

DECENTRALIZED AIRCRAFT LANDING SCHEDULING AT

SINGLE RUNWAY NON-CONTROLLED AIRPORTS

A Dissertation

by

YUANYUAN DING

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2007

Major Subject: Aerospace Engineering

DECENTRALIZED AIRCRAFT LANDING SCHEDULING AT

SINGLE RUNWAY NON-CONTROLLED AIRPORTS

A Dissertation

by

YUANYUAN DING

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, John Valasek
Committee Members, John H. Painter
 Thomas Strganac
 Thomas R. Ioerger
Head of Department, Helen Reed

May 2007

Major Subject: Aerospace Engineering

 iii

ABSTRACT

Decentralized Aircraft Landing Scheduling at

Single Runway Non-Controlled Airports. (May 2007)

Yuanyuan Ding, B.S., Beijing University of Aeronautics and Astronautics;

M.S., Beijing University of Aeronautics and Astronautics

Chair of Advisory Committee: Dr. John Valasek

The existing air transportation system is approaching a bottleneck because its dominant hub-

and-spoke model results in a concentration of a large percentage of the air traffic at a few hub

airports. Advanced technologies are greatly needed to enhance the transportation capabilities of

the small airports in the U.S.A., and distribute the high volume of air traffic at the hub airports to

those small airports, which are mostly non-controlled airports. Currently, two major focus areas

of research are being pursued to achieve this objective. One focus concentrates on the

development of tools to improve operations in the current Air Traffic Management system. A

more long-term research effort focuses on the development of decentralized Air Traffic

Management techniques.

This dissertation takes the latter approach and seeks to analyze the degree of decentralization

for scheduling aircraft landings in the dynamic operational environment at single runway non-

controlled airports. Moreover, it explores the feasibility and capability of scheduling aircraft

landings within uninterrupted free-flight environment in which there is no existence of Air Traffic

Control (ATC). First, it addresses the approach of developing static optimization algorithms for

scheduling aircraft landings and, thus, analyzes the capability of automated aircraft landing

scheduling at single runway non-controlled airports. Then, it provides detailed description of the

implementation of a distributed Air Traffic Management (ATM) system that achieves

 iv

decentralized aircraft landing scheduling with acceptable performance whereas a solution to the

distributed coordination issues is presented. Finally real-time Monte Carlo flight simulations of

multi-aircraft landing scenarios are conducted to evaluate the static and dynamic performance of

the aircraft landing scheduling algorithms and operation concepts introduced.

Results presented in the dissertation demonstrate that decentralized aircraft landing scheduling

at single runway non-controlled airports can be achieved. It is shown from the flight simulations

that reasonable performance of decentralized aircraft landing scheduling is achieved with

successful integration of publisher/subscriber communication scheme and aircraft landing

scheduling model. The extension from the non-controlled airport application to controlled airport

case is expected with suitable amendment, where the reliance on centralized air traffic

management can be reduced gradually in favor of a decentralized management to provide more

airspace capacity, flight flexibility, and increase operation robustness.

 v

ACKNOWLEDGMENTS

The writing of a dissertation can be a lonely and exhausting experience especially when you

are working at the same time, yet it is obviously not possible without the personal and practical

support of numerous people.

I would like to acknowledge many people for helping me during my doctoral work. I would

especially like to thank my advisor, Prof. John Valasek, for his generous time and commitment.

His kindness helped me get through the culture barrier I encountered the first couple of years after

I arrived in the United States. Throughout my doctoral work he not only encouraged me to

develop independent thinking and research skills, but also continually stimulated my analytical

thinking and greatly assisted me with scientific writing.

I am also very grateful for having an exceptional doctoral committee and wish to thank Prof.

John Painter, Prof. Thomas Strganac, and Prof. Thomas Ioerger for their continual support and

encouragement. I owe a special note of gratitude to my colleagues at the Flight Simulation Lab

for assisting me with collecting flight simulation data.

Special thanks go to RTI International, as part of the North Carolina and Upper Great Plains

Small Aircraft Transportation System Laboratory. I gratefully acknowledge its financial support

of my research.

I am extremely grateful for the assistance, generosity, and advice I received from my

colleagues at S-TEC Corporation. Special thank goes to Elizabeth Brandi, my manager at S-TEC

Corporation, for her generous support of my research.

I extend many thanks to my friends, especially Jimmy Rong, Song Deng, Xuyang Ding,

Yuchun Yuan, and Wayne Frantz. I would like to thank Karen Knabe, Graduate Program

Administrative Assistant of Department of Aerospace Engineering, for her help with all my

paperwork throughout my doctoral program at TAMU.

 vi

Finally, I would like to thank my family. My mother was a constant source of support and

happy spirit, and my father extended his passion in aerospace engineering to me. I am grateful to

my sister and her family for their encouragement and enthusiasm. I am especially grateful to my

wife for she has always been there for me, especial her mental support when I encountered huge

difficulty in continuing my doctoral program one and half years ago. I would not have completed

my doctoral program without her patience, persistence, and spiritual support.

 vii

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

ACKNOWLEDGMENTS... v

TABLE OF CONTENTS .. vii

LIST OF FIGURES... x

LIST OF TABLES .. xii

CHAPTER

I INTRODUCTION.. 1

 A. Air Traffic Control Automation System... 3
 B. Decentralized Air Traffic Management System 5
 C. Research Objectives and Contributions .. 6

D. Structure of the Dissertation... 8

II UNDERSTANDING OF THE AIR TRAFFIC MANAGEMENT SYSTEM-
 PRESENT AND FUTURE... 9

A. Air Traffic Management System .. 9
1. Air Route Traffic Control Center .. 10
2. Clearance Delivery Control... 10
3. Ground Control ... 10
4. Tower Control ... 11
5. Approach and Terminal Control.. 11

B. Free Flight Concept .. 12
C. Small Aircraft Transportation System Project.. 13
D. Non-controlled Airport Features .. 14
E. Conclusions... 15

III AIRCRAFT LANDING SCHEDULING OPTIMIZATION FOR SINGLE
 RUNWAY NON-CONTROLLED AIRPORTS: STATIC CASE 17

A. Introduction .. 17
1. Job Shop Scheduling Approach .. 19
2. Combinatorial Optimization Approach ... 20
3. Knowledge-Based / Fuzzy Reasoning Approach............................ 20

B. Aircraft Landing Scheduling Problem.. 21
C. Aircraft Landing Scheduling Model for Single Runway
 Non-Controlled Airports .. 23

1. Notations ... 23
2. Constraints... 24
3. Problem Specific Features of Non-Controlled Airports.................. 26

 viii

CHAPTER Page

4. Objective Function and Performance Metrics................................. 28
5. Scheduling Point ... 29

D. Aircraft Landing Scheduling Algorithms for Single Runway
 Non-Controlled Airports .. 30

1. First-Come-First-Serve Scheduling Algorithm............................... 30
2. Optimal Scheduling Algorithm ... 30

1) Linear Programming Problem.. 30
2) Job Shop Scheduling Problem ... 32

E. Conclusions... 32

IV DECENTRALIZED AIRCRAFT LANDING SCHEDULING AT SINGLE
 RUNWAY NON-CONTROLLED AIRPORTS: DYNAMIC CASE 34

A. Introduction .. 34
1. On-Board Decision Support Tool.. 35
2. Small Airport Automation... 37
3. Air-Ground Integration / Simulation... 38
4. Coordination.. 39

B. Decentralized Aircraft Landing Scheduling at Non-Controlled Airports 42
1. Integration of Aircraft Agent and Aircraft Landing Scheduling
 Tool ... 42

1) Aircraft Agent .. 43
2) Aircraft Landing Scheduling Model and Algorithms 43
3) On-Board Aircraft Landing Scheduling Tool 45

2. Distributed Coordination in the Dynamic Operational
 Environment .. 48

1) Direct Coordination Model .. 49
2) Event-Based Coordination Model...................................... 51

C. Special Considerations.. 67
1. Spacing Constraints within SCA... 67
2. Dynamic Re-Scheduling Issues... 69
3. Pub/Sub System Optimality .. 70

D. Conclusions .. 73

V REAL-TIME SIMULATION METHODOLOGY AND NUMERICAL
 RESULT... 74

A. Real-Time Pilot-In-The-Loop Simulation .. 74
1. Engineering Flight Simulator .. 74
2. Pilot Advisor and Training System ... 75

B. Fast-Time Multiple-Agent System Simulation....................................... 76
1. Traffic Scenario Generator.. 78
2. Intelligent Aircraft Agent .. 78
3. Airport Model.. 79
4. Weather Model.. 79

C. Real-Time Multiple-Agent System Simulation 80
1. Matlab Toolbox -- Simulink.. 81
2. Matlab Toolbox -- Stateflow ... 82
3. Matlab Toolbox -- Real-Time Workshop.. 84

 ix

CHAPTER Page

4. Matlab Toolbox -- Real-Time Windows Target.............................. 85
5. Real-Time Multiple-Agent System Simulation Implementation 87

D. Numerical Examples -- Static Case .. 89
E. Numerical Examples -- Dynamic Case... 95

1. Scenario Design... 96
2. Numerical Results ... 97

F. Conclusions... 103

VI CONCLUSIONS AND FUTURE WORK... 104

A. Conclusions .. 104
B. Future Work.. 107

REFERENCES….. .. 109

VITA……….. ... 115

 x

LIST OF FIGURES

FIGURE Page

1 Variation in Cost for an Aircraft within its Landing Time Window I 4

2 U.S Airspace Classification ... 15

3 Variation in Cost for an Aircraft within its Landing Time Window II 22

4 Example of Overlapping Landing Time Windows .. 24

5 SATS Self-Controlled Area High-Volume Operations Concept I................................. 27

6 Decision Tree along Flight Path for SCA HVO Procedure ... 27

7 Flow Chart of Simplex Algorithm ... 31

8 Operation Concept – From Ground-Based to Free Flight.. 47

9 Pair-wise Argument-based Negotiation Protocol .. 50

10 Decentralized Aircraft Landing Scheduling Pub/Sub System 53

11 Event-based Coordination for Scheduling Process .. 59

12 Nominal Scheduling Scenario Phase 1 - Scheduling Initiation 63

13 Nominal Scheduling Scenario Phase 2 - Scheduling Following.................................... 64

14 Nominal Scheduling Scenario Phase 3 - Dynamic Re-Scheduling................................ 65

15 Nominal Scheduling Scenario Phase 4 – Unsubscribe Scheduling
 Decision Publication after Entering into SCA ... 66

16 Nominal Scheduling Scenario – Insufficient Spacing Constraint 68

17 Nominal Scheduling Scenario – Dynamic Re-Scheduling Issue 70

18 Cockpit and External Display of Real-Time Engineering Flight
 Simulator.. 75

19 Automated Safety and Training Avionics Architecture... 76

20 AIMS Hierarchy Architecture ... 77

21 An Intelligent Aircraft Agent... 79

22 Real-Time Simulation System Implementation... 88

 xi

FIGURE Page

23 Generalized Approach Plate for a Typical Test Scenario .. 91

24 FCFS Vs. Optimal -- TCD... 94

25 FCFS Vs. Optimal -- THT ... 94

26 FCFS Vs. Optimal -- TDT (Feeder Route) .. 95

27 SATS Self-Controlled Area High-Volume Operations Concept II................................ 96

28 Dynamic Performance Evaluation -- Mean Value... 102

29 Dynamic Performance Evaluation -- Standard Deviation.. 102

 xii

LIST OF TABLES

TABLE Page

1 Degree of Pilot Autonomy... 46

2 Event-based Coordination States/Transitions for Scheduling Process 60

3 Event-based Coordination States/Transitions for ADS-B State Update
 Process... 61

4 Detailed Information of a Test Scenario.. 91

5 Numerical Results of Test Scenarios... 93

6 Dynamic Performance Evaluation Numerical Results .. 100

7 Impact of Introducing Spacing Constraint into the Scheduling Model 101

1

CHAPTER I

INTRODUCTION

When the brothers Orville and Wilbur Wright performed the very first power-driven flight of a

heavier-than-air machine in the world back on December 17th, 1903, they would have never

imagined the tremendous growth of air traffic from thereon. The number of air travelers surged

in particular due to the introduction of jet airliners in the late 1950s and the resulting jet-age in the

1960s. The data recording of the Air Transport Association of America (ATA) started with about

6,000 domestic air travelers back in 1926 and has its peak with 610, 600, 000 in 2000. A history

of air traffic control from its beginning can be found in [1].

The demand for air travel will continue to increase over the next few decades. It has been

forecast that by 2008 the number of passengers will increase 43 percent and an additional 2,500

planes will be needed to accommodate them. Under the current system, the additional traffic

would cause a 250 percent rise in delays. These numbers were projected before the tragic events

of September 11th, 2001 when air travel encountered a slump that year. It has been predicted that

the airline industry will recover from the aftermath and air travel will increase again.

Meanwhile, it is becoming apparent that the existing air transport system is approaching a

bottleneck. In the United States, flight delays and cancellations are a familiar part of air travel

and the Air Transport Association claims that delays cost the U.S. airlines billions of dollars per

year [2]. This is certainly not only a problem of the continental United States, but can be

observed worldwide. In particular in Europe the airspace is already so congested that delays

occur on a regular basis. The same problem will arise for Asia where the economic growth will

spark air traffic in the near future as well.

This dissertation follows the style of Journal of Guidance, Control and Dynamics.

2

The problem mainly results from the dominant hub-and-spoke model that results in a

concentration of a large percentage of the air traffic at a few airports. Although great efforts have

been taken to improve the current Air Traffic Management (ATM) system and construct new

runways, it appears that the continued projection of growth in aviation, as well as airline and civil

aviation economics, shows that those airports will be inadequate to address the need for increased

capacity [3].

The current hub-and-spoke system limits travelers to the air carrier’s schedule and the

inefficiencies of connections at distant hubs. Many regional trips can be driven in the same time

or even less and for a lower cost than it takes to fly commercially when considering connection

times and the times it takes to travel to and from the airport. At the same time, the “value of

time” is becoming an important concern that places new demands on current transportation

systems. More flexibility and efficiency for door-to-door travel will be needed. Travel to a small

or metro-satellite airport has a great potential of being a big market. The migration of people

away from urban and suburban centers requires greater access to transportation from more

widespread locations throughout the country. Unfortunately, at these smaller airports, viable, cost

competitive air transportation is not currently available.

As described above, increasing capacity alone does not appear to provide a long-term solution

to the problem of delay, or satisfy the demand for more direct flights. Many people, including

licensed pilots, are surprised to learn that there are about 5,400 existing public-use-landing

facilities in the current National Airspace System (NAS). However, scheduled air carriers serve

only about 660 of these facilities. Moreover, the Federal Aviation Administration (FAA)

estimates 98 percent of the U.S. population lives within 20 miles of at least one of these public-

use airports [4]. Most of these under utilized public airports do not lie in the existing Air Traffic

Control (ATC) radar coverage, nor do they have a control tower. However, they still have

instrument approach procedures with which Instrument Flight Rules (IFR) traffic can be operated.

3

So why not take advantage of those small airports to promote more evenly distributed air traffic

and reduce congestion at large hub airports? In addition, this will unburden the stressed-out

business traveler living in a near-by community.

A number of candidate technologies have emerged that are aimed at distributing the heavy air

traffic at the hub airports. Small Aircraft Transportation System (SATS), the program organized

by the National Aeronautics and Space Administration (NASA), has shown great potential. A

new aviation system based on SATS technologies would enhance the current transportation

capabilities of the nation’s small airports, and thus provide some relief to hub airports congestion,

particularly in high-density corridors for point-to-point travel [4].

One of the key issues that the SATS research program focuses on achieving is High-Volume

Operations (HVO) at airports without control towers or terminal radar facilities, i.e., non-

controlled airports [5]. As stated earlier, most of non-controlled airports have instrument

approach procedures with which Instrument Flight Rules (IFR) traffic can be operated. However,

these airports do not lie in the existing Air Traffic Control (ATC) radar coverage, nor are they

equipped with a control tower. In the current ATC system, controllers take responsibility for

maintaining safe separations among all aircraft, and sequencing all arriving aircraft into a certain

landing order. At the terminal area of non-controlled airports, controllers are no longer in control,

and therefore either an air traffic control automation system or a decentralized ATM system can

be applied. Regardless of which system is chosen, it is necessary to analyze both options from

the technological and operational views.

A. Air Traffic Control Automation System

In general, air traffic control automation consists of two basic functionalities: trajectory

analysis and aircraft scheduling. Trajectory analysis provides flight path predictions, and

automated aircraft scheduling takes advantage of accurate aircraft trajectories to produce efficient

landing sequences [6].

4

Earliest
Time

Preferred
Time

Latest
Time

Cost

Time

Figure 1: Variation in Cost for an Aircraft within its Landing Time Window I

The aircraft landing scheduling problem is concerned with determining landing times on a

runway for a sequence of aircraft, such that each aircraft lands within its predetermined landing

time window, while satisfying separation criterion between aircraft. Upon entering into the

terminal area of an airport, an aircraft is assigned a landing time and a runway. The landing time

must lie within a predetermined time window, bounded by an earliest time and a latest time. The

aircraft can land at the earliest time if it flies at its maximum airspeed, while it will land at the

latest time if it flies at its most fuel-efficient airspeed while also holding for the maximum

allowable time [7].

Each aircraft produces its preferred landing time if it flies at its most economical, preferred

speed, the cruise speed. If the aircraft is required to slow down, hold, or speed up for separation

assurance or other incidental reasons, extra cost will be incurred. In general, this cost will grow

as the difference between the assigned landing time and the preferred landing time increases.

Figure 1 shows an example of the variation in cost for an aircraft within its landing time window.

Another issue is the separation criterion assurance. It is well known that the FAA regulates a

certain separation requirement among flights in en-route airspace. Similarly, the landing time of

an aircraft and its successive aircraft must be greater than a specified minimum, referred to as

5

landing separation time. The landing separation time depends on the type of the aircraft, due to

aerodynamic considerations. It is straightforward to understand that the landing separation time

between large commercial flights is usually greater than the separation time between small

General Aviation (GA) flights, as commercial aircraft generate greater wake turbulence than GA

aircraft.

In the past decade, researchers at NASA Ames Research Center have been developing an ATC

automation tool called Center-TRACON Automation System, or CTAS [8]. CTAS can assist air

traffic controllers in both en-route and terminal areas by providing computer-generated flight

trajectories. In particular, the Final Approach Spacing Tool (FAST), a component of CTAS, can

assist TRACON controllers to efficiently schedule arriving aircraft [9, 10]. However, it is likely

to be very costly to install CTAS at non-controlled airports as CTAS is a set of tools designed to

help air traffic controllers manage the increasingly complex air traffic flows at large airports. The

SATS research program aims to develop a simpler ATC automation tool for the purpose of easier

integration with the current National Airspace System (NAS). According to the SATS concept,

pilots are required to take responsibility for self-separation within the terminal area of the non-

controlled airports. Meanwhile, aircraft scheduling will become the key operational issue at non-

controlled airports as the operation volume keeps increasing in the near future. Therefore, the

ATC automation system of the non-controlled airport mainly tries to improve the performance of

aircraft scheduling.

B. Decentralized Air Traffic Management System

The ATC automation system takes over the sequencing responsibilities of human air traffic

controllers. However, installation and maintenance of a ground-based automated system at non-

controlled airports can be very costly, even for a simple SATS-based one. More importantly, it

still works as a centralized control that places limits on airspace capacity and flight flexibility and

provides insufficient operation robustness since it will disorder the landing sequence when it

6

becomes disfunctional. An alternative is to reduce the reliance on centralized air traffic

management in favor of decentralized management. However, the real question is how

decentralized should the non-controlled airports be, or more simply how far we can extend the

free-flight concept in the case of the non-controlled airports? Can we achieve the decentralized

mode for the ATM system of non-controlled airports such that the on-board aircraft landing

scheduling tool takes over the sequencing/scheduling job?

The on-board aircraft landing scheduling tool represents uninterrupted free-flight to the

threshold, where flight crews take over all of the responsibilities that the current controllers have,

and pilots are required to use the on-board scheduling tool to provide sequencing advisories

dynamically at the terminal area of the non-controlled airports. Pilots might use the on-board

scheduling tool to reschedule themselves constantly during the whole landing operation since a

change may occur in the dynamic operational environment, such as the appearance of a new

aircraft. This can be referred as the dynamic, or online, Aircraft Landing Problem with respect to

the static Aircraft Landing Problem where the static operational environment was assumed. The

ground-based aircraft landing scheduling automation tool only makes the scheduling decision

once during the whole landing operation at a certain scheduling point with complete knowledge

of the set of aircraft that are going to be sequenced. This can be regarded as a static problem

since it represents the initial (static) situation.

C. Research Objectives and Contributions

This research aims to analyze the feasibility and capability of the decentralized aircraft landing

scheduling operations at non-controlled airports. In general, research on aircraft scheduling can

be roughly divided into two areas. One area determines efficient scheduling algorithms, and the

other studies performance potentials and overall strategies of automated aircraft scheduling [6].

This research is of the latter.

7

Firstly, this research seeks to develop static optimization algorithms for aircraft landing

scheduling, and analyze the capability of automated aircraft landing scheduling on single runway

at non-controlled airports. This is done by establishing an aircraft scheduling model for non-

controlled airports, and then developing different scheduling algorithms which are evaluated for

capability analysis via flight simulation.

Secondly, this research seeks to analyze the degree of decentralization for aircraft landing

scheduling in the dynamic operational environment at non-controlled airports. This is done by

firstly developing an aircraft agent with distributed coordination functions, followed by the

methodologies description of how to integrate the aircraft landing scheduling model into the

flight deck on-board system of an aircraft agent. Then, uninterrupted free-flight aircraft landing

operation at non-controlled airports, represented by the on-board aircraft landing scheduling tool,

is examined in which the ground-based automated system serves as the baseline system for

comparison. Two coordination models, with focus on event-based coordination model, are then

developed and related distributed coordination issues are addressed.

The decentralized aircraft landing scheduling problem has not been clearly stated in the

literature by far prior to the advent of this research. It is an important problem deserving of closer

attention since it provides a clear approach to the distributed air traffic management system. This

research is concerned with the non-controlled airport case since current operations at the terminal

area of non-controlled airports have no centralized control, which exhibit an inherent property of

distribution that gives a perfect environment for the analysis of the distributed air traffic

management system and the free-flight concept. Its application is expected to extend to

controlled airports with suitable amendment, where the reliance on centralized air traffic

management can be reduced in favor of a decentralized management to provide more airspace

capacity, flight flexibility, and increase operation robustness.

8

D. Structure of the Dissertation

 The following is an outline of the content of the dissertation:

In chapter II, an overview of the current Air Traffic Management system, including

operational components and concepts, is provided first. Then the concept of free flight is

introduced. Finally, general information of the SATS program and non-controlled airport feature

are reviewed.

In chapter III, an approach of developing static optimization algorithms for aircraft landing

scheduling at non-controlled airport is given. Modeling and implementation of an Air Traffic

Control automation system, which handles the static case for aircraft landing scheduling at non-

controlled airport, are addressed. The Air Traffic Control automation system, automatic but still

“centralized-like”, serves as the baseline system for comparison with decentralized aircraft

landing scheduling addressed in chapter IV.

Chapter IV discusses the approach of solving the problem of decentralized aircraft landing

scheduling in the dynamic operational environment at non-controlled airport. Modeling and

implementation of a decentralized Air Traffic Management system at non-controlled airport,

which handles the dynamic aircraft landing, are addressed.

Chapter V presents the overall flight simulation architecture first. Then the numerical solution

methodologies for the implementation of the models that were derived in chapter III and IV are

provided, followed by the discussion of the numerical results.

In chapter VI, it presents conclusions that could be drawn from the research that was presented

in this dissertation. It then gives recommendations on issue for future research and development.

9

CHAPTER II

UNDERSTANDING THE AIR TRAFFIC MANAGEMENT SYSTEM

 – PRESENT AND FUTURE

The research addressed in this dissertation aims to analyze the feasibility and capability of the

decentralized aircraft landing scheduling operations at non-controlled airports. It is concerned

with the non-controlled airport case since current operations at the terminal area of non-controlled

airports have no centralized control, which exhibit an inherent property of distribution that gives a

perfect environment for the analysis of the decentralized Air Traffic Management (ATM) system

and the free-flight concept. It is author’s believe that an overview of the current ATM system,

free flight concept, and non-controlled airport features, which describes the operational

environment for this research, is a necessity.

A. Air Traffic Management System

 The Air Traffic Management provides services that are in place to assure safe and controlled

air travel. In the current ATM system, there are different control stations an aircraft will go

through on its way in the National Airspace System (NAS). All these control stations provide

services that direct aircraft on the ground and in the air. The primary task of the service is to

separate certain aircraft — to prevent them from coming too close to each other horizontally or

vertically. Secondary tasks include ensuring orderly and expeditious flow of traffic, such as

aircraft landing scheduling, and providing information to pilots, such as weather and navigation

information.

10

1. Air Route Traffic Control Center

 Air Route Traffic Control Centers are established primarily to provide air traffic service to

aircraft operating on IFR flight plans within controlled airspace, and principally during the en

route phase of flight [11]. Each center is responsible for many thousands of square miles of

airspace (known as a Flight Information Region) and for the airports within that airspace. Centers

control Instrument Flight Rules (IFR) aircraft from the time the aircraft departs an airport or

leaves the terminal area's airspace or until the aircraft approaches the airspace controlled by a

terminal area or if the airport does not have terminal area control, until the aircraft lands. Centers

may also "pick up" aircraft that are airborne and integrate them into the IFR system. These

aircraft must, however, remain Visual Flight Rules (VFR) until the Center provides a clearance.

2. Clearance Delivery Control

Clearance delivery is the position that coordinates with the Air Route Traffic Control Center

to obtain releases for aircraft. Under normal conditions, this is more or less automatic. When

weather or extremely high demand for a certain airport become a factor, there may be ground

"stops", the airport may go "IFR", or re-routes to ensure the system does not get overloaded. The

primary responsibility of the clearance delivery control is to ensure that the aircraft have the

proper route and release time. This information is also coordinated with the Air Route Traffic

Control Center and the ground controller in order to ensure the aircraft reaches the runway in time

to meet the release time.

3. Ground Control

Ground Control is responsible for the airport "maneuvering" areas, or areas not released to the

airlines or other users. This generally includes all taxiways, holding areas, and some transitional

intersections where aircraft arrive having vacated the runway and departure gates. Exact areas

and control responsibilities are clearly defined in local documents and agreements at each airport.

Any aircraft, vehicle, or person walking or working in these areas is required to have clearance

from the ground controller.

11

4. Tower Control

Tower control is responsible for the active runway surfaces. Local control clears aircraft for

take off or landing and ensures the runway is clear for these aircraft. To accomplish this, local

control controllers are normally given 2 to 5 nautical miles (4 to 9 km) of airspace around the

airport, allowing them to give the clearances necessary for airport safety. If the local controller

detects any unsafe condition, a landing aircraft will be told to “go around” and will be re-

sequenced into the landing pattern by the approach or terminal area controller. Within the tower,

a highly disciplined communications process between tower and ground control is an absolute

necessity. Ground control must request and gain approval from tower control to cross any

runway with any aircraft or vehicle. Likewise, tower control must ensure ground control is aware

of any operations that impact the taxiways and must work with the approach radar controllers to

ensure "holes" or "gaps" in the arrival traffic are created (where necessary) to allow taxiing traffic

to cross runways and to allow departures aircraft to take off.

5. Approach and Terminal Control

Many airports have a radar control facility that is associated with the airport. In most

countries, this is referred to as Approach or Terminal Control; in the U.S., it is often still referred

to as a TRACON or Terminal Radar Approach CONtrol facility. While every airport varies,

terminal controllers usually handle traffic in a 30 to 50 nautical mile (56 to 187 km) radius from

the airport and from the surface up to 10,000 feet. Terminal control is responsible for providing

all Air Traffic Control (ATC) services within their airspace. Traffic flow is broadly divided into

departures, arrivals, overflights, and VFR aircraft. As aircraft move in and out of the terminal

airspace, they are handed off to the next appropriate control facility (a control tower, an en-route

control facility, or a bordering terminal or approach control). Terminal control is responsible for

ensuring that aircraft are at an appropriate altitude when they are handed off, and that aircraft

arrive at a suitable rate for landing.

12

B. Free Flight Concept

Free flight is a developing ATC method that uses no centralized control (e.g. air traffic

controllers). Instead, parts of airspace are reserved dynamically and automatically in a

decentralized way using computer communication to ensure the required flight operations. It

proposed the ATC schemes under which airline companies and pilots would be allowed greater

flexibility in choosing paths from one airport to another. Current air traffic control operations

channel air traffic along a modest number of fixed routes. Fixed routes minimize the potential for

conflict, but produce flight plans that do not minimize fuel usage or flight time. In the highly

competitive air carrier environment, airlines are anxious to reduce their fuel costs and increase

aircraft utilization. At the extreme, free flight would abolish fixed routes, leaving the flight path

completely up to the flight crew (or airline). The abandonment of fixed routes and the

introduction of free flight is projected to reduce airline operating cost by allowing airlines or crew

to select more fuel-efficient paths with reduced flight times.

One of the principal concerns in the introduction of free flight is the possibility of adverse

changes in controller workload. As a result of the fixed routes of the current ATC system there is

substantial repeatability from one day to the next. With practice a controller learns the patterns of

traffic. This consistency facilitates the cognitive processing required for information acquisition,

decision making, and response planning. The fixed route structure further reduces controller

workload by limiting the number of crossing locations within a sector where aircraft would be

most likely to violate separation. In short, the current fixed route system constrains the

opportunities for conflicts, while providing cognitive support to controllers in detecting them.

This predictable structure will change under free flight. For TRACON controllers, the number

of paths could approach the number of different airports feeding aircraft to a particular TRACON.

For en-route controllers the situation under free flight could be even more complex, since traffic

originating from several airports could be crossing a sector en-route to several distinct destination

airports. Variations in wind and weather will cause further variations in paths on a daily or even

13

hourly basis. Thus, where controllers currently have a stable set of routes, free flight will greatly

increase path diversity and reduce path predictability.

Free flight would be an empty solution if the cost in fuel savings to the airlines was negated by

a significant increase in the cost of air traffic control. Yet any future air traffic control system

clearly must maintain the current high level of safety. The challenge for free flight is how to

achieve a very high level of safety while avoiding significant increases in staffing levels [12].

C. Small Aircraft Transportation System Project

The Small Aircraft Transportation System (SATS), a program organized by the National

Aeronautics and Space Administration (NASA), is a revolutionary project designed to reduce

overpopulation of the U.S.’s airport hubs, while increasing traffic at secondary and tertiary

airports with advanced small planes, giving greater abilities to smaller communities. Being that

ninety-eight percent of Americans live in short distance of a public-use airport, SATS’ premise

incorporates 5,400 under-utilized airports across the country into a vital tool helping alleviate the

current overcrowding situation.

SATS program expected to create a new system of innovative technology in smaller aircraft to

be implemented at secondary and tertiary airports, mostly are non-radar and non-towered airports,

referred as non-controlled airports. The model for the future will have complete reliance on

computer guidance so trips to a relatively close-distanced lake or coastline will be casual,

convenient, and easy. Instead of investing millions of dollars per airport to expand and update its

technology, the equipment and resources of the largest airports will be put into the plane itself.

The abilities of the new planes is not suggesting the elimination of towers altogether, but a

technological benefit in many places where the only thing available is a strip of asphalt. Major

airports will be operating at normal capacity with their aircraft flying at high altitudes, along with

small airports being utilized, flying their craft at lower altitudes, in essence, a complex highway

system for the skies and for America.

14

The SATS research program invested in four operating capabilities: 1) high-volume

operations at non-controlled airports; 2) lower adverse weather landing minimums at minimally-

equipped landing facilities; 3) integration of SATS into a higher en-route capacity air traffic

control system with complex flows and slower aircraft; 4) improved single-pilot ability to

function competently in complex airspace in an evolving NAS [5].

D. Non-controlled Airport Features

Non-controlled airports are always surrounded by uncontrolled airspace (class G airspace)

with a ceiling of 700 feet or 1200 feet Above Ground Level (AGL). U.S. airspace classification

is shown in Figure 2. Within the class G airspace, it is the pilot’s responsibility for traffic

avoidance, even for Instrument Flight Rules (IFR) traffic. Therefore, current air traffic operations

in instrument meteorological conditions (IMC) at non-controlled airports are constrained by the

“one-in/one-out” procedure, to ensure safety of the aircraft flying approaches within uncontrolled

airspace. In other words, when the airspace around non-controlled airports is occupied by one

aircraft flying either an arrival or departure, additional requests for operations at the airport are

postponed until the current operation is completed. We can easily tell that capacity at these

airports is severely constrained by the “one-in/one-out” paradigm since one operation can take

over 15 minutes to complete [13].

15

Figure 2: U.S. Airspace Classification

Several research projects researched this paradigm to enable multiple operations

simultaneously within the airspace around non-controlled airports. Two of them address

implementing multiple operations at Multi-Layer Air Traffic Space (MATS) and Self-Controlled

Area (SCA) respectively, which SCA is defined in the SATS project introduced earlier [5, 14].

Each attempts to define a new airspace infrastructure around non-controlled airports, and then

develops suitable procedures accordingly.

E. Conclusions

In this chapter, we firstly reviewed the functionalities of the operational components in the

current ATM system. Then we gave a general description of the Free Flight concept and the

SATS program. They both ultimately seek to achieve effective and efficient flight operations in

the current NAS, with the former focusing on en-route flight operations, and the latter

concentrating on terminal area operations at non-controlled airports. At this stage the potential

16

impact of Free flight on the operations of the national airspace system is still disputed, and

demand measurement for SATS shows that NASA could possibly introduce an idea to the public

that would never be used. However, it can be expected that the future air traffic management

system will manage flight operations in a way that lies somewhere between the two extremes,

fully centralized and uninterrupted free-flight, possibly moving gradually from centralized to

more free-flight, as the concept of Highway-in-the-Sky emerges.

As stated previously, current operations at the terminal area of non-controlled airports have no

centralized control, which exhibit an inherent property of distribution that gives a perfect

environment for the implementation of uninterrupted free-flight concept. In the research

addressed in this dissertation, the on-board aircraft landing scheduling tool developed represents

uninterrupted free-flight to the threshold since there is no ground-based automated system to

enforce any centralized control and flight crews take over all of the responsibilities that the

current controllers have. Aircraft at the terminal area of non-controlled airports are placed in a

complete decentralized environment, and it is author’s believe that the research addressed in this

dissertation will contribute to the future ATM revolution since the research will give a clear view

of where to establish the line of free-flight concept application for the controlled airport case.

17

CHAPTER III

AIRCRAFT LANDING SCHEDULING OPTIMIZATION FOR SINGLE RUNWAY NON-

CONTROLLED AIRPORTS: STATIC CASE

A. Introduction

In chapter II we gave an overview of the operational components and concepts involved in the

aircraft landing operation at terminal area of non-controlled airports. The ultimate goal of the

research addressed in this dissertation is to analyze the degree of decentralization for aircraft

landing scheduling in the dynamic operational environment at non-controlled airports, and thus

explore the feasibility and capability of aircraft landing scheduling within uninterrupted free-

flight environment in which there is no existence of Air Traffic Control (ATC). Before we do

that, we need to solve the problem of how to effectively and efficiently schedule aircraft landing

at non-controlled airports. In this chapter we address the approach of developing static

optimization algorithms for aircraft landing scheduling, and thus analyze the capability of

automated aircraft landing scheduling at single runway non-controlled airports. This is done by

establishing an aircraft landing scheduling model non-controlled airports, and then developing

different scheduling algorithms that are evaluated for capability analysis via flight simulation.

The aircraft landing scheduling model and correlated scheduling algorithms are implemented

as an air traffic control automation system that takes over the sequencing responsibilities of

human air traffic controllers. From the technological view, the air traffic control automation

system still utilizes centralized control that places limits on airspace capacity and flight flexibility

and provides insufficient operation robustness since it will disorder the landing sequence when it

malfunctions. From the operational view, the air traffic control automation system only deals

with the static case for aircraft landing scheduling, where the air traffic control automation system

only makes the scheduling decision once during the whole landing operation at a certain

scheduling point with complete knowledge of the set of aircraft that are going to be sequenced.

18

Scheduling decision will not be updated dynamically after it is initially determined. However, the

resolution for these issues, the distributed Air Traffic Management (ATM) system that handles

decentralized aircraft landing scheduling dynamically, is beyond the scope of this chapter and

will be addressed in chapter IV.

In this section, previous work that has been reported in the literature on the problem of aircraft

landing scheduling is reviewed. It should be stressed that general scheduling problems are the

wider problems that occur in the management of air traffic and they are usually examined from

the operations research viewpoint. General scheduling problems are most often described using a

three-field classification, i.e., machine environment/job characteristics/optimality criterion. The

machine environment is always characterized by a string of two parameters that describe the

relationship among the operating machines, such as if the operating machines are identical or not.

The job characteristics are specified by a set of parameters that describe the relations between

jobs, such as preemption and precedence relations. The optimality criterion term then gives the

objective function. Some scheduling problems can be solved efficiently by reducing them to

well-known combinatorial optimization problems, such as the linear programming problem,

maximum flow problem, or transportation problem. Others can be solved by using standard

techniques such as dynamic programming and branch-and-bound methods.

Ref. [15-22] give some examples that show how some general scheduling problems are solved

by applying different approaches. Most of them deal with the scheduling problem with the three-

field form of (single or identical parallel machine)/ (sequence-dependent jobs)/(minimize the total

completion of time). Whereas Ref. [15-19] simplify it to some conventional combinatorial

optimization problem (e.g., Ref. [17] transforms it to a linear programming problem and Ref. [15]

transforms it to an integer programming problem). Ref [20-22] solves the scheduling problem

using dynamic programming or branch-and-bound approaches.

19

As stated in previous section of this chapter, the aircraft landing scheduling problem is usually

considered as an application in the field of operation research. There are two basic typical

problem statements to describe the aircraft landing scheduling problem: linear/integer

programming problem and the job shop scheduling problem. The Aircraft landing scheduling

problem is described as an linear/integer programming problem by putting the separation

requirements of all pairs of aircraft and landing window constraints of each aircraft into the

standard linear/integer programming form. On the other hand, the problem of scheduling aircraft

landings on one or more runways is the problem that is similar to a machine job scheduling

problem with sequence-dependent processing times and with earliness and tardiness penalties.

1. Job Shop Scheduling Approach

An instance of a typical job shop scheduling problem consists of a set of n jobs and m

machines. Each job consists of a chain of operation, and each operation needs to be processed

during an uninterrupted period of time on a single machine for its entire duration. The objective

is to find a schedule that minimizes the overall completion time of all the operations. The aircraft

landing scheduling problem can be modeled as a job shop scheduling problem when runways

represents machines, and aircraft landing operations represent jobs. Branch-and-bound algorithm

and tree search algorithm are commonly applied to solve the job shop scheduling problem. Ref.

[23] discusses both the static and dynamic aircraft landing problems and present a heuristic

algorithm for the dynamic aircraft landing problem based upon a technique they refer to as

constrained position shifting. This involves finding the best possible positions for the aircraft in

the landing queue subject to the constraint that no aircraft can be moved more than a pre-specified

number of positions away from the position it had in the landing queue based on First-come-first-

serve. However, the separation constraint only applies to successive aircraft landings.

20

Ref. [24] aims to optimally land a set of aircraft on one or several runways in such a way that

separation criteria between all pairs of aircraft (not just successive ones) are satisfied. It presents

a specialized simplex algorithm which evaluates the landing times very rapidly, based on some

partial ordering information. This method is then used in a problem space search heuristic as well

as a branch-and-bound method for both single and multiple runway problems.

Ref. [25] presents a mixed-integer zero-one formulation of the aircraft landing scheduling

problem together with a tree search algorithm based upon a Lagrangean lower bound, a lower

bound derived from scheduling theory and a heuristic procedure.

Ref. [26] incorporates constrained position shifting within dynamic programming recursion

(with successive separation) and considers the single runway static problem. It views the aircraft

landing problem as comprising groups of identical aircraft waiting to land.

Ref. [27] presents a depth-first tree search algorithm based on enumerating all possible

aircraft sequences. Branches in the tree were discarded when the cost of a partially constructed

sequence exceeds the best-known feasible solution (branch-and-bound method).

2. Combinatorial Optimization Approach

Aircraft landing scheduling problem can also be solved efficiently by reducing them to well-

known combinatorial optimization problems, such as linear programs, maximum flow problems,

or transportation problems. Ref. [7] and Ref. [28] present a mixed-integer zero-one formulation

for both the static and dynamic aircraft landing problems. They strengthen the linear

programming relaxations of these formulations by introducing additional constraints. The

problem is solved optimally using a linear programming-based tree search algorithm. Ref. 26

uses a similar approach and considers the problem of assigning priorities to aircraft waiting to

land from a queuing theory viewpoint.

3. Knowledge-Based/Fuzzy Reasoning Approach

Final Approach Spacing Tool (FAST), a component of CTAS, has been developed to assist

TRACON controllers to efficiently schedule arriving aircraft. Papers on FAST provide the

21

knowledge-based approach for the aircraft landing scheduling problem [29-33]. They propose a

fuzzy reasoning-based method for both aircraft sequencing in the terminal area and runway

assignment. The scheduling system sequences and assigns landing times to arrival aircraft by

utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithm

contains a knowledge base which was refined during several thousand hours of controller-in-the-

loop real-time simulations. The knowledge base then applies fuzzy reasoning to evaluate

propositions that consider both performance criteria and workload criteria, such as delay

reduction and conflict avoidance.

It should be noted that the vast majority of non-controlled airports only have instrument

approaches designed for the primary runway. Even for those airfields that do not have ATC

service but do have multiple runways, in bad weather there is almost always only one runway that

instrument approaches are flown to. Since the number of non-controlled airports which are

capable of multiple runway operations is estimated to be only about 1%, only the single runway

case is considered here.

This chapter is organized as follows. First, the basic problem of aircraft landing scheduling is

described. Then an aircraft landing scheduling model of the static case for single runways at non-

controlled airports is established. Finally, methodologies and capabilities of developing and

implementing different scheduling algorithms are presented.

B. Aircraft Landing Scheduling Problem

The aircraft landing scheduling problem is concerned with determining landing times on a

runway for a sequence of aircraft, such that each aircraft lands within its predetermined landing

time window, while satisfying separation criterion between aircraft. Upon entering into the

terminal area of an airport, an aircraft is assigned a landing time and a runway. The landing time

must lie within a predetermined time window, bounded by an earliest time and a latest time. The

aircraft can land at the earliest time if it flies at its maximum airspeed, while it will land at the

22

Earliest
Time

Preferred
Time

Latest
Time

Cost

Time

Figure 3: Variation in Cost for an Aircraft within its Landing Time Window II

latest time if it flies at its most fuel-efficient airspeed while also holding for the maximum

allowable time [7].

Each aircraft produces its preferred landing time if it flies at its most economical, preferred

speed, the cruise speed. If the aircraft is required to slow down, hold, or speed up for separation

assurance or other incidental reasons, extra cost will be incurred. In general, this cost will grow

as the difference between the assigned landing time and the preferred landing time increases.

Figure 3 shows an example of the variation in cost for an aircraft within its landing time window.

Another issue is the separation criterion assurance. It is well known that the FAA regulates a

certain separation requirement among flights in en-route airspace. Similarly, the landing time of

an aircraft and its successive aircraft must be greater than a specified minimum, referred to as

landing separation time. The landing separation time depends on the type of the aircraft, due to

aerodynamic considerations. It is straightforward to understand that the landing separation time

between large commercial flights is usually greater than the separation time between small

General Aviation (GA) flights, as commercial aircraft generate greater wake turbulence than GA

aircraft.

Research on aircraft scheduling can be divided into two areas. One area determines efficient

scheduling algorithms, and the other studies performance potentials and overall strategies of

automated aircraft scheduling [6]. The aircraft landing scheduling problem is usually considered

23

as an application in the field of operations research, and two approaches are often taken:

linear/integer programming (LP), and job shop scheduling. The aircraft landing scheduling

problem is described as an LP problem by representing the separation requirements of all pairs of

aircraft and the landing window constraints of each aircraft in the standard linear/integer

programming form [7, 26]. The basic mathematical description of LP is introduced in a later

section. The problem of scheduling aircraft landings on one or more runways is a problem that is

also similar to a machine job scheduling problem with sequence-dependent processing times, and

earliness and tardiness penalties. A typical job shop scheduling problem consists of a set of n

jobs and m machines, in which the objective is to find a schedule that minimizes the overall

completion time of all the operations. The aircraft landing scheduling problem can be modeled as

a job shop scheduling problem when runways represents machines, and aircraft landing

operations represent jobs [23, 25]. The basic mathematical description of job shop scheduling

algorithms is introduced in a later section, and both the LP and job shop scheduling approaches

are used in this research.

C. Aircraft Landing Scheduling Model for Single Runway Non-Controlled Airports

1. Notations

Constants used to describe the aircraft landing scheduling model are defined as follows:

Ei = earliest landing time for aircraft i (i = 1,… N)

fi = penalty cost per unit of time if aircraft i lands before the preferred landing time Pi

(i = 1,… N)

gi = penalty cost per unit of time if aircraft i lands after the preferred landing time Pi

(i = 1,… N)

Li = latest landing time for aircraft i (i = 1,… N)

N = number of aircraft

Pi = preferred landing time for aircraft i (i = 1,… N)

24

Sij = separation time requirement between aircraft i and j, where aircraft i lands before j

 (i = 1,… N, j = 1,… N, i � j)

 The landing time window of aircraft i is therefore denoted as [Ei, Li], where Ei � Pi � Li.

Variables used to describe the aircraft landing scheduling model are defined as follows:

ai = time aircraft i lands after the preferred landing time Pi (i = 1,… N)

bi = time aircraft i lands before the preferred landing time Pi (i = 1,… N)

xi = landing time for aircraft i

 �ij = 1 if aircraft i lands before aircraft j, and 0 otherwise (i = 1,… N, j = 1,… N, i � j)

2. Constraints

Figure 4 is a graphical representation of the constraints developed below. It shows the

overlapping landing time windows of aircraft i and j. The first set of constraints are:

 Ei � xi � Li, i = 1,… N (1)

which ensures that each aircraft must land within its predetermined landing time window. Now,

considering pairs of aircraft (i, j) provides another constraint:

 �ij + �ji = 1, i = 1,… N; j = 1,… N; i < j (2)

In words, either aircraft i must land before aircraft j (�ij = 1) or aircraft j must land before aircraft

i (�ji = 1). The constraints described above mainly deal with the order of pairs of aircraft (i, j).

Time

Pi Pj

bi

Lj Ej

Li Ei

ai bj aj

Figure 4: Example of Overlapping Landing Time Windows

25

However, even if the landing order of pairs of aircraft (i, j) is known, it does not necessarily

imply the separation constraints are automatically satisfied. For example, if the landing time

window for two aircraft i and j are (10, 20) and (30, 40) respectively, and the separation time Sij

=15, the separation constraint is not automatically satisfied; there exist landing times for i and j

that violate the separation constraint. Hence, the separation constraint is necessarily defined as:

 xi + Sij �ij – (Li – Ej) �ji � xj

 i = 1,… N; j = 1,… N; i � j (3)

Two cases are considered here. First, if �ij = 1, then i lands before j and thus �ji = 0 from Eq.(2).

Therefore, inequality (3) becomes xj � xi + Sij, ensuring that the separation requirement is

satisfied. Second, if �ij = 0, then j lands before i and thus �ji = 1 from Eq.(2). Therefore,

inequality (3) becomes xi - xj � Li – Ej, and it can be deduced easily starting from the inequality

(1). Finally, the constraints which relate ai, bi and xi variables are:

Max (0, Pi – xi) � bi � Pi – Ei, i = 1,… N (4)

Max (0, xi – Pi) � ai � Li – Pi, i = 1,… N (5)

 xi = Pi – bi + ai, i = 1,… N (6)

Inequality (4) ensures that bi is at least as big as zero, and the time difference between Pi and xi,

and at most the time difference between Pi and Ei (see Figure 4). Inequality (5) shows the similar

meaning for ai. Equation (6) relates the ai, bi and xi variables to the preferred landing time Pi. It

should be noted that for the ith aircraft in a specified scenario, at least one of the values among ai

and bi should be equal to zero.

 It is worthy mentioning that the constraints described above can be considered as a non-

controlled airport application customization of the constraint set developed in Ref. 14, and the

author does not claim any credit of original contribution of developing the constraint set. The

main purpose of constraint customization is to formulate the aircraft landing scheduling model,

and thus to develop the air traffic control automation system that will be served as the baseline

26

system for comparison with the distributed air traffic management system developed in chapter

IV.

3. Problem Specific Features of Non-Controlled Airports

 Non-controlled airports are always surrounded by uncontrolled airspace (class G airspace)

with a ceiling of 700 feet or 1100 feet Above Ground Level (AGL). Within the class G airspace,

it is the pilot’s responsibility for traffic avoidance, even for Instrument Flight Rules (IFR) traffic.

Therefore, current air traffic operations in instrument meteorological conditions (IMC) at non-

controlled airports are constrained by the “one-in/one-out” procedure, to ensure safety of the

aircraft flying approaches within uncontrolled airspace. In other words, when the airspace around

non-controlled airports is occupied by one aircraft flying either an arrival or departure, additional

requests for operations at the airport are postponed until the current operation is completed. We

can easily tell that capacity at these airports is severely constrained by the “one-in/one-out”

paradigm since one operation can take over 15 minutes to complete [13].

 Several research projects are currently researching this current paradigm to enable multiple

operations simultaneously within the airspace around non-controlled airports. Two of them

address implementing multiple operations at Multi-Layer Air Traffic Space (MATS) and Self-

Controlled Area (SCA) respectively [5, 14]. Each attempts to define a new airspace infrastructure

around non-controlled airports, and then develops suitable procedures accordingly. Since we will

use Small Aircraft Transportation System (SATS) SCA High Volume Operation (HVO) scenarios

to analyze our aircraft landing scheduling algorithms in the following sections of the paper, a

brief description of the SATS SCA HVO program is provided. SCA is a block of airspace

established around non-controlled airports where the responsibility for safe aircraft separation lies

with the pilot. The SCA HVO program enables multiple operations within an SCA by having the

aircraft hold in stacks at Initial Approach Fixes, and then follow specified procedures (either

vertical entry or lateral entry) to enter the SCA and complete approaches. This is shown in Figure

5.

27

 It should be noted that either vertical or lateral entry landing operation can be divided into a

sequence of flight segments. Aircraft at one flight segment is required to determine its action

towards the subsequent flight segment depending on its availability. For example, an aircraft is at

4000ft AGL above the SCA and it plans to fly a vertical entry procedure, the subsequent flight

segment is the holding pattern at 3000ft AGL (the ceiling of the SCA). Before it approaches to

the holding pattern at 3000ft AGL, it will have to check its availability by determining if it is

occupied by another aircraft or not. It will not be allowed to descend to the 3000ft AGL holding

pattern until it is clear. Figure 6 shows the decision tree along the flight path for an aircraft in a

SCA HVO scenario.

Figure 5: SATS Self-Controlled Area High-Volume Operations Concept

5
4
3
2

7

6

 1: Landing request?
LEN

Granted LEN
Denial

5: Spacing criteria met ?

6: Landing?

Yes N o

Fly holding
pattern

Yes

Runway

No

Miss approach

2: Is 3 clear?

Yes N o

Fly holding
pattern

3: Is 5 clear?
Yes No

5: Spacing criteria met ?

3: Is 4 clear?
Yes N o

Fly holding
pattern

4: Is 5 clear?
Yes

N o

Fly holding
pattern

Back to 1

Figure 6: Decision Tree along Flight Path for SCA HVO Procedure

28

1

() (7)
N

i i i i

i

Minimize f b g a
=

+�

4. Objective Functions and Performance Metrics

In the field of aircraft scheduling, the choice of objective function has usually caused the most

discussion. Different users can always provide convincing arguments for their choices of

objective function. Two different objective functions are defined based on the special features of

the SCA HVO described above, and are used as two of the three performance metrics used in the

numerical examples. A third performance metric which is not an objective function is also

introduced.

1) Minimize Total Cost of Deviation (TCD) from the preferred landing time. This performance

metric indirectly measures the sequencing/scheduling algorithm efficiency with regard to the

complete flight path. TCD is the sum of weighted Dynamic Time of Arrival (DTA) deviation

of all the aircraft in a scenario. Deviation time is calculated as the difference between DTA

and the preferred landing time. Preferred landing time is calculated as the flight time from

the scenario entry point to the runway, assuming the constant airspeed of the holding speed.

The penalty cost depends on the aircraft type.

2) Minimize Total Holding Time (THT). This performance metric indirectly measures the fuel

and efficiency affected by the sequencing/scheduling algorithm, with special consideration of

the SATS HVO scenario at non-controlled airports. It is the sum of delay time of all the

aircraft in a scenario during the flight segment of three SATS holding patterns (2000ft, 3000

ft, and 4000 feet respectively). The holding time for one aircraft is the time from when it

arrives at the IAF until it can begin its approach; the total holding time is the sum of the

holding times for all aircraft in the scenario. In the context of SCA HVO procedures total

holding time measures the total “wasted time” of all aircraft while flying holding patterns

above or within the SCA and is thus a suitable metric for evaluating the efficiency of the

aircraft landing scheduling algorithms for SCA HVO. Note that the total holding time cannot

29

be explicitly defined using the constants and variables given in the previous sections of the

paper; it can only be calculated while running real-time flight simulation.

3) Total Delay Time of Feeder Route. This performance metric directly measures the delay time

with regard to the flight segment of the feeder route. It is not an objective function, but is

introduced here as a supplementary metric to evaluate flight efficiency, since the delay

encountered from the scenario entry point to the IAF is distinguishable from the holding

delay measured in Total Holding Time. It is the sum of the delay time of all aircraft in a

scenario during the feeder route flight segment (from the scenario entry point to IAF), and is

a result of implementing the prescribed sequence.

 Note that similar aircraft landing scheduling problems with objective functions that are linear

functions of time deviation from preferred landing time can be solved without any substantial

change to the current formulation, simply by introducing new penalty cost parameters. However,

objective functions that are nonlinear functions of time deviation from preferred landing time are

beyond the scope of the present research.

 The complete aircraft landing scheduling model of the single runway case for non-controlled

airports is now established—minimize either total cost of deviation or total holding time subject

to equations and inequalities (1) to (7).

5. Scheduling Point

The scheduler makes its scheduling decision at a certain scheduling point, ideally an actual

point in time or space. For example, it can be the origination airport from which an aircraft

departs. It can also be the boundary of Center airspace, and thus depends on the definition of the

airspace infrastructure around the non-controlled airports. For instance, if the airspace

infrastructure defined in Ref [14] is applied, the boundary of the terminal area is approximately

50 nautical miles away from the airports. In this research, since we use the SATS HVO scenarios

to conduct scheduling algorithm analysis, the scheduling point is chosen as the time when the first

30

aircraft in each scenario reaches the waypoint that is 20 nautical miles to its assigned Initial

Approach Fix.

D. Aircraft Landing Scheduling Algorithms for Single Runway Non-Controlled Airports

1. First-Come-First-Serve Scheduling Algorithm

The first-come-first-serve scheduling algorithm is the baseline algorithm for comparing with

the optimal scheduling algorithm. There is no specified objective function in the first-come-first-

serve scheduling model. Instead, the first-come-first-serve paradigm is applied as long as the

constraints described in (1) to (6) are satisfied. The first aircraft in the scenario who hits the

scheduling point gets the first slot in the sequence, and the aircraft that is nearest to the

scheduling point (according to the time-based linear projection) gets the second slot in the

sequence, and so on. It should be mentioned that procedure-based projection is used to calculate

the time from the scheduling point until the aircraft lands, since the aircraft has to fly specified

procedures defined in SCA HVO to complete an approach. For instance, an aircraft has to fly the

holding pattern in stacks at Initial Approach Fixes before it enters into the SCA vertically.

2. Optimal Scheduling Algorithm

The optimal aircraft landing scheduling problem can be stated from different viewpoints and

then solved using different algorithms. Therefore, a variety of algorithms has been developed in

the literature on the problem of scheduling aircraft landing optimally. In this research, it is solved

as a linear programming problem and as a job shop scheduling problem.

1) Linear Programming Problem

In mathematics, linear programming problems are optimization problems in which the

objective function and the constraints are all linear. It is usually in the following form:

31

1 1

11 1 1 1

1 1

(8)

(9)

() ...

...

...

0 1,..., .

n n

n n

m mn n m

i

Minimize z x c x c x

subject to

a x a x b

a x a x b

x for i n

= + +

+ + ≥

+ + ≥

≥ =

�

(10)

(11)

() TMinimize Z X C X

subject to AX B

=

≥

Or in the vector form:

where Z(X) defines the objective function and AX B≥ defines the constraints set.

A vector X = (x1, …, xn) satisfying the inequality set (11) is called a feasible solution. The

linear programming problem is to find a feasible solution that minimizes (10). The most popular

method for solving linear programming problem is the simplex algorithm [34]. It is an iterative

procedure that finds an optimal solution or detects infeasibility after a finite number of steps.

Although it should be noted that the number of iteration steps might be exponential, the simplex

algorithm is very efficient in practice. Figure 7 shows the flow chart of the simplex algorithm.

Compute initial feasible
solution

Current solution
optimal?

Yes

Done

Compute a better adjacent
feasible solution

No

Figure 7: Flow Chart of Simplex Algorithm

32

It can be seen from Figure 7 that the simplex algorithm is similar to a tree search algorithm

based on enumerating the possible solution. The current solution being searched is discarded

when the cost exceeds the best-known feasible solution. The aircraft landing scheduling model

developed in the previous section can be formulated as an LP problem.

2) Job Shop Scheduling Problem

The aircraft landing scheduling problem can be posed as a job shop scheduling problem in

which the single runway represents the single machine, and the aircraft represents jobs. The

earliest time Ei associated with each aircraft (job) is the release time (sometimes called the ready

time) of the job. The processing time of a particular job (aircraft) on the single machine (runway)

is then dependent upon all the other jobs that will follow it on the same machine. This is because

the processing time for a particular job on a particular machine must be sufficient to ensure that

the following jobs (aircraft) are not started before the appropriate separation time (e.g., Sij in the

scheduling model) has elapsed. In other words, the problem of scheduling aircraft landing can be

viewed as a job shop scheduling problem with release time Ei and sequence-dependent processing

times Sij. In particular, the scheduling model described earlier can be solved as a job shop

scheduling problem in the form of:

 1/ Ei /seq-dep/�wici (12)

Where Ei indicates the release time (the earliest landing time), seq-dep includes all of the

separation time requirement Sij, �wici represents the objective function defined in Eqs. (7), and

there is a single runway. Several algorithms are available to solve the job shop scheduling

problem, e.g., branch-and-bound algorithm and tree search algorithm.

E. Conclusions

In this chapter an aircraft landing scheduling model and static optimization scheduling

algorithms using linear programming and job shop solutions were developed and implemented as

an air traffic control automation system for automated aircraft landing scheduling at single

33

runway, non-controlled airports. Performance of the optimization algorithm was compared to a

first-come-first-served scheduling algorithm in terms of total cost of deviation, total holding time,

and total delay time of feeder route.

34

CHAPTER IV

DECENTRALIZED AIRCRAFT LANDING SCHEDULING AT

SINGLE RUNWAY NON-CONTROLLED AIRPORTS: DYNAMIC CASE

A. Introduction

 In chapter III we examined the capability of automated optimized aircraft landing scheduling

at single runway non-controlled airports. An aircraft landing scheduling model and several

scheduling algorithms for single runway non-controlled airports were developed and

implemented as an air traffic control automation system that takes over the sequencing

responsibilities of human air traffic controllers [35]. However, the ultimate objective for this

research is to analyze the feasibility and capability of decentralized aircraft landing scheduling in

the dynamic operational environment at non-controlled airports in which there is no existence of

Air Traffic Control (ATC). This chapter will then attempt to provide detailed description of the

implementation of a distributed Air Traffic Management (ATM) system that achieves

decentralized aircraft landing scheduling with acceptable performance, and to address all

correlated issues.

From the technological view, the air traffic control automation system addressed in chapter III

utilizes centralized control as opposed to the decentralized control applied in the distributed ATM

system. A significant research issue is the level to which the non-controlled airports should be

decentralized. The air traffic control automation system does not provide sufficient operational

robustness since it can disorder the landing sequence if it malfunctions. Distributed ATM system,

however, is to reduce the reliance on centralized air traffic management in favor of decentralized

management. The real question is how decentralized should the non-controlled airports be, or

more simply how far can we extend the free-flight concept in the case of the non-controlled

airports? Can we achieve the decentralized mode for the ATM system of non-controlled airports

such that flight crews even take over the scheduling responsibilities with the assistance of on-

35

board aircraft landing scheduling tool, which represents the ultimate uninterrupted free-flight

scenario? This chapter seeks to address the technology challenges raised by these questions.

From the operational view, the air traffic control automation system addressed in chapter III

only deals with the static case for aircraft landing scheduling, where the air traffic control

automation system only makes the scheduling decision once during the whole landing operation

at a certain scheduling point with complete knowledge of the set of aircraft that are going to be

sequenced. Once initially determined, the scheduling decision is not updated dynamically. It is

therefore not a total solution, since it still places limits on airspace capacity and flight flexibility.

The distributed ATM system, on the other hand, performs the aircraft landing scheduling

dynamically since flight crews can use the on-board scheduling tool to reschedule themselves

constantly during the whole landing operation since a change may occur in the dynamic

operational environment, such as the appearance of a new aircraft. What is not fully understood

is whether or not flight crews can adequately assume the scheduling responsibilities with the

assistance of on-board aircraft landing scheduling tool in such a decentralized ATM system

mode. Decentralized aircraft scheduling is most often addressed in the literature by work on

Distributed Air/Ground-Traffic Management (DAG-TM) and free-flight concepts. From the

operational view, these works can be divided into four categories: on-board decision support

tools, small airport automation systems, air-ground integration/simulations, and coordination.

Each of these categories is described below.

1. On-Board Decision Support Tool

The free-flight concept puts more responsibilities on the pilot. In the free-flight environment,

pilots are required to ensure their own separation in the en-route airspace, and even in the high-

density terminal area. It becomes vital to improve the on-board system to assist pilots with more

accurate and efficient flight operations advisories.

One potential solution is presented in [36], which is a sub-project of the DAG-TM program

conducted by NASA Ames Research Center. An airborne tool called the Advanced Terminal

36

Area Approach Spacing (ATAAS) tool is based on the concept of an aircraft maintaining a time-

based, rather than distance-based, spacing interval from the preceding aircraft. The ATAAS tool

uses Automatic Dependent Surveillance-Broadcast (ADS-B) aircraft state data along with final

approach speeds and wind data to compute speed commands for the ATAAS equipped aircraft to

maintain the required time interval behind the other aircraft.

Ref. [37-39] address a more advanced on-board guidance system called Airborne Merging and

Spacing for Terminal Arrivals (AMSTAR). Ref. [37] presents the general information, Ref. [38]

introduces the speed control law, and Ref. [39] describes the simulation environment. It is

actually the direct descendant of the ATAAS concept and implementation. Whereas ATAAS was

intended for use only when the lead and following aircraft were in-trail, AMSTAR would permit

time-based spacing between any two aircraft headed for the same runway, even if they were not

yet physically in-trail.

 It is important to note all existing on-board decision support tools describe in the literate

review above are focused on separation assurance and self-spacing, and leave the responsibilities

of aircraft landing scheduling to ground-based air traffic control. The DAG-TM concepts

envision a possible way to manage arrivals such that the flight deck is responsible for landing

scheduling in the uninterrupted free-flight environment, but the feasibility and capability analysis

of an on-board landing scheduling tool has not been explored. The research described in this

chapter seeks to fill this technical gap and to address the technological and operational challenges

brought by the introductory of on-board landing scheduling tool.

37

2. Small Airport Automation

Several government-sponsored projects targeted at developing small airport automation

include:

• Small Aircraft Transportation System (SATS)

• Smart Airport Automation System (SAASY)

Ref. [40] gives the overall introduction of the Smart Airport Automation System project.

SAASY was a NASA sponsored project in the early twenty-first century to provide Visual Flight

Rules (VFR) to a flight airport, sequencing, runway, and conflict advisories for GA pilots

operating at airports that do not have operating air traffic control towers. The main motivation

for SAASY is to provide the mechanism to increase VFR safety. The sequence advisory provides

conflict-free arrival and departure sequence assignments to enhance traffic safety. An initial

aircraft sequence is generated based on a first-come-first-serve algorithm that uses the time-at-

runway threshold generated by the trajectory predictor. The final sequence is modified using a

set of priority and right-of-way rules to better emulate the pilot’s decision process when

approaching the airport.

Ref. [41] presents the general information of the SATS project. SATS was conducted through

a public-private partnership including NASA, the FAA, and the National Consortium for Aviation

Mobility SATSLabs. Within the Self-Controlled Area, properly-equipped SATS aircraft

equipped with Automatic Dependent Surveillance-Broadcasting (ADS-B) surveillance, two-way

data links, automation-pilot data link communications interfaces, and cockpit displays of traffic

information provide self-separation. The sequencing of arrivals is handled by the Airport

Management Module (AMM), a small airport system that monitors local traffic. The SATS small

airport AMM system focuses on providing IFR capacity and not VFR safety.

Ref. [42] explores past and ongoing research focused on the development of automation to

support safer and more efficient aircraft operations at the small airports. The current and

expected future operational problems for aircraft utilization of these airports are reviewed first.

38

Then, the topology of small airport system concepts in general is reviewed, and finally the major

issues that drive the system design and operational usage are discussed.

Both SATS and SAASY projects seek to improve the operation effectiveness and efficiency of

the under-utilized public-use airports, focusing on IFR capacity and VFR safety respectively.

However, the first-come-first-serve sequencing algorithm proposed in SAASY project still places

capacity limitations, and the priority rules introduced only apply to VFR traffic. SATS project

proposes a new set of operation concepts that break the “one-in-one-out” paradigm and thus

provide the capability of multiple operations at a time at the terminal area of small airports. The

new set of operation concepts, combined with the on-board SATS Conflict Detection &

Avoidance (CD&A) algorithm, provides the separation assurance but leaves the sequencing

responsibility to AMM, a ground-based airport automation system which still works as a

centralized control. It is therefore concluded that the previous research work on small airport

automation still leaves the capability analysis of scheduling IFR traffic in a complete distributed

environment as an open discussion.

3. Air-Ground Integration/Simulation

 How to integrate either the autonomous airborne components or small airport automation

systems into the current NAS is another major question related to the research issues addressed in

this chapter. Ref. [43-45]attempt to answer that question from their own perspectives. Ref. [43]

describes the procedures of how to evaluate the technical and operational feasibilities of the

autonomous airborne components of DAG-TM, based on the free-flight concept. It includes an

overview of research approaches, the airborne technologies under development, and a summary

of experimental investigations and findings to date. In Ref. [44], results and observations from

integrated air ground simulations that were conducted over the last few years at NASA Ames

Research Center are reviewed. Ref. [45] addresses a mixed-fidelity simulation environment for a

human-in-the-loop study of DAG-TM concepts. Decision support tools for flight crews and air

traffic service providers are accessible at the respective operator stations in the simulation

39

infrastructure. Many operator positions, either operated with human-in-the-loop or autonomously

run with agent support, are provided to facilitate large-scale experiments supporting high

numbers of pilot, air traffic controller, and air traffic service providers. This simulation

environment provides a highly realistic and flexible test bed to gain a solid understanding of

interactions in the very complex distributed air traffic environment.

The scheduling/sequencing function component in the Air-Ground integration simulation

described above are still simulated as a centralized control component, either implemented as a

subset of the ground-based airport automation system agent or directly included human air traffic

controller in the loop. Simulation environment that includes disturbed scheduling/sequencing

function component has not been developed.

4. Coordination

The design of coordination mechanisms for multi-agent system has proven to be a difficult

problem. In the last decade a variety of such mechanisms over a wide range of task domains has

been studied. Although the literature highlights some elegant solutions, they are generally

domain-specific and provide only indirect insight into important questions. For instance, how

appropriate is a given coordination mechanism is for a particular domain? What performance

characteristics can be expected, and how is it related to other coordination mechanisms? How

can it be modified to improve system performance [46]. A general solution to the distributed

coordination problem for multi-agent system is beyond the scope of this research, since the

objective here is to propose and develop a coordination mechanism that fits a specific domain:

distributed aircraft landing scheduling at non-controlled airports. Two candidate approaches,

direct coordination model and event-based model, are favorable. Direct coordination models

used in distributed applications are usually the ones in which the agent’s interactions involve

explicit task-directed communications or negotiations about global resource usage or task

assignments in order to achieve coordinated behavior [46]. In event-based coordination models,

each agent operates under local control. The system-level coordinated behavior arises from

40

agent-agent interactions by generating events, and reacting to the particular events of interest,

without an explicit notion of task-directed communication or negotiation. Event-based

coordination in a distributed system is dominated by client/server platform relying on

synchronous request/reply. However, this architecture is not well suited to implement

information-driven applications like air traffic control, news delivery, and stock quoting due to

the inherent mismatch between the demands of these applications and the characteristics of those

platforms. In contrast to that, publish/subscribe (pub/sub) directly reflects the intrinsic behavior of

information-driven applications because communication here is indirect and initiated by

producers of information: producers publish notifications and these are delivered to subscribed

consumers by the help of a notification service that decouples the producers and the consumers

[47]. Though pub/sub is not a recent achievement [48, 49], its use in large-scale, wide-area

communication has become a hot research topic only in the last a few years, making pub/sub

move from a simple application of multicast to a communication paradigm in its own right. This

happened because the anonymous, loosely coupled communication scheme, which is proper of

the pub/sub paradigm, fits well to the highly dynamic nature of large-scale environments.

Therefore, publish/subscribe should be the first choice for implementing such applications.

All of the previous work reported in the literature addresses on-board decision support tools

for airborne separation and final approach spacing at controlled airports, and all of the landing

scheduling tools are ground-based. In the domain of aircraft landing scheduling, landing

operations at terminal area of the airports are still under centralized-control implemented by

ground-based airport automation system or human air traffic controller. A systematic approach to

achieve scheduling multiple landing operations at a time in a decentralized dynamic operational

environment has not been explored. Firstly the infrastructure of the decentralized operational

environment, which includes the functional components and operation concepts, needs to be

established. Secondly, decentralized ATM mode certainly introduces more dynamics to the

operational environment due to the increasing interaction among aircraft, and issues of handling

41

dynamic situation such as the appearance of a new aircraft need to be addressed. Finally, a

communication model needs to be developed to ensure robust and effective interaction among

aircraft during decentralized aircraft landing scheduling operations. The contributions of the

research addressed in this chapter lie in the development of an event-based coordination pub/sub

model in the domain of aircraft scheduling. An original approach is used here to solve the

decentralized aircraft landing scheduling problem, and the event-based coordination model is

more robust than the direct coordination model. Most importantly, the mathematical description

of the publish/subscribe rules for the event-based coordination model in this research provides a

better way than plain text description, which usually is the way most of the ATM papers use on

introductory of a new operation concept or improvement to the current NAS. To assist with

achieving a global solution of aircraft landing scheduling when several aircraft are involved in a

distributed environment, the event-based distributed coordination model is integrated with an on-

board system. Called the On-Board Aircraft Landing Scheduling Tool, it provides the pilot with

the capability to self-schedule in the dynamic operational environment of the terminal area of

non-controlled airports. The aircraft agent developed in this chapter is designed and implemented

for FAR 23 Class GA aircraft under Free Flight conditions. Although the target operational

environment investigated in this work is non-controlled airports, with suitable modification the

approach is potentially flexible enough to extend to controlled airports too, where decentralized

management can provide more airspace capacity, flight flexibility, and increased operational

robustness.

This chapter seeks to analyze the degree of decentralization for aircraft landing scheduling in

the dynamic operational environment at non-controlled airports, and thus explore the feasibility

and capability of aircraft landing scheduling within uninterrupted free-flight environment in

which there is no existence of ATC. This chapter is organized as follows. Initially, an aircraft

agent is developed for the agent-based flight simulation, followed by the methodologies

description of how to integrate the aircraft landing scheduling model into the flight deck on-board

42

system of an aircraft agent. Then, uninterrupted free-flight aircraft landing operation at non-

controlled airports, represented by the on-board aircraft landing scheduling tool, is examined in

which the ground-based automated air traffic control system serves as the baseline system for

comparison. Finally, two coordination models, with focus on event-based coordination model,

are developed, and related distributed coordination issues are addressed.

B. Decentralized Aircraft Landing Scheduling at Non-Controlled Airports

Decentralized aircraft landing scheduling problem has not been clearly stated in the literature

by far prior to the advent of this research. However, it is an important problem deserving of

closer attention since it provides a clear approach to the distributed air traffic management

system. As stated earlier, the purpose of this research is to analyze the degree of decentralization

for aircraft landing scheduling in the dynamic operational environment at non-controlled airports.

It starts with the non-control airport case since current operations at the terminal area of non-

controlled airports have no centralized control, which exhibit an inherent property of distribution

that gives a perfect environment for the analysis of the distributed air traffic management system

and the free-flight concept.

Similar as stated in chapter III, only the single runway case is considered since the vast

majority of non-controlled airports only have instrument approaches designed for the primary

runway. Even for those airfields that do not have ATC service but do have multiple runways,

estimated to be only about 1%, in bad weather there is almost always only one runway that

instrument approaches are flown to.

1. Integration of Aircraft Agent and Aircraft Landing Scheduling Tool

In this section the aircraft agent with distributed coordination function and the aircraft landing

scheduling model developed in chapter III are briefly reviewed, followed by the methodologies

description of how to integrate the aircraft landing scheduling model into the flight deck on-board

43

system of an aircraft agent. The on-board aircraft landing scheduling tool provides the capability

of decentralized aircraft landing operation.

1) Aircraft Agent

The aircraft agent developed in this research is designed and implemented for FAR 23 Class

GA aircraft under Free Flight conditions. Most FAR 23 Class GA aircraft in use today, however,

are not equipped with the standard navigation and communication devices commonly found on

commercial air transportations. As the concept of decentralized aircraft landing scheduling

introduced in this research is designed for a future implementation of Free Flight, it is anticipated

that this advanced equipment will be available on GA aircraft at that time. Therefore, in this

research it then assumes that the aircraft agents implement real-time flight operations with the aid

of the following on-board devices: ADS-B devices, so that the aircraft has the access to current

traffic information; Flight Management System (FMS), so that the aircraft can utilize the traffic

information from ADS-B devices for Conflict Detection & Resolution (CD&R) and landing

scheduling; and a communication device that gives the aircraft the capability to communicate

with other aircraft. The CD&R algorithm developed in this research is a modified version of the

original Small Aircraft Transportation System (SATS) CD&R algorithm, where modifications are

made as per the review comments of the CD&R modeling methods currently in use or under

operational evaluation in [50]. It should be noted that the CD&R algorithm not only maintains a

distance-based separation in the en-route phase of flight, but also enforces a time-based spacing

in the final approach. It is assumed that each aircraft agent is equipped with such on-board

CD&R module to plan maneuvers for an optimized and conflict-free trajectory. It is also

assumed that the on-board CD&R module is sufficient to provide self-separation advisories for

pilots since this research targets issues of decentralized aircraft landing operation only.

2) Aircraft Landing Scheduling Model and Algorithms

The aircraft landing scheduling problem is the problem of deciding a landing time on an

appropriate runway for each aircraft for a given set of aircraft such that each aircraft lands within

44

a predetermined time window, and the separation criteria the aircraft landings are respected. In

chapter III, the aircraft landing scheduling model at non-controlled airports is formulated as:

minimize Z(x) subject to C(x). Z(x) is the objective function, and two objective functions are

defined: minimizing the total cost of deviation from the preferred landing time and minimizing

the total holding time. C(x) represents the constraints of the problem. The set of constraints

defined in the model are given as:

Ei � xi � Li, i = 1,…, N (1)

�ij + �ji = 1, i = 1,…, N; j = 1,… N; i < j (2)

 xi + Sij �ij – (Li – Ej) �ji � xj i = 1,…, N; j = 1,…, N; i � j (3)

Max (0, Pi – xi) � bi � Pi – Ei, i = 1,…, N (4)

Max (0, xi – Pi) � ai � Li – Pi, i = 1,…, N (5)

 xi = Pi – bi + ai, i = 1,…, N (6)

Inequality (1) ensures that each aircraft must land within its predetermined landing time

window, where Ei and Li represent the earliest and latest landing time of aircraft i, respectively.

Equation (2) describes that either aircraft i must land before aircraft j (�ij = 1) or aircraft j must

land before aircraft i (�ji = 1). Inequality (3) defines the separation constraint where Sij represents

the separation time requirement between aircraft i and j. The variables ai and bi describe how

soon aircraft i lands after or before the preferred landing time Pi, respectively. Inequality (4)

ensures that bi is at least as big as the maximum of zero or the time difference between Pi and xi,

and at most the time difference between Pi and Ei. Inequality (5) shows the similar meaning for

ai. Equation (6) relates the ai, bi, and xi variables to the preferred landing time Pi.

In chapter III, two scheduling approaches are developed and implemented to solve the aircraft

landing scheduling problem described above: first-come-first-serve scheduling and optimal

scheduling. The first-come-first-serve scheduling is the baseline approach for comparing with the

optimal scheduling. There is no specified objective function in the first-come-first-serve

scheduling model. Instead, the paradigm is applied as long as the constraints described in (1) to

45

(6) are satisfied. The optimal aircraft landing scheduling problem is solved in two different ways,

one is solved as a linear programming problem using the simplex algorithm, and the other is

solved as a job shop scheduling problem using branch-and-bound and tree-search algorithms.

Three performance metrics, with the first two working as objective functions directly, are used for

the optimal scheduling algorithm efficiency and effectiveness evaluation. The first performance

metric, total cost of deviation from the preferred landing time, is the sum of weighted Dynamic

Time of Arrival (DTA) deviation of all the aircraft in a scenario. This performance metric

indirectly measures the scheduling algorithm efficiency with regard to the complete flight path.

The second performance metric, total holding time, is the sum of delay time of all the aircraft in a

scenario during the flight segment of three SATS holding patterns (2000ft, 3000 ft, and 4000 feet

respectively). This performance metric indirectly measures the fuel and efficiency affected by the

scheduling algorithm, with special consideration of the SATS High Volume Operation (HVO)

scenario at non-controlled airports. The last performance metric, total delay time of feeder route,

directly measures the delay time with regard to the flight segment of the feeder route. It is not an

objective function, but introduced as a supplementary metric to evaluate flight efficiency, since

the delay encountered from the scenario entry point to the IAF is distinguishable from the holding

delay measured in total holding time.

3) On-board Aircraft Landing Scheduling Tool

In chapter III, the aircraft landing scheduling model and scheduling algorithms were

implemented as a ground-based air traffic control automation system. Now we need to integrate

the aircraft landing scheduling model into the on-board system of an aircraft agent for the sake of

feasibility and capability analysis of decentralized aircraft landing operation. The integration of

the scheduling model into on-board system alone, however, can only output a local scheduling

decision based on its knowledge of a set of aircraft that are going to be sequenced. To assist with

achieving a global solution of aircraft landing scheduling when several aircraft are involved in a

distributed environment, a distributed coordination module is integrated with the on-board

46

system. It is called the On-Board Aircraft Landing Scheduling Tool, and it provides the pilot

with the capability to self-schedule in the dynamic operational environment of the terminal area

of non-controlled airports.

In [51], Harper, Mulgund, et.al. present a definition of degrees of pilot autonomy in Free

Flight , as shown in Table 1.

Table 1. Degree of Pilot Autonomy[51]

Degree Level of Autonomy

1 Standard ATC. Pilots act as instructed by ATC.

2

Pilot is free to search for and negotiate potential solutions with other pilots of

level 2 or higher than and with ATC, and implement the resulting globally

approved actions.

3

Pilot is free to search for and negotiate potential solutions with other pilots of

level 2 or higher, and pose solutions and ATC for approval before

implementation.

 It is clearly seen that even for the highest level of pilot autonomy defined in [51], ATC is

always included into the system and acts as a high-level supervisor or coordinator. As stated

earlier in this chapter, the purpose of this research is to explore the feasibility and capability of

uninterrupted free-flight environment in which there is no existence of ATC. In general, the

abandonment of central control and stringent hierarchical data structures in favor of decentralized

control strategies based on interactions, which require autonomous components, leads to solutions

that are more flexible, more tolerant to perturbations, and thus are capable of supporting more

emergences of new properties. In the specific domain of distributed aircraft landing scheduling at

non-controlled airports addressed in this research, it seeks to utilize decentralized control

strategies to achieve acceptable operational performance, especially for landing scheduling

47

Current Operations

 FC ATSP

Free Flight

Where to draw the line?

Crew planning capability

Crew workload

Equipment cost

CNS infrastructure burden

Aggressiveness

Figure 8: Operation Concept – from Ground-Based to Free-Flight

operation, at non-controlled airports that there is no top level supervisor or central control so that

all the aircraft involved are operated in a complete distributed environment. The Distributed

Air/Ground-Traffic Management (DAG-TM) concepts envision a possible way to manage

arrivals such that the flight deck is responsible for landing scheduling in the uninterrupted free-

flight environment, but the capability analysis of an on-board landing scheduling tool has not

been explored prior to the advent of this research. It can be expected that the future air traffic

management system will manage aircraft landing in a way that lies somewhere between the two

extremes, fully ground-based and uninterrupted free-flight, possibly moving gradually from

ground-based to more free-flight. Figure 8 illustrates the situation. It shows that as more

operational responsibilities are transferred from the Air Traffic Service Provider components to

the Flight Crew components, in other words, the closer to uninterrupted free-flight operational

environment, the Flight Crew has more planning capability and the CNS infrastructure burden

decreases. However, the trade-offs are the increasing flight crew workloads and avionics

equipage cost.

48

As stated previously, current operations at the terminal area of non-controlled airports have no

centralized control, which exhibit an inherent property of distribution that gives a perfect

environment for the implementation of uninterrupted free-flight concept. In this research, the on-

board aircraft landing scheduling tool is developed, and it represents the ultimate uninterrupted

free-flight scenario since there is no ground-based automated system to enforce any centralized

control and flight crews take over all of the responsibilities that the current controllers have.

Aircraft at the terminal area of non-controlled airports are placed in a complete distributed

environment, and each pilot is required to use the on-board aircraft landing scheduling tool to

provide sequencing advisories. It should be stressed that the air traffic control automation system

discussed in chapter III, functioning as a ground-based aircraft landing scheduling tool, serves as

baseline system for comparison. Although comparing the performance of these two options is not

critical for the non-controlled airports case since we aim to achieve uninterrupted free-flight

environment, it is important for the future extension to controlled airports since the approach will

give a clear view of where to establish the line of free-flight concept application for the controlled

airport case.

2. Distributed Coordination in the Dynamic Operational Environment

In this research, it is assumed that flight crews are required to use the on-board aircraft landing

scheduling tool to provide scheduling advisories dynamically in the ultimate uninterrupted free-

flight operational environment at the terminal area of non-controlled airports. It then presents an

instance of a typical distributed coordination problem for a multi-agent system when all aircraft

agents in a scenario are required to coordinate in order to achieve a scheduling decision after they

utilize the on-board scheduling tool to reach their own respectively. The distributed coordination

function module then becomes the key element of the on-board aircraft landing scheduling tool to

achieve a global solution of aircraft landing scheduling when several aircraft are involved in the

distributed environment. It is not exaggerating that the distributed coordination plays the most

important role in the success of decentralized aircraft landing operation. This section will then

49

seek to address how the challenges brought by distributed coordination issues are resolved in this

research, from the establishment of the mathematical model to the application implementation.

 Two coordination models, direct coordination model and event-based model, are candidates

for solving the problem of distributed aircraft landing scheduling at non-controlled airports.

1) Direct Coordination Model

In general, direct coordination models used in distributed applications are usually the ones in

which the agent’s interactions involve explicit task-directed communications or negotiations

about global resource usage or task assignments in order to achieve coordinated behavior [46]. In

this research, direct coordination model is implemented by proposing a means that group of

agents can coordinate by communication with each other in a direct and explicit way, specifically,

negotiation messages exchange among aircraft using on-board ADS-B equipment, where the

approach detail is addressed in [52]. Originally in [52] it establishes a pair-wise argument-based

negotiation approach that achieves collaboration among aircraft for searching multilateral

acceptable solution in the Conflict Detection and Resolution domain. In this research, it modifies

the negotiation algorithm to achieve a mutual acceptable solution in aircraft landing scheduling

domain. Dead-lock in the negotiation is resolved by either introducing rejection action or

applying wait-die scheme. The wait-die scheme uses a time stamp to label a proposal and takes a

re-propose action when response is not received in a certain amount of time. Figure 9 shows the

negotiation protocol.

50

At this time, it is still an open and energetically debated issue as to the relative merit of direct

coordination model and event-based coordination model. For the specific case addressed in this

research, it is expected that the explicit coordination with negotiation approach will achieve

acceptable performance for distributed aircraft landing scheduling for simple air traffic scenarios

(with less than 4 aircraft involved). However, the pair-wise argument-based nature of the

negotiation algorithm will bring capacity and performance issues when resolving more advanced

air traffic scenarios since it will take maximum 2
NC negotiations to achieve a global solution if

the scenario involves N aircraft. The complexity of the scenario will make the time it costs to

reach the final global scheduling decision unbearable compared to the event-based coordination

yes

yes

yes

yes

Any
(counter)
proposal
received?

Any
acceptance
received?

Proposal
satisfies all
constraints?

Send
proposal

Any new
proposal
reduces

cost?

Send
Acceptance

Any new
proposal

satifies all
constraints

?

Send
Rejection

 2

 1

Communication
with other aircraft

Communication
with ATC

 1
Initiator starting
point

 2
Responder
starting point

yes

no no

no

no

no

Figure 9: Pair-wise Argument-based Negotiation Protocol

51

approach. Sometimes even worse, it will not achieve a converged global solution due to the non-

deterministic characteristic of the negotiation algorithm.

2) Event-Based Coordination Model

Event-based coordination model, on the other hand, is one in which each agent operates under

local control and system-level coordinated behavior arises from agent-agent interactions by

generating events and by reacting to events of interest, without an explicit notion of task-directed

communication or negotiation. Event-based coordination in a distributed system is dominated by

client/server platform relying on synchronous request/reply. However, this architecture is not

well suited to this research due to the following reason:

a) In the client/server platform, clients and servers are coupled, i.e., sever needs to know

the identification of the client who requests service so that it can deliver the service to

the client. However, in the decentralized aircraft landing scheduling application

address in this research, it is desired that the aircraft who generate the scheduling

decision and the aircraft who follow it are decoupled, i.e., the aircraft following the

scheduling decision only care if an active scheduling decision is generated or not, but

independent from the identification of the aircraft who generate it.

b) The client/server platform heavily relies on synchronous request/replay, i.e., the client

needs to be blocked waiting for its requesting service from the server in order to

maintain client/server synchronization. It is not desirable for this research since the

aircraft needs to perform concurrent flight operations while waiting for the scheduling

decision from the other aircraft that generate them.

In contrast to client/server platform, pub/sub paradigm directly reflects the intrinsic behavior

of information-driven applications because communication here is indirect and initiated by

producers of information: producers publish notifications and these are delivered to subscribed

consumers by the help of a notification service that decouples the producers and the consumers

[47]. The loosely coupled communication scheme that introduced by the pub/sub paradigm fits

52

well to the highly dynamic nature of the operational environment of the decentralized aircraft

landing operations addressed in this research. Furthermore, pub/sub paradigm represents a

general-purpose solution for information dissemination that can fit the scenarios that require an

asynchronous many-to-many communication, and it is exactly the desirable feature in the

decentralized air traffic management system. Therefore, pub/sub communication paradigm is

chosen to implement event-based coordination in this research.

In the pub/sub system established in the specific domain of aircraft landing scheduling

addressed in this research, the producers are defined here as arbitration aircraft that are triggered

by time/distance based events. They then initiate the scheduling decision process or aircraft state

update broadcast. Consumers are defined as the submission aircraft that are notified by the

arbitration aircraft with the scheduling decision or aircraft state update notifications. The

submission aircraft then activate the corresponding event handler based on their “subscription” to

the ADS-B message notifications. Each aircraft in a scenario can take on the role of an

arbitration aircraft or a submission aircraft. Arbitration aircraft generate ADS-B message

notifications during the scheduling or aircraft state update process, which is then “consumed” by

submission aircraft. The main semantical characterization of this pub/sub system is in the way

ADS-B message notifications flow from arbitration aircraft to submission aircraft: submission

aircraft are not directly targeted from arbitration aircraft, but rather they are indirectly addressed

according to the content of ADS-B message notifications. That is, a submission aircraft only

expresses its interest by issuing subscriptions for specific ADS-B message notifications,

independently from the arbitration aircraft that generate them, and then it is asynchronously

notified for all ADS-B message notifications, submitted by any arbitration aircraft, that match

their subscription. In the present context, asynchronous means that a submission aircraft does not

have to be blocked waiting for notifications to arrive (such as in client/server model), but it can

keep on performing concurrent flight operations.

53

In most of the pub/sub systems, a logical intermediary between publishers and subscribers,

known as Notification Service (NS), is usually implemented to avoid each publisher to have to

know all the subscription for each possible subscriber. Both publishers and subscribers

communicate only with a single entity, the Notification Service. In this research, the

“centralized-like” middleware is implemented as a distributed set of processes under the

assumption that the on-board ADS-B equipment is capable of dispatching ADS-B message

notifications effectively via reliable channels.

a. Elements of the Decentralized Aircraft Landing Scheduling Pub/Sub System

The decentralized aircraft landing scheduling pub/sub system is represented by a triple set <A,

P, S> of processes (Figure 10). Sets are defined depending on the role of processes in the

dynamic system at time instance t: A(t) =�
=

n

i
i ta

1

)(is a set of n processes, called arbitration

process initiated by arbitration aircraft, which are producers of information; S(t) =�
=

m

i
i ts

1

)(is a

set of m processes, called submission process generated by submission aircraft, which are

Aircraft set in the
scenario

Arbitration
Aircraft Submission

Aircraft

Notification Service
(Logical Layer)

p1(t)

pk(t)

p2(t)

… …

Scheduling
Initiate

Scheduling
Follow

Notify

a1(t)

a2(t)

an(t)

…

s1(t)

s2(t)

sn(t)

…

Figure 10: Decentralized Aircraft Landing Scheduling Pub/Sub System

State
Broadcast State Update

54

consumers of information; P(t) =
1

()
k

i
i

p t
=
� is a set of k processes, called messenger process

worked as centralized-like middleware at logical layer, which are residents of the Notification

Service.

It is assumed that arbitration and submission processes are decoupled, meaning a process in A

cannot communicate directly with a process in S and vice versa at any time instance t.

Decoupling is a desirable feature in this research since it isolates the distributed coordination

process on making scheduling decision, which is the focus of this research, from the ADS-B

communication issues such as addressing or synchronization. Processes in A and S can

communicate with any process in P. Therefore, the set of P represents a logically centralized

entity that allows the communication between publishers (or producer) and subscribers (or

consumer), at the same time maintaining them decoupled. In this research, the physical

implementation of the Notification Service is an on-board autonomous component on the top of

integrated system of each aircraft agent.

b. Interaction between Process and the Notification Service

 As stated earlier, there is no direct communication between processes in set A and S, and

all communication has to pass through the Notification Service. The execution of the

decentralized aircraft landing scheduling pub/sub system then comprises two categories of

operations: process-side operations, started by time/distance based event trigger of aircraft agent;

and NS-side operations, started by the NS. More specifically, any aircraft agent in the system can

initiate an arbitration process (publish) or a submission process (subscribe), but it is the NS that

plays the role of notifying a matching occurrence to interested subscribers. The following four

types of operations are therefore defined accordingly:

a) Pub(ai): operation of publishing process ai in set A. ai is initiated by an arbitration

aircraft and it can be a scheduling initiate process or state broadcast process.

b) Notify(pi): operation of issuing the notification of pi.

55

c) Sub(si): operation of registration of a subscription si in set S. si is initiated by a

submission aircraft and it can be a scheduling follow process or state update process,

which are the counterparts of publications of scheduling initiate process and state

broadcast process.

d) Unsub(si): operation of cancellation of a subscription si in set S.

Then the operations Pub(ai), Sub(si), and Unsub(si) are issued by a process in set A and S

respectively, and are sent to NS for execution. Operation Notify(pi), on the other hand, is issued

by the NS and send to the process for execution. Note that operation Notify(pi) only occurs after

the execution of its Pub(ai) counterpart (i.e., pi and ai share the same content, hereafter denoted as

content(pi) = content(ai)).

c. Communication Delay Consideration

There are two types of communication delay that need to be taken into account for the

physical implementation of the pub/sub system:

a) Subscribe/unsubscribe delay: when a subscribe/unsubscribe operation occurs, the NS is

not immediately aware of the event since the registration or cancellation of a

subscription takes a certain amount of time to be stored into the NS. In this research,

the major contribution of this communication delay comes from the internal database

update of the NS. To simulate such communication delay, an acceptable time

threshold is used. We denote such delay as Tsub for subscribe operation and as Tunsub

for unsubscribe operation. Therefore if a subscribe operation is issued at time st then it

takes effect at a time t such that s s subt t t T≤ ≤ + . The same holds for unsubscribe

operation, that is, an unsubscribe operation issued at time ut takes effect at a time 't

such that '
u u unsubt t t T≤ ≤ +

b) Publication/notification delay: similar as subscribe/unsubscribe operations, it would

take certain amount of time to complete publication or notification operation. In this

56

research, the major contribution to publication delay comes from ADS-B transmission

delay, whereas the computation time of “matching interested subscribers” in the NS

mainly contributes to the notification delay. Again, two time thresholds, denoted as

pubT and notT , are used to simulate publication delay and notification delay

respectively.

d. Computational Model

In this research, two subscription types are defined: scheduling decision subscription, denoted

as dθ , which is initiated by a scheduling follow process in set S; and aircraft state update

subscription, denoted as uθ , which is initiated by a state update process in set S. Similarly, two

publication types are defined: scheduling decision publication, denoted as dΨ , which is initiated

by a scheduling initiate process in set A; and aircraft state update publication, denoted as uΨ ,

which is initiated by a state broadcast process in set A. Assuming the issue of an operation op =

{Pub(ai), Notify(pi), Sub(si), Unsub(si)} at time instance t generates an event ei(op, t). Then the

local history of any process i can be denoted as a sequence of events according to the time order

of occurrence: hi = {ei(op, t1), ei(op, t2), ..., ei(op, tm)} where t1< t2<...< tm. The global history is

then denoted as H = {h1, h2, ..., hn}, a collection of local histories, one for each process.

The time interval of an active subscription θ can be represented by two successive events

ei(Sub(si), ts) and ei(Unsub(si), tu), denoted as ()T θ . Such subscription time interval then include

all events ei(op, t) s.t. s ut t t≤ ≤ . The time internal of an active publication Ψ , denoted as

()T Ψ can be represented by two successive events ej(Pub(aj), tp) and ei(Notify(pj), tn) such that

p n p pub nott t t T T≤ ≤ + + and content(aj) = content(pj).

Several publish/subscribe rules are then applied to the decentralized aircraft landing

scheduling pub/sub system accordingly to some general properties of pub/sub system and some

application-specific features in this research:

57

a) Legality rule (general): a subscriber cannot be notified for any information it is not

subscribed. The mathematical formulation is presented as follows:

()((),) ((),) () . . (.) () 13i i i i ie Notify p t H e Notify p t T s t content s content pθ θ∀ ∈ � ∈ =

b) Validity rule (general): while Legality states that a notify event belongs to H only if it

is included in a subscription time interval matching that event, we need a property that

ensures the notify events are not invented by a process, but are always invoked after

publish event. In its mathematical formulation, this Validity rule is presented as

follows:

()' '((),) ((),) . . () () 14i i j j i je Notify p t H e pub a t H s t content p content a and t t∀ ∈ �∃ ∈ = <

c) Liveness rule (general): it states exactly to which subscriber a publication is notified to,

considering both subscribe/unsubscribe delay and publication/notification delay. The

mathematical formulation is presented as follows:

()' '

(((),) (() . . () [,]) . . () (.))

((),) . . () () 15

i i pub not i

j j j i pub not

e Pub a t T H s t T t t T T s t content a conent s

e Notify p t H s t content p content a and t t t T T

θ θ θ∀ ∈ ⊃ + + =

�∃ ∈ = < < + +

�

d) Uniqueness rule 1 (application specific): it poses the constraint that at most one

scheduling decision publication can be active at a time, i.e., at most one aircraft can

initiate a scheduling decision process at a time. The mathematical formulation is

presented as follows:

()' ' '

(((),) (() . . () [,])

(((),) (() . . () [,])) 16

i i d d pub not

j j d d pub not

e Pub a t T H s t T t t T T

e pub a t T H s t T t t T T and i j

∃ Ψ ∈ Ψ ⊃ + +

�¬ ∃ Ψ ∈ Ψ ⊃ + + ≠

�

�

e) Uniqueness rule 2 (application specific): it poses the constraint that at most one

aircraft state update publication per aircraft ID can be active at a time, i.e., an aircraft

can at most initiate one ADS-B state update broadcast process at a time. Its

mathematical formulation is presented as:

58

()

' ' '

(((),) (() . . () [,])

(((),) (() . . () [,])

(.) (.)) 17

i i u u pub not

j j u u pub not

i j

e Pub a t T H s t T t t T T

e pub a t T H s t T t t T T

and content a AircraftID content a AircraftID and i j

∃ Ψ ∈ Ψ ⊃ + +

�¬ ∃ Ψ ∈ Ψ ⊃ + +

= ≠

�

�

f) Completeness rule (application specific): it states the fact all of the aircraft in the

scenario need to be notified whenever an aircraft initiates a scheduling decision

process or ADS-B state update broadcast process. The complete set of aircraft ID in the

scenario is denoted as Ω . It unifies the information space of all aircraft in the

scenario:

()

'

'

(((),) (((),) . . (.)

) 18
i i k k k

pub not

e Pub a t j e Notify p t H j s t content p AircraftID j

and t t t T T

∀ �∀ ∃ ∈ ∈Ω =

< < + +

�

e. Implementation Methodology

 The following assumptions are made for the implementation of the event-based coordination

model of the decentralized aircraft landing scheduling system:

a) ADS-B device provides the sufficient updated knowledge of all aircraft to be

sequenced, and is defined here as aircraft state information (altitude, longitude,

latitude, airspeed, vertical speed, and heading), time stamp, flight path intent

information (next two waypoints on the intended flight path).

b) Emergency mode is not considered, i.e., no aircraft has higher priority than any other

one due to the fuel status and emergency priority.

The event-based coordination model is designed and implemented in the form of a finite state

machine that consists of a variety of discrete legal states and the legal transitions between states

during the scheduling process and ADS-B state update process. Figure 11 shows the Matlab

Stateflow implementation of the event-based coordination for scheduling process.

59

Ev
en

t_
ba

se
d_

Co
or

di
na

tio
n_

Sc
he

du
lin

g_
Pr

oc
es

s/
Ch

ar
t

//S
ch

ed
ui

ng
 a

ct
ive

en
try

:
Sc

he
du

lin
gA

irc
ra

ftI
D=

i;
Sc

he
du

lin
gS

es
si

on
ID

=j
;

Se
ss

io
nS

ta
te

=1
;

ex
it:

Sc
he

du
lin

gA
irc

ra
ftI

D=
0;

Sc
he

du
lin

gS
es

si
on

ID
=0

;
Se

ss
io

nS
ta

te
=0

;

//S
ce

na
rio

 in
iti

al
ize

s,
 n

o
sc

he
du

lin
g

ac
tiv

ity
.

en
try

:
Sc

en
ar

io
St

at
e=

1;
 //

Sc
en

ar
io

 a
ct

ive
Sc

he
du

lin
gA

irc
ra

ftI
D=

0;
Sc

he
du

lin
gS

es
si

on
ID

=0
;

Se
ss

io
nS

ta
te

=0
; /

/S
ch

ed
ul

in
g

se
ss

io
n

in
ac

tiv
e

//S
es

si
on

 ti
m

eo
ut

 fo
r 2

//A
DS

-B
 tr

an
sm

is
si

on
 p

er
io

ds
.

en
try

:

t1
=0

;
du

rin
g:

t1

=t
1+

1;
ex

it:

Se
ss

io
nT

im
eo

ut
=0

;

//S
ce

nr
io

 p
au

se
/s

to
p

en
try

:
Sc

en
ar

io
St

at
e=

0;
 /

/S
ce

na
rio

 in
ac

tiv
e

ex
it:

Sc
en

ar
io

St
at

e=
1;

//S
ch

ed
ul

in
g

//p
re

pa
ra

tio
n

AD
S_

B_
Ch

ec
k;

//S
ch

ed
ul

in
g

se
ss

io
n

en
ga

ge
d

en
try

:
Se

ss
io

nS
ta

te
=2

;
ex

it:
Se

ss
io

nS
ta

te
=0

;

//W
ai

t f
or

 "L
oc

kC
on

fir
m

ed
"

en
try

:

t=
0;

du
rin

g:

t=
t+

1;

//U
nl

oc
k A

DS
-B

en
try

:

AD
S_

B_
Un

lo
ck

;

Se
ss

io
nS

ta
te

=4
;

//S
es

si
on

 lo
ck

ed
;

//S
ch

ed
ul

in
g;

en
try

:

t=
0;

Se

ss
io

nS
ta

te
=3

;

Sc
he

du
le

r;
du

rin
g:

t=

t+
1;

//A
irc

ra
ft

i i
ni

tia
liz

es
//s

ch
ed

ul
in

g
se

ss
io

n
j

[S
ch

ed
ul

in
g_

Se
ss

io
n_

i_
j_

St
ar

t..
.

&&
Se

ss
io

nS
ta

te
=0

]

2

[s
ch

ed
ul

in
g

tim
e.

..
wi

nd
ow

 u
nl

oc
k]

2
[L

oc
kC

on
fir

m
ed

]
2

[s
ch

ed
ul

in
g

tim
e.

..
wi

nd
ow

 lo
ck

]
//A

irc
ra

ft
i c

an
ce

ls
//s

ch
ed

ul
in

g
se

ss
io

n
j

[S
ch

ed
ul

in
g_

Se
ss

io
n_

i_
j_

Ca
nc

el
]

//
If

ca
n

no
t a

ch
ie

ve
 s

ch
ed

ul
in

g
de

ci
si

on
//

af
te

r 4
 s

ec
 (2

 A
DS

-B
 tr

an
sm

is
si

on
 p

er
io

ds
).

//S
et

 ti
m

eo
ut

//D
is

en
ga

ge
 s

ch
ed

ul
in

g
se

ss
io

n
[t>

4]
/..

.
{S

es
si

on
Ti

m
eo

ut
=1

;}

1

//
If

ca
n

no
t r

ec
ei

ve
 "L

oc
k C

on
fir

m
ed

"
//M

es
sa

ge
 fr

om
 a

ll
ai

cr
af

t w
ith

in
 3

 s
ec

//(
1.

5
AD

S-
B

tra
ns

m
is

si
on

 p
er

io
ds

).
//

Se
t t

im
eo

ut
.

//D
is

en
ga

ge
 s

ch
ed

ul
in

g
se

ss
io

n
[t>

3]
/ .

..
{S

es
si

on
Ti

m
eo

ut
=1

;}

1

//
Sc

en
ar

io
 S

ta
rt

[S
ce

na
rio

_S
ta

rt_
Bu

tto
n_

Pu
sh

]

//S
en

d
tim

eo
ut

 m
es

sa
ge

[t1
>4

]

//
Sc

en
ar

io
 S

to
p

[S
ce

na
rio

_S
to

p_
Bu

tto
n_

Pu
sh

]

1

Fi
gu

re
 1

1:
 E

ve
nt

-b
as

ed
 C

oo
rd

in
at

io
n

fo
r S

ch
ed

ul
in

g
Pr

oc
es

s

60

Each aircraft in the scenario is equipped with an ADS-B transponder, and maintains a local

database that stores a certain time range of ADS-B messages. An on-board scheduling tool using

aircraft state information retrieved from the ADS-B message is used to make scheduling

decisions. Details of the states defined in the event-based coordination for scheduling process

and the transitions between states are described in Table 2, and details of states defined in the

event-based coordination for ADS-B state update process and the transitions between states are

described in Table 3.

Table 2. Event-based Coordination States/Transitions for Scheduling Process

61

Table 2 Continued

Table 3. Event-based Coordination States/Transitions for ADS-B State Update Process

62

Table 3 Continued

The following nominal scenario with 3 aircraft involved is provided for better understanding

of how event-based coordination for scheduling process is achieved via pub/sub communication

paradigm. Figures 12-15 show the scheduling initiation phase, scheduling following phase,

dynamic re-scheduling phase, and unsubscribe scheduling phase of the nominal scenario.

63

• Phase 1 (Figure 12): Scenario starts at 3:00 PM. Two aircraft are approaching to their desired

IAFs. Aircraft 1 is a Mooney 201, and its cruise speed is 180 knots and the distance to its

target IAF (RAZVY) is 30 nm; aircraft 2 is a Piper Cub 80, and its cruise speed is 80 knots

and distance to its target IAF (LOUIE) 35 nm. Aircraft 1 initiates a scheduling process by

broadcasting a “scheduling time window locked” message. After it receives the “lock

confirmed” message from aircraft 2, it makes the following scheduling decision using the on-

board aircraft landing scheduling tool: Aircraft 1 gets the first spot in the landing sequence

and its landing time is scheduled at 3:25 PM; Aircraft 2 gets the second sequencing spot and

its landing time is scheduled at 3:47 PM. It then broadcasts the scheduling decision

publication.

Figure 12: Nominal Scheduling Scenario Phase 1 - Scheduling Initiation

64

• Phase 2 (Figure 13): Aircraft 2 gets the notification with the scheduling decision since it is a

subscriber to the scheduling decision publication. Both aircraft 1 and 2 follow the scheduling

decision by planning the flight path that achieves the scheduled landing time. Aircraft 1

plans to arrive at its desired IAF (RAZVY) at 3:11 PM and starts the approach immediately

whereas aircraft 2 plans to arrive at its desired IAF (LOUIE) at 3:28 PM starts the approach

immediately. Separation requirement in the en-route phase of flight and spacing criteria

within SCA are taken into consideration in the flight path planning using the on-board CD&R

functionality.

 Figure 13: Nominal Scheduling Scenario Phase 2 - Scheduling Following

65

• Phase 3 (Figure 14): A Cessna 172 (aircraft 3 in the figure) with cruise speed 125 knots and

distance to its target IAF (LOUIE) 37.5 nm enters into the scenario at 3:10 PM and it initiates

a scheduling process immediately. It reaches the following scheduling decision that

minimizes the global cost while maintaining the landing separation: Aircraft 1 keeps the first

spot in the landing sequence and its scheduled landing time is unchanged. Aircraft 2 is re-

scheduled to be the last one in the sequence and its scheduled landing time is change to 3:50

PM. Aircraft 3 gets the second spot and its landing time is scheduled at 3:42 PM. Aircraft 3

then broadcasts the new scheduling decision publication.

Figure 14: Nominal Scheduling Scenario Phase 3 - Dynamic Re-Scheduling

66

• Phase 4 (Figure 15): Aircraft and 2 get the notification with the new scheduling decision

since they are both the subscriber to the scheduling decision publication. All three aircraft

follow the new scheduling decision by re-planning the flight path that achieves the updated

scheduled landing time. At 3:11 PM, aircraft 1 arrives at its target IAF (RAZVY). It then

unsubscribes the scheduling decision publication before it enters into the SCA and starts the

landing approach. It will not be notified with any further updated scheduling decision

publication. However, it still receives the ADS-B state update from the other aircraft since it

is a subscriber to the aircraft state update publication.

Figure 15: Nominal Scheduling Scenario Phase 4 – Unsubscribe Scheduling

Decision Publication after Entering into SCA

67

The deterministic characteristic of the state transition machine implementation of the event-

based coordination model for scheduling process assures that each aircraft in the distributed

environment has identical information required for making a scheduling decision and will

therefore generate an identical scheduling decision. However, further explorations are required

for the following two boundary conditions:

a) More than one aircraft broadcast a scheduling time window lock message at the same

time.

b) Aircraft is on the edge of updating an ADS-B message when receiving a scheduling

time window lock message.

These two boundary conditions are extreme cases where they exceed the capability of the

current computing power. Take condition 1 as an example, it will only be present when two

aircraft broadcast the locking message exactly at the same time. Considering the current

computing power can easily tell the ms time difference, its chance to happen in practice is rare.

However, if it happens, i.e., two messages actually come in at the “same time” that the program

can not tell the difference, the easiest practical solution is to reject both messages and let them re-

broadcast. The systematic approach to address these issues is more like a computer science

problem, which is beyond the scope of this research.

C. Special Considerations

There are several issues need to be addressed to complete the implementation of the pub/sub

communication paradigm in decentralized aircraft landing scheduling application before we close

this chapter.

1. Spacing Constraints within SCA

Earlier in this chapter it is mentioned that the on-board CD&R algorithm not only maintains a

distance-based separation in the en-route phase of flight, but also enforces a time-based spacing

in the final approach. This is achieved by taking separation requirement in the en-route phase of

68

flight and spacing criteria within SCA into account when the aircraft agent generates its flight

path plan based on the current active scheduling decision. This is sufficient for the nominal

scenarios when all the aircraft share the same target IAF, or time interval of two successive

aircraft in the landing sequence with different target IAF arriving at IF (Intermediate Fix) meets

the spacing criteria within SCA as per the scheduling decision. The nominal scenario showed

earlier represents the case. However, applying landing separation constraint in scheduling

decision-making alone is not sufficient for some nominal scenario since it only represents the

accumulated separation at the runway threshold. Figure 16 shows an example.

Supposing time stamp of the scenario is 3:00 PM. Aircraft 1 has holding speed of 65 knots and

just arrives at IAF - RAZVY; aircraft 2 has holding speed of 80 knots and just arrives at the other

IAF - LOUIE. Aircraft 1 initiates a scheduling process the scheduling decision is made as

follows: Aircraft 2 lands first and its scheduled landing time is 3:12 PM; Aircraft 1 lands the

Figure 16: Nominal Scheduling Scenario – Insufficient Spacing Constraint

69

second and it is scheduled to land at 3:15 PM. They have 3 minutes landing separation since 2

minutes landing separation constraint is applied in the scheduling model. However, they both fly

towards IF and at some point near to IF they will certainly violate the spacing criteria within

SCA. Spacing constraints presented in [53] are then added to serve as additional constraints

included in the aircraft landing scheduling model described in chapter III. Numerical result of the

flight simulation exercise of the augmented scheduling model is presented in chapter V.

2. Dynamic Re-Scheduling Issues

Re-scheduling is triggered when some dynamic event happen in the operational environment,

such as the appearance of a new aircraft or speed profile change due to deviation of the planned

flight path. It is intentionally designed that aircraft that has entered into SCA will not be notified

with any further updated scheduling decision publication, but still receives the ADS-B state

update from the other aircraft. Scheduled landing time of all the aircraft within SCA are fixed

and will not be affected by later scheduling decision update. The main purpose of this rule is to

maintain the stable and orderly landing sequence within SCA due to the operation procedure

constraints, such as a successive aircraft is not allowed to surpass any precedent aircraft within

SCA. However, scheduling decision update needs to take those aircraft within SCA into account

although the updated scheduling decision will not be delivered to those aircraft within SCA.

70

Take the following scenario (Figure 17) as an example: Supposing time stamp of the scenario

is 3:00 PM. Aircraft 1, a Piper Cub, with holding speed of 65 knots and approach speed of 50

knots, is flying towards IF. Its scheduled landing time is 3:14 PM and it will be fixed since

aircraft 1 is within SCA already. Aircraft 2 is a Cessna 172, and it has holding speed of 100 knots

and approach speed of 80 knots while being apart from its target IAF (LOUIE) 25 nm. Aircraft 3

is a Mooney 201 with holding speed of 110 knots and approach speed 80 knots while being 10

nm away from its target IAF (RAZVY). At the point aircraft 3 initiates a dynamic re-scheduling.

If aircraft 1 is not taken into consideration when making updated scheduling decision, aircraft 3

will be scheduled first and its scheduled landing time is also 3:14 PM, which obviously violates

the landing separation requirement. Therefore, aircraft within SCA need to be considered when

dynamic re-scheduling occurs so that spacing criteria within SCA will be assured.

3. Pub/Sub System Optimality

Recall that we claimed earlier in chapter I that research on aircraft scheduling can be roughly

divided into two areas. One area determines efficient scheduling algorithms, and the other studies

Figure 17: Nominal Scheduling Scenario – Dynamic Re-Scheduling Issue

71

performance potentials and overall strategies of automated aircraft scheduling. This research is of

the latter and its main focus is to establish a robust and operational effective communication

paradigm that would well handle the information diffusion problem due to distributed

coordination in the decentralized operational environment. Pub/sub communication paradigm is

chosen not only because it provides a loosely coupled communication scheme that fits well to the

highly dynamic nature of the operational environment of the decentralized aircraft landing

operations, but it also represents a general-purpose solution for information dissemination that

can fit the scenarios that require an asynchronous many-to-many communication, which is

exactly the desirable feature in the decentralized air traffic management system. In general,

optimality analysis of a pub/sub system involves with information routing optimization, which is

beyond the scope of this research, and it is actually not necessary for this research since the

pub/sub system established here has a very limited number of information routes. However, the

simplex algorithm used in the on-board aircraft landing scheduling tool introduces some

optimization concerns to the established pub/sub system in this research.

The simplex algorithm implemented in this research is as follows:

1) Rewrite the aircraft landing scheduling model into standard vector form of a linear

programming problem (refer to equations 10 and 11 in chapter III).

2) Transfer the linear programming problem to be in augmented form:

 (19)

Where X are the variables from the standard form, XS are the introduced slack variables from

the augmentation process, c contains the optimization coefficients, A and b describe the

constraint set, and Z is the objective function to be maximized.

3) At any iteration of the simplex algorithm, the tableau will be of this form:

01 0
, 0

0

T

S

S

Z
c

X X X
bA I

X

� �
� �− � �� � = ≥� � � �� �

� �� � � �� �

72

 (20)

Where Bc is the coefficients of basic variables (non-zero values) in the c-matrix; and B is the

columns of []A I corresponding to the basic variables.

4) Choose an initial basic feasible solution, if it is not an optimal solution, do the following:

• Determine direction of highest gradient: Choose the variable associated with the

coefficient in that has the highest negative magnitude. This basic

variable, which we call the entering basic, will be increased to help maximize the objective

function.

• Determine maximum step length: Use the 1 1 1

S

X
B A B B b

X
− − −� �

� � =� �� �
� �

 sub-equation to

determine which basic variable reaches zero first when the entering basic is increased. This

variable, which we call the leaving basic then becomes non-basic (zero value). This

operation only involves a single division for each basic variable, since the existing basic-

variables occur diagonally in the tableau.

• Rewrite problem: Modify B and Bc to account for the new basic variables. This will

automatically make the tableau diagonal for the existing and new basic variables.

• Check for improvement: Repeat procedure until no further improvement is possible,

meaning all the coefficients of are positive. Procedure is also

terminated if all coefficients are zero, and the algorithm has walked in a circle and revisited

a previous state.

It is worthy mentioning that the simplex algorithm implemented in this research is originated

from Ref. [54]. The algorithm starts with an initial basic feasible solution and tests its optimality.

If some optimality condition is verified, then the algorithm terminates. Otherwise, the algorithm

1 1 1

1 1 1

1

0

T T T T
B B B

S

Z
c B A c c B c B b

X
B A B B b

X

− − −

− − −

� �
� � � �− � � =� � � �� �� � � �� � � �� �� �

1
Bc B A c− −

1
Bc B A c− −

73

identifies an adjacent basic feasible solution, with a better objective value. The optimality of this

new solution is tested again, and the entire scheme is repeated, until an optimal basic feasible

solution is found. Since every time a new basic feasible solution is identified such that the

objective value is improved, and the set of basic feasible solution is finite, it follows that the

algorithm will terminate in a finite number of steps (iterations).

It is also interesting to examine the geometrical interpretation of the behavior of Simplex

algorithm. Given the above description of the algorithm and the correspondence of basic feasible

solution to extreme points, it follows that Simplex essentially starts from some initial extreme

point, and follows a path along the edges of the feasible region towards an optimal extreme point,

such that all the intermediate extreme points visited are improving (more accurately, not

worsening) the objective function.

D. Conclusions

Addressed in this chapter are the approach and issues of implementing decentralized aircraft

landing operations at the terminal area of non-controlled airports, and thus provides a clear

approach to the distributed air traffic management system. An on-board aircraft landing

scheduling tool, resulted from the integration of an aircraft landing scheduling model and

distributed coordination function, was implemented to achieve dynamic self-scheduling in the

ultimate uninterrupted free-flight operational environment. Distributed coordination issues,

which pose most of the technology challenges to the decentralized aircraft landing operation,

were addressed. Two coordination models, with focus on event-based coordination model, were

discussed for comparison. Methodologies description of how to resolve challenges brought by

distributed coordination issues using the event-based coordination model was provided, from the

establishment of the mathematical model to the application implementation.

74

CHAPTER V

REAL-TIME SIMULATION METHODOLOGY AND NUMERICAL RESULT

 Flight simulation methodologies are essential for evaluating the performance of the air traffic

static aircraft landing scheduling algorithms used in the Air Traffic Control automation system,

and the dynamic aircraft landing scheduling algorithms used in the distributed Air Traffic

Management system, described in chapter III and IV respectively. In this chapter we first address

the approach of determining customized simulation architecture suitable for this research,

followed by how the final simulation architecture selection is implemented. Finally, numerical

examples for static and dynamic cases respectively are presented for Monte Carlo, real-time flight

simulation.

A. Real-Time Pilot-In-The-Loop Simulation

During the past eight years, extensive research work has been done in the Texas A&M

University Flight Simulation Laboratory (FSL) on designing and developing intelligent cockpit

systems and pilot decision-aiding tools for General Aviation (GA) aircraft using fix-based flight

simulation validation and evaluation [55]. The Engineering Flight Simulator (EFS), and the

Automated Safety and Training Avionics (ASTRA) combined provide a pilot-in-the-loop real-

time simulation environment that can be adjusted to fit different simulation fidelity requirements.

1. Engineering Flight Simulator

The EFS is a real-time, nonlinear, six degree-of-freedom fixed base pilot-in-the-loop simulator

powered by an SGI ONYX Reality II workstation with one R4400 processor chip and 256 MB

RAM [56]. It contains a T-37 style cockpit with reconfigurable multifunction displays that can be

rapidly modified and tailored to fit individual project needs for a wide range of general aviation,

commercial, and military cockpit displays. The external environment is displayed on a three-

panel projection surface that allows the pilot a field of view of 75 degrees vertically and 155

75

degrees horizontally [56]. The EFS is currently configured to simulate a Rockwell Commander

C700, which is a light twin General Aviation (GA) aircraft. Figure 18 shows a pilot operating the

EFS.

Figure 18: Cockpit and External Display of Real-Time Engineering Flight Simulator

2. Pilot Advisor and Training System

The Automated Safety and Training Avionics (ASTRA) is a computerized airborne expert

system developed in a previous research program [57]. It is used to assess the pilot’s flying

performance, and issues recommendations for pilot actions in all flight phases from take off to

landing. It infers the flight mode of an aircraft from sensed flight parameters using fuzzy logic

methods. The pilot’s flying performance is assessed based on the interpreted flight mode, an

embedded knowledge base, and pilot inputs. Recommendations are then issued for pilot actions.

Such a system improves safety by enhancing situational awareness, and reducing the cost and

time required to achieve and maintain pilot proficiency. Figure 19 illustrates the modular design

of ASTRA and the interfaces between the software components and the necessary supporting

hardware.

76

Figure 19: Automated Safety and Training Avionics Architecture

B. Fast-Time Multiple-Agent System Simulation

Multiple-agent system simulation is the candidate simulation architecture that achieves time

and money cost effectiveness, especially when the operation concepts and algorithms are still

under prototyping phase. In general, agent-based simulation model represents simulation

architecture for modeling and simulation of complex systems consisting of entities of different

behavior, and multiples of these different entities interact with each other in significant ways.

Usually the most important feature of agent-based simulation model is the efficient integration of

different entities interacting with each other. Different modeling and simulation approaches used

must be integrated in a consistent manner so that the entire system can be simulated with an

appropriate speed/accuracy tradeoff.

The main purpose of the research addressed in this paper is to explore the feasibility and

capability of aircraft landing scheduling within uninterrupted dynamic free-flight environment at

the terminal area of non-controlled airports. At the early stage of this research, pilot-in-the-loop

flight simulation was original designed to achieve better simulation fidelity. However,

considering the fact that the operation concepts introduced in this research was original and the

feasibility analysis was more of concern than high fidelity simulation performance and human

Flight Mode
Interpreter

Head - Up
Display

Head - Down
Display

Aircraft Sensors
& GPS

Navigation
Module

State
Variables

Pilot Advisor

Flight Control
System

Pilot

On - Board

PC

Flight
Clearances

77

factors at the time when it was under prototyping, multiple-agent system simulation emerged as a

better candidate. As research approached in progress, the advantages of agent-based simulation

took effect since it shortened the algorithms development and modification cycle considering the

fact that it’d take huge amount of time and resource to conduct pilot training for the new

operation concepts and thus execute pilot-in-the-loop simulation. It then came to the point that

multiple-agent system simulation was chosen as the final simulation architecture. However, the

simulation system in the FSL was not able to provide multiple-agent simulation environment that

was required to validate the operation concepts and scheduling algorithms in this research. A

multiple-agent simulation platform, named Air Traffic Information Management System (AIMS)

was then developed to meet the simulation requirements for this research. In order to make

AIMS an open simulation platform that satisfies the comprehensive simulation requirements for

different kinds of Air Traffic Management (ATM) research projects, it was built as a pure agent-

based and plug-in modular simulation system. Fig. 20 shows the hierarchy architecture of AIMS.

Figure 20: AIMS Hierarchy Architecture

78

AIMS is composed of four components:

1. Traffic Scenario Generator

The traffic scenario generator sets up the initial conditions and settings for each simulation,

such as the initial configuration and conditions of each aircraft, the aircraft models, CD&R

model, position, velocity, etc.; the airspace domain, either en-route airspace or terminal airspace;

the weather and terrain configuration; and the simulation mode, either fast-time or real-time

mode. Uncertainly factors are also introduced to provide the Monte Carlo simulation

characteristics. The traffic scenario generator generates traffic scenarios based on either a

combination of actual congested air traffic data, and simulated traffic data created by some

known traffic distribution functions. Realistic traffic data can be obtained by using flight plans

filed at the Air Route Traffic Control Center (ARTCC) host computer. Simulated traffic data is

complemented to real traffic data to create some reasonable level of air traffic volume.

2. Intelligent Aircraft Agent

Each aircraft in AIMS is implemented as an intelligent aircraft agent. The aircraft agent

developed in this research is designed and implemented for FAR 23 Class GA aircraft under Free

Flight conditions. Most FAR 23 Class GA aircraft in use today, however, are not equipped with

the standard navigation and communication devices commonly found on commercial air

transportations. As the original operation concept introduced in this research is designed for a

future implementation of Free Flight, it is anticipated that this advanced equipment will be

available on GA aircraft at that time. Therefore, in this research it then assumes that the aircraft

agents implement real-time flight operations with the aid of the following on-board devices:

ADS-B devices, so that the aircraft has the access to current traffic information; Flight

Management System (FMS), so that the aircraft can utilize the traffic information from ADS-B

devices for Conflict Detection & Resolution (CD&R) and landing scheduling; and a

communication device that gives the aircraft the capability to communicate with other aircraft. It

should be noted that the CD&R algorithm not only maintains a distance-based separation in the

79

en-route phase of flight, but also enforces a time-based spacing in the final approach. It is

assumed that each aircraft agent is equipped with such on-board CD&R module to plan

maneuvers for an optimized and conflict-free trajectory. It is also assumed that the on-board

CD&R module is sufficient to provide self-separation advisories for pilots since this research

targets issues of aircraft landing scheduling operation only. Note that the ASTRA, the

computerized airborne expert system introduced in section A, is integrated with aircraft agent to

enhance the agent functionality. Figure 21 shows the architecture of an intelligent aircraft agent.

Figure 21. An Intelligent Aircraft Agent

3. Airport Model

Implementation of an airport model is divided into four steps. First, the terrain configuration

of an airport and its surrounding area is generated based on its one-degree U.S. Geological

Survey (USGS) Digital Elevation Models (DEM). Second, weather-constrained airspace in the

terminal area of an airport is generated based on real-time weather conditions. Third, data transfer

and data interpretation functions are developed to take responsibility for the interactive actions

between the intelligent aircraft agent and the airport.

4. Weather Model

Real weather data can be obtained from resources on the Internet. This data is either recorded

data in the form of historical databases, or actual real-time data, e.g., those provided by National

Oceanic and Atmospheric Administration (NOAA) or National Weather Service (NWS). Since

80

most of the weather data is discrete data points, the weather model is established by applying

interpolation/extrapolation methods and ruled-based model identification methods.

At the early stage of operation concept and algorithm prototyping and designing, fast-time

multiple-agent system simulation was conducted in order to shorten the development cycle time.

The most important advantage of the fast-time simulation is that it allows a variety of

experimental conditions to be varied “Monte Carlo-style”. Such simulations enable rapid,

iterative concept refinement, and help focus subsequent real-time simulations by identifying test

scenarios and experimental conditions likely to provide clear insights. In this research fast-time

simulation studies were conducted by introducing a variety of distribution functions to simulate

the uncertainty encountered in the real air traffic, and then evaluate the algorithm performance by

verifying how often the converged solutions are achieved when uncertainty are introduced. It

was also used to identify the boundary conditions of the scenario sets for normal operations,

separated from abnormal operations that are not the concern of this research, in the subsequent

real-time multiple-agent system simulation.

C. Real-Time Multiple-Agent System Simulation

As stated earlier, feasibility and capability analysis of the original operation concepts and

scheduling algorithms are more of interest than high fidelity simulation performance and human

factors in this research. Originally the operation concepts, scheduling algorithms, and multiple-

agent system simulation system were implemented using development platform provided by

Visual C++ Development Studio. It provided good fast-simulation performance with its strong

support for event-driven mechanism, where fast development of Graphic User Interface (GUI)

was achieved to generate initial conditions for user-customized scenarios. It was also suitable for

the fast-time simulation due to the significant user-machine interaction during the simulation-run.

Fast-time multiple-agent system simulation provided sufficient information for feasibility

analysis at early stage of algorithm prototyping and designing, such as verifying if the scheduling

81

algorithms rendered the converged solutions. However, it reached its bottleneck when the

research approached to the phase of capability analysis, where time-sensitive performance metrics

were introduced to evaluate the effectiveness and efficiency of the operation concepts and

scheduling algorithms. That was when an upgrade from fast-time simulation to real-time

simulation emerged as a solution.

There are several commercial tools in the market supporting real-time simulation, such as

Matlab by MathWorks and RT-LAB by Opal-RT. Considering the powerful feature of easy

integration of user-customized code into Matlab Simulink toolbox which provides an interactive

graphical environment for fast development, Matlab was selected for the real-time multiple-agent

system simulation implementation. Four Matlab toolboxes were involved: Simulink, Stateflow,

Real-Time Workshop, and Real-Time Windows Target.

1. Matlab Toolbox – Simulink

 Simulink is a software package for modeling, simulating, and analyzing dynamic systems. It

supports both linear and nonlinear systems, modeled in continuous time, sampled time, or a

hybrid of the two [58]. Simulink supports multiple rate system which is one of the essential

features suitable for this research since the simulation system was designed to have different

rates, such as sample rate for scheduling algorithm computation was expected to have higher rate

than ADS-B transmission.

 Simulink provides a GUI for building models as block diagrams, using click-and-drag mouse

operations [58]. From the perspective of prototyping and designing, this is far more efficient that

the other simulation packages that require the users to formulate differential equations and

difference equations in a language or program. Simulink includes a comprehensive library of

reusable block diagram for direct use such as sinks, sources, linear and nonlinear components,

and connectors. Another essential feature for this research is Simulink provides users with the

capabilities of customizing and creating user-defined blocks through its S-function mechanism.

An S-function is a computer language description of a Simulink block, and it can be written in

82

Matlab, C, C++, Ada, or Fortran. Users can write a piece of computer program in their favorite

language such as C++, and then convert it into S-function by following a set of simple rules. S-

function is compiled as MEX-file which is one kind of the Matlab-defined executables that can be

running in Matlab environment. S-functions use a special calling syntax that enables themselves

to interact with Simulink equation solvers. The form of an S-function is very general and can

accommodate continuous, discrete, and hybrid systems.

 Simulink also provides the hierarchical architecture for model design so that users can build

models using both top-down and bottom-up approaches [58]. A classic block diagram model of a

dynamic system graphically usually consists of blocks and lines (signals). The history of these

block diagram model is derived from engineering areas such as Feedback Control Theory and

Signal Processing. The relationships between each elementary dynamic system in a block

diagram are then illustrated by the use of signals connecting the blocks. Users can view the

system at a high level, and then double-click blocks to go down through the levels to see

increasing levels of model detail. This approach provides insight into how a model is organized

and how its parts interact.

 One last essential feature of Simulink provided for this research is its powerful model analysis

tools include linearization and trimming tools, which can be accessed from the Matlab command

line, plus the many tools in Matlab and its application toolboxes. For example, linearization tool

was used to a huge amount in the aircraft agent design phase. And because MATLAB and

Simulink are integrated, users can simulate, analyze, and revise the models in either environment

at any point.

2. Matlab Toolbox – Stateflow

 Stateflow is an interactive graphical design tool that works with Simulink to model and

simulate event-driven systems, also called reactive systems. Event-driven systems transition

from one operating mode to another in response to events and conditions [58]. These systems are

often used to model logic for dynamically controlling a physical device. As addressed earlier in

83

chapter IV, the event-based coordination model used in the scheduling process was implemented

using Stateflow.

 Event-driven systems can be modeled as finite-state machines. A finite state machine is a

representation of an event-driven (reactive) system. In an event-driven system, the system makes

a transition from one state (mode) to another prescribed state, provided that the condition defining

the change is true [58]. Traditionally, designers used truth tables to represent relationships among

the inputs, outputs, and states of a finite state machine. The resulting table describes the logic

necessary to control the behavior of the system under study. Another approach to designing

event-driven systems is to model the behavior of the system by describing it in terms of

transitions among states. The state that is active is determined based on the occurrence of events

under certain conditions. State-transition diagrams and bubble diagrams are graphical

representations based on this approach. A Stateflow diagram is a graphical representation of a

finite state machine, where states and transitions form the basic building blocks of the system.

Additionally, Stateflow enables the representation of hierarchy, parallelism, and history.

Hierarchy enables the users to organize complex systems by defining a parent/offspring object

structure. For example, users can organize states within other higher-level states. A system with

parallelism can have two or more orthogonal states active at the same time. History provides the

means to specify the destination state of a transition based on historical information. These

characteristics enhance the usefulness of this approach and go beyond what state-transition

diagrams and bubble diagrams provide.

 One important feature of Stateflow that is critical for this research is its seamless integration

with Simulink. Stateflow charts run as blocks in a Simulink model. The Stateflow block

connects to other blocks in the Simulink model by input and output signals. Through these

connections, Stateflow and Simulink share data and respond to events that are broadcast between

model and chart. [58]. Because of this feature, users can develop their Stateflow chart before or

after the Simulink model in which it will run. Stateflow comes with its own editor and debugger,

84

which allows users to simulate and test the chart logic before it is integrated with a Simulink

model. Users can test a Stateflow chart independently of its parent model by attaching a

Simulink Source block as an input and a Simulink Sink block as an output.

3. Matlab Toolbox – Real-Time Workshop

 Real-Time Workshop is an extension of capabilities of Simulink and Matlab that

automatically generates, packages, and compiles source code from Simulink models to create

real-time software applications on a variety of systems. By providing a code generation

environment for rapid prototyping and deployment, Real-Time Workshop is the foundation for

production code generation capabilities [58]. Along with other tools and components from The

MathWorks, Real-Time Workshop provides the following features:

• Automatic code generation tailored for a variety of target platforms.

• A rapid and direct path from system design to implementation.

• Seamless integration with Matlab and Simulink.

• A simple graphical user interface.

• An open architecture and extensible make process.

 Real-Time Workshop generates optimized, portable, and customizable ANSI C or C++ code

from Simulink models to create standalone implementations of models that operate in real-time

and non-real-time in a variety of target environments. Generated code can run on PC hardware,

microcontrollers on bare-board environments, and with commercial or proprietary real-time

operating systems (RTOS) [58]. Real-Time Workshop is a key link in the set of system design

tools providing a real-time development environment – a direct path from system design to

hardware implementation. Users can streamline application development and reduce costs with

Real-Time Workshop by testing design iterations with real-time hardware. Real-Time Workshop

supports the execution of dynamic system models on hardware by automatically converting

models to code and providing model debugging support. It is well suited for accelerating

85

simulations, rapid prototyping, turnkey solutions, and production of embedded real-time

applications.

 Using integrated makefile-based targeting support, Real-Time Workshop builds programs that

can help speed up simulations, provide intellectual property protection, and run on a wide variety

of real-time rapid prototyping or production targets. Simulink's external mode run-time monitor

works seamlessly with real-time targets, providing an elegant signal monitoring and parameter

tuning interface [58]. Usually users can start with modeling in Simulink, followed by an analysis

of the simulations in Matlab. During the simulation process, users use the rapid simulation

features of Real-Time Workshop to speed up simulations. After users are satisfied with the

simulation results, they can use Real-Time Workshop in conjunction with a rapid prototyping

target, such as Real-Time Windows Target or xPC Target. The rapid prototyping target is

connected to the physical system. Users test and observe the system, using the Simulink model as

the interface to the physical target. Once it is verified that the simulation is functioning properly,

users use Real-Time Workshop to transform the model to C or C++ code. An extensible make

process and download procedure creates an executable for the model and places it on the target

system. Finally, using external mode, users can monitor and tune parameters in real-time as the

model executes on the target environment. There are two broad classes of targets: rapid

prototyping targets and embedded targets. Code generated for the rapid prototyping targets

supports increased monitoring and tuning capabilities. Code generated for embedded targets is

highly optimized and suitable for deployment in production systems, and can include application-

specific entry points to monitor signals and tune parameters. It is worthy mentioning that

embedded system target is not used in this research since the complete simulation system is PC-

based.

4. Matlab Toolbox – Real-Time Windows Target

 Real-Time Windows Target is a PC solution for prototyping and testing real-time systems. It

is an environment where users can use a single PC as a host and target. In this environment users

86

use the desktop or laptop PC with Matlab, Simulink, and Stateflow to create models using

Simulink blocks and Stateflow diagrams [58]. After creating a model and simulating it with

Simulink in normal mode, users can generate executable code with Real-Time Workshop using

the Real-Time Windows Target option. Then users can run their application in real time with

Simulink external mode. Integration between Simulink external mode and the Real-Time

Windows Target allows users to use the Simulink model as a graphical user interface for Signal

visualization and parameter tuning.

 Real-Time Windows Target uses a small real-time kernel to ensure that the real-time

application runs in real time. The real-time kernel runs at CPU ring zero (privileged or kernel

mode) and uses the built-in PC clock as its primary source of time:

• Timer interrupt: The kernel intercepts the interrupt from the PC clock before the Windows

operating system receives it. This blocks any calls to the Windows operating system. As

a result, the kernel is able to give the real-time application the highest priority available.

To achieve precise sampling, the kernel reprograms the PC clock to a higher frequency.

Because the PC clock is also the primary source of time for the Windows operating

system, the kernel sends a timer interrupt to the operating system at the original interrupt

rate [58].

• Scheduler: The timer interrupt clocks a simple scheduler that runs the executable. The

number of tasks is equal to the number of sampling periods in the model with multitasking

mode. With single-tasking mode, there is only one task. The maximum number of tasks

is 32, and faster tasks have higher priorities than slower tasks. For example, a faster task

can interrupt a slower task. During execution, the executable stores data in buffers. Later,

the data in these buffers is retrieved by the Scope block. The scheduling, data storing,

data transferring, and running the executable all run at CPU ring zero [58].

• Communication with hardware: The kernel interfaces and communicates with I/O

hardware using I/O driver blocks, and it checks for proper installation of the I/O board. If

87

the board has been properly installed, the drivers allow the real-time application to run.

Drivers also run at CPU ring zero.

• Simulink external mode: Communication between Simulink and the real-time application

is through the Simulink external mode interface module. This module talks directly to the

real-time kernel, and is used to start the real-time application, change parameters, and

retrieve scope data. Opening a dialog box for a source block causes Simulink to pause.

While Simulink is paused, users can then edit the parameter values. Users must close the

dialog box to have the changes take effect and allow Simulink to continue.

• Built-in C compiler: Real-Time Windows Target applications are compiled with the Open

Watcom C/C++ compiler. Therefore, no third-party compilers are necessary.

5. Real-Time Multiple-Agent System Simulation Implementation

 Up so far in this chapter, we’ve already addressed how we determine the multiple-agent

system simulation is the most suitable simulation architecture for this research considering

development cost, time and money resource. Description of the chosen toolset, Matlab, and

features of its four toolboxes used in this research are also provided in previous sections. In this

section we shall address how the multiple-agent system simulation architecture is implemented

and integrated with the operation concepts and scheduling algorithms development process. It is

shown in Figure 22.

 Early in the design process, Simulink and Stateflow were used to help formulate objectives,

problems, and constraints to create the initial design. Originally the operation concepts,

scheduling algorithms, and multiple-agent system simulation system were implemented using

development platform provided by Visual C++ Development Studio. They were converted into

Simulink with some different means. Considering the simulation fidelity requirement of aircraft

dynamics was not high, the intelligent aircraft agent was completely re-designed in Simulink

taking advantage of its Aerospace Blockset which provided of a variety of reusable libraries and

functions for easy low-middle fidelity aircraft dynamics implementation. Operation concepts that

88

include all of the process-related codes were re-designed using Stateflow, which actually turned

out to be really straightforward due to the GUI feature of Stateflow. Scheduling algorithms

required the best execution performance, and were thus converted to S-functions in Simulink with

only interfaces to Simulink added while keeping the original C code of excellent execution

performance inside S-function blocks. In the phase of problem formulation, system design,

detailed design, and re-designing process, it was clearly noticed that Simulink and Stateflow

provided the ability to simplify and accelerate most phases of these software development

processes, and at the same time to eliminate repetitive and error-prone tasks. The complete

simulation system design was finally implemented using built-in blocks from the Simulink and

Stateflow libraries, incorporate specialized blocks from the other Matlab toolboxes such as

Aerospace, Communications, and Signal Processing, and some customized S-function blocks

converted from the original C codes developed in the Visual C++ Development Studio.

Figure 22: Real-Time Simulation System Implementation

Simulink & Stateflow
Design Original C Code Developed

in Visual C++

S-function Conversion

Simulink Simulation
(Normal Mode):
Non Real-Time

Real-Time Workshop

Target Specification

Real-Time Windows Target

Simulink Simulation
(External Mode):

Real-Time

89

 Real-Time Workshop was used with target specified as Real-Time Windows Target to

complete the design process. It closed the rapid prototyping loop by generating and optimizing

code for given tasks and PC environments configured in the Real-Time Windows Target settings.

Real-Time Workshop speeded up models by enabling high-speed simulations via Simulink

Accelerator and by model referencing, which includes models in other models as blocks.

Model’s parameters were tuned using the Real-Time Workshop and Real-Time Windows Target

for real-time Monte Carlo simulations.

D. Numerical Examples – Static Case

The objective is to perform Real-Time Multiple-Agent System Simulation, and compare the

efficiency and effectiveness of the static aircraft landing scheduling algorithms used in the Air

Traffic Control automation system addressed in chapter III. The aircraft landing scheduling

model developed in chapter III is incorporated into Automated Safety and Training Avionics

(ASTRA), a real-time computerized airborne expert system which is used here to generate

scenarios with multiple intelligent aircraft agents [59]. Each agent is equipped with simulated

Automatic Dependent Surveillance-Broadcast (ADS-B) devices so that they can collect

information on the nearby traffic situation, and scheduling decisions from the scheduler. The

agents also implement a modified SATS Conflict Detection & Resolution (CD&R) algorithm

module to plan maneuvers for an optimized and conflict-free trajectory when following the

scheduling decision issued by the scheduler to complete the landing. It should be noted that the

CD&R algorithm not only maintains a distance-based separation in the en-route phase of flight,

but also enforces a time-based spacing in the final approach. Complete knowledge of all aircraft

to be sequenced is assumed, and is defined here as aircraft state information (altitude, longitude,

latitude, airspeed, vertical speed, and heading), time stamp, flight path intent information (next

two waypoints on the intended flight path), fuel status, and emergency priority.

90

The operational objective for all scenarios is to schedule the landing of between four and ten

aircraft over a one hour time period at a non-controlled airport, using performance metrics of total

cost of deviation, total holding time, and total delay time of feeder route. For the FCFS

scheduling approach, the landing sequence is determined by the order in which each aircraft

reaches the scheduling point. The scheduling solution values (performance metrics) are found by

scheduling each aircraft at its preferred landing time, provided it is feasible. If it is not feasible,

then each aircraft is scheduled as early as possible. For the optimal scheduling approach, both the

landing sequence and scheduling solution values are solely determined by minimizing the

corresponding objective function. The penalty cost fi and gi are set depending on the aircraft

type. Four categories of test scenario are evaluated, involving 4, 6, 8, and 10 aircraft initially

placed outside the SCA of TSTC Waco Regional Airport (KCNW), Waco, TX. The initial

locations of each aircraft are determined randomly according to a normal distribution with a mean

distance of 25 nautical miles to their assigned IAFs, and a standard deviation of 5 nautical miles.

Each aircraft in the scenario has three speed profiles: cruise speed is the fastest and determines

the earliest landing time; approach speed is the slowest and determines the latest landing time;

and holding speed is used to determine the preferred landing time. Aircraft types used are heavy,

medium, or light, with occurrence in any given scenario randomly generated with probabilities of

0.2, 0.4 and 0.4 respectively. The separation time requirements for different scenario setups are

then set accordingly, e.g. the separation time requirement for a heavy-heavy case is five minutes,

and two minutes for a light-light case. Figure 23 and Table 4 provide the graphical configuration

and detailed information of a typical test scenario example respectively.

91

Table 4: Detailed Information of a Test Scenario

Figure 23: Generalized Approach Plate for a Typical Test Scenario

 1 2 3 4

Aircraft Type Light Medium Heavy Light

Flight ID N5000L N865CP N700AE N3998Z

Latitude 31.916546 32.116023 32.130356 32.016731

Longitude -97.676885 -97.435805 -96.539107 -96.563069

Altitude 7000(FT) 5000(FT) 6000(FT) 4000(FT)

Heading (TRUE) 107(DEG) 144(DEG) 205(DEG) 225(DEG)

Planned IAF RAZVY RAZVY LOUIE LOUIE

Distance to IAF 25.9 (NM) 22.0 (NM) 29.0 (NM) 24.3 (NM)

Cruise Airspeed 180 (KNTS) 125 (KNTS) 150 (KNTS) 75 (KNTS)

Hold Airspeed 110 (KNTS) 100 (KNTS) 110 (KNTS) 65 (KNTS)

Approach Airspeed 80 (KNTS) 80 (KNTS) 90 (KNTS) 50 (KNTS)

LEROI

FAF

TITAH

MAP

R17L

171

5nm

 5nm

5nm

5.4 nm

RUBDY

LOUIE

 LHF

RAZVY

 RHF

FOSTR

IF

1

2

3

4

92

A Monte Carlo approach was used totaling 960 runs, consisting of 40 individual scenarios for

each of the four scenario classes evaluated (4, 6, 8, and 10 aircraft) run six times to get FCFS

THT, optimal THT, FCFS TCD and total delay time of feeder route, and optimal TCD and total

delay time of feeder route respectively. The 960 runs was found to be sufficient to highlight the

desired trends, since the standard deviation for each performance metric was inversely

proportional to the number of runs, and was decreasing by less than 5% per every ten runs

thereafter.

 Results for the four scenarios are presented in Table 5 and Figures 24-26. Note that all test

scenarios produce converged solutions for both the FCFS scheduling and optimal scheduling

algorithms. Compared with the FCFS scheduling, optimal scheduling is seen to significantly

decrease the total cost of deviation by an average of 56.42%, decrease total holding time by an

average of 52.16%, and decease total delay time of feeder route by 34.21%. It is noteworthy that

test scenarios which involve several aircraft do not necessarily take more time to complete than

those with fewer aircraft, despite the accumulation of landing operation time. Since the

scheduling solution value is found by scheduling each aircraft at its preferred landing time (if it is

feasible for the FCFS approach), it is possible for the FCFS scheduling to provide the optimal

solution in situations where it obtains the optimal sequence. This results from the randomness

introduced in generating the test scenarios.

93

Table 5. Numerical Results of Test Scenarios

Number of Aircraft in Scenario 4 6 8 10

Simulation Runs 40 40 40 40

Mean 13.95 19.64 30.17 36.52
FCFS solution

TCD
Standard

Deviation
2.12 2.84 2.93 3.28

Mean 4.90 9.15 13.13 17.92
Optimal solution

TCD
Standard

Deviation
0.54 1.09 1.18 1.99

Mean 21.11 30.73 36.04 48.55
FCFS solution

THT (minutes)
Standard

Deviation
2.32 3.00 4.03 5.14

Mean 9.57 13.75 18.08 24.81
Optimal solution

THT (minutes)
Standard

Deviation
0.79 1.57 1.95 2.26

Mean 6.87 10.65 15.74 20.95 FCFS solution

TDTfeeder route

(minutes)

Standard

Deviation
1.03 1.43 1.92 2.03

Mean 5.32 7.16 9.23 12.54 Optimal solution

TDTfeeder route

(minutes)

Standard

Deviation
0.47 0.69 1.22 1.45

94

Figure 24: FCFS Vs. Optimal -- TCD

0
5

10
15
20
25
30
35
40

4 6 8 10

Aircraft #

FCFS -- Mean

FCFS -- Standard
Deviation
Optimal -- Mean

Optimal -- Standard
Deviation

Figure 25: FCFS Vs. Optimal --
THT

0

10

20

30

40

50

60

4 6 8 10

Aircraft #

Minute

FCFS -- Mean

FCFS -- Standard
Deviation
Optimal -- Mean

Optimal -- Standard
Deviation

95

E. Numerical Examples – Dynamic Case

The objective of the numerical example is to evaluate the performance of the on-board aircraft

landing scheduling tool used in the distributed Air Traffic Management system described in

chapter IV. The scheduling model is integrated with the Automated Safety and Training

Avionics (ASTRA), a real-time computerized airborne expert system and simulation environment

that uses multiple intelligent aircraft agents [59]. Each agent is equipped with simulated ADS-B

devices which provide traffic information and scheduling decisions from the scheduler (the

arbitration aircraft for the on-board scheduling case and the automatic air traffic controller for the

ground-based scheduling case). The agents also implement the modified SATS CD&R algorithm

module to plan maneuvers for an optimized and conflict-free trajectory. It should be noted that

the CD&R algorithm not only maintains a distance-based separation in the en-route phase of

flight, but also enforces a time-based spacing in the final approach. Complete knowledge of all

aircraft to be sequenced is assumed to be carried by the ADS-B messages and is defined here as

aircraft state information (altitude, longitude, latitude, airspeed, vertical speed, and heading), time

stamp, flight path intent information (next two waypoints on the intended flight path), fuel status,

and emergency priority.

Figure 26: FCFS Vs. Optimal -- TDT (Feeder Route)

0

5

10

15

20

25

4 6 8 10

Aircraft #

Minute

FCFS -- Mean

FCFS -- Standard
Deviation
Optimal -- Mean

Optimal -- Standard
Deviation

96

1. Scenario Design

The concept of the SATS scenario is used for the flight simulation since it breaks the current

“one-in/one-out” procedure and enables multiple operations simultaneously at the terminal area

of non-controlled airports. In SATS scenarios, a block of airspace named the Self-Controlled

Area (SCA) is established around non-controlled airports. Multiple operations within an SCA

can be achieved by having the aircraft hold in stacks at Initial Approach Fixes (IAFs) and then

follow specified procedures (either a vertical entry or a lateral entry) to enter the SCA and

complete approaches. This is shown in Figure 27.

 It was concluded from the simulation result of the static case that the optimal scheduling

algorithm can effectively enhance the operation efficiency compared with the first-come-first-

serve scheduling algorithm, only the optimal scheduling algorithm is applied in each scenario.

Two categories of scenarios are designed to evaluate the static and dynamic response

performance, respectively, where the ground-based scheduling tool serves as the baseline system

for comparison. For static performance evaluation, basically for each scenario run both on-board

and ground-based scheduling tool are triggered to apply optimal scheduling algorithm to compute

the scheduling decisions when it reaches the scheduling point, and the scheduling decision

Figure 27: SATS Self-Controlled Area High-Volume Operations Concept II

97

outputs from these two different resources are compared for conformance. A simple

conformance ratio serves as the performance metric for the static performance evaluation.

 For dynamic performance evaluation that considers the scheduling of aircraft landings in real-

time, four sub-categories of test scenario consisting of 4, 6, 8, and 10 aircraft initially placed

outside the SCA of TSTC Waco Regional Airport (KCNW), Waco, TX, are evaluated. Initial

locations are determined randomly according to a Gaussian distribution with a mean distance of

25 nautical miles to the assigned IAF, and a standard deviation of five nautical miles. Aircraft

types used are heavy, medium, or light, and appear randomly in any scenario with probabilities of

0.2, 0.4, and 0.4, respectively. Each aircraft has a cruise speed, approach speed, and holding

speed. Separation time requirements for each scenario are set according to aircraft type, e.g. five

minutes for a heavy-heavy case, and two minutes for a light-light case. Two dynamic cases are

simulated to trigger the dynamic scheduling: new aircraft appearance, and operation environment

condition changes that cause aircraft to drift from their planned flight path based on last

scheduling decision and the resulting repositioning of needs to be considered. For simplification,

the latter case is simulated simply by changing the aircraft speed profile. They are implemented

by integrating a dynamic even trigger into the simulation system to trigger the desired dynamic

case in real-time. Monte Carlo simulation was used on 40 individual scenarios for each of the

four scenario classes. Three performance metrics stated earlier are used for the dynamic

performance evaluation. To evaluate the impact of introducing spacing constraint into the

scheduling model instead of on-board CD&R function (as proposed in chapter IV, section C-1),

10 additional scenarios for each of the four scenario classes were exercised where only TCD was

evaluated for comparison.

2. Numerical Results

For static performance evaluation, the results show that the event-based coordination

implementation can effectively implement the distributed decision-making on aircraft landing

scheduling. All scenario runs output the same scheduling decisions from the on-board and

98

ground-based scheduling tool, and thus they gain a 100% conformance ratio. Observation of a

computing time history also shows that the scheduling decision-making process execution time

ratio of on-board scheduling tool and ground-based scheduling tool increases as number of

aircraft in the scenario increases. This is a result from the extra processing steps taken in the on-

board scheduling tool. When 10 aircraft are involved in the scenario and the ADS-B message

transmission frequency is simulated at 10 Hz, the execution time of on-board scheduling (average

around 0.12 Sec) exceeds the time period of ADS-B transmission cycle, which means that the

scheduling decision is made on the out-of-dated aircraft state information since the new ADS-B

message (represents the new aircraft state) is on the way of transmitting already. Scheduling

decision conformance is still gained because of the ADS-B message lock mechanism. This issue

can be directly solved by using a faster computer for the simulation. However, it should draw our

concern that it somehow simulates some type of “delay time” (such as delay caused by pilot-

machine interaction or ADS-B message transmission delay) if pilot-in-the-loop simulation is

conducted.

For dynamic performance evaluation, results for the four scenario classes are presented in

Table 6, Figure 28, and Figure 29, where the ground-based scheduling tool serves as baseline for

comparison. All test scenarios produce converged solutions for on-board scheduling tool.

Numbers of dynamic case used to trigger re-scheduling are 2, 3, 4, and 5 for test scenarios

involved with 4, 6, 8, and 10 aircraft, respectively, compared to the ground-based scheduling

values of all three performance metrics for on-board scheduling increase to some extent but

without directly traceable statistical law. However, the ratio of mean value and standard

deviation shows that the standard deviation increasing rate is obviously greater than the mean

value increasing rate, comparing to the ground-based scheduling tool. These observations are

resulted from the fact that the dynamic case (new aircraft entry or existing aircraft speed profile

change) type and triggering time are both randomly selected in each scenario. Simulation results

also show that on-board scheduling tool reaches its run-time bottleneck when 10 aircraft are

99

involved in the scenario and the ADS-B message transmission frequency is around 20 Hz. This

results from the ADS-B message processing overload. Again, this issue can be directly solved for

short-term by using a faster computer. For the long-run, ADS-B message complexity analysis and

re-organization should be conducted for a better message parsing and processing performance.

Evaluation of impact of introducing spacing constraint in the scheduling model is shown in

result Table 7. For most of the scenarios, the scheduling model that includes the spacing

constraint (hereafter refer as augmented scheduling model) achieves slight better performance

than the one without spacing constraint (hereafter refer as baseline scheduling model). Numerical

results also show that the mean/standard deviation ratio of the augmented scheduling model is

slightly smaller than the one of the baseline scheduling model for most of the scenarios. These

are all resulted from the fact that the spacing constraint represents the separation requirement

within the entire SCA whereas the landing separation constraint alone in the baseline scheduling

model only represents accumulated separation at the runway threshold. The placement of spacing

constraint in the scheduling model thus makes it more active and responsive to the dynamic re-

scheduling events. However, there is no obvious difference between augmented scheduling

model and baseline scheduling model since time-based spacing constraint is still enforced in

baseline scheduling model via on-board CD&R functionality.

100

Table 6. Dynamic Performance Evaluation Numerical Results

101

Table 6 Continued

Table 7. Impact of Introducing Spacing Constraint into the Scheduling Model

Number of Aircraft in Scenario 4 6 8 10

Simulation Runs 10 10 10 10

Mean 4.92 9.23 12.68 18.56

Standard Deviation 0.56 1.09 1.19 2.00

On-Board TCD (spacing

constraint is not included in

the scheduling model) Mean/Standard

Deviation
8.79 8.47 10.66 9.28

Mean 4.79 9.07 12.28 17.30

Standard Deviation 0.54 1.11 1.16 2.12

On-Board TCD (spacing

constraint is included in the

scheduling model) Mean/Standard

Deviation
8.87 8.17 10.58 8.16

102

Dynamic Performance Evaluation -- Mean Value

0

5

10

15

20

25

30

35

4 6 8 10

Aircraft #

Ground-Based TCD

On-Board TCD

Ground-Based THT

On-Board THT

Ground-Based TDT
(FR)
On-Board TDT (FR)

Dynamic Performance Evaluation --
 Standard Deviation

0

1

2

3

4

5

6

7

4 6 8 10

Aircraft #

Ground-Based TCD

On-Board TCD

Ground-Based THT

On-Board THT

Ground-Based TDT
(FR)
On-Board TDT (FR)

Figure 28: Dynamic Performance Evaluation – Mean Value

Figure 29: Dynamic Performance Evaluation – Standard Deviation

103

F. Conclusions

 In this chapter we first reviewed several candidate simulation architectures for the

performance evaluation of the operation concepts and scheduling algorithms introduced in this

research. Real-time multiple-agent system simulation architecture was selected considering time

and money resource, development cost, and requirements for simulation fidelity. Then the

approach of implementing the lost-cost effective agent-based real-time simulation with Matlab

toolset was provided. Finally, numeral results obtained from Real-time multiple-agent system

simulation for static and dynamic cases were presented.

104

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

It is becoming apparent that the existing air transport system is approaching a bottleneck. This

mainly results from the dominant hub-and-spoke model that results in a concentration of a large

percentage of the air traffic at a few hub airports. A promising solution is to distribute the

congested air traffic at the hub airports to small airports where most of them do not have Air

Traffic Control (ATC). Therefore, either an air traffic control automation system or a

decentralized air traffic management system needs to be established to take over the aircraft

landing sequencing and scheduling responsibilities. This dissertation aims to analyze the

feasibility and capability of the decentralized aircraft landing scheduling operations at non-

controlled airports. Firstly, this dissertation seeks to develop static optimization algorithms for

aircraft landing scheduling, and analyze the capability of automated aircraft landing scheduling

on single runways at non-controlled airports. Secondly, this dissertation seeks to analyze the

degree of decentralization for aircraft landing scheduling in the dynamic operational environment

at non-controlled airports. Finally, real-time multiple-agent system simulation is conducted to

evaluate the performance of decentralized aircraft landing scheduling tool whereas air traffic

control automation system serves as the baseline system for comparison.

A. Conclusions

In chapter II, we reviewed the functionalities of the operational components in the current

ATM system. Then we gave a general description of the Free Flight concept and the SATS

program. They both ultimately seek to achieve effective and efficient flight operations in the

current NAS, with the former focusing on en-route flight operations, and the latter concentrating

on terminal area operations at non-controlled airports.

105

In chapter III, an aircraft landing scheduling model and static optimization scheduling

algorithms using linear programming and job shop solutions were developed and implemented as

an air traffic control automation system for automated aircraft landing scheduling at single

runway, non-controlled airports. Performance of the optimization algorithm was compared to a

first-come-first-served scheduling algorithm in terms of total cost of deviation, total holding time,

and total delay time of feeder route. Numerical results were presented in chapter V to support the

development using four different multi-aircraft landing scenarios evaluated by Monte Carlo real-

time flight simulation. Numerical results show that the optimal scheduling algorithm produced

significant reductions in total cost of deviation (average of 56.42%), total holding time (average

of 52.16%), and total delay time of feeder route (average of 34.21%) compared with first-come-

first-serve scheduling. It was observed that in some scenarios, first-come-first-serve scheduling

produced the optimal solution in situations where it happens to obtain the optimal sequence.

Based on the reductions in total cost of deviation and total holding time for the test case ensemble

considered, the optimal scheduling algorithm appears to be a promising candidate for enhancing

the efficiency of aircraft landing operations at the terminal area of non-controlled airports.

In chapter IV, it addressed the approach and issues of implementing decentralized aircraft

landing operations at the terminal area of non-controlled airports, and thus provided a clear

approach to the distributed air traffic management system. An on-board aircraft landing

scheduling tool, resulted from the integration of an aircraft landing scheduling model and

distributed coordination function, was implemented to achieve dynamic self-scheduling in the

ultimate uninterrupted free-flight operational environment. Distributed coordination issues,

which posed most of the technology challenges to the decentralized aircraft landing operation,

were addressed. Two coordination models, with focus on event-based coordination model, were

discussed for comparison. Methodologies description of how to resolve challenges brought by

distributed coordination issues using the event-based coordination model was provided, from the

establishment of the mathematical model to the application implementation. Numerical results

106

were presented in chapter V to support the development using several different multi-aircraft

landing scenarios evaluated by Monte Carlo real-time multiple-agent flight simulation.

Numerical results showed that the event-based coordination implementation of the on-board

aircraft landing scheduling tool achieved 100% scheduling decision conformance with ground-

based scheduling tool regarding the static performance. The ADS-B message lock mechanism

ensured the same static information was retrieved when both on-board and ground-based

scheduling tool made scheduling decision at the specified scheduling points, and thus gained

scheduling decision conformance even though the scheduling decision-making process execution

time of on-board scheduling tool and ground-based scheduling tool were slightly different for

some scenarios. Regarding the dynamic performance, numerical results showed that the on-board

aircraft landing scheduling tool was able to provide the converged scheduling solutions

dynamically in all nominal scenarios. However, it reached its run-time bottleneck in some

abnormal scenarios such as when 10 aircraft were involved in the scenario and the ADS-B

message transmission frequency is intentionally setup to abnormal 20 Hz. It was expected to be

resolved after proper ADS-B message complexity analysis and re-organization were conducted

for a better message parsing and processing performance.

 In chapter V several candidate simulation architectures for the performance evaluation of the

operation concepts and scheduling algorithms introduced in this research were reviewed. Real-

time multiple-agent system simulation architecture was selected considering time and money

resource, development cost, and requirements for simulation fidelity. Then the approach of

implementing the lost-cost effective agent-based real-time simulation with Matlab toolset was

provided. Finally, numeral results obtained from Real-time multiple-agent system simulation for

static and dynamic cases were presented.

 It is concluded from the numerical results presented in this dissertation that decentralized

aircraft landing scheduling at non-controlled airports can be achieved with acceptable

performance using the on-board aircraft landing scheduling tool.

107

B. Future Work

The decentralized aircraft landing scheduling problem has not been clearly stated in the

literature by far prior to the advent of this dissertation. It is an important problem deserving of

closer attention since it provides a clear approach to the distributed air traffic management

system. Current operations at the terminal area of non-controlled airports have no centralized

control, which exhibit an inherent property of distribution that gives a perfect environment for the

implementation of uninterrupted free-flight concept. In the research addressed in this

dissertation, the on-board aircraft landing scheduling tool developed represents uninterrupted

free-flight to the threshold since there is no ground-based automated system to enforce any

centralized control and flight crews take over all of the responsibilities that the current controllers

have. Aircraft at the terminal area of non-controlled airports are placed in a complete

decentralized environment, and it is author’s believe that the research addressed in this

dissertation will contribute to the future ATM revolution since the research will give a clear view

of where to establish the line of free-flight concept application for the controlled airport case.

At this stage the potential impact of Free flight on the operations of the national airspace

system is still disputed, and demand measurement for SATS shows that NASA could possibly

introduce an idea to the public that would never be used. However, it can be expected that the

future air traffic management system will manage flight operations in a way that lies somewhere

between the two extremes, fully centralized and uninterrupted free-flight, possibly moving

gradually from centralized to more free-flight, as the concept of Highway-in-the-Sky emerges.

It’s then authors’ interest to extend the non-controlled airport application to controlled airport

case with suitable amendment, where the reliance on centralized air traffic management can be

reduced gradually in favor of a decentralized management to provide more airspace capacity,

flight flexibility, and increase operation robustness. It has a promising future, at least the road

worthy a try. While at this point the concept of Free Flight is sort of stuck at nowhere, the

approach of using event-based coordination model to tackle the decentralized aircraft landing

108

scheduling problem at non-controlled airport might have a chance to “break the ice”, and bring

the DAT-TM to the next level.

109

REFERENCES

 1Nolan, S.M., Fundamentals of Air Traffic Control, Third ed, Wadsworth Publishing

Company, Belmont, CA, 2003.

 2Lucio, B., Paolo, D., and Amedo, R.O., Modeling and Simulation in Air Traffic Management,

Springer, New York, 1997, p. 202.

 3Conway, R.S., and Consiglio, M., "A Method of Separation Assurance for Instrument Flight

Procedures at Non-radar Airports," AIAA-2002-4448, AIAA Guidance, Navigation, and Control

Conference, Monterey, CA, 2002.

 4Croft, J., Small Aircrafts-To Be or Not To Be?, Aviation Week & Space Technology,

Accessed 12, April, 2002, http://www.aviationnow.com/.

 52010 Concepts of Operations Document and Small Aircraft Transportation System: Systems

Development and Evaluation Plan, NASA Langley Research Center, Hampton, VA, 2002.

 6Chen, H., and Zhao, Y., "A New Queuing Model for Aircraft Landing Process," AIAA-1997-

3737, AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, 1997.

 7Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M., and Abramson, D., "Scheduling Aircraft

Landings - the Static Case," Transportation Science, Vol. 34, No. 2, 2000, pp. 180-197.

 8Denery, D.G., and Erzberger, H., The Center-TRACON Automation System: Simulation and

Field Testing, NASA Ames Research Center, Moffett Field, CA, August, 1995.

 9Davis, T.J., Erzberger, H., Green, S. M., and Nedell, W., "Design and Evaluation of Air

Traffic Control Final Approach Spacing Tool," Journal of Guidance, Control, and Dynamics,

Vol. 14, No. 4, 1991, pp. 848-854.

 10Davis, T.J., Erzeczowski, K. J., and Bergh, C., "The Final Approach Spacing Tool," 13th

IFAC Symposium on Automatic Control in Aerospace, Palo Alto, CA, 1994.

 11Aeronautical Information Manual, FAA, Washington, D.C., 2006.

110

 12Remington, R., and Johnston, C.J., Simulation Experiments Investigating Controller

Workload Under Free-Flight Conditions, NASA Ames Research Center, Moffett Field, CA, June,

1995.

 13Jones, K., Williams, D., Consiglio, M., Adams, C., and Abbott, T., IFR Operations at Non-

towered, Non-radar Airports: Can We Do Better Than One-at-a-time?, NASA Langley Research

Center, Hampton, VA, 2003.

 14Ding, Y.Y., Rong, J., and Valasek, J., "Automation Capabilities Analysis Methodology for

Non-Controlled Airports," AIAA-2003-5601, AIAA Modeling, Simulation Technologies

Conference, Austin, TX, 2003.

 15Drexl, A., and Jordon, C., "A Comparison of Constraint and Mixed-Integer Programming

Solvers for Batch Sequencing with Sequence-Dependent Setups," ORSA J. Comput., Vol. 7,

1995, pp. 160-165.

 16Bianco, L., Dell'Olmo, P., and Giordani, S., "Minimizing Total Completion Time Subject to

Release Dates and Sequence Dependent Processing Times, In Advances in Combinatorial

Optimization," Annals of Operation Research, Vol. 86, 1999, pp. 393-415.

 17Bianco, L., Ricciardelli, S., Rinaldi, G., and Sassano, A., "Scheduling Tasks with Sequence-

Dependent Processing Times," Naval Res. Logist, Vol. 35, 1988, pp. 177-184.

 18Guinet, A., "Scheduling Sequence-Dependent Jobs on Identical Parallel Machines to

Minimize Completion Time Criteria," Int. J. Product. Res. , Vol. 31, No. 7, 1993, pp. 1579-1594.

 19Pinedo, M., and Young, H.L., "Scheduling Jobs on Parallel Machines with Sequence-

Dependent Setup-times," Eur.J.Oper.Res, Vol. 100, No. 3, 1997, pp. 464-474.

 20Low, C.Y., "Job Shop Scheduling Heuristics for Sequence Dependent Setups," Comput.

Industr. Eng., Vol. 29, No. 1-4, 1995, pp. 279-283.

 21Psaraftis, H.N., "A Dynamic Programming Approach for Sequencing Groups of Identical

Jobs," Operations Research, Vol. 28, No. 6, 1980, pp. 1347-1359.

111

 22Thiele, O., and Brucker, P., "A Branch & Bound Method for the General-Shop Problem with

Sequence Dependent Setup-times," OR Spektrum, Vol. 18, No. 3, 1996, pp. 145-161.

 23Dear, R.G., and Sherif, Y.S., "The Dynamic Scheduling of Aircraft in High Density

Terminal Areas," Microelectronics and Reliability, Vol. 29, No. 5, 1989, pp. 743-749.

 24Ernst, A.T., Krishnamoorthy, M., and Storer, R.H., "Heuristic and Exact Algorithms for

Scheduling Aircraft Landings," Networks, Vol. 34, No. 3, 1999, pp. 229-241.

 25Bianco, L., Rinaldi, G., and Sassano, A., "A Combinatorial Optimization Approach to

Aircraft Sequencing Problem," Computer and Systems Science, Vol. 38, 1987, pp. 324-339.

 26Psaraftis, H.N., A Dynamic Programming Approach To The Aircraft Sequencing Problem,

Flight Transportation Laboratory, MIT, Cambridge, MA, 1978.

 27Brinton, C.R., "An Implicit Enumeration Algorithm for Arrival Aircraft Scheduling,"

Proceedings of 11th IEEE/AIAA Digital Avionics Systems Conference, Seattle, Washington, 1992,

pp. 268-274.

 28Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M., and Abramson, D., "The Displacement

Problem and Dynamically Scheduling Aircraft Landings," Journal of the Operational Research

Society, Vol. 55, No. 1, 2004, pp. 54-64.

 29Isaacson, D.R., Davis, T.J., and Robinson III, J.E., "Knowledge-Based Runway Assignment

for Arrival Aircraft in the Terminal Area," AIAA Guidance, Navigation, and Control Conference,

New Orleans, LA, 1997.

 30Krzeczowski, K.J., Davis, T.J., Erzberger, Lev-Ram, I., and Bergh, C.P., "Knowledge-Based

Scheduling of Arrival Aircraft in the Terminal Area," AIAA-95-3366, Proceedings of the AIAA

Guidance, Navigation, and Control Conference, Baltimore, MD, 1995, pp. 1758-1768.

 31Lee, K.K., and Davis, T.J., "The Development of the Final Approach Spacing Tool(FAST):

A Cooperative Controller-Engineer Design Approach," Journal of Control Engineering Practice,

Vol. 4, No. 8, 1996, pp. 1161-1168.

112

 32Robinson III, J.E., and Isaacson, D.R., "A Concurrent Sequencing and Deconfliction

Algorithm for Terminal Area Air Traffic Control," AIAA Guidance, Navigation, and Control

Conference, Denver, CO, 2000.

 33Robinson III, J.E., Davis, T.J., and Isaacson, D.R., "Fuzzy Reasoning-Based Sequencing of

Arrival Aircraft in the Terminal Area," AIAA Guidance, Navigation and Control Conference,

New Orleans, LA, 1997.

 34Brucker, P., Scheduling Algorithms, Third ed, Springer, New York, 2001.

 35Ding, Y.Y., and Valasek, J., "Aircraft Landing Scheduling Optimization for Single Runway

Non-Controlled Airports---the Static Case," Journal of Guidance, Control, and Dynamics, Vol.

30, No. 1, 2007, pp. 252-255.

 36Sorensen, J.A., Detailed Description for CE-11 Terminal Arrival: Self Spacing for Merging

and In-trail Separation, Technical Research in Advanced Air Transportation Technologies, NASA

Ames Research Center, Moffett Field, CA, 2000.

 37Barmore, B., and Abbott, T., "Airborne-managed Spacing in Multiple Arrival Streams," 24th

International Congress of the Aeronautical Science, Yokohama, Japan, 2004.

 38Palmer, M.T., Barmore, B.E., and Abbott, T.S., "Integration of Paired-Dependent Speed

Guidance into Current-Generation Glass-Cockpit Commercial Aircraft," 24th International

Congress of the Aeronautical Science, Yokohama, Japan, 2004.

 39Bussink, F.J., Doble, N., Barmore, B., and Singer, S., "A Fast-Time Simulation Environment

for Airborne Merging and Spacing Research," 23rd Digital Avionics Systems Conference, Salt

Lake City, UT, 2004.

 40Clavier, O., Houck, S., Schleicher, D., and Davis, P. "The Smart Airport Automation System

(SAASY)," AIAA Guidance, Navigation, and Control Conference, Austin, TX, 2003.

 41Abbott, T., Jones, K.M., Consiglio, M., Williams, D.M., and Adams, C., Development of

the SATS HVO Operational Concept: Nominal Operations, NASA Langley Research Center,

Hampton, VA, 2003.

113

 42Schleicher, D., Sorensen, J., and Peters, M., "The Past, Present, and Future of Small Airport

Automation," AIAA-2003-6792, AIAA 3rd Annual Aviation Technology, Integration, and

Operations (ATIO) Forum, Denver, CO, 2003.

 43Ballin, M., Hoekstra, J., Wing, D., and Lohr, G. "NASA Langley and NLR Research of

Distributed Air/Ground Traffic Management," AIAA-2002-5826, AIAA Aircraft Technology,

Integration, and Operations Conference, Los Angeles, CA, 2002.

 44Prevot, T., Palmer, E.A., Smith, N., and Callantine, T., "Future Air Traffic Management: A

Perspective on Distributed Automation," CSAPC ’01 8th Conference on Cognitive Science

Approaches to Process Control, Munich, 2001.

 45Prevot, T., Shelden, S., Palmer, E., Johnson, W., Battiste, V., Smith, N., Callantine, T., Lee,

P.U., and Mercer, J. "Distributed Air/Ground Traffic Management Simulation: Results, Progress

and Plans," AIAA-2003-5602, AIAA Modeling and Simulation Technologies Conference, Austin,

TX, 2003.

 46Gerkey, B., Jones, C., Shell, D., and Mataric, M.J., "Principled Approaches to the Design of

Multi-Robot Systems," Proceedings of Workshop on Networked Robotics, IEEE/RSJ Intl. Conf.

on Intelligent Robots and Systems, Sendai, Japan, 2004, pp. 71-80.

 47Muhl, G., Large-Scale Content-Based Publish/Subscribe Systems, Ph.D. Dissertation,

Darmstadt University of Technology, Darmstadt, Germany, 2002, p. 175.

 48Birman, K.P., "The Process Group Approach to Reliable Distributed Computing,"

Communication of the ACM, Vol. 36, No. 12, 1993, pp. 37-53.

 49Skeen, D., "An Information Bus Architecture for Large-Scale, Decision-Support

Environments," ACM SIGOPS Operating System Review, Vol. 27, No. 5, 1992, pp. 58-58.

 50Kuchar, J.K., and Yang, L.C., "A Review of Conflict Detection and Resolution Modeling

Methods," IEEE Transactions on Intelligent Transportation Systems, Vol. 1, No. 4, 2000, pp.

179-189.

114

 51Harper, K., Mulfund, S., Guarino, S., Mehta, A., and Zacharias, G., "Air Traffic Controller

Agent Model for Free Flight," AIAA-99-3987, AIAA Guidance, Navigation and Control

Conference, Portland, OR, 1999.

 52Rong, J., Geng, S., Valasek, J., and Ioerger, T., "Air Traffic Conflict Negotiation and

Resolution Using An Onboard Multi-Agent System," DASC-345, 21st Digital Avionics Systems

Conference (DASC) on Air Traffic Management for Commercial and Military Systems, Irvine,

CA, 2002.

 53Helbing, K., Spaeth, T., and Valasek, J., "Improving Aircraft Sequencing and Separation at a

Small Aircraft Transportation System Airport," Journal of Aircraft, Vol. 43, No. 6, 2006, pp.

1636-1642.

 54Hillier, F.S., and Lieberman, G.J., Introduction to Operations Research, 8th ed, McGraw-

Hill, Columbus, OH, 2001.

 55Texas A&M University Flight Simulation Laboratory, College Station, TX.

 56Engineering Flight Simulator System Description (Version 1.1), Aerospace Engineering

Department, Texas A&M University, College Station, TX, 2000.

 57Painter, J., Ward, D., Crump, J., Trang, J.A., Lee, K.A., et. al. "Decision Support for the

General Aviation Pilot," Proceedings of the 1997 IEEE International Conference on System,

Man, and Cybernetics, Orlando, FL, 1997, pp. 88-93.

 58Online help document for Matlab Version 2006b, 2006, http://www.mathworks.com/.

 59Rong, J., Spaeth, T., and Valasek, J., "Small Aircraft Pilot Assistant: Onboard Decision

Support System for SATS Aircraft," AIAA-2005-7382, AIAA 5th ATIO and 16th Lighter-than-

Air and Balloon Systems Conferences, Arlington, VA, 2005.

115

VITA

Name: Yuanyuan Ding

Address: Department of Aerospace Engineering, H.R. Bright Building, Rm. 701,

 Ross Street - TAMU 3141, College Station TX 77843-3141

Email Address: dingyuanyuanpl@hotmail.com

Education: B.S., Manufacturing Engineering,
 Beijing University of Aeronautics & Astronautics, Beijing, China, July 1998

 M.S., Mechanical and Electronic Engineering,
 Beijing University of Aeronautics & Astronautics, Beijing, China, May 2001

 Ph.D., Aerospace Engineering,
 Texas A&M University, College Station, Texas, May 2007

Professional: Senior Project Engineer

 S-TEC Corporation, One S-TEC Way, Mineral Wells, TX 76067

 (Phone) 817-215-7654, (Fax) 940-325-3904

 <http://www.s-tec.com/>

