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ABSTRACT

Bayesian Classification and Survival Analysis

with Curve Predictors.

(December 2006)

Xiaohui Wang, B.E., University of Science and Technology at Beijing;

M.S., Beijing Jiaotong University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Bani K. Mallick

We propose classification models for binary and multicategory data where the

predictor is a random function. The functional predictor could be irregularly and

sparsely sampled or characterized by high dimension and sharp localized changes. In

the former case, we employ Bayesian modeling utilizing flexible spline basis which is

widely used for functional regression. In the latter case, we use Bayesian modeling

with wavelet basis functions which have nice approximation properties over a large

class of functional spaces and can accommodate varieties of functional forms observed

in real life applications. We develop an unified hierarchical model which accommo-

dates both the adaptive spline or wavelet based function estimation model as well as

the logistic classification model. These two models are coupled together to borrow

strengths from each other in this unified hierarchical framework. The use of Gibbs

sampling with conjugate priors for posterior inference makes the method computa-

tionally feasible. We compare the performance of the proposed models with the naive

models as well as existing alternatives by analyzing simulated as well as real data. We

also propose a Bayesian unified hierarchical model based on a proportional hazards
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model and generalized linear model for survival analysis with irregular longitudinal

covariates. This relatively simple joint model has two advantages. One is that us-

ing spline basis simplifies the parameterizations while a flexible non-linear pattern of

the function is captured. The other is that joint modeling framework allows sharing

of the information between the regression of functional predictors and proportional

hazards modeling of survival data to improve the efficiency of estimation. The novel

method can be used not only for one functional predictor case, but also for multiple

functional predictors case. Our methods are applied to analyze real data sets and

compared with a parameterized regression method.
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CHAPTER I

INTRODUCTION

Functional data analysis has emerged as a new area of statistical research with wide

range of applications. Functional measurements are ordered measurements on a regu-

lar grid, usually displayed using curves. A lot of data collected about cancer, growth,

weather, goods fall into this category. Although the data is recorded on discrete

points for each individual, the basic unit of information is the entire observed func-

tion rather than a string of numbers. The popular problems of interest for instance

are smoothing, regression, curve classification and discrimination, and conditional

functional quantiles (Ramsey and Silverman, 1997, 2002, Dimatteo et al, 2001, Kass

et al, 2003). There are real challenging problems, both from methodological and ap-

plied points of view, in developing functional adaptation of usual techniques to these

new kinds of problems.

Hierarchical modeling is a generalization of regression methods, in which regres-

sion coefficients themselves are also given a higher level model, whose parameters are

also estimated from data. It can be used for a variety of purposes, including predic-

tion, data reduction, and causal inference from experiments and observational studies

(Kreft and De Leeuw, 1998, Snijders and Bosker, 1999, Raudenbush and Bryk, 2002,

and Hox, 2002). Bayesian approach may have advantages to hierarchical modeling.

In Bayesian paradigm, model assessment is more straightforward, computational im-

plementation is typically much easier, and historical data can be easily incorporated

The format and style follow that of Journal of the American Statistical Association.
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into the inference procedure. Because the Bayesian approach can capture all relevant

sources of uncertainty, it has been developed to fit data much more realistically using

hierarchical models with large number of parameters to model heterogeneity, inter-

actions and nonlinearity (Gelman et al 2003, Gelman, 2004, Carlin and Louis, 1996,

and Denison et al, 2002).

In this dissertation, our attention first is focused on classification of functional

curves. Due to different types of functional curves, the challenges of classification

come from different aspects. One type is irregularly and sparsely sampled curves so

that only a fragment of each curve has been observed. This places popular analysis

procedures such as linear discriminant analysis and support vector machine at inap-

plicable category so that the classification task is difficult. The other type is curves

characterized by high dimension and many sharp local changes. The regression of the

spiky curves requires careful investigation. We study both dichotomous and multicat-

egory cases. Generally, in case of that the underlying function is smooth, spline-based

method is a plausible choice and some summarization refer to Ruppert et al (2003).

On the other hand, in functional context splines lack the ability to fit sharp localized

changes in curves and there exists better alternatives such as wavelets. We propose a

Bayesian hierarchical modeling method, which combines information from the curves

predictors as well as from the associated categorical variables for classification by

unifying functional regression and logistic classification models.

Except curve classification, the next topic of interest is time-to-event data anal-

ysis. There were some studies contributing to model time-to-event data with time-

dependent covariates. However, it seems that not enough studies have focused on the

case that covariates are functional curves measured on different time points. In this

dissertation, we propose an efficient joint model using spline basis, in which the us-

age of the splines simplifies the parameterizations and the joint modeling framework
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allows that regression model of functional curves and proportional hazards model of

survival data exchange information with each other.

1.1 Irregular Curve Classification Problem

Classification using functional data is a relatively new concept. Recently curve

classification has been studied in several scientific fields with significant applications

like longevity status classification of medflies based on initial egg-laying curves (Muller

and Stadtmuller, 2004), dynamic classification of genes for DNA microarray with re-

peated measurements (Alter et al, 2000), mutation detection (Pfeiffer et al, 2002) and

serum proteomic pattern diagnostics for early detection of cardiotoxicity (Petricoin

et al, 2004).

The case that only a fragment of each curve has been observed makes the

classification even more difficult. In this situation the two common approaches to

discriminant analysis, regularization and filtering methods, can break down (James

and Hastie, 2001). James and Hastie (2001) proposed a functional linear discrimi-

nant analysis (FLDA) method to overcome the above difficulties. The procedure uses

a spline curve plus random error to model observations from each individual. The

spline is modeled using a basis function multiplied by a q-dimensional coefficient vec-

tor, which is modeled using a Gaussian distribution with common covariance matrix

for all classes. In the literature, it seems that some kind of Bayesian methods for

irregular curve classification have not been presented before.

A key component of splines, knot selection, requires sophisticated algorithms that

can be computationally extensive. For example, Friedman’s multivariate adaptive re-

gression splines (MARS) algorithm (Friedman 1991 and Friedman 1993), Denison et

al’s Bayesian MARS algorithm (Denison et al, 1998), and Smith and Kohn’s Bayesian

knot selector based on Gibbs sampling (Smith and Kohn, 1996) are dedicated to this
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problem. However, when data is sparse and the span of curves is not too long,

one can use a very fine latter as knots locations. Successful spline applications for

various purposes without deeply involving knot selection are found in James (2002)

and James and Hastie (2001). Spline-based method requires the choice of smoothing

parameters. A standard approach for smoothing parameter estimation, generalized

cross-validation (GCV), occasionally leads to instability of function estimation be-

cause it does no smoothing sometime (Carroll et al, 1999, Berry et al, 2002). There

exists an alternative smoothing parameter selector that is to place prior distribution

on smoothing parameter. Berry et al found that it is an automatic way of avoid-

ing the possibility of gross undersmoothing. We also adopt this Bayesian smoothing

parameter selector.

In most of the existing models, a naive approach is used, where the estimates

from the regression model are simply plugged into the classification model. Thus the

regression model is unaware of additional information in the categorical outcomes and

completely overlooks the classification problem. The novelty of the proposed Bayesian

model lies in its jointly modeling concept to draw information from the curves as well

as from the associated categorical responses for classification by unifying spline-based

functional regression and logistic classification models.

1.2 Spiky Curve Classification Problem

Classification of functional curves, especially spiky curves, is a relatively new chal-

lenging task. There seems no present work especially contributing to spiky curve

classification although the precise classification for this type of curves is in demand.

For example, proteomic methods simultaneously detect the expression of hundreds or

thousands of different proteins in biological samples, and are gaining increased atten-

tion in biomedical research. In surface enhanced or matrix assisted laser desorption
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and ionization technologies, usually an array surface is first created from the proteins

of interest and then a mass spectrum is constructed using mass spectroscopy instru-

ment. This mass spectrometry functional data has already shown promise in the

identification of biomarker patterns for cancer diagnosis and classification (Conrads

et al 2003, Hingorani et al 2003, Petricoin et al 2004). The spectrum functions are

irregular, high dimensional and characterized by local jumps so wavelets are suitable

basis functions to represent these curves with occasional singularities.

In a functional context, wavelets is better alternatives than splines in case of

fitting sharp localized changes in curves. The Bayesian wavelet modeling used in

this dissertation manages to take advantage of this fact as wavelets have nice ap-

proximation properties over a large class of functional spaces (Daubechies, 1992)

that can accommodate almost all the functional forms observed in real life appli-

cations. Indeed, this richness of the wavelet representation provides the backbone

for the popular frequentist wavelet shrinkage estimators of Donoho and Johnstone

(1994,1995), which are the precursors of the more recent Bayesian wavelet estimation

models (Abramovich et al 1998, Clyde et al 1998, Clyde and George 2000, Vidakovic

1998).

The novelty of our proposed Bayesian model is that it draws information from the

functional data as well as from the associated categorical variables for classification

by unifying wavelet-based functional regression and logistic classification models. In

this process, it enjoys the advantages of Bayesian modeling in wavelet domain as well

as the information from the classification indicator variables. On the other hand, a

naive approach is used in most of the existing models, where the estimates from the

regression model are simply plugged into the classification model. The disadvantage of

the naive method is that the regression process completely overlooks the classification

problem because it is unaware of additional information in the categorical variables.
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1.3 Time to Event Data Analysis

The jointly hierarchical modeling idea can be extended to time-to-event data anal-

ysis with time-dependent covariates. Both parametric and semiparametric models

are available to model survival data. Commonly used parametric models include the

exponential and Weibull models, which are attractive in their simplicity and the easy

interpretability of their components. In practice, however, semiparametric propor-

tional hazards models are widely used, since they impose no particular shape on the

survival curves. Especially in case of jointly modeling longitudinal and survival data,

proportional hazards model is usually employed. For example, a general approach in

Wulfsohn and Tsiatis (1997) combines a proportional hazards model for survival and

a random effects model for regression. There are also existing Bayesian methods that

use the same approach to construct the model as Wulfsohn and Tsiatis (1997). For

example, Faucett and Thomas (1996) considered same random effects and propor-

tional hazards model with noninformative priors on all parameters, while Ibrahim,

Chen and Sinha (2004) modeled bivariate longitudinal and survival data by assuming

both of two covariates measure a true unobservable univariate measure. There are

various studies extended this type of work using either some kind of stochastic process

(Wang and Taylor, 2001, Brown and Ibrahim, 2003) or standard computer packages

(Guo and Carlin, 2003).

An apparent advantage of the joint modeling approach is that it can give efficient

estimation by making a direct link between the survival and longitudinal covariate.

However, the parametric form of the functional covariate may be inappropriate in

some settings. Also, the assumption of independence over longitudinal measurements

of same individual is a very strong assumption, which could be violated in most

cases. These aforementioned Bayesian or non-Bayesian methods could not consider
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these problems thoroughly.

We propose a relatively simple semi-parametric joint model using spline basis, in

which the usage of the splines simplifies the parameterizations and the joint modeling

framework allows the regression of functional predictors and proportional hazards

modeling of survival data benefit from each other. The novel method can be used

not only for one functional predictor case, but also for multiple functional predictors

case. We consider survival data analysis in both situations. Another advantage of the

proposed method is that regression coefficients are interpretable based on converting

by spline basis.

1.4 Outline

The rest of this dissertation contains four main components, each of which is discussed

in different chapters. The four components (parts) are:

1. Irregular curve classification using splines

2. High dimensional spiky curve classification using wavelets

3. Bayesian survival analysis using proportional hazards model and generalized

linear regression

4. Conclusions

In the Chapter II, we first illustrate the motivating example, pediatric research

about bone mineral acquisition, which lead us to irregular curve classification prob-

lem. Next we build the unified Bayesian spline-based classification model to solve the

special type of classification problem. The model then is easily extended to multicat-

egory classification case. Model choices and prediction procedure are also discussed.

To illustrate the capability of our method, it is applied onto a simulated data set and
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a real world data sets, and compared with several other methods. Chapter III fur-

ther develops to address high-dimensional spiky curve classification problem. Because

wavelets can fit spiky curve better than splines, we construct Bayesian wavelet-based

classification model in a unified framework. Different model choices and extension to

multicategory case are included. Applications and comparisons of several methods

are conducted on a simulated data set and several real world data sets. In Chapter IV,

we turn our eyes to survival analysis with irregular curve covariates, such as analysis

of primary biliary cirrhosis (PBC) patients data. We develop Bayesian unified hierar-

chical model based on proportional hazard model and generalized linear model, which

can be conveniently extended to multiple curve covariates. Bayes factor calculation

is derived to select different models. We apply the proposed model on PBC patients

data to study treatment effect and the relationship between survival status and two

functional predictors, bilirubin and albumin levels. Finally, we give conclusions on

presented work and discuss possible extensions in Chapter V.
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CHAPTER II

IRREGULAR CURVE CLASSIFICATION USING SPLINES

2.1 Motivation Example

Despite the proliferation of pediatric research in the past two decades, there remain

some controversies about bone mineral acquisition (Bachrach et al, 1999). For ex-

ample, ethnic difference in bone mass have been observed in some (Gilsanz et al,

1998, Wang et al, 1997, Nelson et al, 1997) but not all (McCormick et al, 1991, Patel

et al, 1992) studies. Similarly, there are discrepancies concerning the magnitude of

gender differences in bone mass. The problem can be boiled down to determine how

good the separation between ethnics or genders could be according to longitudinal

measurements, such as bone mineral density curve.

Classifying highly correlated high-dimensional curves is a challenging topic be-

cause of the difficulty to estimate within-class covariance matrix. As pointed out

in James and Hastie (2001), two common solutions exist to this problem. The first

is regularization method, which uses some form of regularization, such as adding a

diagonal matrix to the covariance matrix (Friedman, 1989, Hastie et al, 1995). The

second is filtering method, which chooses a finite-dimensional basis and find the best

projection of each curve onto this basis. The resulting basis coefficients can then be

used as a finite dimensional representation. Then it is possible to use classification

procedure such as linear discriminant analysis on the basis coefficients.

However, the case that only a fragment of each curve has been observed makes

the classification even more difficult. The data illustrated in Figure 1 is such an

example. These data is a subset of the data presented in Bachrach et al (1999) and

was analyzed for classification purpose in James and Hastie (2001). The data consist
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Figure 1: The spinal bone mineral density data. Black lines are 153 females and grey
lines are 127 males.

of measurements of spinal bone mineral density for 280 people taken at various ages.

For each person we only have two to four measurements, typically measured over no

more than a couple of years. In this situation both of the common approaches to

discriminant analysis can break down (James and Hastie, 2001). The regularization

method fails because of the sparse characteristic of the data. The filtering method

also gives its way to other methods due to several potential problems. Because the

curves are measured at different time points so that the assumption of a common

covariance matrix for each curves basis coefficients is not feasible. Another problem

is that with extremely sparse data sets some of the basis coefficients may have infinite

variance, making it impossible to estimate the entire curve.

James and Hastie (2001) proposed a functional linear discriminant analysis method

(FLDA) to overcome the above difficulties. The FLDA method combines a regression

fitting procedure and a linear discriminant analysis (LDA) using Bayes classifier. The

regression procedure uses a spline curve gij plus random error to model observations
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from each individual. The spline curve is further modeled using a basis function mul-

tiplied by a q-dimensional coefficient vector, ηij so that the longitudinal measures for

jth individual in ith classes, Yij, can be expressed as

Yij = Sijηij + εij, i = 1, . . . , K, j = 1, . . . , mi, (2.1)

where Sij = (s(tji1), . . . , s(tijnij
))T , and εij ∼ N(0, σ2I). The spline coefficient vector

is hierarchically parameterized by a Gaussian distribution with different mean vector

µi and common covariance matrix Γ for samples from all classes. Then, the rank

constraints as in reduced-rank version of LDA (Anderson, 1951, Hastie and Tibshirani,

1996) are applied on those means. This gives the final form of the FLDA model

Yij = Sij(λ0 + Λαi + γij) + εij (2.2)

where γij ∼ N(0,Γ). Finally, the classification using reduced-rank LDA is performed

based on linear discriminant α̂Y and α̂i, estimated from regression procedure.

In the literature, it seems that some kind of Bayesian methods for irregular curve

classification have not been presented before. The novelty of the proposed Bayesian

model lies in its ability to draw information from the curves as well as from the

associated categorical responses for classification by unifying spine-based functional

regression and logistic classification models. In this process, it enjoys the advantages

of Bayesian modeling of functions with flexible spline basis as well as the simplicity

of logistic classification models. In most of the existing models, a naive approach

is used, where the estimates from the regression model are simply plugged into the

classification model. Thus the regression model is unaware of additional information

in the categorical outcomes and completely overlooks the classification problem.
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2.2 Unified Bayesian Spline-based Classification Model

2.2.1 Regression Model for the Predictor

The data we observe for the ith subject or experimental unit are {Y(ti), zi} where

Y(ti) is the the predictor observed at time points ti = (ti1, ..., timi
) as Yi = Y(ti) =

(yti1 , · · · , ytimi
) and zi is the binary response (class indicator) for i = 1, · · · , n. For

different subjects, the locations and number of time points are different. Although

we only observe values at finite number of time points, the underlying unknown

predictor curves, f1 · · · , fn, are of interest. Assume they have been observed with

white Gaussian noise as

Yi = fi(ti) + εi, εi ∼MN(0,Σ), i = 1, . . . , n. (2.3)

The measurement errors εi are assumed to be independent of the unknown predictor

curves. The covariance structure for measurement errors εi is a key component to

the estimation. A lot of effort has been made to better estimate covariance matrices

(Daniels and Kass, 1999, 2001). Structured covariance matrix is attractive because

of simplicity, but it may be inappropriate when the observations across each curve

are from same individual and correlated. We adopt unstructured covariance matrix

in this model. We also assume that the time points without observation are missing

at random. Using a flexible basis to represent the functions is a common approach

for modeling functional data (Ramsay and Silverman 1997). Natural cubic spline

functions is employed in this paper because of their desirable mathematical properties

and easy implementation (de Boor, 1978, Green and Silverman, 1994). Using a finite

spline basis to represent the functions fi, in a linear model notation we write

Yi = Xiβi + ǫi ǫi ∼MN(0,Σi) (2.4)
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where Xi = X(ti) is a spline basis of dimension q for ith individual, and βi is the

q-dimensional spline coefficients for function fi after the transformation. In practice,

the natural cubic spline basis can be generated based on B-spline basis matrix with

certain degrees of freedom on a sequence of knots that should include at least all time

points in the data set. Singular value decomposition is then applied to construct the

orthogonal basis matrix. It is worth of pointing out that although the full matrix X

is orthogonally formed, the basis matrix Xi for ith subject is not orthogonal.

The situation we are facing is that the basis set is not fixed across regressions.

This type of regression is called ”seemingly unrelated regressions (SUR)” (Zellner,

1962). Because the basis set Xj 6= Xk for j 6= k, the regression are seemingly unre-

lated though they are actually related through the noise process ǫi. In conventional

Bayesian linear regression models conjugate priors are usually adopted for the pa-

rameters because conjugacy aids the computational aspects of the modeling. In the

Bayesian SUR model with different basis sets for each regression, there is no natu-

ral conjugate prior for βi and Σi. Hence, we adopt independent priors of the form

p(βi,Σi) = p(βi)p(Σi) and assign a higher level prior as,

Σi ∼ IW (Ai, b), (2.5)

βi ∼ MN(0,Ω),

Ω ∼ IW (B, d)

where hyperparameters pairs (Ai, b) and (B, d) are scale matrices and degrees of

freedom of inverse Wishart distribution. Here the covariance matrix Ω serves as

smoothing parameter that controls smoothness through the roughness penalty in the

penalized sum of squares criterion,
∑mi

j=1(Yij − Xijβi)
2 + βt

iΩ
−1βi (see Berry et al,

2002). More precisely, the scale of diagonal elements of Ω affect the smoothness

with larger values resulting in smoother curves. There are at least two possible
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methods for choosing the smoothing parameter for a smoothing spline. We assign

prior distribution on Ω, Berry et al (2002) used a similar procedure. By placing a

continuous density probability prior on Ω, we have automatically given zero prior

probability to the possibility of doing no smoothing at all. Meanwhile, the way of

adopting common covariance matrix Ω for spline coefficients corresponding to each

curve enables pooling of the information from each curve to achieve smoothness of

the estimation. Therefore, it is possible to estimate the whole curve for each subject

although only a fragment of the curve is observed.

2.2.2 Classification Model

Associated with each functional predictor Yi, there is a binary classification variable

zi ∈ {0, 1} that takes unit value with unknown probability pi. We have used the

spline coefficients from equation (2.4) as classifiers. We develop a logistic classification

model based on these coefficients β through a latent variable Ti = logit(pi) as

Ti = βt
iθ + δi, δi ∼ N(0, τ 2) (2.6)

where θ is q× 1 vector of regression coefficients comprising a linear relation between

the classification variables and the spline coefficients and δi is a random residual

component. The use of a residual component is consistent with the belief that there

may be unexplained sources of variation in the data perhaps due to nonlinear behavior

of the classifiers.

Let V = diag(h), where h comprise the corresponding scaling parameters given

by hj ∼ IG(cj, dj), j = 1, . . . , q, and (cj , dj) are hyperparameters. The effective joint

prior for the coefficients and the model variance is

θ, τ 2|V ∼ NIG(0,V, aτ , bτ ), (2.7)

where NIG denotes the normal-inverse gamma prior – the product of the conditionals
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θ|τ 2,V ∼MN(0, τ 2V) and τ 2 ∼ IG(aτ , bτ ) with aτ , bτ as the usual hyperparameters

for the inverse gamma (IG) prior.

To summarize the unified hierarchical Bayesian model, we have

Random function Yi ∼ MN(Xiβi,Σi) (2.8)

Σi ∼ IW (Ai, b)

βi ∼ MN(0,Ω)

Ω ∼ IW (B, d)

Binary outcome zi ∼ Bernoulli(pi)

Ti ∼ N(βt
iθ, τ

2),where Ti = logit(pi)

θ, τ 2 ∼ NIG(0,V, aτ , bτ ),where V = diag(h)

hj ∼ IG(cj , dj)

for i = 1, ..., n and j = 1, . . . , q.

2.3 Posterior Inference

As the joint posterior distribution of the parameters is not of explicit form, we have

to depend on MCMC methods to simulate the parameters from this posterior dis-

tribution. In a Gibbs sampling framework (Gelfand and Smith, 1990), we need to

derive the full conditional distributions. These conditional distributions are given

below separately for the regression and the classification model. Because MCMC

really is a standard tool in the literature, we leave the detail derivations out in this

dissertation to avoid redundancy. Later chapters also exclude detail derivations for

MCMC. For notation convenience, we let Y = {Yi}
n
i=1, T = {Ti}

n
i=1, z = {zi}

n
i=1 and

β = {βi}
n
i=1.
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2.3.1 Regression Model

The model variance matrix Σi is updated only using the regression likelihood as

Σi|βi,Yi,Xi ∼ IW (A∗
i , b

∗), (2.9)

where A∗
i = Ai + (Yi −Xiβi)(Yi −Xiβi)

t and b∗ = b+ 1. The conditional distribu-

tion for the coefficients βi follows from the model specifications and combination of

information from both the regression and the classification segments,

βi | Yi,Σi,Xi,Ω, Ti, θ, τ
2 ∼MN(β∗

i , τ
2Ω∗), (2.10)

where Ω∗ = (τ 2(Ω−1 + Xt
iΣ

−1
i Xi) + θθt)−1 and β∗

i = Ω∗(τ 2Xt
iΣ

−1
i Yi + Tiθ). It is

worth of noting that the penalized least squares estimator, minimizing the penalized

sum of square, is the mean of the posterior distribution of βi when information from

classification segment is excluded. In the next level, the covariance matrix Ω is

updated as

Ω|β ∼ IW (B∗, d∗), (2.11)

where B∗ = B +
∑n

i=1 βiβ
t
i and d∗ = d+ n.

2.3.2 Logistic Classification Model

The conditional distributions for the logistic classification model follow in a similar

way, except now the detail coefficients βi serve as the predictors of the latent variables

Ti. The corresponding coefficients θ are updated as

θ|β, τ 2,V,T ∼MN(θ∗, τ 2V∗) (2.12)

where V∗ = (ββt + V−1)−1 and θ∗ = V∗βT. The conjugate IG prior for τ 2 leads to

its marginal conditional distribution as

τ 2|θ,β,T,V ∼ IG(a∗τ , b
∗
τ ) (2.13)
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where a∗τ = aτ + n/2 and b∗τ = bτ +
[

TtT − Ttβ(V−1 + βtβ)−1βtT
]

/2.

The scale parameters in this model hj are again updated by

hj|θ, τ
2,γ ∼ IG(c∗j , d

∗
j) (2.14)

where c∗j = cj + 1/2 and d∗j = dj + θ2
jk/2τ

2. Finally, the latent variable vector T is

updated from a non-standard posterior distribution by a Metropolis step,

f(T|β, θ, τ 2, z) ∝ exp

{

−
1

2τ 2
||T− βθ||2

}

×
n
∏

i=1

eTizi

1 + eTi
. (2.15)

2.4 Model Choice and Prediction

It might be the simplest way to classify using linear discriminant analysis based on the

projection onto an adjusted spline basis, assuming independent identical distributed

noises for each curve. For a comparative study, we also apply naive spline based

classification model, which is the naive version of Bayesian spline-based method (BN-

SCC). Unlike the unified model, it separates the regression and classification models.

It uses the regression model only to obtain the estimate of the spline coefficients and

thereafter plug them in the classification model treating them as a set of classifiers.

We also explore another naive method, which using the regression model as in naive

Bayesian spline-based method to estimate the q-dimensional coefficients, and plugging

the coefficients into support vector machine for classification.

Other model choices can be based on the investigation of different spline bases,

which might involve aspects such as knot selection and determining the dimension of

the spline basis. Except splines, other possible basis function can also be considered.

These areas remain as ongoing research. A flexible natural cubic spline functions,

evaluated at a fine lattice of points, could be a good choice because of their desir-

able mathematical properties and easy implementation (de Boor, 1978, Green and

Silverman, 1994). We use natural cubic spline basis here.
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To select from the different models, we will generally use classification results.

For a new sample with predictor values Ynew, the posterior predictive probability

that its group type, denoted by znew given the old data D is

p(znew|Ynew, D) =

∫

p(znew = 1|Ynew,βnew,φ)p(βnew|Ynew,φ)p(φ|D)dφ, (2.16)

where φ is the vector of all the model parameters. Assuming conditional independence

of the responses the integral can be approximated by the Monte Carlo estimate

M
∑

j=1

p(znew = 1|Ynew, φ
(j))/M, (2.17)

where φ(j) (j = 1 . . . ,M) are the MCMC posterior samples of the parameter φ.

When a test set is provided, we first obtain the posterior distributions of the

parameters (training the model) based on the training data and use them to classify

the test samples. For a new observation from the test set, say zi,tst, we will obtain

the probability p(zi,tst = 1|ztrn,Ytrn,Ytst) by using an equation similar to (2.16),

and approximate it by its Monte Carlo estimate as in equation (2.17). When this

estimated probability exceeds .5, the new observation is classified as 1, otherwise, it

is classified as 0.

For comparison purpose, we report the training error rate as classification result,

as in James and Hastie (2001). The training error rate is given by using the data

without classification as testing data after training the model with the data with

classification.

2.5 Extension to Multicategory Classification

The Bayesian method can be easily extend to classification problems where the re-

sponse is a categorical variable with more than two categories. Assume that response

vector z = (z1, ..., zJ), indicates the observed response data, with zi taking one of j
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possible categories, and let pij = P (zi = j) for i = 1, · · · , n and j = 1, · · · , J , be the

probability that the ith observation falls into the jth category. These probabilities

are related to the predictor curve fi through a link function. Similar to the previ-

ous section, we span the function f with spline basis functions and use the regressed

coefficients β as the classifiers or covariates in the link model. In the multinomial

logit link function (McFadden, 1973) model we again introduce a latent variable Tij

and model the probabilities as

pi1 =
1

1 +
∑J

s=2 exp(Tis)
and pij =

exp(Tij)

1 +
∑J

s=2 exp(Tis)
. (2.18)

The generalized linear model based on spline curves can be expressed as

Tij = βt
iθj + δij , δij ∼ N(0, τ 2) (2.19)

where Tij is the latent variable corresponding to ith sample and jth category, βi is

the i’th wavelet coefficients curve and of size m by 1 and θj is m by 1 regression

coefficients vector. The MCMC training scheme is similar to the binary case and so

are conditional distributions for posterior inference. We adopt the usual classification

rule for multinomial logit model, which is to assign the new curve to group j if the

estimated T ∗
j = argmax(T∗).

2.6 Examples of Application

In this section, we apply the novel Bayesian spline-based classification method de-

noted by BSCC to analyze a simulation data and a real world data, spinal bone

mineral density data. Except naive Bayesian methods results, the classification re-

sults by James and Hastie (2001) using functional linear discriminant analysis are

included for comparison purpose.

All along in the Bayesian models, we wish to put proper but weak prior informa-

tion, in the sense of bringing a lot of information to the problem. For inverse-Gamma
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prior, we use the shape hyperparameter to be larger than 1, allowing the expectation

of the IG distribution exists. For inverse-Wishart prior, we choose to use the degrees

of freedom to be the smallest integer such that the expectation of the distribution

exists. The scale matrix is specified as identity matrix. With the small degrees

of freedom, the scale matrix is unlikely to be critical. Therefore, hyperparameters

(aτ , bτ ) are specified as (2,2), (cj, dj) are specified as (2,2), both (Ai, b) and (B, d) are

specified as identity matrix and 1+rows, where rows is the number of rows of the cor-

responding scale matrix. We found the results insensitive to moderate modifications

of these priors. Also we run the MCMC chain for 80,000 iterations and have thrown

out first 20,000 burn in iterations. The results reported are average of 20 repeats.

The different dimensions of the spline basis have very little effect on classification in

our study. So we choose to use q equal to 6. Through out the analysis of the bone

mineral density data, we use knots starting from smallest age of 8.8 (in years) of the

involved subset and ending at largest age 26.2 (in years) with increments of 0.1.

2.6.1 Simulation Study

To illustrate effectiveness of proposed methods, first we apply them on a simulated

data set. Similar to the motivating example, we generate 40 fragmental curves from

each of two classes with different mean functions and evenly split them to form

training and testing sets. The mean functions are sin(1.8πx+ 6.0) + cos(1.8πx) and

sin(2πx) + cos(2πx), as shown in Figure 2 (thick lines). The curves are corrupted by

independent white Gaussian noise (signal to noise ratio is 4). As shown in Figure 3,

the dimension of the curves are between 3 to 10, and those points on each curve are

randomly selected with equal probability. The knots are equally spaced and divide the

interval [0, 1] into 100 pieces so that all predictor values in the data set are covered.

We performed 20 repetitions of simulation and report the average CCR over these
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Figure 2: The mean functions (thick lines) for two classes in simulated data set,
overlapped by estimated functions (thin lines) by unified Bayesian method. Color
black and grey are used to represent two classes respectively.

20 replications. The highest correct classification rate is 92%, yielded by the unified

Bayesian spline-based classification method. The CCRs are 84%, 82% and 85% for

functional linear discriminant analysis method, the naive method with support vector

machine and the naive Bayesian spline-based method. Classification results show that

the unified model benefits from the combination of spline-based functional regression

and logistics classification models. In the unified Bayesian method, the regression

estimate of the functions in each class is overlapped in Figure 2.

2.6.2 Binary Classification Based on Gender or Ethnicity

The data is a subset of the data presented in Bachrach et al (1999) and was analyzed

for classification purpose in James and Hastie (2001). These data consist of measure-

ments of spinal bone mineral density for 280 people taken at various ages. For each

person we only have two to four measurements, typically measured over no more than

a couple of years. Although classification is not the primary goal of the spinal bone
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Figure 3: Examples of ten curves from each class are overlapped.

density data, we apply our methods to illustrate the irregular curve classification

procedures. At the mean time, it might provide some kind of guidelines to address

those controversy about bone mineral acquisition mentioned in Section 2.1. We first

use gender as the categorical outcome variable. Out of those 280 people, 156 of them

are female and 124 are male. From the data shown in Figure 1, we see that there

is a weak overall separation of gender groups. It seems that female tends to have

higher spinal bone mineral density than male when age is under 18 years (Figure 4).

This pattern is not supported by densities measured after 18 years (Figure 5). There-

fore, we consider to do the classification for three cases: overall ages, ages under 18

years and over 18 years. The following table give the results of different classification

methods.

Estimations of spinal bone mineral densities for female, male and both groups,

by the unified Bayesian method, are plotted in Figure 6. There is gender difference

in spine bone mineral density when age is about below 18. During periods of ages
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Figure 4: Younger (below 18) age group of spinal bone mineral density data. Black
and grey lines represent females and males respectively.
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Figure 5: Elder (over 18) age group of spinal bone mineral density data. Black and
grey lines represent females and males.
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Table 1: The CCRs comparison of our method and other methods for analyzing spinal
bone mineral data using gender as categorical response variable.

Methods BSCC BNSCC BSRSVM FLDA
CCR% for overall ages 75 65 64 71

CCR% for ages under 18 83 79 80 78
CCR% for ages above 18 57 54 55 56

Note: BNSCC and BSCC are the naive version and unified version of Bayesian

spline-based classification methods. BSRSVM is the naive method simply stacking

the Bayesian spline-based regression model and support vector machine. FLDA

stands for the functional linear discriminant analysis in James and Hastie(2001).

younger than about 18, female has higher densities and reaches the peak density

earlier than male. Once the spinal bone mineral density achieve at the peak level,

it maintains at that level until to late twenties. There is no difference between two

gender groups in the spinal bone mineral density after about age 18. For 281 indi-

vidual curves, the maximum mean square errors are 0.006, 0.003 and 0.004 for three

methods: BSCC, BNSCC and BSR. The errors of regression are small according to

mean square error. Therefore the spline-based regression modeling is proper for these

data. The classification results in Table 1 show that the unified version of Bayesian

method yields best classification rate for all three cases. There is no obvious advan-

tages among three other methods. The separation between two gender groups are

more clear for ages below 18. For those above 18 years of age people, the correct

classification rates are around fifty percentage, which agrees with the mix-up pattern

of in Figure 5. Although the estimation of common covariance matrix, Ω, of the spline

regression coefficients, βi’s, is not of direct interest, it does reflect the smoothness

of the spline curve estimation. Also, the regression coefficient vector, θ, in logistic

classification model indicates the effect of curve predictor on the categorical response.

The posterior means and 90% credible intervals from both unified and naiver versions

of Bayesian spline-based methods are given for parameters Ω and θ in Table 2. The
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Table 2: The posterior means and 90% credible intervals for Ω and θ.

Parameter from BSCC from BNSCC
Ω11 2.09 (1.57, 2.73) 2.08 (1.57, 2.76)
Ω21 -0.40 (-0.77, -0.06) -0.40 (-0.79, -0.06)
Ω22 1.70 (1.32, 2.17) 1.68 (1.30, 2.15)
Ω31 -0.31 (-0.61, -0.02) -0.31 (-0.63, -0.01)
Ω32 0.16 (-0.13, 0.46) 0.16 (-0.11, 0.47)
Ω33 1.69 (1.33, 2.13) 1.70 (1.32, 2.18)
Ω41 -0.09 (-0.35, 0.19) -0.09 (-0.37, 0.17)
Ω42 0.22 (-0.03, 0.49) 0.21 (-0.04, 0.48)
Ω43 0.23 (-0.01, 0.48) 0.24 (-0.02, 0.51)
Ω44 1.50 (1.19, 1.87) 1.50 (1.20, 1.86)
Ω51 0.10 (-0.16, 0.34) 0.08 (-0.19, 0.35)
Ω52 0.27 (0.03, 0.53) 0.26 (0.00, 0.54)
Ω53 -0.11 (-0.37, 0.13) -0.12 (-0.35, 0.11)
Ω54 0.14 (-0.09, 0.38) 0.14 (-0.09, 0.37)
Ω55 1.50 (1.21, 1.83) 1.49 (1.19, 1.86)
θ1 0.21 (0.12, 0.28) 0.30 (0.15, 0.44)
θ2 -0.02 (-0.11, 0.1) -0.06 (-0.12, 0.13)
θ3 -0.11 (-0.18, -0.03) -0.00 (-0.12, 0.1)
θ4 0.03 (-0.06, 0.13) 0.00 (-0.09, 0.11)
θ5 0.26 (0.16, 0.38) 0.12 (0.03, 0.22)
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Figure 6: Estimations of spinal bone mineral densities for female (solid) and male
(dash) groups.

relative large diagonal elements of Ω indicates smoother estimated curves for both

unified and naiver Bayesian methods. Although the estimated common covariance

matrix Ω from both unified and naive Bayesian methods are very similar to each

other, the naive method produces a little wider 90% credible intervals that suggest

more uncertainty of the spline coefficients. This implies that unified method does pro-

vide more precise estimation based on linkage between curve predictor and categorical

response. According to the regression coefficient vector, the unified method, yield-

ing three significant coefficients, incorporates more information from curve predictor

for classification. On the other hand, the naive method only yields two significant

coefficients.

To study ethnic effect on bone mineral densities, we let ethnic to be categorical

response variable. For binary classification, we only consider two ethnics, Black and

Asian. A subset of those data, all 78 female Asian and Blacks, are included in

Figure 7. Blacks tend to have higher spinal bone mineral densities than Asians. The
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Figure 7: The spinal bone mineral density data grouped by ethnics. Thin black lines
are 35 female Asians and thin grey lines are 43 female Blacks. Thick grey and black
lines represent estimated spinal bone mineral densities for female Blacks and Asians.

Table 3: The CCRs comparison of our method and other methods for classifying
female Blacks and Asians spinal bone mineral data.

Methods BSCC BNSCC BSRSVM FLDA
CCR% 82 78 78 75

Note: BSCC, BNSCC, BSRSVM and FLDA are same as in Table 1.

classification results are reported in Table 3. Our unified Bayesian classification

method leads in the correct classification rates about 4 percentage more than the

functional linear discriminant analysis by James and Hastie (2001), which in the

second place. The two naive methods have tied results at about 78% CCR. Although

all methods use natural cubic spline to smooth the curves and all regression errors are

small, the model set-ups engaging differently with the spline basis make classification

differ. The estimated spinal bone mineral densities of female Asians and Blacks, by

the unified Bayesian method, are overlapped in Figure 7. There is very clear trend

that Blacks have higher spine bone mineral density than Asians, no matter of age
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period.

2.6.3 Multicategory Classification Based on Ethnicities

In this section, we illustrate that our method can be easily extend to multicate-

gory classification case by applying the classification methods to classify four ethnics

groups based on spinal bone mineral density curves. Out of 153 female individ-

uals, there are 35 Asians, 43 Blacks, 27 Hispanics and 48 Whites. Table 4 gives

classification results comparisons. Because the spinal bone mineral densities of four

ethnicities are really mixed together, all correct classification rates are around forty

to fifty percent. The unified Bayesian spline-based classification method performs

best with 55% CCR. On the second place is the naive method using support vector

machine, which has slightly higher overall CCR than FLDA method by James and

Hastie (2001). Among four ethnicities, Hispanics and Whites are associated with low

correct classification rates, while Asians and Blacks are relatively well classified by

all methods. Estimations of spinal bone mineral densities for these four ethnicities,

by the unified Bayesian method, are plotted in Figure 8. The estimated spinal bone

mineral densities for Blacks are higher than other three ethnicities over the age span

from nine to twenty five. Asians has lower spinal bone mineral densities than other

three ethnicities after sixteen years old. The estimated spinal bone mineral densities

for Asians and Blacks are separated from the rest of the female group. Therefore

they are expected to be classified relatively better than other three ethnicities. The

results in Table 4 support this finding.
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Table 4: The CCRs comparison for multicategory classification: separating Asian,
Black, Hispanic and White female individuals based on their spinal bone mineral
density data.

Methods BSCC BNSCC BSRSVM FLDA
overall CCR% 55 40 45 43

CCR% for Asians 74 63 69 63
CCR% for Blacks 81 67 70 70

CCR% for Hispanics 33 11 22 19
CCR% for Whites 21 15 19 19

Note: BSCC, BNSCC, BSRSVM and FLDA are same as in Table 1.
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Figure 8: Estimated spinal bone mineral densities for female group: Asians(thick
solid), Blacks(thick dash), Hispanics(thin dash) and Whites(thin solid).
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CHAPTER III

HIGH DIMENSION SPIKY CURVE CLASSIFICATION

USING WAVELETS

3.1 Motivation

In the previous chapter, we studied classifying irregular curves when the sample size

is relatively larger than the dimension the curves. However, some curve classification

problems involve high dimensional spiky curves, which pose a lot of difficulty on the

task.

There are several existing approaches to curve classification, including the straight-

forward method of using summary quantiles, such as the mode, to perform classification

(Pfeiffer et al, 2002). Parker (2002) performed classification by combining several sim-

ple algorithms such as moments, projections, convexity, slope histogram and angle-

distance signature. Müller and Stadtmüller (2004) proposed a generalized functional

linear regression model by approximating the predictor processes with a truncated

Karhunen-Loéve expansion. James and Hastie (2001) developed a functional linear

discriminant analysis method using splines to model the irregular curve functions.

This spline model was later extended by James (2002) to predict survival status in

the primary biliary cirrhosis data set by employing a functional logistic regression

method. The performance of a spline model has to heavily rely on proper knot se-

lection. Although there are approaches for adaptive knot selection, their use in an

already involved model can be computationally infeasible.

In a functional context, splines lack the ability to fit sharp localized changes in

curves and there exists better alternatives such as wavelets. The Bayesian wavelet

modeling used in this paper manages to overcome these limitations as wavelets have
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nice approximation properties over a large class of functional spaces (Daubechies,

1992) that can accommodate almost all the functional forms observed in real life

applications. Indeed, this richness of the wavelet representation provides the backbone

for the popular frequentist wavelet shrinkage estimators of Donoho and Johnstone

(1994, 1995), which are the precursors of the more recent Bayesian wavelet estimation

models (Abramovich et al 1998, Clyde et al 1998, Clyde and George 2000, Vidakovic

1998). Wavelets representations are also sparse and can be helpful in limiting the

number of regressors.

The novelty of the proposed Bayesian model lies in its ability to draw informa-

tion from the functional data as well as from the associated categorical outcome for

classification by unifying wavelet-based functional regression and logistic classification

models. In this process, it enjoys the advantages of Bayesian modeling of functions in

wavelet domain as well as the simplicity of logistic classification models. In most of

the existing models, a naive approach is used, where the estimates from the regression

model are simply plugged into the classification model. Thus the regression model is

unaware of additional information in the categorical outcomes and completely over-

looks the classification problem. A simple example of a naive model would consist of

a wavelet-based selection model - empirical Bayes thresholding method stacked over

a classification scheme based on support vector machine or logistic regression.

3.2 Unified Bayesian Wavelet-based Classification Model

3.2.1 Regression Model for the Predictor Curves

Let the observation for the ith subject or experimental unit be {Yi, zi}, where

Yi = (yi1, · · · , yim) is a vector of m sequential measurements and zi is the corre-

sponding binary classification variable. We write the observational equation with the



32

underlying function fi as,

yi,k = fi(k/m) + εi,k, εi,k ∼ N(0, σ2), k = 1, . . . , m, i = 1, . . . , n. (3.1)

In nonparametric estimation, the functions are analyzed in the sequence space of

coefficients in an orthonormal wavelet basis for L2([0, 1]). Wavelet representations

are sparse for a wide variety of function spaces and their multi-resolution nature

allow us to combine results from different resolutions and make conclusions for the

estimation problem. In particular, the sparseness implies that when the wavelet

basis is orthogonal and compactly supported (Daubechies, 1992), the i.i.d. normal

noise affects all the wavelet coefficients equally, while the signal information remains

isolated in a few coefficients. In shrinkage estimation, these small coefficients which

are mostly noise are discarded to retrieve an effective reconstruction of the function.

In terms of scaling and wavelet functions (ϕ, ψ), a wavelet expansion for fi has the

dyadic form

fi(t) ≈ βi00ϕ00(t) +
∑J

j=1

∑2j−1

k=0
βijkψjk(t) (3.2)

with βi00 as the scaling coefficient and the detail coefficients are βijk.

Using a finite orthonormal basis to represent the functions fi, in a linear model

notation we write

Yi = Xβi + εi, εi ∼MN(0, σ2I) (3.3)

where Yi = (yi,1, . . . , yi,m) is the vector of m observations from the ith unit and

βi = (βi,1, . . . , βi,m) are the wavelet coefficients for fi after the discrete wavelet trans-

formation X. For notational convenience, we let Y = {Yi}
n
i=1 and β = {βi}

n
i=1.

For this regression model, we assume variable selection priors for the wavelet

coefficients that are used for nonlinear Bayesian wavelet modeling (DeCanditis and

Vidakovic 2004, Vidakovic 1998). These priors are readily incorporated as a scale-

mixture with latent indicator variables ηjk that equal 1 with probability πj (Clyde
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et al 1998, Clyde and George 2000, George and McCullogh 1993, DeCanditis and

Vidakovic 2004) and comprise an effective strategy to adapt to the sparseness of the

wavelet representation. Denote the diagonal matrix by diag(ηi)diag(g), where ηi =

(ηi00, ηi10, ηi20, ηi21, . . .) is a vector of latent indicator variables for selection of each

coefficient and g = (g0, g1, g2, g2, . . .) comprise the corresponding scaling parameters.

Then the joint prior for the coefficients and the model variance is

βi, σ
2|ηi, g ∼ NIG(0, diag(ηi)diag(g), aσ, bσ) (3.4)

where NIG denotes the normal-inverse gamma prior – the product of the conditionals

βi|σ
2,ηi, g ∼MN(0, σ2diag(ηi)diag(g)) and σ2 ∼ IG(aσ, bσ) with aσ, bσ as the usual

hyperparameters for the inverse gamma (IG) prior. In the next layer, the prior

distributions for each ηijk and gj are given by

ηijk ∼ Bernoulli(ρj) and gj ∼ IG(uj, vj), (3.5)

where ρj and (uj, vj) are hyperparameters specified levelwise, and j ∈ {0, 1, . . . , log2m},

k ∈ {0, . . . , 2j − 1}.

Setting the latent variables ρj to 1 leads to simple normal priors resulting in a

pointwise Bayesian shrinkage of the wavelet coefficients. Alternatively, the wavelet

coefficients can be specified by Laplace priors (Vidakovic, 1998). This is equivalent

to use a penalized regression with a L1 penalty term such as LASSO. It is convenient

to express the Laplace prior as a scale mixture of normal where the scaling parameter

is mixed by a exponential distribution as follows

βi|σ
2,ηi, g ∼MN(0, σ2diag(ηi)diag(g)),where (3.6)

σ2 ∼ IG(aσ, bσ) and gj ∼ exp(λj/2). (3.7)

Marginalizing the latent scale parameters gj from the model lead to βijk ∼ Laplace(0

, σ2/
√

λj), where λj is hyperparameters specified levelwise and j ∈ {0, 1, . . . , log2m}.
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3.2.2 Classification Model

Associated with each functional predictor Yi, there is a binary classification variable

zi ∈ {0, 1} that takes unit value with unknown probability pi. The wavelet coefficients

from equation (3.3) are used for classification. We develop a logistic classification

model based on these wavelet coefficients β through a latent variable Ti = logit(pi)

as

Ti = βt
iθ + δi, δi ∼ N(0, τ 2) (3.8)

where θ is m× 1 vector of regression coefficients and δi is a random residual compo-

nent. This produces a linear relationship between the classification variables and the

regressed wavelet coefficients.

We assume a variable selection prior distribution for θ similar to the priors

(3.4) used in the regression model. This is a simple and effective way to reduce the

dimensionality of the problem. We again write down the prior covariance matrix as

V = diag(γ)diag(h), where γ = (γ00, γ10, γ20, γ21, . . .) and h = (h0, h1, h2, h2, . . .).

To summarize the unified hierarchical Bayesian model, we have
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Random function Yi ∼ MN(Xβi, σ
2I) (3.9)

βi, σ
2 | ηi, g ∼ NIG(0, diag(ηi)diag(g), aσ, bσ)

gj ∼ IG(uj, vj)

ηijk ∼ Bernoulli(ρj)

Binary outcome zi ∼ Bernoulli(pi)

Ti ∼ N(βt
iθ, τ

2),where Ti = logit(pi)

θ, τ 2 | γ,h ∼ NIG(0, diag(γ)diag(h), aτ , bτ )

hj ∼ IG(cj, dj)

γjk ∼ Bernoulli(πj)

for i = 1, ..., n, j = 0, . . . , log2m and k = 0, ..., 2j − 1.

3.3 Posterior Inference

Again, we derive the full conditional distributions and depend on MCMC methods to

simulate the parameters from this posterior distribution. The conditional distribu-

tions under mixture priors are given separately for the regression and the classification

models.

3.3.1 Regression Model

The conditional distribution for the wavelet coefficients βi follows from the conjugate

model specifications and combination of information from both the regression and

the classification segments. Let Ui = diag(ηi)diag(g), then

βi|Yi, Ti, θ, σ
2, τ 2,Ui ∼MN(β∗

i , σ
2τ 2U∗

i ) (3.10)
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where U∗
i = (τ 2(U−1

i + XtX) + σ2θθt)−1 and β∗
i = U∗

i (τ
2XtYi + σ2Tiθ). However,

the model variance σ2 is updated only using the regression likelihood as

σ2|β,Y,U ∼ IG(a∗σ, d
∗
σ) (3.11)

where a∗σ = aσ +mn/2 and b∗σ = bσ +
∑n

i=1

[

Yt
iYi − Yt

iX(U−1
i + XtX)−1XtYi

]

/2.

The next layer, consists of the scale parameters gℓ which are updated by

gj|β, σ
2,γ ∼ IG(u∗j , v

∗
j ) (3.12)

where u∗j = uj + n
[

∑

i,k ηijk

]

/2 and v∗j = vj +
[

∑

i,k ηijkβ
2
ijk

]

/2σ2. The indicator

variables ηijk are simply updated as

f(ηijk|η−ijk,Ui, θ,Y) ∝
|A∗

i |
1/2

|Ui|1/2
(b∗s)

−a∗

sρj. (3.13)

where A∗
i = (U−1

i +XtX)−1, a∗s = aσ +m/2 and b∗s = bσ +
[

Yt
iYi −Yt

iXA∗XtYi

]

/2.

3.3.2 Logistic Classification Model

The conditional distributions for the logistic classification model follow in a similar

way, except now the detail coefficients βi serve as the predictors of the latent variables

Ti. The corresponding coefficients θ are updated as

θ|β, τ 2,V,T ∼MN(θ∗, τ 2V∗) (3.14)

where V∗ = (ββt + V−1)−1, θ∗ = V∗βT and T = (T1, . . . , Tn)t. The conjugate IG

prior for τ 2 leads to its marginal conditional distribution as

τ 2|θ,β,T,V ∼ IG(a∗τ , b
∗
τ ) (3.15)

where a∗τ = aτ + n/2 and b∗τ = bτ + [TtT − θ∗t(V∗)−1θ∗]/2.

The scale parameters in this model hj are again updated by

hj|θ, τ
2,γ ∼ IG(c∗j , d

∗
j) (3.16)
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where c∗j = cj +
[

∑

k γjk

]

/2 and d∗j = dj +
[

∑

k γjkθ
2
jk

]

/2τ 2. The indicator variables

γjk are simply updated as

f(γjk|γ−jk,T, θ,V) ∝
|V∗|1/2

|V|1/2
(b∗τ )

−a∗

τπj . (3.17)

Finally, the latent variable vector T is updated from a non-standard posterior distri-

bution by a Metropolis step,

f(T|β, θ, τ 2, z) ∝ exp

{

−
1

2τ 2
||T− βtθ||2

}

×
n
∏

i=1

eTizi

1 + eTi
. (3.18)

3.3.3 Posterior Inference with Laplace Priors

Most of the posterior distributions follow from above two sections, except now we do

not have the latent indicators (ηjk = 1) and the posterior distribution of the scaling

parameters is given by

f(gj|β, σ
2) ∝

1

g
n2j−1/2
j

exp

[

−
1

2

(

∑N,2j−1

i=1,k=0 β
2
ijk

gjσ2
+ λjgj

)]

, (3.19)

which is an inverse Gaussian distribution, gj ∼ InvGauss(−n2j−1

2
+1,

∑N,2j−1

i=1,k=0

β2

ijk

σ2 , λj).

3.4 Extension to Multicategory Classification

Here we are interested in classification problems where the response is a categorical

variable with more than two categories. Assume that response vector z = (z1, ..., zJ),

indicates the observed response data, with zi taking one of j possible categories, and

let pij = P (zi = j) for i = 1, · · · , n and j = 1, · · · , J , be the probability that the ith

observation falls into the jth category. These probabilities are related to the predictor

curve fi through a link function. Once again, we span the function f with wavelet

basis functions and use the wavelet coefficients β as the classifiers or covariates in

the link model. We introduce a latent variable Tij in the multinomial logit link
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function (McFadden, 1973) and model the probabilities as described in Section 2.4.

The MCMC training scheme is similar to the binary case and so are conditional

distributions for posterior inference.

3.5 Prediction and Model Choice

For a new sample with predictor values Ynew, the posterior predictive probability

that its group type, denoted by znew given the old data D is

p(znew|Ynew, D) =

∫

p(znew = 1|Ynew,βnew, θ, τ
2,V)p(βnew|Ynew, σ

2,U)p(φ|D)dφ,

(3.20)

where φ is the vector of all the model parameters. Assuming conditional independence

of the responses the integral can be approximated by the Monte Carlo estimate

M
∑

j=1

p(znew = 1|Ynew, φ
(j))/M, (3.21)

where φ(j) (j = 1 . . . ,M) are the MCMC posterior samples of the parameter φ.

We use correct classification rates to compare performance of different classification

methods in Section ??. When a test set is provided, we first obtain the posterior dis-

tributions of the parameters (training the model) based on the training data and use

them to classify the test samples. For a new observation from the test set, say zi,tst,

we will obtain the probability p(zi,tst = 1|ztrn,Ytrn,Ytst) by using an equation simi-

lar to (3.20), and approximate it by its Monte Carlo estimate as in equation (3.21).

When this estimated probability exceeds .5, the new observation is classified as 1,

otherwise, it is classified as 0.

If there is no test set available, we use a hold-one-out cross-validation approach.

We will exploit the technique described in Gelfand (1996) to simplify our computation.

For the cross-validation predictive density, in general, writing z−i as the vector of zj’s
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minus zi,

p(zi|z−i) =
p(z)

p(z−i)
=

[
∫

{p(zi|z−i, φ)}−1p(φ|z)dφ

]−1

. (3.22)

Monte-Carlo integration yields

p̂(zi|z−i) = M/

M
∑

j=1

[

p(zi|z−i, φ
(j))
]−1

, (3.23)

where φ(j), j = 1, . . . ,M are the MCMC posterior samples of the parameter vector φ.

This simple expression is due to the fact that zi’s are conditionally independent given

φi’s. If we wish to make draws from p(zi|z−i,trn), then we need to use importance

sampling (Gelfand, 1996).

3.6 Examples of Application

In this section, we apply the Bayesian wavelet-based classification method denoted

by BWCC to analyze simulated data and several real data sets, including both binary

and multicategory response cases. We analyze Medfly data containing smooth curves,

leaf data with mild sharp curves and proteomics mass spectrometry data possessing

many sharp curves. To put in weak but proper prior information for inverse-Gamma

prior, we use the shape hyperparameter to be larger than 1, allowing the expectation

of the IG distribution exists. So the hyperparameters (a, b) are specified as (2,2); and

both (u, v) and (c, d) are specified as (2,2). In all the simulations, we run the MCMC

for 80,000 iterations with a burn-in of the first 20,000 iterations.

For a comparative study, we also apply naive wavelet-based classification model

(BNWCC) as well as two other naive plug-in methods to these data sets. Unlike the

unified model, the naive version of Bayesian wavelet-based method (BNWCC) sepa-

rates the regression and classification models. It uses the regression model to obtain

the estimate of the wavelet coefficients that are later plugged in the classification
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model treating them as a set of classifiers. Furthermore, we use wavelet-based em-

pirical Bayes thresholding methods in the regression step following Silverman and

Johnstone (2005) and the selected wavelet coefficients have been employed to two

different classification methods, support vector machine and classical logistic regres-

sion. These two methods will be denoted as EBTSVM and EBTLOG respectively. For

comparison purpose, we also apply a unified spline-based Bayesian method (SBCC),

which comprises logistic regression and simply uses BIC to determine the number

of evenly distributed knots. The following measures are used for comparison of the

different methods. The correct classification rate (CCR), where

CCR =
number of correctly classified samples

total number of samples
× 100%,

is reported as the result of classification for all data sets. When data set includes

disease group(s) versus control group, we also report the false discovery rate (FDR),

where

FDR =
number of samples falsely classified into disease group

total number of samples classified into disease group
× 100%.

3.6.1 Application on Simulated Data

We conduct two simulation studies to illustrate the capabilities of our method. We

want to simulate curves with very sharp peaks and have used the Bump and Heavisine

functions (Donoho and Johnstone, 1994, 1995). The Bump functions corresponding

to two classes are very similar except at two locations and separating them can be

a difficult classification problem. Similarly for Heavisine functions, the first class

contains a smooth function and the second class has single spike added to the smooth

function. We have plotted the overlapping functions (for the two classes) in Figure 9.

The curves are corrupted by additive Gaussian white noise N(0, σ2) with signal-to-

noise ratio equal to 5. We generate 24 curves from two classes with different location
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Figure 9: Above: Simulated Bump curves for the two classes. Below: Simulated
Heavisine curves for the two classes. Solid line corresponding to the first class and
dotted line corresponding to the second class.

parameters and evenly split them into training and testing sets. We have used three

prior distributions Gaussian (G), Laplace (L), Mixture (M) for the wavelet coefficients

(β) as well as for the classification parameters (θ) in our unified (BWCC) and naive

(BNWCC) wavelet based models. We have compared these models with the spline

based Bayesian method (SBCC), and the naive method utilizing empirical Bayes

wavelet thresholding with SVM classifier (EBTSVM). We performed 50 repetitions

of simulation for both Bump curves and Heavisine curves and report the average CCR

over these 50 replications.

Our results in Table 5 show that for both Bump and Heavisine curves, the naive

and unified version of our wavelet-based methods yield best CCR with scale-mixture

prior. Hence, we will focus on using scale-mixture prior for further applications in

later sections. Classification results also show that the unified model benefits from

the combination of wavelet functional regression and logistics classification models as
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Table 5: The CCRs comparison of our methods and other methods for analyzing
simulated Bumps and Heavisine curve data.

Methods BWCC BNWCC SBCC EBTSVM
Bump CCR% 82(G), 85(L), 86(M) 73(G), 77(L), 78(M) 66 75

Heavisine CCR% 88(G), 92(L), 92(M) 77(G), 83(L), 85(M) 73 79

Note: BNWCC and BWCC are the naive version and unified version of Bayesian

wavelet-based classification methods. Three different priors are explored with this

data set. SBCC is spline-based Bayesian curve classification method. EBTSVM is the

naive method simply stacking empirical Bayes wavelet thresholding in Silverman and

Johnstone (2005) and support vector machine.

it performs uniformly better than all the naive plug-in methods. Meanwhile, all the

wavelet based methods performed better than the Bayesian spline-based method.

3.6.2 Application on Medfly Data

Even though our method is particularly useful for classification of wiggly functions

nonetheless it performs well to classify smooth functions. To demonstrate this we

consider Medfly data (Müller and Stadtmüller, 2004) where the predictor curves are

smooth functions. It has been a long-standing problem in evolution and ecology to

analyze the relationship between longevity and reproduction. The precise nature

of the “cost of reproduction” remains elusive. Medfly data consists one thousand

Mediterranean fruit files or medflies for short, described in Carey et al (1998). A

fly is classified as long-lived if its lifetime is longer than 44 days, otherwise it is

classified as short-lived. In addition to recording each fly lifetime, simple counts of

daily eggs laid by that fly were also observed. For prediction of longevity, we use the

egg-laying trajectories from 1 to 32 days as the predictor curves. Flies included in

our analysis are those flies that lived past 34 days and were not barren during their

first 32 days. Of those 511 flies passed this screening step, 246 were short-lived and

255 were long-lived. Randomly selected halves of each class form the training set and
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Figure 10: The egg-laying trajectories from 1 to 32 days for two classes in training
data set, 123 of short-lived and 132 of long-lived, are shown in (a) and (b). Examples
of single egg-laying trajectories, short- and long-lived, are in (c) and (d).

the other halves consist the testing set. Medfly data curves are shown in Figure 10.

The top two plots shown in Figure 10 contains some randomly selected trajectories

which reveal no clear distinction between the classes. Thus the classification task

here is difficult. We repeat the splitting of training and testing sets 20 times and

report the average CCR over the 20 repetitions in Table 6. The results indicate that

even for a collection of smooth curves our unified wavelet based method performs

marginally better than other methods. The linear classification boundary that enable

validity of logistic regression is checked by residual plots as in Figure 11. There is no

obvious non-linear trend in the residual plot so we claim that logistic regression model

satisfactorily explains the relationship between the regressor, wavelet coefficients, and

binary categorical outcomes.

We apply inverse wavelet transform onto the fitted regression coefficient θ in

wavelet domain to get the reconstructed regression coefficients for the original egg-
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Table 6: The CCRs comparison of our method and other methods for testing Medfly
data.

Müller and
Methods BWCC BNWCC SBCC Stadtmüller EBTSVM EBTLOG

logit SPQR
overall 62 57 58 58 59 58 57

short-lived 58 49 57 53 52 56 54
long-lived 68 65 61 63 65 62 62

Note: BNWCC, BWCC, SBCC and EBTSVM are same as in Table 1. SPQR stands for

Müller and Stadmüller’s semiparametric quasi-likelihood regression method.

EBTLOG are the naive methods simply stacking empirical Bayes wavelet thresholding

in Silverman and Johnstone (2005) and logistic regression.
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Figure 11: Residual plots of medfly data set. The top plot displays latent variable
versus absolute value of residual, while the bottom one displays both latent variable
and residual using absolute value scale.
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Figure 12: Reconstructed regression coefficient (θ) vs days. Dotted lines are 90%
credible bands.

laying trajectory, Figure 12, which directly reflect the regression effect of reproduction

on longevity. Therefore we can test the null hypothesis that reproduction has no linear

regression effect on longevity. Since coefficients reach the highest end towards age

32 days, we reject the null hypothesis of no effect. Larger regression coefficients

are associated with increased chance for longevity. More reproduction activity during

about 13-18 days and past 28 days is associated with increased longevity. On the other

hand, decreased reproduction between 9-11 days and 20-27 days results in decreased

longevity. Late reproduction that may have a protective effect is most significantly

associated with increased longevity in our analysis. Our conclusions also agree with

those in Müller and Stadtmüller (2004).

3.6.3 Application on Leaf Data

We obtain a ”pseudo time series” data set from Keogh and Folias (2002). The data

set contains a collection of six different species of leaf images and was analyzed in
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Table 7: The CCRs comparison of our methods and other methods for leaf data.

Methods BWCC BNWCC SBCC EBTSVM EBTLOG
CCR% 94 74 70 75 73

Note: BWCC, BNWCC, SBCC, EBTSVM and EBTLOG are same

as in Table 1 and 2.

Ratanamahatana and Keogh (2004a). The leaf image is converted into a ”pseudo

time series” by measuring the local angle of a trace of its perimeter. All time series

are then interpolated into the same length, which is required to apply a type of dis-

tance measure for analysis utilized in Ratanamahatana and Keogh (2004a, 2004b) and

Keogh et al (2004). After conversion and interpolation, each series was standardized

to have mean zero and unit variance. The data set comprises four different species of

maple and two species of oak, with 442 instances in total. For binary classification

case, we only use a subset of leaf data set that comprises the two species (Circinatum

(maple) and Garryana (oak)) with 150 instances. In our analysis, twenty two points

are ignored from the end of each curve so that there are 128 points left for every

curve. This last small part of the curve may carry similar information as the first

small part because of approximate symmetry of the leaf image. Randomly selected

140 curves form the training set and the other 10 curves consist the testing set. We

repeat the splitting of training and testing sets 20 times and report the average CCR

over the 20 repetitions in Table 7. Our unified wavelet-based curve classification

method outperforms all other method with the highest CCR, 94%. The naive plug-

ging in method combining empirical Bayes thresholding and support vector machine

is barely in the second place. Actually three naive wavelet-based methods yield very

close classification results. For this leaf data set, all wavelet-based methods perform

better than spline-based one. The possible reason could be that the separation be-

tween groups are emphasized when the wavelet-based methods achieve sparsity by
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either mixture selection prior or thresholding. However, one may expect to improve

the performance of spline-based method by some adaptive procedures such as knot

tunning.

3.6.4 Wavelets for Unequispaced Design

For non-equispaced design, such as in the next two examples analyzing proteomics

data sets, we use lifted wavelet transforms (Sweldens, 1997). These, unlike the tra-

ditional wavelet transforms, do not require regularly spaced samples. Traditional

wavelet transforms (designed for equispaced samples) can be factored into a sequence

of simpler transforms using the lifting scheme (Sweldens and Daubechies, 1996); and

each lifting step is a refinement over the previous steps and represents an increase in

the smoothness (or order) of the wavelet bases. These features can be extended to

non-equispaced designs by allowing more flexible basis functions that are not simply

translates or dilates of one fixed function and using the Lifting scheme to perform

the construction in the time domain. The wavelets resulting from the lifting scheme

still have all the powerful properties of traditional wavelets such as localization and

good approximation. Despite these properties, the lifting scheme has been largely

overlooked in recent literature and many authors have resorted to using interpolation

for generating equispaced samples for their analysis.

The lifted construction used in the following examples involves two separate

steps. The first step involves an unbalanced Haar transform, that is the usual Haar

transform with adjustments for unequal distance between two successive observations.

The coefficients from this transform are used as the input for a second lifting step

that is an unbalanced version of a biorthogonal Spline wavelet. Thus the degree of the

spline functions determines the smoothness of the overall basis. More details about

such constructions can be found in Deloulle (2002). The wavelet transforms built in
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this manner are not orthogonal as in the previous examples. This does not overly

affect the posterior inference or the performance of our model as we ensure near

orthogonality of transform within the lifting scheme. The posterior distributions

as calculated in the appendix can be easily extended to the case where X is not

orthogonal.

3.6.5 Application on Toxicoproteomics Data

Our next real data example is to classify toxicoproteomics data from surface enhanced

laser desorption and ionization technology which was first analyzed in Petricoin et

al (2004). This is an experiment on detection of doxorubincin induced cardiotoxicity

and samples are from Spontaneously Hypertensive Rats with acute doxorubicin car-

diotoxicity, subacute and saline alone controls. A mass spectrum is a curve where the

x-axis is mass to charge (m/z) value, the ratio of the weight of a specific molecular

to its electrical charge, and the y-axis is the relative signal intensity for the molecule,

a measure of the abundance of the molecule in the sample. Apart from the serum

spectra functional curve (see Figure 13), it has categorical response variables from

cardiotoxicity and control groups. Pre-processing done by Petricoin et al (2004) is

called binning process. The high-resolution spectra is binned using a function of 400

parts per million, e.g., the m/z bin sizes linearly increase from 0.28 at m/z 700 to 4.75

at m/z 12000. The m/z values in the spectra are not the actual m/z values from raw

mass spectra but generated based on binned data by the high-resolution instrument.

The binning process makes all samples have identical mass/charge (m/z) values and

the number of data points condensed from 350000 to 7105 per sample. Binning can

introduce coarseness and thus subtle trends or findings can then be masked. There-

fore exploring of various binning techniques remains under investigation (Johann et

al, 2004).
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Figure 13: The spectra curves from two classes in training data set, 22 of cardiotoxicity
and 14 of control, are shown in (a) and (b). Example of single original curves,
cardiotoxicity and control, are in (c) and (d). Curves are shown based on spectra
after binning process so there are total 7105 points in each curve.
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Table 8: The CCRs and FDRs comparison of our method and other methods for
analyzing toxicoproteomics data. BNWCC, BWCC, SBCC, and EBTSVM are same
as in Table 1.

Methods BWCC BNWCC SBCC ProteomeQuest EBTSVM
Test Set 1’s CCR% 100 89 81 100 86
Test Set 1’s FDR% 0 14 19 0 16

Test Set 2’s CCR% 90 73 66 81 72

Note: BWCC, BNWCC, SBCC, and EBTSVM are same as in Table 1 and 2.

We have used this pre-processed data for classification purpose. There are 36

training samples and two sets of test samples. First set of test samples contains

36 observations which are very similar to the training data so easy to classify. The

second test set contains 43 observations and is very different from the training data

so is harder to classify than the previous one. Starting from those binned spectra,

which are accessible to public, we further select 512 points through out the whole

7105 points by keeping every 12 other points so that each curve is well represented

by reasonable number of points. Then the data has been transformed to the log-

scale and further standardized to have mean zero and variance one. Testing data are

treated exactly as the training data. Because of the non-equispaced m/z values for

each spectrum, we apply the lifting scheme as stated at the beginning of this section

when realizing our wavelet-based methods.

The results are presented in Table 8. We compare the classification results of

our methods with those of three other methods: spline-based method, Proteome-

Quest (Petricoin et al, 2004) and the naive plugging-in method using empirical Bayes

thresholding and support vector machine. For test set 1, both unified wavelet-based

method and ProteomeQuest correctly classify all samples for cardiotoxicity and con-

trol groups. Our naive wavelet-based method performs better than the plugging-in

method and spline-based method in terms of both correct classification rate and false
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discovery rate. All these methods also maintain the similar ranks according to false

discovery rates. For test set 2, our unified wavelet-based method is the winner with

90% correct classification rate. Both naive wavelet-based methods generate similar

results but still beat the spline-based method yielding unsatisfactory result. Rats in

set 2 are older ones under long-term saline alone or dexrazoxane treatments. The

difference in ages and treatments between rats in test set 2 and those in training or

test set 1 makes the classification more difficult. Thus CCRs for test set 2 are lower

than those of test set 1. All methods have very high false discovery rate for test set

2 as the samples are only from the control group.

To verify the normality assumption validity for proteomics data, we conduct

a Bayesian analysis (Chaloner and Brant, 1988) of the residuals. The residuals in

the regression model (3.3) are sampled from their posterior distributions, which are

normal with mean Yi − Xβi and covariance σ2I. A multivariate chi-square test is

then performed to check the normality of sampled residuals for each curve. The

p-values from all one hundred fifteen curves are provided in Figure 14. According

to significance level of 0.05, we see that most of the curves satisfy the normality

assumptions.

The assumption of independence across curve i could be not valid in some real

applications like classification using proteomics mass spectra problems. We can in-

duce correlations in the model by using correlated error structure (Johnstone and

Silverman, 1997) or by exploiting a suitable random effect term within the wavelet

model. This is a complex problem as the exact correlation structure is unknown in

most of these proteomics studies and some type of simpler assumptions are needed

about this structure.
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3.6.6 Application on Multicategory Prostate Cancer Data

Classification of samples from multiple disease or cancer groups based on proteomics

mass spectral curves is a challenging problem. We consider a multicategory prostate

cancer mass spectral data which was previously analyzed by Adam et al (2002) and

Wagner et al (2004). This data set, obtained at the Easter Virginia Medical School

using SELDI-TOF mass spectrometry, consists of four categorical labels: unaffected

healthy men, benign prostatic hyperplasia, organ-confined prostate cancer and non-

organ-confined prostate cancer. There are 326 samples in the data set and 82 of them

are unaffected healthy men, 77 men with benign prostatic hyperplasia, 84 patients

have been diagnosed with organ-confined prostate cancer and 83 with non-organ-

confined prostate cancer. Details of the pre-processing steps include peak detection

and alignment (Adam et al, 2002). Pre-processing begins from selecting mass range

between 2000 to 40000 Dalton because this range contained the majority of the re-

solved protein/peptides. Peak detection involves baseline subtraction, mass accuracy

calibration and automatic peak detection, which are done by a software program

through calculating noise, peak area and filter. Peaks are first sorted by mass and

a mass error score, the measurement of mass difference between peak X and peak

X + 1, is calculated for each peak. If the mass error score is small, peak X and

peak X +1 will be align into one peak, otherwise, they are considered distinct peaks.

Finally, 779 peaks had been selected as input for analysis. We further select 512 peaks

out of them by ignoring those having at most two samples with non-zero values, and

standardize each spectrum to have mean zero and variance one. As in Wagner et al

(2004), training and testing sets are formed by randomized 90/10 splits of each of the

four classes. We repeat the splitting of training and testing sets 20 times and report

the average CCR and FDR over the 20 repetitions. Due to the non-equispaced m/z
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values for each spectrum, we apply the lifting scheme when realizing our wavelet-

based methods. When applying the naive plugging-in method using support vector

machine, we adopt the popular one-vs-all scheme for multicategory classifier.

Recently machine learning based methods have been used for cancer classification

of binary and multi-class data (Ghosh et al, 2004; Chakraborty et al, 2005). Several

flexible machine learning based classification methods like support vector machine,

k-nearest neighbor, kernel method, quadratic discriminant rule were employed by

Wagner et al (2004). Results of our wavelet-based methods together with those from

Wagner et al (2004) are presented in Table 9. Our BWCC is clearly the winner with

92% CCR. Their support vector machine method is in the second place with 86%

CCR. Spline-based Bayesian method fails to capture the spiky curves only yields

63% CCR. Our naive wavelet based method yields correct classification rate three

percent more than simple plugging-in method with support vector machine. Table

9 also reports the overall false discovery rate that is calculated using control and

benign prostatic hyperplasia groups as non-cancer group. Results according to false

discovery rate suggest the naive plugging-in method is better than our naive wavelet-

based method. In fact, these two naive methods are similar in two manners: they

are wavelet-based and utilizing Bayesian modeling to select variables. The difference

is that our method adopts mixture prior to achieve sparsity while empirical Bayes

thresholding method uses different kind of threshold criterion. The main drawback

of the machine learning methods is that they fail to recognize the functional nature

of the data underlying the spectra curves.

The normality assumption for these prostate cancer data is verified by conducting

a Bayesian analysis of the residuals, as aforementioned in Section 3.6.5. The p-values

from all three hundred twenty six curves are provided in Figure 14. Most of them

satisfy the normality assumptions, according to significance level of 0.05.
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Table 9: The multicategory classification results comparison of our method and other
methods for 4-category prostate cancer data.

Methods overall CCR% overall FDR%
BWCC 92 10

BNWCC 81 22
SBCC 63 30

EBTSVM 78 20
FCDA 84 –
SVM 86 –

Kernel 80 –
QDA 79 –
kNN 77 –

Note: BNWCC, BWCC, SBCC and EBTSVM are same as

in Table 1. FCDA is Fisher’s canonical (linear) discriminant

analysis. SVM is linear support vector machine. Kernel is

non-parametric discrimination method. QDA is quadratic

discriminant rule. kNN is k-nearest neighbor method.
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Figure 14: P-values for normality checking. The top plot is for 115 curves in toxico-
proteomics data and the bottom one for 326 curves in prostate cancer data.
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Methods and results in this chapter have been included in a submitted paper,

Wang et al (2006).
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CHAPTER IV

BAYESIAN SURVIVAL ANALYSIS USING PROPORTIONAL

HAZARDS MODEL AND GENERALIZED LINEAR

REGRESSION

4.1 Motivation

In previous two chapters, we were focus on classification task based on functional

curves that are complex in sense of smooth or spiky, regularly or irregularly sampled.

There are other issues of interest such as survival status that have relationships with

time-dependent curve covariates. Usually, the curve covariates represent the process

of disease marker. For example, for data collected by the Mayo Clinic between 1974

and 1984 (Fleming and Harrrington, 1991) on patients with primary biliary cirrhosis

(PBC) of the liver, one wants to know how the potential predictors, serum bilirubin

and albumin, are related to life expectancy and whether there is treatment effect

of drug D-penicillamine. Notice that there are different numbers of measurements

for each patient and they are taken at different times so it is not possible to use a

standard multiple regression model. This characteristic pose most of existing methods

in implausible situation. Both parametric and semiparametric models are available to

model survival data. Commonly used parametric models include the exponential and

Weibull models, which are attractive in their simplicity and the easy interpretability of

their components. In practice, however, semiparametric proportional hazards models

are widely used, since they impose no particular shape on the survival curves.

Among those frequentist methods (such as DeGruttola and Tu, 1994 and Hogan

and Laird, 1997) for joint modeling of longitudinal and survival data, Wulfsohn and

Tsiatis (1997) proposed a general approach that combines a proportional hazards
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model for survival and a random effects model for regression. The random effects that

consist of a linear functions of time in the form of θ0i+θ1itij +eij were assumed to have

a bivariate normal distribution with a non-zero mean vector and covariance matrix.

The hazards function is expressed by a baseline hazard term and an exponential

function of the product of the linear function and regression coefficients. A Bayesian

method was explored by Faucett and Thomas (1996), in which the same joint model

was used and noninformative priors are assigned for all parameters. An apparent

advantage of this approach is that it can give efficient estimation by making a direct

link between the survival and longitudinal covariate. However, the linear parametric

form of the functional covariate may be inappropriate in case of that the rate of change

varies over the entire length of disease process. Also, the assumption of independence

over longitudinal measurements of same individual is a very strong assumption, which

could be violated in some settings.

There are also other existing Bayesian methods for this jointly type of modeling.

They mainly differ in the ways of modeling longitudinal covariate. For example,

Ibrahim, Chen and Sinha (2004) modeled bivariate longitudinal and survival data by

assuming both of two covariates measure a true unobservable common measure that

is modeled by an arbitrary function indexed by paramter vector. The relationships

are illustrated as following

Yi1(t) = X∗
i (t) + εi1(t)

Yi2(t) = α0 + α1X
∗
i (t) + εi2(t)

X∗
i (t) = gγi

(t)

The trajectory function was determined by exploratory analysis to take form of γ1i +

γ2it+γ3it
2. This approach partially overcomes the inappropriate parametric function

format by leaving the trajectory function open to general structure. However, the
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way to use underlying common measure for two covariates needs sound biological

considerations for specific problems. Also, although the covariance between the two

variables are modeled by a 2-by-2 matrix, the correlation across same individual is not

considered. In another word, they couldn’t avoid the independence assumption as in

Wulfsohn and Tsiatis (1997) and Faucett and Thomas (1996). Motivated by the fact

that the slope of CD4 for an individual can vary over time, Wang and Taylor (2000)

introduced an integrated Ornstein-Uhlenbeck process into the longitudinal modeling,

which is written as

Yi(tij) = Zi(tij) + ei(tij),

Zi(t) = ai + bt+ βXi(t) +Wi(t).

The term Wi(t) is an IOU process with covariance function between values at times

s and t given by

σ2

2α3
[2αmin(s, t) + exp(−αt) + exp(−αs) − 1 − exp(−α | t− s |)].

This method also assumed independence across each longitudinal covariate. It is

known that the IOU process greatly increases both the number of parameters and

the computational complexity (Ibrahim, Chen and Sinha, 2001). Brown and Ibrahim

(2003) started from similar model as in Wulfsohn and Tsiatis (1997) and Faucett and

Thomas (1996) for their own Bayesian semiparametric joint modeling, but they used

a quadratic form for longitudinal part and introduced nonparametric specification of

the distribution of the random effects, βi’s, in longitudinal model. A Dirichlet process

prior is used for those random effects to overcome concerns such as the distribution

of βi may vary over time or behave non-normally. However, the problems faced by

Wulfsohn and Tsiatis (1997) and Faucett and Thomas (1996) were left unsolved.

Guo and Carlin (2004) compared separate and joint modeling of longitudinal and
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event time data and concluded that the joint Bayesian approach appears to offer

significantly improved estimation and more efficient computation.

In the field of functional regression, basis function approach with splines is widely

used for curve fitting. We propose a relatively simple joint model using spline basis,

in which the usage of the splines simplifies the parameterizations and allows flexible

non-linear pattern of the marker/predictor process. Joint model is more appropriate

than separated model based on the fact that, generally, the longitudinal variable is

correlated with survival response. Meanwhile, because information are shared be-

tween the regression and proportional hazards models, the joint modeling framework

can improve the efficiency of estimation in both parts of the model. Additionally, we

set up the model without the assumption of independence over longitudinal measure-

ments of same individual, which fits better to real world problem settings. Our model

can be easily expanded to include multiple functional covariates. We use Bayes factor

to compare models with different covariates.

4.2 The Bayesian Unified Hierarchical Model

4.2.1 Regression Model for the Functional Covariates

In some survival analysis scenario, we observe time-dependent Y(ti) covariates curve

and the pair (Zi, δi) as response for each individual. Each individual has a lifetime

Ti and an censor time Ci and they are related to response pair by the following way

Zi = min(Ti, Ci) and δi =











1 if Ti ≤ Ci

0 if Ti > Ci

Assume that censoring is independent of all other survival and covariate information.

For the covariates curve Y(ti), we have

Y(ti) = f(ti) + ǫi ǫi ∼MN(0,Σi) (4.1)
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where ti = (t1, ..., tpi
) is the time points when measurements were recorded for ith

individual, f(ti) is the true functional covariates curve, and ǫi represents noises. The

covariates curves can often be used to predict the survival time or hazard function.

However, the original covariates curves are usually not in proper condition to be

employed in the prediction procedure. Hence, a generalized linear regression step for

the covariates curves is necessary. We define f(ti) = X(ti)βi so that the regression

model becomes

Y(ti) = X(ti)βi + ǫi ǫi ∼MN(0,Σi) (4.2)

where X(ti) is a transform basis for ith individual, and βi is the regressed covariates

vector. If we adopt the spline basis as transform basis matrix, then the vector βi

is smoothed covariates coefficients. Natural cubic spline functions is employed here

because of their desirable mathematical properties and easy implementation (de Boor,

1978, Green and Silverman, 1994). For notation convenience, we drop the time points

part so that we use Yi and Xi from now on. The natural cubic spline basis matrix

X is evaluated on a fine lattice of points, then Xi is the basis matrix corresponding

to time points included by ith individual. In practice, the natural cubic spline basis

can be generated based on B-spline basis matrix with certain degrees of freedom on a

sequence of knots that should include at least all time points in the data set. Singular

value decomposition is then applied to construct the orthogonal basis matrix. It is

worth of pointing out that although the full matrix X is orthogonally formed, the

basis matrix Xi for ith subject is not orthogonal.

We can further concentrate the information from the covariates curve into one

scalar variable wi through a linear model

wi = βt
iθ + ei ei ∼ N(0, τ 2) (4.3)

where θ is the regression coefficient vector and ei is error term. The benefit from
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this linear model is that we overcome the computation difficulties by including the

random error term.

For the regression model (2.4) with unstructured covariance Σi, we put prior

distributions

Σi ∼ IW (Ai, b), (4.4)

βi ∼ MN(0,Ω), (4.5)

Ω ∼ IW (B, d), (4.6)

where hyperparameters pairs (Ai, b) and (B, d) are scale matrices and degrees of free-

dom of inverse Wishart distribution. Again, as in Chapter II, the covariance matrix

Ω serves as smoothing parameter. Automatically coming from the Bayesian frame-

work, the smoothing parameter selector is to place a continuous density probability

prior on Ω that allow us automatically put zero prior probability on the possibility

of doing no smoothing at all. For the linear concentrating model (4.3), we use

θ, τ 2|V ∼ NIG(0,V, aτ , bτ ). (4.7)

as prior distributions. Note that V = diag(hk) and hk ∼ IG(ck, dk).

4.2.2 Cox Proportional Hazards (PH) Model

Cox PH model is often employed to study time-dependent covariates effects on sur-

vival responses. In those existing models (Ibrahim et al, 2004, Wang and Taylor,

2001), time dependent covariates and other baseline covariates such as gender and

age are considered in the proportional hazards model. In this dissertation, we simply

include the effects from time dependent covariates because other covariates may have

some effects but they are not of main interest here. We plug the informative scalar wi,

which sometimes is called linear predictor and contains summarization of covariates
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effects, into the PH model, so we have

h(t | Yi) = h0(t)exp(wi) (4.8)

where Yi is the ith individual covariates vector and h0(t) is the baseline hazard

function free of the covariates. The baseline function can be approximated by a

piece-wisely defined function

h0(t) = λj (sj−1 ≤ t < sj), j = 1, . . . , J (4.9)

When the total number of intervals, J , is large, the step function approximates a

smooth function. The value of J typically would be 10 or less. The prior distribution

for parameters λ = {λj} in PH model is

λj ∼ G(aj , bj) (4.10)

where aj and bj are specified for each interval.

To summarize the hierarchical model set-up, we have
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Random function Yi ∼ MN(Xiβi,Σi) (4.11)

Σi ∼ IW (Ai, b)

βi ∼ N(0,Ω)

Ω ∼ IW (B, d)

Linear predictor wi ∼ MN(βt
iθ, τ

2)

θ, τ 2|V ∼ NIG(0,V, aτ , bτ ), where V = diag(h)

hk ∼ IG(ck, dk)

Hazard function h(t | Yi) = h0(t)exp(wi),

h0(t) = λj (sj−1 ≤ t < sj)

λj ∼ G(aj, bj)

for i = 1, ..., n, j = 1, . . . , J , and k = 1, . . . , q.

4.3 Posterior Inference

MCMC methods are employed to simulate the parameters from joint posterior dis-

tribution which is not of explicit form. The full conditional distributions are given

separately for the regression and PH models below.

4.3.1 Regression Model for the Functional Covariates

The conditional distribution for the ith regressed covariates vector βi is updated using

regression likelihood

βi | Xi,Yi,Σi,Ω, wi, τ
2, θ ∼MN(β∗

i , τ
2Ω∗) (4.12)



64

where Ω∗ = (τ 2(Ω−1 + Xt
iΣ

−1
i Xi) + θθt)−1 and β∗

i = Ω∗(τ 2Xt
iΣ

−1
i Yi + wiθ). The

model covariance Σi is updated by

Σi|βi,Yi,Xi ∼ IW (A∗
i , b

∗), (4.13)

where A∗
i = Ai + (Yi − Xiβi)(Yi − Xiβi)

t and b∗ = b + 1. The common coefficient

vector θ is updated as

θ | w,β, τ 2,V ∼MN(θ∗, τ 2V∗) (4.14)

where V∗ = (V −1 +
∑n

i=1 βiβ
t
i)

−1 and θ∗ = V∗(
∑n

i=1wiβi). The conjugate IG prior

for variance τ 2 leads to its conditional distribution as

τ 2 | θ,V,w,β ∼ IG(a∗τ , b
∗
τ ) (4.15)

where a∗τ = aτ +(q+n)/2 and b∗τ = bτ +
[

θtV−1θ+
∑n

i=1(wi−βt
iθ)2

]

/2. The conditional

distribution for the informative scalar wi follows combination of information from both

the regression and PH models. The likelihood of PH model lead to its non-standard

form,

wi | zi, δi, h0(t),βi, θ, τ
2 ∝

[

h0(zi)exp(wi)
]δi

× (4.16)

exp

{

−exp(wi)

∫ zi

0

h0(u)du

}

exp

{

−
(w2

i − 2wiβ
t
iθ)

2τ 2

}

which can be updated by a Metropolis step.

The next layer includes scale parameters hk which is updated by

hk | θ, τ 2,V ∼ IG(c∗k, d
∗
k) (4.17)

where c∗k = ck + 1/2 and d∗k = dk + θ2
k/2τ

2, and the covariance matrix Ω for spline

coefficients which is updated as

Ω|β ∼ IW (B∗, d∗), (4.18)

where B∗ = B +
∑n

i=1 βiβ
t
i and d∗ = d+ n.
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4.3.2 Cox Proportional Hazards (PH) Model

The parameters of baseline hazard step function h0(t), λj ’s, can be updated using PH

model,

λj | Y,Z,w ∼ G(a∗j , b
∗
j ) (4.19)

where a∗j = aj +
∑n

i=1 δiI(sj−1 ≤ zi < sj) and b∗j = bj +
∑n

i=1

[

I(zi > sj−1) ×
∫ min(zi,sj)

sj−1

exp(wi)du
]

.

4.4 Bayesian Joint Model with Parametric Functional Regression

For comparison purpose, we also apply parametric regression model in the Bayesian

joint modeling framework. We adopt the quadratic function format for the curve

covariate and assign prior distributions, similarly in Ibrajim et al (2004). The model

setup is summarized as below

Random function Yi ∼ MN(Tiγi,Σi) (4.20)

Σi ∼ IW (Ci, a)

γi ∼ MN(γ0,Φ)

γ0 ∼ MN(0,V)

Φ ∼ IW (D, c)

Hazard function h(t | Yi) = h0(t)exp{η(γ1i + γ2it+ γ3it
2)},

h0(t) = λj (sj−1 ≤ t < sj)

λj ∼ G(aj , bj)

η ∼ N(0, τ 2)

where i = 1, ..., n, j = 1, . . . , J , k = 1, · · · , mi, γi = (γ1i, γ2i, γ3i) and the kth row

of matrix Ti is (1, tik, t
2
ik). Posterior distributions are given for regression model and
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proportional hazards model separately. For the regression segment, we have

Σi | · ∼ IW (C∗
i , a+ 1) where C∗

i = Ci + (Yi −Tiγ i)(Yi −Tiγi)
t,

γi | · ∼MN(γ∗
0,Φ

∗) where Φ∗ = (Tt
iΣ

−1
i Ti + Φ−1)−1

γ∗
0 = Φ∗(Tt

iΣ
−1
i Yi + Φ−1γ0),

γ0 | · ∼MN(µ∗,V∗) where V∗ = (nΦ−1 + V−1)−1,µ∗ = V∗Φ−1
n
∑

i=1

γi,

Φ | · ∼ IW (D∗, c+ n) where D∗ = D +
n
∑

i=1

(γ i − γ0)(γi − γ0)
t.

For the PH model segment, the baseline hazard λj has gamma conditional posterior

distribution, G(a∗j , b
∗
j), where a∗j = aj +

∑n
i=1 δiI(sj−1 ≤ zi < sj) and b∗j = bj +

∑n
i=1

[

I(zi > sj−1)×
∫ min(zi,sj)

sj−1

exp{η(γ1i+γ2iu+γ3iu
2)}du

]

. The conditional posterior

of regression coefficient η does not have close form and is proportional to

exp{−
1

2τ 2
η2} ×

n
∏

i=1

[

(

h0(zi)exp{η(γ1i + γ2izi + γ3iz
2
i )}
)δi

× (4.21)

exp

{

−

∫ zi

0

h0(u)exp
{

η(γ1i + γ2iu+ γ3iu
2)
}

du

}]

The likelihood contribution of ith subject to posterior distribution of η is given by

(

h0(zi)exp{η(γ1i+γ2izi+γ3iz
2
i )}
)δi

exp

{

−

∫ zi

0

h0(u)exp
{

η(γ1i + γ2iu+ γ3iu
2)
}

du

}

.

Ibrahim et al (2004) used an approximation for the integral calculation. For com-

putational convenience, we simply use approximation based on classical trapezoidal

rule.

4.5 Extension to Multiple Covariates and Bayes Factor Calculation

In real world one may want to perform regression with multiple functional predictors.

For example, measurements on both bilitubin and albumin levels in PBC data can

be considered as functional predictors. Our proposed Bayesian unified hierarchical
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model can be easily extended to multiple covariates case. For the ith individual, we

observe ℓth functional covariate Yiℓ, the corresponding spline basis matrix is then

Xiℓ, and βiℓ is regressed coefficients. So, instead of regression model (4.2), we have

Yiℓ = Xiℓβiℓ + ǫiℓ ǫiℓ ∼MN(0,Σiℓ). (4.22)

And the concentration linear model 4.3 becomes

wi =
L
∑

ℓ=1

βt
iℓθℓ + ei ei ∼ N(0, τ 2). (4.23)

Therefore, the prior distributions and posterior distributions are as same in Section

4.2 and 4.3. The MCMC scheme is similar to the single functional covariates case

and so are conditional distributions for posterior inference.

To select from models with different functional covariates, we use Bayes factor

that is the coherent way of comparing models in a Bayesian framework (Kass and

Raftery, 1995). Let model M1 includes only one functional covariates and model M2

includes two. The Bayes factor is calculated using the ratio of posterior to prior odds,

B = π(D|M2)
π(D|M1)

that is a measure of preference for a model M2 against another model

M1 given data D. If 2logB lies between the range 5 to 10, there is strong evidence

in favor of model M2. If it is larger than 10, there is very strong evidence for model

M2. The marginal density is an input to the computation of Bayes factor. When the

marginal likelihood can not be obtained by π(D | Mi) =
∫

f(D | Θ)π(Θ)dΘ, one

can compute the marginal density m(D) (equivalent to marginal likelihood π(D | Mi)

under model Mi) as

m(D) =
f(D | ·)π(·)

π(· | D)
.

The calculation of marginal likelihood has been proved extremely challenging and

analytic evaluation of it is almost never possible (Chib, 1995, Chib and Jeliazkov,

2001). Due to the complexity of the likelihood in our proportional hazards model for
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the survival part, it is impossible to derive the marginal likelihood in explicit form.

We basically follow the technique for general case from Chib (1995) to calculate the

marginal likelihood. The details of derivation are in the Appendix.

4.6 Applications to PBC Data

These data were obtained from StatLib. It is a follow-up to the original primary biliary

cirrhosis (PBC) data set that were from the Mayo Clinic trial in PBC of the liver

conducted between 1974 and 1984 (Fleming and Harrrington, 1991). The 312 patients

participated in the randomized placebo controlled trial of the drug D-penicillamine

have multiple laboratory results, which forms the first 312 cases in the original PBC

file. Some baseline data values in this file differ from the original PBC file. At the

time this data set was assembled, there was significantly more follow-up for many of

the patients so that the time scope extended up to about fourteen years. For each

patient we have a record of the time, in days, between the earlier of death or end of

study (“End”), alive or dead (“Outcome”), whether they received the drug (“Drug”),

day of each patient visit measured from registration (“Day”), serum bilirubin in

mg/dl (“Bili”) and albumin in mg/dl (“Alb”). Several other potential predictors

were measured but for illustrative purposes we will restrict to these variables. Survival

time, a right censored variable, is of interest. Note that each patient has multiple

measurements of both bilirubin and albumin but only one time independent response.

Furthermore, there are different numbers of measurements for each patient and they

are taken at different times so it is not possible to use a standard multiple regression

model. Figure 15 provides a typical example of a functional data set with unequally

spaced observations.

The number of observations for each individual varied from one to sixteen. We

use the data set after the following screening procedures: removing those patients who
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Figure 15: Some examples of the functional covariates (serum bilirubin in mg/dl)
curves over time in PBC data. The above plot contains curves from control group
and the bottom one from drug group.

had liver transplantation, removing those patients with fewer than four observations.

Finally, of those 169 remaining patients, 65 died prior to the end of the study and

89 were from the drug group. To form the fine time lattice for natural cubic spline

basis matrix in regression model, we use knots that equally divide the time interval

(0, 14.115) into 5152 pieces so that each increment is actually one day in the unit of

year. For the baseline hazard step function in PH model, we include 10 step intervals

starting from day 0 to the last day. As discussed in Section 2.6, we use the following

hyperparameters: (aτ , bτ ) are specified as (2,2), (cj, dj) are specified as (2,2), both

(Ai, b) and (B, d) are specified as identity matrix and 1 + rows, where rows is the

number of rows of the corresponding scale matrix. Also we run the MCMC chain

for 60,000 iterations and have thrown out first 20,000 burn in iterations. The results

reported are average of 40 repeats.
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Figure 16: The estimated trajectory of bilirubin levels and the 90% credible bands.

4.6.1 Bilirubin Effect

To study effect of bilirubin levels on survival function, firstly we want to estimate

the true trajectory of its process over time. Figure 16 gives the estimated average

bilirubin level curve over the whole period, which shows a increasing pattern. Because

increasing bilirubin level usually indicates liver failure, we see the population become

sicker. However, the interpretation of the rate of increasing need careful consideration,

especially toward the end of the period. Some patients having extreme high bilirubin

levels might influence the estimation a lot, especially at the time period where only

few patients were observed.

Although the hazard modeling utilized in above section shifts focus from survival

times and survival time distribution to the hazard of failure, one can easily give the

estimated survival function based on estimated hazards function. We superimpose

the posterior estimates of survival curves with 5th and 95th credible intervals on the

Kaplan-Meier estimates of survival functions in Figure 17. The fitness of our model
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Figure 17: Survival curves: Kaplan-Meier (dotted line), our estimated survival curve
based on bilirubin level (black solid line) and its 5th and 95th credible interval (black
dash lines), and those estimations by Bayesian parametric model (red lines).

is satisfactory as we can see from comparing of the survival curves.

To test the null hypothesis that the level of bilirubin has no effect on survival

time, we need to transform the coefficient vector θ back to original time scale. Due to

the orthogonality of the spline basis matrix, the linear model (4.23) can be written as

wi = βt
iX

tXθ+ei. Xθ is the converted coefficients and plotted in Figure 18, together

with its 90% credible interval. We conclude that the level of bilirubin has effect on

survival time based on that those credible intervals shift drastically away from zero.

Liver failure is generally associated with high level of bilirubin. However, according to

the converted coefficients, the time periods have slightly negative coefficients indicat-

ing lower hazards for high bilirubin levels between days 0 to 238. Similar to concerns

in James (2002), this result needs to be interpreted carefully because patients with

high levels in this time period will likely have high bilirubin levels at the early and

late time periods also.
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Figure 18: Converted coefficients for bilirubin levels over days. The dotted lines are
90% credible intervals.

The PBC data has two groups according to whether the patient receive the

drug D-penicillamine. The drug effectiveness on survival is of interest. We apply

our model on both control and drug groups respectively and compare the estimated

survival curves. Figure 19 shows two superimposed survival curves based on our

model and Kaplan-Meier method with 5th and 95th credible intervals for those two

groups. There was no apparent improvement for those on the drug. In fact there

was some evidence that the drug group may be performing worse than the control

group because the estimated survival curve for drug group is a little lower than the

one for control group. On the other hand, the estimated life expectancy is 4135 days

for drug group and 4395 days for control group. The 90% credible bands are (3841,

4429) and (4114, 4676) for drug and control group. Overlapping of the two credible

bands means that there is no significant difference of life expectancy for drug and

control groups.

There are different ways for the regression of the functional predictors. For in-
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Figure 19: Survival curves for control and drug groups (green and red lines): Kaplan-
Meier curve (dotted line), our estimated survival curve (solid line) and its 5th and
95th credible interval (dash lines).

stance, Section 4.4 gives an alternative one. The Bayesian parametric model has

been applied to analyze bilirubin effect on PBC data. The estimated survival curves

and trajectory of bilirubin levels were overlapped in Figure 17 and Figure 16 using

red lines. The survival curve estimate is not as good as those from Bayesian unified

hierarchical model although the 90% credible band is narrower. The estimated biliru-

bin trajectory can not reflect the bend shape as well as that from Bayesian unified

hierarchical model. When drug effect is of interest, same conclusion as that of unified

model can be reached based on the estimated survival curves for both control and

drug groups (see Figure 20). However, comparing to the K-M estimates, survival

curves estimates is not satisfiable, especially for the drug group. The estimated life

expectancies are 4079 days for drug group and 4186 days for control group, with

90% credible intervals (3929, 4229) and (4056, 4340). For the Bayesian parametric

model, the regression coefficient η can be used to test the no-effect null hypothesis for
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Figure 20: Estimated survival curves by Baysian parametric model for control (green
lines) and drug (red lines) groups : Kaplan-Meier (dotted line), the estimated survival
curve (solid line) and its 5th and 95th credible interval (dash lines).

bilirubin level. The estimated eta is 0.0135 and its 90% credible interval is (0.0083,

0.0191), which indicates significant bilirubin effect. Therefore, we conclude that the

quadratic parametric function is not proper enough for high quality reference.

4.6.2 Bilirubin and Albumin Effects

To illustrate the extension capability of our method, we add another functional co-

variates, albumin, to the generalized linear model. The estimated average bilirubin

and albumin curves over the whole period are plotted in Figure 21 and Figure 22

respectively. We see that the estimation for bilirubin levels are extremely similar to

those in Section 4.6.1.

The average curve for albumin shows slow decreasing pattern. A healthy liver

secretes albumin so the decreasing pattern indicates again that the population become

sicker. Figure 23 shows the estimated survival curves using the two covariates model,
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Figure 21: The estimated trajectory for bilirubin level from the model including two
covariates and its 90% credible band.
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Figure 22: The estimated trajectory for albumin level from the model including two
covariates and its 90% credible band.
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Figure 23: Estimated survival curves (solid lines) using both bilirubin and albumin
as covariates. Dotted lines for Kaplan-Meier, and dash lines for 5th and 95th credible
interval.

and the right plot shows the estimated survival curves separately for drug and control

groups. We conclude that estimations are also satisfactory. Using the two covariates

model, the estimated life expectancy is 4123 days for drug group and 4438 days

for control group. The 90% credible bands are (3776, 4502) and (4087, 4798) for

drug and control group. Comparisons based on survival curves (Figure 24) and life

expectancies of drug and control groups reveal again that the two groups have no

significantly different survival functions. These results are extremely similar to those

of Section 4.5.1.

Next we compare the model with bilirubin and albumin as covariates and the

one with bilirubin as covariates and study the effects of covariates on the survival

time. 2log(Bayes Factor) turns out to be 14.28, which shows very strong support to

the model containing bilirubin and albumin as covariates. The converted coefficients

for both covariates, bilirubin and albumin, are overlapped in Figure 25. The 90%
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Figure 24: Control (green lines) and drug (red lines) groups estimated survival curves
(solid lines) using both bilirubin and albumin as covariates. Dotted lines for Kaplan-
Meier, and dash lines for 5th and 95th credible interval.

credible intervals strongly suggest that both bilirubin and albumin have effect on

survival time. However, the bilirubin and albumin levels have inverted effects on

survival time. High level of bilirubin generally implies liver failure, while high level

of albumin indicates healthy liver. The converted coefficients for bilirubin are very

similar to those in Figure 18. According to the converted coefficients, the negative

coefficients means lower hazards and longer survival time for high albumin levels.
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Figure 25: Converted coefficients vs days. The dotted lines are 90% credible intervals.
The concave up curve is for bilirubin and the concave down one for albumin.
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CHAPTER V

CONCLUSIONS

In Chapter II and IV, curve classification parts, we make comparisons in several

aspects. For all comparisons, we use classification rates as criterion to judge the

performance.

In irregular curve classification scenario, although all methods use natural cubic

spline to smooth the curves predictors and all regression errors are small, the model

set-ups engaging differently with the spline basis make classification differ. Compared

with the naive version of Bayesian method, the unified model is always the winner

because the regression procedure is aimed at classification by simultaneously drawing

information from categorical response. The two naive methods combing either logistic

regression or support vector machine have tied results most of the time. Another

comparison is between existing frequentist hierarchical model, FLDA (James and

Hastie, 2001) and our Bayesian spline-based methods. Our unified Bayesian method

performs better than FLDA. Thus we conclude that the unified Bayesian spline-based

method is appeared to be suitable to classify irregular sparse curves. The classification

results shown in Chapter II have supported strongly to this point.

In spiky curve classification scenario, firstly, we compare different ways to do

sparse regression in the wavelet domain. The Laplace prior (putting L1 constraints)

has been used as an alternative way, in addition to scale-mixture prior, to sparse

regression in the wavelet domain. Secondly, we compare the wavelet and spline basis.

The Bayesian spline based method is applied to all application examples. However,

here we did not go into too many details for spline based method. The is possi-

bility that spline based method can be drastically improved. Thirdly, we compare
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difference classification technologies as well as the linear classification model. We re-

port results for empirical Bayes methods, support vector machine, and simple logistic

regression. For the data set examples, we also include both smooth curves and spiky

curves. The classification results suggest that our wavelet based methods show more

power when classifying spiky curves. Therefore we conclude that the unified Bayesian

wavelet-based method is appeared to be suitable to classify sharp-peak curves. The

classification results shown in Chapter III have supported strongly to this point.

When we apply joint hierarchical modeling for survival analysis with time-dependent

covariates, the sparse characteristic of curve predictors leads us to employ splines for

curve regression again. The results in Chapter IV shows that combing proportional

hazard model and the generalized linear regression model provide a feasible and rel-

atively simple way to study effects of both functional predictors and treatments on

survival status.

We have witnessed that in the functional classification or survival analysis area,

splines perform well for sparse smooth curves while wavelets suit high-dimensional

spiky curves. Though spline-based method does not perform satisfactorily in the

examples of spiky curves classification but proper tuning of the knot points or the

selection of the smoothing parameters in an adaptive way may drastically improve the

results. The spline-based methods for both irregular curve classification and survival

analysis parts did not contain knot points and smoothing parameters selection either.

These will be our future research topics. Some of simpler assumptions such as the

assumption of independence across curve i could be not valid in some real applications

but they are needed for the presented models. In the future study, we plan to consider

to remove this strong assumption though it might be a complex problem as the exact

correlation structure is unknown.
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APPENDIX

BAYES FACTOR CALCULATION

Let φ denote the parameters in the model (Ω,Σi,βi, θ, τ
2,V,λ), the logarithm

marginal density is

logm̂(D) = logf(D | φ∗) + logπ(φ∗) − logπ̂(φ∗ | D).

Although φ∗ can be any φ in its support Φ, the density is likely to be more accurately

estimated at a high density point. We choose to use posterior mean provided that

there is no concern that it is a low density point. Because there are several parameters

with conjugate posterior distributions and one latent variable wi in our model, we

use Chib’s general algorithm for arbitrary number of blocks. Rewrite the posterior

density at the selected point as

π(φ∗ | D) = π(Ω∗ | D)

n
∏

i=1

[

π(Σ∗
i | D,Ω

∗)π(β∗
i | D,Ω

∗,Σ∗
i )
]

×π(θ∗ | D,Ω∗,Σ∗,β∗)π(τ 2∗ | D,Ω∗,Σ∗,β∗, θ∗)

×π(V∗ | D,Ω∗,Σ∗,β∗, θ∗, τ 2∗)π(λ∗ | D,Ω∗,Σ∗,β∗, θ∗, τ 2∗,V∗).

It should be clear that the normalizing constants of all densities must be included in

the integration for the above decomposition to be valid. The first term is the marginal

ordinate that can be estimated from the full Gibbs run, by taking the average of the

full conditional density with the posterior draws of β, as

π̂(Ω∗ | D) = G−1
G
∑

g=1

π(Ω∗, | β(g)).



92

To estimate the rest of those terms in π(φ∗ | D), we conduct several reduced complete

conditional Gibbs runs. Respectively, we illustrate the estimation as

π̂(Σ∗
i | D,Ω

∗) = J−1
J
∑

j=1

π(Σ∗
i | D,Ω

∗,β(j), θ(j), τ 2(j),V(j),w(j),λ(j)),

π̂(β∗
i | D,Ω

∗,Σ∗
i ) = J−1

J
∑

j=1

π(β∗
i | D,Ω

∗,Σ∗
i , θ

(j), τ 2(j),V(j), w
(j)
i ,λ(j)),

π̂(θ∗ | D,Ω∗,Σ∗,β∗) = J−1
J
∑

j=1

π(θ∗ | Ω∗,Σ∗
i ,β

∗, τ 2(j),V(j),w(j),λ(j)),

π̂(τ 2∗ | D,Ω∗,Σ∗,β∗, θ∗) = J−1
J
∑

j=1

π(τ 2∗ | Ω∗,Σ∗
i ,β

∗, θ∗,V(j),w(j),λ(j)),

π̂(V∗ | D,Ω∗,Σ∗,β∗, θ∗, τ 2∗) = π(V∗ | θ∗, τ 2∗),

π̂(λ∗ | D,Ω∗,Σ∗,β∗, θ∗, τ 2∗,V∗) = J−1

J
∑

j=1

π(λ | D,w(j)).

The draws {β
(j)
i , θ(j), τ 2(j),V(j),w(j),λ(j)} is from the reduced complete conditional

Gibbs runs, which is same as the full complete conditional Gibbs run except that it

should exclude draws for Ω and use Ω∗ everywhere. Similarly, the draws {θ(j), τ 2(j),

V(j), w
(j)
i ,λ(j)} is from the reduced complete conditional Gibbs run is same as the full

run except that it exclude draws from Ω,Σi and use Ω∗,Σ∗
i everywhere. Other addi-

tional draws are collected similarly. Finally, the additional J iterations with densities

π(λ | D,w) and π(w | D,β∗, θ∗, τ 2∗) produce draws {w(j)} from π(w | D,β∗, θ∗, τ 2∗).

Although this procedure leads to an increase in the number of iterations, it is worth

of pointing out that it does not require new programming. Note that there is no need

of the reduced conditional run when the complete conditional density is solely related

to parameters in previous run, such as π(V∗ | θ∗, τ 2∗).

The marginal density for multiple functional covariates model can be computed

in a very similar way. We can use these marginal density calculations to obtain the

Bayes factor for model comparison.
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