3LYP//6-311+G**}
\(\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-348.924583642\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.154228 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.164021 \\
Thermal correction to Enthalpy \(=\) & 0.164965 \\
Thermal correction to Gibbs Free Energy= & 0.119146 \\
Sum of electronic and zero-point Energies= & -348.770356 \\
Sum of electronic and thermal Energies= & -348.760563 \\
Sum of electronic and thermal Enthalpies \(=\) & -348.759619 \\
Sum of electronic and thermal Free Energies= & -348.805438
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 102.924 & 35.239 & 96.435
\end{tabular}

C,0,-0.9838679972,0.1864479313,0.0124939581
C,0,0.407279859,-0.3844918799,-0.0069972368
С,0,0.2389537152,-1.8446462135,-0.0241728365
C,0,-1.1134969256,-2.1345334527,-0.0060651637
С,0,-1.8661762607,-0.9452615285,0.0255167039
C,0,1.562332488,0.2696810493,-0.020892774
C,0,-1.3692057196,1.494634753,0.0005660547
С,0,-0.4771313606,2.6927074949,-0.0159814009
C,0,3.0028264131,0.0041995194,0.0219593358
Н,, ,-2.9450864244,-0.8773344481,0.0526431211
H,0,-1.5328538669,-3.1324877564,-0.0111392828
H,0,1.052222116,-2.5549755112,-0.0519946768
H,0,-2.4401484462,1.6856165357,0.0110280935
H,0,-0.9084446675,3.4946900783,-0.6231700283
\(\mathrm{H}, 0,0.5163312806,2.4508166334,-0.40319193\)
H,0,-0.3385091745,3.1007527773,0.9947061167
H,0,3.4629570605,0.473234033,0.8990262324
H,0,3.2120405561,-1.0751317183,0.0756453898
\(\mathrm{H}, 0,3.5124062968,0.4023933364,-0.8621128791\)
5BBBiradUBrk - UBD (T)//6-31+G**
\(\mathrm{E}(\mathrm{UHF})=-346.549228226\)
C,0,-0.9838679972,0.1864479313,0.0124939581
C, \(0,0.407279859,-0.3844918799,-0.0069972368\)
C,0,0.2389537152,-1.8446462135,-0.0241728365
```

C,0,-1.1134969256,-2.1345334527,-0.0060651637 С,0,-1.8661762607,-0.9452615285,0.0255167039 C,0,1.562332488,0.2696810493,-0.020892774 C, $0,-1.3692057196,1.494634753,0.0005660547$ С,0,-0.4771313606,2.6927074949,-0.0159814009 C,0,3.0028264131,0.0041995194,0.0219593358
H,0,-2.9450864244,-0.8773344481,0.0526431211
H,0,-1.5328538669,-3.1324877564,-0.0111392828
H,0,1.052222116,-2.5549755112,-0.0519946768
H,0,-2.4401484462,1.6856165357,0.0110280935
H,0,-0.9084446675,3.4946900783,-0.6231700283
H,0,0.5163312806,2.4508166334,-0.40319193
H,0,-0.3385091 745,3.1007527773,0.9947061167
H,0,3.4629570605,0.473234033,0.8990262324
H,0,3.2120405561,-1.0751317183,0.0756453898
H,0,3.5124062968,0.4023933364,-0.8621128791
5BBBiradBrk- BD (T) 6-31+G**
E(RHF) = -346.469511581
C,0,-0.9838679972,0.1864479313,0.0124939581
C,0,0.407279859,-0.3844918799,-0.0069972368
C,0,0.2389537152,-1.8446462135,-0.0241728365
C,0,-1.1134969256,-2.1345334527,-0.0060651637
C,0,-1.8661762607,-0.9452615285,0.0255167039
C,0,1.562332488,0.2696810493,-0.020892774
C,0,-1.3692057196,1.494634753,0.0005660547
C,0,-0.4771313606,2.6927074949,-0.0159814009
C,0,3.0028264131,0.0041995194,0.0219593358
H,0,-2.9450864244,-0.8773344481,0.0526431211
H,0,-1.5328538669,-3.1324877564,-0.0111392828
H,0,1.052222116,-2.5549755112,-0.0519946768
H,0,-2.4401484462,1.6856165357,0.0110280935
H,0,-0.9084446675,3.4946900783,-0.6231700283
H,0,0.5163312806,2.4508166334,-0.40319193
H,0,-0.3385091745,3.1007527773,0.9947061167
H,0,3.4629570605,0.473234033,0.8990262324
H,0,3.2120405561,-1.0751317183,0.0756453898
H,0,3.5124062968,0.4023933364,-0.8621128791
5BBCarbene - B3LYP//6-311+G**
E(RB+HF-LYP})=-348.918046261

```
\begin{tabular}{lc} 
Thermal correction to Energy \(=\) & 0.164725 \\
Thermal correction to Enthalpy \(=\) & 0.165669 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.122037 \\
Sum of electronic and zero-point Energies= & -348.762400 \\
Sum of electronic and thermal Energies \(=\) & -348.753322 \\
Sum of electronic and thermal Enthalpies \(=\) & -348.752377 \\
Sum of electronic and thermal Free Energies \(=\) & -348.796009
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
\hline Total & 103.366 & 34.040 & 91.830 \\
\hline C, \(0,0\). & 09432,0.2356 & 59514,0.059348 & \\
\hline C, \(0,-0\) & 003219,0.113 & 960834,0.010885616 & \\
\hline C, \(0,-1\) & 979315,1.436 & 9015,0.0234421 & \\
\hline C, \(0,0\). & 36866,2.3556 & 33321,0.0723508 & \\
\hline C, \(0,1\). & 78881,1.6502 & \(73622,0.1332850\) & \\
\hline C, \(0,-1\) & 679495,-1.01 & 070325,-0.34586 & 3572 \\
\hline C,0,1. & 52018,-0.744 & 05741,-0.009999 & 221 \\
\hline C, \(0,1\). & 69716,-2.205 & 98462,-0.050993 & \\
\hline C, \(0,-2\) & 666526,-1.08 & 276221,0.022555 & 029 \\
\hline H,0,2. & 24209,2.0656 & \(83373,0.2510567\) & \\
\hline H,0,-0 & 276639,3.433 & 294264,0.0868432 & 952 \\
\hline H,0,-2 & 357602,1.716 & 9715,-0.0831830 & \\
\hline H,0,2. & 25657,-0.424 & 93305,-0.06615 & 8644 \\
\hline H,0,2. & 03007,-2.734 & 721076,-0.622186 & 4578 \\
\hline H,0,0. & 28274,-2.386 & 09306,-0.458560 & \\
\hline H,0,1. & 33368,-2.624 & 494802,0.9634617 & 597 \\
\hline H,0,-2 & 120071,-1.866 & 105114,0.794615 & 6041 \\
\hline H,0,-3 & 230435,-0.17 & 245154,0.450346 & 5695 \\
\hline H,0,-3 & 239915,-1.46 & 106192,-0.80631 & 247 \\
\hline 5BBC & eBrk - BD (T) & /6-31+G** & \\
\hline E(RHF) & 46.50022165 & & \\
\hline C, \(0,0\). & 09432,0.2356 & 59514,0.0593483 & \\
\hline C, \(0,-0\) & 003219,0.113 & 960834,0.010885616 & \\
\hline C, \(0,-1\) & 979315,1.436 & 9015,0.0234421576 & \\
\hline C, \(0,0\). & 036866,2.3556 & 33321,0.0723508 & \\
\hline C, \(0,1\). & 78881,1.6502 & \(73622,0.13328508\) & \\
\hline C, \(0,-1\) & 679495,-1.01 & 070325,-0.34586 & 3572 \\
\hline C, \(0,1\). & 52018,-0.744 & 05741,-0.009999 & 221 \\
\hline C, \(0,1\). & 69716,-2.205 & 98462,-0.050993 & \\
\hline C, \(0,-2\) & 666526,-1.08 & 276221,0.022555 & 029 \\
\hline
\end{tabular}
```

H,0,2.2385924209,2.0656583373,0.2510567941
H,0,-0.0286276639,3.4330294264,0.0868432952
H,0,-2.0593357602,1.716699715,-0.083183002
H,0,2.9291025657,-0.4244493305,-0.0661548644
H,0,2.3911303007,-2.7342721076,-0.6221864578
H,0,0.6180028274,-2.3865109306,-0.458560644
H,0,1.6296833368,-2.6243494802,0.9634617597
H,0,-2.7720120071,-1.8663105114,0.7946156041
H,0,-3.1577230435,-0.1742245154,0.4503465695
H,0,-3.3104239915,-1.4612106192,-0.806319247

```

\section*{5BBCarbeneTS - B3LYP//6-311+G** \\ \(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-348.914503722\)}


C,0,-1.1380842213,-1.7784866941,-0.1905742946
C,0,0.0680961632,-1.0372684624,-0.2102275845
C,0,-0.3050418237,0.3992047482,0.0404868786
C,0,-1.7263759363,0.4071798405,0.1865881847
С, \(0,-2.2011967589,-0.9067265079,0.0714193864\)
С,0,1.3759563193,-1.4453996718,-0.3047458609
С, \(0,2.4384695876,-0.4660893621,-0.4648970269\)
C,0,0.5713614606,1.3514559213,0.4648249036
C,0,0.3106044134,2.8082866834,0.4304615209
H,0,-1.2257081945,-2.8334966282,-0.4129620748
H,0,-3.2397997686,-1.1997077416,0.1532658249
H,0,-2.3149389083,1.2681520089,0.4703800508
H,0,1.6179854489,-2.4885393444,-0.1134350915
H,0,3.4370089904,-0.825445189,-0.2148096234
H,0,2.062463577,0.4430463497,0.2080168172
H,0,2.45039544,0.0195633005,-1.443786966
H,0,0.5573117211,3.2783134604,1.387874045
```

H,0,1.0013611683,3.2543741028,-0.2984829863
H,0,-0.7088146983,3.09080071,0.1239233599

```

\section*{5BBCarbeneTSBrk - BD (T)//6-31+G** \\ \(\mathrm{E}(\) RHF \()=-346.471505943\)}
```

C,0,-1.1380842213,-1.7784866941,-0.1905742946
С, $0,0.0680961632,-1.0372684624,-0.2102275845$
C, $0,-0.3050418237,0.3992047482,0.0404868786$
C,0,-1.7263759363,0.4071798405,0.1865881847
С,0,-2.2011967589,-0.9067265079,0.0714193864
С,0,1.3759563193,-1.4453996718,-0.3047458609
С, $0,2.4384695876,-0.4660893621,-0.4648970269$
C, $0,0.5713614606,1.3514559213,0.4648249036$
C,0,0.3106044134,2.8082866834,0.4304615209
H,0,-1.2257081945,-2.8334966282,-0.4129620748
Н,0,-3.2397997686,-1.1997077416,0.1532658249
H,0,-2.3149389083,1.2681520089,0.4703800508
H,0,1.6179854489,-2.4885393444,-0.1134350915
H,0,3.4370089904,-0.825445189,-0.2148096234
H,0,2.062463577,0.4430463497,0.2080168172
H,0,2.45039544,0.0195633005,-1.443786966
H,0,0.5573117211,3.2783134604,1.387874045
H,0,1.0013611683,3.2543741028,-0.2984829863
H,0,-0.7088146983,3.09080071,0.1239233599
H,0,1.0013611683,3.2543741028,-0.2984829863
Н,0,-0.7088146983,3.09080071,0.1239233599

```

\section*{5BBSM - B3LYP//6-311+G**}
\(\mathrm{E}(\) RB+HF-LYP \()=-348.944978128\)
Zero-point correction= 0.155074 (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.166020\)
Thermal correction to Enthalpy= 0.166964
Thermal correction to Gibbs Free Energy= 0.116662
Sum of electronic and zero-point Energies \(=\quad-348.789904\)
Sum of electronic and thermal Energies \(=\quad-348.778958\)
Sum of electronic and thermal Enthalpies \(=\quad-348.778014\)
Sum of electronic and thermal Free Energies= \(\quad-348.828316\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 104.179 & 36.973 & 105.870
\end{tabular}

\footnotetext{
C,0,0.9724769804,1.8574408216,0.0663047322 C,0,1.4606692184,0.7621228502,-0.0885879885 C,0,2.1126855815,-0.4781806113,-0.280576767 C, \(0,1.5634721155,-1.7121920012,-0.2180233862\) C, \(0,0.1840595985,-2.1052134827,0.0530230912\) C,0,-0.8624881572,-1.3419548866,0.2941332517 С,0,-1.9429571181,-0.6551548821,0.5327783133 C, \(0,-2.8992987335,-0.1451831571,-0.5185665695\) C, \(0,0.353376512,3.1585512663,0.2685836196\) H,0,0.0072098918,-3.1803928289,0.0523935508 H,0,2.2367453353,-2.5455545474,-0.393487815 H,0,3.1755473921,-0.4184126759,-0.5007938623 H, \(0,-2.1762570835,-0.4061133255,1.5684727758\) H, \(,--3.9110231609,-0.5216409748,-0.335290812\) H,0,-2.590462605,-0.4524985236,-1.5183364814 H,0,-2.9505157027,0.9484704127,-0.4948336243 Н,0,1.003614609,3.8199232239,0.8493034772 H,0,0.1487161783,3.6514338557,-0.6872673429
H,0,-0.5955508391,3.0633698807,0.8054303528

\section*{5BBSMBrk - BD (T)//6-31+G**}
\(\mathrm{E}(\) RHF \()=-346.525246849\)
C,0,0.9724769804,1.8574408216,0.0663047322
C,0,1.4606692184,0.7621228502,-0.0885879885
C,0,2.1126855815,-0.4781806113,-0.280576767
C,0,1.5634721155,-1.7121920012,-0.2180233862
C,0,0.1840595985,-2.1052134827,0.0530230912
C,0,-0.8624881572,-1.3419548866,0.2941332517
C,0,-1.9429571181,-0.6551548821,0.5327783133
C,0,-2.8992987335,-0.1451831571,-0.5185665695
C, \(0,0.353376512,3.1585512663,0.2685836196\)
H,0,0.0072098918,-3.1803928289,0.0523935508
H,0,2.2367453353,-2.5455545474,-0.393487815
H,0,3.1755473921,-0.4184126759,-0.5007938623
H,0,-2.1762570835,-0.4061133255,1.5684727758
H, \(,--3.9110231609,-0.5216409748,-0.335290812\)
H, \(,-2.590462605,-0.4524985236,-1.5183364814\)
H,0,-2.9505157027,0.9484704127,-0.4948336243
Н,0,1.003614609,3.8199232239,0.8493034772
H,0,0.1487161783,3.6514338557,-0.6872673429
H,0,-0.5955508391,3.0633698807,0.8054303528

\section*{5BBTS - B3LYP//6-311+G**}
}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-348.891441144\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.152374 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.161449 \\
Thermal correction to Enthalpy \(=\) & 0.162393 \\
Thermal correction to Gibbs Free Energy= & 0.118572 \\
Sum of electronic and zero-point Energies= & -348.739067 \\
Sum of electronic and thermal Energies= & -348.729992 \\
Sum of electronic and thermal Enthalpies \(=\) & -348.729048 \\
Sum of electronic and thermal Free Energies= & -348.772870
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 101.311 & 33.963 & 92.230
\end{tabular}
\[
\begin{aligned}
& \mathrm{C}, 0,0.4688658684,1.4746868646,-0.0637473392 \\
& \mathrm{C}, 0,-0.467956475,0.6315875453,-0.0707044631 \\
& \mathrm{C}, 0,-1.8913641618,0.4424797564,-0.1836971402 \\
& \mathrm{C}, 0,-2.321076316,-0.8383257827,-0.0910151472 \\
& \mathrm{C}, 0,-1.2528221603,-1.7913689582,0.1109636974 \\
& \mathrm{C}, 0,-0.0151445756,-1.2811476261,-0.0139111032 \\
& \mathrm{C}, 0,1.2974210572,-1.5031152374,-0.2610784314 \\
& \mathrm{C}, 0,2.3061524307,-0.6147618687,0.2873755993 \\
& \mathrm{C}, 0,1.0073360946,2.8230537545,0.1566638756 \\
& \mathrm{H}, 0,-1.4340744336,-2.8069119179,0.4439383532 \\
& \mathrm{H}, 0,-3.3641196875,-1.125989407,-0.1232518994 \\
& \mathrm{H}, 0,-2.537194559,1.2962030258,-0.3468443676 \\
& \mathrm{H}, 0,1.5533111138,-2.1107697129,-1.1282227243 \\
& \mathrm{H}, 0,3.3131736806,-0.7628075343,-0.1008677456 \\
& \mathrm{H}, 0,2.3140499267,-0.5363835203,1.3761034023 \\
& \mathrm{H}, 0,1.8867572824,0.4370272401,-0.028939308 \\
& \mathrm{H}, 0,1.6879977599,3.125605357,-0.6451500869 \\
& \mathrm{H}, 0,0.2102394873,3.5726521234,0.2388730498 \\
& \mathrm{H}, 0,1.581388856,2.8528436595,1.0892640385
\end{aligned}
\]

\section*{5BBTSBrk - BD (T)//6-31+G** \\ \(\mathrm{E}(\) RHF \()=-346.431029216\)}

C,0,0.4688658684,1.4746868646,-0.0637473392
C,0,-0.467956475,0.6315875453,-0.0707044631
С, \(0,-1.8913641618,0.4424797564,-0.1836971402\)
C, \(0,-2.321076316,-0.8383257827,-0.0910151472\)
C,0,-1.2528221603,-1.7913689582,0.1109636974
C,0,-0.0151445756,-1.2811476261,-0.0139111032

C, \(0,1.2974210572,-1.5031152374,-0.2610784314\)
C,0,2.3061524307,-0.6147618687,0.2873755993
C, \(, 1.1 .0073360946,2.8230537545,0.1566638756\)
H,0,-1.4340744336,-2.8069119179,0.4439383532
H,0,-3.3641196875,-1.125989407,-0.1232518994
H,0,-2.537194559,1.2962030258,--0.3468443676
H,0,1.5533111138,-2.1107697129,-1.1282227243
H,0,3.3131736806,--0.7628075343,--0.1008677456
H,0,2.3140499267,-0.5363835203,1.3761034023
H,0,1.8867572824,0.4370272401,-0.028939308
H,0,1.6879977599,3.125605357,-0.6451500869
H,0,0.2102394873,3.5726521234,0.2388730498
H,0,1.581388856,2.8528436595,1.0892640385
5BBProd - B3LYP//6-311+G**
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-349.005755530\)
Zero-point correction \(=\quad 0.158554\) (Hartree/Particle)

Thermal correction to Energy= 0.167380
Thermal correction to Enthalpy= 0.168325
Thermal correction to Gibbs Free Energy= 0.125036
Sum of electronic and zero-point Energies \(=\quad-348.847202\)
Sum of electronic and thermal Energies \(=\quad-348.838375\)
Sum of electronic and thermal Enthalpies \(=\quad-348.837431\)
Sum of electronic and thermal Free Energies= \(\quad-348.880719\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}\) & \(\mathrm{Cal} /\) Mol-Kelvin \\
Total & 105.033 & 33.306 & 91.108
\end{tabular}

C, \(0,0.2713555833,-0.9489497727,-0.1109982059\)
C, \(0,-0.3503880678,0.3958836069,0.0436828193\)
C, \(0,-1.7807334168,0.159374758,0.282181425\)
C,0,-2.0051490812,-1.177053217,0.2172019431
C,0,-0.7441915116,-1.8605960054,-0.0356295849
С,0,0.2505303631,1.5865197035,-0.1550396142
С, \(0,1.6740118868,-1.2990149634,-0.2749663492\)
C, \(0,2.7581063691,-0.6052639999,0.1027670419\)
С, \(0,-0.3855123669,2.9349498494,-0.0547552162\)
H,0,-0.6288518549,-2.9336379147,-0.1200942938
H,0,-2.9622464453,-1.669659075,0.3252666778
H,0,-2.5243634795,0.9283808474,0.4280364547
H,0,1.8375683291,-2.2751095688,-0.7288657412
H,0,3.7521833493,-0.9999319749,-0.0709928075
```

H,0,2.6973199501,0.3433088583,0.6215102636
H,0,1.2986206173,1.5854844746,-0.4387660876
H,0,0.1595344217,3.5580976492,0.6635827155
H,0,-0.3276738026,3.4552571584,-1.0180047786
H,0,-1.4302696329,2.8927097895,0.2516620435

```
```

5BBProdBrk - BD (T)//6-31+G**

```
5BBProdBrk - BD (T)//6-31+G**
E}(\mathrm{ RHF ) = -346.591122835
E}(\mathrm{ RHF ) = -346.591122835
C,0,0.2701615542,-0.9534167569,-0.1078577717
C,0,0.2701615542,-0.9534167569,-0.1078577717
C,0,-0.352342424,0.3930029269,0.0422734119
C,0,-0.352342424,0.3930029269,0.0422734119
C,0,-1.7832053736,0.1590236053,0.2811809745
C,0,-1.7832053736,0.1590236053,0.2811809745
C,0,-2.0087408506,-1.1786099252,0.2182411
C,0,-2.0087408506,-1.1786099252,0.2182411
C,0,-0.747273105,-1.8645555023,-0.0306560251
C,0,-0.747273105,-1.8645555023,-0.0306560251
C,0,0.2541507156,1.5831189333,-0.1581296703
C,0,0.2541507156,1.5831189333,-0.1581296703
C,0,1.6747206917,-1.2960542882,-0.2788368002
C,0,1.6747206917,-1.2960542882,-0.2788368002
C,0,2.7552817948,-0.59608239,0.1038077444
C,0,2.7552817948,-0.59608239,0.1038077444
C,0,-0.3773893074,2.9351515796,-0.05547329
C,0,-0.3773893074,2.9351515796,-0.05547329
H,0,-0.6326536184,-2.9398494947,-0.1104616209
H,0,-0.6326536184,-2.9398494947,-0.1104616209
H,0,-2.9672822669,-1.6723250243,0.3273966526
H,0,-2.9672822669,-1.6723250243,0.3273966526
H,0,-2.5252898079,0.9327193281,0.4241903306
H,0,-2.5252898079,0.9327193281,0.4241903306
H,0,1.8435594641,-2.2684560039,-0.7426599309
H,0,1.8435594641,-2.2684560039,-0.7426599309
H,0,3.7550705652,-0.9767946673,-0.0779816091
H,0,3.7550705652,-0.9767946673,-0.0779816091
H,0,2.684963759,0.3464126204,0.6355608163
H,0,2.684963759,0.3464126204,0.6355608163
H,0,1.3035113893,1.5766670307,-0.4431480303
H,0,1.3035113893,1.5766670307,-0.4431480303
H,0,0.1669416417,3.5556625889,0.6679338178
H,0,0.1669416417,3.5556625889,0.6679338178
H,0,-0.3163913809,3.461285602,-1.0168998848
H,0,-0.3163913809,3.461285602,-1.0168998848
H,0,-1.4246119192,2.8952089254,0.2487714181
```

H,0,-1.4246119192,2.8952089254,0.2487714181

```

Pd-catalyzed allylic alkylation of 1,1-dimethylallyl acetate
B3LYP//SDD on Pd 6-31G** on all other atoms unless otherwise noted
```

Acetate Anion
E(RB+HF-LYP) = -228.502196453
Zero-point correction= 0.048082 (Hartree/Particle)
Thermal correction to Energy= 0.052549
Thermal correction to Enthalpy= 0.053493
Thermal correction to Gibbs Free Energy= 0.020437
Sum of electronic and zero-point Energies= -228.454114
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies= -228.448703

```

Sum of electronic and thermal Free Energies \(=\quad-228.481759\)
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 32.975 & 13.151 & 69.572
\end{tabular}

C,0,0.1867372076,0.,0.1162771735
O,0,0.0896113313,0.,1.3688814132
O,0,1.2119899016,0.,-0.6126821735
C,0,-1.1733959016,0.,-0.677799841
H,0,-2.0443151516,0.,-0.0114448273
H,0,-1.2242712741,0.8795345446,-1.3345065426
\(\mathrm{H}, 0,-1.2242712741,-0.8795345446,-1.3345065426\)
Acetate Anion 6-311+G**
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-228.602316623\)
\begin{tabular}{lc} 
Zero-point correction= & 0.047694 (Hartree/Particle) \\
Thermal correction to Energy= & 0.051274 \\
Thermal correction to Enthalpy \(=\) & 0.052218 \\
Thermal correction to Gibbs Free Energy= & 0.021800 \\
Sum of electronic and zero-point Energies \(=\) & -228.554623 \\
Sum of electronic and thermal Energies= & -228.551043 \\
Sum of electronic and thermal Enthalpies \(=\) & -228.550099 \\
Sum of electronic and thermal Free Energies \(=\) & -228.580516
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 32.175 & 11.120 & 64.020
\end{tabular}

C,0,0.1800956672,0.,0.1117336715
O,0,0.0913502188,0.,1.3635519743
O,0,1.2100769042,0.,-0.606807403
C,0,-1.1714754035,0.,-0.6774991346
H,0,-2.0337402538,0.,-0.0049000193
H,0,-1.2146991562,0.8814878995,-1.3272318863
\(\mathrm{H}, 0,-1.2146991562,-0.8814878995,-1.3272318863\)

\section*{Acetic Acid}
\(\mathrm{E}(\) RB+HF-LYP \()=-229.086853208\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.061943 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.065696 \\
Thermal correction to Enthalpy \(=\) & 0.066640
\end{tabular}

Thermal correction to Gibbs Free Energy= 0.035912
Sum of electronic and zero-point Energies= -229.024910
Sum of electronic and thermal Energies \(=\quad-229.021158\)
Sum of electronic and thermal Enthalpies \(=\quad-229.020213\)
Sum of electronic and thermal Free Energies= -229.050942

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\mathrm{PH}_{3}\)} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-343.142674451\)} \\
\hline \multicolumn{4}{|l|}{Zero-point correction \(=0.024065\) (Hartree/Particle)} \\
\hline \multicolumn{4}{|l|}{Thermal correction to Energy= 0.026970} \\
\hline \multicolumn{4}{|l|}{Thermal correction to Enthalpy= 0.027914} \\
\hline \multicolumn{4}{|l|}{Thermal correction to Gibbs Free Energy= 0.003021} \\
\hline \multicolumn{4}{|l|}{Sum of electronic and zero-point Energies \(=\)-343.118609} \\
\hline \multicolumn{4}{|l|}{Sum of electronic and thermal Energies \(=\quad\)-343.115704} \\
\hline \multicolumn{4}{|l|}{Sum of electronic and thermal Enthalpies \(=\quad-343.11476\)} \\
\hline \multicolumn{4}{|l|}{Sum of electronic and thermal Free Energies= -343.13965} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 16.924 & 6.779 & 52.393
\end{tabular}}} \\
\hline & & & \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{P,0,-0.0779701498,-0.0451387326,-0.0918631569} \\
\hline \multicolumn{4}{|l|}{H,0,1.3301596685,0.0772658426,-0.2658511104} \\
\hline \multicolumn{4}{|l|}{H,0,0.0482385418,-0.6620439659,1.1854706972} \\
\hline \multicolumn{4}{|l|}{H,0,-0.2088459637,1.2618591128,0.4583277667} \\
\hline
\end{tabular}

\section*{Allyl Cation}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-116.976995098\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.068464 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.072295 \\
Thermal correction to Enthalpy \(=\) & 0.073239 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.043883 \\
Sum of electronic and zero-point Energies \(=\) & -116.908532 \\
Sum of electronic and thermal Energies \(=\) & -116.904700 \\
Sum of electronic and thermal Enthalpies \(=\) & -116.903756 \\
Sum of electronic and thermal Free Energies \(=\) & -116.933112
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} /\) Mol & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 45.366 & 12.021 & 61.785
\end{tabular}

\footnotetext{
C,0,-0.2554933368,0.,-1.1825259184
С,0,-0.4573373876,0.,0.1873511729
C,0,0.6469517639,0.,1.0222426175
H,0,0.5411323322,0.,2.1058411355
Н,0,-1.4629295504,0.,0.5984235024
\(\mathrm{H}, 0,-1.0903555069,0 .,-1.8813505097\)
Н, \(0,0.7475353973,0 .,-1.6072274842\)
}

H,0,1.6598910905,0.,0.621906124

\section*{1,1-Dimethylallyl acetate}
\(E(R B+H F-L Y P)=-424.421369269\)
\begin{tabular}{lc} 
Zero-point correction= & 0.178973 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.189772 \\
Thermal correction to Enthalpy \(=\) & 0.190716 \\
Thermal correction to Gibbs Free Energy= & 0.142775 \\
Sum of electronic and zero-point Energies= & -424.242396 \\
Sum of electronic and thermal Energies= & -424.231598 \\
Sum of electronic and thermal Enthalpies \(=\) & -424.230653 \\
Sum of electronic and thermal Free Energies= & -424.278595
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 119.084 & 38.929 & 100.901
\end{tabular}

C,0,2.4625967208,-0.7134024244,1.7779172318
C,0,1.8832462982,-0.2748905787,0.6622085257
C,0,0.4754644379,-0.5758892194,0.1874015574
O,0,-0.0185515052,0.7714991406,-0.1673713323
C,0,-1.2443743165,0.9639956277,-0.6996665054
O,0,-2.0555172632,0.0939576072,-0.9398070939
С, \(0,-1.4704345902,2.4390683507,-0.9556903363\)
H,0,2.4502113154,0.3472500427,-0.0293409479
H,0,3.494698763,-0.4642271157,2.0050654081
H,0,1.944991812,-1.3329389674,2.5035646557
С,0,-0.4163746869,-1.1934436219,1.2658174414
С, \(0,0.5476494466,-1.4500503284,-1.0758328094\)
H,0,-2.4574249168,2.5825799413,-1.3944777002
H,0,-1.3929996611,2.9980861499,-0.0184784573
H,0,-0.7007633968,2.8266122618,-1.6295245879
H,0,-1.4234808513,-1.346871436,0.8790158222
H,0,-0.0125188373,-2.1620636585,1.5744977105
H,0,-0.4634661499,-0.5429927091,2.1435364621
\(\mathrm{H}, 0,-0.4490010265,-1.6394775308,-1.4758141904\)
H,0,1.151852331,-0.9584101793,-1.8446564163
H,0,1.0238109065,-2.4035276159,-0.8288909795
1,1-Dimethylallyl acetate 6-31+G**
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-424.439842324\)
Zero-point correction \(=\quad 0.178286\) (Hartree/Particle)
\begin{tabular}{lc} 
Thermal correction to Energy \(=\) & 0.189163 \\
Thermal correction to Enthalpy \(=\) & 0.190108 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.141938 \\
Sum of electronic and zero-point Energies \(=\) & -424.261556 \\
Sum of electronic and thermal Energies \(=\) & -424.250679 \\
Sum of electronic and thermal Enthalpies \(=\) & -424.249735 \\
Sum of electronic and thermal Free Energies= & -424.297905
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 118.702 & 39.032 & 101.382
\end{tabular}

C,0,2.5466530242,0.4397729445,0.9709921022
C, \(0,1.9680136493,0.7124166214,-0.2001294392\)
C,0,0.5405489513,0.4133522418,-0.6089668823
C,0,0.5427012823,-0.5450056726,-1.812532338
О,0,-0.0676482187,-0.2384528406,0.5560194644
С, \(0,-1.3528934433,-0.6542372795,0.5591934918\)
С,0,-1.6962314613,-1.2898808185,1.8880159408
C,0,-0.1895422775,1.7311778921,-0.920996308
O,0,-2.1280929175,-0.5390422726,-0.3696730061
H,0,2.5442952133,1.2045112303,-0.9833905349
\(\mathrm{H}, 0,3.5847361283,0.7033079533,1.1507519956\)
H,0,2.0063320825,-0.0487895358,1.7745094775
H,0,-2.7412526352,-1.5996707535,1.8805861905
H,0,-1.0523371772,-2.1569520788,2.0657901889
H,0,-1.5218550452,-0.5798519581,2.7022039365
H,0,-1.2053579167,1.5426926653,-1.2721069381
H,0,-0.224284645,2.3636950577,-0.0288259251
H,0,0.356221451,2.2738786247,-1.6999898297
H,0,-0.4726915479,-0.7348282306,-2.1641371964
Н, \(0,1.1201232307,-0.1008651001,-2.6301745628\)
H,0,1.0165016021,-1.492742545,-1.539447873
1,1-Dimethylallyl acetate 6-311+G**
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-424.539263621\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.177566 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.188459 \\
Thermal correction to Enthalpy \(=\) & 0.189404 \\
Thermal correction to Gibbs Free Energy= & 0.140897 \\
Sum of electronic and zero-point Energies \(=\) & -424.361697 \\
Sum of electronic and thermal Energies= & -424.350804 \\
Sum of electronic and thermal Enthalpies \(=\) & -424.349860
\end{tabular}

Sum of electronic and thermal Free Energies= \(\quad-424.398367\)
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
\hline Total & 118.260 & 39.103 & 102.091 \\
\hline \multicolumn{4}{|l|}{C,0,2.4582541386,-0.7028395738,1.7777472525} \\
\hline \multicolumn{4}{|l|}{C,0,1.879999536,-0.2793521683,0.6586055904} \\
\hline \multicolumn{4}{|l|}{C,0,0.4738131593,-0.5858066837,0.1870031266} \\
\hline \multicolumn{4}{|l|}{O,0,-0.0230304252,0.7665007114,-0.1678940167} \\
\hline \multicolumn{4}{|l|}{C,0,-1.2457443364,0.9718004201,-0.7006113205} \\
\hline \multicolumn{4}{|l|}{O,0,-2.0538155301,0.1074476689,-0.94350359} \\
\hline \multicolumn{4}{|l|}{C, \(0,-1.4632282793,2.4460806478,-0.9492465285\)} \\
\hline \multicolumn{4}{|l|}{H,0,2.4457613056,0.3355722013,-0.0373632743} \\
\hline \multicolumn{4}{|l|}{H,0,3.4881165607,-0.4476762939, 1.9997847867} \\
\hline \multicolumn{4}{|l|}{H,0,1.9427517639,-1.313270984,2.5100897239} \\
\hline \multicolumn{4}{|l|}{C,0,-0.4153929298,-1.2030412432,1.2651788787} \\
\hline \multicolumn{4}{|l|}{C,0,0.5488372006,-1.4589640045,-1.0749952268} \\
\hline \multicolumn{4}{|l|}{H,0,-2.4477647349, 2.59760756,-1.3871431924} \\
\hline \multicolumn{4}{|l|}{H,0,-1.3832918139,2.9978457623,-0.0098998801} \\
\hline \multicolumn{4}{|l|}{H,0,-0.6919999043,2.8303122993,-1.6204856041} \\
\hline \multicolumn{4}{|l|}{H,0,-1.4181510727,-1.3756374421,0.8787800709} \\
\hline \multicolumn{4}{|l|}{H,0,-0.000544635,-2.162713255,1.5818144746} \\
\hline \multicolumn{4}{|l|}{H,0,-0.4753454933,-0.5482871592,2.1370738139} \\
\hline \multicolumn{4}{|l|}{H,0,-0.4447347241,-1.6645694343,-1.4709590582} \\
\hline \multicolumn{4}{|l|}{H,0,1.1441393153,-0.9635369669,-1.8461269786} \\
\hline \multicolumn{4}{|l|}{H,0,1.0366001412,-2.4044976969,-0.8264746622} \\
\hline \multicolumn{4}{|l|}{1,1-Dimethylallyl acetate - Solvated with 6 HCN 6-31G*} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-984.998782786\)} \\
\hline \multicolumn{2}{|l|}{Zero-point correction=} & 0.286678 & 6678 (Hartree/Particle) \\
\hline \multicolumn{3}{|l|}{Thermal correction to Energy= 0} & . 320661 \\
\hline \multicolumn{3}{|l|}{Thermal correction to Enthalpy=} & 0.321605 \\
\hline \multicolumn{3}{|l|}{Thermal correction to Gibbs Free Energy=} & 0.206124 \\
\hline \multicolumn{3}{|l|}{Sum of electronic and zero-point Energies=} & -984.712104 \\
\hline \multicolumn{3}{|l|}{Sum of electronic and thermal Energies=} & -984.678122 \\
\hline \multicolumn{3}{|l|}{Sum of electronic and thermal Enthalpies=} & -984.677178 \\
\hline \multicolumn{3}{|l|}{Sum of electronic and thermal Free Energies=} & \(=\quad-984.792658\) \\
\hline & E (Thermal) & CV & S \\
\hline & KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
\hline Total & 201.218 & 103.264 & 243.049 \\
\hline
\end{tabular}
\(\mathrm{C}, 0,2.2749712558,-3.7370737461,-1.5552519386\)
\(\mathrm{C}, 0,2.217367563,-2.4856531162,-1.0952223411\)
\(\mathrm{C}, 0,1.0282898263,-1.5489703442,-1.1892074989\)
\(\mathrm{C}, 0,1.4363592288,-0.3070062097,-1.9925485392\)
\(\mathrm{O}, 0,0.8333490833,-1.1825772304,0.2494852195\)
\(\mathrm{C}, 0,-0.0514913517,-0.2895888906,0.6756378183\)
\(\mathrm{C}, 0,-0.0092888232,-0.1510220881,2.1773195842\)
\(\mathrm{C}, 0,-0.248996887,-2.1971695624,-1.71873658\)
\(\mathrm{O}, 0,-0.8110230684,0.348777923,-0.0544558175\)
\(\mathrm{H}, 0,3.0941297875,-2.0319779134,-0.6338255508\)
\(\mathrm{H}, 0,3.1937936202,-4.3126886435,-1.4823316386\)
\(\mathrm{H}, 0,1.4359738836,-4.2300185061,-2.0386300251\)
\(\mathrm{H}, 0,-0.7175869259,0.6121410681,, 2.5027550393\)
\(\mathrm{H}, 0,-0.2495188223,-1.1109375125,2.6466365987\)
\(\mathrm{H}, 0,1.0030824553,0.1163264121,2.4968711247\)
\(\mathrm{H}, 0,-1.0672534268,-1.4757999611,-1.7272033004\)
\(\mathrm{H}, 0,-0.0893918721,-2.5425128977,-2.7448598314\)
\(\mathrm{H}, 0,-0.540477407,-3.0561010997,-1.1064874409\)
\(\mathrm{H}, 0,0.6146534377,0.4076331801,-2.0620498353\)
\(\mathrm{H}, 0,2.305024299,0.1750965818,-1.5345064093\)
\(\mathrm{H}, 0,1.7173294577,-0.6184082752,-3.0038951612\)
\(\mathrm{H}, 0,-0.573969711,2.3893908624,-0.141702532\)
\(\mathrm{C}, 0,-0.1156586168,3.3673687017,-0.1579855498\)
\(\mathrm{~N}, 0,0.4157355822,4.394718859,-0.163660554\)
\(\mathrm{H}, 0,-2.8075732279,0.4727393892,0.0612506535\)
\(\mathrm{C}, 0,-3.8865962234,0.5331753507,0.0374686659\)
\(\mathrm{~N}, 0,-5.0399495605,0.5978332405,0.0105329863\)
\(\mathrm{H}, 0,5.1266338467,2.0797884862,0.3061433563\)
\(\mathrm{C}, 0,4.9208770623,1.024063038,0.217670503\)
\(\mathrm{~N}, 0,4.6540600362,-0.0972011587,0.1119425434\)
\(\mathrm{H}, 0,2.5208338612,5.0664334961,0.0423169217\)
\(\mathrm{C}, 0,3.5119456973,4.6611966704,0.163684169\)
\(\mathrm{~N}, 0,4.5468972823,4.1609768288,0.291766958\)
\(\mathrm{H}, 0,1.5318859853,-3.8925297128,1.1553232644\)
\(\mathrm{C}, 0,0.9297708757,-3.8281046689,2.0424136201\)
\(\mathrm{~N}, 0,0.2638560602,-3.724797067,2.9835994782\)
\(\mathrm{H}, 0,-7.1819382628,0.7095536827,-0.0882834036\)
\(\mathrm{C}, 0,-8.2573495108,0.7641996495,-0.1526218172\)
\(\mathrm{~N}, 0,-9.4113764971,0.8227231714,-0.2232496431\)

\section*{Dimethylmalonate - 6-311+G**}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-496.411557559\)
Zero-point correction=
0.132643 (Hartree/Particle)
\begin{tabular}{lc} 
Thermal correction to Energy \(=\) & 0.142947 \\
Thermal correction to Enthalpy \(=\) & 0.143891 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.095074 \\
Sum of electronic and zero-point Energies= & -496.278915 \\
Sum of electronic and thermal Energies= & -496.268610 \\
Sum of electronic and thermal Enthalpies \(=\) & -496.267666 \\
Sum of electronic and thermal Free Energies= & -496.316483
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
\hline Total & 89.701 & 33.774 & 102.744 \\
\hline \multicolumn{4}{|l|}{C,0,-1.1190090058,0.5807960193,-3.2593792749} \\
\hline \multicolumn{4}{|l|}{O,0,-1.435984706,0.0967634977,-1.9381173943} \\
\hline \multicolumn{4}{|l|}{C,0,-0.4067825057,0.0298867114,-1.0718134919} \\
\hline \multicolumn{4}{|l|}{O,0,0.7223677272,0.3503561665,-1.3385003323} \\
\hline \multicolumn{4}{|l|}{C, \(0,-0.8875687492,-0.5136326512,0.263823688\)} \\
\hline \multicolumn{4}{|l|}{C,0,0.2332487914,-0.5824804324,1.2800970318} \\
\hline \multicolumn{4}{|l|}{O,0,0.8551631519,-1.578269737,1.5500254692} \\
\hline \multicolumn{4}{|l|}{O,0,0.438807752,0.6173539587,1.8506047699} \\
\hline \multicolumn{4}{|l|}{C,0,1.5332947173,0.692904862,2.7851092924} \\
\hline \multicolumn{4}{|l|}{H,0,-1.2842568217,-1.518026942,0.1079005237} \\
\hline \multicolumn{4}{|l|}{H,0,-2.0580138779,0.5581413591,-3.8073419152} \\
\hline \multicolumn{4}{|l|}{H,0,-0.7275812816,1.5973099703,-3.2066609004} \\
\hline \multicolumn{4}{|l|}{H,0,-0.3801474603,-0.0665495247,-3.7329318939} \\
\hline \multicolumn{4}{|l|}{H,0,1.5445855095,1.7225287113,3.1348390205} \\
\hline \multicolumn{4}{|l|}{H,0,1.3719257039,0.0042621984,3.615321135} \\
\hline \multicolumn{4}{|l|}{H,0,2.4704775372,0.4454063924,2.2855996002} \\
\hline \multicolumn{4}{|l|}{H,0,-1.6989201984,0.1224496938,0.6241508574} \\
\hline
\end{tabular}

\section*{Acetamidine 6-31G*}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-189.316460752\)
\begin{tabular}{lc} 
Zero-point correction= & 0.086727 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.091689 \\
Thermal correction to Enthalpy \(=\) & 0.092634 \\
Thermal correction to Gibbs Free Energy= & 0.059507 \\
Sum of electronic and zero-point Energies \(=\) & -189.229734 \\
Sum of electronic and thermal Energies= & -189.224771 \\
Sum of electronic and thermal Enthalpies \(=\) & -189.223827 \\
Sum of electronic and thermal Free Energies= & -189.256954
\end{tabular}
\begin{tabular}{lcl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin
\end{tabular}
\begin{tabular}{llll} 
Total & 57.536 & 16.733 & 69.722
\end{tabular}
\(\mathrm{N}, 0,0.977547434,1.0392330716,0.0728627885\)
\(\mathrm{C}, 0,0.1218699693,0.0874923935,0.0116507005\)
\(\mathrm{C}, 0,-1.3705802306,0.2176144336,-0.2265763819\)
\(\mathrm{~N}, 0,0.543065218,-1.215530946,0.2427798527\)
\(\mathrm{H}, 0,-1.677687409,-0.3515152855,-1.1138640341\)
\(\mathrm{H}, 0,-1.9326144619,-0.1782591835,0.6272993671\)
\(\mathrm{H}, 0,-1.6512197002,1.262550172,-0.3793209672\)
\(\mathrm{H}, 0,0.0459136313,-1.9511943673,-0.2421323062\)
\(\mathrm{H}, 0,1.5509310445,-1.3197522572,0.221421718\)
\(\mathrm{H}, 0,0.5126498991,1.9416150797,-0.0333481776\)

2-Methyl-2-dimethyl malonate-3-butene - more substituted product 6-311+G**
\(\mathrm{E}(\) RB+HF-LYP \()=-691.789756969\)
\begin{tabular}{lc} 
Zero-point correction= & 0.249780 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.266234 \\
Thermal correction to Enthalpy \(=\) & 0.267179 \\
Thermal correction to Gibbs Free Energy= & 0.205555 \\
Sum of electronic and zero-point Energies \(=\) & -691.539977 \\
Sum of electronic and thermal Energies= & -691.523523 \\
Sum of electronic and thermal Enthalpies \(=\) & -691.522578 \\
Sum of electronic and thermal Free Energies= \(=\) & -691.584202
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 167.065 & 58.600 & 129.697
\end{tabular}

H,0,-3.2996083661,2.2389386853,-0.5257326305
С,0,-3.4708195053,1.1954614957,-0.2869474102
H,0,-4.4516958893,0.8015051433,-0.5295905803
C, \(0,-2.5498307595,0.4175610014,0.278771465\)
С,0,-1.1416110148,0.8187673394,0.6949740513
С,0,-0.1347284698,0.0586961241,-0.2507198361
C,0,-0.1895786226,-1.4709093322,-0.2002740986
О,0,-0.8913517106,-2.1550694071,0.4989259449
C,0,1.3172071965,0.4828680423,-0.0297283891
O,0,1.9871929575,0.1920673471,0.9306897702
O,0,1.7643517874,1.2435718487,-1.0472332212
C,0,3.127805419,1.6986094875,-0.9404749118
O,0,0.6743171935,-1.9780471333,-1.1040056212
C,0,0.7590613648,-3.4153536893,-1.1655143724
C,0,-0.9061030193,2.3305192745,0.5207135398
```

C,0,-0.9477450578,0.4522435393,2.1845388135
H,0,-2.7991838003,-0.6177411014,0.4912182312
H,0,-0.3886711661,0.3306438006,-1.2783038609
H,0,3.3108329391,2.2766543433,-1.8433196766
H,0,3.2540016291,2.3199658997,-0.052852316
H,0,3.8067176695,0.8471474291,-0.8826242698
H,0,1.4952399452,-3.6282867989,-1.9371526649
H,0,1.0821095063,-3.8160159069,-0.2040266284
H,0,-0.2093476484,-3.8423698413,-1.4287240615
H,0,0.0806029984,2.6153655178,0.8938507203
H,0,-0.9727898963,2.6425099791,-0.5246659077
H,0,-1.6460335902,2.8931284672,1.094068848
H,0,0.0704569112,0.6662887131,2.5139639279
H,0,-1.639499119,1.0440095586,2.79014049
H,0,-1.1511591323,-0.6027048281,2.3647022889

```

\section*{2-Methyl-5,5-methylester-2-pentene - less substituted product 6-311+G**}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-691.804162061\)
\begin{tabular}{lc} 
Zero-point correction= & 0.249789 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.266756 \\
Thermal correction to Enthalpy \(=\) & 0.267701 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.202538 \\
Sum of electronic and zero-point Energies= & -691.554373 \\
Sum of electronic and thermal Energies= & -691.537406 \\
Sum of electronic and thermal Enthalpies \(=\) & -691.536462 \\
Sum of electronic and thermal Free Energies \(=\) & -691.601624
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 167.392 & 58.088 & 137.145
\end{tabular}

C,0,-1.7589565409,3.2488496319,-0.6025847962
С,0,-2.4496300996,2.0009972913,-0.1128903079
C,0,-1.8445124453,0.9745416471,0.5002525757
C, \(0,-0.3846792752,0.8384120788,0.8405124257\)
C, \(0,0.3512465973,-0.200822435,-0.0471147546\)
С,0,1.8509359678,-0.1370087618,0.2180998226
O,0,2.431794497,0.8044239527,-0.5532437408
С,0,-3.9384192946,1.9772034487,-0.3603629014
\(\mathrm{H}, 0,0.1361404577,1.7916312014,0.7394590218\)
H,0,-0.2826072148,0.5178402971,1.8815098017
H,0,-2.458446153,0.1301540631,0.8021227097
H,0,-4.396647652,1.0581400377,0.0093784457
```

H,0,-4.4294737385,2.8256694505,0.1308616786
H,0,-4.1596163121,2.065255328,-1.4307096351
H,0,-1.9345613487,3.3843022881,-1.6761002831
H,0,-0.6815141239,3.2429571347,-0.4404700784
H,0,-2.1714620012,4.1354252661,-0.1067671962
H,0,0.1882187819,0.0383179574,-1.1000111542
O,0,2.4463323385,-0.7966907957,1.0325561301
C,0,-0.1358733383,-1.624365885,0.2018797137
C,0,3.844137578,1.0056981525,-0.3447805523
H,0,4.1319246018,1.7842180719,-1.047589236
H,0,4.0360034391,1.3223167177,0.6812431246
H,0,4.3914192276,0.0839628695,-0.5449882673
O,0,0.2980421899,-2.4442957319,-0.7745195898
O,0,-0.8134711134,-1.9835473591,1.1301129259
C,0,-0.0350262288,-3.8382177325,-0.6246521791
H,0,0.3956594074,-4.3337064856,-1.4917400533
H,0,0.3957406323,-4.2311218038,0.2969971929
H,0,-1.1174849016,-3.9703588287,-0.6034198967
Pd(P(CH3)3)
E(RB+HF-LYP) = -1050.22239586
Zero-point correction= 0.229191 (Hartree/Particle)
Thermal correction to Energy= 0.245993
Thermal correction to Enthalpy= 0.246937
Thermal correction to Gibbs Free Energy= 0.182875
Sum of electronic and zero-point Energies= -1049.993205
Sum of electronic and thermal Energies= -1049.976403
Sum of electronic and thermal Enthalpies= -1049.975459
Sum of electronic and thermal Free Energies= -1050.039521

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
TOTAL	154.363	57.328	134.831

P,0,-1.3312038918,0.,1.8820886516
Pd,0,-0.0055242633,0.,-0.0043947649
P,0,1.3322045822,0.,-1.8827864546
C,0,0.4812565164,0.,-3.532151148
C,0,2.4965338034,1.4304246078,-2.0886904388
C,0,2.4965338034,-1.4304246078,-2.0886904388
C,0,-3.1705704826,0.,1.6330126803
C,0,-1.139333682,-1.4303784503,3.0493800238
C,0,-1.139333682,1.4303784503,3.0493800238

```
```

H,0,-1.803998059,1.339650452,3.9160233885
H,0,-0.1027909678,1.4798061342,3.3937206556
H,0,-1.3615285111,2.3612368609,2.5206445321
H,0,-1.803998059,-1.339650452,3.9160233885
H,0,-1.3615285111,-2.3612368609,2.5206445321
H,0,-0.1027909678,-1.4798061342,3.3937206556
H,0,-3.7078286675,0.,2.5884069834
H,0,-3.4590801415,0.8838200866,1.0577593291
H,0,-3.4590801415,-0.8838200866,1.0577593291
H,0,3.0908288031,1.3421672163,-3.0054844383
H,0,1.9243548799,2.3615362469,-2.1190234535
H,0,3.168774955,1.4770527776,-1.227778686
H,0,3.0908288031,-1.3421672163,-3.0054844383
H,0,3.168774955,-1.4770527776,-1.227778686
H,0,1.9243548799,-2.3615362469,-2.1190234535
H,0,1.1983362149,0.,-4.3612680301
H,0,-0.1575206837,-0.8838714297,-3.6098397949
H,0,-0.1575206837,0.8838714297,-3.6098397949
Pd(P(CH3}\mp@subsup{)}{3}{}\mp@subsup{)}{2}{}-\mathbf{6-311+G**
E(RB+HF-LYP})=-1050.3317849
Zero-point correction= 0.227533 (Hartree/Particle)
Thermal correction to Energy= 0.244411
Thermal correction to Enthalpy= 0.245355
Thermal correction to Gibbs Free Energy= 0.181134
Sum of electronic and zero-point Energies= -1050.104251
Sum of electronic and thermal Energies= -1050.087374
Sum of electronic and thermal Enthalpies= -1050.086430
Sum of electronic and thermal Free Energies= -1050.150651

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	153.370	57.541	135.164

P,0,-1.3326975366,0.,1.8850530414
Pd,0,-0.0059437041,0.,-0.004189558
P,0,1.3336391177,0.,-1.8845872192
C,0,0.4829019334,-0.0000000001,-3.530274325
C,0,2.4950231127,1.4286936212,-2.0895870926
C,0,2.4950231129,-1.4286936211,-2.0895870925
C,0,-3.1679812621,-0.0000000001,1.6321549782
C,0,-1.138805852,-1.4287184231,3.048489926
C,0,-1.1388058521,1.4287184232,3.0484899259

```
```

H,0,-1.8036004006,1.3393012733,3.9136034014
H,0,-0.1040358747,1.4764469366,3.392927773
H,0,-1.3591774855,2.3577742601,2.5193717196
H,0,-1.8036004004,-1.3393012732,3.9136034015
H,0,-1.3591774853,-2.3577742601,2.5193717198
H,0,-0.1040358746,-1.4764469363,3.3929277732
H,0,-3.7077792603,-0.0000000001,2.5845611142
H,0,-3.453756328,0.8824360793,1.0565972554
H,0,-3.4537563279,-0.8824360796,1.0565972554
H,0,3.088867997,1.3395105146,-3.0050129379
H,0,1.922832244,2.3577949246,-2.1206960584
H,0,3.1650672922,1.4761805515,-1.229123381
H,0,3.0888679971,-1.3395105145,-3.0050129378
H,0,3.1650672924,-1.4761805512,-1.2291233809
H,0,1.9228322442,-2.3577949246,-2.1206960582
H,0,1.2005405081,-0.0000000001,-4.3570017255
H,0,-0.1550003102,-0.8824456024,-3.6076402595
H,0,-0.1550003103,0.8824456021,-3.6076402596
$\operatorname{Pd}\left(\mathbf{P}(\mathbf{H})(\mathrm{Ph})_{2}\right)_{2}$ SDD on Pd, 6-31G on Ph, 6-31G* on all other atoms
$\mathrm{E}($ RB+HF-LYP $)=-1738.28726260$

Zero-point correction $=$	0.390288 (Hartree/Particle)
Thermal correction to Energy $=$	0.415766
Thermal correction to Enthalpy=	0.416710
Thermal correction to Gibbs Free Energy=	0.325769
Sum of electronic and zero-point Energies $=$	-1737.896974
Sum of electronic and thermal Energies=	-1737.871497
Sum of electronic and thermal Enthalpies $=$	-1737.870552
Sum of electronic and thermal Free Energies= $=$	-1737.961493

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	260.897	95.150	191.401

C,0,1.6698368642,-3.3074528839,-0.6461423669
С, $0,0.3284250519,-3.2530661487,-1.0744380676$
С,0,-0.065854091,-4.0462326507,-2.1684791733
С, $0,0.8565988337,-4.8778623695,-2.8152990496$
C,0,2.1824306922,-4.9333163972,-2.3722794153
C, $0,2.5865666641,-4.1470357585,-1.2854092686$
P,0,-0.8501078429,-2.1334109001,-0.2109020725
C,0,-1.4330092259,-3.1300463893,1.233746975
С,0,-1.6344862652,-2.4757308304,2.4625468888

```
\(\mathrm{C}, 0,-2.1053090513,-3.1833088169,3.57570092\)
\(\mathrm{C}, 0,-2.3732142321,-4.5522598185,3.4741131904\)
\(\mathrm{C}, 0,-2.1683596138,-5.2146490217,2.2562207119\)
\(\mathrm{C}, 0,-1.7011787864,-4.5092135115,1.1434313666\)
\(\mathrm{P}, 0,-0.2051292747,0.0415030416,0.1762447993\)
\(\mathrm{P}, 0,0.4492959727,2.2205985319,0.5288843813\)
\(\mathrm{C}, 0,1.810530688,2.8817418611,-0.5341891732\)
\(\mathrm{C}, 0,2.2217007877,4.2274230104,-0.4854435364\)
\(\mathrm{C}, 0,3.273314642,4.6768423646,-1.2892691149\)
\(\mathrm{C}, 0,3.9272227169,3.7886495602,-2.1539841373\)
\(\mathrm{C}, 0,3.5232517577,2.4510576284,-2.2138584374\)
\(\mathrm{C}, 0,2.4688851096,1.999588276,-1.4099157491\)
\(\mathrm{C}, 0,-0.8387081212,3.5346347081,0.4691353264\)
\(\mathrm{C}, 0,-0.9303697992,4.5330626629,1.4571889773\)
\(\mathrm{C}, 0,-1.9312969069,5.5100863227,1.3921130276\)
\(\mathrm{C}, 0,-2.8485466123,5.505576035,0.3357269786\)
\(\mathrm{C}, 0,-2.7684052527,4.5150761963,-0.6517298677\)
\(\mathrm{C}, 0,-1.7769456793,3.5322119228,-0.5819372462\)
\(\mathrm{H}, 0,-1.9513727633,-2.327899955,-1.0846168838\)
\(\mathrm{H}, 0,0.9772602358,2.5465470157,1.8052005504\)
\(\mathrm{H}, 0,2.1455765744,0.963428117,-1.4562455286\)
\(\mathrm{H}, 0,4.0223158321,1.759851353,-2.8858593052\)
\(\mathrm{H}, 0,4.7429345897,4.1401711813,-2.7782007306\)
\(\mathrm{H}, 0,3.5813250234,5.7169480428,-1.2432221949\)
\(\mathrm{H}, 0,1.7139282269,4.9259757948,0.1723493487\)
\(\mathrm{H}, 0,-1.0930861345,-4.0114967271,-2.5194009233\)
\(\mathrm{H}, 0,0.5387915835,-5.480094798,-3.6608543388\)
\(\mathrm{H}, 0,2.8971088741,-5.5791636405,-2.8726083334\)
\(\mathrm{H}, 0,3.6160526445,-4.1806514034,-0.9427105492\)
\(\mathrm{H}, 0,1.9930909173,-2.6814889402,0.1803374121\)
\(\mathrm{H}, 0,-1.4162339618,-1.4141351196,2.5367885035\)
\(\mathrm{H}, 0,-2.2568984488,-2.6662881631,4.5181033366\)
\(\mathrm{H}, 0,-2.7353052559,-5.1021864912,4.3372771888\)
\(\mathrm{H}, 0,-2.3708765264,-6.2782009021,2.1747285849\)
\(\mathrm{H}, 0,-1.5358757638,-5.0333586084,0.2072913894\)
\(\mathrm{H}, 0,-0.2238582939,4.5447002161,2.2820306936\)
\(\mathrm{H}, 0,-1.9929517455,6.2708512939,2.1641969985\)
\(\mathrm{H}, 0,-3.6241410981,6.2632736864,0.2851307637\)
\(\mathrm{H}, 0,-3.4836764482,4.5017383103,-1.4681379876\)
\(\mathrm{H}, 0,-1.7344643947,2.7498696371,-1.33387195\)

\section*{\(\operatorname{Pd}\left(\mathbf{P}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\left(\eta^{2}\right.\)-1,1-dimethylallyl acetate \()\)}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-1474.65508028\)

```

H,0,-1.207710499,-0.2840969626,-3.8286890933
H,0,-2.5105430862,0.8431394741,-3.4305032788
H,0,-1.0659954472,3.2286070206,3.2718857795
H,0,0.2368960959,2.0309096299,3.0721059757
H,0,0.1369345692,3.4081075587,1.9690465439
H,0,-3.195214508,3.4875784875,1.6794996114
H,0,-2.1866955553,3.7515850845,0.2347983045
H,0,-3.4772347216,2.5407854599,0.1964552037
H,0,-3.0550287059,1.4323113622,3.3009433225
H,0,-3.3523094579,0.2264012208,2.0214214701
H,0,-1.9749092029,0.0247269803,3.108674188
H,0,3.2752331752,-1.0093074505,1.8598987443
H,0,2.8983540844,-1.048667567,0.1309054451
H,0,2.2092088067,0.2291138016,1.1559941423
H,0,1.5568061935,-1.5893515853,3.5855621857
H,0,0.485789585,-0.3287420482,2.9341017565
H,0,-0.0995640752,-1.9978055957,3.1014354056

```
\(\operatorname{Pd}\left(\mathbf{P}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\left(\eta^{2}-1,1\right.\)-dimethylallyl acetate \()-6-311+\mathrm{G}^{* *}\)
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-1474.87855158\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.406833 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.435325 \\
Thermal correction to Enthalpy \(=\) & 0.436269 \\
Thermal correction to Gibbs Free Energy= & 0.347036 \\
Sum of electronic and zero-point Energies \(=\) & -1474.471719 \\
Sum of electronic and thermal Energies= & -1474.443227 \\
Sum of electronic and thermal Enthalpies \(=\) & -1474.442283 \\
Sum of electronic and thermal Free Energies \(=\) & -1474.531516
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 273.170 & 101.400 & 187.807
\end{tabular}

C, \(0,0.3279166743,-1.4927316413,-0.9663527497\)
C, \(0,0.1465001261,-1.6028230054,0.42201604\)
C,0,1.2809043369,-1.6828420075,1.4289241909
O,0,1.6659819392,-3.13393088,1.5839785615
C,0,2.3195680827,-3.8360161495,0.6441854577
C, \(0,2.4294490246,-5.2876273452,1.0616345163\)
Pd,0,-0.460513865,0.404610156,-0.3128891729
P,0,-0.4041983409,1.5332160426,-2.3977895578
P,0,-1.518462573,1.6947837777,1.3718726067
O,0,2.7591052249,-3.3982424887,-0.3936590185
```

H,0,3.1268550984,-5.8026034731,0.4032219527
H,0,1.4453770936,-5.7583326257,0.9851607174
H,0,2.753648791,-5.3693878711,2.1004019879
C,0,2.5169070454,-0.8425081497,1.1042500578
C,0,0.7920764341,-1.3735618215,2.8450078978
H,0,-0.7523872836,-2.1039395391,0.7753522681
H,0,-0.4121776961,-1.9331056945,-1.6289604124
H,0,1.3232268709,-1.4214807298,-1.3871408998
C,0,-2.5902321813,0.7691049065,2.5698529425
C,0,-0.4755220243,2.6954730101,2.5368518193
C,0,-2.7219311388,2.9977242786,0.8226185858
C,0,-1.4680146442,0.7835922867,-3.7178073039
C,0,1.2530682492,1.5089617665,-3.2268343372
C,0,-0.8420713183,3.3260572182,-2.6073764069
H,0,1.2198284014,1.9768557062,-4.2156349972
H,0,1.9779774124,2.0393265564,-2.6056548736
H,0,1.5911962889,0.4764241828,-3.328853356
H,0,-0.7188015448,3.6540864159,-3.6443185601
H,0,-1.879378781,3.4872174379,-2.3076605169
H,0,-0.2027738562,3.9368818175,-1.9661531895
H,0,-1.3425735719,1.2916663909,-4.6790901768
H,0,-1.2092882183,-0.2703472838,-3.8337172229
H,0,-2.5164213126,0.8416606252,-3.4177407848
H,0,-1.0891191888,3.2412234261,3.2602256793
H,0,0.2105973267,2.0410846689,3.0776718125
H,0,0.1221575184,3.4095955706,1.9665144622
H,0,-3.2136493483,3.4801127785,1.6729358764
H,0,-2.198064778,3.7567965454,0.2386835997
H,0,-3.4822432682,2.542876593,0.1839683429
H,0,-3.0747978225,1.4389789281,3.2871774331
H,0,-3.3576763049,0.2250964717,2.0149891221
H,0,-1.9878101865,0.0379542342,3.1105053949
H,0,3.3027811836,-1.0385237794,1.8391330848
H,0,2.9125736971,-1.0551090528,0.1146884849
H,0,2.2454199586,0.2144017172,1.1570929706
H,0,1.5785646047,-1.5854965219,3.5730623359
H,0,0.5177192488,-0.3215746117,2.9189427426
H,0,-0.0796181454,-1.9838364939,3.0924723369

```

\section*{\(\operatorname{Pd}\left(\mathbf{P}\left(\mathrm{CHCH}_{2}\right)(\mathrm{Ph})_{2}\right)_{2}\left(\eta^{2}\right.\)-1,1-dimethylallyl acetamidine) \(\mathbf{S D D}\) on \(\mathrm{Pd}, 6-31 \mathrm{G}\) on \(\mathrm{Ph}, 6\) 31G* on all other atoms}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-2123.37379474\)
Zero-point correction= 0.610329 (Hartree/Particle)
\begin{tabular}{lc} 
Thermal correction to Energy \(=\) & 0.647915 \\
Thermal correction to Enthalpy \(=\) & 0.648859 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.532133 \\
Sum of electronic and zero-point Energies \(=\) & -2122.763466 \\
Sum of electronic and thermal Energies= & -2122.725880 \\
Sum of electronic and thermal Enthalpies \(=\) & -2122.724936 \\
Sum of electronic and thermal Free Energies= & -2122.841662
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 406.573 & 141.669 & 245.670
\end{tabular}

C,0,1.1338763813,-3.9966346508,-0.1071601389
С, \(0,1.8074379809,-2.8249324083,-0.5039941747\)
C,0,2.716302126,-2.8908522921,-1.576824647
C,0,2.9437957702,-4.1025517768,-2.2399318607
C,0,2.2724888717,-5.2620629431,-1.836499695
С,0,1.3696508814,-5.2067912598,-0.7667072411
P,0,1.441245192,-1.2171740278,0.3080391551
Pd,0,-0.5674306072,-0.1246731109,-0.3424517381
P,0,0.2051882659,2.0424173957,-0.9179977554
C,0,1.7794500014,2.1074453946,-1.8781624819
C, \(0,1.9985712348,1.1069142328,-2.8463456028\)
C,0,3.1587235752,1.1163569149,-3.6280511048
C,0,4.1236127129,2.1134424708,-3.4385524637
C,0,3.9207362968,3.1024095439,-2.4694498768
C,0,2.7540362183,3.1044294683,-1.6953601373
C,0,1.7254770662,-1.5249601831,2.0995632185
C,0,2.9164457133,-2.1173362414,2.5649535908
C,0,3.1144125321,-2.3262918313,3.932188336
C,0,2.1265968076,-1.9488804866,4.8526535672
C,0,0.940067228,-1.3619598583,4.4019242784
C, \(0,0.7402182719,-1.1509553758,3.0314336082\)
C, \(0,-2.0754364891,-1.6131340782,-0.2741225944\)
C,0,-2.6709205736,-0.4060134855,-0.7642668414
C,0,-3.7048705941,0.421654555,0.0004902524
С, \(0,-3.5575686731,1.9210929407,-0.3179467992\)
C,0,-3.6977398427,0.1990123658,1.5220257319
C,0,0.3885124091,3.2711323684,0.4319511018
C,0,0.8703058709,2.8591320108,1.690984334
C,0,1.0138582596,3.7812735249,2.7327784371
C,0,0.6677531688,5.123903239,2.5360564908
С,0,0.1810269975,5.5439690957,1.292528852
C,0,0.0444739569,4.6252491728,0.2456555927
\begin{tabular}{l}
\(\mathrm{N}, 0,-5.1185965846,0.0947557004,-0.492347417\) \\
\(\mathrm{C}, 0,-5.7127616768,-1.0554336493,-0.7446803909\) \\
\(\mathrm{C}, 0,-7.1565466302,-1.0633978886,-1.1711074425\) \\
\(\mathrm{~N}, 0,-5.0887895276,-2.2234246462,-0.631212788\) \\
\(\mathrm{H}, 0,-0.6224902578,2.8170312459,-1.7714734727\) \\
\(\mathrm{H}, 0,2.6488989998,-0.5600434972,-0.029387568\) \\
\(\mathrm{H}, 0,-2.793787588,-0.3128288335,-1.8448851853\) \\
\(\mathrm{H}, 0,-1.7842714998,-2.3958570278,-0.9745742508\) \\
\(\mathrm{H}, 0,-2.2508686325,-1.9603769707,0.7435109845\) \\
\(\mathrm{H}, 0,-4.4236988361,0.856914331,2.0110932645\) \\
\(\mathrm{H}, 0,-3.94138425,-0.833515131,1.7903179359\) \\
\(\mathrm{H}, 0,-2.703069391,0.4281417792,1.915002499\) \\
\(\mathrm{H}, 0,-4.3972849164,2.4994730846,0.0910626424\) \\
\(\mathrm{H}, 0,-2.6436972588,2.30066364,0.140347562\) \\
\(\mathrm{H}, 0,-3.4965948648,2.0912133325,-1.3981517396\) \\
\(\mathrm{H}, 0,-7.242093332,-1.4513865133,-2.1921147974\) \\
\(\mathrm{H}, 0,-7.7385641684,-1.7140392207,-0.5102516861\) \\
\(\mathrm{H}, 0,-7.5947854133,-0.0637417349,-1.1429124296\) \\
\(\mathrm{H}, 0,-5.5682203368,-3.0737367814,-0.8932469154\) \\
\(\mathrm{H}, 0,-4.0757950907,-2.2530057617,-0.4941518403\) \\
\(\mathrm{H}, 0,-0.179209235,-0.6928656676,2.6780814635\) \\
\(\mathrm{H}, 0,0.1732882304,-1.0694712819,5.1122108836\) \\
\(\mathrm{H}, 0,2.2835150142,-2.1129999035,5.9136793692\) \\
\(\mathrm{H}, 0,4.0356131384,-2.7818657414,4.2802438255\) \\
\(\mathrm{H}, 0,3.683191774,-2.4205323142,1.8589145568\) \\
\(\mathrm{H}, 0,-0.3236263515,4.9635018383,-0.7183285945\) \\
\(\mathrm{H}, 0,-0.0877676905,6.5834855004,1.1357856372\) \\
\(\mathrm{H}, 0,0.7763338251,5.8375293765,3.346048751\) \\
\(\mathrm{H}, 0,1.3912194619,3.4518308334,3.695332316\) \\
\(\mathrm{H}, 0,1.1282822468,1.8177672662,1.8568081828\) \\
\(\mathrm{H}, 0,-5.7142402233,0.9079612655,-0.6010298691\) \\
\(\mathrm{H}, 0,1.2611339111,0.3205859266,-2.9855089923\) \\
\(\mathrm{H}, 0,3.3100852849,0.3471357776,-4.3786942476\) \\
\(\mathrm{H}, 0,5.0268739075,2.1180110912,-4.0396212868\) \\
\(\mathrm{H}, 0,4.6669178532,3.8753830065,-2.3169112944\) \\
\(\mathrm{H}, 0,2.6061760185,3.8811192015,-0.953265313\) \\
\(\mathrm{H}, 0,3.2506597127,-1.9990977727,-1.8915928807\) \\
\(\mathrm{H}, 0,3.6512655925,-4.1413331561,-3.0619255189\) \\
\(\mathrm{H}, 0,2.4554528373,-6.2021973614,-2.346147053\) \\
\(\mathrm{H}, 0,0.8554985391,-6.1061940217,-0.4430090635\) \\
\(\mathrm{H}, 0,0.4421367166,-3.9670379408,0.7296811256\) \\
\hline
\end{tabular}
\(\operatorname{Pd}\left(\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\left(\eta^{2}\right.\)-1,1-dimethylallyl acetate) - 6-31G* Solvated 6 HCN
\(\mathrm{E}(\) RB+HF-LYP \()=-2035.17916894\)

```

H,0,-6.158968323,-0.1419163912,-0.1401527008
H,0,-6.1085931451,1.3934725007,-1.0540971419
H,0,-5.5026090087,1.3157191642,0.6133284717
H,0,-1.5128500628,0.2291276529,1.2025118401
H,0,-0.5798494313,2.0879221061,-0.1053979911
H,0,-0.8961545432,1.1992164852,-1.667525037
H,0,-2.6156951875,-2.1293608673,-2.2589024074
H,0,-2.0639236668,-0.4692173862,-2.5570132421
H,0,-0.901434606,-1.7111426134,-2.0513015279
H,0,-2.9041712633,-3.0146949543,0.0698582741
H,0,-1.1571583962,-2.7986764589,0.2586642651
H,0,-2.2561845984,-2.0993515032,1.4527695586
H,0,-0.7166271201,5.4636700358,0.187489197
H,0,-3.2429437324,3.0594230612,-1.7190689328
H,0,-4.1713522161,-0.6437905482,1.8785329874
H,0,-5.0179179887,-2.2988722483,-0.766862598
H,0,6.902563376,-3.9477838667,-2.1468216598
H,0,2.2349065733,3.5756543535,2.5744985616
H,0,3.7086997342,0.7427917106,-3.4859194643
H,0,3.3126262146,-0.8523482054,-2.7922834378
H,0,2.0262921584,0.1494426004,-3.4960228278
H,0,3.1649905749,3.1024185451,-2.3247412627
H,0,1.4101846688,2.7852047543,-2.2579122001
H,0,2.2656018326,3.3033376532,-0.7981962803
H,0,5.0203163514,1.6305008625,-1.2583643357
H,0,4.3775496884,1.4725263918,0.4008117527
H,0,4.8024734024,0.022349185,-0.5262336574
H,0,1.4837913345,-3.0385998829,3.4296446274
H,0,0.9544044194,-1.3379736589,3.4826243914
H,0,-0.0609251163,-2.5504439849,2.6850189857
H,0,2.3606913884,-4.3010566757,1.2294711366
H,0,0.9564123317,-3.9200911279,0.2015465641
H,0,2.5936446028,-3.5348376949,-0.3640196406
H,0,3.8530934207,-2.4866267891,2.5510647933
H,0,4.2564886264,-1.6615938985,1.0255304064
H,0,3.6654979748,-0.7162836877,2.4091371739

```

\section*{\(\operatorname{Pd}\left(\mathbf{P}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\left(\eta^{2}-1,1\right.\)-dimethylallyl acetate \()-6-311+\mathrm{G}^{* *}\) Transition State for Ionization}
\(\mathrm{E}(\) RB+HF-LYP \()=-1474.84865190\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.403940 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.433038 \\
Thermal correction to Enthalpy \(=\) & 0.433982
\end{tabular}
\begin{tabular}{lc} 
Thermal correction to Gibbs Free Energy \(=\) & 0.341379 \\
Sum of electronic and zero-point Energies \(=\) & -1474.444712 \\
Sum of electronic and thermal Energies \(=\) & -1474.415614 \\
Sum of electronic and thermal Enthalpies \(=\) & -1474.414670 \\
Sum of electronic and thermal Free Energies= & -1474.507273
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 271.735 & 101.009 & 194.900
\end{tabular}

C, \(0,-0.7029429502,-1.8333511865,-0.3801251307\)
C,0,-1.3755060466,-0.6699190346,-0.8107377596
C, \(0,-1.7571250563,0.3723976536,0.042571624\)
O,0,-4.1861186905,-1.0431588749,-0.6205404843
С,0,-5.1346422919,-0.5079343936,0.0126704464
С,0,-6.542802971,-1.0985705098,-0.1706597072
Pd,0,0.710886838,-0.2089393912,-0.1546223701
P,0,2.6045327988,-1.5846624475,0.1139529711
P,0,1.4891983683,2.0454096563,-0.0328043498
O,0,-5.0367005764,0.4920838149,0.7798751155
H,0,-7.1322737973,-0.4224025482,-0.7987669603
H,0,-7.0513481742,-1.16988212,0.7940708651
H,0,-6.5022894384,-2.0780576562,-0.6503284381
C,0,-1.9840562739,0.2075867007,1.5113791528
C,0,-2.3720295104,1.6065347153,-0.5342525525
H,0,-1.5127421354,-0.5111638011,-1.8746179246
H,0,-0.4779126861,-2.5919377068,-1.120763281
H,0,-0.8599168708,-2.214229856, 0.6230068547
C, \(0,0.9876625759,3.1027307866,-1.4607720676\)
C,0,0.8942842248,3.0167158725,1.4198340734
C,0,3.3070734662,2.3899845214,0.0337958903
C,0,3.9675860163,-1.3662555548,-1.1136780521
C, \(0,2.3320055596,-3.4078083228,0.0309188597\)
C,0,3.4918796049,-1.4225124985,1.7272090398
H,0,3.2647704001,-3.9536361658,0.1980770685
H,0,1.6021267238,-3.7064099,0.7851269992
H,0,1.93355526,-3.6749769236,-0.9491481454
H,0,4.3420269684,-2.1083777144,1.7818144132
\(\mathrm{H}, 0,3.8513769484,-0.4004579756,1.8563125681\)
H,0,2.8024689799,-1.6454678125,2.5436837962
H,0,4.782822286,-2.0708449103,-0.9266653662
H,0,3.5793796596,-1.5305319148,-2.1206144603
H,0,4.3592875941,-0.3497452232,-1.0608152228
H,0,1.2579979869,4.0471447367,1.3802797234
```

H,0,-0.1960224851,3.0241391791,1.4383580829
H,0,1.2448397949,2.5490074814,2.3419306301
H,0,3.498644616,3.4651798963,0.0870588532
H,0,3.7490857896,1.9133995871,0.9109094653
H,0,3.7935403882,1.9935043558,-0.8593252065
H,0,1.3457501705,4.1288372801,-1.3399751049
H,0,1.3996234578,2.686507084,-2.3822372125
H,0,-0.0990223811,3.1096611435,-1.5477246649
H,0,-1.6350623262,1.0766901178,2.0761968863
H,0,-3.0855634866,0.1789780576,1.608106598
H,0,-1.5522114586,-0.696102016,1.9378774033
H,0,-3.4505341587,1.5106403929,-0.323047605
H,0,-2.0313792392,2.5146083173,-0.0272150714
H,0,-2.2135443914,1.6969384582,-1.6097657908

```
\(\operatorname{Pd}\left(\mathbf{P}\left(\mathrm{CH}_{3}\right)_{3}\right)_{\mathbf{2}}\left(\eta^{2}\right.\)-1,1-dimethylallyl acetate) \(\mathbf{6} \mathbf{H C N}\) - Transition State for Ionization \(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-2035.17587036\)
\begin{tabular}{lc} 
Zero-point correction= & 0.516752 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.568091 \\
Thermal correction to Enthalpy \(=\) & 0.569035 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.417138 \\
Sum of electronic and zero-point Energies \(=\) & -2034.659119 \\
Sum of electronic and thermal Energies= & -2034.607779 \\
Sum of electronic and thermal Enthalpies \(=\) & -2034.606835 \\
Sum of electronic and thermal Free Energies \(=\) & -2034.758733
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 356.483 & 163.811 & 319.695
\end{tabular}

C,0,-0.7085612788,1.0868292162,-0.5839597223
C,0,-1.2622397029,0.0392900834,0.211241557
C,0,-1.9255956421,-1.1361873191,-0.3132067959
C,0,-1.748970384,-1.536200372,-1.7623593749
Pd, \(0,0.9453363662,-0.098884782,-0.0291251823\)
P,0,1.9875290069,-1.8250049685,1.2667195809
P,0,2.6152493877,1.0555930721,-1.2124104328
С,0,-2.0801170861,-2.3045689079,0.6384498915
O, \(0,-3.7898384517,-0.7142912542,-0.3104893504\)
С, \(0,-4.2466313383,0.3243738404,-0.9732484853\)
С,0,-5.6799588893,0.7061185529,-0.6154927465
O,0,-3.6063446739,0.9740428369,-1.8031009206
С,0,-2.9744397159,3.8049601135,-1.5376308968
\(\mathrm{N}, 0,-2.5236512277,4.8171370934,-1.2027734527\)
\(\mathrm{C}, 0,-0.2529869325,5.117496996,0.8908604974\)
\(\mathrm{~N}, 0,0.6060919142,4.8414879811,1.6140310699\)
\(\mathrm{C}, 0,2.601788424,2.7314441807,2.8960271635\)
\(\mathrm{~N}, 0,3.3055801039,1.8515242567,3.1632091079\)
\(\mathrm{C}, 0,-5.561003092,-3.20969332,-0.9215380402\)
\(\mathrm{~N}, 0,-6.1786487344,-4.1559524047,-1.1741760528\)
\(\mathrm{C}, 0,-4.5224989464,-0.4387808538,2.7165045625\)
\(\mathrm{~N}, 0,-4.7159449348,-0.289946986,3.8484739657\)
\(\mathrm{~N}, 0,5.0613063642,-2.6170466207,-1.7521519283\)
\(\mathrm{C}, 0,5.9104033376,-3.272719387,-2.1840162374\)
\(\mathrm{C}, 0,1.1783635404,-2.1460851125,2.9061256396\)
\(\mathrm{C}, 0,2.0493414506,-3.5307673315,0.53533376\)
\(\mathrm{C}, 0,3.7481705526,-1.6127263425,1.8006504069\)
\(\mathrm{C}, 0,2.9398748797,0.3456147306,-2.8936196171\)
\(\mathrm{C}, 0,4.3383873729,1.2073396252,-0.5481559142\)
\(\mathrm{C}, 0,2.2387374116,2.8237481691,-1.6231976104\)
\(\mathrm{H}, 0,-6.3123714403,-0.1738836493,-0.4651611409\)
\(\mathrm{H}, 0,-6.1040996649,1.3327285075,-1.4028495117\)
\(\mathrm{H}, 0,-5.6821999634,1.2754640625,0.3226546218\)
\(\mathrm{H}, 0,-1.4523052898,0.235327513,1.2656556383\)
\(\mathrm{H}, 0,-0.6186676595,2.0759192502,-0.1375997571\)
\(\mathrm{H}, 0,-0.8949001142,1.1042798642,-1.654180617\)
\(\mathrm{H}, 0,-2.4471718164,-2.3355466157,-2.0270551779\)
\(\mathrm{H}, 0,-1.9103153997,-0.6928394816,-2.4330949799\)
\(\mathrm{H}, 0,-0.7281974194,-1.9119505224,-1.903314203\)
\(\mathrm{H}, 0,-2.895323571,-2.9669173585,0.3370275937\)
H, \(,-1.1556923559,-2.891604785,0.6206593295\)
\(\mathrm{H}, 0,-2.2477475846,-1.9744055833,1.667510249\)
\(\mathrm{H}, 0,-1.0592771951,5.3236706922,0.1984693498\)
\(\mathrm{H}, 0,-3.3688560728,2.8234208748,-1.8049762703\)
\(\mathrm{H}, 0,-4.3287561616,-0.5729741193,1.6606323419\)
\(\mathrm{H}, 0,-4.9768007516,-2.3298605161,-0.688289398\)
\(\mathrm{H}, 0,6.6972859712,-3.8796835429,-2.5835767893\)
\(\mathrm{H}, 0,1.9442388233,3.5424887098,2.6152267903\)
\(\mathrm{H}, 0,3.6663210885,0.9512345538,-3.4490728299\)
\(\mathrm{H}, 0,3.3311806663,-0.6700314258,-2.7833367407\)
\(\mathrm{H}, 0,2.0057808046,0.2988985323,-3.4621321745\)
\(\mathrm{H}, 0,3.03338144,3.2734180833,-2.2305691464\)
\(\mathrm{H}, 0,1.2943022496,2.8792672883,-2.1734531745\)
\(\mathrm{H}, 0,2.1251915662,3.402523301,-0.7012141696\)
\(\mathrm{H}, 0,4.9545591749,1.844358481,-1.1943205172\)
\(\mathrm{H}, 0,4.3138742504,1.6309259952,0.45994988497\)
\(\mathrm{H}, 0,4.7953512189,0.2153623125,-0.4937323297\)

H,0,1.693460358,-2.9403864267,3.4596433378
H,0,1.2010396302,-1.2280503372,3.5017938351
H,0,0.1325460007,-2.4328419877,2.7626953655
H,0,2.4840911956,-4.2521533316,1.2376752768
H,0,1.0428619138,-3.8664500236,0.2643357144
H,0,2.659628504,-3.5068787871,-0.3728488646
H,0,4.0510102772,-2.4152979046,2.484154223
H,0,4.4000019445,-1.6344194556,0.9224897266
H,0,3.8633734569,-0.6485890174,2.3051506912

\section*{\(\operatorname{Pd}\left(\mathbf{P}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\left(\eta^{2}-1,1\right.\)-dimethylallyl acetate \() \mathbf{6 - 3 1 + G} \mathbf{G}^{* *}\) Onsager in Ether - Transition State for Ionization}
\(\mathrm{E}(\) RB+HF-LYP \()=-1474.66420710\)
\begin{tabular}{lc} 
Zero-point correction= & 0.405639 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.434748 \\
Thermal correction to Enthalpy \(=\) & 0.435692 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.343527 \\
Sum of electronic and zero-point Energies= & -1474.258568 \\
Sum of electronic and thermal Energies= & -1474.229459 \\
Sum of electronic and thermal Enthalpies \(=\) & -1474.228515 \\
Sum of electronic and thermal Free Energies= & -1474.320680
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 272.808 & 101.064 & 193.978
\end{tabular}

C,0,-0.7289415383,-1.648884024,-0.5809330013
C,0,-1.3913391432,-0.4045033237,-0.822357497
C,0,-2.2113138183,0.2979592467,0.1035270726
O,0,-4.0427519166,-0.6723615414,-0.4244131802
C,0,-5.196829541,-0.3793165378,0.0566578967
C,0,-6.3361088271,-1.268353288,-0.4803343836
Pd, \(0,0.7603662531,-0.2012644436,-0.207811231\)
P,0,2.5864954967,-1.6368866364,0.1323540879
P,0,1.6447442971,2.0233412052,-0.0471882676
O,0,-5.4634713026,0.5114004806,0.8911533526
H,0,-6.2966203258,-1.3154177238,-1.5737691033
H,0,-7.3067060975,-0.8851224028,-0.1521406842
H,0,-6.2033457302,-2.2904322742,-0.106411751
С, \(0,-2.2723255135,-0.0591641556,1.5656857868\)
C,0,-2.6649179241,1.6931070156,-0.2416564394
H,0,-1.4604345111,-0.0602327025,-1.8521559633
H,0,-0.4909725484,-2.2683737447,-1.4433226437
```

H,0,-0.9617506886,-2.219824874,0.3156706901
C,0,1.004164974,3.1995339507,-1.3289487205
C,0,1.2618599898,2.9268556006,1.5253222135
C,0,3.4671620875,2.3192356248,-0.1971144002
C,0,3.9167648615,-1.557921332,-1.148979198
C,0,2.2222202388,-3.4499242965,0.17963834
C,0,3.5367407091,-1.4184436975,1.7056115044
H,0,3.137077227,-4.0319765158,0.3339192146
H,0,1.5215162527,-3.6635125183,0.9918566676
H,0,1.758654971,-3.7583002535,-0.7615065641
H,0,4.3554000857,-2.1428344865,1.773924983
H,0,3.9573045531,-0.4107594459,1.7559188491
H,0,2.8694244352,-1.5535058626,2.5616092347
H,0,4.7174648695,-2.2721999526,-0.9296572127
H,0,3.4956560498,-1.7853837414,-2.1322560195
Н,0,4.3428946435,-0.5523672646,-1.1845217142
H,0,1.6372268444,3.9556342278,1.4961379016
H,0,0.1804609772,2.9444505822,1.6894460403
H,0,1.7246283794,2.4063998007,2.368877598
H,0,3.7021988011,3.3865398134,-0.1269601515
H,0,4.0062338663,1.792911686,0.595589855
H,0,3.8252835661,1.9467814065,-1.1611106092
H,0,1.4162129323,4.2053679547,-1.1909893372
H,0,1.2827529194,2.8363284424,-2.3225292661
H,0,-0.0869341901,3.2456469143,-1.2779535707
H,0,-1.4715046822,0.4666424772,2.1022646587
H,0,-3.234288713,0.2560249343,1.9754158605
H,0,-2.1452305855,-1.1300035182,1.7320402851
H,0,-3.660026518,1.8725928606,0.1708609005
H,0,-1.9736624306,2.4198197522,0.2062022905
Н,0,-2.6773924813,1.8530560907,-1.3232575442

```

\section*{\(\operatorname{Pd}\left(\mathbf{P}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\left(\eta^{2}\right.\)-1,1-dimethylallyl acetate) 6-31+G** Onsager in THF - Transition State for Ionization}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-1474.66750339\)
\begin{tabular}{lc} 
Zero-point correction= & 0.405707 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.434728 \\
Thermal correction to Enthalpy \(=\) & 0.435672 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.344051 \\
Sum of electronic and zero-point Energies \(=\) & -1474.261796 \\
Sum of electronic and thermal Energies= & -1474.232775 \\
Sum of electronic and thermal Enthalpies \(=\) & -1474.231831 \\
Sum of electronic and thermal Free Energies \(=\) & -1474.323453
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{39}{*}{}} \\
\hline & & & \\
\hline
\end{tabular}

H,0,1.4293911387,4.2006024444,-1.207403796
H,0,1.2811120127,2.8296138283,-2.3341389415
H,0,-0.0808816857,3.2505554981,-1.2838734964
H,0,-1.4696452688,0.4326560184,2.0979786341
H,0,-3.240444884,0.2635282789,2.0189383313
H,0,-2.1894734918,-1.1449929177,1.7399127583
H,0,-3.6646835236,1.9087630534,0.2266815571
H,0,-1.9607003666,2.4037045358,0.2146307853
H,0,-2.7238584191,1.8598700221,-1.2924076276

\section*{\(\operatorname{Pd}\left(\mathbf{P}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\left(\eta^{2}-1,1\right.\)-dimethylallyl acetate) \(\mathbf{6 - 3 1 + G ^ { * * } \text { Onsager in } \mathrm { H } _ { 2 } \mathrm { O } - \text { Transition }}\) State for Ionization}
\(\mathrm{E}(\) RB+HF-LYP \()=-1474.67183041\)
\begin{tabular}{lc} 
Zero-point correction= & 0.405718 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.434674 \\
Thermal correction to Enthalpy \(=\) & 0.435619 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.344252 \\
Sum of electronic and zero-point Energies= & -1474.266112 \\
Sum of electronic and thermal Energies= & -1474.237156 \\
Sum of electronic and thermal Enthalpies \(=\) & -1474.236212 \\
Sum of electronic and thermal Free Energies \(=\) & -1474.327579
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 272.762 & 100.997 & 192.298
\end{tabular}

C,0,-0.7633724412,-1.6249883689,-0.5722361262
C,0,-1.4090495213,-0.3655823756,-0.78738972
C,0,-2.3134783026,0.2802017964,0.1276178085
O,0,-3.9687071487,-0.6027837046,-0.4105712775
С,0,-5.1540543612,-0.3676689212,0.0461810484
C,0,-6.2187109674,-1.2883289397,-0.5791860234
Pd,0,0.7433997144,-0.2017371656,-0.2013335588
P,0,2.5866989649,-1.6337247089,0.1355543336
P,0,1.6561680443,2.0135722864,-0.0602751939
O,0,-5.4915070978,0.4715048004,0.8994374091
H,0,-6.1239540778,-1.2921504807,-1.6698899222
H,0,-7.220715385,-0.962038415,-0.2848730608
\(\mathrm{H}, 0,-6.0535055365,-2.3158809393,-0.2351411118\)
С, \(0,-2.32537673,-0.0858726469,1.5936066507\)
C,0,-2.7074829721,1.7081546577,-0.178405442
H,0,-1.4813403113,-0.008781715,-1.8133310228
H,0,-0.5255874678,-2.2298196015,-1.4456171616
```

H,0,-1.0021757557,-2.214144631,0.3115768196
C,0,1.0179499165,3.1989851131,-1.3367568757
C,0,1.3013414669,2.9292438801,1.5131701128
C,0,3.4792013261,2.2889413346,-0.2311834908
C,0,3.9050008678,-1.5591884758,-1.1579652636
C,0,2.2198768561,-3.4471401141,0.1865543734
C,0,3.552722988,-1.4184567024,1.6995380359
H,0,3.1358510511,-4.0310856068,0.3258963001
H,0,1.5315381562,-3.6605883481,1.0095611991
H, $0,1.7420404464,-3.7530675485,-0.7483885248$
H,0,4.3724443056,-2.1423511732,1.7570025388
H,0,3.9754116095,-0.411631518,1.747949309
H,0,2.8955024697,-1.5554848468,2.5631043437
H,0,4.7068361988,-2.2737448309,-0.944501329
H,0,3.4758666995,-1.7875430218,-2.1375796931
H,0,4.3338134452,-0.5551385311,-1.1989246455
H,0,1.6925030752,3.9519164798,1.4775620104
H,0,0.2216584371,2.9630967323,1.687952093
H,0,1.7651712818,2.40496611,2.3537451023
H,0,3.7278965544,3.3533322482,-0.1652067855
H,0,4.022388143,1.758009069,0.5553830709
H,0,3.8225486513,1.9116185601,-1.1985930106
H,0,1.4473898323,4.1984980034,-1.2057327507
H,0,1.2811276221,2.8303256092,-2.3325647071
H,0,-0.0720416515,3.2615794022,-1.2746430928
H,0,-1.4718977503,0.3931395043,2.0882354504
H,0,-3.2484719797,0.2652077557,2.0591841915
H,0,-2.2363356725,-1.1638008947,1.7411155583
Н,0,-3.6667302674,1.9475711584,0.2841096259
H,0,-1.9463489399,2.3839288177,0.2300903946
Н,0,-2.7659699647,1.8766884162,-1.2575241631

```

\section*{\(\operatorname{Pd}\left(\mathbf{P}(\mathrm{H})(\mathrm{Ph})_{2}\right)_{2}\left(\eta^{2}-1,1\right.\)-dimethylallyl acetamidine) SDD on \(\mathrm{Pd}, 6\)-31G on \(\mathrm{Ph}, 6\)-31G* on all other atoms - Transition State for loss of acetamidine}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-2123.35595516\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.606849 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.645286 \\
Thermal correction to Enthalpy \(=\) & 0.646230 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.526468 \\
Sum of electronic and zero-point Energies \(=\) & -2122.749106 \\
Sum of electronic and thermal Energies= & -2122.710669 \\
Sum of electronic and thermal Enthalpies \(=\) & -2122.709725 \\
Sum of electronic and thermal Free Energies= & -2122.829487
\end{tabular}
\begin{tabular}{lcc} 
E (Thermal) & CV & CVI/Mol \\
KCal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 404.923 & 142.513
\end{tabular}
```

H,0,2.4540470224,1.661040016,-0.8625398946
H,0,2.6994650224,0.893892016,0.7788611054
H,0,3.5665090224,-2.737498984,1.5420011054
H,0,3.3198070224,-0.994630984,1.7435821054
H,0,1.9254590224,-2.071317984,1.5424671054
H,0,3.4680820224,-3.808980984,-0.6930098946
H,0,1.7903390224,-3.359349984,-0.9618248946
H,0,3.0204250224,-2.857531984,-2.1336538946
H,0,7.8014340224,-0.850817984,-1.8017158946
H,0,8.1523650224,-0.752950984,-0.0670378946
H,0,7.6831720224,-2.304611984,-0.7906648946
H,0,6.4605180224,1.110528016,-0.6394138946
H,0,4.8018990224,0.711992016,-0.3627648946
H,0,0.3937690224,0.389083016,2.6415261054
H,0,0.2485020224,0.802773016,5.0883531054
H,0,-1.2003899776,2.628486016,5.9555051054
H,0,-2.5001799776,4.039709016,4.3731851054
$\mathrm{H}, 0,-2.3526239776,3.639540016,1.9381321054$
H,0,-1.6216409776,-4.745846984,-0.6318808946
H,0,-2.4348349776,-6.133626984,1.2455491054
H,0,-3.0094869776,-5.079034984,3.4239011054
H,0,-2.7506709776,-2.622048984,3.7184711054
H,0,-1.9066119776,-1.228810984,1.8592631054
H,0,5.4854000224,-2.748506984,-0.5314548946
H,0,-1.3985589776,0.108166016,-3.0132788946
H,0,-3.3109629776,0.847810016,-4.4056068946
H,0,-5.5766279776,-0.108200984,-4.0225128946
H,0,-5.9136069776,-1.824874984,-2.2552628946
H,0,-4.0047779776,-2.596229984,-0.8863788946
H,0,-2.1256429776,3.023664016,-1.9507508946
H,0,-1.6434639776,5.160586016,-3.0989128946
H,0,0.1853390224,6.635913016,-2.2827148946
H,0,1.5279660224,5.962687016,-0.2995738946
H,0,1.0576160224,3.826625016,0.8560931054

```

\section*{\(\operatorname{Pd}\left(\mathbf{P}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\left(\eta^{3}\right.\)-1,1-dimethylallyl)}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-1245.98871731\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.358190 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.381707 \\
Thermal correction to Enthalpy \(=\) & 0.382651 \\
Thermal correction to Gibbs Free Energy= & 0.306240 \\
Sum of electronic and zero-point Energies \(=\) & -1245.630528 \\
Sum of electronic and thermal Energies= & -1245.607010
\end{tabular}
\(\begin{array}{ll}\text { Sum of electronic and thermal Enthalpies }= & -1245.606066 \\ \text { Sum of electronic and thermal Free Energies }= & -1245.682477\end{array}\)
\begin{tabular}{cccc} 
& E (Thermal & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 239.525 & 83.933 & 160.821
\end{tabular}

C,0,0.1955591669,-1.705180093,1.9153883745
Pd,0,0.0450486177,-0.3115915499,0.256318652
P,0,0.5137157753, \(0.8763532056,-1.7651230218\)
C,0,1.0815972945,-2.1664800308,0.9052798417
C,0,2.1977855714,-1.4434836015,0.4561128203
P,0,-2.0247507761,0.4886846666,1.047343338
C, \(0,-2.1264673664,0.6330918189,2.883997458\)
C,0,-2.6445939294,2.1421836405,0.5134898013
C,0,-3.4233962774,-0.6360029732,0.625237324
С,0,2.0931024969,1.8332019287,-1.7567262708
С, \(0,0.6976295957,-0.2419555097,-3.2238651989\)
C, \(0,-0.6746940292,2.1307956677,-2.415240291\)
\(\mathrm{H}, 0,0.7696370651,-3.0208828764,0.3066323351\)
H,0,-0.6653520293,-2.3236015767,2.1514903744
H,0,0.5609761529,-1.1041802536,2.7438635227
C,0,2.9782945572,-1.9753419191,-0.7219401091
C, \(0,2.9527364766,-0.4611087077,1.3251295317\)
H,0,2.2615713137,2.3080162161,-2.7281695545
H,0,2.0534279063,2.6076215988,-0.985938312
H,0,2.9368463025,1.1748149595,-1.5381677376
H,0,-0.3070223414,2.5423056989,-3.360179744
H,0,-1.6496141557,1.6697257371,-2.593529744
H,0,-0.7956850405,2.9480727076,-1.7010401542
H,0,0.9402700722,0.333905347,-4.1223468659
H,0,1.4891896558,-0.973092876,-3.0476298287
H,0,-0.2376092822,-0.7827499539,-3.3919957009
Н,0,3.384551328,-1.170208072,-1.3417424371
H,0,3.8422581619,-2.546372914,-0.3561256293
H,0,2.3811692121,-2.6398547724,-1.3510534173
H,0,3.3273378463,0.3829752891,0.7391910594
H,0,2.3683309646,-0.0669562596,2.1572368057
\(\mathrm{H}, 0,3.8321979164,-0.9685141192,1.7447924719\)
H,0,-4.3609490758,-0.2616744536,1.0478275068
H,0,-3.5269594084,-0.711944582,-0.4601933428
H,0,-3.2271732872,-1.635598139,1.0208801106
H,0,-3.117327717,0.9881933881,3.1834151596
H,0,-1.9412504142,-0.335254654,3.3531696577
```

H,0,-1.3745083048,1.341255886,3.2423167312
H,0,-3.583688212,2.3728415178,1.0260510177
H,0,-1.9114313304,2.915033485,0.7590857701
H,0,-2.8212260408,2.1554455611,-0.5629824813
Pd(P(CH3)3)}\mp@subsup{)}{2}{(}\quad\mathrm{ -1,1-dimethylallyl) - 6-31G** Solvated with 6 HCN
E(RB+HF-LYP})=-1806.5224376

```

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies= \(\quad-1806.008810\)
Sum of electronic and thermal Free Energies= \(\quad-1806.165328\)
```

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	321.714	150.436	329.420

C,0,2.9805090018,1.1731998249,-1.3335765686
P,0,2.126921028,0.0126027423,-0.1776572213
C, $0,2.9849154099,0.3780200328,1.4125440604$
Pd,0,-0.22064041,0.0672576007,-0.3715225955
P,0,-1.0512422187,0.6498395361,1.7818510072
C, $0,0.1054824639,1.0630064279,3.1592133158$
C,0,-0.090680569,-0.4715610148,-2.4759583059
С,0,-1.3739337818,0.0979732542,-2.2610682978
C,0,-2.3359414898,-0.46701938,-1.4060379914
С, $0,-3.6104654019,0.3043751793,-1.1482331578$
C, $0,-2.4331113639,-1.9541086512,-1.1335138272$
C, $0,2.8217993951,-1.6423308625,-0.6079583735$
C,0,-2.1249106763,-0.6249162224,2.57755361
C,0,-2.1147787162,2.1624958637,1.7495515221
$\mathrm{N}, 0,-2.3235349974,3.512511339,-3.0436866$
C, $0,-2.6951176273,4.407392401,-3.674390917$
$\mathrm{N}, 0,1.7103166741,3.9591552738,1.3807205928$
C,0,1.9913358432,5.0806371944,1.4026636541
N,0,1.2583879172,-2.5738555532,3.0898950038
C,0,1.444896335,-3.5625327951,3.6601029779
Н,0,-3.4770625999,1.3799782773,-1.2940149037
H,0,-4.3853788006,-0.0354386056,-1.8517160609
Н,0,-4.0069998804,0.1142053213,-0.1461846411

```
```

H,0,-3.2091748928,-2.3798126419,-1.7875031478
H,0,-2.752735694,-2.1467781273,-0.1046497256
H,0,-1.505733332,-2.4988998071,-1.3202110809
H,0,-1.5443501712,1.1227813911,-2.5881561393
H,0,0.0569010422,-1.548698385,-2.4755338287
H,0,0.6023586271,0.0815168245,-3.1041674549
H,0,0.7155030971,0.1907120341,3.4059515104
H,0,-0.4660161094,1.3587498564,4.04656564
H, $0,0.756201733,1.8895439931,2.863494341$
H,0,-1.5382882106,-1.5363067994,2.7292641578
H,0,-2.9907657976,-0.8618816744,1.9538957799
H,0,-2.4829677219,-0.2687835563,3.5503981128
H,0,-2.5215641621,2.3710755095,2.7456878083
H,0,-2.9413601481,2.0374971508,1.0461687404
H,0,-1.5106175178,3.0155825016,1.4255689529
H,0,1.6185645024,-4.4774172351,4.1906710475
H,0,2.6506782813,-0.3215909655,2.1825434921
H,0,2.7653595495,1.4005651049,1.7287802071
H,0,4.0651537204,0.2684216703,1.2675305234
H,0,2.4900225489,-2.3702964503,0.1389541798
H,0,2.4596695875,-1.9701414918,-1.5856571761
Н,0,3.9159572875,-1.5991625236,-0.6115808034
H,0,4.0659110116,1.0666232834,-1.2372083621
H,0,2.6868361408,0.9673361919,-2.3664835818
H,0,2.6919844064,2.2000466234,-1.0887537943
H,0,2.2531448623,6.1196422365,1.4249588539
H,0,-3.0402313467,5.2361633268,-4.2592659996
$\mathrm{N}, 0,-5.5097753114,-1.508076836,1.5009881591$
C,0,-6.5793147895,-1.8789434636,1.7361661695
H,0,-7.5700425419,-2.2231545735,1.955018715
$\mathrm{N}, 0,0.5812040816,-4.0299483507,-2.749036323$
C, $0,0.6478556268,-5.0154575358,-3.3498789636$
H,0,0.709850059,-5.9290737968,-3.9063063386
N,0,6.3289758559,-0.2187614756,-0.3007490594
C,0,7.4795559922,-0.2743447098,-0.3999490916
H,0,8.5458757388,-0.325972512,-0.4912277253

```

\section*{\(\operatorname{Pd}\left(\mathbf{P}(\mathbf{H})(\mathbf{P h})_{2}\right)_{2}\left(\eta^{3}-1,1-d i m e t h y l a l l y l\right)\) SDD on \(\operatorname{Pd}, 6-31 G\) on \(\mathrm{Ph}, 6-31 \mathrm{G}^{*}\) on all other atoms}
\(\mathrm{E}(\) RB+HF-LYP \()=-1934.04639865\)

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
```

0.519383 (Hartree/Particle)
0.551888
0.552832

```
\begin{tabular}{lc} 
Thermal correction to Gibbs Free Energy \(=\) & 0.448330 \\
Sum of electronic and zero-point Energies \(=\) & -1933.527015 \\
Sum of electronic and thermal Energies \(=\) & -1933.494511 \\
Sum of electronic and thermal Enthalpies \(=\) & -1933.493567 \\
Sum of electronic and thermal Free Energies \(=\) & -1933.598069
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 346.315 & 121.871 & 219.943
\end{tabular}

C,0,2.5397124579,3.7207920331,0.6958209296
C,0,1.6199140934,2.7522897747,0.2444597639
C, \(0,0.7627510281,3.0653603626,-0.8293380505\)
C, \(0,0.8186611813,4.3264118855,-1.432362017\)
C,0,1.7360153391,5.2812732054,-0.9779836627
C,0,2.5966406786,4.9769067242,0.0843098081
P,0,1.530800847,1.1115809708,1.0357346042
C,0,0.4808342112,1.2791811646,2.5319110925
C,0,0.41967265,0.1940197777,3.4304017719
C, \(0,-0.3729353696,0.2741556398,4.5792936354\)
С,0,-1.1237501576,1.4297433645,4.8355197312
C,0,-1.0748907463,2.5052262118,3.9426460441
C,0,-0.2741219667,2.4352881411,2.7951711283
Pd,0,1.0616708131,-0.7367875543,-0.3640607565
C,0,2.4772630894,-2.3006434501,-0.995401954
С,0,3.2751444566,-1.1393594964,-1.0716070638
C,0,3.3789092187,-0.287004042,-2.3207653825
P,0,-1.2850318259,-0.7774171998,-0.2163928446
C,0,-2.209268542,-0.2400152587,-1.700354033
C,0,-3.618934535,-0.25253982,-1.715195767
С,0,-4.3131675817,0.1826602252,-2.8468302677
C, \(0,-3.612279706,0.6337501624,-3.9738638247\)
С, \(0,-2.2137622639,0.64943446,-3.9684534292\)
С,0,-1.5138152123,0.2135732025,-2.8367229816
С,0,-2.0259266188,-2.3558888908,0.3338557029
C, \(0,-2.3035021534,-3.3844548601,-0.5873645557\)
C, \(0,-2.8153093749,-4.6071094106,-0.1416270676\)
С, \(0,-3.0483889715,-4.8174087528,1.2234431155\)
C, \(0,-2.7750977712,-3.798871461,2.143813766\)
С,0,-2.2671898909,-2.5715232519,1.7043525968
С,0,1.2588308919,-2.4583009699,-1.7018249529
С, \(0,4.4360056159,-0.9931018924,-0.1148648873\)
H, \(, 2.8177169704,1.0430481795,1.6181141458\)
H,0,-1.7874891336,0.0783380879,0.7884418317
```

H,0,2.6802448166,-2.9901067661,-0.1764912819
H,0,0.6527168269,-3.3349260656,-1.4945741221
H,0,1.1227286688,-2.0305979289,-2.6922053332
H,0,4.2909652479,-0.5718054164,-2.8652062249
H,0,2.5367117317,-0.4047651788,-3.0056989829
H,0,3.475357608,0.7750022945,-2.0722380054
Н,0,5.3605824262,-1.3351386944,-0.6008898738
H,0,4.5996221816,0.0543790562,0.1616412336
H,0,4.2984282132,-1.5782585632,0.799180194
H,0,-0.4277269913,0.2249749901,-2.8353903025
H,0,-1.6693105371,0.994846093,-4.8409057517
H,0,-4.1554447518,0.9685876283,-4.8510333597
H,0,-5.397749538,0.1694691242,-2.8505610697
H,0,-4.171113133,-0.6077107559,-0.8510556808
H,0,3.2055247064,3.4982407735,1.5238749707
H,0,3.309282329,5.7149055569,0.4363150697
H,0,1.7821336603,6.2567540025,-1.4500112063
H,0,0.1524472238,4.5601686645,-2.2558935256
H,0,0.0567384458,2.3263481338,-1.1956200925
H,0,0.995560616,-0.7081334708,3.2399820456
H,0,-0.4004738809,-0.5585448148,5.274347397
H,0,-1.7387202775,1.4907294542,5.7269276556
H,0,-1.6515515165,3.4027063152,4.1395104018
H,0,-0.2318824611,3.2814193829,2.1184287748
H,0,-2.0661650406,-1.7850390873,2.4261334115
H,0,-2.9647263312,-3.9550994891,3.2004513026
H,0,-3.4462537958,-5.7664696134,1.5660562097
Н,0,-3.0363637524,-5.3909468882,-0.858258707
H,0,-2.143267549,-3.2256727402,-1.6493378545

```

\section*{The Nature of Decarboxylation / Proton Transfer in Orotidine}

\section*{Decarboxylase}

B3LYP//6-31+G** on all atoms unless otherwise noted
```

K+
E(RB+HF-LYP) =-599.725019794
Zero-point correction= 0.000000 (Hartree/Particle)
Thermal correction to Energy=}0.00141
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy= -0.015176

```
\begin{tabular}{|c|c|c|c|c|}
\hline Sum of & nic and zero & -point Energies= & & -599.725020 \\
\hline Sum of el & ronic and ther & rmal Energies= & & -599.723604 \\
\hline Sum of el & ronic and ther & rmal Enthalpies= & & -599.722659 \\
\hline Sum of el & onic and ther & rmal Free Energies= & & -599.740196 \\
\hline & & E (Thermal) & CV & S \\
\hline & \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & & /Mol-Kelvin \\
\hline TOTAL & 0.889 & 2.981 & & 6.909 \\
\hline
\end{tabular}

K,0,0.,0., 0 .

\section*{Water}
\(\mathrm{E}(\) RB+HF-LYP \()=-76.4340476910\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.021287 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.024123 \\
Thermal correction to Enthalpy \(=\) & 0.025067 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.003638 \\
Sum of electronic and zero-point Energies \(=\) & -76.412761 \\
Sum of electronic and thermal Energies= & -76.409925 \\
Sum of electronic and thermal Enthalpies \(=\) & -76.408981 \\
Sum of electronic and thermal Free Energies \(=\) & -76.430410
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 15.137 & 6.014 & 45.101
\end{tabular}

H,0,-0.1065172272,0.,-0.8932457907
O,0,-0.0918033121,0.,0.0717246082
H,0,0.8409437237,0.,0.3194489253
8 Waters in a hydrogen bonded cluster - orientation \(A\)
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-611.579629323\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.201080 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.221294 \\
Thermal correction to Enthalpy \(=\) & 0.222238 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.151613 \\
Sum of electronic and zero-point Energies \(=\) & -611.378549 \\
Sum of electronic and thermal Energies \(=\) & -611.358335 \\
Sum of electronic and thermal Enthalpies \(=\) & -611.357391 \\
Sum of electronic and thermal Free Energies \(=\) & -611.428016
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 138.864 & 66.966 & 148.643
\end{tabular}
\(\mathrm{O}, 0,1.8626151722,-0.2255565889,-0.736701768\)
\(\mathrm{H}, 0,2.297490657,-0.1665884809,-1.5957043416\)
\(\mathrm{H}, 0,1.5638211273,0.6835253424,-0.5037000941\)
\(\mathrm{O}, 0,0.7333583175,2.1653074208,0.0613790779\)
\(\mathrm{H}, 0,1.2085210941,2.8127155686,0.5967872864\)
\(\mathrm{H}, 0,0.179036219,2.6751473169,-0.5922758032\)
\(\mathrm{O}, 0,-3.0992033686,1.9604918329,-0.8204925964\)
\(\mathrm{H}, 0,-3.8925155489,2.3358114608,-0.4208761845\)
\(\mathrm{H}, 0,-2.6668983426,1.3923393321,-0.1275986296\)
\(\mathrm{O}, 0,-0.2580792297,-1.7371511215,0.4617415496\)
\(\mathrm{H}, 0,0.2397378879,-1.3234879109,-0.2688957948\)
\(\mathrm{H}, 0,0.4308285848,-1.7783614565,1.1623457025\)
\(\mathrm{O}, 0,2.2665413305,-2.0691670468,1.6010112646\)
\(\mathrm{H}, 0,2.5679901358,-1.4948806086,0.8779783774\)
\(\mathrm{H}, 0,2.2299461814,-2.9680428884,1.2269729553\)
\(\mathrm{O}, 0,-1.621696087,0.6727837569,1.0044481538\)
\(\mathrm{H}, 0,-0.7912855794,1.1771513031,0.9301580098\)
\(\mathrm{H}, 0,-1.3512137768,-0.2621228746,0.8857446627\)
\(\mathrm{O}, 0,-0.9731110207,3.4016609864,-1.5722978054\)
\(\mathrm{H}, 0,-0.8851769767,3.4113532862,-2.5324971406\)
\(\mathrm{H}, 0,-1.8369013068,2.9541575048,-1.3646047915\)
\(\mathrm{O}, 0,1.053344541,-4.2543058525,0.1556853799\)
\(\mathrm{H}, 0,0.3009468144,-3.6322216782,0.1413340294\)
\(\mathrm{H}, 0,0.6955155874,-5.1290023154,0.3466457075\)

\section*{8 Waters in a hydrogen bonded cluster - orientation B}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-611.586942501\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.200146 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.220477 \\
Thermal correction to Enthalpy \(=\) & 0.221422 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.150369 \\
Sum of electronic and zero-point Energies \(=\) & -611.386797 \\
Sum of electronic and thermal Energies \(=\) & -611.366465 \\
Sum of electronic and thermal Enthalpies \(=\) & -611.365521 \\
Sum of electronic and thermal Free Energies= & -611.436573
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 138.352 & 66.657 & 149.542
\end{tabular}
\(\mathrm{O}, 0,0.572015121,2.2329982063,0.5162471169\)
\(\mathrm{O}, 0,1.0982511918,0.1942484729,2.3763766408\)
\(\mathrm{O}, 0,0.6363120817,-2.1225606499,0.8263752839\)
\(\mathrm{O}, 0,2.5432027715,-1.5915183421,-1.1330647497\)
\(\mathrm{O}, 0,2.0941222532,1.1025019933,-1.5608654362\)
\(\mathrm{O}, 0,-2.0043224124,2.2815094778,-0.0848473388\)
\(\mathrm{O}, 0,-3.0262758015,-0.032269409,-0.8791160587\)
\(\mathrm{O}, 0,-1.8224767383,-2.2648659848,-0.1144647372\)
\(\mathrm{H}, 0,-2.3737585744,1.4093951483,-0.4014166676\)
\(\mathrm{H}, 0,-2.5881092143,-0.8702150974,-0.5612011028\)
\(\mathrm{H}, 0,-2.2705391793,-2.9572373114,0.3838576147\)
\(\mathrm{H}, 0,-0.8819004024,-2.2190370932,0.2309548953\)
\(\mathrm{H}, 0,0.7809150847,-1.3641264924,1.4278269266\)
\(\mathrm{H}, 0,1.3286360156,-2.044017154,0.1341008947\)
\(\mathrm{H}, 0,0.6572713944,0.341141253,3.2209461405\)
\(\mathrm{H}, 0,0.9031220743,0.970963455,1.8118750464\)
\(\mathrm{H}, 0,0.8719231692,3.1373490321,0.6724336208\)
\(\mathrm{H}, 0,1.5414780751,1.4946335007,-0.8505372693\)
\(\mathrm{H}, 0,1.650104727,1.3034946753,-2.3934521066\)
\(\mathrm{H}, 0,2.4443256554,-0.6289480302,-1.3100192503\)
\(\mathrm{H}, 0,-0.4046553533,2.2815167342,0.3026046436\)
\(\mathrm{H}, 0,-2.658961111,2.6470438543,0.5214839308\)
\(\mathrm{H}, 0,3.4764619122,-1.7431726244,-0.9440433005\)
\(\mathrm{H}, 0,-3.2029420085,-0.1591339662,-1.8185397836\)

\section*{\(\mathrm{CO}_{2}\) - not perfectly linear}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-188.587511016\)
\begin{tabular}{lc} 
Zero-point correction= & 0.010720 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.013741 \\
Thermal correction to Enthalpy \(=\) & 0.014685 \\
Thermal correction to Gibbs Free Energy \(=\) & -0.004981 \\
Sum of electronic and zero-point Energies= & -188.576791 \\
Sum of electronic and thermal Energies= & -188.573770 \\
Sum of electronic and thermal Enthalpies \(=\) & -188.572826 \\
Sum of electronic and thermal Free Energies \(=\) & -188.592492
\end{tabular}
\begin{tabular}{cccc} 
& E \((\) Thermal & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 8.623 & 7.159 & 41.391
\end{tabular}

O,0,0., 0., 0 .
C,0,0.,0.,1.1434

O,0,0.000287,0.,2.2868
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\mathrm{CO}_{2}\) - linear} \\
\hline \multicolumn{6}{|l|}{\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-188.590392622\)} \\
\hline \multicolumn{6}{|l|}{Zero-point correction= 0.011565 (Hartree/Particle)} \\
\hline Thermal & rrection to Ene & \multicolumn{4}{|l|}{\(=0.014202\)} \\
\hline Thermal & rrection to Enth & \multicolumn{4}{|l|}{y= 0.015146} \\
\hline Thermal & rrection to Gib & s Free Energy= & \multicolumn{3}{|r|}{-0.009150} \\
\hline Sum of e & ctronic and zero & point Energies= & \multicolumn{3}{|r|}{-188.578828} \\
\hline Sum of el & ctronic and ther & mal Energies= & \multicolumn{3}{|r|}{-188.576191} \\
\hline Sum of el & ctronic and ther & nal Enthalpies= & \multicolumn{3}{|r|}{-188.575247} \\
\hline \multicolumn{6}{|l|}{Sum of electronic and thermal Free Energies \(=\quad-188.599543\)} \\
\hline TOTAL & E (Thermal) \(\mathrm{KCal} / \mathrm{Mol}\) 8.912 & \[
\begin{gathered}
\text { CV } \\
\text { Cal/Mol-Kelvin } \\
6.941
\end{gathered}
\] & \multicolumn{3}{|l|}{\[
\begin{array}{ll} 
& \mathrm{S} \\
\text { in } & \mathrm{Cal} / \text { Mol-Kelvin } \\
51.135
\end{array}
\]} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{O}, 0,0 ., 0 .,-1.169378144 \\
& \mathrm{C}, 0,0 ., 0 ., 0 . \\
& \mathrm{O}, 0,0 ., 0 ., 1.169378144
\end{aligned}
\]}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{\(\mathrm{CO}_{2}\) - PCM acetone} \\
\hline \multicolumn{6}{|l|}{\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-188.594490104\)} \\
\hline \multicolumn{6}{|l|}{Zero-point correction= 0.011482 (Hartree/Particle)} \\
\hline \multicolumn{6}{|l|}{Thermal correction to Energy= 0.014118} \\
\hline Thermal & rrection to Enth & alpy \(=0\) & \multicolumn{3}{|l|}{0.015062} \\
\hline Thermal & rrection to Gib & s Free Energy= & \multicolumn{3}{|r|}{-0.009232} \\
\hline Sum of e & ctronic and zero & point Energies= & \multicolumn{3}{|r|}{-188.583009} \\
\hline Sum of e & ctronic and ther & mal Energies= & \multicolumn{3}{|r|}{-188.580372} \\
\hline Sum of el & ctronic and ther & nal Enthalpies= & \multicolumn{3}{|r|}{-188.579428} \\
\hline \multicolumn{6}{|l|}{Sum of electronic and thermal Free Energies \(=\quad-188.603722\)} \\
\hline & E (Thermal) & CV & \multicolumn{3}{|r|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{S} \\
& \mathrm{Cal} / \mathrm{Mol-Kelvin} \\
& 51.131
\end{aligned}
\]}} \\
\hline & \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & & & \\
\hline Total & 8.859 & 6.938 & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{O}, 0,0 ., 0 .,-1.1691308162 \\
& \mathrm{C}, 0,0 ., 0 ., 0 . \\
& \mathrm{O}, 0,0 ., 0 ., 1.1691308162
\end{aligned}
\]}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{\(\mathrm{CO}_{2}\) - PCM water} \\
\hline \multicolumn{6}{|l|}{\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-188.594758364\)} \\
\hline
\end{tabular}
\begin{tabular}{lc} 
Zero-point correction= & 0.011467 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.014105 \\
Thermal correction to Enthalpy \(=\) & 0.015049 \\
Thermal correction to Gibbs Free Energy= & -0.009247 \\
Sum of electronic and zero-point Energies= & -188.583291 \\
Sum of electronic and thermal Energies= & -188.580653 \\
Sum of electronic and thermal Enthalpies \(=\) & -188.579709 \\
Sum of electronic and thermal Free Energies \(=\) & -188.604005
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & \(\mathrm{Cal} /\) Mol-Kelvin \\
Total & 8.851 & 6.945 & 51.136
\end{tabular}

O,0,0.,0.,-1.1691213077
C,0,0.,0., 0 .
O,0,0.,0.,1.1691213077
```

$\mathrm{CO}_{2}-6-311++\mathrm{G}$
$\mathrm{E}($ RB+HF-LYP $)=-188.562456767$

```

Zero-point correction= 0.009210 (Hartree/Particle)
Thermal correction to Energy= 0.012251
Thermal correction to Enthalpy \(=\quad 0.013196\)
Thermal correction to Gibbs Free Energy \(=\quad-0.008292\)
Sum of electronic and zero-point Energies \(=\quad-188.553247\)
Sum of electronic and thermal Energies \(=\quad-188.550205\)
Sum of electronic and thermal Enthalpies= \(=-188.549261\)
Sum of electronic and thermal Free Energies= \(\quad-188.570749\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 7.688 & 7.290 & 45.225
\end{tabular}

C,0,0.0005582652,0.,0.0003357566
O,0,-0.5558600073,0.,1.0456782649
O,0,0.5554413083,0.,-1.0459300823
Acetic Acid
\(\mathrm{E}(\) RB+HF-LYP \()=-229.105826672\)

Zero-point correction=
Thermal correction to Energy=
0.061707 (Hartree/Particle) 0.066282
\begin{tabular}{lc} 
Thermal correction to Enthalpy \(=\) & 0.067226 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.034481 \\
Sum of electronic and zero-point Energies= & -229.044119 \\
Sum of electronic and thermal Energies= & -229.039545 \\
Sum of electronic and thermal Enthalpies \(=\) & -229.038601 \\
Sum of electronic and thermal Free Energies= & -229.071345
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 41.592 & 14.310 & 68.916
\end{tabular}

C,0,0.6529966568,-1.1310236544,0.5091210242
H,0,0.6787945194,-1.1757070023,1.5972384661
H,0,1.6716334208,-1.1323210088,0.1090891053
H,0,0.144801719,-2.0138375421,0.1090889992
C,0,-0.067215917,0.1164213958,0.0726600901
O,0,-0.1251169691,0.2167091412,-1.2814580039
O,0,-0.5510428739,0.954434332,0.8039129798
Н,0,-0.6006353547,1.0403313198,-1.4857430629
Acetate Anion
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-228.543474691\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.047933 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.052411 \\
Thermal correction to Enthalpy \(=\) & 0.053355 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.019821 \\
Sum of electronic and zero-point Energies= & -228.495541 \\
Sum of electronic and thermal Energies= & -228.491064 \\
Sum of electronic and thermal Enthalpies= & -228.490120 \\
Sum of electronic and thermal Free Energies= & -228.523654
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 32.888 & 13.092 & 70.578
\end{tabular}

C,0,0.6345320943,-1.0990421535,0.4739473511
H,0,0.6488281201,-1.1238037896,1.5690036498
H,0,1.6647085716,-1.1189438356,0.0944666351
H,0,0.1366790991,-2.0011518653,0.0944664842
С,0,-0.0988718101,0.1712510484,-0.0672405469
O,0,-0.1509625798,0.2614751435,-1.3252348586
O,0,-0.5570596072,0.9648556217,0.8004626593


Thermal correction to Gibbs Free Energy= 0.009690
Sum of electronic and zero-point Energies= \(\quad-189.741714\)
Sum of electronic and thermal Energies \(=\quad-189.738543\)
Sum of electronic and thermal Enthalpies= \(\quad-189.737599\)
Sum of electronic and thermal Free Energies= -189.765805
\begin{tabular}{ccccc} 
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 23.187 & 8.656 & 59.363
\end{tabular}

C,0,-0.3057409798,0.,-0.2930667742
О,0,-0.3984902805,0.,1.0512457316
O,0,0.7283033753,0.,-0.9159516931
\(\mathrm{H}, 0,0.5066702281,0 ., 1.4123358591\)
\(\mathrm{H}, 0,-1.3107291071,0 .,-0.7362875215\)

\section*{Formate Anion}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-189.220750692\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.020029 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.023012 \\
Thermal correction to Enthalpy \(=\) & 0.023956 \\
Thermal correction to Gibbs Free Energy= & -0.003788 \\
Sum of electronic and zero-point Energies= & -189.200722 \\
Sum of electronic and thermal Energies= & -189.197739 \\
Sum of electronic and thermal Enthalpies \(=\) & -189.196795 \\
Sum of electronic and thermal Free Energies= & -189.224539
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 14.440 & 7.342 & 58.393
\end{tabular}

C, \(0,-0.1388414608,-0.2865543341,0\).
O,0,-0.9362599199,0.6872944502,0.
O,0,1.1196801701,-0.3086514107,0.
\(\mathrm{H}, 0,-0.6343132368,-1.3098183122,0\).
\(\mathrm{MeNH}_{2}\)
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-95.8718500569\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.064052 (Hartree/Particle) \\
Thermal correction to Energy= & 0.067478 \\
Thermal correction to Enthalpy \(=\) & 0.068422 \\
Thermal correction to Gibbs Free Energy= & 0.041130
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Sum of electronic and zero-point Energies=} & -95.807798 \\
\hline \multicolumn{3}{|l|}{Sum of electronic and thermal Energies=} & -95.804372 \\
\hline \multicolumn{3}{|l|}{Sum of electronic and thermal Enthalpies=} & -95.803428 \\
\hline \multicolumn{3}{|l|}{Sum of electronic and thermal Free Energies=} & -95.830721 \\
\hline & E (Thermal) & CV & S \\
\hline & \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
\hline Total & 42.343 & 9.575 & 57.442 \\
\hline \multicolumn{4}{|l|}{C,0,0.0427995919,0.,-0.708237273} \\
\hline \multicolumn{4}{|l|}{N,0,0.0538126889,0.,0.7577007893} \\
\hline \multicolumn{4}{|l|}{H,0,-0.419908277,0.8183860668,1.128594187} \\
\hline \multicolumn{4}{|l|}{H,0,-0.419908277,-0.8183860668,1.128594187} \\
\hline \multicolumn{4}{|l|}{H,0,-0.9575643893,0.,-1.171363664} \\
\hline \multicolumn{4}{|l|}{H,0,0.581947285, \(0.8811031801,-1.0701532986\)} \\
\hline \multicolumn{4}{|l|}{H,0,0.581947285,-0.8811031801,-1.0701532986} \\
\hline
\end{tabular}

\section*{\(\mathrm{MeNH}_{3}{ }^{+}\)- gas phase}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-96.2282115631\)
Zero-point correction= 0.079429 (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.082887\)
Thermal correction to Enthalpy= 0.083831
Thermal correction to Gibbs Free Energy= 0.057274
Sum of electronic and zero-point Energies= -96.148783
Sum of electronic and thermal Energies \(=\quad-96.145325\)
Sum of electronic and thermal Enthalpies \(=\quad-96.144381\)
Sum of electronic and thermal Free Energies= \(\quad-96.170937\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 52.012 & 9.775 & 55.893
\end{tabular}

C,0,0.,0.,-0.8037376552
N,0,0.,0.,0.7127595468
H,0,0.9548409901,0.0000962301,1.0889548205
H,0,-0.4775038328,0.826868439,1.0889548205
H,0,-0.4773371574,-0.8269646691,1.0889548205
H,0,-1.0346622469,0.0000896093,-1.1445851193
H,0,0.5174087274,0.8959989855,-1.1445851193
H,0,0.5172535196,-0.8960885948,-1.1445851193

\section*{\(\mathrm{MeNH}_{3}{ }^{+}\)- PCM acetone}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-96.3346330432\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.078043 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.081504 \\
Thermal correction to Enthalpy \(=\) & 0.082448 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.055890 \\
Sum of electronic and zero-point Energies= & -96.256590 \\
Sum of electronic and thermal Energies= & -96.253129 \\
Sum of electronic and thermal Enthalpies \(=\) & -96.252185 \\
Sum of electronic and thermal Free Energies= & -96.278743
\end{tabular}
\begin{tabular}{lcl} 
& E (Thermal) & CV \\
KCal/Mol & Cal/Mol-Kelvin & S \\
Cal/Mol-Kelvin \\
Total & 51.145 & 9.748
\end{tabular}

\section*{\(\mathrm{MeNH}_{3}{ }^{+}\)- PCM acetone radii=bondi}
\(\mathrm{E}(\) RB+HF-LYP \()=-96.3516827379\)
Zero-point correction= 0.080194 (Hartree/Particle)
Thermal correction to Energy= 0.083604

Thermal correction to Enthalpy= 0.084549
Thermal correction to Gibbs Free Energy= 0.058115
Sum of electronic and zero-point Energies= \(\quad-96.271489\)
Sum of electronic and thermal Energies \(=\quad-96.268078\)
Sum of electronic and thermal Enthalpies \(=\quad-96.267134\)
Sum of electronic and thermal Free Energies= \(\quad-96.293568\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 52.463 & 9.737 & 55.635
\end{tabular}

C,0,0.,0.,-0.7922633723
N,0,0.,0.,0.7027966178
H,0,0.950233028,0.0001946624, 1.0795309143
H,0,-0.4752850966,0.8228286106,1.0795309143
H,0,-0.4749479314,-0.823023273,1.0795309143
```

H,0,-1.0332628388,0.0001819718,-1.1348629447
H,0,0.5167890116,0.8947408813,-1.1348629447
H,0,0.5164738272,-0.8949228531,-1.1348629447

```
\(\mathrm{MeNH}_{3}{ }^{+}\)- PCM water
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-96.3389621222\)
\begin{tabular}{lc} 
Zero-point correction= & 0.077937 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.081398 \\
Thermal correction to Enthalpy= & 0.082342 \\
Thermal correction to Gibbs Free Energy= & 0.055784 \\
Sum of electronic and zero-point Energies= & -96.261025 \\
Sum of electronic and thermal Energies= & -96.257564 \\
Sum of electronic and thermal Enthalpies= & -96.256620 \\
Sum of electronic and thermal Free Energies= & -96.283178
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 51.078 & 9.748 & 55.895
\end{tabular}

C,0,0.,0.,-0.7953291249
N,0,0.,0.,0.7040599059
H,0,0.9602575136,0.0001695776,1.0874586739
H,0,-0.4802756153,0.8315226122, 1.0874586739
H,0,-0.4799818983,-0.8316921898,1.0874586739
H,0,-1.0341843977,0.0001584202,-1.1396068713
H,0,0.5172293948,0.8955507506,-1.1396068713
\(\mathrm{H}, 0,0.516955003,-0.8957091707,-1.1396068713\)
\(\mathrm{MeNH}_{3}{ }^{+}\)- PCM water radii=bondi
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-96.3574775474\)
\begin{tabular}{lc} 
Zero-point correction= & 0.080162 (Hartree/Particle) \\
Thermal correction to Energy= & 0.083585 \\
Thermal correction to Enthalpy \(=\) & 0.084530 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.058073 \\
Sum of electronic and zero-point Energies \(=\) & -96.277316 \\
Sum of electronic and thermal Energies \(=\) & -96.273892 \\
Sum of electronic and thermal Enthalpies \(=\) & -96.272948 \\
Sum of electronic and thermal Free Energies= & -96.299404
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 52.451 & 9.778 & 55.682
\end{tabular}
\(\mathrm{C}, 0,0 ., 0 .,-0.7912948918\)
\(\mathrm{~N}, 0,0 ., 0 ., 0.7028864578\)
\(\mathrm{H}, 0,0.949994944,0.0000332608,1.0790923832\)
\(\mathrm{H}, 0,-0.4750262767,0.8227031246,1.0790923832\)
\(\mathrm{H}, 0,-0.4749686673,-0.8227363854,1.0790923832\)
\(\mathrm{H}, 0,-1.0322159468,0.000032648,-1.136571001\)
\(\mathrm{H}, 0,0.5161362474,0.8939089081,-1.136571001\)
\(\mathrm{H}, 0,0.5160796994,-0.8939415561,-1.136571001\)

\section*{\(\mathrm{MeNH}_{3}{ }^{+}\)- gas phase solvated with 1 water}
\(\mathrm{E}(\) RB+HF-LYP \()=-172.693436369\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.103267 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.109149 \\
Thermal correction to Enthalpy \(=\) & 0.110094 \\
Thermal correction to Gibbs Free Energy= & 0.075234 \\
Sum of electronic and zero-point Energies= & -172.590169 \\
Sum of electronic and thermal Energies= & -172.584287 \\
Sum of electronic and thermal Enthalpies= & -172.583343 \\
Sum of electronic and thermal Free Energies= & -172.618202
\end{tabular}
E (Thermal) CV S
\(\begin{array}{llll}\text { Total } & 68.492 & 18.135 & 73.368\end{array}\)
C,0,0.520507236,0.6843392047,-1.4338796914
N,0,0.5062418063,0.778473698,0.0702313876
H,0,1.4566923658,0.7414247381,0.4500288218
H,0,0.0896248786,1.6598218008,0.3844837991
H,0,-0.0437287012,-0.0106480114,0.4998515246
H,0,-0.5066065492,0.7449203792,-1.7923075021
H,0,1.1104876567,1.5062832212,-1.8383984517
H,0,0.9602535445,-0.272635482,-1.7129146122
O,0,-0.9117605161,-1.3074359523,1.1629269403
\(\mathrm{H}, 0,-0.6897785924,-1.7912449078,1.971159185\)
Н, \(0,-1.7495965345,-1.6737852338,0.8463401479\)
\(\mathrm{MeNH}_{3}{ }^{+}\)- gas phase solvated with 3 waters
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-325.610614923\)

Zero-point correction=
Thermal correction to Energy=
0.150968 (Hartree/Particle) 0.165199
\begin{tabular}{lc} 
Thermal correction to Enthalpy \(=\) & 0.166143 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.109760 \\
Sum of electronic and zero-point Energies \(=\) & -325.459646 \\
Sum of electronic and thermal Energies= & -325.445416 \\
Sum of electronic and thermal Enthalpies \(=\) & -325.444471 \\
Sum of electronic and thermal Free Energies \(=\) & -325.500855
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 103.664 & 41.850 & 118.668
\end{tabular}

C,0,0.,0.,-1.8124990251
N,0,0.,0.,-0.3167798122
O,0,-1.5934265217,-2.1759395108,0.6107361309
H,0,0.9637311653,-0.1168811882,0.0501666676
H,0,-0.3806435045,0.8930562656,0.0501666676
H,0,-0.5830876608,-0.7761750775,0.0501666676
H,0,-1.0161700305,0.1676768404,-2.1694964135
H,0,0.6532974186,0.7961906407,-2.1694964135
H,0,0.3628726118,-0.9638674811,-2.1694964135
H,0,-1.3557775179,-2.7984603744,1.3112867094
H,0,-2.4606761785,-2.4541365549,0.2863049341
O,0,2.6811321543,-0.2919780914,0.6107361309
H,0,3.1014265347,0.2250924148,1.3112867094
H,0,3.3556826901,-0.9039398036,0.2863049341
O,0,-1.0877056326,2.4679176023,0.6107361309
H,0,-1.7456490168,2.5733679596,1.3112867094
\(\mathrm{H}, 0,-0.8950065116,3.3580763585,0.2863049341\)
\(\mathrm{MeNH}_{3}{ }^{+}\)- PCM water solvated with 3 waters
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-325.708671090\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.145804 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.158430 \\
Thermal correction to Enthalpy \(=\) & 0.159374 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.107190 \\
Sum of electronic and zero-point Energies \(=\) & -325.562867 \\
Sum of electronic and thermal Energies \(=\) & -325.550241 \\
Sum of electronic and thermal Enthalpies \(=\) & -325.549297 \\
Sum of electronic and thermal Free Energies= & -325.601481
\end{tabular}

Total
E (Thermal CV S
\(\mathrm{KCal} / \mathrm{Mol} \quad \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin} \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}\) \(99.416 \quad 37.876 \quad 109.831\)
```

C,0,0.,0.,1.7470432481
N,0,0.,0.,0.2561857599
O,0,-2.3503793665,-1.3569921599,-0.5242189005
H,0,-0.0208102427,0.9759024101,-0.10723583
H,0,0.8555614001,-0.4699290062,-0.10723583
H,0,-0.8347511574,-0.5059734039,-0.10723583
H,0,0.0272639071,-1.03025617,2.104523859
H,0,0.8785960621,0.5387393212,2.104523859
H,0,-0.9058599692,0.4915168488,2.104523859
H,0,-2.7797169691,-1.1016539793,-1.3652551648
H,0,-2.333919319,-2.3350573908,-0.5301349294
O,0,0.,2.7139843199,-0.5242189005
H,0,0.4357981524,2.9581325002,-1.3652551648
H,0,-0.8552593602,3.188762116,-0.5301349294
O,0,2.3503793665,-1.3569921599,-0.5242189005
H,0,2.3439188168,-1.856478521,-1.3652551648
H,0,3.1891786792,-0.8537047253,-0.5301349294

```

\section*{\(\mathrm{EtNH}_{3}{ }^{+}\)- PCM acetone}
```

$\mathrm{E}($ RB+HF-LYP $)=-135.656955699$

Zero-point correction=	0.106491 (Hartree/Particle)
Thermal correction to Energy $=$	0.110979
Thermal correction to Enthalpy $=$	0.11923
Thermal correction to Gibbs Free Energy=	0.080783
Sum of electronic and zero-point Energies=	-135.550465
Sum of electronic and thermal Energies=	-135.545977
Sum of electronic and thermal Enthalpies $=$	-135.545033
Sum of electronic and thermal Free Energies=	-135.576172

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	69.640	14.564	65.540

C,0,0.460138207,0.,-0.3914198406
N,0,0.4987194945,0.,1.1186853187
H,0,1.4702872804,0.,1.4708471493
H,0,0.0326597528,0.832484012,1.5157460167
$\mathrm{H}, 0,0.0326597528,-0.832484012,1.5157460167$
С, $0,-0.9704325647,0 .,-0.9033319007$
H,0,1.0107529453,0.8889270635,-0.7098190093
Н,0,1.0107529453,-0.8889270635,-0.7098190093
H,0,-0.9545336892,0.,-1.996992467

```

H,0,-1.5159246512,-0.8908960563,-0.5739977398
H,0,-1.5159246512,0.8908960563,-0.5739977398
NMe \(_{3}\) - gas phase
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-174.493080300\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.120206 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.125632 \\
Thermal correction to Enthalpy \(=\) & 0.126576 \\
Thermal correction to Gibbs Free Energy= & 0.092912 \\
Sum of electronic and zero-point Energies \(=\) & -174.372874 \\
Sum of electronic and thermal Energies= & -174.367448 \\
Sum of electronic and thermal Enthalpies \(=\) & -174.366504 \\
Sum of electronic and thermal Free Energies= & -174.400168
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & Cal/Mol-Kelvin \\
Total & 78.835 & 18.801 & 70.852
\end{tabular}
\[
\begin{aligned}
& \mathrm{C}, 0,-0.8325584239,0.4516799578,-1.0211725843 \\
& \mathrm{~N}, 0,0.2955838914,-0.0108474713,-0.2237822891 \\
& \mathrm{C}, 0,0.6057558315,0.9166701952,0.8559165014 \\
& \mathrm{C}, 0,0.0819760214,-1.3630178038,0.2749087836 \\
& \mathrm{H}, 0,-0.2218429296,1.0200195296,1.5870802029 \\
& \mathrm{H}, 0,1.4943807827,0.5736395029,1.3953710337 \\
& \mathrm{H}, 0,0.81999946,1.9076049445,0.4429588729 \\
& \mathrm{H}, 0,-0.7879599572,-1.4383520891,0.958847248 \\
& \mathrm{H}, 0,-0.0860329066,-2.0453409864,-0.5644485014 \\
& \mathrm{H}, 0,0.9702891579,-1.7029447978,0.8168945671 \\
& \mathrm{H}, 0,-1.7730078949,0.523171956,-0.4375131248 \\
& \mathrm{H}, 0,-0.6132963905,1.441443653,-1.4343164721 \\
& H, 0,-1.0026571361,-0.235303509,-1.8563140066
\end{aligned}
\]
\(\mathrm{NMe}_{3}\) - PCM acetone
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-174.495249609\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.120052 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.125458 \\
Thermal correction to Enthalpy \(=\) & 0.126403 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.092787 \\
Sum of electronic and zero-point Energies \(=\) & -174.375197 \\
Sum of electronic and thermal Energies= & -174.369791 \\
Sum of electronic and thermal Enthalpies \(=\) & -174.368847 \\
Sum of electronic and thermal Free Energies= & -174.402462
\end{tabular}

```

H,0,0.9619761441,-1.7062292633,0.8259814825
H,0,-1.7651607193,0.5059382311,-0.4199624241
H,0,-0.6295614965,1.4478694978,-1.42165452
H,0,-1.0093784247,-0.2304427574,-1.857696287

```

\section*{\(\mathbf{M e}_{3} \mathbf{N H}^{+}\)- gas phase}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-174.867401113\)
\begin{tabular}{lc} 
Zero-point correction= & 0.136148 (Hartree/Particle) \\
Thermal correction to Energy= \(=\) & 0.141741 \\
Thermal correction to Enthalpy \(=\) & 0.142685 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.108544 \\
Sum of electronic and zero-point Energies= & -174.731253 \\
Sum of electronic and thermal Energies= & -174.725660 \\
Sum of electronic and thermal Enthalpies \(=\) & -174.724716 \\
Sum of electronic and thermal Free Energies \(=\) & -174.758857
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 88.944 & 19.467 & 71.856
\end{tabular}
\(\mathrm{N}, 0,0.2609035532,-0.1080061803,0.1863533482\)
\(\mathrm{H}, 0,1.0511290804,-0.4352242173,0.7506075111\)
C,0,-0.1876909472,1.2057022425,0.7742360787
C, \(0,0.7634496297,0.0532233157,-1.2257047349\)
С,0,-0.8147867733,-1.1599701948,0.2807570508
H,0,-1.6677441912,-0.8355701777,-0.3165560004
H,0,-0.4224013921,-2.1016366942,-0.1040678812
H,0,-1.1078154795,-1.2727231774,1.3248679787
H,0,-0.0602384308,0.4071152786,-1.8469134308
H,0,1.576784146,0.7793265574,-1.2299612623
H,0,1.1185258942,-0.9125020728,-1.5862860974
H,0,-1.0345306829, 1.5723328975,0.1928673507
H,0,-0.4843398208, 1.0457780422,1.8111528174
\(\mathrm{H}, 0,0.6384745497,1.9154146449,0.7240852085\)

\section*{\(\mathrm{Me}_{3} \mathrm{NH}^{+}\)- PCM acetone}
\(\mathrm{E}(\) RB+HF-LYP \()=-174.952442584\)
Zero-point correction \(=\quad 0.135223\) (Hartree/Particle)
Thermal correction to Energy=
0.140773

Thermal correction to Enthalpy=
0.141717

Thermal correction to Gibbs Free Energy=
0.107668

Sum of electronic and zero-point Energies \(=\quad-174.817220\)
\begin{tabular}{lc} 
Sum of electronic and thermal Energies \(=\) & -174.811670 \\
Sum of electronic and thermal Enthalpies \(=\) & -174.810726 \\
Sum of electronic and thermal Free Energies \(=\) & -174.844774
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 88.336 & 19.351 & 71.661
\end{tabular}
\(\mathrm{N}, 0,0.2733873425,-0.113196236,0.1953837168\)
H,0,1.0769729033,-0.4464456885,0.7697253198
C,0,-0.1907089405,1.1988736267,0.7670473465
C,0,0.7550964112,0.0550206939,-1.2200345373
C, \(0,-0.8133122377,-1.1507206902,0.2749354423\)
H, \(0,-1.6542576065,-0.8139669525,-0.3338463081\)
\(\mathrm{H}, 0,-0.4237545802,-2.0963350276,-0.1048164766\)
H,0,-1.1182899075,-1.2601034766,1.3166777545
H,0,-0.0783163301,0.4161018551,-1.8251450038
H,0,1.5722432467,0.7777001693,-1.2280687353
H,0,1.1024291989,-0.9109999627,-1.5892093214
H,0,-1.0440492492,1.5446391113,0.1808969201
H,0,-0.4811024966, 1.0453081167,1.8073707305
H,0,0.6279620255,1.9174337248,0.7070395938

\section*{\(\mathrm{Me}_{3} \mathrm{NH}^{+}\)- \(\mathbf{P C M}\) acetone radii=bondi}
\(\mathrm{E}(\) RB+HF-LYP \()=-174.967805398\)
Zero-point correction= 0.136683 (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.142266\)
Thermal correction to Enthalpy= 0.143210
Thermal correction to Gibbs Free Energy= 0.109132
Sum of electronic and zero-point Energies \(=\quad-174.831122\)
Sum of electronic and thermal Energies \(=\quad-174.825539\)
Sum of electronic and thermal Enthalpies \(=\quad-174.824595\)
Sum of electronic and thermal Free Energies= \(\quad-174.858673\)
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 89.273 & 19.581 & 71.723
\end{tabular}
\(\mathrm{N}, 0,0.3060040927,-0.0573417718,0.1371172276\)
C, \(0,0.5225041014,0.7619551654,-1.100817808\)
C,0,-0.2985720771,-1.393167439,-0.1836427641
C, \(0,-0.5052446817,0.684327625,1.1584267622\)
H,0,-1.2832491541,-1.2277194759,-0.6225624298
```

H,0,-0.4482427357,0.9520258179,-1.5604824
H,0,1.1620553659,0.2014506154,-1.7814702347
H,0,0.3510784466,-1.9081769358,-0.8902389416
H,0,-0.3841395709,-1.9665910323,0.7384736491
H,0,1.0001962422,1.6993960597,-0.8190679377
H,0,-1.500724253,0.8555381302,0.7473328255
H,0,-0.564286178,0.0786422707,2.0618837261
H,0,-0.0130728721,1.6321540671,1.3725239112
H,0,1.2262320043,-0.234019222,0.5499900982

```
\(\mathrm{Me}_{3} \mathbf{N H}^{+}\)- Onsager acetone
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-174.867582860\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.136077 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.141691 \\
Thermal correction to Enthalpy \(=\) & 0.142635 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.108443 \\
Sum of electronic and zero-point Energies \(=\) & -174.731506 \\
Sum of electronic and thermal Energies= & -174.725892 \\
Sum of electronic and thermal Enthalpies \(=\) & -174.724948 \\
Sum of electronic and thermal Free Energies \(=\) & -174.759140
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 88.912 & 19.496 & 71.963
\end{tabular}
\(\mathrm{N}, 0,0.2611119981,-0.1081533191,0.1862953591\)
\(\mathrm{H}, 0,1.0526676403,-0.4344223521,0.7497498854\)
C,0,-0.1877413402,1.2053626552,0.7743089515
C,0,0.761960508,0.0540469863,-1.2264280435
С,0,-0.8132547923,-1.1604399047,0.2816906308
H,0,-1.6642775723,-0.839922961,-0.3204684608
H,0,-0.4191141425,-2.1038241803,-0.097285621
H,0,-1.110621646,-1.2687160327,1.3250837881
H,0,-0.0616656486,0.4128990561,-1.8447557504
H,0,1.5784065816,0.7767440581,-1.2313577051
H,0,1.1120481311,-0.9122084796,-1.5906617335
H,0,-1.0312966356,1.5741321375,0.1895705753
H,0,-0.4893395166,1.0444485534,1.8096880092
H,0,0.6396225692,1.9141250133,0.728940266

\section*{\(\mathbf{M e}_{3} \mathbf{N H}^{+}\)- \(\mathbf{P C M}\) water}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-174.956552090\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{0.135093 (Hartree/Particle)} \\
\hline \multicolumn{4}{|c|}{tion to Energy= 0.140632} \\
\hline \multicolumn{4}{|l|}{Thermal correction to Enthalpy= 0.141576} \\
\hline Thermal & rrection to Gibb & s Free Energy= & 0.107564 \\
\hline Sum of & tronic and zero & -point Energies= & \(=\quad-174.821459\) \\
\hline Sum of el & ctronic and ther & mal Energies= & -174.815920 \\
\hline Sum of el & ctronic and ther & mal Enthalpies= & -174.814976 \\
\hline Sum of el & tronic and ther & mal Free Energie & es \(=\quad-174.848988\) \\
\hline Total & \[
\begin{gathered}
\mathrm{E}(\text { Thermal }) \\
\mathrm{KCal} / \mathrm{Mol} \\
88.248
\end{gathered}
\] & CV Cal/Mol-Kelvin 19.348 & \begin{tabular}{l}
S \\
Cal/Mol-Kelvin 71.586
\end{tabular} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{N}, 0,0.2721757147,-0.1131205578,0.1945238466\)} \\
\hline \multicolumn{4}{|l|}{H,0,1.0768777852,-0.4477461369,0.7703933513} \\
\hline \multicolumn{4}{|l|}{C,0,-0.1901253191,1.1982989694,0.7672221274} \\
\hline \multicolumn{4}{|l|}{C, \(0,0.7554321157,0.0553035272,-1.2197364535\)} \\
\hline \multicolumn{4}{|l|}{C,0,-0.8140615102,-1.150196971,0.2746147783} \\
\hline \multicolumn{4}{|l|}{H,0,-1.6549760271,-0.8146617962,-0.3350627121} \\
\hline \multicolumn{4}{|l|}{H,0,-0.4230744606, -2.0959312049,-0.1033555484} \\
\hline \multicolumn{4}{|l|}{H,0,-1.1185183527,-1.2576465265, 1.3167311582} \\
\hline \multicolumn{4}{|l|}{H,0,-0.0780952395,0.412276393,-1.8273989985} \\
\hline \multicolumn{4}{|l|}{H, 0, 1.5699773652,0.7809634905,-1.2268735118} \\
\hline \multicolumn{4}{|l|}{H,0,1.1072971718,-0.9101080504,-1.5862972569} \\
\hline \multicolumn{4}{|l|}{H,0,-1.0449414416,1.5459787945,0.1842056247} \\
\hline \multicolumn{4}{|l|}{H,0,-0.4770875379,1.0430889875,1.8082629551} \\
\hline \multicolumn{4}{|l|}{H,0,0.6298390155,1.9151968,0.7051252988} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{Me}_{3} \mathbf{N H}^{+}\)- Onsager water} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-174.867595594\)} \\
\hline \multicolumn{4}{|l|}{Zero-point correction \(=\quad 0.136077\) (Hartree/Particle)} \\
\hline Thermal & rrection to Ener & & 0.141690 \\
\hline Thermal & rrection to Enth & alpy \(=0\). & 0.142634 \\
\hline Thermal & rrection to Gibb & s Free Energy= & 0.108444 \\
\hline Sum of el & ctronic and zero & -point Energies= & -174.731518 \\
\hline Sum of el & ctronic and ther & mal Energies= & -174.725906 \\
\hline Sum of el & ctronic and ther & mal Enthalpies= & -174.724961 \\
\hline \multicolumn{4}{|l|}{Sum of electronic and thermal Free Energies \(=\quad-174.759152\)} \\
\hline & E (Thermal) & CV & \multirow[t]{3}{*}{\begin{tabular}{l}
S \\
Cal/Mol-Kelvin 71.960
\end{tabular}} \\
\hline & \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & \\
\hline TOTAL & 88.912 & 19.495 & \\
\hline
\end{tabular}
```

N,0,0.2611098632,-0.1081528829,0.1862950343
H,0,1.0526655451,-0.4344269214,0.7497546588
C,0,-0.1877397769,1.2053630028,0.7743077917
C,0,0.7619640546,0.0540437502,-1.2264246928
C,0,-0.8132599006,-1.1604364415,0.2816871137
Н, $0,-1.664286342,-0.839897226,-0.3204559903$
$\mathrm{H}, 0,-0.4191270923,-2.1038161278,-0.0973078542$
Н,0,-1.1106089283,-1.2687335186,1.3250829127
$\mathrm{H}, 0,-0.0616726682,0.4128702657,-1.8447540765$
$\mathrm{H}, 0,1.5783962841,0.776756012,-1.231357313$
H,0,1.1120809976,-0.9122062019,-1.5906442291
$\mathrm{H}, 0,-1.0313012794,1.5741214728,0.1895705637$
Н, $0,-0.4893244912,1.0444543155,1.8096913417$
$\mathrm{H}, 0,0.6396226693,1.9141262416,0.7289334704$

```

\section*{\(\mathbf{M e O H}\)}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-115.734871624\)
\begin{tabular}{lc} 
Zero-point correction= & 0.051239 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.054573 \\
Thermal correction to Enthalpy \(=\) & 0.055517 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.028477 \\
Sum of electronic and zero-point Energies= & -115.683633 \\
Sum of electronic and thermal Energies= & -115.680299 \\
Sum of electronic and thermal Enthalpies \(=\) & -115.679355 \\
Sum of electronic and thermal Free Energies \(=\) & -115.706395
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 34.245 & 8.810 & 56.911
\end{tabular}

O,0,-0.0318400433, 0.0551486482,-0.7569740832
C, \(0,-0.0156947032,0.027184009,0.6677209482\)
H,0,1.0066646904,0.0455989637,1.0698390944
H,0,-0.5354122683,0.9273616421,1.002806575
H,0,-0.5428225942,-0.848997513,1.0698390496
H, \(0,0.4204587333,-0.7282563349,-1.0930177427\)

\section*{Methoxide}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-115.115520602\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.034978 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.037886 \\
Thermal correction to Enthalpy \(=\) & 0.038831
\end{tabular}

Thermal correction to Gibbs Free Energy= 0.012727
Sum of electronic and zero-point Energies= \(\quad-115.080543\)
Sum of electronic and thermal Energies \(=\quad-115.077634\)
Sum of electronic and thermal Enthalpies \(=\quad-115.076690\)
Sum of electronic and thermal Free Energies= \(=-115.102794\)
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 23.774 & 6.918 & 54.940
\end{tabular}

C,0,-0.5437323702,0.,0.0017192932
О,0,0.7970797927,0.,-0.0025235744
H,0,-1.0413003781,0.,-1.0251216645
H,0,-1.0364718712,0.8905876432,0.5174972503
Н,0,-1.0364718712,-0.8905876432,0.5174972503

\section*{\(\mathrm{CFH}_{2} \mathrm{OH}\)}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-214.986488149\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.044966 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.048432 \\
Thermal correction to Enthalpy \(=\) & 0.049376 \\
Thermal correction to Gibbs Free Energy= & 0.020207 \\
Sum of electronic and zero-point Energies= & -214.941523 \\
Sum of electronic and thermal Energies= & -214.938056 \\
Sum of electronic and thermal Enthalpies \(=\) & -214.937112 \\
Sum of electronic and thermal Free Energies \(=\) & -214.966282
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 30.392 & 10.021 & 61.393
\end{tabular}

C,0,-0.2466151806,-0.3014102992,-0.3423280112
O,0,1.1237730045,-0.1450729915,-0.3095032595
F,0,-0.8693781434,0.5303976664,0.6042329997
H,0,-0.5878742349,0.0137599781,-1.329478683
\(\mathrm{H}, 0,-0.5705598811,-1.3204199449,-0.0997432029\)
H,0,1.4723444534,-0.4978733028,0.5211190314

\section*{\(\mathrm{CFH}_{2} \mathrm{O}^{-}\)}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-214.410274936\)

Zero-point correction=
Thermal correction to Energy=
0.029367 (Hartree/Particle) 0.032948
\begin{tabular}{lc} 
Thermal correction to Enthalpy \(=\) & 0.033892 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.004420 \\
Sum of electronic and zero-point Energies \(=\) & -214.380908 \\
Sum of electronic and thermal Energies \(=\) & -214.377327 \\
Sum of electronic and thermal Enthalpies \(=\) & -214.376382 \\
Sum of electronic and thermal Free Energies \(=\) & -214.405855
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 20.675 & 9.762 & 62.029
\end{tabular}

C, \(0,-0.0390092415,-0.3658189296,-0.4002750346\)
O,0,1.2092168247,-0.2173117252,-0.3116849216
F,0,-0.9304328682,0.579945592,0.6940883295
H,0,-0.5699558328,0.0382684177,-1.2951225764
H,0,-0.4958275018,-1.3243713665,-0.0565428089
Vinyl Alcohol
\(\mathrm{E}(\) RB+HF-LYP \()=-153.827537300\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.056527 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.060162 \\
Thermal correction to Enthalpy \(=\) & 0.061106 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.032066 \\
Sum of electronic and zero-point Energies \(=\) & -153.771010 \\
Sum of electronic and thermal Energies= & -153.767375 \\
Sum of electronic and thermal Enthalpies \(=\) & -153.766431 \\
Sum of electronic and thermal Free Energies \(=\) & -153.795472
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 37.752 & 11.465 & 61.121
\end{tabular}

C,0,0.0709252143,-1.1425774144,-0.4291229521
C,0,0.1236112889,0.1918720475,-0.3803829437
H,0,0.409463618,0.801067707,-1.2321696747
H, \(0,-0.21627069,-1.7469058589,0.4278472133\)
H,0,0.32008093,-1.6596130468,-1.3476974206
O,0,-0.1585712688,0.9843907665,0.6948724721
H,0,-0.4119227271,0.4345572684, 1.4500754804

\section*{Enolate of Vinyl Alcohol}
\(\mathrm{E}(\) RB+HF-LYP \()=-153.251745518\)


Ethynyl Alcohol
\(\mathrm{E}(\) RB+HF-LYP \()=-152.509709019\)
\begin{tabular}{lc} 
Zero-point correction= & 0.030012 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.033340 \\
Thermal correction to Enthalpy \(=\) & 0.034284 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.008217 \\
Sum of electronic and zero-point Energies \(=\) & -152.479697 \\
Sum of electronic and thermal Energies \(=\) & -152.476369 \\
Sum of electronic and thermal Enthalpies \(=\) & -152.475425 \\
Sum of electronic and thermal Free Energies \(=\) & -152.501492
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 20.921 & 10.287 & 54.863
\end{tabular}

H,0,-2.4018051987,0.,0.
С,0,-1.3384810864,0.,0.
C,0,-0.1289776405,0.,0.
O,0,1.1403435063,0.,0.
H,0,2.08380951,0.,0.

\section*{Ethynyl Oxide}
\(\mathrm{E}(\) RB+HF-LYP \()=-152.016569083\)


```

Н,0,-0.8661958051,0.5071789226,-0.6671923093
С,0,-0.3889149211,-1.3266545703,0.1339887157
Н,0,1.9324605574,2.2883604855,-0.5108879471
H,0,0.1502361428,2.4818070699,-0.600743066
H,0,1.0554858765,2.6918040257,0.9349364369
O,0,-1.3652166811,-1.8877350851,-0.3022273731
H,0,0.4018524754,-1.7890075444,0.742890064

```

\section*{\(\mathrm{CH}_{3} \mathrm{CNHC}(\mathrm{O}) \mathrm{H}\) carbene - transition state for rearrangement}
\(\mathrm{E}(\) RB+HF-LYP \()=-247.208218635\)
\begin{tabular}{lc} 
Zero-point correction= & 0.074047 (Hartree/Particle) \\
Thermal correction to Energy= & 0.079230 \\
Thermal correction to Enthalpy \(=\) & 0.080174 \\
Thermal correction to Gibbs Free Energy= & 0.046100 \\
Sum of electronic and zero-point Energies= & -247.134172 \\
Sum of electronic and thermal Energies= & -247.128989 \\
Sum of electronic and thermal Enthalpies \(=\) & -247.128045 \\
Sum of electronic and thermal Free Energies \(=\) & -247.162118
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 49.717 & 17.193 & 71.714
\end{tabular}

C,0,2.3004968619,0.3095181321,-0.0347225734
С,0,1.1334230547,-0.4378119843,-0.1719215872
\(\mathrm{N}, 0,-0.0539205,0.2329128121,-0.0117447897\)
H,0,-0.1170347779,1.2520348547,0.0633172729
H,0,2.3375471729,1.4004596152,0.1099766604
C,0,-1.2793346079,-0.4169010606,-0.019928406
Н, \(, 3,3.2540008806,-0.1804055363,-0.2126557805\)
H,0,1.8832295572,-0.6112671995,0.8594480112
O,0,-2.3420452153,0.1608004339,0.0954763084
H,0,-1.1714494622,-1.5064454126,-0.1422477027

\section*{Glutarimide carbene}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-398.667350514\)
Zero-point correction= 0.093079 (Hartree/Particle)
Thermal correction to Energy= 0.100197
Thermal correction to Enthalpy= 0.101141
Thermal correction to Gibbs Free Energy= 0.061397
Sum of electronic and zero-point Energies= -398.574272
Sum of electronic and thermal Energies \(=\quad-398.567154\)
\begin{tabular}{lc} 
Sum of electronic and thermal Enthalpies \(=\) & -398.566209 \\
Sum of electronic and thermal Free Energies \(=\) & -398.605953
\end{tabular}


\section*{Glutarimide carbene - transition state for rearrangement of the carbene}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-398.655815289\)
\begin{tabular}{lc} 
Zero-point correction= & 0.091424 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.098094 \\
Thermal correction to Enthalpy \(=\) & 0.099038 \\
Thermal correction to Gibbs Free Energy= & 0.059968 \\
Sum of electronic and zero-point Energies= & -398.564391 \\
Sum of electronic and thermal Energies= & -398.557721 \\
Sum of electronic and thermal Enthalpies \(=\) & -398.556777 \\
Sum of electronic and thermal Free Energies \(=\) & -398.595847
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 61.555 & 24.310 & 82.230
\end{tabular}

С,0,-0.9868748859,-0.8513374778,0.0442851178
C,0,0.3212851968,-1.6371869996,0.0379279793
C,0,1.6530465748,-0.9402329917,0.0178690181
C, \(0,1.5723475045,0.4601179815,0.0170719127\)
C,0,0.2997167709,1.2800041538,-0.0940711196
\(\mathrm{N}, 0,-0.8718202631,0.5399162939,-0.0525822911\)
O,0,0.3038185479,2.4931662403,-0.196545018
```

O,0,-2.0840206832,-1.371710953,0.1140415037
H,0,2.4724302157,1.0683729491,-0.0886803365
H,0,1.8742642438,-0.1118316527,1.0869361523
H,0,-1.7439926666,1.0621002278,-0.0857724383
H,0,0.308868024,-2.261014933,-0.8687517755
H,0,0.2756621399,-2.3768709443,0.8458751008

```

\section*{N-Methyl Orotic Acid Anion}
\(\mathrm{E}(\) RB+HF-LYP \()=-642.214923532\)
\begin{tabular}{lc} 
Zero-point correction= & 0.115956 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.126649 \\
Thermal correction to Enthalpy \(=\) & 0.127593 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.077982 \\
Sum of electronic and zero-point Energies= & -642.098968 \\
Sum of electronic and thermal Energies \(=\) & -642.088275 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.087331 \\
Sum of electronic and thermal Free Energies \(=\) & -642.136941
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 79.473 & 37.722 & 104.415
\end{tabular}
\(\mathrm{N}, 0,0.1462531589,0.9023129299,-0.0469415474\)
C,0,-1.2075582881,1.2155957541,-0.0454108931
\(\mathrm{N}, 0,-2.0485131902,0.1222511305,0.0075731461\)
C,0,-1.6967026275,-1.2443634456,0.0393373109
C,0,-0.2781472607,-1.4592611004,0.0238786751
C,0,0.5990468433,-0.4105234957,-0.006112598
C,0,1.1087323564,2.0130418727,-0.0921788851
O,0,-1.6487144465,2.3672425375,-0.0877073613
H,0,-3.0376157979,0.3362320872,0.00894283
O,0,-2.5963698464,-2.0923333396,0.0736658266
H,0,0.0922355003,-2.4753756675,0.030129508
C,0,2.1308738042,-0.6229638701,0.0368261715
O,0,2.6318537517,-1.0731523322,-1.0162651494
O,0,2.650516945,-0.3031566369,1.1327848273
H,0,1.7561108744,1.8976441311,-0.9655000326
H,0,0.5424048112,2.939231139,-0.1626220159
H,0,1.7269246347,1.9923637656,0.8067646863
N-Methyl Orotic Acid Anion - PCM acetone
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-642.309726730\)


N-Methyl Orotic Acid Anion - PCM acetone bondi=radii
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-642.320235133\)
\begin{tabular}{lc} 
Zero-point correction= & 0.116099 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.126568 \\
Thermal correction to Enthalpy \(=\) & 0.127513 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.079246 \\
Sum of electronic and zero-point Energies= & -642.204136 \\
Sum of electronic and thermal Energies \(=\) & -642.193667 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.192723 \\
Sum of electronic and thermal Free Energies \(=\) & -642.240989
\end{tabular}
E (Thermal)
CV
S

Total
\begin{tabular}{ccl}
\(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & \(\mathrm{Cal} /\) Mol-Kelvin \\
79.423 & 37.619 & 101.586
\end{tabular}

C,0,-0.6199612143,0.7758007147,1.0889814356
C,0,-0.6494275351,-0.2380964752,0.1751514035
N,0,0.3863435222,-0.4461021433,-0.7122269902
C,0,1.5275330811,0.3417337311,-0.6777009422
\(\mathrm{N}, 0,1.5268162091,1.3515983285,0.2561258112\)
C, \(0,0.516020629,1.6481474534,1.1679168626\)
С,0,-1.8387940718,-1.2035706823,0.1295098717
О,0,-1.6674167077,-2.3031577237,0.7154356776
C,0,0.3564321275,-1.518207044,-1.7239048126
O,0,2.4856976133,0.1555836429,-1.4367453811
O,0,0.659292166,2.6017012097,1.9562995843
O,0,-2.8650392141,-0.7918286793,-0.4702952631
\(\mathrm{H}, 0,0.7368867904,-1.125212218,-2.6654914291\)
H,0,-0.6698817653,-1.848344256,-1.8642177615
H,0,0.9744674851,-2.3605605235,-1.4049281198
\(\mathrm{H}, 0,2.3613165575,1.9298395262,0.2795011443\)
\(\mathrm{H}, 0,-1.445996145,0.9325703908,1.7705645659\)

\section*{N-Methyl Orotic Acid Anion - PCM water}
\(\mathrm{E}(\) RB+HF-LYP \()=-642.314719085\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.114895 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.125467 \\
Thermal correction to Enthalpy \(=\) & 0.126411 \\
Thermal correction to Gibbs Free Energy= & 0.077518 \\
Sum of electronic and zero-point Energies= & -642.199824 \\
Sum of electronic and thermal Energies= & -642.189252 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.188308 \\
Sum of electronic and thermal Free Energies= & -642.237201
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 78.732 & 37.605 & 102.904
\end{tabular}

N,0,0.1488974339,0.9088926314,-0.050424087
C,0,-1.208840916,1.2127382582,-0.0158003082
\(\mathrm{N}, 0,-2.0535784213,0.1264585041,0.023762409\)
C, \(0,-1.6948837479,-1.2230144221,0.0445797095\)
С,0,-0.2763983776,-1.4510879792,0.0228602177
С,0,0.5925007686,-0.3996690638,-0.0148220803
C,0,1.1009607443,2.0310429336,-0.0970550436
```

O,0,-1.6372753913,2.3700491706,-0.0216071678
H,0,-3.0592194009,0.3489817825,0.0466935279
O,0,-2.5807656119,-2.0934617536,0.0804334034
H,0,0.0891069065,-2.4733220843,0.0407758976
C,0,2.1093758607,-0.6310299395,0.0058403192
O,0,2.6344124737,-0.9399143287,-1.0931311504
O,0,2.6554817719,-0.4968088698,1.1299617098
H,0,1.9011663813,1.7955680727,-0.799861373
H,0,0.5662256823,2.9160955841,-0.4338903884
H,0,1.5243754114,2.2124262259,0.8940428353

```

N-Methyl Orotic Acid Anion Hydrogen Bonded to 1 Water
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-718.673058473\)
\begin{tabular}{lc} 
Zero-point correction= & 0.141100 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.154720 \\
Thermal correction to Enthalpy \(=\) & 0.155664 \\
Thermal correction to Gibbs Free Energy= & 0.098761 \\
Sum of electronic and zero-point Energies= & -718.531958 \\
Sum of electronic and thermal Energies= & -718.518339 \\
Sum of electronic and thermal Enthalpies \(=\) & -718.517395 \\
Sum of electronic and thermal Free Energies \(=\) & -718.574297
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 97.088 & 47.201 & 119.762
\end{tabular}

C,0,0.0730181463,-0.2975572777,-0.0175456901
N,0,-0.4028722824,1.0022109781,-0.1267438661
C,0,-1.7618163028,1.2764593498,-0.2437382451
\(\mathrm{N}, 0,-2.576227754,0.1609134884,-0.2361058995\)
C,0,-2.1945034983,-1.1933655285,-0.1477675272
C,0,-0.7714223951,-1.3695821393,-0.0413824815
C,0,0.5265045485,2.1429297318,-0.1290694366
O,0,-2.2266698712,2.4129087728,-0.3487765832
O,0,-3.0663184322,-2.0672929868,-0.1694148025
C, \(0,1.5899328868,-0.485562548,0.178186509\)
O,0,2.0364949171,-0.0042234065,1.2510715244
O,0,2.1822299556,-1.0973255203,-0.7409517177
H,0,-3.5672146382,0.3490581097,-0.3201933849
H,0,-0.3742172948,-2.3736301357,0.0153596722
H,0,1.2900597967,1.9882997181,-0.8952423281
Н,0,-0.0524007414,3.0371336031,-0.3496023878
H,0,1.0173790045,2.2191470502,0.8419786519
```

H,0,4.0778000431,-0.3908950101,1.1591651199
O,0,4.7626469088,-0.7837399751,0.5869541185
H,0,4.1849459478,-1.0935292029,-0.1346760716

```

N-Methyl Orotic Acid Anion in a Cluster of 8 Waters - Orientation A
\(\mathrm{E}(\) RB+HF-LYP \()=-1253.83450792\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.317692 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.349973 \\
Thermal correction to Enthalpy= & 0.350917 \\
Thermal correction to Gibbs Free Energy= & 0.249072 \\
Sum of electronic and zero-point Energies= & -1253.516816 \\
Sum of electronic and thermal Energies= & -1253.484535 \\
Sum of electronic and thermal Enthalpies= & -1253.483591 \\
Sum of electronic and thermal Free Energies= & -1253.585436
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 219.611 & 108.959 & 214.351
\end{tabular}

\footnotetext{
C,0,4.4360829354,-0.9820040711,0.8503278513
C,0,3.0110241143,-0.9894182669,1.0913371593
C,0,2.1574262011,-0.3229740362,0.2665411773
N,0,2.6074044626,0.4256868427,-0.8111135802
C,0,3.9668673539,0.492972201,-1.1222280428
N,0,4.7940582603,-0.2281312727,-0.2787914341
C, \(0,0.651454953,-0.4757159191,0.4882886453\)
O,0,-0.0424061935,-0.7517297624,-0.5294395269
C,0,1.6936822487,1.2276813478,-1.6459633573
O,0,4.417223933,1.1393142209,-2.0635088281
O,0,5.3031846496,-1.5501606643,1.5127041216
O, \(0,0.2561879434,-0.3603833123,1.6781726675\)
O,0,-2.2869291884,-0.7665193595,2.0639678193
O,0,-2.5736414442,1.9134172163,3.1392210753
O,0,-2.5718031171,0.4550982278,-0.6529515965
O,0,-3.867433581,4.122188373,1.6399320596
O,0,-4.4284937721,-0.7368915365,-2.659087564
O,0,-1.8921391293,-2.8927455921,0.0016567265
O,0,-3.6812039031,-3.4940060302,-2.0249881399
O,0,-3.0190481583,3.1825783358,-1.0068728213
H,0,5.7805668054,-0.1818299543,-0.5036242183
H,0,2.6275267747,-1.5412941288,1.9374488151
H,0,1.0017745702,1.7794759216,-1.0081876949
H,0,2.3053359248,1.9213951487,-2.2183391539
}
```

H,0,1.1227650077,0.582422374,-2.3137378345
H,0,-1.6700832306,0.0643807981,-0.7060297154
H,0,-2.8975065036,0.1718403151,0.2159962402
H,0,-1.2850676722,-0.6507586281,1.9478429268
H,0,-2.4235338509,-1.2424899507,2.8929813627
H,0,-2.8070904261,2.2290338682,-0.9007449415
H,0,-3.7307903578,3.2091000125,-1.6577984432
H,0,-2.264415734,-2.32326753,0.697749042
H,0,-1.1610090516,-2.3450016457,-0.3461724334
H,0,-3.8092466788,-0.3053141286,-2.0462050168
H,0,-4.2328333452,-1.6874369975,-2.5678661349
H,0,-2.5733702628,1.0320462729,2.7177853018
H,0,-1.6496888198,2.193959495,3.1232380837
H,0,-3.5554784532,3.3883912752,2.19665688338
H,0,-3.582881278,3.8844444465,0.7381894727
H,0,-3.032841443,-3.3201244066,-1.3026642016
H,0,-4.3795821862,-4.0263900133,-1.6274517854

```

N-Methyl Orotic Acid Anion in a Cluster of 8 Waters - Orientation B
\(\mathrm{E}(\) RB+HF-LYP \()=-1253.84141206\)
\begin{tabular}{lc} 
Zero-point correction= & 0.320354 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.352221 \\
Thermal correction to Enthalpy \(=\) & 0.353165 \\
Thermal correction to Gibbs Free Energy= & 0.251427 \\
Sum of electronic and zero-point Energies \(=\) & -1253.521058 \\
Sum of electronic and thermal Energies= & -1253.489191 \\
Sum of electronic and thermal Enthalpies \(=\) & -1253.488247 \\
Sum of electronic and thermal Free Energies \(=\) & -1253.589985
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 221.022 & 107.622 & 214.126
\end{tabular}

C,0,-2.6508161328,0.3831335991,-1.2750059219
C, \(0,-2.198896876,-0.3059565877,-0.1912508002\)
N,0,-3.0641875815,-0.9288204706,0.6967519304
C,0,-4.4445642748,-0.9053234096,0.498369784
N,0,-4.8558516336,-0.222693738,-0.631371846
С,0,-4.0621253206,0.4575788757,-1.5721401061
С,0,-0.6915246758,-0.4794123712,0.0242235877
O,0,-0.0126516143,0.5907575928,0.0378614674
С,0,-2.5705842862,-1.6112964376,1.9048501562
O,0,-5.2503763814,-1.4396048837,1.2569729256
```

O,0,-4.5948532058,1.0292609454,-2.5226259112
O,0,-0.2858070503,-1.6553550549,0.1269484406
O,0,2.4312590027,-2.1517309621,0.6143970721
H,0,-5.8571207723,-0.2041860596,-0.7819034292
H,0,-1.953930483,0.8777111186,-1.9369353272
H,0,-1.855215496,-0.968366754,2.4212882027
H,0,-3.4306840993,-1.8016953625,2.542988059
H,0,-2.0746091055,-2.5443280537,1.6356830591
H,0,1.4692542149,-2.0880654442,0.4155922869
H,0,2.6778481606,-1.2313014465,0.8083568414
H,0,1.6520282692,0.6540424615,0.3240790198
O,0,2.6076761831,0.8371867355,0.5504403517
H,0,2.5677942449,1.3393578625,1.3939099271
H,0,-0.1450412178,2.4293825749,0.4215732545
O,0,0.19167037,3.3202730712,0.6523597006
H,0,0.8392771262,3.5157617047,-0.0521210464
H,0,4.064368173,0.3942999397,-0.616879848
O,0,4.7470672377,0.100962083,-1.248889432
H,0,4.4225889353,-0.7653702586,-1.5808801733
H,0,3.5246930136,-2.6324833354,-0.7669311057
O,0,4.2109034668,-2.6499577708,-1.473591595
H,0,5.0571560881,-2.7484128906,-1.0071103793
H,0,2.7276953447,2.395415883,-0.5103720898
O,0,2.5760711372,3.2712233885,-0.9276062824
H,0,2.8027180722,3.1566435358,-1.8581705842
H,0,2.5811627217,3.3997101413,2.7416627845
O,0,1.9900159702,2.649165139,2.6100067315
H,0,1.2705563481,2.9762088953,2.0096696102
H,0,6.1123462324,-0.7985827724,-0.4061039716
O,0,6.6585263536,-1.5324108206,-0.0395304367
H,0,6.5424463755,-1.4856399992,0.9167198631
N-Methyl Orotic Acid Anion - 6-311++G
$\mathrm{E}($ RB+HF-LYP $)=-642.159803399$
Zero-point correction= $\quad 0.115213$ (Hartree/Particle)
Thermal correction to Energy= 0.124903
Thermal correction to Enthalpy=
0.125847
Thermal correction to Gibbs Free Energy=
0.079224
Sum of electronic and zero-point Energies= -642.044590
Sum of electronic and thermal Energies $=\quad-642.034900$
Sum of electronic and thermal Enthalpies $=\quad-642.033956$
Sum of electronic and thermal Free Energies= -642.080580

```


\section*{N-Methyl Orotic Acid Anion - 6-311++G**}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-642.365595338\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.114882 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.124206 \\
Thermal correction to Enthalpy \(=\) & 0.125150 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.080131 \\
Sum of electronic and zero-point Energies \(=\) & -642.250713 \\
Sum of electronic and thermal Energies \(=\) & -642.241390 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.240446 \\
Sum of electronic and thermal Free Energies \(=\) & -642.285465
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 77.940 & 35.580 & 94.751
\end{tabular}

N,0,-2.0571495862,0.076670931,0.0319379425
C,0,-1.6540565862,-1.275044069,0.0728749425
C,0,-0.2346505862,-1.450732069,0.0377539425
C,0,0.6159844138,-0.382150069,-0.0117380575
N,0,0.1223064138,0.924697931,-0.0612620575
C,0,-1.2439205862,1.192780931,-0.0501630575
```

H,0,-3.0501695862,0.256207931,0.0455069425
O,0,-2.5370805862,-2.172466069,0.1308549425
H,0,0.1640054138,-2.450743069,0.0355589425
O,0,-1.7294275862,2.350974931,-0.1105870575
C,0,2.1370234138,-0.589789069,0.0315179425
O,0,2.7260954138,-0.014549069,1.0106899425
O,0,2.6147014138,-1.324612069,-0.8901110575
C,0,1.0537994138,2.076804931,-0.1554720575
H,0,1.7693074138,2.010579931,0.6500069425
H,0,1.5726204138,2.047878931,-1.1093960575
H,0,0.4487524138,2.980488931,-0.0918240575

```

\section*{Potassium salt of N-Methyl Orotic Acid}
\(\mathrm{E}(\) RB+HF-LYP \()=-1242.10943368\)
\begin{tabular}{lc} 
Zero-point correction= & 0.117889 (Hartree/Particle) \\
Thermal correction to Energy= & 0.130270 \\
Thermal correction to Enthalpy \(=\) & 0.131214 \\
Thermal correction to Gibbs Free Energy= & 0.077113 \\
Sum of electronic and zero-point Energies= & -1241.991545 \\
Sum of electronic and thermal Energies= & -1241.979164 \\
Sum of electronic and thermal Enthalpies \(=\) & -1241.978220 \\
Sum of electronic and thermal Free Energies= & -1242.032321
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 81.746 & 42.897 & 113.866
\end{tabular}

C,0,-2.6417990178,-0.6729264405,0.2914688932
C,0,-1.2435681642,-1.038046058,0.2000457837
C,0,-0.2911726868,-0.1100687791,-0.0859607234
\(\mathrm{N}, 0,-0.6131703046,1.2153720746,-0.3478008833\)
C,0,-1.9378139335,1.6616425464,-0.2825961308
\(\mathrm{N}, 0,-2.8662674187,0.6911157976,0.0480426327\)
C,0,1.1762886941,-0.5367533354,-0.0195337862
O,0,1.9965652357,0.272137173,0.5059900651
C, \(0,0.3884834206,2.2064666958,-0.7756916166\)
O,0,-2.2688530288,2.821358257,-0.5032838736
O,0,-3.5802098121,-1.4194476241,0.5553772934
O,0,1.4496570507,-1.695188813,-0.4404708949
K,0,3.8831658995,-1.501536803,0.3884452095
H,0,-3.8257850802,1.0135728313,0.0961622607
Н,0,-0.9616044491,-2.0668147983,0.3707776814
H,0,1.0495777666,1.7607683902,-1.5199445975

\author{
H,0,-0.1536428028,3.0445672144,-1.2087212491 \\ H,0,0.9875810993,2.5389307932,0.0722794391
}

Tetramethylammonium salt of \(\mathbf{N}\)-Methyl Orotic Acid
\(\mathrm{E}(\) RB+HF-LYP \()=-856.526880770\)
\begin{tabular}{lc} 
Zero-point correction= & .281498 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & .300216 \\
Thermal correction to Enthalpy \(=\) & .301160 \\
Thermal correction to Gibbs Free Energy \(=\) & .231820 \\
Sum of electronic and zero-point Energies= & -856.245383 \\
Sum of electronic and thermal Energies= & -856.226665 \\
Sum of electronic and thermal Enthalpies \(=\) & -856.225721 \\
Sum of electronic and thermal Free Energies= & -856.295061
\end{tabular}
\begin{tabular}{cccc} 
& E(Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 188.388 & 67.476 & 145.940
\end{tabular}

C,0,-2.2595642796,-0.7975996545,-0.0987949092
C,0,-1.337068746,0.1555002797,-0.4032439998
N,0,-1.7060231718,1.4565253628,-0.7151387132
C,0,-3.0455685023,1.8557138657,-0.6942659257
N,0,-3.9416330289,0.8633345646,-0.3431686866
C,0,-3.6690918507,-0.482230808,-0.0406895672
C,0,0.1526918742,-0.200000336,-0.3116280994
O, \(0,0.5079778304,-1.2665070787,-0.8670947415\)
C,0,-0.7207096676,2.4631216604,-1.1389569709
O,0,-3.4154744251,2.9940078078,-0.9656962465
O,0,-4.5878299337,-1.249194095,0.2393524495
O,0,0.8708738086,0.5887246374,0.3702875099
C,0,3.9483864067,0.1383308227,0.1197309378
Н,0,-4.9136608782,1.1484416838,-0.3236551057
H,0,-1.9453087474,-1.8109650712,0.1062790937
H,0,-0.0639293925,2.0342213489,-1.8986780759
H,0,-1.2738592581,3.3022643628,-1.5555907362
H,0,-0.116729966,2.7841428397,-0.2898712149
H,0,2.9224237331,0.4453349134,-0.1111132132
H,0,4.5437204012,-0.0153906275,-0.7815703804
H,0,4.4275442602,0.8758845267,0.7663751567
\(\mathrm{N}, 0,3.8718154688,-1.1714931898,0.8692260492\)
C,0,5.2386419431,-1.586147405,1.3209849525
C,0,2.9657986859,-0.9909289874,2.065157362
C,0,3.2897465346,-2.2288136259,-0.0421722205
\(\mathrm{H}, 0,2.848433288,-1.9567780867,2.5587327915\)
\(\mathrm{H}, 0,3.4329237625,-0.2752825228,2.7442395052\)
\(\mathrm{H}, 0,2.0116130282,-0.5967687178,1.7022212768\)
\(\mathrm{H}, 0,3.2305507087,-3.1641695164,0.5174233266\)
\(\mathrm{H}, 0,2.2899114948,-1.9032549949,-0.3720785639\)
\(\mathrm{H}, 0,3.961577668,-2.3474921407,-0.8944052552\)
\(\mathrm{H}, 0,5.1634764731,-2.5315458684,1.8605102281\)
\(\mathrm{H}, 0,5.8797289052,-1.7089290107,0.4467160048\)
\(\mathrm{H}, 0,5.6485170099,-0.8162053248,1.9765134865\)

\section*{N-Methyl Orotic Acid Anion protonated at C5}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-642.688478889\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.127408 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.138626 \\
Thermal correction to Enthalpy \(=\) & 0.139570 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.088810 \\
Sum of electronic and zero-point Energies \(=\) & -642.561070 \\
Sum of electronic and thermal Energies \(=\) & -642.549853 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.548909 \\
Sum of electronic and thermal Free Energies \(=\) & -642.599669
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 86.989 & 39.213 & 106.833
\end{tabular}

C,0,-0.7449614359,0.1422664638,-1.3317145474
C, \(0,-2.0390351587,-0.0013142887,-0.5646343593\)
N,0,-1.8934678914,0.0014096399,0.822505088
C,0,-0.7264346055,0.0822508982,1.5563973376
N,0,0.4885442282,0.1612202676,0.7896028737
C, \(0,0.5147791094,0.0981728273,-0.5340043915\)
O,0,-3.129705816,-0.0953341856,-1.0832022413
H,0,-2.7429463138,-0.0793150071,1.3735558619
O,0,-0.7048258379,0.0876284812,2.7653465448
C,0,1.7433650029,0.1946383963,1.5809702013
С, \(0,1.8248465965,-0.1197873884,-1.2774457604\)
O,0,2.5701091396,0.8101939642,-1.5745766135
O,0,1.8273791198,-1.3674367836,-1.427643813
H,0,-0.7683192465,1.103733737,-1.866638505
H,0,2.5195101025,0.6398689872,0.9616018802
H,0,1.5693984018,0.7890256689,2.4751165825
H,0,2.016912218,-0.8236711212,1.8646121265
H,0,-0.6990994159,-0.6258248787,-2.1098055765

\section*{N-Methyl Orotic Acid Anion - protonated at O4}
\(\mathrm{E}(\) RB+HF-LYP \()=-642.687552572\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.128122 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.139302 \\
Thermal correction to Enthalpy \(=\) & 0.140247 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.089381 \\
Sum of electronic and zero-point Energies= & -642.559431 \\
Sum of electronic and thermal Energies= & -642.548250 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.547306 \\
Sum of electronic and thermal Free Energies \(=\) & -642.598172
\end{tabular}
\begin{tabular}{cccc} 
& E \((\) Thermal \()\) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 87.414 & 39.705 & 107.056
\end{tabular}
\(\mathrm{N}, 0,0.2344343596,0.9201618399,-0.0150308131\)
C,0,-1.1134526398,1.3104139551,0.0277679724
\(\mathrm{N}, 0,-2.0128922473,0.2403146837,0.021208572\)
C,0,-1.6537695545,-1.0701478133,0.0045504159
C, \(0,-0.3248067698,-1.4114129555,-0.0144071782\)
C,0,0.6273067498,-0.3799146504,-0.0227252011
C,0,1.2478778777,2.0006795326,-0.0213184344
O,0,-1.499300311,2.4615440293,0.0627165637
Н,-2.9944609448,0.4938147486,0.0459325292
O, \(0,-2.702782129,-1.8985979822,0.0123015073\)
Н,0,0.0044392547,-2.4425730472,-0.0126752206
С,0,2.1290374065,-0.7092690937,-0.0249799823
О,0,2.6395242191,-0.6841972892,-1.1582667752
O,0,2.5529382376,-0.9469081119,1.1197875595
H,0,2.0150895931,1.7399981792,-0.7499042086
H,0,0.7495335966,2.9293242117,-0.2877119216
H,0,1.691781357,2.0824240322,0.9731925589
H,0,-2.4133761959,-2.8231428062,0.0022855541

\section*{5H N-Methyl Orotic Acid Zwitterion}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-642.688479055\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.127402 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.138622 \\
Thermal correction to Enthalpy \(=\) & 0.139566 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.088785 \\
Sum of electronic and zero-point Energies= & -642.561078 \\
Sum of electronic and thermal Energies= & -642.549857
\end{tabular}
\begin{tabular}{lc} 
Sum of electronic and thermal Enthalpies \(=\) & -642.548913 \\
Sum of electronic and thermal Free Energies \(=\) & -642.599694
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 86.987 & 39.215 & 106.879
\end{tabular}
\(\mathrm{C}, 0,0.7587094686,1.3288746327,0.0786585453\)
\(\mathrm{C}, 0,0.7266821613,-0.1624086888,0.0674016191\)
\(\mathrm{C}, 0,-0.572907561,2.0371520178,-0.0144815009\)
\(\mathrm{O}, 0,-0.6983688974,3.2371204307,-0.1224254082\)
\(\mathrm{~N}, 0,-1.6828865401,1.1952401465,0.0527949649\)
\(\mathrm{C}, 0,-1.7027121652,-0.1814168117,0.1597515206\)
\(\mathrm{O}, 0,-2.724442671,-0.8249522037,0.2224386854\)
\(\mathrm{~N}, 0,-0.4151636837,-0.8231308228,0.193531145\)
\(\mathrm{C}, 0,2.0308406716,-0.9035925022,-0.1908537849\)
\(\mathrm{O}, 0,2.1096880797,-0.8563032404,-1.4439451827\)
\(\mathrm{C}, 0,-0.4403990851,-2.3054911071,0.2569846864\)
\(\mathrm{O}, 0,2.7087310878,-1.3666622549,0.7229456539\)
\(\mathrm{H}, 0,1.4091672471,1.6750494909,-0.7305272984\)
\(\mathrm{H}, 0,1.2519329175,1.6459737148,1.0098610141\)
\(\mathrm{H}, 0,-2.5969245238,1.6358694865,0.0061744311\)
\(\mathrm{H}, 0,0.5087092626,-2.640275459,0.6709726702\)
\(\mathrm{H}, 0,-0.5819625598,-2.7060487983,-0.748876047\)
\(\mathrm{H}, 0,-1.2707125107,-2.6076607992,0.8912359597\)

\section*{Decarboxylation of N -Methyl Orotic Acid - distance of \(\mathrm{CO}_{\mathbf{2}}\) loss fixed 1.8A}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-642.204523100\)
\begin{tabular}{lc} 
Zero-point correction= & 0.114943 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.125764 \\
Thermal correction to Enthalpy \(=\) & 0.126708 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.076480 \\
Sum of electronic and zero-point Energies= & -642.089581 \\
Sum of electronic and thermal Energies \(=\) & -642.078759 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.077815 \\
Sum of electronic and thermal Free Energies \(=\) & -642.128043
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 78.918 & 38.431 & 105.713
\end{tabular}

N,0,-0.1008801434,-0.9693185353,0.0123290073
C,0,-1.4918704898,-0.976884183,0.0337412541
\(\mathrm{N}, 0,-2.082923026,0.2708577863,0.0106450745\)
C,0,-1.4425008467,1.5265086116,0.0213074165
C, \(0,-0.0075629505,1.4205172686,0.0273112364\)
C, \(0,0.6266544332,0.2131337266,0.0165862137\)
C, \(0,0.5333046318,-2.2958588276,0.0823361555\)
O,0,-2.1618463055,-2.0126745868,0.0709969615
H,0,-3.0949561195,0.2736079845,0.0242762049
O,0,-2.1340022671,2.5517911435,0.02233888332
H,0,0.5907399584,2.3215558039,0.0491470378
C,0,2.4231329442,0.2708894873,-0.0800005837
O,0,2.9463316758,-0.74953782,-0.5501038296
O,0,2.8383645458,1.3596367536,0.3149081878
H, \(0,1.5965843204,-2.1623287076,-0.1055235239\)
H, \(0,0.0824951351,-2.9474822478,-0.6691298632\)
H,0,0.3540313653,-2.7396880132,1.0675997929

\section*{Decarboxylation of N -Methyl Orotic Acid - distance of \(\mathrm{CO}_{\mathbf{2}}\) loss fixed 2.0A}
\(E(R B+H F-L Y P)=-642.193320776\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.114208 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.124499 \\
Thermal correction to Enthalpy \(=\) & 0.125443 \\
Thermal correction to Gibbs Free Energy= \(=\) & 0.077050 \\
Sum of electronic and zero-point Energies= & -642.079112 \\
Sum of electronic and thermal Energies= & -642.068822 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.067878 \\
Sum of electronic and thermal Free Energies \(=\) & -642.116271
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 78.124 & 36.971 & 101.852
\end{tabular}
\(\mathrm{N}, 0,-0.1559667,-0.9771845955,0\).
C,0,-1.5463316847,-0.9771691258,0.
N,0,-2.1233642561,0.2768971804,0.
C,0,-1.4682277452,1.5274626276,0.
C, \(0,-0.0341227146,1.4055456798,0\).
C,0,0.5893174799,0.1918743608,0.
C,0,0.4760413961,-2.3038875654,0.
O,0,-2.2243957632,-2.009694014,0.
H,0,-3.1353323663,0.2922761078,0.
O,0,-2.1536906296,2.5581231584,0.
H,0,0.5696487079,2.304495108,0.
C,0,2.5873828412,0.2798246224,0.
```

O,0,2.8911427339,1.4576765445,0.
O,0,3.1151260729,-0.8250271047,0.
H,0,0.1586894208,-2.8647370772,0.8843758036
H,0,0.1586894208,-2.8647370772,-0.8843758036
H,0,1.5538047613,-2.1558174255,0.

```


Decarboxylation of N -Methyl Orotic Acid - distance of \(\mathrm{CO}_{2}\) loss fixed 2.2A \(\mathrm{E}(\) RB+HF-LYP \()=-642.183533562\)

Zero-point correction \(=\quad 0.113768\) (Hartree/Particle)


\section*{Decarboxylation of N -Methyl Orotic Acid - distance of \(\mathrm{CO}_{2}\) loss fixed 2.3A}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-642.179574272\)
Zero-point correction= 0.113526 (Hartree/Particle)
Thermal correction to Energy= 0.124126

Thermal correction to Enthalpy= 0.125070

Thermal correction to Gibbs Free Energy=
0.075948

Sum of electronic and zero-point Energies= -642.066048
Sum of electronic and thermal Energies \(=\quad-642.055448\)
Sum of electronic and thermal Enthalpies \(=\quad-642.054504\)
Sum of electronic and thermal Free Energies \(=\quad-642.103626\)
\begin{tabular}{lcl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin
\end{tabular}
\begin{tabular}{llll} 
TOTAL & 77.890 & 37.599 & 103.386
\end{tabular}
N, \(0,-0.1541049428,0.9938868287,0\).
C,0,-1.5382890606,1.097968062,0.
N,0,-2.2004637428,-0.1126817869,0.
C,0,-1.6304744529,-1.4064717243,0.
C,0,-0.1920553969,-1.381894522,0.
C,0,0.5279544455,-0.2165552834,0.
C,0,0.5792599201,2.2636001346,0.
O,0,-2.1430700431,2.1777175128,0.
H,0,-3.2110540995,--0.0603228059,0.
O,0,-2.3903934974,--2.3863865571,0.
H,0,0.331730623,-2.3314307068,0.
C,0,2.8098359544,-0.5046826681,0.
O,0,2.9168922412,-1.6981800733,0.
O,0,3.3353675532,0.5785608438,0.
H,0,0.315858297,2.8534351692,-0.8841783593
H,0,0.315858297,2.8534351692,0.8841783593
H,0,1.6418291938,2.0309700784,0.

Decarboxylation of N -Methyl Orotic Acid - distance of \(\mathrm{CO}_{\mathbf{2}}\) loss fixed 2.4A
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-642.176274741\)
\begin{tabular}{lc} 
Zero-point correction= & 0.113321 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.124026 \\
Thermal correction to Enthalpy \(=\) & 0.124970 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.075496 \\
Sum of electronic and zero-point Energies= & -642.062954 \\
Sum of electronic and thermal Energies= & -642.052249 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.051304 \\
Sum of electronic and thermal Free Energies \(=\) & -642.100778
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 77.828 & 37.778 & 104.127
\end{tabular}
\(\mathrm{N}, 0,-0.1754506831,0.9945275279,0\).
C,0,-1.5588053058,1.1015538503,0.
\(\mathrm{N}, 0,-2.2221975603,-0.1081126923,0\).
C,0,-1.652091313,-1.4021153142,0.
C,0,-0.2139437066,-1.3779295209,0.
C,0,0.5135002668,-0.2144144147,0.
C,0,0.5598461394,2.2622709551,0.
O,0,-2.1629556495,2.1824701507,0.
```

H,0,-3.2327422365,-0.0555725959,0.
O,0,-2.4138011937,-2.3816383256,0.
H,0,0.3022610009,-2.3320207153,0.
C,0,2.8943028777,-0.5173648113,0.
O,0,2.9686789932,-1.7080566876,0.
O,0,3.387511091,0.574594367,0.
H,0,0.3003974165,2.8541960153,-0.8842436861
H,0,0.3003974165,2.8541960153,0.8842436861
H,0,1.6209044279,2.023336929,0.

```
Decarboxylation of \(\mathbf{N}\)-Methyl Orotic Acid - distance of \(\mathrm{CO}_{\mathbf{2}}\) loss fixed 2.5A
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-642.173593550\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.113142 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.123945 \\
Thermal correction to Enthalpy \(=\) & 0.124889 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.075079 \\
Sum of electronic and zero-point Energies \(=\) & -642.060452 \\
Sum of electronic and thermal Energies \(=\) & -642.049649 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.048704 \\
Sum of electronic and thermal Free Energies= \(=\) & -642.098514
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 77.777 & 37.931 & 104.833
\end{tabular}
\(\mathrm{N}, 0,-0.2720074749,-0.9790680716,0\).
C,0,-1.6584571865,-0.9825359298,0.
N,0,-2.2292927219,0.2733976043,0.
C,0,-1.562060472,1.5198865119,0.
С,0,-0.1302312731,1.3862449514,0.
C, \(0,0.5144039177,0.1723121976,0\).
C,0,0.3647215811,-2.2984553619,0.
O,0,-2.3433988941,-2.0151183037,0.
H,0,-3.2408654735,0.2974583515,0.
O,0,-2.247915628,2.5548815313,0.
\(\mathrm{H}, 0,0.4514317173,2.3023345187,0\).
C,0,3.0108621464,0.3053397184,0.
O,0,3.1397430594,1.48660433,0.
O,0,3.3886008548,-0.8261880071,0.
\(\mathrm{H}, 0,0.0632814888,-2.8704750764,0.8842824679\)
Н, \(0,0.0632814888,-2.8704750764,-0.8842824679\)
H,0,1.4403047374,-2.1373383761,0.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Decarboxylation of N-Methyl Oro
\[
\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-642.173593550
\]} \\
\hline Zero-poi & correction= & 0.113 & 3142 (Hartree/Particle) \\
\hline Thermal & rrection to Ener & & 0.123945 \\
\hline Thermal & rrection to Enth & lpy \(=\) & 0.124889 \\
\hline Thermal & rection to Gibb & s Free Energy= & 0.075079 \\
\hline Sum of el & tronic and zero & point Energies= & -642.060452 \\
\hline Sum of el & tronic and thern & al Energies= & -642.049649 \\
\hline Sum of el & tronic and therm & al Enthalpies= & -642.048704 \\
\hline \multicolumn{4}{|l|}{Sum of electronic and thermal Free Energies \(=\quad-642.098514\)} \\
\hline TOTAL & E (Thermal) \(\mathrm{KCal} / \mathrm{Mol}\) 77.777 & CV
Cal/Mol-Kelvin
37.931 & \begin{tabular}{l}
S \\
Cal/Mol-Kelvin 104.833
\end{tabular} \\
\hline \multicolumn{4}{|l|}{N,0,-0.2720074749,-0.9790680716,0.} \\
\hline \multicolumn{4}{|l|}{C,0,-1.6584571865,-0.9825359298,0.} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{N}, 0,-2.2292927219,0.2733976043,0\).} \\
\hline \multicolumn{4}{|l|}{C,0,-1.562060472,1.5198865119,0.} \\
\hline \multicolumn{4}{|l|}{C,0,-0.1302312731,1.3862449514,0.} \\
\hline \multicolumn{4}{|l|}{C,0,0.5144039177,0.1723121976,0.} \\
\hline \multicolumn{4}{|l|}{C,0,0.3647215811,-2.2984553619,0.} \\
\hline \multicolumn{4}{|l|}{O, 0,-2.3433988941,-2.0151183037,0.} \\
\hline \multicolumn{4}{|l|}{H,0,-3.2408654735,0.2974583515,0.} \\
\hline \multicolumn{4}{|l|}{O,0,-2.247915628,2.5548815313,0.} \\
\hline \multicolumn{4}{|l|}{H,0,0.4514317173,2.3023345187,0.} \\
\hline \multicolumn{4}{|l|}{C,0,3.0108621464,0.3053397184,0.} \\
\hline \multicolumn{4}{|l|}{O,0,3.1397430594,1.48660433,0.} \\
\hline \multicolumn{4}{|l|}{O,0,3.3886008548,-0.8261880071,0.} \\
\hline \multicolumn{4}{|l|}{H,0,0.0632814888,-2.8704750764,0.8842824679} \\
\hline \multicolumn{4}{|l|}{H,0,0.0632814888,-2.8704750764,-0.8842824679} \\
\hline \multicolumn{4}{|l|}{H,0,1.4403047374,-2.1373383761,0.} \\
\hline \multicolumn{4}{|l|}{Decarboxylation of N-Methyl Orotic Acid - distance of \(\mathrm{CO}_{2}\) loss fixed 2.6A} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-642.171447125\)} \\
\hline Zero-poi & correction= & 0.112 & 2947 (Hartree/Particle) \\
\hline Thermal & rection to Ener & & 0.123881 \\
\hline Thermal & rection to Enth & alpy \(=0\) & 0.124825 \\
\hline Thermal & rection to Gibb & s Free Energy= & 0.074433 \\
\hline Sum of el & tronic and zero & point Energies= & -642.058500 \\
\hline Sum of e & tronic and thern & al Energies= & -642.047566 \\
\hline Sum of e & tronic and thern & al Enthalpies= & -642.046622 \\
\hline
\end{tabular}

Sum of electronic and thermal Free Energies= \(\quad-642.097014\)
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & \(\mathrm{Cal} /\) Mol-Kelvin \\
\hline TOTAL & 77.737 & 38.070 & 106.059 \\
\hline \(\mathrm{N}, 0,-0.2\) & 664598,-0.9780 & 86557,0.00000 & \\
\hline C,0,-1.67 & 180268,-0.9893 & 705647,0.00001 & \\
\hline N,0,-2.25 & 024778,0.2633 & 350081,-0.000001 & 5479 \\
\hline C, \(0,-1.58\) & 230795,1.512798 & 866915,-0.00001 & 析 \\
\hline C,0,-0.15 & 010336,1.3850 & 766635,-0.00000 & 848 \\
\hline C, \(0,0.499\) & 235241,0.17476 & 44464,-0.0000001 & \\
\hline C, \(0,0.352\) & 095029,-2.2948 & 235038,-0.000000 & 4915 \\
\hline O,0,-2.35 & 2811326,-2.0256 & 6482051,-0.00000 & 7822 \\
\hline H,0,-3.26 & 1547776,0.2831 & 297943,-0.000001 & 6506 \\
\hline O,0,-2.28 & 427966,2.54463 & 9377,0.0000062669 & \\
\hline H,0,0.4153 & 835069,2.30698 & 1546,0.00000573 & \\
\hline C,0,3.094 & 578816,0.32010 & \(74353,-0.00000032\) & \\
\hline O,0,3.187 & 247806,1.50027 & 2614,0.00000105 & \\
\hline O,0,3.442 & 592177,-0.8157 & 20148,-0.0000016 & \\
\hline H,0,0.05 & 300919,-2.8693 & 401244,0.884248486 & 865 \\
\hline H,, 0.05 & 287993,-2.8693 & 389666,-0.884249 & 7955 \\
\hline H,0,1.427 & 031339,-2.1283 & 848292,-0.000000 & \\
\hline
\end{tabular}

\section*{Decarboxylation of N -Methyl Orotic Acid - distance of \(\mathrm{CO}_{2}\) loss fixed 2.8A}
\(\mathrm{E}(\) RB+HF-LYP \()=-642.168426056\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.112779 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.123834 \\
Thermal correction to Enthalpy \(=\) & 0.124778 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.073734 \\
Sum of electronic and zero-point Energies \(=\) & -642.055648 \\
Sum of electronic and thermal Energies= & -642.044592 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.043648 \\
Sum of electronic and thermal Free Energies= \(=\) & -642.094693
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 77.707 & 38.202 & 107.433
\end{tabular}
\(\mathrm{N}, 0,-0.3364386282,-0.9685812784,0\).
C,0,-1.72178917,-0.9755420911,0.
N,0,-2.2948441495,0.2786262956,0.
C,0,-1.6259237494,1.5241351911,0.

> C, \(0,-0.1955411134,1.3891405763,0\).
> \(\mathrm{C}, 0,0.4678098861,0.1784754514,0\).
> \(\mathrm{C}, 0,0.2958990864,-2.2888284482,0\).
> \(\mathrm{O}, 0,-2.4076593481,-2.0095732485,0\).
> \(\mathrm{H}, 0,-3.3063077125,0.3025638737,0\).
> \(\mathrm{O}, 0,-2.3138253882,2.5601261739,0\).
> \(\mathrm{H}, 0,0.3736994623,2.3138699507,0\).
> \(\mathrm{C}, 0,3.2653748028,0.2952621989,0\).
> \(O, 0,3.325517613,1.4710449336,0\).
> \(\mathrm{O}, 0,3.5298737358,-0.8554487907,0\).
> \(\mathrm{H}, 0,-0.0032437346,-2.8632269647,0.8842267638\)
> \(\mathrm{H}, 0,-0.0032437346,-2.8632269647,-0.8842267638\)
> \(H, 0,1.3718438079,-2.1253448325,0\).

\section*{Decarboxylation of N -Methyl Orotic Acid - distance of \(\mathrm{CO}_{\mathbf{2}}\) loss fixed 3.0A}
\(\mathrm{E}(\) RB+HF-LYP \()=-642.166420137\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.112682 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.123856 \\
Thermal correction to Enthalpy \(=\) & 0.124800 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.072926 \\
Sum of electronic and zero-point Energies \(=\) & -642.053738 \\
Sum of electronic and thermal Energies= & -642.042564 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.041620 \\
Sum of electronic and thermal Free Energies \(=\) & -642.093495
\end{tabular}
\begin{tabular}{cccc} 
& E(Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 77.721 & 38.233 & 109.179
\end{tabular}
\(\mathrm{N}, 0,-0.3879745615,-0.9686336925,0\).
C, \(0,-1.7725471482,-0.9650218265,0\).
\(\mathrm{N}, 0,-2.3361028141,0.2934552973,0\).
C,0,-1.6564333683,1.5328234884,0.
C,0,-0.2275572806,1.3852913154,0.
C,0,0.4327426441,0.1703134775,0.
С,0,0.2299870941,-2.2950478388,0.
O,0,-2.4681182379,-1.993471071,0.
H,0,-3.3473197406,0.3252514617,0.
O,0,-2.3363393952,2.5749739241,0.
\(\mathrm{H}, 0,0.3457166747,2.3079987092,0\).
C,0,3.4306495867,0.2824920912,0.
O,0,3.4477404701,1.4556063748,0.
O,0,3.6428247011,-0.874232508,0.
```

H,0,-0.0735768902,-2.8674114867,0.8843035582
H,0,-0.0735768902,-2.8674114867,-0.8843035582
H,0,1.3073890044,-2.1402964345,0.

```

\section*{Decarboxylation of N-Methyl Orotic Acid - distance of \(\mathrm{CO}_{2}\) loss fixed 3.4A}
\(\mathrm{E}(\) RB+HF-LYP \()=-642.163503430\)
\begin{tabular}{lc} 
Zero-point correction= & 0.112626 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.123909 \\
Thermal correction to Enthalpy \(=\) & 0.124853 \\
Thermal correction to Gibbs Free Energy= & 0.071992 \\
Sum of electronic and zero-point Energies \(=\) & -642.050877 \\
Sum of electronic and thermal Energies= & -642.039595 \\
Sum of electronic and thermal Enthalpies= & -642.038651 \\
Sum of electronic and thermal Free Energies= \(=\) & -642.091511
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 77.754 & 38.189 & 111.254
\end{tabular}

\footnotetext{
\(\mathrm{N}, 0,-0.4677258773,-0.9539067347,0\).
C,0,-1.8521657438,-0.9706409738,0.
\(\mathrm{N}, 0,-2.4338448831,0.2791138545,0\).
C,0,-1.7714542403,1.5280659293,0.
С,0,-0.3415561713,1.4002016956,0.
C,0,0.3421037157,0.1952240934,0.
C,0,0.1658220802,-2.2723342369,0.
O,0,-2.5339063345,-2.0090811144,0.
H,0,-3.4453971803,0.2968783922,0.
O,0,-2.4676720106,2.5603719023,0.
H,0,0.2167326252,2.3321185901,0.
C,0,3.7410300288,0.280803214,0.
O,0,3.7592578997,1.4510477186,0.
O,0,3.8492569218,-0.8863273092,0.
Н,0,-0.1298593619,-2.8492615598,0.8843109293
H,0,-0.1298593619,-2.8492615598,-0.8843109293
Н, \(0,1.2412087749,-2.1029316076,0\).
}

Decarboxylation of N-Methyl Orotic Acid - distance of \(\mathrm{CO}_{2}\) loss fixed 3.55A
\(E(\) RB + HF-LYP \()=-642.162609586\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.112613 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.123934 \\
Thermal correction to Enthalpy \(=\) & 0.124878
\end{tabular}

Thermal correction to Gibbs Free Energy= 0.071570
Sum of electronic and zero-point Energies= -642.049997
Sum of electronic and thermal Energies \(=\quad-642.038676\)
Sum of electronic and thermal Enthalpies \(=\quad-642.037732\)
Sum of electronic and thermal Free Energies= \(=-642.091040\)
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 77.770 & 38.168 & 112.197
\end{tabular}
\(\mathrm{N}, 0,-0.5031038282,-0.9552962107,0\).
C, \(0,-1.8872233845,-0.973991622,0\).
\(\mathrm{N}, 0,-2.4706241069,0.2752222219,0\).
C,0,-1.809540973,1.5247500999,0.
C,0,-0.3794278546,1.3983499001,0.
C,0,0.3066350804,0.1948104978,0.
C,0,0.1323705373,-2.2725798231,0.
O,0,-2.5679254623,-2.0132116184,0.
Н,0,-3.4821629631,0.2917476314,0.
O,0,-2.5067781126,2.5564460588,0.
H,0,0.1767544926,2.3317061756,0.
C,0,3.8554153772,0.2878901926,0.
O,0,3.8473686324,1.4576311406,0.
O,0,3.9682944272,-0.8781326863,0.
H,0,-0.1615276458,-2.8501844675,0.8844807776
Н,0,-0.1615276458,-2.8501844675,-0.8844807776
Н,0,1.2075107338,-2.0998055798,0.

\section*{Decarboxylation of N -Methyl Orotic Acid - distance of \(\mathrm{CO}_{\mathbf{2}}\) loss fixed 3.7A}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-642.161783274\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.112566 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.123940 \\
Thermal correction to Enthalpy= & 0.124884 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.071050 \\
Sum of electronic and zero-point Energies \(=\) & -642.049217 \\
Sum of electronic and thermal Energies= & -642.037843 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.036899 \\
Sum of electronic and thermal Free Energies= \(=\) & -642.090734
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 77.773 & 38.161 & 113.304
\end{tabular}
\[
\begin{aligned}
& \mathrm{N}, 0,-0.5385508864,-0.9567696722,0 . \\
& \mathrm{C}, 0,-1.9225318186,-0.9776800003,0 . \\
& \mathrm{N}, 0,-2.5077539784,0.2704949572,0 . \\
& \mathrm{C}, 0,-1.8482538117,1.5209639259,0 . \\
& \mathrm{C}, 0,-0.4180985143,1.3967243464,0 . \\
& \mathrm{C}, 0,0.2704163942,0.1940803001,0 . \\
& \mathrm{C}, 0,0.0988051564,-2.2732054192,0 . \\
& \mathrm{O}, 0,-2.6016338974,-2.018143663,0 . \\
& \mathrm{H}, 0,-3.5193348351,0.2855717107,0 . \\
& \mathrm{O}, 0,-2.5470909503,2.5518125187,0 . \\
& \mathrm{H}, 0,0.1362374557,2.3311592099,0 . \\
& \mathrm{C}, 0,3.9689866677,0.2968289881,0 . \\
& \mathrm{O}, 0,3.957559285,1.4663179748,0 . \\
& \mathrm{O}, 0,4.0693744482,-0.8698630358,0 . \\
& \mathrm{H}, 0,-0.1938890211,-2.8514541105,0.8845200765 \\
& \mathrm{H}, 0,-0.1938890211,-2.8514541105,-0.8845200765 \\
& \mathrm{H}, 0,1.1733939475,-2.097162898,0 .
\end{aligned}
\]

\section*{Decarboxylation of N -Methyl Orotic Acid - distance of \(\mathrm{CO}_{2}\) loss fixed 4.2A}
\(\mathrm{E}(\) RB+HF-LYP \()=-642.159649383\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.112522 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.123963 \\
Thermal correction to Enthalpy \(=\) & 0.124907 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.070013 \\
Sum of electronic and zero-point Energies \(=\) & -642.047127 \\
Sum of electronic and thermal Energies \(=\) & -642.035687 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.034743 \\
Sum of electronic and thermal Free Energies \(=\) & -642.089636
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCa} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & Cal/Mol-Kelvin \\
TOTAL & 77.788 & 38.123 & 115.533
\end{tabular}

\footnotetext{
N,0,-0.6627903838,-0.9550083664,0.
C, \(0,-2.0467985297,-0.9761207483,0\).
\(\mathrm{N}, 0,-2.632000435,0.2720026643,0\).
C,0,-1.9721513641,1.5224415574,0.
C,0,-0.5423593748,1.3976415123,0.
C,0,0.1477445005,0.1951486347,0.
C, \(0,-0.0255332395,-2.2714134609,0\).
O,0,-2.7262131234,-2.0166362209,0.
H,0,-3.6435688451,0.2871477663,0.
O,0,-2.6713280614,2.5534167043,0.
}
```

H,0,0.0117521783,2.3322979957,0.
C,0,4.3465937739,0.2934423863,0.
O,0,4.3672832905,1.4627008311,0.
O,0,4.3848477635,-0.8759571808,0.
H,0,-0.3176892013,-2.8499495163,0.8845966086
H,0,-0.3176892013,-2.8499495163,-0.8845966086
H,0,1.0490372493,-2.0935391745,0.

```

\section*{Transition State for decarboxylation of 5H N-Methyl Orotic Acid Anion protonated at C5}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-642.672227051\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.125331 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.136443 \\
Thermal correction to Enthalpy \(=\) & 0.137387 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.085977 \\
Sum of electronic and zero-point Energies \(=\) & -642.546897 \\
Sum of electronic and thermal Energies \(=\) & -642.535784 \\
Sum of electronic and thermal Enthalpies \(=\) & -642.534840 \\
Sum of electronic and thermal Free Energies \(=\) & -642.586250
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 85.619 & 38.870 & 108.203
\end{tabular}

C, \(0,0.1354282101,-1.4160011019,-0.0010175043\)
C, \(0,-0.6124855632,-0.1315273079,0.003133133\)
С,0,1.6452307363,-1.3945030879,-0.0088387741
O,0,2.3581751611,-2.3756616925,-0.0128708314
N,0,2.1964065409,-0.1094163615,-0.0112267543
C,0,1.522779334,1.0917678821,-0.0073956069
O,0,2.0732728199,2.1681444174,-0.0098632841
\(\mathrm{N}, 0,0.0689342215,0.991348168,-0.0000177579\)
C,0,-2.7106049461,-0.4577568337,0.0136470587
O,0,-2.750201317,-1.6533219279,0.0128037787
C, \(0,-0.6164356268,2.3099503688,0.003831522\)
O,0,-3.2433017959,0.6134311346,0.0173551379
H,0,-0.22422493,-2.0093482131,-0.8532219953
H,0,-0.215319042,-2.0096625068,0.8546741636
H,0,3.2100085018,-0.0413771189,-0.0164228689
H,0,-0.309993745,2.8685479464,0.8892694701
\(\mathrm{H}, 0,-1.6858781604,2.1169686221,0.009225693\)
H,0,-0.3190097728,2.8690336558,-0.884370256

N-Methyl Uracil Carbene - protonated at O4
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-454.068058911\)
\begin{tabular}{lc} 
Zero-point correction= & 0.112733 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.121064 \\
Thermal correction to Enthalpy \(=\) & 0.122008 \\
Thermal correction to Gibbs Free Energy= & 0.079782 \\
Sum of electronic and zero-point Energies= & -453.955326 \\
Sum of electronic and thermal Energies= & -453.946995 \\
Sum of electronic and thermal Enthalpies \(=\) & -453.946051 \\
Sum of electronic and thermal Free Energies \(=\) & -453.988277
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 75.969 & 30.516 & 88.873
\end{tabular}
\(\mathrm{N}, 0,-1.1185995982,-0.5097991368,-0.0000276993\)
C,0,-0.6939821991,0.8215509772,0.0000249913
\(\mathrm{N}, 0,0.6979856831,0.9627742876,-0.0001665179\)
С,0,1.566956709,-0.0930519193,-0.000016023
C,0,1.0693219385,-1.3698469979,0.0001465644
C,0,-0.3285817612,-1.6316082663,0.0001146068
C,0,-2.5855774626,-0.6672893683,-0.0000593243
O,0,-1.425185777,1.8007794605,0.0001099865
H,0,1.0097542143,1.9266551816,-0.000477873
O,0,2.8895160705,0.1677844522,-0.0001255638
H,0,1.7717424079,-2.1951161936,0.0003375263
Н,0,-3.0154982864,-0.1942108647,0.8866216449
H,0,-3.0155518741,-0.1932581468,-0.8861988431
\(\mathrm{H}, 0,-2.7790713653,-1.7372254968,-0.0005973235\)
\(\mathrm{H}, 0,3.0894566129,1.1152916107,0.0005341155\)
5H N-Methyl Uracil Carbene - protonated at C5
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-454.083292315\)
\begin{tabular}{lc} 
Zero-point correction= & 0.112662 (Hartree/Particle) \\
Thermal correction to Energy= & 0.120801 \\
Thermal correction to Enthalpy \(=\) & 0.121746 \\
Thermal correction to Gibbs Free Energy= & 0.079224 \\
Sum of electronic and zero-point Energies= & -453.970631 \\
Sum of electronic and thermal Energies= & -453.962491 \\
Sum of electronic and thermal Enthalpies \(=\) & -453.961547 \\
Sum of electronic and thermal Free Energies= \(=\) & -454.004068
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 75.804 & 29.501 & 89.494
\end{tabular}

C,0,1.4606716084,0.9320267395,-0.4107954012
C,0,1.560453718,-0.5312316135,-0.0964006596
C,0,0.1277969939,1.6499014852,-0.3871876431
O, \(0,-0.0426677691,2.8293358068,-0.6276352692\)
N,0,-0.9461925627,0.8251311299,-0.0540442381
C,0,-0.9020375612,-0.5233762472,0.2416244476
O,0,-1.8928909348,-1.164460562,0.5220121416
N,0,0.4086760616,-1.1266047768,0.195953438
C, \(0,0.3961639782,-2.5717240793,0.5216183724\)
H,0,1.9177536136, 1.0879152332,-1.3979691212
H,0,2.1482321474,1.4610527723,0.2637890178
H,0,-1.8684946945, 1.2492306859,-0.0216376623
H,0,-0.0000404857,-2.7242378202,1.5275833727
H,0,1.4280493178,-2.9074877857,0.4545119263
H,0,-0.2367071826,-3.1087372238,-0.1878116083

\section*{Transition state for rearrangement 5H N-Methyl Uracil Carbene - transfer of a proton from C5 to C6 to yield uracil}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-454.045218120\)
\begin{tabular}{lc} 
Zero-point correction= & 0.109289 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.117038 \\
Thermal correction to Enthalpy \(=\) & 0.117982 \\
Thermal correction to Gibbs Free Energy= & 0.076739 \\
Sum of electronic and zero-point Energies= & -453.935929 \\
Sum of electronic and thermal Energies= & -453.928180 \\
Sum of electronic and thermal Enthalpies \(=\) & -453.927236 \\
Sum of electronic and thermal Free Energies \(=\) & -453.968480
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 73.442 & 28.428 & 86.804
\end{tabular}

N,0,0.2729600777,-1.161631404,0.0502028854
C,0,1.5020403892,-0.5643569337,-0.0390692849
C,0,1.5197877499,0.8424700193,-0.0343204175
C, \(0,0.2881012216,1.6835827161,-0.0675435218\)
N,0,-0.8654138377,0.9065878086,-0.0762374421
C,0,-0.9565841749,-0.4867817155,-0.0349825928
O,0,0.2596611611,2.9019715177,-0.0791296994
\(\mathrm{O}, 0,-2.0323313794,-1.0566040059,-0.0556267235\)
\(\mathrm{H}, 0,2.4598453015,1.3622884218,-0.198340322\)
\(\mathrm{H}, 0,1.9508423196,0.1250803922,0.988948205\)
\(\mathrm{H}, 0,-1.7557812312,1.392544721,-0.1157522455\)
\(\mathrm{C}, 0,0.1789377476,-2.6264612754,0.1725195462\)
\(\mathrm{H}, 0,-0.3600866921,-2.8967832939,1.0840611089\)
\(\mathrm{H}, 0,-0.3576861822,-3.0439927793,-0.6825939378\)
\(\mathrm{H}, 0,1.19770695,-3.0074892523,0.2043480967\)

Protonation of \(\mathbf{5 H} \mathbf{N}\)-Methyl Uracil Carbene with \(\mathbf{M e}_{3} \mathbf{N H}^{+}\)
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-628.980138380\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.244137 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.259348 \\
Thermal correction to Enthalpy \(=\) & 0.260292 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.199349 \\
Sum of electronic and zero-point Energies \(=\) & -628.736002 \\
Sum of electronic and thermal Energies \(=\) & -628.720790 \\
Sum of electronic and thermal Enthalpies \(=\) & -628.719846 \\
Sum of electronic and thermal Free Energies \(=\) & -628.780789
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & \(\mathrm{Cal} /\) Mol-Kelvin \\
Total & 162.743 & 53.800 & 128.266
\end{tabular}

C,0,-2.242904846,-1.0016263566,0.005527877
\(\mathrm{N}, 0,-0.7670958551,-0.9845470413,0.0060743432\)
C,0,-0.0198579342,0.0902099045,-0.0003568135
C,0,-0.6999800625,1.4200277535,-0.008894612
С,0,-2.2159130395,1.4822719561,-0.0099912178
N,0,-2.8424971526,0.2319788003,-0.0024496168
C,0,-0.1879507863,-2.3500314461,0.0148930401
O,0,-2.8510298675,2.5090157038,-0.016712527
O,0,-2.8272501255,-2.0538383121,0.0118339751
\(\mathrm{N}, 0,2.7342966186,0.1817259756,-0.0003211284\)
C,0,3.2499931073,-0.4845917606,-1.2241401076
C, \(0,3.0546307103,1.6337746567,-0.0110233537\)
C,0,3.2492796372,-0.466357175,1.2335534656
H,0,-0.3379353821,1.9899538218,-0.876560494
H,0,-0.3387701232,2.0005547518,0.8520728448
H,0,-3.8604554998,0.2250473495,-0.002871539
Н,0,-0.5264210987,-2.8833477483,0.9038553968
H,0,0.8943958985,-2.2531799798,0.0150855754
H,0,-0.5251438806,-2.8942708492,-0.8679178165

H,0,1.4764612521,0.0815135651,0.0001370183
H,0,4.3371679826,-0.3642350869,1.2973197622
H,0,2.7935714155,0.0053362908,2.1071069254
H,0,2.9928055608,-1.527729373,1.2236359514
H,0,4.3378594326,-0.3829643993,-1.289043604
Н,0,2.9940068064,-1.5458140298,-1.1983846525
H,0,2.7943943673,-0.0262826859,-2.1048468691
H,0,4.1379857042,1.7884733949,-0.0116804091
H,0,2.6302232721,2.0930086749,-0.9065628131
\(\mathrm{H}, 0,2.6293882423,2.1063478323,0.8771482839\)

\section*{5H N-Methyl Uracil Cation}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-454.477463388\)
\begin{tabular}{lc} 
Zero-point correction= & 0.125895 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.134132 \\
Thermal correction to Enthalpy= & 0.135076 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.092481 \\
Sum of electronic and zero-point Energies \(=\) & -454.351569 \\
Sum of electronic and thermal Energies= & -454.343331 \\
Sum of electronic and thermal Enthalpies \(=\) & -454.342387 \\
Sum of electronic and thermal Free Energies= & -454.384982
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 84.169 & 30.180 & 89.649
\end{tabular}
\(\mathrm{N}, 0,0.3825773428,-1.1294601475,0.200221442\)
C,0,1.4462232978,-0.4586952702,-0.0970836778
C,0,1.4432770017,0.9835200623,-0.4199547048
C, \(0,0.0891521753,1.6714405097,-0.3867131279\)
N,0,-0.9909492049,0.8347235083,-0.0501291706
C,0,-0.9742568704,-0.4993109667,0.2464180269
O,0,-0.068175746,2.8384585089,-0.6264025884
O,0,-1.9115674166,-1.1879280277,0.5301979383
C, \(0,0.3975130538,-2.5788448165,0.5230157996\)
H,0,1.8963596632,1.1269844827,-1.4129590529
H,0,2.1288992741,1.5035304029,0.2666419409
H,0,-1.910057686,1.2750737396,-0.021766683
H,0,-0.0039442623,-2.7162813144,1.5276008357
H,0,1.424164847,-2.936598578,0.461369892
H,0,-0.2412248861,-3.1012467326,-0.1899760698
H,0,2.3908994372,-1.0012064867,-0.1060134583
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{N-Methyl Uracil Anion} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-453.564821920\)} \\
\hline \multicolumn{4}{|l|}{Zero-point correction \(=0.100629\) (Hartree/Particle)} \\
\hline \multicolumn{4}{|l|}{Thermal correction to Energy= 0.108291} \\
\hline \multicolumn{4}{|l|}{Thermal correction to Enthalpy= 0.109236} \\
\hline \multicolumn{4}{|l|}{Thermal correction to Gibbs Free Energy= 0.068249} \\
\hline \multicolumn{4}{|l|}{Sum of electronic and zero-point Energies \(=0-453.4641\)} \\
\hline \multicolumn{4}{|l|}{Sum of electronic and thermal Energies= -453.456531} \\
\hline \multicolumn{3}{|l|}{Sum of electronic and thermal Enthalpies=} & -453.455586 \\
\hline \multicolumn{4}{|l|}{Sum of electronic and thermal Free Energies= -453.49657} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & \(\mathrm{Cal} /\) Mol-Kelvin \\
TOTAL & 67.954 & 28.199 & 86.264
\end{tabular}}} \\
\hline & & & \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\(\mathrm{N}, 0,-1.0649266068,-0.5111032949,-0.0000634209\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,-0.6585076362,0.8114967784,-0.0000169035\)} \\
\hline \multicolumn{4}{|l|}{N,0,0.7092470624,0.982810732,-0.000059395} \\
\hline \multicolumn{4}{|l|}{C,0,1.6944268295,-0.0314598316,0.0000312742} \\
\hline \multicolumn{4}{|l|}{C,0,1.1337261068,-1.3520786368,0.000073998} \\
\hline \multicolumn{4}{|l|}{C, \(0,-0.2234042191,-1.6411889646,0.0000253307\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,-2.5133347457,-0.7106159882,-0.00006064\)} \\
\hline \multicolumn{4}{|l|}{O,0,-1.4382750984,1.779813016,0.0000371453} \\
\hline \multicolumn{4}{|l|}{H,0,1.0362619915,1.9401147736,-0.0000164286} \\
\hline \multicolumn{4}{|l|}{O,0,2.8913319827,0.3159810273,0.0000332914} \\
\hline \multicolumn{4}{|l|}{H,0,1.8532775955,-2.1667280306,0.0001512066} \\
\hline \multicolumn{4}{|l|}{H,0,-2.9746069097,-0.2554196455,0.8848286754} \\
\hline \multicolumn{4}{|l|}{H,0,-2.9746653699,-0.2549092776,-0.8846503912} \\
\hline \multicolumn{4}{|l|}{H,0,-2.6724035836,-1.7882823693,-0.0003352006} \\
\hline \multicolumn{4}{|l|}{N-Methyl Uracil Anion - 6-311++G} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-453.523191488\)} \\
\hline Zero-poin & correction= & 0.100 & 0377 (Hartree/Particle) \\
\hline Thermal & rrection to Ener & & 0.107959 \\
\hline Thermal & rrection to Enth & alpy \(=0\) & 0.108903 \\
\hline Thermal & rection to Gibb & s Free Energy= & 0.068123 \\
\hline Sum of el & tronic and zero & point Energies= & -453.422815 \\
\hline Sum of el & tronic and thern & mal Energies= & -453.415232 \\
\hline Sum of el & tronic and therm & nal Enthalpies= & -453.414288 \\
\hline Sum of el & tronic and thern & mal Free Energies= & S= -453.455069 \\
\hline & E (Thermal) & CV & S \\
\hline
\end{tabular}
\begin{tabular}{lcc} 
KCal/Mol \\
Total & Cal/Mol-Kelvin \\
28.097 & Cal/Mol-Kelvin \\
C
\end{tabular}
\begin{tabular}{lcl}
\multicolumn{1}{c}{ E (Thermal) } & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 66.643 & 26.391
\end{tabular}\(\quad 82.315\)
```

C,0,2.5219901231,-0.724261,-0.0000072308
H,0,2.6677801231,-1.799401,-0.0000572308
H,0,2.9829001231,-0.275041,-0.8829772308
H,0,2.9828901231,-0.275151,0.8830327692

```

N-Methyl Uracil
\(\mathrm{E}(\) RB+HF-LYP \()=-454.159086392\)
\begin{tabular}{lc} 
Zero-point correction= & 0.114639 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.122582 \\
Thermal correction to Enthalpy \(=\) & 0.123526 \\
Thermal correction to Gibbs Free Energy= & 0.081317 \\
Sum of electronic and zero-point Energies= & -454.044447 \\
Sum of electronic and thermal Energies= & -454.036505 \\
Sum of electronic and thermal Enthalpies \(=\) & -454.035560 \\
Sum of electronic and thermal Free Energies= & -454.077770
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 76.921 & 28.790 & 88.837
\end{tabular}

C,0,-0.1651765705,-1.5094989909,0.0000235068
\(\mathrm{N}, 0,-1.0760500334,-0.4768031949,-0.0000594467\)
C,0,-0.6575498955,0.8571839067,-0.0000719187
\(\mathrm{N}, 0,0.7156720323,1.0250202734,-0.0000471468\)
C,0,1.7158305659,0.0313470643,0.000042162
C,0,1.1753981342,-1.319162089,0.0000669943
C, \(0,-2.5228278067,-0.7132908063,-0.0000267084\)
О,0,-1.4486788669,1.7896346242,-0.0000398843
O,0,2.8991477039,0.3440038023,0.0000963995
H,0,1.0341145968,1.9877893553,-0.0000219824
H,0,1.8656329906,-2.1513286813,0.0001316347
H,, ,-2.9782971828,-0.2651449576,0.8858325002
H,0,-2.9783782065,-0.264687233,-0.885607016
H,0,-2.6984197344,-1.7894733586,-0.0002959635
H,0,-0.5998037168,-2.5032565966,0.0000506436
N-Methyl Uracil - PCM acetone
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-454.182956703\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.113382 (Hartree/Particle) \\
Thermal correction to Energy= & 0.121155 \\
Thermal correction to Enthalpy \(=\) & 0.122099 \\
Thermal correction to Gibbs Free Energy= & 0.080791
\end{tabular}
\begin{tabular}{lc} 
Sum of electronic and zero-point Energies \(=\) & -454.069574 \\
Sum of electronic and thermal Energies \(=\) & -454.061802 \\
Sum of electronic and thermal Enthalpies \(=\) & -454.060858 \\
Sum of electronic and thermal Free Energies \(=\) & -454.102165
\end{tabular}


N,0,0.7188356941,1.0239220381,0.000529068
C,0,1.7001019567,0.0294003178,0.0007902092
C,0,1.1723054309,-1.3151044172,0.0004947068
C, \(0,-2.5235405787,-0.71635272,0.0000584639\)
O,0,-1.4397402792,1.7953783691,-0.0011130543
O,0,2.8991758627,0.3430792107,-0.0009837732
H,0,1.0417824884,2.003357835,0.0001801356
\(\mathrm{H}, 0,1.8592401718,-2.1553270841,0.0000874053\)
H,0,-2.9781036914,-0.2749281201,0.8898319937
H,0,-2.9780808176,-0.2724734446,-0.8884883804
H,0,-2.6896240062,-1.7936783336,-0.0014147985
H,0,-0.6057993153,-2.50699946,0.0004669622

\section*{\(\mathrm{S}_{\mathrm{E}} 2\) Decarboxylation Transition State - C6 proton transfer from Water}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-718.621223657\)
\begin{tabular}{lc} 
Zero-point correction= & 0.137131 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.151262 \\
Thermal correction to Enthalpy \(=\) & 0.152207 \\
Thermal correction to Gibbs Free Energy= & 0.093902 \\
Sum of electronic and zero-point Energies= & -718.484092 \\
Sum of electronic and thermal Energies= & -718.469961 \\
Sum of electronic and thermal Enthalpies= & -718.469017 \\
Sum of electronic and thermal Free Energies= & -718.527321
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & \(\mathrm{Cal} /\) Mol-Kelvin \\
TOTAL & 94.919 & 47.542 & 122.712
\end{tabular}

C,0,-0.1722611858,1.4197092141,0.0370345298
C, \(0,0.374590662,0.1732395443,0.2517154254\)
N,0,-0.5205775424,-0.8906600761,0.4063936124
C,0,-1.9002062263,-0.7786256961,0.3534693378
\(\mathrm{N}, 0,-2.3605097042,0.5067019114,0.1424113803\)
C,0,-1.5879994616,1.6742729504,-0.027145796
С,0,-0.0106399507,-2.2442306488,0.6383002045
O,0,-2.6755580031,-1.7348574513,0.4862049679
O, \(0,-2.1726868649,2.7534167959,-0.2109807319\)
С,0,2.3319510696,-0.0543147373,-1.4152006057
O,0,2.9124604963,0.9449182003,-1.1785717927
O,0,1.9797535556,-1.0738289575,-1.8914852075
O,0,2.838345156,-0.1519253281,1.8285077859
H,0,3.4126325975,0.5521005619,1.5027549
H,0,-3.3661163667,0.6120537927,0.101680325
```

H,0,0.477643916,2.2786732214,-0.0983127442
H,0,1.0728848608,-2.1773497969,0.71254486
H,0,-0.4278477781,-2.6567884948,1.562301712
H,0,-0.2883956185,-2.9096535606,-0.1857302999
H,0,2.0156849523,-0.0534184057,1.264687549

```

\section*{\(\mathrm{S}_{\mathrm{E}} 2\) Decarboxylation Transition State - C6 proton transfer from Water - PCM Water}
\(\mathrm{E}(\) RB+HF-LYP \()=-718.707918462\)
\begin{tabular}{lc} 
Zero-point correction= & 0.135166 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.149420 \\
Thermal correction to Enthalpy \(=\) & 0.150364 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.090982 \\
Sum of electronic and zero-point Energies= & -718.572752 \\
Sum of electronic and thermal Energies= & -718.558498 \\
Sum of electronic and thermal Enthalpies \(=\) & -718.557554 \\
Sum of electronic and thermal Free Energies \(=\) & -718.616936
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 93.763 & 47.793 & 124.980
\end{tabular}

C,0,0.3042076649,-1.3669791966,0.2227758937
С,0,-0.3434383952,-0.1491391941,0.2344057669
\(\mathrm{N}, 0,0.4495009298,0.9855744855,0.0708134488\)
C,0,1.8218769391,0.9641225059,-0.1006881888
\(\mathrm{N}, 0,2.3935393392,-0.2894994251,-0.0951414106\)
C, \(0,1.7219098529,-1.5051754941,0.0622133047\)
C,0,-0.1666058932,2.3190229815,0.0863154505
O,0,2.507093191,1.9902933254,-0.2466159691
O, \(0,2.3846070481,-2.567752208,0.0469727743\)
C, \(0,-2.5011313254,-0.4055366356,-1.0098107861\)
O,0,-2.8502085974,-1.4487718711,-0.5812414524
O,0,-2.443413565,0.586147586,-1.6490249289
O,0,-2.4094397429,0.3214548562,2.2801011349
H, \(,-2.8126087881,-0.5391083272,2.4934344575\)
H,0,3.4138793531,-0.3194483614,-0.2190385485
H,0,-0.2681095304,-2.2854923798,0.3330627656
H,0,-1.2359319478,2.1834878698,0.2281831458
H,0,0.2463372783,2.9222525108,0.9002268137
H,0,0.0180499458,2.840457404,-0.8572626382
H,0,-1.7929179229,0.1364625504,1.5188886197

\section*{\(\mathrm{S}_{\mathrm{E}} 2\) Decarboxylation Transition State - C6 proton transfer from Water - Onsager Water}
\begin{tabular}{lc} 
E(RB+HF-LYP) \(=-718.622376500\) & \\
& \\
Zero-point correction= & 0.136930 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.151158 \\
Thermal correction to Enthalpy \(=\) & 0.093281 \\
Thermal correction to Gibbs Free Energy= & -718.485446 \\
Sum of electronic and zero-point Energies= & -718.471218 \\
Sum of electronic and thermal Energies= & -718.470274 \\
Sum of electronic and thermal Enthalpies= & -7103 \\
Sum of electronic and thermal Free Energies= & -718.529096
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 94.853 & 47.782 & 123.800
\end{tabular}

C,0,-0.1673194919,1.4250133798,0.0427722886
C,0,0.3820519424,0.1735481851,0.2301196775
N,0,-0.5086847945,-0.8933734586,0.3722048731
C,0,-1.8885470342,-0.782282278,0.3247346409
N,0,-2.3507568924,0.5078989033,0.1380041997
C,0,-1.5821261572,1.6789501824,-0.0056336515
C,0,0.0043029351,-2.2523130385,0.5724281294
O,0,-2.6657818077,-1.7371174091,0.4468714534
O, \(0,-2.1718099525,2.7643363638,-0.1530799367\)
С, \(0,2.3046145304,-0.1667513534,-1.4116950278\)
O,0,3.0210978811,0.7269161351,-1.1213962828
O,0,1.8272698951,-1.1002421816,-1.95042147
O,0,2.8222781836,0.1540063113,1.9417931521
\(\mathrm{H}, 0,3.4896908488,0.524494846,1.350682553\)
H,0,-3.3565014594,0.6093209249,0.0958776195
H,0,0.4824259964,2.2871069321,-0.0734426764
H,0,1.0803857205,-2.1767308498,0.7151492914
H,0,-0.4635681141,-2.7085838332,1.449513727
H,0,-0.2120633842,-2.881673141,-0.2964972206
H,0,2.013428256,0.1242027881,1.3607615257

\section*{\(\mathrm{S}_{\mathrm{E}} 2\) Decarboxylation Transition State - C6 proton transfer from HF}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-742.652074250\)

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
0.125242 (Hartree/Particle)
0.138266
0.139211

Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
0.083682
-742.526833
-742.513808
-742.512864
-742.568392
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 86.764 & 44.195 & 116.870
\end{tabular}

C,0,-0.0551750959,1.4400430627,-0.0727308064
C,0,0.4644982467,0.1839188514,0.1026111255
N,0,-0.4148192096,-0.8702452886,0.3532681367
C, \(0,-1.7907717724,-0.7259395169,0.4182279287\)
\(\mathrm{N}, 0,-2.241295751,0.571009315,0.2456308753\)
C,0,-1.4687382045,1.7224431906,0.0051676409
C,0,0.091214308,-2.2296649677,0.5697282042
О,0,-2.5707491695,-1.6618226571,0.6231523293
O, \(0,-2.0373269619,2.8144368153,-0.1206091768\)
C,0,2.098878199,-0.1156512992,-1.3515146658
O,0,2.6881283375,0.9201830266,-1.3674066041
O,0,1.8753994869,-1.2200804205,-1.7525647324
F, \(0,2.5574132406,-0.1820161092,1.7545977213\)
H,0,-3.2444923984,0.6945641812,0.2977006297
H,0,0.6075723717,2.2681277043,-0.2960159771
H,0,1.1735266794,-2.1775878526,0.6535418378
H,0,-0.3412874363,-2.6420319807,1.4849438865
H,0,-0.1809759652,-2.8790908723,-0.2674166048
H,0,1.8786946785,-0.0038144227,1.0540625629
\(\mathrm{S}_{\mathrm{E}} 2\) Decarboxylation Transition State - C6 proton transfer from \(\mathrm{HNMe}_{3}{ }^{+}\)
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-817.182224350\)
Zero-point correction= 0.248185 (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.266075\)
Thermal correction to Enthalpy \(=\quad 0.267019\)
Thermal correction to Gibbs Free Energy= 0.201124
Sum of electronic and zero-point Energies \(=\quad-816.934039\)
Sum of electronic and thermal Energies \(=\quad-816.916149\)
Sum of electronic and thermal Enthalpies \(=\quad-816.915205\)
Sum of electronic and thermal Free Energies \(=\quad-816.981100\)
\begin{tabular}{lcl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin
\end{tabular}
\(\begin{array}{llll}\text { TOTAL } & 166.965 & 62.531 & 138.688\end{array}\)
```

C,0,2.0322968353,1.5862692324,0.4502675605
C, $0,0.6779038904,1.141018156,0.7305141887$
C, $0,0.199317588,-0.0806462844,0.3355533704$
N,0,1.0495465757,-0.9382970439,-0.3547330909
C,0,2.3795541265,-0.6350782705,-0.6473799524
$\mathrm{N}, 0,2.7891675278,0.6221378312,-0.2365852579$
C, $0,0.6151798372,-2.2759132363,-0.7680629243$
O,0,3.1249208463,-1.407864945,-1.2416569098
O,0,2.530149055,2.6713982154,0.7434724415
C,0,-1.0309680988,-0.9343825286,1.921933936
O,0,-0.4178869467,-1.9197953001,2.1806155248
O,0,-1.9370840598,-0.1656194203,2.0859337415
N,0,-2.2536516441,0.4955076132,-0.8551814509
H,0,3.7526775301,0.8566281229,-0.4460447698
$\mathrm{H}, 0,0.0566107505,1.8161407321,1.3086982037$
H,0,-0.4481579313,-2.3700132804,-0.5527736187
H,0,0.8082599445,-2.4242413972,-1.8340157503
H,0,1.1556863559,-3.0467124183,-0.212917865
H,0,-1.3613152811,0.1513134931,-0.2607929362
C,0,-2.7025412373,1.796569215,-0.2799518976
C, $0,-1.7606185255,0.6616212655,-2.2508403221$
C,0,-3.3172165184,-0.5420194208,-0.762695902
H,0,-4.1739612052,-0.2440587257,-1.3733605246
H,0,-2.9198060406,-1.4910256163,-1.1273124447
H,0,-3.6115616814,-0.6462082693,0.2812155015
H,0,-2.566540194,1.0387429953,-2.8854507073
H,0,-0.9270416202,1.365290805,-2.2447202816
H,0,-1.4142529734,-0.3031818922,-2.6243124617
Н,0,-3.5467659814,2.178230587,-0.8610892461
H,0,-2.9872246595,1.6340994459,0.758468676
H,0,-1.8702827693, 2.4999794434,-0.3230399042

```

\section*{\(\mathrm{S}_{\mathrm{E}} 2\) Decarboxylation Transition State - C6 proton transfer from HNMe \({ }_{3}{ }^{+}\)- PCM acetone radii=bondi}
\(\mathrm{E}(\) RB + HF-LYP \()=-817.233331890\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.249358 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.266543 \\
Thermal correction to Enthalpy= & 0.267487 \\
Thermal correction to Gibbs Free Energy= & 0.203577 \\
Sum of electronic and zero-point Energies= & -816.983974 \\
Sum of electronic and thermal Energies= & -816.966789
\end{tabular}
\begin{tabular}{lc} 
Sum of electronic and thermal Enthalpies \(=\) & -816.965845 \\
Sum of electronic and thermal Free Energies \(=\) & -817.029755
\end{tabular}


\section*{\(\mathrm{S}_{\mathrm{E}} 2\) Decarboxylation Transition State - C6 proton transfer from \(\mathrm{HNMe}_{3}{ }^{+}\)- Onsager acetone}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-817.198554238\)
\begin{tabular}{lc} 
Thermal correction to Energy \(=\) & 0.267807 \\
Thermal correction to Enthalpy \(=\) & 0.268751 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.201751 \\
Sum of electronic and zero-point Energies= & -816.948851 \\
Sum of electronic and thermal Energies \(=\) & -816.930748 \\
Sum of electronic and thermal Enthalpies \(=\) & -816.929803 \\
Sum of electronic and thermal Free Energies \(=\) & -816.996804
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 168.051 & 62.730 & 141.014
\end{tabular}

C,0,2.1085164959,1.6645668397,0.1132319119
C,0,0.750739869,1.2696327436,0.418517421
C,0,0.2713176483,-0.001246152,0.2040892915
\(\mathrm{N}, 0,1.1307738925,-0.9389840225,-0.3667870561\)
C,0,2.4597052656,-0.6852081318,-0.6734761838
\(\mathrm{N}, 0,2.8626379307,0.61937307,-0.4470692277\)
C,0,0.6901732549,-2.319339842,-0.5969066323
O,0,3.2375658903,-1.5338324566,-1.1160673299
O,0,2.6471387194,2.7604944177,0.307114178
С,0,-0.7647486964,-0.6625938385,2.0700081343
O,0,0.0002777828,-1.5044734413,2.4167953853
O,0,-1.7237878099,0.0382103586,2.1832490921
N,0,-2.5571657982,0.3227576425,-0.7602021914
H,0,3.8262008653,0.8230428574,-0.6790354423
H,0,0.1276465417,2.0156636242,0.9006264482
H,0,-0.374960275,-2.3713375599,-0.3796291246
H,0,0.8803219128,-2.6107225936,-1.6328537269
H,0,1.2227627339,-3.01090264,0.0611024888
H,0,-1.6164303927,0.1188185973,-0.2910652806
C, \(0,-3.0309226198,1.6573676268,-0.271905525\)
C, \(0,-2.3037151275,0.345296724,-2.2343446169\)
C, \(0,-3.5200422532,-0.7629631361,-0.3884107635\)
H,0,-4.4764554648,-0.5771784333,-0.8810310875
H,0,-3.117222533,-1.721296005,-0.7190451741
Н,0,-3.6439004494,-0.7632263307,0.6935200613
H,0,-3.232676904, \(0.5804057696,-2.7570862452\)
H,0,-1.5494888724,1.1031138013,-2.4487954806
H,0,-1.9415740419,-0.6344670808,-2.547752786
Н,0,-3.9814127152,1.8952423788,-0.7536228615
H,0,-3.1497976772,1.6070940933,0.8091081631
Н, \(0,-2.2824345858,2.4074546612,-0.5295794518\)

\section*{\(\mathrm{S}_{\mathrm{E}} 2\) Decarboxylation Transition State - C6 proton transfer from HNMe \({ }_{3}{ }^{+}\)- PCM water}
\begin{tabular}{lc} 
E(RB+HF-LYP) \(=-817.221986351\) & \\
& \\
Zero-point correction \(=\) & 0.247644 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.264848 \\
Thermal correction to Enthalpy \(=\) & 0.265792 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.201840 \\
Sum of electronic and zero-point Energies \(=\) & -816.974342 \\
Sum of electronic and thermal Energies \(=\) & -816.957138 \\
Sum of electronic and thermal Enthalpies= & -816.956194 \\
Sum of electronic and thermal Free Energies \(=\) & -817.020146
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 166.195 & 60.866 & 134.598
\end{tabular}

C,0,2.0554761182,1.6709487055,0.0843478758
C,0,0.7359155357,1.256420532,0.4865913619
C,0,0.2551908921,-0.0150068409,0.2763153556
N,0,1.0986686181,-0.9284894181,-0.3484749685
C,0,2.3877865364,-0.633609145,-0.7617294517
N,0,2.8002292624,0.6608935043,-0.524799317
C,0,0.6521408266,-2.3036303813,-0.6067360496
O,0,3.1257476392,-1.461667738,-1.3133267332
O,0,2.5616147481,2.8005053615,0.2341946349
C,0,-0.8109412167,-0.7113326599,2.2296398467
О,0,-0.0851553368,-1.606352438,2.5080397303
O,0,-1.7086410922,0.0568815054,2.3543810885
\(\mathrm{N}, 0,-2.443406473,0.3008354268,-0.7594468455\)
H,0,3.7560620271,0.8899679632,-0.8307286676
H,0,0.1257487583,1.9992002408,0.9953424793
H,0,-0.3530778931,-2.4103187411,-0.2045319739
Н,0,0.6509662876,-2.5117171665,-1.6807452878
H,0,1.3148057999,-3.0212133127,-0.1163775327
H,0,-1.5183465808,0.0863253889,-0.2417946788
C,0,-2.9085409477,1.6508472141,-0.3160534556
С,0,-2.1202899175,0.2931413989,-2.2190676049
C, \(0,-3.4348927039,-0.7609771822,-0.4120640183\)
H,0,-4.3659057584,-0.5683136595,-0.9504764723
H,0,-3.0334314387,-1.7325093774,-0.7064157476
H,0,-3.610603211,-0.739715181,0.6635469865
H,0,-3.020426263,0.540756986,-2.7862155432
H,0,-1.3409428294,1.0328927146,-2.4088172694
```

H,0,-1.7666403101,-0.7001923964,-2.4998925757
H,0,-3.8311789101,1.8999738697,-0.8457831097
H,0,-3.0815719893,1.6247591257,0.7593598341
H,0,-2.1334959458,2.3816835799,-0.5511954474

```
\(\mathrm{S}_{\mathrm{E}} 2\) Decarboxylation Transition State - C6 proton transfer from \(\mathrm{HNMe}_{3}{ }^{+}\)- Onsager
water
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-817.199968364\)
\begin{tabular}{lc} 
Zero-point correction= & 0.249782 (Hartree/Particle) \\
Thermal correction to Energy= & 0.267916 \\
Thermal correction to Enthalpy \(=\) & 0.268860 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.201757 \\
Sum of electronic and zero-point Energies= & -816.950186 \\
Sum of electronic and thermal Energies= & -816.932052 \\
Sum of electronic and thermal Enthalpies \(=\) & -816.931108 \\
Sum of electronic and thermal Free Energies \(=\) & -816.998211
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}\) & Cal/Mol-Kelvin \\
TOTAL & 168.120 & 62.770 & 141.231
\end{tabular}
C,0,2.1285305273,1.6596474551,0.1262588438
C,0,0.7651423265,1.2724951278,0.412659195
C,0,0.280926436,0.0039094387,0.1917942276
\(\mathrm{N}, 0,1.142872281,-0.9371823138,-0.3710366257\)
C, \(0,2.4763140818,-0.6907715276,-0.6601516841\)
\(\mathrm{N}, 0,2.8833392584,0.6112657258,-0.4272812496\)
C,0,0.6966894363,-2.3146120471,-0.6087926014
O,0,3.2574335318,-1.5428236907,-1.092359033
O,0,2.6745870457,2.7507761668,0.3313527246
C,0,-0.7611492027,-0.655165215,2.0605709307
O,0,0.00727276,-1.4931179211,2.4094694079
O,0,-1.7209661644,0.0442849041,2.1694150567
\(\mathrm{N}, 0,-2.58789127,0.3234154268,-0.7687217753\)
\(\mathrm{H}, 0,3.8507252744,0.8098665504,-0.6466948497\)
H,0,0.1402082011,2.021170244,0.8882823197
H,0,-0.3711001768,-2.3601218177,-0.4038508297
H,0,0.8960532264,-2.6050373782,-1.6432520215
H,0,1.2177153141,-3.0105888641,0.0538511703
H,0,-1.6471235697,0.1236755831,-0.3077760788
C,0,-3.0608192499,1.658837976,-0.2799447061
С,0,-2.3483956938,0.3420941464,-2.2459060776
C,0,-3.5464369287,-0.7634848955,-0.3856476296
```

H,0,-4.5071716534,-0.5794081411,-0.8702351922
H,0,-3.145526725,-1.7218209549,-0.7184847038
H,0,-3.6608218337,-0.7614525361,0.6972779378
H,0,-3.2828772556,0.5747887875,-2.7596323461
H,0,-1.5973300424,1.1003181622,-2.469635106
H,0,-1.9889691086,-0.6384069941,-2.5600157126
H,0,-4.0165838134,1.8918351299,-0.7532624961
H,0,-3.1695939087,1.6116948242,0.8022737224
H,0,-2.3172735965,2.4103371084,-0.547636498

```

\section*{\(\mathrm{S}_{\mathrm{E}} 2\) Decarboxylation Transition State - C6 proton transfer from MeOH}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-757.921422618\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.165565 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.181256 \\
Thermal correction to Enthalpy \(=\) & 0.182200 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.119126 \\
Sum of electronic and zero-point Energies \(=\) & -757.755857 \\
Sum of electronic and thermal Energies \(=\) & -757.740167 \\
Sum of electronic and thermal Enthalpies \(=\) & -757.739223 \\
Sum of electronic and thermal Free Energies= \(=\) & -757.802297
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 113.740 & 51.246 & 132.751
\end{tabular}

C,0,0.1327831872,0.074857003,-0.015983311
\(\mathrm{N}, 0,-0.7622611575,-0.9782810245,0.2013158058\)
C,0,-2.140574631,-0.8477817023,0.2431432827
\(\mathrm{N}, 0,-2.598195302,0.4417419412,0.0520639713\)
C, \(0,-1.8245535534,1.5986123696,-0.1744367681\)
C, \(0,-0.4104937358,1.326721224,-0.2029759471\)
С,0,-0.2549058586,-2.3355323722,0.4195030488
O,0,-2.9168806232,-1.7922655648,0.438090386
O,0,-2.4062598342,2.6843856511,-0.3236682932
С, \(0,2.0829958748,-0.1761925946,-1.6357993126\)
O, \(0,1.8594507258,-1.2791105022,-1.9951311417\)
O,0,2.5507507963,0.9020194663,-1.5331753262
H,0,-3.6028363654,0.5598045571,0.0798685256
H,0,0.2406915025,2.1738965809,-0.3932635931
H,0,0.8298140923,-2.295723252,0.3529063491
H,0,-0.5588104959,-2.7045300638,1.4044571932
\(\mathrm{H}, 0,-0.6513474605,-3.0202472071,-0.3367235753\)
H,0,1.7463759155,-0.1728441921,0.9904058487
```

O,0,2.5074347174,-0.3060176377,1.6282872767
C,0,2.9805017714,0.9632316582,2.0275282037
H,0,3.7982463274,0.8089428471,2.7424154776
$\mathrm{H}, 0,3.3692654941,1.5482968001,1.1796590332$
H,0,2.2013116226,1.5625926975,2.5255179102

```

\section*{\(\mathrm{S}_{\mathrm{E}} 2\) Decarboxylation Transition State - C6 proton transfer from vinyl alcohol}
\(\mathrm{E}(\) RB+HF-LYP \()=-796.020472683\)
\begin{tabular}{lc} 
Zero-point correction= & 0.170526 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.186592 \\
Thermal correction to Enthalpy \(=\) & 0.187537 \\
Thermal correction to Gibbs Free Energy= & 0.123130 \\
Sum of electronic and zero-point Energies \(=\) & -795.849946 \\
Sum of electronic and thermal Energies \(=\) & -795.833880 \\
Sum of electronic and thermal Enthalpies \(=\) & -795.832936 \\
Sum of electronic and thermal Free Energies= \(=\) & -795.897343
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 117.089 & 53.987 & 135.556
\end{tabular}

C,0,-0.5269604957,1.2706205333,-0.4791230553
C,0,-0.0110375334,0.008706808,-0.3068338196
N,0,-0.8986661944,-1.013110305,0.0383386651
C,0,-2.260309061,-0.8348554105,0.2254625914
\(\mathrm{N}, 0,-2.6989414179,0.4630420887,0.0395626824\)
C,0,-1.9239850602,1.5873765133,-0.3058723235
C,0,-0.406347948,-2.3759574269,0.2601735448
O,0,-3.0353369752,-1.7456216807,0.5378540187
O, \(,,-2.4818429082,2.6863406849,-0.4275796713\)
C,0,1.657283603,-0.3351365585,-1.9632939797
O,0,2.1714061579,0.731669701,-2.002932585
O,0,1.4262545775,-1.4584332258,-2.2735705192
O,0,2.3166221502,-0.3254783035,1.2672384107
C,0,2.5368563087,0.8215103294,1.9352216427
H,0,-3.6906575145,0.6134099871,0.1746895322
H,0,0.1253720908,2.0833338161,-0.7800951208
H,0,0.6528249759,-2.3907080949,0.0162966494
H,0,-0.5582829835,-2.6726080735,1.302984641
H,0,-0.9443453217,-3.0821831078,-0.3781909321
H,0,1.5605105142,-0.2037601578,0.6014698425
C,0,3.476018592,0.9689219284,2.8849212773
H,0,1.8878304075,1.6531585525,1.6553093599
```

H,0,3.5961851399,1.9259379858,3.3797010423
H,0,4.1278815271,0.1489589002,3.1705130526

```

\section*{\(\mathrm{S}_{\mathrm{E}} 2\) Decarboxylation Transition State - C6 proton transfer from \(\mathbf{C F H} \mathbf{2} \mathbf{O H}\)} \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-857.179632357\)
\begin{tabular}{lc} 
Zero-point correction= & 0.158981 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.174799 \\
Thermal correction to Enthalpy \(=\) & 0.175744 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.112140 \\
Sum of electronic and zero-point Energies \(=\) & -857.020652 \\
Sum of electronic and thermal Energies= & -857.004833 \\
Sum of electronic and thermal Enthalpies \(=\) & -857.003889 \\
Sum of electronic and thermal Free Energies \(=\) & -857.067492
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & \(\mathrm{Cal} /\) Mol-Kelvin \\
TOTAL & 109.688 & 52.573 & 133.864
\end{tabular}

C,0,-0.864530736,-1.3723709178,-0.1906140975
C,0,-0.1842075623,-0.1900872283,-0.0169759204
\(\mathrm{N}, 0,-0.9352071977,0.9878804708,0.0057118904\)
C,0,-2.312969294,1.041085973,-0.1299436825
\(\mathrm{N}, 0,-2.9181893459,-0.1884433142,-0.3126788704\)
C,0,-2.2941694518,-1.4502616179,-0.3621600641
C,0,-0.2715144667,2.2819246683,0.1875511415
O,0,-2.9670559357,2.0900497808,-0.1000786966
O, \(0,-2.9935741215,-2.4588455506,-0.5336947003\)
C,0,1.4159384515,-0.5582286188,1.748630714
O,0,1.9207274597,-1.5750412157,1.4097878795
O,0,1.1530410322,0.3796607271,2.422090676
O, \(0,2.083658763,0.2559722933,-1.6636516658\)
C,0,3.2705155309,-0.3348565944,-1.3803806787
H,0,-3.9247629482,-0.1699058831,-0.4161922249
H,0,-0.3222394562,-2.3120791969,-0.1952435441
H,0,0.8007969827,2.1036647357,0.2189635274
Н,, ,-0.5181047364, \(2.9536592836,-0.6399643059\)
H,0,-0.5962860898,2.7530383551,1.1202483667
H,0,1.3893826801,0.0652505945,-0.9473163749
F,0,4.1117285162,0.5239860651,-0.5903922139
H,0,3.1755474413,-1.2488520569,-0.7853124914
Н, \(0,3.8351328758,-0.4943127784,-2.3051565835\)


\section*{\(\mathrm{S}_{\mathrm{E}} 2\) Decarboxylation Transition State - C 6 proton transfer from MeOH and \(\mathrm{CO}_{2}\) H -bonded to a MeOH}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-873.665890807\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.218108 (Hartree/Particle) \\
Thermal correction to Energy= & 0.238910 \\
Thermal correction to Enthalpy \(=\) & 0.239854 \\
Thermal correction to Gibbs Free Energy= & 0.161746 \\
Sum of electronic and zero-point Energies= & -873.447782
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Sum of electronic and thermal Energies=} & -873.426981 \\
\hline \multicolumn{2}{|l|}{Sum of electronic and thermal Enthalpies=} & -873.426037 \\
\hline \multicolumn{2}{|l|}{Sum of electronic and thermal Free Energies=} & -873.504144 \\
\hline E (Thermal) & CV & S \\
\hline \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
\hline Total 149.918 & 65.3 & 16 \\
\hline \multicolumn{3}{|l|}{C,0,-1.0894252324,1.1743091252,-0.2035971125} \\
\hline \multicolumn{3}{|l|}{C,0,-0.5120300702,-0.0029975257,0.2170381404} \\
\hline \multicolumn{3}{|l|}{N,0,-1.2632345984,-0.8011979861,1.0880394521} \\
\hline \multicolumn{3}{|l|}{C,0,-2.5365511065,-0.4953223826,1.5412563834} \\
\hline \multicolumn{3}{|l|}{N,0,-3.0330962899,0.7080861652,1.078674793} \\
\hline \multicolumn{3}{|l|}{C,0,-2.3983684022,1.6168846752,0.207253551} \\
\hline \multicolumn{3}{|l|}{C,0,-0.7158450706,-2.0727106839,1.568715528} \\
\hline \multicolumn{3}{|l|}{O,0,-3.1897151195,-1.220880497,2.3016984526} \\
\hline \multicolumn{3}{|l|}{O,0,-2.9958014677,2.6559988053,-0.1094643882} \\
\hline \multicolumn{3}{|l|}{C,0,0.513528082,-1.1340623662,-1.8820169993} \\
\hline \multicolumn{3}{|l|}{O,0,1.0531424077,-0.1984636131,-2.3571677891} \\
\hline \multicolumn{3}{|l|}{O,0,0.0632473813,-2.2026212921,-1.6809629923} \\
\hline \multicolumn{3}{|l|}{O,0,2.2931793784,-0.1156707918,0.8379332764} \\
\hline \multicolumn{3}{|l|}{C,0,2.4013930127,0.7301569863,1.9623714923} \\
\hline \multicolumn{3}{|l|}{H,0,-3.961830295,0.9519149319,1.3984784045} \\
\hline \multicolumn{3}{|l|}{H,0,-0.5536602776, \(1.8238857901,-0.8885644202\)} \\
\hline \multicolumn{3}{|l|}{H,0,0.314411586,-2.1377287662,1.2244071033} \\
\hline \multicolumn{3}{|l|}{H,0,-0.7554426237,-2.1149398033,2.6614244079} \\
\hline \multicolumn{3}{|l|}{H,0,-1.2923931329,-2.9169860744,1.1765174785} \\
\hline \multicolumn{3}{|l|}{H,0,1.3361113623,-0.1028294722,0.517753902} \\
\hline \multicolumn{3}{|l|}{H,0,3.4513836287, \(0.7429477158,2.2793725445\)} \\
\hline \multicolumn{3}{|l|}{H,0,2.0974673123,1.7651997831,1.7399177814} \\
\hline \multicolumn{3}{|l|}{H,0,1.7963487988,0.3780494724,2.8143369576} \\
\hline \multicolumn{3}{|l|}{H,0,3.0373449701, \(0.2341283679,-2.8012362212\)} \\
\hline \multicolumn{3}{|l|}{O,0,3.9907102514,0.3643789207,-2.9110740367} \\
\hline \multicolumn{3}{|l|}{C,0,4.4952661392,0.9346539786,-1.7040885906} \\
\hline \multicolumn{3}{|l|}{H,0,5.5765278321,0.7601917262,-1.6919800727} \\
\hline \multicolumn{3}{|l|}{H,0,4.3213015973,2.0213532985,-1.6700196203} \\
\hline \multicolumn{3}{|l|}{H,0,4.0408386936, \(0.479192681,-0.8167025\)} \\
\hline
\end{tabular}

\section*{\(\mathrm{S}_{\mathrm{E}} \mathbf{2}\) Decarboxylation Transition State - Orientation A in a Cluster of 8 Waters}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-1253.78977686\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.316804 (Hartree/Particle) \\
Thermal correction to Energy= & 0.348676 \\
Thermal correction to Enthalpy= & 0.349620
\end{tabular}

Thermal correction to Gibbs Free Energy= 0.249966
Sum of electronic and zero-point Energies \(=\quad-1253.472973\)
Sum of electronic and thermal Energies \(=\quad-1253.441101\)
Sum of electronic and thermal Enthalpies= \(\quad-1253.440157\)
Sum of electronic and thermal Free Energies \(=\quad-1253.539811\)
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 218.797 & 107.230 & 209.738
\end{tabular}

C,0,-2.9327153525,0.8645543406,-0.3678114625
С, \(0,-1.5600333636,0.4907424625,-0.5196029877\)
C, \(0,-1.0832592347,-0.786935886,-0.3287396358\)
\(\mathrm{N}, 0,-2.0377384604,-1.7692622361,-0.0547435911\)
C,0,-3.4046917404,-1.544855442,0.0404404076
\(\mathrm{N}, 0,-3.7823284476,-0.2242780259,-0.1300015235\)
C,0,-1.6150859194,-3.153447561,0.1687876599
O,0,-4.2312912772,-2.4349551923,0.2663458212
O,0,-3.4177175703,2.0151999334,-0.4076386832
C,0,1.154012866,-1.15437634,-1.9281410223
O,0,1.546679198,-2.1842621278,-1.5090934699
O,0,0.9508477181,-0.1590477834,-2.5115353359
O,0,1.0702968778,0.0724854273,1.4306220819
H,0,0.5622130397,0.7917198415,1.8821701124
H,0,-4.768487119,-0.0296994733,-0.0099339201
H,0,-0.862489603,1.2929036748,-0.7253295175
Н,0,-0.5341577319,-3.1825611679,0.0428604565
H,0,-1.8905184938,-3.4855264953,1.1754987324
H,0,-2.0976305572,-3.8258282427,-0.5479081336
H,0,0.4356976522,-0.3514969218,0.7830319304
H,0,2.2124649052,1.2587130453,0.5707029216
O,0,2.7349751429,1.9569070119,0.1219018565
\(\mathrm{H}, 0,3.5601072679,1.5224087475,-0.170707419\)
O,0,-0.1506247316,2.2947083768,2.5276171157
H,0,-0.6208295412,2.7950670181,1.8055620393
H,0,0.5528299534,2.8865274506,2.8211886122
H,0,3.343324398,-2.3329028428,-0.3290534827
O,0,4.1033950223,-2.1122244364,0.2295149822
H,0,3.717699061,-2.0025610226,1.1319738
H,0,5.2658287689,0.2632893233,-1.5180114525
O,0,5.0050935933,0.3602418728,-0.5951551411
H,0,4.7454882706,-0.5431483789,-0.2880569077
O,0,-1.2803439531,3.7064662209,0.4912932634
H,0,-2.0719008243,3.2450900933,0.1367214929
\(\mathrm{H}, 0,-0.5977997225,3.6578745361,-0.2107185518\)
\(\mathrm{O}, 0,0.8733601711,3.2987371854,-1.3806941262\)
\(\mathrm{H}, 0,0.6398085914,2.6541318798,-2.0610345506\)
\(\mathrm{H}, 0,1.6056246946,2.8684649383,-0.8730641262\)
\(\mathrm{H}, 0,2.2770846519,-2.3234747027,3.0356062933\)
\(\mathrm{O}, 0,2.7728249618,-1.6290742222,2.5871727853\)
\(\mathrm{H}, 0,2.0967859367,-0.9797570433,2.249310518\)
\(\mathrm{S}_{\mathrm{E}} \mathbf{2}\) Decarboxylation Transition State - Orientation A in a Cluster of 8 Waters
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-1253.78704952\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.316228 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.348196 \\
Thermal correction to Enthalpy \(=\) & 0.349140 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.249018 \\
Sum of electronic and zero-point Energies \(=\) & -1253.470821 \\
Sum of electronic and thermal Energies= & -1253.438854 \\
Sum of electronic and thermal Enthalpies \(=\) & -1253.437910 \\
Sum of electronic and thermal Free Energies \(=\) & -1253.538032
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
TOTAL & 218.496 & 107.516 & 210.725
\end{tabular}

C, \(0,-3.4201262257,1.0478522288,-0.4833278671\)
С, \(0,-1.9935913436,0.8592409987,-0.5735507531\)
C, \(0,-1.3522474505,-0.3096659474,-0.2388837848\)
N,0,-2.1554627889,-1.3732527149,0.1854323714
C,0,-3.5375283809,-1.3215653062,0.3049431443
N,0,-4.0960834721,-0.1063836721,-0.0404903632
C,0,-1.5457214709,-2.6495312976,0.5649202731
O,0,-4.2252786937,-2.2733707999,0.688903926
O,0,-4.0735136841,2.0677458765,-0.7393443439
C,0,0.5982994472,-0.662101599,-1.9735542507
O,0,0.7994046142,-1.8157223238,-1.8210437969
O,0,0.6163505711, 0.4462187777,-2.3664514391
O,0,1.0382725148,-0.1282573159,1.2843237777
H,0,0.9029564637,0.63808654,1.8877995782
H,0,-5.1025322609,-0.0440302794,0.0485618565
H,0,-1.4211275634,1.7033807563,-0.9437948237
H,0,-0.4842348168,-2.5880942243,0.3355292063
H,0,-1.6932724082,-2.8471210996,1.632574839
H, \(0,-2.0016948998,-3.4721361679,0.0065693676\)
H,0,0.2274892208,-0.1966531459,0.6699265745
\(\mathrm{H}, 0,2.4888162302,0.7389122834,0.5803573695\)
\(\mathrm{O}, 0,3.1899853367,1.3844970814,0.3385968567\)
\(\mathrm{H}, 0,3.9345452468,0.8473356931,-0.003570857\)
\(\mathrm{O}, 0,1.310383647,2.2858402254,2.6488687146\)
\(\mathrm{H}, 0,0.8110937238,2.9455510245,2.1141648935\)
\(\mathrm{H}, 0,2.2161366496,2.3285300072,2.3055852338\)
\(\mathrm{H}, 0,2.6557837633,-2.6013091601,-0.987169293\)
\(\mathrm{O}, 0,3.438933645,-2.711948662,-0.4278382097\)
\(\mathrm{H}, 0,3.079676601,-2.7055062479,0.4919665328\)
\(\mathrm{H}, 0,5.3539731513,-0.4492950792,-1.5741287626\)
\(\mathrm{O}, 0,5.0532118338,-0.4989704453,-0.6597196613\)
\(\mathrm{H}, 0,4.5280499838,-1.3347801141,-0.5872660017\)
\(\mathrm{O}, 0,0.0321378147,3.9832290553,0.8366849387\)
\(\mathrm{H}, 0,-0.8650520923,3.686392974,0.6343320525\)
\(\mathrm{H}, 0,0.5775595655,3.7527200549,0.0458428846\)
\(\mathrm{O}, 0,1.7055212607,3.1151941768,-1.1918329014\)
\(\mathrm{H}, 0,1.2502646236,2.4968025205,-1.7802970786\)
\(\mathrm{H}, 0,2.339301729,2.5452484002,-0.6909174078\)
\(\mathrm{H}, 0,1.6224124419,-3.0101959909,2.4156540588\)
\(\mathrm{O}, 0,2.2514183515,-2.3934276715,2.0249821381\)
\(\mathrm{H}, 0,1.7515533269,-1.5499822965,1.8513651537\)

\section*{Decarboxylative Elimination ground state intermediate - gas phase}
\(\mathrm{E}(\) RB+HF-LYP \()=-817.176100710\)

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
.
0.272198

Sum of electronic and zero-point Energies=
0.211676

Sum of electronic and thermal Energies=
-816.920960
-816.904847
Sum of electronic and thermal Enthalpies=
-816.903903
Sum of electronic and thermal Free Energies=
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 170.214 & 60.422 & 127.380
\end{tabular}

C,0,0.427722849,2.1606196755,0.8287433478
\(\mathrm{N}, 0,1.0607245193,0.9577173806,0.9237744623\)
C,0,0.2880418343,-0.2729123447,0.7724653346
С,0,-0.6479575561,-0.267244237,-0.4196243349
C,0,-1.3369715292,1.0902877662,-0.6085021224
N,0,-0.7988445841,2.1173685887,0.1067592133
\(\mathrm{C}, 0,2.2278999736,0.8896361821,1.8102471471\)
\(\mathrm{C}, 0,-0.6336506622,-0.6860545248,2.0634891599\)
\(\mathrm{O}, 0,-0.5281287215,0.063604788,3.0404217881\)
\(\mathrm{~N}, 0,-0.0565534979,-0.753211708,-1.803670475\)
\(\mathrm{C}, 0,0.8067692752,0.3055114152,-2.4318789089\)
\(\mathrm{O}, 0,-2.3053830798,1.2418486275,-1.3484106224\)
\(\mathrm{O}, 0,0.8442565811,3.241856347,1.2167197578\)
\(\mathrm{O}, 0,-1.2728041812,-1.7360392442,1.8305379441\)
\(\mathrm{C}, 0,0.7606217666,-1.9994451446,-1.5894616525\)
\(\mathrm{C}, 0,-1.1915290428,-1.1110435534,-2.7378739691\)
\(\mathrm{H}, 0,-1.2710610329,3.0132654107,0.0432264171\)
\(\mathrm{H}, 0,2.900545879,0.1045133916,1.4502500688\)
\(H, 0,2.7410911702,1.8500545383,1.78759764\)
\(H, 0,1.9071236916,0.6653379655,2.832023743\)
\(H, 0,-1.4105887734,-1.0189550591,-0.1908057122\)
\(H, 0,1.001051613,-1.095345063,0.7234477995\)
\(\mathrm{H}, 0,1.2857207734,-0.1118692875,-3.319475706\)
\(H, 0,0.180966663,1.1515329894,-2.7152611767\)
\(H, 0,1.5553424841,0.6199264477,-1.7039930183\)
\(H, 0,-0.7634159889,-1.399293681,-3.6997615898\)
\(H, 0,-1.7385944908,-1.9483926705,-2.3029440063\)
\(H, 0,-1.8539634969,-0.2537562591,-2.8335902124\)
\(H, 0,0.9521362068,-2.4492013944,-2.5647817572\)
\(H, 0,1.7054541784,-1.7437991017,-1.1146418336\)
\(H, 0,0.1976121425,-2.6864563596,-0.955931201\)

Decarboxylative Elimination ground state intermediate - PCM acetone
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-817.234185797\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.254313 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.270341 \\
Thermal correction to Enthalpy \(=\) & 0.271285 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.210926 \\
Sum of electronic and zero-point Energies \(=\) & -816.979873 \\
Sum of electronic and thermal Energies= & -816.963845 \\
Sum of electronic and thermal Enthalpies \(=\) & -816.962901 \\
Sum of electronic and thermal Free Energies \(=\) & -817.023260
\end{tabular}
\begin{tabular}{lccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 169.642 & 60.132 & 127.037
\end{tabular}

C,0,-0.0986534432,-0.4080417146,1.9768795999
\(\mathrm{N}, 0,0.9028140771,0.1689734706,1.2602761719\)
```

C,0,1.0224642092,-0.1456260392,-0.160763272
C,0,-0.3070421579,0.0144165842,-0.9008321885
C,0,-1.436904494,-0.6776226344,-0.117508035
N,0,-1.1923411958,-0.8707254725,1.2104274834
C,0,2.1222922117,0.5605186951,1.9722581186
C,0,1.5609901032,-1.6246935921,-0.4454361187
O,0,1.8328601753,-2.3237901043,0.5536978604
N,0,-0.7320457082,1.4640181419,-1.2869688166
C,0,-1.2509611433,2.2535828449,-0.1091911898
O,0,-2.4772528532,-1.0424911423,-0.6552915865
O,0,-0.1450420209,-0.4984329029,3.2025998699
O,0,1.6667825129,-1.8940545179,-1.6685424967
C,0,0.4383600736,2.2030454233,-1.8900510886
C,0,-1.8175302008,1.3975671149,-2.3435773307
H,0,-1.9322066801,-1.3412782086,1.7546975197
H,0,2.5913148146,1.3921345579,1.4398460143
H,0,1.8578605444,0.8798117403,2.9793716237
H,0,2.8226454877,-0.279487849,2.0293770008
H,0,-0.204940072,-0.5020631849,-1.8572626285
H,0,1.7908257598,0.5045883649,-0.5834003668
H,0,-1.4479850452,3.2721906978,-0.4471506974
H,0,-2.1779761679,1.8023527609,0.2466468843
H,0,-0.49880341,2.257510323,0.6778636981
H,0,-2.115888466,2.4200606288,-2.5794099264
H,0,-1.4081757022,0.90950974,-3.2296138069
H,0,-2.6583006634,0.8261274946,-1.9579727091
H,0,0.056233422,3.119621462,-2.3417663028
H,0,1.1579895743,2.4579879016,-1.1137442763
H,0,0.9015429294,1.5763398387,-2.6540060446

```

\section*{Decarboxylative Elimination ground state intermediate - PCM water}
\(\mathrm{E}(\) RB+HF-LYP \()=-817.240283428\)
\begin{tabular}{lc} 
Zero-point correction= & 0.253947 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.269997 \\
Thermal correction to Enthalpy \(=\) & 0.270941 \\
Thermal correction to Gibbs Free Energy= & 0.210843 \\
Sum of electronic and zero-point Energies= & -816.986336 \\
Sum of electronic and thermal Energies= & -816.970286 \\
Sum of electronic and thermal Enthalpies \(=\) & -816.969342 \\
Sum of electronic and thermal Free Energies \(=\) & -817.029441
\end{tabular}

E (Thermal) CV S
\(\mathrm{KCal} / \mathrm{Mol} \quad \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin} \mathrm{Cal} / \mathrm{Mol-Kelvin}\)
\(\begin{array}{llll}\text { Total } & 169.426 & 60.200 & 126.488\end{array}\)
C, \(0,-0.1509053686,-0.4090266187,1.9620994868\)
\(\mathrm{~N}, 0,0.8684986884,0.1705357877,1.2759530022\)
\(\mathrm{C}, 0,1.0306549875,-0.1270706592,-0.1455130757\)
\(\mathrm{C}, 0,-0.2831346974,0.0202999332,-0.9176819226\)
\(\mathrm{C}, 0,-1.4093256732,-0.721541398,-0.174734619\)
\(\mathrm{~N}, 0,-1.227181176,-0.8660084439,1.1700629631\)
\(\mathrm{C}, 0,2.061826971,0.5747521005,2.02460897\)
\(\mathrm{C}, 0,1.5943117796,-1.5947805264,-0.4234459068\)
\(\mathrm{O}, 0,1.7649115252,-2.3311497167,0.5732673057\)
\(\mathrm{~N}, 0,-0.7249011999,1.4719178824,-1.2751745809\)
\(\mathrm{C}, 0,-1.1545554307,2.2764925218,-0.071608753\)
\(\mathrm{O}, 0,-2.3940578993,-1.1643630177,-0.7563299496\)
\(\mathrm{O}, 0,-0.2227248966,-0.5117564818,3.187294834\)
\(\mathrm{O}, 0,1.8179720656,-1.8303280421,-1.6378544216\)
\(\mathrm{C}, 0,0.4102746226,2.1916714302,-1.9638005901\)
\(\mathrm{C}, 0,-1.8812639292,1.4175670678,-2.2546576322\)
\(\mathrm{H}, 0,-1.969631486,-1.3626081106,1.6894860417\)
\(\mathrm{H}, 0,2.5734516444,1.3643995234,1.4687999515\)
\(\mathrm{H}, 0,1.7588807022,0.9568275072,2.9987898677\)
\(\mathrm{H}, 0,2.7404272393,-0.2740080002,2.1624356001\)
\(\mathrm{H}, 0,-0.1562925757,-0.4682226747,-1.8891902287\)
\(\mathrm{H}, 0,1.8007272105,0.5401642377,-0.5421743189\)
\(\mathrm{H}, 0,-1.4336808285,3.2730147867,-0.4177289272\)
\(\mathrm{H}, 0,-2.0169999017,1.7966984886,0.3929335821\)
\(\mathrm{H}, 0,-0.3271274803,2.34100168,0.6324149188\)
\(\mathrm{H}, 0,-2.1321345207,2.4433223233,-2.5282239268\)
\(H, 0,-1.5642915892,0.8563287635,-3.1347686663\)
\(H, 0,-2.7301261706,0.9268701084,-1.7855546901\)
\(\mathrm{H}, 0,0.0209732373,3.1341009245,-2.3514021408\)
H,0,1.2075688631,2.3962369081,-1.2509705201
\(\mathrm{H}, 0,0.7772355409,1.571351909,-2.7833541257\)
Decarboxylative Elimination transition state - gas phase
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-817.170764947\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.251829 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.268313 \\
Thermal correction to Enthalpy \(=\) & 0.269257 \\
Thermal correction to Gibbs Free Energy= & 0.208197 \\
Sum of electronic and zero-point Energies \(=\) & -816.918936 \\
Sum of electronic and thermal Energies= & -816.902452 \\
Sum of electronic and thermal Enthalpies= & -816.901508
\end{tabular}

Sum of electronic and thermal Free Energies \(=\quad-816.962568\)
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol}-\) Kelvin & \(\mathrm{Cal} /\) Mol-Kelvin \\
TOTAL & 168.369 & 60.913 & 128.511
\end{tabular}
\[
\begin{aligned}
& \mathrm{C}, 0,-1.4521590169,-0.5413216877,0.0321757756 \\
& \mathrm{~N}, 0,-1.1265752587,-0.7861167944,1.3402221819 \\
& \mathrm{C}, 0,0.0974496372,-0.545429444,2.0125462483 \\
& \mathrm{~N}, 0,1.0900482316,-0.0552213543,1.2119524974 \\
& \mathrm{C}, 0,0.9903790225,-0.1717385016,-0.2198998042 \\
& \mathrm{C}, 0,-0.321572405,0.0118371946,-0.7991458382 \\
& \mathrm{O}, 0,0.164024749,-0.7229978123,3.2218028449 \\
& \mathrm{C}, 0,2.4354361812,0.0310500106,1.7840255647 \\
& \mathrm{C}, 0,1.4373661154,-1.8637919518,-0.8374051684 \\
& \mathrm{O}, 0,1.4768752389,-1.8268478875,-2.0591037341 \\
& \mathrm{~N}, 0,-0.8460439405,1.7489146792,-1.1359907837 \\
& \mathrm{C}, 0,0.3468472337,2.450635041,-1.6637643634 \\
& \mathrm{O}, 0,-2.5830421546,-0.723996264,-0.4103607339 \\
& \mathrm{O}, 0,1.6312129694,-2.6032686945,0.10907786 \\
& \mathrm{C}, 0,-1.9182003986,1.7122379564,-2.169515207 \\
& \mathrm{C}, 0,-1.3298311988,2.4093423221,0.104314991 \\
& \mathrm{H}, 0,-1.8511554262,-1.1853904319,1.9273519576 \\
& \mathrm{H}, 0,2.96648965339,0.8708846111,1.3259452337 \\
& \mathrm{H}, 0,2.3478208698,0.1935422559,2.8571496572 \\
& \mathrm{H}, 0,2.9846911778,-0.8983044216,1.6008391326 \\
& \mathrm{H}, 0,-0.3618875373,-0.3177665234,-1.8346147156 \\
& \mathrm{H}, 0,1.8068397662,0.3547240976,-0.707578009 \\
& \mathrm{H}, 0,-1.5592364977,3.4602588955,-0.1024042218 \\
& \mathrm{H}, 0,-2.2335765755,1.908777557,0.452644318 \\
& \mathrm{H}, 0,-0.5546829462,2.3463179937,0.869428335 \\
& \mathrm{H}, 0,-2.2461949967,2.7335231041,-2.3920363002 \\
& \mathrm{H}, 0,-1.5208803879,1.254130277,-3.0773130704 \\
& \mathrm{H}, 0,-2.7487044976,1.1118570557,-1.8001490502 \\
& \mathrm{H}, 0,0.0650674378,3.4566156196,-1.9905501162 \\
& \mathrm{H}, 0,1.10428594,2.5255842359,-0.8832565834 \\
& \mathrm{H}, 0,0.7522633483,1.8921695888,-2.510066921
\end{aligned}
\]

\section*{Decarboxylative Elimination transition state - PCM acetone}
\(\mathrm{E}(\) RB+HF-LYP \()=-817.208564907\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.248602 (Hartree/Particle) \\
Thermal correction to Energy= & 0.265765 \\
Thermal correction to Enthalpy= & 0.266709
\end{tabular}

Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
0.203577
-816.959963
-816.942800
-816.941855
-817.004988
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 166.770 & 62.076 & 132.874
\end{tabular}

C,0,-1.3978459758,-0.5931937967,-0.0311825256
N,0,-1.1183567429,-0.7200736406,1.3073514846
C,0,0.096964417,-0.4698808576,1.9626575717
\(\mathrm{N}, 0,1.1191574904,-0.0579260969,1.1577668928\)
C,0,1.0241017195,-0.1797635478,-0.2587727689
C,0,-0.2630678759,-0.0741761329,-0.8487878962
O,0,0.1745171859,-0.5959219821,3.1871155274
C,0,2.4482698902,0.0877238651,1.7566405394
С,0,1.4376800268,-2.0438021348,-0.7701934831
O,0,1.7277838496,-2.0655587663,-1.9492955225
N,0,-0.9010456802,1.8606340734,-1.1263256507
C,0,0.2923866484,2.5734391109,-1.615548827
O, \(0,-2.5032249368,-0.8655938763,-0.498268295\)
O,0,1.3602029211,-2.7256769459,0.2292795576
С,0,-1.9639729092,1.8371878253,-2.1541888297
С,0,-1.3940760568,2.4553486987,0.1340860917
H,0,-1.8757127222,-1.0701610343,1.9133001026
H,0,3.0320774328,0.7845634298,1.1516840312
H,0,2.3424590212,0.4828341736,2.7659121691
H,0,2.963207037,-0.8787107924,1.8005185062
H,0,-0.3321936392,-0.2814658806,-1.9115751836
\(\mathrm{H}, 0,1.871023584,0.2621094765,-0.780379686\)
H,0,-1.6879778217,3.4996474714,-0.0336286418
H,0,-2.264252433, 1.9007134812,0.4904024377
\(\mathrm{H}, 0,-0.6049712773,2.426162381,0.8876372904\)
H,0,-2.2923393872,2.8606759546,-2.3769029441
H,0,-1.5760496665, 1.3816625218,-3.0687485186
H,0,-2.8079893454,1.2502060477,-1.7910025207
H,0,0.0363615296,3.611153205,-1.8629151723
H,0,1.0642172934,2.5781227906,-0.8434841013
H,0,0.6769834597,2.0787608067,-2.5112762279
Decarboxylative Elimination transition state - PCM water
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-817.212913209\)
\begin{tabular}{lc} 
Zero-point correction= & 0.248327 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.265431 \\
Thermal correction to Enthalpy \(=\) & 0.266375 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.203884 \\
Sum of electronic and zero-point Energies= & -816.964586 \\
Sum of electronic and thermal Energies= & -816.947483 \\
Sum of electronic and thermal Enthalpies \(=\) & -816.946538 \\
Sum of electronic and thermal Free Energies= & -817.009029
\end{tabular}
\begin{tabular}{lcl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 166.560 & 62.082
\end{tabular}

\section*{H,0,0.7171068411,2.0969658169,-2.4490478609}

\section*{3-carboxybenzisoxazole - PCM acetone 6-31+G*}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-587.840581254\)
\begin{tabular}{lc} 
Zero-point correction= & 0.106190 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.114773 \\
Thermal correction to Enthalpy \(=\) & 0.115717 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.071638 \\
Sum of electronic and zero-point Energies= & -587.734392 \\
Sum of electronic and thermal Energies= & -587.725808 \\
Sum of electronic and thermal Enthalpies \(=\) & -587.724864 \\
Sum of electronic and thermal Free Energies \(=\) & -587.768943
\end{tabular}

\begin{tabular}{lc} 
Sum of electronic and thermal Enthalpies \(=\) & -587.729467 \\
Sum of electronic and thermal Free Energies \(=\) & -587.773994
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 71.917 & 33.071 & 93.714
\end{tabular}

C,0,3.0405817743,-0.5046057663,0.0647554465
C, \(0,2.5219816949,0.7867643046,-0.0252887038\)
C,0,1.1291712932,0.8849569972,-0.0450038208
C,0,0.2795255531,-0.2257143311,0.0190353167
C,0,0.8178229163,-1.5208251986,0.1095003752
C,0,2.2039789785,-1.643555938,0.1311030926
O,0,0.3945442981,2.0259791825,-0.1272568069
C,0,-1.0405074029,0.3532985963,-0.0210166329
N,0,-0.9890076237,1.6570636844,-0.1038173143
C, \(0,-2.3837156308,-0.3744489479,-0.0023104122\)
О,0,-3.1222166982,-0.1761141573,0.9963446388
O,0,-2.5976599833,-1.1165182257,-0.996962902
H,0,4.1217324902,-0.6396632216,0.084298284
H,0,3.1614663971, 1.6664116748,-0.0758864166
H,0,0.1722802455,-2.3966737371,0.1574561721
H,0,2.6571982408,-2.6315131995,0.1992057544
Transition State for decarboxylation of 3-carboxybenzisoxazole - PCM acetone 631+G*
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-587.806833813\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.101501 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.110950 \\
Thermal correction to Enthalpy \(=\) & 0.111894 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.065769 \\
Sum of electronic and zero-point Energies= & -587.705333 \\
Sum of electronic and thermal Energies= & -587.695884 \\
Sum of electronic and thermal Enthalpies \(=\) & -587.694940 \\
Sum of electronic and thermal Free Energies \(=\) & -587.741065
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 69.622 & 34.919 & 97.078
\end{tabular}

C,0,-2.9510897967,-0.7954887536,0.1574871304
C,0,-2.6435555513,0.5524384556,0.011702594
С,0,-1.2851839476,0.9747627607,-0.0666069086

C, \(0,-0.2868187413,-0.0640021245,0.014130758\)
С,0,-0.6135679601,-1.4183823976,0.1609576837
C,0,-1.9526790355,-1.789424583,0.2333561015
O,0,-0.8979782575,2.1988386065,-0.2020358048
C, \(0,0.9991988284,0.5776107632,-0.0843216001\)
N,0,1.1975694897,1.7747036424,-0.2115477506
C,0,2.5396024609,-0.4476260648,-0.0199668684
O,0,2.8110219787,-0.788789815,-1.1511061406
O,0,2.8700205388,-0.556235688,1.1413341758
H,0,-3.9995670747,-1.0901316504,0.2146781895
H,0,-3.4295258057,1.3036241791,-0.0448641045
H,0,0.1732007703,-2.1699886459,0.2176356972
H,0,-2.2270461699,-2.8362625431,0.3474132849
Transition State for decarboxylation of 3-carboxybenzisoxazole - PCM acetone 631+G*
\(\mathrm{E}(\) RB+HF-LYP \()=-587.810757002\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.101414 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.110865 \\
Thermal correction to Enthalpy \(=\) & 0.111810 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.065692 \\
Sum of electronic and zero-point Energies= & -587.709343 \\
Sum of electronic and thermal Energies= & -587.699892 \\
Sum of electronic and thermal Enthalpies \(=\) & -587.698947 \\
Sum of electronic and thermal Free Energies \(=\) & -587.745065
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 69.569 & 34.934 & 97.063
\end{tabular}

C, \(0,-2.9505988251,-0.795418431,0.1573237821\)
C, \(0,-2.6431195982,0.5526624277,0.0111913593\)
C,0,-1.2848456921,0.9740018291,-0.066342382
С,0,-0.286573829,-0.0642680318,0.0143698685
C, \(0,-0.6130330426,-1.4190327621,0.1616005224\)
C,0,-1.9521453384,-1.7894013143,0.2338387941
O,0,-0.896985314,2.1990897595,-0.2015316965
C,0,0.9991948894,0.5773816878,-0.0840249632
\(\mathrm{N}, 0,1.1984509618,1.7745601547,-0.2113247546\)
C, \(0,2.5377794378,-0.4471319753,-0.0204597754\)
O,0,2.8105010078,-0.786656806,-1.1519349573
O,0,2.8680825811,-0.5575527799,1.1408218111
H,0,-3.9992259163,-1.0901319862,0.2142710449
```

Н,0,-3.4295613893,1.3036163929,-0.0457871383
H,0,0.1737444928,-2.1709193477,0.218636717
H,0,-2.2268481306,-2.8362881114,0.3483281647

```

\section*{Epoxidation of Enones with t-Butyl hydroperoxide}

\section*{B3LYP//6-311G+** on all atoms unless otherwise noted}

\section*{Cyclohexenone}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-308.755175957\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.126814 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.132924 \\
Thermal correction to Enthalpy \(=\) & 0.133869 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.096882 \\
Sum of electronic and zero-point Energies \(=\) & -308.628362 \\
Sum of electronic and thermal Energies \(=\) & -308.622252 \\
Sum of electronic and thermal Enthalpies \(=\) & -308.621307 \\
Sum of electronic and thermal Free Energies= \(=\) & -308.658294
\end{tabular}
\begin{tabular}{lccl} 
& E(Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 83.411 & 23.295 & 77.844
\end{tabular}

C, \(0,0.8693989519,-0.5285247445,-0.5189583684\)
C,0,1.0111716363,-0.077893738,0.8830383662
O,0,1.8117936197,-0.986399998,-1.1403422332
C,0,-0.0097670518,0.4571194981,1.5693444565
H,0,1.9866122999,-0.2266515525,1.3339697295
C, \(0,-1.3689915247,0.7047328657,0.9774429879\)
H,0,0.1353363661,0.7278149069,2.6125371985
C,0,-1.32881352,0.7433369607,-0.5553036023
Н,0,-2.0509515842,-0.0867754448,1.3222825972
H,0,-1.7786146896,1.6381723575,1.3771834704
C, \(0,-0.5265470737,-0.4351154727,-1.1209285753\)
H,0,-2.3432079299,0.7439248374,-0.9636713114
Н, \(0,-0.8593890349,1.6811175638,-0.8730144215\)
H,0,-1.0346703945,-1.3811469163,-0.8872433457
H,0,-0.4281724988,-0.3871879845,-2.2071176384
Cyclohexenone - PCM Toluene
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-308.760486621\)
\begin{tabular}{lc} 
Zero-point correction= & 0.126465 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.132576 \\
Thermal correction to Enthalpy \(=\) & 0.133520 \\
Thermal correction to Gibbs Free Energy= \(=\) & 0.096535 \\
Sum of electronic and zero-point Energies= & -308.634021 \\
Sum of electronic and thermal Energies= & -308.627911 \\
Sum of electronic and thermal Enthalpies \(=\) & -308.626967 \\
Sum of electronic and thermal Free Energies \(=\) & -308.663952
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
\hline Total & 83.193 & 23.312 & 77.841 \\
\hline C, \(0,0\). & 70058,-0.52 & 4246,-0.5162922 & 3379 \\
\hline C, \(0,1.0\) & 24862,-0.077 & 1532,0.88127 & \\
\hline O,0,1. & 6629,-0.99 & 22427,-1.1391 & 3009 \\
\hline C, \(0,-0\) & 822939,0.457 & 425925,1.567913 & 399 \\
\hline H,0,1. & 85568,-0.226 & 471742,1.33522488 & 815 \\
\hline C,0,-1 & 053394,0.706 & 95685,0.976720 & \\
\hline H,0,0. & 10663,0.726701 & 1954,2.6127746 & \\
\hline C,0,-1 & 972565,0.744 & 686499,-0.555640 & 804 \\
\hline H,0,-2 & 943714,-0.08 & 154931,1.32380 & 1709 \\
\hline H,0,-1 & 661115,1.639 & 359957,1.3784706 & 144 \\
\hline C, \(0,-0\) & 004588,-0.43 & 041382,-1.12105 & 2678 \\
\hline H,0,-2 & \(337563,0.739\) & \(656977,-0.963782\) & 2522 \\
\hline H,0,-0 & 2668,1.68344 & 413,-0.87493700 & \\
\hline H,0,-1 & 307281,-1.37 & 476143,-0.88814 & 0995 \\
\hline H,0,-0 & 881391,-0.38 & 954067,-2.20771 & 128 \\
\hline
\end{tabular}

\section*{Cyclohexenone-6-31G*}
\(\mathrm{E}(\) RB+HF-LYP \()=-308.701464004\)
\begin{tabular}{lc} 
Zero-point correction= & 0.127949 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.134033 \\
Thermal correction to Enthalpy \(=\) & 0.134977 \\
Thermal correction to Gibbs Free Energy= & 0.098046 \\
Sum of electronic and zero-point Energies= & -308.538183 \\
Sum of electronic and thermal Energies= & -308.532099 \\
Sum of electronic and thermal Enthalpies \(=\) & -308.531155 \\
Sum of electronic and thermal Free Energies \(=\) & -308.568086
\end{tabular}
\begin{tabular}{lcl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin
\end{tabular}
\(\begin{array}{llll}\text { Total } & 84.107 & 23.132 & 77.729\end{array}\)
\[
\begin{aligned}
& \mathrm{C}, 0,0.8708466997,-0.5288422935,-0.5196205762 \\
& \mathrm{C}, 0,1.0124466372,-0.0760027397,0.8829988402 \\
& \mathrm{O}, 0,1.816330977,-0.98870742,-1.1426269112 \\
& \mathrm{C}, 0,-0.0100588159,0.4588958475,1.572071204 \\
& \mathrm{H}, 0,1.9914400115,-0.2230833423,1.3320121427 \\
& \mathrm{C}, 0,-1.3722539208,0.7030131125,0.9789290195 \\
& \mathrm{H}, 0,0.1349273641,0.7340270057,2.6164555651 \\
& \mathrm{C}, 0,-1.3285643516,0.7450560069,-0.5555545179 \\
& \mathrm{H}, 0,-2.0552720062,-0.0927047033,1.3195251711 \\
& \mathrm{H}, 0,-1.7877856292,1.6367312192,1.3792727763 \\
& \mathrm{C}, 0,-0.5290477215,-0.4368434435,-1.1210719416 \\
& \mathrm{H}, 0,-2.3446792725,0.7518687794,-0.9664363125 \\
& \mathrm{H}, 0,-0.8527392544,1.6834186525,-0.8697032776 \\
& \mathrm{H}, 0,-1.0445367031,-1.3814643354,-0.8865215298 \\
& H, 0,-0.4322134881,-0.3907928565,-2.2101014145
\end{aligned}
\]

\section*{Cyclohexenone - 6-31+G** - PCM Dichloroethane}
\(\mathrm{E}(\) RB+HF-LYP \()=-308.701464004\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.126464 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.132570 \\
Thermal correction to Enthalpy \(=\) & 0.133514 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.096559 \\
Sum of electronic and zero-point Energies \(=\) & -308.575000 \\
Sum of electronic and thermal Energies \(=\) & -308.568894 \\
Sum of electronic and thermal Enthalpies \(=\) & -308.567950 \\
Sum of electronic and thermal Free Energies \(=\) & -308.604905
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 83.189 & 23.331 & 77.780
\end{tabular}

С, \(0,0.8636677704,-0.5273862026,-0.5121933653\)
C,0,1.0172569278,-0.0738445916,0.8795792693
O, \(, 0,1.8120635641,-1.0117463208,-1.1386250137\)
C,0,-0.0106786424,0.4640271769,1.56887479
H,0,1.9951351289,-0.221482417,1.3366230651
C,0,-1.3700602963,0.7082240283,0.9774071295
H,0,0.1373911019,0.73490935,2.6160745163
C,0,-1.3315747902,0.7483494988,-0.5565166171
Н,0,-2.0464762114,-0.0905589538,1.3248701252
H,0,-1.7831469249,1.6402934119,1.3826349413
```

C,0,-0.5232632516,-0.4274279256,-1.1238389479
H,0,-2.3479315193,0.7378892127,-0.96507092
H,0,-0.8677405295,1.6908920775,-0.8765341978
H,0,-1.0344005611,-1.3770070801,-0.8970031808
H,0,-0.4214253033,-0.3726169393,-2.2124677904

```
t-Butyl Hydroperoxide - 6-31G*
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-308.844828851\)
Zero-point correction= 0.139541 (Hartree/Particle)
Thermal correction to Energy= 0.147519
Thermal correction to Enthalpy \(=\quad 0.148464\)
Thermal correction to Gibbs Free Energy= 0.108623
Sum of electronic and zero-point Energies \(=\quad-308.662614\)
Sum of electronic and thermal Energies \(=\quad-308.654635\)
Sum of electronic and thermal Enthalpies \(=\quad-308.653691\)
Sum of electronic and thermal Free Energies \(=\quad-308.693531\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 92.570 & 28.888 & 83.851
\end{tabular}
C,0,1.0054098095,-1.4491964527,0.4998789743
C,0,0.3564293,-0.1553038646,-0.0060246468
O,0,-1.0043670839,-0.306092839,0.4710581157
O,0,-1.7769892579,0.8720116109,0.0971905635
C,0,1.0030698891,1.0786874629,0.6315238378
C,0,0.3782940102,-0.0831582328,-1.537132013
H,0,2.065398675,-1.4671591457,0.225613265
H,0,0.9273801776,-1.5172220599,1.5894446744
H,0,0.5186745049,-2.3265737817,0.0616000974
H,0,2.0515090917,1.165730337,0.3244184116
H,0,0.4770576385, 1.9879512293, 0.3287606124
H,0,0.9653967387,1.0054671145,1.7233615003
H,0,1.4083808716,-0.0401380237,-1.9074661385
H, \(,--0.1035445462,-0.9673701836,-1.9702311188\)
H, \(0,-0.1453899668,0.8106576841,-1.8887327165\)
H,0,-2.3732305036,0.4751331774,-0.5622349344

\section*{t-Butyl Hydroperoxide}
\(\mathrm{E}(\) RB+HF-LYP \()=-308.904150268\)

Zero-point correction=
Thermal correction to Energy=
0.137675 (Hartree/Particle) 0.145265
\begin{tabular}{lc} 
Thermal correction to Enthalpy \(=\) & 0.146209 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.106948 \\
Sum of electronic and zero-point Energies \(=\) & -308.766476 \\
Sum of electronic and thermal Energies \(=\) & -308.758885 \\
Sum of electronic and thermal Enthalpies \(=\) & -308.757941 \\
Sum of electronic and thermal Free Energies \(=\) & -308.797202
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}\) & \(\mathrm{Cal} /\) Mol-Kelvin \\
Total & 91.155 & 27.435 & 82.633
\end{tabular}

C,0,1.0673301667,-1.4204285457,0.4496014283
C,0,0.3625529671,-0.147672653,-0.0306071437
C,0,0.9923338789,1.1034814429,0.5895959343
С,0,0.3313388845,-0.0737225798,-1.5603847415
О,0,-0.9740198828,-0.3431212179,0.4873281368
O,0,-1.7859081187,0.8195559211,0.1003228935
\(\mathrm{H}, 0,2.1093783039,-1.4061150696,0.121394685\)
H,0,1.0483244353,-1.4867231257,1.5396104689
H,0,0.5862241124,-2.3097044552,0.0365624242
H,0,2.0282539362,1.2086208697,0.2559334412
H,0,0.4437545934,1.9995676222,0.2970167739
H,0,0.9842595296,1.0331988692,1.679923653
Н,0,1.3485647052,-0.0018768953,-1.9548529282
Н,0,-0.1394956895,-0.968161279,-1.9752504898
Н,0,-0.2302094013,0.7992662739,-1.8951476715
H,0,-2.6209658973,0.550503577,0.5043685357

\section*{t-Butyl Hydroperoxide}
\(\mathrm{E}(\) RB+HF-LYP \()=-308.904150268\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.137675 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.145265 \\
Thermal correction to Enthalpy \(=\) & 0.146209 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.106948 \\
Sum of electronic and zero-point Energies \(=\) & -308.766476 \\
Sum of electronic and thermal Energies= & -308.758885 \\
Sum of electronic and thermal Enthalpies= & -308.757941 \\
Sum of electronic and thermal Free Energies= \(=\) & -308.797202
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 91.155 & 27.435 & 82.633
\end{tabular}
```

C,0,1.0673301667,-1.4204285457,0.4496014283
C,0,0.3625529671,-0.147672653,-0.0306071437
C,0,0.9923338789,1.1034814429,0.5895959343
C,0,0.3313388845,-0.0737225798,-1.5603847415
O,0,-0.9740198828,-0.3431212179,0.4873281368
O,0,-1.7859081187,0.8195559211,0.1003228935
H,0,2.1093783039,-1.4061150696,0.121394685
H,0,1.0483244353,-1.4867231257,1.5396104689
H,0,0.5862241124,-2.3097044552,0.0365624242
H,0,2.0282539362,1.2086208697,0.2559334412
H,0,0.4437545934,1.9995676222,0.2970167739
H,0,0.9842595296,1.0331988692,1.679923653
H,0,1.3485647052,-0.0018768953,-1.9548529282
H,0,-0.1394956895,-0.968161279,-1.9752504898
H,0,-0.2302094013,0.7992662739,-1.8951476715

```

\section*{t-Butyl Hydroperoxide - PCM toluene}
```

$\mathrm{E}($ RB+HF-LYP $)=-308.909960945$

Zero-point correction $=$	0.137769 (Hartree/Particle)
Thermal correction to Energy $=$	0.145767
Thermal correction to Enthalpy $=$	0.146712
Thermal correction to Gibbs Free Energy=	0.106853
Sum of electronic and zero-point Energies=	-308.772192
Sum of electronic and thermal Energies=	-308.764194
Sum of electronic and thermal Enthalpies $=$	-308.763249
Sum of electronic and thermal Free Energies $=$	-308.803108

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	91.470	29.140	83.890

C,0,1.103390433,-1.3839082618,0.47377355
C,0,0.3695171295,-0.1351619865,-0.022440704
С,0,0.9233262875,1.1330912488,0.631088003
С, $0,0.39181307,-0.0462135161,-1.5500158983$
O, $0,-0.9876205776,-0.3917358883,0.4387329394$
O,0,-1.8645469706,0.6898638177,0.0075086439
H,0,2.1542027292,-1.3323324271,0.1786766806
H,0,1.0535702798,-1.4584855089,1.5625853627
H,0,0.6660834362,-2.2860384063,0.0404839483
H,0,1.9680045202,1.2803392878,0.3443138049
H,0,0.3589128571,2.0121258077,0.3145864181
H,0,0.8750015891,1.0562350132,1.7207375596

```
```

H,0,1.4189236208,0.0727444395,-1.9056434082
H,0,-0.0246830185,-0.9551276008,-1.9908624311
H,0,-0.1926988438,0.8073461846,-1.8965882313
H,0,-2.1882583047,1.0113248681,0.8673479253

```
t-Butyl peroxide anion
\(\mathrm{E}(\) RB+HF-LYP \()=-308.305631528\)
Zero-point correction \(=\quad 0.123958\) (Hartree/Particle)
Thermal correction to Energy= 0.131586
Thermal correction to Enthalpy= 0.132531
Thermal correction to Gibbs Free Energy= 0.093337
Sum of electronic and zero-point Energies \(=\quad-308.181673\)
Sum of electronic and thermal Energies \(=\quad-308.174045\)
Sum of electronic and thermal Enthalpies \(=\quad-308.173101\)
Sum of electronic and thermal Free Energies= \(\quad-308.212294\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 82.572 & 27.692 & 82.489
\end{tabular}
C,0,1.0323040568,-1.4241769411,0.4624225651
С, \(0,0.2918662253,-0.1608125962,-0.0016803189\)
С,0,0.2850507605,-0.0728728639,-1.5412445861
О,0,-1.0266103897,-0.3076430315,0.4840705838
O,0,-1.846390413,0.8710380135,0.0907282801
C, \(0,0.943675238,1.1001102527,0.6010273734\)
H,0,2.0789909131,-1.4140492936,0.13508191
H,0,1.0073105376,-1.4935884235,1.5547071449
H,0,0.5457715252,-2.3155708317,0.0534833682
H,0,1.9393181836,1.2928739898,0.1806213967
H,0,0.2730430494,1.9376876899,0.3975734761
H,0,1.034081283,0.9898107825,1.6874351741
H,0,1.2845556599,0.1267683588,-1.9490892363
H,0,-0.0892641116,-1.0108204097,-1.96640797
H,0,-0.407178303,0.7262411707,-1.8149463793
t-Butyl peroxide anion - PCM toluene
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-308.365046091\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.124629 (Hartree/Particle) \\
Thermal correction to Energy= & 0.132203 \\
Thermal correction to Enthalpy= & 0.133147 \\
Thermal correction to Gibbs Free Energy= & 0.094048
\end{tabular}
\begin{tabular}{lc} 
Sum of electronic and zero-point Energies \(=\) & -308.240418 \\
Sum of electronic and thermal Energies \(=\) & -308.232843 \\
Sum of electronic and thermal Enthalpies \(=\) & -308.231899 \\
Sum of electronic and thermal Free Energies \(=\) & -308.270999
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
\hline Total & 82.959 & 27.514 & 82.292 \\
\hline \multicolumn{4}{|l|}{C,0,-0.2644007915,0.4365575728,-1.064975646} \\
\hline \multicolumn{4}{|l|}{C,0,0.5299643642,0.3205574013,0.2430606659} \\
\hline \multicolumn{4}{|l|}{C,0,-0.0622460144,-0.7852984864,1.1333464841} \\
\hline \multicolumn{4}{|l|}{O,0,1.8476776022,-0.0222543319,-0.1685304122} \\
\hline \multicolumn{4}{|l|}{O,0,2.7465898421,-0.1721867383,1.0040445463} \\
\hline \multicolumn{4}{|l|}{C,0,0.5307279759,1.665028841,0.9905202056} \\
\hline \multicolumn{4}{|l|}{H,0,-1.3085524889,0.7012701387,-0.8668496683} \\
\hline \multicolumn{4}{|l|}{H,0,0.173439972,1.2061656386,-1.7077977344} \\
\hline \multicolumn{4}{|l|}{H,0,-0.2434176007,-0.5135446503,-1.6072566084} \\
\hline \multicolumn{4}{|l|}{H, \(0,-0.4718343855,1.9295393324,1.3461924527\)} \\
\hline \multicolumn{4}{|l|}{H,0,1.2156200179,1.5887973518,1.8365050555} \\
\hline \multicolumn{4}{|l|}{H,0,0.8897888732,2.461564203,0.3306609439} \\
\hline \multicolumn{4}{|l|}{H,0,-1.0651969702,-0.5227046613,1.4893705471} \\
\hline \multicolumn{4}{|l|}{H,0,-0.1237950877,-1.7248836722,0.5745968213} \\
\hline \multicolumn{4}{|l|}{H,0,0.6044752269,-0.9375034283,1.9835638114} \\
\hline
\end{tabular}
\(\mathrm{HNMe}_{3}\) cation
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-174.901199608\)
Zero-point correction= 0.135581 (Hartree/Particle)
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy= 0.107969
Sum of electronic and zero-point Energies \(=\quad-174.765618\)
Sum of electronic and thermal Energies \(=\quad-174.760012\)
Sum of electronic and thermal Enthalpies= \(\quad-174.759068\)
Sum of electronic and thermal Free Energies \(=\quad-174.793231\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 88.597 & 19.511 & 71.902
\end{tabular}

C, \(0,0.2471511036,-0.0344963566,1.4218073912\)
\(\mathrm{N}, 0,0.3279580078,0.0087805953,-0.0812789315\)
C,0,-0.2985742965,1.2595025352,-0.6391701373
```

C,0,-0.2488084097,-1.2331075047,-0.7082955764
H,0,1.3206199585,0.0355090614,-0.3273436835
Н,0,-0.8028878838,-0.0559566968,1.7096416869
H,0,0.7520843143,-0.9313024531,1.776668818
H,0,0.7291221499,0.8537844886,1.8265905597
H,0,-0.1249902097,-1.1731916168,-1.788181836
H,0,0.276555963,-2.1024716914,-0.3166517836
H,0,-1.3062669703,-1.2873006518,-0.4539870385
H,0,-0.1663233478,1.2685393428,-1.7197306481
Н, $0,-1.3587870449,1.2533916164,-0.3907116134$
H,0,0.1865566318,2.1261423901,-0.1933920064

```
\(\mathrm{HNMe}_{3}\) cation - PCM toluene
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-174.947121815\)
\begin{tabular}{lc} 
Zero-point correction= & 0.135789 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.141381 \\
Thermal correction to Enthalpy \(=\) & 0.142325 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.108180 \\
Sum of electronic and zero-point Energies= & -174.812649 \\
Sum of electronic and thermal Energies= & -174.807057 \\
Sum of electronic and thermal Enthalpies \(=\) & -174.806112 \\
Sum of electronic and thermal Free Energies \(=\) & -174.840258
\end{tabular}
\begin{tabular}{cccc} 
E (Thermal) & CV & S & \\
KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
88.718 & 19.416 & 71.865
\end{tabular}
\(\begin{array}{llll}\text { TOTAL } & 88.718 & 19.416 & 71.865\end{array}\)

C,0,0.2440260639,-0.0361538148,1.4158391098
\(\mathrm{N}, 0,0.3329075682,0.0089466918,-0.0825663223\)
C, \(,,-0.2981827538,1.2546421608,-0.6345687031\)
C, \(0,-0.2490599349,-1.2268011129,-0.7062633862\)
H,0,1.327082529,0.0359543548,-0.3283928644
Н,0,-0.8074601488,-0.0657445405,1.6974355334
H,0,0.7539948969,-0.9288738289,1.7731677287
H,0,0.7167173378,0.8553368941,1.8241892879
H,0,-0.1217148687,-1.1704736127,-1.7857526965
H,0,0.2691178927,-2.0987290342,-0.311469666
H,0,-1.3075458726,-1.2727120774,-0.4545134399
H,0,-0.1726543294,1.2640263143,-1.7156460911
H, \(0,-1.3566653485,1.2463499646,-0.3790259116\)
H,0,0.1880746825,2.1221153243,-0.1920697473




Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
0.100917
-383.838224
-383.831519
-383.830575 -383.869189
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 86.964 & 25.771 & 81.269
\end{tabular}

C, \(0,-0.6036564995,-0.516622837,-1.2415943617\)
C,0,0.8376137149,-0.4351074963,-0.783405183
C, \(0,1.0251861181,-0.1338029022,0.6774037182\)
C, \(0,-0.0681631346,0.5623607175,1.405141084\)
С,0,-1.3626782345,0.9609913187,0.7183928679
С,0,-1.3471073088,0.7650523359,-0.8083341694
O,0,1.7932642053,-0.537902252,-1.5225945866
H,0,2.0565144057,-0.0460379164,1.0073639364
\(\mathrm{H}, 0,0.2214666401,1.1450467422,2.2776350786\)
H,0,-2.1632162803,0.3655955658,1.1712157462
H,0,-1.5804334851,2.00709176,0.9533587432
H,0,-2.3708903551,0.7446520642,-1.1913132381
Н, \(0,-0.8574003986,1.6245637793,-1.2791034497\)
H,0,-1.0731775067,-1.3945368837,-0.7849665815
H,0,-0.6130496838,-0.6390549582,-2.3253394923
O,0,0.1433631361,-0.8401661195,1.5682852768

\section*{Cyclhexenone oxide - chair conformation - PCM toluene}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-383.974068295\)
Zero-point correction \(=\quad 0.132258\) (Hartree/Particle)
Thermal correction to Energy=
0.138958

Thermal correction to Enthalpy=
0.139902

Thermal correction to Gibbs Free Energy= 0.101279
Sum of electronic and zero-point Energies= \(=383.842474\)
Sum of electronic and thermal Energies \(=\quad-383.835774\)
Sum of electronic and thermal Enthalpies \(=\quad-383.834830\)
Sum of electronic and thermal Free Energies= \(=383.873453\)
\begin{tabular}{ccccc} 
& E(Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 87.198 & 25.735 & 81.290
\end{tabular}

C, \(0,-0.601384555,-0.5144542354,-1.2405113815\)
```

C,0,0.8358842685,-0.4331105607,-0.7803726108 C,0,1.0258494283,-0.13207006,0.6769694058 C,0,-0.0682180294,0.5625334639,1.4044244768 C, $0,-1.3607128531,0.9614189382,0.717485056$
С, $0,-1.3473666445,0.7641719669,-0.8072958235$
O,0,1.7930295141,-0.5398921945,-1.5203558466
H,0,2.0546876156,-0.0463598028,1.0072245756
H,0,0.2218057229,1.1413034594,2.2768116861
H,0,-2.1627549059,0.3701440226,1.1714712601
H,0,-1.575662924,2.0074995741,0.9512493806
H,0,-2.3706885214,0.7381896491,-1.188744276
Н,0,-0.8629983418,1.6245352714,-1.2802917623
H,0,-1.0707382521,-1.3931319599,-0.7861628063
$\mathrm{H}, 0,-0.6112408185,-0.6366137537,-2.3238539073$
O,0,0.141130578,-0.8421707476,1.5638684856

```

\section*{Cyclhexenone oxide - boat conformation}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-383.970730979\)

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy= 0.100593
Sum of electronic and zero-point Energies= -383.839017
Sum of electronic and thermal Energies \(=\quad-383.832301\)
Sum of electronic and thermal Enthalpies \(=\quad-383.831356\)
Sum of electronic and thermal Free Energies \(=\quad-383.870138\)
\begin{tabular}{lcl} 
& E (Thermal) & CV \\
KCal/Mol & Cal/Mol-Kelvin & S \\
Cal/Mol-Kelvin
\end{tabular}
```

H,0,-2.1453627077,0.7300003849,1.5759179121
H,0,-2.05061503,-0.4377158124,0.2675934766
H,0,0.1888143873,0.3809843935,2.1918121378
H,0,-0.5297362706,-1.2066546397,2.0520963655

```

\section*{Cyclhexenone oxide - boat conformation- PCM toluene}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-383.976584578\)

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
0.131352 (Hartree/Particle)
0.138078
0.139022
0.100215
-383.845232
-383.838507
-383.837562
-383.876369

Total
E (Thermal) CV S
\(\mathrm{KCa} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin} \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}\)

C,0,-1.4872831326,0.539384157,-0.67586703
C,0,-0.6808913111,-0.6556821195,-1.202341337
C, \(0,0.6965369932,-0.8444359233,-0.5911703773\)
C,0,1.0186502296,-0.1013053164,0.6772722391
C, \(0,-0.056733782,0.6194107199,1.3927400347\)
C, \(0,-1.4698444246,0.617022953,0.8563582008\)
O,0,1.5040423525,-1.6279821072,-1.0523985069
O,0,0.906113441,1.3375897799,0.6117865331
H,0,1.8959646885,-0.465908873,1.2070262814
H,0,0.0664736878,0.7446528175,2.4677013113
H,0,-2.0027450709,-0.2352395618,1.2969382054
H,0,-1.9854845898,1.5212895921,1.195924197
H,0,-2.5188717815,0.4632519751,-1.0293897852
H,0,-1.0786995123,1.466554199,-1.0845300377
H,0,-1.2117553952,-1.5929680314,-0.9811124038
DBU Model - 6-31G*
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-345.393699812\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.178755 (Hartree/Particle) \\
Thermal correction to Energy= & 0.187104 \\
Thermal correction to Enthalpy \(=\) & 0.188048 \\
Thermal correction to Gibbs Free Energy= & 0.146084
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{36}{*}{}} \\
\hline & & \\
\hline
\end{tabular}

\section*{dbuHOOtBuB3 complex - 6-31+G**}
\(\mathrm{E}(\) RB+HF-LYP \()=-654.237108355\)
Zero-point correction= 0.319533 (Hartree/Particle)

Thermal correction to Energy= 0.337504
\begin{tabular}{lc} 
Thermal correction to Enthalpy \(=\) & 0.338448 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.270655 \\
Sum of electronic and zero-point Energies \(=\) & -653.917576 \\
Sum of electronic and thermal Energies= & -653.899604 \\
Sum of electronic and thermal Enthalpies \(=\) & -653.898660 \\
Sum of electronic and thermal Free Energies \(=\) & -653.966453
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{33}{*}{}} \\
\hline & & & \\
\hline
\end{tabular}
```

H,0,-2.6443159316,-1.8182729887,-1.5976768002
H,0,-2.3331754202,-0.2321098499,-2.3217558004
H,0,-0.9770111645,-1.2323385545,-1.7696727656

```
dbuHOOtBuB3 complex - PCM Dichloroethane - 6-31G*
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-654.189415415\)
\begin{tabular}{lc} 
Zero-point correction= & 0.320935 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.337944 \\
Thermal correction to Enthalpy= & 0.338889 \\
Thermal correction to Gibbs Free Energy= & 0.274644 \\
Sum of electronic and zero-point Energies= & -653.868481 \\
Sum of electronic and thermal Energies= & -653.851471 \\
Sum of electronic and thermal Enthalpies \(=\) & -653.850527 \\
Sum of electronic and thermal Free Energies= & -653.914771
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 212.063 & 62.153 & 135.214
\end{tabular}

C,0,3.4236333543,1.0122284472,0.5296635944
C, \(0,2.6680301725,1.9996320876,-0.3545850047\)
C,0,1.1732078182,1.687880046,-0.2895070686
\(\mathrm{N}, 0,0.8781779659,0.276652807,-0.5343840074\)
C,0,1.7758362288,-0.6215129338,-0.2711534047
\(\mathrm{N}, 0,3.0448118745,-0.3629472465,0.1926459001\)
C, \(0,1.4026083075,-2.065364973,-0.5271390774\)
C,0,3.9167035778,-1.3977493311,0.7319855758
O,0,-1.6313900196,-0.2988373999,-1.4729924112
O,0,-2.4344472565,0.6634175261,-0.7302226218
С, \(0,-3.1615368145,-0.0035613829,0.3298522773\)
C, \(0,-3.9420327987,1.1561672065,0.9608914556\)
C,0,-4.1122662015,-1.0520508543,-0.259100094
С,0,-2.1942973488,-0.6285412821,1.3411434292
H,0,-2.7465012449,-1.0581782029,2.184936441
H,0,-1.6085411231,-1.423408087,0.8724166459
H,0,-1.5024006618,0.1278706111,1.7266047437
H,0,-4.7031461897,-1.5271658937,0.5325125494
H,0,-4.8010516568,-0.5850892159,-0.9720388176
H,0,-3.5448706874,-1.8265429666,-0.7820361996
H,0,-4.5616925228,0.7890072679,1.7860059715
H,0,-3.2572585212,1.9155712398,1.353580992
H,0,-4.5968743402,1.6287944055,0.2209204749
H,0,-0.7102281871,-0.0879776718,-1.1150585994
```

H,0,0.6215432991,2.2813185836,-1.0283153024
H,0,0.7701887362,1.9698224522,0.6951591991
H,0,4.958972577,-1.1041331486,0.5676906261
H,0,3.7704187694,-1.5404857898,1.8137633475
H,0,3.7564850977,-2.352482004,0.2312445731
H,0,3.2208133482,1.2122890701,1.5941741966
H,0,3.0205863021,1.9044161814,-1.3893260474
H,0,2.8721662692,3.0254658958,-0.0275792133
H,0,4.506255478,1.1085582973,0.3835036819
H,0,2.0799735314,-2.5355053618,-1.2495065169
H,0,1.4335332869,-2.6603615158,0.3929216057
H,0,0.3880799914,-2.0971262603,-0.9259974341
dbuHOOtBuB3 complex - PCM Dichloroethane - 6-31+G**
E(RB+HF-LYP})=-654.24751076
Zero-point correction= 0.318764 (Hartree/Particle)
Thermal correction to Energy= 0.336621
Thermal correction to Enthalpy=}0.33756
Thermal correction to Gibbs Free Energy= 0.270910
Sum of electronic and zero-point Energies= -653.928747
Sum of electronic and thermal Energies= -653.910890
Sum of electronic and thermal Enthalpies= -653.909946
Sum of electronic and thermal Free Energies= -653.976601

```
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 211.233 & 64.268 & 140.287
\end{tabular}
\(\mathrm{N}, 0,3.025753471,-0.3611033532,0.3257832003\)
C,0,3.5233209625,1.0175924102,0.455963292
C, \(0,2.7047177998,1.9790762696,-0.3993250914\)
C,0,1.2181970457,1.6895832361,-0.1929331533
\(\mathrm{N}, 0,0.8929074854,0.2900803939,-0.4676207538\)
C,0,1.7852330067,-0.6184573895,-0.195923335
C,0,1.4185173279,-2.0602407871,-0.4652941182
C,0,4.003957734,-1.3944448606,0.6458790243
O,0,-1.5840460104,-0.1150856891,-1.4343931908
O,0,-2.4024279345,0.7534958416,-0.5971451985
C,0,-3.2340880421,-0.0391997932,0.2941065411
C,0,-2.3665382464,-0.8706191973,1.245353042
C,0,-4.0074087411,1.0421032197,1.0586563515
C,0,-4.1830944077,-0.9245928772,-0.5213613505
H,0,-2.9986834445,-1.397043144,1.9688804542
```

H,0,-1.7869314985,-1.6134939762,0.6917979552
H,0,-1.6715319226,-0.2264950582,1.793322871
H,0,-4.8454587386,-1.4884120174,0.1446043225
H,0,-4.8006540274,-0.312583818,-1.1871718284
H,0,-3.615939098,-1.6345823915,-1.1288527477
H,0,-4.6984603066,0.5727345069,1.7660237785
H,0,-3.3233113817,1.6870440315,1.6192770409
H,0,-4.5884771128,1.6637696235,0.3699578771
H,0,-0.6546971069,0.0200371471,-1.0354019456
H,0,0.602942917,2.3168736983,-0.8467771331
H,0,0.9294880561,1.9354386025,0.8412221792
H,0,4.7459069148,-1.5128876835,-0.1570458339
H,0,4.5349775821,-1.1096757904,1.5607571894
H,0,3.5263384438,-2.3560136288,0.8263996437
H,0,3.4952262247,1.3147377071,1.5145194798
H,0,2.9580646151,1.842520184,-1.4582338775
H,0,2.9492188072,3.012423264,-0.1303183972
H,0,4.5751461519,1.0275219462,0.1435738924
H,0,2.1426445306,-2.5455019448,-1.1281839843
H,0,1.3723971496,-2.6422552651,0.4621109276
H,0,0.4360714742,-2.0890778825,-0.9360190908

```

\section*{TS addition of \(\mathbf{t - B u O O}{ }^{-}\)to cyclohexenone - chair conformation}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-617.086656472\)
\begin{tabular}{lc} 
Zero-point correction= & 0.251999 (Hartree/Particle) \\
Thermal correction to Energy= & 0.266629 \\
Thermal correction to Enthalpy \(=\) & 0.267573 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.209175 \\
Sum of electronic and zero-point Energies= & -616.834657 \\
Sum of electronic and thermal Energies= & -616.820028 \\
Sum of electronic and thermal Enthalpies \(=\) & -616.819083 \\
Sum of electronic and thermal Free Energies \(=\) & -616.877481
\end{tabular}
\begin{tabular}{cccl} 
& \(\mathrm{E}(\) Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 167.312 & 54.413 & 122.908
\end{tabular}

C,0,1.2664422207,1.9206865225,0.0000132603
C,0,2.7637794174,2.1489058705,0.2354732518
C,0,3.5301979086,0.8231834291,0.1666467527
C, \(0,2.9635993209,-0.2236258409,1.127242542\)
C,0,1.5380999759,-0.1625059128,1.3744708437
C,0,0.7257594544,0.7748207903,0.8099024454
```

O,0,3.7103649364,-1.0709308374,1.628433462
O,0,-0.7138726005,0.180449347,-1.1456462569
O,0,-2.0634128003,0.3811304139,-0.6179626791
C,0,-2.8127265988,-0.8295096168,-0.7008566497
H,0,1.1265425089,-0.9487997282,1.999936691
H,0,-0.3335098219,0.7776473046,1.0217363501
H,0,1.0489425222,1.6928206144,-1.0494410229
H,0,0.6916502427,2.8267910005,0.2239300674
H,0,3.1625597623,2.8610134801,-0.4971218226
H,0,2.9185308941,2.5947063561,1.2270928932
H,0,3.4519369959,0.4053640268,-0.8466967895
H,0,4.5947893741,0.9427973862,0.387367912
C,0,-4.186725179,-0.4687036026,-0.1217004224
C,0,-2.9391968281,-1.2649673764,-2.1705944313
C,0,-2.1413732492,-1.9332783205,0.1327797699
H,0,-4.8582469175,-1.3339659566,-0.1418495297
H,0,-4.0842333855,-0.1311280222,0.9140112466
H,0,-4.6411151745,0.3401479297,-0.7016808535
H,0,-3.4847519671,-2.211446129,-2.2657075938
H,0,-3.4651863029,-0.495452815,-2.7449411121
H,0,-1.9351607467,-1.3717354369,-2.5839975378
H,0,-2.668130987,-2.889887795,0.034543832
H,0,-1.1103622657,-2.0425032487,-0.2068269992
H,0,-2.1260296729,-1.6515960096,1.190783887

```

\section*{TS addition of \(\mathbf{t - B u O O}\) - to cyclohexenone - boat conformation}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-617.088776322\)
\begin{tabular}{lc} 
Zero-point correction= & 0.252068 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.266597 \\
Thermal correction to Enthalpy \(=\) & 0.267542 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.209416 \\
Sum of electronic and zero-point Energies \(=\) & -616.836709 \\
Sum of electronic and thermal Energies= & -616.822179 \\
Sum of electronic and thermal Enthalpies \(=\) & -616.821235 \\
Sum of electronic and thermal Free Energies \(=\) & -616.879360
\end{tabular}
\begin{tabular}{ccccc} 
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 167.292 & 54.337 & 122.335
\end{tabular}

C,0,-1.3779176296,-2.8376852339,-1.641322765
C,0,-0.0117114432,-3.1945411865,-1.044498207
C,0,0.4634754157,-2.3728377541,0.043878314
\(\mathrm{C}, 0,-0.2466285091,-1.3177629699,0.5410432022\)
\(\mathrm{C}, 0,-1.6328128288,-0.9951619936,0.0650015001\)
\(\mathrm{C}, 0,-1.7905552511,-1.3800836688,-1.4080191403\)
\(\mathrm{O}, 0,0.60130155,-4.1786753547,-1.477365059\)
\(\mathrm{O}, 0,0.5498899058,0.7516375664,-0.3771832597\)
\(\mathrm{O}, 0,-0.2085749173,1.8275697336,0.2638824448\)
\(\mathrm{C}, 0,0.6710353817,2.715182693,0.949949758\)
\(\mathrm{H}, 0,1.4419083887,-2.6224588417,0.4426881294\)
\(\mathrm{H}, 0,0.1074139932,-0.7984227585,1.4211075048\)
\(\mathrm{H}, 0,-2.3610722274,-1.5534274068,0.6799336335\)
\(\mathrm{H}, 0,-1.817449334,0.0690851113,0.2148863316\)
\(\mathrm{H}, 0,-2.8215552585,-1.216098832,-1.7456901847\)
\(\mathrm{H}, 0,-1.1411340843,-0.7112239375,-1.9808064892\)
\(\mathrm{H}, 0,-2.1078559617,-3.518644359,-1.1779835397\)
\(\mathrm{H}, 0,-1.3478866464,-3.093927037,-2.7047038285\)
\(\mathrm{C}, 0,-0.2564271668,3.7688823242,1.5684035037\)
\(\mathrm{C}, 0,1.4492482915,1.9658193581,2.0445060024\)
\(\mathrm{C}, 0,1.6422556904,3.3633622216,-0.0514285396\)
\(\mathrm{H}, 0,2.359474932,4.0233329022,0.4510003082\)
\(\mathrm{H}, 0,2.174211557,2.5688466596,-0.5769288729\)
\(\mathrm{H}, 0,1.0835201606,3.9469826817,-0.7899079128\)
\(\mathrm{H}, 0,2.1617413552,2.625192611,2.553845563\)
\(\mathrm{H}, 0,0.7567309707,1.5603098214,2.7896005418\)
\(\mathrm{H}, 0,1.9846968509,1.1355874529,1.5812267503\)
\(\mathrm{H}, 0,0.3186896837,4.5219616205,2.1180778555\)
\(\mathrm{H}, 0,-0.8310181938,4.2718024736,0.7850546815\)
\(\mathrm{H}, 0,-0.9611201977,3.2958035355,2.258844748\)

TS addition of \(\mathbf{t - B u O O}\) - to cyclohexenone - boat conformation - PCM toluene
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-617.132417329\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.252024 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.266662 \\
Thermal correction to Enthalpy \(=\) & 0.267606 \\
Thermal correction to Gibbs Free Energy= & 0.209674 \\
Sum of electronic and zero-point Energies \(=\) & -616.880394 \\
Sum of electronic and thermal Energies= & -616.865756 \\
Sum of electronic and thermal Enthalpies \(=\) & -616.864811 \\
Sum of electronic and thermal Free Energies= & -616.922744
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 167.333 & 54.554 & 121.928
\end{tabular}
\(\mathrm{C}, 0,2.1927384778,1.5195945634,-0.1084954738\)
\(\mathrm{C}, 0,3.5196645868,0.8716724733,-0.5186943352\)
\(\mathrm{C}, 0,3.515498222,-0.6456895799,-0.3582962144\)
\(\mathrm{C}, 0,2.2297912604,-1.31609614,-0.4525696088\)
\(\mathrm{C}, 0,1.0729111214,-0.6444553203,-0.6768646679\)
\(\mathrm{C}, 0,1.0065778597,0.845690396,-0.8057662794\)
\(\mathrm{O}, 0,4.5786553561,-1.2576862988,-0.206883479\)
\(\mathrm{O}, 0,-0.8987214257,-0.5449159761,1.2376214297\)
\(\mathrm{O}, 0,-1.7479967043,0.583457369,0.8289100268\)
\(\mathrm{C}, 0,-3.0190378947,0.1338461031,0.3556847028\)
\(\mathrm{C}, 0,-3.783145031,-0.5763295438,1.4840909201\)
\(\mathrm{C}, 0,-3.7439807891,1.4199972059,-0.061124105\)
\(\mathrm{C}, 0,-2.8544226459,-0.8041413698,-0.8519821972\)
\(\mathrm{H}, 0,2.2407402642,-2.3981663323,-0.3527023813\)
\(\mathrm{H}, 0,0.1412573427,-1.1836526832,-0.781408107\)
\(\mathrm{H}, 0,0.9990126365,1.1084709237,-1.8769432306\)
\(\mathrm{H}, 0,0.0536419454,1.1744101287,-0.3835767035\)
\(\mathrm{H}, 0,2.2109882292,2.5932209712,-0.3246837552\)
\(\mathrm{H}, 0,2.0560214465,1.4122003082,0.9731446117\)
\(\mathrm{H}, 0,3.7254378138,1.0729037886,-1.5806343503\)
\(\mathrm{H}, 0,4.3689306066,1.2678898219,0.0450767276\)
\(\mathrm{H}, 0,-4.7484148709,-0.960659183,1.1358715719\)
\(H, 0,-3.1725177644,-1.4014626175,1.8539887174\)
\(\mathrm{H}, 0,-3.9606276278,0.1164410792,2.3125764136\)
\(\mathrm{H}, 0,-3.8269503576,-1.1430515265,-1.2257747853\)
\(\mathrm{H}, 0,-2.3313256089,-0.2888551952,-1.6636506196\)
\(H, 0,-2.2625321343,-1.6703517723,-0.5527211271\)
\(H, 0,-4.7530222484,1.1983651464,-0.4234235634\)
\(\mathrm{H}, 0,-3.8228854918,2.1028852484,0.7896441951\)
\(\mathrm{H}, 0,-3.1928229931,1.9280384124,-0.8578638808\)

TS addition of \(\mathbf{t}-\mathrm{BuOO}^{-}\)to cyclohexenone solvated \(\mathrm{HNMe}_{3}{ }^{+}\)- chair conformation
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-792.157626655\)
\begin{tabular}{lc} 
Zero-point correction= & 0.391038 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.411666 \\
Thermal correction to Enthalpy \(=\) & 0.412610 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.342363 \\
Sum of electronic and zero-point Energies= & -791.766589 \\
Sum of electronic and thermal Energies= & -791.745961 \\
Sum of electronic and thermal Enthalpies \(=\) & -791.745017 \\
Sum of electronic and thermal Free Energies \(=\) & -791.815264
\end{tabular}

E (Thermal) CV S
\begin{tabular}{lccl} 
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & \(\mathrm{Cal} /\) Mol-Kelvin \\
Total & 258.324 & 77.624 & 147.847
\end{tabular}

C,0,2.4732090423, \(0.2578483446,-1.2135177604\)
C,0,1.2608351757,-0.4285052087,-1.389421532
C,0,0.715749841,-1.3305317859,-0.4178572948
C,0,1.6665870703,-1.8526130481,0.6612453662
C,0,3.1333603305,-1.7388488513,0.2339119876
C,0,3.4500716067,-0.2964064798,-0.167257301
O,0,-0.4094453968,-0.5143626334,0.5610313311
O,0,-1.7055802947,-0.476461417,-0.0989668007
С,0,-2.6792700992,-1.2741417863,0.6285606417
C,0,-2.2606596522,-2.7464505272,0.6707735067 O,0,2.8157143252,1.2920089094,-1.8511697496
C, \(0,-2.8668131903,-0.7148421529,2.0428706211\)
C,0,-3.9453365963,-1.0915285877,-0.2137284774
H,0,0.6483069217,-0.1678357736,-2.2472558006
H,0,0.027094233,-2.0748894911,-0.8100798674
H,0,1.5194765979,-1.2618686333,1.5738031393
H,0,1.4064048305,-2.882909339,0.9207507686
H,0,3.7864929734,-2.0716228016,1.0485916722
H,0,3.3203006502,-2.4003385707,-0.6185825529
H,0,3.4296242155,0.3526279432,0.7209031943
H,0,4.4546540195,-0.2002330497,-0.5888582052
H,0,-3.6087377452,-1.3010751405,2.5920179287
H,0,-1.9237693664,-0.7496997087,2.5903341494
\(\mathrm{H}, 0,-3.2144056971,0.3213383499,2.006129944\)
H,0,-3.02937321,-3.3415613986,1.1718402353
H,0,-2.1290357165,-3.1396676607,-0.3399798838
H,0,-1.3255320441,-2.8663872319,1.2192109891
Н,0,-4.7748001578,-1.6448295623,0.2338280561
\(\mathrm{H}, 0,-4.2281569052,-0.0372798416,-0.2695914913\)
\(\mathrm{H}, 0,-3.7896663729,-1.4625142836,-1.2291699712\)
H,0,0.0000205114,1.174321761,0.0553952045
N,0,-0.0400221102,2.2260937931,-0.0306549751
C,0,1.196786375,2.7824168363,0.5994604705
С,0,-0.0995879918,2.5791338985,-1.4851888602
C,0,-1.2668739017,2.6531722009,0.6987178718
H,0,-0.220937311,3.6608789053,-1.5697328466
H,0,0.8336694595,2.2520520033,-1.9517795452
Н,0,-0.9527510166,2.0678010218,-1.9274226006
H,0,-1.3551815681,3.7389762033,0.645190254
H,0,-2.126296807,2.1716876604,0.2389169473
H,0,-1.188348351,2.3335415883,1.7366965478

H,0,1.114344437,3.8701343021,0.6275702623
H,0,1.2797081018,2.3903039293,1.6125810927
H,0,2.0531929591,2.4846962807,-0.0052964802
TS addition of \(\mathbf{t - \mathrm { BuOO } ^ { - }}\) to cyclohexenone solvated \(\mathrm{HNMe}_{3}{ }^{+}\)- boat conformation
\(\mathrm{E}(\) RB+HF-LYP \()=-792.158698043\)
\begin{tabular}{lc} 
Zero-point correction= & 0.389575 (Hartree/Particle) \\
Thermal correction to Energy= & 0.410536 \\
Thermal correction to Enthalpy= & 0.411481 \\
Thermal correction to Gibbs Free Energy= & 0.340531 \\
Sum of electronic and zero-point Energies \(=\) & -791.769123 \\
Sum of electronic and thermal Energies= & -791.748162 \\
Sum of electronic and thermal Enthalpies= & -791.747217 \\
Sum of electronic and thermal Free Energies= & -791.818168
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
\hline Total & 257.615 & 78.264 & 149.327 \\
\hline C, \(0,-0\) & 33639,-1.64 & 43369,0.6172851 & \\
\hline C, \(0,-0\). & 87891,-2.5007 & 87535,-0.633988 & 3888 \\
\hline C,0,1.1 & 14434,-2.171 & 474397,-1.438009 & 983 \\
\hline C, \(0,2.4\) & 361915,-2.219 & 899148,-0.564074 & 191 \\
\hline C, \(0,2.2\) & 90632,-1.465 & 11336,0.765090 & \\
\hline C,0,0.9 & 30702,-1.406 & 62334,1.3757972 & \\
\hline O,0,3.3 & 039844,-0.976 & 063024,1.277587198 & \\
\hline O, \(0,-0\). & 668505,-0.2162 & 2529839,0.319102 & 219 \\
\hline O,0,-1 & 291293,0.371 & 726854,-0.83244 & 538 \\
\hline C, \(0,-2\). & 214282,0.558 & 298261,-0.239115 & 418 \\
\hline C, \(0,-3\). & 163111,-0.778 & 23639,0.1348438 & \\
\hline C, \(0,-2\). & 85721,1.475 & 54417,0.99501483 & \\
\hline C, \(0,-3\). & 454216,1.242 & 510483,-1.352038 & 7795 \\
\hline N,0,1.3 & 785577,1.7833 & 38584,0.0277291 & \\
\hline C, 0,2.0 & 623372,2.0365 & 59198,1.346022382 & \\
\hline C, \(0,0.4\) & 62818,2.8913 & 72537,-0.373211338 & \\
\hline C, \(0,2.3\) & 612813,1.5039 & \(70657,-1.03245550\) & \\
\hline H,0,0.9 & 500431,-1.020 & 280097,2.3855167 & \\
\hline H,0,-1. & 809395,-1.95 & 884509,1.2322501 & \\
\hline H, \(0,-0\). & 210496,-3.55 & 502367,-0.31432 & 2915 \\
\hline H,0,-1. & \(577258,-2.35\) & 040896,-1.247672 & 1879 \\
\hline H,0,1.2 & 18943,-2.862 & 182086,-2.281071 & 3038 \\
\hline H,0,1.0 & 58587,-1.1731 & 38455,-1.87169460 & \\
\hline H,0,2.6 & 09704,-3.261 & 565281,-0.303981 & 527 \\
\hline
\end{tabular}
```

H,0,3.2803211377,-1.8392682136,-1.0943326775
H,0,-4.7631482482,1.4485215053,-1.0005825852
H,0,-3.2827840147,2.1866555846,-1.647030376
H,0,-3.8054116288,0.5975720183,-2.2316388503
H,0,-3.8336581012,1.595280874,1.4558552878
H,0,-2.1678829423,1.0502634259,1.7355740653
H,0,-2.4864363889,2.4693744716,0.7156146875
H,0,-4.6270369187,-0.6304332891,0.4330099641
H,0,-3.5627304668,-1.4592916308,-0.719622508
H,0,-3.0648733766,-1.2544173893,0.9688908487
H,0,0.7439575313,0.9113541845,0.1366157067
H,0,1.0336027615,3.7824152124,-0.5953340271
H,0,-0.1312788494,2.5673114728,-1.2384989152
H,0,-0.2427984485,3.0903325034,0.4463514818
H,0,2.6221384972,1.1676397012,1.6037771589
H,0,2.6302921232,2.934002044,1.2684136128
H,0,1.2371831253,2.1827978689,2.0953955792
H,0,3.0159470437,0.6985277036,-0.6932304798
H,0,1.8477420566,1.2157244907,-1.9447122946
H,0,2.9565606915,2.4059342088,-1.2085228964

```

\section*{TS addition of \(\mathbf{t - \mathrm { BuOO } ^ { - }}\) to cyclohexenone solvated \(\mathrm{HNMe}_{3}{ }^{+}\)- chair conformationPCM toluene}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-792.167859304\)} \\
\hline Zero-point correction= 0.3901 & 390166 (Hartree/Particle) \\
\hline Thermal correction to Energy \(=0.4\) & 0.411084 \\
\hline Thermal correction to Enthalpy= 0. & 0.412029 \\
\hline Thermal correction to Gibbs Free Energy= & \(=0.340428\) \\
\hline Sum of electronic and zero-point Energies= & \(=\quad-791.777693\) \\
\hline Sum of electronic and thermal Energies= & -791.756775 \\
\hline Sum of electronic and thermal Enthalpies= & \(=\quad-791.755831\) \\
\hline Sum of electronic and thermal Free Energies= & ies \(=\quad-791.827431\) \\
\hline
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 257.959 & 77.925 & 150.696
\end{tabular}

С,0,2.6751757888,-0.1376195382,-0.9619797873
C,0,1.3909162092,-0.5816669129,-1.3188602951
С, \(0,0.5795514228,-1.4003616551,-0.4780126378\)
C,0,1.2620809825,-2.1255211124,0.6804072285
C,0,2.7752351156,-2.2446078451,0.4726141295
C,0,3.3773455186,-0.8659712548,0.1906994266
```

O,0,-0.5364714515,-0.4050832466,0.4269090697 O,0,-1.7463146701,-0.1764171165,-0.345058712 С,0,-2.8870689453,-0.8458633431,0.2628810617 С, $0,-2.6806776928,-2.3627930592,0.2880036396$ O,0,3.2906414142,0.8095250164,-1.5284849551
C,0,-3.1300539689,-0.2997114061,1.673311269
C,0,-4.0294069758,-0.4654040521,-0.6834332409
Н, $0,0.9489068471,-0.1764574273,-2.2248582596$
H,0,-0.1953914409,-1.9691447117,-0.984309574
H,0,1.0757395981,-1.5641823231,1.6037458053
H,0,0.8048145946,-3.1087483855,0.8246381493
H,0,3.2384727118,-2.6994280439,1.3554920086
H,0,2.9800669256,-2.9080120256,-0.3748091381
H,0,3.3199565877,-0.2404896151,1.0936587508
H,0,4.4386178397,-0.9306513871,-0.0673575315
H,0,-3.993031487,-0.7920567865,2.1300034005
H,0,-2.2571498405,-0.4776712654,2.3032719831
H,0,-3.3300901078,0.7747193385,1.6429829402
H,0,-3.5686320006,-2.8557139543,0.6937568737
H,0,-2.507809726,-2.7464267562,-0.720478233
H,0,-1.828162462,-2.6262789864,0.9154393594
H,0,-4.9654917029,-0.9091671077,-0.3349259051
H,0,-4.1577594972,0.6192702439,-0.7221211053
H,0,-3.8302494674,-0.8279673011,-1.6945053995
H,0,0.0523891175,1.1690064014,0.1942942266
$\mathrm{N}, 0,0.2260183124,2.2201792598,0.1587836115$
C,0,1.4604852488,2.5049795021,0.9496263084
C, $0,0.4006663446,2.628219368,-1.2696408635$
C,0,-0.9724049942,2.8604514684,0.7721666168
H,0,0.4871299373,3.7155887531,-1.3115120512
H,0,1.3043569515,2.1566820562,-1.6567541076
H,0,-0.4710902813,2.2980546781,-1.8320268032
H,0,-0.8371310029,3.9428697106,0.7796119089
H,0,-1.847741162,2.5889268108,0.1868784045
H,0,-1.0868040368,2.4915003342,1.7903986922
H,0,1.5971387035,3.5856060949,1.0143393597
H,0,1.3423801528,2.0863660836,1.9487429555
H,0,2.3105293968,2.0535725706,0.4412976543

```

\section*{TS addition of \(\mathbf{t - B u O O}{ }^{-}\)to cyclohexenone solvated \(\mathrm{HNMe}_{3}{ }^{+}\)- boat conformationPCM toluene}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-792.160667807\)
\begin{tabular}{lc} 
Thermal correction to Energy \(=\) & 0.410816 \\
Thermal correction to Enthalpy \(=\) & 0.411761 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.341588 \\
Sum of electronic and zero-point Energies= & -791.770564 \\
Sum of electronic and thermal Energies= & -791.749851 \\
Sum of electronic and thermal Enthalpies \(=\) & -791.748907 \\
Sum of electronic and thermal Free Energies \(=\) & -791.819080
\end{tabular}
\begin{tabular}{lcc} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 257.791 & 77.966
\end{tabular}
\(\mathrm{H}, 0,3.8538191671,0.554448757,1.8042409013\)
\(\mathrm{H}, 0,3.9076316733,-1.2003762632,1.5669263658\)
\(\mathrm{H}, 0,-0.4729213082,1.1085894888,0.0171105859\)
\(\mathrm{H}, 0,0.6409992722,2.6627446353,1.4058928517\)
\(\mathrm{H}, 0,0.741314264,3.1240488574,-0.3047935621\)
\(\mathrm{H}, 0,-0.3865603202,3.9862211585,0.7780946534\)
H,0,-1.3398420972,1.4092622159,2.2069253507
H,0,-2.3437427736,2.7803227079,1.6578735793
H, \(,-2.6939937032,1.1335165745,1.0672262743\)
H,0,-2.214642909,3.3891429767,-0.8396054275
H,0,-1.0512575437,2.4771654029,-1.8434590896
H,0,-2.5057056964,1.6520193512,-1.2013334673

Intermediate t-butyl peroxy enolate - boat conformation
\(\mathrm{E}(\) RB+HF-LYP \()=-617.101546121\)
\begin{tabular}{lc} 
Zero-point correction= & 0.253537 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.267930 \\
Thermal correction to Enthalpy= & 0.268874 \\
Thermal correction to Gibbs Free Energy= & 0.212163 \\
Sum of electronic and zero-point Energies \(=\) & -616.848009 \\
Sum of electronic and thermal Energies= & -616.833616 \\
Sum of electronic and thermal Enthalpies= & -616.832672 \\
Sum of electronic and thermal Free Energies= & -616.889383
\end{tabular}
\begin{tabular}{ccccc} 
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 168.129 & 55.016 & 119.359
\end{tabular}

\footnotetext{
C,0,-1.875224564,-1.3658733996,-1.4518631745
C, \(0,-1.1493521971,-2.6877572593,-1.7231624199\)
C, \(0,0.2381875117,-2.8192701633,-1.0590867555\)
C,0,0.5384306351,-1.9550296979,0.001354944
С,0,-0.3417580939,-0.8786986918,0.4829739675
С,0,-1.7986598996,-0.9979472022,0.0314398377
O,0,0.9792999487,-3.7457296581,-1.487196726
O,0,0.2516367054,0.3586090007,-0.0897806348
O,0,-0.405989793,1.5926807312,0.5470956295
C,0,0.6336280599,2.4853139259,0.9495765381
H,0,1.5098680015,-2.0665259926,0.4749995756
H,0,-0.2962979601,-0.7346663973,1.5719004745
H,0,-2.283151458,-1.7762700544,0.6369434467
H,0,-2.3168446328,-0.0542906913,0.2310093815
H,0,-2.9224201558,-1.4220206371,-1.7805335087
}
```

H,0,-1.4022965701,-0.5628037912,-2.0273551948
H,0,-1.7534942575,-3.5320575605,-1.3596796388
H,0,-1.0107562279,-2.8533276324,-2.7968675574
C,0,-0.1344043724,3.677379866,1.5392805606
C,0,1.5302423518,1.837796673,2.0158826875
C,0,1.462141258,2.9247772463,-0.2680249747
H,0,0.5628030929,4.4476663901,1.8852296695
H,0,-0.793439968,4.1161193169,0.7855512453
H,0,-0.7462429789,3.3552786801,2.3861096833
H,0,2.3104951199,2.5326700786,2.3453888599
H,0,0.9336958071,1.5464634836,2.8850444499
H,0,2.0025143169,0.9438928161,1.6066037108
H,0,2.2364860179,3.6431166576,0.0235332308
H,0,1.9368073131,2.0557280507,-0.7250403435
H,0,0.8133155151,3.3923989106,-1.0140108973

```

Intermediate t-butyl peroxy enolate - boat conformation - PCM toluene
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-617.150164081\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.254385 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.268517 \\
Thermal correction to Enthalpy \(=\) & 0.269461 \\
Thermal correction to Gibbs Free Energy= \(=\) & 0.213768 \\
Sum of electronic and zero-point Energies= & -616.895779 \\
Sum of electronic and thermal Energies \(=\) & -616.881647 \\
Sum of electronic and thermal Enthalpies \(=\) & -616.880703 \\
Sum of electronic and thermal Free Energies \(=\) & -616.936396
\end{tabular}
\begin{tabular}{ccl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
168.497 & 54.465 & 117.217
\end{tabular}

C,0,2.1640280633,1.6548978002,0.4684888465
C,0,3.3252287756,0.6600206889,0.3729459261
C, \(0,2.9158116835,-0.7830954584,0.031067428\)
С, \(0,1.6510890688,-1.0003602269,-0.5043352181\)
C, \(0,0.6391061429,0.052160316,-0.732908217\)
C,0,1.1992188912,1.4752762376,-0.7044465852
O,0,3.8032618095,-1.6789108233,0.2217109131
O,0,-0.3551295251,-0.1152003479,0.3604053786
O,0,-1.564627772,0.7177035834,0.0575827239
C,0,-2.730530785,-0.1266424673,0.0920733533
Н, \(, 1.3774072589,-2.0236227502,-0.7511622312\)
H,0,0.0671848847,-0.1045984684,-1.6568920642
```

H,0,1.7237789579,1.6570006318,-1.6520849378
H,0,0.3705338578,2.1877083849,-0.6477482666
H,0,2.5402141029,2.685371573,0.5038517802
H,0,1.6116147672,1.4855033377,1.3992987688
H,0,4.035615759,0.982580837,-0.4022455531
H,0,3.8942893952,0.6255251692,1.3082974536
C,0,-3.8704106299,0.8548183136,-0.2073517155
C,0,-2.6508367733,-1.2142565733,-0.9867536505
C,0,-2.8962942405,-0.745171279,1.4864339589
Н,0,-4.8277796614,0.3258518685,-0.2250012701
H,0,-3.91862386,1.6335529905,0.5580250104
H,0,-3.7202043733,1.3327577597,-1.1788122085
H,0,-3.5522513785,-1.834950413,-0.9739747904
H,0,-2.5558868484,-0.7634941927,-1.978315903
H,0,-1.7854909278,-1.8547830191,-0.811199275
H,0,-3.8063713814,-1.3515407458,1.5349275445
H,0,-2.0395981861,-1.3784863165,1.7205249074
H,0,-2.9609296461,0.0409999476,2.2436341518

```

Intermediate t-butyl peroxy enolate - chair conformation
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-617.093994188\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.253430 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.267950 \\
Thermal correction to Enthalpy \(=\) & 0.268894 \\
Thermal correction to Gibbs Free Energy= & 0.211747 \\
Sum of electronic and zero-point Energies \(=\) & -616.840564 \\
Sum of electronic and thermal Energies= & -616.826044 \\
Sum of electronic and thermal Enthalpies \(=\) & -616.825100 \\
Sum of electronic and thermal Free Energies= \(=\) & -616.882247
\end{tabular}

Total
\begin{tabular}{ccl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
168.141 & 55.138 & 120.277
\end{tabular}

C,0,0.6481784528,1.4136706411,-0.2987748684
C, \(0,2.021388348,2.0850756502,-0.3547076915\)
C,0,3.1114019358,1.0210482568,-0.5060485384
C,0,3.0319614143,-0.0843817318,0.5700448484
C,0,1.8044281811,-0.2623805546,1.2146378257
C, \(0,0.5397466234,0.430329358,0.8776564341\)
O,0,4.1022148265,-0.7062552575,0.8222067076
O,0,-0.3742303846,-0.6781702275,0.5433042426
O,0,-1.786209788,-0.0346202274,0.5267625107
\(\mathrm{C}, 0,-2.6232284449,-0.6511368462,-0.4456288348\)
\(\mathrm{H}, 0,1.7728312889,-0.9604747919,2.0460332538\)
\(\mathrm{H}, 0,0.0646630632,0.9200434906,1.7423654549\)
\(\mathrm{H}, 0,0.5034993726,0.8429387501,-1.2220495857\)
\(\mathrm{H}, 0,-0.1584331748,2.1522017589,-0.2470177169\)
\(\mathrm{H}, 0,2.054687176,2.808125741,-1.1827325002\)
\(\mathrm{H}, 0,2.19461467,2.6539987895,0.5682124337\)
\(\mathrm{H}, 0,3.0399797493,0.5518075552,-1.4982343503\)
\(\mathrm{H}, 0,4.1142269302,1.4552035558,-0.4372057337\)
\(\mathrm{C}, 0,-3.8964722263,0.2097630796,-0.3881638764\)
\(\mathrm{C}, 0,-2.005771416,-0.6005233402,-1.8514408054\)
\(\mathrm{C}, 0,-2.9441648029,-2.0975544813,-0.0454254719\)
\(\mathrm{H}, 0,-4.6478643723,-0.1748178137,-1.0856215008\)
\(\mathrm{H}, 0,-4.3177072778,0.197866983,0.6204526028\)
\(\mathrm{H}, 0,-3.6680278093,1.2447908574,-0.6540888319\)
\(\mathrm{H}, 0,-2.6853977107,-1.0483499206,-2.5846940676\)
\(\mathrm{H}, 0,-1.8091921837,0.4338738495,-2.1436569365\)
\(\mathrm{H}, 0,-1.0609775535,-1.1452268758,-1.8646947012\)
\(\mathrm{H}, 0,-3.6701215848,-2.5470719054,-0.7319698719\)
\(\mathrm{H}, 0,-2.0334664899,-2.690854207,-0.06453531\)
\(\mathrm{H}, 0,-3.3523197166,-2.1251503066,0.9683555468\)

Intermediate t-butyl peroxy enolate - chair conformation - PCM toluene
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-617.145304636\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.254192 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.268490 \\
Thermal correction to Enthalpy \(=\) & 0.269435 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.212789 \\
Sum of electronic and zero-point Energies \(=\) & -616.891113 \\
Sum of electronic and thermal Energies= & -616.876814 \\
Sum of electronic and thermal Enthalpies \(=\) & -616.875870 \\
Sum of electronic and thermal Free Energies \(=\) & -616.932516
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & Cal/Mol-Kelvin \\
Total & 168.480 & 54.502 & 119.221
\end{tabular}

C,0,-0.9550655025,1.342345598,-0.2345696242
С,0,-2.4354442654,1.7231980539,-0.2708699233
C, \(0,-3.2543505119,0.7160712681,0.540684782\)
C, \(0,-2.9799623773,-0.7487306591,0.1544954751\)
C,0,-1.7966102904,-1.034213282,-0.511250771
C,0,-0.7178779201,-0.0583928576,-0.8164834507
```

O,0,-3.894605405,-1.5920764007,0.445900799
O,0,0.4934354018,-0.6524765515,-0.2307507292
O,0,1.6690748025,0.1163708367,-0.7631356129
C,0,2.7625094934,-0.0418088454,0.154492095
H,0,-1.6482032987,-2.0509669783,-0.8672391402
H,0,-0.4954950715,0.0120203123,-1.8941473553
H,0,-0.6178288946,1.3277724545,0.8079180862
Н, $0,-0.3388174551,2.0772464276,-0.7611306296$
H,0,-2.5736476282,2.7419607802,0.1149862018
H,0,-2.7912224297,1.7301169852,-1.3094712146
H,0,-3.0435798529,0.839495109,1.6127976594
H,0,-4.3296401009,0.8828647767,0.4164244225
C,0,3.8897454321,0.7450707294,-0.5265426704
C, $0,2.4228146262,0.5703200888,1.5202792421$
C,0,3.1409039946,-1.5230221497,0.2905452531
H,0,4.7971583002,0.7023194439,0.0825282464
H,0,4.1117019635,0.3248637245,-1.5106832587
H,0,3.6058554291,1.7929589402,-0.6526545471
H,0,3.2794768932,0.4947007865,2.1973657152
H,0,2.1613365431,1.6258419548,1.4082315323
H,0,1.5754170603,0.0503933853,1.9682885248
H,0,4.0185950632,-1.6362891405,0.9346508229
H,0,2.3143318033,-2.0886987421,0.7222382526
Н,0,3.3713472083,-1.9461709622,-0.6909014198

```

\section*{TS for formation of cyclohexenone oxide - boat conformation}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-617.100637964\)
\begin{tabular}{lc} 
Zero-point correction= & 0.252442 (Hartree/Particle) \\
Thermal correction to Energy= & 0.266567 \\
Thermal correction to Enthalpy \(=\) & 0.267512 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.210842 \\
Sum of electronic and zero-point Energies= & -616.848196 \\
Sum of electronic and thermal Energies= & -616.834071 \\
Sum of electronic and thermal Enthalpies \(=\) & -616.833126 \\
Sum of electronic and thermal Free Energies \(=\) & -616.889795
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 167.274 & 53.614 & 119.270
\end{tabular}

C,0,-2.1867497306,-1.0717564048,-0.9723928623
C,0,-1.7376765688,-2.5255678936,-1.1624355026
C,0,-0.4007020885,-2.8956387045,-0.4961390899
```

C,0,0.07775711,-2.0588889166,0.5395366591
C,0,-0.5561946329,-0.7742971604,0.9190525661
C,0,-2.0141451207,-0.6201736287,0.480261423
O,0,0.1472760472,-3.9646562055,-0.8497237068
O,0,0.3256874318,0.0026009027,0.1388104153
O,0,-0.0286072525,1.7358996896,0.467745684
C,0,1.1709509578,2.4299925587,0.2734548532
H,0,1.0124907114,-2.3312065642,1.0159937548
H,0,-0.4447208283,-0.5199405335,1.9832569928
H,0,-2.644677897,-1.2249184195,1.1474978633
H,0,-2.3043787381,0.4279051001,0.5981826756
H,0,-3.2302746823,-0.9506344747,-1.2915196357
H,0,-1.5798409418,-0.4152571781,-1.6028660943
H,0,-2.4873931228,-3.21122033,-0.7411203313
H,0,-1.6541084831,-2.7833282468,-2.2231935943
C,0,0.8218132346,3.9143552832,0.5227743602
C,0,2.2482719048,1.9763260779,1.2811117483
C,0,1.686236978,2.2558960645,-1.1705281605
H,0,1.7047768449,4.5526871797,0.3951110226
H,0,0.0488066894,4.2404096538,-0.1784410019
H,0,0.4397760392,4.0445193099,1.5391618022
H,0,2.5998240608,2.8369809573,-1.3468026678
H,0,1.892007331,1.2017095175,-1.3621433493
H,0,0.9191513858,2.5854414556,-1.8777415684
H,0,3.183046616,2.5370383673,1.1578308976
H,0,1.88465787,2.124655558,2.3027414977
H,0,2.4486350708,0.9129198993,1.1412166294

```

\section*{TS for formation of cyclohexenone oxide - chair conformation}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-617.096207800\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.252592 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.266735 \\
Thermal correction to Enthalpy \(=\) & 0.267680 \\
Thermal correction to Gibbs Free Energy= & 0.210855 \\
Sum of electronic and zero-point Energies \(=\) & -616.843616 \\
Sum of electronic and thermal Energies= & -616.829472 \\
Sum of electronic and thermal Enthalpies \(=\) & -616.828528 \\
Sum of electronic and thermal Free Energies= \(=\) & -616.885353
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 167.379 & 53.565 & 119.599
\end{tabular}
\(\mathrm{C}, 0,-0.7301978973,1.064554322,-1.7126265893\)
\(\mathrm{C}, 0,-2.0776936984,1.7778071078,-1.5253889206\)
\(\mathrm{C}, 0,-2.6444156256,1.5614209443,-0.1171269752\)
\(\mathrm{C}, 0,-2.8598262697,0.0645477466,0.1690383554\)
\(\mathrm{C}, 0,-1.9044830259,-0.8054021304,-0.3918730679\)
\(\mathrm{C}, 0,-0.657803397,-0.3180688265,-1.0201420847\)
\(\mathrm{O}, 0,-3.8705858437,-0.2811405006,0.8280682866\)
\(\mathrm{O}, 0,0.1532615415,-0.2656647633,0.1691119149\)
\(\mathrm{O}, 0,1.727380055,0.1232733227,-0.2428910054\)
\(\mathrm{C}, 0,2.5644488259,-0.5541068391,0.6702704751\)
\(\mathrm{C}, 0,2.273671598,-0.107973349,2.1154243052\)
\(\mathrm{C}, 0,2.411882559,-2.0807270691,0.5352367926\)
\(\mathrm{C}, 0,3.9883345436,-0.1290103866,0.263262578\)
\(\mathrm{H}, 0,-1.9995605449,-1.8680318612,-0.1947426798\)
\(\mathrm{H}, 0,-0.2075215931,-1.0584111338,-1.6951511875\)
\(\mathrm{H}, 0,0.0816441025,1.6714858789,-1.3018166897\)
\(\mathrm{H}, 0,-0.5200931004,0.9460600664,-2.7824909208\)
\(\mathrm{H}, 0,-1.9660626581,2.8488489314,-1.744880251\)
\(\mathrm{H}, 0,-2.8035748323,1.383712744,-2.2473891911\)
\(\mathrm{H}, 0,-1.9580563147,1.9746407259,0.6334254105\)
\(\mathrm{H}, 0,-3.6103349424,2.0600287114,0.0086178559\)
\(\mathrm{H}, 0,3.0890809491,-2.6114194416,1.214650402\)
\(\mathrm{H}, 0,1.3837786629,-2.3660975017,0.7620807538\)
\(\mathrm{H}, 0,2.6359812946,-2.3883275967,-0.4906642769\)
\(\mathrm{H}, 0,2.9540794294,-0.5921491099,2.8258418275\)
H, \(, 2,2.3920845884,0.97621084,2.2000155765\)
\(\mathrm{H}, 0,1.2454974372,-0.3583923729,2.3794962886\)
\(\mathrm{H}, 0,4.7337200349,-0.6017459326,0.9132617052\)
H, \(, 4.189792288,-0.4226802519,-0.7705649835\)
\(\mathrm{H}, 0,4.0955935003,0.9562737149,0.3395475803\)

TS for formation of cyclohexenone oxide - boat conformation - PCM toluene
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-617.142856576\)
\begin{tabular}{lc} 
Zero-point correction= & 0.252203 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.266407 \\
Thermal correction to Enthalpy \(=\) & 0.267351 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.210829 \\
Sum of electronic and zero-point Energies= & -616.890653 \\
Sum of electronic and thermal Energies= & -616.876450 \\
Sum of electronic and thermal Enthalpies \(=\) & -616.875506 \\
Sum of electronic and thermal Free Energies \(=\) & -616.932027
\end{tabular}

E (Thermal) CV S


\section*{TS for formation of cyclohexenone oxide - chair conformation - PCM toluene}
\(E(\) RB+HF-LYP \()=-617.139286938\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.252207 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.266490 \\
Thermal correction to Enthalpy \(=\) & 0.267434 \\
Thermal correction to Gibbs Free Energy= & 0.210462 \\
Sum of electronic and zero-point Energies \(=\) & -616.887080 \\
Sum of electronic and thermal Energies= & -616.872797 \\
Sum of electronic and thermal Enthalpies \(=\) & -616.871853
\end{tabular}

Sum of electronic and thermal Free Energies= \(\quad-616.928825\)
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{30}{*}{C, \(0,-0.9826389058,1.6872432137,-0.95655016\)
C, \(,-2.222815158,1.9433186105,-0.0861806565\)
C, \(0,-2.4833385317,0.7976831909,0.9025044558\)
C,0,-2.6898783795,-0.5272086965,0.1670141917
C,0,-1.8873119379,-0.734206891,-0.9839008784
C,0,-0.7969332013,0.2079682424,-1.347140201
O,0,-3.5596512746,-1.3338560643,0.5737921065
O,0,0.0464984005,-0.5028655804,-0.4847392884
O,0,1.7815494966,0.2609731466,-0.6442242472
C,0,2.5669793754,-0.3362837445,0.3432798847
C,0,2.0210998336,-0.028679255,,1.755219209
C,0,2.6581749775,-1.8645288255,0.1387587868
C,0,3.9796829435,0.2782126104,0.2017459538
H,0,-1.9686907322,-1.67506385,-1.5159222853
H,0,-0.4667308564,0.1101320812,-2.3898885344
H,0,-0.0673525925,1.9746748277,-0.4327722227
H,0,-1.0372396975,2.2989884426,-1.8644422248
H,0,-2.1174347921,2.8942906208,0.4498474017
H,0,-3.1065381094,2.0450230313,-0.7283067347
H,0,-1.633466976,0.6914123028,1.5867063864
H,0,-3.3752026384,0.9854776933,1.507265302
H,0,3.3008555254,-2.3385178441,0.8903831349
H,0,1.6603905809,-2.3024922844,0.197397005
H,0,3.0659403618,-2.0803257431,-0.8537918509
H,0,2.65313512,-0.4623345916,2.5394496948
H,0,1.9746119425,1.0544320913,1.9058897142
H,0,1.0109310264,-0.4295623594,1.8522199364
H,0,4.6692591648,-0.1416488152,0.9439470258
H,0,4.378118016,0.0783627259,-0.7970083211
H,0,3.9341155825,1.3620289236,0.3418944897}} \\
\hline & & & \\
\hline
\end{tabular}

TS for formation of cyclohexenone oxide solvated \(\mathrm{HNMe}_{3}{ }^{+}\)- chair conformation
\(\mathrm{E}(\) RB+HF-LYP \()=-792.149110819\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.388919 (Hartree/Particle) \\
Thermal correction to Energy= & 0.410105 \\
Thermal correction to Enthalpy \(=\) & 0.411050 \\
Thermal correction to Gibbs Free Energy= & 0.338871
\end{tabular}
\begin{tabular}{lc} 
Sum of electronic and zero-point Energies \(=\) & -791.760192 \\
Sum of electronic and thermal Energies \(=\) & -791.739005 \\
Sum of electronic and thermal Enthalpies \(=\) & -791.738061 \\
Sum of electronic and thermal Free Energies= & -791.810239
\end{tabular}

```

H,0,-1.7468872731,2.7545190635,-0.0509786014
H,0,-1.0822680493,2.5091463191,1.5726497233
H,0,-0.8188710103,4.070673859,0.7487585802
H,0,-0.2325730995,2.8125143935,-1.9825539891
H,0,0.6913340353,4.1386136074,-1.2159367828
H,0,1.5203381452,2.6415290798,-1.7176693497
H,0,1.7070693069,3.6713545239,1.0745385573
H,0,1.2593347984,2.1456588201,1.8849819404
H,0,2.3751338214,2.0955475816,0.5092524864

```

TS for formation of cyclohexenone oxide solvated \(\mathrm{HNMe}_{3}{ }^{+}\)- boat conformation
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-792.158698043\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.389575 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.410536 \\
Thermal correction to Enthalpy \(=\) & 0.411481 \\
Thermal correction to Gibbs Free Energy= & 0.340531 \\
Sum of electronic and zero-point Energies \(=\) & -791.769123 \\
Sum of electronic and thermal Energies \(=\) & -791.748162 \\
Sum of electronic and thermal Enthalpies \(=\) & -791.747217 \\
Sum of electronic and thermal Free Energies \(=\) & -791.818168
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 257.615 & 78.264 & 149.327
\end{tabular}

C,0,-0.2344543639,-1.6417243369,0.6172851444
C,0,-0.1168587891,-2.5007787535,-0.6339883888
C,0,1.1426914434,-2.1712474397,-1.4380090983
С,0,2.4028361915,-2.2198899148,-0.5640747191
C,0,2.2826790632,-1.4657511336,0.7650902094
C,0,0.9978130702,-1.4067762334,1.375797298
O,0,3.3122039844,-0.9762063024,1.2775871989
O,0,-0.3789668505,-0.2162529839,0.3191021219
O,0,-1.6514291293,0.3716726854,-0.8324493538
C,0,-2.9188214282,0.5588298261,-0.2391155418
C, \(0,-3.5843163111,-0.778523639,0.1348438094\)
C,0,-2.8484185721,1.475654417,0.9950148369
C,0,-3.7467454216,1.2423510483,-1.3520387795
\(\mathrm{N}, 0,1.3562785577,1.7833838584,0.0277291672\)
C,0,2.0135623372,2.0365059198,1.3460223825
C, \(0,0.4437562818,2.8913372537,-0.3732113388\)
C,0,2.3677612813,1.5039570657,-1.0324555097
H,0,0.9277500431,-1.0201280097,2.385516762
```

H,0,-1.0807809395,-1.955884509,1.2322501642
H,0,-0.0981210496,-3.5502502367,-0.3143262915
H,0,-1.0095577258,-2.3580040896,-1.2476721879
H,0,1.2425918943,-2.8625182086,-2.2810713038
H,0,1.026058587,-1.1731138455,-1.871694609
H,0,2.6350309704,-3.2614565281,-0.3039810527
H,0,3.2803211377,-1.8392682136,-1.0943326775
H,0,-4.7631482482,1.4485215053,-1.0005825852
H,0,-3.2827840147,2.1866555846,-1.647030376
H,0,-3.8054116288,0.5975720183,-2.2316388503
H,0,-3.8336581012,1.595280874,1.4558552878
H,0,-2.1678829423,1.0502634259,1.7355740653
H,0,-2.4864363889,2.4693744716,0.7156146875
H,0,-4.6270369187,-0.6304332891,0.4330099641
H,0,-3.5627304668,-1.4592916308,-0.719622508
H,0,-3.0648733766,-1.2544173893,0.9688908487
H,0,0.7439575313,0.9113541845,0.1366157067
H,0,1.0336027615,3.7824152124,-0.5953340271
H,0,-0.1312788494,2.5673114728,-1.2384989152
H,0,-0.2427984485,3.0903325034,0.4463514818
H,0,2.6221384972,1.1676397012,1.6037771589
H,0,2.6302921232,2.934002044,1.2684136128
H,0,1.2371831253,2.1827978689,2.0953955792
H,0,3.0159470437,0.6985277036,-0.6932304798
H,0,1.8477420566,1.2157244907,-1.9447122946
H,0,2.9565606915,2.4059342088,-1.2085228964

```

\section*{TS for formation cyclohexenone oxide solvated \(\mathrm{HNMe}_{3}{ }^{+}\)- chair conformation PCM toluene}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-792.159199465\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.388790 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.410074 \\
Thermal correction to Enthalpy= & 0.411018 \\
Thermal correction to Gibbs Free Energy= & 0.338549 \\
Sum of electronic and zero-point Energies \(=\) & -791.770409 \\
Sum of electronic and thermal Energies \(=\) & -791.749126 \\
Sum of electronic and thermal Enthalpies \(=\) & -791.748182 \\
Sum of electronic and thermal Free Energies= \(=\) & -791.820650
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 257.325 & 78.576 & 152.524
\end{tabular}
\(\mathrm{C}, 0,1.9368699625,-0.2346554739,-0.9287237105\)
\(\mathrm{C}, 0,0.7278373341,-1.0451010309,-1.0971203824\)
\(\mathrm{C}, 0,0.779155368,-2.4542866121,-0.4705695507\)
\(\mathrm{C}, 0,2.1639383886,-2.8297476365,0.0728936908\)
\(\mathrm{C}, 0,2.7455468889,-1.702104077,0.9329426604\)
\(\mathrm{C}, 0,2.8510987039,-0.4011493458,0.1387141314\)
\(\mathrm{O}, 0,-0.1321531587,-0.1221146801,-0.3198882567\)
\(\mathrm{O}, 0,-1.8545240474,-0.014200008,-0.6524424781\)
\(\mathrm{C}, 0,-2.7219241107,-0.8041999103,0.1517689404\)
\(\mathrm{C}, 0,-2.2947538093,-0.8138008761,1.6269364202\)
\(\mathrm{O}, 0,3.7414934471,0.4347789811,0.4233466453\)
\(\mathrm{C}, 0,-4.0856764641,-0.08952796,0.0127661347\)
\(\mathrm{C}, 0,-2.8487176934,-2.234775925,-0.3985080319\)
\(\mathrm{~N}, 0,0.1249155083,2.5125626664,-0.0113457939\)
\(\mathrm{C}, 0,0.3690961541,3.1515170055,-1.3353170972\)
\(\mathrm{C}, 0,-1.1677569785,2.9696709664,0.5730601312\)
\(\mathrm{C}, 0,1.2685979874,2.7307768845,0.92632209\)
\(\mathrm{H}, 0,2.0697727059,0.6275005583,-1.5743349587\)
\(\mathrm{H}, 0,0.3341840293,-1.0583517436,-2.1174601362\)
\(\mathrm{H}, 0,0.0613455274,-2.4829705323,0.3516055423\)
\(\mathrm{H}, 0,0.449509962,-3.1964029743,-1.204045669\)
\(\mathrm{H}, 0,2.0937144047,-3.7591829857,0.6487087297\)
\(\mathrm{H}, 0,2.8477232111,-3.0252773042,-0.7608946831\)
\(\mathrm{H}, 0,2.1149132082,-1.5314960895,1.8155546111\)
\(\mathrm{H}, 0,3.746079089,-1.9458519756,1.3007053581\)
\(\mathrm{H}, 0,-3.0023213113,-1.391454632,2.2289785021\)
\(\mathrm{H}, 0,-1.3021872954,-1.250936269,1.7397732499\)
\(\mathrm{H}, 0,-2.2627829976,0.20458596,2.0236220465\)
\(\mathrm{H}, 0,-3.6107508886,-2.8003324809,0.1472476846\)
\(\mathrm{H}, 0,-3.1337169772,-2.2019065662,-1.4533691596\)
\(\mathrm{H}, 0,-1.9064114954,--2.7759055151,--0.3174148775\)
\(\mathrm{H}, 0,-4.8580726781,-0.6384516895,0.5609774229\)
\(\mathrm{H}, 0,-4.0316101483,0.9257125928,0.4127176505\)
\(\mathrm{H}, 0,-4.381912293,-0.0342445278,-1.0375251378\)
\(\mathrm{H}, 0,0.0500992486,1.4575890853,-0.1808923105\)
\(\mathrm{H}, 0,-1.9716438983,2.6891867213,-0.1036655993\)
\(\mathrm{H}, 0,-1.3147932003,2.4723980255,1.5298845927\)
\(\mathrm{H}, 0,-1.1356028543,4.0511215207,0.7168732961\)
\(\mathrm{H}, 0,-0.4420693442,2.8800675551,-2.0098330206\)
\(\mathrm{H}, 0,0.4093303993,4.2347226096,--1.2115487775\)
\(\mathrm{H}, 0,1.3154798676,2.7900573282,-1.7327022333\)
\(\mathrm{H}, 0,1.4056906744,3.8029007547,1.0779086279\)
\(\mathrm{H}, 0,1.0333172052,2.2498087723,1.8747244114\)
\(\mathrm{H}, 0,2.1699069747,2.2757647404,0.5147055525\)

\section*{TS for formation cyclohexenone oxide solvated \(\mathrm{HNMe}_{3}{ }^{+}\)- boat conformation PCM toluene}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-792.130485118\)} \\
\hline Zero-point correction \(=\quad 0.390\) & 0.390742 (Hartree/Particle) \\
\hline Thermal correction to Energy= 0.4 & 0.411920 \\
\hline Thermal correction to Enthalpy= 0. & 0.412864 \\
\hline Thermal correction to Gibbs Free Energy= & \(\mathrm{gy}=0.339080\) \\
\hline Sum of electronic and zero-point Energies= & gies \(=\quad-791.739743\) \\
\hline Sum of electronic and thermal Energies= & \(\mathrm{s}=\quad-791.718565\) \\
\hline Sum of electronic and thermal Enthalpies= & ies \(=\quad-791.717621\) \\
\hline Sum of electronic and thermal Free Energies= & ergies \(=\quad-791.791405\) \\
\hline
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 258.484 & 78.117 & 155.292
\end{tabular}

C,0,-3.062775385,-1.2321907158,0.680475729
С, \(,,-2.7533320876,-0.7982942604,-0.7564803\)
C, \(0,-1.4906131444,-1.1538003832,-1.3032394315\)
C, \(0,-0.3822015315,-1.6730840151,-0.4875160581\)
C,0,-0.754108067,-2.2605818473, 0.8671595879
С,0,-1.8338325074,-1.4393284875,1.5736057234
O,0,-3.6475657146,-0.2178489306,-1.4121683208
O,0,0.2275343731,-0.3634984058,-0.4043957481
O,0,1.7352514097,-0.2008486986,0.638292393
C,0,2.9339525212,-0.3782091574,-0.083520812
C,0,4.0418322196,-0.1678350986,0.9737048334
С,0,3.0591345931,-1.7954383623,-0.6697821171
C, \(0,3.0854074451,0.6639010648,-1.2052242097\)
\(\mathrm{N}, 0,-0.5820449037,2.1152693044,0.2518991413\)
C,0,0.227133834,2.5425753841,1.4308756904
С,0,-0.1422868783,2.8022093693,-0.9975590926
C, \(0,-2.0441113838,2.3111600873,0.4801484378\)
H,0,-1.3133836548,-0.9490899391,-2.3540534378
H,0,0.2919519791,-2.3411166448,-1.0290454646
H,0,-1.1119146872,-3.284996961,0.7007436101
H,0,0.1465570759,-2.3266529716,1.4832503404
H,0,-2.1269670389,-1.9262472129,2.5100106341
H,0,-1.4091347881,-0.4707417358,1.8621864059
H,0,-3.6243501901,-2.1734664693,0.5997863711
H,0,-3.7623877235,-0.5100053347,1.1129710344
H,0,4.0204267425,0.5285152759,-1.7581642258
H,0,2.2572594223,0.5774786529,-1.9123758307
```

H,0,3.0898332237,1.6778592704,-0.7916272947
H,0,4.0632419424,-1.9725705696,-1.0684537767
H,0,2.8607788713,-2.5445150734,0.1012381349
H,0,2.3495084811,-1.9451748518,-1.4861292858
H,0,5.0335105885,-0.260784558,0.5182095496
H,0,3.9627454274,0.8254527278,1.4230246497
H,0,3.9562556407,-0.9106484577,1.7701963026
H,0,-0.3892465453,1.0846090306,0.0943477429
H,0,-0.1484421189,2.0339586592,2.3171090279
H,0,1.2573820559,2.2389414178,1.2667697037
H,0,0.1402869764,3.6226176293,1.5561195452
H,0,-2.3352822518,1.7839297655,1.3864089707
H,0,-2.2457470909,3.3767907132,0.5960154916
H,0,-2.5997698311,1.9092038802,-0.3648627911
H,0,-0.3197087623,3.8739494752,-0.9017371864
H,0,0.9155156918,2.6062406437,-1.1510629669
H,0,-0.7115634238,2.4006453204,-1.8338837219

```
Int axAB3 DBU model - 6-31G*
\(\mathrm{E}(\) RB+HF-LYP \()=-962.827702437\)
Zero-point correction= 0.454296 (Hartree/Particle)
Thermal correction to Energy=
    0.478235
Thermal correction to Enthalpy= 0.479179
Thermal correction to Gibbs Free Energy= 0.400711
Sum of electronic and zero-point Energies= \(=962.373406\)
Sum of electronic and thermal Energies \(=\quad-962.349467\)
Sum of electronic and thermal Enthalpies \(=\quad-962.348523\)
Sum of electronic and thermal Free Energies= \(\quad-962.426991\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 300.097 & 90.765 & 165.151
\end{tabular}

C,0,-1.4206363323,2.4546982925,1.1473376434
C, \(0,-0.1227263744,2.2183812991,1.9253824503\)
C,0,1.1125726508,2.5952318564,1.0956916452
C, \(0,1.0884391421,2.1112076017,-0.3659298622\)
С,0,-0.154798348,1.8637645068,-0.9577603902
С,0,-1.4080938875,1.7377020934,-0.2006262174
O,0,2.2102109366,2.015469041,-0.9575486919
O,0,-1.5068216326,0.2449635562,0.0050508937
O,0,-2.7881115725,-0.1440113165,0.6985761463
C,0,-3.5850726499,-0.9746341532,-0.1645078802

C, \(0,-3.947991866,-0.249521605,-1.4661423143\)
C,0,-2.860933017,-2.2983535173,-0.4529145707
С,0,-4.8364489885,-1.2209406912,0.6916294782
H,0,-0.1830635543,1.6515774448,-2.025058952
H,0,-2.3014071251,2.0000476588,-0.77979941
\(\mathrm{H}, 0,-1.5459406389,3.5281172861,0.946789862\)
H,0,-2.2894605061,2.1281180453,1.7298582057
H,0,-0.1389389331,2.7798415542,2.8695637422
H,0,-0.0761509575,1.1570907642,2.1998421344
H,0,1.2185758808,3.6903628688,1.0637479573
H,0,2.034998381,2.2230397333,1.5614921136
H,0,-3.5002327971,-2.9769681387,-1.0295768432
H,0,-1.9477137972,-2.1236432626,-1.0298718369
H,0,-2.5903663896,-2.7948942868,0.4857544245
H,0,-4.6034898593,-0.8730781984,-2.0855138157
H,0,-4.4695262413,0.6887369911,-1.2497992241
H,0,-3.0469794491,-0.0197946526,-2.0417141522
H,0,-5.5413965696,-1.8683727542,0.1581239326
H,0,-4.567505383,-1.7044535562,1.6365278764
H,0,-5.3368705181,-0.2744688218,0.9194335905
H,0,0.1173214904,-0.6754868366,-0.6459951309
N,0,1.0794474142,-1.0288274897,-0.7485720637
C, \(0,1.7377642992,-0.7202387207,-2.0269589645\)
C,0,3.1613303641,-1.262797555,-2.0148250854
H,0,1.1358042342,-1.165644741,-2.8248939178
H,0,1.7668662481,0.3742588883,-2.1211518919
C,0,1.7205066168,-1.255065291,0.3851881955
N,0,3.0587904854,-1.3031641073,0.4343695162
C, \(0,3.7918466902,-1.5056718541,1.679593428\)
С,0,3.8345234094,-0.8071519404,-0.7225192335
H,0,4.7190997136,-2.0412879715,1.4575620898
H,0,4.0469016064,-0.5470964855,2.149896682
H,0,3.2137291549,-2.1050501705,2.3825356437
\(\mathrm{H}, 0,3.8522137681,0.2900504709,-0.6770592616\)
C,0,0.8870974484,-1.4952476306,1.6139519691
H,0,3.1793261397,-2.357792817,-2.0823381562
Н,0,3.7083479379,-0.8637997893,-2.8744143176
H,0,4.8487183701,-1.2058178015,-0.6336605895
H,0,0.9354025543,-2.5505448485,1.9075775135
H,0,1.2393514289,-0.8894102556,2.4526729355
H,0,-0.1517762823,-1.2292415319,1.4107180951
Int axAB3 DBU model - PCM Dichloroethane - 6-31G*
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-962.849221182\)

\(\mathrm{H}, 0,0.2439190671,-0.378083,-0.4094470854\)
\(\mathrm{~N}, 0,1.2268910671,-0.667037,-0.5231220854\)
\(\mathrm{C}, 0,1.8896850671,-0.252399,-1.7671870854\)
\(\mathrm{C}, 0,3.2346140671,-0.960515,-1.8850690854\)
\(\mathrm{H}, 0,1.2291610671,-0.537232,-2.5928470854\)
\(\mathrm{H}, 0,1.9774990671,0.843321,-1.7690530854\)
\(\mathrm{C}, 0,1.8326740671,-1.188247,0.5285689146\)
\(\mathrm{~N}, 0,3.1571660671,-1.371327,0.5487569146\)
\(\mathrm{C}, 0,3.8851750671,-1.932226,1.6856429146\)
\(\mathrm{C}, 0,3.9904410671,-0.87011,-0.5622730854\)
\(\mathrm{H}, 0,4.5099390671,-2.763056,1.3413149146\)
\(\mathrm{H}, 0,4.5324910671,-1.166722,2.1297429146\)
\(\mathrm{H}, 0,3.2043520671,-2.302473,2.4494439146\)
\(\mathrm{H}, 0,4.2812950671,0.166466,-0.3446700854\)
\(\mathrm{C}, 0,0.9710440671,-1.578795,1.7004449146\)
\(\mathrm{H}, 0,3.0897590671,-2.015683,-2.1468280854\)
\(\mathrm{H}, 0,3.8306260671,-0.499128,-2.6786480854\)
\(\mathrm{H}, 0,4.9000000671,-1.477316,-0.5886190854\)
\(\mathrm{H}, 0,1.0279550671,-2.658963,1.8746889146\)
\(\mathrm{H}, 0,1.2959760671,-1.069579,2.6132339146\)
\(\mathrm{H}, 0,-0.0693139329,-1.313794,1.5032999146\)

\section*{Int axAB3 DBU model - 6-31+G**}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-962.903855215\)
Zero-point correction= 0.450992 (Hartree/Particle)

Thermal correction to Energy= 0.475214

Thermal correction to Enthalpy= 0.476159

Thermal correction to Gibbs Free Energy= 0.396692
Sum of electronic and zero-point Energies \(=\quad-962.452864\)
Sum of electronic and thermal Energies \(=\quad-962.428641\)
Sum of electronic and thermal Enthalpies \(=\quad-962.427697\)
Sum of electronic and thermal Free Energies= \(=962.507163\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 298.202 & 91.600 & 167.251
\end{tabular}

C,0,-1.4582449036,2.4567701651,1.144188616
C,0,-0.1940555279,2.2001517827,1.9701795662
С,0,1.0820338396,2.5489416419,1.189051888
C,0,1.1011869844,2.0860728707,-0.2775048721
C,0,-0.1215522588,1.8719131649,-0.9216642196
C,0,-1.4019423315,1.7487319552,-0.2073481077

O,0,2.2464978037,1.9688847742,-0.8286752888 O,0,-1.5177639768,0.2487289513,-0.0158225888 O,0,-2.8130152534,-0.1351844247,0.649374237 C, \(0,-3.6137132952,-0.9474717739,-0.2356858915\) C, \(0,-3.9725746036,-0.1887535338,-1.5197511431\) C,0,-2.8934927969,-2.2659298481,-0.5560136309 С,0,-4.8671876108,-1.2108806222,0.6121226402 Н,0,-0.1142986061,1.669901427,-1.9904669454 H, \(0,-2.2705164409,2.0187483474,-0.8181681186\) H,0,-1.5638202321,3.5316553992,0.9426622822 H,0,-2.3513699517,2.1374992125,1.6920873943 H,0,-0.2344460978,2.7678415345,2.9092148801 H,0,-0.180235288, 1.1403635406,2.2513714247 H,0,1.221991022,3.639769506,1.1677902038
H,0,1.9748678972,2.1459617216,1.6845039638
H,0,-3.5417655423,-2.9270607029,-1.1418092837
H,0,-1.9863111865,-2.08216237,-1.1383126245
H,0,-2.6185671884,-2.7842575093,0.3687194077
H,0,-4.6263990737,-0.7989368738,-2.1528874247
Н,0,-4.4950566946,0.7432102733,-1.2826583898
H,0,-3.0718427512,0.053089214,-2.0899907715
H,0,-5.5701900427,-1.8409227469,0.0567939959
H,0,-4.603131523,-1.7216383154,1.5432504403
H,0,-5.3662423267,-0.2701458154,0.8627228287
H,0,0.1040109096,-0.7648035386,-0.5399136296
N,0,1.0718404662,-1.0845375857,-0.6760402151
C,0,1.6573224871,-0.8201778821,-1.997717022
C,0,3.0814747063,-1.3589469955,-2.045158221
H,0,1.0164674269,-1.2961096324,-2.7454168751
H,0,1.6655281432,0.2661754485,-2.1400321581
C,0,1.779269095,-1.244871127,0.4308939211
\(\mathrm{N}, 0,3.1175501111,-1.2765296596,0.4098883346\)
C,0,3.919380343,-1.3656249532,1.6282903143
C,0,3.8323925701,-0.856335814,-0.8153237949
H,0,4.8415052073,-1.9062638936,1.4011666468
H,0,4.1803871281,-0.3661507489,1.9975810404
H,0,3.3908417595,-1.9103319204,2.4090053867
H,0,3.8779609781,0.2407610996,-0.8213609679
C,0,1.017858089,-1.4301475019,1.7139493699
H,0,3.0932699774,-2.4554773143,-2.0731879216
H,0,3.5771514743,-0.9944788104,-2.9493681208
H,0,4.8405489828,-1.275592098,-0.7651121293
H,0,1.1344824126,-2.45522988,2.0820590016
H,0,1.3762830327,-0.7442235576,2.4847598485

Н,0,-0.0415147526,-1.2338038609,1.5439924266

\section*{Int axAB3 DBU model - PCM Dichloroethane - 6-31+G**}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-962.932821155\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.450061 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.474516 \\
Thermal correction to Enthalpy \(=\) & 0.475460 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.394258 \\
Sum of electronic and zero-point Energies \(=\) & -962.482760 \\
Sum of electronic and thermal Energies= & -962.458305 \\
Sum of electronic and thermal Enthalpies \(=\) & -962.457361 \\
Sum of electronic and thermal Free Energies \(=\) & -962.538563
\end{tabular}

```

H,0,-3.1904008888,-0.214303354,-2.0563712345
H,0,-4.8551865731,-2.8227300743,0.1447526398
H,0,-3.7642750374,-2.5722017397,1.5233335051
H,0,-4.9398343766,-1.3146217662,1.0789729531
H,0,0.2906997399,-0.3582911094,-0.327359847
N,0,1.2803641477,-0.6183850742,-0.4279150846
C,0,1.9694658929,-0.1762066098,-1.6472664216
C,0,3.2446886622,-0.9917893523,-1.8265660999
H,0,1.2813023711,-0.3281939011,-2.4835921043
H,0,2.1619473046,0.9011043089,-1.5781764892
C,0,1.8621813917,-1.2249784923,0.594097683
N,0,3.1738550304,-1.4793212018,0.597088524
C,0,3.879029033,-2.1119888367,1.7135237989
C,0,4.0306558048,-1.0279766316,-0.5196616508
H,0,4.4059693995,-3.0012408855,1.3532680681
H,0,4.6119948667,-1.4114057515,2.1286973859
H,0,3.1922485531,-2.4082580031,2.502550681
H,0,4.4387791039,-0.0387109014,-0.2724831904
C,0,0.9858070405,-1.6218597915,1.7507605146
H,0,2.998463997,-2.0154947978,-2.1328966478
H,0,3.8643786047,-0.5487175253,-2.6117652929
H,0,4.8685877206,-1.7274748351,-0.590048748
H,0,1.0075984194,-2.706707013,1.895360331
H,0,1.3239257592,-1.1475566042,2.6770632735
H,0,-0.0435951878,-1.3169430562,1.5585681596

```
tsaxAB3 DBU model - 6-31G*
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-962.824032082\)
\begin{tabular}{lc} 
Zero-point correction= & 0.452643 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.476337 \\
Thermal correction to Enthalpy \(=\) & 0.477281 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.399425 \\
Sum of electronic and zero-point Energies= & -962.371390 \\
Sum of electronic and thermal Energies= & -962.347695 \\
Sum of electronic and thermal Enthalpies \(=\) & -962.346751 \\
Sum of electronic and thermal Free Energies \(=\) & -962.424607
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 298.906 & 89.385 & 163.862
\end{tabular}

C,0,-1.4629132232,2.4728145391,0.8560201038
C,0,-0.1961960162,2.2595488381,1.6911625679
\(\mathrm{C}, 0,1.0580927611,2.7709771263,0.9701820124\)
\(\mathrm{C}, 0,1.1634130339,2.3122849699,-0.4931864917\)
\(\mathrm{C}, 0,-0.0499894486,2.1277344789,-1.2064038299\)
\(\mathrm{C}, 0,-1.2968166282,1.9763832407,-0.5617491825\)
\(\mathrm{O}, 0,2.3090097033,2.1730758071,-0.9915796256\)
\(\mathrm{O}, 0,-1.4350298739,0.1772618508,-0.4242454119\)
\(\mathrm{O}, 0,-2.3574642084,-0.4194265415,0.5572764899\)
\(\mathrm{C}, 0,-3.451433967,-1.0813106787,-0.1117877171\)
\(\mathrm{C}, 0,-4.2568224011,-0.0813998389,-0.9499058593\)
\(\mathrm{C}, 0,-2.921004792,-2.2276166493,-0.9832076809\)
\(\mathrm{C}, 0,-4.2884425508,-1.6178558557,1.0567265595\)
\(\mathrm{H}, 0,0.0188407183,1.9522085751,-2.2778479135\)
\(\mathrm{H}, 0,-2.18757031,2.0983259469,-1.1758112785\)
\(\mathrm{H}, 0,-1.7008904926,3.5466503885,0.8028019306\)
\(\mathrm{H}, 0,-2.3183097887,1.9755054957,1.3251252042\)
\(\mathrm{H}, 0,-0.3021610777,2.7422121568,2.6720726605\)
\(\mathrm{H}, 0,-0.0949430089,1.184798366,1.8818677933\)
\(\mathrm{H}, 0,1.0620436156,3.8718900889,0.964444933\)
\(\mathrm{H}, 0,1.9746045915,2.4649254293,1.489351663\)
\(\mathrm{H}, 0,-3.7421327384,-2.7606607291,-1.4764949011\)
\(\mathrm{H}, 0,-2.2521230795,-1.8310950249,-1.7518486499\)
\(\mathrm{H}, 0,-2.3634699809,-2.9471286934,-0.3719538264\)
\(\mathrm{H}, 0,-5.1237177365,-0.5692090399,-1.4110624211\)
\(\mathrm{H}, 0,-4.6182025538,0.7405846083,-0.3221768142\)
\(\mathrm{H}, 0,-3.6311773757,0.335167449,-1.7434189386\)
\(\mathrm{H}, 0,-5.1659723819,-2.157560235,0.6835982966\)
\(\mathrm{H}, 0,-3.6974688727,-2.3046871803,1.6725055582\)
\(\mathrm{H}, 0,-4.631600177,-0.7950406279,1.6926366944\)
\(\mathrm{H}, 0,-0.0046136263,-0.6327829355,-0.5639748955\)
\(\mathrm{~N}, 0,0.9952083098,-0.9859450311,-0.6142258788\)
\(\mathrm{C}, 0,1.7174075868,-0.733768598,-1.8679166275\)
\(\mathrm{C}, 0,3.1171903567,-1.3327912292,-1.7951916389\)
\(\mathrm{H}, 0,1.1277645548,-1.173354566,-2.6785096053\)
\(\mathrm{H}, 0,1.7887766332,0.3505182529,-2.009200717\)
\(\mathrm{C}, 0,1.5725665389,-1.2703807158,0.5330639641\)
\(\mathrm{~N}, 0,2.9097189865,-1.357042485,0.6479024158\)
\(\mathrm{C}, 0,3.589523248,-1.6040093125,1.9136207647\)
\(\mathrm{C}, 0,3.7534969029,-0.9024206096,-0.4756883902\)
\(\mathrm{H}, 0,4.4429086389,-2.2668472472,1.7383264112\)
\(\mathrm{H}, 0,3.9615837396,-0.66760766555,2.3496916202\)
\(\mathrm{H}, 0,2.9251316196,-2.0858628889,2.6294183161\)
\(\mathrm{H}, 0,3.8351269888,0.1918131669,-0.4377337949\)
\(\mathrm{C}, 0,0.6748487157,-1.5298257983,1.7143064994\)
\(\mathrm{H}, 0,3.0893692739,-2.4279075488,-1.8554055663\)
```

H,0,3.7178963792,-0.9646979619,-2.6323568935
H,0,4.7443616451,-1.3462693898,-0.3432677762
H,0,0.7723408682,-2.5718927906,2.0412410293
H,0,0.9367077738,-0.8844873624,2.5578728782
H,0,-0.3672405827,-1.3440677964,1.4424913024
2 nd tsaxAB3 DBU model - 6-31G*
E(RB+HF-LYP})=-962.822771071
Zero-point correction= 0.452274 (Hartree/Particle)
Thermal correction to Energy= 0.476067
Thermal correction to Enthalpy= 0.477011
Thermal correction to Gibbs Free Energy= 0.398497
Sum of electronic and zero-point Energies= -962.370497
Sum of electronic and thermal Energies= -962.346704
Sum of electronic and thermal Enthalpies= -962.345760
Sum of electronic and thermal Free Energies= -962.424274

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	298.736	89.428	165.246

C,0,-1.8042348647,2.3699884006,1.138601134
C,0,-0.3839926168,2.4379513141,1.7093511269
C,0,0.5507990684,3.2514924264,0.8043689148
C,0,0.4890272201,2.8713725298,-0.6831441008
C,0,-0.7458124322,2.3516325274,-1.1833257506
C,0,-1.813609273,1.8554570056,-0.2974398267
O,0,1.4873549036,3.0894371541,-1.401406958
O,0,-1.3060027221,0.5219837402,-0.4286528848
O,0,-2.1942635608,-0.7277042016,0.6197156565
C,0,-2.9483633404,-1.5875473961,-0.1960477023
C,0,-4.0363173742,-0.8159476809,-0.9673811679
C,0,-2.0523376633,-2.3604273809,-1.1853832709
C,0,-3.6167735755,-2.5772277932,0.7869288228
H,0,-0.8403789777,2.2070855856,-2.2546094101
H,0,-2.8233447397,1.9036974418,-0.7227299212
H,0,-2.2609330733,3.3703521047,1.1448706768
H,0,-2.434729336,1.7104792295,1.7442940329
H,0,-0.4005229215,2.8625505033,2.7215963068
H,0,0.001030035,1.4155423869,1.8075201008
H,0,0.2891363771,4.3191759604,0.8673201371
H,0,1.596238391,3.1766841936,1.1261453107
H,0,-2.6325570002,-3.0573907212,-1.8033227543

```
```

H,0,-1.5406804754,-1.6552979189,-1.8480448076
H,0,-1.2945698523,-2.9397223257,-0.6428567102
H,0,-4.6932913718,-1.4928027836,-1.5284308409
H,0,-4.6509135997,-0.2372738442,-0.2688509295
H,0,-3.5738310209,-0.121409487,-1.675509213
H,0,-4.244342575,-3.3022758436,0.2527574654
H,0,-2.8560426122,-3.1284987923,1.3511168129
H,0,-4.242967386,-2.0328310535,1.5014032794
H,0,0.2276384867,-0.0767626797,-0.3332745609
N,0,1.2082877106,-0.4479843183,-0.3808162472
C,0,1.9967846538,-0.0564030846,-1.5543248889
C,0,3.1661462614,-1.0186914222,-1.721953934
H,0,1.32186257,-0.0878600016,-2.4136315774
H,0,2.3134529515,0.9873715355,-1.4437363322
C,0,1.6629116965,-1.1499823642,0.6331500347
N,0,2.949079077,-1.5489558181,0.6821669575
C,0,3.5427102834,-2.232628502,1.8258247284
C,0,3.8919283033,-1.1827402623,-0.3889414841
H,0,3.9311091758,-3.2121470861,1.5222387773
H,0,4.3749523469,-1.6372164189,2.2204709793
H,0,2.8149452148,-2.3738723441,2.6215683927
H,0,4.4109068336,-0.2558887111,-0.1084058539
C,0,0.6935367639,-1.4983046835,1.7296832044
H,0,2.8075780634,-1.9971019858,-2.063388684
H,0,3.8632195904,-0.6389010906,-2.4747523082
H,0,4.6428803822,-1.9775332802,-0.4487097412
H,0,0.740247809,-2.5680777814,1.957484341
H,0,0.9345548443,-0.945462205,2.6450345173
H,0,-0.3333432729,-1.2537269779,1.4199359952

```

\section*{tsaxAB3BB DBU model - 6-31+G**}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-962.900689997\)
\begin{tabular}{lc} 
Zero-point correction= & 0.448927 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.473034 \\
Thermal correction to Enthalpy \(=\) & 0.473978 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.393922 \\
Sum of electronic and zero-point Energies= & -962.451763 \\
Sum of electronic and thermal Energies= & -962.427656 \\
Sum of electronic and thermal Enthalpies \(=\) & -962.426712 \\
Sum of electronic and thermal Free Energies \(=\) & -962.506767
\end{tabular}

E (Thermal) CV S
\(\mathrm{KCal} / \mathrm{Mol} \quad \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin} \quad \mathrm{Cal} /\) Mol-Kelvin
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{42}{*}{}} \\
\hline & & \\
\hline
\end{tabular}
```

H,0,2.986061472,-2.1735118,2.6189192738
H,0,4.0692030571,-0.0625343056,-0.4726431123
C,0,0.7541615932,-1.4711237679,1.7682271053
H,0,2.9099277742,-2.4988533668,-1.9382875981
H,0,3.6716338314,-1.084637226,-2.6827007651
H,0,4.7215419358,-1.7188866071,-0.4570392855
H,0,0.7999152532,-2.5124453954,2.1045436307
H,0,1.0790348615,-0.8318403943,2.5939093135
H,0,-0.2817305511,-1.2287322208,1.5233022172
2nd tsaxAB3BB DBU model - 6-31+G**
E(RB+HF-LYP})=-962.899796469

Zero-point correction=	0.448861 (Hartree/Particle)
Thermal correction to Energy $=$	0.472906
Thermal correction to Enthalpy=	0.473851
Thermal correction to Gibbs Free Energy=	0.394685
Sum of electronic and zero-point Energies=	-962.450936
Sum of electronic and thermal Energies=	-962.426890
Sum of electronic and thermal Enthalpies $=$	-962.425946
Sum of electronic and thermal Free Energies=	-962.505111

Total 296.753 90.250 166.617
E (Thermal) CV S
C,0,-1.8219827801,2.3823585275,1.1462088355
C,0,-0.4156148268,2.4411258503,1.7518379648
C,0,0.5554356974,3.2309034465,0.8627129178
C,0,0.5151794587,2.8506501478,-0.621612318
C,0,-0.7105713871,2.3392113272,-1.1500931434
C,0,-1.8017717058,1.8545671761,-0.2849642409
O,0,1.5315802475,3.0614109454,-1.324670067
O,0,-1.2986139381,0.5102917624,-0.393956698
O,0,-2.2189012045,-0.7479856594,0.614420005
C,0,-2.9888493337,-1.5840769457,-0.2188377536
C,0,-4.0574918617,-0.784168955,-0.9886287205
C,0,-2.1013114923,-2.3649753096,-1.2103288916
C,0,-3.6822130683,-2.5727895219,0.7485617675
H,0,-0.7844200871,2.1942786156,-2.2227607118
H,0,-2.7990936572,1.9060790641,-0.7364103457
H,0,-2.2673869635,3.3872117146,1.1263834775
H,0,-2.4749814032,1.739527889,1.7454569875
H,0,-0.4535587394,2.8825543322,2.7556215971

```
```

H,0,-0.0479560805,1.4159291889,1.8761823727
H,0,0.3164101837,4.3040024772,0.9111439803
H,0,1.5914916942,3.1352604448,1.2065002073
H,0,-2.6943918386,-3.0478822972,-1.8307260026
H,0,-1.5776544551,-1.6667644039,-1.8703243217
H,0,-1.3560039244,-2.9584616106,-0.6677959596
H,0,-4.7159313508,-1.4464973481,-1.5637728681
H,0,-4.671665326,-0.2075511399,-0.2889878523
H,0,-3.5793812377,-0.0886016749,-1.6843716455
H,0,-4.3145406859,-3.2785315298,0.1954065035
H,0,-2.9359047259,-3.1429064119,1.3116873595
H,0,-4.3072617777,-2.0272093908,1.4620314967
H,0,0.2230765291,-0.1228763956,-0.3694814517
N,0,1.2043917438,-0.4910396697,-0.4232255109
C,0,1.973806336,-0.136033782,-1.6215586093
C,0,3.1701871636,-1.0710249585,-1.7551124294
H,0,1.2972771389,-0.2265693112,-2.4751168868
H,0,2.2674246682,0.9186540382,-1.5591708398
C,0,1.684762426,-1.1390647452,0.6157976327
N,0,2.9785688206,-1.5143441198,0.6668379083
C,0,3.5962498696,-2.138078906,1.8338663627
C,0,3.9063210791,-1.15403764,-0.4206971312
H,0,4.0620114257,-3.0872081152,1.5468070695
H,0,4.3718813432,-1.4792757002,2.2423053772
H,0,2.8633961928,-2.3308705297,2.6130693723
H,0,4.3877450513,-0.1964933515,-0.1799171636
C,0,0.7355242184,-1.4560918284,1.7382087182
H,0,2.8407046148,-2.0736376473,-2.0521315875
H,0,3.850476152,-0.7020248989,-2.52766326
H,0,4.6866295079,-1.9206922282,-0.4517060626
H,0,0.7650740752,-2.5243860436,1.9735224742
H,0,1.0076372518,-0.9009510248,2.6421618275
H,0,-0.2903071248,-1.1969998708,1.4482583879
Int axBB3 DBU model - 6-31G*
E(RB+HF-LYP})=-962.826959810

```

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies=
0.454082 (Hartree/Particle)
0.477971
0.478915
0.400278
-962.372878
-962.348989
-962.348044

Sum of electronic and thermal Free Energies= -962.426682

\author{
E (Thermal) CV S \\ \(\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin} \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}\) \\ \begin{tabular}{llll} 
Total & 299.932 & 90.708 & 165.507
\end{tabular} \\ C,0,-1.2067163348,2.431667423,1.1759262679 \\ C,0,0.1051717461,2.1348452451,1.9078141346 \\ C,0,1.3194110069,2.4973336256,1.0432149439 \\ C,0,1.2394586156,2.0116624067,-0.4153035152 \\ C,0,-0.0252489134,1.7852805507,-0.9632974225 \\ C,0,-1.268460059,1.7317257703,-0.1796618544 \\ O,0,2.3452101904,1.9012684967,-1.0404310551 \\ O,0,-1.4831496916,0.2494140858,0.0139533037 \\ O,0,-2.7738958304,-0.0278955009,0.7281728434 \\ C,0,-3.656581105,-0.7891131164,-0.1155230659 \\ C,0,-3.9913425533,-0.0339738898,-1.4075630559 \\ C, \(0,-3.0511061386,-2.1671593573,-0.4220168528\) \\ C,0,-4.901703815,-0.9345382964,0.7721123587 \\ H,0,-0.0944969375,1.5819980488,-2.0296873881 \\ H,0,-2.1520716112,2.0668195181,-0.7364209399 \\ H,0,-1.2919897453,3.5122817285,0.9931213409 \\ H,0,-2.0700657648,2.1350353364,1.7815988568 \\ H,0,0.1375478415,2.6725726007,2.8653225607 \\ H,0,0.1282128116,1.0647424501,2.1550176397 \\ H,0,1.4361025919,3.5913934839,1.0095644743 \\ H,0,2.2534218561,2.117337644,1.4789320108 \\ H,0,-3.7672560933,-2.7970153004,-0.9625275333 \\ H,0,-2.1546256655,-2.069849649,-1.0419725692 \\ H,0,-2.7780309667,-2.6767148263,0.50880688 \\ H,0,-4.7060709901,-0.6032641266,-2.0135584295 \\ H,0,-4.4341951992,0.9409599187,-1.1785268304 \\ H,0,-3.0879118387,0.1275186719,-2.002210467 \\ H,0,-5.6740047055,-1.5127928129,0.2527102528 \\ Н,0,-4.6514323522,-1.4489269151,1.7057550999 \\ \(\mathrm{H}, 0,-5.3115699641,0.0495516431,1.020434016\) \\ H,0,-0.0192906747,-0.9449555272,-0.5083194642 \\ \(\mathrm{N}, 0,0.8422030746,-1.4244315088,-0.2173850928\) \\ C,0,0.8787909071,-1.7923298652,1.20009444001 \\ C,0,2.1715984222,-1.2891401506,1.8329599357 \\ Н,0,-0.0039835847,-1.345666465,1.6621216356 \\ H,0,0.7980872552,-2.8833248004,1.2893693614 \\ C,0,1.9244192631,-1.1514639598,-0.9404394659 \\ N,0,3.1548638815,-1.316549686,-0.4463474227
}
```

C,0,4.311117073,-0.7536180498,-1.1617608352
C,0,3.359712071,-1.6965528327,0.9660467986
H,0,4.251635778,0.3407346424,-1.1236574648
H,0,5.2219932531,-1.1118370367,-0.6796490079
H,0,4.3267785761,-1.0849197928,-2.2013812913
H,0,3.5340283478,-2.779609651,1.0179706449
C,0,1.7346210618,-0.6607636165,-2.3398749572
H,0,2.1389945663,-0.1988504911,1.9154472764
H,0,2.2922399906,-1.7036423242,2.8387365751
H,0,4.2681620751,-1.1979502715,1.3119431995
H,0,2.0185734999,0.4082170465,-2.3394219942
H,0,2.3571607716,-1.2276533942,-3.0384162392
H,0,0.6904233531,-0.7607889584,-2.6349022198

```

Int axBB3 DBU model - PCM Dichloroethane - 6-31G*
\(\mathrm{E}(\) RB+HF-LYP \()=-962.848186241\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.452581 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.476230 \\
Thermal correction to Enthalpy \(=\) & 0.477174 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.393389 \\
Sum of electronic and zero-point Energies \(=\) & -962.395605 \\
Sum of electronic and thermal Energies= & -962.371956 \\
Sum of electronic and thermal Enthalpies \(=\) & -962.371012 \\
Sum of electronic and thermal Free Energies \(=\) & -962.454798
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 298.839 & 88.961 & 176.342
\end{tabular}

C,0,-1.5330261807,2.6225550746,0.568744156
C, \(0,-0.1526766138,2.666603433,1.2291589434\)
C, \(0,0.9272858089,3.0855628333,0.2246995255\)
C,0,0.8484698801,2.3742417054,-1.1378544077
С,0,-0.3626091488,1.7988954132,-1.5159586656
C, \(0,-1.5460025521,1.6873584873,-0.6408969193\)
O,0,1.9051708086,2.4008003745,-1.856207202
O,0,-1.5127491339,0.2607458612,-0.1926985085
O,0,-2.7243057822,-0.073752388,0.6148172858
C,0,-3.4614606428,-1.1315324358,-0.0376772711
C,0,-3.9237298657,-0.708312372,-1.436706199
C,0,-2.6150195335,-2.4105463017,-0.0971715466
C,0,-4.6604713847,-1.3170457198,0.902740239
H,0,-0.4251267028,1.3494605377,-2.5069640259
```

H,0,-2.4975085601,1.7857413989,-1.1802364355
H,0,-1.8095464768,3.6282386801,0.2195358085
H,0,-2.3031209993,2.3058694768,1.2812403497
H,0,-0.1625364807,3.343687272,2.0941513154
H,0,0.0805807439,1.6669782477,1.6193946221
H,0,0.8617936371,4.1696125131,0.0372542239
H,0,1.9329812853,2.9140580606,0.6306775704
H,0,-3.2004980279,-3.2450638394,-0.499757965
H,0,-1.7413022002,-2.2659446518,-0.7389872612
H,0,-2.2700753309,-2.6844207286,0.9063305309
H,0,-4.5312873634,-1.4976429319,-1.8943906911
Н,0,-4.5281727728,0.2035491964,-1.3835774341
H,0,-3.0625109023,-0.5195169586,-2.0837005758
H,0,-5.314856888,-2.1111065212,0.5268881528
H,0,-4.3253642843,-1.5923147376,1.908493343
Н,0,-5.2426950373,-0.3920848894,0.9727669559
H,0,0.1775945384,-0.5477245296,-0.0237979222
$\mathrm{N}, 0,1.0191972965,-0.9981517209,0.3611709348$
C,0,1.0135786091,-1.2986171156,1.7928498166
C,0,2.3952658723,-1.002985904,2.3651279825
H,0,0.2353715502,-0.6863450958,2.2542616198
H,0,0.7464134404,-2.3528075083,1.9443473627
C,0,2.0917726467,-1.1114259029,-0.4119399513
$\mathrm{N}, 0,3.2591810643,-1.5233001179,0.0913126797$
C,0,4.4408509437,-1.7439121497,-0.7525773867
C,0,3.4513692986,-1.7354361623,1.54432933
H,0,4.8777816177,-0.7952827937,-1.08307371
H,0,5.1805885306,-2.2843894358,-0.1599264428
H,0,4.1971986791,-2.3547911895,-1.6241432481
H,0,3.429953763,-2.8148014023,1.7435476613
С,0,1.9537714649,-0.7382335745,-1.85513663
H,0,2.5826560693,0.0766905137,2.3389554326
H,0,2.4582955634,-1.3295357674,3.4077880795
H,0,4.4506766736,-1.3678605227,1.7975559353
H,0,2.1880369212,0.3353705784,-1.9866931703
H,0,2.5999168651,-1.338039816,-2.4972139783
H,0,0.91697487,-0.8747869162,-2.1657901012

```

Int axBB3 DBU model - 6-31+G**
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-962.826959810\)

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
0.454082 (Hartree/Particle)
0.477971
0.478915
\begin{tabular}{lc} 
Thermal correction to Gibbs Free Energy \(=\) & 0.400278 \\
Sum of electronic and zero-point Energies \(=\) & -962.372878 \\
Sum of electronic and thermal Energies= & -962.348989 \\
Sum of electronic and thermal Enthalpies \(=\) & -962.348044 \\
Sum of electronic and thermal Free Energies \(=\) & -962.426682
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
\hline Total & 299.932 & 90.708 & 165.507 \\
\hline C, \(0,-1\) & 33962,2.528708 & 1345,1.2127140 & \\
\hline C, \(0,-0\) & 54839,2.233 & 54834,2.10132001 & \\
\hline C,0,1. & 269527,2.467 & 2819,1.336641310 & \\
\hline C,0,1. & 265512,1.8581 & 56007,-0.0717309 & \\
\hline C, \(0,-0\) & 466131,1.55685 & 596676,-0.70298 & \\
\hline C, \(0,-1\) & 25209,1.666 & 30378,-0.05178 & \\
\hline O,0,2. & 038391,1.6628 & \(71966,-0.59133987\) & 712 \\
\hline O,0,-1 & 013778,0.262 & 087707,0.2784477 & 647 \\
\hline O, \(0,-3\) & 723363,0.212 & 64737,0.765819 & 772 \\
\hline C,0,-3 & 896104,-0.755 & 238036,-0.00887 & 5677 \\
\hline C, \(0,-3\) & 612691,-0.349 & 150231,-1.48753 & 8072 \\
\hline C, \(0,-3\) & 92952,-2.1532 & \(73433,0.16165053\) & \\
\hline C,0,-5 & 373954,-0.690 & 426399,0.63311 & \\
\hline H, \(0,-0\) & 446541,1.338 & 999832,-1.769875 & 925 \\
\hline H, \(0,-2\) & 765263,2.006 & 700659,-0.745467 & 896 \\
\hline H, \(0,-1\) & 39574,3.5822 & 56211,0.9000091604 & \\
\hline H, \(0,-2\) & 662317,2.363 & 704138,1.75495946 & 663 \\
\hline H, \(0,-0\) & 605,2.854852 & 76,3.0059630155 & \\
\hline H, \(0,-0\) & 471075,1.189 & 1868,2.43577880 & \\
\hline H,0,1. & 527412,3.5468 & 26275,1.2102133 & \\
\hline H,0,1. & 115026,2.0944 & 39299,1.8960891 & \\
\hline H, \(0,-3\) & 833823,-2.905 & 380915,-0.35282 & 0424 \\
\hline H,0,-2 & 921272,-2.182 & 916389,-0.25556 & 5752 \\
\hline H, \(0,-3\) & 725078,-2.415 & 385705,1.223166 & \\
\hline H,0,-4 & 666053,-1.065 & \(332523,-2.05681\) & 9527 \\
\hline H, \(0,-4\) & 963205,0.642 & 42619,-1.595980 & 399 \\
\hline H,0,-2 & 340381,-0.32630 & 022565,-1.91826 & 1473 \\
\hline H,0,-6 & 840877,-1.39708 & 844335,0.137957 & 186 \\
\hline H, \(0,-5\) & 721538,-0.946 & 887158,1.695699 & 385 \\
\hline H, \(0,-5\) & 99792,0.3151 & 2849,0.5398943 & \\
\hline H, \(0,0\). & 206757,-0.461 & 39758,-0.820288 & \\
\hline N, \(0,1\). & 664249,-1.167 & 685427,-0.607203 & 041 \\
\hline C,0,1. & 6683168,-1.69139 & 52308,0.7606199 & \\
\hline C,0,2. & 689988,-1.28026 & 18628,1.52913807 & \\
\hline
\end{tabular}
```

H,0,0.2384077384,-1.289991843,1.2109642812
H,0,1.0585668346,-2.784468965,0.7179904972
C,0,2.3723500861,-0.9608262156,-1.2275183685
N,0,3.5302687182,-1.3583835555,-0.6836987715
C,0,4.8090566902,-1.1822360847,-1.3707047436
C,0,3.6362613099,-1.7142937366,0.7469036799
H,0,5.227762998,-0.1904701404,-1.1618175486
H,0,5.5026637265,-1.9469348184,-1.0114864728
H,0,4.6979733533,-1.3053157235,-2.4469201955
H,0,3.7984656464,-2.7978574755,0.823858118
C,0,2.3396673299,-0.4207444288,-2.6264740878
H,0,2.4103826857,-0.1942334083,1.651893565
H,0,2.4179426757,-1.741581586,2.5212294349
H,0,4.5284829088,-1.2153192246,1.1391247253
H,0,3.0104316557,0.4328693729,-2.7225094955
H,0,2.6161812896,-1.2077633771,-3.3393197367
H,0,1.3317636021,-0.0839620119,-2.8616428741

```
Int axBB3 DBU model - PCM Dichloroethane - 6-31+G**
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-962.931089719\)
Zero-point correction \(=\quad 0.449743\) (Hartree/Particle)
Thermal correction to Energy= 0.473420
Thermal correction to Enthalpy= 0.474365
Thermal correction to Gibbs Free Energy= 0.394307
Sum of electronic and zero-point Energies \(=\quad-962.481347\)
Sum of electronic and thermal Energies \(=\quad\)-962.457669
Sum of electronic and thermal Enthalpies \(=\quad-962.456725\)
Sum of electronic and thermal Free Energies= \(\quad-962.536783\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & \(\mathrm{Cal} /\) Mol-Kelvin \\
Total & 297.076 & 89.538 & 168.496
\end{tabular}

C,0,-1.741169548,2.2290685591,1.250781529
C, \(0,-0.3280909787,2.2753478861,1.8392151158\)
C,0,0.6278562758,3.0631328082,0.9334341713
C, \(0,0.5140927528,2.7319056343,-0.5603410619\)
C,0,-0.6487852163,2.1329626651,-1.0295749561
C,0,-1.7441823064,1.6449526065,-0.161744119
O,0,1.5094179811,3.0769204893,-1.3049766911
O,0,-1.5209488781,0.1614895177,-0.1175954231
O,0,-2.6327238517,-0.5200652983,0.605185073
C,0,-3.3076604954,-1.4447690586,-0.2878162667

C, \(0,-3.9182111454,-0.7103435863,-1.4870967509\)
C, \(0,-2.3405522813,-2.5460223661,-0.7419452467\)
C,0,-4.4047862342,-2.022515475,0.6166346912
H,0,-0.7302887866,1.9397949571,-2.0988712748
H,0,-2.7358134957,1.7597685249,-0.6158672303
H,0,-2.1525842956,3.246795331,1.1902201181
H,0,-2.4151961785,1.6463577792,1.8880139124
H, \(0,-0.3484546573,2.711521664,2.8464562356\)
H,0,0.0399507872,1.2478820573,1.9533446816
H,0,0.4393057811,4.1429282234,1.0403873333
H,0,1.6717842472,2.9091306664,1.2343252533
H,0,-2.8694907253,-3.2965155533,-1.3392675507
H,0,-1.5380178131,-2.127967474,-1.3555575181
H,0,-1.8962205179,-3.0457672651,0.1251428725
Н,0,-4.4657616162,-1.4159768238,-2.121497683
H,0,-4.6166118922,0.0633205504,-1.1521653746
H,0,-3.1377422516,-0.2413831461,-2.091765724
H,0,-4.995217383,-2.7575089257,0.0597254652
H,0,-3.968027274,-2.5198117639,1.4885909863
H,0,-5.0762996867,-1.2316219896,0.9649534276
H,0,0.2195666583,-0.5342456268,-0.0144913211
\(\mathrm{N}, 0,1.1301095981,-0.9562930468,0.2123338489\)
C, \(0,1.28103157,-1.5713895248,1.5337410231\)
C,0,2.7004161334,-1.3333251401,2.0375637266
H,0,0.5354125747,-1.1267969233,2.1967667141
H,0,1.0678632633,-2.6458212807,1.4614969094
C,0,2.1306860139,-0.7927466536,-0.643905482
\(\mathrm{N}, 0,3.369864175,-1.1931198143,-0.3480253829\)
C,0,4.4669183093,-1.0840167522,-1.3223814823
C,0,3.7032331163,-1.7693815689,0.9746973456
H,0,4.6891051693,-0.0380317687,-1.5538855917
Н, \(0,5.3537691199,-1.5399710742,-0.8823715397\)
H,0,4.2326831608,-1.6200362319,-2.2457237614
H,0,3.7336318371,-2.8630979111,0.8826777026
С,0,1.8344464098,-0.125758832,-1.952239398
H,0,2.8404987028,-0.271131587,2.267926576
H,0,2.8781132166,-1.9007994432,2.9558633668
H,0,4.7075096784,-1.4259783056,1.2375593099
H,0,2.0523280374,0.9524100043,-1.8828258702
H,0,2.4143129054,-0.5621901869,-2.7662351989
H,0,0.7726587583,-0.218731329,-2.178125193
tsaxBB3 DBU model - 6-31G*
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-962.823755913\)

```

H,0,-0.1643856493,-0.8254250259,-0.2174972522
N,0,0.7237334473,-1.3472910854,0.0533098507
C,0,0.8218397645,-1.7721837944,1.4477603755
C,0,2.1363057511,-1.2824899987,2.0498377465
H,0,-0.0487864969,-1.3680175481,1.9690410997
H,0,0.7584526082,-2.8677052044,1.4959668364
C,0,1.7841034895,-1.1544911675,-0.7132422238
N,0,3.0307164782,-1.3693270107,-0.2699807244
C,0,4.1888401923,-0.9616583581,-1.0760456003
C,0,3.2978526654,-1.6895101957,1.1459964178
H,0,4.285513571,0.1299938066,-1.0550791255
H,0,5.081658821,-1.432580136,-0.6597088111
H,0,4.081597759,-1.2957040665,-2.1089514309
H,0,3.5047549932,-2.7649500428,1.2303490602
C,0,1.5618374654,-0.7173229488,-2.1300193533
H,0,2.1098181173,-0.1924326648,2.1439863677
H,0,2.2868059353,-1.7037640713,3.0488816607
H,0,4.206166308,-1.1551324043,1.4386346539
H,0,2.028561694,0.2652912465,-2.2753174694
H,0,1.9944762056,-1.4493166316,-2.8213576141
H,0,0.4932535204,-0.631200695,-2.3209208291

```
tsAxBB3BB DBU model - 6-31+G**
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-962.900565519\)
Zero-point correction= 0.449017 (Hartree/Particle)
Thermal correction to Energy= 0.472991
Thermal correction to Enthalpy \(=\quad 0.473936\)
Thermal correction to Gibbs Free Energy= 0.395050
Sum of electronic and zero-point Energies= -962.451548
Sum of electronic and thermal Energies \(=\quad-962.427574\)
Sum of electronic and thermal Enthalpies \(=\quad-962.426630\)
Sum of electronic and thermal Free Energies= \(\quad-962.505515\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 296.807 & 90.216 & 166.028
\end{tabular}

C,0,-1.2821683242,2.4586358971,1.0046404393
C,0,-0.0255535369,2.1515352691,1.8262298902
C,0,1.2533372487,2.6002155145,1.1049068617
C,0,1.3237373468,2.1719955113,-0.3689097871
C,0,0.0998825183,2.0645583954,-1.0742168644
C,0,-1.1586700919,1.9765505126,-0.423333971

O,0,2.4632811664,1.9896282859,-0.8807577027
O, \(0,-1.4186798123,0.2182236543,-0.3373623056\)
O,0,-2.5063657303,-0.2845626934,0.5236506515
C, \(0,-3.5821988637,-0.8412703966,-0.2672679799\)
С,0,-4.2030866121,0.2272576726,-1.1760925359
C,0,-3.0777182552,-2.0365655703,-1.0871729437
С,0,-4.5827883372,-1.2955151578,0.8044568939
H,0,0.1485483996,1.9159863111,-2.1494013046
H,0,-2.0357505632,2.1907499411,-1.0315991666
H,0,-1.4479625491,3.5458927729,0.9665294601
H,0,-2.1672064926,2.0132434242,1.4702481778
H,0,-0.0945117221,2.6236081242,2.8148497613
H,0,0.0114294528,1.0693487918,2.0004699912
H,0,1.3235270781,3.6981538535,1.1165694517
H,0,2.1537499064,2.2345155477,1.6123900945
H,0,-3.9010211156,-2.502847771,-1.6397524461
H,0,-2.3212507726,-1.7098752484,-1.8054038998
H,0,-2.6334870216,-2.7912475278,-0.4291620269
H,0,-5.0691313044,-0.1793268621,-1.7104400442
H,0,-4.5354641935,1.0865766562,-0.5847972889
H,0,-3.4751838731,0.5711984112,-1.9151313076
H,0,-5.4593368377,-1.7531858754,0.3336970373
H,0,-4.1250725583,-2.0316849689,1.4729418002
H,0,-4.9170902384,-0.4444213141,1.405755524
H,0,-0.1399398818,-0.7744922029,-0.1368332921
N,0,0.7510559734,-1.2993871062,0.1118918967
C,0,0.9096782107,-1.7024472831,1.5079533966
C,0,2.2599823538,-1.2210075828,2.0327129835
H,0,0.0757334359,-1.2750806512,2.0681707729
H,0,0.8324275942,-2.7956022616,1.5798267436
C,0,1.7795557853,-1.1812990971,-0.7120069417
\(\mathrm{N}, 0,3.0339359986,-1.4500860108,-0.3205791457\)
C,0,4.177182884,-1.2084878605,-1.2080970777
C,0,3.3698225619,-1.6922239895,1.0974978187
H,0,4.4338016067,-0.1429715211,-1.2138577482
H,0,5.0244771596,-1.7928209071,-0.8433171787
H,0,3.9583032781,-1.5310596753,-2.2254095104
H,0,3.5733488805,-2.7630670467,1.2305463598
C, \(0,1.5136570346,-0.7638713741,-2.1265876072\)
H,0,2.2608288624,-0.1281911352,2.0829419519
H,0,2.4443524541,-1.6056942988,3.040248207
H,0,4.29547561,-1.1493476981,1.3101989031
H,0,2.0255132823, 0.1852784632,-2.3198833167
H,0,1.8676652097,-1.5317446761,-2.8220356339

H,0,0.4444865814,-0.6202555765,-2.2700699268
tsaxAB3PCM DBU model - PCM dichloroethane - 6-31G*
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-962.924991813\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.450769 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.474956 \\
Thermal correction to Enthalpy \(=\) & 0.475900 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.395556 \\
Sum of electronic and zero-point Energies \(=\) & -962.392509 \\
Sum of electronic and thermal Energies \(=\) & -962.368322 \\
Sum of electronic and thermal Enthalpies \(=\) & -962.367378 \\
Sum of electronic and thermal Free Energies= & -962.447722
\end{tabular}
\begin{tabular}{lcc} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 298.039 & 89.885
\end{tabular}
```

H,0,-3.5527920793,-0.2392179573,-1.7433490244
H,0,-4.2773510793,-3.3435199573,0.3309279756
H,0,-2.8102510793,-3.1875249573,1.3191889756
H,0,4.1336230793,-2.0168619573,1.5050729756
H,0,0.1609189207,-0.2744569573,-0.3481490244
N,0,1.2154259207,-0.4625789573,-0.4163110244
C,0,1.9205329207,0.1756090427,-1.5305310244
C,0,3.1670589207,-0.6313899573,-1.8760960244
H,0,1.2212039207,0.2179450427,-2.3704890244
H,0,2.1665559207,1.2104720427,-1.2637940244
C,0,1.8072489207,-1.2164269573,0.4866759756
N,0,3.1290859207,-1.4453549573,0.4610029756
C,0,3.8401389207,-2.2238829573,1.4733259756
C,0,3.9786989207,-0.8899849573,-0.6101460244
H,0,4.1844669207,-3.1757939573,1.0514539756
H,0,4.7134019207,-1.6549009573,1.8102069756
H,0,3.2089089207,-2.4241569573,2.3367079756
H,0,4.4494779207,0.0329140427,-0.2447480244
C,0,0.9427739207,-1.8192599573,1.5621749756
H,0,2.8793999207,-1.5872599573,-2.3304050244
H,0,3.7838329207,-0.0898659573,-2.6001580244
H,0,4.7760929207,-1.6153349573,-0.8031950244
H,0,1.0880729207,-2.9031639573,1.6143229756
H,0,1.1960099207,-1.3977679573,2.5417589756
H,0,-0.1095320793,-1.6126849573,1.3509389756
2nd
E(RB+HF-LYP})=-962.843032970

Zero-point correction=	0.451265 (Hartree/Particle)
Thermal correction to Energy $=$	0.475487
Thermal correction to Enthalpy $=$	0.476431
Thermal correction to Gibbs Free Energy $=$	0.395373
Sum of electronic and zero-point Energies=	-962.391768
Sum of electronic and thermal Energies $=$	-962.367546
Sum of electronic and thermal Enthalpies $=$	-962.366602
Sum of electronic and thermal Free Energies $=$	-962.447660

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	298.373	89.913	170.601

C,0,-0.50643307,3.2851330347,1.0648385358 C,0,-0.7731215932,3.1075300184,-0.4350697994 C,0,-1.7944834285,2.192213975,-0.8318389411
C, $0,-2.4066979846,1.2271658215,0.1058826463$
O,0,-0.1539008576,3.8342335051,-1.2459352112
O,0,-1.4705831786,0.2745803894,-0.3621627465
O,0,-1.6927366278,-1.4018379147,0.5478164015
C, $0,-2.1648355868,-2.3618536822,-0.3579673103$
C, $0,-3.5500500419,-1.9712981275,-0.9135096779$
C, $0,-1.179866986,-2.5767242595,-1.5266737334$
С,0,-2.2928062424,-3.6728421648,0.4549449948
H,0,-2.0570603292,2.142280787,-1.8848031198
H,0,-3.4297805753,0.9240151179,-0.1510580791
H,0,-3.0579011607,2.2990125823,1.8397243563
H,0,-2.5087829849,0.6443767366,2.1603420942
H,0,-0.8613431993,2.378899615,3.0051540558
H,0,-0.1639678312,1.2871774089,1.8186168069
H,0,-1.0786257124,4.1748411859,1.3735903598
H,0,0.5505480288,3.5491895804,1.1922137754
H,0,-1.5337396059,-3.3471095637,-2.2242043614
H,0,-1.0542449255,-1.6404329195,-2.0797175736
H,0,-0.198727535,-2.8871340622,-1.1472341441
H,0,-3.972490244,-2.75944173,-1.5502859904
H,0,-4.2455164235,-1.7850656379,-0.0868110167
H,0,-3.4696650284,-1.0554927165,-1.5077151987
$\mathrm{H}, 0,-2.6780294824,-4.4916157751,-0.1668768472$
H,0,-1.3167360532,-3.9725851359,0.8531703156
H,0,-2.9758643016,-3.5277879408,1.2994532739
H, $0,0.2453714166,-0.0550444125,-0.1400182137$
N,0,1.2716765013,-0.0556100629,-0.2760975734
C,0,1.7836662241,0.758279171,-1.3821809419
C,0,3.1131872857,0.1815756683,-1.8541639638
H,0,1.0287259886,0.7419736334,-2.1719054144
H,0,1.888742714,1.79981205,-1.0561021909
C,0,2.0299013564,-0.7727179928,0.5356691549
N,0,3.361779523,-0.7777395891,0.4153094701
C,0,4.2524776107,-1.4932445719,1.3291241458
C,0,4.0391223812,-0.0241420872,-0.6592534024
H,0,4.6849874462,-2.3704371011,0.8336066747
H,0,5.06492432,-0.8215770505,1.6252776005
H,0,3.726197616,-1.810280605,2.2272388978
H,0,4.3819770172,0.9362008376,-0.2512631787
C, $0,1.3347895408,-1.5775440245,1.5976049076$
H,0,2.9445202543,-0.7766333042,-2.3599242077

```
H,0,3.5878328893,0.8589768756,-2.5706722332
H,0,4.9248828556,-0.5979481496,-0.9505999897
H,0,1.709936885,-2.6054899258,1.6103009485
H,0,1.5146290519,-1.1398647197,2.5869178032
H,0,0.2562414817,-1.5942999683,1.3933251
```

tsaxAB3BBPCM DBU model - PCM dichloroethane - 6-31+G**
$\mathrm{E}($ RB + HF-LYP $)=-962.924991813$

Zero-point correction $=$	0.447370 (Hartree/Particle)
Thermal correction to Energy $=$	0.470821
Thermal correction to Enthalpy $=$	0.471765
Thermal correction to Gibbs Free Energy=	0.393708
Sum of electronic and zero-point Energies $=$	-962.477620
Sum of electronic and thermal Energies=	-962.454169
Sum of electronic and thermal Enthalpies $=$	-962.453225
Sum of electronic and thermal Free Energies $=$	-962.531282

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	295.445	88.485	164.285

C,0,-2.1966040305,1.5893610427,1.442786
С,0,-0.8434780305,2.1576750427,1.882118
С,0,-0.5162270305,3.4573480427,1.136337
C, $0,-0.7337170305,3.3796410427,-0.376712$
C, $0,-1.6432620305,2.4074520427,-0.876904$
C, $0,-2.2861170305,1.4746890427,-0.056139$
O,0,-0.1525540305,4.2306130427,-1.106479
O,0,-1.3062850305,-0.2156089573,-0.352986
O,0,-1.7483190305,-1.3358619573,0.474307
C, $0,-2.3947290305,-2.3563419573,-0.328097$
C,0,-3.6233140305,-1.7849429573,-1.046118
C,0,-1.3983090305,-2.9507889573,-1.332431
C, $0,-2.8099560305,-3.4000189573,0.716789$
H,0,-1.8323410305,2.4064580427,-1.949529
H,0,-3.1827450305,0.9961080427,-0.436604
Н,0,-3.0094090305,2.2543600427,1.778448
H,0,-2.3807670305,0.6089460427,1.892704
Н,0,-0.8327220305,2.3284770427,2.965865
H,0,-0.0683740305,1.4124920427,1.667997
Н,0,-1.1563090305,4.2746990427,1.5043
H,0,0.5179839695,3.7740500427,1.31548
H,0,-1.8713140305,-3.7443199573,-1.921593

```
H,0,-1.0436390305,-2.1738229573,-2.014507
H,0,-0.5356420305,-3.3783749573,-0.810099
H,0,-4.1420730305,-2.5743369573,-1.601394
H,0,-4.3249600305,-1.3545299573,-0.323713
H,0,-3.3226170305,-1.0060409573,-1.751321
H,0,-3.3090430305,-4.2439999573,0.229015
H,0,-1.9355690305,-3.7819639573,1.253944
H,0,-3.5011920305,-2.9641579573,1.445484
H,0,0.2626219695,-0.2297709573,-0.286772
N,0,1.3357839695,-0.2068109573,-0.368401
C,0,1.8939169695,0.5543400427,-1.487806
C,0,3.2250679695,-0.0576949573,-1.910321
H,0,1.1607549695,0.5321300427,-2.298192
H,0,2.0224349695,1.6025840427,-1.189418
C,0,2.0837639695,-0.8517109573,0.505897
N,0,3.4233579695,-0.8536359573,0.426947
C,0,4.2928579695,-1.4940569573,1.415052
C,0,4.1307059695,-0.1957179573,-0.690994
H,0,4.7369209695,-2.4069909573,1.000778
H,0,5.0983289695,-0.8008619573,1.676866
H,0,3.7490379695,-1.7420049573,2.323654
H,0,4.4898089695,0.7849440427,-0.350688
C,0,1.3805819695,-1.5917569573,1.610894
H,0,3.0548979695,-1.0422459573,-2.361602
H,0,3.7151069695,0.5728080427,-2.658494
H,0,5.0073449695,-0.8076639573,-0.927468
H,0,1.7242399695,-2.6290619573,1.664294
H,0,1.5812669695,-1.1185179573,2.578243
H,0,0.3041489695,-1.5842529573,1.429658
2 nd tsaxAB3BBPCM DBU model - PCM dichloroethane - 6-31+G**
E}(\mathrm{ RB +HF-LYP })=-962.92685978
Zero-point correction= 0.447998 (Hartree/Particle)
Thermal correction to Energy= 0.471364
Thermal correction to Enthalpy=}\quad0.47230
Thermal correction to Gibbs Free Energy= 0.394614
Sum of electronic and zero-point Energies= -962.478862
Sum of electronic and thermal Energies= -962.455495
Sum of electronic and thermal Enthalpies= -962.454551
Sum of electronic and thermal Free Energies= -962.532246
E (Thermal) CV S
    KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin
```

$\begin{array}{llll}\text { Total } & 295.786 & 88.451 & 163.522\end{array}$

C,0,-1.914808,-0.851066,-1.8313609756
C,0,-1.205791,-2.102165,-1.3018209756
C,0,-2.172461,-3.009988,-0.5301019756
C, $0,-3.096183,-2.284679,0.4518760244$
C,0,-3.315865,-0.902658,0.2871720244
C, $0,-2.58724,-0.072403,-0.7011449756$
O, $0,-3.697958,-2.990243,1.3230020244$
O,0,-1.662145,0.42035,0.2753390244
O,0,-0.600596,1.63338,-0.4242759756
С,0,-0.848899,2.899332,0.1920830244
C, $0,-2.287545,3.36108,-0.0873509756$
С, $0,-0.587522,2.837489,1.7066760244$
C, $0,0.150949,3.862337,-0.4810789756$
H,0,-4.007582,-0.406146,0.9639330244
H,0,-3.181701,0.760111,-1.1011079756
H,0,-2.689812,-1.132957,-2.5588509756
H,0,-1.209793,-0.189681,-2.3475939756
H,0,-0.744456,-2.659106,-2.1273609756
H,0,-0.394431,-1.787702,-0.6360699756
H,0,-2.828513,-3.544901,-1.2345009756
$\mathrm{H}, 0,-1.630878,-3.785189,0.0255640244$
H,0,-0.772366,3.810525,2.1756040244
H,0,-1.243473,2.096222,2.1709130244
H,0,0.453498,2.559718,1.9078810244
H,0,-2.455918,4.367707,0.3121240244
H,0,-2.478303,3.380899,-1.1655169756
H,0,-3.003606,2.680856,0.3813800244
H,0,0.029644,4.874989,-0.0788309756
Н,0,1.182922,3.545052,-0.2974929756
H,0,-0.017034,3.897345,-1.5623019756
H,0,0.691683,0.662319,0.0673200244
$\mathrm{N}, 0,1.497985,0.050138,0.3387330244$
C,0,1.475155,-0.582713,1.6591750244
C,0,2.905706,-0.782539,2.1478170244
H,0,0.902869,0.063017,2.3282020244
H,0,0.943615,-1.540081,1.5945050244
C,0,2.488356,-0.09934,-0.5245429756
$\mathrm{N}, 0,3.558963,-0.849448,-0.2428869756$
C,0,4.658397,-1.078931,-1.1832359756
C, $0,3.717225,-1.501478,1.0752030244$
H,0,5.54574,-0.514264,-0.8754109756
H,0,4.902598,-2.145555,-1.1831599756

```
H,0,4.384306,-0.790912,-2.1955689756
H,0,3.413401,-2.552703,0.9829820244
C,0,2.362661,0.603024,-1.8488169756
H,0,3.362028,0.189292,2.3706790244
H,0,2.913956,-1.374768,3.0676490244
H,0,4.783746,-1.482954,1.3206680244
H,0,3.216745,1.26418,-2.0232199756
H,0,2.319915,-0.121902,-2.6681209756
H,0,1.445346,1.192051,-1.8610229756
```

tsaxBB3PCM DBU model - PCM dichloroethane - 6-31G*
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-962.841832029$

Zero-point correction $=$	0.450623 (Hartree/Particle)
Thermal correction to Energy $=$	0.474920
Thermal correction to Enthalpy $=$	0.475864
Thermal correction to Gibbs Free Energy=	0.394191
Sum of electronic and zero-point Energies $=$	-962.391209
Sum of electronic and thermal Energies $=$	-962.366912
Sum of electronic and thermal Enthalpies $=$	-962.365968
Sum of electronic and thermal Free Energies=	-962.447641

Total

E (Thermal)	CV	S
KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
298.017	89.877	171.895

C,0,-1.6516109695,2.1805239695,1.2963830122
C,0,-0.2338109695,2.1692499695,1.8764770122
C,0,0.6742780305,3.1750629695,1.1588770122
C,0,0.6111550305,3.0848449695,-0.3727289878
C,0,-0.5961239695,2.6002789695,-0.9527149878
C,0,-1.6359039695,2.0415499695,-0.2045559878
O,0,1.5896850305,3.5031189695,-1.0368499878
O,0,-1.3793449695,0.1254259695,-0.3939109878
O,0,-2.1909519695,-0.7347260305,0.4689250122
C,0,-3.1406659695,-1.4850490305,-0.3168949878
C,0,-4.0805059695,-0.5419440305,-1.0781659878
C,0,-2.4010609695,-2.4211340305,-1.2822839878
C,0,-3.9079419695,-2.2838190305,0.7441160122
H,0,-0.6640439695,2.6240249695,-2.0399099878
H,0,-2.6148189695,1.9674069695,-0.6708489878
H,0,-2.1504499695,3.1319999695, 1.5450930122
H,0,-2.2584399695,1.3778609695,1.7274730122
Н,0,-0.2583059695,2.3733499695,2.9549640122

```
H,0,0.1793470305,1.1609049695,1.7520920122
H,0,0.3852200305,4.2023529695,1.4340540122
H,0,1.7220370305,3.0609239695,1.4626000122
H,0,-3.1071189695,-3.0132470305,-1.8762409878
H,0,-1.7766699695,-1.8349080305,-1.9617719878
H,0,-1.7556159695,-3.1113740305,-0.7264019878
H,0,-4.8423879695,-1.1089990305,-1.6259929878
H,0,-4.5885539695,0.1339579695,-0.3809749878
H,0,-3.5123369695,0.0586769695,-1.7933239878
H,0,-4.6612049695,-2.9237760305,0.2714640122
H,0,-3.2237699695,-2.9199860305,1.3163070122
H,0,-4.4157859695,-1.6087910305,1.4416530122
H,0,0.0161490305,-0.5344420305,-0.1170509878
N,0,0.9402210305,-1.0330200305,0.1159800122
C,0,0.9896890305,-1.8334800305,1.3395170122
C,0,2.3946520305,-1.7861990305,1.9305250122
H,0,0.2407680305,-1.4309420305,2.0255770122
H,0,0.6996850305,-2.8666260305,1.1061460122
C,0,1.9873040305,-0.8067720305,-0.6521119878
N,0,3.1996000305,-1.3015600305,-0.3599819878
C,0,4.3788480305,-1.1210800305,-1.2044049878
C,0,3.4143360305,-2.1239010305,0.8461670122
H,0,5.1708890305,-0.6302650305,-0.6280779878
H,0,4.7457890305,-2.0973660305,-1.5427509878
H,0,4.1537420305,-0.5097760305,-2.0753739878
H,0,3.3583710305,-3.1849270305,0.5666350122
C,0,1.7654800305,0.0381419695,-1.8777039878
H,0,2.5981410305,-0.7851860305,2.3289610122
H,0,2.4892620305,-2.4995690305,2.7552360122
H,0,4.4320070305,-1.9275720305,1.1987580122
H,0,2.2699970305,1.0065909695,-1.7873949878
H,0,2.1270810305,-0.4709280305,-2.7760919878
H,0,0.6984610305,0.2344919695,-1.9850819878
2 nd tsaxBB3PCM DBU model - PCM dichloroethane - 6-31G*
E(RB+HF-LYP) = -962.844439077
Zero-point correction= 0.451581 (Hartree/Particle)
Thermal correction to Energy= 0.475623
Thermal correction to Enthalpy= 0.476567
Thermal correction to Gibbs Free Energy=
    0.396212
Sum of electronic and zero-point Energies=
    -962.392858
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies= -962.367872
```

Sum of electronic and thermal Free Energies= -962.448227

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	$\mathrm{Cal} / \mathrm{Mol-Kelvin}$
Total	298.458	89.686	169.122
C, $0,2.0$	7441,-0.6931	9636,1.8521617	
C, $0,1.2$	$6507,-1.9450$	21,1.5750614153	
C,0,2.01	20171,-2.999	26408,0.814451	
C,0,2.83	19764,-2.462	09214,-0.367861	317
C,0,3.1	74777,-1.087	42321,-0.397056	066
C,0,2.6	27494,-0.100	31126,0.561847	
O,0,3.2	5842,-3.3043	24532,-1.2010202	
O,0,1.57	933505,0.4109	$71655,-0.3092109$	
O,0,0.7	66785,1.6946	94494,0.401937	
C,0,0.9	42086,2.890183	39747,-0.348931816	
C,0,2.4	22293,3.2614	27388,-0.3116927	
C, $0,0.4$	21351,2.738783	36269,-1.80006227	
C, 0,0	21878,3.9587	90169,0.38735635	
H,0,3.7	61847,-0.720	93207,-1.213894	4859
H,0,3.2	43876,0.7190	61508,0.7914022	
H,0,2.8	636929,-0.944	840386,2.51146858	
H,0,1.4	13776,0.0723	08265,2.3638090	
H,0,0.8	$73665,-2.363$	568791,2.5146460	656
H,0,0.3	35486,-1.655	11532,0.979814	
H,0,2.7	4737,-3.4883	2929,1.5010723	
H,0,1.3	71784,-3.802	434553,0.434855	483
H,0,0.65	84248,3.6650	93856,-2.364404	
H,0,1.0	42109,1.9312	52143,-2.2941849	905
H,0,-0.	744417,2.505	54005,-1.831646362	
H,0,2.63	36638,4.2246	19277,-0.805803676	767
H,0,2.8	99159,3.33758	52231,0.7244431	
H,0,3.05	58994,2.4994	61157,-0.823184	302
H,0,0.2	555061,4.93768	0659,-0.0898196	
H,0,-0.	185565,3.709	$751171,0.3672835$	204
H,0,0.4	10954,4.038	54605,1.4325177	
H,0,-0.	824565,0.842	335605,0.198072	706
N,0,-1.	896676,0.444	422454,0.248893200	
C, $0,-2$.	518805,0.975	40544,1.2987598	422
C, $0,-3$.	507496,-0.09	311077,1.705429	112
H,0,-1.	$505497,1.273$	236474,2.1352339	673
H,0,-3.	480636,1.873	229071,0.930289670	706
C, $0,-2$.	$501423,-0.48$	327472,-0.61818	9434
N,0,-3.	$738999,-0.99$	763264,-0.58893	7651

$\mathrm{C}, 0,-3.8255651534,-1.9655281613,-1.5721371786$
$\mathrm{C}, 0,-4.3076040341,-0.6298019354,0.4628426987$
$\mathrm{H}, 0,-3.8249942007,-2.9777642664,-1.1507731363$
$\mathrm{H}, 0,-4.8519127703,-1.6966768214,-1.8398529338$
$\mathrm{H}, 0,-3.2220857143,-1.9501530817,-2.4778101095$
$\mathrm{H}, 0,-5.0054101187,0.1108329189,0.0500997149$
$\mathrm{C}, 0,-1.1017125102,-0.9338766173,-1.6427076094$
$\mathrm{H}, 0,-3.0851109416,-0.9127679973,2.2212141552$
$\mathrm{H}, 0,-4.3451797273,0.3187613346,2.3946058029$
$\mathrm{H}, 0,-4.8816167419,-1.5309042851,0.7029514071$
$\mathrm{H}, 0,-1.0806983158,-2.0253488929,-1.7092227153$
$\mathrm{H}, 0,-1.3649799138,-0.5393386889,-2.6314682775$
$\mathrm{H}, 0,-0.1031014286,-0.5823985798,-1.3707338722$
tsaxBB3BBPCM DBU model - PCM dichloroethane - 6-31+G**
$\mathrm{E}($ RB+HF-LYP $)=-962.924560565$

Zero-point correction=	0.447056 (Hartree/Particle)
Thermal correction to Energy $=$	0.470654
Thermal correction to Enthalpy $=$	0.471598
Thermal correction to Gibbs Free Energy=	0.392933
Sum of electronic and zero-point Energies $=$	-962.477505
Sum of electronic and thermal Energies=	-962.453907
Sum of electronic and thermal Enthalpies $=$	-962.452962
Sum of electronic and thermal Free Energies= $=$	-962.531628

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	295.340	88.625	165.566

C, $0,-2.027500909,1.7054756659,1.4847028789$
C, $0,-0.6488206864,2.2985065783,1.793032643$
C,0,-0.3818427998,3.5518240276,0.9500662673
С,0,-0.7047860325,3.3834810127,-0.5361724983
С,0,-1.6360732851,2.3771375075,-0.9123245209
C, $0,-2.2212818342,1.4977451443,0.0051384232$
O,0,-0.1865124806,4.1951422046,-1.3528732521
O,0,-1.2866608152,-0.2225008271,-0.2523028722
O,0,-1.8389542068,-1.3127853949,0.5491916152
C,0,-2.4729973008,-2.3070659701,-0.2931037474
C,0,-3.6383803626,-1.6922614502,-1.0785319048
C,0,-1.4444071223,-2.9369362005,-1.2424655556
С,0,-2.9819583862,-3.3383840444,0.7220386509
Н,0,-1.8964439469,2.3090029809,-1.9677399302

```
H,0,-3.1438626408,1.0024446401,-0.2795799379
H,0,-2.8161685441,2.3921909703,1.83421031
H,0,-2.1796192378,0.7563755829,2.0079017359
H,0,-0.5619627192,2.5329916917,2.861292711
Н,0,0.1136451141,1.543144251,1.5682168506
H,0,-0.9991760896,4.3884449975,1.3133705626
H,0,0.6605745654,3.8801940701,1.036751625
H,0,-1.9079609156,-3.7294719643,-1.8404369604
H,0,-1.042064719,-2.179914418,-1.9203856702
H,0,-0.6159065954,-3.3729119081,-0.6739721685
H,0,-4.1411768716,-2.4584128121,-1.679431091
H,0,-4.3741378255,-1.2537884761,-0.395734308
H,0,-3.2728420583,-0.9109605571,-1.7498237412
H,0,-3.485507608,-4.1611618691,0.2036087602
H,0,-2.1508745503,-3.7526116419,1.3021164627
H,0,-3.6944545644,-2.8793752015,1.4151549157
H,0,0.215772592,-0.4706884754,0.0490585001
\(\mathrm{N}, 0,1.2457988229,-0.709124622,0.2648961635\)
C,0,1.5625272841,-1.3282087102,1.5523378751
C,0,2.9711592278,-0.9298445652,1.9809060589
H,0,0.8097134044,-1.0000609076,2.2730075746
H,0,1.4774329421,-2.4191801164,1.461515111
C,0,2.1633053881,-0.419532224,-0.6373878664
N,0,3.4656843984,-0.6684196722,-0.4325944634
C,0,4.5081500527,-0.4150007962,-1.4282952994
C,0,3.9497071102,-1.2231515448,0.8480763862
H,0,5.1228911568,0.4412335807,-1.1275606001
H,0,5.1495999238,-1.2991414669,-1.5005243706
H,0,4.0829561901,-0.2205690889,-2.4101560054
H,0,4.1040627398,-2.3039922915,0.7272219199
C,0,1.6945866483,0.2040044831,-1.923753874
H,0,2.9974971692,0.1381143016,2.2273961676
H,0,3.2710160029,-1.4855825069,2.8745453285
H,0,4.9243883802,-0.7685989429,1.0528185685
H,0,2.2058367025,1.1532220073,-2.1084579267
Н,0,1.8935208523,-0.4619679971,-2.7699383681
H,0,0.6215666686, 0.3882602839,-1.8682653544
```

$2^{\text {nd }}$ tsaxBB3BBPCM DBU model - PCM dichloroethane - 6-31+G**
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-962.927256281$

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
0.447886 (Hartree/Particle)
0.471236
0.472181

Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
0.394609
-962.479371
-962.456020
-962.455076
-962.532648

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	295.705	88.382	163.264

C,0,2.0039412257,-0.7283985773,1.8757071373
C, $0,1.2446342329,-1.9976574284,1.475662681$
C,0,2.1419735833,-2.9710732759,0.6996219235
С, $0,3.0158085989,-2.3292418357,-0.3808079178$
C, $0,3.2701175724,-0.9430334693,-0.3188462293$
C,0,2.6216580622,-0.0391173033,0.6601515966
O,0,3.5525708436,-3.0992540231,-1.2379111521
O,0,1.6542506974,0.4020976017,-0.2957269375
O,0,0.6323576524,1.6830018092,0.3840019137
C,0,0.861131191,2.9008287008,-0.3243487875
C,0,2.3164268827,3.3620597378,-0.1448344899
C,0,0.5260685083,2.7475214233,-1.8184961968
C, $0,-0.0938716542,3.9206380399,0.3314969904$
Н,0,3.9285878904,-0.5048632737,-1.0651640981
H,0,3.2534508477,0.804519738,0.9686836107
H,0,2.8154250348,-0.9761766691,2.5753184492
H,0,1.3397129218,-0.0202848533,2.3838409005
H,0,0.8350441401,-2.4929616057,2.3650777707
H,0,0.3900236886,-1.7129626915,0.8520904349
H,0,2.8321303208,-3.4776804145,1.3921414987
H,0,1.5515701205,-3.7659113252,0.2279914988
H,0,0.6848535614,3.6908548811,-2.3535515442
H,0,1.1609866423,1.9801988877,-2.2695093397
H,0,-0.5219178034,2.456278984,-1.9526919901
H,0,2.4763447301,4.3381346254,-0.6172243994
H,0,2.558095898,3.4499092316,0.9196885729
H,0,3.0027464078,2.6430657944,-0.6000366363
H,0,0.0229665005,4.9052416982,-0.1366538401
H,0,-1.1376421957,3.610461838,0.2143394798
H,0,0.1228005546,4.0168130801,1.4001944091
H,0,-0.8299632593,0.8571980326,0.2362685533
$\mathrm{N}, 0,-1.7806879564,0.412188964,0.2847405193$
C,0,-2.6606959276,0.8332881578,1.3780176602
С,0,-3.6144770399,-0.3040124904,1.7277284444

```
H,0,-2.0274212728,1.104479132,2.2269681993
H,0,-3.2196381923,1.7283271447,1.07540394
C,0,-2.1329150998,-0.4756229227,-0.6312367565
N,0,-3.3387980677,-1.0546566365,-0.617525758
C,0,-3.7935194798,-1.9940411518,-1.6460681516
C,0,-4.3130163285,-0.7909756914,0.4627599186
H,0,-3.7589403155,-3.0227697291,-1.2696473403
H,0,-4.8275272673,-1.7492364975,-1.9061045941
H,0,-3.1895105621,-1.9196327633,-2.5477022413
H,0,-5.0437457757,-0.0554923808,0.1024010017
C,0,-1.1275517688,-0.8158163403,-1.6950656553
Н,0,-3.0563335142,-1.1291649417,2.1866384809
H,0,-4.3627649329,0.0347918863,2.4500107091
H,0,-4.8473151,-1.7273510078,0.6540064415
H,0,-1.0150514793,-1.8989724929,-1.7922129312
H,0,-1.4505224036,-0.4208968715,-2.6650167985
H,0,-0.1577519175,-0.3874802703,-1.4376151236
```

Int eqAB3BB DBU model - 6-31G*
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-962.825708289$
Zero-point correction= 0.453871 (Hartree/Particle)
Thermal correction to Energy $=\quad 0.477904$
Thermal correction to Enthalpy= 0.478848
Thermal correction to Gibbs Free Energy= 0.398726
Sum of electronic and zero-point Energies= -962.371837
Sum of electronic and thermal Energies $=\quad-962.347804$
Sum of electronic and thermal Enthalpies $=\quad-962.346860$
Sum of electronic and thermal Free Energies= $\quad-962.426982$

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	$\mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}$
Total	299.889	90.570	168.631
C, $0,-1$	43096,2.14	9402,1.3335880	
C, $0,-0$	61018,3.255	31106,1.31585615	508
C, $0,1$.	96314,2.6498	40978,1.061729202	
C, $0,1$.	82675,1.7543	75527,-0.1873530	132
C, $0,-0$	133543,1.278	884036,-0.693376	
C,0,-1	241786,1.401	755997,-0.012621	122
O,0,2.	225366,1.4945	44546,-0.6752129	633
O,0,-1	$877839,0.007$	383161,0.1982968	029
O,0,-3	985267,0.008	574878,0.727184125	
C,0,-4	12333,-0.87	888825,-0.076175	1283

```
C,0,-4.1541209905,-0.3804012237,-1.5259442725
C,0,-3.5217153897,-2.3062289788,-0.0043301092
C,0,-5.442153295,-0.7829102366,0.6129417072
H,0,-0.1774084392,0.9010923619,-1.7157914412
H,0,-2.2508026982,1.8463286992,-0.6586856925
H,0,-2.4151950132,2.5286331875,1.589433647
H,0,-1.1594862298,1.4118913654,2.1088381372
H,0,-0.6038677845,3.9784997024,0.521889557
H,0,-0.3844585871,3.8116156821,2.2628149047
H,0,1.7798623799,3.4220831407,0.9209502228
H,0,1.3283262088,2.0680499566,1.9435736374
H,0,-4.1714654844,-3.0023253036,-0.5479023368
H,0,-2.5215499658,-2.3519592351,-0.4435655759
H,0,-3.456626364,-2.6342256329,1.0387833944
H,0,-4.8058754797,-1.0296584068,-2.122435561
H,0,-4.5564175023,0.6377720323,-1.5605304284
H,0,-3.1601859302,-0.376428602,-1.9812006747
H,0,-6.1673619445,-1.4263194566,0.1026172603
H,0,-5.3690106544,-1.1015145263,1.6578867058
H,0,-5.8153058987,0.2462784048,0.5915167255
H,0,0.5268091766,-0.6724698633,-0.5555494509
N,0,1.3373999775,-1.2802563058,-0.3120382324
C,0,1.4186891716,-1.5647250305,1.1243988359
C,0,2.6693073591,-0.9181033144,1.7147442457
H,0,0.5012228751,-1.1747429,1.5714077819
H,0,1.4349477318,-2.652396359,1.2729808066
C,0,2.4293828594,-1.0114258665,-1.0315986973
N,0,3.6580898131,-1.2240051032,-0.5372500102
C,0,4.8550447839,-0.944653254,-1.3263154631
C,0,3.887172325,-1.364425467,0.914230463
H,0,5.6815261555,-1.5375611393,-0.924869541
H,0,4.713157707,-1.2267118972,-2.3695045187
H,0,5.1140443108,0.120090318,-1.2720710227
H,0,4.1490028133,-2.4098274154,1.1286572364
C,0,2.2493444192,-0.7094723664,-2.4918126853
H,0,2.5819661921,0.1690314945,1.6439972479
H,0,2.7959812356,-1.1973915844,2.7655524389
H,0,4.7540394246,-0.7463167944,1.170231354
H,0,2.8068528776,0.1840668059,-2.7696978884
H,0,2.5760968338,-1.5663656055,-3.0958394465
H,0,1.1950439245,-0.5306011384,-2.6983761441
```

Int eqAB3BB DBU model - PCM Dichloroethane - 6-31G*
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-962.845008985$

Zero-point correction=	0.452764 (Hartree/Particle)
Thermal correction to Energy $=$	0.475396
Thermal correction to Enthalpy $=$	0.476341
Thermal correction to Gibbs Free Energy=	0.400257
Sum of electronic and zero-point Energies=	-962.392245
Sum of electronic and thermal Energies=	-962.369613
Sum of electronic and thermal Enthalpies $=$	-962.368668
Sum of electronic and thermal Free Energies $=$	-962.444752

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	298.316	86.774	160.132
C, $0,-1$	46035,2.361	06557,0.50637	
C, $0,-0$	28575,3.551	99218,0.1334251	
C,0,1.	11749,3.046	38706,-0.503260	
C, $0,0.8$	82975,2.100	47994,-1.691421	663
C, $0,-0$	370743,1.494	53378,-1.782833	
C, $0,-1$	72888,1.484	72394,-0.71568	
O,0,1.	67562,1.962	64634,-2.531003	659
O,0,-1	278907,0.04	$555534,-0.307280$	5097
O,0,-2	274055,-0.14	852688,0.740192	8836
C, $0,-3$	50971,-1.15	655069,0.29996	
C,0,-4	982466,-0.72	388442,-0.9801	5114
C, $0,-2$	195834,-2.49	544415,0.104355	297
C,0,-4	83441,-1.23	771457,1.48344	
H,0,-0	331769,0.9043	715998,-2.67388	5635
H,0,-2	133578,1.690	95723,-1.0757507	
H,0,-2	5245,2.6886	37887,0.996022901	
H,0,-0	03629,1.7425	47761,1.238573	
H,0,-0	263683,4.201	765747,-0.578687	863
H,0,-0	802256,4.1602	783924,1.0246358	464
H,0,1.	74087,3.876	85696,-0.8692109	956
H,0,1.	49532,2.525	42819,0.2546919	
H, $0,-3$	50576,-3.289	682044,-0.143216	298
H,0,-2	0936,-2.42726	7938,-0.709128	
H,0,-2	179729,-2.783	772011,1.021340	0816
H,0,-4	296434,-1.46	654427,-1.26859	1001
H,0,-4	954167,0.23	476353,-0.827377	5234
H,0,-3	876588,-0.61	15773,-1.804406	
H,0,-5	264891,-1.98	543296,1.287034	
H,0,-3	$328021,-1.50$	158861,2.402607	
H,0,-4	07495,-0.266	82025,1.6415238	

```
H,0,0.0785962637,-0.669208753,0.2144305533
N,0,0.9816959418,-0.967423538,0.6185590125
C,0,1.0902038976,-0.9619892084,2.078027359
C,0,2.4946116258,-0.5193604959,2.4724986762
H,0,0.3243220264,-0.2848177919,2.4642615493
H,0,0.8751025398,-1.9669604608,2.4648190468
C,0,2.0026307617,-1.1904609413,-0.1984211258
N,0,3.2235737597,-1.4443409188,0.283453564
C,0,4.3821422106,-1.7161284786,-0.5727931847
C,0,3.5208633756,-1.3690734557,1.7313160162
H,0,5.0761421688,-2.3485966333,-0.0139284674
H,0,4.0932802091,-2.2486487223,-1.4779557353
H,0,4.8932780273,-0.786098086,-0.8481514963
H,0,3.555095245,-2.3907144549,2.1317111955
C,0,1.7426805863,-1.1261028659,-1.6733044592
H,0,2.6337774158,0.5385802458,2.2209751362
H,0,2.6434917357,-0.6295166311,3.5511190241
H,0,4.5205552535,-0.9356029002,1.8356435069
H,0,2.0751732138,-0.154069548,-2.0759904772
H,0,2.2423895907,-1.9377102811,-2.2066503325
H,0,0.6701007651,-1.1888361625,-1.8552651897
```

Int eqAB3BB DBU model - 6-31+G**
$\mathrm{E}($ RB+HF-LYP $)=-962.902046132$

Zero-point correction $=$	0.450332 (Hartree/Particle)
Thermal correction to Energy $=$	0.474633
Thermal correction to Enthalpy $=$	0.475577
Thermal correction to Gibbs Free Energy $=$	0.394600
Sum of electronic and zero-point Energies $=$	-962.451714
Sum of electronic and thermal Energies=	-962.427413
Sum of electronic and thermal Enthalpies $=$	-962.426469
Sum of electronic and thermal Free Energies $=$	-962.507446

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	297.837	91.368	170.430

C,0,-1.4449507487,2.0771116129,1.389955846
C,0,-0.4367169242,3.229536107,1.3613849562
C,0,0.965826933,2.6893676137,1.0608041852
C, $0,1.0110694686,1.7833994073,-0.1787000739$
С,0,-0.1876417851,1.2287664729,-0.6441453513
C,0,-1.5115085087,1.3652214134,0.0308028188

O,0,2.1553725047,1.5773598887,-0.7078896404
O,0,-1.9599235484,-0.0225775104,0.2047498737
O,0,-3.3559259616,0.005710642,0.7020431072
C, $0,-4.1689693603,-0.8541659025,-0.1262520043$
C,0,-4.2093339047,-0.3420985396,-1.5721390126
C,0,-3.6531839611,-2.2986082196,-0.0578099821
С,0,-5.5474461071,-0.7344770919,0.5377323009
Н, $0,-0.2059154977,0.8490328879,-1.6650917098$
H, $0,-2.2678621743,1.8428647725,-0.6106793685$
H,0,-2.4432321696,2.4196581764,1.6801843553
H,0,-1.1315060243,1.3401744473,2.1415666649
H,0,-0.7233002039,3.954737937,0.5870889262
H,0,-0.4475329938,3.7696818804,2.3169954519
H,0,1.6857072529,3.4969582503,0.8851284256
H,0,1.3416474843,2.1294369507,1.9319622483
H,0,-4.3130801103,-2.9692824864,-0.6196354934
H,0,-2.6480187336,-2.3671798948,-0.4811357272
H,0,-3.6154790802,-2.6382038949,0.9822699709
H,0,-4.8676966813,-0.9704741797,-2.1823669499
H,0,-4.5852579554,0.6854670512,-1.6049475131
H,0,-3.2094055136,-0.3611907635,-2.0128786222
H,0,-6.2737335714,-1.3572203648,0.0048984174
H,0,-5.5037349658,-1.0653704498,1.5798806405
H,0,-5.8979244555,0.3020682535,0.5176857086
H,0,0.614775531,-0.6757611784,-0.4652131056
N,0,1.4409165146,-1.2685106908,-0.2326914593
C,0,1.5856245298,-1.5439864736,1.1995084975
C, $0,2.844906568,-0.865125309,1.7326792102$
H,0,0.6819605129,-1.1760098532,1.6895843917
H,0,1.6336070753,-2.6302042466,1.3499422326
C,0,2.5021315725,-1.0493763274,-1.0088438769
N,0,3.7486684508,-1.2285588325,-0.5505494771
C,0,4.9211550555,-1.0393413843,-1.4035014608
C,0,4.0400984955,-1.3059238754,0.8961075845
H,0,5.7355003512,-1.6556737939,-1.0136492233
H,0,4.7190195734,-1.353916292,-2.426144436
H,0,5.2345615377,0.0115853942,-1.4041823973
H,0,4.3408439249,-2.3347788806,1.1358896746
C,0,2.2668509307,-0.7703162944,-2.463746335
H,0,2.7303859326,0.2193621126,1.6549665345
H,0,3.0154086507,-1.1270711707,2.7813197751
H,0,4.8982971892,-0.653910967,1.0888986718
H,0,2.8100514801, 0.1224033028,-2.7737414711
H,0,2.5754939703,-1.6332720735,-3.0667877492

H,0,1.2056674265,-0.5982676833,-2.6333723074

Int eqAB3BB DBU model - PCM Dichloroethane $-\mathbf{6 - 3 1 + G * *}$	
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-962.929006771$	
Zero-point correction=	0.449391 (Hartree/Particle)
Thermal correction to Energy $=$	0.473296
Thermal correction to Enthalpy $=$	0.474240
Thermal correction to Gibbs Free Energy=	0.393564
Sum of electronic and zero-point Energies $=$	-962.479616
Sum of electronic and thermal Energies=	-962.455711
Sum of electronic and thermal Enthalpies $=$	-962.454767
Sum of electronic and thermal Free Energies=	-962.535442

E (Thermal)	CV	Chl/Mol
KCal/Mol-Kelvin	Cal/Mol-Kelvin	
Total	296.997	89.680

```
H,0,-3.4343875657,-0.4008821698,-1.8477104962
H,0,-4.2661063957,-3.5529100128,0.0932778938
H,0,-2.9370440115,-3.371022588,1.2570589686
H,0,-4.3177368096,-2.2508891129,1.2998646208
H,0,0.2826547845,-0.6156918063,0.0019176404
N,0,1.2429279436,-0.9309787926,0.2167117833
C,0,1.4412849905,-1.719709888,1.4368607015
C,0,2.853101417,-1.4852815857,1.9618802216
H,0,0.6832260283,-1.4091103383,2.1596347124
H,0,1.2778197603,-2.7821716782,1.2143090513
C,0,2.2226355541,-0.5787857101,-0.6052038884
N,0,3.4856338921,-0.9429671001,-0.3714843532
C,0,4.6001465386,-0.6320198143,-1.2707511094
C,0,3.8570325641,-1.7103653423,0.8368825577
H,0,5.1552963942,-1.5531138593,-1.4745951331
H,0,4.2493296788,-0.2250759688,-2.2158842398
H,0,5.2740535166,0.089267571,-0.7963121574
H,0,3.9229356727,-2.7731842962,0.5683021012
C,0,1.8604828895,0.2419331764,-1.8086507714
H,0,2.9423397638,-0.461287884,2.3434523895
H,0,3.0697492173,-2.1715340164,2.7858782078
H,0,4.8555251748,-1.3789748777,1.137728827
H,0,2.4471295697,1.1638773304,-1.8405040089
H,0,2.0499086728,-0.3209354511,-2.728499553
H,0,0.8078980552,0.5252127974,-1.7640292623
```

tseqAB3BB DBU model - 6-31+G**
$\mathrm{E}($ RB+HF-LYP $)=-962.898243086$

Zero-point correction $=$	0.448904 (Hartree/Particle)
Thermal correction to Energy $=$	0.473024
Thermal correction to Enthalpy $=$	0.473968
Thermal correction to Gibbs Free Energy $=$	0.394255
Sum of electronic and zero-point Energies $=$	-962.449339
Sum of electronic and thermal Energies=	-962.425219
Sum of electronic and thermal Enthalpies $=$	-962.424275
Sum of electronic and thermal Free Energies $=$	-962.503988

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	296.827	90.264	167.770

C,0,-1.4758490062,2.389675029,1.0221446007
C,0,-0.2839536887,3.256657393,1.450907499

C,0,1.0378370924,2.5698633039,1.0942808824
C,0,1.1294721529,2.2040712554,-0.3949058314
C,0,-0.0944891334,2.0745652612,-1.093275224
C, $0,-1.3338910205,1.8858503151,-0.4146503237$
O,0,2.2760119313,2.042656935,-0.8987415671
O,0,-1.4263695276,0.145025733,-0.3315244681
O,0,-2.4312617572,-0.4583157369,0.572771268
C, $0,-3.4824483749,-1.1084431341,-0.1787641895$
C,0,-4.2263853921,-0.1019159717,-1.0653080201
C, $0,-2.9046123923,-2.2589888553,-1.0143032725$
C,0,-4.4015017889,-1.6431953426,0.9283660307
H,0,-0.055794441,1.9321558324,-2.1699587546
H,0,-2.2272891188,2.0239341005,-1.0201367719
H,0,-2.4094140588,2.9572776059,1.1170495257
H,0,-1.5802704122,1.5292697732,1.6931667172
H,0,-0.3293863857,4.2243158712,0.9359674444
H,0,-0.339213487,3.4643308235,2.5277973086
H,0,1.9042637762,3.1984984852,1.3284019308
H, $0,1.1470523998,1.6520045244,1.6927968413$
H,0,-3.7022309297,-2.7957928839,-1.5397615265
H,0,-2.2016839393,-1.8722206616,-1.7567108467
H,0,-2.3763846624,-2.9701888578,-0.3700546986
H, $,-5.0719457585,-0.5855643371,-1.5671880628$
H,0,-4.6114077734,0.7271131775,-0.4629719831
H,0,-3.5589295508,0.3018458102,-1.8307169509
H,0,-5.2502496663,-2.1774714905,0.4884541778
H,0,-3.8587437988,-2.3338031803,1.5815416915
Н, $0,-4.7874716687,-0.8212157395,1.5390326748$
H,0,-0.0491757598,-0.6902997058,-0.0785233973
$\mathrm{N}, 0,0.8673119862,-1.1619613999,0.177965068$
C,0,1.0715234746,-1.4808205525,1.5901500931
C,0,2.4859514247,-1.0920246443,2.0116161199
H,0,0.3123522145,-0.9397503842,2.1592972419
H, $0,0.898819799,-2.5536432772,1.7482618674$
C,0,1.8515192078,-1.1220744308,-0.7026061433
N,0,3.1128865134,-1.4362481432,-0.3660228282
C,0,4.2284520495,-1.2791120263,-1.3026459757
C,0,3.4949491815,-1.6911973013,1.0366984752
H,0,5.0153110938,-1.9848030198,-1.0253818753
H,0,3.9201182453,-1.5001421634,-2.3227457612
H,0,4.6210045969,-0.2565156166,-1.2627260905
H,0,3.5943503272,-2.7752040975,1.1835084183
C, $0,1.5227830944,-0.7377518204,-2.1136946504$
H,0,2.5830214898,-0.0022534026,2.0109993731

$\mathrm{H}, 0,1.0547187909,2.0405027572,-2.2984045473$
$\mathrm{H}, 0,-0.6005241894,2.5456966218,-1.8927180692$
$\mathrm{H}, 0,2.5199253,4.3430962551,-0.7084228145$
$\mathrm{H}, 0,2.6422540376,3.4513005921,0.8242939576$
$\mathrm{H}, 0,2.9875712939,2.628686657,-0.7122476461$
$\mathrm{H}, 0,0.1009486057,4.9786372136,-0.0764697971$
$\mathrm{H}, 0,-1.0777216718,3.7085757198,0.3025485839$
$\mathrm{H}, 0,0.2461681091,4.0567395766,1.4366880081$
$\mathrm{H}, 0,-0.8281133105,0.8627856619,0.1676722027$
$\mathrm{~N}, 0,-1.7740489855,0.4259899229,0.2258368017$
$\mathrm{C}, 0,-2.6888127026,0.9775572028,1.2276136229$
$\mathrm{C}, 0,-3.6543680969,-0.1123949332,1.6798776252$
$\mathrm{H}, 0,-2.0805884688,1.3507953947,2.0559094712$
$\mathrm{H}, 0,-3.2345193435,1.82819734,0.7978791629$
$\mathrm{C}, 0,-2.0952738933,-0.5634417744,-0.5928205532$
$\mathrm{~N}, 0,-3.3036325492,-1.1325178229,-0.5526541355$
$\mathrm{C}, 0,-3.7348634838,-2.1732600112,-1.4879970254$
$\mathrm{C}, 0,-4.3101880061,-0.7491004526,0.4590487347$
$\mathrm{H}, 0,-3.7282229266,-3.1554219542,-1.0007842103$
$\mathrm{H}, 0,-4.7562124727,-1.9475448794,-1.8100801344$
$\mathrm{H}, 0,-3.0976318608,-2.2027654677,-2.3696872522$
$H, 0,-5.0314525772,-0.065702579,-0.0084325675$
$\mathrm{C}, 0,-1.0543876977,-1.0244039515,-1.5739103554$
$\mathrm{H}, 0,-3.1115988173,-0.8739453193,2.2521911089$
$H, 0,-4.4275104521,0.3079773775,2.3302445098$
$H, 0,-4.8489695821,-1.6595524695,0.7417919034$
$H, 0,-0.9780039462,-2.1154316837,-1.5773501944$
$\mathrm{H}, 0,-1.3192000237,--0.7014312027,-2.5879147519$
$\mathrm{H}, 0,-0.0794953635,-0.6058368694,-1.3085770324$

Int eqBB3 DBU model - 6-31G*

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-962.825022182$

Zero-point correction $=$	0.453871 (Hartree/Particle)	
Thermal correction to Energy $=$	0.477936	
Thermal correction to Enthalpy $=$	0.478881	
Thermal correction to Gibbs Free Energy $=$	0.399909	
Sum of electronic and zero-point Energies $=$	-962.371152	
Sum of electronic and thermal Energies $=$	-962.347086	
Sum of electronic and thermal Enthalpies $=$	-962.346142	
Sum of electronic and thermal Free Energies $=$	-962.425113	
\qquadE (Thermal) CV S KCal/Mol $\mathrm{Cal} / \mathrm{Mol}-$ Kelvin $\mathrm{Cal} /$ Mol-Kelvin		

Tot	299.910	90.832	09
C,0,-1.2059963681,2.168275155,1.1515316			
C,0,-0.0886490341,3.2080666982,1.2797434339			
C, $0,1.2380712449,2.609460379,0.8049555827$			
C,0,1.1492504175,2.0320028822,-0.6186624721			
C,0,-0.1267757636,1.7643219825,-1.1231390086			
C, $0,-1.3275881902,1.62149463,-0.2860211491$			
O,0,2.2422744929,1.8645294313,-1.2467907265			
O,0,-1.5021277071,0.1198337998,-0.2462620245			
O,0,-2.6464801201,-0.2942783614,0.6397852561			
C, $0,-3.6331619295,-0.9995327803,-0.1377707601$			
C,0,-4.2284632022,-0.0971975953,-1.2253786733			
С,0,-3.0266239721,-2.2723456865,-0.744798579			
C, $0,-4.6887917216,-1.3499894514,0.921243676$			
H,0,-0.2197122154,1.5069156505,-2.1766778941			
H,0,-2.2462175835,1.9808461681,-0.7660100456			
H,0,-2.1676503849,2.5801845547,1.4780643126			
H,0,-0.9926501615, 1.3293724447,1.8252594642			
H,0,-0.3257589394,4.0859220298,0.6648345742			
H,0,-0.0174048347,3.5574393213,2.3193775155			
H,0,2.0428251417,3.3545236768,0.7968362897			
H,0,1.5645869488, $1.8215242068,1.5065673172$			
H,0,-3.7920329048,-2.8586028017,-1.266361042			
H,0,-2.2428483318,-2.0174627698,-1.4638947675			
H,0,-2.5896391917,-2.8991713862,0.0409248004			
H,0,-5.0249508937,-0.6199054818,-1.76799245			
H,0,-4.6522907719,0.8091592091,-0.7802964004			
H,0,-3.4584072434,0.1963384211,-1.9439583912			
H,0,-5.5146643185,-1.9058088561,0.463516465			
H,0,-4.2519136598,-1.9672017666,1.713260002			
H,0,-5.0926967943,-0.4398473582,1.3761713377			
H,0,0.0666832944,-0.8307458598,-0.5142851295			
N,0,1.0471864305,-1.1534635881,-0.5617063192			
C, $0,1.7142567137,-1.009140237,-1.8635508557$			
C,0,3.1468770285,-1.5189641009,-1.7618995169			
H,0,1.1298582448,-1.5723383001,-2.5975963387			
H,0,1.7272801623,0.061276339,-2.1117963763			
C,0,1.676065161,-1.2125467793,0.5974256085			
$\mathrm{N}, 0,3.0148814555,-1.218324158,0.66986791$			
C,0,3.7333512728,-1.1997503304,1.9392659307			
C, $0,3.7974754791,-0.8778634742,-0.5384429396$			
H,0,4.6704516994,-1.7514857771,1.8215641568			
H,0,3.96974123,-0.1718923234,2.2439003719			

H,0,3.1529961931,-1.6791513839,2.7271597196
H,0,3.7999615798,0.215172304,-0.6496881526
C,0,0.8284161043,-1.3041599637,1.8379965077
Н,0,3.1821951075,-2.6124796137,-1.6783381093
H,0,3.6987563749,-1.2318409136,-2.6619709243
H,0,4.8154435497,-1.2461271699,-0.383658118
H,0,0.9726358612,-2.2730508773,2.3296482054
$\mathrm{H}, 0,1.0914502227,-0.5171999681,2.5507031493$
H, $0,-0.2261153515,-1.1953144221,1.5787545684$

Int eqBB3 DBU model - 6-31+G**

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-962.901398516$

Zero-point correction $=$	0.450583
(Hartree/Particle)	
Thermal correction to Energy $=$	0.474948
Thermal correction to Enthalpy $=$	0.475893
Thermal correction to Gibbs Free Energy $=$	0.395875
Sum of electronic and zero-point Energies $=$	-962.450816
Sum of electronic and thermal Energies=	-962.426450
Sum of electronic and thermal Enthalpies $=$	-962.425506
Sum of electronic and thermal Free Energies=	-962.505523

Total

E (Thermal)	CV	S
KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
298.035	91.679	168.410

C,0,-1.2987294015,2.233793169,1.1614978179
C,0,-0.1652038071,3.2516167367,1.3306588212
C,0,1.1724267224,2.6291409912,0.9175928995
C,0,1.1384211135,2.0385656928,-0.5010153975
C,0,-0.1175048671,1.775398528,-1.0577744227
C, $0,-1.349465635,1.6429113238,-0.2630001739$
O,0,2.2581319237,1.8529794064,-1.0829085751
O,0,-1.5035907962,0.132694635,-0.1778829554
O,0,-2.7058039093,-0.2686142188,0.6316685629
C,0,-3.6431636513,-0.9968234407,-0.1923717179
С,0,-4.161668138,-0.1267086921,-1.3441000214
C,0,-3.0015188916,-2.2885123988,-0.7185039539
C,0,-4.7693119097,-1.3151593077,0.8022479814
H,0,-0.1714943636,1.5146491864,-2.112674842
Н,0,-2.2499271367,1.9675523065,-0.7964398071
H,0,-2.265511107,2.6823898481,1.4147573102
H,0,-1.152637015,1.4107503646,1.8713667041
H,0,-0.3582104215,4.1322078298,0.7049600832

```
H,0,-0.1306469361,3.6019803775,2.3713152042
H,0,1.9857357956,3.3637615418,0.9347539246
H,0,1.4565154669,1.842890836,1.6367048385
H,0,-3.7357774805,-2.8883967956,-1.2673657958
H,0,-2.17531588,-2.0583089459,-1.3965912098
H,0,-2.6176568608,-2.8895229054,0.1127290304
H,0,-4.9210722587,-0.6686176342,-1.9187304998
Н,0,-4.612956976,0.7922782318,-0.9572768989
H,0,-3.3472770894,0.1429653436,-2.0212449434
H,0,-5.5627620398,-1.879194539,0.3006128031
H,0,-4.3914228258,-1.9144296051,1.6364446151
H,0,-5.199703346,-0.3934155519,1.2050050396
H,0,0.073510279,-0.854263394,-0.4335591553
\(\mathrm{N}, 0,1.0492750792,-1.1762384339,-0.5227489135\)
C,0,1.6486086736,-1.0593259036,-1.8588398447
C,0,3.070723802,-1.6053275565,-1.8311950741
H,0,1.0134339939,-1.612577769,-2.5563780877
H,0,1.6622951284,0.0058720549,-2.1189494194
C, \(0,1.7431715214,-1.2087798181,0.6018516232\)
\(\mathrm{N}, 0,3.0825451417,-1.2410773936,0.6009071369\)
C,0,3.8702692644,-1.1802498187,1.8298781221
С,0,3.8135069167,-0.9730052726,-0.6573379863
H,0,4.7897769142,-1.7531244292,1.6854262576
H,0,4.1369750838,-0.1439477876,2.0716976802
H,0,3.3278324844,-1.6155913216,2.667571297
H,0,3.8743389057,0.1151765356,-0.7904818397
C,0,0.9647939029,-1.2397590732,1.8889798319
H,0,3.0760124789,-2.698241587,-1.7368911577
\(\mathrm{H}, 0,3.5781477719,-1.346084331,-2.7646748312\)
H,0,4.816237571,-1.394427057,-0.5477327636
H,0,1.0976294035,-2.2018863215,2.3951308524
H,0,1.2952433174,-0.4470188567,2.5644832754
H,0,-0.0960858431,-1.0953443703,1.6804974842
```


Int eqBB3 DBU model - PCM Dichloroethane - 6-31G*

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-962.844738623$

Zero-point correction $=$	0.453435 (Hartree/Particle)
Thermal correction to Energy $=$	0.477708
Thermal correction to Enthalpy $=$	0.478652
Thermal correction to Gibbs Free Energy=	0.398080
Sum of electronic and zero-point Energies $=$	-962.391304
Sum of electronic and thermal Energies $=$	-962.367030
Sum of electronic and thermal Enthalpies $=$	-962.366086

Sum of electronic and thermal Free Energies=
-962.446658

E (Thermal)	CV	S
KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	299.766	90.837

```
C,0,3.8286659878,-1.3062230976,1.9670290122
C,0,3.8133849878,-0.9519350976,-0.5148399878
H,0,4.6981909878,-1.9483990976,1.8007320122
H,0,4.1793639878,-0.3125810976,2.2725720122
H,0,3.2337369878,-1.7377820976,2.7709470122
H,0,3.8474499878,0.1347429024,-0.6721779878
C,0,0.9074829878,-1.2773340976,1.9531080122
H,0,3.1228099878,-2.7093870976,-1.5682389878
H,0,3.6545519878,-1.3873270976,-2.6218289878
H,0,4.8289729878,-1.3308760976,-0.3756349878
H,0,1.0211399878,-2.2602600976,2.4249990122
H,0,1.2244109878,-0.5173380976,2.6735120122
H,0,-0.1481250122,-1.1244930976,1.7219250122
```

Int eqBB3 DBU model - PCM Dichloroethane - 6-31+G**
$\mathrm{E}($ RB+HF-LYP $)=-962.926817039$

Zero-point correction $=$	0.449737 (Hartree/Particle)
Thermal correction to Energy $=$	0.473501
Thermal correction to Enthalpy $=$	0.474446
Thermal correction to Gibbs Free Energy $=$	0.394925
Sum of electronic and zero-point Energies $=$	-962.477080
Sum of electronic and thermal Energies=	-962.453316
Sum of electronic and thermal Enthalpies $=$	-962.452371
Sum of electronic and thermal Free Energies $=$	-962.531892

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} / \mathrm{Mol-Kelvin}$	Cal/Mol-Kelvin
Total	297.127	89.656	167.366

C,0,-1.3397017083,2.1094979925,1.2619632696
C, $0,-0.4133704163,3.325105907,1.3588546156$
C,0,0.9517119602,2.9996899247,0.7421696994
C,0,0.8426872009,2.4749083463,-0.6929303309
С,0,-0.3758630653,1.9414892129,-1.0997983006
C,0,-1.4987969016,1.6061559023,-0.1864521289
O,0,1.8874893316,2.5871979256,-1.4382083283
O,0,-1.5087649183,0.1096303062,-0.2001388042
O,0,-2.6115343631,-0.4142150651,0.6499317873
C,0,-3.4934774289,-1.2445538634,-0.1507829066
C,0,-4.1470705423,-0.4267231193,-1.2705653409
C, $0,-2.7288839272,-2.4498009475,-0.7127544431$
C,0,-4.5361154288,-1.6926819814,0.8820924347
H,0,-0.489315584,1.6501908196,-2.1440391511

```
H,0,-2.4801407513,1.884659166,-0.5924964719
H,0,-2.3222857109,2.3283847929,1.6941014337
H,0,-0.9144646077,1.2935970383,1.8593199451
H,0,-0.8571911939,4.1780855418,0.82746759
H,0,-0.3049786039,3.6274879518,2.4092398245
H,0,1.6023650834,3.8824612624,0.7196256191
H,0,1.4732242016,2.2503152072,1.3593315722
H,0,-3.4149813789,-3.123739164,-1.2373161835
\(\mathrm{H}, 0,-1.9623311289,-2.1267559718,-1.4223823435\)
H,0,-2.24783091,-3.0101447811,0.0958262219
H,0,-4.8539648611,-1.049600522,-1.8296130525
H,0,-4.693056191,0.4267730185,-0.8560923368
H,0,-3.3925011272,-0.0551099971,-1.9687394915
H,0,-5.2786579066,-2.3385930293,0.4018653623
H,0,-4.0627894995,-2.2545246767,1.6936089757
Н,0,-5.0546182334,-0.8291794737,1.3103102019
H,0,0.1802146782,-0.6962535351,-0.4209129204
N,0,1.1658404576,-0.9737168813,-0.5005136878
C,0,1.7991971123,-0.7337277022,-1.8045485678
C,0,3.2010131213,-1.3322398034,-1.8114214648
H,0,1.171978839,-1.2083722954,-2.5664134436
H,0,1.7973782916,0.347662709,-1.9812219752
C,0,1.8087710982,-1.2568874373,0.6204278945
\(\mathrm{N}, 0,3.1418160351,-1.3506543612,0.6522160338\)
C,0,3.8975310532,-1.6542681166,1.8694755469
С,0,3.9336180921,-0.9496037665,-0.5296651317
H,0,4.7127827924,-2.3368642951,1.6155009357
H,0,4.3241503959,-0.7384527313,2.2958116253
H,0,3.2682433506,-2.1361340349,2.6151871708
H,0,4.1068338142,0.133658578,-0.4856062947
C,0,0.9797865785,-1.4845639139,1.8547410581
H,0,3.1492149553,-2.4248827412,-1.888603441
\(\mathrm{H}, 0,3.7593208134,-0.962198161,-2.676570604\)
H,0,4.9016716335,-1.4532519836,-0.4649328992
H,0,1.0517938085,-2.5296135888,2.174917618
H,0,1.3188302433,-0.8517452114,2.6795425462
H,0,-0.0662318529,-1.2589463314,1.6438548843
```


Int gaucheB3 DBU model - 6-31G*

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-962.825878133$

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
0.454975 (Hartree/Particle)
0.478533
0.479477

Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
0.402756
-962.370904
-962.347345
-962.346401
-962.423122

	E (Thermal $)$	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	300.284	90.134	161.473

C,0,-0.8308554138,2.9623179239,0.7709786372 C,0,0.5873233122,2.7510073155,1.3125038486 C,0,1.6145347965,2.6735709827,0.1747708287
C, $0,1.1893951663,1.8069470107,-1.0241561936$
С,0,-0.1610139715,1.5358035357,-1.1963143136
С,0,-1.2184208877,1.8747887618,-0.2343303174
O,0,2.1261772563,1.4384161614,-1.8172293224
O,0,-1.6217409521,0.7233163925,0.69679726
O, $0,-2.0272956845,-0.4021613873,-0.1465516074$
С, $0,-3.3655913643,-0.8239469221,0.2193025174$
С,0,-3.3970995057,-1.2725447676,1.6854945622
C,0,-4.366764088,0.3065261693,-0.0400033424
С,0,-3.611254407,-2.0047339769,-0.7278286098
H,0,-0.4666786436,1.0320544943,-2.109768905
Н,0,-2.1640634465,2.1293817769,-0.7285181645
H,0,-0.8888780816,3.9253299032,0.2462597901
H,0,-1.5603151907,2.9989384606,1.5906440576
H,0,0.8477472507,3.5548332397,2.0151620101
H,0,0.5982825791,1.818529534,1.8928257526
H,0,1.8161176227,3.6836535903,-0.2136151153
H,0,2.5829970001,2.3043745161,0.5400040427
H,0,-5.3863464928,-0.0284033899,0.1826433475
H,0,-4.1395991986,1.1688257544,0.5915424324
Н,0,-4.3267595379,0.6211803668,-1.0878835655
H,0,-4.3959705864,-1.632110926,1.9575502077
H,0,-2.6840211017,-2.0878856708,1.8550024714
H,0,-3.1363747258,-0.4392527148,2.3427078379
H,0,-4.6114887539,-2.4180512106,-0.5606227418
$\mathrm{H}, 0,-3.5398315101,-1.6836885634,-1.7720715351$
H,0,-2.8803237457,-2.8032532529,-0.5574928471
H,0,-0.3761439825,-1.3403087759,-0.1560558193
$\mathrm{N}, 0,0.5707120215,-1.5816230944,0.1556965367$
C,0,0.7767088342,-1.5031411749,1.6045821209
C,0,2.1474191065,-0.907084641,1.9053803495

```
H,0,-0.023591271,-0.8742402041,2.0013541344
H,0,0.6808318881,-2.5069640113,2.0387233712
C,0,1.5382942895,-1.474131926,-0.7494176261
N,0,2.8263846236,-1.4975236355,-0.3964995545
C,0,3.8658682225,-1.1065408899,-1.3663952091
C,0,3.2044985073,-1.569591355,1.026202851
H,0,3.7338426047,-0.0431505268,-1.6072440774
H,0,4.8406634975,-1.2961398096,-0.9144137221
H,0,3.7930413376,-1.7077387807,-2.2753330172
H,0,3.3475922308,-2.6223117463,1.3062863905
C,0,1.1622777217,-1.3322260652,-2.1871145748
H,0,2.1334221002,0.1672615045,1.7002446648
H,0,2.3989311079,-1.0493647199,2.9610858659
H,0,4.1653068422,-1.0633023917,1.1398799697
H,0,1.4689338193,-0.3091081734,-2.4878082555
H,0,1.6787061092,-2.0781900776,-2.7995538233
H,0,0.0852468946,-1.4455603043,-2.3119774472
```


Int gaucheB3 DBU model - 6-31+G**

$\mathrm{E}($ RB+HF-LYP $)=-962.901682774$

Zero-point correction $=$	0.451487 (Hartree/Particle)
Thermal correction to Energy $=$	0.475532
Thermal correction to Enthalpy $=$	0.476477
Thermal correction to Gibbs Free Energy $=$	0.397937
Sum of electronic and zero-point Energies $=$	-962.450196
Sum of electronic and thermal Energies $=$	-962.426150
Sum of electronic and thermal Enthalpies $=$	-962.425206
Sum of electronic and thermal Free Energies $=$	-962.503746

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	298.401	91.174	165.300

C,0,-0.8971873686,2.9994145981,0.7821362374
С, $0,0.4988611654,2.8163147239,1.389789456$
C,0,1.5765273862,2.7283237189,0.3000217396
C,0,1.2201760718,1.8200430581,-0.8888164041
С,0,-0.1217251658,1.5527245198,-1.1365614804
С,0,-1.2265110938,1.8967929534,-0.2276545199
O,0,2.2010853558,1.409647742,-1.608465838
O,0,-1.6555821253,0.749094562,0.7022984583
O,0,-2.0299160328,-0.3963428619,-0.1279405639
С,0,-3.3863020063,-0.8124959742,0.1927482045

```
C,0,-3.4756799056,-1.2295601477,1.6661134298 С,0,-4.3784438576,0.3095127958,-0.1312390786 C,0,-3.5932359827,-2.0145204706,-0.7371743286 H,0,-0.3765886158,1.0193230686,-2.0480689702 H,0,-2.1512435386,2.132326241,-0.7670109034 H,0,-0.9444919803,3.9545097734,0.242894662
H,0,-1.6625805782,3.0346333041,1.5674840241
H,0,0.7182424303,3.6402813122,2.0820844718 H,0,0.499251433,1.8972000028,1.9907689788 H,0,1.770560781,3.7277862915,-0.1168253065 H,0,2.5355828364,2.3939576896,0.7165165765
H,0,-5.4033507076,-0.0273602125,0.0586372944 H,0,-4.182594079,1.1856475129,0.4910906925
H,0,-4.2992885715,0.6016826081,-1.1827496832
H,0,-4.4839648279,-1.5876597099,1.9005644057
H,0,-2.768058213,-2.0374567419,1.8823334766
H,0,-3.2480029372,-0.3821354036,2.3168551759
H,0,-4.5961645043,-2.4281391446,-0.5918197481
\(\mathrm{H}, 0,-3.4918621301,-1.716317921,-1.7851599775\)
H,0,-2.8659037992,-2.8053833863,-0.5254413171
H,0,-0.3545914912,-1.3215092534,-0.1364675334
\(\mathrm{N}, 0,0.5941901347,-1.5863292061,0.1467658764\)
C, \(0,0.8607855888,-1.5311084398,1.5862883823\)
C,0,2.2065767971,-0.8567207394,1.8291085849
Н,0,0.0436799414,-0.9665428494,2.0405493799
H,0,0.8507780862,-2.5488177396,1.9977741254
C,0,1.5409909415,-1.5140815793,-0.7844701181
N,0,2.8359963438,-1.5501954458,-0.4667559979
C,0,3.8658619931,-1.2744425368,-1.4820690787
C,0,3.2721894637,-1.4941375382,0.9431008482
H,0,3.8550187284,-0.2026276004,-1.7148952315
H,0,4.8320194197,-1.5787061102,-1.0766336108
H,0,3.6829540832,-1.8537395063,-2.3874963679
H,0,3.5154781478,-2.5106949095,1.2799358542
C,0,1.1216423645,-1.4023271059,-2.2154680613
H,0,2.1278131519,0.2069116712,1.5901048094
H,0,2.4966425671,-0.9518544089,2.8796804856
H,0,4.190257419,-0.9030044242,0.9757313964
H,0,1.4521919567,-0.4127527023,-2.5660743083
H,0,1.5774712981,-2.1920277292,-2.8197140698
H,0,0.0375824141,-1.4734437117,-2.2969772602
```

Int gaucheB3 DBU model - PCM Dichloroethane - 6-31G*
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-962.845136389$

Zero-point correction=	0.454455 (Hartree/Particle)
Thermal correction to Energy $=$	0.478157
Thermal correction to Enthalpy $=$	0.479101
Thermal correction to Gibbs Free Energy $=$	0.401697
Sum of electronic and zero-point Energies $=$	-962.390681
Sum of electronic and thermal Energies=	-962.366980
Sum of electronic and thermal Enthalpies $=$	-962.366035
Sum of electronic and thermal Free Energies $=$	-962.443439

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	300.048	90.218	162.910
C, $0,-0$	24052,2.942	$53416,0.796111$	
C, $0,0$.	5601,2.7169	2498,1.238714	
C,0,1.	94685,2.72207	33176,0.039428	
C, $0,1$.	85987,1.9358	73721,-1.18651393	
C,0,-0	033836,1.616	550951,-1.270820	744
C,0,-1	$82715,1.888$	03805,-0.22482	926
O,0,1.	933871,1.6688	09629,-2.084944671	715
O,0,-1	659996,0.710	147959,0.661029728	
O,0,-2	358227,-0.39	698243,-0.19878	595
C, $0,-3$	12464,-0.840	19815,0.19305	064
C, $0,-3$	459461,-1.31981	190607,1.648929	732
C, $0,-4$	613317,0.283	355703,-0.019547	
C, $0,-3$	73835,-2.004	16522,-0.77322	0834
H,0,-0	366512,1.111	831621,-2.170364	6096
H,0,-2	373917,2.168	696527,-0.65831602	2296
H,0,-0	87904,3.926	219318,0.316867	
H,0,-1	318594,2.938	574042,1.6589689	
H,0,0.	00913,3.47899	4914,1.9728010027	
H,0,0.	773549,1.7491	$16519,1.7527561$	
H,0,1.	535027,3.7590	$31475,-0.2843548$	904
H,0,2.	16348,2.3221	86828,0.3227332	
H,0,-5	878679,-0.07	845633,0.220311	103
H,0,-4	299501,1.135	219306,0.625923181	
H,0,-4	863472,0.619	156653,-1.061731	8821
H,0,-4	82398,-1.6953	79051,1.9318320	
H,0,-2	115682,-2.13	944256,1.7863568	196
H,0,-3	928726,-0.498	708946,2.320755	275
H,0,-4	874365,-2.42838	811464,-0.59204	5315
H,0,-3	918467,-1.66208	804003,-1.81246	4253
H,0,-2	060369,-2.799	975322,-0.63390	1525

```
H,0,-0.3809736728,-1.3573721603,-0.0415421185
N,0,0.5718354138,-1.5786708352,0.2640231302
C,0,0.7924178351,-1.6093095945,1.7134637478
C,0,2.1722304176,-1.0498495995,2.0453244632
H,0,0.0023744562,-1.0077447035,2.1695327126
H,0,0.6917493927,-2.6418003656,2.0713803646
C,0,1.5313442676,-1.4403440723,-0.6431251952
N,0,2.8199764506,-1.4569585553,-0.3007203725
C,0,3.8541390188,-1.1529816603,-1.3018587908
C,0,3.2178277824,-1.6474093609,1.1076073976
H,0,3.6620926631,-0.1620521354,-1.7281798815
H,0,4.8233466778,-1.1592328035,-0.8023631343
H,0,3.8728710993,-1.9070629516,-2.0949397306
H,0,3.3517384459,-2.7204457489,1.2997656172
C,0,1.143736792,-1.2857353723,-2.0795961474
H,0,2.1688166092,0.0394873172,1.9344721797
H,0,2.432032169,-1.2825703908,3.0827279768
H,0,4.1841755835,-1.158391732,1.2510627107
H,0,1.4450706571,-0.2790760544,-2.4188129399
H,0,1.6443060983,-2.0461098014,-2.6889782869
H,0,0.0643412266,-1.3915205523,-2.1905225731
```


Int gaucheB3 DBU model - PCM Dichloroethane - 6-31+G**

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-962.926189324$

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy= 0.395179
Sum of electronic and zero-point Energies= -962.475847
Sum of electronic and thermal Energies $=\quad-962.451521$
Sum of electronic and thermal Enthalpies $=\quad-962.450577$
Sum of electronic and thermal Free Energies= $\quad-962.531010$

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	297.859	91.300	169.286

C,0,-1.4383120854,2.7529750854,1.0564830305
C,0,0.0031489146,2.7307310854,1.5782460305
C,0,0.9992769146,3.0868500854,0.4666970305
C,0,0.7296519146,2.4036080854,-0.8794729695
С,0,-0.5148260854,1.8473510854,-1.1145229695
C,0,-1.6189440854,1.7926890854,-0.1237109695

O,0,1.7033769146,2.4267550854,-1.7366469695
O,0,-1.7680120854,0.4659400854,0.5787750305
O,0,-1.8948590854,-0.5815579146,-0.4355469695
C, $0,-3.1335160854,-1.3279339146,-0.2342269695$
C,0,-3.1327230854,-1.9928639146,1.1468050305
C,0,-4.3436620854,-0.4063399146,-0.4127499695
C,0,-3.0652900854,-2.3734039146,-1.3540079695
Н,0,-0.6961830854,1.3960080854,-2.0882319695
H, $0,-2.5946620854,1.9514810854,-0.6005749695$
H,0,-1.6937810854,3.7615940854,0.7046170305
H,0,-2.1490560854,2.5025640854,1.8539570305
H,0,0.1106029146,3.4219310854,2.4245580305
H,0,0.2225409146,1.7260640854,1.9610530305
H,0,0.9898879146,4.1738230854,0.2887560305
H,0,2.0257009146,2.8416990854,0.7685870305
H,0,-5.2693840854,-0.9850049146,-0.3254669695
H,0,-4.3525270854,0.3722660854,0.3540790305
H,0,-4.3251900854,0.0685220854,-1.3986329695
H,0,-4.0351550854,-2.6006309146,1.2724790305
H,0,-2.2627260854,-2.6481009146,1.2613710305
H,0,-3.1114100854,-1.2393889146,1.9380810305
H,0,-3.9570190854,-3.0073519146,-1.3192339695
H,0,-3.0230000854,-1.8906519146,-2.3351789695
H,0,-2.1863950854,-3.0163379146,-1.2403179695
H,0,-0.1141680854,-1.1421539146,-0.1322169695
N,0,0.8279739146,-1.3481829146,0.2163610305
C,0,0.9638979146,-1.5822419146,1.6578240305
C, $0,2.3068779146,-1.0434069146,2.1380010305$
H,0,0.1295439146,-1.0760359146,2.1489170305
H,0,0.8794269146,-2.6574699146,1.8607830305
C,0,1.8465739146,-1.1451299146,-0.6100709695
N,0,3.1110139146,-1.2307949146,-0.1889309695
C,0,4.2340079146,-1.0963209146,-1.1263399695
C,0,3.4207269146,-1.5417439146,1.2223340305
Н,0,4.1400399146,-0.1853319146,-1.7211869695
H,0,5.1541379146,-1.0311459146,-0.5458689695
H,0,4.3050149146,-1.9628519146,-1.7925159695
H,0,3.5643599146,-2.6254799146,1.3292790305
C,0,1.5446719146,-0.7940399146,-2.0324449695
H,0,2.2923439146,0.0520310854,2.1356250305
H,0,2.5013389146,-1.3743759146,3.1624540305
H,0,4.3659569146,-1.0509299146,1.4680170305
H,0,1.6952249146,0.2901410854,-2.1712119695
H,0,2.1858749146,-1.3467539146,-2.7226059695

H,0.5023369146,-1.0190579146,-2.2570829695

tbuoocyclohexanoneB3-6-31G*

$\mathrm{E}($ RB+HF-LYP $)=-617.499588925$

Zero-point correction $=$	0.271937 (Hartree/Particle)
Thermal correction to Energy $=$	0.286175
Thermal correction to Enthalpy $=$	0.287119
Thermal correction to Gibbs Free Energy $=$	0.230167
Sum of electronic and zero-point Energies $=$	-617.227652
Sum of electronic and thermal Energies=	-617.213414
Sum of electronic and thermal Enthalpies $=$	-617.212470
Sum of electronic and thermal Free Energies $=$	-617.269422


```
H,0,-1.4873850476,-1.0545924746,-2.2050386172
H,0,-2.8291718932,-3.7343400653,0.1417817717
H,0,-1.937084217,-3.1348225288,1.5564965538
H,0,-3.2856337314,-2.1884813826,0.8891563198
H,0,0.4971091045,1.5597422032,-1.9842100599
```

tbuoocyclohexanoneB3BB-6-31+G**
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-617.545699234$

Zero-point correction=	0.269910 (Hartree/Particle)
Thermal correction to Energy $=$	0.284254
Thermal correction to Enthalpy $=$	0.285198
Thermal correction to Gibbs Free Energy $=$	0.227904
Sum of electronic and zero-point Energies=	-617.275789
Sum of electronic and thermal Energies $=$	-617.261446
Sum of electronic and thermal Enthalpies $=$	-617.260501
Sum of electronic and thermal Free Energies $=$	-617.317795

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	178.372	54.380	120.585

C, $0,-0.183259816,1.5627637924,1.4588934479$
C,0,1.274542316,1.3508455338,1.8869814489
C, $0,2.2543083871,2.1350640829,0.9904651262$
C,0,2.0120019256,1.8932943201,-0.4909086363
C, $0,0.5564261304,1.9411318851,-0.9456897961$
С,0,-0.4022910763,1.1840064507,-0.0123581808
O,0,2.9208343431,1.7178601991,-1.2834493726
O,0,-0.1082389816,-0.1968822179,-0.2593256987
O,0,-1.0961811041,-0.978594171,0.493144476
C, $0,-1.4771604985,-2.1281451846,-0.3098981683$
C,0,-2.1676070272,-1.6739625189,-1.6009256695
C,0,-0.2489985817,-3.000268104,-0.5952362615
С,0,-2.4608490154,-2.8445968308,0.6239196662
H,0,0.2485483737,2.9963760415,-0.947247042
H,0,-1.4428595297,1.3742370842,-0.306901344
H,0,-0.4700879223,2.6164503988,1.5857004298
H,0,-0.8569081248,0.9696887394,2.0838692952
H,0,1.4094502202,1.6548372506,2.9308916035
H,0,1.510960701,0.2824631574,1.8335921018
H,0,2.114226065,3.214180477,1.1614825754
H,0,3.299165957,1.9016707817,1.2125120361
H,0,-0.5475914751,-3.9103241844,-1.1263952694

```
H,0,0.4755837826,-2.4636649153,-1.2122774737
H,0,0.2390498,-3.2889305849,0.3407611383
H,0,-2.5153911334,-2.5427488275,-2.1696713839
H,0,-3.0333855757,-1.04384271,-1.3726900516
H,0,-1.4769910146,-1.1082358449,-2.2310891822
H,0,-2.8299172936,-3.7538744645,0.1392853792
H,0,-1.9712720831,-3.125870451,1.5609033793
H,0,-3.3173300655,-2.2039242151,0.8550484498
H,0,0.4907587946,1.5716412247,-1.9721877411
```

tbuoocyclohexanoneB3 - PCM Dichloroethane - 6-31G*
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-617.507326327$

Zero-point correction $=$	0.271406 (Hartree/Particle)
Thermal correction to Energy $=$	0.285591
Thermal correction to Enthalpy $=$	0.286536
Thermal correction to Gibbs Free Energy $=$	0.229988
Sum of electronic and zero-point Energies $=$	-617.235921
Sum of electronic and thermal Energies=	-617.221735
Sum of electronic and thermal Enthalpies $=$	-617.220791
Sum of electronic and thermal Free Energies $=$	-617.277338

Total
E (Thermal) CV S
$\mathrm{KCal} / \mathrm{Mol} \quad \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin} \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}$
C,0,-0.239571168,1.5901028417,1.399131551
C,0,1.2052583881,1.4600889618,1.8970473775
C,0,2.1903522428,2.2263612325,0.9898803048
C,0,2.0190033888,1.8686273337,-0.475996206
C, $0,0.584985224,1.8639284651,-0.9894679564$
С, $0,-0.3810100391,1.1186629849,-0.0537066734$
O,0,2.9649575136,1.6344514327,-1.2113560377
O,0,-0.0072379256,-0.2583554863,-0.2071409459
O,0,-0.9764272294,-1.053330703,0.5495393715
C,0,-1.4742180058,-2.1148996739,-0.3062355902
C, $0,-2.2117102976,-1.5351306357,-1.5177246933$
C,0,-0.3200982002,-3.0306106781,-0.7291420668
С,0,-2.4419912121,-2.8427792312,0.6349526332
H,0,0.2481628079,2.9096777081,-1.0475477474
Н,0,-1.4143232771,1.2477254384,-0.4019991922
H,0,-0.5705364949,2.6371440595,1.4536938029
H,0,-0.9162732735,1.0055547425,2.0304402591
H,0,1.2886726771,1.8347254,2.9236985571

```
H,0,1.4835419273,0.4000016412,1.9188982128
H,0,1.9931654937,3.3068740061,1.0803044017
H,0,3.2334398956,2.0556249362,1.2748041027
H,0,-0.6994033781,-3.8799430476,-1.3084013709
H,0,0.3995637846,-2.4865712248,-1.3471218076
H,0,0.2016685967,-3.4177512808,0.1526602032
H,0,-2.6440511715,-2.3415345578,-2.1205535487
H,0,-3.0239466372,-0.8749911489,-1.1941416111
H,0,-1.5271886422,-0.9651716986,-2.15218678
H,0,-2.8904034998,-3.6961613816,0.115567889
H,0,-1.9162087348,-3.2140374821,1.5207530597
H,0,-3.2459632025,-2.1741755454,0.9602802291
H,0,0.5637423361,1.4447778839,-1.9999198457
```

tbuoocyclohexanoneB3BB - PCM Dichloroethane - 6-31+G**
$\mathrm{E}($ RB+HF-LYP $)=-617.507326327$

Zero-point correction=	0.271406 (Hartree/Particle)
Thermal correction to Energy $=$	0.285591
Thermal correction to Enthalpy $=$	0.286536
Thermal correction to Gibbs Free Energy=	0.229988
Sum of electronic and zero-point Energies=	-617.235921
Sum of electronic and thermal Energies=	-617.221735
Sum of electronic and thermal Enthalpies=	-617.220791
Sum of electronic and thermal Free Energies=	-617.277338

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	179.211	53.947	119.014

C,0,-0.239571168,1.5901028417,1.399131551
C, $0,1.2052583881,1.4600889618,1.8970473775$
C,0,2.1903522428,2.2263612325,0.9898803048
C,0,2.0190033888,1.8686273337,-0.475996206
C,0,0.584985224,1.8639284651,-0.9894679564
С,0,-0.3810100391,1.1186629849,-0.0537066734
O,0,2.9649575136,1.6344514327,-1.2113560377
O,0,-0.0072379256,-0.2583554863,-0.2071409459
O,0,-0.9764272294,-1.053330703,0.5495393715
C,0,-1.4742180058,-2.1148996739,-0.3062355902
C, $0,-2.2117102976,-1.5351306357,-1.5177246933$
C, $0,-0.3200982002,-3.0306106781,-0.7291420668$
С, $0,-2.4419912121,-2.8427792312,0.6349526332$
H,0,0.2481628079,2.9096777081,-1.0475477474

```
H,0,-1.4143232771,1.2477254384,-0.4019991922
H,0,-0.5705364949,2.6371440595,1.4536938029
H,0,-0.9162732735,1.0055547425,2.0304402591
H,0,1.2886726771,1.8347254,2.9236985571
H,0,1.4835419273,0.4000016412,1.9188982128
H,0,1.9931654937,3.3068740061,1.0803044017
H,0,3.2334398956,2.0556249362,1.2748041027
H,0,-0.6994033781,-3.8799430476,-1.3084013709
H,0,0.3995637846,-2.4865712248,-1.3471218076
H,0,0.2016685967,-3.4177512808,0.1526602032
H,0,-2.6440511715,-2.3415345578,-2.1205535487
H,0,-3.0239466372,-0.8749911489,-1.1941416111
H,0,-1.5271886422,-0.9651716986,-2.15218678
H,0,-2.8904034998,-3.6961613816,0.115567889
H,0,-1.9162087348,-3.2140374821,1.5207530597
H,0,-3.2459632025,-2.1741755454,0.9602802291
H,0,0.5637423361,1.4447778839,-1.9999198457
```

tseqBB3 DBU model - 6-31G*
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-962.822351428$
Zero-point correction= 0.452736 (Hartree/Particle)
Thermal correction to Energy=
0.476433
Thermal correction to Enthalpy= 0.477377
Thermal correction to Gibbs Free Energy= 0.399388
Sum of electronic and zero-point Energies $=\quad-962.369615$
Sum of electronic and thermal Energies $=\quad$-962.345919
Sum of electronic and thermal Enthalpies $=\quad-962.344975$
Sum of electronic and thermal Free Energies= $\quad-962.422964$

E (Thermal)	CV	S
KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	298.966	89.369

[^9]

```
H,0,0.0864823488,-0.6862118626,-0.5954932567
N,0,1.0712207556,-0.993220304,-0.5839861043
C,0,1.8229780562,-0.7951537142,-1.8291028773
C,0,3.2607102375,-1.268366762,-1.6472885771
H,0,1.3103566215,-1.3587659884,-2.6149160705
H,0,1.8005449152,0.2734761056,-2.0705280552
C,0,1.6016375377,-1.1514593137,0.6143226306
N,0,2.9326720425,-1.15152492,0.7835252335
C,0,3.5708040253,-1.3031662974,2.086271798
C,0,3.7956208299,-0.709430694,-0.330764882
H,0,4.4574516542,-1.9359430726,1.9786663684
H,0,3.883700991,-0.3296731841,2.4849889854
H,0,2.8957186723,-1.7757110979,2.7976356012
H,0,3.7986281442,0.3879105667,-0.3581276094
C,0,0.6563315976,-1.3529774708,1.7658190086
H,0,3.3182855133,-2.3634789687,-1.6339188508
H,0,3.8745550663,-0.9103218545,-2.4791904274
H,0,4.8081910176,-1.0674411165,-0.1260304962
H,0,0.7813248347,-2.3611183562,2.1795754256
H,0,0.8601605821,-0.6334741698,2.5651019922
H,0,-0.3846052413,-1.2324521579,1.4308736775
```

tseqBB3BB DBU model - 6-31+G**
$\mathrm{E}($ RB+HF-LYP $)=-962.899268353$
Zero-point correction= 0.449324 (Hartree/Particle)
Thermal correction to Energy $=\quad 0.473332$
Thermal correction to Enthalpy= 0.474276
Thermal correction to Gibbs Free Energy= 0.395293
Sum of electronic and zero-point Energies $=\quad-962.449944$
Sum of electronic and thermal Energies $=\quad-962.425937$
Sum of electronic and thermal Enthalpies $=\quad-962.424992$
Sum of electronic and thermal Free Energies= $\quad-962.503975$

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} / \mathrm{Mol-Kelvin}$	Cal/Mol-Kelvin
Total	297.020	90.209	166.234

C,0,-1.1158607751,2.6421485486,0.6220762618
C,0,0.1201551086,3.3089971598,1.2416202586
C, $0,1.3372185963,2.3828645982,1.1543942281$
C,0,1.6143059564,1.9056678152,-0.2783784046
C,0,0.532037638,1.9492060323,-1.1897435164
С,0,-0.8203296433,2.0463054165,-0.7536092854
$\mathrm{O}, 0,2.7795009898,1.5053677357,-0.5555128255$
$\mathrm{O}, 0,-1.2855285904,0.3509017478,-0.660532695$
$\mathrm{O}, 0,-2.4807809168,-0.0202058828,0.123295798$
$\mathrm{C}, 0,-3.5573358923,-0.459291923,-0.7397723916$
$\mathrm{C}, 0,-3.9760663944,0.6589619489,-1.7017372144$
$\mathrm{C}, 0,-3.1400426476,-1.7204696603,-1.5079245588$
$\mathrm{C}, 0,-4.6804292194,-0.7703939273,0.2590233314$
$\mathrm{H}, 0,0.7357108754,1.7325423484,-2.2355348595$
$\mathrm{H}, 0,-1.5445261443,2.3152082535,-1.5194754991$
$\mathrm{H}, 0,-1.9331112202,3.3683134388,0.5359003768$
$\mathrm{H}, 0,-1.4889606835,1.8496813629,1.2806056118$
$\mathrm{H}, 0,0.3450213554,4.2378275369,0.7027995108$
$\mathrm{H}, 0,-0.0864183195,3.5865457386,2.2837669503$
$\mathrm{H}, 0,2.2495460523,2.871046711,1.5149915205$
$\mathrm{H}, 0,1.1817403975,1.5025622931,1.7980122099$
$\mathrm{H}, 0,-3.9663427431,-2.0885230676,-2.1263219794$
$\mathrm{H}, 0,-2.2908696252,-1.5014886285,-2.1603687425$
$\mathrm{H}, 0,-2.8514895708,-2.5153018091,-0.8113983944$
$\mathrm{H}, 0,-4.8475211378,0.3506202789,-2.2900531192$
$\mathrm{H}, 0,-4.2385573291,1.56478277711,-1.1458689994$
$\mathrm{H}, 0,-3.1621817114,0.8946797355,-2.3918965437$
$\mathrm{H}, 0,-5.5688313954,-1.1290111939,-0.2715187208$
$\mathrm{H}, 0,-4.3657808091,-1.5437729977,0.9670336928$
$\mathrm{H}, 0,-4.9524132936,0.126399053,0.8242153288$
$\mathrm{H}, 0,-0.0468616877,-0.7459007233,-0.4926207316$
$\mathrm{~N}, 0,0.8568878283,-1.2753312745,-0.3622687093$
$\mathrm{C}, 0,1.7580908057,-1.3191939998,-1.5196280964$
$\mathrm{C}, 0,2.9908235623,-2.1530982074,-1.1907792817$
$\mathrm{H}, 0,1.1962940233,-1.7412391264,-2.3580126574$
$\mathrm{H}, 0,2.0504202587,-0.2907018184,-1.7572155847$
$\mathrm{C}, 0,1.2384530817,-1.4782011972,0.8824871104$
$\mathrm{~N}, 0,2.5065863636,-1.7976563436,1.19226316$
$\mathrm{C}, 0,2.977901764,-1.918453932,2.569292375$
$\mathrm{C}, 0,3.5518338514,-1.6926557439,0.1521138158$
$\mathrm{H}, 0,3.7484480566,-2.6930239794,2.6114259693$
$\mathrm{H}, 0,3.4129591421,-0.9737637483,2.9193180678$
$\mathrm{H}, 0,2.1698707478,-2.207452603,3.2391773686$
$\mathrm{H}, 0,3.8777425432,-0.6464093619,0.0891120576$
$\mathrm{C}, 0,0.1848490556,-1.3680880042,1.9520018188$
$\mathrm{H}, 0,2.7444019736,-3.2209750468,-1.1461490679$
$\mathrm{H}, 0,3.74614176338,-2.0153814727,-1.9697248318$
$\mathrm{H}, 0,4.3907483636,-2.3189131047,0.4674579299$
$\mathrm{H}, 0,0.0254605988,-2.3413264254,2.4287236495$
$\mathrm{H}, 0,0.482961718,-0.6548055551,2.725068837$

Н,0,-0.7570824905,-1.0356438902,1.5119685717

$\mathbf{2}^{\text {nd }}$ tseqBB3BB DBU model - 6-31+G**	
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-962.896635434$	
Zero-point correction= 0.448	0.448498 (Hartree/Particle)
Thermal correction to Energy= 0.	0.472774
Thermal correction to Enthalpy= 0	0.473718
Thermal correction to Gibbs Free Energy=	$g y=0.392929$
Sum of electronic and zero-point Energies=	gies $=\quad-962.448138$
Sum of electronic and thermal Energies=	$=\quad-962.423861$
Sum of electronic and thermal Enthalpies=	ies $=\quad-962.422917$
Sum of electronic and thermal Free Energies=	ergies $=\quad-962.503707$

E (Thermal)	CV	Cal/Mol
KCal/Mol-Kelvin	Cal/Mol-Kelvin	
Total	296.670	90.442

```
H,0,-3.5875276452,-0.1586644698,-1.6933499276
H,0,-4.3580972565,-3.2013332984,0.3992115676
H,0,-2.9581023768,-3.0294873047,1.4828587482
H,0,-4.3016822253,-1.8746212627,1.5848386689
H,0,0.2187028207,-0.2167692317,-0.3785818361
N,0,1.1901874753,-0.6104243889,-0.3959812974
C,0,1.953542157,-0.4290757029,-1.6351936127
C,0,3.1348604607,-1.3920440725,-1.6491075413
H,0,1.2697557244,-0.6240033101,-2.4651560249
H,0,2.2640186631,0.6207073938,-1.7074618135
C,0,1.680562493,-1.0950922259,0.7238503674
N,0,2.9718142311,-1.4688260523,0.8167559236
C,0,3.595999678,-1.9294364005,2.053776677
C,0,3.8890402421,-1.2965463174,-0.3251278907
H,0,3.9810933698,-2.9475794567,1.9262326067
H,0,4.4332132623,-1.2706037213,2.3117920574
H,0,2.889129223,-1.9232569196,2.8795139432
H,0,4.3954221703,-0.3263820265,-0.232721655
C,0,0.7424293567,-1.223936029,1.892345394
H,0,2.7873523106,-2.4212190842,-1.7980208852
H,0,3.8102038465,-1.1467937882,-2.473528377
H,0,4.6510238832,-2.0789673865,-0.2527553497
H,0,0.7784948419,-2.2361830545,2.3057550853
H,0,1.0183537844,-0.5211331702,2.685987635
H,0,-0.2851647961,-1.0202372704,1.5691037501
```

$2^{\text {nd }}$ tseqAB3 DBU model - 6-31G*
$\mathrm{E}($ RB+HF-LYP $)=-962.817227828$
Zero-point correction $=\quad 0.451567$ (Hartree/Particle)
Thermal correction to Energy $=\quad 0.475682$
Thermal correction to Enthalpy= 0.476626
Thermal correction to Gibbs Free Energy= 0.396366
Sum of electronic and zero-point Energies= $\quad-962.365661$
Sum of electronic and thermal Energies $=\quad-962.341546$
Sum of electronic and thermal Enthalpies $=\quad-962.340602$
Sum of electronic and thermal Free Energies= $\quad-962.420862$

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} / \mathrm{Mol-Kelvin}$	Cal/Mol-Kelvin
Total	298.495	89.834	168.922

C,0,-1.8952414633,2.1669400939,1.1998947083
$\mathrm{C}, 0,-0.8106549999,3.1771710791,1.5983296256$
$\mathrm{C}, 0,0.551392101,2.7939056888,1.0102083156$
$\mathrm{C}, 0,0.5094444451,2.6972555335,-0.5225907402$
$\mathrm{C}, 0,-0.7451990484,2.3489948311,-1.1010635851$
$\mathrm{C}, 0,-1.8265021753,1.7644465246,-0.2881039186$
$\mathrm{O}, 0,1.5515080986,2.9368227083,-1.1736243883$
$\mathrm{O}, 0,-1.3108685129,0.4296713668,-0.4987897508$
$\mathrm{O}, 0,-2.066289533,-0.8690764561,0.5161293092$
$\mathrm{C}, 0,-2.8866279322,-1.7006592434,-0.2676903618$
$\mathrm{C}, 0,-4.0567133253,--9.9158007951,-0.88855809$
$\mathrm{C}, 0,-2.0782263304,-2.4087689185,-1.3725506139$
$\mathrm{C}, 0,-3.4344527696,-2.7451339373,0.7320149567$
$\mathrm{H}, 0,-0.8319757044,2.3376224221,-2.1828364596$
$\mathrm{H}, 0,-2.8137638715,1.8247843057,-0.7588742873$
$\mathrm{H}, 0,-2.8860254776,2.585943558,1.4151708735$
$\mathrm{H}, 0,-1.8167434985,1.2472551114,1.7895261953$
$\mathrm{H}, 0,-1.0825556356,4.1720133072,1.2211420961$
$\mathrm{H}, 0,-0.7560084484,3.2617747815,2.6920995922$
$\mathrm{H}, 0,1.3306651552,3.5196354732,1.2685277822$
$\mathrm{H}, 0,0.8751088647,1.8244303228,1.4226344705$
$\mathrm{H}, 0,-2.6987881451,-3.1084459917,-1.9464011322$
$\mathrm{H}, 0,-1.6653160291,-1.6677099134,-2.064289371$
$\mathrm{H}, 0,-1.2463710217,-2.9718696412,-0.9315425063$
$\mathrm{H}, 0,-4.7525922376,-1.5784759035,-1.418637708$
$\mathrm{H}, 0,-4.6111232351,-0.3866156242,-0.105617772$
$\mathrm{H}, 0,-3.6779459693,-0.176966152,-1.601661616$
$\mathrm{H}, 0,-4.0948901309,-3.4628525806,0.2288652438$
$\mathrm{H}, 0,-2.6099925127,-3.2988700846,1.1949519574$
$\mathrm{H}, 0,-4.0005088733,-2.2473690409,1.5262242121$
$\mathrm{H}, 0,0.0586294556,-0.3540328851,-0.0702635879$
$\mathrm{~N}, 0,0.9549155608,-0.8251340275,0.2047634285$
$\mathrm{C}, 0,0.991214518,-1.4342129652,1.5321649779$
$\mathrm{C}, 0,2.3988986134,-1.3224527051,2.106003263$
$\mathrm{H}, 0,0.2461407908,-0.9228207578,2.1440388376$
$\mathrm{H}, 0,0.6733748,-2.4810785461,1.4514694294$
$\mathrm{C}, 0,1.9964514616,-0.6955225235,-0.5907124744$
$\mathrm{~N}, 0,3.217795314,-1.1243456072,-0.2190594181$
$\mathrm{C}, 0,4.3757414988,-1.049314055,-1.1081030739$
$\mathrm{C}, 0,3.4142389143,-1.8063473854,1.0713240804$
$\mathrm{H}, 0,4.50805763,-1.9772533146,-1.6797743329$
$\mathrm{H}, 0,4.280126928,-0.2120054499,-1.7979081163$
$\mathrm{H}, 0,5.2705106817,-0.8860594633,-0.5015867152$
$\mathrm{H}, 0,3.3358869425,-2.8930239393,0.9252985119$
$\mathrm{C}, 0,1.7799801628,-0.048738598,-1.9269479328$

```
H,0,2.612579345,-0.2794869806,2.3661620053
H,0,2.4924631294,-1.9200504632,3.0179559135
H,0,4.434208495,-1.5934793238,1.4049918691
H,0,2.1363694754,0.9916672754,-1.911024793
H,0,2.2749065836,-0.6107717628,-2.7230266817
H,0,0.7093339441,0.0005520061,-2.1269781647
tseqAB3 DBU model - PCM Dichloroethane - 6-31G*
E(RB+HF-LYP})=-962.838772209
\begin{tabular}{lc} 
Zero-point correction= & 0.450679 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.475045 \\
Thermal correction to Enthalpy \(=\) & 0.475989 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.394101 \\
Sum of electronic and zero-point Energies= & -962.388093 \\
Sum of electronic and thermal Energies \(=\) & -962.363727 \\
Sum of electronic and thermal Enthalpies \(=\) & -962.362783 \\
Sum of electronic and thermal Free Energies \(=\) & -962.444671
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 298.095 & 89.958 & 172.348
\end{tabular}
C,0,-1.7839749634,2.1510149268,1.1817669634
C,0,-0.7188189634,3.1315279268,1.6949509634
C,0,0.6472910366,2.8467889268,1.0615289634
C,0,0.5839340366,2.8854589268,-0.4709660366
C,0,-0.6481889634,2.4939849268,-1.0623510366
C,0,-1.6966559634,1.9278439268,-0.3205380366
O,0,1.5990060366,3.2511979268,-1.1135130366
O,0,-1.3795449634,0.0592049268,-0.4681560366
O,0,-2.1195529634,-0.8070540732,0.4530669634
C,0,-3.0761099634,-1.6131440732,-0.2673380366
C,0,-4.0842419634,-0.7275470732,-1.0095630366
C,0,-2.3454149634,-2.5496810732,-1.2387950366
C,0,-3.7636219634,-2.4067060732,0.8508799634
H,0,-0.7080029634,2.5158519268,-2.1499990366
H,0,-2.6548159634,1.8289109268,-0.8228270366
H,0,-2.7854609634,2.5284599268,1.4292469634
H,0,-1.6989569634,1.1831439268,1.6880889634
H,0,-1.0155489634,4.1577369268,1.4381439634
H,0,-0.6603539634,3.0853919268,2.7905629634
H,0,1.4063010366,3.5680239268,1.3873159634
H,0,1.0025970366,1.8514229268,1.3717239634
```

```
H,0,-3.0549969634,-3.1784610732,-1.7893670366
H,0,-1.7681079634,-1.9608700732,-1.9566440366
H,0,-1.6562869634,-3.2049080732,-0.6931400366
H,0,-4.8561839634,-1.3386960732,-1.4919130366
H,0,-4.5747279634,-0.0406360732,-0.3107350366
H,0,-3.5761419634,-0.1388380732,-1.7778060366
H,0,-4.5085289634,-3.0927220732,0.4325619634
H,0,-3.0293689634,-2.9951160732,1.4120069634
H,0,-4.2692529634,-1.7301830732,1.5485469634
H,0,0.0577630366,-0.5230850732,-0.1252630366
N,0,0.9918270366,-0.9535840732,0.1682389634
C,0,1.0527160366,-1.6253820732,1.4660879634
C,0,2.4597530366,-1.5088380732,2.0419319634
H,0,0.3050320366,-1.1602690732,2.1128389634
H,0,0.7677790366,-2.6783780732,1.3403359634
C,0,2.0340060366,-0.7853840732,-0.6219760366
N,0,3.2547910366,-1.2263580732,-0.2845570366
C,0,4.4322110366,-1.0991000732,-1.1413130366
C,0,3.4791620366,-1.9363170732,0.9892969634
H,0,4.8004100366,-2.0934360732,-1.4208520366
H,0,4.2051880366,-0.5396270732,-2.0458980366
H,0,5.2238020366,-0.5732090732,-0.5962840366
H,0,3.4295130366,-3.0185100732,0.8063989634
C,0,1.7957850366,-0.0642120732,-1.9207200366
H,0,2.6557710366,-0.4732640732,2.3442729634
H,0,2.5641320366,-2.1407060732,2.9295409634
H,0,4.4962200366,-1.7023010732,1.3194749634
H,0,2.2561070366,0.9302159268,-1.9018480366
H,0,2.1906820366,-0.6327010732,-2.7675070366
H,0,0.7228640366,0.0777169268,-2.0552350366
2nd tseqAB3BB - 6-31+G**
E(RB+HF-LYP})=-962.895307237
\begin{tabular}{lc} 
Zero-point correction= & 0.448226 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.472643 \\
Thermal correction to Enthalpy \(=\) & 0.473587 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.392450 \\
Sum of electronic and zero-point Energies= & -962.447082 \\
Sum of electronic and thermal Energies \(=\) & -962.422664 \\
Sum of electronic and thermal Enthalpies \(=\) & -962.421720 \\
Sum of electronic and thermal Free Energies \(=\) & -962.502858
\end{tabular}
```

 E (Thermal) CV S


```
H,0,4.208935209,-0.402678217,-1.9508765977
H,0,5.2529429432,-0.7022914932,-0.5607858522
H,0,3.3862558207,-2.8190109661,1.0097277328
C,0,1.760582301,-0.1259789465,-1.952536941
H,0,2.6681637671,-0.1449044305,2.3372832626
H,0,2.5665344245,-1.7528265125,3.0655949716
H,0,4.4813546873,-1.4882493817,1.4040970295
H,0,2.1860473818,0.8829175299,-2.0214745698
H,0,2.1802322978,-0.7683969812,-2.7307100724
H,0,0.6877085287,-0.0238409966,-2.1112614383
```


tseqAB3BB DBU model - PCM Dichloroethane - 6-31+G**

$\mathrm{E}($ RB+HF-LYP $)=-962.921368923$

Zero-point correction $=$	0.447221 (Hartree/Particle)
Thermal correction to Energy $=$	0.470874
Thermal correction to Enthalpy $=$	0.471819
Thermal correction to Gibbs Free Energy $=$	0.392549
Sum of electronic and zero-point Energies $=$	-962.474148
Sum of electronic and thermal Energies $=$	-962.450494
Sum of electronic and thermal Enthalpies $=$	-962.449550
Sum of electronic and thermal Free Energies $=$	-962.528820

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	295.478	88.645	166.837

C,0,-1.9634489146,1.9762200061,1.2606550183
C,0,-1.0430899146,3.1450370061,1.6465300183
C,0,0.2676170854,3.1128600061,0.8499200183
C,0,0.0121730854,3.1037220061,-0.6577559817
C,0,-1.1591369146,2.4379180061,-1.1063609817
C,0,-1.9990329146,1.7230890061,-0.2372889817
O,0,0.8347810854,3.6828860061,-1.4217259817
O,0,-1.3461939146,-0.0860459939,-0.3819049817
O,0,-1.9667909146,-1.0578009939,0.5214930183
C,0,-2.7634099146,-2.0168249939,-0.2150059817
C, $0,-3.9033549146,-1.3148289939,-0.9635759817$
C,0,-1.8767439146,-2.8131469939,-1.1819539817
C,0,-3.3150459146,-2.9237149939,0.8923630183
H,0,-1.3433509146,2.4076600061,-2.1793739817
Н, $0,-2.9606989146,1.4109570061,-0.6312859817$
H,0,-2.9844629146,2.1746320061,1.6113680183
H,0,-1.6510609146,1.0544180061,1.7634500183

```
H,0,-1.5529089146,4.0954210061,1.4392740183
H,0,-0.8405909146,3.1239770061,2.7248600183
H,0,0.9039270854,3.9733890061,1.0848480183
H,0,0.8422040854,2.2100960061,1.1068990183
H,0,-2.4634259146,-3.5789389939,-1.7016949817
H,0,-1.4368789146,-2.1461599939,-1.9277829817
H,0,-1.0668399146,-3.3092529939,-0.6362309817
H,0,-4.5405699146,-2.0501129939,-1.4677269817
H,0,-4.5235349146,-0.7417769939,-0.2660279817
H,0,-3.5011209146,-0.6328079939,-1.7170329817
H,0,-3.9410269146,-3.7104349939,0.4580100183
H,0,-2.4979399146,-3.3984199939,1.4454410183
H,0,-3.9231689146,-2.3475589939,1.5973030183
H,0,0.1493050854,-0.4284749939,-0.0081459817
N,0,1.1327180854,-0.7386539939,0.2857890183
C,0,1.3292960854,-1.1892499939,1.6641230183
C,0,2.7625100854,-0.9008449939,2.0991470183
H,0,0.6013400854,-0.6691129939,2.2911040183
H,0,1.1105210854,-2.2630419939,1.7292830183
C,0,2.1057980854,-0.6901759939,-0.6039449817
N,0,3.3624830854,-1.0459069939,-0.2998329817
C,0,4.4605340854,-1.0639239939,-1.2672879817
C,0,3.7308920854,-1.4691709939,1.0665650183
H,0,4.9548530854,-2.0403249939,-1.2281779817
H,0,4.1018270854,-0.9006249939,-2.2805789817
H,0,5.1939290854,-0.2884359939,-1.0192149817
H,0,3.7488050854,-2.5669059939,1.1018410183
C,0,1.7512480854,-0.2190789939,-1.9878919817
H,0,2.9137720854,0.1809750061,2.1941070183
H,0,2.9640400854,-1.3523469939,3.0752860183
H,0,4.7489260854,-1.1134369939,1.2547730183
H,0,2.3545750854,0.6471310061,-2.2741299817
H,0,1.9183670854,-1.0145389939,-2.7213009817
H,0,0.6995770854,0.0663570061,-2.0131479817
2 nd tseqAB3BB DBU model - PCM Dichloroethane - 6-31+G**
E}(\mathrm{ RB+HF-LYP })=-962.923161942
Zero-point correction= 0.448142 (Hartree/Particle)
Thermal correction to Energy= 0.471463
Thermal correction to Enthalpy= 0.472407
Thermal correction to Gibbs Free Energy= 0.395039
Sum of electronic and zero-point Energies= -962.475019
Sum of electronic and thermal Energies= -962.451699
```

$\begin{array}{ll}\text { Sum of electronic and thermal Enthalpies }= & -962.450755 \\ \text { Sum of electronic and thermal Free Energies }= & -962.528123\end{array}$

C, $0,1.9750592429,-0.7414562077,1.8710084104$C,0,2.0074427781,-2.2766127118,1.9158186915C, $0,1.6804438312,-2.8870475805,0.5457839951$$\mathrm{C}, 0,2.6695579863,-2.414212843,-0.5212823355$$\mathrm{C}, 0,3.1755783345,-1.1063248201,-0.3843365515$$\mathrm{C}, 0,2.6229361571,-0.1466702975,0.6004873228$$\mathrm{O}, 0,3.022202259,-3.2267956445,-1.4324093106$$\mathrm{O}, 0,1.6541028846,0.3663808991,-0.3340145108$$\mathrm{O}, 0,0.723196085,1.6590112391,0.3576921014$$\mathrm{C}, 0,0.9954068469,2.8741550089,-0.3464491858$$\mathrm{C}, 0,2.4731426168,3.2653094644,-0.193139282$$\mathrm{C}, 0,0.6216182456,2.7482144207,-1.8331208477$$\mathrm{C}, 0,0.1013804388,3.9256765466,0.3417379166$$H, 0,3.8892778162,-0.739175497,-1.1183809299$			

$\mathrm{N}, 0,-3.3680188099,-0.9530957134,-0.5645844388$
C, $0,-3.8742642239,-1.8891477478,-1.5719827358$
С,0,-4.3294848735,-0.613734383,0.505871858
H,0,-3.9318054876,-2.901738758,-1.1568923914
H,0,-4.8789746344,-1.5719794177,-1.8672937549
H,0,-3.2454574528,-1.8988771681,-2.4589907907
H,0,-5.0248418578,0.1447910379,0.1224039531
C, $0,-1.1564228847,-0.8203690266,-1.6621501577$
H,0,-3.0938858448,-0.9583070011,2.2423254469
H,0,-4.3452491023,0.2697625417,2.4679801894
H,0,-4.9076550544,-1.5178365547,0.721943045
H,0,-1.0951612123,-1.9079481195,-1.7529504983
H,0,-1.4638953376,-0.4172226535,-2.6336293259
H, $0,-0.1658326999,-0.4362843053,-1.4128497296$
tseqBB3 DBU model - PCM Dichloroethane - 6-31G*
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-962.840339467$

Zero-point correction $=$	0.451312 (Hartree/Particle)
Thermal correction to Energy $=$	0.475419
Thermal correction to Enthalpy $=$	0.476364
Thermal correction to Gibbs Free Energy $=$	0.396232
Sum of electronic and zero-point Energies $=$	-962.389027
Sum of electronic and thermal Energies $=$	-962.364920
Sum of electronic and thermal Enthalpies $=$	-962.363976
Sum of electronic and thermal Free Energies $=$	-962.444108

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	298.330	89.747	168.652

C, $0,-2.201252939,1.9927560183,1.0417629329$
C,0,-1.290776939,3.0558640183,1.6751729329
C,0,0.155578061,2.9045840183,1.1913719329
C, $0,0.251519061,2.9738450183,-0.3377940671$
C,0,-0.860000939,2.4659560183,-1.0627710671
C, $0,-1.916697939,1.7834300183,-0.4371730671$
O, $0,1.285370061,3.4597530183,-0.8621630671$
O,0,-1.371731939,-0.0335259817,-0.5272710671
O,0,-1.964214939,-0.9671109817,0.4290399329
C, $0,-2.830029939,-1.9079299817,-0.2461490671$
С,0,-3.979747939,-1.1722509817,-0.9446480671
С,0,-2.018292939,-2.7404429817,-1.2465330671
C,0,-3.355258939,-2.7783709817,0.9019659329

$$
\begin{aligned}
& \mathrm{H}, 0,-0.804687939,2.4956110183,-2.1504550671 \\
& \mathrm{H}, 0,-2.794725939,1.5831460183,-1.0452700671 \\
& \mathrm{H}, 0,-3.253074939,2.2862750183,1.1630369329 \\
& \mathrm{H}, 0,-2.099394939,1.0315060183,1.5578449329 \\
& \mathrm{H}, 0,-1.649001939,4.0561010183,1.3951119329 \\
& \mathrm{H}, 0,-1.346601939,2.9964510183,2.7702509329 \\
& \mathrm{H}, 0,0.809476061,3.6796030183,1.6085499329 \\
& \mathrm{H}, 0,0.559202061,1.9349750183,1.5223629329 \\
& \mathrm{H}, 0,-2.656985939,-3.4659839817,-1.7635110671 \\
& \mathrm{H}, 0,-1.560360939,-2.0815229817,-1.9889840671 \\
& \mathrm{H}, 0,-1.221497939,-3.2899079817,-0.7318160671 \\
& \mathrm{H}, 0,-4.674924939,-1.8857569817,-1.4025450671 \\
& \mathrm{H}, 0,-4.536263939,-0.5619119817,-0.2245940671 \\
& \mathrm{H}, 0,-3.589705939,-0.5172419817,-1.7280700671 \\
& \mathrm{H}, 0,-4.036983939,-3.5452599817,0.5177799329 \\
& \mathrm{H}, 0,-2.529152939,-3.2804769817,1.4174459329 \\
& \mathrm{H}, 0,-3.897499939,-2.1676119817,1.6318389329 \\
& \mathrm{H}, 0,0.237688061,-0.2543779817,-0.3939090671 \\
& \mathrm{~N}, 0,1.290430061,-0.4072919817,-0.4333380671 \\
& \mathrm{C}, 0,1.990199061,0.1664650183,-1.5868440671 \\
& \mathrm{C}, 0,3.277089061,-0.6113319817,-1.8387350671 \\
& \mathrm{H}, 0,1.307142061,0.1039410183,-2.4390020671 \\
& \mathrm{H}, 0,2.180358061,1.2299400183,-1.3985770671 \\
& \mathrm{C}, 0,1.896288061,-1.0474179817,0.5459719329 \\
& \mathrm{~N}, 0,3.226499061,-1.2176169817,0.5605759329 \\
& \mathrm{C}, 0,3.951715061,-1.8630359817,1.6534629329 \\
& \mathrm{C}, 0,4.072809061,-0.7214699817,-0.5418180671 \\
& \mathrm{H}, 0,4.357604061,-2.8272959817,1.3248869329 \\
& \mathrm{H}, 0,4.784087061,-1.2189709817,1.9572689329 \\
& \mathrm{H}, 0,3.309780061,-2.0221879817,2.5174029329 \\
& \mathrm{H}, 0,4.495531061,0.2500820183,-0.2520340671 \\
& \mathrm{C}, 0,1.039347061,-1.5862769817,1.6600479329 \\
& \mathrm{H}, 0,3.041112061,-1.6151209817,-2.2123160671 \\
& \mathrm{H}, 0,3.884828061,-0.1072619817,-2.5967020671 \\
& \mathrm{H}, 0,4.904223061,-1.4249099817,-0.6563500671 \\
& \mathrm{H}, 0,1.246544061,-2.6476349817,1.8299799329 \\
& \mathrm{H}, 0,1.241243061,-1.0496579817,2.5944109329 \\
& \mathrm{H}, 0,-0.016759939,-1.4693369817,1.4047069329
\end{aligned}
$$

$2^{\text {nd }}$ tseqBB3 DBU model - PCM Dichloroethane - 6-31G*
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-962.839393931$

Zero-point correction=
Thermal correction to Energy=
0.451344 (Hartree/Particle) 0.475543

Thermal correction to Enthalpy $=$	0.476487
Thermal correction to Gibbs Free Energy $=$	0.396066
Sum of electronic and zero-point Energies= $=$	-962.388050
Sum of electronic and thermal Energies=	-962.363851
Sum of electronic and thermal Enthalpies $=$	-962.362907
Sum of electronic and thermal Free Energies $=$	-962.443328

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	298.408	89.980	169.259
C, $0,-2$	927364,1.508	7509,1.5507654	
C, $0,-1$	335369,2.834	19201,1.828639802	
C, $0,-0$	748721,2.997	885015,0.94567386	617
C, $0,-0$	335341,2.948	92127,-0.5444472	
C, $0,-1$	178658,2.127	273488,-0.90737	864
C, $0,-2$	968512,1.1716	87903,0.049309	
O,0,-0	918878,3.638	737886,-1.360802	478
O,0,-1	723296,0.208	089529,-0.395840	9381
O,0,-1	64787,-1.414	8453529,0.55178	6994
C, $0,-2$	858798,-2.413	600558,-0.3191787	7492
C, $0,-3$	429624,-2.06	059382,-0.86736	2662
C, $0,-1$	534194,-2.64	518581,-1.4904	0512
C, $0,-2$	370262,-3.6958	492648,0.54085	571
H,0,-2	928255,2.089	530159,-1.951055	783
H,0,-3	676989,0.850	520437,-0.224292	753
H,0,-3	833272,1.545	404425,1.980405	
H,0,-1	263069,0.670	$775488,2.032726970$	701
H,0,-2	667028,3.671	909425,1.62387781	137
H,0,-1	026292,2.903	927287,2.8911004	
H,0,0.	43726,3.95063	$7166,1.13252413$	
H,0,0.	692768,2.2018	84104,1.1715376	
H,0,-1	067313,-3.4492	537425,-2.1544732	2763
H,0,-1	659099,-1.72	529323,-2.07942	8468
H,0,-0	938283,-2.91378	894532,-1.11118	2928
H,0,-3	358264,-2.88	369351,-1.47476	0696
H,0,-4	988846,-1.86	126664,-0.03779	1138
H,0,-3	112497,-1.16	221285,-1.4895767	7307
H,0,-2	018826,-4.54	632581,-0.04711	8817
H,0,-1	80191,-3.963	699961,0.9339540	
H,0,-2	943341,-3.53	446259,1.389852	6302
H,0,0.	53118,-0.07983	12067,-0.1583695	
N,0,1.	284586,-0.078	80344,-0.2890048	
C,0,1.	330125,0.6334	$62259,-1.4649514$	

```
C,0,3.1432291773,0.0516391919,-1.8556607762
H,0,1.0502880122,0.511615144,-2.2605450233
H,0,1.8545749735,1.705744568,-1.2463133021
C,0,2.0446572533,-0.6871838497,0.6022601074
N,0,3.3779141039,-0.6659953999,0.5030819028
C,0,4.2700360701,-1.2601656349,1.4991745262
C,0,4.0533846325,-0.0065261536,-0.6328829063
H,0,4.7028375751,-2.1940721148,1.1212951121
H,0,5.0816757393,-0.5549583512,1.7041897987
H,0,3.7456575092,-1.4570663827,2.4323220841
H,0,4.3640446143,0.999206692,-0.3195789913
C,0,1.3538118027,-1.4004707044,1.7305655225
H,0,3.0116151628,-0.9570134118,-2.265166299
H,0,3.6117796175,0.6676573944,-2.6293040775
H,0,4.9585306832,-0.5822426323,-0.8520268347
H,0,1.7685593334,-2.4040188302,1.8649855537
H,0,1.4882329871,-0.8503376844,2.6697329786
H,0,0.284054047,-1.4849981285,1.5031938664
tseqBB3BB DBU model - PCM Dichloroethane - 6-31+G**
E}(\textrm{RB}+HF-LYP)=-962.922154717
Zero-point correction=
```

0.447644 (Hartree/Particle) 0.472059

Thermal correction to Energy= 0.473004

Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=
0.391163
-962.474510
-962.450095
-962.449151
-962.530991

```
\begin{tabular}{ccl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
296.222 & 90.495 & 172.247
\end{tabular}
C,0,-1.9585729512,1.9451010183,1.298284939
C, \(0,-1.0313609512,3.0786140183,1.763329939\)
C, \(0,0.3025490488,3.0545730183,1.006544939\)
C, \(0,0.0992790488,3.1051580183,-0.508045061\)
C,0,-1.0789699512,2.5023440183,-1.021103061
C,0,-1.9667359512,1.7741200183,-0.211242061
O,0,0.9731120488,3.6751950183,-1.221676061
O,0,-1.3720669512,-0.0427709817,-0.446951061
O,0,-1.9429959512,-1.0375729817,0.461752939
```

> C, $0,-2.8175579512,-1.9527849817,-0.244219061$ $\mathrm{C}, 0,-3.9890519512,-1.1969589817,-0.882864061$ $\mathrm{C}, 0,-2.0240299512,-2.7356029817,-1.298692061$ $\mathrm{C}, 0,-3.3119659512,-2.8821089817,0.871864939$ $\mathrm{H}, 0,-1.2314699512,2.5284320183,-2.099142061$ $\mathrm{H}, 0,-2.9287779512,1.5213790183,-0.645191061$ $\mathrm{H}, 0,-2.9834379512,2.1364500183,1.641274939$ $\mathrm{H}, 0,-1.6647109512,0.9940440183,1.755325939$ $\mathrm{H}, 0,-1.5174809512,4.0467890183,1.583141939$ $\mathrm{H}, 0,-0.8628469512,3.0061200183,2.845295939$ $\mathrm{H}, 0,0.9450380488,3.8947520183,1.293091939$ $\mathrm{H}, 0,0.8557340488,2.1341020183,1.247930939$ $\mathrm{H}, 0,-2.6692079512,-3.4610499817,-1.806645061$ $\mathrm{H}, 0,-1.6116529512,-2.0521609817,-2.045393061$ $\mathrm{H}, 0,-1.1966689512,-3.2792729817,-0.829763061$ $\mathrm{H}, 0,-4.6826649512,-1.8991659817,-1.358944061$ $\mathrm{H}, 0,-4.5387419512,-0.6298399817,-0.124208061$ $\mathrm{H}, 0,-3.6250499512,-0.5024129817,-1.644252061$ $\mathrm{H}, 0,-3.9871999512,-3.6391919817,0.459239939$ $\mathrm{H}, 0,-2.4716249512,-3.3953759817,1.350594939$ $\mathrm{H}, 0,-3.8536109512,-2.3149639817,1.635729939$ $\mathrm{H}, 0,0.2056720488,-0.3154989817,-0.371822061$ $\mathrm{~N}, 0,1.2620130488,-0.4663149817,-0.431380061$ $\mathrm{C}, 0,1.9282500488,0.0073950183,-1.647863061$ $\mathrm{C}, 0,3.1951900488,-0.8071169817,-1.885796061$ $\mathrm{H}, 0,1.2185730488,-0.0997399817,-2.472644061$ $\mathrm{H}, 0,2.1541730488,1.0760040183,-1.546981061$ $\mathrm{C}, 0,1.9066100488,-1.0216129817,0.577334939$ $\mathrm{~N}, 0,3.2373960488,-1.1876889817,0.560201939$ $\mathrm{C}, 0,3.9985390488,-1.7486639817,1.677874939$ $\mathrm{C}, 0,4.0441410488,-0.8124829817,-0.619284061$ $\mathrm{H}, 0,4.3212590488,-2.7708979817,1.448147939$ $\mathrm{H}, 0,4.8858460488,-1.1297679817,1.843076939$ $\mathrm{H}, 0,3.4137600488,-1.7554739817,2.594947939$ $\mathrm{H}, 0,4.4937550488,0.1731110183,-0.438496061$ $\mathrm{C}, 0,1.0938050488,-1.4681089817,1.761933939$ $\mathrm{H}, 0,2.9313250488,-1.8356439817,-2.159653061$ $\mathrm{H}, 0,3.7734590488,-0.3795549817,-2.710356061$ $\mathrm{H}, 0,4.8579340488,-1.5400419817,-0.702546061$ $\mathrm{H}, 0,1.3100390488,-2.5118369817,2.008167939$ $\mathrm{H}, 0,1.3267260488,-0.851339817,2.641600939$ $\mathrm{H}, 0,0.0308900488,-1.3731179817,1.533348939$


```
H,0,-0.7947318393,3.6675789217,0.406563145
H,0,0.528266574,3.9117813564,1.5699065443
H,0,-0.5992427379,0.6914923691,-0.029719101
N,0,-1.4360735842,0.1229476288,-0.2805933446
C, \(0,-1.4488782636,-0.5577141309,-1.5773893165\)
C,0,-2.8824845097,-0.618579895,-2.0943885035
H,0,-0.7924585965,-0.002891032,-2.2498122255
H,0,-1.0290021802,-1.565528241,-1.4642250988
C, \(0,-2.4486377827,0.0841765698,0.5687162684\)
N,0,-3.571110818,-0.5848923938,0.2903194364
C,0,-4.700787158,-0.6924860115,1.2169063854
С,0,-3.784784726,-1.2266484151,-1.0257781673
H,0,-5.4926158909,0.0149187908,0.9438621053
H,0,-5.0995845554,-1.7087885556,1.1536885521
H,0,-4.3923712399,-0.5133476656,2.2445381245
H,0,-3.6050828129,-2.3044966246,-0.9189628292
C,0,-2.2857023329,0.8175583655,1.8698308365
H,0,-3.2294573309,0.390478774,-2.3469713294
H,0,-2.9345380026,-1.2274400296,-3.0018092201
H,0,-4.8392321448,-1.0878576043,-1.2858163996
H,0,-3.1078189779,1.5213403537,2.0279012282
H,0,-2.271290271,0.1148286373,2.7096539188
\(\mathrm{H}, 0,-1.3423776181,1.3641477777,1.8621784811\)
```

tsAxMeoutGaucheB3 DBU model - 6-31G*
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-962.820402562$

Zero-point correction $=$	0.453043 (Hartree/Particle)
Thermal correction to Energy $=$	0.476616
Thermal correction to Enthalpy $=$	0.477560
Thermal correction to Gibbs Free Energy $=$	0.400048
Sum of electronic and zero-point Energies $=$	-962.367360
Sum of electronic and thermal Energies $=$	-962.343787
Sum of electronic and thermal Enthalpies $=$	-962.342843
Sum of electronic and thermal Free Energies $=$	-962.420354

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	299.081	89.260	163.137

C, $0,-1.5318480328,2.2492504134,1.310174344$
C,0,-0.2013863006,2.1428523152,2.065514524
C,0,0.9626916449,2.723670573,1.2506511531

```
C,0,0.9967274084,2.2615377466,-0.218611864 C,0,-0.2368796847,1.9621060162,-0.826771409 С,0,-1.4353800731,1.6986147779,-0.1026741545 O,0,2.1186998799,2.2349519972,-0.8002337283 O,0,-1.6478620577,-0.0124510679,0.1998599098 O,0,-2.0101398078,-0.5971813404,-1.0871304695
С,0,-3.2534642447,-1.321223621,-0.9641071808 C,0,-3.1022631903,-2.459302078,0.0541756782 C,0,-4.3951732046,-0.374725312,-0.5752692767 C, \(0,-3.4534625288,-1.8728044577,-2.381200519\) H,0,-0.2374599191,1.776643524,-1.8974982065 H,0,-2.3615594491,1.7989344664,-0.6684782085 H,0,-1.8207413974,3.3074434604,1.2261278145
\(\mathrm{H}, 0,-2.3330572106,1.7455705012,1.8639112502\)
H,0,-0.280123392,2.6428296436,3.040735255
H,0,-0.008408835, 1.0832143717,2.2804010738
H,0,0.893665187,3.8223032984,1.2436347068
H,0,1.932270982,2.4879516238,1.7080787388
H,0,-5.3452283925,-0.9184327418,-0.5148203506
H,0,-4.1942512752,0.0819708341,0.3972140263
H,0,-4.5014659519,0.4224057145,-1.3190110928
H,0,-4.0191287209,-3.0572121452,0.1120597433
H,0,-2.2774904904,-3.1209462074,-0.2351109474
H,0,-2.8897366732,-2.0516369032,1.0461301537
H,0,-4.3791195599,-2.4560510782,-2.4353044593
H,0,-3.5153771863,-1.0549194076,-3.1063925354
H,0,-2.6183132488,-2.522610467,-2.6637646283
H,0,-0.1386487313,-0.8470574541,0.1974894197
\(\mathrm{N}, 0,0.8246289878,-1.2155379401,0.3973982288\)
C,0,1.1021022829,-1.5652867962,1.7882860709
C,0,2.3776402416,-0.8701576745,2.256089272
H,0,0.2345494678,-1.2629756005,2.3794787002
H,0,1.1994062362,-2.6558507199,1.875429836
С, \(0,1.7819897832,-0.9186355493,-0.4709300199\)
\(\mathrm{N}, 0,3.0760477573,-0.9473765246,-0.13031415\)
C,0,4.0978165968,-0.4219869797,-1.047234667
C,0,3.5054502668,-1.1499584284,1.2671034725
H,0,4.0331460178,0.6719409269,-1.0679679819
Н,0,5.0779905062,-0.7457918049,-0.6912882782
H,0,3.9568638516,-0.8159500311,-2.0544551407
\(\mathrm{H}, 0,3.8796404262,-2.177143915,1.3735007872\)
C, \(0,1.3884922646,-0.5872974654,-1.8772305175\)
H,0,2.2026061438,0.2081808957,2.3158620272
H,0,2.6682313518,-1.2221676013,3.2509985985
```

```
H,0,4.3430981301,-0.4724326369,1.4544985572
H,0,1.6979748473,0.4443121235,-2.0863826012
H,0,1.8834044146,-1.2758847365,-2.5719944739
H,0,0.3086221636,-0.6787142739,-1.990425469
```

tsAxMeoutGaucheB3BB DBU model - 6-31+G**
$\mathrm{E}($ RB+HF-LYP $)=-962.897285038$

Zero-point correction=	0.450208 (Hartree/Particle)
Thermal correction to Energy $=$	0.473932
Thermal correction to Enthalpy $=$	0.474876
Thermal correction to Gibbs Free Energy $=$	0.396692
Sum of electronic and zero-point Energies $=$	-962.447077
Sum of electronic and thermal Energies=	-962.423353
Sum of electronic and thermal Enthalpies $=$	-962.422409
Sum of electronic and thermal Free Energies $=$	-962.500593

	E (Thermal	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	297.397	89.900	164.553

C,0,-1.6417667502,2.2198364349,1.2647475416
C,0,-0.3723778897,2.1222387601,2.1209270556
C,0,0.8452038499,2.7132095211,1.3959005447
C,0,0.9952921093,2.250819771,-0.0641670495
С,0,-0.1822878012,1.9437009658,-0.7690976623
С, $0,-1.4344145981,1.6593293378,-0.1332661925$
O,0,2.1651918111,2.2233543127,-0.556403363
O,0,-1.6209814257,-0.0306896228,0.1577773553
O,0,-2.0065967819,-0.6508424774,-1.1048516107
C, $0,-3.2960248046,-1.3018516494,-0.9754366054$
С, $0,-3.2236808259,-2.4109835198,0.0823899169$
С,0,-4.3894193047,-0.2818654075,-0.636095788
C, $0,-3.5083187289,-1.8897410548,-2.3762108921$
H,0,-0.0974258879,1.7546841362,-1.8351033234
H,0,-2.3137940103, 1.7571635985,-0.7692392317
H,0,-1.9228156694,3.2763349813,1.1479936575
H,0,-2.4822047192,1.7186688724,1.7579071774
H,0,-0.5286859957,2.6245890047,3.0848284079
H,0,-0.1867457007,1.0648826736,2.352487355
$\mathrm{H}, 0,0.7651160284,3.8102109288,1.3727222942$
H,0,1.7775432252,2.4920993385,1.9290545466
H,0,-5.3654423347,-0.7760398788,-0.5775107593
H,0,-4.1845328917,0.1911841531,0.3273613351

```
H,0,-4.4433331203,0.49601725,-1.4042822308
H,0,-4.1744297856,-2.9526719969,0.1370207742
H,0,-2.4333458648,-3.126660333,-0.1684678247
H,0,-3.0111224283,-1.984802892,1.0661443281
H,0,-4.4665286194,-2.4175947909,-2.419184852
H,0,-3.51494821,-1.0969378159,-3.1305089784
H,0,-2.7120531054,-2.5986015901,-2.6246696771
H,0,-0.0755880946,-0.8731166417,0.1814356552
N,0,0.8919931465,-1.2167444372,0.3783352516
C,0,1.2038873041,-1.5312670553,1.771224448
C,0,2.4694238539,-0.7911014415,2.1963606735
H,0,0.342104831,-1.2399225567,2.3753287923
H,0,1.3325683142,-2.6166657477,1.8774412498
C,0,1.8318573626,-0.9320172341,-0.5145013343
N,0,3.1307485718,-0.9483582674,-0.1975306272
C,0,4.1450807146,-0.4862459244,-1.154319404
C,0,3.589454478,-1.0762050348,1.2008699764
H,0,4.1422044968,0.6093275342,-1.1887972278
H,0,5.1188834012,-0.8534987761,-0.8247983183
H,0,3.9534413583,-0.884775655,-2.1502851492
H,0,4.0006876299,-2.0845358951,1.3414727985
C,0,1.4085003776,-0.6389492361,-1.9204531935
H,0,2.2701940066,0.2834966113,2.2232820992
H,0,2.7825238057,-1.104525016,3.1968056735
H,0,4.4039738574,-0.3603525366,1.3417129774
H,0,1.7483080381,0.3645585807,-2.1916659925
H,0,1.8494615476,-1.3760483008,-2.6005966013
H,0,0.3234289618,-0.6887694067,-1.9989325899
```


tsAxMeoutGaucheB3PCM DBU model - PCM Dichloroethane - 6-31+G**

$\mathrm{E}($ RB+HF-LYP $)=-962.838975684$

Zero-point correction $=$	0.451263 (Hartree/Particle)
Thermal correction to Energy $=$	0.475426
Thermal correction to Enthalpy $=$	0.476370
Thermal correction to Gibbs Free Energy $=$	0.395813
Sum of electronic and zero-point Energies $=$	-962.387713
Sum of electronic and thermal Energies=	-962.363550
Sum of electronic and thermal Enthalpies $=$	-962.362606
Sum of electronic and thermal Free Energies $=$	-962.443163

Total
E (Thermal) CV S
$\mathrm{KCal} / \mathrm{Mol} \quad \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin} \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}$
$\mathrm{C}, 0,-1.3941410854,2.6197879512,1.2183860244$
$\mathrm{C}, 0,0.0907269146,2.7195179512,1.5882610244$
$\mathrm{C}, 0,0.9068949146,3.3506629512,0.4535430244$
$\mathrm{C}, 0,0.6193699146,2.7476139512,-0.9300529756$
$\mathrm{C}, 0,-0.6611650854,2.1795979512,-1.1448509756$
$\mathrm{C}, 0,-1.5900460854,1.9438099512,-0.1202329756$
$\mathrm{O}, 0,1.5053379146,2.8486589512,-1.8184289756$
$\mathrm{O}, 0,-1.5245430854,0.1339429512,0.4912610244$
$\mathrm{O}, 0,-2.0505650854,-0.6410140488,-0.6237809756$
$\mathrm{C}, 0,-3.1305910854,-1.4844530488,-0.170979756$
$\mathrm{C}, 0,-2.6234540854,-2.4684650488,0.8921370244$
$\mathrm{C}, 0,-4.2860130854,--.6328310488,0.3697750244$
$\mathrm{C}, 0,-3.5432260854,-2.2221450488,-1.4504789756$
$\mathrm{H}, 0,-0.8803470854,1.8222209512,-2.1498309756$
$\mathrm{H}, 0,-2.6247540854,1.7865369512,-0.4143789756$
$\mathrm{H}, 0,-1.8264070854,3.6313209512,1.1527910244$
$\mathrm{H}, 0,-1.9554150854,2.0863929512,1.9933360244$
$\mathrm{H}, 0,0.2155259146,3.2907709512,2.5176120244$
$\mathrm{H}, 0,0.4721169146,1.7096389512,1.7870800244$
$\mathrm{H}, 0,0.6844489146,4.4283079512,0.3922210244$
$\mathrm{H}, 0,1.9844469146,3.2714929512,0.6423710244$
$\mathrm{H}, 0,-5.1188310854,-1.2672330488,0.6952330244$
$\mathrm{H}, 0,-3.9460550854,-0.0373860488,1.2209910244$
$\mathrm{H}, 0,-4.6549110854,0.0475529512,-0.4062489756$
$\mathrm{H}, 0,-3.4217060854,-3.1502960488,1.2075930244$
$\mathrm{H}, 0,-1.7959500854,-3.0659490488,0.4923920244$
$\mathrm{H}, 0,-2.2641800854,-1.9208070488,1.7676100244$
$\mathrm{H}, 0,-4.3760090854,-2.9037390488,-1.2456429756$
$\mathrm{H}, 0,-3.8600420854,-1.5094660488,-2.2195889756$
$\mathrm{H}, 0,-2.7061670854,-2.8076790488,-1.8462159756$
$\mathrm{H}, 0,-0.0335640854,--0.5036380488,0.4519980244$
$\mathrm{~N}, 0,0.9388589146,-0.9308870488,0.5497890244$
$\mathrm{C}, 0,1.3803839146,-1.2498330488,1.9085810244$
$\mathrm{C}, 0,2.8895259146,-1.0688710488,2.0238310244$
$\mathrm{H}, 0,0.8410199146,-0.5910490488,2.5952960244$
$\mathrm{H}, 0,1.0924279146,-2.2820060488,2.1483600244$
$\mathrm{C}, 0,1.7172399146,-1.0184400488,-0.5128609756$
$\mathrm{~N}, 0,2.9996389146,-1.4037900488,-0.4207559756$
$\mathrm{C}, 0,3.8445449146,-1.5972000488,-1.6016759756$
$\mathrm{C}, 0,3.5784519146,-1.8019590488,0.8764200244$
$\mathrm{H}, 0,4.8829999146,-1.4151810488,-1.3153129756$
$H, 0,3.7626499146,-2.6205670488,-1.9890559756$
$\mathrm{H}, 0,3.5824809146,-0.8911750488,-2.3893279756$

```
H,0,3.4871589146,-2.8907890488,0.9931310244
C,0,1.1201599146,-0.6628970488,-1.8448839756
H,0,3.1430959146,-0.0029600488,1.9838470244
H,0,3.2501899146,-1.4633860488,2.9789580244
H,0,4.6446719146,-1.5584370488,0.8506240244
H,0,1.4690149146,0.3280579512,-2.1634969756
H,0,1.3950319146,-1.4012800488,-2.6031259756
H,0,0.0337659146,-0.6326100488,-1.7543619756
```

tsAxMeoutGaucheB3BBPCM DBU model - PCM Dichloroethane - 6-31+G**
$\mathrm{E}($ RB+HF-LYP $)=-962.921673226$

Zero-point correction=	0.447355 (Hartree/Particle)
Thermal correction to Energy $=$	0.471892
Thermal correction to Enthalpy $=$	0.472836
Thermal correction to Gibbs Free Energy $=$	0.390338
Sum of electronic and zero-point Energies $=$	-962.474319
Sum of electronic and thermal Energies $=$	-962.449781
Sum of electronic and thermal Enthalpies $=$	-962.448837
Sum of electronic and thermal Free Energies $=$	-962.531335

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	296.117	90.569	173.633

C,0,-2.1503100427,2.0673620061,1.2675990366
C,0,-0.7943060427,2.6780060061,1.6398630366
C,0,-0.3307390427,3.6772430061,0.5728850366
С,0,-0.4676170427,3.1703720061,-0.8657049634
C,0,-1.3687670427,2.1098270061,-1.1230779634
C,0,-2.1138200427,1.4651850061,-0.1180039634
O,0,0.1822859573,3.7780140061,-1.7679929634
O,0,-1.3615060427,-0.2348869939,0.3793590366
O,0,-1.6992790427,-1.1728519939,-0.6789699634
C,0,-2.5286880427,-2.2460859939,-0.1673369634
C,0,-1.7716210427,-3.0323299939,0.9111100366
C,0,-3.8547660427,-1.6994209939,0.3765220366
C,0,-2.7631150427,-3.1107839939,-1.4120799634
Н,0,-1.4780270427,1.7881650061,-2.1578329634
Н,0,-3.0122320427,0.9416720061,-0.4305159634
H,0,-2.9242450427,2.8513750061,1.2757070366
H,0,-2.4568800427,1.3113090061,1.9971830366
Н,0,-0.8485920427,3.1652260061,2.6213980366
Н,0,-0.0567300427,1.8702060061,1.7262650366
$\mathrm{H}, 0,-0.9273270427,4.6003780061,0.6401390366$
$\mathrm{H}, 0,0.7125159573,3.9760530061,0.7299870366$
$\mathrm{H}, 0,-4.4867100427,-2.5194749939,0.7356750366$
$\mathrm{H}, 0,-3.6705140427,-1.0143279939,1.2080870366$
$\mathrm{H}, 0,-4.4015380427,-1.1633069939,-0.4065629634$
$\mathrm{H}, 0,-2.3659410427,-3.8874369939,1.2520320366$
$\mathrm{H}, 0,-0.8226770427,-3.4069649939,0.5123420366$
$\mathrm{H}, 0,-1.5603410427,-2.3914259939,1.7710280366$
$\mathrm{H}, 0,-3.3897190427,-3.9725319939,-1.1590919634$
$\mathrm{H}, 0,-3.2685060427,-2.5336139939,-2.1932149634$
$\mathrm{H}, 0,-1.8132280427,-3.4797879939,-1.8122829634$
$\mathrm{H}, 0,0.2154559573,-0.4439929939,0.4043480366$
$\mathrm{~N}, 0,1.2597499573,-0.6466009939,0.5178360366$
$\mathrm{C}, 0,1.7589509573,-0.8988339939,1.8701910366$
$\mathrm{C}, 0,3.2038169573,-0.4230369939,1.9788520366$
$\mathrm{H}, 0,1.1061879573,-0.3711939939,2.5706700366$
$\mathrm{H}, 0,1.6856769573,-1.9717409939,2.0933230366$
$\mathrm{C}, 0,2.0403019573,-0.6406789939,-0.5470149634$
$\mathrm{~N}, 0,3.3602079573,-0.8600989939,-0.4558339634$
$\mathrm{C}, 0,4.2538949573,-0.9086449939,-1.6148669634$
$\mathrm{C}, 0,4.0259039573,-1.0383449939,0.8512080366$
$\mathrm{H}, 0,4.8402149573,0.0149050061,-1.6867899634$
$H, 0,4.9400309573,-1.7519789939,-1.4919499634$
$\mathrm{H}, 0,3.6993509573,-1.0528229939,-2.5396029634$
$\mathrm{H}, 0,4.1889039573,-2.1114329939,1.0183550366$
$\mathrm{C}, 0,1.3955979573,-0.3845219939,-1.8803719634$
$\mathrm{H}, 0,3.2411589573,0.6708110061,1.9128920366$
$H, 0,3.6318739573,-0.7141959939,2.9427420366$
$H, 0,5.0079839573,-0.5586989939,0.7854640366$
$\mathrm{H}, 0,1.8631229573,0.4666440061,-2.3835459634$
$H, 0,1.4945999573,-1.2627939939,-2.5268439634$
$\mathrm{H}, 0,0.3361139573,-0.1761929939,-1.7412219634$

VITA

Chad F. Christian received his Bachelor of Arts degree in Chemistry from Texas A\&M University in College Station, TX in 2000. He entered the Ph.D. program in Chemistry at Texas A\&M University in September 2000. He received his Ph.D. in May 2007 working under the direction of Dr. Daniel A. Singleton. His research interests include physical organic chemistry and organometallic chemistry.

His permanent address is:
P.O. Box 589

Bowie, TX 76230

[^0]: This dissertation follows the style and format of The Journal of the American Chemical Society.

[^1]: * Reproduced with permission from """Concerted" Transition State, Stepwise Mechanism. Dynamics Effects in $\mathrm{C}^{2}-\mathrm{C}^{6}$ Enyne Allene Cyclizations" by Bekele, T; Christian, C. F.; Lipton, M. A.; Singleton, D. A., 2005, J. Am. Chem. Soc.. Copyright 2005 American Chemical Society.

[^2]: * Reproduced with permission from "Isotope Effects and the Mechansim of PalladiumCatalyzed Allylic Alkylation" by Singleton, D. A.; Christian, C. F., 2005, Tetrahedron Lett.. Copyright 2005 Elsevier B. V.

[^3]: C,0,-0.5014388261,4.0714229018,-1.2335325872 C,0,-0.7720033695,4.1780914409,0.2792785267 O,0,-0.8167858481,2.8174346824,0.724341897 H,0,4.0115014477,2.5727792568,0.6349214229 H,0,3.786210904,2.4198804871,2.3915931144 H,0,5.0191208984,0.4008200434,0.7229422366 H,0,4.373673885,0.0913912903,2.3478163684 H,0,3.6853964997,-1.7254543755,-2.6801397358 H,0,2.5675991298,-1.8386031148,-4.0594934734 H,0,3.896566707,0.5933362511,-3.268824932
 H,0,2.414280549,0.5554925087,-4.2488102822
 H,0,0.0354297535,4.7040942414,0.8051117502
 $\mathrm{H}, 0,-1.7196125339,4.6757892255,0.5110382369$
 $\mathrm{H}, 0,0.2543746656,4.7816191427,-1.5839177469$
 H,0,-1.414408535,4.2197397825,-1.8263715841
 H,0,-0.5557046257,-0.4182410347,-1.5135168975
 H,0,-2.6255888038,-2.1102467542,0.0548925324
 H,0,-4.9387888149,-2.178541621,-0.7234985925
 H,0,-1.9673775447,1.5075383413,-2.1680246779
 H,0,-4.2987748993,1.4468859577,-2.941550282
 H,0,-5.8197437727,-0.395176564,-2.227333602
 C, $0,-0.1515392188,1.2335201778,3.449437165$
 C,0,-2.6649842108,0.3531670624,2.4495664256
 C,0,1.945078122,-3.1361773663,0.9006745741
 C, $0,-0.3331578146,-3.7882079376,-0.6456372038$
 Н,0,-0.3295279476,-3.7155188092,2.5582497912
 H,0,-1.7285113834,-2.9386760197,1.8215249179
 H,0,0.4841230525,-1.5484243908,3.4406956283
 H,0,-1.2025753605,-1.7190006412,3.9227906291
 H,0,-2.9500076371,0.2851169741,3.5043768936
 H,0,-2.8728545865,1.3590179278,2.0761413588
 H,0,-3.2498160817,-0.3522440693,1.8576930553
 H,0,-0.6022244886, 1.0896656762,4.4368450636
 H,0,0.9300736568,1.1052492366,3.5107898963
 H,0,-0.3510934501,2.2419145355,3.0843605829
 H,0,-0.2600475655,-4.7822026115,-0.1917845265
 H,0,-1.3645407567,-3.5995233908,-0.94816147
 $\mathrm{H}, 0,0.2949022424,-3.748138381,-1.5391339894$
 H,0,1.8845701688,-4.1854462115,1.2092342564
 H,0,2.5671996508,-3.0481540641,0.0077630231
 H,0,2.4134081549,-2.5369910652,1.6819189921
 $\operatorname{Ir}($ dmpe $)(\mathbf{B P i n})_{2}\left(\eta^{2}-\mathrm{BPinH}\right)(\mathbf{P h})$
 $\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-2019.76522987$

[^4]: P,0,1.4295042043,2.0910766748,0.0996634549
 С,0,2.6409081156,2.174443748,1.4962400108
 C,0,0.8615769405,3.8466086019,0.000856433
 B,0,0.9429390505,-0.7846951437,1.5836761813
 O,0,1.7482805685,-1.9273100237,1.4580260209
 C,0,2.1250541312,-2.3872494806,2.762385908
 C,0,1.7692401385,-1.2154709394,3.699330386
 O,0,0.9244574733,-0.369634471,2.915477135
 B, $0,-1.1724813896,-1.5949937215,0.0441796078$
 О,0,-1.8298833327,-2.1575787686,1.134311341
 C,0,-2.581276003,-3.2948028116,0.7005442804
 C,0,-2.0486233474,-3.5973655024,-0.7148074295
 O,0,-1.3256389379,-2.4155418438,-1.0846543968
 H,0,-0.9183201533,0.6436961289,1.3508007494
 H,0,3.3956177504,0.3983155952,-2.6898530894
 H,0,3.559779667,0.0757863809,-0.9641234731
 H,0,3.4548717156,2.5449140898,-1.2720294999
 H,0,1.9870807812,2.3957224423,-2.2386953832
 H,0,1.555947487,-3.294295479,3.0013010989
 H,0,3.1914102639,-2.637052239,2.7735363907
 H,0,1.235833067,-1.5383757473,4.5992210724
 H,0,2.6588827518,-0.6520224397,4.0131028178
 H,0,-2.4328234273,-4.1259438745,1.398225095
 H,0,-3.6485278026,-3.0389930649,0.6913450155
 H,0,-1.3653854901,-4.4571698097,-0.7246838998
 H,0,-2.8471143412,-3.7843314904,-1.440361541
 H,0,1.1809690065,-2.9868896945,-1.8555732293
 H,0,2.7545305307,-2.4426740245,-2.5115115011
 H,0,2.4659893238,-2.5159278684,-0.7353780488
 H,0,-0.2253896068,-1.0487253773,-3.4724997735
 H,0,0.3960916185,0.6048082198,-3.6036548881
 Н, $0,1.3987840842,-0.7634458835,-4.1636791852$
 H,0,0.298489496,4.0834323261,0.9066479077
 H,0,1.7033094981,4.5400977543,-0.1001920296
 H,0,0.1784354089,3.9609228999,-0.8431368994
 H,0,2.0899704962,2.1813579939,2.439511826
 H,0,3.2679752725,1.2787216797,1.4890728556
 H,0,3.2789941934,3.0616765682,1.4280497218
 H,0,-1.1219059002,0.9272296796,-1.2119577324
 H,0,-5.1243180613,1.4644018597,-0.3659297095
 H,0,-4.4268014693,1.2554673722,1.257886953
 Н,0,-3.8696434874,3.4893678514,-0.7471002655
 H,0,-3.7074035193,3.5360764616,1.0232417527

[^5]: P,0,-1.1183551736,-0.5878068093,1.8749303592
 Ir,0,0.0704528988,0.1893674822,-0.0302587927
 B,0,1.7336410529,1.6670126812,-0.0518148896 O,0,1.6009316693,2.9488498692,-0.5893381587 C,0,2.9136683712,3.4689913653,-0.8275934424 C,0,3.844099173,2.2471248798,-0.6825122684
 O,0,3.0701464865,1.3012272252,0.0599163982
 C, $0,-0.5117649997,0.0298840404,3.5073470131$
 C, $0,-2.8665441626,0.0630213296,1.7607380491$
 C, $0,-2.8866384338,1.5066224825,1.2309749193$
 P,0,-1.8040563448,1.7038357986,-0.2917805079
 С,0,-2.979225678,1.370638383,-1.6811058701
 C, $0,-1.6188003684,3.5401158222,-0.3976245121$
 B, $0,-0.8100467129,-1.2181361186,-1.2946514887$
 О,0,-1.9481828657,-1.9882482332,-0.9706445038
 C,0,-2.2114819883,-2.9120043662,-2.036497092
 C,0,-1.333158457,-2.4109359022,-3.2013019557
 O, $0,-0.4215685879,-1.491321883,-2.599824288$
 B, $0,1.557267131,-1.2780740813,0.2251577011$
 О,0,2.3498267934,-1.8571709533,-0.7568551805
 С,0,3.3716108303,-2.6423112234,-0.1375589153
 C,0,2.901985347,-2.8111561449,1.3208454534
 O,0,1.8918024413,-1.8071186754,1.4852047951
 H,0,0.7709212182,0.5684900176,-1.4451138386
 H,0,-3.3759245767,-0.0087739912,2.7292575417
 Н, $0,-3.3836172456,-0.6041616255,1.0622450876$
 H,0,-3.9109381953,1.8360163727,1.0194352275
 H,0,-2.4800945259,2.1908887825,1.9860973239
 H,0,-1.934525929,-3.9243904908,-1.7151088691
 H,0,-3.2810350417,-2.909529439,-2.2727415954
 H,0,-0.7767277793,-3.2175374318,-3.6900069296
 H,0,-1.9227120486,-1.8901904474,-3.967780693
 H,0,3.4788818266,-3.5958847645,-0.6653361693
 H,0,4.3258029729,-2.1034106669,-0.199208188
 H,0,2.4629270519,-3.8017828811,1.50287815
 H,0,3.7033855001,-2.6523530913,2.049829357
 H,0,-0.3689110877,-2.8205804405,2.3816601616
 H,0,-1.9922515862,-2.5458741778,3.082114723
 H,0,-1.7988921324,-2.8395823736,1.3234751228
 H,0,0.5088522853,-0.3373763312,3.6404615066
 H,0,-0.4839965239,1.1225516861,3.505270889
 H,0,-1.1390957615,-0.3173717909,4.3352187166
 H,0,-1.0757766843,3.7876681537,-1.3124699225
 H,0,-2.5902691438,4.0459418932,-0.3964932302

[^6]: C,0,2.0628586366,-2.3285888691,-0.0100310435 C,0,0.8986579449,-1.7004213235,0.4774622658 C,0,0.0999251664,-2.4499140048,1.3626978807 C, $0,0.4110370725,-3.7710334412,1.700681502$ C,0,1.55264979,-4.3800179977,1.1790964848 Ir,0,0.2756931128,0.2695282191,-0.3609733101 B,0,1.4603895874,1.8340878865,0.4043050326 O,0,2.7278334372,2.1779810189,-0.0369176457 C,0,3.2396734665,3.2407999791,0.7743452391 C,0,2.0202063938,3.7398717019,1.57647638 O,0,1.0451122109,2.6985653133,1.4252165279 H,0,1.4912438798,0.0711003283,-1.3987024314 P,0,-1.6413619117,0.8212615051,0.9608915831 C, $0,-2.2392357714,2.559924656,0.7799479953$ Р,0,-1.3106990988,-0.7660436386,-1.8241801035 C,0,-1.3364411155,-0.2691753712,-3.5996099563 C,0,-1.7606805586,0.6058923826,2.7943224437 С,0,-3.0833442457,-0.1838012012,0.3068999181 C, $0,-3.0246396135,-0.2854072048,-1.2281503008$ C,0,-1.3813239649,-2.6074653675,-1.9312949733 H,0,-2.2046800638,-2.9415189086,-2.5707084966 H,0,-0.4342354752,-2.9729073481,-2.3368266631 H,0,-1.4923261242,-3.030714758,-0.9308388877
 H,0,-0.4041967994,-0.5957132484,-4.0679532753
 H,0,-1.3815774895,0.8204602164,-3.6645830754
 H,0,-2.1838260298,-0.7075236283,-4.136713088
 H,0,-3.2449951994,0.6907528901,-1.6763868153
 H,0,-3.7731851627,-0.9902511553,-1.6082259458
 H,0,-4.0396763981,0.2421704737,0.6332280355
 H,0,-3.0026900518,-1.1824826794,0.7536456849
 H,0,-2.4030343624,2.778640808,-0.2780324678
 H,0,-3.163124211,2.7380819908,1.3403031961
 H,0,-1.4470123503,3.2184248149,1.1426354336
 H,0,-2.7613930728,0.8466190251,3.1682010721
 H,0,-1.0333557322,1.2796812989,3.255351268
 H,0,-1.5046818805,-0.41639839,3.0807840575
 Н, $,-0.0514914741,1.5893422672,-1.2686032351$
 H,0,2.2379094286,3.8899877421,2.6388649078
 H,0,1.6144560499,4.6762593913,1.1718433194
 H,0,4.030561491,2.8483773655,1.426373015
 H,0,3.6750165565,4.0157054384,0.1354062759
 H,0,2.725389424,-1.7710043031,-0.6639267415
 H,0,3.2829247149,-4.0993113098,-0.0772837057
 H,0,1.8006300804,-5.4043981437,1.4431111158

[^7]: C,0,0.9178729999,-1.1102744304,-3.3867263805 С,0,-1.861585658,-0.6266489328,-2.9436653379 H,0,-0.5279225633,-3.5094760476,-2.6395134702 H,0,-1.6333397722,-3.0496258501,-1.3467820204 H,0,0.8956680037,3.6656082958,-3.278866685 Н,0,-0.8547113606,3.3575839663,-3.2580318047 H,0,0.8436501406,4.6354918051,-1.0853811966 H,0,-0.914794588,4.7610259081,-1.3138290707 H,0,2.6234446027,2.8761469945,3.04282189
 H,0,1.2018169118,2s.9528941422,4.1090418765
 H,0,3.0980590643,0.7825705793,4.1220999638
 H,0,1.4379325418,0.642617503,4.7427769485
 H,0,4.7111918972,1.8270692675,-1.1700825175
 H,0,4.9361248931,0.9576821523, 0.3628442525
 H,0,4.380289791,-0.2140516686,-2.3820624441
 H,0,5.0548766042,-1.0391676375,-0.9597262955
 H,0,2.2361122149,-3.9070095604,1.7048799233
 H,0,2.9322557264,-2.5510746913,0.7632296213
 H,0,2.3600491426,-2.2642673637,2.4149822666
 Н,0,-0.2756216838,-4.2374087435,2.2567935451
 H,0,-0.403851551,-2.6618813987,3.0770707112
 H,0,-1.6095210834,-3.1177145996,1.8722652143
 H,0,-2.044167737,-1.2849740808,-3.7992044497
 H,0,-2.7171839215,-0.649151023,-2.2666178306
 H,0,-1.7203418299,0.3975470521,-3.2961649491
 H,0,0.569416414,-1.6900107283,-4.2475729063
 H,0,1.0767942113,-0.0698318192,-3.6782494024
 H,0,1.8585683723,-1.5139362819,-3.010512745
 H,0,-0.7445539538,0.3395216136,1.3899772253
 C,0,-2.1284508809,0.0935864486,0.4804152568
 C,0,-2.9680997992,-1.03573609,0.4884972227
 С, $0,-4.3603221588,-0.9305321207,0.5711949438$
 C, $0,-4.9878342402,0.3146236194,0.6837397081$
 C,0,-4.1626925661,1.4453453712,0.7049725889
 C,0,-2.7727694721,1.3397596831,0.6122014841
 H,0,-2.5450010491,-2.0303819952,0.4020519793
 H,0,-4.9651037161,-1.8359365202,0.5502843734
 C,0,-6.4882914622,0.4320317681,0.815206016
 H,0,-4.6125794713,2.4322414573,0.8007910019
 H,0,-2.1753744827,2.2445622635,0.6373497047
 H,0,-6.863446256,1.3402551097,0.3323399975
 Н,0,-6.9991550464,-0.4251395086,0.3651406735
 H,0,-6.7961016149,0.4767178524,1.8680559831

[^8]: O,0,-0.8585741556,2.6336466415,-1.3073222953
 C,0,-1.0503363369,4.0326636466,-1.0573163304 C,0,-0.1753498652,4.3259494998,0.1783901515 O,0,0.1367427672,3.0371068398,0.7106345261 Н,0,6.0900065586,0.8522528536,1.333210728
 P,0,0.6727616416,-0.3486204272,-2.2468939106
 С,0,2.4457470645,-0.1090033643,-2.7119837933
 P,0,0.1448597008,-2.4879127404,0.1325057987
 С, $0,1.0669102124,-3.5739415295,1.3201704667$
 B,0,-1.9716413276,-0.0561234079,-0.5287178832
 O,0,-2.4519702949,-0.7083663795,-1.6818194356
 С,0,-3.839288594,-0.3941068879,-1.8714359463
 С,0,-4.2723656868,0.2361714953,-0.5348096197
 O,0,-3.0450905629,0.5392447692,0.1343021538
 B,0,-0.9597729163,0.0397493512,1.9319840702
 O,0,-1.3846227305,1.1526534414,2.6323640734
 C,0,-2.2324419503,0.7296025978,3.701879648
 C,0,-1.927021631,-0.7718268679,3.8591468017
 O,0,-1.306182586,-1.1340696272,2.615866479
 C,0,0.386119296,-2.1477721425,-2.6550596326
 С, $0,0.8479424076,-3.0558588262,-1.5065648783$
 С,0,-0.1894200333,0.5246954605,-3.6204640896
 C,0,-1.5067728049,-3.3192924618,0.1742537559
 Н,0,-4.858443747,-0.4591160025,0.0800677885
 H,0,-4.855595757,1.1531172583,-0.6665816384
 H,0,-4.3935373516,-1.3061229343,-2.1164993838
 H,0,-3.9383666127,0.3064123565,-2.7102269741
 H,0,-2.8241429541,-1.3796481655,4.0147725349
 H,0,-1.2266486532,-0.9687984152,4.681006862
 H,0,-3.2785955863,0.9076948497,3.4219778
 H,0,-2.008078035,1.3097447584,4.6023999612
 H,0,-2.1137779199,4.2196182269,-0.8622718958
 H,0,-0.7548579077,4.6103026257,-1.9398394233
 H,0,-0.6953685826,4.920959199,0.935990494
 H,0,0.7557580995,4.8454491335,-0.0858044702
 H,0,0.7672464004,0.4771286453,1.4590814757
 H,0,2.4019273539,2.240662648,-0.3465497876
 C,0,5.016655612,2.8876677851,-0.1501032493
 H,0,2.4987938079,-1.4246709637,1.878416453
 H,0,4.9071542292,-1.1238146699,2.261939579
 Н,0,0.5732596227,-4.1001740637,-1.6975585598
 H,0,1.9399972257,-3.0214961694,-1.4100208285
 H,0,-0.6923221211,-2.2472558964,-2.8125511536
 H,0,0.8912514688,-2.4058872797,-3.5935239261

[^9]: C,0,-4.0244248365,0.6765554018,-1.5948748066 C,0,-3.1775823075,-1.7048511137,-1.4930867487 C,0,-4.6082972935,-0.786116102,0.3816761163 H,0,0.7549556574,1.7561713783,-2.2941345798
 H,0,-1.5252760722,2.3248055451,-1.5672505642
 H,0,-1.8948996868,3.362922775,0.4967755902
 H,0,-1.4904153712,1.8217732092,1.2162670297
 H,0,0.3900997843,4.1867425302,0.6940106276
 H,0,-0.0577230856,3.5147897032,2.2620946431
 H,0,2.2688954376,2.7708404509,1.5005475571
 H,0,1.174808564,1.412097482,1.7257462339
 H,0,-4.0310565029,-2.0602015884,-2.0821360328
 H,0,-2.3556909828,-1.4712538552,-2.1750727447
 H,0,-2.8589986519,-2.5151476329,-0.8268826516
 H,0,-4.9288080055,0.3825864672,-2.1404889451
 H,0,-4.2526345451,1.5716290877,-1.0060455239
 H,0,-3.2478447932,0.9266552127,-2.3222784228
 H,0,-5.5316977856,-1.1353322229,-0.0935838387
 H,0,-4.2496948204,-1.5717565529,1.055672384
 H,0,-4.8405836804,0.1011425774,0.9799660856
 H,0,-0.0309321385,-0.7322626511,-0.5639772122
 $\mathrm{N}, 0,0.8730425882,-1.256328243,-0.3996191203$
 C,0,1.8270057769,-1.2756243984,-1.5157511441
 C,0,3.0624395052,-2.0817965882,-1.1321520388
 H,0,1.3119687711,-1.7070901731,-2.3797647076
 H,0,2.1149215038,-0.2407780266,-1.7321714449
 C,0,1.1960668257,-1.4740131747,0.8581986151
 $\mathrm{N}, 0,2.4547093982,-1.7709954409,1.2237284817$
 C,0,2.8597861135,-1.9322657159,2.6151654321
 C,0,3.5427094416,-1.6077821492,0.2374656323
 H,0,3.6290650568,-2.7084107203,2.6729981687
 H,0,3.2771385039,-0.9990426483,3.0155626491
 H,0,2.0194002746,-2.23885562,3.2365130575
 H,0,3.8172415377,-0.5458690814,0.1936501355
 C,0,0.0886532956,-1.4095099521,1.8770004418
 H,0,2.8432252508,-3.1563003099,-1.0991588562
 H,0,3.8504539706,-1.9220924005,-1.8743242024
 H,0,4.3950862622,-2.1963324198,0.5888410537
 H,0,-0.0514832752,-2.3896594651,2.3476042775
 H,0,0.3230080618,-0.6869852777,2.6647810392
 Н, $0,-0.8476379599,-1.1134838771,1.3979612142$

 ## $2^{\text {nd }}$ tseqBB3 DBU model-6-31G*

 $\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-962.818858563$

