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ABSTRACT 

 

Intracellular Trafficking and Plasma Membrane Microdomain Distribution of the NSP4 

Enterotoxin During Rotavirus Infection in Epithelial Cells. (December 2006) 

Stephen Michael Storey, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Judith M. Ball 

  
 
 Rotavirus (RV) nonstructural protein 4 (NSP4) is a multifunctional glycoprotein 

that induces secretory diarrhea in mouse pups in the absence of other viral proteins. The 

intracellular transport route(s) and functional mechanism(s) of NSP4 are poorly 

understood; however, the recent association of the enterotoxin with cellular caveolin-1 

may provide a link between NSP4 transport and function. To determine if NSP4 traffics 

to a specific subset of lipid rafts at the plasma membrane (PM), we isolated caveolae 

from a PM-enriched fraction with a new method that yielded endoplasmic reticulum 

(ER)-free caveolae membranes with a unique membrane structure and composition. 

Comparison of these caveolae with other detergent- and non-detergent-extracted 

membranes revealed that each caveolae/raft fraction contained caveolae markers; 

however, only our PM caveolae fraction mimicked the membrane structure and sterol 

exchange dynamics of intact PM without ER or non-raft PM contaminants. When these 

PM caveolae were isolated from RV-infected cells, full-length, high-mannose 

glycosylated NSP4 was present. Confocal imaging showed association of NSP4 with 

caveolin-1 moving from perinuclear and cytoplasmic sites toward the PM as the 

infection progressed.  Fluorescent imaging also indicated exposure of the NSP4 C-

terminus at the exofacial PM surface without transport of the enterotoxin through the 

Golgi apparatus. Surface-specific biotinylation was used to confirm NSP4 exposure at 

the surface of infected MDCK cells and to determine that the exposed protein was full-

length and high-mannose glycosylated. This study presents an ER contaminant-free PM 

caveolae isolation methodology, identifies the presence of full-length, high-mannose 
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glycosylated NSP4 in both PM caveolae and exposed at the cell surface, and confirms 

the Golgi-bypassing nature of NSP4 ER to PM transport in RV-infected MDCK cells. 
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 ____________________________ 
This thesis follows the style of The EMBO Journal. 

CHAPTER I 

INTRODUCTION 

 

 Rotaviruses (RV) cause severe and sometimes fatal pediatric gastrointestinal 

disease. While the mechanisms underlying RV-induced symptoms have yet to be fully 

characterized, the identification of RV nonstructural protein 4 (NSP4) as the first viral 

enterotoxin suggested the possibility of a NSP4-induced secretory diarrhea during 

infection. The presence of NSP4 in lipid rafts, a foci of cellular signaling events, and 

direct binding of the enterotoxin to caveolin-1, the key structural and functional protein 

of the caveolar subset of lipid rafts, indicate a potential mechanism/location for NSP4 

function during infection. 

 RV are significant agents of acute diarrhea in children and animals worldwide. 

Nearly all children have been affected by RV infection by the age of 5 with 2 million 

cases of severe gastroenteritis and 440,000 deaths annually (Prashar et al., 2003). With 

the gastroenteritis-induced dehydration often exacerbated by malnutrition and high 

incidences of co-infection with other gastrointestinal pathogens, children in developing 

countries account for approximately 82% of these deaths (Cirlet and Estes, 2001; 

Farthing, 2000). Association of the first licensed RV vaccine with intussusception, an 

obstruction of the bowel caused by inversion of one segment within another, resulted in 

the vaccine’s removal from the market (Murphy et al., 2001). The disease burden and 

problematic vaccine issues have resulted in a continued focus on defining the 

mechanisms of RV-induced diarrhea. The predominant disease mechanism attributed to 

RV is malabsorption secondary to enterocyte damage; however a secretory component 

precedes visible tissue damage during infection (Mebus, 1989; Davidson et al., 1977). 

Elevated levels of prostaglandin induced by RV infection and calcium (Ca2+)-mediated 

sodium secretion induced by NSP4 provide potential clues about the mechanism of RV 

secretory diarrhea. 
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 At the molecular level, RV is composed of an 11 double-stranded RNA (dsRNA) 

segmented genome surrounded by concentric protein shells. Expression of RV proteins 

from the infecting virions is followed by formation of electron dense regions adjacent to 

the ER, viroplasms, which function as virion assembly sites.  Virion cores containing 

genomic dsRNA and RV-encoded virion proteins (VP) 1, 2, and 3 are encased in VP6 to 

produce double-layered particles (DLP) in the viroplasm. These particles bud into the 

ER, gaining both the RV-glycoprotein VP7 and a transient lipid envelope. The 

mechanism and subcellular site of the final virion maturation are controversial although 

the transient membrane is removed and replaced with the third/outer protein shell 

containing VP4 and 7 resulting in an infectious triple-layered particle (TLP). The RV 

genome also encodes 5 nonstructural proteins (NSP) of which NSP2, 3, and 5 are 

involved in formation of the viroplasm. NSP4 however appears to play multiple roles 

during RV infection. 

 The loss of NSP4 expression and subsequent reduction in yields of infectious 

virus progeny as a result of transfecting cells with NSP4 small interfering RNA (siRNA) 

indicates that the nonstructural protein plays a critical role(s) in production of mature 

TLP (Cuadras et al., 2006; Lopez et al., 2005). This may be due to the receptor function 

NSP4 plays at the ER. With C-terminal residues 161-175 binding DLPs, NSP4 mediates 

the budding of these immature particles through the ER membrane into the ER lumen 

(Meyer et al., 1989). NSP4 also appears to be associated directly with the viroplasm. 

Early in infection (7 hours post-infection or hpi) NSP4 colocalizes with the viroplasm 

marker NSP5 and the cellular autophagosome marker microtubule-associated protein 1 

light chain 3 (LC3) (Berkova et al., 2006). LC3 has a cytoplasmic localization until it is 

modified by C-terminal cleavage and lipidation with phosphatidylethanolamine (PE). 

Once modified, LC3-PE associated with crescent-shaped, potentially ER-derived pre-

autophagic membrane vesicles and remains associated with these membranes until 

destruction of the mature autolysosome (Kabeye, 2000; Kirkegaard et al., 2004). These 

membrane crescents engulf cytoplasmic contents and form autophagosomes 

characterized by concentric membrane bilayers surrounding the engulfed material. 
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Subsequent fusion with lysosome-associated membrane protein (LAMP) 1 and 2-

containing endosomes and/or lysosomes results in mature autolysosomes. As NSP4 does 

not colocalize with LAMP-1, the nonstructural protein is likely associated with either 

pre-autophagosome membranes or enclosed autophagosomes. While the function of this 

interaction is still unknown, a similar interaction occurring during polio virus infections 

has been hypothesized to provide a membrane surface for assembly of the polio virus 

genomic RNA and virion proteins (Suhy et al., 2000; Lyle et al., 2002). Alternately, 

down-stream effects of cellular dsRNA-activated protein kinase activation include 

alteration of cellular translation, apoptosis, and autophagy (Williams, 2001; Talloczy et 

al., 2002). NSP4 interaction with LC3-positive membranes could protect 

virion/viroplasm assembly by inhibiting the fusion of the viroplasm-associated 

autophagic membranes with lysosomes thus avoiding the cellular antiviral response. 

 NSP4 has also been shown to be transported towards the cell periphery via a 

Golgi-bypassing mechanism. In NSP4 transfected COS-7 cells, the nonstructural protein 

redistributes and colocalizes with the ER to Golgi intermediate compartment (ERGIC) 

marker protein ERGIC-53 and the COP-I-positive transport vesicle marker protein beta-

COP (Xu et al., 2000). These proteins colocalize along linear, microtubule-associated 

tracts that radiate out from the perinuclear area toward the periphery of the cell. In this 

system, the expressed NSP4 remains glycosylated with EndoH-sensitive glycans 

suggesting that its carbohydrates have not been processed by Golgi-specific enzymes. In 

NSP4-enhanced green fluorescent protein (EGFP) transfected HEK293 cells, the 

nonstructural fusion protein colocalizes with ER-specific marker proteins and is present 

at the cell periphery, but not within the plane of the PM (Berkova et al., 2006). As with 

the NSP4 transport in COS-7 cells, the lack of NSP4 colocalization with the Golgi 

marker protein giantin in HEK293 cells indicates that NSP4 transport to the cell 

periphery from the ER bypasses the Golgi apparatus. In addition, the punctate pattern of 

NSP4-EGFP staining and its sensitivity to extracellular Triton X-100 treatment suggest 

that NSP4 transport to the cell periphery is mediated by a vesicular mechanism. While 

NSP4 was not found in the PM of transfected cells, a C-terminal NSP4 fragment (aa 
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112-175) is released from RV-infected MA104 and HT-29 cells (Zhang et al., 2000). 

The nocodazole-sensitivity and brefeldin A-insensitivity of this secretion suggests that 

NSP4 ER to PM transport during infection is microtubule-dependent and Golgi-

bypassing, respectively. 

 The ability of NSP4 to induce diarrhea in mouse pups in the absence of other 

viral proteins indicates that the nonstructural protein can also function as a viral 

enterotoxin. Exogenous addition of NSP4 or a synthetic NSP4 aa 114-135 peptide to 

uninfected mouse pups and pup intestinal epithelia induced diarrhea and fluid 

accumulation with chloride secretion, respectively (Ball et al., 1996). Addition of 

purified NSP4 to HT-29 cells induces a rapid rise in phospholipase C (PLC)-catalyzed 

inositiol 1,4,5-triphosphate production resulting in an increased cytoplasmic Ca2+ 

concentration through mobilization of intracellular Ca2+ stores and increased Ca2+ influx 

(Dong et al., 1997). Pretreatment of these cells with trypsin or chymotrypsin eliminates 

the NSP4-induced Ca2+ mobilization suggesting that the enterotoxin reacts with an 

unidentified receptor at the PM. In addition, blocking phosphatidylinositol 4,5-

bisphosphate (PIP2) hydrolysis by PLC with U-73122 also results in a loss of the Ca2+ 

mobilization induced by exogenous NSP4. However, in the NSP4-EGFP-transfected 

HEK293 cells previously described, U-73122 did not block the enterotoxin-induced 

cytoplasmic Ca2+ increase (Berkova et al., 2003). Though both exogenous and 

endogenous NSP4 result in increased levels of cytoplasmic Ca2+, differences in the 

underlying signaling mechanisms suggest a unique aspect to the protein’s enterotoxic 

function. The sensitivity of the enterotoxin’s presence at the cell periphery to Triton X-

100, the identification of NSP4 in Triton X-100-resistant lipid rafts, and the binding of 

NSP4 and caveolin-1 suggest a unique connection between NSP4-induced signaling and 

the protein’s peripheral localization. 

 Lipid rafts are membrane microdomains initially defined by their isolation via 

detergent-insolubility at 4oC and light buoyant density on sucrose gradients (Simons and 

Ikonen, 1997). To determine their makeup, these isolated microdomains have been 

extensively analyzed for both protein and lipid composition. From these studies a unique 
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lipid composition was identified for these detergent-resistant membranes (DRM) with an 

increased concentration of cholesterol, sphingomyelin, and glycolipids relative to the 

lipids’ homogenate levels (Smart et al., 1999). Caveolae are a subset of lipid rafts 

initially characterized as flask-shaped PM invaginations, but now defined by the 

presence of the cholesterol-binding caveolin proteins (Murata et al., 1995). While the 

caveolin proteins provide a marker for determining the enrichment of caveolae in an 

isolated membrane fraction, comparable non-caveolar raft markers are unavailable. This 

disparity has led to a wide range in caveolae definitions and a large volume of lipid 

raft/DRM compositional analysis that is not necessarily applicable to caveolae. A variety 

of proteins have been found in these membranes including the caveolins, flotillins, 

glycosylphosphatidylisonitol (GPI)-linked proteins, endothelial nitric oxide synthase, 

and several cell signaling proteins (Pike, 2003; Pike, 2004; Anderson, 1998). The 

partitioning of PIP2, IP3-receptors, and the PM Ca2+ pump into rafts/caveolae suggest 

that these microdomains may function in Ca2+-mediated signaling and cellular Ca2+ 

homeostasis (Fujimoto et al., 1992; Fujimoto, 1993; Hope and Pike, 1996; Pike and 

Casey, 1996). While the enrichment of lipid rafts in arachidonic acid appears to be 

independent of caveolin-1 expression, cyclooxygenase-1 (COX-1), whose function is 

essential in arachidonic acid conversion to prostaglandin, is present in isolated 

raft/caveolae membranes, coimmunoprecipitates with the caveolin protein, and 

colocalizes with the caveolin protein in HEK293 cells (Pike et al., 2002; Marnett et al., 

1999; Cha et al., 2004). This is of particular interest for RV infection as infection of 

Caco-2 cells increases prostaglandin secretion and inhibition of COX-1 function reduces 

infection by 85% as assayed by foci reduction with anti-RV immunofluorescent assay 

(Rossen et al., 2004). Also of interest is the intracellular ER to PM trafficking of 

caveolin-1. Two distinct pathways have been defined experimentally: in a soluble 

caveolin-1-containing complex and via membrane trafficking following the secretory 

transport pathway to the trans Golgi network (TGN) where caveolin-1 buds in caveolae-

like vesicles for subsequent transport to the PM. The soluble complex, composed of 

caveolin, heat shock protein 56, cyclophilin 40, cyclophilin A, and cholesterol, 
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transports newly synthesized cholesterol directly from the ER to PM caveolae 

(Uittenbogaard et al., 1998). 

 Biosynthesis of sphingomyelin in the early Golgi and its segregation with 

cholesterol results in the genesis and clustering of lipid rafts in the TGN (van Vliet et al., 

2003). At the TGN, caveolin-1 associates with these clustering rafts and buds in a 

caveolae-like vesicle which traffics to the PM. With synthesis of both sphingomyelin 

and lipid rafts in the Golgi, it is unknown if rafts or mature caveolae are present in the 

ER. Anterograde movement of Golgi-derived caveolin-1-containing raft-like vesicles has 

not been documented, but recycling of caveolin-1 in caveolae internalized at the PM to 

the ER through the caveolae to ER to Golgi (CERGA) pathway and internalization via a 

chaperone complex with annexin II, cyclophilin 40, cyclophilin A, and HDL-derived 

cholesteryl ester has been observed (Liu et al., 1999; Uittenbogaard et al., 2002). The 

association of RV virions and NSP4 with lipid rafts, the colocalization and binding of 

NSP4 with caveolin-1, and the absence of RV proteins in the Golgi suggest a unique and 

potentially caveolin-1/caveolae-mediated transport pathway for the virus and/or NSP4. 

To define the function of NSP4 interaction with caveolin-1 and potentially caveolae, the 

enterotoxin’s presence and microdomain distribution at the PM as well as its 

intracellular trafficking mechanism must first be characterized. 
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CHAPTER II 

STRUCTURE AND CHOLESTEROL DYNAMICS OF CAVEOLAE/RAFT AND 

NON-RAFT PLASMA MEMBRANE DOMAINS 

 

SYNOPSIS 

Despite recognition that the plasma membrane (PM) is comprised of lipid raft 

domains that are key organizing sites of multiple signaling pathways and other cell 

functions, limited information is available regarding the structure and function in sterol 

dynamics of these microdomains. To begin to resolve these issues, Madin Darby Canine 

Kidney (MDCK) membranes were subfractionated by three different techniques to 

obtain: (i) detergent-resistant membranes (DRM) and detergent-soluble membranes 

(DSM), (ii) non-detergent caveolae/rafts (NDCR), (iii) non-detergent, affinity-purified 

caveolae/rafts (ACR) and non-caveolae/non-rafts (NR). ACR exhibited the least cross-

contamination with other PM domains or intracellular membranes, in marked contrast to 

DRM that contained the highest level of cross-contaminants. Spectral properties of 

dehydroergosterol (DHE), a naturally-occurring fluorescent sterol, showed that ACR, 

NDCR, and NR did not contain crystalline sterol—consistent with the lack of crystalline 

sterol in PM of intact cells. In contrast, DRM contained significant levels of crystalline 

sterol. Fluorescence polarization of membrane probes showed that ACR were the least 

fluid, had the highest transbilayer fluidity gradient, most liquid ordered phase, and most 

responsive sterol dynamics to sterol carrier protein-2 (SCP-2). In contrast, DRM had 

structural properties similar to those of NR, anomalous (very fast) spontaneous sterol 

dynamics, and sterol-dynamics unresponsive to SCP-2. Differences in the DRM 

structural and functional properties when compared to the non-detergent preparations 

(ACR, NDCR) were not due to the presence of detergent. A non-detergent, affinity 

purified (ACR) lipid domain fraction isolated from MDCK cells for the first time 

revealed unique structural (non-crystalline sterol, liquid-ordered, high transbilayer 

fluidity gradient) and functional (cholesterol dynamics) properties of lipid rafts as 

compared to non-rafts (NR). In summary, this study showed membrane microdomains 
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(rafts/caveolae) isolated by three different methodologies have unique structural, 

functional and organizational characteristics. 

 

INTRODUCTION 

Despite recognition that the plasma membrane (PM) is comprised of lipid raft 

domains that are key organizing sites of multiple signaling pathways and other cell 

functions, limited information is available regarding the structure and function in sterol 

dynamics of these microdomains. To begin to resolve these issues, MDCK membranes 

were subfractionated by three different techniques to obtain: (i) detergent-resistant 

membranes (DRM) and detergent-soluble membranes (DSM), (ii) non-detergent 

caveolae/rafts (NDCR), (iii) non-detergent, affinity-purified caveolae/rafts (ACR) and 

non-caveolae/non-rafts (NR). ACR exhibited the least cross-contamination with other 

PM domains or intracellular membranes, in marked contrast to DRM that contained the 

highest level of cross-contaminants. Spectral properties of dehydroergosterol (DHE), a 

naturally-occurring fluorescent sterol, showed that ACR, NDCR, and NR did not 

contain crystalline sterol - consistent with the lack of crystalline sterol in PM of intact 

cells. In contrast, DRM contained significant levels of crystalline sterol. Fluorescence 

polarization of membrane probes showed that ACR were the least fluid, had the highest 

transbilayer fluidity gradient, most liquid ordered phase, and most responsive sterol 

dynamics to sterol carrier protein-2 (SCP-2). In contrast, DRM had structural properties 

similar to those of NR, anomalous (very fast) spontaneous sterol dynamics, and sterol-

dynamics unresponsive to SCP-2. Differences in the DRM structural and functional 

properties when compared to the non-detergent preparations (ACR, NDCR) were not 

due to the presence of detergent. A non-detergent, affinity purified (ACR) lipid domain 

fraction isolated from MDCK cells for the first time revealed unique structural (non-

crystalline sterol, liquid-ordered, high transbilayer fluidity gradient) and functional 

(cholesterol dynamics) properties of lipid rafts as compared to non-rafts (NR). In 

summary, this study showed membrane microdomains (rafts/caveolae) isolated by three 
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different methodologies have unique structural, functional and organizational 

characteristics. 

Increasing evidence indicates that cholesterol-rich domains/lipid rafts 

provide a nexus for organizing not only reverse cholesterol transport (Frolov et al., 

2000; Smart, 2005),  but also many physiological processes at the plasma membrane 

(PM), including receptor-effector coupling, signaling, immune function, 

transcytosis, and cell recognition (Schroeder et al., 2005). Cholesterol-rich lipid 

rafts/caveolae also serve as entry portals for microorganisms, including bacteria 

(and associated toxins such as cholera toxin, Shiga toxin, Shiga-like toxin), viruses 

(for example Ebola, Marburg, Echovirus, and HIV), and parasites (malaria) 

(Schroeder et al., 2005). 

Despite the putative importance of cholesterol-rich domains/lipid rafts in 

cellular function, their existence in the PM of living cells has only recently been 

addressed. A variety of techniques using tagged proteins or tagged lipids have been 

utilized to visualize lipid rafts enriched in the respective markers (Schroeder et al.., 

2005), yet these studies have failed to directly visualize sterol in the PM. Recent studies 

utilizing real-time multiphoton imaging and pattern distribution analyses of 

dehydroergosterol (DHE) for the first time detect the existence of sterol-rich and –poor 

domains/rafts in the PM of living cells (McIntosh et al., 2003; Zhang et al., 2005). 

Although it is recognized that DHE is not identical to cholesterol, DHE is a naturally-

occurring fluorescent sterol (yeast, Red Sea sponge), readily replacing endogenous 

sterol in cultured cells, and exhibiting structural as well as functional properties closely 

resembling those of cholesterol (McIntosh et al., 2003; Schroeder, 1984; Schroeder and 

Nemecz, 1990; Schroeder et al., 1991; Schroeder et al., 1996; Hale and Schroeder, 

1982; Delseth et al., 1979; Sica et al., 1982; Schroeder et al., 2001a; Bergeron and 

Scott, 1982a and 1982b; Gimpl and Fahrenholz, 2000). Thus, it would appear that 

cholesterol-rich rafts do exist in living cells and are not just an artifact induced by 

subcellular fractionation protocols or non-physiological probe molecules.  
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Elucidation of the biochemical and structural characteristics of cholesterol-

rich domains/lipid rafts also has been difficult. To date the majority of biochemical 

characterizations have been performed on detergent-resistant membrane (DRM)-

enriched fractions and there remain concerns as to whether DRM equate with lipid rafts 

as well as whether such domains reflect the biological nature of intact cells (Skwarek, 

2004; Schnitzer et al., 2003; Foster et al., 2003).  Fluorescence probes indicate that the 

physical state of lipids in DRM isolated from model membranes is in a liquid ordered 

state, intermediate between the liquid crystalline and gel states (Schroeder et al., 2005; 

McIntosh et al., 2003; Zhang et al., 2005). Likewise, fluorescence and electron spin 

resonance techniques show that the lipids of DRM isolated from cultured cells are also 

in a liquid ordered state (Ge et al., 1999). Although the liquid ordered state is not due to 

the presence of detergents within the DRM, detergent extraction itself may induce the 

formation of the liquid ordered state (Skwarek, 2004; Schnitzer et al., 2003). Despite the 

limitations of DRM, however, this approach has focused attention on and significantly 

contributed to our understanding of lipid rafts, as evidenced by the appearance of a 

great number of publications using this technique over the past decade. Simultaneous to 

the development of DRM, other investigators focused on techniques avoiding the use of 

detergents (Schroeder et al., 2005; Smart et al., 1995), yet almost nothing is known 

regarding the structural or functional properties of these preparations. To date only a 

single report has appeared examining the physical structure of lipids in lipid rafts 

isolated without the use of detergents (Gallegos et al., 2004). The latter study showed 

that lipid rafts isolated from L-cell fibroblasts using a classical non-detergent method 

(Smart et al., 1995) are in a liquid ordered state. While the physiological significance of 

these observations to intact cells is not completely clear, a recent study using two-

photon microscopy of a synthetic fluorescent molecule (Laurdan) revealed 

microscopically-visible liquid ordered lipid domains in macrophages and fibroblasts in 

culture (Gaus et al., 2003). The size of the liquid ordered domains (183-800 nm) 

detected by Laurdan in PM of living cells is in the same range as the size of sterol-rich 

domains imaged by three-photon microscopy of DHE (Zhang et al., 2005). 
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Despite reports that cholesterol-rich domains have important functions in reverse 

cholesterol transport (Smart et al., 2005; Schroeder et al., 2005; McIntosh et al., 2003), 

little is known regarding structure, cholesterol dynamics and cholesterol responsiveness 

to intracellular cholesterol binding proteins (e.g. sterol carrier protein-2). To begin to 

address these questions, four types of lipid domain fractions were isolated from MDCK 

cells: DRM obtained with Triton X-100, non-detergent caveolae/rafts (NDCR), non-

detergent affinity-purified caveolae/rafts (ACR), and non-caveolae/non-raft (NR). 

 

RESULTS 

Purification of Caveolae/Raft Enriched Plasma Membrane Fractions: Detergent 

Resistant Membranes (DRM), Non-Detergent Caveolae/Raft Domains (NDCR), and 

Affinity-Purified Caveolae/Raft Domains (ACR). Western blotting and densitometric 

analysis of DRM (Fig. 1A, top row) indicated that the DRM (lane 3) were enriched 

nearly 10- and 4.3-fold in caveolin-1, a caveolae/raft marker, as compared to MDCK 

cell homogenate (lane 1) and detergent-soluble membranes (DSM, lane 2), respectively. 

The DRM fraction exhibited low contamination with calnexin, a marker for ER (Fig. 1C, 

top row), which was reduced 2.5-fold and 1.6-fold (lane 3) as compared to that in the 

MDCK cell homogenate (lane 1) and DSM fraction (lane 2). In contrast, DRM were 

slightly enriched 1.2-fold in the non-raft (NR) PM marker Na+/K+ ATPase (Fig. 1B, top 

row) as compared to MDCK cell homogenate (lane 1) and enriched nearly 10-fold when 

compared to DSM (lane 2). Thus, although DRM appeared enriched in caveolae/raft 

marker, they also contained endoplasmic reticulum (ER) contaminant and essentially no 

diminution of the NR PM domain marker. 

DSM (Fig. 1A, top row, lane 2) contained 4.3-fold less caveolin-1 than the 

DRM fraction isolated from MDCK cells (lane 3). It was noted that two distinct and as 

yet uncharacterized, forms of caveolin-1 found in all membrane fractions analyzed, 

potentially due to a difference in prosphorylation state. The DSM fraction had 1.6-fold 

less ER marker calnexin (Fig. 1 C, top row, lane 2) than the MDCK cell homogenate 

(lane 1). However, the DSM contained 8- and 10-fold less NR marker Na+/K+ATPase 
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(Fig. 1B, top row, lane 2) than the MDCK cell homogenate (lane 1) and DRM (lane 3). 

Thus, DSM appeared depleted of caveolae/raft marker as compared to DRM, but they 

had also lost the NR marker Na+/K+ ATPase. 

Western blotting and densitometric analysis indicated that NDCR (Fig. 1A, 

middle row) were enriched 1.4-fold in caveolin-1 as compared to MDCK cell 

homogenate (lane 1). In confirmation, dot blotting and densitometric analyses showed 

that NDCR (Fig. 1D, middle row) were enriched 1.9-fold in GM1 as compared to 

MDCK cell homogenate (lane 1). However, response to anti-calnexin antisera (Fig. 1 C, 

middle row) indicated essentially the same content of this ER marker in NDCR (lane 3) 

as in MDCK cell homogenate (lane 1). Finally, the Na+/K+ATPase marker (Fig. 1B, 

middle row) was enriched 3.7- and 3.7-fold in NDCR domains (lane 3) as compared to 

MDCK cell homogenate (lane 1) and in unfractionated PM (lane 2). Thus, the NDCR 

were enriched in the caveolae/raft marker, but exhibited no reduction in ER 

contaminant or NR marker as compared to the unfractionated PM or cell homogenate. 

Western blotting and densitometric analysis of caveolae/rafts isolated by use of 

the detergent-free Concanavalin A-sepharose affinity chromatography (i.e. ACR) 

revealed a caveolae/raft enriched fraction.  Anti-caveolin-1 western blotting (Fig. 1A, 

bottom row) detected caveolin-1 in the ACR isolated from MDCK cells (lane 4).  While 

this was congruent with the ACR fraction being caveolae/rafts, the ACR was not 

specifically enriched in caveolin-1, most likely due to the presence of high amounts of 

caveolin-1 in other cellular compartments (e.g. cytoplasmic chaperone complexes, etc.).  

In contrast, anti-GM1 dot blotting (Fig. 1E) showed that the ACR isolated from MDCK 

cells were enriched about 2.7-fold in GM1 (lane 3). In contrast, the ER marker, calnexin 

(Fig. 1C, bottom row, lane 3) and the NR PM domain marker, Na+/K+ ATPase (Fig. 1B, 

bottom row, lane 3) were not detectable in the ACR. Thus, the ACR contained in 

appropriate caveolae/lipid raft markers and, in contrast to DRM and NDCR, were 

significantly reduced in ER and non-caveolae/non-raft PM markers.  
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Fig 1. Western Blotting of Protein Markers in Caveolae/Lipid Raft Preparations. 
Immunoblots were probed with (A) anti-caveolin-1, a marker for caveolae, or (B) anti-
Na+/K+ ATPase, a non-caveolae/non-raft marker. Cell homogenate (homog), detergent-
soluble membranes (DSM), detergent-resistant membranes (DRM) (upper row, lanes 1-3 
respectively), homog, PM, non-detergent caveolae/rafts (NDCR), ER (middle row, lanes 
1-4 respectively), and homog, PM, affinity-purified caveolae/rafts (ACR), ER (lower 
row, lanes 1-4 respectively) were loaded at 5 �g of total protein per lane.  
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Fig 1. cont. Immunoblots were probed with (C) anti-Calnexin, an endoplasmic 
reticulum marker. For panel C, the cell homogenate (homog), detergent-soluble 
membranes (DSM), detergent-resistant membranes (DRM) (upper row, lanes 1-3 
respectively), homog, PM, non-detergent caveolae/rafts (NDCR), ER (middle row, lanes 
1-4 respectively), and homog, PM, affinity-purified caveolae/rafts (ACR), ER (lower 
row, lanes 1-4 respectively) were loaded at 5 �g of total protein per lane. Panel D shows 
a dot-blot probed with cholera toxin B subunit (CTB) and anti-CTB, for the caveolae 
marker ganglioside M1 (GM-1). The GM-1 standards (upper rows) for homog, DSM, 
and DRM (middle row, spotted respectively) as well as the homog, PM, and NDCR 
(lower row, spotted respectively) are the same, yielding a curve fit of r2 = 0.995. 
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Fig. 1 cont. Panel E also shows a dot-blot probed with cholera toxin B subunit (CTB) 
and anti-CTB, for the caveolae marker ganglioside M1 (GM-1).GM-1 standards (upper 
rows) for the homog, PM, and ACR (lower row spotted respectively) were performed 
separately, but also resulted in a curve fit of r2 = 0.995. 
 
 
 

In summary, western blotting and dot blotting of protein markers indicated that 

the ACR fraction contained the appropriate caveolae/raft markers while concomitantly  
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being lowest in non-raft markers of any fraction examined.  

Sterol Structural Properties in Caveolae/Rafts Enriched Membrane Fractions: 

DHE. We and others have shown that DRM, NDCR, and membranes similar to ACR 

are highly enriched in cholesterol (Smart et al., 1995; Gallegos et al., 2004; Atshaves et 

al., 2003; Eckert et al., 2003; Pike et al., 2002). Although model membrane studies 

suggest that at such high cholesterol contents the cholesterol may separate into a 

crystalline phase (McIntosh et al., 2003), little is known regarding the structural phase 

properties of the cholesterol within DRM or the non-detergent isolates of caveolae/raft 

domains. Therefore, the fluorescence emission spectral differences in monomeric 

(maxima near 356 and 375 nm) vs. crystalline (maxima near 403 and 426 nm) DHE 

phase (McIntosh et al., 2003) were used to determine structural properties of sterol in 

DRM, NDCR, and ACR. The fluorescence emission spectra of DHE in DRM exhibit 

highest intensity maxima near 356 and 375 nm, consistent with the presence of 

monomeric DHE (Fig. 2A). However, additional maxima with approximately half the 

intensity are noted in the range of 400-453nm, indicating the presence of significant 

amounts of DHE in the crystalline phase in DRM (Fig. 2A). Taking into account the 

relative differences in quantum yield, the proportion of crystalline DHE was calculated 

as described earlier (McIntosh et al., 2003), showing that 7-10% of the sterol within the 

DRM was in the crystalline state while 90-93% was in the monomeric state. In contrast, 

the spectra of DHE in the NDCR (Fig. 2B) and ACR (Fig. 2C) exhibited only the 

emission maxima consistent with the presence of monomeric sterol with no detectable 

crystalline sterol. 
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Fig. 2. Fluorescence Emission Spectra of Dehydroergosterol (DHE) in DRM and 
Caveolae/Raft Enriched Fractions. (A) Emission spectrum of DRM in PIPES buffer (3.5 
µg/2 ml). Excitation wavelength was set at 320 nm. (B) Emission spectrum of 
non-detergent caveolae/lipid rafts in PIPES buffer (3.5 µg /2 ml). Excitation wavelength 
was set at 324 nm.  
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Fig. 2 cont. (C) Emission spectrum of affinity-purified caveolae/lipid rafts in PIPES 
buffer (3.5 µg/2 ml). Excitation wavelength was set at 324 nm. 
 
 
 

To determine the relative fluidity of the microenvironment wherein the sterol 

resided in the DRM, NDCR, and ACR, the fluorescence polarization of DHE (present at 

low, non-self quenching concentration) was determined. The fluorescence polarization 

of DHE in DRM was 0.3120 + 0.0011, significantly (p<0.05) lower than that of DHE in 

NDCR and ACR (Table 1). In contrast, the fluorescence polarization of DHE in DRM, 

NDCR, and ACR were all significantly higher than in NR. 

These data indicated the bulk of DRM sterols are present in a mobile, less 

ordered microenvironment in spite of the presence of significant amounts (7-10%) of 

crystalline sterol. Further, the rank order of DHE fluorescence polarization was: ACR 

(most rigid) > NDCR > DRM > NR (most fluid). Since ‘mobility’ is inversely 

proportional to polarization, the sterol mobility was lowest not in the DRM, but in the 

preparations not utilizing detergents, in particular ACR. In summary, these data showed 

that sterol organization of caveolae/lipid rafts is highly dependent on the method of 

isolation. 
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Fluorescence Polarization of Other Lipidic Probe Molecules That Preferentially 

Localize in Lipid Rafts: DiI C18 vs. DiI C1. To confirm whether the higher fluidity 

sensed by DHE in DRM was unique to this probe, fluorescence polarization studies 

were performed with DiI probes, in particularly DiI C18, which partitions preferentially 

into lipid rafts (Thomas et al., 1994). The fluorescence polarization of the long alkyl 

chain length DiI C18 exhibited the following order of fluorescence polarization: 

ACR>NDCR>DRM>NR (Table 1). Thus, while the fluorescence polarization of the 

long alkyl chain length DiI C18 was significantly higher in DRM than in NR, 

nevertheless it was significantly lower than either of the other lipid raft preparations, i.e. 

NDCR or ACR (Table 1). Unlike DiI C18, which is anchored deep in the bilayer, the 

short alkyl chain DiI C1 is anchored close to the phospholipid head group/water 

interface and does not show preference for lipid rafts vs. non-raft domains in lipid 

bilayers (Thomas et al., 1994).  Nevertheless, the overall pattern of DiI C1 fluorescence 

polarization in the membrane fractions was basically similar to DiI C18 (Table 1). 

 Taken together, both the lipid raft selective DiI C18 and the non-selective DiI C1 

indicated that the acyl chain environments (both deep in the bilayer and closer to the 

surface, respectively) of the PM ACR domains was the most rigid while the NR 

domains were the most fluid, with the DRM and other non-detergent caveolae/raft 

preparations being intermediate. This pattern was very similar to that exhibited by DHE 

in the various membrane domain preparations shown in the preceding section. Thus, the 

highest polarization/rigidity obtained was characteristic of the most highly purified 

caveolae/raft fractions, i.e. ACR > NDCR > DRM. 
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Table 1. Structural Parameters of Lipidic Probes That Preferentially Distribute in 

Caveolae/Raft Domains: Dehydroergosterol (DHE) and DiI.a 

Membrane  Polarizationb 

DHE  
DRMs  0.3120 + 0.0011+ 

non-detergent caveolae/rafts  0.3343 + 0.0021 *+ 
affinity-purified caveolae/rafts  0.3472 + 0.0019*+ 

non-caveolae/non-rafts  0.3078 + 0.0041 * 
DiI C18  

DRMs  0.3381 + 0.0032+ 
non-detergent caveolae/rafts  0.3428 + 0.0040*+ 

affinity-purified caveolae/rafts  0.3479 + 0.0029*+ 
non-caveolae/non-rafts  0.3257 + 0.0053 * 

DiI C1  
DRMs  0.3379 + 0.0023+ 

non-detergent caveolae/rafts  0.3397 + 0.0017+ 
affinity-purified caveolae/rafts  0.3466 + 0.0037*+ 

non-caveolae/non-rafts  0.3255 + 0.0046* 
 

a Lipids were incorporated at low, non-self quenching levels into purified membrane 
fractions as described in Methods. 
b Fluorescence polarization values represent the mean + SD (n=7) 
* p < 0.05 vs. DRMs 
+ p < 0.05 vs. non-caveolae/non-rafts 
 
 
 

Fluorescence Polarization of Probe Molecules That Preferentially Distribute in 

‘Solid/Gel’ or ‘Fluid/Liquid-Crystalline’ Lipid Phases: Parinaric acids, NBD-stearic 

acid, DiI C18.  Long (i.e. 18 carbon) straight chain lipidic fluorescence probes such as 

trans-parinaric acid or NBD-stearic acid, as well as DiI18 preferentially partition into 

solid gel-phases rather than fluid liquid-crystalline phases in the lateral plane of the 

lipid bilayer (Schroeder and Soler-Argilaga, 1983; Spink et al., 1990). Cis-parinaric 

acid exhibits no selectivity for either phase. 
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All the straight-acyl chain fatty acid probes (i.e. trans-parinaric acid, NBD-

stearic acid) detected the same or even lower fluorescence polarization in DRM than in 

NR domains (Table 2). In contrast, fluorescence polarizations of the two straight-chain 

fatty acid probes [i.e. trans-parinaric acid, NBD-stearic acid (Table 2)] were 

significantly lower (p<0.05) in DRM than in NDCR or ACR. For the kinked-acyl chain 

probe, cis-parinaric acid (Table 2), fluorescence polarization pattern in the various 

membrane fractions was in the order: ACR > NDCR > DRM > NR (p<0.05). 

Comparison of the fluorescence polarization of cis-parinaric acid and trans-parinaric 

acid (Table 2) showed that in general the fluorescence polarization of cis-parinaric acid 

was lower than that of trans-parinaric acid in the same membrane fraction. This was 

consistent with the fact that cis-parinaric acid exhibits equal selectivity for either 

solid/gel or fluid liquid-crystalline phases. Since polarization is lower in fluid liquid-

crystalline phases, the average polarization of cis-parinaric acid was predicted to be 

lower than that of trans-parinaric acid in solid/gel phases. The data supported this 

prediction. 

In summary, qualitative analysis of fluorescence polarization for the straight-

chain 18-carbon straight-chain fluorescent fatty acid probes did not detect higher 

polarization in DRM vs. NR domains. While the kinked-chain cis-parinaric acid 

detected slightly higher polarization in DRM vs. NR domains, this polarization was still 

much lower than that in ACR. Thus, in general the fluorescence polarization the 

respective probes was dependent on the type of membrane fraction examined in the 

order: ACR (least fluid) > NDCR > DRM > NR (most fluid). 

Fluorescence Polarization and Emission Intensity of Diphenylhexatriene (DPH). 

The above polarization data (Tables 1 and 2) suggested that: (i) both gel- and liquid-

crystalline phases were more rigid in ACR, NDCR, and DRM; and/or (ii) the probes 

sensed an intermediate lipid phase enriched in the various lipid raft preparations as 

compared to NR. This possibility was further examined through use of DPH, a probe 

molecule that preferentially distributes in and detects the ‘intermediate liquid ordered’ 

lipid phase. Since DPH has no preference for coexisting in gel vs. fluid liquid-
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crystalline phases, the fluorescence polarization of DPH has been used to show the 

extent to which acyl chains in caveolae isolated by use of detergents (DRM) are 

organized in the liquid-ordered phase (Florine-Casteel and Feigenson, 1988; London 

and Brown, 2000; Simon and Vas, 2004).   

 
 
 
Table 2. Lateral Structure of Caveolae/Raft Domains and Plasma Membrane: 

Selectively Probing ‘Solid’ Vs. ‘Fluid’ Domains with Trans- and Cis- Fatty Acids.a 

Membrane  Polarizationb 

     Trans-parinaric Acid 
DRMs  0.3267 + 0.0036 

non-detergent caveolae/rafts  0.3398 + 0.0016*+ 
affinity-purified caveolae/rafts  0.3416 + 0.0019*+ 

non-caveolae/non-rafts  0.3245 + 0.0022 
Cis-parinaric Acid  

DRMs  0.3076 + 0.0014+ 
non-detergent caveolae/rafts  0.3201 + 0.0016*+ 

affinity-purified caveolae/rafts  0.3429 + 0.0013 *+ 
non-caveolae/non-rafts  0.3021 + 0.0044* 

NBD-stearic acid  
DRMs  0.3199 + 0.0025+ 

non-detergent caveolae/rafts  0.3225 + 0.0027 
affinity-purified caveolae/rafts  0.3392 + 0.0017*+ 

non-caveolae/non-rafts  0.3287 + 0.0031 * 
 
a Trans-parinaric acid, cis-parinaric acid, and NDB-stearic acid were incorporated at 
low, nonself-quenching levels into purified membrane fractions as described in 
Methods 
b Fluorescence polarization values represent the mean + SD (n=7) 
* p < 0.05 vs. DRMs 
+ p < 0.05 vs. non-caveolae/non-rafts 
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To determine whether this was also true for NDCR and ACR, DPH polarization 

was measured not only in DRM but also in NDCR, ACR, and NR. To assure that DPH 

itself did not perturb the lipid structures, the various membrane fractions were incubated 

with DPH at a low ratio of DPH to membrane protein (i.e. 0.1µg/100µg) to maximally 

incorporate the probe as described in Methods. The data showed that the DPH 

polarization was lowest in NR, but significantly higher in the various lipid raft 

preparations in the order: ACR>NDCR>DRM (Table 3). These data were consistent 

with the presence of disordered liquid phase in all three lipid raft preparations, 

especially in the ACR and NDCR, but less so in DRM (Table 3). 

 Fluorescence Polarization of Probe Molecules That Preferentially Distribute 

Into Outer and Inner Leaflets of the Membrane: DPH-TMA and DPH-Pro. Previous 

studies with other cell lines show that the DPH polarization is lower in the outer 

(exofacial) leaflet than in the inner (cytofacial) leaflet of the PM; this has been 

interpreted as indicating the outer leaflet acyl chains are more fluid than those of the 

inner leaflet (Sweet and Schroeder, 1988a; Schroeder et al., 2001b; Dudeja et al., 1991).  

Due to its positive charge, DPH-TMA appears to selectively localize in the outer leaflet 

which is enriched in positively charged but essentially devoid of negatively charged 

lipids. The negatively charged DPH-Pro appears to localize in the PM inner leaflet 

which contains predominantly negatively charged lipids (Schroeder et al., 2001b; Daleke 

and Lyles; 2000).  
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Table 3. Transbilayer Structure of Caveolae/Raft Domains and Plasma Membranes: 

Diphenylhexatriene Probes (DPH, TMA-DPH, DPH-Propionic Acid).a 

Membrane  Polarizationb 

Diphenylhexatriene  
DRMs  0.2912 + 0.0036+ 

non-detergent caveolae/rafts  0.3032 + 0.0028*+ 
affinity-purified caveolae/rafts  0.3177 + 0.0019*+ 

non-caveolae/non-rafts  0.2873 + 0.0026* 
DPH-TMA  

DRMs  0.2784 + 0.0034+ 
non-detergent caveolae/rafts  0.2688 + 0.0028* 

affinity-purified caveolae/rafts  0.2711 + 0.0024*+ 
non-caveolae/non-rafts  0.2680 + 0.0061 * 

DPH-Propionic Acid 
DRMs  0.2844 + 0.0045@ 

non-detergent caveolae/rafts  0.2902 + 0.0026*+@ 
affinity-purified caveolae/rafts  0.3011 + 0.0028*+@ 

non-caveolae/non-rafts  0.283 8 + 0.0017@ 
 
a DPH, TMA-DPH, and DPH-propionic acid were incorporated at low, nonself-
quenching levels into purified membrane fractions as described in Methods 
b Fluorescence polarization values represent the mean + SD (n=7) 
* p < 0.05 vs. DRMs 
+ p < 0.05 vs. non-caveolae/non-rafts 
 
 
 
 The fluorescence polarization of the outer-leaflet selective probe was lowest in 

NR (0.2873 + 0.0026, Table 3). Polarization of DPH-TMA was significantly higher 

(p<0.050) in all lipid raft preparations as compared to NR in the order: ACR > NDCR> 

DRM > NR. Thus, the outer leaflet of ACR appeared least fluid while that of DRM was 

most fluid. 

In contrast to the above results, DPH-Propionic Acid polarization was lowest in 

NR, i.e. 0.2838 + 0.0017, essentially equivalent to that in DRM, i.e. 0.2844 + 0.0034 

(Table 3). Polarization of DPH-Propionic Acid was significantly higher (p<0.050) only 
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in the NDCR and ACR in the order: ACR > NDCR> DRM, NR. Since fluidity is 

inversely related to polarization, the inner leaflet of the NDCR and ACR appeared less 

fluid as compared to that of DRM and NR. 

Comparison of the DPH-TMA (outer leaflet probe) and DPH-Propionic acid 

(inner leaflet probe) in each of the membrane fractions suggested the presence of a 

transbilayer fluidity gradient in each of the various membrane fractions. Qualitatively, 

the fluorescence polarization values of the DPH-Propionic acid probe were higher than 

those of the DPH-TMA probe in all cases (Table 3), indicating that the outer leaflet is 

more fluid than the inner leaflet in each respective membrane fraction. However, 

quantitative analysis showed that the difference in polarization (P), defined as PDPH-

Propionic acid - PDPH-TMA, was markedly dependent on the membrane fraction 

being examined in the following order: ACR (P=0.0300)> NDCR (P=0.0214)> NR 

(P=0.0158)>DRM (P=0.0060). Thus, the DRM exhibited the smallest transbilayer 

fluidity difference, nearly 2.6-fold less than that of NR. In contrast, the NDCR and ACR 

showed the highest transbilayer fluidity differences, both of which were greater (1.4- and 

1.9-fold, respectively) than that of NR. Thus, among the various lipid raft preparations, 

the NDCR and ACR showed the highest transbilayer fluidity differences (3.6- and 5-

fold, respectively) as compared to DRM. 

These findings were consistent with earlier studies indicating that the PM inner 

leaflet fluidity is less than that of the outer leaflet. The above data demonstrated for the 

first time that this is the case not only for the entire PM, but also for the lipid raft vs. 

non-lipid raft domains therein (Sweet and Schroeder, 1988a). The transbilayer fluidity 

difference as compared to the NR appeared greater for the two membrane fractions not 

utilizing detergents (i.e. NDCR and ACR). In contrast, the transbilayer fluidity 

difference in DRM was markedly less than any other membrane fraction examined, 

including the NR. Appendix A shows a graphic summary of the isolated membrane 

structural analyses. 

Contribution of Detergent to Structure and Fluidity. Because detergents, such as 

Triton X-100, are known to solubilize membranes, the possibility was considered that 
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some of the differences in the structural and cholesterol dynamic properties of DRM vs. 

NDCR and ACR may be due to the presence of Triton X-100 in the DRM. To test this 

hypothesis, the absorbance spectra of all three membrane preparations and Triton X-100 

in TNE buffer were obtained (Fig. 3). The absorbance spectrum of the detergent Triton 

X-100 in TNE buffer demonstrated a major peak with maximum near 224 nm and a 

minor doublet with maxima near 270 and 280 nm (Fig. 3A). The limit of detection of 

Triton-X-100 was 63 nM and was determined by the method as described earlier 

(Berthouex and Brown, 1994a and 1994b).  It is noteworthy that the absorbance 

spectrum of Triton X-100 in ethanol (not shown) was very similar to that taken in 

aqueous solvent. The absorbance spectrum of DRM did not reveal any of the peak 

maxima typical of Triton X-100 (Fig. 3B). As expected, the absorbance spectra of the 

caveolae/lipid raft domains isolated by the detergent-free methods also contained no 

absorbance peaks typical of Triton X-100: NDCR (Fig. 3C); ACR (Fig. 3D). 

Thus, the significant differences in structure and fluidity of DRM as compared to 

NDCR, ACR, and NR of PM were not due to residual detergent in the DRM. 

 Spontaneous and SCP-2 –Mediated Sterol Transfer from DRM and DSM. 

Although the above data indicate that the structure (crystalline vs. monomeric) and 

fluidity (polarization under non-self quenching conditions) of DHE in DRM differed 

significantly from those of NDCR and ACR, nothing is known regarding the effect of 

these differences on: (i) spontaneous sterol transfer from DRM as compared to that in 

the other caveolae/lipid raft preparations, or (ii) the response of DRM vs. other 

caveolae/lipid raft preparations to intracellular sterol carrier protein-2. To begin to 

resolve these issues, a previously-established fluorescent DHE exchange assay was 

utilized as described in Methods. 
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Fig. 3. Detection of Detergent Triton X-100: Absorbance Spectra of Triton X-100 and 
Caveolae/Raft Enriched Membrane Fractions. (A) Absorbance spectrum of Triton X-100 
in PIPES buffer (2 ml, 5% solution). (B) Absorbance spectrum of DRM in PIPES buffer 
(3.5 µg/2 ml). 
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Fig. 3 cont. (C) Absorbance spectrum of non-detergent caveolae/lipid rafts in PIPES 
buffer (3.5 µg/2 ml). (D) Absorbance spectrum of affinity-purified caveolae/lipid rafts in 
PIPES buffer (3.5 µg/ml). 
 
 
 

The initial polarization of DHE in the donor DRM was 0.1153 + 0.0016, 

consistent with self-quenching due to the presence of high levels of DHE (Fig. 4A, open 

circles). In the absence of acceptor DRM, DHE polarization in DRM donors did not 

significantly change over several hours (Fig. 4A, upside-down triangles). However, 

surprisingly, addition of 10-fold excess acceptor DRM elicited a fast increase in 

polarization, consistent with release from self-quenching due to exchange of DHE 
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(donor) and cholesterol (acceptor). From a starting polarization of 0.1146 + 0.0024, the 

polarization of DHE exhibited a nearly linear increase and did not saturate until 

reaching a polarization near 0.45 (Fig. 4A, open circles). The initial rate of spontaneous 

molecular sterol transfer from DRM, calculated as described in Methods, was 0.387 + 

0.072 pmol/min (Table 4). Since the spontaneous exchange was approximately linear 

over the entire time period examined, the exchangeable fraction (f1) for spontaneous 

sterol exchange was set to unity (Table 4). 

To determine if sterol transfer from DRM was responsive to a sterol transfer 

protein, i.e. sterol carrier protein-2 (SCP-2), the sterol exchange was monitored in the 

presence of SCP-2 as described in Methods. SCP-2 is a protein present in all 

mammalian tissues examined to date, which enhances sterol transfer between a majority 

of membranes, with erythrocytes being a rare exception (Kavecansky et al., 1994). 

Therefore, SCP-2 was used to probe sterol dynamics of DRM and DSM. Addition of 

SCP-2 to donor alone failed to significantly alter DHE polarization (not shown) 

consistent with earlier studies of model and biological membranes (Thomas et al., 

1994). The SCP-2 – mediated exchange of sterol between DRM donors (DHE-

containing) and DRM acceptors resulted in release from self-quenching and increased 

DHE fluorescence polarization (Fig. 4A, closed circles). The shape of the 4 hr SCP-2 

mediated sterol exchange curve was consistent with a more rapid and saturable process 

as compared to the spontaneous exchange between DRM which was still linear over this 

time period.  

Since the SCP-2 –mediated exchange curve reached a maximal polarization of 

0.3382 + 0.0042 by 4 hr, while the spontaneous exchange was still linear (polarization 

near 0.3600) at 4 hr, suggesting SCP-2 acted to enhance sterol transfer at early time 

points, but slightly inhibited sterol exchange at later time points. The initial rate of SCP-

2 mediated sterol transfer 0.619 + 0.037 pmol/min, was 1.6-fold faster than that of 

spontaneous sterol transfer from DRM (Table 4). Since kinetic analysis of the SCP-2 

mediated sterol exchange was unable to resolve more than one exchangeable domain, 

the exchangeable fraction (f1) for each exchange was set to unity (Table 4). 
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In contrast to the DRM, the spontaneous sterol exchange curve for the DSM was 

essentially unchanged over the 4 h time period examined (Fig. 4B, open circles). The 

initial polarization of DHE near 0.1163 + 0.0034 was essentially unaltered during 

spontaneous exchange between donor DSM (containing DHE) and acceptor DSM over 

the 4 h incubation (Fig. 4B, open circles). 

The initial rate of spontaneous sterol transfer from DSM was calculated to be 

0.024 + 0.009 pmol/min, 14-fold slower than spontaneous sterol transfer from DRM 

(Table 4). SCP-2 elicited a slight change in fluorescence polarization, but the resulting 

polarization curve did not have a steep slope (Fig. 4B, closed circles), in contrast to that 

observed with SCP-2 and DRM (Fig. 4A, closed circles). The initial rate of SCP-2 

mediated sterol transfer from DSM was 0.087 + 0.041 pmol/min, 3.6-fold faster than for 

spontaneous sterol transfer from DSM, but still nearly 4-fold slower than SCP-2 

mediated sterol transfer from DRM (Table 4). Kinetic analysis of the spontaneous sterol 

exchange between DSM as described in Methods resolved a long half-time, t1/2  = 755 + 

55 min, and an exchangeable fraction, f1  = 0.229 + 0.021 (Table 4). For the SCP-2 –

mediated sterol exchange from DSM, kinetic analysis resolved 2-fold faster t1 /2  = 382 + 

34 min, but an essentially unaltered exchangeable fraction, f1  = 0.251 + 0.028. 

In summary, spontaneous sterol transfer from DRM, but not DSM, was rapid and 

essentially not saturable during the 4 h time period of the exchange. Because 

spontaneous sterol transfer from DRM was so rapid, SCP-2 elicited only a modest 

increase in sterol transfer. In contrast, spontaneous sterol transfer from DSM was 

comparatively slow and relatively unresponsive to SCP-2. As discussed above, these 

properties of DRM (Fig. 3B) and DSM (not shown) were not due to contamination with 

residual Triton X-100. If one assumed that DRM are enriched in caveolae/lipid rafts, as 

indicated by the western blots (Fig. 1), while DSM are enriched in non-rafts, these data 

suggest that spontaneous sterol transfer from lipid rafts may be rapid while that from 

non-rafts are very slow in comparison. 
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Fig. 4. Sterol Transfer from Detergent-Resistant Membranes (DRM) and Detergent-
Soluble Membranes (DSM). Effect of SCP-2 on sterol exchange between DRM. (A) 
Dehydroergosterol (DHE) exchange between DRM donors (1.75 µg protein/ml) and 
DRM acceptors (17.5 µg/ml) was measured by monitoring polarization as described in 
Methods. Open circle shows the spontaneous sterol exchange after addition of 10-fold 
excess acceptor DRM. The solid circles show the effect of SCP-2 (1.5 µM) on the sterol 
exchange between donor and acceptor DRM. For comparison, a donor-only polarization 
curve is shown (solid triangles). (B) Effect of SCP-2 on sterol exchanger between DSM. 
DHE exchange was measured as in Panel A, except that DSM donor and DSM acceptor 
membranes were used as described in Methods. Open circle shows the spontaneous 
sterol transfer from donor DSM after addition of 10-fold excess acceptor DSM. The 
solid circles show the effect of 1.5 µM SCP-2 on the sterol exchange between donor 
DSM and acceptor DSM. 
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Table 4. Initial Rates and Kinetic Multi-Exponential Analysis of Molecular Sterol 

Exchange: Effect of Sterol Carrier Protein-2.a,c 

Donor-Acceptor Protein 
Added 

Initial Rate 
(pmol/min) 

t ½ (min)b f1
b f2

b 

DRM None 0.3 87 + 0.072+ - 1.000 - 
 SCP-2 0.619 + 0.037*+ - 1.000 - 
DSM None 0.024 + 0.009 755 + 55 0.229 + 0.021 0.771 + 0.034 

 SCP-2 0.087 + 0.041 382 + 34* 0.251 + 0.028 0.749 + 0.028 
non-detergent 
caveolae/rafts 

None 0.127 + 0.037 194 + 24 0.421 + 0.021 0.579 + 0.004 

 SCP-2 0.163 + 0.025 131 + 17* 0.520 + 0.027* 0.480 + 0.041 
affinity-purified 
caveolae/rafts 

None 0.105 + 0.028 172 + 15 0.472 + 0.033 0.528 + 0.029 

 SCP-2 0.234 + 0.021 *+ 121 + 26* 0.583 + 0.022*+ 0.417 + 0.031 
non-caveolae/ 
non-rafts 

None 0.024 + 0.009 412 + 32 0.371 + 0.041 0.629 + 0.025 

 SCP-2 0.032 + 0.005 384 + 47 0.401 + 0.031 0.599 + 0.032 
 
a Fluorescence polarization exchange curves for DHE sterol transfer from isolated 
membrane donors (DHE-loaded) to isolated membrane acceptors (without DHE) were 
measured in the absence or presence of SCP-2 (1.5 µM) followed by determination of 
initial rates and kinetic analysis as described in Methods 
b unless otherwise stated, half times (h1/2) were in minutes, while f1 and f2 represent 
fractions due to the exchangeable and non-exchangeable components respectively 
c values represent the mean + SD (n=3-4) 
* p < 0.05 vs. no protein added 
+ p < 0.05 vs. non-detergent caveolae/rafts 
 
 
 

Spontaneous and SCP-2–Mediated Sterol Transfer from NDCR. To resolve if the 

high spontaneous rate of sterol transfer from DRM was a unique property of this lipid 

raft enriched fraction, the above experiments were repeated with NDCR isolated as 

described in Methods. Since the NDCR isolation method did not produce a comparable 

DSM fraction, it was not possible to directly obtain the sterol exchange dynamics from 

this membrane domain. The initial polarization of DHE in donor NDCR was near 0.14 

(Fig. 5), consistent with self quenching of the DHE therein. In the absence of acceptor 

NDCR, DHE polarization was not altered over the 4 h time frame of exchange (not 
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shown). In contrast, in the presence of acceptor NDCR, slow spontaneous sterol transfer 

was detectable as an increase in DHE polarization (Fig. 5, open circles). The initial rate 

of spontaneous molecular sterol transfer from NDCR was 0.127 + 0.037 pmol/min, 

nearly 3-fold slower than that exhibited by DRM (Table 4). Kinetic analysis resolved a 

half-time of spontaneous sterol transfer for the NDCR near 194 + 24 min (Table 4) and 

an exchangeable fraction, f1 = 0.421 + 0.021, which was 2.4-fold smaller than that for 

DRM (Table 4). 

Sterol transfer from NDCR was more responsive to the sterol carrier protein 

SCP-2. When SCP-2 was added to NCDR donors alone, a change in DHE fluorescent 

polarization was observed (not shown). However, when SCP-2 was added to NCDR 

donors with a 10-fold excess of acceptor membranes, there was a more rapid and 

extensive increase in DHE polarization (Fig. 5, closed circles). These results indicated 

that SCP-2 enhanced sterol transfer from the NCDR membranes. The initial rate of SCP-

2-mediated sterol exchange between NDCR was 0.163 + 0.025 pmol/min, 1.3-fold faster 

than that of spontaneous sterol exchange from NDCR (Table 4). Kinetic analysis of 

SCP-2-mediated sterol transfer curves from the NDCR indicated that SCP-2 decreased 

the t1/2 of the exchangeable sterol pool by 32% from 194 + 24 to 131 + 17 (p<0.05) and 

increased the size of the exchangeable sterol pool by 1.23-fold from 0.421 + 0.021 to 

0.520 + 0.027 (p<0.05) (Table 4). 

 In summary, the spontaneous molecular transfer of sterol from NDCR was 

significantly slower (i.e. nearly 3-fold) than that exhibited by DRM. Furthermore, SCP-2 

increased sterol transfer from NDCR, but the initial rate of SCP-2 mediated sterol 

transfer from NDCR was still 3.8-fold slower than that mediated by SCP-2 in DRM. 

Thus, both the spontaneous and SCP-2 mediated sterol dynamics of NDCR differed 

markedly from those of DRM. 
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Fig. 5. Sterol Transfer from Non-detergent Caveolae/Rafts. Dehydroergosterol (DHE) 
exchange between non-detergent caveolae/raft donor (1.75 µg protein/ml) and non-
detergent caveolae/raft acceptor (17.5 µg protein/ml) was measured by monitoring DHE 
polarization as described in Methods. Open circles show the spontaneous sterol 
exchange between donor non-detergent caveolae/rafts after addition of 10-fold excess 
acceptor non-detergent caveolae/rafts. The solid circles show the effect of 1.5 µM SCP-2 
on the sterol exchange between donor and acceptor non-detergent caveolae/rafts. 
 
 
 
 Spontaneous and SCP-2 –Mediated Sterol Transfer from ACR. Concanavalin A– 

sepharose binding affinity chromatography was used to simultaneously fractionate ACR, 

the adherent fraction, and NR, the non-adherent fraction (equivalent to DSM), from 

purified PM vesicles isolated from MDCK cells as described in Methods. Spontaneous 

sterol transfer from ACR was slower than that exhibited by DRM. Consistent with DHE 

self-quenching, the initial fluorescence polarization of DHE in donor ACR was 0.1327 + 

0.0046 (Fig. 6A, open circles). In the absence of acceptor, ACR was unaltered over the 4 

h time frame of exchange (not shown). Upon addition of 10-fold excess acceptor ACR, 

DHE spontaneously transferred from the donor to acceptor membranes as indicated by 

increased polarization (Fig. 6A, open circles). The initial rate of spontaneous molecular 

sterol transfer from ACR was 0.105 + 0.028 pmol/min, 3.7-fold slower than from DRM 
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(Table 4). Kinetic analysis as described in Methods showed that the exchange curves for 

spontaneous molecular sterol transfer from ACR best fit two components: an 

exchangeable sterol pool with t1/2 of 172 + 15 min and fraction f1 = 0.472 + 0.033 of 

total sterol, which was 2.1-fold smaller than that exhibited by DRM (Table 4). In 

addition, ACR domains contained a very slow (t1/2 of days), essentially non-

exchangeable sterol pool representing 0.528 + 0.029 of total ACR domain sterol (Table 

4). The size of the non-exchangeable sterol pool was similar to that observed in NDCR, 

which did not contain a detectable non-exchangeable pool, but significantly different 

than the sterol organization of DRM. When sterol transfer from donor to acceptor ACR 

domains was probed with SCP-2, the DHE polarization increased markedly (Fig. 6A, 

solid circles). SCP-2 enhanced the initial rate of molecular sterol transfer from ACR 

essentially 2-fold from 0.105 + 0.028 to 0.234 + 0.021 pmol/min, p<0.05 (Table 4).  

Kinetic analysis of the SCP-2 mediated sterol exchange curves showed that SCP-

2 enhanced the sterol transfer from ACR domains by: decreasing the t1/2 of exchange by 

nearly 30% from 172 + 15 to 121 + 26 min, p<0.05; and by increasing the fraction of 

exchangeable sterol by 24% from 0.472 + 0.033 to 0.583 + 0.022, p<0.05 (Table 4). 

Thus, SCP-2 altered the sterol dynamics of ACR domains significantly more than in 

either DRM or NDCR. In contrast, NR exhibited markedly slower spontaneous sterol 

transfer (Fig. 6B, open circles) and lacked responsiveness to SCP-2 (Fig. 6A, closed 

circles). The initial rate of molecular DHE transfer from NR was 0.024 + 0.009 

pmol/min, 4.4-fold slower than from ACR (Table 4). The half-time of spontaneous sterol 

transfer from NR t1/2 was slow, 412 + 32 min which was 2.4-fold slower than that from 

ACR (Table 4). The fractional contribution of exchangeable sterol domain in NR was 

0.371 + 0.041, which was 22% smaller than that exhibited by ACR (Table 4). SCP-2 did 

not significantly alter any of the parameters of sterol dynamics in NR indicating NR 

contained both exchangeable and non-exchangeable sterol domains. 
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Fig. 6. Sterol Transfer from Affinity-Purified Caveolae/Rafts. (A) Effect of SCP-2 on 
sterol exchange between affinity-purified caveolae/rafts. Dehydroergosterol (DHE) 
exchange between affinity-purified caveolae/raft donors (1.75 µg protein/ml) and 
affinity-purified caveolae/raft acceptors (17.5 µg protein/ml) was measured by 
monitoring DHE polarization as described in Methods. Open circle shows the 
spontaneous sterol exchange between donor and acceptor affinity-purified 
Caveolae/rafts. The solid circles show the effect of 1.5 M SCP-2 on the sterol exchange 
between donor and acceptor affinity-purified caveolae/rafts. (B) Effect of SCP-2 on 
sterol transfer from affinity-purified caveolae/raft domains which did not bind the 
Concanavalin A-sepharose affinity column. DHE exchange was measured as in Panel A. 
Open circles show the spontaneous sterol transfer from donor caveolae/raft membranes 
after addition of 10-fold excess acceptor caveolae/raft membranes. The solid circles 
show the effect of 1.5 µM SCP-2 on the sterol transfer from donor caveolae/raft 
membrane to 10-fold excess acceptor caveolae/raft membrane. 
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In summary, although ACR exhibited the slowest initial rate of spontaneous 

sterol transfer of any of the examined lipid raft-enriched membrane fractions, it was still 

more than 4-fold faster than spontaneous sterol transfer from NR. The NR had the 

largest fraction of non-exchangeable sterol domain and was unresponsive to SCP-2. 

 

DISCUSSION 

There has been paucity in information regarding the structural organization of 

cholesterol, fluidity, transbilayer structure, and cholesterol dynamics of caveolae/raft 

domains (Schroeder et al., 2005). Further, there has been an ongoing debate as to what 

constitutes a lipid raft/caveolae (Skwarek, 2004; Schnitzer et al., 2003). These studies 

also indicated that the use of detergents can alter the nature/composition of the resultant 

isolated rafts. To begin to address these issues, this study utilized three distinct methods 

to obtain caveolae/rafts from MDCK cells: (i) a Triton X-100-based method to obtain 

detergent-resistant membranes (DRM) and detergent-soluble membranes (DSM); (ii) a 

non-detergent isolation based on the Percoll and the OptiPrep gradients to first isolate 

plasma membrane (PM) and then fractionate caveolae/lipid rafts according to density 

(Smart et al., 1995); and (iii) an affinity chromatography based method wherein PM are 

first isolated by sucrose density fractionation and then separated into Affinity-purified 

Caveolae/lipid rafts (ACR) and Non-caveolae/non-rafts (NR) by use of Concanavalin 

A-sepharose affinity chromatography (Atshaves et al., 2003).  However, it is important 

to emphasize that these techniques do not distinguish caveolar lipid rafts from non-

caveolar lipid raft. The data presented herein demonstrate for the first time that the 

function (cholesterol exchange dynamics) and structure (lipid fluidity) of DRM share 

qualitative, but not quantitative, properties exhibited by caveolae/lipid rafts isolated 

from MDCK cells by non-detergent methods in the order: DRM < Non-detergent 

Caveolae/rafts (NDCR) < ACR. The key findings of this study are enumerated below. 

First, it was shown for the first time that the structural form of sterol 

(monomeric vs. crystalline) in DRM differed markedly from that of all other examined 

MDCK PM fractions. DRM, but not NDCR or ACR, contained a significant amount of 
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crystalline sterol (i.e. near 10%). This was unexpected as previous compositional 

analysis of isolated PM and multiphoton images of sterol in the PM of living cells 

detected very little crystalline sterol, generally near 1% (McIntosh et al., 2003). In 

contrast, crystalline sterol is associated primarily with lysosomes (McIntosh et al., 2003; 

Tabas, 1997). These data suggest that the appearance of significant amounts of 

crystalline sterol in DRM arise during the preparation. Since DRM are isolated from 

whole cells, the crystalline sterol in DRM may arise in part by selective retention of 

cholesterol from lysosomes. Alternatively, as the detergents used in DRM isolation 

selectively extract certain phospholipids, the resulting high sterol/phospholipid ratio 

could lead to phase separation of sterol into crystalline form (Eckert et al. 2003, Pike et 

al., 2002). It has been shown that the sterol phase separates into crystalline sterol at high 

molar ratio of cholesterol/phospholipid in model membranes (McIntosh et al., 2003). 

Second, the sterol fluidity in DRM was shown to differ markedly from that of 

the other MDCK PM fractions using DHE. Although synthetic sterol probe molecules 

may have deleterious effects on membrane structure-function, such as NBD-cholesterol, 

sterol-phenol or nitroxide-cholesterol, to our knowledge there is no data demonstrating 

toxic or adverse effects of DHE added to cultured cells or fed to animals (Schroeder, 

1984; Schroeder and Nemecz, 1990; Schroeder et al., 1991; Schroeder et al., 1996).  

However, DHE is a natural component of membranes in other eukaryotic organisms, 

including yeast and sponges (Schroeder, 1984; Hale and Schroeder, 1982; Delseth et al., 

1979; Sica et al., 1982).  When DHE is simply fed to cultured cells or animals, it is 

readily incorporated into membranes or lipoproteins in the absence of additional 

chemicals, catalysts or experimental manipulations (McIntosh et al., 2003; Delseth et 

al., 1979; Schroeder et al., 2001a; Bergeron and Scott, 1982a and 1982b).  Incorporation 

of DHE to up to 80-90% of total membrane sterol has no adverse effects on sterol-

phospholipid ratio, fatty acid composition, sterol distribution or receptor-effector 

interactions sensitive to sterols or sterol structure (Hale and Schroeder, 1982; Gimpl and 

Fahrenholz, 2000).  
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The fluorescence polarization of DHE in DRM was higher than that of NDCR. 

Consistent with this observation, electron spin resonance studies comparing spin-labeled 

cholestane mobility in model membranes with that in DRM isolated from RBL-2H3 cells 

also conclude a less fluid sterol environment in the DRM (Ge et al., 1999). However, 

quantitative analysis indicated that the fluorescence polarization of DHE in DRM was 

the highest of any of the lipid raft-enriched PM fractions examined: DRM > NDCR > 

ACR. Since fluorescence polarization provides a relative measure of mobility/fluidity of 

the probe, these data suggested that the sterol in DRM was significantly less mobile as 

compared to NR fraction, but more mobile than in any of the other lipid raft-enriched 

fractions of the PM in the following order: NR > DRM > NDCR > ACR. The physical 

basis for the uniquely lower fluidity of sterol in DRM and other caveolae/lipid raft 

preparations is not clear, but several possibilities may be considered: (i) Contaminating 

detergent may increase the fluidity of sterol in DRM as compared to other 

caveolae/lipid raft preparations. However, the data showed that DRM did not contain 

detergent Triton X-100, consistent with earlier studies which also demonstrated the 

absence of detergent in DRM (Brown and London, 1998); (ii) Crystalline sterol in DRM 

may contribute to the higher fluidity/mobility of sterol in DRM; (iii) Sterol may 

partition into a liquid ordered phase in DRM, NDCR, and ACR. Consistent with the 

latter possibility, electron spin resonance of spin-labeled cholestane in model 

membranes and DRM isolated from RBL-2H3 cells suggested that the sterol partitioned 

into a liquid ordered phase in DRM (Gallegos et al., 2004). If the results obtained with 

the naturally-occurring fluorescent sterol DHE and the spin labeled sterol cholestane 

both report on the same type of sterol environment, then these data further indicate that 

the degree of order in the liquid ordered phase sensed by the sterols was lowest in 

DRM, intermediate in NDCR, and highest in ACR. These data implied that the physical 

state of the liquid ordered phase in DRM is unique or that the relative amount of liquid 

ordered phase in lipid raft enriched PM fractions is highly dependent on the method 

used for isolation. 
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Third, as compared to NR the fluidity of lipid acyl chains detected by 

fluorescent polarization of lipidic probes in NDCR and ACR (but not DRM) was lower, 

consistent with a liquid disordered state. In general the polarizations of DiI C18 and cis-

parinaric acid (but not DPH, trans-parinaric acid, or NBD-stearic acid) appeared 

significantly higher in DRM than in NR. In contrast, the fluorescence polarizations of 

all five lipidic probes were higher in NDCRs and ACR than in NR. Model membrane 

studies show that DPH polarization in the non-fluid gel phase and in the liquid 

crystalline phase is 0.381 and 0.095, respectively, while that in the liquid disordered 

phase is intermediate (Schroeder et al., 1994). As shown herein, the fluorescence 

polarization of DPH in ACR was 0.3177 + 0.0019 (Table 3), well within the range of 

DPH in the liquid ordered phase of model membranes (Schroeder et al., 1994). With 

regard to the other lipid raft preparations, DPH polarization in NDCR was also higher 

(but not as high as in ACR) than in NR, consistent with the presence of liquid 

disordered phase. The average DPH polarization in DRM was slightly higher than in 

NR, but did not achieve statistical significance. This was in contrast to earlier 

fluorescence and electron spin resonance studies of DRM from model membranes and 

other cell types suggesting a liquid disordered phase therein (Ge et al., 1999; Schroeder 

et al., 1994). Taken together, the acyl chain environment of a variety of non-sterol 

lipidic fluorophores suggested that the liquid ordered phase is either: (i) more prevalent 

in ACR > NDCR >DRM, or (ii) the degree of order in equivalent concentrations of 

liquid ordered phase is higher in ACR > NDCR >DRM. 

Fourth, the fluorescence polarizations of the leaflet selective DPH-TMA 

(exofacial leaflet) and DPH-Pro (cytofacial leaflet) fluorophores were used to examine 

the relative fluidity of the outer and inner leaflets of lipid raft membranes. Mammalian 

cell membranes contain transport proteins (phospholipid flippases and translocases) that 

actively transport negatively charged phospholipids to the cytofacial leaflet (Daleke and 

Lyles, 2000).  Consequently, phosphatidylserine and phosphatidylinositol are on the 

cytofacial leaflet while other phospholipids remain in the outer leaflet.  Just as the other 

negatively charged phospholipids, the negatively charged DPH-Pro is expected to be 
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found on the cytofacial leaflet. Hence, DPH-TMA (zwitterionic or non-negative) is 

expected to be found on the outer leaflet just as other zwitterionic phospholipids, non-

negative (phosphatidylcholine, sphingomyelin) phospholipids. The difference in DPH-

TMA polarization and DPH-Pro polarization is a measure of the transbilayer fluidity 

gradient between the two membrane leaflets (Sweet and Schroeder, 1988a; Schroeder et 

al., 2001b; Dudeja et al., 1991). 

Although in all membrane fractions examined the exofacial leaflet appeared 

more fluid, the fluidity gradient was markedly dependent on the membrane fraction 

being examined with DRM being the smallest: DRM (P=0.0060) < NR (P=0.0158) < 

NDCR (P=0.0214) < ACR (P=0.0300). Thus, the DRM were unique in exhibiting a 2.6-

fold smaller transbilayer fluidity gradient when compared to that of NR. In contrast, the 

NDCR and ACR had the highest transbilayer fluidity differences, 1.4- and 1.9-fold 

greater, respectively, than NR. While the exact basis for the DRM exhibiting such a 

small transbilayer fluidity difference (even lower than in NR) is not known, there are 

three possible causes: (i) detergents are known to selectively extract certain 

phospholipids species (Brown and London, 1998); (ii) DRM may be comprised of a 

mixture of right-side-out and inside-out orientations (Radeva and Sharom, 2004); (iii) 

Since DRM are isolated from whole cells, they may be composed not only of PM 

constituents but also of other intracellular membrane components that contain 

significant amounts of cholesterol (e.g. lysosomes, ER). In contrast, a previous study 

showed that ConA-Sepharose-affinity purified membranes were oriented right-side-out 

(Wood et al., 2002).  It is important to note that transbilayer fluidity gradients function 

in modulating the activity of transbilayer coupled receptors and transporters in the PM 

(Sweet and Schroeder, 1988b). Taken together, the data presented herein indicated that 

the transbilayer fluidity gradient in lipid raft enriched membrane fractions were more 

clearly defined and greater in ACR and NDCR than NR, while that in DRM is actually 

less than in the other PM-enriched fractions. 

Fifth, it was shown for the first time that spontaneous sterol transfer from NR and 

DSM was slow and essentially unresponsive to SCP-2. These findings supported current 
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studies with intact cells indicating that sterol transfer is mediated through proteins 

localized in the PM (i.e. SRB 1, P-glycoprotein, ABC-A1) and within the cell (i.e. SCP-

2, caveolin-1) (Smart, 2005; Schroeder et al., 2005; Schroeder et al., 1998).  

Sixth, both spontaneous and SCP-2-mediated sterol transfer from lipid raft 

enriched PM fractions were highly dependent on the type of preparation used. Although 

spontaneous sterol transfer from DRM was very rapid (polarizations approached the 

theoretical limit), SCP-2 did not enhance the already very rapid sterol transfer from 

DRM. Since SCP-2 did not enhance sterol transfer from DRM, much less DSM and NR, 

these data do not account for the significant SCP-2 mediated enhancement of sterol 

transfer from isolated PM vesicles noted earlier (Gallegos et al., 2001b).  In contrast to 

these observations with DRM, spontaneous sterol transfer from NDCR and ACR was 

moderately faster than from DSM and NR and highly responsive to SCP-2. SCP-2 

enhanced the initial rate, decreased the half-time, and increased the size of the 

exchangeable sterol domain in NDCR and ACR, but not DRM or NR. Notably the slow 

spontaneous sterol transfer from all PM fractions (except DRM) was not due to slow 

transbilayer sterol migration. Transmembrane cholesterol flip-flop across both model 

membranes and PM is fast (min) (Schroeder and Nemecz, 1990; John et al., 2002; 

Boesze-Battaglia et al., 1996). Intact cells have evolved very rapid (1-2 min) protein-

mediated (i.e. SCP-2, caveolin-1) and somewhat slower (10-20 min) vesicular 

intracellular cholesterol trafficking pathways to and from the PM (Frolov et al., 2000; 

Atshaves et al., 2000). An example of the potential importance of cholesterol transfer by 

sterol-binding proteins is the movement of sterols from hepatocyte basolateral PM to the 

bile canilicular region, which occurs by non-vesicular pathways (Fuchs et al., 2001). 

Identifying these pathways, the PM domains involved, and protein mediators may 

provide valuable insight into the function of caveolae/rafts in sterol trafficking. Taken 

together, these data on spontaneous and SCP-2 mediated sterol dynamics from lipid raft 

enriched fractions isolated without the use of detergents (i.e. NDCR and even more so 

ACR) vs. sterol dynamics from NR more closely resembled sterol dynamics from the 

PM of intact cells than DRM. 
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Despite the recognition that PM are comprised of multiple types of domains, i.e. 

rafts vs. non-rafts, little is known regarding the fluidity, transbilayer structure, and sterol 

dynamics of these functionally distinct domains. Although most studies have focused 

largely on DRM, recent reports in the literature have questioned the purity of lipid rafts 

prepared from whole cells by use of detergents (Foster et al., 2003) and have postulated 

that DRM may not necessarily be equivalent to caveolae/lipid rafts in cells or may 

represent a different fraction of caveolae/lipid rafts than those isolated by methods not 

using detergents (Schroeder et al., 2005; Skwarek, 2004; Schnitzer et al., 2003; Pike et 

al., 2002; Radeva and Sharom, 2004). Therefore, the present investigation was 

undertaken to isolate both non-raft and raft types of domains from MDCK PM using 

two classical techniques (DRM, NDCR) and a newly developed method that 

simultaneously resolves ACR and NR without the use of detergents. These data showed 

that DRM, NDCR, and ACR qualitatively share several (but not all) structural 

properties, but differ functionally. For example, ACR had no crystalline sterol, were the 

least fluid, had the highest transbilayer fluidity gradient, and exhibited the most liquid 

ordered phase. NDCR also had no crystalline sterol, but were intermediate in the other 

properties. In contrast, DRM contained significant amounts of crystalline sterol, were 

the most fluid, had the least transbilayer fluidity gradients, had the largest amount of 

liquid ordered phase, and most closely resembled NR. Functionally, spontaneous and 

SCP-2 mediated sterol dynamics of ACR and NDCR were most like those reported for 

PM and intact cells (Fuchs et al., 2001). Again NDCR were intermediate in these 

properties while DRM appeared anomalous. We postulate that the latter may be due to 

the presence of more non-raft contaminating membranes in DRM. Although an 

exhaustive panel of markers was not examined, based on the representative markers 

used, the DRM appeared the least pure while the ACR appeared the most pure of the 

three lipid raft preparations. In contrast to ACR and NDCR, DRM exhibited significant 

contamination from both intracellular membrane fractions (e.g. ER). Consistent with 

these data showing the presence of NR proteins in DRM, a recent proteomics/mass 

spectrometry approach identified nearly 1/3 of DRM proteins as being nonspecific 
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contaminants (Foster et al., 2003). One possible reason for the elevated level of 

contaminating membranes in the DRM fraction is the isolation of DRM from whole 

MDCK cells, rather than from a pre-purified PM fraction. In contrast, NDCR and ACR 

were prepared from pre-purified PM isolated from the MDCK cells. However, the 

presence of contaminating intracellular membranes alone does not completely account 

for the anomalous spontaneous and SCP-2 mediated sterol dynamics of DRM. 

Intracellular membranes (lysosomes, mitochondria, ER) exhibit slow, rather than fast, 

spontaneous sterol transfer (Schroeder et al., 2001a). Furthermore, sterol transfer from 

intracellular membranes is enhanced by SCP-2 (Schroeder et al., 2001a). These data 

would suggest that the structure and sterol dynamics of DRM are at least in part either a 

product of the detergent isolation procedure or that DRM comprise a distinct lipid raft 

domain significantly different from those obtained without the use of detergents. 

Although it would be difficult to claim that any raft preparation is identical to that of 

lipid rafts in the plasma membranes of intact cells, the non-detergent, ACR protocol 

described herein yielded raft membrane fractions that contained the fewest intracellular 

organelle contaminants based on select intracellular markers, demonstrated cholesterol 

exchange dynamics similar to that of intact cells (Schroeder et al., 2005; Schroeder et 

al., 2001c), and lacked crystalline sterols (McIntosh et al., 2003), which are absent in 

intact, viable cells (4). Whether these findings can be extended to other cell types 

remains to be shown. 

In summary, there are many types of preparations for lipid rafts, each with 

proven value that has provided insights into multiple fields of study. Data obtained with 

different preparations may reflect not only the purity of the lipid raft isolate, but also 

different populations of lipid rafts isolated from different cells. These results indicate 

that the methodology selected for raft/caveolae isolation should be carefully considered.  

Further, care should be taken when interpreting results from DRM and other methods of 

raft/caveolae isolation.  
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MATERIALS AND METHODS 

Materials and Marker Antibodies. Cholesterol (99+% pure) and ergosterol (99+% 

pure) were purchased from Steraloids (Wilmington, NH). EDTA, Tris-base, sucrose, 

phosphate-buffered saline (PBS), phenylmethylsulfonyl fluoride (PMS-F) and Percoll 

were obtained from Sigma Chemical (St. Louis, MO). Optiprep was purchased from 

Accurate Chemical Scientific Corporation (Westbury, N.Y.). Lipid-soluble fluorophores 

including 1,6-diphenyl-1,3,5-hexatriene (DPH), 1,6-diphyenyl-1,3,5-hexatrienyl-

trimethylammonium (DPH-TMA), 3(1,6-diphenyl-1,3,5-hexatrienyl)-propionic acid 

(DPH-Pro), 9Z,11 E,13E,15Z-octatetradecanoic acid (cis-parinaric acid), 9E,11 

E,13E,15E-octatetradecanoic acid (trans-parinaric acid), 12-(N-methyl)-N-[(7-

nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-octadecanoic acid (NBD-stearic acid), 1,1’,3, 3, 

3’, 3’-hexamethyl-indodicarbocyanine iodide (DiI1), and 1,1’-dioctadecyl-3, 3, 3’, 3’-

tetramethylindocarbocyanine perchlorate (DiI18) were obtained from Molecular Probes 

(Eugene, OR). All solutions in which water was used contained milliQ/deionized water.  

Mouse anti-sheep sodium/potassium-ATPase alpha subunit was obtained from 

Affinity BioReagents, Inc. (Golden, CO), rabbit anti-canine calnexin peptide (aa 575-

593) was purchased from Stressgen Biotechnologies (Victoria, BC Canada), mouse anti- 

flotillin-1 peptide (aa 312-428) were from BD Transduction Laboratories (Lexington, 

KY), and both goat anti-rabbit IgG*HRP and goat anti-mouse IgG*HRP antisera were 

obtained from Southern Biotechnologies Associates, Inc (Birmingham, AL). Rabbit anti-

human caveolin-1 peptide (aa 2-31) antibodies were raised in rabbits against a 29 aa 

peptide, deduced from the human caveolin-1 sequence, cross-linked to KLH with 

gluteraldehyde. 

Dehydroergosterol Synthesis. Although dehydroergosterol (DHE) occurs 

naturally in yeast and Red Sea sponge, DHE utilized herein was chemically synthesized 

from ergosterol (99+% pure) by a method developed in our laboratory (McIntosh et al., 

2003; Fisher et al., 1985).  This method yielded DHE with a high degree of purity 

(99+%), as ascertained by high performance liquid chromatography (Gallegos et al., 

2004; Atshaves et al., 2003). 
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Cell Culture. MDCK (American Type Culture Collection) cells were grown in 

high-glucose (4.5 g/L) Dulbecco’s Modification of Eagle’s media (D-MEM) 

(Cellgrow/Mediatech, Herndon, VA) supplemented with the following: 2 mM L-

glutamine (BioWhittaker/Canbrex, East Rutherford, NJ); 1 mM sodium pyruvate 

(BioWhittaker/Canbrex); 0.1 mM non-essential amino acids (Cellgrow/Mediatech); 100 

U/L penicillin, 100 µg/L streptomycin, and 0.25 µg/L Fungizone 

(BioWhittaker/Cambrex); 43.9 mM sodium bicarbonate (Gibco/Invitrogen, Carlsbad, 

CA); 5% fetal bovine serum and 5% Serum Supreme (BioWhittaker/Cambrex). Cells 

stocks, maintained in 175 cm2 flasks (Sarstedt, Newton, NC), were expanded into 500 

cm2 trays (Corning, NY) and grown to 85% confluency for membrane isolations. 

Cell Culture for Bioincorporation of Fluorescent Sterol (DHE). For 

measurement of fluorescent sterol dynamics in purified membrane fractions (see 

below), MDCK cells were cultured with equivalent amounts of DHE to obtain donor 

membrane fractions, as described previously for other cell lines (McIntosh et al., 2003; 

Hale and Schroeder, 1982; Schoer et al., 2000).  Since DHE supplementation does not 

alter the sterol content of the membrane fractions, this ensured that the exchange assay 

determined sterol exchange, rather than net transfer down a concentration gradient 

(Hale and Schroeder, 1982; Schoer et al., 2000). Briefly, to prepare fluorescent sterol 

containing donor membrane fractions for sterol exchange assays, the MDCK cells were 

cultured as above for 72 h, the medium removed, the cells were washed with PBS, 

followed by the addition of serum-free medium containing DHE (20 µg/ml serum-free 

medium). DHE was freshly prepared as a concentrated stock solution in 95% ethanol 

containing 1 mol % butylatedhydroxytoluene (BHT) and stored at -80ºC. DHE was then 

added to the serum-free culture medium (20 µg/ml serum-free medium) such that the 

final concentration of ethanol was <0.3%. Since cells rapidly metabolize ethanol and 

cells were incubated with the DHE for 18 h, the low level of ethanol (<0.3%) initially 

added to the culture medium had no effect on cell growth, membrane cholesterol 

distribution, or membrane biochemical properties (Hale and Schroeder, 1982). Acceptor 

membrane fractions were obtained similarly except that the MDCK cells were cultured 
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in serum-free maintenance medium without DHE. At the end of 18h culture, the cells 

were subjected to subcellular fractionation techniques described below. 

Isolation of Detergent-Resistant Membranes (DRM) and Detergent-Soluble 

Membranes (DSM) from MDCK Cells. DRM and DSM were isolated from MDCK cells 

as previously described for other polarized cell lines (Sapin et al., 2002). Cultures were 

washed twice in PBS, scraped twice with 2 ml (4 ml final volume) of TNE buffer (20 

mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.2 µM PMS-F and 1% Triton X-

100), and passed 10 times through a 22-gauge needle. The resulting homogenate was 

incubated at 4oC for 30 minutes and mixed with 2.5 M sucrose to a density of 40% as 

part of a discontinuous sucrose density gradient (40%/35%/5%). After 

ultracentrifugation at 180,000 X g, 4oC for 18 h with an SW41Ti rotor and Optima LE-

80k Ultracentrifuge (Beckman Instr., Fullerton CA), DRM were recovered from the 

35%/5% interface. For Western blot analysis and sterol exchange assay, the DRM 

(35%/5% interface) and Triton X-100 soluble material, referred to as DSM (40% 

gradient layer), were further processed by ultracentrifugation (190,000 X g, 1.5 h, 

Beckman SW41Ti rotor) in Tris buffer (10 mM Tris, 1 mM EDTA) and suspended in 

PBS for protein quantification (Pierce Micro BCA assay) or in PBS containing 0 . 2  µ M  

PMS-F and 1 µl/ml protease inhibitor cocktail set III (Calbiochem) for storage at -80oC.  

The final purified DRM and DSM were aliquoted in 3.5 µg protein aliquots for donors 

and 35 µg protein quantities for acceptors.  

Isolation of Non-detergent Caveolae/raft Domains (NDCR) from Purified 

Plasma Membrane Vesicles Isolated from MDCK Cells. First described by Smart et al.. 

(1995), this procedure utilizes differential (Percoll) centrifugation to first isolate 

purified PM, followed by subfractionation of the PM vesicles on OptiPrep density 

gradients. The originally reported method was modified by first culturing MDCK cells 

with and without DHE as described above and isolated as follows. Four 500cm2 trays of 

MDCK cells cultured with the respective sterols were grown to approximately 6x107 

cells per tray (~85% confluency), washed twice with PBS, scraped twice with 4 ml (8 ml 

final volume) of PBS containing 0 . 2  µ M  PMS-F, and sedimented by 
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ultracentrifugation at 1000 X g room temperature (RT) for 5 minutes in a model GR4.11 

Jouan centrifuge (Jouan, SA, Cedex, France). The cells were suspended in 2 ml ice-cold 

0.25 M sucrose, 1 mM EDTA, 20 mM Tris-base, pH 7.8 and sonicated on ice with a 

cuphorn for four 30 second bursts at 30 second intervals (Misonix 3000, Misonix Inc., 

Farmingdale, NY) set to power level 3. The nuclei were sedimented at 1,000 X g RT for 

10 minutes. The resulting post nuclear supernatant (PNS) was layered onto 30% Percoll 

(Amersham Biosciences Corp., Piscataway, NJ) and centrifuged at 84,000 X g for 30 

minutes at 4oC in a Beckman SW41Ti rotor. The opaque protein band near the middle of 

the gradient (PM-enriched fraction) was removed (~2 ml total volume) and sonicated on 

ice with six 30 second bursts at 30 second intervals on ice with a cuphorn (Misonix, 

Inc.). The PM-enriched fraction was diluted with 50% (weight per volume) OptiPrep to a 

final concentration of 23% OptiPrep. A continuous gradient of 10% and 20% OptiPrep 

(1:1, volume per volume) was layered onto the membrane fraction, and the procedure 

continued exactly as described. Then, 0 . 2  µ M  PMS-F and 1 µl/ml protease inhibitor 

cocktail set III were added to the Non-detergent Caveolae/rafts (NDCR) before storage at 

-80oC in aliquots of 3.5 µg protein quantities for donors (i.e. containing DHE) and 35 µg 

quantities for acceptors (lacking DHE).  

Isolation of Concanavalin A Affinity-Purified Caveolae/Raft Domains (ACR) 

and Non-Caveolae/Non-Rafts Domains (NR) from Purified Plasma Membrane Vesicles 

Isolated from MDCK Cells. PM-derived Affinity-purified Caveolae/rafts (ACR) and 

Non-caveolae/non-rafts were isolated using a modification of a previously established 

concanavalin A-based affinity method (Frolov et al., 2000; Schnitzer et al., 2003, 

Atshaves et al., 2003).  All centrifugation steps utilized a Beckman SW41Ti rotor and 

Optima LE-80k Ultracentrifuge.  PM was first isolated by sucrose gradient 

centrifugation to remove intracellular contaminants, followed by Concanavalin A-based 

affinity chromatography of PM vesicles to obtain ACR and NR. Briefly, MDCK cells 

cultured in 500 cm2 trays with or without DHE were pelleted as described above. The 

cells were suspended in 2 ml 0.25 M sucrose, 1 mM EDTA, 20 mM Tris-base, pH 7.8, 

homogenized by nitrogen gas cavitation (15 minutes at 40 psi), and the nuclei removed 
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by centrifugation as above. The resulting PNS was floated on a discontinuous sucrose 

density gradient (0.5 ml 55%, 1.5 ml 40%, 1.5 ml 35%, 1.5 ml 32%, 1.5 ml 29%, 1.5 ml 

27%, 1.5 ml 20%, and 0.5 ml 8.3%; w/v in Tris buffer) and centrifuged at 192,000 X g 

4oC for 90 minutes.  The PM fractions at the 27%/29% and 29%/32% interfaces were 

sonicated on ice with three one-second bursts at ten second intervals using a Misonix 

Sonicator 3000 with a cuphorn and then added to a Concanavalin A-Sepharose 4B 

slurry (equivalent to 25 ml pre-swollen 4B material; 10-16 mg ConA/ml drained 

medium) in buffer A (0.14 M KCl, 0.01 M HEPES, 1 mM MgCl2, 1 mM MnCl2, pH 

7.8 with KOH). The sample slurry was mixed by lightly bubbling nitrogen through the 

solution for 2 minutes, incubated for 10 minutes at RT for binding, then transferred to a 

glass preparative column and allowed to settle for 15 minutes. The flow-through was 

collected in 14 ml increments, centrifuged at 111,000 X g, 4oC for 14 h, and the 

resulting non-caveolar/raft (NR) protein pellets suspended in small volumes of buffer A 

for protein quantification by BCA. After an additional wash with 25 ml of buffer A, 14 

ml volumes of buffer B (0.5 M -methyl-mannosidase in buffer A) were added to the 

column and mixed with nitrogen bubbling for 10 minutes. Six volumes of buffer B were 

collected, centrifuged at 111,000 X g, 4oC for 14 h, and the resulting ACR protein 

pellets were suspended in small volumes of buffer A for protein quantification or buffer 

A containing 0 . 2  µ M  PMS-F and 1 µl/ml protease inhibitor cocktail set III for storage 

at -80oC as above. 

Western Blotting to Determine Purity of Purified Membrane Fractions. A series 

of Western blots were used to detect the presence of specific markers for PM domains or 

intracellular organelles (e.g. endoplasmic reticulum). Protein concentrations were 

calculated from a BSA standard curve of absorbance at 280 nm with a Cary100 

UV/Visible spectrophotometer (Varian, Palo Alto, CA), then 5 µg/lane of total protein 

from each fraction was resolved by 12% SDS-PAGE and electroblotted onto 

nitrocellulose filters (GE Osmonics Inc., Minnetouka, MN). The filters were blocked in 

10% weight per volume non-fat dry milk in PBS (10% blotto) for 1 h RT and blotted 

with the primary antibody (1o Ab) in 2.5% blotto for 14 h at 4oC. Reactive bands were 
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visualized by the addition of horseradish peroxidase (HRP)-conjugated IgG and 

SuperSignal® West Pico chemiluminescent substrate (Pierce) followed by exposure to 

Kodak X-OMAT film (Parr and Ball, 2003). 

Incorporation of Fluorescent Probes for Measurement of Fluorescence 

Polarization in Purified Membrane Fractions. All fluorophores were prepared as stock 

solutions in 200 proof anhydrous ethanol with 2% wt/vol butylated hydroxytoluene as an 

antioxidant. The fluorescent probes were: DHE, DiI C18, DiI C1, trans-parinaric acid, 

cis-parinaric acid, NBD-stearic acid, diphenylhexatriene (DPH), DPH-TMA, and DPH 

Propionic Acid. DHE was bioincorporated into MDCK cells prior to isolation of purified 

membrane fractions basically as described in the preceding sections, except that the 

DHE concentration was 10-fold lower in concentration than used for sterol exchange 

assays to avoid self-quenching. All other fluorescence probes were directly incorporated 

into purified membrane fractions. In brief, purified stock membrane fractions from 

several isolations were pooled together, then washed two times with 10 mM Tris buffer 

(pH 7.4) and subjected to centrifugation at 30,000 rpm for 45 min at 4oC in a SW40Ti 

rotor in an XL90 Ultracentrifuge (Beckman Instr.). Fluorescent probes were 

incorporated into purified membrane fractions by first placing 35 µg protein of the 

respective membrane fraction (acceptor, i.e. not containing DHE) in 2 ml of 10 mM, 7.4 

pH PIPES buffer. Fluorescent probes were added at a ratio of 1000 µg protein: 1 µg 

fluorophore such that final ethanol concentrations were maintained at <25 mM. Ethanol 

concentrations <25 mM have no effect on membrane structure or interaction of lipid 

binding proteins with ligands (Colles et al., 1995; Schroeder et al., 1995). 

Finally, such low amounts of ethanol fail to induce fluorescent sterol self-

aggregation and formation of crystalline sterol in lipid rafts either in vitro or 

in intact cells (McIntosh et al., 2003). After incubation for 30 min at RT to assure 

maximal probe incorporation, fluorescence polarization data were acquired as described 

in the following section. 

Measurement of Membrane and Detergent Buffer by Absorbance Spectroscopy. 

All absorbance measurements to determine detergent concentrations and protein levels 
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were performed using a Cary 100 Scan UV/Visible spectrophotometer (Varian, Palo 

Alto, CA). The spectrophotometer has a sample and reference channel; 2 ml samples 

were measured in 2 cm quartz cuvettes (Fisher Scientific, Pittsburgh, PA). For 

measurements involving membranes, 10mM PIPES buffer was used as reference.  The 

concentration of Triton X-100 was determined with a method (Crabb and Persinger, 

1964; Greff et al., 1965) outlined by the supplier (Sigma Chemical, St. Louis, MO).  

Measurement of the Steady State Fluorescence Polarization in Purified 

Membrane Fractions. All measurements of steady-state fluorescence polarization were 

determined using a PC1 spectrofluorometer with photon-counting electronics (ISS 

Instruments, Inc., Champaign, IL) exactly as described earlier (Gallegos et al., 2004). 

Any residual light scatter contribution to the polarization data with the membrane 

fractions was corrected by converting polarization to anisotropy according to the relation r 

= 2P/(3-P), and subtracting the residual fluorescence anisotropy from all experimental 

data. In order to avoid artifacts due to inner filter effects, absorbance of sample solutions 

at the excitation wavelengths were kept below 0.15. While we recognize that 

polarization/anisotropy measurements are comprised of both static (limiting anisotropy) 

and dynamic (rotational rate) parameters, earlier studies from our laboratories showed 

that agents which fluidize membranes (ethanol, anesthetics) primarily alter the static (i.e. 

limiting anisotropy), but not dynamic (rotational), components of polarization/anisotropy 

measurements (Colles et al., 1995; Schroeder et al., 1995; Schroeder et al., 1988; Sweet 

and Schroeder, 1986a and 1986b; Sweet et al., 1987). Since alterations in limiting 

anisotropy are a measure of the cone-angle of fluorescence probe rotation in lipid 

bilayers, limiting anisotropy and consequently, polarization of the above probe 

molecules (at very low, non-self quenching concentrations) are useful as relative 

measures of membrane ‘fluidity’. 

Measurement of Membrane Sterol Exchange: DHE Release from Self-

Quenching Fluorescence Polarization Assay. Sterol exchange between the isolated 

membrane fractions was determined by using a fluorescent sterol (DHE) exchange assay 

previously developed by our laboratory (Gallegos et al., 2001a). DHE was used as a 



  52

probe for cholesterol transfer because it: (i) is a naturally-occurring fluorescent sterol, 

(ii) is a close structural analogue of cholesterol, (iii) exhibits the same exchange kinetics 

as cholesterol in both model membranes and biological membranes, (iv) is taken up by 

cultured L-cells such that >80% of endogenous sterol is replaced by DHE without 

altering membrane lipid composition or sterol-sensitive enzymes, (v) co-distributes with 

cholesterol in model and biological membranes, and (vi) is non-toxic to cultured cells or 

animals (McIntosh et al., 2003; Schroeder, 1984; Schroeder and Nemecz, 1990; 

Schroeder, 1991; Schroeder et al., 1996; Hale and Schroeder, 1982; Delseth et al., 1979; 

Sica et al., 1982; Schroeder et al., 2001a; Bergeron and Scott, 1982a and 1982b; Gimpl 

and Fahrenholz, 2000; Gallegos et al., 2001a). The underlying premise of the DHE 

exchange assay is that fluorescence self-quenching of DHE occurs in the donor 

membrane, which contains high levels of DHE. This results in low DHE fluorescence 

polarization values for the donor. However, upon addition of 10-fold excess acceptor 

membranes, the donor membrane DHE exchanges sterols one-for-one with acceptor 

membranes, thereby resulting in release from self-quenching of DHE. This results in an 

increase in DHE polarization. 

In all sterol exchanges, DHE fluorescence polarization of the donor membrane 

fraction sample was measured for 20 minutes in 2 ml of 10 mM PIPES buffer to ensure 

a stable signal baseline and to obtain an initial value for the fluorescence polarization. 

This was followed by addition of a 10-fold excess of acceptor (i.e., no DHE) membrane. 

The protein concentration of the donor membrane fractions was 1.5 µg/ml 10 mM 

PIPES buffer (2 ml total volume), whereas 

the protein concentration of the acceptor membrane fraction was 15.0 µg/ml in the 2 ml 

sample. The DHE polarization was subsequently recorded during 20 s intervals for 3 or 

4 h to monitor sterol transfer between membranes. 

Standard Curves for the Sterol Exchange Assay. We note that DRM, NDCR, 

and ACR obtained from all three isolation methods are relatively lipid-rich, and 

cholesterol-rich compared to the PM (Eckert et al., 2003; Pike et al., 2002; Smart et al., 

1995; Gallegos et al., 2004; Atshaves et al., 2003). Also, the ratio of sterol/phospholipid 
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in caveolae/raft domains isolated by detergent-free methods is basically similar to that 

of PM (McIntosh et al., 2003; Eckert et al., 2003; Pike et al., 2002; Gallegos et al., 

2001b). The standard curve that calculates the fraction of DHE remaining in the donor 

membrane fraction during an exchange is a polynomial equation involving polarization 

P of the exchange in the form of: 

P = Σ bn·Xd
n  (Eq. 1) 

where Xd is the mole fraction of DHE left in the donor. 

For sterol exchange between donor membrane fraction and acceptor membrane 

fraction, a polynomial with two terms yielded a fit with r2 = 0.9999, i.e. Equation 2: 

P(x) = b0 + b1Xd + b2Xd
2  (Eq. 2) 

where b0 = 0.3261, b1 = 0.016 and b2 = - 0.144. 

Calculation of the Initial Rate of Sterol Transfer. The initial rate of DHE exchange 

between donor and acceptor membrane fractions was estimated from the first 10 

minutes of exchange data by using the standard curve described above in Equation 2 

(Gallegos et al., 2001b). In essence, Equation 2 is the definitive relation that describes 

the exchange between donor and acceptor membranes. Taking the time derivative of 

Equation 2 yields: 

(dP/dt) = b1 (dXd/dt) + 2b2·Xd · (dXd/dt)  (Eq. 3)  

As t � 0 ,  Xd � 1 (i.e., initial rate criteria) and rearranging Equation 3, then 

the following expression is obtained: 

(1/(b1+2b2)) · (dP/dt)�� t � 0  = (dXd/dt)�� t � 0     (Eq. 4) 

 

To obtain the molar transfer rate of DHE (d[DHE]/dt) from donor membrane fraction to 

acceptor membrane fraction, dXd/dt was transformed into d[DHE]/dt by factoring in the 

initial donor membrane fraction protein concentration (1.5 µg protein/ml), the total 

sterol/protein concentration in the donor membrane fraction (1011.02 pmol total sterol 

/ µ g protein), and the values of b1 (0.016) and b2 (-0.144). Combining this information 

with Equation 4 yielded Equation 5: 

(d[DHE]/dt)�� t � 0  = -2253 pmol·(dP/dt)�� t � 0     (Eq. 5)  
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The initial rate of DHE transfer was directly estimated by substituting the initial measured 

rate of fluorescence polarization change per unit time (i.e. minutes) for (dP/dt)�� t � 0 .  

Calculation of the Kinetic Parameters of Sterol Exchange. The kinetic 

parameters of exchange between membrane fraction donor/acceptor pairs were 

determined by use of the standard curve equation, i. e. Equation 2, and the equation for 

a one-exponential exchange: 

X = f1  · exp(-k·t) + f2       (Eq. 6)  

where f1  and f2  are the exchangeable and non-exchangeable fractions, respectively, of 

the sterol in the exchange assay, and k is the rate constant of the exchange. The 

expression for X in Equation 6 was substituted into Equation 2 to obtain the expression 

describing the exchange: 

  P(x) = b0  + b1·[f1  · exp(-k·t) + f2] + b2 ·[f1  · exp(-k·t) + f2]2    (Eq. 7)   

The exchange curves were fit to Equation 8 with r2 values varying from 0.97 to 0.99. 

The halftime, t1/2, of the exchanges was defined by the following equation: 

t1/2  = (ln 2) / k     (Eq. 8) 

Data and Statistical Analyses. All curve-fitting and data analyses herein were 

performed by use of SigmaPlot (Jandel Scientific, San Rafael, CA) scientific data 

analysis and graphing software. 
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CHAPTER III 

FULL-LENGTH, GLYCOSYLATED NSP4 TRAFFICS TO PLASMA 

MEMBRANE CAVEOLAE IN ROTAVIRUS-INFECTED CELLS 

 

SYNOPSIS 

Rotavirus NSP4, initially characterized as an ER intracellular receptor, is a 

multifunctional viral enterotoxin that induces diarrhea in murine pups. The route(s) and 

mechanism(s) of NSP4 intracellular transport vary in different assays and cell lines with 

reports of secretion of a cleaved fragment, transport in LC3-positive autophagosomes, 

and association with raft membranes and microtubules. To determine if NSP4 traffics to 

a specific subset of rafts at the plasma membrane, we isolated caveolae from plasma 

membrane-enriched material that yielded caveolae membranes free of ER and non-raft 

plasma membrane markers. Analyses of the newly isolated caveolae from rotavirus-

infected MDCK cells revealed full-length, high-mannose glycosylated NSP4. Lack of 

Golgi-specific processing of the caveolar NSP4 glycans support studies showing NSP4 

bypasses the Golgi. Confocal imaging showed colocalization of NSP4 with caveolin-1 

early and late in infection, elucidating the temporal and spatial NSP4-caveolin-1 

association during infection. This study presents an ER contaminant-free caveolae 

isolation protocol, the presence of full-length, endoglycosidase H-sensitive NSP4 in 

plasma membrane caveolae and a final plasma membrane destination for Golgi-

bypassing NSP4 transport. 

 

INTRODUCTION 

Rotaviruses (RV) are the leading viral etiologic agents of severe pediatric 

gastroenteritis worldwide affecting nearly all children before the age of 5 with 2 million 

cases resulting in 444,000 deaths annually (Prashar et al., 2003). RV non-structural 

protein 4 (NSP4) was initially characterized as an endoplasmic reticulum (ER) 

transmembrane glycoprotein due to the protein’s high mannose glycosylation and its 

critical function as an intracellular receptor for translocation of subviral particles into the 
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ER during virion morphogenesis (Erison et al., 1982; Au et al., 1989; Bergmann et al., 

1989). However, the identification of NSP4 and NSP4 amino acids (aa) 114-135 

(NSP4114-135) as enterotoxic and the redistribution of RV-encoded proteins upon NSP4 

silencing led to a re-evaluation of NSP4 function(s) and subcellular localization(s) (Ball 

et al., 1996; Lopez et al., 2005). 

A cleaved NSP4 fragment, aa 112-175, is secreted from RV-infected epithelial 

cells implicating that some portion of NSP4 traffics from the ER to the plasma 

membrane (PM) (Zhang et al., 2000). Colocalization of NSP4114-135 and the extracellular 

matrix proteins laminin-�3 and fibronectin at the basement membrane of small intestinal 

epithelia from RV EDIM-infected mouse pups also supports NSP4 transport to the PM 

during host infection (Boshuizen et al., 2004). While both studies demonstrate that at 

least a fragment of NSP4 leaves the ER of infected cells, neither confirms the presence 

of full-length protein at the PM nor reveals the PM lipid microdomain in which the viral 

glycoprotein localizes.  However detection of NSP4 in Triton X-100-resistant ‘lipid 

rafts’ isolated from RV-infected Caco-2 cells indicates the viral enterotoxin may be a 

resident of cellular lipid rafts during infection (Sapin et al., 2002; Cuadras and 

Greenberg, 2003).  

The biophysical structure and composition of cellular lipid rafts remain 

controversial as they are primarily defined operationally as a collection of cellular 

membranes insoluble in non-ionic detergents at 4oC. These detergent-resistant 

membranes or DRM have a unique lipid composition enriched in cholesterol, 

sphingomyelin, and glycolipids producing a liquid-ordered or gel-phase ‘raft’ with a 

light buoyant density on sucrose gradients (Simons and Ikonen, 1997; Smart et al., 

1999). Ganglioside M1 (GM1), glycerophosphatidylinositol-anchored proteins, flotillin, 

and caveolins have been used as markers for measuring enrichment of DRM after 

isolation from cell lysates or membrane fractions (Palandino et al., 2004; Schnitzer et al., 

1995; Bickel et al., 1997). Yet the ability of detergents to both cluster and remove 

cellular membrane proteins illustrate that DRM do not represent the actual composition 
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of all rafts in the cell (Mayer and Maxfield, 1995; Edidin, 2003; Sot et al., 2002; 

Heerklots et al., 2003).  

Caveolae are a subset of lipid rafts defined by the presence of caveolin proteins 

(caveolin-1, -2, or -3) (Song et al., 1996; Scherer et al., 1997; Scheffele et al., 1998). 

Despite the recent use of detergent-free isolations, caveolae composition is nearly as 

controversial as that of rafts due to the confusing and often conflicting data resulting 

from the use of different cell types and isolation procedures (Pike 2003). Using a high 

pH sodium carbonate homogenization buffer and sucrose gradient to isolate caveolae 

from myocytes yields a caveolin-3-enriched fraction without detectable clathrin, Na/K-

ATPase (non-raft PM marker) and mannosidase II (Golgi marker) (Yarbrough et al., 

2004). Whereas utilizing the same protocol with a PM-enriched material yields a 

caveolin-1-enriched fraction that contains both clathrin and Na/K-ATPase (Gustavsson 

et al., 1999). Other caveolae isolation protocols, such as anti-caveolin affinity 

chromatography and density gradient fractionation of caveolae sheared from silica-

coated PM successfully extract caveolin-containing membranes, but these fractions have 

yet to be assayed for a similar range of organelle- and vesicle-specific markers (Souto et 

al., 2003; Schnitzer et al., 1995; Smart et al.., 1995). 

 We have reported that NSP4 may specifically partition into caveolae during 

infection. NSP4 and NSP4114-135 preferentially interact with highly-curved model 

membranes enriched in cholesterol and anionic phospholipids (Huang et al., 2001, 

2004). Specific secondary structure alterations (increased helical content) upon 

interacting with different model membranes demonstrate NSP4 and NSP4114-135 associate 

with membranes that mimic caveolae (Huang et al., 2004).  Whereas that study utilized 

vesicles lacking proteins, we also show colocalization of NSP4 with caveolin-1 at both 

intracellular sites and at the periphery of RV-infected MDCK and Caco-2 cells, and a 

direct interaction between NSP4 and caveolin-1 by yeast two-hybrid, in vitro binding, 

and co-immunoprecipitation assays (Parr et al., 2006).  From these data, we hypothesize 

full-length NSP4 traffics from the ER to PM caveolae during RV infection of epithelial 

cells. To examine this hypothesis, we generated a detergent-free isolation method 
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optimized to produce a PM caveolae-enriched fraction from epithelial cells that 

contained caveolae markers and were devoid of detectable Golgi, ER, clathrin-coated 

pit, and liquid-phase (non-raft) PM markers. Analysis of the PM caveolae isolated in this 

manner from RV-infected cells revealed that full-length NSP4 was present and was 

double-glycosylated with high-mannose glycans. 

 

RESULTS 

 Triton X-100-Resistant Lipid Rafts (DRM). A previous report shows NSP4 

expression at 12hpi in both Triton X-100 detergent-resistant and -soluble fractions 

isolated from RV-infected Caco-2 cells (Sapin et al., 2002). For DRM to approximate 

PM caveolae/rafts, the resistant fraction must contain caveolae-specific markers without 

detectable ER or non-raft PM markers. The presence of even a trace of ER 

contamination, a known reservoir of NSP4 during RV infection, in the raft/caveolae 

fraction could introduce NSP4 as an artifact of the isolation methodology. For analyses 

of the detergent-resistant and -soluble (DSM) membrane fractions isolated from MDCK 

cells, DRM were extracted using Triton X-100. Equivalent amounts of lysate, DRM, and 

DSM proteins (Fig. 7, lanes 1-3 respectively) were resolved by SDS-PAGE and assayed 

by Western or dot blot for each caveolae/raft and non-caveolar maker described in Table 

5. Fig. 7 shows that caveolae markers caveolin-1 (A), flotillin-1 (B), and GM1 (C) were 

present in the DRM fractions. As noted earlier, two distinct forms of caveolin-1 were 

found in each of the membrane fractions. Two forms of flotillin-1 were also present in 

the CSC-isolated membranes and, while as yet uncharacterized, may also be due to 

differences in protein phosphorylation state. Densitometry analysis of the caveolin-1 

bands indicated that this key caveolae protein is enriched approximately 3.5 fold in the 

DRM fractions when compared to lysate levels (data not shown). However the 

contaminant marker profiles revealed calnexin (ER marker, Fig. 7D) and Na/K-ATPase 

� (non-raft PM marker, Fig. 7E) also were present in the DRM fraction. The presence of 

ER and non-raft PM markers preclude use of DRM for determining if full-length NSP4 

reaches PM caveolae. 
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Table 5. Protein and Lipid Markers for Specific Subcellular Membranes. 

Marker Distribution Comments References 

Caveolin-1 Caveolae, ER, Golgi 
Defining caveolae marker, 

hairpin confirmation inserted 
into membrane 

Smart et al., 1995; 
Souto et al., 2003; 

Rothberg et al., 1992 

Flotillin-1 Lipid rafts, caveolae* 
*potential caveolae localization, 
peripheral membrane association 

Bickel et al., 1997; 
Souto et al., 2003; 

Morrow et al., 2002 

Ganglioside M1 PM, caveolae Glycolipid, primary cholera 
toxin receptor 

Palandino et al., 2004; 
Parton, 1994; Fra et al., 

1995 

Calnexin ER Integral membrane protein 

Rajagopalan et al., 
1994; Jackson et al., 
1990; Drenan et al., 

2004 

Giantin Cis/medial Golgi Integral membrane protein Linstedt and Hauri, 
1993 

Golgin-97 Trans Golgi network 
(TGN) Peripheral membrane association Lu et al., 2004; Drenan 

et al., 2004 

Na/K-ATPase � Non-raft PM* 

*potential cardiac caveolae 
localization, integral membrane 

protein 

Gustavsson et al., 1999; 
Lisanti et al., 1994; 
Ovchinnikov et al., 

1988 

Clathrin heavy 
chain 

Coated PM pits, 
TGN, endosomes Peripheral membrane association 

Schmid, 1997; 
Kirchhausen, 2000; 

Stoorvogel et al., 1996 
 



  60

 
Fig. 7. Distribution of Intracellular Protein and Lipid Markers in Triton X-100-Extracted 
(DRM) Membrane Fractions. Equivalent amounts of total protein from the cell lysate, 
detergent-resistant (DRM) and -soluble material (DSM) fractions of MDCK cells (lanes 
1, 2, and 3 respectively) were assayed for the presence of specific cellular markers 
(Table I) by Western blot. Peptide-specific antisera were used to detect (A) caveolin-1 
and (B) flotillin-1. (C) Cholera toxin B subunit (CT-B) and CT-B-specific antisera were 
used to detect the caveolae-localized lipid ganglioside M1 (GM1) levels by dot blot. 
Marker-specific antisera identified the distribution of contaminating (D) ER membrane 
(calnexin), (E) non-lipid raft PM (Na/K-ATPase � subunit) and (F) clathrin coats 
(clathrin heavy chain).  
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 Isolation of PM-Enriched Caveolae in the Absence of ER Marker from Epithelial 

Cells. Isolation of PM-enriched material was optimized for MDCK cells based on 

nitrogen cavitation and sucrose gradient fractionation (Gallegos et al., 2001b). Following 

cell homogenization, the nuclei were pelleted and the post-nuclear supernatant (PNS) 

was fractionated on discontinuous sucrose gradients. Equivalent volumes of sequential 

fractions from the gradient were resolved by SDS-PAGE and examined by Western blot 

for the presence of caveolin-1, Na/K-ATPase �, and calnexin (data not shown).  The 

resulting marker profiles indicated that the gradient layers between the 27% and 29% 

sucrose interface and the 32% and 35% sucrose interface were enriched in both caveolae 

and PM markers with a minimal amount of ER marker. This PM-enriched material was 

briefly sonicated to disrupt large membrane sheets, further purified by ConA affinity 

chromatography, tested for caveolae and non-caveolae markers, and designated 

cavitation-sucrose-chromatography (CSC) caveolae. 

Differential Protein Composition and Membrane Structure in DRM and CSC 

Caveolae Fractions. To determine if the global protein composition of the CSC caveolae 

fraction was similar to that of DRM, equivalent amounts of Triton X-100-extracted and 

CSC-isolated membrane fractions were resolved by SDS-PAGE and examined by silver 

staining. As anticipated, there were distinct banding patterns for both DRM and CSC 

caveolae with unique and similar bands at different molecular weights (mol wt) (Fig. 8). 

The predominant DRM bands were present at 24 kD and above, while the major bands 

of CSC caveolae were below 24 kD.  Hence there was a striking difference in the overall 

protein content of the DRM and CSC caveolae. 

EM images of CSC caveolae showed vesicular membrane structures (Fig. 9A) 

with an average diameter of 99 nm (n=61). Separation of these objects into 10 nm 

diameter groups showed that a majority of these isolated membranes were within the 

expected range of intact caveolae (50-100 nm diameter) or appeared to be broken 

structures of smaller size (Fig. 9B).  
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Fig. 8. Silver Stain Analysis of DRM and CSC Caveolae. Equal amounts of total protein 
from Triton X-100 extracted DRM (lane 1) and isolated CSC caveolae (Cav, lane 2) 
were resolved by 12% SDS-PAGE and evaluated by silver stain.  
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Fig. 9. EM Imaging and Analyses of CSC Caveolae. CSC caveolae were negatively 
stained with 2% phosphotungstic acid and imaged by EM. (A) Three-fold digital 
magnification was used to resolve the ultrastructure of the membranes to a resolution of 
1.52 pixels per nm (inserted bar indicates 100 nm). (B) Manual separation of discrete 
objects and analysis of maximal object diameter by Feret’s function resulted in the 
quantification of the diameter contained in the CSC caveolae fraction. The diameter 
values were segregated into 10 nm groups and plotted against the number of objects 
observed within that diameter range. Analyses of 161 discrete objects revealed the size 
distribution of the membranes in CSC caveolae. 
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 CSC-Isolated Caveolae Contained Caveolae Markers in the Absence of 

Detectable ER and Non-Raft PM Markers. To examine the presence of caveolae, ER and 

non-raft PM in the CSC caveolae, equivalent amounts of homogenate, PNS, ER, PM, 

and CSC caveolae fractions were resolved by SDS-PAGE and analyzed by Western or 

dot blot for the corresponding cellular markers (Table 5). Specific bands corresponding 

to caveolin-1 and flotillin-1, and specific spots for GM1 confirmed the presence of each 

caveolae marker in the CSC caveolae (Fig. 10A-C). The contaminant marker profiles 

(Fig. 10D-F) showed that the protein composition of CSC caveolae differed from that of 

DRM isolated from the same cells (Fig. 7A-F). The absence of calnexin in CSC caveolae 

(Fig. 10D) demonstrated that this isolation method lacked detectable ER contamination 

endemic to DRM. Thus the CSC caveolae preparation was more suitable for our studies 

to detect NSP4 in PM caveolae. The relatively intense bands corresponding to Na/K-

ATPase � and clathrin in the CSC PM fraction and the absence of detectable amounts of 

either protein in CSC caveolae indicated that these non-caveolar protein markers were 

absent in the final CSC caveolae isolated from the PM material (Fig. 10E and F).  

RV Infection did not Affect Marker Distributions in CSC Caveolae. To ensure 

that the presence of NSP4 in CSC caveolae was not due to redistribution of ER or non-

raft membranes into the caveolae fraction by viral infection, CSC fractions were isolated 

from RV-infected MDCK cells at 24 hpi and analyzed by Western blot for the same 

protein markers (Table 5). The caveolae marker profiles showed that the infected CSC 

caveolae contained both caveolin-1 and flotillin-1 (Fig. 11A and B), but lacked calnexin 

(C). Since Na/K-ATPase � and clathrin also were absent in the infected CSC caveolae 

fraction (Fig. 11D and E), RV infection did not introduce redistribution of intracellular 

organelles or non-raft PM membranes into the CSC caveolae at the time points 

examined. These data indicate if NSP4 was present in the infected CSC caveolae, its 

presence would not be from cross-contamination of other intracellular organelles, but 

transport of NSP4 to PM caveolae.  
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Fig. 10. Distribution of Intracellular Protein and Lipid Markers in CSC-Isolated 
Membrane Fractions. Equivalent amounts of total protein from homogenate (Homog), 
post-nuclear supernatant (PNS), ER, PM, and caveolae (Cav) fractions isolated from 
MDCK cells by CSC isolation (lanes 1-5 respectively) were assayed for the presence of 
the corresponding markers (Table I). Peptide-specific antisera were used to detect (A) 
caveolin-1 and (B) flotillin-1 by Western blot. (C) CT-B and CT-B-specific antisera 
were used to detect the caveolae-localized lipid GM1 levels by dot blot. Marker-specific 
antisera and western blots identified the distribution of contaminating (D) ER membrane 
(calnexin), (E) non-lipid raft PM (Na/K-ATPase � subunit), and (F) clathrin-coated 
membranes (clathrin heavy chain) in each of the membrane fractions.  
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Fig. 11. Distribution of the Intracellular Markers in CSC Caveolae from RV-infected 
Cells. Equal amounts of total protein from homogenate (Homog, lane 1) and caveolae 
(Cav, lane 2) fractions isolated from RV-infected MDCK cells were assayed for a panel 
of cellular markers (Table I). Peptide-specific antisera were used to detect (A) caveolin-1 
and (B) flotillin-1 by Western blot. Marker-specific antisera and western blots were used 
to identify the distribution of contaminating (C) ER membrane (calnexin), (D) non-lipid 
raft PM (Na/K-ATPase � subunit), and (E) clathrin-coated membranes (clathrin heavy 
chain) in each membrane fraction. 
 
 
 
 Full-Length, EndoH-Sensitive NSP4 was Present in CSC Caveolae Isolated from 

RV SA11-Infected Epithelial Cells. To evaluate the presence of NSP4 in PM caveolae 

during RV infection, CSC fractions were isolated from mock or RV-infected MDCK 

cells, resolved by SDS-PAGE, and analyzed by Western blot. NSP4-specific bands were 
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present at 28, 24, and 20 kD, the expected mol wt of double-, single- and unglycosylated 

full-length enterotoxin (Ericson et al., 1982), in the homogenate and enriched in the ER 

and PM fractions (Fig. 12A, lanes 6, 8, 9 respectively). Of these, only the 28 kD NSP4 

was present in CSC caveolae (Fig. 12A, lane 10). There was also a NSP4-specific band 

of approximately 16 kD observed in all CSC fractions, including CSC caveolae when the  

blot was overexposed (Fig. 12A, lane 11). While this protein has yet to be fully 

characterized, its reaction to carboxyl-terminus specific NSP4 antibodies and its 

appearant mol wt indicate that it may be a NSP4 aa 42-175 (transmembrane domain-to-

carboxyl terminus) fragment or a dimer of the previously identified 7.5 kD NSP4 aa 112-

175 fragment (Zhang et al., 2000). 

EndoH-sensitivity of NSP4 was used to verify the 28 and 20 kD bands were due 

to the multiple glycosylation states of NSP4 and that both termini of NSP4 were present, 

the N-terminus by the presence of glycosylation (glycosylation sites at aa 8 and 18; Both 

et al., 1983) and the C-terminus by using a C-terminal peptide-specific antibody (anti-

NSP4150-175). EndoH pretreatment of the infected homogenate resulted in a loss of the 

28kD NSP4-specific band with a coinciding increase in the intensity of the 20kD 

(unglycosylated) NSP4 band (Fig. 12B, lanes 5 and 6). EndoH pretreatment of the CSC 

caveolae also resulted in a shift of the NSP4 28kD band to the unglycosylated 20 kD 

form (Fig. 12B, lanes 7 and 8). Absence of the single-glycosylated NSP4 and presence 

of the non-glycosylated 16 kD fragment in the CSC caveolae indicated that inclusion of 

full-length, double-glycosylated NSP4 in the PM caveolae was not due to NSP4 glycans 

simply binding ConA. 

NSP4 Associates with Caveolin-1, but not Golgi-Localized Proteins at Early and 

Late Stages of Infection. The EndoH-sensitivity of NSP4 in CSC caveolae isolated from 

MDCK cells at 24 hpi suggested the enterotoxin bypassed the endomannosidase-rich 

Golgi apparatus during transport from the ER. Confocal imaging demonstrated the 

association of NSP4 with caveolin-1 and lack of association with Golgi at different times 

post infection.  Specificity of each antibody set was tested using mock infected cells, as 

well as primary and secondary antibody controls (Fig. 13A and B). 
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Fig. 12. Detection of Full-Length, EndoH-Sensitive NSP4 in CSC Caveolae Isolated 
from RV-Infected Epithelial Cells. (A) Equal amounts of total protein in homogenate 
(Homog), post-nuclear supernatant (PNS), ER, PM, and CSC caveolae (Cav) isolated 
from mock (lanes 1-5) or RV-infected MDCK cells (lanes 6-10) were assayed for the 
presence of NSP4 with NSP4150-175-specific antisera. Homog, PNS, ER and PM fractions 
show NSP4-specific banding profiles consistent with full-length, double-, single-, and 
unglycosylated NSP4 (28, 24, and 20 kD respectively) in addition to a ~16 kD band that 
may be a dimer of the NSP4 cleavage fragment (aa 112-175). CSC caveolae contained 
predominately the doubly-glycosylated 28 kD form of NSP4 with a relatively small 
amount of the 16kD band. (B) The homogenate (lanes 1 and 2) and PM caveolae (lanes 3 
and 4) fractions from uninfected cells were mock (lanes 1 and 3) or EndoH (lanes 2 and 
4) treated to determine if the enzyme treatment altered the specificity of NSP4 staining 
observed in panel A. The homogenate (lanes 5 and 6) and PM caveolae (lanes 7 and 8) 
from RV-infected MDCK cells were similarly mock (lanes 5 and 7) or EndoH treated 
(lanes 6 and 8) to confirm that the multiple mol wt forms of NSP4 were due to 
differences in the glycosylation state of the full-length protein and the absence of Golgi 
mannosidase trimming. 
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Captured NSP4 and caveolin-1 images (Fig. 13C center and left panels, respectively) 

showed significant signal overlap with greater than 50% of NSP4 colocalizing with the 

cellular caveolae marker at 24 hpi. Analyses of the overlap for pixels wherein both 

signals were of equivalent relative fluorescent intensity indicated that the NSP4-

caveolin-1 association at 24 hpi occurred at the cell periphery, but also perinuclear sites 

and in vesicular-like cytoplasmic structures (Fig. 13C right panel). The absence of 

overlapping (Fig. 13D right panel) NSP4 and giantin signals (center and left panels) 

indicated NSP4 was absent from the Golgi at 24 hpi and agreed with the recent report of 

NSP4-EGFP and giantin lacking colocalization (Berkova et al., 2006). Although NSP4 

was found both in isolated PM caveolae and associated with caveolin-1 at the cell 

periphery at 24 hpi, previous studies indicate that the initial association of NSP4 with 

DRM occurs between 6 and 18 hpi (Cuadras and Greenberg, 2003; Sapin et al., 2002). 

To evaluate the NSP4-caveolin-1 association at this earlier time point, the subcellular 

distributions of both proteins were evaluated at 7.5 hpi. The fluorescent signals of NSP4 

and caveolin-1 (Fig. 13E, center and left panels) overlapped at this early time point with 

greater than 50% of NSP4 colocalizing with caveolin-1. However the subcellular sites of 

overlap were different from those observed at 24 hpi. At 7.5 hpi, colocalizing pixels of 

approximately the same fluorescent intensities were present at the cell periphery, but 

were primarily in  cytoplasmic and perinuclear sites (Fig. 13E, right panel). While 

caveolin-1 traffics directly between the ER and PM caveolae in specific chaperone 

complexes, the only experimentally defined caveolin-1 vesicular pathway transits 

through the Golgi and buds from the trans-Golgi network (TGN) (Dupree et al., 1993; 

Uittenbogaard et al., 1998; Scheffele et al., 1998). Therefore the subcellular distributions 

of NSP4 and TGN-localized golgin-97 were examined at 7.5 hpi (Fig. 13F center and 

left panels). The absence of signal overlap (13F, right panel) confirmed NSP4 was 

absent from the Golgi at 7.5 and 24 hpi in MDCK cells. Further, there was no detectable 

Golgi contaminant in CSC caveolae (Fig. 14). 
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Fig. 13. Association of NSP4 with Caveolin-1 during Early and Late Infection. 
Fluorescently-tagged secondary antibodies were imaged with 488 nm then 568 nm 
excitation sources to capture FITC or TR data respectively and to control for FITC 
signal bleed into the TR images. Images from mock or RV-infected cells in the absence 
of either primary or secondary antibodies were used to control for stain specificity and 
non-specific binding of each antibody set (representative [A] caveolin-1 and [B] NSP4 
images at 7.5 hpi shown). For each primary antibody set, the overlapping pixels of 
approximately equal intensities for FITC and TR were highlighted to identify subcellular 
distribution of signal colocalization (right panels). (C) Images captured at 24 hpi 
revealed that caveolin-1 (left) and NSP4 (center) colocalized at perinuclear, cytoplasmic, 
and peripherial sites (right). (D) There is an absence of colocalization (right) between 
Golgi-localized giantin (left) and NSP4 (center) at 24 hpi. 
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Fig. 13 cont. Fluorescently-tagged secondary antibodies were imaged with 488 nm then 
568 nm excitation sources to capture FITC or TR data respectively and to control for 
FITC signal bleed into the TR images. For each primary antibody set, the overlapping 
pixels of approximately equal intensities for FITC and TR were highlighted to identify 
subcellular distribution of signal colocalization (far right panels). (E) At 7.5 hpi, 
caveolin-1 (left) and NSP4 (center) colocalized predominately at punctuate, cytoplasmic 
sites with weak perinuclear staining (right). (F) At the same time post infection, images 
of NSP4 (center) and the trans-Golgi-localized Golgin-97 (left) showed an absence of 
colocalization (right).  
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Fig. 14. Distribution of Golgin-97 in CSC-Isolated Membrane Fractions. Equal amounts 
of total protein from homogenate (Homog), post-nuclear supernatant (PNS), ER, PM, 
and caveolae (Cav) fractions isolated from RV-infected MDCK cells by CSC isolation 
(lanes 1-5 respectively) were assayed for the presence of the TGN marker golgin-97 
(Table I). Using marker-specific antisera, golgin-97 was undetectable in the CSC 
caveolae fraction by Western blot. 
 
 
 
DISCUSSION 

Utilizing a newly developed raft membrane isolation protocol and RV-infected 

cells, our data show the presence of full-length, high-mannose glycosylated NSP4 in PM 

caveolae that lack ER marker, but contain caveolin-1, flotillin-1 and GM1. Several reports 

have implicated the association of NSP4 with lipid rafts. First, a preferential interaction 

between NSP4 and NSP4114-135 with anionic, cholesterol-rich, caveolae-like model 

membranes has been shown by circular dichroism and a filter-binding assay (Huang et 

al., 2001 and 2004).  Second, RV particles, VP4 (the RV spike protein), and NSP4 are 

associated with DRM in RV-infected cells (Sapin et al., 2002).  Third, infectious RV 

particles are detected in Triton X-100 insoluble fractions and sensitive to drugs that 

compromise lipid raft integrity (Cuadras and Greenberg, 2003). Fourth, NSP4 directly 

binds caveolin-1 with the binding site mapping to NSP4 residues 114-135 (Parr et al., 

2006).  Taken together, these data strongly indicate an association of raft membranes 

with RV and NSP4 for intracellular transport from the ER. 
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There are several reported raft/caveolae isolation protocols that have been 

extensively utilized to study the composition and interactions specific to raft membrane 

microdomains (Pike, 2003).  For our purposes, it was critical to isolate PM caveolae free 

of even a trace of ER contamination. ER is a known reservoir of NSP4 during RV 

infection (Bergmann et al., 1989) and the presence of ER membranes could non-

specifically introduce NSP4 into caveolae in the absence of NSP4-raft association. We 

recognize this concern may be unique to NSP4 and other ER-localized proteins such that 

a trace of ER contamination would not influence the conclusions of other studies.  

A recent report has confirmed that NSP4 bypasses the Golgi in route from the ER 

to the cell periphery using a NSP4-EGFP fusion protein (Berkova et al., 2006).  In that 

study, the NSP4-EGFP fusion protein fails to localize with Golgi marker, giantin, but 

colocalizes with the autophagosomal marker LC3 and accumulates close to, but not 

within, the PM cytoplasmic leaflet. In the present study, we show fully glycosylated, 

EndoH-sensitive NSP4 in CSC caveolae.  This discrepancy in PM localization may be 

due to inherent differences in virally expressed NSP4 versus expression of a NSP4-

EGFP fusion protein and the use of different cell lines.  Nonetheless our data agree with 

that of Berkova et al. (2006) on several key points, including the presence of NSP4 in 

cytoplasmic, vesicular structures that bypass the Golgi in transport to the PM and the 

presence of non-ER NSP4 intracellular pools with apparently distinct functions.  

Caveolae can function as vesicular carriers containing key fusion complex 

proteins that mediate vesicle formation, docking and fusion, including GTPases, 

annexins, N-ethylmaleimide (NEM)-sensitive fusion factor (NSF), soluble NSF 

attachment proteins (SNAP), and SNAP receptors (SNARE) found on vesicles 

(vSNARE) or target membranes (tSNARE) (Schnitzer et al., 1995; Razaui et al., 2002). 

It remains unclear if CSC caveolae interact with fusion-competent caveolae vesicles.  

The autophagosomes carrying NSP4 apparently do not fuse with other membranes such 

as the PM. Hence distinct pools of functionally divergent NSP4 may be uniquely 

transported. 
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NSP4 and caveolin-1 colocalized at multiple sites within the infected cells (this 

study and Parr et al., 2006). Although colocalizations via merged confocal images are 

widely used to determine if two or more molecules are in close proximity, the resolution 

of these colocalized molecules is approximately 250 nm (McIntosh et al., 2003).  Given 

that caveolae are 50-100 nm in diameter, imaging data alone are inconclusive, 

necessitating a second, confirmatory technique (Manders et al., 1993).  

Caveolin-1 and GM1 are established markers for raft/caveolae fractions (Smart et 

al., 1995; Souto et al., 2003; Rothberg et al., 1992). Flotillin-1, a 45kD membrane-

associated protein enriched in isolated lipid rafts as defined by Triton X-100-extracted 

DRM (Bickel et al., 1997; Morrow et al., 2002), also is detected in high pH, sodium 

carbonate-extracted ‘caveolae’, but is absent from immunopurified ‘caveolae’ (Bickel et 

al., 1997; Souto et al., 2003). In our hands, flotillin-1 was present in CSC caveolae along 

with the other two caveolae markers, although the protein markers were not enriched in 

CSC caveolae when compared to their respective PM levels. Our focus was on obtaining 

‘pure’, ER-negative PM caveolae rather than acquiring large quantities of raft 

membranes. We discovered there was a trade off between purity and recovery with a 

probable loss of PM caveolae during processing or extraction of the caveolae subset. 

Alternatively, the brief sonication used to disrupt the large membrane sheets before 

ConA-affinity isolation may have sheared a portion of the peripheral and membrane 

associated protein populations. With these shearing conditions, the presence of full-

length NSP4 in CSC caveolae suggests NSP4 crosses the PM bilayer rather than interact 

by a peripheral association.  Additional studies are needed to distinguish the precise 

protein-lipid interaction.   

To ensure the presence of NSP4 in CSC caveolae was not due to co-isolation of a 

contaminant membrane, calnexin, Golgin-97, clathrin, and Na/K-ATPase � marker 

proteins were examined. These proteins are commonly utilized to indicate the presence 

of the corresponding membrane (Drenan et al., 2004; Kirchhausen, 2000; Lisanti et al., 

1994). The resultant marker profiles indicate CSC caveolae is void of detectable ER, 

Golgi, and clathrin-coated membranes, as well as non-raft PM domains and therefore 
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appropriate for determining the presence of NSP4 in PM caveolae.  Optimization of the 

CSC caveolae isolation to extract a final membrane fraction devoid of detectable Na/K-

ATPase � from PM enriched in the same markers resulted in extraction of predominantly 

PM caveolae, but potentially could be an enriched subset of the cell caveolae population.  

The recent identification of NSP4 in DRM isolated from RV RF-infected colon 

cells (Sapin et al., 2002) prompted us to define the composition of identical DRM 

isolated from MDCK cells and provide further insight into the presence of NSP4 in lipid 

rafts and caveolae. While clathrin was not detected in MDCK DRM, significant amounts 

of the ER and non-raft PM markers were present.  Due to the ER and non-raft PM 

contaminants, previous identification of NSP4 in DRM is indicative, but not conclusive, 

of NSP4 caveolae localization.  

The critical intracellular receptor function of NSP4 in RV morphogenesis 

stresses the importance of a NSP4 pool in the ER during infection (Au et al., 1989; 

Bergmann et al., 1989; Chan et al., 1988). NSP4 in CSC caveolae extracted from a PM-

enriched material devoid of detectable ER contamination indicates the presence of a 

second pool of NSP4 that is transported to PM caveolae during infection. A third and 

fourth pool have been implicated in LC3-containing autophagosomes (Berkova et al., 

2006) and radiating from the ERGIC along microtubules (Xu et al., 2000).  It is 

reasonable to propose the RV multifunctional enterotoxin is transported by multiple 

cellular pathways to different intracellular locations for distinct purposes.  More than one 

pathway may direct NSP4 to the same intracellular site dependent on the infecting viral 

strain, time post infection, and differences in techniques. 

In summary, NSP4 is a multifunctional, complex glycoprotein that uniquely 

interacts with host cell molecules.  The data presented herein confirms the presence of 

full-length NSP4 in PM caveolae and the lack of Golgi association in transport to the 

PM. Additional studies are needed to determine if NSP4 transport is dependent on 

caveolin-1 or caveolae intracellular movement and to fully elucidate the many roles of 

NSP4 during infection. 
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MATERIALS AND METHODS 

Antibodies and Reagents. Antibodies directed against Na/K-ATPase � (mouse 

anti-sheep Na/K-ATPase �; Affinity BioReagents, Inc., Golden, CO), calnexin  (rabbit 

anti-canine calnexin aa 575-593; Stressgen Biotech, Victoria, BC Canada), Golgin-97 

(mouse anti-human golgin-97; Molecular Probes, Eugene, OR), giantin (rabbit anti-

human giantin aa 1-469, Covance Research Products, Inc, Princeton, JN), flotillin-1 

(mouse anti-mouse flotillin-1 aa 312-428) and clathrin (mouse anti-rat clathrin heavy 

chain aa 4-171; BD Transduction Lab, Lexington, KY), and cholera toxin (rabbit anti-

Vibrio cholerae toxin; Sigma Aldrich, Saint Louis, MO) were purchased from the 

indicated commercial sources. Horseradish peroxidase (HRP; goat anti-rabbit and anti-

mouse IgG*HRP; Southern Biotech Assoc, Inc, Birmingham, AL), alkaline phosphatase 

(AP; goat anti-rabbit IgG*AP; Sigma Aldrich) and fluorescent (goat anti-mouse IgG-

Texas Red [TR];  Rockland Immunochemicals, Inc, Gilbertsville, PA; goat anti-rabbit 

IgG-fluorescein [FITC]; KPL, Inc, Gaithersburg, MD) conjugated antibodies also were 

purchased commercially. Anti-caveolin-1 peptide (aa 2-31 deduced from the human 

caveolin-1 sequence) and anti- NSP4 peptide (aa 150-175 deduced from the simian 

rotavirus SA11 NSP4 sequence) were generated in rabbits and mice using peptide 

crosslinked to keyhole limpet hemocyanin (KLH) as antigen (Parr et al., 2006). NSP4150-

175-specific antibodies were affinity purified before use in confocal microcroscopy.  

Purified cholera toxin B subunit (Sigma Aldrich), 5-bromo-4-chloro-3'-indolyphosphate 

p-toluidine (BCIP)/nitro-blue tetrazolium chloride (NBT) premixed electrophoresis 

reagent (Sigma Aldrich), Concanavalin A-Sepharose 4B (ConA, Amersham Pharmacia 

Biotech, Piscataway, NJ), α-methyl-D-mannopyranoside (Acros Organics/Fisher Sci 

Intl, Inc, Hampton, NH), endo-�-N-acetylglucosaminidase H (EndoH; New England 

BioLabs, Ipswich, MA), protease inhibitor cocktail set III (Calbiochem, Darmstadt, 

Germany), and 0.45µ pure nitrocellulose (GE Osmonics Labstore, Minnetonka, MN) 

were acquired from commercial sources. 

Cultured Cells and Virus. Madin Darby Canine Kidney cells (MDCK; ATCC, 

Manassas, VA) were grown in maintenance media (Dulbecco’s Modification of Eagle’s 
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media (D-MEM) with 4.5 g/L glucose, L-glutamine, and sodium pyruvate; Mediatech, 

Inc., Herndon, VA) supplemented to 2 mM L-glutamine (200 mM; 

BioWhittaker/Cambrex), 1 mM sodium pyruvate (100 mM; Cambrex), 0.1 mM non-

essential amino acids (10 mM; Mediatech, Inc.), 100 U/L penicillin (pen), 100 µg/L 

streptomycin (strep), 0.25 µg/L Fungizone (10,000 U pen/10,000 strep/25 ug/L 

Fungizone; Cambrex), 43.9 mM sodium bicarbonate (Grand Island Biologicals Co), 5% 

fetal bovine serum, and 5% Serum Supreme (Cambrex) at 37oC in 5% CO2. Cells stocks 

were maintained in 175 cm2 flasks and expanded into 500 cm2 trays or 2 cm2 multiwell 

plates (Corning, Inc, Corning, NY). MDCK cells were infected with SA11 clone 4F (gift 

of Mary Estes, Baylor College of Medicine, Houston, TX) at an MOI of 2. Briefly, the 

virus was sonicated (5min using a cuphorn attachment ice bath in a Misonix Sonicator 

3000; Misonix, Inc, Farmingdale, NY) and incubated in serum-free D-MEM with 5 

�g/ml trypsin for 30 min at 37oC, then incubated with the activated inoculum for 1h at 

37oC in 5% CO2. The inoculum was replaced with serum-free D-MEM supplemented 

with 1�g/ml trypsin and the cells incubated for an additional 7.5 or 24 h. 

DRM Isolation. DRM were isolated from MDCK cells as previously described 

(Sapin et al., 2002). Briefly, four 500 cm2 trays of cells were grown to confluency (~ 

6x107  cells/tray), washed with phosphate buffered saline (PBS), and scraped into a 4ml 

final volume of TNE buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.2 

µM PMS-F and 1% Triton X-100). The suspended cells were passed 10 times through a 

22-guage needle and the homogenate incubated for 30 min at 4oC before mixing with 2.5 

M sucrose to a density of 40%. A 40%, 35%, 5% discontinuous sucrose density gradient 

was centrifuged at 180,000 X g, 4oC for18 h (Beckman SW41Ti rotor and Optima LE-

80k Ultracentrifuge) and the DRM were recovered from the 35%/5% interface. For 

Western blot analysis, the DRM and DSM proteins (40% gradient layer) were further 

processed by ultracentrifugation (190,000 X g, 1.5 h, Beckman SW41Ti rotor) in Tris 

buffer (10 mM Tris, 1 mM EDTA), suspended in PBS for protein quantification or in 

PBS containing 0.2 µM PMS-F and 1 µl/ml protease inhibitor cocktail set III for cold 

storage at -80oC. All membrane isolations were completed on ice unless otherwise noted. 
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CSC Caveolae Isolation. PM-derived caveolae were isolated with a sucrose 

gradient followed by ConA affinity chromatography (CSC) as described (Gallegos et al., 

2006). Briefly, MDCK cells were grown in 4-8 trays (500 cm2), washed twice with PBS, 

and scraped into 8 ml final volume. Cells were pelleted for 5 min at 1,000 X g at room 

temperature (RT), suspended in 2 ml of 0.25 M sucrose, 1 mM EDTA, 20 mM Tris-base, 

pH 7.8, and homogenized by nitrogen gas cavitation (15 min at 40 psi). The nuclei and 

remaining intact cells were pelleted by centrifugation for 10 min at 1,000 X g RT. 

Original cell supernatant and PNS were floated on a discontinuous sucrose density 

gradients (0.5 ml 55%, 1.5 ml 40%, 1.5 ml 35%, 1.5 ml 32%, 1.5 ml 29%, 1.5 ml 27%, 

and 1.5 ml 20%; all w/v in 1 mM EDTA, 20 mM Tris-base pH 7.8), and centrifuged for 

90 min at 192,000 X g 4oC. ER-enriched fractions (35%/40% and 40%/55% interface 

bands) from the cell supernatant gradient were pooled, pelleted for 2 h at 190,000 X g 

4oC, and suspended in PBS containing 0.2 µM PMS-F and 1 µl/ml protease inhibitor 

cocktail set III for storage at -80oC. The PNS-derived PM fractions (27%/29%, 

29%/32%, and 32%/35% interface bands) were pooled, sonicated briefly (three 1 sec 

pulses at 5 sec intervals in a Misonix Sonicator with cuphorn attachment at power level 

3) and added to a slurry of ConA-sepharose 4B prewashed in Buffer 1 (0.14 M KCl, 0.01 

M HEPES, 1 mM MgCl2, 1 mM MnCl2, pH 7.8 with KOH). The PM-containing slurry 

was mixed for 2 min by nitrogen bubbling, incubated for 10 min at RT for binding, 

transferred to a glass preparative column and washed with 75 ml of Buffer 1. Buffer 2 

(0.5 M α-methyl-mannopyranoside in buffer 1) was added, mixed by nitrogen bubbling 

and the ConA-binding material drained from the column. A total of six sequential 14 ml 

Buffer 2 washes were collected, centrifuged for 14 h at 111,000 X g 4oC, and the 

resulting caveolar membrane pellets suspended in small volumes of Buffer 2 for protein 

quantification or Buffer 2 containing 0.2 µM PMS-F and 1µl/ml protease inhibitor 

cocktail set III for storage at -80oC.  See Appendix B for further details. 

Protein Quantification. Micro BCATM Protein Assay and SilverSNAP Stain II 

kits (Pierce, Rockford, IL) were used to quantify the protein concentration of the isolated 

membrane fractions. The Micro BCA kit was used with BSA standards per 
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manufacturer’s protocol to calculate an initial protein concentration for each membrane 

fraction. To ensure the differences in sample solvents did not alter the analysis of marker 

enrichment, equivalent amounts of each fraction as calculated above were resolved by 

SDS-PAGE and silver stained using SilverSNAP. Densitometry scans of the stained 

proteins in each lane were used to correct the BCA protein concentrations based on the 

fold difference from the lysate (Triton X-100 fractions) or homogenate (CSC fractions) 

absorption units per lane. 

Electron Microscopy of Isolated Caveolae. CSC caveolae were negatively 

stained with 2% phosphotungstic acid (PTA), pH 7.0, as described with slight alterations 

(Gelderblom et al., 1991) and examined by electron microscopy, Zeiss EM 10C.  In 

brief, CSC caveolae were adsorbed onto a Formvar coated film grid (Electron 

Microscopy Sciences, Fort Washington, PA) for 1hr at RT. The adsorbed objects were 

stained with PTA and images captured at 8,000 fold magnification. The captured images 

were scanned and processed with ImageJ (developed at NIH and is available at 

http://rsb.info.nih.gov/ij) for scale (3 fold digital zoom for a resolution of 1.52 pixels per 

nm), threshold, and manual discrete object separation. The processed images were 

analyzed in Adobe Photoshop by Feret’s function to quantify the maximal diameter of 

visible discrete membranes. 

Endoglycosidase Reactions. For EndoH cleavage, 1�g aliquots of total protein 

from fractionated caveolae isolated from uninfected and RV-infected (MOI of 2, 24 hpi) 

MDCK cells were used. The gylcoprotiens were denatured and diluted per 

manufacturer’s protocol (New England Biolabs).  Either 1 �l of sterile water (mock 

cleavage) or 1 �l of EndoH was added to the control/sample set from mock and infected 

cells. The cleavage reaction was performed for 1 h at 37oC and the proteins resolved by 

SDS-PAGE and Western blot. 

Western Blot Analyses. A series of Western blots were utilized to monitor 

enrichment of specific organelle markers in each of the isolated membrane fractions, and 

to identify those fractions containing NSP4.  Two µg total protein from each fraction (or 

1 µg of each glycosidase cleaved sample) was resolved on 12% polyacrylamide minigels 
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and transferred to nitrocellulose filters (0.45 µ pure nitrocellulose; GE Osmonics) 

according to the manufacturer (Mini-PROTEAN II and Trans-Blot respectively; 

BioRad). The filters were blocked in 10% (w/v) non-fat dry milk in PBS (10% blotto) 

for 1 h at RT and reacted with the primary antibody (1o Ab) in 2.5% blotto for 14 h at 

4oC with rocking. The filters were incubated an additional 1h at RT with 1o Ab, then 

washed once in 0.5% blotto, twice in 0.5% blotto with 0.05% Tween-20, and once in 

0.5% blotto with rocking (10 min per wash). Secondary antibodies (2o Ab) were diluted 

in 2.5% blotto and incubated with the filters for 1 h at RT with rocking. The filters were 

washed as above, rinsed with PBS, and reacted with SuperSignal West Pico or Femto 

chemiluminescent substrates as per manufacturer’s protocols (Pierce). The marker-

specific bands were visualized by exposure to and development of x-ray film and the 

resulting signals were analyzed by densitometry scan. 

Cholera Toxin GM1 Binding Assay. A dilution series of purified GM1 (0 to 100 ng) 

and equivalent amounts of total protein from each isolated fraction were spotted onto 

nitrocellulose filters, air dried, and rinsed twice in PBS. The filters were blocked in 3% 

(w/v) BSA in PBS for 30 min at RT, rinsed twice gently with PBS, and incubated with 1 

µg/ml cholera toxin subunit B (CT-B) in PBS for 2 h at RT. Excess CT-B was removed 

with 2 PBS rinses and the filters were incubated with 1:500 rabbit anti-CT-B in PBS for 

1 h at RT. Following two rinses with PBS, the filters were incubated with goat anti-

rabbit IgG conjugated to alkaline phosphotase in PBS (1:7,500) for 30 min at RT, and 

rinsed twice in PBS. The filters were washed in AP reaction buffer (1 M Tris, 0.1 mM 

NaCl, 10.5 mM MgCl2 pH 9.0) for 5 min at RT and the GM1:CT-B signals developed in 

BCIP/NBT. The filters were rinsed twice in water, dried, and laminated before analysis 

of the resulting signals by densitometry scan. 

 Confocal Microscopy. Mock and SA11-infected MDCK cells grown on glass 

coverslips were processed at 7.5 or 24 hpi for fluorescent imaging. Mock and infected 

cells were rinsed in PBS, fixed and permeabilized in methanol:acetone (1:1, v/v) for 10 

min at -20oC. Non-specific binding sites were blocked with 3% blotto/PBS for 45 min at 

RT and cells incubated with primary antibodies diluted in 1% blotto/PBS at RT for 45 
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min. The cells were washed in 0.5% blotto/PBS four times, 10 min each and incubated 

with TR or FITC labeled secondary antibodies diluted in 1% blotto/PBS for 45 min in 

the dark. The cells were washed again as above (in the dark), twice in PBS, and mounted 

with fluorescent mounting media (KPL) onto glass slides. The resulting fluorescent 

images  were captured with a MRC-124MP BioRad laser scanning confocal microscopy 

(LSCM) system (BioRad, Hercules, CA) using a Zeiss inverted Axiovert microscope 

(Carl Zeiss, Inc., Thronwood, NY), a 63X Zeiss oil Apochromat objective, and the 488 

and 568 nm excitation lines of an argon/krypton ion laser source.  LaserSharp 3.0 

(BioRad), Confocal Assistant 4.02 (Brelje TC/BioRad) and Adobe Photoshop 7.0 

(Adobe Systems Inc., San Jose, CA) were used to capture the pixilated fluorescent data, 

to calculate colocalization values and to adjust contrast curves to construct the final 

images respectively. 



  82

CHAPTER IV 

EXTRACELLULAR EXPOSURE OF THE CARBOXYL TERMINUS OF FULL-

LENGTH NSP4 ON THE PLASMA MEMBRANE OF ROTAVIRUS-INFECTED 

MDCK CELLS 

 

INTRODUCTION 

 Rotavirus (RV) nonstructural protein 4 (NSP4) is a multifunctional glycoprotein 

initially defined as an endoplasmic reticulum (ER)-localized receptor critical for virion 

morphogenesis at the ER (Ericson et al., 1982; Au et al., 1989; Bergmann et al., 1989). 

However, the calcium (Ca2+)-mediated chloride secretion and diarrhea induced by this 

nonstructural protein at the PM indicate that NSP4 can function outside of the ER (Ball 

et al., 1996). In NSP4-enhanced green fluorescent protein (EGFP)-transfected HEK293 

cells, a portion of the fusion protein is localized at the cell periphery, but not within the 

plane of the PM (Berkova et al., 2006). Yet a carboxyl (C)-terminal NSP4 fragment has 

been identified in the media of RV-infected MA104 and HT-29 cultures and 

colocalization of C-terminal NSP4 epitopes with extracellular matrix proteins at the 

basement membranes of RV-infected mouse pup intestinal epithelium has been reported 

(Zhang et al., 2000; Boshuizen et al., 2004). In this study, laser scanning confocal 

microscopy (LSCM) confirmed both the presence of NSP4 at the PM and exposure of 

the NSP4 C-terminus on the exofacial surface of RV-infected epithelial cells. Cell 

surface-specific biotinylation and subsequent analysis of the biotin-labeled proteins 

confirmed NSP4 exposure and revealed that the exposed enterotoxin was full-length and 

high-mannose glycosylated. 

 

RESULTS 

 LSCM Analysis of NSP4 Presence at the PM. To determine if NSP4 trafficked to 

the PM, we assessed the association of the enterotoxin with PM-localized Na/K-ATPase 

in SA11-infected MDCK cells at 24 hpi. While the microdomain distribution of Na/K-

ATPase is still under debate, the integral membrane protein’s presence at the PM of 
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kidney and absorptive epithelia cells, as well as that of MDCK cells, has been 

documented (Almers and Stirling, 1984; Deppe et al., 2002). In the characterization of 

CSC cavolae ‘purity’ (see CHAPTER II), Na/K-ATPase was used as a marker for non-

raft membranes. However, it is a quintessential marker for identifying the PM in 

fluorescent and confocal microscopy. The resolution of the laser scanning confocal 

system used in this study was approximately 250 nm per pixel. As PM caveolae are 

defined morphologically as 50 – 100 nm diameter membrane invaginations, it is possible 

for a protein within a caveolae microdomain (NSP4) to be present within the same pixel 

(colocalize) as a protein in the non-raft portion of the PM (Na/K-ATPase).  Our confocal 

imaging indicated that 37.3 ± 1.5% (n=3) of the NSP4 signal present in MDCK cells late 

during infection (Fig 15A) overlaps with the Na/K-ATPase staining of the PM (Fig 

15B). The overlapping pixels in which both signals are present at similar intensities 

appear to distribute near or at the surface of the infected cells (Fig 15C). 

 To confirm the presence of NSP4 at the cell surface, we first had to ensure our 

staining of intact cells did not detect intracellular proteins. Due to its Golgi-specific 

localization and the lack of previous association with RV or NSP4, giantin-specific 

antibodies were used to test for PM permeability (Linstedt and Hauri, 1993; Berkova et 

al., 2006). MDCK cells fixed and permeabilized as above displayed significant punctate 

and reticular giantin signal (Fig 16A). However, when the cells were incubated with 

giantin-specific antibodies and fixation without permeabilization, the Golgi staining was 

absent (Fig 16B). While giantin staining of the Golgi was visible in RV-infected cells as 

well, the number and size of these structures were reduced and seldom within the same 

plane as a majority on the NSP4 signal (data not shown). As earlier observed, a 

predominately peripheral and cytoplasmic NSP4 signal distribution was found in RV-

infected MDCK cells fixed and permeabilized at 24 hpi (Fig 16C). However in intact 

cells, NSP4-specific staining appeared in thin peripheral patches at 24 hpi (Fig 16D). 

Similar, albeit smaller, patching of lipid raft proteins has been observed at the PM of 

other cell types and the surface NSP4 distribution is suggestive, but not conclusive of 

enterotoxin segregation into PM microdomains (Harder et al., 1998). 
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Fig. 15. NSP4 Colocalization with Na/K-ATPase at the PM. RV-infected MDCK cells 
fixed and permeabilized at 24 hpi were stained for (A) NSP4 (rabbit anti-NSP4 aa 150-
175) and (B) Na/K-ATPase �. (C) Overlapping pixels of equivalent intensities were 
primarily distributed at the cell periphery. 
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Fig. 16. Exposure of the NSP4 C-Terminus on the Cell Surface. At 24 h post mock 
infection, MDCK cells were stained for giantin and NSP4 (aa 150-175) after (A) fixation 
and permeabilization or (B) before only fixation to characterize permeability-dependent 
staining. As the intracellular protein giantin was only observed in permeabilized cells, 
RV-infected MDCK cells were processed in the same manor at 24 hpi. The resulting 
staining patterns show a marked difference in NSP4 distribution between (C) 
permeabilized and (D) intact MDCK cells during infection. 
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 Characterization of Exposed NSP4.  Three distinct NSP4 bands of approximately 

28, 24, and 20 kD in molecular weight were found in lysates derived from RV-infected 

MDCK at 24 hpi (Fig 17 lane 2). The altered molecular weights are a result of different 

NSP4 glycosylation states (double-, single-, and unglysocylated respectively) with each 

glycan characterized as a high-mannose, EndoH-sensitive moiety (Ericson et al., 1982). 

Biotinylation of cell surface proteins and streptavidin-agarose extraction allowed 

isolation of polypeptides exposed on the surface on MDCK cells through their biotin 

modification. Surface proteins extracted from RV-infected MDCK cells at 24 hpi 

included the 28 kD (double-glycosylated) form of NSP4 (Fig 17, lane 7). The shift in 

molecular weight to unglycosylated (20 kD) observed after EndoH digestion of this 

surface protein extract confirms that the glycans are high-mannose moieties. The 

molecular weight of NSP4 determined by comparison to SDS-PAGE markers, the 

presence of specific staining using antibodies to a NSP4 C-terminal epitope, and the 

presence of amino terminal-localized glycosylations together confirm that NSP4 exposed 

on the surface of RV-infected MDCK cells is full-length in nature. 

 

DISCUSSION 

 The focus of this study was to determine if NSP4 was present in the PM of RV-

infected epithelial cells. To address this we used LSCM for analysis of NSP4 

colocalization with a PM marker protein and NSP4 fluorescence on the surface on intact 

cells during RV infection. Our results indicated that NSP4 is present at and exposed on 

the extracellular surface of the PM on RV-infected MDCK cells. Characterization of the 

exposed NSP4 after isolation via surface biotinylation revealed that the enterotoxin was 

full-length and high-mannose glycosylated. 
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Fig. 17. Full-Length, High-Mannose Glycosylated NSP4 Exposed at the PM. Lysates 
and cell surface proteins extracted as indicated from mock and RV-infected MDCK cells 
(taken at 24 hpi) were mock or EndoH digested, resolved by SDS-PAGE, and Western 
blotted with anti-NSP4 peptide (aa 150-175) antibodies. Mock and infected lysates 
(lanes 1 and 2 respectively) confirmed the presence of double-, single-, and 
unglycosylated (28, 24, 20 kD) forms of NSP4 in RV-infected MDCK cells. Cell surface 
proteins extracted from cells at 24 h post mock infection (lanes 3 and 4) and mock 
extracted cell surface proteins from RV-infected cell 24 hpi (lanes 5 and 6) were mock 
(lanes 3 and 5) or EndoH (lanes 4 and 6) digested to control for specificity of NSP4 
staining. Cell surface proteins extracted from RV-infected cells (lane 7) indicated the 
presence of the 28 kD form of NSP4 which was shown to be high-mannose glycosylated 
by virtue of its shift in molecular weight after EndoH digestion (lane 8). 
 
 
 

This is the first report specifically identifying the full-length enterotoxin within 

the PM of infected cells. Though this appears to be in opposition to the previously 

reported absence of NSP4 within the plane of the PM, this previous study used NSP4-

EGFP-transfected HEK293 cells rather than defining NSP4 subcellular distribution 

during RV infection (Berkova et al., 2006). While not sufficient to confirm the 

enterotoxin’s specific PM microdomain distribution, the exposure of full-length, EndoH-

sensitive NSP4 in ‘patches’ at the PM is of particular interest with our previous 

identification of this same NSP4 form in isolated PM caveolae. Caveolae, a subset of 

lipid rafts, are defined morphologically as flask-shaped PM microdomains and 
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functionally as foci of cellular signaling (Pike, 2003). The presence of giantin staining in 

fixed and permeabilized cells and its absence in intact cells indicated that the patching 

observed with NSP4 staining on the PM surface was not due to clustering and 

endocytosis of the primary or secondary antibodies.  The absence of fluorescent patches 

on the surface of uninfected cells, regardless of the cold treatment used (data not shown), 

confirmed that the signals were the authentic surface distribution of NSP4 and not a 

product of antibody endocytosis. The presence of the NSP4 C-terminus exposed at the 

PM of infected cells (shown here), particularly if exposed in caveolae, would expose the 

NSP4 enterotoxic domain (aa 114-135) to surface receptors on the PM of both infected 

cells and neighboring, uninfected cells (Ball et al., 1996). Also of interest is the full-

length nature of NSP4 exposed on the surface of infected cells. 

To date, the only form of NSP4 identified released from infected cells is the C-

terminal (aa 112-175) enterotoxic cleavage fragment (Xu et al., 2000). The site and 

mechanism of this cleavage are unknown, but the presence of full-length NSP4 in PM 

caveolae and exposed on the cell surface suggests that the cleavage may occur directly 

on the PM. While beyond the scope of this study, characterizing the potential 

localization of exposed NSP4 in PM caveolae, the induction of Ca2+ mobilization in 

uninfected neighboring cells, and the cleavage mechanism of NSP4 at the PM would 

provide a unique link between the enterotoxin’s location and function during RV 

infection. 

 

MATERIALS AND METHODS 

Antibodies and Reagents. An antibody directed against the C-terminus of NSP4 

was raised in mice against a 25 aa peptide, deduced from the simian rotavirus SA11 

clone 3 NSP4 sequence (aa 150-175), crosslinked to keyhole limpet hemocyanin (KLH) 

and affinity purified with the NSP4150-175 peptide before use in LSCM. Rabbit anti-

giantin (Convance Research Products, Inc., Princeton, NJ), mouse anti-sheep 

sodium/potassium (Na/K)-ATPase � (Affinity BioReagents, Inc., Golden, CO), goat 

anti-rabbit IgG conjugated to horseradish peroxidase (HRP; Southern Biotech Assoc, 
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Inc, Birmingham, AL), goat anti-mouse IgG conjugated to Texas Red (TR; Rockland 

Immunochemicals, Inc., Gilbertsville, PA), and goat anti-rabbit IgG conjugated to 

fluorescien (FITC; KPL, Inc., Gaithersburg, MD) were obtained from the commercial 

sources indicated. EZ-Link® Sulfo-NHS-SS-Biotin and streptavidin-agarose (Pierce, 

Rockford, IL), endo-�-N-acetylglucosaminidase H (EndoH; New England BioLabs, 

Ipswich, MA), protease inhibitor cocktail set III (Calbiochem, Darmstadt, Germany), 

and 0.45 µ pure nitrocellulose (GE Osmonics Labstore, Minnetonka, MN) were also 

purchased from commercial sources. 

Cell Lines, Virus, and Culture Media. Madin Darby Canine Kidney (MDCK; 

American Type Culture Collection, Manassas, VA) cells were grown in maintenance 

media (Dulbecco’s Modification of Eagle’s media (D-MEM) with 4.5 g/L glucose, L-

glutamine, and sodium pyruvate; Mediatech, Inc., Herndon, VA) supplemented to 2mM 

L-glutamine (200mM; Cambrex Corporation, East Rutherford, NJ), 1 mM sodium 

pyruvate (100 mM; Cambrex), 0.1 mM non-essential amino acids (10 mM; Mediatech, 

Inc., Holly Hill, FL), 100 U/L penicillin (pen), 100 µg/L streptomycin (strep), 0.25 µg/L 

Fungizone (10,000 U pen/10,000 U strep/25 ug/L Fungizone; Cambrex), 43.9 mM 

sodium bicarbonate (tissue culture grade; Invitrogen Corporation, Carlsbad, CA), 5% 

fetal bovine serum (Cambrex), and 5% Serum Supreme (Cambrex) at 37oC in 5% CO2. 

MDCK cells were infected with SA11 clone 4F (gift of Mary Estes, Baylor College of 

Medicine, Houston, TX) at an MOI of 2. Briefly, the virus inoculum was sonicated (5 

min using a cuphorn attachment ice bath in a Misonix Sonicator 3000; Misonix, Inc, 

Farmingdale, NY) and incubated in serum-free D-MEM with 5 �g/ml trypsin for 30 min 

at 37oC, then incubated with the activated inoculum for 1h at 37oC in 5% CO2. The 

inoculum was replaced with serum-free D-MEM supplemented with 1 �g/ml trypsin and 

the cells incubated for an additional 24 h. 

Immunofluorescent Microscopy. Mock and SA11-infected MDCK cells grown on 

glass coverslips were processed 24 hours post inoculation for fluorescent imaging. For 

colocalization of NSP4 with the PM marker Na/K-ATPase, mock and infected cells were 

fixed and permeabilized at -20oC in methanol:acetone (1:1, v/v) for 10 min. The cells 
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were then briefly dried, rinsed twice with sterile PBS, and incubated for 30 min in 3% 

(w/v) non-fat dry milk (blotto) in PBS (blotto/PBS) to block non-specific antibody 

binding. Primary antibodies in 1% blotto/PBS were incubated on the cells for 45 min, 

then removed with four washes of 0.5% blotto/PBS (10 min each). Fluorescently-labeled 

secondary antibodies in 1% blotto/PBS were then incubated on the cells for 45 min in 

the dark, removed by washing as above, before rinsing the cells twice in PBS and 

mounting with fluorescent mounting media (KPL) onto glass slides. 

For NSP4 exposure on intact cells, mock and infected cells were rinsed with 

serum-free D-MEM, incubated for 30 min with serum-free D-MEM supplemented with 

1% (w/v) non-fat dry milk (blotto/D-MEM) at 4oC, then incubated for 45 min with 

primary antibodies diluted in 1% blotto/D-MEM at 4oC. The labeled cells were rinsed 

twice with PBS, cold treated with methanol only for 10 min at -20oC, then rinsed twice 

with PBS. Finally, the cells were incubated for 45 min with fluorescently-labeled 

secondary antibodies diluted in 1% blotto/D-MEM at 4oC in the dark, washed five times 

with 0.5% blotto/PBS (5 min per wash, in the dark) at 4oC, washed twice in PBS, and 

mounted with fluorescent mounting media (KPL) onto glass slides. Fixed and 

permeabilized control cells were processed as above, but the cold treatment was carried 

out before addition of the primary antibodies and used 10 min with methanol:acetone 

(1:1, v/v) at -20oC. 

All of the resulting fluorescent image data were captured with a MRC-124MP 

BioRad laser scanning confocal microscopy (LSCM) system (BioRad, Hercules, CA) 

using a Zeiss inverted Axiovert microscope (Carl Zeiss, Inc., Thronwood, NY), a 63X 

Zeiss oil Apochromat objective, and the 488 and 568 nm excitation lines of an 

argon/krypton ion laser source. LaserSharp 3.0 (BioRad) to, Metamorph 4.0 (Molecular 

Devices Corporation, Sunnyvale, CA), and Adobe Photoshop 7.0 (Adobe Systems Inc., 

San Jose, CA) were used to capture the pixilated fluorescent data and calculate 

colocalization values, convert the image data to tiff format, and adjust for contrast curves 

to construct the final images, respectively. 
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Biotinylation and Isolation of Cell Surface Proteins. Mock and infected cells 

grown in 6 well plates (9.5 cm2 per well) as above then washed three times with ice-cold 

PBS-CM (PBS supplemented with 0.1 mM CaCl2 and 1 mM MgCl2) directly before 

labeling. Surface proteins were biotinylated with a 30 min incubation in 0.5 mg/ml 

solution of Sulfo-NHS-SS-Biotin (2.5 µl of 200 mg/ml NHS-SS-Biotin in DMSO per ml 

of ice-cold PBS-CM) at 4oC. Exess biotin was quenched with an equal volume of cold 

cell culture maintenance media (D-MEM with serum), the cells were washed three times 

with ice-cold PBS-CM, and lysed in 0.8 ml SDS-free RIPA buffer (150 mM NaCl, 50 

mM Tris-base, 10% NP40, 0.5% DOC, pH 8.0) with protease inhibitors (1:1000 protease 

inhibitor cocktail set III, Calbiochem) per 9.5 cm2 culture surface area for 20 min at 4oC. 

Cells were then scraped into prechilled siliconized tubes, the plates incubated with an 

additional 0.2 ml lysis buffer for 10 min at 4oC, and the corresponding lysates pooled. 

To extract the biotin-labeled surface proteins, 30 µl of streptavidin-agarose slurry (6% 

solution stock, Pierce) per ml lysate was incubated at 4oC for approximately 14 h with 

constant rotation and the agarose-bound proteins pelleted at 12,000 Xg for 20 min at 

4oC. Each pellet was washed 3 times with 1 ml of lysis buffer, the supernatants carefully 

removed, and the remaining pellet suspended in lysis buffer supplemented with 1% SDS. 

Surface proteins were removed from the agarose by boiling for 10 min, centrifugation at 

12,000 Xg for 20 min at 4oC, and surface protein supernatants were transferred to new 

tubes for protein quantification. Mock biotinylated (less NHS-SS-Biotin) and mock pull-

down (less streptavidin-agarose) samples from both mock and infected MDCK were 

used to control for non-specific binding of proteins to the agarose beads. 

Protein Quantification. The Micro BCATM Protein Assay kit (Pierce, Rockford, 

IL) was used with a BSA standard curve as per manufacturer’s protocol to quantify the 

protein concentration of the isolated surface protein samples and controls. 

Endoglycosidase Reactions. For EndoH cleavage, 1 �g aliquots of total protein 

from each biotinylation sample and control were denatured and diluted per 

manufacturer’s protocol (New England Biolabs).  Either 1 �l of sterile water (mock 

cleavage) or 1 �l of EndoH was added to each control/sample set from mock and 



  92

infected cells. The cleavage reaction was performed for 1 h at 37oC and the proteins 

resolved by SDS-PAGE and Western blot. 

Western Blot Analyses. Western blot analysis was used to identify both the 

presence of NSP4 and the potential shift in NSP4 molecular weight after EndoH 

digestion in each cell surface protein sample and control. Each surface protein cleavage 

reaction (approximately 1 µg total per lane) was resolved on 12% polyacrylamide 

minigels and transferred to nitrocellulose filters (0.45 µ pure nitrocellulose; GE 

Osmonics) according to the manufacturer (Mini-PROTEAN II and Trans-Blot 

respectively; BioRad). The filters were blocked in 10% blotto/PBS for 1h at RT and 

reacted with rabbit anti-NSP4150-175 in 2.5% blotto/PBS for 14 h at 4oC with rocking. The 

filters were incubated an additional 1 h at RT with anti-NSP4, then washed once in 0.5% 

blotto/PBS, twice in 0.5% blotto/PBS with 0.05% Tween-20 (v/v), and once in 0.5% 

blotto/PBS with rocking (10 min each). The HRP-labeled secondary antibody was 

diluted in 2.5% blotto/PBS and incubated with the filters for 1 h at RT with rocking. The 

filters were washed as above, rinsed with PBS, and reacted with SuperSignal Femto 

chemiluminescent substrates as per manufacturer’s protocols (Pierce). The marker-

specific bands were visualized by exposure to and development of x-ray film. 
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CHAPTER V 

PROBLEMS 

 

 While controls and complementary methods were used to confirm the results of 

this study, there are inherent weaknesses in the individual protocols. Membrane 

isolations use two specific strategies to produce a fraction enriched in the desired 

membranes: removal of undesired structures and specific extraction or pull-down of 

desired structures. In this study, the specific densities of the membrane structures present 

after cell cavitation were used to remove remaining whole cells, intact nuclei, and 

soluble cytoplasmic contents. Sucrose density gradient centrifugation both removed 

structures such as mitochondria, lysosomes, and peroxisomes, but also specifically 

extracted larger structures which were predominately ER- and PM-derived microsomes. 

ConA chromatography further extracted specific membranes that contained glyco-

proteins and -lipids with terminal mannose or glucose residues. As the marker 

composition indicates, enrichment of the PM using the size and specific density of the 

PM-derived microsomes produced the desired Na/K-ATPase �- and clathrin heavy 

chain-enriched membrane fraction. However, there is a corresponding presence of both 

the ER marker calnexin and Golgi marker giantin. These contaminants are removed 

during ConA chromatography, but the resulting CSC caveolae fraction could contain 

Golgi-derived raft/caveolae membranes. The EndoH-sensitivity of caveolar NSP4 and its 

corresponding lack of colocalization with Golgi-localized markers confirmed NSP4 was 

not present in the Golgi making this potential contamination a moot point (van Vliet et 

al., 2003). As ConA extraction is dependent on the presence of glycosylated proteins and 

lipids, there is a possibility of isolating either glycoprotein/lipid-enriched non-caveolar 

PM microdomains and/or losing glycoprotein/lipid-poor PM caveolae membranes. It 

was of interest to note that three of the caveolae/raft markers used only the membrane-

inserted lipid GM1 was enriched in CSC caveolae from its homogenate and PM levels. 

GM1 has previously been used to quantify caveolae enrichment in isolated membranes 

and the EM analysis of CSC caveolae confirmed that the isolated membranes were 
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similar to morphological caveolae. In spite of this, as caveolin-1 is the defining marker 

of caveolae the absence of its enrichment is puzzling. It is possible that the sonication 

used to disrupt the large microsomes present in the CSC PM sheared a portion of the 

membrane-associated protein populations from the membranes. Indeed, the greater 

relative loss of flotillin-1 (peripheral membrane protein) than caveolin-1 (membrane 

associated) appears to favor this explanation. There is also the possibility that the glycol-

proteins/lipids bound by the ConA column are enriched in non-caveolar rafts so that the 

raft marker GM1 is enriched, but caveolae markers caveolin-1 and flotillin-1 are diluted 

in the final CSC caveolae fraction. The colocalization of NSP4 with caveolin-1 at the 

PM was confirmed with confocal microscopy. While this method cannot differentiate 

between caveolin-containing pre-caveolae rafts, caveolae, and caveolae subsets, it does 

confirm the enterotoxin’s association with the key caveolae structural protein at the PM. 

 The membrane fluidity measurements reported in this study for each of the 

isolated raft/caveolae fractions were based on the polarization changes in the fluorescent 

signals from a panel of lipid probes. However, this change or anisotropy can be a result 

of two separate types of lipid movement: lateral across the plane of the membrane and 

rotational within the plane of the membrane. Thus our polarization measurements 

quantified the average relative fluidity of each membrane, but cannot identify which 

type(s) of movement occurred. 

 Of the NSP4-specific bands found in RV-infected cell homogenates and CSC 

caveolae, our Western blot analysis was unable to completely identify the 16 kD NSP4 

band. Our results suggest it is an unglycosylated, C-terminal NSP4 fragment. However, 

as full-length NSP4 dimers at higher molecular weights were still present even after 

prolonged boiling in sample buffer with �-mercaptaethanol (data not shown) we could 

not differentiate between a single 16 kD polypeptide or a dimer of the NSP4 aa 112-175 

secreted fragment (~7.5 kD monomer molecular weight). Additionally, there are reports 

that the EndoH substrate specificity may include select hybrid glycosylations in addition 

to the ER-derived high-mannose glycans (Ballou L et al., 1990). The previous 

characterization of NSP4 glycans with radiolabeled carbohydrates and EndoH confirmed 
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the high-mannose nature of NSP4 during RV infection and allowed us to confirm the 

presence of these glycans through endoglycosidase cleavage (Ericson et al., 1982). 

In determining the distribution of NSP4 at the PM in this study, laser scanning confocal 

microscopy (LSCM) was a powerful complementary methodology. However, the 

resolution of colocalization with the LSCM system used in this study was approximately 

250 nm. As morphological caveolae are 50 – 100 nm in diameter, colocalization of 

NSP4 with caveolin-1 was sufficient to suggest that NSP4 trafficked from the ER to the 

PM in association with caveolin-1-containing structures, but could not by itself 

conclusively localize the enterotoxin to PM caveolae. The lack of a negative control for 

the cellular markers also made differentiation of diffuse cytoplasmic staining and 

background fluorescence difficult. As such, the reported subcellular distribution of 

NSP4-caveolin-1 colocalization may have excluded the presence of NSP4 in caveolin-1-

containing chaperone complexes within the cytoplasm. The focus on NSP4 trafficking in 

RV-infected MDCK cells leaves two further issues unresolved. First, while this study 

confirms that NSP4 associates with caveolin-1 at internal sites early and exposed at the 

PM surface later in infection, it cannot confirm if NSP4 is competent and sufficient of 

itself to use this caveolin-1-associated transport pathway (i.e. without other RV 

proteins). NSP4 has been previously identified in lipid rafts as defined by DRM in 

transfected cells so the enterotoxin can enter a similar membrane microdoamin subgroup 

by itself. Yet with the data presented here, it is unclear if NSP4 is able to traffic 

specifically to PM caveolae or the exofacial PM surface in the absence of other viral 

proteins. Secondly, MDCK are kidney-derived. These cells have been the basis of 

numerous intracellular trafficking studies including caveolae/caveolin subcellular 

movement, but they are not the primary cell infected by RV during a natural host 

infection (Rodriguez-Boulan et al., 2000). As such, the results of this study are 

invaluable in furthering our understanding of NSP4 trafficking and the potential link 

between NSP4 localization and function during RV infection, but further 

experimentation is needed to both resolve the subcellular transport pathways of NSP4 

during host infection and determine both the orientation and function of NSP4 at the PM. 



  96

CHAPTER V1 

DISCUSSION/CONCLUSION 

 

 The focus of this study is to determine if rotavirus (RV) non-structural protein 4 

(NSP4) traffics from the ER to PM caveolae during infection. To address this, we used 

compositional analysis of PM caveolae and confocal microscopy to define the 

subcellular distribution of NSP4 in RV-infected cells. Our results reveal that full-length, 

high-mannose glycosylated NSP4 traffics to PM caveolae during RV infection. While 

NSP4 associates with the key caveolae structural protein caveolin-1 at both early and 

late stages of infection, the lack of NSP4 association with Golgi-localized proteins at 

both stages indicates that the enterotoxin’s ER to PM caveolae transport pathway 

bypasses the Golgi apparatus. Additionally, at least the carboxyl-terminus of the 

enterotoxin is exposed on the exofacial PM leaflet of infected cells. 

In characterizing the transport of RV NSP4, this work also revealed unique 

characteristics in the structure and function of isolated cellular lipid rafts and caveolae. 

Raft and caveolae composition is experimentally defined through the analyses of isolated 

membrane subdomains and via microscopy. To determine if NSP4 traffics to PM 

caveolae, we first examined caveolae isolated from RV-infected cells for the presence of 

entertoxic protein. The detergent insolubility of lipid rafts, including caveolae, is the 

traditional characteristic exploited to isolate these membrane microdomains from the 

cellular membrane pool (Pike, 2003). Our analysis of these detergent-resistant 

membranes (DRM) isolated from MDCK cells suggests that while NSP4 was found 

previously in a similar type of isolated material (Sapin et al., 2002), there are several 

inherent problems with using DRM to approximate PM caveolae for the localization of 

NSP4. 

 First, DRM are isolated from whole cell lysates. As lipid rafts have been 

previously identified in several intracellular organelle and vesicle membranes in addition 

to the PM, a portion of the rafts fractionated into DRM will not be of PM origin (van 

Vliet et al., 2003). While identification of NSP4 in this membrane fraction would 
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provide an association between the enterotoxin and this class of membrane subdomain in 

MDCK cells, it is not appropriate to the focus of this project. 

 Secondly, the use of detergents to separate membrane fractions may alter the 

structure and sterol exchange dynamics of the membrane (Pike, 2003). Analysis of the 

DRM extracted from MDCK cells revealed the presence of a significant amount of 

crystalline sterol which under physiological conditions is only observed in peroxisome 

membranes (McIntosh et al., 2003; Tabas, 1997). Also, these DRM have a high 

membrane fluidity and small difference between the exo- and cytofacial membrane 

leaflets in spite of the crystalline sterol presence. The high initial sterol exchange rate 

and it’s relative insensitivity to the presence of a sterol carrier protein also indicates that 

DRMs do not retain functional similarity to intact PM. Determining whether these 

alterations were artifacts of the isolation methodology or due to non-raft membrane 

contaminants are subjects of future studies. However, we did confirm that these 

differences were not due to the presence of detergents in the DRM fraction as no 

detergents were present in the DRM fraction itself. 

Finally, as DRMs are isolated from whole cell lysates rather than a pre-isolated 

PM fraction, there is a greater probability for inclusion of non-raft membrane 

contaminants in the final raft extract. Compositional analysis of the DRM fraction 

confirms that the membrane extract is enriched in both lipid (GM1) and protein (caveolin-

1, flotillin-1) markers reported to be concentrated in lipid rafts. However, the analysis 

also indicates that DRMs contain significant amounts of ER membrane (calnexin) and 

non-raft PM (Na/K-ATPase �). As NSP4 is known to be present in the ER during RV 

infection, the presence of this membrane in the DRMs strongly indicates that this 

material is not appropriate for use in determining if NSP4 traffics out of the ER to PM 

caveolae. Based on these problems, the DRM method was replaced with non-detergent 

raft/caveolae method to isolate the membrane microdomains from the PM of MDCK 

cells without ER or non-raft PM contamination. 

 Introduced as a non-detergent alternative method for caveolae extraction, the 

Percoll and OptiPrep gradient-based procedure of Smart et al. (1995) begins with pre-
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isolation of a rough PM fraction. The non-detergent, raft/caveolae (NDCR) membranes 

extracted from this PM fraction were analyzed for membrane structure, sterol exchange 

function, and the presence of contaminating membranes. Results indicate that NDCR do 

not contain detectable crystalline sterol, yet they have lower relative membrane fluidity 

than DRM. The elevated membrane leaflet fluidity gradient and sterol-carrier protein-

sensitive sterol transfer rate indicate that the NDCR fraction is closer to sharing the 

structure and sterol exchange dynamics of intact PM than the DRM. However, the 

compositional analysis revealed the presence of both ER and non-raft PM contamination 

in the NDCR fraction. While the membrane structural and functional characteristics of 

the NDCR appear to provide a closer approximation of PM caveolae than the DRM, the 

ER contaminant endemic in both isolated raft fractions indicates that neither procedure is 

appropriate for addressing the presence of NSP4, an ER resident, in PM caveolae. 

 We developed a sucrose gradient- and concanavalin A (ConA) affinity 

chromatography-based method specifically optimized to isolate a caveole/raft (ACR) 

fraction from a MDCK cell-derived, PM-enriched material. The ACR fraction contains 

the same raft/caveolae lipid and protein markers as the NDCR and DRM extracts, but 

without detectable ER or non-raft PM markers. EM analysis of the ACR membranes 

revealed a predominately vesicular physical shape similar to PM caveolae invaginations. 

Structurally, ACR shares many characteristics with NDCR membranes, including a lack 

of crystalline sterol, relatively low membrane fluidity, and a high relative fluidity 

gradient between the endo- and exofacial membrane leaflets. The cholesterol exchange 

between ACR fractions is similar to that observed with NDCR material. Both have 

relatively low initial exchange rates that are sensitive to the presence of a sterol carrier 

protein. The compositional and structural analyses of the ACR fraction indicate that 

these membranes share several similarities with the NDCR material, but lack the ER 

contamination endemic in NDCR and DRMs. For the purposes of our study, the ACR 

membranes provide a close approximation of the PM raft/caveolae appropriate for the 

determining if NSP4 traffics to these membrane subdomains during RV infection. 
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 These data provide the first comparison of lipid raft/caveolae fractions from three 

separate lipid raft/caveolae extraction methods for the presence of non-raft membrane 

contaminants, membrane structure, and function as it relates to sterol movement. The 

structural results revealed that each isolated membrane contains unique characteristics 

that, while related to each other, highlight the current problem in defining both cellular 

lipid raft and caveolae composition. Earlier reports using DRM analysis to identify lipid 

raft resident proteins and lipids were invaluable in both optimizing subsequent isolation 

methodologies and in identifying potential raft markers for use in both 

immunomicroscopy of lipid rafts and association of viruses with cellular rafts. In this 

instance, however, the presence of non-raft PM and specifically ER membrane 

contamination in both DRM and NDCR indicates that any NSP4 protein found in these 

membranes may be an artifact of the isolation technique rather than the true presence on 

the RV enterotoxin in the lipid raft/caveolae membrane microdomains. The sucrose 

gradient- and affinity chromatography-based method presented here for the first time 

allows analysis of a PM-derived raft/caveolae extract for the presence of proteins known 

to traffic through the ER. This is of specific importance for both NSP4 and the RV 

structural protein VP7 are present as ER glycoproteins during infection (Kabcenell and 

Atkinson, 1985). Moreover, this lack of contamination will also allow for analysis of 

other viral and cellular proteins trafficking between the ER and PM rafts/caveolae. 

 In applying this technique to RV SA11 clone 4F-infected MDCK cells at 24 hpi, 

we unexpectedly found full-length, glycosylated NSP4 in isolated PM caveolae 

membranes. Previously, only a secreted NSP4 C-terminal fragment (NSP4 residues 112-

175) has been identified outside of infected cells (Zhang et al., 2000). However, the 

identification of NSP4 aa 114-135 and aa 120-147 at the basement membranes of RV 

EDIM-infected intestinal cells confirms the presence of the NSP4 carboxyl-terminus at 

the PM and indicates that the full-length enterotoxin may also be present (Boshuizen et 

al., 2004). Presence of the full-length viral protein in CSC caveolae confirms that along 

with the enterotoxic domain, the transmembrane domain and glycosylation sites of NSP4 

are transported to the PM microdomains. The presence of full-length NSP4 in caveolae 
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suggests unique characteristics of the protein’s transport for the ER to the PM and/or of 

its orientation and potential function at the PM. 

 NSP4 and the NSP4 enterotoxic domain, aa 114-135, induce chloride secretion 

and water accumulation in mouse pup intestines through mobilization of intracellular 

calcium (Ball et al., 1996). When applied exogenously, both NSP4 and NSP4114-135 

initiate a phoshpolipase C (PLC)-dependant increase in cytoplasmic calcium 

concentration through release of intracellular calcium stores and calcium influx at the 

PM (Dong et al., 1997). Expression of the enterotoxin however induces a similar 

increase in cytoplasmic calcium levels even in the presence of a PLC inhibitor (Berkova 

et al., 2003). As PM caveolae are enriched in molecules that regulate cellular calcium 

homeostasis (i.e. the PM calcium pump, IP3 receptors, and PIP2), the presence of NSP4 

in these PM microdomains provides a potential link between the enterotoxin’s 

subcellular distribution and enterotoxic function (Fujimoto et al., 1992; Fujimoto, 1993; 

Hope and Pike, 1996; Pike and Casey, 1996). Alternately, NSP4 association with PM 

caveolae and caveolin-1 may function primarily as a transport mechanism to deliver 

other viral proteins, progeny virions, and/or just NSP4 from the ER to the PM for 

secretion or subsequent diffusion into other membrane domains. It is of interest to note 

however, that the binding site of caveolin-1 maps to NSP4 aa 112-140, a site neatly 

overlapping the NSP4 enterotoxic domain (aa 114-135) (Parr et al., 2006).  While this 

study does confirm that NSP4 specifically associates with caveolin-1 as early as 7.5hpi, 

examination of NSP4-mediated virion protein, secondary transport/diffusion, and 

caveolin-1 mediation of NSP4 enterotoxic function are subjects for interesting future 

studies. 

 Inclusion of the NSP4 N-terminal transmembrane (TM) domain on caveolar 

NSP4 at the PM suggests that transport of the enterotoxin between the ER and PM may 

be membrane-mediated through vesicular structures. In addition, it also indicates the 

potential for NSP4 insertion in the PM bilayer exposing the enterotoxin on the exofacial 

surface of infected cells. Analyses of NSP4 colocalization with caveolin-1 both early and 

late in infection confirm that NSP4 traffics to the cell periphery in caveolin-1-associated 
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punctate structures. While this does not rule out NSP4 transport via the caveolin-1-

containing cytoplasmic chaperone complex, the reproducible and pervasive punctate 

patterns strongly suggest a caveolin-1-positive, vesicular transport mediator. 

Colocalization of NSP4 with the PM marker Na/K-ATPase � confirms that the 

peripheral NSP4 staining was associated with the PM during infection. 

The exposure of the enterotoxin on the exofacial surface of RV-infected MDCK 

cells was also confirmed. Confocal analysis of intact, SA11 clone 4F-infected MDCK 

cells specifically identified the extracellular exposure of at least NSP4150-175. If the viral 

protein passes through the PM bilayer at its TM domain, these results would suggest that 

the NSP4 enterotoxic domain is present on the surface of infected cells, exposing 

uninfected neighboring cells to effects of exogenous NSP4. Further characterization of 

the exposed NSP4 with membrane impermeate biotinylation and streptavidin pull-down 

revealed that the exposed enterotoxin was full-length and glycosylated. While these 

results cannot confirm that NSP4 exposed on the surface of infected cells is localized in 

caveolae microdomains, the patching of NSP4 signals observed during confocal analysis 

does suggest that the exposed full-length enterotoxin localizes to some type of 

microdomain within the PM. 

 Both caveolar NSP4 and NSP4 exposed at the cell surface also share a similar 

glycosylation pattern. In both instances, the viral protein was predominately double 

glycosylated with EndoH-sensitive carbohydrate moieties. While blocking N-linked 

glycosylation during RV infection was previously shown to inhibit infectious virus 

release and virion association with DRM, glycosylation has been shown to be 

unnecessary for NSP4 transport into the DRM fraction (Delmas et al., 2004). The 

EndoH-sensitivity of NSP4 glycans at the PM, however, does suggest a unique, Golgi-

bypassing aspect of NSP4 ER to PM transport (Ericson et al., 1982). The only 

experimentally defined Golgi-bypassing caveolin-1 transport pathway between the ER 

and PM is mediated by a cytoplasmic chaperone complex rather than vesicular structures 

(Uittenbogaard et al., 1998). The cellular protein secretory transport chain also traffics a 

variety of transmembrane glycoproteins from the ER to the PM, but it too transits 
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through the ERGIC and Golgi apparatus (van Vliet et al., 2003). Similar to this secretory 

mechanism, the membrane-mediated transport of caveolin-1 initiates at the ER and 

transits through the ERGIC and the Golgi where the protein buds from the TGN in 

caveolae-like vesicles for subsequent transport to the PM (Liu et al., 1999). As entry of 

NSP4 into the caveolin-1-enriched DRM fraction is reported to occur between 7 and 18 

hpi, we examined NSP4 association with both caveolin-1 and Golgi marker proteins at 

early (7.5 hpi) and late (24 hpi) stages of infection to determine if NSP4 used one of 

these known membrane/vesicle- mediated transport mechanisms for its ER to PM 

movement (Cuadras and Greenberg, 2003; Sapin et al., 2002). Colocalization of NSP4 

with caveolin-1 at 7.5 hpi coincided with a specific lack of NSP4 association with TGN-

localized golgin-97. This confirms that while the enterotoxin associates with caveolin-1-

positive vesicular structures early in infection, it was not present in the Golgi, 

specifically the TGN where caveolae vesicles are though to bud. Colocalization of NSP4 

with caveolin-1 late in infection indicated that the NSP4-containing, caveolin-1-positive 

structures had moved from a predominately cytoplasmic distribution to a peripheral 

localization. The lack of NSP4 colocalization with the Golgi-localized giantin confirmed 

results reported in an earlier work with NSP4-EGFP and confirmed our results indicating 

that the predominant ER to PM transport pathway used by NSP4 is not one of the 

currently defined secretory or caveolin-1/caveolae mechanisms (Berkova et al., 2006). 

This Golgi-bypassing, caveolin-1-associated vesicular transport pathway and the pools 

of NSP4 it appears to supply at the PM, both in PM caveolae and exposed on the cell 

surface, identify a new feature of NSP4 transport and potential function during infection. 

 As NSP4 intracellular transport, subcellular distribution, and functions have been 

identified, several distinct spatial and functional pools of NSP4 have begun to take 

shape. Initially, lack of Golgi-specific processing to NSP4 glycans, immunolocalization 

of NSP4 to the ER, and the critical receptor function played by NSP4 at the ER during 

virion morphogenesis were though to characterize the only NSP4 pool, at the ER, during 

RV infection (Kabcenell and Atkinson, 1985). However, recent publications identified 

two additional NSP4 pools: one vesicular and ERGIC/microtubule-associated and the 
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other also vesicular, but LC3/viroplasm-associated. The first is characterized by punctate 

NSP4 staining that colocalizes with redistributed ERGIC-53 (an ERGIC marker) and �-

COP (a COP-I-positive transport vesicle marker), but not Sec13p (a COP-II-positive 

transport vesicle marker) in transfected cells (Xu et al., 2000). In addition, the data 

reported by Xu et al. also suggest that these vesicles are associated with microtubules 

and radiate out along linear tracks toward the cell periphery. 

The second pool was defined by NSP4 colocalization with the autophagosome 

marker microtubule-associated protein 1 light-chain 3 (LC3) using laser confocal 

microscopy in NSP4-EGFP-transfected and RV SA11-infected cells (Berkova et al., 

2006). Autophagy is an essential cellular degredative process defined by the 

sequestration of cytoplasmic constituents, including structures as large as entire 

organelles, into double-membrane-bound vesicles that subsequently fuse with 

lysosomes. While little is known about the composition of these apparently ER-derived 

autophagosomes, the process of autophagy itself proceeds through three distinct stages: 

induction, sequestration, and maturation. Pertinent to the NSP4 pool, when LC3 is 

covalently modified with phosphotidylethanolamine it redistributes from the cytoplasm 

into preautophagic, crescent-shaped vesicles. LC3 remains in these structures as they 

engulf portions of the cytoplasm forming distinct autophagic vesicles and through 

maturation in which these vesicles fuse with lysosome-associated membrane protein 

(LAMP) 1 and 2-containing endosomes/lysosomes (Kirkegaard et al., 2004). NSP4-

EGFP was shown to associate with LC3, but not Golgi-localized giantin, endosome-

localized Rab-9, or lysosome-localized LAMP1 in transfected cells. In infected cells, 

these LC3- and NSP4-containing bodies formed “cap-like structures” associated with 

NSP5-positive ‘viroplasms’ suggesting that they may play a role in creation, stability, or 

subcellular localization of the viroplasm during RV infection (Berkova et al., 2006). The 

smaller viroplasm size and apparent partial loss of viroplasm/ER association observed 

with NSP4 silencing during RV infection support these potential roles for this pool of 

NSP4 during infection (Lopez et al., 2005). The final pools of NSP4 concern the 

presence and distribution of the enterotoxin at the PM during infection. 
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This work shows for the first time that NSP4 is present in PM caveolae and 

exposed at the cell surface as a full-length, high-mannose glycosylated protein during 

RV infection. Through trafficking to the PM in caveolin-1-positive vesicular structures, 

NSP4 in PM caveolae provides a potential link between the enterotoxin’s subcellular 

localization and its calcium-based toxicity in infected cells. While not necessarily 

localized to PM caveolae, NSP4 exposed at the surface of infected cells indicates that 

both endogenous and exogenous NSP4-induced signaling can occur within an infected 

cell and uninfected, neighboring cells can also be exposed to exogenous NSP4. 

Uncharacterized in this study, the presence of a ~16 kD unglycosylated, C-terminal 

NSP4 fragment in CSC caveolae suggests that the aa 112-175 NSP4 cleavage product (a 

dimer of which should be approximately 15 kD in molecular weight) may be present in 

PM caveolae (Zhang et al., 2000). Currently the subcellular site of the cleavage event 

and the mechanism of its secretion are unknown. The presence of full-length NSP4 and 

the NSP4 fragment in PM caveolae, as well as the exposure of the C-terminus of full-

length NSP4 on the cell surface, suggests the enticing possibility of NSP4 cleavage and 

release directly at the PM exofacial leaflet. Unfortunately, the identity of the ~16 kD 

NSP4 fragment has yet to be confirmed. The resolution limitations of the techniques 

used (in this and previous studies) and the lack of a comprehensive spatial and temporal 

analysis of NSP4 subcellular distribution make identifying overlaps between the 

different NSP4 pools difficult. However, each new piece of the complex NSP4 transport 

puzzle has given us a deeper understanding of the multifunctional nature of this once 

dogmatically ER-imprisoned viral glycoprotein. 
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CHAPTER VII 

FURTHER EXPERIMENTS 

 

 To further define the pool of NSP4 localized at the PM, we first need to refine 

our understanding of the ER to PM transport of the enterotoxin. LSCM colocalization 

with NSP4 and an expanded marker panel (Table 6) in RV-infected MDCK and an 

intestinal-derived cell line, Caco-2 or HT-29, would identify the organelles, transport 

vesicles, and chaperone complexes involved in NSP4 subcellular movement. The 

resolution of each colocalization can also be focused from about 250nm to under 10nm 

using fluorescent resonance energy transfer (FRET). This method uses pairs of 

fluorophores chosen so that emission of the donor probe excites the acceptor probe only 

when the fluorophores are less than 10 nm from each other. Both the increase of donor 

emission in the photobleaching of the acceptor probe and the emission of the acceptor 

after donor excitation can be used to calculate the distance between the fluorophores 

with the radius depending upon the probe pair used. Defining the temporal association of 

NSP4 with each colocalizing marker will also allow for identification of the individual 

transport pathways used by the enterotoxin during RV infection. 

 LSCM colocalization can further define the association of NSP4 ER to PM 

movement with cellular caveolin/caveolae transport. While Fischer rat thyroid (FRT) 

cells do not express caveolin-1, DRMs have been isolated from these cells. Time course 

colocalization of NSP4 with the panel of intracellular markers in RV-infected FRT cells 

would identify any alterations in NSP4 transport. By transfecting the FRT cells with a 

caveolin-1 expression vector and repeating the colocalization analysis, the specific 

dependence of NSP4 transport on caveolin-1 trafficking could be determined. Additional 

characterization of the dependence of NSP4 transport on cellular raft and cholesterol 

trafficking can be determined by time course colocalization in MDCK cells in the 

presence of transport inhibitors (Table 7). 

 Each treatment will disrupt a different aspect of intracellular cholesterol 

distribution, resulting in both altered caveolin/caveolae trafficking and decreased 
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presence of caveolae at the PM (Gumbleton et al., 2000). Concatenate alteration to NSP4 

transport is indicative that the treatment disrupted a transport mechanism required for 

NSP4 movement in infected cells. Cyclosporin A and rapamycin disrupt immunophilin 

chaperone complexes inhibiting chaperone-mediated caveolin-1 ER to PM caveolae 

transport. Progesterone treatment also inhibits ER to PM movement of cholesterol 

resulting in accumulation of caveolin-1 in the ER. Cholesterol oxidase, filipin, and 

cyclodextrin selectively remove cholesterol from the PM resulting in a decreased 

presence of PM caveolae invaginations and internalization of caveolin-1 to the ER. Dose 

response curves of each treatment will control for potential toxicity and determine the 

conditions required to alter caeolin-1 trafficking in MDCK and Caco-2 cells before RV 

infection. FRT cells can also be used with Fura-2, a fluorescent Ca2+ indicator, to 

determine caveolin-1-dependence of the intracellular Ca2+ mobilization induced by 

exogenous and endogenous NSP4. While caveolin-2 is present, FRT cells do not express 

caveolin-1 or have morphological PM caveolae. FRT and caveolin-1-transfected FRT 

cells will be exposed to purified NSP4 or transfected for NSP4 expression to determine 

if either form of exposure specifically requires caveolin-1 to mediate its Ca2+ - mediated 

signaling. 
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Table 6. Subcellular Markers and Their Locations. 

 

Marker Location Other 

Caveolin-1 PM caveolae ER, Golgi, raft vesicles 

GM1 Caveolae/lipid rafts  

Flotillin-1 Caveolae/lipid rafts  

Calnexin ER (transmembrane)  

Calreticulin ER (soluble) 
ER to Golgi intermediate 

complex (ERGIC), Golgi 

Sec23p COP-II+ vesicles ERGIC, ER 

ERGIC-53 ERGIC  

�-COP  COP-I+ vesicles ERGIC, Golgi 

Giantin cis/medial Golgi  

Golgin-97 trans Golgi network (TGN)  

Clathrin heavy chain PM coated-pits TGN, endosomes 

Na/K-ATPase � Non-raft PM  

Transferin receptor Non-raft PM  

LC3 Autophagosomes (lipidated) Cytoplasmic (unmodified) 

HSP-56 Cytoplasmic part of caveolin-1+ complex 

Cyclophilin 40  Cytoplasmic part of caveolin-1+ complex 

Cyclophilin A  Cytoplasmic part of caveolin-1+ complex 
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Table 7. Agents Used for Altering Cholesterol and/or Caveolin-1 Trafficking. 

 

Agent Effect 

Cholesterol Oxidase 
Induces PM to ER to Golgi translocation of caveolin-1 without 

altering caveolae-mediated cholesterol trafficking 

Filipin 
Decreases the number of invaginated PM caveolae via cholesterol 

binding 

Progesterone 
Inhibits ER to PM transport of newly synthesized cholesterol and 

retains caveolin-1 in the ER 

Cyclodextrin 

Binds and solubilizes cholesterol depleting PM levels when 

applied directly or enriching PM levels when preincubated with 

free cholesterol 

Cyclosporin A 
Disrupts cyclophilin-containing chaperone complexes resulting in 

loss of soluble caveolin-1 ER to PM caveolae transport 
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APPENDIX A 

STRUCTURAL ANALYSIS SUMMARY OF ISOLATED MEMBRANE 

MICRODOMAINS 
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APPENDIX B 

CSC FRACTIONATION OF CAVEOLAE 
FROM EPITHELIAL CELLS 

Briefly, cells were washed and scraped in cold 
PBS before being centrifuged. Cell pellet was 
suspended in 2 ml 0.25 M sucrose, 1 mM 
EDTA, 20 mM Tris-base, pH 7.8, and cavitated 
under nitrogen to produce a cell homogenate. 
The homogenate was centrifuged, then the post 
nuclear supernatant (PNS) was separated from 
the cell debris and clarified by high speed 
centrifugation. The clarified PNS (supernatant) 
and debris pellet were loaded onto separate 
discontinuous sucrose density gradients, 
centrifuged, and the proteins bands at specific 
gradient layers extracted. The 35/40 and 40/55 
interface bands taken from the supernatant 
gradient were pooled, centrifuged, and the pellet 
retained as an ER-enriched fraction. The 27/29, 
29/32, and 32/35 bands were pooled to produce 
a PM-enriched fraction, sonicated briefly three 
times to disrupt the large membrane sheets, and 
mixed with sepharose bead-bound concanavilin 
A in column buffer 1 (0.14 M KCl, 0.01 M 
HEPES, 1 mM MgCl2, 1 mM MnCl2, pH 7.8 
with KOH) . The material was mixed via 
nitrogen bubbling, allowed to bind for 10min, 
then transferred to a gravity column and allowed 
to settle for 15 min. The settled column was 
drained to the bead bed level before being 
washed multiple times with two bed volumes of 
column buffer 1 and drained back to the top of 
the column bed. Individual 12ml aliquots of 
column buffer 2 (0.5 M �-methyl-
mannopyranoside in buffer 1) were then added 
to the column and allowed to displace the bound 
material for 10min before being drained into 
individual centrifuge tubes. The buffer 2 washes 
were repeated six times before the eluted 
material was centrifuged and the caveolae-
enriched pellet was suspended in small volumes 
of buffer 2 with protease inhibitors. 



  126

VITA 
 

Name:   Stephen Michael Storey 
 
Address:  Texas A&M University 

College of Veterinary Medicine 
Department of Veterinary Pathobiology 
MS 4467 
College Station, TX 77843 

 
Email Address: sstorey@cvm.tamu.edu 
 
Education:  B.S., Genetics, Texas A&M University at College Station, 1996 

Ph.D., Veterinary Microbiology, Texas A&M University at 
College Station, 2006 


