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ABSTRACT

Model for a Fundamental Theory with Supersymmetry. (December 2006)
Seiichiro Yokoo, B.Eng., Keio University
Chair of Advisory Committee Dr. Roland E. Allen

Physics in the year 2006 is tightly constrained by experiment, observation, and
mathematical consistency. The Standard Model provides a remarkably precise de-
scription of particle physics, and general relativity is quite successful in describing
gravitational phenomena. At the same time, it is clear that a more fundamental the-
ory is needed for several distinct reasons. Here we consider a new approach, which
begins with the unusually ambitious point of view that a truly fundamental theory
should aspire to explaining the origins of Lorentz invariance, gravity, gauge fields and
their symmetry, supersymmetry, fermionic fields, bosonic fields, quantum mechanics
and spacetime. The present dissertation is organized so that it starts with the most
conventional ideas for extending the Standard Model and ends with a microscopic sta-
tistical picture, which is actually the logical starting point of the theory, but which
is also the most remote excursion from conventional physics.

One motivation for the present work is the fact that a Euclidean path integral
in quantum physics is equivalent to a partition function in statistical physics. This
suggests that the most fundamental description of nature may be statistical. This
dissertation may be regarded as an attempt to see how far one can go with this
premise in explaining the observed phenomena, starting with the simplest statistical
picture imaginable. It may be that nature is richer than the model assumed here,
but the present results are quite suggestive, because, with a set of assumptions that
are not unreasonable, one recovers the phenomena listed above. At the end, the

present theory leads back to conventional physics, except that Lorentz invariance



v

and supersymmetry are violated at extremely high energy. To be more specific, one
obtains local Lorentz invariance (at low energy compared to the Planck scale), an
SO(N) unified gauge theory (with N = 10 as the simplest possibility), supersymmetry
of Standard Model fermions and their sfermion partners, and other familiar features of
standard physics. Like other attempts at superunification, the present theory involves

higher dimensions and topological defects.
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CHAPTER I

INTRODUCTION
Physics in the year 2006 is tightly constrained by experiment, observation, and math-
ematical consistency. The Standard Model provides a remarkably precise description
of particle physics, and general relativity is quite successful in describing gravita-
tional phenomena. At the same time, it is clear that a more fundamental theory is
needed for several distinct reasons. (1) The Standard Model (SM) contains many
unexplained features and parameters. (2) It is now known that neutrinos have small
masses, and such masses cannot be accommodated in the Standard Model: A Dirac
mass would require an extra field in each generation of fermions, and a Majorana
mass would break conservation of lepton number. On the other hand, both types
of masses fit naturally into a grand unified theory (GUT) like SO(10).(3) Calcula-
tions of the running coupling constants for the three forces of the Standard Model
show that they converge at high energy if one extends the Standard Model to include
both grand unification and supersymmetry (SUSY). At the same time, SUSY elim-
inates a problem posed by the quadratic divergence of the Higgs mass in the SM.
(4) Quantum field theory, which is the basis of the SM (and its extensions) appears
to be inconsistent with general relativity. (5) Standard physics fails to account for
the observations of dark matter, dark energy, scale invariance of fluctuations in the
cosmic microwave background, and preponderance of matter over antimatter. One is
then faced with the need for a more fundamental theory, but also with the fact that
such a theory must reproduce the very tightly-knit structure of standard physics in

the regimes where standard physics has been tested. Formulating a candidate for a

The journal model is Nuclear Physics B.



fundamental theory is then a rather imposing task, with many potential routes to
failure when one compares with the extremely precise tests of certain aspects of stan-
dard physics. This may account for the common statement that superstring theory is
the only viable candidate for a fundamental theory. On the other hand, superstring
theory has a weak record of testable predictions, despite 30 years of intense effort by
a large community of brilliant mathematical physicists [1, 2, 3].

Here we consider an alternative and very different model for a fundamental the-
ory, which actually has much more ambitious goals than superstring theory, since
it begins with the point of view that a truly fundamental theory should aspire to
explaining the origins of
e Lorentz invariance
e gravity
e gauge fields and their symmetry
e supersymimetry
e fermionic fields
e bosonic fields
e quantum mechanics
e spacetime.

This dissertation essentially follows the order above, although the logical devel-
opment of the theory essentially follows the reverse order: In Chapter V, we introduce
the fundamental statistical picture, in which both spacetime coordinates and quan-
tum fields are defined in terms of the occupancies of states. In Chapter IV, a primitive
supersymmetry is first obtained between the initial bosonic and fermionic fields, and
then the more usual form of SUSY is obtained. In Chapter III, gauge fields and
gravity are found to follow from the assumption of a specific model for the behavior

of the fields in both four-dimensional external spacetime and a d-dimensional inter-



nal space. (The present theory is similar to superstring theory in that it contains
higher dimensions, SUSY, and topological defects, but in other respects it is quite
different.) Finally, in this reversal of the order of presentation within the dissertation,
Lorentz invariance is derived as a low energy symmetry, together with the potential
for Lorentz violation at higher energies.

Before beginning the presentation of these novel elements of our theory, in the
next chapter, we establish a foundation by reviewing the most relevant aspects of
standard physics. In deciding how much of this introductory material to put in
appendices, and how much to include in the Introduction itself, we were guided by
the need for continuity in the presentation: The present theory predicts an SO(N)
grand unified gauge group, with N = 10 suggested by experiment, so it seems essential
that the various ideas for grand unification be reviewed. On the other hand, any GUT
is basically a generalization of the Standard Model (SM). For this reason, we begin
the Introduction with the SM, then pass to GUTs, then to SUSY, then to radiative
corrections with SUSY.

We relegate the following topics to 3 appendices: notation and conventions (for
gamma matrices etc.); complex representations; and two-component spinor algebra.
The motivation for both these appendices and the introductory material in the main
text is that we wish the dissertation to be readable by anyone has had a first course
in field theory, rather than just experts in particle physics.

Before considering the Standard Model (SM) and its extensions, it is worthwhile
to consider in a little more detail why these extensions are required. The SM is very
successful. For example, it predicted the existence of the W and Z bosons, gluons,
the charm quark, and the top quark, and the masses of the W and Z gauge bosons

[4], see Table I. However, as mentioned above, the SM is clearly not complete:



Table I. Experimental and theoretical values of mass of W and Z bosons.

Experiment (GeV) SM Calculated (GeV)

80.454 £ 0.059 (UA2, CDF, and DO)

Mass of W boson 80.390 £ 0.018

80.412 + 0.042 (LEP2)

Mass of Z boson 91.1876 4+ 0.0021 91.1874 £+ 0.0021

There are no masses for the (left-handed) neutrinos. Neutrino oscillations have
been observed by the Super-Kamiokande experiment and others, and these os-
cillations require that the neutrinos have masses which are very small (< 1 eV

in the most plausible models).

The energy scale difference between the SM scale (100 GeV) and the GUT scale
(10 —10% GeV) is enormous, and it is not natural that there should be nothing

between the two scales.

23% of the energy density of the universe is apparently cold dark matter, which
must be stable and interact only weakly with ordinary matter. The SM provides

no such candidate.

Radiative corrections to the masses of the SU (2) Higgs bosons diverge quadrat-

ically.

There is no detailed mechanism to produce a negative mass-squared term, which
is required for SU (2) Higgs fields to acquire a nonzero vacuum expectation

value.

The gravitational field escapes unification.




e The SM cannot explain why there are 3 generations.

e The SM model cannot explain the quark mixing and neutrino mixing mass

matrices.

Therefore, when we aspire to a fundamental theory, it is required not only to
reproduce the successful parts of the SM at the electroweak energy scale, but also to
resolve at least some of these problems.

For example, an appropriate GUT yields natural neutrino masses; SUSY protects
the Higgs mass from a quadratic divergence; SUSY and GUTs lead to a beautiful
unification of coupling constants, as can be seen in Fig. 1; SUSY breaking can be
treated in a supergravity (SUGRA) model; and there are rich predictions concerning
dark matter, proton decay etc. The SuperKamiokande proton decay experiment has
determined the lower limit of the lifetime of the proton, at the 90% confidence level,
to be 2.3 x 1033, 1.3 x 10?3, and 1.0 x 103 years for the p — vK*, p — " K", and
p — et K% modes, respectively, so the minimal SUSY SU (5) is excluded [6], with
limits of 2.6 x 1033 and 2.1 x 103 years for p — e and p — u™7° [7]. Nevertheless,
future proton decay and dark matter experiments will increasingly move into regimes
where SUSY and GUT predictions may lead to experimental verification.

In Appendix A, we introduce our notations and conventions. In Section A of this
Introduction, we review the SM; in Section B, the gauge unification groups SU (V)
and SO (N); in Section C, SUSY.

A. Review of the Standard Model

1. Main Ideas

The fields of the SM are summarized in Table II.



0 | 1 | |
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Fig. 1. Running gauge coupling constants in the SM and SUSY-SM. The vertical axis
is the inverse of the square of the gauge coupling constant, and the horizontal
axis is the energy scale. The broken line is for the SM, and the solid line is
for the SUSY-SM. The SM has only one Higgs doublet, but The SUSY-SM
calculation involves not only the SM fields and their superpartners but two
Higgs doublets [5].



Table II. Field content of the Standard Model.

lepton doublet (left chiral)

quark doublet (left chiral)

fuv. (e-neutrino) fu (up)
.fL—l1 = fL—ql =
fe (electron) fa (down)
fv, (p-neutrino) fe (charm)
fr—1, = fro =
fu (1) fs  (strange)
fv. (T-neutrino) fi  (top)
Jr-is = Jr—g =
fr (7) fo  (bottom)
lepton singlet (right chiral) quark singlet
fro1i, = E. (electron) fr—qy =U,D (up, down)
fre, =E, (n) fr—g, = C,S (charm, strange)
fro, =E. (1) fr—gs =T,B (top, bottom)

gauge fields

U (Dy)
(SU(2)L)

B#
AH
GH

(SU(3)¢)

Higgs doublet

and ¢° =

éO
gb,

= i02¢*




The Standard Model is based on the gauge group SU(3)c x SU(2);, x U(1)y,
where C', L, and Y stand for color, left-handed, and hypercharge. The gauge interac-
tions are introduced by the covariant derivative, and the fermion-scalar interactions
are introduced by the Yukawa terms. The Lagrangian for the Standard Model is given
by

Lsy = Lew + Locp, (1.1)

where Locp contains the SU(3)¢ physics and L., the SU(2);, x U(1)y physics, and

1 .
Lqoop = —ZGl‘ij““” + Z iqy" D g, (1.2)
k
with

G, = 0,G, — 0,G), + gsf“chZGf,, (1.3)

DP gy, = [0, + igs (\a/2) G s (1.4)

Qred
9= | GQereen |- (1.5)

Gblue



where the generators are given by

0 1 0 0 —2 O 1 0 0
A= 1 Ao = ! A
1=5 1 0 O 2= 5 0 0 3= 0 -1 0 )
0 0 O 0O 0 O 0O 0 O
0 0 1 0 0 —2 0O 0 O
1 1 1
A4=§ 00 0 A5—§ 00 0 Aa=§ 00 1|,
1 0 0 1 0 0 0 1 0
0O 0 O 1 0 0
Ao = ~ N = — Tr A} =~ (1.6)
= — _ e r i = —=0jj, .
T=5 0 0 7 8 2\/5 01 0 j 5
0O ¢« O 0 0 -2
and
ﬁew - LSU(2)L xU(1)y + Lfermz’on + £scalar7 (17)
where
1 a apv 1 uv
ESU(Q)LXU(UY = _ZW;WW - ZF,LLVF > (18)
ﬁfermion = Z [ifL’YMD;wa + Z‘er)/#DwaR} ) (19)
f
Locatar = DS D) — m?¢t — A (¢76)”
+ Gy [frofr+ fro' fi] - (1.10)

Wi, and Fy, are the SU(2)r, and U(1)y field strengths, f is a fermion field (lepton
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or quark), ¢ is the Higgs doublet, Gy is a Yukawa coupling, and

Wi, = 0.Wg —,W + gf* " WiWy, (1.11)
F,, =09,B,—0,B,, (1.12)
D fr = [0y +ig (1a/2) W) +ig' (Y/2) B,] f1, (1.13)
D fr = [0, +ig' (Y/2) B.) fr, (1.14)
D¢ = [0, +ig (1a/2) WS +ig' (Y/2) B,] ¢, (1.15)

in the case of leptons. For quarks, however, the d,, term is to be omitted because it
is already included in (1.4). Here g and ¢' are the SU(2), and U(1)y gauge coupling
constants, 7, is a Pauli matrix, and Y is the hypercharge.

The Higgs doublet is

+ + ;
¢ = ¢ where = (01t idy) /\/5 ; (1.16)
¢° ¢° = (3 +iga) /V2
70
¢° = ’ = 1029", (1.17)
4

where the vacuum expectation value (V.E.V.) of the ¢ and ¢¢ produce masses for the

second component and the first component of the fermion doublet, respectively. The

potential V (¢) = —m?2¢T¢p + A (¢T¢)2 has a minimum at ¢'¢ = ’;—/\2, and we choose
our vacuum expectation values as
(¢;) =0, for i =1,2,4, (1.18)

(p3) = v =1/ m2/\, (1.19)
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so that
1 0

<¢>=ﬁ N (1.20)

We call the quantum fluctuations of ¢35 about the value v H (z):

H (z) = ¢3 — 0. (1.21)
Then the mass of a fermion is
GY v
my = \/g . (1.22)

Next we determine the masses of the gauge bosons:

9 2

CTaia Y 1 gW3+4g'B, g (Wi —iW?) 0
ig 5 Wi +ig 5By | ()] =3 Lo
=T, g(Wy+iW?) —gW2+g¢B, v

1\’ 1
— (évg) W,Wwr + gvz (—gW3 + dB,)* +0 (W + dB,)’
1 \° 1
— (ﬁvg) W,Wr + ézﬂ (9% +¢?) Z, 2" + 0A, A", (1.23)

where Wi = (W/} T ZWE) /N2, Z, = W2 cosb, — Bysind,, and A, = W2sinf, +
B, cos 0. 0, is the Weinberg (or weak) angle and is defined by

/

- g . _ g
cos b, = —(92 n 9/2)1/2, sinf,, = —(92 n g/2>1/2. (1.24)
Therefore,
1 1
My = jvg, Mz =gv (> +9%)"", Ma=o0. (1.25)
The V.E.V. v of the Higgs field is calculated as
2M 1
v=" = 17z = 246.2 (GeV)  where G = 1.16637 (2) x 107° GeV 2.
I (ViGe)
(1.26)

The quantum numbers of the fields are given in Table III.
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Table III. SU(2) and U(1) quantum numbers of Standard Model matter fields.

v [1/2] 1/2 | =1 | 0
e; [1/2] =1/2| -1 | —1
en| 0] 0 | —2 | -1

up | 172 1/2 | 1/3 | 2/3

dy | 1/2 | —=1/2| 1/3 | -1/3

ug | 0 | 0 | 4/3 | 2/3

dp | 0| 0 |-2/3]|-1/3

The electroweak gauge interaction Lagrangian density becomes

1
Lew-int. = —gJLW, — g'§J{;BM

_ 1.
= =gV T W, — 9’5‘1’7“5/‘1’3“

3 Wl _ 'WQ
_%\pwu (T} +iTs) ¥, (HTQZ“> e

2 12 /
2, 12 9 g° Y g 3 g
— (" +yg \1/%( Ts — —)1/} - __W- —2 B
( ) g2 + g~ 3 P2+ g2 2 (g2—|—g’2)1/2 1 (g2—|—g’2)1/2 2z
9y o Y g 3 g
Fra <T3 i ) ' ((92 rg T (g

g g - 1/2 99
= _ﬁ‘](ljllargedwlj_ - E‘]clgargedwu - (.92 + 9,2) Jr/feutralzll - Jr A
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where

Jﬁlarged = \IIL’}/“ (Tl + ZTQ) ¢L, (128)
Jéﬂarged = \I]Lfyu (Tl - ZT?) IDL, (129)
2 12
7 g g- Y
Jr}jeutral = \I],-yﬂ (92 I g,2T3 - 92 + 9/2 5) ¢7 (130)

_ Y
S = UV (Ts + E)w, (1.31)

with T;1r = 0. Therefore, the electric charge e and the charge operator @) are

/

99

Y

2. A Way to Obtain the SU (N) Generators

To obtain the generators of SU (N), we first determine the Cartan generators. As the
SU (N) group is rank N — 1, there are N —1 traceless diagonal real Cartan generators

H, and they are taken to satisfy
1
Tr (HaHb) = §5ab- (134)

The general way to get the Cartan generators is

1 a
H). = —— 0i10ik — a0 at10im wherea =1,--- N — 1,
(1.35)

which means that the H, has 1 in the first a diagonal elements, and to make it

traceless the (a + 1)-th diagonal component must be —a, with the rest of the diagonal



components being 0:

m —Qa+1,a+1

Oa+2,a+2

On,n

14

(1.36)

The other adjoint representation states, which are not the Cartan generators,

have weight vector a satisfy

[Hm Eoz] - aaEaa

(1.37)

where «, is the component of the weight vector . Then we can determine FE,. As

E., can be understood as the raising and lowing operator, it can be related to the

SU (N) generator T; with j = N,--- | N? — 1 as

Eio = —= (1 £ iT51),

1
V2
where T; and T;,, are given by

1
Ti= ——(Bya+ F_4),
J \/§<+ )

?

V2

The Cartan generators H, are related to the SU (N) generator T as

Tj+1 - = (E—l-a - E—a) :

T,=H; withj=1,---,N—1.

(1.38)

(1.39)

(1.40)

(1.41)
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3. Example: SU (2)

The rank of SU (2) is 1, and there is one Cartan generator which is given by
Hy = - . (1.42)

The eigenvectors and the associated weights are

1 1 1
H,y = 3 , (1.43)
0 weight 0
0 1 1
1 weight 0
As the weights differ by +1, we have one component root vectors « given by
a==+1. (1.45)
Because of the relation
[H1, Esi] = £1E4, (1.46)
E., is determined to be
- (1.47)
1 = — 5 .
Tovaloo
E : 0o (1.48)
—1 - —= 9 .
V2|1 o

where the factor 1/ V2 is to satisfy the relation

[Fu,E_o] = - H. (1.49)
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SU (2) has 22 — 1 = 3 generators. One of then corresponds to the Cartan generator,

T1 — H1
1 1 0
0 —1
and the others, Ty and T3, are related to F4q as
1 .
E:I:l = —= (Tg + ZTg) . (151)

V2

Therefore we obtain Ty and T3 as

1
\/_

( (1.52)

—1 (E+1

( (1.53)

and we can derive the Pauli matrices as essentially the SU (2) generators.

Ty=— (B + B,

B. Gauge Unification

1. SU(N) and SO (N) Groups
a. SU(N)

When the generators of the SU (N) group are T, the special unitary operator U is

written as

Ul(a) = eels (1.54)
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where oy is a parameter and 7, is required to be Hermitian because UUT = UTU = 1.

From the det (U) = 1 condition we obtain
det (U (@) = det (e"**™*) = det (e'”) = H etPii = TTliD] — TrlicaTal (1.55)

where D = X (o;T;) X' with an operator X which satisfies det (X) = det (XT) =1
and X XT = XX = 1. The trace of D is

Tr (D) =1Tr (X (aaTa) XT) = X (aaT(I)jk Xgl = Xl]cLlXij (O‘aTa)jkz

— Ty <X_T1X (aaTa)> = Tr (a,T)). (1.56)
Therefore, to satisfy det (U) = 1 it is required that

Tr(a,T,)=0 — Tr(T,) =0 (1.57)

to be satisfied for arbitrary aq

Then the requirement for the generators T of a special unitary operator is:

T, is traceless and Hermitian.

The number of generators corresponds to the number of independent variables
in the matrix. Since T}, is Hermitian, the N diagonal components of the matrix are
real, and only half of the off-diagonal complex components are independent. Since
T, is traceless, the independent variables are reduced by one, and the order, which is

the number of generators, is given by

N2 - N
Order =

24N -1 =(N+1)(N-1). (1.58)

traceless

Since the generators are traceless and Hermitian, we can produce a diagonal
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matrix by
1 a
H) = — 0ik0ir — 05 g+105m wherea =1,--- ,N — 1,
[ LJ \/Qa(a—l—l) (k—l o S +1>

(1.59)
as we have already seen in the preceding section. Therefore the rank, which is the

number of diagonal matrices (Cartan generators), is given by
rank = N — 1. (1.60)

For the definition of a complex representation, please see Appendix B.

b. SO(N)

If the generators of the SO (N) group are represented by M, a special orthogonal
operator O is written as

O (w) = e, (1.61)

where w, is a parameter, and M, is required to be anti-symmetric because 07O =

OOT = 1. From the det (O) = 1 condition we obtain

det (O (w)) = det (e™eM1) = det (e'”) = H eiDii = TrliDl — TrliwgMy] (1.62)

where D =Y (wa M) YT, with an operator Y which satisfies det (Y) = det (Y7) =1
and YYT = YTY = 1. The trace of D is

Tr (D) =Tr (Y (waMap) Y') = Yij (Wap Mav) 15 Yiii = Y3 Yij (Wap Man)

=Tr (Y'Y (wasMap)) = T (wapMas) - (1.63)
Therefore, to satisfy det (O) = 1 it is required that

Tr(w,M,) =0 — Tr(M,) =0. (1.64)

to be satisfied for arbitrary wgp
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Therefore the requirement for a special orthogonal operator is:

M, is traceless and antisymmetric.

Since M, is antisymmetric, all of the diagonal components are zero, and only
half of the off-diagonal components are independent. Therefore the order, which is

the number of generators, is given by

Order = w for SO (N). (1.65)
# of independent variables off-diag.

Because the SO (N) generators are anti-symmetric matrices and the diagonal
components are zero, we cannot produce mutually commuting matrices by diagonal-
ization. To determine the rank of SO (N) we go back to the basic idea that SO (V)
describes a rotation in coordinate space. Then the generators carry two vector indices
and can be written as M, which means that the generator rotates the vector index

v into p, and this corresponds to the angular momentum operator. Therefore M, is

antisymmetric under p < v. The commutator of these generators is found to be
[Muw Mpa] =—1 (5VpM/w — O0ppMyo + 0e M,y — 5VUMMP) ) (1.66)

where the indices on the right-hand side indicate that one obtains a minus sign under

13

i« vorp<« o, and under p <> p or v <> o. The “—¢” on the right-hand side is
needed to satisfy the relation under Hermitian conjugation. The rank is the number of
mutually commuting generators. From the right hand side of (1.66) the commutator
vanishes when the indices u, v, p, and o all have different values. Then, when the

rank is NV, we need 2N different indices, and the size of the space is required to be

2N or 2N + 1 dimensional:

rank = N for SO (2N) and SO (2N +1). (1.67)



20

Table IV. Summary of the simple Lie groups.

Group Rank Order Complex Rep.
SU (N) N—-1|(N+1)(N-1) N >3
SO (2N) N N (2N —1) N =579,
SO (2N +1) N N (2N +1) No
Sp(2N) N N (2N +1) No
Go 2 14 No
Fy 4 52 No
Eg 6 78 Yes
E; 7 133 No
Eg 8 248 No

2. Summary of Simple Lie Groups

Following Collins et al. [8] for the simple Lie groups other than SU (N) and SO (N),

we summarize their properties in Table IV.

3. Choice of the Grand Unified Group G

As discussed in Collins et al. [8], when we consider any candidate G for the grand

unified group, it must satisfy the following requirements:

e G contains the Standard Model, SU(3)¢ x SU(2), x U(1)y, so it must have a

rank of at least 4.

e (G must have complex representations (see Appendix B) because parity violation
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requires that left- and right-handed fermions must belong to different represen-
tations of the gauge group. E.g. in SU (3), the 3 transforms differently from
3=3"

e (& should have a single gauge coupling so that all the interactions are unified,
and it should be a simple group. A simple group is a nontrivial group whose
only normal subgroups are the trivial group and the group itself, where a normal

subgroup N of a group G with elements ¢ is defined by g ' Ng C N for all g.

e The known fermions should fit economically into representations of G, and since

the unified gauge theory should be renormalizable, it must be free of anomalies.

The groups which satisfy the above requirements are SU (N), SO (2N), or FEg,
and among them the minimum choice is SU (5), SO (10), or Eg. Here we review

SU (5) and SO (10).

4. SU(5)

In the Standard Model, the 3 gauge coupling constants are different. To see the
meaning of unification, we have to go to a unified theory which has SU(3)cx SU(2) 1, X
U(1)y as a subgroup. Since the rank of SU(3)¢, SU(2)r, and U(1)y is 2, 1, and 1
respectively, the unified group G must be at least rank 4. The rank of SU(N) is
N — 1, s0 SU(5) can work for unification.

We can accommodate the 15 left-handed fermions (3 colors for u,d quarks and
antiquarks (12), electron and antielectron (2), and left-handed neutrino (1)) in a

representation of SU(5), but not in a single irreducible representation. The SU (3),



SU (2) content is written as

5) 10

—T— - ~
(3,1)+(1,2) + (3,2)+(3,1)+(1,1)

ds (v,e7) (u;, d;) u e

(2

where each multiplet satisfies Y Q = 0.
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(1.68)

The family of left-handed fermions fits into the 5 and 10 of SU (5) as follows.

First we have

ds d;
ds dy
Y=\ d§ =5 o Uh=| d =5. (1.69)
e” et
-V —v
L R
Then we consider the SU (5) product representation:
bx5=[(3,1)+(1,2)] x [(3,1) + (1,2)]
=[(6,1) +(3,2) + (1,3)]s +[3, 1) + (3,2) + (1, 1], (1.70)
=10
and the 10 is written in antisymmetric form as
0 ug  —u§ —u; —dy
—us 0 uf  —uy —ds
1
Xab = E uy —uf 0 —uz —ds (1.71)
Uy U Uus 0 —e™t
Cll d2 d3 6+ 0
L

The gauge fields involve the adjoint representation, 5x5 = 24+1, and there are 24

generators. The SU (3),SU (2) decomposition of the 24-dimensional representation
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24 = (8,1) +(1,3)+(1,1) + (3,2) + (3,2)
gluons g W; B XY XY
—_——
W20

The 5 x 5 traceless matrix of gauge fields A* is

X, Y -2
SU (3) X, Y, -2
1 L 1
N +— o
V2 KXo Y2 2v/15 2
X, X, X 3
1 2 3 SU (2)

i Yo Y3

23

(1.72)

(1.73)

Since X transforms an anti-down quark into an electron and Y transforms an

anti-down quark into a neutrino, the charges of the new gauge bosons are

Qx =4/3,  Qv=1/3

The Lagrangian is

24

L=i(0h), W | dwd" +ig <Z i) ) (©R)y + iXacr" (DuX) e
J=1 ab

where

. 1
Xde T 19 <§/\ : A#) Xads

cd

(1
(DHX)ac = OuXac + 19 (§>\ ’ A#)

ad

and

Asu); 0

A= j=1,---,8, where A\gy(); is SU (3) A.

0 0

(1.74)

(1.75)

(1.76)
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1 0 - 0
0 0 0 0 0 0
Ag = 0 0 Ao = 0 0
1 0 0 i 0 0
0
0 0 0 0 0 O
The Ai1, A12, - -+, Ay are obtained by continuing to put 1 and i in the same pattern
in the off diagonal blocks.
0 0
Aj = 1 =1,2,3, where 7; is a Pauli matrix.
0 7
-2
-2

(1.77)

3

Now let us consider gauge symmetry breaking. Two multiplets of the Higgs scalar
fields participate in the SU (5) model. One is a complex 5 dimensional representation
H, (where the first 3 components are a color triplet and the last two components
are a color singlet - the SU (2) the Higgs doublet which we saw in SU (2) symmetry
breaking). The other is a real adjoint 24 dimensional representation ®,, which breaks
SU (5) into SU(3) x SU(2) x U(1).

For SU(5) symmetry breaking, we must not break the SU (3) and SU (2). The
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covariant derivative of the real adjoint 24 dimensional Higgs is
D'o = 9'® +ig» (T,AL) @
1,

=0"0+ig Y icipAALD; V2

1,7k

= 01Dy + ig (A"D — DAL, (1.78)

24 24
where @ = > ®;)\;/v2 and A* = 3 AjAL /2. When the V.E.V. of ® commutes
j=1 =1
with the SU (3) and SU (2) parts of A*, we can break only the GUT gauge X and Y

symmetries. In general, the scalar fields self-coupling potential V' (®) is
L. 2 1 NE 4
V(®) = —5M°Tr (9?) + e [Tr ()] + VT (), (1.79)

where we have required symmetry under ® — —®. Then from OV ((®)) /0P = 0 and

traceless conditions, the V.E.V. of ® is

15
<O| d |O> = Vo 1 = —£U0)\24, (180)

~3/2

—3/2

where v3 = 2M?/ (15a + 7b). Then the masses of X and Y bosons are

‘Cmasst,Y = %TT [(A <(I)> - <(I) A)Z}

1 25 1
= §QQU§§A?AW = §MZ2A§LA¢H, (1.81)
25
— M? = 92U§§' (1.82)

Next we consider fermion masses. The Higgs V.E.V. (0| ®|0) is GUT scale
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(10 ~ 10'6 GeV) and these Higgses are not suitable for the origin of the fermion

masses. Therefore we consider a SU (5) invariant from the 5 Higgs,

Hy 0
H, 0
. 1
H=| H, with (0] H]0) = 7 0o |- (1.83)
¢* 0
¢° v

The invariant is produced from 5 x 10 x 5 and 10 x 10 x 5, and the fermion mass

terms are
vGp ;- vGy _
(Ly ) nass = /5 (VR), (XL)as + Weaﬁw (X&) ap (XL)4 T hec
1 UGU
= — 3 e dada - T = _a a) 1.84
QUGD(ee—i- ) ﬂ(uu) (1.84)
and
1 1
me = mg = —vGp, m, = —=vGy. (1.85)

In SU(5), the representation of SU (5) is not irreducible because the 5 and 10 are in
different representations. SO (2N),_s contains a 16-dimensional (2V~1) irreducible
representation. SO (10) also contains SU (5) as a subgroup, and the representation

decomposes into

16 =1045+ 1 (1.86)
~——" right handed neutrino

SU(5)

For the spinorial representation, discussed in Refs. [9]-[10], we first consider a

Clifford algebra: 2n Hermitian matrices %-(n)

,2=1,---,2n, which are 2" x 2", satisfy

{5t = 2045 (1.87)
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We can construct the ¥ matrices in a systematic way by iteration: For n = 1, they

are Pauli matrices

0 1 0 —i 1 0
751) =T = ) 7;1) =Ty = ) 7{5.1) =T3=
10 t 0 0 —1
(1.88)
When 72-(") is given, we can construct 'y-(nH) as
A — ) o (1.89)
Yot = 1@, (1.90)
Vs =1®m, (1.91)
where i = 1,--- ,2n and %(0) = 0. The yp;v g matrix is defined by
Yerve = (=) (M2 Yan) (1.92)
n+1) (n)

and ypyv g anticommutes with all the other v;, {vprve, i} = 0, with V}IVE = Vrve®
73. The rotations in the ¢ — j plane are given by YJ;; = %z [Vi,7;], and the 2™ spinor ¢

transforms under SO (2n) as
Y — exp (w;jp X k) Y. (1.93)

Since X, Yr1vE = YrIvEXjk, the rotation does not change the eigenvalues of yprvE

and we can reduce ¢ into ypry gy = +9 states. Then the chiral states

Py = (1 + ’YFIVE) (0 (1-94)

DN | —

transform irreducibly, and these states give a 2"/2 = 2"~! dimensional irreducible
representation. When n = 5, we obtain a 16 irreducible representation, in which all

16 fermion fields fit.
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The SO (10) invariant Lagrangian describing the interaction of Yang-Mills fields

with a multiplet of massless fermions is

1, . T g
L=~ (F)" + ity (0 — g AllS) v (1.95)

Now let us turn to the physical particle states. The states are summarized in

Table V. In an SU (5) representation the hypercharge Y is given by

Y =2/3 (Z color spins) — (Z weak spins) , (1.96)

and, because of the sign difference, SU (5) rotations raise (or lower) a color index and
lower (or raise) a weak index. Since SO (10) includes SU (5) as subgroup, SO (10)
rotations other than those in the SU (5) raise or lower any two color spins or two
weak spins.

Fermion masses again result from Yukawa couplings of the fermions to the Higgs
fields. Now neutrinos couple to the Higgs fields and can obtain masses. However,
the coupling of the Higgses depends on how SO (10) breaks into a subgroup, e.g.
SU (5) x U (1), or SU (4) x SU (2) x SU (2) etc.

C. Supersymmetry (SUSY)

Here we review the rudiments of SUSY. For a more detailed discussion, please see

Ref. [11].

1. Brief History of SUSY

Supersymmetry was originally motivated by interest in a possible symmetry between
fermions and bosons. To the author’s knowledge, the oldest physically motivated

SUSY is by H. Miyazawa in 1966 [12]. It uses a kind of superalgebra related to
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Table V. The states of the SO(10) matter fields.The SU(5) 5 and 10 representations
are part of the SO(10) 16 representation.

State Y
up = | +——++), | [+—+—+), | [+—++-) | 1/3
dy=|l=+—4++) [ |-++—+),. | |-+++-), | 1/3
uf = | |[+++——), | [++—+=), | [+ +——+), | —4/3
df= |- =+ =) [l= ==+ [ ===+ | 2/3
m=| +----) -1
er=| l-+---) =
ef=| |-—+++ 2
Np=| [+++++) 0

5 — 10

SU(5) SO(10)\SU (5) SU(5)

& (ve) (wnd) e
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internal symmetry.

From the string theory side, the notion of a symmetry between fermionic and
bosonic modes started in 1971 [13]-[15]. However, these are two dimensional theories.

N = 1 supersymmetry was first proposed and formulated as a graded Lie algebra
by Y. A. Golfand and E. P. Likhtman in 1971 [16].

J. Wess and B. Zumino [17], and A. Salam and J. Strathdee [18], constructed
field theories with supersymmetry in 1974.

R. Haag, J. Lopuszanski, and M. Sohnius [19] proposed that supersymmetry
is the only possible symmetry between particles with different spins in which the

S-matrix is consistent with relativistic quantum field theory.

2. R-parity

In the minimal supersymmetric standard model (MSSM), we assume a new symmetry
which conserves B and L (baryon number and lepton number) in the renormalizable
superpotential. However, this symmetry cannot distinguish between the particle and
the SUSY partner because they have same quantum numbers except spin. Therefore,
we also include spin angular momentum conservation in the symmetry. This new

symmetry is called “R-parity” and defined as
Pp = (—1)387 02 (1.97)

Pr for the MSSM fields are given in Table VI (where the upper sign is for the particle
and the lower sign is for the antiparticle).
R-parity stabilizes the lightest sparticle and is thus important for SUSY to pro-

vide a candidate for dark matter.
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Table VI. R-parity of the fields of minimal supersymmetric standard model.

Lepton | Quark | Gauge | Higgs | S-lepton | S-quark | Gaugino | Higgsino
B—-L Fl1 +1/3 0 0 F1 +1/3 0 0
s 1/2 | 1/2 1 0 0 0 1/2 1/2
Pgr +1 +1 +1 +1 -1 -1 -1 -1

3. Neutralino as Dark Matter Candidate

The phenomenological requirements for dark matter are:

e [t has to be electrically neutral and non-baryonic, and it can interact only

weakly with ordinary matter.

e It has to be stable (or have a cosmologically long lifetime).

Because of R-parity, sparticles are always created or destroyed in pairs, and the

lightest sparticle is stable. The lightest sparticle is now required to be electrically

neutral and also to have no color charge.

The WMAP data has determined that Qcpys = 0.23 & 0.04. Here CDM means

“cold dark matter” and the density parameter () is defined by 2 = ﬁ, where p, =

3H?
I7G

Cc

=947 x 107% [kg/mS] = 5.32 [Ge\//mg} is the critical density. We have also

used the currently standard value of the Hubble parameter H = 71 km/s/Mpc=
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2.3 x 10718 [s7!]. Therefore the density of the dark matter ppys is

pov = ey - pe
=0.19 x 5.32 ~ 0.27 x 5.32 [GeV/m’]

=1.01 ~ 1.44 [GeV/m’] , (1.98)

and the density of any dark matter candidate needs to be equal to or smaller than
the value.

The photino, the zino, and the neutral Higgsinos, or a neutralino which is a
mixture of these, satisfy the above requirements and the lightest neutralino is a good
candidate for the dark matter. The density of the lightest neutralino is required to

be at most in the range
Preutralino = 1.01 ~ 1.44 [Gev/m?’} ) (199)

and this condition is one of the constraints on the SUSY parameters.

4. Fermions (spin 1/2) and Sfermions (spin 0)

The minimum fermion content in four dimensions is a single left-handed two-component
Weyl fermion 1. Since the fermion field is complex, the superpartner scalar sfermion

field is also complex. The action without any interaction is
S = /d4ZE (Escalar + Lfermion) ) (1100)

‘Cscalar = _8M¢* #¢; £fermion = ZwTﬁ"@#w (1101)

This is called the massless non-interacting Wess-Zumino model. This action is invari-

ant under the supersymmetry transformation

5¢ = e §¢* = eyl (1.102)
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0tho = —i (oe') 0. ol =i (ea*), 0,0". (1.103)

However, when we calculate the commutator of two supersymmetry transforma-

tions, it turns out that the algebra does not close:

[0y, 0c,] 0 = —i (610"“62 - 620'#611) 0,0, (1.104)
[0cys 0ey | Vo = —i (ela“eg — GQU“ED 0,00

€101 — i€gn€l 5Dy, (1.105)

For [de,, dc,] Ya, the second and third terms vanish when we apply the equation of
motion, but the algebra closes only classically. We want the algebra to close quan-
tum mechanically (i.e., without the equation of motion), and the trick invented to
accomplish this is the introduction of auxiliary fields.

Since the number of off-shell degrees of freedom for a fermion or the sfermion
is 4 or 2, respectively, to match the degrees of freedom we introduce a complex

bosonic auxiliary field, with 2 more degrees of freedom. Then the action including

the auxiliary field F' is
Seniral = / d'z (—0"¢* 0,0 +i'6" 0,0 + F*F) . (1.106)
This action is invariant under
0 =ep;  0¢" =Myl
0o = —i (U“GT)Q 0, — €oF oYl =i (ea") s O™ — el F*, (1.107)
OF = ie' 510, SF* = —id,) 5 e, (1.108)

and now the SUSY algebra is closed even off-shell.
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5. Gauge Bosons (spin 1) and Gauginos (spin 1/2)

The action of a gauge supermultiplet is

1 a rva N a — a 1 a a
Sgauge = /d4az (—ZFWF“ + A G DA + FD°D ) : (1.109)

where again to close the algebra an auxiliary field D is introduced. The d.o.f. (number
of degrees of freedom) of each gauge field is 3, the d.o.f. of each gaugino field is 4,
and each auxiliary field is a d.o.f.=1 real field. The action is invariant under a

supersymmetry transformation given by

0A; = _ L [eTéu)\a + )\T“(?ue} ,

v2

1 1
N = ——— (d"a%)  F, + —=e,D?,
v T Da it
SD" = % €15 D, A" — DuATGHe] (1.110)

with

(e 6] X =i (610%5 _ GQUMED DX

where X corresponds to any of the gauge covariant fields F;, , A", Me De. D, is the

covariant derivative.

The action is also invariant under the gauge transformation

Sgauge Al = —0u A% + g e AV A,

Sgauge A = gF P APAC. (1.111)
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6. Supersymmetric Gauge Interaction

The gauge interaction is introduced via a covariant derivative as usual. The super-

symmetric action is

S = /d4x(£gauge + Echiral
= V2 [(¢T ) X* + AT (41779)]

+ g (¢ T%¢) DY), (1.112)

and the additional supersymmetry transformation is now given by

0¢; = ety
8 (i) = =i (o"e")  Dudhs — €aFi
OF; = ic'a" Db — V29 (T%¢), et A1, (1.113)

7. Chiral Interaction from Superpotential

To introduce interactions among the scalar and spinor fields, we require a superpo-

tential W which is given by

1 . 1 ..
W= §M”¢z¢j + gy”’“@@@. (1.114)
Then the interaction terms are written as
1. ... )
Lint = —§W”¢i¢j + W'F; + c.c., (1.115)

where W' = %W and W4 = #;(#W. The first term produces Yukawa interactions,
7 g J

and also spinor mass terms for those spinors which can have mass even before the

Higgs mechanism. (Supersymmetry of course requires that a scalar and spinor in the

same multiplet must have the same mass.)
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The scalar potential V' (¢, ¢*) is

* *1 1 a na
V(p,¢*) =F Fi+§za:DD. (1.116)

D. Higgs Mass Radiative Correction

In the Standard Model, the scalar mass term is quadratically divergent when one in-
cludes radiative corrections. However, with SUSY, the quadratically divergent Higgs
mass radiative corrections turn out to cancel because the bosonic and fermionic loops

have opposite signs. Here we will consider the one loop correction.

1. Radiative Correction from Chiral Field

When an SU (2) Higgs field acquires a vacuum expectation value, with ¢ = (h + v) /
V2 where v = /2 (¢), the interaction Lagrangian for the chiral field and Higgs field
is

Line = =As0000s — Ay [o0hon + ok

h? -, - - V2~ -
= _)\sg(ﬁlgbs - \/§U)‘sh¢l¢s - )\sggblgbs

il
As ot i A1 ot i
= 5 [relvn+ o] = G [oulvn +ovhen]. @)
=—[ms] vrt+mpploL]

where A\; and ), are coupling parameters, h is defined by ¢ = (h+v)/V?2, ¥ is
a fermion, gz~53 is a sfermion, and my and mj are the fermion and sfermion masses

respectively. The 1-loop corrections come from the diagrams given in Figure 2.
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Fig. 2. 1-loop radiative correction of the Higgs mass from sfermion and fermion. (a)
and (b) are sfermion loops and (c) is the fermion loop. To show that the loga-

rthmic divergence also cancels under supersymmetry, diagram (b) is required.
a. Sfermion

First we calculate the mass correction from the sfermion loops. The 1-loop radiative

correction of the Higgs mass from Figure 2 (a) is

— dk (AN
[Am] (@ (=12 @) 1) / .(27r)4 ( 5 > [kz _ m2]
o [ dky  —k
Wick:rotate _)\SP (2) / (277')4 kj% -+ mfz

2 2 m%]{;E
N /dkE [kE mikp

~m

_k%%—m%
A

A% —2m3In <A>] , (1.118)
my
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where we have used

27TD/2

/deE = W/kgldk];, (1.119)
I'(n)=(mn—-1DT(n-1)=(mn-1)! with ' (1/2) =/,

and

As
?U2 =m (1.120)

N

The 1-loop radiative correction of the Higgs mass from Figure 2 (b) is

2]y = () W@ -0 [ 25 (Vo) (~vao,) (_k K mz>

f

, 2 dkg Gl
' G

o / dkg | VMg UAmEkE

O G B (e’

As | VP 2 2 ?‘
T osm | 2 ln<kE+mf>+ 2 2
2 (kE—l—mf>
0

)\5 2 A 2
AT [4mfln (m_f> — me] . (1.121)

b. Fermion

v m

Next we calculate the 1-loop radiative correction of the Higgs mass from Figure 2 (c).
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i, () £5(4) ()

i (VWky +my) i (Y, +my)
b k2 —m3 k? —m3

d*k 1 2m?2
92 f
_—’LQAf/(Q )4 [kz—mQ + k2 9 2]

o 272 /k%dkf -1 ]
2 2 2
') ) @n)' |ki+m; (k% + mfc)
o 22 / dkp 3mikp 2mikp
pr— —_— —_— - E -
T2 ) (2r) Ko +m (k% 4+ m2)°
A
A2 (k2 3 m}
f E 2 2 2 /
— B T2 S S
47r2[2 y (ks ) K +m?|
A2 A
~ _F;;z {2A2 —12m%1In (m—f) + 4m§] , (1.122)

where the factor of —1 in {--- } of the 2nd line arises because of the anticommutation

of the fermionic field, and the factor of 2 in {-- -} arises because

Lint (21) Lot (2) = (6] (@1) G (@1) + mgh (@1) v (1))
(gl (@) Y (2) + my (22) U (22))
— mp}, (1) Yn (21) U (22) Y (22)
+mih (1) Yr (01) V], (22) Yn (22),
where the first term and the second term give the same contribution and thus produce

a factor of 2.

When the contributions from the sfermion and fermion are added together, the
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radiative corrections from chiral multiplet sum to give
Am =2 x ([am3] , + [Ami] ) + [Amd]
A A Y A
=2 IAZ 4+ 6miIn | — | +2m2| — 2L 202 —12m2In [ — ) + 4m?
! my f 1672 f my f
A? 2 3 2 A 2.2 A

1672
1 )\ 2 )\2 2
T \ N T Ay

As %
=0 when A, = A} and mfg = ?UQ = 7]02)2 =mj. (1.123)

The factor of 2 is included because there are R and L sfermions. Then the 1-loop
Higgs mass radiative correction from the chiral multiplet cancels exactly under SUSY.
Not only the quadratic divergence, but also the logarithmic divergence cancels when
As = Afc and my = my. Note again that we need to include the diagram as in Figure

2 (b) to obtain the cancellation of the logarithmic divergence.

2. Radiative Corrections from the Gauge and Gaugino and the Higgs and Higgsino
Fields

Now we consider the Higgs mass radiative corrections from the SU (2) x U (1) gauge,
gaugino, and Higgs fields, where the Higgs field contributions originate from the D-
term of (1.112). (There can be also corrections from the Higgs and Higgsino loops,
but these are treated exactly the same as in the fermion and sfermion case.). The
model now has two left chiral SU (2), doublet Higgs fields (up type and down type).
Since the mass terms only contribute to a logarithmic divergence, and are thus not
important for a check of the quadratic divergence cancellation, we take all fields to

be massless. We start with the Lagrangian [20]
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Table VII. Summary of the fields in the SU(2) x U(1) Lagrangian density Eq. (1.124).

particles SUSY-particles
gauge Wht W3 Br A3\
: + +
up type Higgs (Yo = +1) | ¢u = (5) Yur = (34
: _ (Y _ (VY
down type Higgs (Y; = —1) g = (¢§) Y, = (wz_z)
1 - 2 1 v Z — — — - — 7/_
‘CSU(2)><U(1) = _ZWMVWM — ZB,WBM + 5 A 7“@ A — g2 A ’)/MWM A + 5)\07“6MA0
2
i Y G Ay + Y |ATG, | - —92 (Z ¢l =
r=u,d r=u,d r=u,d
_ 2 i _ 5T Uy
S5 < TZMY ol ax) V29, ;ujd (aﬁr X gt + Uiz @)
(T —
—V2gy Z 5 (&I X0t + Vrrrodr) | (1.124)
r=u,d

Y
where A”! = 3M+292W +zgyB g .Y is the hypercharge, W+ = (WF FiW}l) /v/2,
and A* = (A T i)\y) /f

The propagators of the fields involved in (1.124) are summarized in Table VIII.
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Table VIII. The propagators of fields in Eq. (1.124). We choose the Feynman gauge
(€ = 1) for the calculation of radiative corrections in this section. C'is the

charge conjugation operator.

_Zg v
B,B, e
L1t ST — Pubv
WAWE WIWS | <gW—(1—g) A )
3 3 Hp
ADAD; AMAm -
iC—1ykp
AMAM —z
Y. ' puC
AMAM —z
. i
ol e
g 1—ys Y Pp 1475
Yrr EC R

The terms which contribute to the ¢, radiative corrections (1-loop) are

0
L= 5[\/5920%3 WS — 195+ 930" b Zudy, + V29201 W 6

— V2020 W 0100 + 1\ 93 + 9205 2,085, — V29200 W, 0" 9]

2 2
«9y 1t 9
+o B

2
— 26705 - 20564 + 207767 + 6 )

2
Z,7" + %W;W*“

2
- D261 67 - 206 — 26707 + 4 A1,

_ S 1 o~ _
=02 (ANl +IINA) 50k + 9 (Nl + UlA)), (1125)
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Fig. 3. 1-loop radiative corrections to the Higgs mass from the Higgses, gauge bosons,
and gauginos. To show the cancellation of the quadratic divergence, not only
gauge and gaugino + Higgsino diagrams but also those for the Higgses are re-
quired. This is because the diagrams with the Higgs loops are introduced by the
D-term. Although (a) & (b), (¢) & (d), (e) & (f), and (g) & (h) appear to be
the same diagrams, their couplings are different: (coupling),, «, = —g /4,
—g3/4; (coupling) oy () = —95/8, —93/8; (coupling), « = 63 /4, —g3/4;
(COUphng)(g)7 (h) = 93/4, 93 /4.
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where

Mo = == (g — i) (1.126)

+ = \/§ 1 2)5 :
1

A= — (A1 +1Ny), 1.127
\/5( 1+ iMa) ( )

1
)\Z = (gg/\g — gy)\0> . (1128)
9 + 95

Now we calculate the 1-loop radiative corrections depicted in Figure 3. There are
14 diagrams, and some of the diagrams are identical except for the couplings, with
the same mathematics. However, we will explicitly write each calculation for each
diagram.

The mass correction from Figure 3 (a) is

Am?, = (~1) (1) (1) (1)/(;47];4 (_%) Lﬂ

_ gy 2m? / pydpe 1

S 4r©2 ) entn
9y 2
= 50 (1.129)
The correction from Figure 3 (b) is
d*p g2\ [
Amf, = (-1) (1) (1 1/ (——2) l—}
bh=Comon [ 25 (-F) |
EENTTA)
4T(2) ) (2m)* Py
o
= -% (1.130)

© 64n2



The contribution from Figure 3 (c) is

Ay = (0@ @) () [

B g%/ 272

d*p
(2m)*
phdpe 1

T 2T1(2

3272

/

The contribution from Figure 3 (d) is

Ay = (~1)(2) (2) (1) /

B g% 272

(2m)* P

d*p
(20)’

phdpe 1

T 2TU(2)

_ 9% 2
3272

The correction from Figure 3 (e) is

2
Am(e)

— (~1) (1) (1) (1) /

gy 2m

/

(27r)4 p%

d4p
(2r)*

2T (2)

_ _ﬁ
6472

The correction from Figure 3 (f) is

2
Amiy

— (—1) (1) (1) (1) /

B g% 22

A%

/ pydpe 1
(2m)" Pk

d*p
(27)*

prdpe 1

T AT(2)
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6472

/
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(1.131)

(1.132)

(1.133)

(1.134)
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The correction from Figure 3 (g) is

Am2, = (1) (1) (1)(1)/% <gZ§) Lﬂ

g3 2m / phdpe 1

4T(2) ) @20 s

9 2
= 1.1
6472 (1.135)

The correction from Figure 3 (h) is

AmZy = (=1) (1) (1) (1)/ (534 (%) L%}

21002 ) (@20}

g2
= —64—‘;2/\2. (1.136)

The correction from Figure 3 (i) is

Am?, = (~1) (1) (1) (1)/ 4p (g’%zggg;w) {_igf]

(27r)4 D

272 phdpp 1
2 2 E
J— _I_

= (QY g2) ['(2) / (27r)4 p2E + m?

2 | 2
9y T 92 \2
= A~ 1.137
1672 ( )
The correction from Figure 3 (j) is
d'p (g —ig"”
Am?, = (=1) (1) (1) (1 g, | ——
miy = (D OO0 [ T (L) [
o 21 [ prdpp 1
=20, 12 2
r'(2) (2m)* pp +m
g2
= 22 \? (1.138)

872
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The correction from Figure 3-(k) is

anty = () wa- [ 2 (-2,)

92 —ig" 1
N —| {2
( ﬂp)[ p? pQ}{}
_ g /p%dpEp_%
2T(2) ) (2n)" v

9% 2
_ A 1.139
3020 (1.139)

where the factor of {2} arises for the same reason as in (1.122). The correction from

Figure 3 (1) is

sty = (5 ) wwa-y [ (d4p (V o *"gpu)

2! o) 2
2 2 . v o
V9y t9 —ig"” 1
° Y 2pV 2 _2 {2}
2 p°p
_ Gy g5 2m /p%dpE@
4 T2 ) (@20 g
2 2
9y + 95 o
_ A 1.140
6472 ’ ( )

where the factor {2} has the same origin as in (1.139). The correction from Figure 3

(m) is

Ay = (5 ) WD [ 225 ) (a2

. {W“pﬂ 1—y5iy"py 1+ 75} (=1 @)}

p? 2 pr 2
_ g2 / Prdpe v
= —29 1 4
I'(2) (27)" Pk

=1

g2
— —8—7;/\2, (1.141)

where the factor of —1 in {---} is from the anticommutation of the fermionic fields,
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and the factor of 2 in {---} arises for the same reason as in (1.140). Finally, the
correction from Figure 3 (n) is

L (= vy ([FTE)( [Fid
Am(n):(E)(l)(l)(l'l)/@ﬂ?( g _2'_9)< g ;_g>

Pl =5 y"py L+ 95
—1)(2
e e L)

2r° [ phdpE P
(.2 2 E PE
== A 0 [ oo
=1
2 2
_ Gyt (1.142)

Y

1672
where the factor {(—1) (2)} was explained immediately above (1.141). Then the total

1-loop radiative correction to the ¢? Higgs mass is

2 9y v2 . 95 a2 Gy a2, 95 o
A — A A A4 P2\
Miotal = G2t T2 T T 3o
) CN ) RN ) CRR s ¢
6472 6472 6472 6472
9% + 95 9 95 9y + 95
_|_ Jy ' J2 A2 + J2 AQ o A2 o A2

1672 72 3272 6472
L9342 9yt sy
72 1672
=0, (1.143)

and the quadratic divergence thus cancels when all terms are included.

3. MSSM
The MSSM is an minimal extension of the Standard Model. Here minimal means:
e The only fields are those of the SM and their supersymmetric partners.

o All SU(3)c x SU(2), x U(1)y invariant renormalizable interaction terms are

allowed.
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e Two Higgs doublets are required because of the supersymmetry [11].

We saw above that when we have a superpotential we obtain all interactions

required in the model. The superpotential for the MSSM is given by
Wassn = iy Q@H, — dysQHg — ey LHy + pH, Hy. (1.144)

H, Hy;, Q,L,u,d,é are chiral superfields corresponding to the chiral supermul-
tiplets of the Higgs which couples to up-type fermions, the Higgs which couples to
down-type fermions, the left hand quark doublet, the left hand lepton doublet, the
right hand up-type quark, the right hand down-type quark, and the right hand elec-
tron, respectively. The last term is the supersymmetric version of the Higgs boson
mass, which guarantees that when one of the Higgs fields acquires a V.E.V. the other

does also.
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CHAPTER II

POTENTIAL VIOLATIONS OF LORENTZ INVARIANCE

A. Lorentz Symmetry

1. Lorentz Transformation of the Coordinates

First let us review the basic ideas of Lorentz invariance, which is assumed in all
of standard physics and even in superstring theory. In special relativity, or in a
locally inertial coordinate system, the coordinate z* is transformed under a Lorentz

transformation according to
z, =N, "z, (2.1)
The interval

ds = (1" 2,,)"", (2.2)

is required to be invariant under this transformation:

ds' = (n“”x;x;)lﬁ
— (nMVA“ PA, UIL“,;IL‘U) 1/2

= ds’ (23)

LLLW

where means “required”, and

AL PN, T = (2.4)
U“VAM pAV Unan = npanom

— AP\, = 0", (2.5)

K
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2.  Lorentz Transformation of a Scalar Field

A Lorentz scalar is invariant:

=¢ (A 'z). (2.6)

3. Lorentz Transformation of a Vector Field

A vector field A, transforms exactly like the coordinates x,,:

A, (@) = U () Ay () U (A)

— (A7), 4, (A ). (2.7)

4. Lorentz Transformation of a Spinor Field

The mathematical tools which relate the vector index and spinor index are the Pauli
matrices and gamma matrices for two and four component spinors, respectively. Here
we consider only the transformation of two-component spinors, since these provide
the fundamental description of fermions in SUSY, GUTs, and even the SM.

First we need to obtain the generators of Lorentz transformations for spinors.
Since a spinor is transformed into a spinor, a generator is required to have two spinor
indices. Each might be dotted or undotted at this point. (See Appendix A for the
meaning of dotted and undotted indices. A 2-component Weyl spinor with dotted
index transforms under a Lorentz transformation as right-handed, and one with un-
dotted index as left-handed.) If one is dotted and the other undotted, a right-handed
field is transformed into left-handed or vice-versa. When the field is massless, how-
ever, this is not possible, since a Lorentz transformation cannot change the spin in

this case. Therefore, the generator is required to have either two undotted or two
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dotted spinor indices.

We define the transformations of the 2-component spinors by

Uy (@) = U (A) o (2) UT (M)
~ (5a LS %ww ()., 5> g (A_lx) , (2.8)

=yl (A ) (5% — %ww (aTW)Bd) : (2.9)

where w,,, is an infinitesimal parameter which is antisymmetric under p < v. wy, is
related to A, and 7, by
Np= nw + Wy - (2.10)
symmetric  anti-symmetric
To have a non-vanishing transformation, ¢ in (2.9) has to be also antisymmetric.
We now set out to derive this generator o*”.

The Lagrangian density is given by

L =—ip} (2)(8")" Otba (v), (2.11)
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and this transforms as

L — =iy (') (8")™ ), ()

(AT, 0s (M)

L _ N _
= il (A7) ()" D, (A '2) (2.12)
where the w? term is ignored as usual. Then, from this requirement, we get
07 = s [ oo ), =0 ey

- [WW — S (070" - 6”a€“>fﬁ] AL (A7), = @97

— [ - fese [0 = 0] = (@9 A

By using (2.10) on the right hand side, we have

(@) = G [ = a7 = @97 g+ 219

- _%wfm [(UT@%/\ - 5/\‘7&)}% = (5X)Bﬁ ann/\n7

i
) [(07¢6* — 6%0%) | we = "N M we. (2.15)
Recall that o%* is antisymmetric under ¢ «— &, and the spinor indices are (oﬁﬁ)aﬁ.

Therefore, we expect that (05“)a ? has the form

()" = A[(0) (0 = (") ()]
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where the coefficient A is determined from (2.15) by using (C.20). We then obtain

ot = % [0%6" — 0"5¢], (2.16)
565 _ ien
= % (650" — 5"0t] . (2.17)

In summary, the Lorentz transformation of the spinor field is given by

v, (@) = U (M) dha () UT (A)

~ (5a Ay %@W (o)., ﬂ) vg (A '2) (2.18)

i () = U (A) g (2) UT (8)

_ ; [ i f
=0} (1) (0%, = o (07, ). (219)
B. Tests of Lorentz Symmetry

During the past few years there has been increasingly widespread interest in possi-
ble violations of Lorentz invariance [21]-[48]. There are several motivations for this

Iinterest.

1. Theoretical

Every current candidate for a superunified theory contains some potential for Lorentz
violation, and the same is true for more restricted theories which attempt to treat
quantum gravity alone. (By a “superunified theory” we mean one which includes all
known physical phenomena, and which is valid up to the Planck energy.) Theories
with potential for Lorentz violation include superstring/M /brane theories, canonical

and loop quantum gravity, noncommutative spacetime geometry, nontrivial space-
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time topology, discrete spacetime structure at the Planck length, a variable speed
of light or variable physical constants, various other ad hoc theories, including one
that specifically addresses the GZK cutoff [22], and the theory presented in this dis-
sertation. Even in a theory which has Lorentz invariance at the most fundamental
level, this symmetry can be spontaneously broken if some field acquires a vacuum
expectation value which breaks rotational invariance or invariance under a boost. (It
should be mentioned that cosmology already provides a preferred frame of reference
— namely a comoving frame, in which the cosmic background radiation does not have
a dipole anisotropy — but this is not considered to be a breaking of Lorentz symme-
try, since the vacuum is still Lorentz invariant.) A second mechanism for Lorentz
violation is the “quantum foam” of Hawking and Wheeler, originally envisioned in
the context of canonical or path-integral quantization of Einstein gravity, but now
generalized to other theories with quantum gravity. A third possibility is a theory
in which Lorentz invariance is not postulated to be an exact fundamental symmetry,
but instead emerges as a low-energy symmetry, and that is the possibility explored

in this dissertation.

2.  Experimental

Both terrestrial [23]-[34] and space-based [35]-]40] experiments have been designed
with exquisite precision which would permit detection of even tiny deviations from
certain aspects of Lorentz invariance. The systems include atoms, charged particles in
traps, masers, cavity-stabilized oscillators, muons, neutrons, kaons, and other neutral

mesons.
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3. Observational

Particles traveling over cosmological distances from bright sources (including pulsars,
supernovae, blazars, and gamma ray bursters) allow long-baseline tests which are
again sensitive to even tiny deviations from particular forms of Lorentz violation [41]-
[46].

Recall that Lorentz invariance in the context of general relativity means local
Lorentz invariance, or an invariance of the action under rotations and boosts involving
locally inertial frames of reference. There is clearly a connection with the equivalence
principle, which can also be tested in, e.g., space-based experiments. There is a close
connection with CPT invariance as well: According to the CPT theorem, Lorentz
invariance implies CPT invariance (with the supplementary assumptions of unitarity
and locality). It follows that CPT violation implies Lorentz violation, although the
reverse is not necessarily true. Finally, there is a connection to the spin-statistics
theorem, which follows from Lorentz invariance and microcausality.

We know that P (in the 1950s) and CP (in the 1960s) have previously been
found not to be inviolate symmetries, for reasons that are now understood in terms
of the standard electroweak theory and the CKM matrix. Perhaps CPT and Lorentz
symmetry are also not inviolate.

The most extensive theoretical program for systematizing potential forms of
Lorentz violation and their experimental signals is that of Kostelecky and cowork-
ers [23],[24],[29]-[38],[40],[46]. Their philosophy is to add small phenomenological
Lorentz-violating terms to the Lagrangian of the Standard Model, and then interact
with a wide variety of experiments that can detect such deviations from exact Lorentz
or CPT invariance. The point of view of this group is rather conservative: The fun-

damental theory (e.g., string theory) is pictured as Lorentz-invariant, with Lorentz
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or CPT violation arising from some form of symmetry-breaking — for example, with a
vector field or more general tensor field acquiring a vacuum expectation value. Their
work has stimulated a considerable amount of experimental activity, with further
experiments planned for both terrestrial and space-based laboratories.

So far there is no undisputed evidence for Lorentz violation, and the only solid
results from both experiment and observation are strong constraints on particular
ways in which this symmetry might be broken. As an example of an astrophysical
constraint, we mention a recent paper by Stecker and Glashow [43], in which they
conclude “We use the recent reanalysis of multi-TeV [up to 20 TeV]| gamma-ray
observations of [the blazar] Mrk 501 to constrain the Lorentz invariance breaking
parameter involving the maximum electron velocity. Our limit is two orders of mag-
nitude better than that obtained from the maximum observed cosmic-ray electron

energy.” Their analysis involves the processes
Y+ Yinfrared — €7+ e if o> ¢, (2.20)
which can lead to inconsistency with the observation of 20 TeV photons and
y—oette if e <c (2.21)

which can lead to inconsistency with the observation of 50 TeV photons.

Another example of astrophysical constraints is the series of analyses by Jacob-
son et al. [41]-[44]. In Ref. [42], Jacobson, Liberati, Mattingly, and Stecker state
“We strengthen the constraints on possible Lorentz symmetry violation (LV) of order
E /M pjaner, for electrons and photons in the framework of effective field theory (EFT).
The new constraints use (i) the absence of vacuum birefringence in the recently ob-
served polarization of MeV emission from a gamma ray burst and (ii) the absence

of vacuum Cerenkov radiation from the synchrotron electrons in the Crab nebula,
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improving the previous bounds by eleven and four orders of magnitude respectively.”
Jacobson, Liberati, and Mattingly [41] have obtained a very strong constraint on

a dispersion relation with a cubic term in the expression for £?:
E? =p* +p* /M. (2.22)

However, the constraint is less stringent for what may be the more natural form with

a quartic term:

E? = p? + p*/M?. (2.23)

Below we will derive the dispersion relation for a fundamental Lorentz-violating
theory [21, 47, 48] and will find that it is easily consistent with these constraints,
since it has a form quite different from either of those above.

Coleman and Glashow [22] proposed that the limiting velocity of protons, elec-
trons, etc. may be very slightly different from the speed of light. (See also Ref. [44].)
This is an ad hoc proposal, motivated by the apparent absence of a Greisen-Zatsepin-
Kuz'min (GZK) cutoff: Ultrahigh energy cosmic ray protons colliding with the cosmic

microwave background radiation should produce pions,
D+ Yemb — P+ 7T0~ (224)

There should consequently be a cutoff in the spectrum of observed protons at about
50 EeV (or 5 x 107 TeV), if they were created in processes at distances of more than
about 100 Mpc. But up to 300 EeV cosmic rays (presumably protons) appear to be
observed, although this is not entirely certain [58], and there are also theoretical ideas
for a closer origin [56].

We conclude by mentioning some reviews of terrestrial and space-based experi-

ments.
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Two reviews of atomic experiments to test both Lorentz and CPT symmetries, by
Bluhm [34], describe the following: (1) Penning trap experiments with electrons and
positrons, and with protons and antiprotons, which look for differences in frequencies
or sidereal time variations; (2) clock comparison experiments, with clock frequencies
typically those of hyperfine or Zeeman transitions; (3) hydrogen and antihydrogen
experiments involving ground-state Zeeman hyperfine transitions (at Harvard) or 1S-
2S transitions (proposed at CERN); (4) a spin-polarized torsion pendulum experiment
(at the University of Washington); (5) muon and muonium experiments.

Two reviews by Russell [38] discuss clock-based experiments to test Lorentz and
CPT invariance in space. Such experiments will probe the effects of variations in
both orientation and velocity. Among the systems are H masers, laser-cooled Cs and
Rb clocks, and superconducting microwave cavity oscillators. A number of specific
space missions have been planned or proposed.

Finally, a review by Kostelecky [46] contains a discussion of experiments involving
neutral meson (e.g. kaon) oscillations, a dual nuclear Zeeman He-Xe maser, and

cosmological birefringence, in addition to the systems mentioned above.

C. Review of Lorentz Violation Effects on Kinematics

We would like to use the cosmological observation results to see the Lorentz symme-
try violation effect in our theory, and we review the GZK cutoff, the vacuum pair

production, and vacuum Cerenkov radiation.

1. GZK Cutoff

Proton with sufficiently high energy will lose energy from inelastic collisions with

cosmic microwave background radiation (CBR) photons. This gives rise to the GZK
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cutoff, and protons with energy E > 5 x 10! eV should not reach us from further
away than ~ 50 Mpc (where 1 pc= 1 parsec= 3.26 light years). Ultrahigh energy

cosmic ray protons colliding with the CBR should produce pions:
p+rcsr — p+ (2.25)

However, up to 3 x 10%° eV cosmic rays appear to be observed experimentally.

The incoming photon has energy w and momentum (—w cos, —wsiné,0), and
the incoming fermion has mass m,, energy E, and momentum (p, 0,0). The outgoing
fermion (excited state) has mass mi = m2 + Am?, energy F + w, and momentum

(p —wecos, —wsin@,0). Then from kinematics, we obtain

2wp (14 cos @) = Am? (2.26)

2

—cosf =20 <1
2wp
which is possible for
Am?
p> (GZK cut off) (2.27)
4w

~1x 10% eV = 100 EeV (2.28)

with a 2.7 K CBR and Am? = 2m,m, + m2.
As the density of the CBR is n, = 550 photons/cm® and the cross section is
o = 200 pb, the mean path for interaction is (n,0)~' = 9 x 10** cm. Then the rough

distance scale L for loss of energy is
L= (E/AE)(n,o)"" (2.29)

where FE' is the initial energy of the proton, and AFE is the energy loss per collision,



with AE/E ~ 20% [49]. Therefore

L~5x%x9x10* cm
= 4.5 % 10%® cm

~ 5 x 107 light years.
2. Vacuum Pair Production
The process of vacuum pair production is
v—e +et.
When the 4-momenta of the photon, electron, and positron are

((U,O,O,W)7
<E =+/p>+m?,cosb p,0,sind p) )
(E’ = /P2 +m?, cos 'y, 0, sin 9’1?’) :

respectively, energy and momentum conservation give

w=FE+F,
w=-sinf p+sinf'p,

0=cosf p+ cosf'p.
From the 2nd and 3rd equations we get
p? =p* +w? —2sinb wp,

and by using this p in the 1st equation, we have

2
(w— \/p2+m2> =p* +w? —2sinh wp + m?

61

(2.30)

(2.31)

(2.32)
(2.33)

(2.34)

(2.35)

(2.36)
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so by rearranging this equation we obtain

JET

p

=sin6. (2.37)

This relation can never be satisfied if the electron is massive.
However, when the electron’s energy-momentum dispersion relation is modified
to

E*=p*+m?+a,p"  wheren > 2, (2.38)

we may be able to find a solution for vacuum pair production. The kinematics give

us

2
(w — /P +m?+ anp”) = p® + w? — 2sin fwp + m* + a,p", (2.39)

and we obtain

\/102 +m? + a,p"
p

=sinf < 1. (2.40)
Then when
anp" < —m? (2.41)

we have vacuum pair production.
We can also have vacuum pair production if the maximum speed of the electron

ce is different from the speed of light c,:

w=E+E, (2.42)
w . TN
— =sinfp+sinf'p’, (2.43)
Cy

0 = cosfp + cosb'p'. (2.44)

From (2.43) and (2.44), by solving for p"* and then inserting it into (2.42)), we obtain

22/ 2p? + ctm? — (2 — ) w = 2peycd sin @ < 2pe,c? (2.45)
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and at p = 0 there is a solution when
(E—Z)w> QCgcgm. (2.46)

Since the right hand side is positive when ¢, > ¢, there can be a solution in this case.
When the photon’s energy w is > 2c2¢2m/ (¢2 — ¢2), it decays into electron-positron
pairs.

As photons with energies up to 50 TeV are observed, and the electron mass is
mc? = 0.51 MeV, the difference of the maximum speed of the photon and electron
needs to satisfy

2

gl w 7
> ~ 5 x 10°. 247
2 —c2" 2mc? (247)

C

When § is defined by ¢, = ¢, (1 — |—0d]) with ¢, > ¢, we obtain

-0 <1 x 1075 (2.48)

3. Vacuum Cerenkov Radiation

The process of vacuum Cerenkov radiation is
X — X+ (2.49)

where y is a charged fermion. If the 4-momenta of the incoming y, the outgoing ¥,

and the photon are

(E = /P +m§,p,0,p>
(E’ = /P +m2,cosf'p’,0,sin G’p')

(w, cos fw, 0, sin fw)
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respectively, energy and momentum conservation give us

E=w+E, (2.50)
p = sinfw + sin 0'p’, (2.51)
0 = cosfw + cos 0'p’. (2.52)

From the 2nd and 3rd equations it follows that
p? = p* + w? — 2sin fwp,

and by using this p’? in the 1st equation, we have

2
(w— \/p2+m§<> :p2+w2—251n6wp+mi.

Rearranging this equation we obtain

2 + m2
VI T _ gine. (2.53)

p

This relation can never be satisfied if x is massive. The reason that this result is same
as that for vacuum pair creation is the crossing symmetry.

However, when the electron’s energy-momentum dispersion relation is modified
to

E* =p*+m? +a,p”  where n > 2, (2.54)

we may be able to find a solution for vacuum pair production. The kinematics give

us

2
(UJ _ \/p? + mi _|_ anpn> = p2 + W2 — 2 Sin pr _I_ mi + anpn7

and we obtain

VP2 +m2 4 anpt
p

=sinfd < 1. (2.55)
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When

anp™ < —m?, (2.56)

we then have vacuum pair production.
We can also have vacuum pair production if the maximum speed of the charged

particle x, ¢y, is different from the speed of the light c,:

E=w+ E (2.57)
. w sl
p = sin 06— +sin 'y, (2.58)
2l
w /!
0 = cos 60— + cos0'p’. (2.59)
2l

Then we obtain

203@ [2p? + cim? — (C,QY — ci) w= 2pcvcf< sinf < 2pC,yCi, (2.60)

and at w =0,

P’ (=) >22Em?. (2.61)

Whe > ¢, and the charged particle energy E = /c2p? + ctm?2 is > 2 [t
nc, > c,an rged parti nergy £ = (/eyp® + cymy is > mycyy [

x &y

the charged particle spontaneously emits photons until the energy becomes <

2 | 2
c, tc
2 [Ty
Myl 5
oy —c3
Since electrons with energy up to 100 TeV are experimentally observed, and the

electron mass is m.c> = 0.51 MeV, the difference between the maximum speeds of

the photon and electron needs to satisfy

CQ +02 E 2
— > < 2) ~4x 10", (2.62)
Ce — ¢ MeC;

When § is defined by ¢, = ¢, (1 + |4]), with ¢, > ¢, we obtain

6] < 10717 (2.63)
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D. Lorentz Symmetry Violation in Our Model

We start with the Lorentz-violating action of a right-hand field, and obtain the cor-
responding left-hand field by using a well-known procedure. Once we have both the
right and left hand fields, we introduce fermion mass terms in the usual Yukawa form.
Then, by using the Euler-Lagrange equation, we obtain the energy-momentum dis-
persion relations, and we study the kinematics in conjunction with the observational
data.

Our action has a Lorentz-violating term, and we will explicitly show that the term
is invariant under rotations but not under boosts. Finally, since Lorentz violation does
not necessarily mean violation of CPT, we will consider the behavior under CPT, and
will obtain the interesting result that our Lorentz-violating term also violates CPT.

It is, in fact, odd under CPT.

1. Lorentz-violating Lagrangian and Its Kinematics

Now let us turn to our specific Lorentz-violating theory and some of its new predic-
tions. We begin with the action for a single initially massless Weyl fermion field [47],

and with the coupling to gauge fields and variations in €], neglected:

Sl :/d4$£1 (264)

1 1 v . o
Ly = 3¢ Yl (mn“ 0,0, + ieho 8H> 1+ h.c. (2.65)

Here M is a fundamental mass which is comparable to the Planck mass, n* =

k

diag(—1,1,1,1) is the Minkowski metric tensor, o* is a Pauli matrix, and o is the

2 x 2 identity matrix. Also, e is the gravitational vierbein, which determines the
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gravitational metric tensor g, through the relations

Guv = nagefjef ,  eled = ok, (2.66)

v

A factor of e~'/2 has been absorbed in 1, where
e = det e}, = (—det gu,,)l/z. (2.67)

Fundamental units are used as always, with A = ¢ = 1. Finally, “h.c.” means “Her-
mitian conjugate”, and £; has been written in its more fundamental and manifestly
Hermitian form. The action (2.65) is invariant under a rotation, but it is not invariant
under a Lorentz boost because of the first term. (Recall that the transformation ma-
trix Ay, is unitary for a rotation and not for a boost [50].) At low energies, however,
this term is negligible and full Lorentz invariance is regained.

As before, we choose the directions of the spacetime coordinate axes to be such
that all the e” are positive. If the term involving M is neglected, £, has the form
appropriate for a right-handed field. I.e., in order for S; to be invariant under local
Lorentz transformations at low energy, all the fundamental fermionic fields ¢/ must be
taken to transform as right-handed spinors. This is the reverse of the usual convention
in grand-unified theories, where they are all taken to be left-handed. However, we can
convert 1, to a left-handed field through the following well-known procedure [50]-[52],

which is based on the fact that (02)” =1, (02)T =02, (0?)" = —0?, and
oloto? = — (O’k)*. (2.68)

Let
Yp =0’ or Yy = (0%Yr) (2.69)

and substitute into (2.64), using (in the fourth step below) the fact that Grassmann
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fields like v, anticommute:

1 4 (67
t1= e [(0n)) (g a0+ icko®a, ) (%) + he
T
:% [(—77‘“’88 + el o 0‘8) QwL} az/JL "+ hec
T
:% [( " 0,0, + ieho 0‘8) U@/)L:| awL "+ hee.

— —%e [(0%) " [<2M w9,0, — iek (0°)" 0 ) (a%L)] +he

1 ] 1 v ; Q) *
= 5e Wl (0?) [(—mn“ 0,0, + iek (o) 8u> (022#,;)} + h.c.
1 1., , o
= 5@@52 [(—Wn“ 0,0, + iel, (020 02) ) ’(/)L:| + h.c.
1 1 o
=S¢ ¢z [ —Wn’“’&,(?u +ieho 6?#) @DL} + h.c., (2.70)

0 = ¢% and 7 = —o*. Then v; has the Lagrangian appropriate for a left-

where &
handed field (when the term containing M is neglected), and the definition (2.69)
implies that it transforms as a left-handed field if v, is required to transform as a
right-handed field [50]-[52].

If 91, corresponds to a particle with a Dirac mass m, it is coupled through this
mass to a right-handed field ©¥g. (The origin of this mass — i.e., the coupling to a
Higgs field which acquires a V.E.V. —is not considered here.) The Lagrangian density

for this pair of fields is then given by

= wR (Qanayau + iegoo‘ﬁu) VR
1
T P
—H/JL( 5f" 0,0, +iehT 8)¢L
— mifor — ml g (2.71)

after an integration by parts to get the more familiar form. The resulting equations
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of motion can be written as

{W (_ ene4 0000 + el;elaalak) + z’egaaa“] Yr —mipp =0 (272)
{ 1

_2M (— 62638080 + 6@6?8[810 + ieg‘ﬁaa#} Y, —miypr =0

(2.73)
with k,1 = 1,2, 3. For simplicity, let us assume spatial isotropy and write
eF=2E L et =ATlop = A%k (2.74)
ed = NdY ey = Aty = A 2el. (2.75)

After transforming to a locally inertial frame of reference, in which e# = ¢*, we have

[(— (0y0y + a@kak) +1 (an() + O’kak)} Yr —myr =0

(2.76)
[— (—B08000 + ady0y) + i (6°00 — 0*0) | ¥r, — mapr = 0 (2.77)
where
a=(22M)" . p=(22M) (2.78)
At fixed energy £ and 3-momentum p’, these become
T - PYr=[(BE* — ap®) + E] r — myy (2.79)
7P = [(BE® — ap®) — E] ¥ + mig (2.80)
where p is the magnitude of 7, or, since (7 - 7)° = p?,
(7 + ) = (95 - o) + B)']
= —2m (BE* — ap®) ¢, (2.81)
(0 +m) = (55" — o) = B)|

=2m (BE* — ap®) ¢g. (2.82)



70

We then obtain

Ay A =~ [2m (BE® — ap?)]? (2.83)
Ay = (P* +m?) - [(BE* — ap?) + E]” (2.84)
A= (p* +m?) - [(BE? — ap?) — E] (2.85)
and (discarding the unphysical root)
E? = (p* + m?) + (BE? — ap?) [2 (B> —m?)"* = (BE* - osz)} . (2.86)
There are four solutions to this equation:
1 — 28p + 2a8p? — /T — 43m? — 4Bp + dapp?
pp— L= 200+ 200p VL= AFm? — 4Pp + dafp? (2.87)
232
1-2 2 2 1—432m2 —4 4 2
B — Bp + 206p* + /1 — 45%m? — 46p + 4afp ’ (2.88)
232
142 2 2 /1 —432m2 +4 4 2
2= 120+ 200p VI~ A5Pm? + 4Pp + dafp? (2.89)
232
142 2 2 1—4062m2 +4 4 2
o P Bp + 2a8p® + /1 — 43*m? + 40p + afp? (2.90)
232
When p < 1, %, FE? and E? behave like the normal solution E? ~ p* +m?. Although

we have the exact solutions, it is not easy to use them directly and we will make the
approximation that the energy is large compared to the rest mass energy. If m? is

totally neglected, for the moment, there are eight solutions

E:$iii[1+4ﬁ<ap2j:p)}l/2

23 " 28
11
= Fy5+ 55 [(12269)" + 49777 i (2.91)

where v = a — (8 and the signs are independent.
The various solutions lead to interesting possibilities for new physics which will

be considered in detail elsewhere. For the moment, however, consider only the normal
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branch, for which the first sign is — and the last two signs are both +. The velocity

is then

v=0F/dp (2.92)

= [(1+28p)* + 45p] 1z (1+26p +2vp)

1/2
p+ap’
=|14+4 2.93
11 48p + 4Bap? (2.93)
It follows that
v>1 if a>f and v<1 if a<p. (2.94)

As we will find below, the first possibility would imply vacuum Cerenkov radiation,

and the second pair production in vacuum, so the only plausible possibility is

1

a = = — which implies that v = 1. (2.95)
m

(In the present paper we do not try to explain the origin of this condition, but simply

accept it as a phenomenological constraint on a cosmological scale, far from local

gravitational sources.) Then (2.91) becomes

m 2
=" {;1 + (1 + :p)] (2.96)
2 m
=D, D, _m+p> _m_pam+pam_pap7 —P
where
m=p"" (2.97)

All massless particles thus travel at the speed of light ¢ = 1. As usual, the destruction
operators for negative energies are reinterpreted as creation operators for antiparticles
with positive energies [47]. The implications of negative group velocities for particles

and antiparticles will be considered elsewhere, and the existence of very high-energy
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branches in the dispersion relation will be discussed below.

As E? and E3 are the dispersion relations which are E? ~ p?4+m? when p < I, %,
we work on these two possibilities. For a nonzero mass, but with § = «a, (2.87) and

(2.89) gives

1 F 2ap + 2a2p? — \/(1 T 2ap)° — 4a2m?
Eis= (2.98)

202

where the upper sign is for E7 and lower sign is for F2. We are primarily interested
in particles with large energy, for which m? (or more precisely m?/p*) can be treated

as a perturbation:

E? = [E?| ,_,+ [0E/om?] ,_  m®. (2.99)
From (2.98) we obtain
1 —40?
OB}, /om? = ——— (Fa')
@ 2\/(1 T 2ap)® — 4a2m?
1
- , (2.100)
\/(1 T 20p)% — 402m?
and
OET |
—_—r = |1 F 2ap| 2.101
G| b (2.101)
or
2 2 m?
FEi.= 2.102
13=Dp + 1T 2ap ( )

to lowest order in m?/p?, which reproduces the usual result E* = p* +m? as ap — 0.
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The particle velocity is then v = OF/0p = (0E?/0p) / (2E). or

am? m2 -1/2
Ma=|1+t—m——| 1+ —-—
e { p(1 :anp)?} { P (1 :anp)l
m? 1F 4ap

2p? (1 T 2ap)?

m2

- (1— ! 2), (2.103)
2p ((2ap) " ¥ 1)

~

so that
v—lasp— o0 (2.104)

and
p<m/4 for E?
v < 1 for / b (2.105)
any p for B2
Furthermore, it is easy to see that particles with p > m/4 for E? will be super-

luminal by only an extremely small amount except when p lies in a narrow range of

energies near p =m/2 (i.e., ap = 1/2): Letting ap = 1/2 + 6 in (2.103), we obtain
(2.106)

For example, if m is ~ 1 GeV and m were ~ 101 TeV, then § ~ 10~% would imply
that (v — 1) ~ 107!8, and the deviation falls like 1/6%. However, it should also be
emphasized that superluminal velocities of any size are not a violation of causality
in the present theory, because all signals still propagate forward in time in the initial
(preferred) frame of reference.

We have other two energy-momentum dispersion relation E3 and E?, and simi-



larly we expand them with respect to m?2.

1 F 2ap + 2a%p? + /1 — 4a2m? F 4ap + 4a2p?
202

2 _
E5, =

— (a7 Fp)”.

m—0
where the upper sign is for F2 and lower sign for E?.

OF3 -1 -1
— — .
om? /1 —4a?m? F dap + dap? m—0 1 F 2ap

Therefore, we then have

2

B}, ~ (m R LL—
—~1/2
__ Fm? }{_ 2 m?
Vog = |F(MFp)+ m T - =
3m F 4p
%:F{l—l— __( 5 ) _2],
2m (m F p)” (1 F 2p/m)
SO
Va4 — Flasp — oo
and
3m?
vog = Fll+ 5= | =voasp—0.
2m

74

(2.107)

(2.108)

(2.109)

(2.110)

(2.111)

(2.112)

(2.113)

The particles with E? are then slightly superluminal. For example, if m is ~ 1 GeV

and m were ~ 10'° TeV, then vy—1 would be ~ 10726, Again, however, a superluminal

velocity of any size in the present theory does not imply a violation of causality.

Now let us turn to the GZK cutoff, [22],[53]-[58] which results from collision of a

charged fermion with a blackbody photon. The incoming photon has energy w and

momentum (—w cosf, —wsin f, 0) in units with # = ¢ = 1. The incoming fermion has

mass mg, energy £, and momentum (p,0,0). The outgoing fermion has mass my,
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energy F + w, and momentum (p — wcosf, —wsinh,0). If w is small (as it is for a

blackbody photon), it is valid to use

E E E
0 Ap, + a—Apy + a—AmZ (2.114)

AFE =
Opz Opy om?

with OE /Opy = vpg/p and v = OE/0p, so that

OFE Am?

1 0=
+ v cos mE

(2.115)

and the threshold is for a head-on collision. Consider the normal branch of the
dispersion relation, described by (2.101), (2.102), and (2.103). With 0E/0m?* =
OE?/0m?/ (2E), (2.115) becomes

2 (1 +wvcosh) (1 F2ap)p=Am?*/w (2.116)

where m? has been neglected in comparison to p?. This quadratic equation in p has

a solution only if

2(1+wvcosf) >8aAm?/w  for E? 2.117)

2(1+wvcosf) > —8aAm?/w for E2
or

m > 8(Am?/4w) for E}
, (2.118)
any value of m  for E?

where again o' = m. The E3 branch has a GZK cutoff at

o [—1 + V14 8alm?] (d0)| /4o — Am?/ (4).

Therefore, the E3 branch is a modified version of the usual physical branch, but the
E branch can be interpreted as a totally new physical branch, because of its stronger
Lorentz violation.

If m is lower than eight times the standard GZK cutoff energy, therefore, the
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present theory implies that the GZK cutoff is eliminated for one of the physical
branches (the E; branch). The reason for this is that the (1 — 2p/m) factor in (2.102)
and (2.116) tends to push the cutoff up to higher energies even if 7 is large, and
completely eliminates it if m falls below 2 Am?/w.

Finally, let us return to the standard astrophysical threat to a Lorentz-violating
theory, that it may lead to disagreement with the observations of high-energy matter
particles or photons, including prediction of new processes in the vacuum which are
not observed. An example is vacuum Cerenkov radiation. Conservation of energy

and momentum implies that

oF O OE

= _ 0
+8py Dy ap( w cos B)

so this process can occur if

v=1/cosf > 1. (2.119)

If we were to have J < «, the particle velocity at high momentum would be greater
than the velocity of light, and there would be a radiation of photons in vacuum which
is in conflict with observation [22].

Next consider the process photon — e*e™, which will occur if
2F (p) = w = 2pcosb. (2.120)

The normal branch for £ (p) corresponds to the choice of signs —, +, 4 in (2.91). For
20 or 50 TeV photons, it is reasonable to assume ap, fp < 1, and keep only the terms
of first and second order in « and 8. Then (2.91) gives E1 3 (p) =~ p F yp>. When the
mass term in F (p)2 is also treated only to lowest order in o and §3, it is simply m?.
(E.g., see (2.102).) For a massive particle, therefore, £ (p) becomes

) 1/2
Eis(p) ~ [(p1F7p2) +m2} ~pFpt+m’/2p
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and the condition for vacuum pair production is
1 Fvp +m?/2p® = cosb. (2.121)
This will have a solution if
p® > m?/2|y| when v > 0 for E; and v < 0 for Es. (2.122)

Since observations indicate that 20 TeV photons do not decay in vacuum, |y|~! must
lie above the Planck energy.

If 8 = a, or v = 0, the unphysical processes considered above do not occur. More
broadly, since many features of Lorentz invariance are retained in the present theory
(including rotational invariance and the same velocity ¢ for all massless particles) it
appears that the theory is consistent with experiment and observation. The theory is
also fundamental, rather than ad hoc, and it leads to various new predictions. Here
we have emphasized one feature: the behavior of fermions at extremely high energy,

and the possible implications for the GZK cutoff.

2. Lorentz Symmetry Violation Term

Here we study in more detail the Lorentz-violating term

1

Eviolation = wz (_Wnuyayaﬂ) wL.

To use (2.18) and (2.19), we write the spinor indices explicitly as

1 .
Eviolation = ¢zd <—m00aan“”&,8u) wLa- (2123)
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Then under a Lorentz transformation,

1 .
Lyiolation — wga () (_mﬁoaanwaz//a/:> Vo (@)

- (—ﬁ) vl (A') (6% ~ S () ) oo

— (_ﬁ> w; (A_ILL') |:005ﬂ _ %WMV (a.uua.() o O'OO'NV)Bﬂ:| 77%35&#15 (A_IZL’) ’
(2.124)

where we have used (2.4). Therefore, if the second term in |- - -] vanishes, the action

1s invariant.

a. Rotation

When the transformation is a rotation, we can take p,v — .7, where ¢ and j are

space coordinate indices. Then the second term is
Wy (5“”00 - 000’“’) — Wjj (6”50 - 500”)
_ oY rsi g =g i1 =0 Loy izj_  j=i
_wij§ o0’ —0°0 a—wijéa o0’ —0°0
_ Qi 4 i
=wyj |—o o’ +oo

= 0. (2.125)

Therefore, the Lorentz-symmetry violating term is invariant under rotations.
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b. Boost

When the transformation is a boost, we can take ;4 — 0 and v — 2. Then the second

term is

W (6_p,VO_O o anw) — wo; (501'50 B 50001)

1

= wOZE [600i — 5i00} 0 — wijééo [aoﬁi — 0160}
= QiWOiUi
# 0. (2.126)

Therefore, the Lorentz-violating term is not invariant under a boost.

3. CPT Violation in Our Model

We saw that Lorentz symmetry is broken because of non-invariance under a boost
(although there is invariance under a rotation). The Lorentz-symmetry violating term
is
Ul 0,0,0m — ] S0, 8,01, (2.127)
2M 2M
where each term is independently Lorentz-violating. Even if Lorentz symmetry is
broken, this does not mean that CPT is also violated. Therefore, we now consider
whether our Lorentz-violating terms are CPT conserving.
It is convenient to momentarily change from 2 component notation to 4 compo-

nent notation, with the Lorentz-violating terms rewritten as

1 X 0 wR
%wmmmwww%mﬂm=<@€@)wm =
0 —1axe Yr
(o i )omaanr| | e

YL



80

We will study the behavior of this term under parity, time reversal, and charge con-
jugation operations. We follow Ref. [59] in treating P, T, C' for a 4 component

spinor.

a. Parity
Parity operation for a 4 component spinor is given by

PV (t,7) P =7V (t, %), (2.129)
SO

PUT(t,%) ¢"0,0,7°V (t,7) P = W (t,—2)7° (=1)" (=1)* ¢"0,0,7°7"V (¢, —7)
- _\IJT (tu _f> <_1)V (_1)# gw’aua//y5qj (tu _f)

= -Vt (¢, -%) ¢"0,0,7°V (t, —7), (2.130)

where (—=1)" =1 for g =0 and (—1)" = —1 for g = 1,2,3. This term is odd under
P.

b. Time Reversal

Time reversal for a 4 component spinor is given by
SO

T (t,7) 0,0,0°0 (t,7) T = ¥ (=1,2) (v*7") (= (=1)") (= (=1)")
' gw/aua,u’yg) (7173) v <_t7 f)

= W' (1, %) ¢ 0,0,V (—1, ), (2.132)
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and it is even under 7.

c. Charge Conjugation

Charge conjugation for a 4 component spinor is given by
CV (t,7) C = —iy*V* (¢, 7), (2.133)
SO

OV (¢, %) 0,0,7°V (t,7) C = W (t,7)v%ig" 0,0, (—i) Y*U* (t, T)
= V" (t,%) ¢"0,0,7/° V" (t,7)
= ¢"0,0,V" (t,7) 7"V (¢, 7)

— Ul (¢,7) g"0,0,7°V (t, ), (2.134)

and it is even under C.

Therefore, C'PT yields for this term
(=1) - (+1) - (+1) = —1, (2.135)

and it turns out that the Lorentz-violating term is C'PT odd.

The behavior of this term under P, T, C, and C'PT is summarized in Table IX.



Table IX. P, T, C, and CPT of our Lorentz-symmetry violating term.

Ut (¢, ) g 0,0,V (t, T)

+1

+1

CPT -1
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CHAPTER III

ORIGIN OF GRAVITATIONAL AND GAUGE INTERACTIONS

A. Introduction

In this chapter, we derive both gauge and gravitational interactions from the following
fundamental action, which is itself derived from a microscopic statistical picture in

Chapters IV and V (see (4.117)):

1 1
S = /d% [ThMNaMwTaN\IJ — U 4 5b (qﬂxp)z (3.1)
m
with
21
Z Z
v=| o= (3.2)
zf
ZN

Here hMY = §MN is the initial metric tensor in a flat D-dimensional Euclidean space,
as discussed in Chapter V. This action has a “primitive supersymmetry”, in the sense
that the initial bosonic fields 2, and fermionic fields zy are treated in exactly the same
way. The only difference is that the z, are ordinary complex numbers whereas the
zy are anticommuting Grassmann numbers. (Here, as in Ref. [21], “supersymmetry”
is taken to have its general definition [60],[61]: An action is supersymmetric if it is
invariant under a transformation which converts fermions to bosons and vice-versa.)
We will argue that standard physics can emerge from (3.1) at energies that are far
below the Planck scale, provided that specific kinds of topological defects are included
in the theory. For example, one can obtain an SO(10) grand-unified theory, containing
both the Standard Model and a natural mechanism for small neutrino masses [8],

[52],[62-[71].
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B. Canonical Quantization in Lorentzian Spacetime

Functional-integral quantization can ordinarily be replaced by canonical quantization,
or vice-versa [72], through a procedure that is similar to that for a single particle.
In the present theory, whether this can be done consistently is a nontrivial issue,
because the resulting field theory has some very unconventional features. In the
present section it will simply be assumed that one can define quantized fields T ete.
in the usual way [72]-[80].

After a change from functional-integral to canonical quantization, and an inverse
Wick rotation from Euclidean to Lorentzian time (with S, = 4S), the action (3.1)

becomes
: D | L ung Gta g st L et e )2
Sp=— [ dx | SN on oyl — by + b (\yL@L) (3.3)

where nMY = diag(—1,1,...,1). (We intend to consider the philosophical problem of
transformation from Euclidean to Lorentzian time elsewhere. Here we adopt the point
of view that one is allowed simply to perform mathematical transformations starting
with an abstract initial theory, as long as the transformations are mathematically
consistent and the final version of the theory correctly describes our observed physical
reality. It is important to recognize, however, that all Euclidean times are effectively
mapped into each single Lorentzian time via an inverse Wick rotation.) The notation

of (3.3) is rather awkward, however, so for the remainder of the paper we will let
Sp— S, U, -0 (3.4)

with the understanding that these are now quantized operators in Lorentzian space-

time. It is also understood that raising and lowering of indices is now done with the
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Minkowski metric tensor:
A'B, =n"A,B, orin D dimensions AM By = nMN Ay By (3.5)

Later in this section we will introduce the metric tensor associated with gravity and
general coordinate transformations. To avoid confusion, this metric tensor g, will
always be shown explicitly, and simple raising and lowering of indices will always have
the interpretation (3.5).

With the above change of notation, and after an integration by parts, (3.3)

becomes

S=- /de [—QL\I/TaMaM\p — pUT 4+ %b (wiw)?] . (3.6)
m

The resulting equation of motion is

1
[—%aMaM — 1t + Vige + DA (qﬁxp)] =0 , Vie=0(v"0) (3.7)
where (- - -)mc represents a vacuum expectation value, and
Uiy = (Uh) + A(TTD). (3.8)

For the remainder of this section, we will consider either the vacuum or a noninter-

acting free field in the vacuum. We then have

1 1
—— MOy — i+ Ve | U =0, [ —=—0M0y — i+ Ve | ¥y = 0. (3.9)
2m 2m
It will be assumed that the physical vacuum contains a condensate whose order

parameter

Ueond = (Vb)) 0e (3.10)
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has the form

\Ilcond = Unl/zdﬁo (311)

con

UtU = nine = 1. (3.12)

(As discussed below W, is dominantly due to a GUT field that condenses in the
very early universe. In the present theory, it is not static, but instead exhibits rota-
tions in space and time that are described by U. Other vacuum fields and physical
fields are viewed as “moving with the condensate”, in essentially the same way that
particles in an ordinary superfluid flow together. In the analogy of a superfluid, the
order parameter rotates in the complex plane, and this rotation gives the superfluid

velocity.) It will also be assumed that the order parameter can be written in the form

\Ilcond = \ch—e:ct (xﬂ) \Dc—int (:Em’ x,u) (313)
WUeent (2) = Uegr (2") niﬁ (") Neat (3.14)
Ve int (2™, 2%) = Upng (5™, ) 037 i (3.15)

where 7., and 7;,; are constant vectors. Let us define external and internal “super-
fluid velocities” by
muy = —iU 'Oy U (3.16)

or

mu, = —iU;10,Uent — iU 0, Ui (3.17)

ext wnt

My, = —iU; 10 Usni. (3.18)

int
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The fact that U is unitary implies that 0,,UTU = —U'0y,U with Ut = U, or

so that

ol =y (3.20)

Here we will initially consider the case that
Uit =0 (3.21)

in which case there are separate equations of motion for external and internal space-

time:
1
(—%8"% — ,uext) \Ilcfext =0 (322)
1 m
(_%a 8m — Hing + %ac) \ch—int =0 (323)

with fing = pt — pftegt- The quantities Ve, fing, and ¥;,, are allowed to have a slow
parametric dependence on z#, as long as 0*0,V,,, is negligible.

When (3.14), (3.17), and (3.21) are used in (3.22), we obtain

1 1 1
nlxtnig[(§mv“vu - %auau - Mext) — 1 (5(9#“# + v“@u) niﬁnext] =0,

(3.24)

and its Hermitian conjugate

1 1 (1
niztniﬁ[<§mv“vu — %8“8“ — ,ue;rt> + 4 (Qﬁ“vu + Ul@u) niﬁﬁezt] =0.

(3.25)
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Subtraction gives the equation of continuity
a,ujg:ct =0 3 jg:ct = nlxt neztv“next (326)

and addition gives the Bernoulli equation of the condensate

1
§m1_}zxt + Pext = Hext (327)
where
ﬁext = let U#U,u Neat (328)
1 —1/2 1/2
Peat = =5 et "0 (3.29)

In the present theory, the order parameter in external spacetime, V.., has the
symmetry group U(1) x SU(2). The “superfluid velocity” in external spacetime, v,,,

can then be written in terms of the identity matrix ¢ and Pauli matrices o® :

vt =0k . p,a=0,1,2,3. (3.30)

(67

It is assumed that the basic texture of the order parameter is such that
vy =vi=0, ka=123 (3.31)
to a good approximation, yielding the simplification

1 o (07
5m HUR + Peat = fleat- (3.32)

Letting W, represent either the general bosonic field ¥, or the general fermionic

field U, which interacts only with the condensate and other vacuum fields, (3.6) gives
1
S, = — /de 138 <—2—0M0M — v) U, (3.33)
m

Since W, satisfies a linear equation involving a Hermitian operator, it can be written
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in the form

U, (2, 2™) = g () )" (a™) (3.34)

T

with a summation implied over repeated indices, as usual. The 1;2 are field operators
and the 9" are a complete set of basis functions in the internal space, which are

required to be orthonormal,
/ dP A T (™) It (2™) = S (3.35)
and to satisfy the internal equation of motion
1 m nt (,m int (,.m
=5 0" Om =t Vaae | 07 (&) = 2 (27). (3.36)

(The ¢ are allowed to have a slow parametric dependence on z*, as long as 99,
is negligible.) As usual, only the zero modes with e, = 0 will be kept, since the higher
energies involve nodes in the internal space and are comparable to mp. When (3.34)-

(3.36) are used in (3.33), the result is
So=— [ dwdi (—tor ),
a — xwa _%a a,u, — Heaxt wa (337)

where @Za is the vector with components JZ

C. Origin of Gravitational Interaction
Let zza be rewritten in the form
Vo () = Ueay () 1)q (2) . (3.38)

(The 2 x 2 matrix U,,; multiplies each of the 2-component operators ig) Here 1), has
a simple interpretation: It is the field seen by an observer in the frame of reference

that is moving with the condensate of the external space. In the present theory, the
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GUT condensate ¥, forms in the very early universe, and the other bosonic and
fermionic fields ¥, are subsequently born into it. It is therefore natural to view them
from the perspective of the condensate.

Equation (3.38) is, in fact, exactly analogous to rewriting the wavefunction of a
particle in an ordinary superfluid moving with velocity v,: ¢ () = exp (ivsz) ¥ () .
Here v, and ¢, are the wavefunctions before and after a Galilean boost to the super-
fluid’s frame of reference.

When (3.38) is substituted into (3.37), the result is

1 1
S = —/d4x Yl [(émv“vu — %8“3“)
— ezt — 1 (%(Wvu + v“@u) @/JQ} : (3.39)

If ny and v, are slowly varying, so that P,,; and 0"v, can be neglected, (3.32) yields

the simplification
1
Sa = /d4x wl <%8“3M + ivgaaau> wa. (340)

In the present theory, the gravitational vierbein is interpreted as the “superfluid

velocity” associated with the GUT condensate W .,4:

eh =k, (3.41)

07

The form of the action of the bosonic fields and the fermionic fields are same. When

pt < m, the first term of the action is negligible and we obtain
Sa — /d4x Yl (ieko®0,) Ya. (3.42)

Then at low energy, we obtain the standard spin 1/2 fermionic action which interacts

with the gravitational field e#. On the other hand, we also initially obtain spin 1/2
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bosons which will be considered below (and later transformed to scalar bosons and

auxiliary fields).

D. Origin of Gauge Interaction

Let us now relax assumption (3.21) and allow Uy, to vary with the external coordi-

nates z*. It is convenient to write

\I]cfint (xm) = fjint (xli’ $m> ‘ilcfint (xm)

Upnt (2", ™) Upe (2™) 022 (2™) Dt (3.43)

int

where n;,; (z™) = gl

Lo (™) Wiy (x™) and U, still satisfies the internal equation

of motion
1 _
——0"0 — tint + Vioae | Wint (™) = 0. 3.44
(= 502" 0 = i+ Vi ) o (a™) (3.44)
This is a nonlinear equation because V,,. is largely determined by n;,;.

The internal basis functions satisfy (3.36) with e, = 0:

1 m int my __
(—%8 (9m Mint + ‘/;)ac) ¢r (.T ) = 0. (345)

This is a linear equation because V,4. (™) is now regarded as a known function.

If the vacuum of the internal space had a trivial topology, the solutions to (3.44)
and (3.45) would be trivial, and the resulting universe would presumably not sup-
port nontrivial structures such as intelligent life. The full path integral involving
(1.1) contains all configurations of the fields, however, including those with nontriv-
ial topologies. In the present theory, the “geography” of the universe inhabited by

human beings involves an internal instanton in

d=D—4 (3.46)
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dimensions which is analogous to a U(1) vortex in 2 dimensions or an SU(2) instan-
ton in 4 Euclidean dimensions. The standard features of four-dimensional physics
— including gauge symmetries and chiral fermions — arise from the presence of this
instanton.

In the following, it is not necessary to have a detailed knowledge of the internal
instanton. The only property required is a d-dimensional spherical symmetry for the

internal condensate, and, as a result, for the functions Ji”t defined by

b = Umt%ant (3.47)
To be specific, it is required that
K; ™ =0 (3.48)
where
K; = K0, (3.49)

is a Killing vector associated with the spherical symmetry of the internal metric tensor
gmn defined below. When K; corresponds to the generators of group SO (N), ¢ and
narei=1,--- ,N(N—1)/2and n=1,--- ,N. At a given point, the derivatives of
(3.49) involve only the (d — 1) angular coordinates, and not the radial coordinate r,
so (3.48) states that n;,; and the Jﬁnt are functions only of r.

The vierbein e# of external spacetime was defined in (3.41). It is convenient
to define the remaining components of the vielbein in a slightly different way, by

representing muwy; in terms of a set of matrices o4,

A
UM = Upa0” = Va0 + Uareo®, (3.50)
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and letting
ere=—Une , M=0,1,....D—-1 , c¢>4. (3.51)

(The o are associated with U, and the o¢ with Uy, Since (3.18) implies that
Uma = 0, all the nonzero ejr4 have now been specified.) When (3.21) holds, the only

nonzero components of the metric tensor are

g =nPelel. (3.52)

«

and

Imn = €mcClne (353)

which are respectively associated with external spacetime and the internal space.

More generally, however, muv,, contains a contribution

MU,o° = —iU (¥, 2™) 0uUint (2, 2™) (3.54)

wnt

so that e, is nonzero and the metric tensor has off-diagonal components

Gum = €ucme- (355)

In the present theory, just as in classic Kaluza-Klein theories, it is appropriate to

write

€uc = ALKlnvnc y  Gum = ALKzngmn (356)

or, for later convenience,

Mo’ = —Aj0; (3.57)
o; = mK]'v,.0°. (3.58)

For simplicity of notation, let

(r1Qls) = / dhr QUi with  (r|s) = 6,4 (3.59)



for any operator @, so that (3.47)-(3.49) and (3.18) give
(rf (=iKG) |s) = ([ (=iK7") (imon) [s) = (rlails) .

With the definition
7 = (r| (—iK;) [s)

we then have

(r|o;|s) = t°.

The Killing vectors have an algebra

kKk

ij

KZ‘KJ‘ — KJKZ = —C

or
(—idG) (—iKG) = (—ilG) (—iRG) = iy (<ikG)
so the same is true of the matrices ¢°:
tit; — tit; = ickty.

With the more general version of (3.34) and (3.38),

U, (2", 2™) = Uegy (z#) ﬁmt (2, ™) 7 (z*) Pt (2™)

a s

we have

0V, = Ueyy (21) Uit (xh, 2™) (0 + imveo® + imu,,.o€) Yt

94

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)
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and
/ d*z Wi 010, ,
= /ddx Qi (0 + im0 ® + imu,,.o°) (8,, + imvl,gaﬁ + imv,,dad) Yt

= il ] (O + ima0® + imueo®) Y0 (9, + imuo” + imuao”) |s) ¥
t

a

=PI (1| (9, + 1M o® + imu,,.0°) Z t)(t] (0 + imuv,50” + imv,a0?) |s) 3
t

= @DQT nt [(5Tt (O + imvyeo®) — iALt;”t} [5ts (8V + imvl,gaﬁ) — Z'Af,tzs} (0

= wl nt” [((3“ — iAZtZ-) + imvuaa“} [(8,, — iAitj) + imv,,gaﬁ] Vg (3.68)

where (3.35), (3.31), and (3.62) have been used. The action (3.33) then becomes

1
S, = /d4x¢a (=—D"D, + ivho*D,

2
1 Ve 1 ap, o
5 Dyieho = S+ ) (3.69)
after (3.36) is used, where
D, =0, —iAlt;. (3.70)

With the approximations above (3.40), (3.32) and (3.41) imply that

Saz/d“wa < ! DD, +ieto®D )%. (3.71)

This is in fact the generalization of (3.40) when the “internal order parameter” is
permitted to vary as a function of the external coordinates z*.

As in Ref. [21], let us postulate a cosmological model in which

Q
ox
Il
>
2
oE
Il
N
X

(3.72)
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In this case (3.44) can be rewritten as

S, = / d*z g, (m™'g" DD, +ieto®D,) U, (3.73)

where
g = n“ﬂ’égég . m=X\m (3.74)
g=(—detgu)? = A" | by = N (3.75)

(The tilde is a reminder that the above form is not general, and that g is not
a dynamical quantity.) In a locally inertial coordinate system with e = §# | this

becomes
So = / d'z " ((2m)"' 9" D,D, +ic"D,) ¥, (3.76)

where the bar has been removed from 1, for simplicity, so the fermionic and bosonic

actions are respectively

S — / d'e oyt ((2m) " D,D, + i0" D,) (3.77)
and
Sb = /d4$ ¢5T (ﬁ“VDHDV —+ Qima“Du) ¢b (378)
where now
op = ) (2m)"2. (3.79)

Again, one regains the usual bosonic action excluding the gravitational interaction at
high energy,
Sb — /d4x d)ZanDMDV(ﬁb for p“ > m, (380)

and the usual fermionic action including the gravitational interaction at low energy,

Sy — /d4x ch ot Dby for pt < m, (3.81)
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where the expressions now include gauge couplings and are written in a locally inertial
coordinate system. In the chapter on the supersymmetrization of our theory, by using
a new method, we will recover the usual Lorentz symmetry and the usual gravitational

interaction of the bosonic fields at the low energy.
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CHAPTER IV

SUPERSYMMETRY OF OUR THEORY

A. Supersymmetric Functional Integration and Supersymmetry Algebra

1.  Functional Integral Invariance

Invariance of the functional integral under a supersymmetric transformation requires
that both the action and the functional integral volume element, or measure, are left

invariant. When there is no auxiliary field the action is given by

g — / 'z (6 00,6 + i)' 5 0,1)) (4.1)
and invariance of the action requires
0.5 = /d4x (5@*8“8“@5 + ¢ 0"0,0.0 + i5€¢T5“8ﬂw + Z'W&“(?“(Lw)
= [ @i (0 90,6 + 600, (£ (0 ba)
+i¢" gl (€) 0" 0utba + 105" g (€),, u0)
= [ date] (£ 07 0+ 10 (),) 94

+¢" (F()" 0" +ig" ()5 6") Oyt

0, (4.2)

where the surface terms are assumed to vanish and we have also assumed

50 = F ()" oy 0" =L fT ()%, (4.3)
Sctba = g(€), 0, 00k =g (€), 0" (4.4)
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The new fields ¢" and ¢/, are written as

¢ L f(e)® 0 - ¢
(A g, 1 Vo Yo

and f (¢)” and g (€), are Grassmann spinor functions. From (4.2), we obtain

fHe)* " +ig"g () =0, (4.6)

(e

f(e)* 0" +igt (), 0" = 0. (4.7)

Energy-momentum fixed-k functional-integral volume-element invariance requires

that
A6 (k) i (k) = dof (k) dv (k) st (1) = do? (k) d (k) (48)
and
sdet ) =det (1 — f(e)*g(e),) (det (1)) =1, (4.9)
A C
where we have used sdet —det(A — CB~'D) (det (B))~". Then we obtain
D B

(g0, =0. (4.10)

The requirement of the invariance of both the action and the functional integral

volume element cannot be simultaneously satisfied unless

fle)"=g(e), =0, (4.11)
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and we could not have supersymmetry. We therefore need to introduce a bosonic

auxiliary field F', with the action given by
S = / d*z (¢* 00,0 + iYio" 0,0 + F*F) .
The supersymmetry transformation is then

50 = () Yay 00" =L fT(e)
Sctba =g(€) b+ h(e), F, 0l =g (€)y 0" +hl(e), F*

5.F = j(6)* e, 0.F* =0T ()

(4.12)

(4.13)
(4.14)

(4.15)

where f(€), g(e), h(e), and j(e) are anticommuting SUSY spinorial functions.

Invariance of the action requires

5.5 = / d*2(6.0° 00,0 + ¢ 0"0,6.6 + 0 5 0,1)
+ ip1610,0.) + 0. F*F + F*5.F)
= [ Al (0 90,6 + 600, (F (0 ba)
i (%91 (g + AT (0),) 7970,
i (g (€), O + b (6), )
+ LT (O F + Fj(€)" o)
= [ dialul (1100 040, + 15,9 (0),) 0
+ 0" (f ()" 00 +igt (€),50,) o
+ 0] (0" (€), 0+ 51 () F

FF () + b (6);,0"4°0,) ]

Il
o

(4.16)



where the surface terms are assumed to vanish, and we obtain

(%00, +ia"d,9(e), =0 —  g(e), = —io”0,f1 (€)%,
f (E)a 3“3“ + igT <€>a 5”M8u =0 - gT <5>a =—if <5>a 0Oy,
i"h(€), 0, + it () =0 — ()% = —ig"Nh(e), Oy,

j(e)* +ihf(e), 3", =0 — j(e)* = —ihf (), "D,

where we have used 6#%*g" . +5"%c" . = —2n"§%, and o .5V +o¥ . WP =
af af ad ad

and therefore 5“"’“025-@31, = [(5“0"‘10:5 + 6"5"0‘05/8) /2] 0,0, = —538’“‘(%.

The fixed-k functional integration is given by
/ AP’ (k) A" () /511w,

where

dd' (k) = d¢’ (k) dF' (k) dy' (k),

and the fields are transformed as

¢’ 1 0 f(o° ¢ ¢
Fl=1] o 1 j(e” F |=M| F
v, g(€)y hle)y 1 Ve e

Since the functional volume element is transformed as

4T d®" = dd!ddsdet (MT) sdet <M>
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(4.17)
(4.18)
(4.19)

(4.20)

_277#”53’,

(4.21)

(4.22)

(4.23)

(4.24)
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the condition for sdet (M ) =sdet (M T) =11is

sdet 0 1 IGE

10 fe” 1
= det — € € det (1
(01 (j(g)a)(gua h<>a))< )

=1, (4.25)
and by ignoring the 4th power infinitesimal terms, we obtain
fe)g(e)g+i(e)"h(e), =0 (4.26)
Similarly, the requirement for sdet (M T) =1is

FH(€ag" (@ +5 (€4 bl ()" = 0. (4.27)
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With the use of (4.17) and (4.20), it can be rewritten as

fe%g(e), +je)*h(e),=—f(e)" io” O, f7 (e)d —iht (€)g 6"&0‘8“}& (€),

— —if (oSt (0 D, +ih () olehT ()% 0,

—0, (4.28)
where we have used 1 (¢), 3¢5 (), = —n ()* 0%, X" (€)* in the second term of the
second line. We then obtain

fe)*=h(e)”. (4.29)

2. Closure of Algebra

In this subsubsection, we will show that the requirements of action and functional
integral invariance which we have obtained in the previous subsubsection guarantee
closure of the algebra. The commutator of the supersymmetric transformations for

each field are

[5627 561] ¢ = (562561 - 561562) ¢
= de, (f (El)a @Z)a) — O¢ (f (@)a ¢a)
= f(e) (g9(e2)y @+ h(e2), F) — f(e2)" (g (€1), &+ h(er), F)

= [f (ﬁ)ag(Ez)a(—)f(€2)a9(€1)a]¢+ Lf (El)ah(ez)a (—b)f(€2)ah(61>a]F

(4.30)
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s 00 Vi = (0csBs = 8ad)
b (9(€1)o @+ 1 (1) F) = by (9 (€2), 6+ o (e2),, F)
9(e1), £ () s+ b (), 5 () 1)
— (9(@)u f () s+ (e2)d (1) 1)

= [g(e)a £ (@) = gl f (@) + b)), (@) = h(e), i (@)] vs
== (¥g(e)s) fle)a = (9(e) f (€);) Yo+ (¥ (e)) f (),

+ (9(@) f(@)) o+ [Pl (@) = h(e),i(@)’] vs
)’ f

= [9(e)" f ey — g () f(@)y|va + 1= (V79 (e1)) f (2),
(a)

+(79(e2),) Fe)a+ [le)d (@) = hle), i) |os  (431)

(b)
where in the 5th line we have used the Fierz identity (£n) xo = — (1X) o — (X&) Na
Then

[0eys Oy | F' = (0ey0c; — Oy 0ey) F
Oc; (7 (€1)" Pa) = ey (4 (€2)" tha)
=Jj(e)"(g(e), @+ h(e), F) —j(e2)” (9(€1), ¢+ h(e), F)
= [ ()" h(e2)y = (e2) hler) JF + [j (1) g (€2), — i (€2)" g (€1),]0-

(a) (b)
(4.32)
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Closure of the algebra means that all of the fields in the same multiplet satisfy the

same algebra, [0, 0] X = (--+) X, where X = ¢, 1,, or F. Therefore, we require

(4.30 —b) = f(e1)" h(e2), — f (€2)* h(er), =0
(4.32=b) = j ()" g(e2)y —Jj(e2)"g(e1)y =0
(4.31—b) =0

(430 —a) = (431 —a) = (4.32 —a).
(4.33) is satisfied by using (4.29) since

(4.30 = b) = f(e1)" h(ea), — [ (€2)" h(e1),y

=h(a)"h(e), —h(e)"h(a), =0,
and (4.34) is satisfied since

(432 —b) =j(e1)" g(e2)y —J(e2)" g (e1),
= ihf (e1), 6"%°,i0" 50, T (€2)"

—ihf (&), 390 ic” 0, f1 (€1)"
= it (e1),, 59°8,i0" 30 T (€2)"

— il (&), 799D, ic" Oy fT (1)

= fT(e1) [T () 00, — fT (1), [T (2)* 00

:0’

(4.33)
(4.34)
(4.35)

(4.36)

(4.37)

(4.38)
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where we have used (4.17), (4.20), and (4.29). (4.35) is satisfied since

(431 =8) = = (Vg (e1), ) f (e2)o + (79 (e2),) £ (cr),
+ () () = hle)i(@)] s
= =2 (10,0, (€0)") Vs (e2), — & (1020 f" (&) ) ] (1),
+ (1) (=ihf ()5, 07°%9,) = h(ea),, =ik (e1),6"40,)] g
= (B%icth! (e)*) h(e), — (Bviohsht (@)*) h(e),
(e, (0 iotaht (@)F) = h(e), (B ichuhl (e)*)

= 0. (4.39)
Next we will prove (4.36).

(4-30 - a) =f (ﬁ)ag (Ez)a —f (62)a9 (61)a
= —h(e) i, f1 (e2)* + h (e2)* ic% 38, f1 ()"

= —ih (1) 0% 0,ht (€2)* +ih () 0%, ()" . (4.40)

(432 —a) = j(e1))" h(e2) — j (€2)" (1),
= —ZhT <€1>d 5"“0.@8”]1 (62)(1 + ZhT (Eg)d 6““8#}1 (61)04
— —ih (e1)" 0%, 0, b1 ()" +ih ()" 0% 0,0t (e1)" (4.41)

= (4.40).

(4.31—a) =g (62)5 / (ﬁ)g -9 (61)5 / (62)5
= ™ (1020, (2)") £ (@) + ™ (1020 f! ()*) £ (),
= —ih (1) 0%50,h1 (€2)* +ih (€2)” 05 0,hT ()" (4.42)

= (4.40).
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and we have thus proved (4.36).

As a result, when the action and the functional integral volume element are
invariant under the supersymmetry transformation, it is guaranteed that the super-
symmetry algebra is closed.

Although we have started with a specific shape of the action as in (4.12), we
next consider the more general case. The expected supersymmetric action with a
minimum number of fields (one spinor fermion, one complex scalar boson, and one

real auxiliary field) would be given by

. d4p * T oo *
S = / o [¢ Og + L0y + F*OF| (4.43)

where the operators Oy and Op, which are scalars, and Oy, which is a matrix, are

chosen so that 6.5 = 0, under

5.0 = f () oy 0" =L fT ()" (4.44)
Stba=g(e),d+h(e), F, ok =gt (e),0"+h(e), F* (4.45)

0. F = j(6)" e, 6.F* =vljt (). (4.46)
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To obtain the constraint on the choice of Oy, Oy, and Op, we calculate 4.S:

5.5 = / (3:6°) Outr + 60, (30) + (561 O
+ wgoga (0.00) + (6. F*) OpF + F*Op (6.F)]
= [ (S 07) 0w+ 0 6 )+ (o (0, + K (€1, ) O
+ 0RO (9 @+ () ) + (hiT (©F) OpF + F*Op (j (¢)" a)]
~ [ SR (110, 0F0(0,) 6+ (O] € +4' (9, 0) v
+ 0L (03 (€), + 71 (€ OF ) F + F* (Orj ()" + b1 (), 05°) ]

0, (4.47)

and we obtain

) ) ) Oda
1O 04+ 05 (e), =0 — fH(e) =~ Od; g(e),, (4.48)
. Ode
Osf ()" +9"(€), 03" =0 — f()"=—g"(e), Oi : (4.49)
) ) ) Oda
O3°h (), + 57 (€)*Or =0 — 5T (e)* =~ Ow h(e), (4.50)
F
TS i 08
Orj ()" +h1 ()5 05" =0 — j(e)" ==l (e)y 5~ (4.51)
F
By using (4.49) and (4.51) to eliminate f (¢)* and j (¢)” in (4.26), we obtain
Ofe Ose
9'(a5-9(a + (a5 =h () =0, (4.52)
¢ F

05/05 0 90, |
H(QT(E)C’“ m(e)‘j‘>< 0 Of;a/op) (h(e) )0
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and when

(w@QM¢n)(%Z%(W;))(mdkg@w), (459
/0

so (4.52) is satisfied. From (4.53), we have

Oda
h(" =" (a0 (4.54)
(0" = ) o (459
and from (4.49) and (4.54)
f(e)*=—h(e)". (4.56)

As we have already seen in (4.30)~(4.32), the commutator of the supersymmetry

transformation are

ez, 0] & = [f (€1)" g (€2),, . fle) g (e)olo+[f (e)" i (e), " fle)" h(a),|F

B 0a 0 = [9(e2)” £ (@) = 9 () F ()] va + {= (¥ (1)) £ (c2),
(a)

(Vg (e)s) fl@)a+ [hle),i (@) = hle), @) s
(0)
[Ocys 0ei] F' =[] (€)™ o (€2) —)j (€2)" h (1) JE + [7 (€)% g (€2), (;)J' (€2)" g (€1) 0]
By using (4.48)~(4.51), (4.54)~(4.56) we obtain

—

(4.30)-(a) = f(e1)" g (62)a — f(e2)g (61)a

= —h(e1)"g(e2), +h(e2)"g(e1),
Oécoe Olo'[)a




(4.31)-(a) = (4.30)-(a),

(4.32)-(a) = j (e1)" h(e2), — J (€2)" h(e1),

= —h (e1)

Oda
o Lh(e), + BT (€2)y ——h (1),
Op

and therefore
(4.30)-(a) = (4.31)-(a) = (4.32)-(a).

The others are

(4.30)-(b) = f (e1)" h(e2),, — f (e2)* I (e1),
= —h(er1)"h(e), + h(ea)” h(er),

=0,

(431)-(0) = = (079 (1), ) f (e2)o + (¥79 (e2)5) £ (ca),

af aB
O o

110

(4.57)
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Therefore,

[0cy, 0e,] X = (h* (e2), %h (e1), — h'(e1), %—ih (ez)a> X (4.58)

where X = ¢, ¥,, or F'. We have thus proved that when both the action and the
functional integral volume element are invariant under supersymmetry, the algebra

closes in general for the matter supermultiplet.

a. Claim 1

When the action and the functional integral volume element are both invariant under
a supersymmetry transformation, the algebra of the supersymmetry is always closed.

(It is possible that this might be generalized to other symmetries.)

B. SUSY of Matter Field

1. Conventional Spin 1/2 Fermion and Spin 0 Boson

Although we can introduce any number of bosons and fermions in a multiplet in
general, here we consider the minimum case, which means the minimum number of
fields which make the action and the functional integration invariant under the SUSY
transformation. As we saw in the previous subsubsection, we need at least two boson

fields and one fermion field, and the minimum free field action was given by

o d4p * t naa *
S = / o [(b Op + L0y + F*OF| . (4.43)

From the conditions of invariance of the action and the functional integral volume

element, we obtained (4.54):

B =g (@), (4.54)
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and by eliminating ¢' (¢),, and using (4.55),

0577 Oaa
h
aﬁ OF qu ( )
0,377 Oaa
a,BEUC OF O¢

h(e)* =

Y (e). (4.59)

This is satisfied when
0,377 Oacx
aBEUC OF O¢

— g, (4.60)
and multiplying 65, on the both sides give

1 0/877 Oaa

Ea = 1. 4.61
2 a,@ ﬁOF O¢> ( )

The left hand side of (4.61) is nothing but det (Oy) /OrO,4 and we finally obtain

det (Ow)

=1 4.62

This is an important result for showing that the functional integral with SUSY is
constant. We will prove this next.
The functional integral Z with SUSY and at a fixed energy-momentum £k, with

an action is given by (4.43), is

i ﬁ 1% / 1T bva )yt 15 ’
Z[® (k), " (k)] = / D' (k) dD'T (k) ¢/ @nt @ Cod HUHOT AT ORF] - 3y
where we have defined
= d¢'d¢"* dF'dF"™ d' dy'm. (4.64)
The functional integral of the bosonic part is
. d4p 1% ’
Zy s (k) = / dg'* (k) d! (k) ¢! arirl?" 0+
o)
_ m@m)” (4.65)

—i0y (k)



113

F/* OF F/}

. d*p
Zyp-r (k) = / dF" (k) dF' (k)¢ @nt!

™ (2m)*

= S0, (4.66)

The functional integral of the fermionic part is
[ 614717 ’}T &, ),
Zy (k) = /clw’T (k) d' (k) e ot [viogews]

_ / Al (k) g, (k) dusf () dt (k)

. d4p i1 92 11 21 11 2,1
(14 / o [@z)f Oyl + Y O + v O ) + o oifzpz]
1 d*p
2! (27r)4
d4p, rt .Oil ' rt -022 ' rt -021 ! /T~012 /
: (27r>4 [wiz w¢1+¢23 wwz“‘d}?z w¢1+1/112 ¢¢2)
1

= oy [ v (k) dus (k) duif (k) sy (R) /

+

[0t + w0 + yiON Y] + 0%y

d4pd4p/
(2m)°

2011 (p) 1011 (p) Ul (0) iOZ2h ()
+ 2010 (p) iO214 (p) T (0') 1O (0)]

_ [_0}; (k) OF2 (k) + OF (k) O (k)] (271r)

= det (—@O(;”T()’?) . (4.67)

Then the total functional integral is

[ed]

= 72 = k-independent constant, (4.68)

where we have used (4.62). The constant is unimportant because when a physical

value is calculated, it is divided by Z as in (4.116). Therefore, we have proved that
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the functional integration of the matter field SUSY is always constant for the minimal

number of fields.

a. Claim 2

For the general free field matter SUSY action (4.43), with the minimal number of
fields (one spinor fermion field, one complex scalar boson field, and one complex
bosonic auxiliary field), the fized-k functional integral Z (k) is equal to a constant.
(This will work not only for the field theory but also for the supersymmetrization of

a statistical model.)

2. Unconventional Spin 1/2 Fermion and Spin 1/2 Boson

Here we will check whether the Claim 2 is true also for the spin 1/2 fermion and
spin 1/2 boson SUSY. We start with one spinor fermion and one spinor boson, and
we will check whether this is the minimal number of fields to have the action and

functional integral volume element invariance. The action of this model is
S = / d'x [@&Q&#aaaﬂza + il Dby | (4.69)

where 1), and 1, are the spin 1/2 boson and spin 1 /2 fermion, respectively.
As both of the fields are spinor, the SUSY transformation parameter function is

scalar:

59&@ =a (9) ¢aa 5977224 = @DZ[CL* (9) ) (470)

69¢a =b (6) IZOM 5077024 = @Elb* (9) ) (471)

where a (f) and b () are anticommuting scalar functions, and 6 is a scalar SUSY
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parameter. The invariance of the action requires

548 = / dzfi (59@) G150, 1y + i} 5D, (MZQ)
+i (59¢g) G0, + 50, (Sgtba)]
_ / d'ali (Lo (8)) 040 + 00", (0 (6) 1)
i (340 8)) 40, + iv}o 0, (b(6) 7))
= [ dtalivh (@ @)+ b(6) 00,
045" (@ (6) + b7 (9)) 0, (G0l )

=0, (4.72)
and we obtain
b(0) =—a"(0), (4.73)
a(f)=—b"(0). (4.74)
The SUSY transformation matrix is given as

Do 1 a(f 4 - )
E R I G ] B P

Ya b(0) 1 Vo o

and the invariance of the functional integral volume element requires

DioDibo = DD sdet (M) = Dil, DU, (4.76)
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which means

sdet (M) = gsdet bo) 1

= det (1 —a(6)b(6)) (det (1))

=1, (4.77)
s0 we obtain
a@)b(®) =0 — a(8)=0h(0). (4.78)
From (4.73) and (4.78), we have
a(0) =b(0) = b, (4.79)

where 6 is a real Grassmann scalar, and we have obtained SUSY for the spin 1/2

fermion and spin 1/2 boson, in the form

(59@201 = i9¢a> 59&3 = _i¢£97 (480)

Sotba = 1080, Sl = —itkH. (4.81)
The functional integral of this model is

Z (k) = / dib (k) dp (k) dit (k) dopt (k) e’ b [ bl el oS

L ghaal
_*Wﬁmﬂz
o Lgraak, g

det (17555 )

= 1% = k-constant, (4.82)

where the mathematical details to show

7 7 i tp —f GHaa 7
/d?,b (k) diﬂ (k) ezf (inw)4[ Ve Pudﬂa] _ o~
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will be given below. Then Claim 2 is satisfied.

a. Closure of Algebra Check

According to Claim 1, since the action and functional integral volume element are

invariant, the algebra should be closed. We find

(0055 00, ] Yo = 00, (10110) — 0g, (i0214)

- — (9192 — 9201) ?Za, (483)

mw%Wuz%(%&Q—%(wwd

- — ((9192 — 9291) wom (484)

and therefore the algebra is in fact closed.

3. Unconventional Spin 0 Fermion and Spin 0 Boson

Here we will check whether Claim 2 is true also for a spin 0 fermion and spin 0
boson SUSY. We start with one scalar fermion and one scalar boson, and we will
check whether this is the minimal number of fields to have the action and functional

integral volume element invariance. The action of this model is
Sszxwwa@+&wmé, (4.85)

where ¢ and qg are the spin 0 boson and spin 0 fermion, respectively.

As both of the fields are scalar, the SUSY transformation parameter function is
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scalar:

Sop = c(0)d, 90" = d*c* (6), (4.86)
S0 =d(0)p, S9p* = ¢*d* (0), (4.87)

where ¢(f) and d(f) are anticommuting scalar functions, and 6 is a scalar SUSY

parameter. The invariance of the action requires

28 = [ dal(8067) 90,0 + 69", (o)
+ (806") 90,6 + 600, (80|
_ / d'al(° (6)) 00,0 + 67040, (e (6) 9
+(67d" (0)) 900 + ¢* 00, (d () ¢)]

= [@ald 0 (0)+ (0] 00,0+ 6" [0 (6) + c(6) 00,3

=0, (4.88)

and we obtain
d(@)=—c(0), (4.89)
c(0)=—d (0). (4.90)

The SUSY transformation matrix is given as

~a 0 T . T
1% = boel® 2%“ =M 1%“ , (4.91)
Yo d@) 1 (A (A

and the invariance of the functional integral volume element requires

DéDG = D' D'sdet (M') — DD, (4.92)
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which means

sdet (M) = gsdet @ 1

= det (1 — ¢ () d (6)) (det (1))

=1, (4.93)
s0 we obtain
c(O)d®) =0 — cO)=d(). (4.94)
From (4.89) and (4.94), we have
c(0) = d(0) = b, (4.95)

where 6 is a real Grassmann scalar, and we have obtained SUSY for the spin 0 fermion

and spin 0 boson, which has the form

S0 = 100, Sp0" = —idy* 6. (4.97)

The functional integral of this model is

7 7 ( d4p4—*“u—~*“u~
Z(k) = [ do" (1) do (k) " () d (1) & EFL0r e
kb,
_ det (Zw>ﬂ-
ik,
det (i)

= 1 = k-independent, (4.98)
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and Claim 2 is satisfied in this case also.

a. Closure of Algebra Check

According to Claim 1, since the action and functional integral volume element are

invariant, the algebra should be closed.

902, 60,] 6 = b, (016 — by, (1620)

= — (6102 — 0261) 0, (4.99)

[(5927 591] ¢ = 592 (Z91¢) - 591 (292¢)

= — (6105 — 6:261) &, (4.100)
and therefore the algebra is closed.

C. SUSY of Gauge Field

We saw that the fixed-k functional integral of the free matter field supermultiplets is
k-independent. Here we will extend the argument to the gauge supermultiplet. First,

we will calculate the functional integral of the gauge field, and we consider the action
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of the non-interacting gauge field given by

1
S = /d4:c — 1w " (4.101)

/ d'z — % (0,4, — 0,A,) (9" A” — 9" A"

1 1
= /d4x§gV§AyauauA£ + 5 (gMEaMA£)2
d4 d4 r, 1 ,
= /d4x/ (;;)f RICEy IR {_EgugAy (p )pﬂp“Ag (p)
1 o
= 5 ("PAc (0)) (974, (p))}
d*p 1, 1 )
- / (2! {‘5 Ay (p) p Ae () = 5 (9" puAe (-1)) (977 ps Ay <p>>]
1 d4p ve " € »
~ 32 / (27)’ (=9 Ay (9) D" A () + (9"PuAe (1) (9"Pu Ay (1))]
Ao
1 [ a A,
B 5/ e < A A Ay A )OA , (4.102)
(27) A
A

where in the 6th line we have used A, (—p) = A, (p), which follows from

A, (p) = / (;sz)sz () e~

The complex conjugate becomes
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O4 in (4.102) is given by

P} + p3 + p3 —pop1 —pop2 —pops
2 2 2
—P1Po Po — Py —P3 P1P2 P1P3
Oy =
—P2Po P21 p% - pf - p% DPa2p3
—P3Po p3p1 pap1 P — i —ph

Since O 4 is Hermitian, there exists a unitary operator to diagonalize it, and we can

do the fixed-k functional integration.

Z (k) = /dAo (k) dA, (k) dAs (k) dAs (k) €

7T2

(det (—i04/ [2(2m)"]))

where we have used the fact that the determinant is invariant under the unitary

1/2°

transformation. However, when we calculate the determinant, it turns out that
det O A= O,

and we cannot define the functional integral for the gauge field when we use the action
given by (4.101)).
To define the functional integral for the gauge field, we introduce a gauge fixing

term into the action:

1 1
o= [ [Eupe - @)

Ao

1 d*p Ay
- 5/ 9 4 < AO Al A2 Ag > OAa

(2m) A,




OAa
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where we have defined

pi+p3+p5— ép?) —Ppop1 + épopl —Ppop2 + ipom —Pop3 + épops

—p1po + éplpo P(Q) - p% - P?z - ip% pip2 — éplpz pips — éplpZS
—Ppapo + Zpapo P21 — ipopr PG — DT D3 — 3aP3 D23 — aDabs

—P3po + épspo bsp1 — épspl b2p1 — §p2p1 p% - p% - p% - ip%

The fixed-k functional integration with the gauge fixing term yields

Za (k) = /dAo (k) dAy (k) dAy (k) dAs (k) e

2

B (det (—iO4q (k) / [2(27)1])) "
B 4/—am? (2m)®
(R4 R R+ KDY
47) — _; 72 2 2 24
det (Oaq (k) / [2(27)*]) = 5@ Ta (—kg+ ki + k3 +k3) .

With the gauge fixing term, we can define the functional integral.

The fixed-k functional integral for a spin 1/2 gaugino is
Z0() = [ (k) dx (i T #0200
- / A (k) d (k) e s (A7)

= det (z g;k)‘jl)

1
= (—kg + ki + k3 +K3)
(2)

g-
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The fixed-k functional integral of a free ghost is

Zc (k) = /dc_: (k) dc (k) ot | d*a(—cd dyc)
Coatp i
- /dc(k) de (k) &'/ Brr e Puc)
‘ 1
= i (k2R RS RE)
(2m)
Then the overall fixed-k functional integral Z (k) is
Z (k)= 2Za(k) Z\ (k) Z. (k)

4/ —am? (2m)° (k24 K+ kS k3) (=) (—K2 + k3 + K2+ k3)
(—k2 + k2 4+ k2 + k2)* (2n)* (2n)®

The i comes from Z, (k), and the non-cancellation of an overall ¢ can be interpreted to
mean that we failed to include all of the degrees of freedom. To cancel i, we introduce
one complex bosonic auxiliary field or two real bosonic auxiliary fields. In addition,
the functional integral is required to be independent of the gauge-fixing constant a.

Then the auxiliary field action can be written as

d*p
Sauxiliary = / (271')4 [CVBQ + D2:| )

where B can be an auxiliary field associated with the BRST symmetry and D can be

the auxiliary field of SUSY. Then the auxiliary fields’ functional integral is

a'p [aB2+D?]

Zauxiliary (k) = /dB (l{f) dD (k‘) ezf (2m
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The overall fixed-k functional integral including the auxiliary fields becomes

Z (k) = Za (k) Zx (k) Ze (K) Zawstiary ()

= (=) 4 T (?”)

(2m)* —iy/a

= 47%/—1 = k independent.

Therefore, according to our proposed definition of SUSY, which is the requirement

that Z (k) be k independent, SUSY for the gauge field requires the action to be

1 1
S = / Aol Fu " = o= (0" A +iX39,)

— ¢0"d,c + aB* + D).

D. Primitive Supersymmetry and Standard Supersymmetry in the Present Theory

In the next chapter, we will start with a very simple microscopic (Planck-scale) sta-
tistical picture and will obtain the following purely bosonic Euclidean action, given

in the next chapter as (5.40):
_ 1 -
Sg [\pb,\pg] = / dPx (%anfj,anfb — W, iV \DZ\pb) : (4.103)

If F'is a physical quantity determined by the observable fields \I/b,\lfz and the random
potential iV, its average value is given by

[ DU, DU}F [\pb, s f/] o5 [w. ]
F)= i
) [ DU, D! e Se %]

(4.104)

where (---) here means an average over the postulated random imaginary potential

iV of (5.40), which has a Gaussian distribution and satisfies

<‘~/> =0, <V (x)V (fc’)> =bd (z —a'). (4.105)
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The presence of the denominator makes it difficult to perform this average, but we
replace the degrees of freedom in the denominator with fermionic degrees of freedom
VU, by using a mathematical trick which is standard for treating random or disordered

system in condensed matter physics:

1
[ DU, D e 5w ¥ 0]

= det A = / DU, DU 5oV (4.106)

where —Sg [\I/b, \I/z] = \I/ZA\Ifb. Then we obtain
(F) = < / DU,DUL DU DV} F |y, W], V| =57 v] / D\Ifo\If}e—SEM‘PH>
_ < / DUDYU F [\Ifb,ng,f/} e-gE[W7W*]>. (4.107)

where we have grouped the bosonic and fermionic fields in vector form:
U = . (4.108)

The Euclidean action with both bosons and fermions still has the basic form of (4.103):
Sg [V, 0] = / dPx {%aMmTaM\y — P 4+ VU (4.109)

For a Gaussian random variable v whose mean is zero, the result
(e7) = em2{v*), (4.110)

where

)= [2 [ aoeoen
T

- g/ B s
T
1
e 4a
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and

duv®e ‘“’2>
— —av? +1 a —1 /d —av?
2a Ue o 2V T\ 2a ve

implies that
<€—dem‘/\1m1/> _ o3 [dPedP V(@)U (2) (V (@)Y (2)) ¥ (o)) ¥ ()
— e—%bdex[‘l/T(x)‘I/(I)r, (4111)
where we have also used (4.105). Then (4.107) can be rewritten as

F)= / DYDY Fe~? (4.112)

with

1 1
S = /de {Q—aMxIﬁaMxp — pWT 4 50 (o)’ . (4.113)
m

This action clearly has a primitive supersymmetry, under a global rotation of ¥ which

transforms bosons into fermions and vice-versa. The functional integral 7 is
= /D\IID\IJTe_S, (4.114)
and according to (4.104) with F' = 1, we have just
Z =1. (4.115)

To make the expression for (F') independent of how the measure is defined in the

functional integral, we can rewrite (4.112) as

1
(F) = ~ / DYDY Fe®. (4.116)
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Notice that the fermionic variables W represent true degrees of freedom, and that
they originate from the bosonic variables W}, which is introduced in the denominator
of (4.104). The coupling between the fields ¥, and ¥y (or ¥}) is due to the random

perturbing potential 7V

E. Emergence of the Usual SUSY at Low Energy

After a transformation to Lorentzian spacetime (see the earlier comments on this

transformation), the Euclidean action of (4.113) becomes
1 1
S, = /d% {T@TaMaM\IJ + P — 50 (viw)® (4.117)
m

where O™ is now defined by OM = n™N 9y, with n™* the D-dimensional Minkowski
metric tensor. Then if we choose specific fields v and 1y instead of the full set of
fields W, and Wy, from the results of Chapter III, the free field action can be reduced

to

Sy = / d'z 7 ((2m) " 9,0, +i0"D,) ;. (4.118)
Sy, = / d*z ! ((2m) ' 00,0, +ic"D,,) Yy (4.119)

At low energy, m > p* ~ O (TeV), the first term is very small and we obtain
Sp o~ / d'z [¢;lio" 0] . (4.120)
Sp / d*z [ihylio" 0,y . (4.121)

The functional integral of the bosonic part is

Zy = / Dipy Dt I 'z intio" o, (4.122)

To perform this functional integration we need to diagonalize the operator. But since
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100, is Hermitian, there exists a unitary operator U which diagonalizes it. And since

det (Uo*0,UT) = det (U) det (¢#9,) det (UT) = det (0%9,,), it follows that

Iy (1) = /d% () D] () e Pwentiot o

71_2

"~ det (or0),)

We now consider this process in more detail, with an explicit expression for

a b
U:

c d

apr + ia; bR + ib[

cr+icy dr+id;

The unitary condition requires that

b= —c",
d=a",
1= lal*+ |,
and
a —c*
U =
c a*

Now, after we transform into momentum space, with

4
/d4$ @Ule'O'Mau’(/)b = / (;if; @Z)bT <_0'Mpu) wbv

(4.123)

(4.124)
(4.125)

(4.126)

(4.127)



we diagonalize o*p, by using the unitary operator:

U (—oc"p,) Uf =

a _c* pO _ p3 _pl + 2p2 CL* C*
c a —pt—ip? P’ +p? —c a
(»° —p*)a* (p° —p?)c*
a —c’ +(pt —ip?) c —(p' —ip*)a
c a —(p* +1ip?*) a* —(p' +ip?) ¢
—("+p)c +(°+1p°)a
®° = 1) a” + (0° + p*) |c|? —2p3ac*

+ (p' — ip?) ac + (p* +ip?) a*c*
—2p3a*c

+(p' —ip?*) & — (p' +ip?) a*

— (' —ip*)a® + (p +ip?)
(p° + %) laf* + (p° — p*) |cf?

—(p' —ip?) ac — (p' +1ip?) a*c*

Since the off-diagonal components must vanish, we obtain

o (pl - Zp2) az + (pl + Zp2) C*2 o 2p3ac* — 0’

(»' —1i

From (4.129)/ac* we have

2p2) & — (pl + in) a*? — 2p%a*c = 0.

(p* — ip?) a (" +ip?) % P =0,

C*

and the solution for Cﬂ is either

or else

a p! + ip?

— = {—p?’ o+ ) (p?’)ﬂ

c(ph) + ()

a pt + ip?

e S {—p‘q’ )+ ) (p3)2} :

c (p) + (p?
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(4.128)

(4.129)

(4.130)

(4.131)

(4.132)

(4.133)



Here we choose

and we obtain

- % {_ps — )+ )+ (pg)Q} -

Then
2
e J 4 0+
la)* = a*a = 5 5 lef.
")+ ()
Since |a|® + |¢[> = 1, we then obtain
|c’2 _ p% +p%
2 {(pl)2 )P+ 5+ oy () + () + (p?’)z}
and
2
2 a0 02 )
la]” =

2 () + )+ G+ o[+ 0+ 0]
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(4.134)

(4.135)

(4.136)

(4.137)

(4.138)

(4.139)

Since the diagonal components of Us*p,U" involve ac and a*c*, from (4.135)x ¢ and

(4.138) we obtain

pi + 3

ac

5= )+ 0 0 1
= 0 0]

= 0"+ ")

2 (1) + 6+ 0+ o0+ 02+

(4.140)
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Pﬁ—vﬁ+%+%}

a’c" = (p' —ip®).  (4.141)
2 {(pl)2 )+ (09 4 9 () + () + (pg)z}

Therefore, the (1,1) component of Us*p,UT becomes
[Uc"p,UT] an = (P° = %) lal* + (0" +p%) e]* + (p* —ip?) ac + (p' +ip?) a*c*
=P — ) + () + ()

=" — |71, (4.142)

and the (2,2) component of Uo*p,U" becomes

[U"puUT] = (07 +0°) lal” + (0° = °) |e* = (0" — p®) ac — (p* +ip") a*c”

=p° +|7]. (4.143)

The diagonalized operator has thus turned out to be

0
P — D 0
U(—op,)UT = 7 (4.144)
0 p'+|p
with

a —c*
U= , (4.145)

c a*

where a and c satisfy

[p3 T <p3>2r

o) = — -, (4.146)
2| (p)* + (02)° + (08)° + 3/ (V)" + (?)° + (p3)°

‘0’2 _ _ (p1>2 =+ (p2)2 _ (4147)
2|+ (P2 + (0°)° + 1/ () + (p2)° + (p)°
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Therefore we obtain

/ At (k) dip (k) e (917 0) / At (k) dip (k) det (U) det (U)

d*p - ~
- exp {—z/ (2754WT (U&“puUT) )’

_ 7 (2m)* 7 (2m)*
det [i (p° — [p])] det [i (p° + |p1)]
_ 72 (2m)°
det [—i ((p0)2 - |ﬁ\2)} det (—1)

7.‘.2

~ det (ipip,,) det (—i)’

(4.148)

where ¢/ = Ut and det (U) = det (UT) =1.
It is consistent with our earlier Claim 2 to interpret the extra factor of det (—)

as reflecting the need for an auxiliary field F'. We therefore rewrite (4.148) as

T ifd%(izﬁaﬂam) _ 1
/ e det (ip#py) det (i)

= /d¢d¢*dFdF*eif(;li;l[—WP“panF*F]
- / dpdg*dFdF*et ] #1670 QubF F] (4.149)

The primitive spin 1/2 boson ¢ has thus been transformed into a spin 0 boson ¢ plus
an auxiliary field F'.

Originally there were 4 degrees of freedom ), now transformed into 2 degrees
of freedom ¢ and 2 degrees of freedom F'. Conservation of the number of degrees of
freedom, and the correct form of the action with ¢ and F, was achieved through a
straightforward mathematical transformation.

We have therefore obtained

S = / d*2[¢70" 0,0 + F*F + 1, Vic"0,1by) (4.150)
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and standard SUSY has emerged as a low energy approximation within the present

fundamental theory.

F. Interpretation Using a Matrix Transformation

Our philosophy above (and throughout this dissertation) is that we are allowed to
perform any mathematical transformations, starting with the original theory in its
most primitive form, and ending with a theory that correctly describes experimental
observations, as long as the transformations are mathematically consistent and the
predictions for physical quantities (F) = Z7! [ DUTDW Fe® are left unchanged. As
emphasized above, this means any functional integral is left unchanged.

If we assume a stable vacuum with no negative-energy bosonic states, the trans-
formation from 1; to ¢ and F' can be treated more explicitly. First, as we showed
above, the operator —o*p, can be diagonalized by a unitary matrix U:

o / d4p4 [—JJTU”PM/;}
( Z)

2
- [ & oo

4 0 _
_/ (;lw];“ me oIﬂ pﬂim ul .
where
U = Ud. (4.152)
with
) = v . (4.153)
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Now we relate 9/ to ¢ and F through

Vi
¥

¢
F

=M (4.154)

(This transformation has determinant 1, and thus keeps the functional integral in-

variant, even though the trace is not conserved.) Then the action can be rewritten

as
dp |-, [ P°—1p1 0 -,
S:/ p4 o't b
(27T) 0 p0+ |m
4 N 0 _ 0 N
:/' dp4 w/TMMfl P |ﬁ| MﬁlM@D/
(2m) 0 P+
:/ d'p <¢* F) @) 1" 0 [ ¢
(2m)" 0 1 F
o*o, 0
:/d% (¢* F* ) 8 i , (4.155)
0 1 F
where
1 0
M= PO+ , (4.156)
0 p° + |7
p° + |7 0
M= X : (4.157)
0

and we have shown that 1 is transformed into ¢ and F by O = MU. Since both

det M and det U are 1, the functional integration stays the same.

Next we transform the source term for ¢ into the source terms for ¢ and F. The
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free field Lagrangian density of ¢ with a source term is written as

d* ~ - - -
/d4a:£ = / (27:))4 [zﬂ (=o"p) ¥+ Jp0 + J}}M . (4.158)

When ¢ is transformed into ¢ and F by using the matrix O = MU, the Lagrangian

density is rewritten as

[ tae= [ EL ittt g 0]

d4
B / (27r];4 [~ P'pug + F*F

d*p _ ~ s _ i
+/W s (UMY MUY + 91U M (M'0)

_ / g [~ D pud + FF + Jyp+ 6"+ JpF + F*J5],  (4.159)

where we have defined

JUTM™ = ( Jy Jp ) : (4.160)
G. Introduction of Gauge Fields with Supersymmetry

In Chapter III, we introduced the gauge field and gravitational vierbein simulta-
neously. However, in that chapter we saw that the action for the bosonic fields is
Lorentz-violating. In this chapter, we have shown that Lorentz invariance and cou-
pling to the gravitational vierbein are recovered at low energy, and that even standard
SUSY is recovered, but the argument above did not include coupling to the gauge
fields. We now set out to obtain the coupling of the transformed scalar boson fields ¢
to the gauge fields (as opposed to the coupling of the original primitive bosonic fields
¢ were obtained earlier).

We will show that the gauge fields can be introduced either before or after the

primitive spin 1/2 bosons are transformed into spin 0 bosons.
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1. Gauge Fields Introduced Before Spin 1/2 — Spin 0 Boson Transformation

With gauge fields present, there is no longer a separation of the Fourier-transformed

fields:

/ dhe 1 (2) 0P A, (2) D ()
:/d4x d4p d4p/ d4p//
@n)" 2n) (21"

d4 p/ d4 p// _ ~
= d4 L S(p—o —9" T " A / 7
/ p&mﬂ%# (p—p =p")Y"(p) " AL () ¥ (p")

d4/d4//~ ~
=:/~@;;<%g4d”@f+pWO“Au&0¢%ﬂU

efir-(pfp’*P”)zZ;T (p)o"A, () 15 (p")

= ﬂﬁﬁr oA — N ().
u/(wa<2W) Yi(p) A (p—p) Y (P)

However, since

and

d*z e PP A (2)

@@um:/&mmwmgw

Il
S

w(p=7)

the matrix A, (p,p’) = A, (p — p') with p fixed is Hermitian and can be diagonalized
through a uniary transformation. (We have used the fact that A, (x) is Hermitian for
the original gauge fields before symmetry-breaking. Note that ¢ now has 2N rather
than 2 components for an N-dimensional nonabelian gauge representation, and that

A, is N x N. Nevertheless, one can diagonalize A, (p,p’) in both momentum space
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and in the N x N gauge representation.) Then we can write

/d4p/d4p// 1;1 (p/ + p//) ot [6p’+p”,p”p:i . A“ (p/)] 22 (p//)
= / d'p d'p" 1 (p) o [0ppl — A (p— p")] & (p)
= / d'p d*p' ' (p) 0",y [Pl — A, ()] ¥ (V)

= / d'p ' (p) o [pu — A, ()] V' (p) -

(For simplicity, we have surpressed the index in the gauge representation, but it is
understood that A;L is diagonal also in this representation.) Then the arguments
from (4.123) to (4.149) still hold with p, — p, — A, (p), and after undoing the

diagonalization and Fourier transform, we obtain (4.150) with 0, — D,,.
2. Gauge Fields Introduced After Spin 1/2 — Spin 0 Boson Transformation
In an alternative approach, we start with the fundamental action
D L stomMy & oot o b (61
§=— [ |50 aM\I/—M\If\IJ+§b<\IJ\If) . (4.161)
m

When only the gravitational vierbein is introduced initially, the fields are written as

Uy (a#,2"™) = Uear (@) ) (2#) )" (™), (4.162)

and we have

0,V = Upgt (") (9 + imu,q0®) Priint (4.163)
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SO

/ dP~ e Ul 019, U, = / AP~ P Y (9, + imuao®)
(0, + imu50”)

= P (r| (0 + imuac®) Y Bt () + imu,po®) [s) b
t

= P 8,y (O + 10,0 0) b4 (0, + mv,507) P (4.164)

where (3.35) has been used. The action (4.161) then becomes

- 1 1,
S, = / A 0u10,01,(5 0", + Sivhio D),

1 1 -
+ Eﬁuivgao‘ - §mv°‘“vl‘j + plext)Va, (4.165)

instead of (3.68). The approximations above (3.40), (3.32), and (3.41) imply that

~ 1 ~
Sa = /d4l' ¢QT6rt5ts (%auﬁu + 7:650'&8“) ¢a

— / A2 )y 6,4051€ 0% D,1bg. (4.166)

when p<m
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The functional integration with respect to the fundamental boson is

Z () = / A0 (22) A () ¢ 442501 (Domdisciondu

71.2

~ det (—6,1015ch0%0,)

7.‘,2

~ det (—i8,i015Pelid,e5D, ) det (—ib,:0rs)

7T2

™ det (—i0,10,5977,,0,) det (—i8,40,s)
- / 467, (1) Ao (2:) AF? (7) dF, (1)

gl A 93000159 0B 60 () 6rudis Pl (4.167)

Y

where we have assumed that 0,e}, is negligible as in (3.40). Then the action is

rewritten as

So = / d*z (59" 0,46150,0, ba + Fir 6,401 ) . (4.168)

The internal rotation matrix Umt (z*, 2™) has not been shown explicitly above. First,
in the trivial case when ﬁim is a function of only the internal coordinates =™, we

would just have

S‘l d4$ [Qs:guy(srtfstsaﬂaugba + F;(SrtétsFa]

d'x ¢ 9" (0r40,) (0050y) 05 + Fy " 0re0ts Iy

Ao g 10 2 10 el @
+Fy Y ([ (ts) K]

t

de [¢znt*¢r* ny ( ) ( ) ¢s¢'mt + F;nt*F;*F;Fsmt]

I
\\\

"z (259" (9,) (0,) ®a + FF ], (4.169)

I
\\



141

where
/ APtz G = (r]s), = by, (4.170)
/ dP e FM Fn = (r|s) = Oy, (4.171)
and
D, («#,2™) = g0, (4.172)
F,=FF™, (4.173)

Now consider the nontrivial internal rotation matrix ﬁmt (x* 2™) which we al-

ready considered in Chapter III:
B, (2, 2™) — Uppy (2", 2™) B, (2, ™) (4.174)
F, (2", 2™) — Upy (2", 2™) F, (2", 2™) . (4.175)
After these internal rotations are introduced, the action becomes
Se = /de [@7g" (0,) (0,) Po + F, F,)
/dD [P 7 g (D) + 1Mv,,.0°)
(O + i a0®) 6L + Y FLEY

/d4x[q§2*g“”<r| (0, + imw,,.0°) Z |t)

< (t] (9, +imv,a0®) )05 + Fy(r] Y |t) (t]s) F]

d4$ ¢7’* MV Ttﬁu - /LALt:t) ((5t53V — ZA‘Z,t;S) QSZ + F;*(SrtétsF;]

a

/ d*z [psg" (0, — iAlt;) () — iAlt;) o + F Fy) (4.176)
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where we define as before

MU0 = —ALO’Z', (4.177)
0; = MK 0,06, (4.178)
1 = (r| (—iK;) |s) . (4.179)

In this alternative approach we have again obtained the gauge interactions for scalar

boson, as a low energy approximation.

H. Primitive Gaugino and Gravitino Fields

Let us now consider more general rotations which mix bosonic and fermionic degrees

of freedom. First consider the global supersymmetry transformation
V-0 =UV (4.180)

or, with bosonic and fermionic fields shown separately,

1 o, Uy, U T
S S L [ " . (4.181)
2 v, Up, Uss W,
If
Uid =1 (4.182)
the action
S = /dD:c {iaM@aM\p iy L (viw)® (4.113)
2m 2

is invariant under this transformation, so the theory has a primitive supersymmetry
according to the definition given above. The elements of Uy, and Uy are ordinary
commuting variables, like the components of ¥,. The elements of Uy and Uy, are

anticommuting Grassmann variables, like the components of Uy.
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Now let us replace the picture of a rotating GUT-scale condensate by a more
general picture in which all the fields of the vacuum contain a rotation described by
a supermatrix {/ which varies as a function of the spacetime coordinates. With a

possible redefinition of the fermion fields, we can choose Uy = Uy, and write

Tvee = Y nl/2 o0 (4.183)
where W0 is constant and
1
prec — <\I}>Uac _ < b>vac (4184)
<\Df>’l)CLC
Uy, U,
u=| """ (4.185)
Uy Uy,
@oigl =1, (4.186)

The generalizations of our earlier equations in Chapter III with no mixing of

bosons and fermions, are

mVH* = —id~ro"U (4.187)
OmUd = 0,,U = 1U mu,, (4.188)
VM = yMae L v Mae Vi = Vigao® + Vageo© (4.189)
Eue = A K oy, (4.190)
Eue =V (4.191)

where the last two expressions in (4.188) implicitly multiply a 2 x 2 identity matrix,
and it is assumed that the internal coordinate space contains no supersymmetric

rotations.
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The fact that I/ is unitary implies that Oy UTU = —UTOyU with UT =U', or

mViy = ioyU'U

so that

Vi =Va VM =VM
We can then write, e.g.,
Vit VY

My M
Vir ' Vi

M =

At this point, the logic in Chapter III can be repeated with

UM—>VM s "UM—>VM
eh IN
eh - Eb = T
TE el
Al B
[ T 2 122
A, — A = g
BM Au

In particular, we obtain
W (2h, ™) = U (2", 2™) U" (x) i (2™)

0,V =U (z",2™) (0, + imV,0,0% + imV,,.0) Uh™

(4.192)

(4.193)

(4.194)

(4.195)

(4.196)

(4.197)

(4.198)

(4.199)
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/ddx oo, v = /ddx YT (9, + imV,00® + imV,.0¢)
x (0, + imV,30° + imV,,dad) Psgint
= U (1] (9, + imV,00® + imV,,.0°)
X > [t (B, + imVig0” + imV,a0?) |s) U°
t
—yprt nH [57"15 (aﬂ + imvpaga) . iAZt;t]
% [0 (0, + imV,p0%) —iAJEF] ©°

= UL, 0" [(0, — iALt:) + imVa0°]

x [(0y — iALt;) +imV,p0”] Weyy (4.200)
St = / d'z Ul %
(ipf@u + Liviegop, + 1piviee — Loy, 4 um> . (4.201)
2m 2 2 2
where
Dy =0y —iALL; . (4.202)

We also have the generalization
1 1 1
otp 12 Kimwv“ — 500 — um) —i (gaﬂvu + wauﬂ nl200 = 0. (4.203)

Adding this equation to its Hermitian conjugate gives a still more general Bernoulli

equation
1
§m\IJOT VIV, U0 + Pyt = feat (4.204)
where
L ijaoun o 1)2
Pext = T oy vac 0" Oy (4.205)

As before, it is assumed that the basic texture of the vacuum field rotations is such
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that

VE=V2=0 , ka=1,23, (4.206)

and that the nonzero gauge potentials are not coupled to ¥ at energies well below

the GUT scale,, so that (4.204) reduces to
Lo
§mVa Voz,u + Pegt = Hext- (4207)
When aﬂniﬁ and 0"V, are neglected, (4.201) then simplifies to
1
Sp = /d4a: ol (2—2)”2?“ + iEgao‘Du) Uept - (4.208)
m

Since m is comparable to the Planck mass, it is reasonable to assume that the first

term can be neglected, giving
Sy, = / d*z !, EFo®D, U,y (4.209)
or, with e/ again slowly varying,

ext

Sy, = / d'z eV, B'o"D, Ty (4.210)

Uy = 2., e=det(eay) - (4.211)

According to (4.196) and (4.197), the bosonic fields play the same role as before.
Namely, e is the vierbein representing the gravitational field, and AL is the potential
representing the gauge fields of a grand-unified theory —an SO(10) theory [63],[64],[65]
if the dimension of the internal space is 10. The fermionic fields can be interpreted in
an equally simple way: namely, f* corresponds to a spin 2 gravitino and BZ to spin 1
gauginos. Again, we have generalized the usual vocabulary, so that the superpartner
of the graviton is defined to be the gravitino, and the superpartners of gauge bosons to

be gauginos, even though these fermions would have quite unconventional properties
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in their initial primitive forms. However, just as in the case of the sfermions, these
primitive superpartners must be transformed to the physical gauginos and gravitinos
of standard SUSY. We will partially accomplish this in the present dissertation, and

will give a more complete treatment elsewhere.

I. Spin 1 Gaugino Transformed to Spin 1/2 Gaugino

When the gauge and gaugino fields are introduced before the sfermion is transformed

into a spin 0 scalar field, at low energy the action is given by
. ighdeg, gorieA Vo
S = /d4x ( oLl > " : . (4.212)
g&“daAL i), Vo

When we define

ighad  gahie A A C
! g "l = , (4.213)
goter Al ighaeg,
the action is
A C Do
S:/d4x (¢T W) ¥
D B Ya
. 1 0
= /d T ( w W )
DA 1
A 0 1 A'C 0
(4.214)



and then the functional integral is
7 = / Dy DYDY Dy
— / D) DY Dy D exp
L 1 0

= / D't D! Dy’ Di'sdet
DA™! 1

et |

— /D&lTDQL/DQﬂ/TDw/

et |

A 0
0 B-DA'C

|

A

. 4 - 1 0
z/dz(dﬂ wT)(DAl 1

(0

A 0
0 B-DA'C

0
0 B-DA'C
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1 AC
0 1

Z/NJI
w/

)] oy
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where we have used

sdet (M, My) = sdet Mysdet M,

M det (MY _4
- = RN — ] =
M S\

1
M ~ ) =1
— sdet (M) sdet (M)
1

1
det (| — | = ——— 4.216
—oee (M) sdet (M) (4.216)
1 0 1 A7'C
sdet = sdet =1 (4.217)
DA™l 1 0 1

Since A and B — DA~'C are not diagonal matrices, we define unitary operators by

Ading = UQZAUQE, (4.218)
%Eéiag = @Z,‘I}/a (4219)
(B=DA™'C) ., = Us (B—DAT'C) U}, (4.220)
wéiag = wala (4221)

and the action is rewritten as

Z = /D,’Z)giagD@Zéianggiangj(/iiag exXp Z/d437 ( 1;(/iTiag w(/iTiag )

Adiag 0 &éiag ]
0 (B o DA_IC)diag wéﬁag
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2
_ 1:[ m det (i (B~ DAT'C),,.)

=11 ~ det (i (B~ DATC),,,)
~ Haer=ig,0m der (=) " ding

- / quii*iagDQs:iiagDFgagDFéianggiagDw:iiag

espli [0l o Py Vil )
aﬂau 0 0 ¢£jiag
0 1 0 Flins
0 0 (B - DA_IC)diag wéiiag

= / D¢* D¢ DF"™* DF' Dyt D)/
- exp [Z/d4l‘[( ¢/* Fr* w/T >
90" 0 0 @
0 1 0 F (4.222)
0 0 ig*d, — got Al (i50,) " 9o A Y

This is the fermion-sfermion decoupled formalism.

On the other hand, the action with a standard spin 1/2 gaugino (here the gauge
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field is not included for simplicity) is

019, 0 —v2g\° b
S:/d4x (¢* F ng) 0 10 F
—V2gA\% 0 igrd, Ve
1 0
:/d4x[< o* F* ¢T>
DA™ 1
¢
A 0 1 AlC
F |l (4.223)
0 B—DA'C 0 1
(0
where
"9, 0 —v/2gx°
A2><2 C(2><1
= 0 1 0 (4.224)
D1><2 Bl><1

—V/2gA1% 0 igrd,

Then the functional integration is given by

1 0
Z = / D¢*D$DF*DF Dijpt Dip exp [z / d'z ( o )
DA 1
¢
A 0 1 AlC
I (4.225)
0 B—DA'C 0 1
(G
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Then by redefining the fields as

¢
F |, (4.226)
(0

(o mwn)=(o r v) CT(;_I)T f)

DAY 1

we obtain

Z= / D¢*DeDF*DF Dy Dij exp [@ / d4x( o e )

¢/
A 0
. F/
0 B—DA'C
¢/
1 0 1 A'C
= / D¢"* D¢ DF"™* DF' D/t Dy/sdet sdet
DA™ 1 0 1

DD, 0 0 ¢

. exp lz / d4ar( g Foy ) 0 1 0 F'

0 0 B-—DA'C "
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:/D(]ﬁI*D(bIDF/*DF/DWTDWeXp[i/d4$(gb’* Jak ¢/T)

919, 0 0 |
0 1 ¢
V2 "
oo, 0 —V2g)\
0 0 i5"d, — ( _\Vagat 0 g W
0
/ D¢ D& DF™* DF' D/ D exp |i / d4x o ot >
949, 0 &
0 1 0 ol (a228)

0 0 i6rd, —2¢°\T-1

9", A !
and this is the fermion-sfermion decoupled formalism of the usual SUSY.

Comparing the result from our primitive SUSY and standard SUSY, we see that

the condition required for the two results to be identical is

o0, .1
—pab AT bb —gbc 2y ta c
’G A“Z@”@ Ae = =262\ —aua“)\ : (4.229)

Then as an example we can take

XC = ;o A (4.230)
Afe = Al g, (4.231)

where we have defined
Wil = ——0" O (4.232)
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We need to check the existence of 7. The matrix n,n; is written as

mmni T
Ny, = (4.233)

M 1273

and the determinant is

det nym; = 0. (4.234)

Therefore, when the determinant of the right hand side of (4.232) is zero, 7, exists.

This determinant is
1 1
det (—ZO';-)@H) == —E (8080 — (9161 - 8262 — 8383) s (4235)
and only when we have
Op0y — 0101 — 0205 — 0305 = 0 (4.236)

does 7, exist. We leave a more general treatment of gauginos and gravitinos for

further work which will extend the results of this dissertation.
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CHAPTER V

STATISTICAL ORIGIN OF THE BOSONIC ACTION

In this chapter we turn to a different issue, following a treatment in Ref. [47] which
is included in this dissertation for completeness. Here we consider the origin of the
phenomenological action (4.113). We will show that this action follows from a simple
microscopic and statistical picture. Our starting point is a single fundamental system
which consists of N, identical “whits”, with N,, variable. (“Whit”, whose meanings
include “particle” and “least possible amount”, is an appropriate name for the irre-
ducible objects that are postulated here.) Each whit can exist in any of M, states,
with the number of whits in the ¢th state represented by n;. A microstate of the
fundamental system is specified by the number of whits and the state of each whit.
A macrostate is specified by only the occupancies n; of the states.

As discussed below, D of the states are used to define D coordinates 2™ in
Euclidean spacetime, m,, of the states are used to define observable fields ¢y, and the
remaining (M,, — m,, — D) states may be regarded as corresponding to fields that are
unobservable (at least at the energy scales considered here).

Let us begin by defining an initial set of coordinates X™ in terms of the occu-
pancies nj;:

XM = +nya0 (5.1)

where M =0,1,..., D — 1. It is convenient to include a fundamental length aq in this
definition, so that we can later express the coordinates in conventional units. As one

might expect, ag will eventually turn out to be comparable to the Planck length:

ao ~ lp = (167G)"* (5.2)

-1

since ag = m~t ~ mp' = £p according to (5.32).
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With the definition (5.1), positive and negative coordinates correspond to the
same occupancies. There are two relevant facts, however, which make this definition
physically acceptable: First, two points whose coordinates differ by a minus sign are
typically separated by cosmologically large distances. Second, and more importantly,
the fields ¢ need not return to their original values when they are evolved, according
to their equation of motion, from points with positive coordinates to points with
negative coordinates. I. e., the classical field configurations described by the two
sets of points can be regarded as distinct, and in this sense the points themselves
are distinct. The different branches of the field configuration are analogous to the
branches of a multivalued function like z'/2, which are taken to correspond to distinct
Riemann sheets.

At extremely small distances, spacetime is discrete in the present theory, with a
finite interval between two adjacent points X and XM 4§ XM: §XM = qq. The XM
are divided into 4 external coordinates X* and (D — 4) internal coordinates X™. In
the internal space it is natural to have variations on a length scale that is comparable
to £p. In external spacetime, on the other hand, we wish to consider fields which vary
much more slowly, and it is convenient to average over a more physically meaningful
length scale. Let us therefore consider a D-dimensional rectangular box centered on
a point X, with XM ranging from X — a™ /2 to XM + o™ /2. For the (D — 4)
coordinates of internal space, a™ is taken to be the original fundamental length ag.
For the 4 coordinates of external spacetime, a* is taken to be an arbitrary length a,
and we will find that the final form of the action is independent of this parameter.

In this coarse-grained picture, the density of whits in the ith state is

pi (X)=N;/AV | i=1,2,.., M, (5.3)
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where
N; = an (X) , AV = HaM = a*a)™ (5.4)
X M

and the values of X are those lying within the box centered on X. Let
r=pr , k=1,2,....,my. (5.5)

The initial bosonic fields ¢ are then real (but defined only up to a phase factor +1).

Let S (X' ) be the entropy of the single box at X for a given set of densities p;, as
defined by S (X) =log W (X) (in units with kg = h = ¢ = 1). Here W (X) is the to-
tal number of microstates in this box at fixed p; or N;: W (X') =N (X') /11; N; (X) !
with

N (X) = Z N; (X). (5.6)

The total number of available microstates for all points X is W = II¢ W ()_( ), so the

total entropy is

S = Z S (X) (5.7)
S (X) =1logT (N (X) +1) —ZlogF(NZ (X)+1) (5.8)
It follows that
oS _ _
W(X—)Iw (V(X) +1) =9 (N; (X) +1) (5.9)
05 (W (X)£1) - (N (X) 1) (5.10)

N, (X) 0N, (X)

where ¢ (2) = dlogT' (2) /dz and ™ (2) = d"*'logT () /dz"*" are the digamma
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and polygamma functions, with the asymptotic expansions [81]

1 By
w (Z) = lOgZ — 2— — A 91 ZQZ (511)
) (o _ (g1 (=Dl = (2l+n—1)
P (z) = (=1) — t ot ;Bﬂ—(m)!znm (5.12)

as z — 00. For a > /p, we have N()_() >>>n, = ()_(“/ao)2 >>>1,s0 it is an

extremely good approximation to write

05
ON: (X)
5
ONy (X) 0N, (X)

=log NV (X) — ¢ (N (X) + 1) (5.13)

= W (N (X) + 1) dprp. (5.14)

We could express S as a Taylor series expansion about the bare vacuum with

o (X) =0 for all k£ and X:

5 = Sbare + Z an (X) Nk’ (X)n (515)

Xk n
bl (X) = log/\/’bare (X) - ¢ (1) (516)
b1 = —0™ (1) /n! , n=12,.. (5.17)
with
¥ (1) =—v , ~ = Euler’s constant (5.18)
™ (1) = (=1)" M nl¢ (n+1) (5.19)

where Nygre (X ) is the value of N (X ) when N, (X ) = 0 for all the observable
states k and ( (z) is the zeta function. This is not physically appropriate, however,
because bosonic fields exhibit extremely large zero-point fluctuations in the physical

vacuum [82]. (These are analogous to the zero-point oscillations (x?) of a harmonic
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oscillator, but with a very large number of modes extending up to a Planck-scale
cutoff.) In fact, it is consistent with both standard physics and the treatment of this

paper to assume that

(D) ae = (PR)vae = (Vi) oo AV ~ 057 (5.20)

Since there is no initial distinction between the states ¢y, it is reasonable to perform

a Taylor series expansion about the same value N,,. for each k, where
Nyge ~ LPAV ~ (a)lp)* >>> 1 (5.21)

if, e.g., a=! ~ 1010 TeV (with (5" = mp ~ 10'® TeV). It is then an extremely good

approximation to use the asymptotic formulas above and write

2

S = Sue+ Y a1AN, (X) + ) az [AN (X)] (5.22)
Xk X,k

AN (X) = Ni (X) = Noae (5.23)

a; = 1Ogj\/vac - log Nuae y Qg2 = _1/ (2Nvac) (524)

where NV,qc (X ) is the value of N (X ) when N, (X ) = Ny for all k£, and the neglected
terms are of order [AN; (X) /Nvac}n ANy (X), n>2.

It is not conventional or convenient to deal with ANy and (AN;)?, so let us in-
stead write S in terms of the fields ¢, and their derivatives d¢,/0z™ via the following
procedure: First, we can switch from the original points X, which are defined to be
the centers of the boxes, to a new set of points X , which will be defined to be the
corners of the boxes. It is easy to see that

S = Suae + D a1 (AN, (X)) + 3 aa ([AN: (X)]7) (5.25)
Xk X,k

where (---) in the present context indicates an average over the 2P boxes labeled
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by X which have the common corner X. Second, we can write AN, = Ap AV =
((Apk) + 0pr) AV, with (dpx) = 0:

S=Suac+ > _ar ({(Ap) +6pi) AV + > " as ((Api) + 0pr)*) (AV)? (5.26)

= Suuct Y (Do) AV + 3 aa [(Ap0)° + (0p0))] (AV)”. (5.27)

Each of the 2P points X surrounding X is displaced by +a/2 along the z* axes and

+ag/2 along the 2™ axes. The last term above can therefore be rewritten
Ipr a\? 9o\’ [a0\?
=S () @ s () (3 e
_ a(bk: a¢k 2
- ( m) Yo ( aXm) 2 (5.20)

where the neglected terms involve higher derivatives and higher powers of a and ay.

Since pr = puac + Apr, With Appy <<< prac = Nyae/AV for normal fields, it is an
extremely good approximation to replace pr by pyec in the above expression, and to

neglect the term involving ay (AV)? (Apg)” = — (ANg)? /2Nyae, so that we have

S = SLaCJr;AV {u&i—%[;(giﬁf(%)l%(gﬁz)z” (5.30)

where
m = aal ) H=m (log-/\/vac - IOg Nvac) ) ék = ¢k‘/m (531)
and S/ . = Svac ZX i Noae (10g Nyge — 10g Nyge). Recall that
m~mp=I{p. (5.32)

The philosophy behind the above treatment is simple: We essentially wish to
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replace (f2) by (8f/0z)°, and this can be accomplished because

(2 = () = ((0f)%) = ((0f/0x)* (62)*) = (0f 0x)” (a/2)*. (5.33)

The form of (5.30) also has a simple interpretation: The entropy S increases with the
number of whits, but decreases when the whits are not uniformly distributed.

In the continuum limit,

ZAV - Za‘iaéﬁ‘l N /dDX :/ d4X/ aP—tx (5.34)
X X “ 0

(5.30) becomes
S=9.+ / d*X / dPX Y
a ag L

Pt 2 (%) () -2 () ]}

> 1 0Dy, \
o D 2
_Sm+/a0 dPx Ek [/@k— o §M (—axM> (5.35)
where
g™ = X" 2t =(ap/a) X", Dy = (ag/a)’ o (5.36)

The lower limit on each integral is the cutoff imposed by the size of the rectangular
boxes used in the coarse-graining above: a for X*, ay for X™, and ao for any a.
The continuum limit is an extremely good approximation for slowly varying fields in
external spacetime, but only a moderately good approximation within the internal
space, where the order parameter varies on a length scale comparable to {p. This
implies that terms involving higher derivatives 8" ¢y, /O (z™)" can be significant in the
internal space.

Notice that the final form (5.35) is independent of the arbitrary length a which

was used for coarse-graining in external spacetime. The fields must be rescaled as a
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is varied, but this is already a familiar feature in standard physics [83].
A physical configuration of all the fields ¢y, (z) corresponds to a specification of

all the densities py (z). In the present picture, the probability of such a configura-

S

tion is proportional to W = e”. In the Euclidean path integral, the probability is

proportional to e™*#, where Sg is the Euclidean action. We conclude that
Sp = —S + constant. (5.37)

Choosing the constant to be zero, and employing the Einstein summation convention

for all repeated indices, we obtain

, 1 0%, 0d
Sp=—8_+ /d% (%ﬁ&x—ﬂz - ud)k@k) . (5.38)

The above result neglects interactions among the observable and unobservable
fields, which will arise from the higher-order terms neglected above. Since a detailed
treatment of these interactions would be quite complicated, we resort at this point
to a phenomenological description: We assume that probability can flow out of and
into each field, and that this effect can be modeled by a random optical potential iV

which has a Gaussian distribution, with
<17> —0 <x7 () V (x’)> — b6 (x — ) (5.39)

where b is a constant.
If we also assume that the number of observable real fields ®; is even, we can
group them in pairs to form complex fields ¥ ,. Then we finally have S = Sy +

SE |:\I/b, \I/Jb[i| with
_ 1 ~
Sk [\yb,wg] = / dPx (%anf’gaanb— p Ui, + v \Ifgpr) (5.40)

where Wy is the vector with components W, ;. This is the starting point for the
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discussion following Eq. (4.103) on page 125.
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CHAPTER VI

CONCLUSION
Here we will summarize the logical development of the present theory, starting with
the microscopic statistical picture at the end of this dissertation, and finishing with
the Standard Model presented at the beginning.

As mentioned in the Introduction, our microscopic picture is motivated by the
fact that a Euclidean path integral in quantum physics is equivalent to a partition
function in statistical physics. This suggests that a fundamental description of Nature
should start with some sort of statistical picture. The true picture is likely be richer
than the one presented here, in the same sense that the description of the hydrogen
atom in quantum electrodynamics is richer than the Bohr model, but it may never-
theless be related more closely to the ideas presented here than to those which are
currently more fashionable.

The present theory is more ambitious than other attempts at a fundamental the-
ory in that it aspires to explain the origins of
e Lorentz invariance
e gravity
e gauge fields and their symmetry
e supersymimetry
e fermionic fields
e bosonic fields
e quantum mechanics
e spacetime.

At the same time, it involves the familar concepts of grand unification, supersymme-

try, higher dimensions, and topological defects.
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The present theory begins by postulating a single fundamental system which
consists of NV, identical but distinguishable “whits”, with N,, variable. Each whit
can exist in any of M, states, with the number of whits in the ith state represented
by n;. A microstate of the fundamental system is specified by the number of whits
and the state of each whit. A macrostate is specified by only the occupancies n; of
the states.

D of the states are used to define D coordinates 2 in Euclidean spacetime, with
the value of 2™ proportional to the occupancy nj;. Spacetime is then discrete, with
a lattice spacing that is comparable to the Planck length ¢p. There is consequently
an energy cutoff comparable to the Planck energy mp (in units with A =c =1). m,,
of the states are used to define real bosonic fields ¢y, with ¢? proportional to the
density of whits in the kth state. Later the real fields are combined in pairs to form
complex bosonic fields.

We compute the entropy S to lowest order in the fields and their derivatives,
and then define the Euclidean action S by S = —S. The result (5.38) does not have
a lower bound, so we must add the assumption that there is an unspecified perturb-
ing environment which can be represented by the addition of a random imaginary
potential to finally yield (5.40).

Fermionic fields and a primitive form of supersymmetry are obtained in Chapter
IV, via a simplified version of the arguments used to introduce unphysical versions
of SUSY in the context of disordered systems in condensed matter physics. Random
fluctuations in the imaginary potential, due to an unseen perturbing environment,
have been eliminated and replaced by the new fermionic variables, with the calculated
value of any physical quantity F' left unchanged.

The next step is a transformation from Euclidean to Lorentzian time, via an

inverse Wick rotation. It is important to recognize that a single Lorentzian time is
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obtained from all Euclidean times. I.e., one must regard the physical reality at a single
Lorentzian time as a superposition of contributions from all of the original Euclidean
times. It is also important to recognize that classical trajectories and observers can
be defined only after the transformation to Lorentzian time. The basic point is that
a physical time coordinate should be defined in such a way that it can trace out
classical paths through the totality of all states in the path integral (i.e., all possible
field configurations over all points in spacetime). The Lorentzian time satisfies this
requirement whereas the Euclidean time does not. A more detailed discussion of this
somewhat philosophical point will be given elsewhere.
In Lorentzian spacetime, we now assume a simple cosmological model:

13

(1) In the early universe, the “—p” term in the fundamental action causes one
of the bosonic fields to form a condensate near the Planck or GUT scale.

(2) As this condensate forms, a topological defect, which we call an instanton,
is frozen into a d = D — 4 dimensional internal space. This instanton is assumed
to have d-dimensional spherical symmetry. If d = 10, one obtains an SO(10) grand
unified gauge theory. Details of the internal space, and the origin of the gauge fields,
are given in Chapter III.

(3) In 4-dimensional external spacetime, there is a general U (2) rotation of the
fields which is present from the beginning (just as a nonzero angular momentum is
present from the beginning in the formation of a planetary system or galaxy). This
U (2) rotation is somewhat analogous to the rotation of the U (1) order parameter
Vs = nt/? eifs in the complex plane for an ordinary superfluid which is flowing with a
velocity v, = 695. If one shifts to the “frame of reference” associated with the “flow”
of the 2-component fields, we showed in Chapter III that one obtains the usual action

for a Weyl fermion at low energy (compared to the Planck scale). I.e., we obtained the

action that is appropriate for a fundamental fermion field with the correct coupling to
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the gravitational vierbein e#, which is defined in the present theory to be essentially
a “superfluid velocity” component v#: et = —vk.

(4) Initially the action for fundamental bosons has the same form as that for
fermions. Through a transformation of the initial boson fields, however, we were able
to rewrite the action so that one obtain exactly the standard action for normal scalar
boson fields and auxiliary fields. It is remarkable that this transformation leaves both
the action and the measure in the path integral unchanged, while leading to the fields
and action required for conventional physics with supersymmetry.

(5) While focusing on the novel aspects of the present theory, we have also ob-
tained some interesting results in the context of conventional SUSY. For example, we
showed that invariance of both the action and the “volume element” in the functional
integral under a sypersymmetry transformation is sufficient to guarantee closure of
the SUSY algebra.

(6) At this point one has the fermions and sfermions, as well as the Higgs bosons
and Higginos, of the Standard Model augmented by SUSY. In addition, we have an
SO(10) unified gauge theory with the correct couplings to these other fields. These
results support the viability of the present approach. On the other hand, there
are other aspects of conventional physics which we have not yet derived and must
therefore postulate: The Einstein-Hilbert action of gravity, and the Maxwell-Yang-
Mills action of the gauge fields, as well as the corresponding action terms for gauginos
and gravitinos, are assumed to arise from a response of the vacuum to these fields
that is analogous to the diamagnetic response of electrons in a metal. We must also
assume that various interaction terms — for example, Yukawa couplings — arise from
our original action via mechanisms that we have not yet explored. There is thus a

considerable amount of work left to do in extending the theory.
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APPENDIX A

SOME NOTATION AND CONVENTIONS

Here we introduce some notation and conventions which are used in this dissertation.
A. Units
We use the convention

h=c=1. (A.1)

There are then dimensional relations given by
[mass] = [energy] = [time] ™" = [length] " . (A.2)

B. Relativity and Tensors

We use the metric tensor

-1 0 0 0
, 0O 1 00
N =N = , (A.3)
0O 010
0O 0 01

where the Greek indices, u, v etc., denote 4-space 0, 1,2, 3 and the Roman indices, 1,
J etc., denote 3-space 1, 2, 3. Vector indices are raised or lowered by the metric tensor
as

T, =nNwe” and 2t =n"z,, (A.4)

where 2# = (2°,%) and then z, = n,2" = (—2° ). The “ -7 product of two 4
vectors is defined by

p-T=n,ple’ = %2 + pr. (A.5)
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The derivative operator is defined by

0 =

When the energy-momentum dispersion relation, p® = |p] for the massless field and

p° = 1/|p1> + m? for massive field with mass m is satisfied, we have

P’ =Dy
== (") + lit”
=0 for the massless case, (A.7)
= —m? for the massive case, (A.8)

where the repeated indices are assumed to be summed.
C. Quantum Mechanics

The energy and momentum operators are defined as
pt =i0". (A.9)

We define the Pauli sigma matrices as

ol = . ot= . ot = : (A.10)

— , (A.11)
we define o* and o* as

ot = (O’O,O'i) ,  ot= (O’O, —O'i) ) (A.12)



o* and o* are related to the metric tensor n* as

ota” + ot = ata” + "ot = =210 19xs.

D. Dirac Matrices Algebra

We choose the 4 x 4 Dirac matrices v as

where o and * are defined in (A.12), and then ~° is given by

7B = 0ty 23
-1 0
0 1

The anticommutation relation of v* and ~° is

{("*.7°} =7"° + 4"

0 ot -1 0
a* 0 0 1
-1 0 0 o
_|_
0 1 o 0
= 0.
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(A.13)

(A.14)

(A.15)

(A.16)



178

The anticommutation relation of the Dirac matrices is

{7 =AY A

0 o+ 0 o”
a* 0 g’ 0
0 o¥ 0 o
+
g’ 0 a* 0
oto? 4+ o¥ot 0
0 oto? + g¥ot
= —277‘“/14><4, (Al?)

where we have used (A.13) in the last line.

From the trace of (A.17),

tr (Y +A") = tr (V7)) + tr (7")
= 2tr (v"7")
! ,
=tr (—29# 14><4>

= _8771“1a

where in the 2nd line we have used tr (y#4") = tr (y*+*), or in general

v (o

tr (y"y" -+ V) (A.18)

) =tr (v

. ! .
In the 3rd line “=" means “required”, and

tr (YY) = —4nt”. (A.19)



179

According to (A.14) and (A.15),
tr(v*) =tr (v°) = 0. (A.20)

The product of any odd number of 4’s can be always reduced to the sum of single ~’s

by using (A.17)—(A.19). (A.20) tells us that
tr (any odd number of y/s) = 0. (A.21)

The trace of v#4~° is also zero:

tr (v'9"7°) = tr ([=4g" = 7"+"17°)

= —4g"tr (v°) — tr (°4"7")
=0

= —tr (y""7") = —tr (+"9"7°) ,
s ir (’7“7%75) =0, (A22)

where we have used (A.17) in the 1st line and (A.16) in the last line. Finally, we

obtain the trace of y#~y"~~7:
tr (Y y"7) = tr ([=20" — "] 7*77)
= =20"tr (v77) — tr (v [-20"7 — "] 97)
= 800" + 20 tr (V7)) + tr (V" [-2017 — 47"])
= 807 — 8ntn"T — 2nM7tr (v ) — tr (v ")
= 8’7 — 8T + 8P —tr (%),

where we have used tr (y/7?y7y*) = tr (y"~"v*v7), and therefore

tr (V'y"yPy7) = AnfnP7 — At 4 AnfonP. (A.23)



E. Delta Function and Fourier Transform

A simple definition of the delta function is given by

d

d(z)=—0(x)  where 6 (x) =0 for x <0 and 1 for z > 0.

dz

The delta function satisfies

/d"ch(") (x) =1,
/dnxé(”) (x —zq) f(z) = f(24).

The Fourier transform used here is defined as

. d4p ipx an ) = d3_p oiT
r= [ G o) md 5@ = [ e m),

f@szmwww wdf@z/ﬁwﬁﬂ@,

with
/d43:e_i(p_p/)'$ = (27r)4 5@ (p—17).
F. Left and Right Handed Spinor Fields

The 4 component Dirac spinor V¥ is given by

_(a
V= (x*”")
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(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

where 7, is a left hand 2 component spinor and Y™ is a right hand 2 component

spinor. When W in the Lagrangian density
L =iUy"0, W
is replaced by (A.30), then £ is rewritten as

L= inic’r“do‘auna + ixo‘agdauxm.

(A.31)
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In this dissertation, we redefine 7, and x'® as

7vDLoz = TNa,

v o= X'
and the Lagrangian density has the following form instead of (A.31):
L =i} 0o + VR ThaOut

When whether a field is right hand or left hand is not explicitly mentioned, it is

assumed that
i) 510,
is the right hand field’s Lagrangian density, and

i Tor 0,

is the left hand field’s Lagrangian density, where the field with “}” is assumed to be

always to the left of the sigma matrix.
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APPENDIX B

COMPLEX AND REAL REPRESENTATIONS

When the generators of a representation D are given by 7,, the commutation

relation is written as

[Tm Tb] = ifabcTo (Bl)

The complex conjugate of the commutation relation is
[T;Tb*] = —ifanc 1y

— [=15, T3] = ifane (=T7) (B-2)

and —T7* satisfies the same commutation relation as 7;,. Since H; C T, where H; are
the Cartan generators, —H;" also satisfies (B.2). The Cartan generators are Hermitian
and their complex conjugates have the same eigenvalues, or weights. I.e., when the
weight of H; is p;, the weight of —H} becomes —p;. The complex conjugate of a
representation D is denoted as D. When D = D, D is called a real representation,
and when D # D, D is called a complex representation.

When the representation D is real, both weights p; and —p; are required to be in
the same representation. This means that there exists a trivial mapping 7, — =T,
given by

T,=-0T:0, (B.3)

and since the T, are Hermitian

T/ =-0(T}) 0™

=-0T1ro™!
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—Tr=— (01,07, (B.4)

T a

where O is a matrix. Then by substituting (B.4) into (B.3), we have
7,=0 (0" 1,070,
- 0"07'T, =T,0"0™!
— [T,,0T07'] = 0. (B.5)

To satisfy (B.5) for general generators T,, OTO™! is required to be proportional to

the identity (Schur’s lemma), and
OO0 =cI, (B.6)

— 0" = cO, (B.7)

where c is a constant. As double application of the transpose returns us to the original

matrix, (B.7) becomes

O = cO”
and by using this in (B.7) we have
oT =c207.
Therefore,
c= =1,
and we finally obtain
o' = +0, (B.8)

where + holds for a real representation and — for a pseudo-real representation.

When there is a matrix M which transforms T, to make it purely imaginary (and
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thus antisymmetric in order to be Hermitian), we have
T =-T!, (B.9)
with
T =M 'T,M.

Then the relation between 7;, and T is derived to be

= M 'T,M, (B.10)
SO

T, = -MM™TT (M) M~
— —MMTTT (MM™) ™

— —MMTT; (MMT)™" because T, = T). (B.11)

Therefore,

O=MMT,

— 0" = 40,
and when T, can be transformed into purely imaginary matrices 7, the representa-
tion is real. The reverese of the argument is also true and when the representation

is real there is a matrix M to transform 7, into a purely imaginary 77, or when

the representation is pseudo-real (O = —0O), T, cannot be transformed into pure
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imaginary matrices 7).

For a more detailed discussion, please see Ref. [62].
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APPENDIX C
SPINOR ALGEBRA

Here we will review the two component spinor algebra. There are two kinds of

two component Weyl spinors given by

Xao and XE where @ = 1,2 and & = 1,2,

which transform as the representations (%, O) and (O, %), respectively, and these are

related by Hermitian conjugation
) i t
Xo = (Xd> and xg = (Xa)' (C.1)

X = ()" and 1 = (y). (C.2)

Raising and lowering of an index are achieved by using the antisymmetric tensors

0 1
P — — €40 = ’ (03)
-1 0
defined by
X3 = €aax" and Xﬁ = eﬁo‘xa, (C4)
and
0 1
P — —€4s = ’ (C5)
-1 0
since

B

Xg = eﬁ-dxd‘ and 7 = ¢*xq, (C.6)

where the repeated indices are assumed to be summed. Since the e are antisymmetric
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tensors, we obtain

P 5 = — <5ﬁ75°‘5 - 5@56;) , (C.7)
%)

ey =~ (9%0% - 9007, (C.8)

and when o = v we obtain

P = — (5@5% - 5@51)

= 0" (C.9)

s =00 (C.10)

The Weyl spinors y, and x| are transformed by the SL (2, C) group, with M 5«

and M TO;. respectively, which are 2 X 2 complex matrices with determinant 1,
X5 = Mg “Xas (C.11)
and the Hermitian conjugate gives us
T ate
X5 = XaM " (C.12)
The SL (2,C) scalars are produced by

nN*Xa = 11X (C.13)

fte

Xen'® = ()" =X

n', (C.14)

where we follow the convention that the contraction of the undotted indices is from
the upper left to the lower right and the contraction of the dotted indices is from the
lower left to the upper right. Therefore, x, can be considered to be two component

column, and x® to be two component row, with x* two component column and XL
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two component row. From (C.11), raising the index by using ¢*”, we obtain

o afB. !

X =€ X

= eaﬁMﬁ YesX’.
Since x“x4 is an SL (2, C) scalar,

XX = €My Teysx M, *xe
= X(;EQBMB FYE,Y(SMQ 5)(5

!«
=X Xas

and we obtain

Mg e s = (M), " (C.15)

Similarly from (C.12),

Xax ™ = XM et Xt M,
o
= X;Mwaeage»ysMTéXT

! @
= xhx',

and we obtain
&

; (C.16)

eo“éewMﬁé = (MT_I)

Next we review the properties of the sigma matrices o and . We define the
spinor indices on ¢* and o* as

oh. and g+ (C.17)

which means that ¢* has lower indices, with the left side always undotted and the

right side always dotted, and & has upper indices, with the left side always dotted



and the right side always undotted. We obtain a new spinor 7, from Y as
Na = VuUZdXTd7
where V), is a vector. Then by raising the index, we obtain

n* = e’ng
= Ea’BVvU;aXTd
= Ea’gvyo'ﬁa aﬁXTﬁ

= —Vyeaﬁeﬁdagdxﬁ..
By using n* and 7,, we obtain an SL (2, () scalar,

(o7

nmz—%WW%mmV%ﬂ

=-V Vu i eof ﬂaaﬁda;‘dxm,
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and the right hand side is required to be an SL (2, C) scalar. This is satisfied when

aﬁ ﬁa v —vBa
Uﬁaaaa =0 Oae

and

VV *Be ﬂaaﬁa ol = VV O_Vﬁa M

—vBo Mt 7,uﬁ.a v
0P 0,5 T 07750

=V,V, p

—29V“5ﬁa
BAG  a
= V7,

where we have used

G"oegt + ahheat, = —2g"8

(C.18)

(C.19)
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and we finally obtain

N1 = =V Vu Lee? ﬁaaﬁaagaXTd
ny 58 A e

=VHV,0 aX X

= VHVxdx ™.
Therefore, from (C.18), we get

eaﬁemag e (C.20)
By applying €,q¢€. 5 on both sides of (C.20), we find
Gmew&”ﬁ.a = eyaeﬁﬁeaﬁeﬁdagd
=0, ﬁ(;& "o

where we have used (C.9). The Hermitian conjugate of (C.19) gives us

ol G o¥ aHP = —2g"15, " (C.22)

To obtain the identity 6“#557 = —2¢%¢% | we start from (C.19),

Vﬂa ,u +O_uﬁao_u — 29111155
o
s €as€as [5Vﬁa5mﬁ X 5#60151116} — g’
— ea'yeaﬁ[ ”Maw] 45’6d,
XGuv
e B[ vBo = w] 46557
X d&
— ey [_”50‘535] = 4¢P,
X ers

= — (0205 — 9308) [0 0P| = —aehes



— —g"P5% 4 VPG = 4P
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The left hand side is antisymmetric under v <+ ¢, and the right hand side is also, so

we obtain

5”’85557 = 260870,
Similarly, from (C.22) we obtain
oL.O, 5= —266‘6667@.

aa® iy

Multiplying aj 5 by (C.19) gives

05/60”50‘ ol +o ﬁa“ﬁaaga = —2g”“am,
and with p < £ (C.25) becomes
Vﬂa ﬁ {ﬁa vo_ 1/5 m
o ﬁa o+ o 230 = —29"0,.

By adding these two equations,

¢ —vBa u vBa 5 3 —uBa v M.—fﬂ-a v\ v
UWU —i—awa o T (aw-a Oag T 0. 50 aw) —2g 0

The expression inside the parenthesis is rewritten as

awa“ﬂo‘ ve ot BU oGy — —2g°0% 0%, = —29§“aw,
and we obtain
aig(f”magd + J%ﬁwo‘afm = 29£M0','; 2g”“0 2g”f "

Similarly, multiplying 357 by (C.22) gives

5{&060'50-[5'”0'& + 6'&;/040'20-65'#@6 — _QgV,ua-f’;/ﬁ’

— 29

(C.23)

(C.24)

I/&H«.

(C.25)
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and with ¢ < v this equation becomes
UV’YQUM 5ah | griey 5 O.uaﬁ — 2gl’£5#’?ﬁ.
By adding these two equations, we find
GEiagh Gvab 4 griagh G648 | ( viags Guab | g&iagy Uuaﬂ> _9ghgEis _9grEgio

— gl GV GGl 58P = 2gvtaHl 29”“0 29”E " (C.26)

More results on spinor algebra can be found in Ref. [84].
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