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ABSTRACT 

 

Decentralized Aircraft Landing Scheduling at  

Single Runway Non-Controlled Airports.  (May 2007) 

Yuanyuan Ding, B.S., Beijing University of Aeronautics and Astronautics; 

M.S., Beijing University of Aeronautics and Astronautics 

Chair of Advisory Committee: Dr. John Valasek 
 
 
 
 

The existing air transportation system is approaching a bottleneck because its dominant hub-

and-spoke model results in a concentration of a large percentage of the air traffic at a few hub 

airports.  Advanced technologies are greatly needed to enhance the transportation capabilities of 

the small airports in the U.S.A., and distribute the high volume of air traffic at the hub airports to 

those small airports, which are mostly non-controlled airports.  Currently, two major focus areas 

of research are being pursued to achieve this objective.  One focus concentrates on the 

development of tools to improve operations in the current Air Traffic Management system.  A 

more long-term research effort focuses on the development of decentralized Air Traffic 

Management techniques.   

This dissertation takes the latter approach and seeks to analyze the degree of decentralization 

for scheduling aircraft landings in the dynamic operational environment at single runway non-

controlled airports.  Moreover, it explores the feasibility and capability of scheduling aircraft 

landings within uninterrupted free-flight environment in which there is no existence of Air Traffic 

Control (ATC).   First, it addresses the approach of developing static optimization algorithms for 

scheduling aircraft landings and, thus, analyzes the capability of automated aircraft landing 

scheduling at single runway non-controlled airports.  Then, it provides detailed description of the 

implementation of a distributed Air Traffic Management (ATM) system that achieves 
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decentralized aircraft landing scheduling with acceptable performance whereas a solution to the 

distributed coordination issues is presented.  Finally real-time Monte Carlo flight simulations of 

multi-aircraft landing scenarios are conducted to evaluate the static and dynamic performance of 

the aircraft landing scheduling algorithms and operation concepts introduced. 

Results presented in the dissertation demonstrate that decentralized aircraft landing scheduling 

at single runway non-controlled airports can be achieved.  It is shown from the flight simulations 

that reasonable performance of decentralized aircraft landing scheduling is achieved with 

successful integration of publisher/subscriber communication scheme and aircraft landing 

scheduling model.  The extension from the non-controlled airport application to controlled airport 

case is expected with suitable amendment, where the reliance on centralized air traffic 

management can be reduced gradually in favor of a decentralized management to provide more 

airspace capacity, flight flexibility, and increase operation robustness. 
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CHAPTER I 

INTRODUCTION 

When the brothers Orville and Wilbur Wright performed the very first power-driven flight of a 

heavier-than-air machine in the world back on December 17th, 1903, they would have never 

imagined the tremendous growth of air traffic from thereon.  The number of air travelers surged 

in particular due to the introduction of jet airliners in the late 1950s and the resulting jet-age in the 

1960s.  The data recording of the Air Transport Association of America (ATA) started with about 

6,000 domestic air travelers back in 1926 and has its peak with 610, 600, 000 in 2000.  A history 

of air traffic control from its beginning can be found in [1]. 

The demand for air travel will continue to increase over the next few decades.  It has been 

forecast that by 2008 the number of passengers will increase 43 percent and an additional 2,500 

planes will be needed to accommodate them.  Under the current system, the additional traffic 

would cause a 250 percent rise in delays.  These numbers were projected before the tragic events 

of September 11th, 2001 when air travel encountered a slump that year.  It has been predicted that 

the airline industry will recover from the aftermath and air travel will increase again.   

Meanwhile, it is becoming apparent that the existing air transport system is approaching a 

bottleneck.  In the United States, flight delays and cancellations are a familiar part of air travel 

and the Air Transport Association claims that delays cost the U.S. airlines billions of dollars per 

year [2].  This is certainly not only a problem of the continental United States, but can be 

observed worldwide.  In particular in Europe the airspace is already so congested that delays 

occur on a regular basis.  The same problem will arise for Asia where the economic growth will 

spark air traffic in the near future as well. 
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The problem mainly results from the dominant hub-and-spoke model that results in a 

concentration of a large percentage of the air traffic at a few airports.  Although great efforts have 

been taken to improve the current Air Traffic Management (ATM) system and construct new 

runways, it appears that the continued projection of growth in aviation, as well as airline and civil 

aviation economics, shows that those airports will be inadequate to address the need for increased 

capacity [3].   

The current hub-and-spoke system limits travelers to the air carrier’s schedule and the 

inefficiencies of connections at distant hubs.  Many regional trips can be driven in the same time 

or even less and for a lower cost than it takes to fly commercially when considering connection 

times and the times it takes to travel to and from the airport.  At the same time, the “value of 

time” is becoming an important concern that places new demands on current transportation 

systems.  More flexibility and efficiency for door-to-door travel will be needed.  Travel to a small 

or metro-satellite airport has a great potential of being a big market.  The migration of people 

away from urban and suburban centers requires greater access to transportation from more 

widespread locations throughout the country.  Unfortunately, at these smaller airports, viable, cost 

competitive air transportation is not currently available.   

As described above, increasing capacity alone does not appear to provide a long-term solution 

to the problem of delay, or satisfy the demand for more direct flights. Many people, including 

licensed pilots, are surprised to learn that there are about 5,400 existing public-use-landing 

facilities in the current National Airspace System (NAS).  However, scheduled air carriers serve 

only about 660 of these facilities.  Moreover, the Federal Aviation Administration (FAA) 

estimates 98 percent of the U.S. population lives within 20 miles of at least one of these public-

use airports [4].  Most of these under utilized public airports do not lie in the existing Air Traffic 

Control (ATC) radar coverage, nor do they have a control tower.  However, they still have 

instrument approach procedures with which Instrument Flight Rules (IFR) traffic can be operated. 



 
 

3 

 

So why not take advantage of those small airports to promote more evenly distributed air traffic 

and reduce congestion at large hub airports? In addition, this will unburden the stressed-out 

business traveler living in a near-by community. 

A number of candidate technologies have emerged that are aimed at distributing the heavy air 

traffic at the hub airports.  Small Aircraft Transportation System (SATS), the program organized 

by the National Aeronautics and Space Administration (NASA), has shown great potential.  A 

new aviation system based on SATS technologies would enhance the current transportation 

capabilities of the nation’s small airports, and thus provide some relief to hub airports congestion, 

particularly in high-density corridors for point-to-point travel [4].   

One of the key issues that the SATS research program focuses on achieving is High-Volume 

Operations (HVO) at airports without control towers or terminal radar facilities, i.e., non-

controlled airports [5].  As stated earlier, most of non-controlled airports have instrument 

approach procedures with which Instrument Flight Rules (IFR) traffic can be operated.  However, 

these airports do not lie in the existing Air Traffic Control (ATC) radar coverage, nor are they 

equipped with a control tower.  In the current ATC system, controllers take responsibility for 

maintaining safe separations among all aircraft, and sequencing all arriving aircraft into a certain 

landing order.  At the terminal area of non-controlled airports, controllers are no longer in control, 

and therefore either an air traffic control automation system or a decentralized ATM system can 

be applied.  Regardless of which system is chosen, it is necessary to analyze both options from 

the technological and operational views.  

 

A. Air Traffic Control Automation System 

In general, air traffic control automation consists of two basic functionalities: trajectory 

analysis and aircraft scheduling.  Trajectory analysis provides flight path predictions, and 

automated aircraft scheduling takes advantage of accurate aircraft trajectories to produce efficient 

landing sequences [6].   
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Figure 1: Variation in Cost for an Aircraft within its Landing Time Window I 

The aircraft landing scheduling problem is concerned with determining landing times on a 

runway for a sequence of aircraft, such that each aircraft lands within its predetermined landing 

time window, while satisfying separation criterion between aircraft.  Upon entering into the 

terminal area of an airport, an aircraft is assigned a landing time and a runway.  The landing time 

must lie within a predetermined time window, bounded by an earliest time and a latest time.  The 

aircraft can land at the earliest time if it flies at its maximum airspeed, while it will land at the 

latest time if it flies at its most fuel-efficient airspeed while also holding for the maximum 

allowable time [7]. 

Each aircraft produces its preferred landing time if it flies at its most economical, preferred 

speed, the cruise speed.  If the aircraft is required to slow down, hold, or speed up for separation 

assurance or other incidental reasons, extra cost will be incurred.  In general, this cost will grow 

as the difference between the assigned landing time and the preferred landing time increases.  

Figure 1 shows an example of the variation in cost for an aircraft within its landing time window.  

 
 
   
 

 

 

 

 

 

 

 
 
Another issue is the separation criterion assurance.  It is well known that the FAA regulates a 

certain separation requirement among flights in en-route airspace.  Similarly, the landing time of 

an aircraft and its successive aircraft must be greater than a specified minimum, referred to as 
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landing separation time.  The landing separation time depends on the type of the aircraft, due to 

aerodynamic considerations.  It is straightforward to understand that the landing separation time 

between large commercial flights is usually greater than the separation time between small 

General Aviation (GA) flights, as commercial aircraft generate greater wake turbulence than GA 

aircraft.   

In the past decade, researchers at NASA Ames Research Center have been developing an ATC 

automation tool called Center-TRACON Automation System, or CTAS [8].  CTAS can assist air 

traffic controllers in both en-route and terminal areas by providing computer-generated flight 

trajectories.  In particular, the Final Approach Spacing Tool (FAST), a component of CTAS, can 

assist TRACON controllers to efficiently schedule arriving aircraft [9, 10].  However, it is likely 

to be very costly to install CTAS at non-controlled airports as CTAS is a set of tools designed to 

help air traffic controllers manage the increasingly complex air traffic flows at large airports.  The 

SATS research program aims to develop a simpler ATC automation tool for the purpose of easier 

integration with the current National Airspace System (NAS).  According to the SATS concept, 

pilots are required to take responsibility for self-separation within the terminal area of the non-

controlled airports.  Meanwhile, aircraft scheduling will become the key operational issue at non-

controlled airports as the operation volume keeps increasing in the near future.  Therefore, the 

ATC automation system of the non-controlled airport mainly tries to improve the performance of 

aircraft scheduling.  

 

B. Decentralized Air Traffic Management System 

The ATC automation system takes over the sequencing responsibilities of human air traffic 

controllers.  However, installation and maintenance of a ground-based automated system at non-

controlled airports can be very costly, even for a simple SATS-based one.  More importantly, it 

still works as a centralized control that places limits on airspace capacity and flight flexibility and 

provides insufficient operation robustness since it will disorder the landing sequence when it 
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becomes disfunctional.  An alternative is to reduce the reliance on centralized air traffic 

management in favor of decentralized management.  However, the real question is how 

decentralized should the non-controlled airports be, or more simply how far we can extend the 

free-flight concept in the case of the non-controlled airports?  Can we achieve the decentralized 

mode for the ATM system of non-controlled airports such that the on-board aircraft landing 

scheduling tool takes over the sequencing/scheduling job?   

The on-board aircraft landing scheduling tool represents uninterrupted free-flight to the 

threshold, where flight crews take over all of the responsibilities that the current controllers have, 

and pilots are required to use the on-board scheduling tool to provide sequencing advisories 

dynamically at the terminal area of the non-controlled airports.  Pilots might use the on-board 

scheduling tool to reschedule themselves constantly during the whole landing operation since a 

change may occur in the dynamic operational environment, such as the appearance of a new 

aircraft.  This can be referred as the dynamic, or online, Aircraft Landing Problem with respect to 

the static Aircraft Landing Problem where the static operational environment was assumed.  The 

ground-based aircraft landing scheduling automation tool only makes the scheduling decision 

once during the whole landing operation at a certain scheduling point with complete knowledge 

of the set of aircraft that are going to be sequenced.  This can be regarded as a static problem 

since it represents the initial (static) situation.  

 

C. Research Objectives and Contributions 

This research aims to analyze the feasibility and capability of the decentralized aircraft landing 

scheduling operations at non-controlled airports.  In general, research on aircraft scheduling can 

be roughly divided into two areas.  One area determines efficient scheduling algorithms, and the 

other studies performance potentials and overall strategies of automated aircraft scheduling [6].  

This research is of the latter.   
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Firstly, this research seeks to develop static optimization algorithms for aircraft landing 

scheduling, and analyze the capability of automated aircraft landing scheduling on single runway 

at non-controlled airports.  This is done by establishing an aircraft scheduling model for non-

controlled airports, and then developing different scheduling algorithms which are evaluated for 

capability analysis via flight simulation.   

Secondly, this research seeks to analyze the degree of decentralization for aircraft landing 

scheduling in the dynamic operational environment at non-controlled airports.  This is done by 

firstly developing an aircraft agent with distributed coordination functions, followed by the 

methodologies description of how to integrate the aircraft landing scheduling model into the 

flight deck on-board system of an aircraft agent.  Then, uninterrupted free-flight aircraft landing 

operation at non-controlled airports, represented by the on-board aircraft landing scheduling tool, 

is examined in which the ground-based automated system serves as the baseline system for 

comparison.  Two coordination models, with focus on event-based coordination model, are then 

developed and related distributed coordination issues are addressed.  

The decentralized aircraft landing scheduling problem has not been clearly stated in the 

literature by far prior to the advent of this research.  It is an important problem deserving of closer 

attention since it provides a clear approach to the distributed air traffic management system.  This 

research is concerned with the non-controlled airport case since current operations at the terminal 

area of non-controlled airports have no centralized control, which exhibit an inherent property of 

distribution that gives a perfect environment for the analysis of the distributed air traffic 

management system and the free-flight concept.  Its application is expected to extend to 

controlled airports with suitable amendment, where the reliance on centralized air traffic 

management can be reduced in favor of a decentralized management to provide more airspace 

capacity, flight flexibility, and increase operation robustness. 
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D. Structure of the Dissertation 

 The following is an outline of the content of the dissertation:  

In chapter II, an overview of the current Air Traffic Management system, including 

operational components and concepts, is provided first.  Then the concept of free flight is 

introduced.  Finally, general information of the SATS program and non-controlled airport feature 

are reviewed. 

In chapter III, an approach of developing static optimization algorithms for aircraft landing 

scheduling at non-controlled airport is given.  Modeling and implementation of an Air Traffic 

Control automation system, which handles the static case for aircraft landing scheduling at non-

controlled airport, are addressed.  The Air Traffic Control automation system, automatic but still 

“centralized-like”, serves as the baseline system for comparison with decentralized aircraft 

landing scheduling addressed in chapter IV. 

Chapter IV discusses the approach of solving the problem of decentralized aircraft landing 

scheduling in the dynamic operational environment at non-controlled airport.  Modeling and 

implementation of a decentralized Air Traffic Management system at non-controlled airport, 

which handles the dynamic aircraft landing, are addressed. 

Chapter V presents the overall flight simulation architecture first. Then the numerical solution 

methodologies for the implementation of the models that were derived in chapter III and IV are 

provided, followed by the discussion of the numerical results. 

In chapter VI, it presents conclusions that could be drawn from the research that was presented 

in this dissertation.  It then gives recommendations on issue for future research and development. 
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CHAPTER II 

UNDERSTANDING THE AIR TRAFFIC MANAGEMENT SYSTEM 

 – PRESENT AND FUTURE 

The research addressed in this dissertation aims to analyze the feasibility and capability of the 

decentralized aircraft landing scheduling operations at non-controlled airports.  It is concerned 

with the non-controlled airport case since current operations at the terminal area of non-controlled 

airports have no centralized control, which exhibit an inherent property of distribution that gives a 

perfect environment for the analysis of the decentralized Air Traffic Management (ATM) system 

and the free-flight concept.  It is author’s believe that an overview of the current ATM system, 

free flight concept, and non-controlled airport features, which describes the operational 

environment for this research, is a necessity. 

 

A. Air Traffic Management System 

 The Air Traffic Management provides services that are in place to assure safe and controlled 

air travel.  In the current ATM system, there are different control stations an aircraft will go 

through on its way in the National Airspace System (NAS).  All these control stations provide 

services that direct aircraft on the ground and in the air.  The primary task of the service is to 

separate certain aircraft — to prevent them from coming too close to each other horizontally or 

vertically. Secondary tasks include ensuring orderly and expeditious flow of traffic, such as 

aircraft landing scheduling, and providing information to pilots, such as weather and navigation 

information. 
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1. Air Route Traffic Control Center 

 Air Route Traffic Control Centers are established primarily to provide air traffic service to 

aircraft operating on IFR flight plans within controlled airspace, and principally during the en 

route phase of flight [11].  Each center is responsible for many thousands of square miles of 

airspace (known as a Flight Information Region) and for the airports within that airspace.  Centers 

control Instrument Flight Rules (IFR) aircraft from the time the aircraft departs an airport or 

leaves the terminal area's airspace or until the aircraft approaches the airspace controlled by a 

terminal area or if the airport does not have terminal area control, until the aircraft lands. Centers 

may also "pick up" aircraft that are airborne and integrate them into the IFR system. These 

aircraft must, however, remain Visual Flight Rules (VFR) until the Center provides a clearance.   

2. Clearance Delivery Control 

Clearance delivery is the position that coordinates with the Air Route Traffic Control Center 

to obtain releases for aircraft.  Under normal conditions, this is more or less automatic. When 

weather or extremely high demand for a certain airport become a factor, there may be ground 

"stops", the airport may go "IFR", or re-routes to ensure the system does not get overloaded.  The 

primary responsibility of the clearance delivery control is to ensure that the aircraft have the 

proper route and release time.  This information is also coordinated with the Air Route Traffic 

Control Center and the ground controller in order to ensure the aircraft reaches the runway in time 

to meet the release time.  

3. Ground Control 

Ground Control is responsible for the airport "maneuvering" areas, or areas not released to the 

airlines or other users.  This generally includes all taxiways, holding areas, and some transitional 

intersections where aircraft arrive having vacated the runway and departure gates.  Exact areas 

and control responsibilities are clearly defined in local documents and agreements at each airport.  

Any aircraft, vehicle, or person walking or working in these areas is required to have clearance 

from the ground controller.   
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4. Tower  Control 

Tower control is responsible for the active runway surfaces.  Local control clears aircraft for 

take off or landing and ensures the runway is clear for these aircraft.  To accomplish this, local 

control controllers are normally given 2 to 5 nautical miles (4 to 9 km) of airspace around the 

airport, allowing them to give the clearances necessary for airport safety.  If the local controller 

detects any unsafe condition, a landing aircraft will be told to “go around” and will be re-

sequenced into the landing pattern by the approach or terminal area controller. Within the tower, 

a highly disciplined communications process between tower and ground control is an absolute 

necessity.  Ground control must request and gain approval from tower control to cross any 

runway with any aircraft or vehicle.  Likewise, tower control must ensure ground control is aware 

of any operations that impact the taxiways and must work with the approach radar controllers to 

ensure "holes" or "gaps" in the arrival traffic are created (where necessary) to allow taxiing traffic 

to cross runways and to allow departures aircraft to take off.  

5. Approach and Terminal  Control 

Many airports have a radar control facility that is associated with the airport. In most 

countries, this is referred to as Approach or Terminal Control; in the U.S., it is often still referred 

to as a TRACON or Terminal Radar Approach CONtrol facility.  While every airport varies, 

terminal controllers usually handle traffic in a 30 to 50 nautical mile (56 to 187 km) radius from 

the airport and from the surface up to 10,000 feet.  Terminal control is responsible for providing 

all Air Traffic Control (ATC) services within their airspace. Traffic flow is broadly divided into 

departures, arrivals, overflights, and VFR aircraft.  As aircraft move in and out of the terminal 

airspace, they are handed off to the next appropriate control facility (a control tower, an en-route 

control facility, or a bordering terminal or approach control).  Terminal control is responsible for 

ensuring that aircraft are at an appropriate altitude when they are handed off, and that aircraft 

arrive at a suitable rate for landing. 
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B. Free Flight Concept 

Free flight is a developing ATC method that uses no centralized control (e.g. air traffic 

controllers).  Instead, parts of airspace are reserved dynamically and automatically in a 

decentralized way using computer communication to ensure the required flight operations.  It 

proposed the ATC schemes under which airline companies and pilots would be allowed greater 

flexibility in choosing paths from one airport to another. Current air traffic control operations 

channel air traffic along a modest number of fixed routes.  Fixed routes minimize the potential for 

conflict, but produce flight plans that do not minimize fuel usage or flight time.  In the highly 

competitive air carrier environment, airlines are anxious to reduce their fuel costs and increase 

aircraft utilization.  At the extreme, free flight would abolish fixed routes, leaving the flight path 

completely up to the flight crew (or airline).  The abandonment of fixed routes and the 

introduction of free flight is projected to reduce airline operating cost by allowing airlines or crew 

to select more fuel-efficient paths with reduced flight times.  

One of the principal concerns in the introduction of free flight is the possibility of adverse 

changes in controller workload.  As a result of the fixed routes of the current ATC system there is 

substantial repeatability from one day to the next.  With practice a controller learns the patterns of 

traffic. This consistency facilitates the cognitive processing required for information acquisition, 

decision making, and response planning.  The fixed route structure further reduces controller 

workload by limiting the number of crossing locations within a sector where aircraft would be 

most likely to violate separation.  In short, the current fixed route system constrains the 

opportunities for conflicts, while providing cognitive support to controllers in detecting them.  

This predictable structure will change under free flight.  For TRACON controllers, the number 

of paths could approach the number of different airports feeding aircraft to a particular TRACON.  

For en-route controllers the situation under free flight could be even more complex, since traffic 

originating from several airports could be crossing a sector en-route to several distinct destination 

airports.  Variations in wind and weather will cause further variations in paths on a daily or even 
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hourly basis.  Thus, where controllers currently have a stable set of routes, free flight will greatly 

increase path diversity and reduce path predictability.  

Free flight would be an empty solution if the cost in fuel savings to the airlines was negated by 

a significant increase in the cost of air traffic control.  Yet any future air traffic control system 

clearly must maintain the current high level of safety.  The challenge for free flight is how to 

achieve a very high level of safety while avoiding significant increases in staffing levels [12]. 

 

C. Small Aircraft Transportation System Project 

The Small Aircraft Transportation System (SATS), a program organized by the National 

Aeronautics and Space Administration (NASA), is a revolutionary project designed to reduce 

overpopulation of the U.S.’s airport hubs, while increasing traffic at secondary and tertiary 

airports with advanced small planes, giving greater abilities to smaller communities.  Being that 

ninety-eight percent of Americans live in short distance of a public-use airport, SATS’ premise 

incorporates 5,400 under-utilized airports across the country into a vital tool helping alleviate the 

current overcrowding situation.   

SATS program expected to create a new system of innovative technology in smaller aircraft to 

be implemented at secondary and tertiary airports, mostly are non-radar and non-towered airports, 

referred as non-controlled airports.  The model for the future will have complete reliance on 

computer guidance so trips to a relatively close-distanced lake or coastline will be casual, 

convenient, and easy.  Instead of investing millions of dollars per airport to expand and update its 

technology, the equipment and resources of the largest airports will be put into the plane itself. 

The abilities of the new planes is not suggesting the elimination of towers altogether, but a 

technological benefit in many places where the only thing available is a strip of asphalt.  Major 

airports will be operating at normal capacity with their aircraft flying at high altitudes, along with 

small airports being utilized, flying their craft at lower altitudes, in essence, a complex highway 

system for the skies and for America. 
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The SATS research program invested in four operating capabilities: 1) high-volume 

operations at non-controlled airports; 2) lower adverse weather landing minimums at minimally-

equipped landing facilities; 3) integration of SATS into a higher en-route capacity air traffic 

control system with complex flows and slower aircraft; 4) improved single-pilot ability to 

function competently in complex airspace in an evolving NAS [5].  

 

D. Non-controlled Airport Features 

Non-controlled airports are always surrounded by uncontrolled airspace (class G airspace) 

with a ceiling of 700 feet or 1200 feet Above Ground Level (AGL).  U.S. airspace classification 

is shown in Figure 2.  Within the class G airspace, it is the pilot’s responsibility for traffic 

avoidance, even for Instrument Flight Rules (IFR) traffic.  Therefore, current air traffic operations 

in instrument meteorological conditions (IMC) at non-controlled airports are constrained by the 

“one-in/one-out” procedure, to ensure safety of the aircraft flying approaches within uncontrolled 

airspace.  In other words, when the airspace around non-controlled airports is occupied by one 

aircraft flying either an arrival or departure, additional requests for operations at the airport are 

postponed until the current operation is completed.  We can easily tell that capacity at these 

airports is severely constrained by the “one-in/one-out” paradigm since one operation can take 

over 15 minutes to complete [13]. 
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Figure 2: U.S. Airspace Classification 

Several research projects researched this paradigm to enable multiple operations 

simultaneously within the airspace around non-controlled airports.  Two of them address 

implementing multiple operations at Multi-Layer Air Traffic Space (MATS) and Self-Controlled 

Area (SCA) respectively, which SCA is defined in the SATS project introduced earlier [5, 14].  

Each attempts to define a new airspace infrastructure around non-controlled airports, and then 

develops suitable procedures accordingly.   

 

E. Conclusions 

In this chapter, we firstly reviewed the functionalities of the operational components in the 

current ATM system.  Then we gave a general description of the Free Flight concept and the 

SATS program.  They both ultimately seek to achieve effective and efficient flight operations in 

the current NAS, with the former focusing on en-route flight operations, and the latter 

concentrating on terminal area operations at non-controlled airports.  At this stage the potential 
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impact of Free flight on the operations of the national airspace system is still disputed, and 

demand measurement for SATS shows that NASA could possibly introduce an idea to the public 

that would never be used.  However, it can be expected that the future air traffic management 

system will manage flight operations in a way that lies somewhere between the two extremes, 

fully centralized and uninterrupted free-flight, possibly moving gradually from centralized to 

more free-flight, as the concept of Highway-in-the-Sky emerges.  

As stated previously, current operations at the terminal area of non-controlled airports have no 

centralized control, which exhibit an inherent property of distribution that gives a perfect 

environment for the implementation of uninterrupted free-flight concept.  In the research 

addressed in this dissertation, the on-board aircraft landing scheduling tool developed represents 

uninterrupted free-flight to the threshold since there is no ground-based automated system to 

enforce any centralized control and flight crews take over all of the responsibilities that the 

current controllers have.  Aircraft at the terminal area of non-controlled airports are placed in a 

complete decentralized environment, and it is author’s believe that the research addressed in this 

dissertation will contribute to the future ATM revolution since the research will give a clear view 

of where to establish the line of free-flight concept application for the controlled airport case.  
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CHAPTER III 

AIRCRAFT LANDING SCHEDULING OPTIMIZATION FOR SINGLE RUNWAY NON-

CONTROLLED AIRPORTS:  STATIC CASE 

 
A. Introduction 

In chapter II we gave an overview of the operational components and concepts involved in the 

aircraft landing operation at terminal area of non-controlled airports.  The ultimate goal of the 

research addressed in this dissertation is to analyze the degree of decentralization for aircraft 

landing scheduling in the dynamic operational environment at non-controlled airports, and thus 

explore the feasibility and capability of aircraft landing scheduling within uninterrupted free-

flight environment in which there is no existence of Air Traffic Control (ATC).  Before we do 

that, we need to solve the problem of how to effectively and efficiently schedule aircraft landing 

at non-controlled airports.  In this chapter we address the approach of developing static 

optimization algorithms for aircraft landing scheduling, and thus analyze the capability of 

automated aircraft landing scheduling at single runway non-controlled airports.  This is done by 

establishing an aircraft landing scheduling model non-controlled airports, and then developing 

different scheduling algorithms that are evaluated for capability analysis via flight simulation.  

The aircraft landing scheduling model and correlated scheduling algorithms are implemented 

as an air traffic control automation system that takes over the sequencing responsibilities of 

human air traffic controllers.  From the technological view, the air traffic control automation 

system still utilizes centralized control that places limits on airspace capacity and flight flexibility 

and provides insufficient operation robustness since it will disorder the landing sequence when it 

malfunctions.  From the operational view, the air traffic control automation system only deals 

with the static case for aircraft landing scheduling, where the air traffic control automation system 

only makes the scheduling decision once during the whole landing operation at a certain 

scheduling point with complete knowledge of the set of aircraft that are going to be sequenced.  
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Scheduling decision will not be updated dynamically after it is initially determined.  However, the 

resolution for these issues, the distributed Air Traffic Management (ATM) system that handles 

decentralized aircraft landing scheduling dynamically, is beyond the scope of this chapter and 

will be addressed in chapter IV. 

In this section, previous work that has been reported in the literature on the problem of aircraft 

landing scheduling is reviewed.  It should be stressed that general scheduling problems are the 

wider problems that occur in the management of air traffic and they are usually examined from 

the operations research viewpoint.  General scheduling problems are most often described using a 

three-field classification, i.e., machine environment/job characteristics/optimality criterion.  The 

machine environment is always characterized by a string of two parameters that describe the 

relationship among the operating machines, such as if the operating machines are identical or not.  

The job characteristics are specified by a set of parameters that describe the relations between 

jobs, such as preemption and precedence relations.  The optimality criterion term then gives the 

objective function.  Some scheduling problems can be solved efficiently by reducing them to 

well-known combinatorial optimization problems, such as the linear programming problem, 

maximum flow problem, or transportation problem.  Others can be solved by using standard 

techniques such as dynamic programming and branch-and-bound methods. 

Ref. [15-22] give some examples that show how some general scheduling problems are solved 

by applying different approaches.  Most of them deal with the scheduling problem with the three-

field form of (single or identical parallel machine)/ (sequence-dependent jobs)/(minimize the total 

completion of time).  Whereas Ref. [15-19] simplify it to some conventional combinatorial 

optimization problem (e.g., Ref. [17] transforms it to a linear programming problem and Ref. [15] 

transforms it to an integer programming problem).  Ref [20-22] solves the scheduling problem 

using dynamic programming or branch-and-bound approaches.  
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As stated in previous section of this chapter, the aircraft landing scheduling problem is usually 

considered as an application in the field of operation research.  There are two basic typical 

problem statements to describe the aircraft landing scheduling problem: linear/integer 

programming problem and the job shop scheduling problem.  The Aircraft landing scheduling 

problem is described as an linear/integer programming problem by putting the separation 

requirements of all pairs of aircraft and landing window constraints of each aircraft into the 

standard linear/integer programming form.  On the other hand, the problem of scheduling aircraft 

landings on one or more runways is the problem that is similar to a machine job scheduling 

problem with sequence-dependent processing times and with earliness and tardiness penalties.  

1. Job Shop Scheduling Approach 

An instance of a typical job shop scheduling problem consists of a set of n jobs and m 

machines.  Each job consists of a chain of operation, and each operation needs to be processed 

during an uninterrupted period of time on a single machine for its entire duration.  The objective 

is to find a schedule that minimizes the overall completion time of all the operations.  The aircraft 

landing scheduling problem can be modeled as a job shop scheduling problem when runways 

represents machines, and aircraft landing operations represent jobs.  Branch-and-bound algorithm 

and tree search algorithm are commonly applied to solve the job shop scheduling problem.  Ref. 

[23] discusses both the static and dynamic aircraft landing problems and present a heuristic 

algorithm for the dynamic aircraft landing problem based upon a technique they refer to as 

constrained position shifting.  This involves finding the best possible positions for the aircraft in 

the landing queue subject to the constraint that no aircraft can be moved more than a pre-specified 

number of positions away from the position it had in the landing queue based on First-come-first-

serve.  However, the separation constraint only applies to successive aircraft landings. 

 
 
 
 
 



 
 

20 

 

Ref. [24] aims to optimally land a set of aircraft on one or several runways in such a way that 

separation criteria between all pairs of aircraft (not just successive ones) are satisfied.  It presents 

a specialized simplex algorithm which evaluates the landing times very rapidly, based on some 

partial ordering information.  This method is then used in a problem space search heuristic as well 

as a branch-and-bound method for both single and multiple runway problems. 

Ref. [25] presents a mixed-integer zero-one formulation of the aircraft landing scheduling 

problem together with a tree search algorithm based upon a Lagrangean lower bound, a lower 

bound derived from scheduling theory and a heuristic procedure. 

Ref. [26] incorporates constrained position shifting within dynamic programming recursion 

(with successive separation) and considers the single runway static problem.  It views the aircraft 

landing problem as comprising groups of identical aircraft waiting to land. 

Ref. [27] presents a depth-first tree search algorithm based on enumerating all possible 

aircraft sequences.  Branches in the tree were discarded when the cost of a partially constructed 

sequence exceeds the best-known feasible solution (branch-and-bound method).  

2. Combinatorial Optimization Approach 

Aircraft landing scheduling problem can also be solved efficiently by reducing them to well-

known combinatorial optimization problems, such as linear programs, maximum flow problems, 

or transportation problems.  Ref. [7] and Ref. [28] present a mixed-integer zero-one formulation 

for both the static and dynamic aircraft landing problems.  They strengthen the linear 

programming relaxations of these formulations by introducing additional constraints.  The 

problem is solved optimally using a linear programming-based tree search algorithm.  Ref. 26 

uses a similar approach and considers the problem of assigning priorities to aircraft waiting to 

land from a queuing theory viewpoint.  

3. Knowledge-Based/Fuzzy Reasoning Approach 

Final Approach Spacing Tool (FAST), a component of CTAS, has been developed to assist 

TRACON controllers to efficiently schedule arriving aircraft.  Papers on FAST provide the 
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knowledge-based approach for the aircraft landing scheduling problem [29-33].  They propose a 

fuzzy reasoning-based method for both aircraft sequencing in the terminal area and runway 

assignment.  The scheduling system sequences and assigns landing times to arrival aircraft by 

utilizing continuous updates of aircraft radar data and controller inputs.  The scheduling algorithm 

contains a knowledge base which was refined during several thousand hours of controller-in-the-

loop real-time simulations.  The knowledge base then applies fuzzy reasoning to evaluate 

propositions that consider both performance criteria and workload criteria, such as delay 

reduction and conflict avoidance.  

It should be noted that the vast majority of non-controlled airports only have instrument 

approaches designed for the primary runway.  Even for those airfields that do not have ATC 

service but do have multiple runways, in bad weather there is almost always only one runway that 

instrument approaches are flown to.  Since the number of non-controlled airports which are 

capable of multiple runway operations is estimated to be only about 1%, only the single runway 

case is considered here.     

This chapter is organized as follows.  First, the basic problem of aircraft landing scheduling is 

described.  Then an aircraft landing scheduling model of the static case for single runways at non-

controlled airports is established.  Finally, methodologies and capabilities of developing and 

implementing different scheduling algorithms are presented.   

 

B. Aircraft Landing Scheduling Problem 

The aircraft landing scheduling problem is concerned with determining landing times on a 

runway for a sequence of aircraft, such that each aircraft lands within its predetermined landing 

time window, while satisfying separation criterion between aircraft.  Upon entering into the 

terminal area of an airport, an aircraft is assigned a landing time and a runway.  The landing time 

must lie within a predetermined time window, bounded by an earliest time and a latest time.  The 

aircraft can land at the earliest time if it flies at its maximum airspeed, while it will land at the 
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Figure 3: Variation in Cost for an Aircraft within its Landing Time Window II 

latest time if it flies at its most fuel-efficient airspeed while also holding for the maximum 

allowable time [7]. 

Each aircraft produces its preferred landing time if it flies at its most economical, preferred 

speed, the cruise speed.  If the aircraft is required to slow down, hold, or speed up for separation 

assurance or other incidental reasons, extra cost will be incurred.  In general, this cost will grow 

as the difference between the assigned landing time and the preferred landing time increases.  

Figure 3 shows an example of the variation in cost for an aircraft within its landing time window.    

 

 

 

 

 

 

 

 

Another issue is the separation criterion assurance.  It is well known that the FAA regulates a 

certain separation requirement among flights in en-route airspace.  Similarly, the landing time of 

an aircraft and its successive aircraft must be greater than a specified minimum, referred to as 

landing separation time.  The landing separation time depends on the type of the aircraft, due to 

aerodynamic considerations.  It is straightforward to understand that the landing separation time 

between large commercial flights is usually greater than the separation time between small 

General Aviation (GA) flights, as commercial aircraft generate greater wake turbulence than GA 

aircraft.   

Research on aircraft scheduling can be divided into two areas.  One area determines efficient 

scheduling algorithms, and the other studies performance potentials and overall strategies of 

automated aircraft scheduling [6].   The aircraft landing scheduling problem is usually considered 
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as an application in the field of operations research, and two approaches are often taken: 

linear/integer programming (LP), and job shop scheduling.  The aircraft landing scheduling 

problem is described as an LP problem by representing the separation requirements of all pairs of 

aircraft and the landing window constraints of each aircraft in the standard linear/integer 

programming form [7, 26].  The basic mathematical description of LP is introduced in a later 

section.  The problem of scheduling aircraft landings on one or more runways is a problem that is 

also similar to a machine job scheduling problem with sequence-dependent processing times, and 

earliness and tardiness penalties.  A typical job shop scheduling problem consists of a set of n 

jobs and m machines, in which the objective is to find a schedule that minimizes the overall 

completion time of all the operations.  The aircraft landing scheduling problem can be modeled as 

a job shop scheduling problem when runways represents machines, and aircraft landing 

operations represent jobs [23, 25]. The basic mathematical description of job shop scheduling 

algorithms is introduced in a later section, and both the LP and job shop scheduling approaches 

are used in this research.   

 

C. Aircraft Landing Scheduling Model for Single Runway Non-Controlled Airports  

1. Notations 

Constants used to describe the aircraft landing scheduling model are defined as follows: 

Ei = earliest landing time for aircraft i (i = 1,… N)  

fi = penalty cost per unit of time if aircraft i lands before the preferred landing time Pi 

(i = 1,… N) 

gi = penalty cost per unit of time if aircraft i lands after the preferred landing time Pi 

(i = 1,… N) 

Li = latest landing time for aircraft i (i = 1,… N) 

N = number of aircraft 

Pi = preferred landing time for aircraft i (i = 1,… N) 
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Sij =    separation time requirement between aircraft i and j, where aircraft i lands before j 

  (i = 1,… N, j = 1,… N, i � j)   

 The landing time window of aircraft i is therefore denoted as [Ei, Li], where Ei � Pi � Li. 

Variables used to describe the aircraft landing scheduling model are defined as follows: 

ai = time aircraft i lands after the preferred landing time Pi (i = 1,… N) 

bi = time aircraft i lands before the preferred landing time Pi (i = 1,… N) 

xi = landing time for aircraft i 

         �ij     = 1 if aircraft i lands before aircraft j, and 0 otherwise (i = 1,… N, j = 1,… N, i � j)  

2. Constraints 

Figure 4 is a graphical representation of the constraints developed below.  It shows the 

overlapping landing time windows of aircraft i and j.  The first set of constraints are: 

  Ei � xi � Li,         i = 1,… N                                                                                  (1)                           

which ensures that each aircraft must land within its predetermined landing time window.  Now, 

considering pairs of aircraft (i, j) provides another constraint: 

 �ij + �ji = 1,        i = 1,… N; j = 1,… N; i < j                                                                     (2) 

 

 

 

 

 

 

 

 

 

In words, either aircraft i must land before aircraft j (�ij = 1) or aircraft j must land before aircraft 

i (�ji = 1).  The constraints described above mainly deal with the order of pairs of aircraft (i, j).   
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Figure 4: Example of Overlapping Landing Time Windows 
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However, even if the landing order of pairs of aircraft (i, j) is known, it does not necessarily 

imply the separation constraints are automatically satisfied.  For example, if the landing time 

window for two aircraft i and j are (10, 20) and (30, 40) respectively, and the separation time Sij 

=15, the separation constraint is not automatically satisfied; there exist landing times for i and j 

that violate the separation constraint.  Hence, the separation constraint is necessarily defined as:  

       xi + Sij �ij – (Li – Ej) �ji � xj 

       i = 1,… N; j = 1,… N; i � j                                                                                (3) 

Two cases are considered here.  First, if �ij = 1, then i lands before j and thus �ji = 0 from Eq.(2).  

Therefore, inequality (3) becomes xj � xi + Sij, ensuring that the separation requirement is 

satisfied.  Second, if �ij = 0, then j lands before i and thus �ji = 1 from Eq.(2).  Therefore, 

inequality (3) becomes xi - xj � Li – Ej, and it can be deduced easily starting from the inequality 

(1).  Finally, the constraints which relate ai, bi and xi variables are:  

Max (0, Pi – xi) � bi � Pi – Ei,        i = 1,… N                                                           (4) 

Max (0, xi – Pi) � ai � Li – Pi,        i = 1,… N                                                           (5) 

 xi = Pi – bi + ai,                             i = 1,… N                                                           (6) 

Inequality (4) ensures that bi is at least as big as zero, and the time difference between Pi and xi, 

and at most the time difference between Pi and Ei (see Figure 4).  Inequality (5) shows the similar 

meaning for ai.  Equation (6) relates the ai, bi and xi variables to the preferred landing time Pi.  It 

should be noted that for the ith aircraft in a specified scenario, at least one of the values among ai 

and bi should be equal to zero.  

 It is worthy mentioning that the constraints described above can be considered as a non-

controlled airport application customization of the constraint set developed in Ref. 14, and the 

author does not claim any credit of original contribution of developing the constraint set.  The 

main purpose of constraint customization is to formulate the aircraft landing scheduling model, 

and thus to develop the air traffic control automation system that will be served as the baseline 
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system for comparison with the distributed air traffic management system developed in chapter 

IV.  

3. Problem Specific Features of Non-Controlled Airports 

 Non-controlled airports are always surrounded by uncontrolled airspace (class G airspace) 

with a ceiling of 700 feet or 1100 feet Above Ground Level (AGL).  Within the class G airspace, 

it is the pilot’s responsibility for traffic avoidance, even for Instrument Flight Rules (IFR) traffic.  

Therefore, current air traffic operations in instrument meteorological conditions (IMC) at non-

controlled airports are constrained by the “one-in/one-out” procedure, to ensure safety of the 

aircraft flying approaches within uncontrolled airspace.  In other words, when the airspace around 

non-controlled airports is occupied by one aircraft flying either an arrival or departure, additional 

requests for operations at the airport are postponed until the current operation is completed.  We 

can easily tell that capacity at these airports is severely constrained by the “one-in/one-out” 

paradigm since one operation can take over 15 minutes to complete [13]. 

 Several research projects are currently researching this current paradigm to enable multiple 

operations simultaneously within the airspace around non-controlled airports.  Two of them 

address implementing multiple operations at Multi-Layer Air Traffic Space (MATS) and Self-

Controlled Area (SCA) respectively [5, 14].  Each attempts to define a new airspace infrastructure 

around non-controlled airports, and then develops suitable procedures accordingly.  Since we will 

use Small Aircraft Transportation System (SATS) SCA High Volume Operation (HVO) scenarios 

to analyze our aircraft landing scheduling algorithms in the following sections of the paper, a 

brief description of the SATS SCA HVO program is provided.  SCA is a block of airspace 

established around non-controlled airports where the responsibility for safe aircraft separation lies 

with the pilot.  The SCA HVO program enables multiple operations within an SCA by having the 

aircraft hold in stacks at Initial Approach Fixes, and then follow specified procedures (either 

vertical entry or lateral entry) to enter the SCA and complete approaches.  This is shown in Figure 

5.   
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 It should be noted that either vertical or lateral entry landing operation can be divided into a 

sequence of flight segments.  Aircraft at one flight segment is required to determine its action 

towards the subsequent flight segment depending on its availability.  For example, an aircraft is at 

4000ft AGL above the SCA and it plans to fly a vertical entry procedure, the subsequent flight 

segment is the holding pattern at 3000ft AGL (the ceiling of the SCA).  Before it approaches to 

the holding pattern at 3000ft AGL, it will have to check its availability by determining if it is 

occupied by another aircraft or not.  It will not be allowed to descend to the 3000ft AGL holding 

pattern until it is clear.  Figure 6 shows the decision tree along the flight path for an aircraft in a 

SCA HVO scenario. 

 

 

 

 

 

 

 

 

  

Figure 5: SATS Self-Controlled Area High-Volume Operations Concept 
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Figure 6: Decision Tree along Flight Path for SCA HVO Procedure 
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4. Objective Functions and Performance Metrics 

In the field of aircraft scheduling, the choice of objective function has usually caused the most 

discussion. Different users can always provide convincing arguments for their choices of 

objective function.  Two different objective functions are defined based on the special features of 

the SCA HVO described above, and are used as two of the three performance metrics used in the 

numerical examples.  A third performance metric which is not an objective function is also 

introduced.     

1) Minimize Total Cost of Deviation (TCD) from the preferred landing time. This performance 

metric indirectly measures the sequencing/scheduling algorithm efficiency with regard to the 

complete flight path.  TCD is the sum of weighted Dynamic Time of Arrival (DTA) deviation 

of all the aircraft in a scenario.  Deviation time is calculated as the difference between DTA 

and the preferred landing time.  Preferred landing time is calculated as the flight time from 

the scenario entry point to the runway, assuming the constant airspeed of the holding speed.  

The penalty cost depends on the aircraft type.   

 

 

2) Minimize Total Holding Time (THT).  This performance metric indirectly measures the fuel 

and efficiency affected by the sequencing/scheduling algorithm, with special consideration of 

the SATS HVO scenario at non-controlled airports.  It is the sum of delay time of all the 

aircraft in a scenario during the flight segment of three SATS holding patterns (2000ft, 3000 

ft, and 4000 feet respectively).  The holding time for one aircraft is the time from when it 

arrives at the IAF until it can begin its approach; the total holding time is the sum of the 

holding times for all aircraft in the scenario.  In the context of SCA HVO procedures total 

holding time measures the total “wasted time” of all aircraft while flying holding patterns 

above or within the SCA and is thus a suitable metric for evaluating the efficiency of the 

aircraft landing scheduling algorithms for SCA HVO.  Note that the total holding time cannot 
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be explicitly defined using the constants and variables given in the previous sections of the 

paper; it can only be calculated while running real-time flight simulation.  

3) Total Delay Time of Feeder Route.  This performance metric directly measures the delay time 

with regard to the flight segment of the feeder route.  It is not an objective function, but is 

introduced here as a supplementary metric to evaluate flight efficiency, since the delay 

encountered from the scenario entry point to the IAF is distinguishable from the holding 

delay measured in Total Holding Time.  It is the sum of the delay time of all aircraft in a 

scenario during the feeder route flight segment (from the scenario entry point to IAF), and is 

a result of implementing the prescribed sequence.     

 Note that similar aircraft landing scheduling problems with objective functions that are linear 

functions of time deviation from preferred landing time can be solved without any substantial 

change to the current formulation, simply by introducing new penalty cost parameters.  However, 

objective functions that are nonlinear functions of time deviation from preferred landing time are 

beyond the scope of the present research.  

 The complete aircraft landing scheduling model of the single runway case for non-controlled 

airports is now established—minimize either total cost of deviation or total holding time subject 

to equations and inequalities (1) to (7).     

5. Scheduling Point 

The scheduler makes its scheduling decision at a certain scheduling point, ideally an actual 

point in time or space. For example, it can be the origination airport from which an aircraft 

departs.  It can also be the boundary of Center airspace, and thus depends on the definition of the 

airspace infrastructure around the non-controlled airports.  For instance, if the airspace 

infrastructure defined in Ref [14] is applied, the boundary of the terminal area is approximately 

50 nautical miles away from the airports.  In this research, since we use the SATS HVO scenarios 

to conduct scheduling algorithm analysis, the scheduling point is chosen as the time when the first 
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aircraft in each scenario reaches the waypoint that is 20 nautical miles to its assigned Initial 

Approach Fix.  

 

D. Aircraft Landing Scheduling Algorithms for Single Runway Non-Controlled Airports  

1. First-Come-First-Serve Scheduling Algorithm 

The first-come-first-serve scheduling algorithm is the baseline algorithm for comparing with 

the optimal scheduling algorithm.  There is no specified objective function in the first-come-first-

serve scheduling model.  Instead, the first-come-first-serve paradigm is applied as long as the 

constraints described in (1) to (6) are satisfied.  The first aircraft in the scenario who hits the 

scheduling point gets the first slot in the sequence, and the aircraft that is nearest to the 

scheduling point (according to the time-based linear projection) gets the second slot in the 

sequence, and so on.  It should be mentioned that procedure-based projection is used to calculate 

the time from the scheduling point until the aircraft lands, since the aircraft has to fly specified 

procedures defined in SCA HVO to complete an approach.  For instance, an aircraft has to fly the 

holding pattern in stacks at Initial Approach Fixes before it enters into the SCA vertically.  

2. Optimal Scheduling Algorithm 

The optimal aircraft landing scheduling problem can be stated from different viewpoints and 

then solved using different algorithms.  Therefore, a variety of algorithms has been developed in 

the literature on the problem of scheduling aircraft landing optimally.  In this research, it is solved 

as a linear programming problem and as a job shop scheduling problem.  

1) Linear Programming Problem 

In mathematics, linear programming problems are optimization problems in which the 

objective function and the constraints are all linear.  It is usually in the following form:  
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Or in the vector form: 

 

 

 

where Z(X) defines the objective function and AX B≥ defines the constraints set. 

A vector X = (x1, …, xn) satisfying the inequality set (11) is called a feasible solution.  The 

linear programming problem is to find a feasible solution that minimizes (10).  The most popular 

method for solving linear programming problem is the simplex algorithm [34].  It is an iterative 

procedure that finds an optimal solution or detects infeasibility after a finite number of steps.  

Although it should be noted that the number of iteration steps might be exponential, the simplex 

algorithm is very efficient in practice.  Figure 7 shows the flow chart of the simplex algorithm.  
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Figure 7: Flow Chart of Simplex Algorithm 
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It can be seen from Figure 7 that the simplex algorithm is similar to a tree search algorithm 

based on enumerating the possible solution.  The current solution being searched is discarded 

when the cost exceeds the best-known feasible solution.  The aircraft landing scheduling model 

developed in the previous section can be formulated as an LP problem.    

2) Job Shop Scheduling Problem 

The aircraft landing scheduling problem can be posed as a job shop scheduling problem in 

which the single runway represents the single machine, and the aircraft represents jobs.  The 

earliest time Ei associated with each aircraft (job) is the release time (sometimes called the ready 

time) of the job.  The processing time of a particular job (aircraft) on the single machine (runway) 

is then dependent upon all the other jobs that will follow it on the same machine.  This is because 

the processing time for a particular job on a particular machine must be sufficient to ensure that 

the following jobs (aircraft) are not started before the appropriate separation time (e.g., Sij in the 

scheduling model) has elapsed.  In other words, the problem of scheduling aircraft landing can be 

viewed as a job shop scheduling problem with release time Ei and sequence-dependent processing 

times Sij.  In particular, the scheduling model described earlier can be solved as a job shop 

scheduling problem in the form of: 

                                           1/ Ei /seq-dep/�wici                                                                      (12) 

Where Ei indicates the release time (the earliest landing time), seq-dep includes all of the 

separation time requirement Sij, �wici represents the objective function defined in Eqs. (7), and 

there is a single runway.  Several algorithms are available to solve the job shop scheduling 

problem, e.g., branch-and-bound algorithm and tree search algorithm.   

 

E. Conclusions 

In this chapter an aircraft landing scheduling model and static optimization scheduling 

algorithms using linear programming and job shop solutions were developed and implemented as 

an air traffic control automation system for automated aircraft landing scheduling at single 
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runway, non-controlled airports.  Performance of the optimization algorithm was compared to a 

first-come-first-served scheduling algorithm in terms of total cost of deviation, total holding time, 

and total delay time of feeder route.   
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CHAPTER IV 

DECENTRALIZED AIRCRAFT LANDING SCHEDULING AT  

SINGLE RUNWAY NON-CONTROLLED AIRPORTS: DYNAMIC CASE 

A.  Introduction 

 In chapter III we examined the capability of automated optimized aircraft landing scheduling 

at single runway non-controlled airports.  An aircraft landing scheduling model and several 

scheduling algorithms for single runway non-controlled airports were developed and 

implemented as an air traffic control automation system that takes over the sequencing 

responsibilities of human air traffic controllers [35].  However, the ultimate objective for this 

research is to analyze the feasibility and capability of decentralized aircraft landing scheduling in 

the dynamic operational environment at non-controlled airports in which there is no existence of 

Air Traffic Control (ATC).  This chapter will then attempt to provide detailed description of the 

implementation of a distributed Air Traffic Management (ATM) system that achieves 

decentralized aircraft landing scheduling with acceptable performance, and to address all 

correlated issues.  

From the technological view, the air traffic control automation system addressed in chapter III 

utilizes centralized control as opposed to the decentralized control applied in the distributed ATM 

system.  A significant research issue is the level to which the non-controlled airports should be 

decentralized.  The air traffic control automation system does not provide sufficient operational 

robustness since it can disorder the landing sequence if it malfunctions.  Distributed ATM system, 

however, is to reduce the reliance on centralized air traffic management in favor of decentralized 

management.  The real question is how decentralized should the non-controlled airports be, or 

more simply how far can we extend the free-flight concept in the case of the non-controlled 

airports?  Can we achieve the decentralized mode for the ATM system of non-controlled airports 

such that flight crews even take over the scheduling responsibilities with the assistance of on-
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board aircraft landing scheduling tool, which represents the ultimate uninterrupted free-flight 

scenario?  This chapter seeks to address the technology challenges raised by these questions. 

From the operational view, the air traffic control automation system addressed in chapter III 

only deals with the static case for aircraft landing scheduling, where the air traffic control 

automation system only makes the scheduling decision once during the whole landing operation 

at a certain scheduling point with complete knowledge of the set of aircraft that are going to be 

sequenced.  Once initially determined, the scheduling decision is not updated dynamically.  It is 

therefore not a total solution, since it still places limits on airspace capacity and flight flexibility.  

The distributed ATM system, on the other hand, performs the aircraft landing scheduling 

dynamically since flight crews can use the on-board scheduling tool to reschedule themselves 

constantly during the whole landing operation since a change may occur in the dynamic 

operational environment, such as the appearance of a new aircraft.  What is not fully understood 

is whether or not flight crews can adequately assume the scheduling responsibilities with the 

assistance of on-board aircraft landing scheduling tool in such a decentralized ATM system 

mode.  Decentralized aircraft scheduling is most often addressed in the literature by work on 

Distributed Air/Ground-Traffic Management (DAG-TM) and free-flight concepts.  From the 

operational view, these works can be divided into four categories: on-board decision support 

tools, small airport automation systems, air-ground integration/simulations, and coordination.  

Each of these categories is described below.  

1. On-Board Decision Support Tool 

The free-flight concept puts more responsibilities on the pilot.  In the free-flight environment, 

pilots are required to ensure their own separation in the en-route airspace, and even in the high-

density terminal area.  It becomes vital to improve the on-board system to assist pilots with more 

accurate and efficient flight operations advisories. 

One potential solution is presented in [36], which is a sub-project of the DAG-TM program 

conducted by NASA Ames Research Center.  An airborne tool called the Advanced Terminal 
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Area Approach Spacing (ATAAS) tool is based on the concept of an aircraft maintaining a time-

based, rather than distance-based, spacing interval from the preceding aircraft.  The ATAAS tool 

uses Automatic Dependent Surveillance-Broadcast (ADS-B) aircraft state data along with final 

approach speeds and wind data to compute speed commands for the ATAAS equipped aircraft to 

maintain the required time interval behind the other aircraft.  

Ref. [37-39] address a more advanced on-board guidance system called Airborne Merging and 

Spacing for Terminal Arrivals (AMSTAR).  Ref. [37] presents the general information, Ref. [38] 

introduces the speed control law, and Ref. [39] describes the simulation environment.  It is 

actually the direct descendant of the ATAAS concept and implementation.  Whereas ATAAS was 

intended for use only when the lead and following aircraft were in-trail, AMSTAR would permit 

time-based spacing between any two aircraft headed for the same runway, even if they were not 

yet physically in-trail.    

 It is important to note all existing on-board decision support tools describe in the literate 

review above are focused on separation assurance and self-spacing, and leave the responsibilities 

of aircraft landing scheduling to ground-based air traffic control.  The DAG-TM concepts 

envision a possible way to manage arrivals such that the flight deck is responsible for landing 

scheduling in the uninterrupted free-flight environment, but the feasibility and capability analysis 

of an on-board landing scheduling tool has not been explored.  The research described in this 

chapter seeks to fill this technical gap and to address the technological and operational challenges 

brought by the introductory of on-board landing scheduling tool.  
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2. Small Airport Automation 

Several government-sponsored projects targeted at developing small airport automation 

include: 

• Small Aircraft Transportation System (SATS) 

• Smart Airport Automation System (SAASY) 

Ref. [40] gives the overall introduction of the Smart Airport Automation System project.  

SAASY was a NASA sponsored project in the early twenty-first century to provide Visual Flight 

Rules (VFR) to a flight airport, sequencing, runway, and conflict advisories for GA pilots 

operating at airports that do not have operating air traffic control towers.  The main motivation 

for SAASY is to provide the mechanism to increase VFR safety.  The sequence advisory provides 

conflict-free arrival and departure sequence assignments to enhance traffic safety.  An initial 

aircraft sequence is generated based on a first-come-first-serve algorithm that uses the time-at-

runway threshold generated by the trajectory predictor.  The final sequence is modified using a 

set of priority and right-of-way rules to better emulate the pilot’s decision process when 

approaching the airport.  

Ref. [41] presents the general information of the SATS project.  SATS was conducted through 

a public-private partnership including NASA, the FAA, and the National Consortium for Aviation 

Mobility SATSLabs.  Within the Self-Controlled Area, properly-equipped SATS aircraft 

equipped with Automatic Dependent Surveillance-Broadcasting (ADS-B) surveillance, two-way 

data links, automation-pilot data link communications interfaces, and cockpit displays of traffic 

information provide self-separation. The sequencing of arrivals is handled by the Airport 

Management Module (AMM), a small airport system that monitors local traffic.  The SATS small 

airport AMM system focuses on providing IFR capacity and not VFR safety. 

Ref. [42] explores past and ongoing research focused on the development of automation to 

support safer and more efficient aircraft operations at the small airports.  The current and 

expected future operational problems for aircraft utilization of these airports are reviewed first.  
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Then, the topology of small airport system concepts in general is reviewed, and finally the major 

issues that drive the system design and operational usage are discussed.   

Both SATS and SAASY projects seek to improve the operation effectiveness and efficiency of 

the under-utilized public-use airports, focusing on IFR capacity and VFR safety respectively.  

However, the first-come-first-serve sequencing algorithm proposed in SAASY project still places 

capacity limitations, and the priority rules introduced only apply to VFR traffic.  SATS project 

proposes a new set of operation concepts that break the “one-in-one-out” paradigm and thus 

provide the capability of multiple operations at a time at the terminal area of small airports.  The 

new set of operation concepts, combined with the on-board SATS Conflict Detection & 

Avoidance (CD&A) algorithm, provides the separation assurance but leaves the sequencing 

responsibility to AMM, a ground-based airport automation system which still works as a 

centralized control.  It is therefore concluded that the previous research work on small airport 

automation still leaves the capability analysis of scheduling IFR traffic in a complete distributed 

environment as an open discussion. 

3. Air-Ground Integration/Simulation 

 How to integrate either the autonomous airborne components or small airport automation 

systems into the current NAS is another major question related to the research issues addressed in 

this chapter.  Ref. [43-45]attempt to answer that question from their own perspectives.  Ref. [43] 

describes the procedures of how to evaluate the technical and operational feasibilities of the 

autonomous airborne components of DAG-TM, based on the free-flight concept.  It includes an 

overview of research approaches, the airborne technologies under development, and a summary 

of experimental investigations and findings to date.  In Ref. [44], results and observations from 

integrated air ground simulations that were conducted over the last few years at NASA Ames 

Research Center are reviewed.  Ref. [45] addresses a mixed-fidelity simulation environment for a 

human-in-the-loop study of DAG-TM concepts.  Decision support tools for flight crews and air 

traffic service providers are accessible at the respective operator stations in the simulation 
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infrastructure.  Many operator positions, either operated with human-in-the-loop or autonomously 

run with agent support, are provided to facilitate large-scale experiments supporting high 

numbers of pilot, air traffic controller, and air traffic service providers.  This simulation 

environment provides a highly realistic and flexible test bed to gain a solid understanding of 

interactions in the very complex distributed air traffic environment. 

The scheduling/sequencing function component in the Air-Ground integration simulation 

described above are still simulated as a centralized control component, either implemented as a 

subset of the ground-based airport automation system agent or directly included human air traffic 

controller in the loop.  Simulation environment that includes disturbed scheduling/sequencing 

function component has not been developed. 

4. Coordination 

The design of coordination mechanisms for multi-agent system has proven to be a difficult 

problem.  In the last decade a variety of such mechanisms over a wide range of task domains has 

been studied.  Although the literature highlights some elegant solutions, they are generally 

domain-specific and provide only indirect insight into important questions.  For instance, how 

appropriate is a given coordination mechanism is for a particular domain? What performance 

characteristics can be expected, and how is it related to other coordination mechanisms?  How 

can it be modified to improve system performance [46].  A general solution to the distributed 

coordination problem for multi-agent system is beyond the scope of this research, since the 

objective here is to propose and develop a coordination mechanism that fits a specific domain: 

distributed aircraft landing scheduling at non-controlled airports.  Two candidate approaches, 

direct coordination model and event-based model, are favorable.  Direct coordination models 

used in distributed applications are usually the ones in which the agent’s interactions involve 

explicit task-directed communications or negotiations about global resource usage or task 

assignments in order to achieve coordinated behavior [46].  In event-based coordination models, 

each agent operates under local control.  The system-level coordinated behavior arises from 
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agent-agent interactions by generating events, and reacting to the particular events of interest, 

without an explicit notion of task-directed communication or negotiation.  Event-based 

coordination in a distributed system is dominated by client/server platform relying on 

synchronous request/reply.  However, this architecture is not well suited to implement 

information-driven applications like air traffic control, news delivery, and stock quoting due to 

the inherent mismatch between the demands of these applications and the characteristics of those 

platforms. In contrast to that, publish/subscribe (pub/sub) directly reflects the intrinsic behavior of 

information-driven applications because communication here is indirect and initiated by 

producers of information: producers publish notifications and these are delivered to subscribed 

consumers by the help of a notification service that decouples the producers and the consumers 

[47].  Though pub/sub is not a recent achievement [48, 49], its use in large-scale, wide-area 

communication has become a hot research topic only in the last a few years, making pub/sub 

move from a simple application of multicast to a communication paradigm in its own right.  This 

happened because the anonymous, loosely coupled communication scheme, which is proper of 

the pub/sub paradigm, fits well to the highly dynamic nature of large-scale environments.   

Therefore, publish/subscribe should be the first choice for implementing such applications. 

All of the previous work reported in the literature addresses on-board decision support tools 

for airborne separation and final approach spacing at controlled airports, and all of the landing 

scheduling tools are ground-based.  In the domain of aircraft landing scheduling, landing 

operations at terminal area of the airports are still under centralized-control implemented by 

ground-based airport automation system or human air traffic controller.  A systematic approach to 

achieve scheduling multiple landing operations at a time in a decentralized dynamic operational 

environment has not been explored.  Firstly the infrastructure of the decentralized operational 

environment, which includes the functional components and operation concepts, needs to be 

established.  Secondly, decentralized ATM mode certainly introduces more dynamics to the 

operational environment due to the increasing interaction among aircraft, and issues of handling 
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dynamic situation such as the appearance of a new aircraft need to be addressed.  Finally, a 

communication model needs to be developed to ensure robust and effective interaction among 

aircraft during decentralized aircraft landing scheduling operations.  The contributions of the 

research addressed in this chapter lie in the development of an event-based coordination pub/sub 

model in the domain of aircraft scheduling.  An original approach is used here to solve the 

decentralized aircraft landing scheduling problem, and the event-based coordination model is 

more robust than the direct coordination model.  Most importantly, the mathematical description 

of the publish/subscribe rules for the event-based coordination model in this research provides a 

better way than plain text description, which usually is the way most of the ATM papers use on 

introductory of a new operation concept or improvement to the current NAS.  To assist with 

achieving a global solution of aircraft landing scheduling when several aircraft are involved in a 

distributed environment, the event-based distributed coordination model is integrated with an on-

board system.  Called the On-Board Aircraft Landing Scheduling Tool, it provides the pilot with 

the capability to self-schedule in the dynamic operational environment of the terminal area of 

non-controlled airports.  The aircraft agent developed in this chapter is designed and implemented 

for FAR 23 Class GA aircraft under Free Flight conditions.   Although the target operational 

environment investigated in this work is non-controlled airports, with suitable modification the 

approach is potentially flexible enough to extend to controlled airports too, where decentralized 

management can provide more airspace capacity, flight flexibility, and increased operational 

robustness.  

This chapter seeks to analyze the degree of decentralization for aircraft landing scheduling in 

the dynamic operational environment at non-controlled airports, and thus explore the feasibility 

and capability of aircraft landing scheduling within uninterrupted free-flight environment in 

which there is no existence of ATC.  This chapter is organized as follows.  Initially, an aircraft 

agent is developed for the agent-based flight simulation, followed by the methodologies 

description of how to integrate the aircraft landing scheduling model into the flight deck on-board 
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system of an aircraft agent.  Then, uninterrupted free-flight aircraft landing operation at non-

controlled airports, represented by the on-board aircraft landing scheduling tool, is examined in 

which the ground-based automated air traffic control system serves as the baseline system for 

comparison.  Finally, two coordination models, with focus on event-based coordination model, 

are developed, and related distributed coordination issues are addressed. 

 

B. Decentralized Aircraft Landing Scheduling at Non-Controlled Airports 

Decentralized aircraft landing scheduling problem has not been clearly stated in the literature 

by far prior to the advent of this research.  However, it is an important problem deserving of 

closer attention since it provides a clear approach to the distributed air traffic management 

system.  As stated earlier, the purpose of this research is to analyze the degree of decentralization 

for aircraft landing scheduling in the dynamic operational environment at non-controlled airports.  

It starts with the non-control airport case since current operations at the terminal area of non-

controlled airports have no centralized control, which exhibit an inherent property of distribution 

that gives a perfect environment for the analysis of the distributed air traffic management system 

and the free-flight concept.   

Similar as stated in chapter III, only the single runway case is considered since the vast 

majority of non-controlled airports only have instrument approaches designed for the primary 

runway.  Even for those airfields that do not have ATC service but do have multiple runways, 

estimated to be only about 1%, in bad weather there is almost always only one runway that 

instrument approaches are flown to. 

1. Integration of Aircraft Agent and Aircraft Landing Scheduling Tool 

In this section the aircraft agent with distributed coordination function and the aircraft landing 

scheduling model developed in chapter III are briefly reviewed, followed by the methodologies 

description of how to integrate the aircraft landing scheduling model into the flight deck on-board 
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system of an aircraft agent.  The on-board aircraft landing scheduling tool provides the capability 

of decentralized aircraft landing operation. 

1) Aircraft Agent 

The aircraft agent developed in this research is designed and implemented for FAR 23 Class 

GA aircraft under Free Flight conditions.  Most FAR 23 Class GA aircraft in use today, however, 

are not equipped with the standard navigation and communication devices commonly found on 

commercial air transportations.  As the concept of decentralized aircraft landing scheduling 

introduced in this research is designed for a future implementation of Free Flight, it is anticipated 

that this advanced equipment will be available on GA aircraft at that time.  Therefore, in this 

research it then assumes that the aircraft agents implement real-time flight operations with the aid 

of the following on-board devices: ADS-B devices, so that the aircraft has the access to current 

traffic information; Flight Management System (FMS), so that the aircraft can utilize the traffic 

information from ADS-B devices for Conflict Detection & Resolution (CD&R) and landing 

scheduling; and a communication device that gives the aircraft the capability to communicate 

with other aircraft.  The CD&R algorithm developed in this research is a modified version of the 

original Small Aircraft Transportation System (SATS) CD&R algorithm, where modifications are 

made as per the review comments of the CD&R modeling methods currently in use or under 

operational evaluation in [50].  It should be noted that the CD&R algorithm not only maintains a 

distance-based separation in the en-route phase of flight, but also enforces a time-based spacing 

in the final approach.  It is assumed that each aircraft agent is equipped with such on-board 

CD&R module to plan maneuvers for an optimized and conflict-free trajectory.  It is also 

assumed that the on-board CD&R module is sufficient to provide self-separation advisories for 

pilots since this research targets issues of decentralized aircraft landing operation only.   

2) Aircraft Landing Scheduling Model and Algorithms 

The aircraft landing scheduling problem is the problem of deciding a landing time on an 

appropriate runway for each aircraft for a given set of aircraft such that each aircraft lands within 
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a predetermined time window, and the separation criteria the aircraft landings are respected.  In 

chapter III, the aircraft landing scheduling model at non-controlled airports is formulated as: 

minimize Z(x) subject to C(x).  Z(x) is the objective function, and two objective functions are 

defined: minimizing the total cost of deviation from the preferred landing time and minimizing 

the total holding time.  C(x) represents the constraints of the problem.  The set of constraints 

defined in the model are given as: 

Ei � xi � Li,         i = 1,…, N                                                                                 (1)                           

�ij + �ji = 1,        i = 1,…, N; j = 1,… N; i < j                                                       (2)      

 xi + Sij �ij – (Li – Ej) �ji � xj           i = 1,…, N; j = 1,…, N; i � j                              (3) 

Max (0, Pi – xi) � bi � Pi – Ei,        i = 1,…, N                                                     (4) 

Max (0, xi – Pi) � ai � Li – Pi,        i = 1,…, N                                                     (5) 

 xi = Pi – bi + ai,                  i = 1,…, N                                                                (6) 

Inequality (1) ensures that each aircraft must land within its predetermined landing time 

window, where Ei  and  Li  represent the earliest and latest landing time of aircraft i, respectively.  

Equation (2) describes that either aircraft i must land before aircraft j (�ij = 1) or aircraft j must 

land before aircraft i (�ji = 1).  Inequality (3) defines the separation constraint where Sij represents 

the separation time requirement between aircraft i and j.  The variables ai and bi describe how 

soon aircraft i lands after or before the preferred landing time Pi, respectively. Inequality (4) 

ensures that bi is at least as big as the maximum of zero or the time difference between Pi and xi, 

and at most the time difference between Pi and Ei.  Inequality (5) shows the similar meaning for 

ai.  Equation (6) relates the ai, bi, and xi variables to the preferred landing time Pi.  

In chapter III, two scheduling approaches are developed and implemented to solve the aircraft 

landing scheduling problem described above: first-come-first-serve scheduling and optimal 

scheduling.  The first-come-first-serve scheduling is the baseline approach for comparing with the 

optimal scheduling.  There is no specified objective function in the first-come-first-serve 

scheduling model.  Instead, the paradigm is applied as long as the constraints described in (1) to 
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(6) are satisfied.  The optimal aircraft landing scheduling problem is solved in two different ways, 

one is solved as a linear programming problem using the simplex algorithm, and the other is 

solved as a job shop scheduling problem using branch-and-bound and tree-search algorithms. 

Three performance metrics, with the first two working as objective functions directly, are used for 

the optimal scheduling algorithm efficiency and effectiveness evaluation. The first performance 

metric, total cost of deviation from the preferred landing time, is the sum of weighted Dynamic 

Time of Arrival (DTA) deviation of all the aircraft in a scenario.  This performance metric 

indirectly measures the scheduling algorithm efficiency with regard to the complete flight path.  

The second performance metric, total holding time, is the sum of delay time of all the aircraft in a 

scenario during the flight segment of three SATS holding patterns (2000ft, 3000 ft, and 4000 feet 

respectively).  This performance metric indirectly measures the fuel and efficiency affected by the 

scheduling algorithm, with special consideration of the SATS High Volume Operation (HVO) 

scenario at non-controlled airports. The last performance metric, total delay time of feeder route, 

directly measures the delay time with regard to the flight segment of the feeder route.  It is not an 

objective function, but introduced as a supplementary metric to evaluate flight efficiency, since 

the delay encountered from the scenario entry point to the IAF is distinguishable from the holding 

delay measured in total holding time.   

3) On-board Aircraft Landing Scheduling Tool 

In chapter III, the aircraft landing scheduling model and scheduling algorithms were 

implemented as a ground-based air traffic control automation system.  Now we need to integrate 

the aircraft landing scheduling model into the on-board system of an aircraft agent for the sake of 

feasibility and capability analysis of decentralized aircraft landing operation.  The integration of 

the scheduling model into on-board system alone, however, can only output a local scheduling 

decision based on its knowledge of a set of aircraft that are going to be sequenced.  To assist with 

achieving a global solution of aircraft landing scheduling when several aircraft are involved in a 

distributed environment, a distributed coordination module is integrated with the on-board 



 
 

46 

 

system.  It is called the On-Board Aircraft Landing Scheduling Tool, and it provides the pilot 

with the capability to self-schedule in the dynamic operational environment of the terminal area 

of non-controlled airports.   

In [51], Harper, Mulgund, et.al. present a definition of degrees of pilot autonomy in Free 

Flight , as shown in Table 1. 

 
Table 1. Degree of Pilot Autonomy[51] 

Degree Level of Autonomy 

1 Standard ATC. Pilots act as instructed by ATC. 

2 

Pilot is free to search for and negotiate potential solutions with other pilots of 

level 2 or higher than and with ATC, and implement the resulting globally 

approved actions. 

3 

Pilot is free to search for and negotiate potential solutions with other pilots of 

level 2 or higher, and pose solutions and ATC for approval before 

implementation. 

 
 
 

 It is clearly seen that even for the highest level of pilot autonomy defined in [51], ATC is 

always included into the system and acts as a high-level supervisor or coordinator.  As stated 

earlier in this chapter, the purpose of this research is to explore the feasibility and capability of 

uninterrupted free-flight environment in which there is no existence of ATC.  In general, the 

abandonment of central control and stringent hierarchical data structures in favor of decentralized 

control strategies based on interactions, which require autonomous components, leads to solutions 

that are more flexible, more tolerant to perturbations, and thus are capable of supporting more 

emergences of new properties.  In the specific domain of distributed aircraft landing scheduling at 

non-controlled airports addressed in this research, it seeks to utilize decentralized control 

strategies to achieve acceptable operational performance, especially for landing scheduling 
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Current Operations 

        FC                                                      ATSP 

Free Flight 

Where to draw the line? 

Crew planning capability 

Crew workload 

Equipment cost 

CNS infrastructure burden 

Aggressiveness 

Figure 8: Operation Concept – from Ground-Based to Free-Flight 

operation, at non-controlled airports that there is no top level supervisor or central control so that 

all the aircraft involved are operated in a complete distributed environment.   The Distributed 

Air/Ground-Traffic Management (DAG-TM) concepts envision a possible way to manage 

arrivals such that the flight deck is responsible for landing scheduling in the uninterrupted free-

flight environment, but the capability analysis of an on-board landing scheduling tool has not 

been explored prior to the advent of this research.  It can be expected that the future air traffic 

management system will manage aircraft landing in a way that lies somewhere between the two 

extremes, fully ground-based and uninterrupted free-flight, possibly moving gradually from 

ground-based to more free-flight.  Figure 8 illustrates the situation.  It shows that as more 

operational responsibilities are transferred from the Air Traffic Service Provider components to 

the Flight Crew components, in other words, the closer to uninterrupted free-flight operational 

environment, the Flight Crew has more planning capability and the CNS infrastructure burden 

decreases.  However, the trade-offs are the increasing flight crew workloads and avionics 

equipage cost. 
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As stated previously, current operations at the terminal area of non-controlled airports have no 

centralized control, which exhibit an inherent property of distribution that gives a perfect 

environment for the implementation of uninterrupted free-flight concept.  In this research, the on-

board aircraft landing scheduling tool is developed, and it represents the ultimate uninterrupted 

free-flight scenario since there is no ground-based automated system to enforce any centralized 

control and flight crews take over all of the responsibilities that the current controllers have.  

Aircraft at the terminal area of non-controlled airports are placed in a complete distributed 

environment, and each pilot is required to use the on-board aircraft landing scheduling tool to 

provide sequencing advisories.  It should be stressed that the air traffic control automation system 

discussed in chapter III, functioning as a ground-based aircraft landing scheduling tool, serves as 

baseline system for comparison.  Although comparing the performance of these two options is not 

critical for the non-controlled airports case since we aim to achieve uninterrupted free-flight 

environment, it is important for the future extension to controlled airports since the approach will 

give a clear view of where to establish the line of free-flight concept application for the controlled 

airport case.  

2. Distributed Coordination in the Dynamic Operational Environment 

In this research, it is assumed that flight crews are required to use the on-board aircraft landing 

scheduling tool to provide scheduling advisories dynamically in the ultimate uninterrupted free-

flight operational environment at the terminal area of non-controlled airports.  It then presents an 

instance of a typical distributed coordination problem for a multi-agent system when all aircraft 

agents in a scenario are required to coordinate in order to achieve a scheduling decision after they 

utilize the on-board scheduling tool to reach their own respectively.  The distributed coordination 

function module then becomes the key element of the on-board aircraft landing scheduling tool to 

achieve a global solution of aircraft landing scheduling when several aircraft are involved in the 

distributed environment.  It is not exaggerating that the distributed coordination plays the most 

important role in the success of decentralized aircraft landing operation.  This section will then 
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seek to address how the challenges brought by distributed coordination issues are resolved in this 

research, from the establishment of the mathematical model to the application implementation.  

 Two coordination models, direct coordination model and event-based model, are candidates 

for solving the problem of distributed aircraft landing scheduling at non-controlled airports.   

1) Direct Coordination Model 

In general, direct coordination models used in distributed applications are usually the ones in 

which the agent’s interactions involve explicit task-directed communications or negotiations 

about global resource usage or task assignments in order to achieve coordinated behavior [46].  In 

this research, direct coordination model is implemented by proposing a means that group of 

agents can coordinate by communication with each other in a direct and explicit way, specifically, 

negotiation messages exchange among aircraft using on-board ADS-B equipment, where the 

approach detail is addressed in [52].  Originally in [52] it establishes a pair-wise argument-based 

negotiation approach that achieves collaboration among aircraft for searching multilateral 

acceptable solution in the Conflict Detection and Resolution domain. In this research, it modifies 

the negotiation algorithm to achieve a mutual acceptable solution in aircraft landing scheduling 

domain. Dead-lock in the negotiation is resolved by either introducing rejection action or 

applying wait-die scheme.  The wait-die scheme uses a time stamp to label a proposal and takes a 

re-propose action when response is not received in a certain amount of time.  Figure 9 shows the 

negotiation protocol.  
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At this time, it is still an open and energetically debated issue as to the relative merit of direct 

coordination model and event-based coordination model.  For the specific case addressed in this 

research, it is expected that the explicit coordination with negotiation approach will achieve 

acceptable performance for distributed aircraft landing scheduling for simple air traffic scenarios 

(with less than 4 aircraft involved).  However, the pair-wise argument-based nature of the 

negotiation algorithm will bring capacity and performance issues when resolving more advanced 

air traffic scenarios since it will take maximum 2
NC  negotiations to achieve a global solution if 

the scenario involves N aircraft.  The complexity of the scenario will make the time it costs to 

reach the final global scheduling decision unbearable compared to the event-based coordination 
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Any new 
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constraints

?  

Send 
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Figure 9: Pair-wise Argument-based Negotiation Protocol 
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approach.  Sometimes even worse, it will not achieve a converged global solution due to the non-

deterministic characteristic of the negotiation algorithm. 

2) Event-Based Coordination Model 

Event-based coordination model, on the other hand, is one in which each agent operates under 

local control and system-level coordinated behavior arises from agent-agent interactions by 

generating events and by reacting to events of interest, without an explicit notion of task-directed 

communication or negotiation.  Event-based coordination in a distributed system is dominated by 

client/server platform relying on synchronous request/reply.  However, this architecture is not 

well suited to this research due to the following reason: 

a) In the client/server platform, clients and servers are coupled, i.e., sever needs to know 

the identification of the client who requests service so that it can deliver the service to 

the client.  However, in the decentralized aircraft landing scheduling application 

address in this research, it is desired that the aircraft who generate the scheduling 

decision and the aircraft who follow it are decoupled, i.e., the aircraft following the 

scheduling decision only care if an active scheduling decision is generated or not, but 

independent from the identification of the aircraft who generate it. 

b) The client/server platform heavily relies on synchronous request/replay, i.e., the client 

needs to be blocked waiting for its requesting service from the server in order to 

maintain client/server synchronization.  It is not desirable for this research since the 

aircraft needs to perform concurrent flight operations while waiting for the scheduling 

decision from the other aircraft that generate them.  

In contrast to client/server platform, pub/sub paradigm directly reflects the intrinsic behavior 

of information-driven applications because communication here is indirect and initiated by 

producers of information: producers publish notifications and these are delivered to subscribed 

consumers by the help of a notification service that decouples the producers and the consumers 

[47].  The loosely coupled communication scheme that introduced by the pub/sub paradigm fits 
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well to the highly dynamic nature of the operational environment of the decentralized aircraft 

landing operations addressed in this research.  Furthermore, pub/sub paradigm represents a 

general-purpose solution for information dissemination that can fit the scenarios that require an 

asynchronous many-to-many communication, and it is exactly the desirable feature in the 

decentralized air traffic management system.  Therefore, pub/sub communication paradigm is 

chosen to implement event-based coordination in this research.   

In the pub/sub system established in the specific domain of aircraft landing scheduling 

addressed in this research, the producers are defined here as arbitration aircraft that are triggered 

by time/distance based events.  They then initiate the scheduling decision process or aircraft state 

update broadcast.  Consumers are defined as the submission aircraft that are notified by the 

arbitration aircraft with the scheduling decision or aircraft state update notifications.  The 

submission aircraft then activate the corresponding event handler based on their “subscription” to 

the ADS-B message notifications.  Each aircraft in a scenario can take on the role of an 

arbitration aircraft or a submission aircraft. Arbitration aircraft generate ADS-B message 

notifications during the scheduling or aircraft state update process, which is then “consumed” by 

submission aircraft.  The main semantical characterization of this pub/sub system is in the way 

ADS-B message notifications flow from arbitration aircraft to submission aircraft: submission 

aircraft are not directly targeted from arbitration aircraft, but rather they are indirectly addressed 

according to the content of ADS-B message notifications.  That is, a submission aircraft only 

expresses its interest by issuing subscriptions for specific ADS-B message notifications, 

independently from the arbitration aircraft that generate them, and then it is asynchronously 

notified for all ADS-B message notifications, submitted by any arbitration aircraft, that match 

their subscription.  In the present context, asynchronous means that a submission aircraft does not 

have to be blocked waiting for notifications to arrive (such as in client/server model), but it can 

keep on performing concurrent flight operations. 
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In most of the pub/sub systems, a logical intermediary between publishers and subscribers, 

known as Notification Service (NS), is usually implemented to avoid each publisher to have to 

know all the subscription for each possible subscriber.  Both publishers and subscribers 

communicate only with a single entity, the Notification Service.  In this research, the 

“centralized-like” middleware is implemented as a distributed set of processes under the 

assumption that the on-board ADS-B equipment is capable of dispatching ADS-B message 

notifications effectively via reliable channels. 

a. Elements of the Decentralized Aircraft Landing Scheduling Pub/Sub System 

The decentralized aircraft landing scheduling pub/sub system is represented by a triple set <A, 

P, S> of  processes (Figure 10).  Sets are defined depending on the role of processes in the 

dynamic system at time instance t: A(t) =�
=

n

i
i ta

1

)(  is a set of n processes, called arbitration 

process initiated by arbitration aircraft, which are producers of information; S(t) =�
=

m

i
i ts

1

)( is a 

set of m processes, called submission process generated by submission aircraft, which are 
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Figure 10: Decentralized Aircraft Landing Scheduling Pub/Sub System 
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consumers of information;  P(t) =
1

( )
k

i
i

p t
=
� is a set of k processes, called messenger process 

worked as centralized-like middleware at logical layer, which are residents of the Notification 

Service.   

It is assumed that arbitration and submission processes are decoupled, meaning a process in A 

cannot communicate directly with a process in S and vice versa at any time instance t.  

Decoupling is a desirable feature in this research since it isolates the distributed coordination 

process on making scheduling decision, which is the focus of this research, from the ADS-B 

communication issues such as addressing or synchronization.  Processes in A and S can 

communicate with any process in P.  Therefore, the set of P represents a logically centralized 

entity that allows the communication between publishers (or producer) and subscribers (or 

consumer), at the same time maintaining them decoupled. In this research, the physical 

implementation of the Notification Service is an on-board autonomous component on the top of 

integrated system of each aircraft agent.     

b. Interaction between Process and the Notification Service 

 As stated earlier, there is no direct communication between processes in set A and S, and 

all communication has to pass through the Notification Service.  The execution of the 

decentralized aircraft landing scheduling pub/sub system then comprises two categories of 

operations: process-side operations, started by time/distance based event trigger of aircraft agent; 

and NS-side operations, started by the NS.  More specifically, any aircraft agent in the system can 

initiate an arbitration process (publish) or a submission process (subscribe), but it is the NS that 

plays the role of notifying a matching occurrence to interested subscribers.  The following four 

types of operations are therefore defined accordingly: 

a) Pub(ai): operation of publishing process ai in set A.  ai is initiated by an arbitration 

aircraft and it can be a scheduling initiate process or state broadcast process. 

b) Notify(pi): operation of issuing the notification of pi. 
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c) Sub(si): operation of registration of a subscription si in set S.  si is initiated by a 

submission aircraft and it can be a scheduling follow process or state update process, 

which are the counterparts of publications of scheduling initiate process and state 

broadcast process. 

d) Unsub(si):  operation of cancellation of a subscription si in set S. 

Then the operations Pub(ai), Sub(si), and Unsub(si) are issued by a process in set A and S 

respectively, and are sent to NS for execution.  Operation Notify(pi), on the other hand, is issued 

by the NS and send to the process for execution.  Note that operation Notify(pi) only occurs after 

the execution of its Pub(ai) counterpart (i.e., pi and ai share the same content, hereafter denoted as 

content(pi) = content(ai)). 

c. Communication Delay Consideration 

There are two types of communication delay that need to be taken into account for the 

physical implementation of the pub/sub system: 

a) Subscribe/unsubscribe delay: when a subscribe/unsubscribe operation occurs, the NS is 

not immediately aware of the event since the registration or cancellation of a 

subscription takes a certain amount of time to be stored into the NS.  In this research, 

the major contribution of this communication delay comes from the internal database 

update of the NS.  To simulate such communication delay, an acceptable time 

threshold is used.  We denote such delay as Tsub for subscribe operation and as Tunsub 

for unsubscribe operation. Therefore if a subscribe operation is issued at time st  then it 

takes effect at a time  t such that s s subt t t T≤ ≤ + .  The same holds for unsubscribe 

operation, that is, an unsubscribe operation issued at time ut takes effect at a time 't  

such that '
u u unsubt t t T≤ ≤ +  

b) Publication/notification delay:  similar as subscribe/unsubscribe operations, it would 

take certain amount of time to complete publication or notification operation.  In this 
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research, the major contribution to publication delay comes from ADS-B transmission 

delay, whereas the computation time of “matching interested subscribers” in the NS 

mainly contributes to the notification delay. Again, two time thresholds, denoted as 

pubT  and  notT ,  are used to simulate publication delay and notification delay 

respectively.   

d. Computational Model 

In this research, two subscription types are defined: scheduling decision subscription, denoted 

as dθ , which is initiated by  a scheduling follow process in set S; and aircraft state update  

subscription, denoted as uθ , which is initiated by a state update process in set S.  Similarly, two 

publication types are defined: scheduling decision publication, denoted as dΨ , which is initiated 

by  a scheduling initiate process in set A; and aircraft state update  publication, denoted as uΨ , 

which is initiated by a state broadcast process in set A.  Assuming the issue of an operation op = 

{Pub(ai), Notify(pi), Sub(si), Unsub(si)} at time instance t generates an event ei(op, t).  Then the 

local history of any process i can be denoted as a sequence of events according to the time order 

of occurrence: hi = {ei(op, t1), ei(op, t2), ..., ei(op, tm)} where t1< t2<...< tm.  The global history is 

then denoted as H = {h1, h2, ..., hn}, a collection of local histories, one for each process.  

The time interval of an active subscription θ can be represented by two successive events 

ei(Sub(si), ts) and ei(Unsub(si), tu), denoted as ( )T θ .  Such subscription time interval then include 

all events ei(op, t) s.t. s ut t t≤ ≤ . The time internal of an active publication Ψ , denoted as 

( )T Ψ can be represented by two successive events ej(Pub(aj), tp) and ei(Notify(pj), tn) such that 

p n p pub nott t t T T≤ ≤ + + and content(aj) = content(pj). 

Several publish/subscribe rules are then applied to the decentralized aircraft landing 

scheduling pub/sub system accordingly to some general properties of pub/sub system and some 

application-specific features in this research:  
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a) Legality rule (general): a subscriber cannot be notified for any information it is not 

subscribed.  The mathematical formulation is presented as follows: 

( )( ( ), ) ( ( ), ) ( ) . . ( . ) ( ) 13i i i i ie Notify p t H e Notify p t T s t content s content pθ θ∀ ∈ � ∈ =  

b) Validity rule (general): while Legality states that a notify event belongs to H only if it 

is included in a subscription time interval matching that event, we need a property that 

ensures the notify events are not invented by a process, but are always invoked after 

publish event.  In its mathematical formulation, this Validity rule is presented as 

follows: 

( )' '( ( ), ) ( ( ), ) . . ( ) ( ) 14i i j j i je Notify p t H e pub a t H s t content p content a and t t∀ ∈ �∃ ∈ = <  

c) Liveness rule (general): it states exactly to which subscriber a publication is notified to, 

considering both subscribe/unsubscribe delay and publication/notification delay.  The 

mathematical formulation is presented as follows: 

( )' '

( ( ( ), ) ( ( ) . . ( ) [ , ]) . . ( ) ( . ))

( ( ), ) . . ( ) ( ) 15

i i pub not i

j j j i pub not

e Pub a t T H s t T t t T T s t content a conent s

e Notify p t H s t content p content a and t t t T T

θ θ θ∀ ∈ ⊃ + + =

�∃ ∈ = < < + +

�
 

d) Uniqueness rule 1 (application specific):  it poses the constraint that at most one 

scheduling decision publication can be active at a time, i.e., at most one aircraft can 

initiate a scheduling decision process at a time.  The mathematical formulation is 

presented as follows: 

( )' ' '

( ( ( ), ) ( ( ) . . ( ) [ , ])

( ( ( ), ) ( ( ) . . ( ) [ , ]) ) 16

i i d d pub not

j j d d pub not

e Pub a t T H s t T t t T T

e pub a t T H s t T t t T T and i j

∃ Ψ ∈ Ψ ⊃ + +

�¬ ∃ Ψ ∈ Ψ ⊃ + + ≠

�

�
 

e) Uniqueness rule 2 (application specific): it poses the constraint that at most one 

aircraft state update  publication per aircraft ID can be active at a time, i.e., an aircraft 

can at most initiate one ADS-B state update broadcast process at a time.  Its 

mathematical formulation is presented as: 
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( )

' ' '

( ( ( ), ) ( ( ) . . ( ) [ , ])

( ( ( ), ) ( ( ) . . ( ) [ , ])

( . ) ( . ) ) 17

i i u u pub not

j j u u pub not

i j

e Pub a t T H s t T t t T T

e pub a t T H s t T t t T T

and content a AircraftID content a AircraftID and i j

∃ Ψ ∈ Ψ ⊃ + +

�¬ ∃ Ψ ∈ Ψ ⊃ + +

= ≠

�

�

 

f) Completeness rule (application specific): it states the fact all of the aircraft in the 

scenario need to be notified whenever an aircraft initiates a scheduling decision 

process or ADS-B state update broadcast process. The complete set of aircraft ID in the 

scenario is denoted as Ω .  It unifies the information space of all aircraft in the 

scenario: 

( )

'

'

( ( ( ), ) ( ( ( ), ) . . ( . )

) 18
i i k k k

pub not

e Pub a t j e Notify p t H j s t content p AircraftID j

and t t t T T

∀ �∀ ∃ ∈ ∈Ω =

< < + +

�

 

e. Implementation Methodology 

 The following assumptions are made for the implementation of the event-based coordination 

model of the decentralized aircraft landing scheduling system: 

a) ADS-B device provides the sufficient updated knowledge of all aircraft to be 

sequenced, and is defined here as aircraft state information (altitude, longitude, 

latitude, airspeed, vertical speed, and heading), time stamp, flight path intent 

information (next two waypoints on the intended flight path). 

b) Emergency mode is not considered, i.e., no aircraft has higher priority than any other 

one due to the fuel status and emergency priority. 

The event-based coordination model is designed and implemented in the form of a finite state 

machine that consists of a variety of discrete legal states and the legal transitions between states 

during the scheduling process and ADS-B state update process.  Figure 11 shows the Matlab 

Stateflow implementation of the event-based coordination for scheduling process. 
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Each aircraft in the scenario is equipped with an ADS-B transponder, and maintains a local 

database that stores a certain time range of ADS-B messages.  An on-board scheduling tool using 

aircraft state information retrieved from the ADS-B message is used to make scheduling 

decisions.  Details of the states defined in the event-based coordination for scheduling process 

and the transitions between states are described in Table 2, and details of states defined in the 

event-based coordination for ADS-B state update process and the transitions between states are 

described in Table 3.   

 
Table 2. Event-based Coordination States/Transitions for Scheduling Process  
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Table 2 Continued  

 

Table 3. Event-based Coordination States/Transitions for ADS-B State Update Process 
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Table 3 Continued 

 

 

The following nominal scenario with 3 aircraft involved is provided for better understanding 

of how event-based coordination for scheduling process is achieved via pub/sub communication 

paradigm.  Figures 12-15 show the scheduling initiation phase, scheduling following phase, 

dynamic re-scheduling phase, and unsubscribe scheduling phase of the nominal scenario.  
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• Phase 1 (Figure 12): Scenario starts at 3:00 PM.  Two aircraft are approaching to their desired 

IAFs.  Aircraft 1 is a Mooney 201, and its cruise speed is 180 knots and the distance to its 

target IAF (RAZVY) is 30 nm; aircraft 2 is a Piper Cub 80, and its cruise speed is 80 knots 

and distance to its target IAF (LOUIE) 35 nm.  Aircraft 1 initiates a scheduling process by 

broadcasting a “scheduling time window locked” message.  After it receives the “lock 

confirmed” message from aircraft 2, it makes the following scheduling decision using the on-

board aircraft landing scheduling tool:  Aircraft 1 gets the first spot in the landing sequence 

and its landing time is scheduled at 3:25 PM; Aircraft 2 gets the second sequencing spot and 

its landing time is scheduled at 3:47 PM.  It then broadcasts the scheduling decision 

publication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Nominal Scheduling Scenario Phase 1 - Scheduling Initiation 
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• Phase 2 (Figure 13): Aircraft 2 gets the notification with the scheduling decision since it is a 

subscriber to the scheduling decision publication.  Both aircraft 1 and 2 follow the scheduling 

decision by planning the flight path that achieves the scheduled landing time.  Aircraft 1 

plans to arrive at its desired IAF (RAZVY) at 3:11 PM and starts the approach immediately 

whereas aircraft 2 plans to arrive at its desired IAF (LOUIE) at 3:28 PM starts the approach 

immediately.  Separation requirement in the en-route phase of flight and spacing criteria 

within SCA are taken into consideration in the flight path planning using the on-board CD&R 

functionality. 

 

 

 Figure 13: Nominal Scheduling Scenario Phase 2 - Scheduling Following 
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• Phase 3 (Figure 14): A Cessna 172 (aircraft 3 in the figure) with cruise speed 125 knots and 

distance to its target IAF (LOUIE) 37.5 nm enters into the scenario at 3:10 PM and it initiates 

a scheduling process immediately. It reaches the following scheduling decision that 

minimizes the global cost while maintaining the landing separation: Aircraft 1 keeps the first 

spot in the landing sequence and its scheduled landing time is unchanged.  Aircraft 2 is re-

scheduled to be the last one in the sequence and its scheduled landing time is change to 3:50 

PM.  Aircraft 3 gets the second spot and its landing time is scheduled at 3:42 PM.  Aircraft 3 

then broadcasts the new scheduling decision publication. 

 
Figure 14: Nominal Scheduling Scenario Phase 3 - Dynamic Re-Scheduling 
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• Phase 4 (Figure 15): Aircraft and 2 get the notification with the new scheduling decision 

since they are both the subscriber to the scheduling decision publication.  All three aircraft 

follow the new scheduling decision by re-planning the flight path that achieves the updated 

scheduled landing time.  At 3:11 PM, aircraft 1 arrives at its target IAF (RAZVY).  It then 

unsubscribes the scheduling decision publication before it enters into the SCA and starts the 

landing approach.  It will not be notified with any further updated scheduling decision 

publication.  However, it still receives the ADS-B state update from the other aircraft since it 

is a subscriber to the aircraft state update publication. 

 

 

 
Figure 15: Nominal Scheduling Scenario Phase 4 – Unsubscribe Scheduling 

Decision Publication after Entering into SCA 
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The deterministic characteristic of the state transition machine implementation of the event-

based coordination model for scheduling process assures that each aircraft in the distributed 

environment has identical information required for making a scheduling decision and will 

therefore generate an identical scheduling decision.  However, further explorations are required 

for the following two boundary conditions: 

a) More than one aircraft broadcast a scheduling time window lock message at the same 

time. 

b) Aircraft is on the edge of updating an ADS-B message when receiving a scheduling 

time window lock message. 

These two boundary conditions are extreme cases where they exceed the capability of the 

current computing power.  Take condition 1 as an example, it will only be present when two 

aircraft broadcast the locking message exactly at the same time.  Considering the current 

computing power can easily tell the ms time difference, its chance to happen in practice is rare.  

However, if it happens, i.e., two messages actually come in at the “same time” that the program 

can not tell the difference, the easiest practical solution is to reject both messages and let them re-

broadcast.  The systematic approach to address these issues is more like a computer science 

problem, which is beyond the scope of this research. 

 

C. Special Considerations 

There are several issues need to be addressed to complete the implementation of the pub/sub 

communication paradigm in decentralized aircraft landing scheduling application before we close 

this chapter.   

1. Spacing Constraints within SCA 

Earlier in this chapter it is mentioned that the on-board CD&R algorithm not only maintains a 

distance-based separation in the en-route phase of flight, but also enforces a time-based spacing 

in the final approach.  This is achieved by taking separation requirement in the en-route phase of 
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flight and spacing criteria within SCA into account when the aircraft agent generates its flight 

path plan based on the current active scheduling decision.  This is sufficient for the nominal 

scenarios when all the aircraft share the same target IAF, or time interval of two successive 

aircraft in the landing sequence with different target IAF arriving at IF (Intermediate Fix) meets 

the spacing criteria within SCA as per the scheduling decision.  The nominal scenario showed 

earlier represents the case.  However, applying landing separation constraint in scheduling 

decision-making alone is not sufficient for some nominal scenario since it only represents the 

accumulated separation at the runway threshold.  Figure 16 shows an example.  

 

 

 
Supposing time stamp of the scenario is 3:00 PM.  Aircraft 1 has holding speed of 65 knots and 

just arrives at IAF - RAZVY; aircraft 2 has holding speed of 80 knots and just arrives at the other 

IAF - LOUIE.  Aircraft 1 initiates a scheduling process the scheduling decision is made as 

follows: Aircraft 2 lands first and its scheduled landing time is 3:12 PM; Aircraft 1 lands the 

Figure 16: Nominal Scheduling Scenario – Insufficient Spacing Constraint 
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second and it is scheduled to land at 3:15 PM.  They have 3 minutes landing separation since 2 

minutes landing separation constraint is applied in the scheduling model.  However, they both fly 

towards IF and at some point near to IF they will certainly violate the spacing criteria within 

SCA.  Spacing constraints presented in [53] are then added to serve as additional constraints 

included in the aircraft landing scheduling model described in chapter III.  Numerical result of the 

flight simulation exercise of the augmented scheduling model is presented in chapter V. 

2. Dynamic Re-Scheduling Issues 

Re-scheduling is triggered when some dynamic event happen in the operational environment, 

such as the appearance of a new aircraft or speed profile change due to deviation of the planned 

flight path.  It is intentionally designed that aircraft that has entered into SCA will not be notified 

with any further updated scheduling decision publication, but still receives the ADS-B state 

update from the other aircraft.  Scheduled landing time of all the aircraft within SCA are fixed 

and will not be affected by later scheduling decision update.  The main purpose of this rule is to 

maintain the stable and orderly landing sequence within SCA due to the operation procedure 

constraints, such as a successive aircraft is not allowed to surpass any precedent aircraft within 

SCA.  However, scheduling decision update needs to take those aircraft within SCA into account 

although the updated scheduling decision will not be delivered to those aircraft within SCA. 
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Take the following scenario (Figure 17) as an example:  Supposing time stamp of the scenario 

is 3:00 PM.  Aircraft 1, a Piper Cub, with holding speed of 65 knots and approach speed of 50 

knots, is flying towards IF.  Its scheduled landing time is 3:14 PM and it will be fixed since 

aircraft 1 is within SCA already.  Aircraft 2 is a Cessna 172, and it has holding speed of 100 knots 

and approach speed of 80 knots while being apart from its target IAF (LOUIE) 25 nm.  Aircraft 3 

is a Mooney 201 with holding speed of 110 knots and approach speed 80 knots while being 10 

nm away from its target IAF (RAZVY).  At the point aircraft 3 initiates a dynamic re-scheduling.  

If aircraft 1 is not taken into consideration when making updated scheduling decision, aircraft 3 

will be scheduled first and its scheduled landing time is also 3:14 PM, which obviously violates 

the landing separation requirement.  Therefore, aircraft within SCA need to be considered when 

dynamic re-scheduling occurs so that spacing criteria within SCA will be assured.   

3. Pub/Sub System Optimality 

Recall that we claimed earlier in chapter I that research on aircraft scheduling can be roughly 

divided into two areas.  One area determines efficient scheduling algorithms, and the other studies 

Figure 17: Nominal Scheduling Scenario – Dynamic Re-Scheduling Issue 
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performance potentials and overall strategies of automated aircraft scheduling.  This research is of 

the latter and its main focus is to establish a robust and operational effective communication 

paradigm that would well handle the information diffusion problem due to distributed 

coordination in the decentralized operational environment.  Pub/sub communication paradigm is 

chosen not only because it provides a loosely coupled communication scheme that fits well to the 

highly dynamic nature of the operational environment of the decentralized aircraft landing 

operations, but it also represents a general-purpose solution for information dissemination that 

can fit the scenarios that require an asynchronous many-to-many communication, which is 

exactly the desirable feature in the decentralized air traffic management system.  In general, 

optimality analysis of a pub/sub system involves with information routing optimization, which is 

beyond the scope of this research, and it is actually not necessary for this research since the 

pub/sub system established here has a very limited number of information routes.  However, the 

simplex algorithm used in the on-board aircraft landing scheduling tool introduces some 

optimization concerns to the established pub/sub system in this research. 

The simplex algorithm implemented in this research is as follows: 

1) Rewrite the aircraft landing scheduling model into standard vector form of a linear 

programming problem (refer to equations 10 and 11 in chapter III). 

2) Transfer the linear programming problem to be in augmented form: 

 

 

                                                                                                                                                  (19) 

Where X are the variables from the standard form, XS are the introduced slack variables from 

the augmentation process, c contains the optimization coefficients, A and b describe the 

constraint set, and Z is the objective function to be maximized. 

3) At any iteration of the simplex algorithm, the tableau will be of this form: 
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                                                                                                                                                     (20) 

Where Bc  is the coefficients of basic variables (non-zero values) in the c-matrix; and B is the 

columns of [ ]A I  corresponding to the basic variables. 

4) Choose an initial basic feasible solution, if it is not an optimal solution, do the following: 

•    Determine direction of highest gradient: Choose the variable associated with the 

coefficient in                                                                          that has the highest negative magnitude. This basic 

variable, which we call the entering basic, will be increased to help maximize the objective 

function. 

•    Determine maximum step length: Use the 1 1 1

S

X
B A B B b

X
− − −� �

� � =� �� �
� �

 sub-equation to 

determine which basic variable reaches zero first when the entering basic is increased. This 

variable, which we call the leaving basic then becomes non-basic (zero value). This 

operation only involves a single division for each basic variable, since the existing basic-

variables occur diagonally in the tableau. 

•    Rewrite problem: Modify B and Bc  to account for the new basic variables. This will 

automatically make the tableau diagonal for the existing and new basic variables. 

•    Check for improvement: Repeat procedure until no further improvement is possible, 

meaning all the coefficients of   are positive. Procedure is also 

terminated if all coefficients are zero, and the algorithm has walked in a circle and revisited 

a previous state. 

It is worthy mentioning that the simplex algorithm implemented in this research is originated 

from Ref. [54].  The algorithm starts with an initial basic feasible solution and tests its optimality. 

If some optimality condition is verified, then the algorithm terminates.  Otherwise, the algorithm 
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identifies an adjacent basic feasible solution, with a better objective value.  The optimality of this 

new solution is tested again, and the entire scheme is repeated, until an optimal basic feasible 

solution is found.  Since every time a new basic feasible solution is identified such that the 

objective value is improved, and the set of basic feasible solution is finite, it follows that the 

algorithm will terminate in a finite number of steps (iterations).  

It is also interesting to examine the geometrical interpretation of the behavior of Simplex 

algorithm. Given the above description of the algorithm and the correspondence of basic feasible 

solution to extreme points, it follows that Simplex essentially starts from some initial extreme 

point, and follows a path along the edges of the feasible region towards an optimal extreme point, 

such that all the intermediate extreme points visited are improving (more accurately, not 

worsening) the objective function. 

 

D. Conclusions 

Addressed in this chapter are the approach and issues of implementing decentralized aircraft 

landing operations at the terminal area of non-controlled airports, and thus provides a clear 

approach to the distributed air traffic management system.  An on-board aircraft landing 

scheduling tool, resulted from the integration of an aircraft landing scheduling model and 

distributed coordination function, was implemented to achieve dynamic self-scheduling in the 

ultimate uninterrupted free-flight operational environment.  Distributed coordination issues, 

which pose most of the technology challenges to the decentralized aircraft landing operation, 

were addressed.  Two coordination models, with focus on event-based coordination model, were 

discussed for comparison.  Methodologies description of how to resolve challenges brought by 

distributed coordination issues using the event-based coordination model was provided, from the 

establishment of the mathematical model to the application implementation.   
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CHAPTER V 

REAL-TIME SIMULATION METHODOLOGY AND NUMERICAL RESULT 

 Flight simulation methodologies are essential for evaluating the performance of the air traffic 

static aircraft landing scheduling algorithms used in the Air Traffic Control automation system, 

and the dynamic aircraft landing scheduling algorithms used in the distributed Air Traffic 

Management system, described in chapter III and IV respectively.  In this chapter we first address 

the approach of determining customized simulation architecture suitable for this research, 

followed by how the final simulation architecture selection is implemented. Finally, numerical 

examples for static and dynamic cases respectively are presented for Monte Carlo, real-time flight 

simulation.   

 

A. Real-Time Pilot-In-The-Loop Simulation 

During the past eight years, extensive research work has been done in the Texas A&M 

University Flight Simulation Laboratory (FSL) on designing and developing intelligent cockpit 

systems and pilot decision-aiding tools for General Aviation (GA) aircraft using fix-based flight 

simulation validation and evaluation [55].  The Engineering Flight Simulator (EFS), and the 

Automated Safety and Training Avionics (ASTRA) combined provide a pilot-in-the-loop real-

time simulation environment that can be adjusted to fit different simulation fidelity requirements. 

1. Engineering Flight Simulator 

The EFS is a real-time, nonlinear, six degree-of-freedom fixed base pilot-in-the-loop simulator 

powered by an SGI ONYX Reality II workstation with one R4400 processor chip and 256 MB 

RAM [56].  It contains a T-37 style cockpit with reconfigurable multifunction displays that can be 

rapidly modified and tailored to fit individual project needs for a wide range of general aviation, 

commercial, and military cockpit displays.  The external environment is displayed on a three-

panel projection surface that allows the pilot a field of view of 75 degrees vertically and 155 
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degrees horizontally [56].  The EFS is currently configured to simulate a Rockwell Commander 

C700, which is a light twin General Aviation (GA) aircraft.  Figure 18 shows a pilot operating the 

EFS.   

 

 

 

 

 

 

 

 

 

 
Figure 18:  Cockpit and External Display of Real-Time Engineering Flight Simulator 

 
2. Pilot Advisor and Training System 

The Automated Safety and Training Avionics (ASTRA) is a computerized airborne expert 

system developed in a previous research program [57].  It is used to assess the pilot’s flying 

performance, and issues recommendations for pilot actions in all flight phases from take off to 

landing.  It infers the flight mode of an aircraft from sensed flight parameters using fuzzy logic 

methods.  The pilot’s flying performance is assessed based on the interpreted flight mode, an 

embedded knowledge base, and pilot inputs.  Recommendations are then issued for pilot actions.  

Such a system improves safety by enhancing situational awareness, and reducing the cost and 

time required to achieve and maintain pilot proficiency.  Figure 19 illustrates the modular design 

of ASTRA and the interfaces between the software components and the necessary supporting 

hardware.   

 



 
 

76 

 

 

 

 

 

 

 

 

 

 

Figure 19:  Automated Safety and Training Avionics Architecture 
 
 

B. Fast-Time Multiple-Agent System Simulation 

Multiple-agent system simulation is the candidate simulation architecture that achieves time 

and money cost effectiveness, especially when the operation concepts and algorithms are still 

under prototyping phase.  In general, agent-based simulation model represents simulation 

architecture for modeling and simulation of complex systems consisting of entities of different 

behavior, and multiples of these different entities interact with each other in significant ways.  

Usually the most important feature of agent-based simulation model is the efficient integration of 

different entities interacting with each other.  Different modeling and simulation approaches used 

must be integrated in a consistent manner so that the entire system can be simulated with an 

appropriate speed/accuracy tradeoff.   

The main purpose of the research addressed in this paper is to explore the feasibility and 

capability of aircraft landing scheduling within uninterrupted dynamic free-flight environment at 

the terminal area of non-controlled airports.  At the early stage of this research, pilot-in-the-loop 

flight simulation was original designed to achieve better simulation fidelity.  However, 

considering the fact that the operation concepts introduced in this research was original and the 

feasibility analysis was more of concern than high fidelity simulation performance and human 
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factors at the time when it was under prototyping, multiple-agent system simulation emerged as a 

better candidate.  As research approached in progress, the advantages of agent-based simulation 

took effect since it shortened the algorithms development and modification cycle considering the 

fact that it’d take huge amount of time and resource to conduct pilot training for the new 

operation concepts and thus execute pilot-in-the-loop simulation.  It then came to the point that 

multiple-agent system simulation was chosen as the final simulation architecture. However, the 

simulation system in the FSL was not able to provide multiple-agent simulation environment that 

was required to validate the operation concepts and scheduling algorithms in this research. A 

multiple-agent simulation platform, named Air Traffic Information Management System (AIMS) 

was then developed to meet the simulation requirements for this research.  In order to make 

AIMS an open simulation platform that satisfies the comprehensive simulation requirements for 

different kinds of Air Traffic Management (ATM) research projects, it was built as a pure agent-

based and plug-in modular simulation system.  Fig. 20 shows the hierarchy architecture of AIMS. 

 

 

 

 

 

 

 

 

 

 

 

Figure 20:  AIMS Hierarchy Architecture 
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AIMS is composed of four components:  

1. Traffic Scenario Generator  

The traffic scenario generator sets up the initial conditions and settings for each  simulation, 

such as the initial configuration and conditions of each aircraft, the aircraft models, CD&R 

model, position, velocity, etc.; the airspace domain, either en-route airspace or terminal airspace; 

the weather and terrain configuration; and the simulation mode, either fast-time or real-time 

mode.  Uncertainly factors are also introduced to provide the Monte Carlo simulation 

characteristics.  The traffic scenario generator generates traffic scenarios based on either a 

combination of actual congested air traffic data, and simulated traffic data created by some 

known traffic distribution functions. Realistic traffic data can be obtained by using flight plans 

filed at the Air Route Traffic Control Center (ARTCC) host computer. Simulated traffic data is 

complemented to real traffic data to create some reasonable level of air traffic volume.  

2.  Intelligent Aircraft Agent  

Each aircraft in AIMS is implemented as an intelligent aircraft agent. The aircraft agent 

developed in this research is designed and implemented for FAR 23 Class GA aircraft under Free 

Flight conditions.  Most FAR 23 Class GA aircraft in use today, however, are not equipped with 

the standard navigation and communication devices commonly found on commercial air 

transportations.  As the original operation concept introduced in this research is designed for a 

future implementation of Free Flight, it is anticipated that this advanced equipment will be 

available on GA aircraft at that time.  Therefore, in this research it then assumes that the aircraft 

agents implement real-time flight operations with the aid of the following on-board devices: 

ADS-B devices, so that the aircraft has the access to current traffic information; Flight 

Management System (FMS), so that the aircraft can utilize the traffic information from ADS-B 

devices for Conflict Detection & Resolution (CD&R) and landing scheduling; and a 

communication device that gives the aircraft the capability to communicate with other aircraft.  It 

should be noted that the CD&R algorithm not only maintains a distance-based separation in the 
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en-route phase of flight, but also enforces a time-based spacing in the final approach.  It is 

assumed that each aircraft agent is equipped with such on-board CD&R module to plan 

maneuvers for an optimized and conflict-free trajectory.  It is also assumed that the on-board 

CD&R module is sufficient to provide self-separation advisories for pilots since this research 

targets issues of aircraft landing scheduling operation only.  Note that the ASTRA, the 

computerized airborne expert system introduced in section A, is integrated with aircraft agent to 

enhance the agent functionality.  Figure 21 shows the architecture of an intelligent aircraft agent.  

 

 

Figure 21. An Intelligent Aircraft Agent 
 
 

3. Airport Model  

Implementation of an airport model is divided into four steps. First, the terrain configuration 

of an airport and its surrounding area is generated based on its one-degree U.S. Geological 

Survey (USGS) Digital Elevation Models (DEM). Second, weather-constrained airspace in the 

terminal area of an airport is generated based on real-time weather conditions. Third, data transfer 

and data interpretation functions are developed to take responsibility for the interactive actions 

between the intelligent aircraft agent and the airport.  

4. Weather Model  

Real weather data can be obtained from resources on the Internet. This data is either recorded 

data in the form of historical databases, or actual real-time data, e.g., those provided by National 

Oceanic and Atmospheric Administration (NOAA) or National Weather Service (NWS). Since 



 
 

80 

 

most of the weather data is discrete data points, the weather model is established by applying 

interpolation/extrapolation methods and ruled-based model identification methods.  

At the early stage of operation concept and algorithm prototyping and designing, fast-time 

multiple-agent system simulation was conducted in order to shorten the development cycle time.  

The most important advantage of the fast-time simulation is that it allows a variety of 

experimental conditions to be varied “Monte Carlo-style”.  Such simulations enable rapid, 

iterative concept refinement, and help focus subsequent real-time simulations by identifying test 

scenarios and experimental conditions likely to provide clear insights. In this research fast-time 

simulation studies were conducted by introducing a variety of distribution functions to simulate 

the uncertainty encountered in the real air traffic, and then evaluate the algorithm performance by 

verifying how often the converged solutions are achieved when uncertainty are introduced.  It 

was also used to identify the boundary conditions of the scenario sets for normal operations, 

separated from abnormal operations that are not the concern of this research, in the subsequent 

real-time multiple-agent system simulation. 

 

C. Real-Time Multiple-Agent System Simulation 

As stated earlier, feasibility and capability analysis of the original operation concepts and 

scheduling algorithms are more of interest than high fidelity simulation performance and human 

factors in this research.  Originally the operation concepts, scheduling algorithms, and multiple-

agent system simulation system were implemented using development platform provided by 

Visual C++ Development Studio.  It provided good fast-simulation performance with its strong 

support for event-driven mechanism, where fast development of Graphic User Interface (GUI) 

was achieved to generate initial conditions for user-customized scenarios.  It was also suitable for 

the fast-time simulation due to the significant user-machine interaction during the simulation-run.  

Fast-time multiple-agent system simulation provided sufficient information for feasibility 

analysis at early stage of algorithm prototyping and designing, such as verifying if the scheduling 
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algorithms rendered the converged solutions.  However, it reached its bottleneck when the 

research approached to the phase of capability analysis, where time-sensitive performance metrics 

were introduced to evaluate the effectiveness and efficiency of the operation concepts and 

scheduling algorithms.  That was when an upgrade from fast-time simulation to real-time 

simulation emerged as a solution. 

There are several commercial tools in the market supporting real-time simulation, such as 

Matlab by MathWorks and RT-LAB by Opal-RT.  Considering the powerful feature of easy 

integration of user-customized code into Matlab Simulink toolbox which provides an interactive 

graphical environment for fast development, Matlab was selected for the real-time multiple-agent 

system simulation implementation. Four Matlab toolboxes were involved: Simulink, Stateflow, 

Real-Time Workshop, and Real-Time Windows Target. 

1. Matlab Toolbox – Simulink 

 Simulink is a software package for modeling, simulating, and analyzing dynamic systems.  It 

supports both linear and nonlinear systems, modeled in continuous time, sampled time, or a 

hybrid of the two [58].  Simulink supports multiple rate system which is one of the essential 

features suitable for this research since the simulation system was designed to have different 

rates, such as sample rate for scheduling algorithm computation was expected to have higher rate 

than ADS-B transmission.   

 Simulink provides a GUI for building models as block diagrams, using click-and-drag mouse 

operations [58].  From the perspective of prototyping and designing, this is far more efficient that 

the other simulation packages that require the users to formulate differential equations and 

difference equations in a language or program.  Simulink includes a comprehensive library of 

reusable block diagram for direct use such as sinks, sources, linear and nonlinear components, 

and connectors.  Another essential feature for this research is Simulink provides users with the 

capabilities of customizing and creating user-defined blocks through its S-function mechanism.  

An S-function is a computer language description of a Simulink block, and it can be written in 
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Matlab, C, C++, Ada, or Fortran.  Users can write a piece of computer program in their favorite 

language such as C++, and then convert it into S-function by following a set of simple rules.  S-

function is compiled as MEX-file which is one kind of the Matlab-defined executables that can be 

running in Matlab environment.  S-functions use a special calling syntax that enables themselves 

to interact with Simulink equation solvers.  The form of an S-function is very general and can 

accommodate continuous, discrete, and hybrid systems. 

 Simulink also provides the hierarchical architecture for model design so that users can build 

models using both top-down and bottom-up approaches [58].  A classic block diagram model of a 

dynamic system graphically usually consists of blocks and lines (signals). The history of these 

block diagram model is derived from engineering areas such as Feedback Control Theory and 

Signal Processing.  The relationships between each elementary dynamic system in a block 

diagram are then illustrated by the use of signals connecting the blocks. Users can view the 

system at a high level, and then double-click blocks to go down through the levels to see 

increasing levels of model detail. This approach provides insight into how a model is organized 

and how its parts interact. 

 One last essential feature of Simulink provided for this research is its powerful model analysis 

tools include linearization and trimming tools, which can be accessed from the Matlab command 

line, plus the many tools in Matlab and its application toolboxes. For example, linearization tool 

was used to a huge amount in the aircraft agent design phase.  And because MATLAB and 

Simulink are integrated, users can simulate, analyze, and revise the models in either environment 

at any point. 

2. Matlab Toolbox – Stateflow 

 Stateflow is an interactive graphical design tool that works with Simulink to model and 

simulate event-driven systems, also called reactive systems.  Event-driven systems transition 

from one operating mode to another in response to events and conditions [58].  These systems are 

often used to model logic for dynamically controlling a physical device.  As addressed earlier in 
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chapter IV, the event-based coordination model used in the scheduling process was implemented 

using Stateflow. 

 Event-driven systems can be modeled as finite-state machines.  A finite state machine is a 

representation of an event-driven (reactive) system.  In an event-driven system, the system makes 

a transition from one state (mode) to another prescribed state, provided that the condition defining 

the change is true [58].  Traditionally, designers used truth tables to represent relationships among 

the inputs, outputs, and states of a finite state machine.  The resulting table describes the logic 

necessary to control the behavior of the system under study. Another approach to designing 

event-driven systems is to model the behavior of the system by describing it in terms of 

transitions among states. The state that is active is determined based on the occurrence of events 

under certain conditions.  State-transition diagrams and bubble diagrams are graphical 

representations based on this approach.  A Stateflow diagram is a graphical representation of a 

finite state machine, where states and transitions form the basic building blocks of the system.  

Additionally, Stateflow enables the representation of hierarchy, parallelism, and history.  

Hierarchy enables the users to organize complex systems by defining a parent/offspring object 

structure. For example, users can organize states within other higher-level states.  A system with 

parallelism can have two or more orthogonal states active at the same time.  History provides the 

means to specify the destination state of a transition based on historical information. These 

characteristics enhance the usefulness of this approach and go beyond what state-transition 

diagrams and bubble diagrams provide.  

 One important feature of Stateflow that is critical for this research is its seamless integration 

with Simulink.  Stateflow charts run as blocks in a Simulink model.  The Stateflow block 

connects to other blocks in the Simulink model by input and output signals.  Through these 

connections, Stateflow and Simulink share data and respond to events that are broadcast between 

model and chart. [58].  Because of this feature, users can develop their Stateflow chart before or 

after the Simulink model in which it will run.  Stateflow comes with its own editor and debugger, 
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which allows users to simulate and test the chart logic before it is integrated with a Simulink 

model.  Users can test a Stateflow chart independently of its parent model by attaching a 

Simulink Source block as an input and a Simulink Sink block as an output. 

3. Matlab Toolbox – Real-Time Workshop 

 Real-Time Workshop is an extension of capabilities of Simulink and Matlab that 

automatically generates, packages, and compiles source code from Simulink models to create 

real-time software applications on a variety of systems.  By providing a code generation 

environment for rapid prototyping and deployment, Real-Time Workshop is the foundation for 

production code generation capabilities [58].  Along with other tools and components from The 

MathWorks, Real-Time Workshop provides the following features:  

• Automatic code generation tailored for a variety of target platforms. 

• A rapid and direct path from system design to implementation. 

• Seamless integration with Matlab and Simulink. 

• A simple graphical user interface. 

• An open architecture and extensible make process. 

 Real-Time Workshop generates optimized, portable, and customizable ANSI C or C++ code 

from Simulink models to create standalone implementations of models that operate in real-time 

and non-real-time in a variety of target environments.  Generated code can run on PC hardware, 

microcontrollers on bare-board environments, and with commercial or proprietary real-time 

operating systems (RTOS) [58].  Real-Time Workshop is a key link in the set of system design 

tools providing a real-time development environment – a direct path from system design to 

hardware implementation. Users can streamline application development and reduce costs with 

Real-Time Workshop by testing design iterations with real-time hardware.  Real-Time Workshop 

supports the execution of dynamic system models on hardware by automatically converting 

models to code and providing model debugging support.  It is well suited for accelerating 
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simulations, rapid prototyping, turnkey solutions, and production of embedded real-time 

applications.  

 Using integrated makefile-based targeting support, Real-Time Workshop builds programs that 

can help speed up simulations, provide intellectual property protection, and run on a wide variety 

of real-time rapid prototyping or production targets.  Simulink's external mode run-time monitor 

works seamlessly with real-time targets, providing an elegant signal monitoring and parameter 

tuning interface [58].  Usually users can start with modeling in Simulink, followed by an analysis 

of the simulations in Matlab.  During the simulation process, users use the rapid simulation 

features of Real-Time Workshop to speed up simulations. After users are satisfied with the 

simulation results, they can use Real-Time Workshop in conjunction with a rapid prototyping 

target, such as Real-Time Windows Target or xPC Target.  The rapid prototyping target is 

connected to the physical system.  Users test and observe the system, using the Simulink model as 

the interface to the physical target.  Once it is verified that the simulation is functioning properly, 

users use Real-Time Workshop to transform the model to C or C++ code.  An extensible make 

process and download procedure creates an executable for the model and places it on the target 

system. Finally, using external mode, users can monitor and tune parameters in real-time as the 

model executes on the target environment.  There are two broad classes of targets: rapid 

prototyping targets and embedded targets. Code generated for the rapid prototyping targets 

supports increased monitoring and tuning capabilities.  Code generated for embedded targets is 

highly optimized and suitable for deployment in production systems, and can include application-

specific entry points to monitor signals and tune parameters.  It is worthy mentioning that 

embedded system target is not used in this research since the complete simulation system is PC-

based. 

4. Matlab Toolbox – Real-Time Windows Target 

 Real-Time Windows Target is a PC solution for prototyping and testing real-time systems.  It 

is an environment where users can use a single PC as a host and target.  In this environment users 
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use the desktop or laptop PC with Matlab, Simulink, and Stateflow to create models using 

Simulink blocks and Stateflow diagrams [58].  After creating a model and simulating it with 

Simulink in normal mode, users can generate executable code with Real-Time Workshop using 

the Real-Time Windows Target option.  Then users can run their application in real time with 

Simulink external mode.  Integration between Simulink external mode and the Real-Time 

Windows Target allows users to use the Simulink model as a graphical user interface for Signal 

visualization and parameter tuning. 

 Real-Time Windows Target uses a small real-time kernel to ensure that the real-time 

application runs in real time.  The real-time kernel runs at CPU ring zero (privileged or kernel 

mode) and uses the built-in PC clock as its primary source of time: 

• Timer interrupt: The kernel intercepts the interrupt from the PC clock before the Windows 

operating system receives it.  This blocks any calls to the Windows operating system.  As 

a result, the kernel is able to give the real-time application the highest priority available. 

To achieve precise sampling, the kernel reprograms the PC clock to a higher frequency. 

Because the PC clock is also the primary source of time for the Windows operating 

system, the kernel sends a timer interrupt to the operating system at the original interrupt 

rate [58].  

• Scheduler: The timer interrupt clocks a simple scheduler that runs the executable.  The 

number of tasks is equal to the number of sampling periods in the model with multitasking 

mode.  With single-tasking mode, there is only one task.  The maximum number of tasks 

is 32, and faster tasks have higher priorities than slower tasks.  For example, a faster task 

can interrupt a slower task.  During execution, the executable stores data in buffers.  Later, 

the data in these buffers is retrieved by the Scope block.  The scheduling, data storing, 

data transferring, and running the executable all run at CPU ring zero [58]. 

• Communication with hardware: The kernel interfaces and communicates with I/O 

hardware using I/O driver blocks, and it checks for proper installation of the I/O board.  If 
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the board has been properly installed, the drivers allow the real-time application to run. 

Drivers also run at CPU ring zero. 

• Simulink external mode: Communication between Simulink and the real-time application 

is through the Simulink external mode interface module.  This module talks directly to the 

real-time kernel, and is used to start the real-time application, change parameters, and 

retrieve scope data.  Opening a dialog box for a source block causes Simulink to pause. 

While Simulink is paused, users can then edit the parameter values.  Users must close the 

dialog box to have the changes take effect and allow Simulink to continue. 

• Built-in C compiler:  Real-Time Windows Target applications are compiled with the Open 

Watcom C/C++ compiler. Therefore, no third-party compilers are necessary. 

5. Real-Time Multiple-Agent System Simulation Implementation 

 Up so far in this chapter, we’ve already addressed how we determine the multiple-agent 

system simulation is the most suitable simulation architecture for this research considering 

development cost, time and money resource.  Description of the chosen toolset, Matlab, and 

features of its four toolboxes used in this research are also provided in previous sections.  In this 

section we shall address how the multiple-agent system simulation architecture is implemented 

and integrated with the operation concepts and scheduling algorithms development process.  It is 

shown in Figure 22. 

 Early in the design process, Simulink and Stateflow were used to help formulate objectives, 

problems, and constraints to create the initial design.  Originally the operation concepts, 

scheduling algorithms, and multiple-agent system simulation system were implemented using 

development platform provided by Visual C++ Development Studio.  They were converted into 

Simulink with some different means.  Considering the simulation fidelity requirement of aircraft 

dynamics was not high, the intelligent aircraft agent was completely re-designed in Simulink 

taking advantage of its Aerospace Blockset which provided of a variety of reusable libraries and 

functions for easy low-middle fidelity aircraft dynamics implementation.  Operation concepts that 
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include all of the process-related codes were re-designed using Stateflow, which actually turned 

out to be really straightforward due to the GUI feature of Stateflow.  Scheduling algorithms 

required the best execution performance, and were thus converted to S-functions in Simulink with 

only interfaces to Simulink added while keeping the original C code of excellent execution 

performance inside S-function blocks.  In the phase of problem formulation, system design, 

detailed design, and re-designing process, it was clearly noticed that Simulink and Stateflow 

provided the ability to simplify and accelerate most phases of these software development 

processes, and at the same time to eliminate repetitive and error-prone tasks.  The complete 

simulation system design was  finally implemented using built-in blocks from the Simulink and 

Stateflow libraries, incorporate specialized blocks from the other Matlab toolboxes such as 

Aerospace, Communications, and Signal Processing, and some customized S-function blocks 

converted from the original C codes developed in the Visual C++ Development Studio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22:  Real-Time Simulation System Implementation 
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 Real-Time Workshop was used with target specified as Real-Time Windows Target to 

complete the design process.  It closed the rapid prototyping loop by generating and optimizing 

code for given tasks and PC environments configured in the Real-Time Windows Target settings.  

Real-Time Workshop speeded up models by enabling high-speed simulations via Simulink 

Accelerator and by model referencing, which includes models in other models as blocks.  

Model’s parameters were tuned using the Real-Time Workshop and Real-Time Windows Target 

for real-time Monte Carlo simulations.   

 

D. Numerical Examples – Static Case 

The objective is to perform Real-Time Multiple-Agent System Simulation, and compare the 

efficiency and effectiveness of the static aircraft landing scheduling algorithms used in the Air 

Traffic Control automation system addressed in chapter III.  The aircraft landing scheduling 

model developed in chapter III is incorporated into Automated Safety and Training Avionics 

(ASTRA), a real-time computerized airborne expert system which is used here to generate 

scenarios with multiple intelligent aircraft agents [59].  Each agent is equipped with simulated 

Automatic Dependent Surveillance-Broadcast (ADS-B) devices so that they can collect 

information on the nearby traffic situation, and scheduling decisions from the scheduler.  The 

agents also implement a modified SATS Conflict Detection & Resolution (CD&R) algorithm 

module to plan maneuvers for an optimized and conflict-free trajectory when following the 

scheduling decision issued by the scheduler to complete the landing.  It should be noted that the 

CD&R algorithm not only maintains a distance-based separation in the en-route phase of flight, 

but also enforces a time-based spacing in the final approach.  Complete knowledge of all aircraft 

to be sequenced is assumed, and is defined here as aircraft state information (altitude, longitude, 

latitude, airspeed, vertical speed, and heading), time stamp, flight path intent information (next 

two waypoints on the intended flight path), fuel status, and emergency priority.   



 
 

90 

 

The operational objective for all scenarios is to schedule the landing of between four and ten 

aircraft over a one hour time period at a non-controlled airport, using performance metrics of total 

cost of deviation, total holding time, and total delay time of feeder route.  For the FCFS 

scheduling approach, the landing sequence is determined by the order in which each aircraft 

reaches the scheduling point.  The scheduling solution values (performance metrics) are found by 

scheduling each aircraft at its preferred landing time, provided it is feasible.  If it is not feasible, 

then each aircraft is scheduled as early as possible.  For the optimal scheduling approach, both the 

landing sequence and scheduling solution values are solely determined by minimizing the 

corresponding objective function.  The penalty cost fi and gi are set depending on the aircraft 

type.  Four categories of test scenario are evaluated, involving 4, 6, 8, and 10 aircraft initially 

placed outside the SCA of TSTC Waco Regional Airport (KCNW), Waco, TX.  The initial 

locations of each aircraft are determined randomly according to a normal distribution with a mean 

distance of 25 nautical miles to their assigned IAFs, and a standard deviation of 5 nautical miles.  

Each aircraft in the scenario has three speed profiles: cruise speed is the fastest and determines 

the earliest landing time; approach speed is the slowest and determines the latest landing time; 

and holding speed is used to determine the preferred landing time.  Aircraft types used are heavy, 

medium, or light, with occurrence in any given scenario randomly generated with probabilities of 

0.2, 0.4 and 0.4 respectively.  The separation time requirements for different scenario setups are 

then set accordingly, e.g. the separation time requirement for a heavy-heavy case is five minutes, 

and two minutes for a light-light case.  Figure 23 and Table 4 provide the graphical configuration 

and detailed information of a typical test scenario example respectively.   

 

 

 

 

 



 
 

91 

 

Table 4: Detailed Information of a Test Scenario 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Generalized Approach Plate for a Typical Test Scenario 
 
 
 
 

 1 2 3 4 

Aircraft Type Light Medium Heavy Light 

Flight ID N5000L N865CP N700AE N3998Z 

Latitude 31.916546 32.116023 32.130356 32.016731 

Longitude -97.676885 -97.435805 -96.539107 -96.563069 

Altitude 7000(FT) 5000(FT) 6000(FT) 4000(FT) 

Heading (TRUE) 107(DEG) 144(DEG) 205(DEG) 225(DEG) 

Planned IAF RAZVY RAZVY LOUIE LOUIE 

Distance to IAF 25.9 (NM) 22.0 (NM) 29.0 (NM) 24.3 (NM) 

Cruise Airspeed 180 (KNTS) 125 (KNTS) 150 (KNTS) 75 (KNTS) 

Hold Airspeed 110 (KNTS) 100 (KNTS) 110 (KNTS) 65 (KNTS) 

Approach Airspeed 80 (KNTS) 80 (KNTS) 90 (KNTS) 50 (KNTS) 
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A Monte Carlo approach was used totaling 960 runs, consisting of 40 individual scenarios for 

each of the four scenario classes evaluated (4, 6, 8, and 10 aircraft) run six times to get FCFS 

THT, optimal THT, FCFS TCD and total delay time of feeder route, and optimal TCD and total 

delay time of feeder route respectively.  The 960 runs was found to be sufficient to highlight the 

desired trends, since the standard deviation for each performance metric was inversely 

proportional to the number of runs, and was decreasing by less than 5% per every ten runs 

thereafter.     

 Results for the four scenarios are presented in Table 5 and Figures 24-26.  Note that all test 

scenarios produce converged solutions for both the FCFS scheduling and optimal scheduling 

algorithms.  Compared with the FCFS scheduling, optimal scheduling is seen to significantly 

decrease the total cost of deviation by an average of 56.42%, decrease total holding time by an 

average of 52.16%, and decease total delay time of feeder route by 34.21%.  It is noteworthy that 

test scenarios which involve several aircraft do not necessarily take more time to complete than 

those with fewer aircraft, despite the accumulation of landing operation time.  Since the 

scheduling solution value is found by scheduling each aircraft at its preferred landing time (if it is 

feasible for the FCFS approach), it is possible for the FCFS scheduling to provide the optimal 

solution in situations where it obtains the optimal sequence.  This results from the randomness 

introduced in generating the test scenarios.   
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Table 5. Numerical Results of Test Scenarios 
 

Number of Aircraft in Scenario 4 6 8 10 

Simulation Runs 40 40 40 40 

Mean  13.95 19.64 30.17 36.52 
FCFS solution 

TCD 
Standard 

Deviation 
2.12 2.84 2.93 3.28 

Mean  4.90 9.15 13.13 17.92 
Optimal solution  

TCD 
Standard 

Deviation 
0.54 1.09 1.18 1.99 

Mean  21.11 30.73 36.04 48.55 
FCFS solution 

THT (minutes) 
Standard 

Deviation 
2.32 3.00 4.03 5.14 

Mean  9.57 13.75 18.08 24.81 
Optimal solution        

THT (minutes) 
Standard 

Deviation 
0.79 1.57 1.95 2.26 

Mean  6.87 10.65 15.74 20.95 FCFS solution 

TDTfeeder route 

(minutes) 

Standard 

Deviation 
1.03 1.43 1.92 2.03 

Mean  5.32 7.16 9.23 12.54 Optimal solution 

TDTfeeder route 

(minutes) 

Standard 

Deviation 
0.47 0.69 1.22 1.45 
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Figure 24: FCFS Vs. Optimal -- TCD 
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Figure 25: FCFS Vs. Optimal -- 
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E. Numerical Examples – Dynamic Case 

The objective of the numerical example is to evaluate the performance of the on-board aircraft 

landing scheduling tool used in the distributed Air Traffic Management system described in 

chapter IV.  The scheduling model is integrated with the Automated Safety and Training 

Avionics (ASTRA), a real-time computerized airborne expert system and simulation environment 

that uses multiple intelligent aircraft agents [59].  Each agent is equipped with simulated ADS-B 

devices which provide traffic information and scheduling decisions from the scheduler (the 

arbitration aircraft for the on-board scheduling case and the automatic air traffic controller for the 

ground-based scheduling case).  The agents also implement the modified SATS CD&R algorithm 

module to plan maneuvers for an optimized and conflict-free trajectory.  It should be noted that 

the CD&R algorithm not only maintains a distance-based separation in the en-route phase of 

flight, but also enforces a time-based spacing in the final approach.  Complete knowledge of all 

aircraft to be sequenced is assumed to be carried by the ADS-B messages and is defined here as 

aircraft state information (altitude, longitude, latitude, airspeed, vertical speed, and heading), time 

stamp, flight path intent information (next two waypoints on the intended flight path), fuel status, 

and emergency priority. 

Figure 26: FCFS Vs. Optimal -- TDT (Feeder Route) 
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1. Scenario Design  

The concept of the SATS scenario is used for the flight simulation since it breaks the current 

“one-in/one-out” procedure and enables multiple operations simultaneously at the terminal area 

of non-controlled airports.  In SATS scenarios, a block of airspace named the Self-Controlled 

Area (SCA) is established around non-controlled airports.  Multiple operations within an SCA 

can be achieved by having the aircraft hold in stacks at Initial Approach Fixes (IAFs) and then 

follow specified procedures (either a vertical entry or a lateral entry) to enter the SCA and 

complete approaches.  This is shown in Figure 27. 

  

 

 

 

 

 

 

  

  

 It was concluded from the simulation result of the static case that the optimal scheduling 

algorithm can effectively enhance the operation efficiency compared with the first-come-first-

serve scheduling algorithm, only the optimal scheduling algorithm is applied in each scenario.  

Two categories of scenarios are designed to evaluate the static and dynamic response 

performance, respectively, where the ground-based scheduling tool serves as the baseline system 

for comparison.  For static performance evaluation, basically for each scenario run both on-board 

and ground-based scheduling tool are triggered to apply optimal scheduling algorithm to compute 

the scheduling decisions when it reaches the scheduling point, and the scheduling decision 

Figure 27: SATS Self-Controlled Area High-Volume Operations Concept II 
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outputs from these two different resources are compared for conformance.  A simple 

conformance ratio serves as the performance metric for the static performance evaluation.   

 For dynamic performance evaluation that considers the scheduling of aircraft landings in real-

time, four sub-categories of test scenario consisting of 4, 6, 8, and 10 aircraft initially placed 

outside the SCA of TSTC Waco Regional Airport (KCNW), Waco, TX, are evaluated.  Initial 

locations are determined randomly according to a Gaussian distribution with a mean distance of 

25 nautical miles to the assigned IAF, and a standard deviation of five nautical miles. Aircraft 

types used are heavy, medium, or light, and appear randomly in any scenario with probabilities of 

0.2, 0.4, and 0.4, respectively.  Each aircraft has a cruise speed, approach speed, and holding 

speed.  Separation time requirements for each scenario are set according to aircraft type, e.g. five 

minutes for a heavy-heavy case, and two minutes for a light-light case.  Two dynamic cases are 

simulated to trigger the dynamic scheduling: new aircraft appearance, and operation environment 

condition changes that cause aircraft to drift from their planned flight path based on last 

scheduling decision and the resulting repositioning of needs to be considered.  For simplification, 

the latter case is simulated simply by changing the aircraft speed profile.  They are implemented 

by integrating a dynamic even trigger into the simulation system to trigger the desired dynamic 

case in real-time. Monte Carlo simulation was used on 40 individual scenarios for each of the 

four scenario classes.  Three performance metrics stated earlier are used for the dynamic 

performance evaluation.  To evaluate the impact of introducing spacing constraint into the 

scheduling model instead of on-board CD&R function (as proposed in chapter IV, section C-1), 

10 additional scenarios for each of the four scenario classes were exercised where only TCD was 

evaluated for comparison. 

2. Numerical Results 

For static performance evaluation, the results show that the event-based coordination 

implementation can effectively implement the distributed decision-making on aircraft landing 

scheduling.  All scenario runs output the same scheduling decisions from the on-board and 
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ground-based scheduling tool, and thus they gain a 100% conformance ratio.  Observation of a 

computing time history also shows that the scheduling decision-making process execution time 

ratio of on-board scheduling tool and ground-based scheduling tool increases as number of 

aircraft in the scenario increases. This is a result from the extra processing steps taken in the on-

board scheduling tool. When 10 aircraft are involved in the scenario and the ADS-B message 

transmission frequency is simulated at 10 Hz, the execution time of on-board scheduling (average 

around 0.12 Sec) exceeds the time period of ADS-B transmission cycle, which means that the 

scheduling decision is made on the out-of-dated aircraft state information since the new ADS-B 

message (represents the new aircraft state) is on the way of transmitting already.  Scheduling 

decision conformance is still gained because of the ADS-B message lock mechanism.  This issue 

can be directly solved by using a faster computer for the simulation. However, it should draw our 

concern that it somehow simulates some type of “delay time” (such as delay caused by pilot-

machine interaction or ADS-B message transmission delay) if pilot-in-the-loop simulation is 

conducted.   

For dynamic performance evaluation, results for the four scenario classes are presented in 

Table 6, Figure 28, and Figure 29, where the ground-based scheduling tool serves as baseline for 

comparison.  All test scenarios produce converged solutions for on-board scheduling tool.  

Numbers of dynamic case used to trigger re-scheduling are 2, 3, 4, and 5 for test scenarios 

involved with 4, 6, 8, and 10 aircraft, respectively, compared to the ground-based scheduling 

values of all three performance metrics for on-board scheduling increase to some extent but 

without directly traceable statistical law.  However, the ratio of mean value and standard 

deviation shows that the standard deviation increasing rate is obviously greater than the mean 

value increasing rate, comparing to the ground-based scheduling tool. These observations are 

resulted from the fact that the dynamic case (new aircraft entry or existing aircraft speed profile 

change) type and triggering time are both randomly selected in each scenario.  Simulation results 

also show that on-board scheduling tool reaches its run-time bottleneck when 10 aircraft are 
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involved in the scenario and the ADS-B message transmission frequency is around 20 Hz.  This 

results from the ADS-B message processing overload.  Again, this issue can be directly solved for 

short-term by using a faster computer. For the long-run, ADS-B message complexity analysis and 

re-organization should be conducted for a better message parsing and processing performance. 

Evaluation of impact of introducing spacing constraint in the scheduling model is shown in 

result Table 7.  For most of the scenarios, the scheduling model that includes the spacing 

constraint (hereafter refer as augmented scheduling model) achieves slight better performance 

than the one without spacing constraint (hereafter refer as baseline scheduling model).  Numerical 

results also show that the mean/standard deviation ratio of the augmented scheduling model is 

slightly smaller than the one of the baseline scheduling model for most of the scenarios.  These 

are all resulted from the fact that the spacing constraint represents the separation requirement 

within the entire SCA whereas the landing separation constraint alone in the baseline scheduling 

model only represents accumulated separation at the runway threshold.  The placement of spacing 

constraint in the scheduling model thus makes it more active and responsive to the dynamic re-

scheduling events.  However, there is no obvious difference between augmented scheduling 

model and baseline scheduling model since time-based spacing constraint is still enforced in 

baseline scheduling model via on-board CD&R functionality.  
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Table 6. Dynamic Performance Evaluation Numerical Results 
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Table 6 Continued 

 
 
 

Table 7. Impact of Introducing Spacing Constraint into the Scheduling Model 

Number of Aircraft in Scenario 4 6 8 10 

Simulation Runs 10 10 10 10 

Mean 4.92 9.23 12.68 18.56 

Standard Deviation 0.56 1.09 1.19 2.00 

On-Board TCD (spacing 

constraint is not included in 

the scheduling model) Mean/Standard 

Deviation 
8.79 8.47 10.66 9.28 

Mean 4.79 9.07 12.28 17.30 

Standard Deviation 0.54 1.11 1.16 2.12 

On-Board TCD (spacing 

constraint is included in the 

scheduling model) Mean/Standard 

Deviation 
8.87 8.17 10.58 8.16 
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Dynamic Performance Evaluation -- Mean Value
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Figure 28: Dynamic Performance Evaluation – Mean Value  
 

Figure 29: Dynamic Performance Evaluation – Standard Deviation  
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F. Conclusions 

 In this chapter we first reviewed several candidate simulation architectures for the 

performance evaluation of the operation concepts and scheduling algorithms introduced in this 

research.  Real-time multiple-agent system simulation architecture was selected considering time 

and money resource, development cost, and requirements for simulation fidelity.  Then the 

approach of implementing the lost-cost effective agent-based real-time simulation with Matlab 

toolset was provided. Finally, numeral results obtained from Real-time multiple-agent system 

simulation for static and dynamic cases were presented.  
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

It is becoming apparent that the existing air transport system is approaching a bottleneck.  This 

mainly results from the dominant hub-and-spoke model that results in a concentration of a large 

percentage of the air traffic at a few hub airports.  A promising solution is to distribute the 

congested air traffic at the hub airports to small airports where most of them do not have Air 

Traffic Control (ATC).  Therefore, either an air traffic control automation system or a 

decentralized air traffic management system needs to be established to take over the aircraft 

landing sequencing and scheduling responsibilities.  This dissertation aims to analyze the 

feasibility and capability of the decentralized aircraft landing scheduling operations at non-

controlled airports.  Firstly, this dissertation seeks to develop static optimization algorithms for 

aircraft landing scheduling, and analyze the capability of automated aircraft landing scheduling 

on single runways at non-controlled airports.  Secondly, this dissertation seeks to analyze the 

degree of decentralization for aircraft landing scheduling in the dynamic operational environment 

at non-controlled airports.  Finally, real-time multiple-agent system simulation is conducted to 

evaluate the performance of decentralized aircraft landing scheduling tool whereas air traffic 

control automation system serves as the baseline system for comparison.   

 

A. Conclusions 

In chapter II, we reviewed the functionalities of the operational components in the current 

ATM system.  Then we gave a general description of the Free Flight concept and the SATS 

program.  They both ultimately seek to achieve effective and efficient flight operations in the 

current NAS, with the former focusing on en-route flight operations, and the latter concentrating 

on terminal area operations at non-controlled airports.   
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In chapter III, an aircraft landing scheduling model and static optimization scheduling 

algorithms using linear programming and job shop solutions were developed and implemented as 

an air traffic control automation system for automated aircraft landing scheduling at single 

runway, non-controlled airports.  Performance of the optimization algorithm was compared to a 

first-come-first-served scheduling algorithm in terms of total cost of deviation, total holding time, 

and total delay time of feeder route.  Numerical results were presented in chapter V to support the 

development using four different multi-aircraft landing scenarios evaluated by Monte Carlo real-

time flight simulation.  Numerical results show that the optimal scheduling algorithm produced 

significant reductions in total cost of deviation (average of 56.42%), total holding time (average 

of 52.16%), and total delay time of feeder route (average of 34.21%) compared with first-come-

first-serve scheduling.  It was observed that in some scenarios, first-come-first-serve scheduling 

produced the optimal solution in situations where it happens to obtain the optimal sequence.   

Based on the reductions in total cost of deviation and total holding time for the test case ensemble 

considered, the optimal scheduling algorithm appears to be a promising candidate for enhancing 

the efficiency of aircraft landing operations at the terminal area of non-controlled airports. 

In chapter IV, it addressed the approach and issues of implementing decentralized aircraft 

landing operations at the terminal area of non-controlled airports, and thus provided a clear 

approach to the distributed air traffic management system.  An on-board aircraft landing 

scheduling tool, resulted from the integration of an aircraft landing scheduling model and 

distributed coordination function, was implemented to achieve dynamic self-scheduling in the 

ultimate uninterrupted free-flight operational environment.  Distributed coordination issues, 

which posed most of the technology challenges to the decentralized aircraft landing operation, 

were addressed.  Two coordination models, with focus on event-based coordination model, were 

discussed for comparison.  Methodologies description of how to resolve challenges brought by 

distributed coordination issues using the event-based coordination model was provided, from the 

establishment of the mathematical model to the application implementation.  Numerical results 
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were presented in chapter V to support the development using several different multi-aircraft 

landing scenarios evaluated by Monte Carlo real-time multiple-agent flight simulation.  

Numerical results showed that the event-based coordination implementation of the on-board 

aircraft landing scheduling tool achieved 100% scheduling decision conformance with ground-

based scheduling tool regarding the static performance.  The ADS-B message lock mechanism 

ensured the same static information was retrieved when both on-board and ground-based 

scheduling tool made scheduling decision at the specified scheduling points, and thus gained 

scheduling decision conformance even though the scheduling decision-making process execution 

time of on-board scheduling tool and ground-based scheduling tool were slightly different for 

some scenarios.  Regarding the dynamic performance, numerical results showed that the on-board 

aircraft landing scheduling tool was able to provide the converged scheduling solutions 

dynamically in all nominal scenarios.  However, it reached its run-time bottleneck in some 

abnormal scenarios such as when 10 aircraft were involved in the scenario and the ADS-B 

message transmission frequency is intentionally setup to abnormal 20 Hz.  It was expected to be 

resolved after proper ADS-B message complexity analysis and re-organization were conducted 

for a better message parsing and processing performance.  

 In chapter V several candidate simulation architectures for the performance evaluation of the 

operation concepts and scheduling algorithms introduced in this research were reviewed.  Real-

time multiple-agent system simulation architecture was selected considering time and money 

resource, development cost, and requirements for simulation fidelity.  Then the approach of 

implementing the lost-cost effective agent-based real-time simulation with Matlab toolset was 

provided. Finally, numeral results obtained from Real-time multiple-agent system simulation for 

static and dynamic cases were presented.   

 It is concluded from the numerical results presented in this dissertation that decentralized 

aircraft landing scheduling at non-controlled airports can be achieved with acceptable 

performance using the on-board aircraft landing scheduling tool.   
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B. Future Work 

The decentralized aircraft landing scheduling problem has not been clearly stated in the 

literature by far prior to the advent of this dissertation.  It is an important problem deserving of 

closer attention since it provides a clear approach to the distributed air traffic management 

system.  Current operations at the terminal area of non-controlled airports have no centralized 

control, which exhibit an inherent property of distribution that gives a perfect environment for the 

implementation of uninterrupted free-flight concept.  In the research addressed in this 

dissertation, the on-board aircraft landing scheduling tool developed represents uninterrupted 

free-flight to the threshold since there is no ground-based automated system to enforce any 

centralized control and flight crews take over all of the responsibilities that the current controllers 

have.  Aircraft at the terminal area of non-controlled airports are placed in a complete 

decentralized environment, and it is author’s believe that the research addressed in this 

dissertation will contribute to the future ATM revolution since the research will give a clear view 

of where to establish the line of free-flight concept application for the controlled airport case.   

At this stage the potential impact of Free flight on the operations of the national airspace 

system is still disputed, and demand measurement for SATS shows that NASA could possibly 

introduce an idea to the public that would never be used.  However, it can be expected that the 

future air traffic management system will manage flight operations in a way that lies somewhere 

between the two extremes, fully centralized and uninterrupted free-flight, possibly moving 

gradually from centralized to more free-flight, as the concept of Highway-in-the-Sky emerges.  

It’s then authors’ interest to extend the non-controlled airport application to controlled airport 

case with suitable amendment, where the reliance on centralized air traffic management can be 

reduced gradually in favor of a decentralized management to provide more airspace capacity, 

flight flexibility, and increase operation robustness.  It has a promising future, at least the road 

worthy a try.  While at this point the concept of Free Flight is sort of stuck at nowhere, the 

approach of using event-based coordination model to tackle the decentralized aircraft landing 
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scheduling problem at non-controlled airport might have a chance to “break the ice”, and bring 

the DAT-TM to the next level. 
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