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ABSTRACT 

 

Evaluation of Compost Specifications for Stormwater Management. 

(May 2007) 

Lindsay Nicole Birt, B.S., Texas A&M University  

Co-Chairs of Advisory Committee: Dr. Patricia Smith 
                          Dr. Russell Persyn 

 

 Urban development will continue to increase in Texas because of population 

growth and urban sprawl.  Despite the desire for urbanization and expansion of the 

economy, this growth increases the amount of construction, which, if not properly 

managed, can increase non-point source pollution and threaten surface water quality.  

Therefore, Texas Department of Transportation (TxDOT) has approved and promoted the 

use of compost as a stormwater best management practice (BMP) during highway 

construction.  The objectives of this study were to construct and calibrate an indoor 

rainfall simulator and to determine the effectiveness of using compost rather than 

conventional hydroseeding or topsoil to reduce erosion from disturbed soils.  Runoff 

rates, interrill erosion, and interrill erodibility were determined and compared across five 

compost treatments following TxDOT specifications for compost applied as an erosion 

control and two control treatments of topsoil (TS) and hydroseeding (HS) applied at 5 cm 

depth.  The simulator produced 89% uniformity using ten Veejet 80100 nozzles at a 

target rate of 100 mm h-1.  The surface runoff was collected after 5 minutes of rainfall 

(first flush) and during the last 30 minutes of rainfall (steady-state).  The first flush mean 

runoff for GUC-5 treatment was significantly higher than all other treatments.  All other 
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treatments; 50% woodchips and 50% compost blend (ECC-1.3, ECC-5), and 

hydroseeding (HS) had significantly lower runoff and erosion rates compared to topsoil 

(TS) and compost manufactured topsoil (CMT) at first flush and steady-state.  

Furthermore, there were no performance differences between 1.3 cm and 5 cm compost 

applications at first flush or steady-state.  The results of this project indicate that particle 

size, soil moisture capabilities, and time at which rainfall is applied affect surface runoff.  

TxDOT specification of using ECC at 5 cm depth on a max of 3:1 slope should be 

reconsidered.  An ECC application depth of 1.3 cm was effective in reducing first flush 

runoff and interrill erosion rates
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CHAPTER I 

INTRODUCTION 

 

Urbanization has increased within the United States over the last two decades. 

From 1982 to 1997, the amount of land developed for urban use has increased by 50%.  

In particular, Texas lost approximately 13,467 km2 of quality farmland to development 

over the previous five years, more than any other state in that period (Land: Agriculture 

and Urban Sprawl, 2004).  As a result of urban expansion, construction activities are 

increasing throughout the state and the impact of these activities on runoff and erosion 

has become an important issue in Texas.  According to the United Stated Environmental 

Protection Agency (USEPA) increasing construction activities have led to an increase in 

nonpoint source pollution (USEPA, 1999). 

Stormwater management is important to prevent excessive sediment and nutrients 

from moving off of construction sites into nearby surface water.  The Clean Water Act 

(CWA) of 1972 cited sediment as a significant pollutant in water systems.  In 1987, the 

CWA was revised to require all states to investigate nonpoint sources of sediment and 

determine strategies to minimize these sources (USEPA, 1987).  Currently, the USEPA 

regulates stormwater from construction activities as part of the National Pollution 

Discharge Elimination System (NPDES) (USEPA, 1995).  Regulations have become 

more stringent over time with the implementation of the Phase II rules in 2003 lowering 

the accepted disturbed area from five acres or larger (Phase I) to one acre or larger (Phase 

II).  

This thesis follows the style of Transactions of the ASABE. 
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Urban development will continue to increase in Texas due to growing population 

and urban sprawl.  Despite the desire for urbanization and expansion of the economy, this 

growth increases the amount of construction, which if not properly managed, can threaten 

surface water quality.  Therefore, several federal and state agencies are promoting best 

management practices to reduce stormwater pollutants (Kaufman, 2000).  One approach 

currently being utilized and actively researched by state Departments of Transportation 

nationwide is to replace the topsoil that was removed during construction activities with 

organic compost.  In particular, the Texas Department of Transportation (TxDOT) has 

approved and promoted the use of compost as a stormwater best management practice 

(BMP) during highway construction (TxDOT, 2004).  Previous studies concluded that 

applying compost can reduce erosion (Muhktar, 2004; Persyn et al., 2004).  However, 

since compost can vary widely in its source materials and processing, its use as a 

stormwater BMP needs further evaluation to optimize or validate current specifications. 

The objectives of this study were to construct and calibrate an indoor rainfall 

simulator and to determine the effectiveness of using compost rather than conventional 

hydroseeding or topsoil to reduce erosion from disturbed soils.  Specifically, this study 

compares runoff rates, interrill erosion rates, and interrill erodibility factors from five 

compost treatments and two control treatments after 5 minutes of rainfall (first flush) and 

during the last 30 minutes of rainfall (steady-state). 

 

 



3 

CHAPTER II 

LITERATURE REVIEW 

SOIL EROSION 

Soil erosion is defined as the detachment and transport of soil particles (Ellison, 

1947; Kaufman, 2000).  Two common factors causing soil erosion are wind and water.  

Soil erosion by water is the result of rainfall impacting the soil surface either through 

raindrop impact (interrill erosion) or deep sheet flow over a sloped surface (rill erosion), 

eventually causing soil loss (Meyer and Harmon, 1979; Fan and Wu, 2001; Persyn et al., 

2004). 

 

INTERRILL EROSION 

Interrill erosion is the result of raindrop detachment and raindrop transport.  

Raindrop detachment is defined as the amount of soil being separated from the surface.  

The total amount of soil transported and detached is a function of the kinetic energy, the 

slope surface, rainfall intensity, and the texture of soil (Hirschi and Barfield, 1988; Haan 

et al., 1994).  

Kinetic Energy 

Interrill erosion can result from the kinetic energy of the rainfall impact that 

applies a force on the soil particles which causes detachment from the surface and 

movement of soil.  The steady impact of raindrops on the surface and the flow which 

induces transport of soil is known as the interrill raindrop transport (Kinnell, 1990).  

Interrill erosion rates are affected by raindrop velocity and drop size (Moss and Green, 

1983; Kinnell, 1990).  The velocity reached at rainfall impact is known as terminal 



4 

velocity.  The terminal velocity is dependent on the diameter of the raindrop and the 

distance it falls (Foote and DuToit, 1969). 

Slope Factor 

The slope can influence the erosion rate.  As the slope gradient increases, the 

angle at which the raindrops impact the soil decreases, causing a downward detachment 

of sediment.  As the rainfall intensity increases the transport of sediment downwards 

increases (Quansah, 1981; Sheridan et al., 2003).  Amorim et al. (2001), studied the 

impact of soil slope on soil loss using topsoil under an indoor rainfall simulator at four 

different rainfall intensities (30, 46, 69, and 88 mm h-1) on two slopes (2% and 8%).  The 

results concluded that as slope increased by 6 %, the mean soil loss increased by a factor 

of six.  The soil slope affects interrill erosion more than it affects interrill detachment 

(Haan et al., 1994). 

In the Water Erosion Prediction Project (WEPP), a model to predict soil loss, the 

slope factor was used to account for its impact on the interrill erosion rate (Foster, 1982).  

Liebenow et al. (1990) defined the slope factor (unit-less) as: 

     (1) )sin4(85.005.1 θ−−= eS f

where θ  is the slope angle (in degrees). 

Rainfall Intensity and Runoff 

Rainfall intensity, the amount of precipitation per time, is a measure of the 

amount of precipitation applied.  Wan and El-Swaify (2001) studied the influence of 

varying slope (4, 9, 18, 27, and 36%) and rainfall intensity (45, 65, 90, 135 mm h-1) on 

interrill splash (detachment and transport by raindrops) and interrill wash (sediment 

transport due to flow) on a silty clay soil.  The study concluded at high rainfall intensities 
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-1(>60 mm h ) and steep slopes (36%), the interrill wash increased greatly whereas at low 

rainfall intensities (<45 mm h-1) and at a steep slope (36%), the wash did not significantly 

increase.  

Soil Texture 

Soil can be described using the following characteristics; structure, organic 

matter, color, pH, and texture.  The texture is the proportion of clay, silt, and sand in the 

soil.  The texture of the soil can influence its ability to retain moisture and nutrients for 

plant growth.  The texture of the soil can also impact the interrill erosion rates.  When 

rain impacts the surface, soil aggregates may break up and redistribute to create a layer of 

smaller soil particles on the surface (Duley, 1939; Bissonnais and Arrouays, 1997).  This 

sheet layer may create a surface seal causing an increase of runoff and erosion.  Pore size 

is dependent on soil texture.  Clay soils have small pores and hold considerably more 

water compared to more sandy soils. 

 

INTERRILL EROSION RATE 

The amount of soil detached and transported by raindrop splash is known as net 

interrill erosion (Haan et al., 1994).  Meyer and Harmon (1979) defined interrill erosion 

as dependent on soil detachment rate and rainfall intensity (Eq. 2)   

2IKD ii =       (2) 

where Di is the interrill erosion rate (kg s-1 m-2), K  is the interrill erosion factor (kg-s mi
-

4), I is the rainfall intensity (m s-1).  This interrill erosion equation is for bare soil and 

excludes any crop or vegetation factors. 
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Further studies led to modifications of the interrill erosion rate equation to reflect 

the relationship between steady-state interrill erodibility, rainfall intensity, and slope 

factor (eq. 3) (Foster, 1982; Liebenow et al., 1990)  

fii SIKD 2=      (3) 

where Sf  is the interrill slope adjustment factor (unit-less). 

 Hydrologic-based mathematical modeling programs were developed to simulate 

soil erosion.  In particular, the Water Erosion Prediction Project (WEPP) modeled water 

erosion patterns by incorporating soil type, ground cover, management, climate, slope, 

and soil erodibility factors (Nearing et al., 1989; Haan et al., 1994; Flanagan and Nearing, 

1995; Mark et al., 1998; Persyn et al., 2004).  In the WEPP model, interrill erosion is 

defined as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

w

s
iiii R

RCGRIqKD     (4) 

where q is the runoff rate (m s-1), Ri is the sediment ratio (dimensionless), C is percent 

canopy cover, G is percent of ground cover, Rs is the rill spacing and Rw is the rill width 

(Weltz et al., 1998). 

The interrill erosion rate was then modified to best represent a surface with no 

vegetation, on a hillslope, and with possible high infiltration rates under steady-state 

assumptions: 

fii IqSKD =     (5) 

where Sf  is the slope factor (unit less) (Kinnell and Cummings, 1993).  Since it is 

expected that the blanket applied compost treatments will have high infiltration rates 
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(Persyn et al., 2004), the equation for interrill erosion rate (eq. 5) was used in this 

research. 

 

INTERRILL ERODIBILITY 

Interrill erodibility best describes the variability of soil erodibility among different 

by treatments.  It can be calculated by:  

f

i
i IqS

DK =        (6) 

The interrill soil erodibility factor can vary among type of treatments due to climatic 

conditions (i.e. precipitation), management practices, and soil characteristics (Nearing et 

al., 1989; Alberts and Neibling, 1994; Mamo and Bubenzer, 2001).  Persyn et al. (2004) 

indicated the importance of determining the erodibility factor was its value in modeling 

materials with different site conditions.  In other words, this quantified susceptibility of 

soil particles to erosion indicates how significant theses parameters can be on soil 

erosion.  

 

NUTRIENT LOAD AND SEDIMENT 

High concentrations of nitrogen and phosphorus transported from urban 

construction can negatively impact water quality.  Furthermore, more than 70 percent of 

urban streams exceeded the phosphorus standard set by the EPA to control excessive 

plant and algae growth between 1992 and 1996 (USEPA, 1999).  Previous studies 

indicated that traditional urban highway construction produced greater amounts of total 

suspended solids and nutrient loadings from runoff than a rural highway (Wu et al., 

1998).  Minimizing nutrient concentrations from highway runoff will also help to 
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decrease stream pollution.  Vaze and Chiew (2004) studied the relationship of nutrient 

load to particle size in urban stormwater.  Less than 15% of total phosphorus (TP) and 

total nitrogen (TN) were attached to the particles size greater than 300μ m.  Compost, 

which typically has larger particle sizes, might have the potential to reduce sediment load 

and nutrient movement.  

 

EROSION CONTROL 

Composting a biological decomposition process, is typically applied one of three 

ways for erosion control; incorporated with topsoil (as a soil amendment), as a blanket, or 

as a filter berm (to diffuse flow).  

Mukhtar (2004) conducted a study on the effects of using dairy manure compost 

for controlling erosion and revegetation on steep slopes.  He reported that dairy manure 

compost resulted in less runoff with fewer total solids than a commercial fertilizer 

applied to topsoil.  Mukhtar (2004) recommended manure compost be applied to highway 

construction for erosion control. 

Buchanan et al. (2002) compared erosion rates of three woodchip treatments 

(large, small, and mixture) to one control of bare clay loam soil on a 55% slope on a 

embankment in Knox County, Tennessee.   Compared to the bare soil treatment, the 

erosion rate was reduced by 22% for the “small chips”, 78% by the “large chips” and 

86% by the “mixed size” chips.  Buchanan et al. (2002) concluded that using larger 

woodchips can reduce erosion and detachment from the soil on steep slopes.  

Persyn et al. (2004) studied erosion along Iowa highways using three different 

compost blankets; biosolids compost, yard waste compost, and bio-industrial compost, 
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applied at 5 cm and 10 cm depths.  They found that a mulch blanket compost applied at a 

5 cm depth was an effective application to reduce runoff and erosion, with yard waste 

compost (coarsest material) performing the best of all treatments.   

Currently, the Texas Department of Transportation (TxDOT) has approved and 

promoted the use of compost as a stormwater best management practice (BMP) during 

highway construction.  Recent studies have shown that compost application will reduce 

erosion (Persyn et al., 2004; Demars et al., 2000; Storey et al.,1996), improve re-

vegetation (Richard et al., 2003), and minimize costs for construction companies 

(TxDOT,  2004).  Evaluating the performance and optimizing these design standards will 

be beneficial to construction managers, planners and engineers in properly adopting 

compost blankets as a stormwater BMP.  
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 CHAPTER III 

METHODS AND MATERIALS 

 

This study was conducted in laboratory on campus of Texas A&M University 

using an indoor rainfall simulator.  The rainfall simulator was calibrated for an optimal 

uniformity at a target precipitation rate of 100 mm h-1.  Seven treatments were 

individually constructed in 0.093 m2 aluminum pans angled at a 3:1 side-slope.  Runoff 

was collected for one hour after rainfall was initiated at time intervals to capture first 

flush and steady state conditions from each treatment.  Erosion measurements were taken 

and total suspended solids, surface runoff, interrill erodibility, and sub-surface drainage 

were calculated for all seven treatments. 

 

EXPERIMENTAL DESIGN 

Experiments were conducted in the Department of Biological and Agricultural 

Engineering Water Quality Laboratory at Texas A&M University.  Aluminum soil pans 

were built according to specifications from USDA National Soil Erosion Laboratory 

(Zheng et al., 2004; D. Flanagan, personal communication, 11 August 2004).  According 

to Weltz et al. (1998), to address interrill erosion rates, it is best to use a small 

experimental plot (≤ 1 m2).  The height, width, and length dimension for each pan was 

0.20 m, 0.33 m, and 0.45 m, respectively (Fig 1).   
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Figure 1. Dimensions of aluminum soil pans modified from Zheng et al. (2004) 

0.45 m 

0.33m 

0.20 m 

 

 Four layers; pea gravel, geo-textile fabric, sandy loam soil, and the treatment 

media were placed in each aluminum soil pan (Fig. 2). 

Figure 2. Diagram of the materials used to construct the soil pans 

TREATMENT 
(.05 m-.013m)

PEA-GRAVEL  
(.015m-0.02 m) 

GEO-TEXTILE FABRIC 

SANDY-LOAM 
SOIL (0.15 m)  

 
 

 According to Goldman et al. (1986), a 3:1 side-slope is the maximum angle 

hydroseeding can be applied to be an effective erosion control using the appropriate 

amount of mulching and tackifier (Fig. 3).  Therefore, all soil pans were placed on a 

3:1(18.4o) slope. 
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Figure 3. Side-view of the aluminum pans evaluated on a 3:1 side-slope 

18.4 o

0.45 m

0.2 m

 
 

COMPOST CHARACTERISTICS 

The Texas Department of Transportation specifies that compost used for erosion 

control adhere to both United States Department of Agriculture’s “Test Methods for the 

Examination of Compost and Composting” (TMECC, 2001) and the United States 

Composting Council (USCC) guidelines.  The compost and untreated woodchips were 

provided by the Brazos Valley Solid Waste Management Authority (BVSWMA) in 

Bryan, Texas.  The compost consisted of fine grain grass clippings and yard trimmings.  

The untreated woodchips were less than or equal to 12.7 cm in length and had 95% of the 

sample passing a 5 cm screen and 30% passing a 2.54 cm screen.  The compost samples 

for this experiment adhered to Texas DOT physical standard specifications that require 

using the Seal of Testing Assurance from the United States Composting Council (Table 

1).  The BVSWMA used A&L Great Lakes Laboratories, Inc. to verify their compost 

products adhere to the Texas DOT specifications. 
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Table 1. Compost physical requirements as specified by Texas DOT following the 

United States Composting Council Seal of Testing Assurance 
 

Property Texas DOT requirement Test Method 
1 Particle Size 95% passing 15.9 mm, 

70% passing 9.5 mm 
TMECC 
02.02-B 

2 pH 5.5-8.5 TMECC 
04.11-A 

3 Soluble Salts Max 5.0 dS/m TMECC 
04.10-A 

4 Organic 
Matter 
Content 

25-65% (dry mass) TMECC 
05.07-A 

TREATMENTS 

 Seven treatments were tested, five blanket applied compost blends and two 

controls.  A sandy loam soil was obtained through Southwood Valley & Turf, a local 

landscaping supply company (Fig. 4).  The hydroseeding(HS), a blend of grated 

newspaper pulp, liquid fertilizer (16% Nitrogen, 6% Phosphorus, and 8% Potash), 

tackifier, Bermuda grass seed, and water (40-60 gal per 1,000 sq ft of dry HS), were 

provided by Cen Tex Hydroseed, Inc.  

Figure 4. Source materials for treatment 
(A: untreated woodchips, B: compost, and C: topsoil) 

A CB
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o The samples were sealed and stored at 4 C.  A physical and chemical analysis of 

each treatment was conducted by the Texas Cooperative Extension Soil, Water, and 

Forage Testing Laboratory at Texas A&M University.  These results of the multi-nutrient 

analysis are found in Table 2 and Table 3.  

 

 
 
 
 
 

 

 

 For optimal testing results, the compost was stored for no longer than 30 days 

after mixing the compost (TMECC, 2001).   

A concrete mixer was used to blend the materials according to TxDOT 

specifications for three compost mixtures; compost manufactured treatment (CMT), 

erosion control compost (ECC), and general use compost (GUC).  The CMT and ECC 

were applied at two depths of 5 cm and 1.3 cm to determine if depth of compost 

application affects the amount of runoff and erosion.  The controls used were a sandy-

 
Table 3. Physical characteristics of samples 

 
Sample 

ID Sand Silt  Clay  Texture 
  [%] [%] [%]    

TS 86 4 10 Sandy Loam  
CMT 86 6 8 Sandy Loam 

Table 2. Chemical characteristics of treatments 
 

Sample 
ID pH Conductivity  

Nitrate Phosphorus 
(P)  

Potassium 
(K)  

Calcium 
(Ca)  

Magnesium 
(Mg)  

Sulfur 
(S)  

Sodium 
(Na)  (NO3)  

    [umho/cm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] 
TS 7.8 81 1 3 53 974 116 9 190 
CMT 7.9 250 7 190 183 2001 184 43 283 
GUC 7.1 718 5 156 848 1733 279 44 326 
ECC 6.8 1197 84 813 1032 3376 370 158 518 
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loam topsoil (TS) and hydroseeding (HS).  The GUC and HS were applied at 5 cm (Table 

4). 

 

 

Table 4. Composition and application depths of seven experimental treatments 
 

Treatment Characteristic Application 
depth 

1 Compost Manufactured Topsoil 
at 5 cm application (CMT-5) 

75% topsoil, 25% compost 5 cm 

2 Erosion Control Compost at 5 
cm application (ECC-5) 

50% untreated wood chips, 
50% compost blend 

5 cm 

3 General Use Compost at 5 cm 
application (GUC-5) 

100% Compost 5 cm 

4 Erosion Control Compost at 1.3 
cm application (ECC-1.3) 

50% untreated wood chips, 
50% compost blend 

<1.3 cm 

5 Compost Manufactured Topsoil 
at 1.3 cm application (CMT-1.3) 

75% topsoil, 25% compost <1.3 cm 

6 Hydroseeding (HS) Paper mulch with fertilizer and 
Bermuda grass seeds. 

5 cm 

7 Topsoil (TS) 100% topsoil N/A 
 

RAINFALL SIMULATOR 

 A rainfall simulator was used to simulate natural rainfall by distributing rain drops 

at a specified intensity over an applied period of time.  The simulator was designed and 

operated using the specifications described in Meyer and Harmon (1979) which included 

nozzle sprayers rather than drop formers.  According to previous studies, the flat-spray 

Veejet nozzles provide a high flow rate with a back and forth movement which allowed 

for adequate intensities of 3 to 5 mm h-1 (Meyer and McCune, 1958; Meyer and Harmon, 

1979; Thomas and El-Swaify, 1989; Paige et al., 2003).  The rainfall intensity is affected 

by the kinetic energy and terminal velocity of the raindrops.  To insure this study 

produces raindrops similar to natural rainfall, Veejet nozzles were used (Fig. 5).  The flat 
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spray VeeJet 80100 nozzles (Spraying Systems Co.) produce small to medium drop sizes 

(0.5 mm-3 mm) with an estimated kinetic energy of 75% of natural rainfall having an 

intensity of 64 mm h-1 (Meyer and McCune, 1958; Meyer and Harmon, 1979; Peterson et 

al., 2002).  More specifically, this simulator had a total of ten VeeJet 80100 nozzles at a 

height of 5 m from the ground and operated at a pressure of 41 kPa. 

Figure 5. Rainfall simulator with Veejet 80100 nozzles 

 

 The nozzles were controlled by a timing control box and the flow monitors.  The 

electronic box controls the oscillation of the nozzles and the intensity of rainfall (Fig 6). 

Figure 6. Rainfall simulator 

STORAGE 
TANK 

PUMP 

RAINFALL SIMULATOR

PRESSURE 
GAUGE 

ALUMINUM SOIL PANS

VEEJET 
80100 
NOZZLES

CONTROL 
EXCESS 
WATER 
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 In a previous study, the water source for a field rainfall simulator was deionized 

water at 40 uS cm -1 (Flanagan et al., 2002; Peterson et al., 2002).  In this study, potable 

water pumped from the City of College Station, TX water system was stored in the 

outside water storage tanks, and then pumped to the rainfall simulator at a flow rate of 41 

kPa. (Fig 7). 

 

Figure 7. Water storage tank for rainfall simulator 

The U.S. National Weather Service has records of rainfall according to land area 

(Haan et al., 1994).  In the Brazos Valley area, east central part of Texas, a 2 yr, 24 h 

storm averages between 102 mm h-1 -1 to 114 mm h  in rainfall intensity (Soil Conservation 

Service, 1986).  The target rate for this study was at 100 mm h-1. 

Rainfall intensity and uniformity were measured to calibrate the rainfall simulator 

by collecting the rainfall from an array of catch-cans (Pall et al., 1983; Thomas and El-

Swaify, 1989; Edwards et al., 1992; Williams et al., 1998; Humphry et al., 2002; Paige et 

al., 2003).  The intensity and uniformity was tested using 96, 0.95 L aluminum cans 



18 

which collected rainfall for 30 minutes.  The uniformity of rainfall distribution for the 

rainfall simulator was 89% at an intensity of approximately 100 mm h-1.   

 

DATA COLLECTION 

A completely randomized design (Table 5) was used to compare four samples of 

each of the seven treatments (28 treatment/sample combinations).  To reduce the risk of 

splashing from one treatment to another, a maximum of six pans (treatments) were tested 

during an individual rainfall simulation. 

 

Table 5. Completely randomized design for layout of treatments 
RUNS 

1 2 3 4 5 6 7 
ECC-5 TS ECC-1.3 GUC-5 GUC-5 ECC-1.3 CMT-5 
GUC-5 CMT-5 HS CMT-1.3 CMT-5 CMT-5 CMT-1.3 
TS CMT-1.3 GUC-5 CMT-5 ECC-1.3 HS ECC-1.3 
ECC-1.3 ECC-1.3 ECC-5 ECC-1.3 ECC-5 CMT-1.3 HS 
CMT-1.3 GUC-5 CMT-1.3 ECC-5 HS ECC-5 GUC-5 
CMT-5 ECC-5 CMT-5 HS CMT-1.3 GUC-5 ECC-5 
 **Acronyms: GUC-5: General Use Compost (5 cm), ECC-5 : Erosion Control Compost (5 cm), CMT-
5:Compost Manufactured Treatment, ECC-1.3: Dispersion Treatment ECC, CMT-1.3: Dispersion 
Control  GUC, HS-Hydro-seeding, TS-topsoil 

Before each run, the aluminum soil pans were prepared with four layers; pea-

gravel, geo-textile fabric, topsoil, and one of the seven treatments.  The rainfall simulator 

mean application rate was 92 mm h-1 for 60 minutes.  Five plastic rain gauges collected 

the rainfall for the entire simulation to determine rainfall intensity.  Surface runoff was 

collected in pre-weighed 1L plastic bottles.  The first sample was collected after 5 

minutes (first flush collection).  Then surface runoff was collected for 25 minutes.  After 

the first 30 minutes, runoff was considered to be in steady-state and samples were taken 
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every 5 minutes for the next 30 minutes.  Sub-surface drainage was collected during the 

entire 60 minute rainfall in 6 L graduated flasks.  Samples were weighed and recorded. 

 Total suspended solids (TSS) were determined for each runoff sample.  According 

to the Standard Methods for the Examination for Water and Wastewater, samples were 

filtered (50mL) using a 90mm fiberglass filter paper and dried at 105 oC oven (APHA, 

2004).  TSS were calculated ass: 

( VBATSS /1000*−= )     (7) 
where, 
 A is aluminum dish plus filter (g) 
 B is Residue and aluminum dish plus filter (g) 
 V is Volume of sample (ml) 
 TSS is total suspended solids 
 
 
DATA ANALYSIS 

Interrill erosion begins when raindrops hit the surface of the soil causing 

splashing to occur.  The impact from the splashing causes removal of soil particles from 

the surface which is known as detachment.  This process of detachment and transport of 

the soil particles is known as the erosion rate (Eq. 8).   

tA
TSSDi *

=     (8) 

where,  

D  is the erosion rate (mg/m2-s) i
TSS is the weight of the total suspended solids (mg) 
A is the cross-sectional surface area (m2) 
t is the time of runoff collection (s).   

  

The rainfall intensity was calculated from the averaged depths of the five rain gages in 

each simulation as: 



20 

−

=
t
rI       (9) 

where, 

I is the rainfall intensity (m s-1) 
−

r is the average rainfall depth from five rain gauges (m) 
t is the time of rainfall simulation (s) 
 

The surface runoff rate was calculated from the weight of water collected in each soil pan 

as: 

tA
Wq

OH

OH

**2

2

ρ
=     (10) 

where,  

-1q is the runoff rate in (mm h ) 
OHW 2  is the weight of the collected surface water (kg) 

o -3 is the density of water 4 C, 1.00 (kg mm ) OH 2ρ
A is the cross-sectional surface area in m2

t is the time of runoff collection (s).   
 

The interrill erodibility factor, K , was calculated as (Eq. 6, referenced from Chapter II):  i

f

i
i IqS

DK =      (6) 

where 

 =steady-state interrill erosion rate (kg s-1
iD  m-2) 

 =interrill erodibility (kg-s m-4
iK ) 

-1)  I=measured rainfall intensity (mm s
 q=measured runoff rate (m h-1) 

)sin4exp(85.005.1 θ−−=fS  

where θ  is the slope angle (degrees). 

To determine the distribution of rainfall on the profile, the general use form of 

mass balance was used: 
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Rate of Accumulation=Rate of Input – Rate of Output 

It was assumed that evaporation and transpiration were negligible since the experiment 

had no vegetation cover and was over a short time period indoors.  The water mass 

balance describes the water applied from the rainfall simulator, the water accumulated in 

the soil profile, and the water withdrawn from the profile as sub-surface drainage. 
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CHAPTER IV 

EVALUATION OF AN INDOOR RAINFALL SIMULATOR 

INTRODUCTION  

Evaluation of stormwater best management practices is becoming increasingly 

important as stormwater managers seek to comply with federal, state, and local 

regulations.  Currently, the United States Environmental Protection Agency (US EPA) 

regulates stormwater from construction activities as part of the National Pollution 

Discharge Elimination System (NPDES) (USEPA, 1995).  Regulations have become 

more stringent over time with the implementation of the Phase II rules in 2003 lowering 

the regulated disturbed area from five acres or larger (Phase I) to one acre or larger 

(Phase II).  

Rainfall simulation has been used in a number of studies to compare best 

management practices in agricultural and disturbed lands (Bubenzer and Meyer, 1965; 

Hall, 1970; Meyer and Harmon; 1979; Thomas and El Swaify, 1989; Persyn et al., 2004).  

Two types of rainfall simulators are typically used: drop formed and nozzle sprayed 

simulators.  Drop formed simulators used hypodermic needles or capillary tubes to 

produce uniform drop sizes and a screen is used to redistribute the drops (Ekern and 

Muckenhirn, 1947; Hall, 1970; Bryan and De Ploey, 1983).  A drop formed rainfall 

simulator at a height of 14 m, with a mean drop size diameter of 4.3 mm, using reversed 

osmosis treated water, with 5 cm tubing lengths, and a stainless drop redistribution screen 

was constructed to produce droplets similar to natural rainfall (Regmi and Thompson, 

2000).  According to Regmi and Thompson (2000), the challenges to using a drop former 

are: (1) “limitations on flow performance due to the frictional and capillary forces”, (2) 
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“difficulties maintaining uniformity at low intensities (such as 1.25 cm h-1)”, and (3) 

“restrictions on screen suspension distance affects drop size distribution”.  In addition, 

drop formers require as much as 10 m in height for the raindrops to act as natural rainfall 

when they reach terminal velocity (Grierson and Oades, 1977).  

Nozzle sprayed simulators use pressurized nozzles to apply drops at a more 

uniform rate.  Typically these simulators oscillate nozzles to control intensity (Meyer and 

Harmon, 1979).  The advantages to using a nozzle sprayed simulator are: (1) allows for 

wider variety of intensities compared to drop formed simulators, (2) drop size distribution 

is similar to natural rainfall at 41 kPa, and (3) uniformity is more consistent when using 

the oscillated nozzle sprays (Meyer and Harmon, 1979; Edwards et al., 1992). 

To facilitate a controlled environment for stormwater best management practice 

(BMP) evaluation, an indoor rainfall simulator was constructed at Texas A&M 

University.  The simulator was designed and operated using specifications described by 

Meyer and Harmon (1979) which included using VeeJet 80100 nozzles at a height of 5 m 

operating at a pressure of 41 kPa.   

In previous studies a simple container array method has been used to measure 

rainfall distributions (Pall et al.; 1983; Thomas and El-Swaify; 1989; Edwards et al.; 

1992; Williams et al.; 1998; Humphry et al. 2002; Paige et al., 2003).  In those methods, 

containers were distributed evenly across the range to be tested over a single axis or an 

area.  The nozzles ran for a set length of time, often 30 minutes, at a known discharge 

rate, and then the containers were measured for the volume of water collected.  For 

nozzle type simulators, the spray pattern of each nozzle varies, so it is recommended that 

the distribution of each nozzle be determined so that overlap can be designed to increase 
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uniformity (Meyer and Harmon, 1979; Paige et al., 2003).  Uniformity coefficients 

ranging from 76 (Williams et al., 1998) to 94.3 (Thomas and El Swaify, 1989) and 93 

(Humphry et al., 2002) have been reported. 

The objective of this study was to construct and evaluate the uniformity of rainfall 

application of an indoor rainfall simulator.  

 

METHODS AND MATERIALS 

Rainfall Simulator Characteristics 

The simulator was designed and operated using specifications described by Meyer 

and Harmon (1979) which included using VeeJet 80100 nozzles (Spraying Systems Co.) 

at a height of 5 m operating at a pressure of 41 kPa.  The flat spray nozzles produce small 

to medium drops sizes (0.5 mm to 3 mm) with an estimated kinetic energy of 75% of 

natural rainfall having intensity of 64 mm h-1 (Meyer and McCune, 1958; Meyer and 

Harmon, 1979; Peterson et al., 2002).  The rainfall simulator was designed to disperse 

water from two side-by-side laterals (five nozzles per lateral) (refer to Figure 5).  Rainfall 

intensity was controlled by varying the sweep of the nozzles.   

Uniformity Standard  

Testing uniformity of water distribution is determined by computing the 

uniformity coefficient (eq. 11) (ASAE S436.1 DEC01 Standards).  When computing the 

coefficient of uniformity,  and  were replaced with the weight of water collected 

from each collector and the arithmetic average weight of water per trial. 

−

viv
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Experiment Setup 

CUc=Christiansen Uniformity Coefficient 
n = the number of collectors used in data analysis 

iv  = the volume (or alternatively the mass or depth of water collected in the 
ith collector 

−

v  = the arithmetic average volume (or average weight) caught by all 
collectors. 

 

The rainfall simulator was constructed in the Department of Biological and 

Agricultural Engineering’s Water Quality Laboratory at Texas A&M University.  A total 

of 96 aluminum cans each weighing 0.09 kg and having a 10.16 cm diameter were used.  

The cans were evenly spaced (0.3 m) in a grid of six columns with 16 rows.  The cans 

were then placed on a temporary table platform of 5.18 m by 3.05 m, located directly 

under the rainfall simulator (Fig. 8). 

 

Figure 8. Uniformity distribution testing with 96 aluminum cans 
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The experimental setup is illustrated in Table 6.  Rainfall was applied at a target 

intensity of 100 mm h-1 for 30 min.  The 96 cans and collected water were then weighed.  

This process was repeated three times. 

Table 6. Summary of experimental setup 
 

Rainwater Weight 
Column 

Row 1 2 3 4 5 6 
16 Y16,1 Y16,2 Y16,3 Y16,4 Y16,5 Y16,6
15 Y15,1 Y15,2 Y15,3 Y15,4 Y15,5 Y15,6
14 Y14,1 Y14,2 Y14,3 Y14,4 Y14,5 Y14,6
… … … … … … … 
1 Y1,1 Y1,2 Y1,3 Y1,4 Y1,5 Y1,6

Mean 
1.y

−

 
2.y

−

 
3.y

−

 
4.y

−

 
5.y

−

 
6.y

−

 

 

Statistical Analysis 

To determine the variability of water distribution from the rainfall simulator, the 

difference in mean weight of rainfall in each column and row was computed.  First, each 

trial was tested for normal distribution using Q-Q plots.  Then an analysis was performed 

to determine if the rainfall depths were independently and identically distributed (IID) 

random variables.  To test the difference in means for each of the six columns, the one-

way Univariate Analysis of Variance (ANOVA) test was conducted (SPSS, 2003).  

Tukey’s procedure was used to conduct a pair wise comparison of the means for each 

column and row (Ott and Longnecker, 2002).  

 

RESULTS AND DISCUSSION 

Column Comparisons 

Pairwise comparisons of mean weights showed that the weight of water collected 

in columns one and six were not significantly different from one another, but were 
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significantly different from the other four columns (Table 7).  The inner most columns (2, 

3, and 4) were not significantly different from each other.  Samples along column five 

were statistically higher than all other columns.  Water drops were observed falling from 

the simulator along column five that accounts for the significantly higher collection 

depth. 

The uniformity distribution is often calculated to indicate how equal (or unequal) 

and application rate is throughout a specific area.  The uniformity distribution for each 

column was evaluated in Table 7.  Then, the outer columns (1 and 6) and outer rows (1 

and 16) were omitted to determine the uniform coefficients for a smaller area, referred to 

as “edge-effect”.  The mean uniformity from all three trials was 89% compared to the 

91% when removing the “edge-effect”. 

Row Comparisons 

 Following mean column rainwater weights and column uniformities, the pairwise 

comparison was again applied to compare the mean rainwater weights among the 16 

rows.  No significant pattern occurred among the mean row weights indicating the 

difference in rows was randomy distributed.  Table 7 illustrates the highest mean weight 

was row 7 and the lowest mean was row 16. 

 The results for the uniformity distribution for each row were more significant 

after removing the “edge-effect”.  The difference in mean uniform coefficients (CU) for 

the rows before and after the edge-effect removal was 89% to 92% respectively (Table 

7).  The vertical location of the nozzles (over columns 1&2 and 5&6) appeared to have a 

substantial impact on the “edge-effect” uniformity coefficients for the rows.     
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No difference in uniformity coefficients between the total rows and columns 

suggests that the entire area under the simulator is adequate for experiments.   

 

 

CONCLUSION 

Overall uniformity of rainfall application was good at 89%.  Omitting the outer 

columns and rows (edge-effect) did not improve uniformity.  The comparison of mean 

rainfall weights of each column showed the fifth column was significantly different than 

all other columns, appeared to be due to an observed water leak from an above pipe.  The 

effective area that can be used with this indoor rainfall simulator was 15.8 m2.   

Table 7. Mean rainwater weight comparison and  
uniformity coefficients (CU) by row and by column 

 
Average of three trials   

 COLUMN #    
  1 2 3 4 5 6      

ROW # Rainwater Weight [g] AVG 
CU 
(%) 

CU -
"edge-
effect" 
(%) 

16 0.75 0.99 0.85 0.91 1.06 0.85 0.90a 83   
15 0.81 1.02 0.89 0.97 1.13 0.89 0.95a,b 87 87 
14 0.97 1.21 1.08 1.17 1.38 1.04 1.14c,d,e 89 91 
13 0.93 0.99 1.12 1.15 1.30 0.94 1.07b,c,d,e 89 93 
12 0.85 0.90 1.02 0.99 1.17 0.85 0.96a,b 86 88 
11 0.93 0.95 1.09 1.07 1.25 0.92 1.03a,b,c,d 91 91 
10 0.99 1.10 1.15 1.18 1.36 1.05 1.14c,d,e 90 93 
9 0.94 1.13 1.08 1.06 1.12 0.93 1.04b,c,d 93 96 
8 0.95 1.15 1.08 1.05 1.11 0.85 1.03a,b,c,d 92 96 
7 1.05 1.34 1.25 1.19 1.27 1.01 1.19e 87 89 
6 1.09 1.29 1.21 1.16 1.19 1.01 1.16d,e 88 93 
5 0.91 1.12 0.97 0.99 1.03 0.87 0.98a,b 91 91 
4 0.93 1.13 1.03 1.03 1.11 0.89 1.02a,b,c,d 92 95 
3 0.95 1.17 1.13 1.14 1.40 0.95 1.12c,d,e 87 93 
2 0.83 1.11 0.99 1.07 1.21 0.87 1.02a,b,c 89 94 
1 0.80 1.11 0.92 1.01 1.15 0.84 0.97a,b 86   

AVG* 0.92f 1.11g 1.05g 1.07g 1.20h 0.92f   89 92 
Coefficient of Uniformity (CU) Overall CU (%) 

CU (%) 85 90 91 93 86 86  89  
CU-"edge-effect" 
(%) 90 92 93 85     90   
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CHAPTER V 

EVALUATION OF COMPOST SPECIFICATIONS FOR STORMWATER 

MANAGEMENT 

 

INTRODUCTION 

Urbanization has increased within the United States over the last two decades. 

From 1982 to 1997, the amount of land developed for urban use has increased by 50%.  

Specifically, Texas lost approximately 13,467 km2 of quality farmland to development, a 

42 % increase in rate of loss over the previous five years, more than any other state in 

that period (Land: Agriculture and Urban Sprawl, 2004).  As a result of urban expansion, 

construction activities are increasing and the effect of these activities on runoff and 

erosion has become an important issue in Texas.  According to the United Stated 

Environmental Protection Agency (USEPA) increasing construction activities have led to 

an increase in nonpoint source pollution (USEPA, 1999), and the USEPA (1995) has 

addressed this concern through regulation of stormwater activities as a part of the 

National Pollutant Discharge Elimination System (NPDES). 

Conventional methods to reduce soil erosion include establishing vegetation using 

methods such as hydroseeding, wood fiber mats, and straw mats (Faucette et al., 2004).  

However, there can be limitations to some of these applications.  Faucette et al. (2004) 

reported that hydroseeding can be ineffective for erosion control when applied on slopes 

greater than 40%.  More recently, compost as a soil amendment, erosion control blanket, 

or filter berm has been used as an alternative best management practice (BMP) to 

improve soil structure, reduce erosion, or both.  
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Recent studies have shown that compost application will reduce erosion (Persyn 

et al., 2004; Demars et al., 2000; Storey et al.,1996), provide adequate re-vegetation 

(Richard et al., 2003), and minimize costs for construction companies (TxDOT, 2004).  

Mukhtar (2004) conducted a study on the effects of using dairy manure compost for 

controlling erosion and revegetation on steep slopes.  He reported that dairy manure 

compost (DMC) and the DMC amended with woodchips applied at an agronomic rate 

resulted in less runoff with fewer total solids than a commercial fertilizer applied to 

topsoil.  He recommended manure compost be applied to highway construction for 

erosion control.   

Persyn et al. (2004) evaluated erosion along Iowa highways using three different 

composts; biosolids, compost, yard waste compost, and bio-industrial compost, applied as 

5 cm and 10 cm blankets on top of the soil.  Treatments were applied on a 3:1 sideslope 

and rainfall was applied to an average intensity of 100 mm h-1.  They reported compost 

applied at a 5 cm depth was an effective application to reduce interrill runoff and erosion 

compared to the existing subsoil and a topsoil reapplication method.  In addition, yard 

waste compost, the coarsest raw material used, outperformed all treatments (soil and 

compost) with the least amount of interrill erosion. 

Faucette et al. (2005) evaluated four compost blends, hydroseed, silt fence, and 

bare soil applied to a 10% sloped sandy clay loam soil at a rainfall application rate of 

77.5 mm h-1.  The study analyzed runoff volume from seven treatment applications for 

three storm events; first day of rainfall, three months later, and at twelve months later.  At 

the three and 12 month events, the compost had less runoff volume (mm) than hydroseed 

33% vs. 8% respectively.  But, in the first storm event mulch, biosolids, hydroseed, and 



31 

silt fence had no significant difference in runoff volume.  More specifically, the 

municipal solids waste compost infiltrated 51% more water and 24% for hydroseeding 

compared to bare soil.   Faucette et al. (2005) concluded that the time from initial runoff 

from compost was significantly longer than from bare soil, and attributed this to the high 

water capacity and diversity of particle sizes in compost.  This delay in runoff for 

compost treatments was also reported by Persyn et al. (2004). 

The Texas Department of Transportation (DOT) has promoted the use of compost 

as a stormwater best management practice during highway construction.  TxDOT (2004) 

specification 1001 also requires that the ECC treatment be applied at a 5 cm depth on a 

maximum side-slope of 3:1.  The American Association of State Highway Transportation 

Officials (AASHTO, 2003) has a similar compost specification, MP 10-03, which 

specifies a depth of application of compost between 25 mm up to 100 mm as annual 

rainfall amounts increase. 

The overall objective of this study was to was to compare runoff rates, erosion 

rates, and interrill erodibility factors from five compost treatments and two control 

treatments (soil and hydroseed) after the first 5 minutes of rainfall (first flush) and at 

steady-state. 

 

METHODS AND MATERIALS 

Each treatment was individually constructed in 0.093 m2 aluminum pans angled at 

a 3:1 side-slope.  Rainfall simulation was used to apply a target rate of 100 mm h-1.  

Runoff was collected for one hour after rainfall was initiated at time intervals to capture 

first flush and steady state conditions from each treatment.  Runoff rate and total 
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suspended solids were measured and used to calculate the interrill erosion rate and soil 

erodibility factors for each treatment. 

Treatments 
The Texas Department of Transportation specifies that compost used for erosion 

control adhere to both United States Department of Agriculture’s “Test Methods for the 

Examination of Compost and Composting” (TMECC, 2001) and the United States 

Composting Council (USCC) guidelines.  The compost and untreated woodchips were 

provided by the Brazos Valley Solid Waste Management Authority (BVSWMA) in 

Bryan, Texas.  The compost consisted of fine grain grass clippings and yard trimmings.  

The untreated woodchips were less than or equal to 12.7 cm in length and had 95% of the 

sample passing a 5 cm screen and 30% passing a 2.54 cm screen.  The compost samples 

for this experiment adhered to Texas DOT physical standard specifications that require 

using the Seal of Testing Assurance from the United States Composting Council (Table 

1).  The BVSWMA used A&L Great Lakes Laboratories, Inc. to verify their compost 

products adhere to the Texas DOT specifications.  The sandy loam topsoil was obtained 

through Southwood Valley & Turf, a local landscaping supply company (Fig. 4, refer to 

Ch. II).  The hydroseeding, a blend of grated newspaper pulp, liquid fertilizers, and 

Bermuda grass seed, were provided by Cen Tex Hydroseed, Inc.  

Three compost mixtures were prepared according to TxDOT specifications; 

compost manufactured topsoil (CMT), erosion control compost (ECC), and the general 

use compost (GUC) with composition shown in Table 3 (TxDOT, 2004).  ECC and CMT 

were applied at two depths, 5 cm (ECC-5 and CMT-5) and 1.3 cm (ECC-1.3 and CMT 

1.3).  The GUC treatment was only applied at the 5cm depth (GUC-5).  Hydroseed 

application was applied at 5 cm to completely cover the surface of the aluminum pan, and 
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represents a larger application when compared to field application.  Sandy-loam topsoil 

was used as an additional control treatment (Table 4, refer to Chapter III). 

Experimental Design 

A completely randomized design was used to compare four samples of each of the 

seven treatments (28 treatment/sample combinations) as shown in Table 5 (refer to 

Chapter III).  To reduce the risk of splashing from one treatment to another, six pans 

(treatments) were tested under rainfall simulator within a 15.8 m2 area.  In addition, each 

run included one of the two controls (topsoil or hydroseeding).   

 Aluminum soil pans were built according to specifications received from the 

USDA National Soil Erosion Laboratory (Zheng et al.; 2004; D. Flanagan, personal 

communication, 11 August 2004).  The height, width, and length dimension for each pan 

was 0.2 m, 0.33 m, and 0.45 m respectively.  Each pan was set on a 3:1 side-slope, the 

maximum angle hydroseeding can be applied to be an effective erosion control using the 

appropriate amount of mulching and tackifier (Goldman et al., 1986).  Three holes were 

pierced at the bottom of each soil pan and connected by plastic tubing, 2.54 cm in 

diameter, to collect subsurface drainage.  Four layers, consisting of pea gravel, geo-textile 

fabric, sandy loam soil, and the treatment media were placed in each aluminum soil pan 

(Fig. 2, referenced in Chapter III).  

Rainfall Simulator Calibration 

An indoor rainfall simulator was constructed and calibrated to achieve uniformity 

of rainfall depth under the simulator.  The simulator was designed and operated using 

specifications described by Meyer and Harmon (1979) which included using VeeJet 

80100 nozzles at a height of 5 m operating at a pressure of 41 kPa.  Rainfall was applied 
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at a target rate of 100 mm hr -1during uniformity testing.  Rainfall depth in the cans was 

measured over a 30 minutes cycle for three replicates.  Rainfall uniformity of rainfall was 

analyzed over a 15.8 m2 area using 96, 0.95-L, aluminum cans evenly spaced under the 

simulator in a grid of six columns and 16 rows (Figure 8, referenced to Chapter IV).   

Data Collection 

Data collection procedures were adapted from those outlined in Persyn et al. 

(2004) and Mukhtar (2004).  The rainfall intensity was controlled by the calibrated 

rainfall simulator.  Five rain gauges were placed under the rainfall simulator; one at each 

of the four corners and the fifth rain gauge directly in the center of the rainfall simulator 

distribution area.  Each gauge collected rainfall for the entire 60 minutes of application. 

Runoff was collected in pre-weighed 1-L bottles 5 minutes after rainfall began 

(first flush), 30 minutes after rainfall began, at 5 minutes intervals for the last 30 minutes 

of rainfall (steady-state).  Simultaneously, a collection of the subsurface drainage (water 

infiltrating through this soil/treatment matrix), was taken from the bottom front of each 

aluminum pan over the entire 60 minutes of rainfall.  Samples were stored at 4o C until 

further analysis could be done. 

Data Analysis 

 The runoff samples collected from each soil pan were used to determine the total 

suspended solids (TSS) loss and using the Standard Methods (APHA, 2004).   

The interrill erodibility factor, Ki, was calculated as (Eq. 6, referenced from 

Chapter II):  

f

i
i IqS

DK =     (6) 

where 
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 is steady-state interrill erosion rate (kg s-1
iD  m-2) 

 is interrill erodibility (kg-s m-4
iK ) 

 I is measured rainfall intensity (mm s-1) 
-1 q is measured runoff rate (m h ) 
θθ ),sin4exp(85.005.1 −−=fS is the slope angle in degrees (unit-less) 

 

Equation 6 is best used for steady-state interrill erodibility from mulch blanket applied 

compost (Persyn et al., 2004).  Interrill erodibility factors are used to predict soil erosion 

in the Water Erosion Prediction Project.  

Statistical Analysis 

First flush runoff and subsurface drainage data were log-transformed to satisfy 

assumption that the data were normally distributed and independently and identically 

distributed.  SPSS (2003) software was used to perform an analysis of variance 

(ANOVA) on the runoff and erosion rate data.  Fisher’s Least Significant Difference 

(LSD) was used to do a pairwise comparison of treatment means and handle unequal 

sample sizes.  All tests were done at the p<0.05 significance level. 

 

RESULTS AND ANALYSIS  

Calibration of Rainfall Simulator 

The rainfall simulator had a good uniformity of 89% over 15.8 m2.  The overall 

comparison of mean rainfall collected was significantly different among the six columns 

(P<0.05) at an application rate of 100 mm h-1.  Omitting the outer columns and rows to 

eliminate any edge-effect resulted in no significant improvement in uniformity (91% vs. 

89%). 

 



36 

First Flush 

Pairwise comparisons of the first flush runoff rate showed the GUC-5 treatment, 

with a runoff rate of 30 mm h-1 , was significantly different from all other treatments with 

runoff rates less than 5.0 mm h-1 (Table 8).  Compost applications having a higher runoff 

rate were also described by Risse and Faucette (2003), where poultry litter was found to 

have the highest runoff volume compared to mulch cover because the litter was resistant 

to water infiltrating into the layers causing the particles to runoff easily from the surface 

instead of being absorbed by water.  Composts can have hydrophobic properties and a 

material with substantial hydrophobic conditions can lead to a decrease in infiltration 

(Kladivko and Nelson, 1979; Meyer et al., 2001).   

The erosion rates from the first five minutes of runoff showed more significant 

differences between treatments than the first flush runoff.  Erosion rates from highest to 

lowest followed a trend of finer to coarser particle size distributions in the treatments.  

CMT-1.3, CMT-5, and TS all containing topsoil and having the finest particles overall 

had statistically similar mean erosion rates.  The erosion rates for the coarser treatments, 

HS, ECC-5, and ECC-1.3, were not statistically different from one another, but were 

significantly lower than CMT-1.3, CMT-5., and TS.  GUC-5 had the highest mean 

erosion rate, 8.05 mg m-2 s-1 and was significantly different from all other treatments. 
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Table 8. Comparison of mean values of first-flush runoff and erosion rates for 
seven treatments at rainfall rate of 92 mm h-1 

 
  Runoff  rate (mm h-1) Erosion rate (mg m-2 s-1) 
Treatment N Mean Std. Deviation Mean Std. Deviation 
CMT-1.3 7 2.42a 1.44 1.49d 1.53 
CMT-5 7 2.04a 0.84 1.84d 1.88 
TS 2 4.92a 4.96 3.26d,e 2.69 
HS 4 2.27a 0.64 0.21c 0.26 
ECC-5 7 2.92a 1.66 0.37c 0.23 
ECC-1.3 7 2.59a 0.87 0.21c 0.25 
GUC-5 7 30.21b 26.4 8.05e 8.01 

 
The coarser mulch blend may aid in runoff reduction due to the decrease in shear 

forces applied on the soil surface (Adams, 1996; Risse and Faucette, 2003).  Therefore, 

more diverse particle size distribution of compost may lead to a decrease in interrill 

erosion rate.  The depth of compost application (1.3 cm vs. 5 cm) was not a significant 

factor for either runoff rate or interrill erosion rate for the CMT and ECC treatments. 

Steady State 

CMT-1.3, CMT-5, and TS had significantly higher steady-state runoff rates and 

HS had a significantly lower steady-state runoff rates than all other treatments.  Faucette 

et al. (2005) reported that blanket applied compost had significantly less runoff volume 

compared to hydroseeding; however the application depth of hydroseeding in the 

Faucette study was much greater than the compost.  Steady-state interrill erosion rates 

followed the same trends as the runoff rates, with the exception that ECC-5 and HS were 

not significantly different from each other.  In summary, HS, ECC-1.3, ECC-5, and 

GUC-5 had lower steady-state runoff and interrill erosion rates compared toCMT-1.3, 

CMT-5, and TS. 
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Table 9. Geometric mean of steady-state runoff rate, interrill erosion rate, and 
interrill erodibility factors for seven treatments  

applied at a rainfall rate of 92 mm h-1 

 
  Runoff rate 

 (mm h-1) 
Interrill erosion rate 

(mg m-2 s-1) 
Interrill erodibility 

(kg s m-4) 
Treatment N Geometric 

 Mean 
Std. 
Deviation 

Geometric 
 Mean 

Std. 
Deviation 

Geometric 
 Mean 

Std.  
Deviation 

CMT-1.3 7 60.83c 17.24 39.72f 35.21 11,000i 64,000 
CMT-5 7 65.79c 15.91 44.78f 20.40 11,000i 31,000 
TS 2 58.22c 14.46 73.70f 29.48 23,000i 22,000 
HS 4 0.98a 0.97 0.01d 0.01 510g 540 
ECC-5 7 5.19b 2.70 0.03d,e 0.02 910g,h 720 
ECC-1.3 7 16.70b 14.32 0.49e 0.74 3,700h 4,000 
GUC-5 7 17.75b 14.56 0.27e 0.43 1,600g,h 1,800 

 
 Interrill erodibility factors were calculated from measured data (Table 9).  The 

erodibility factors for ECC-5, ECC-1.3, and GUC-5 were significantly lower than the 

CMT-1.3, CMT-5, and TS.  Previous study concluded that larger woodchips have 

significantly more resistance to detachment from raindrop impacts due to the greater chip 

size which requires a larger amount of inertia to have erosion (Buchanan et al., 2002).  

Since the TS treatment had the maximum steady-state interrill erosion rate of 73.70 mm 

h-1, it also had the highest steady-state interrill erodibility factor at steady-state at 0.23 kg-

s m-4.  Similarly, Persyn et al. (2004) concluded that three compost treatments; yard-

waste, biosolids, and bio-industrial (sludge), had a lower interrill erodibility factor than 

topsoil.  Higher erodibility in topsoil compared to the blanket applied composts may be 

the result of the particle size distribution of the compost. 

Distribution of Water Applied to the Profile 

The transport of water is related to the treatment type.  The mass of water from 

surface runoff, storage within the treatment layers, and sub-surface drainage was 

calculated for each treatment.  The surface and storage volume for CMT-1.3, CMT-5, and 
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TS were similar and higher than their subsurface volume.  HS, ECC-5, and ECC-1.3 

treatments had a greater mass of sub-surface drainage (97%, 96%, and 94 % respectively) 

compared to the topsoil treatment (Fig. 9).  The amount of water that moved through the 

profile was higher on the HS, ECC-1.3, ECC-5, and GUC-5 treatments, despite 

equivalent amounts of sandy loam soil beneath the treatment application.  It is expected 

that the covers on these treatments prevented surface sealing and maintained a higher 

infiltration rate into the profile.   

Figure 9. Treatment comparison of surface runoff, subsurface drainage, and 
soil storage mass (kg) at a mean rainfall rate of 92 mm h-1
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Runoff Response 

The surface runoff was compared for the seven treatments at both first-flush and 

state-state conditions (Fig. 10).  GUC-5 treatment had a high initial runoff rate (first 

flush), but runoff dropped after 30 minutes to a steady runoff between 16-20 mm h-1.  

Previous studies concluded that runoff and erosion rates are influenced by compost 

characteristics, application rates, and the time between rainfall application and the first 

runoff (Giddeons and Barnett, 1980; Gilley and Eghball, 1998).  This difference in runoff 
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response for GUC-5 compared to soil erosion mechanics might negatively influence the 

runoff response for compost materials, and require specifications to consider at least 

some amount of coarse materials. 

 

CONCLUSION 

The depth of compost application in this study had no significant effect in 

reducin ns; 

 

gest 

properties until the material reaches particular moisture content. 

g interrill runoff or erosion, either during first flush or at steady-state conditio

however, the type of compost treatment had a significant impact.  General Use Compost 

(GUC-5) had the highest mean first flush runoff rate and erosion rate in addition to being 

the smallest particle size compost used in this study.  The GUC-5 compost had the 

smallest compost particle size distribution (and slightly smaller than the Texas DOT

specification), but was larger than the topsoil.  The GUC-5 runoff response might sug

that small, uniform particle size distributions of compost might exhibit hydrophobic 
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All other treatments (ECC-13, ECC-5), and hydroseeding (HS) had significan

lower runoff and erosion rates compared to topsoil (TS) and com

tly 

post manufactured 

topsoil 

 

f 

ection superior to topsoil. Interrill 

erodibi  

 

(CMT) at first flush and steady-state.  Although CMT might improve soil 

structure and accelerate cover crop development, these results suggest that the use of

CMT as an erosion control measure is not adequate. 

In summary, the ECC compost performance shows that an application depth o

1.3 cm is adequate to achieve runoff and erosion prot

lity factors were calculated for all treatments at steady state and were comparable

to work concluded by Persyn et al. (2004).  The response of the GUC-5 compost might 

suggest that composts with similar performance are not appropriate to model with current

erosion prediction tools such as the Water Erosion Prediction Project. 
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CHAPTER VI 

GENERAL CONCLUSIONS 

 

The data provides conclusive results to the comparison of Texas DOT compost 

specifications and conventional topsoil and hydroseed application for surface runoff, 

interrill erosion, steady-state interrill erodibility, and sub-surface drainage.  The 

conclusions of this study were: 

• GUC-5, a 100% compost treatment, had a significantly higher first flush 

runoff and erosion rate, than the other treatments due to hydrophobic 

conditions; 

• All the treatments, except GUC-5, had similar first flush runoff rates. 

Therefore, depth of application was not a significant factor in runoff rates; 

• The ECC-5, ECC-1.3, and HS treatments had significantly less first flush 

erosion rate than the other treatments;  

• GUC-5, ECC-5, ECC-1.3, and HS have greater sub-surface drainage than 

other treatments due to particle size and maximum water hold capacity 

being reached; and 

• No performance differences between 1.3 cm and 5 cm compost 

applications at first flush or steady-state. 

These results suggest that particle size, soil moisture capabilities, and time at 

which rainfall is applied affect runoff.  The TxDOT specification of using ECC at 5 cm 

depth on a max of 3:1 slope should be reconsidered.  An application depth of 1.3 cm is 

effective in reducing first flush runoff and interrill erosion rates.  Yet,  source materials of 
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compost and woodchips might have elevated nutrient concentrations that need to be 

considered when adopting this as a best management practice (BMP). 

Statistically similar surface runoff and steady-state erosion indicates that GUC 

and ECC treatments could be an alternative to current hydroseed application.  The 

minimal materials used for the compost treatments compared to hydroseed may minimize 

cost while still acting as ground cover to hold moisture, a nutrient enhancer for vegetation 

growth, and stable enough to sustain wind erosion.  

Further use of erosion control treatments of compost and woodchips is suggested 

to minimize runoff, erosion, and erodibility in lieu of hydroseeding or topsoil application 

on the hill slopes of highways. 

 

FUTURE WORK 

 Future research should focus on: 

• Evaluating nutrient loads on compost blankets and evaluating the water quality 

effects; 

• Assessing the costs of using compost blankets as a BMP on the hill slopes of 

highways; 

• Analyzing the rill erosion mechanics for blanket applied compost; and 

• Investigating steady-state runoff and erosion rates using larger particle sized 

compost blends
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