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ABSTRACT

Model for a Fundamental Theory with Supersymmetry. (December 2006)

Seiichiro Yokoo, B.Eng., Keio University

Chair of Advisory Committee Dr. Roland E. Allen

Physics in the year 2006 is tightly constrained by experiment, observation, and

mathematical consistency. The Standard Model provides a remarkably precise de-

scription of particle physics, and general relativity is quite successful in describing

gravitational phenomena. At the same time, it is clear that a more fundamental the-

ory is needed for several distinct reasons. Here we consider a new approach, which

begins with the unusually ambitious point of view that a truly fundamental theory

should aspire to explaining the origins of Lorentz invariance, gravity, gauge fields and

their symmetry, supersymmetry, fermionic fields, bosonic fields, quantum mechanics

and spacetime. The present dissertation is organized so that it starts with the most

conventional ideas for extending the Standard Model and ends with a microscopic sta-

tistical picture, which is actually the logical starting point of the theory, but which

is also the most remote excursion from conventional physics.

One motivation for the present work is the fact that a Euclidean path integral

in quantum physics is equivalent to a partition function in statistical physics. This

suggests that the most fundamental description of nature may be statistical. This

dissertation may be regarded as an attempt to see how far one can go with this

premise in explaining the observed phenomena, starting with the simplest statistical

picture imaginable. It may be that nature is richer than the model assumed here,

but the present results are quite suggestive, because, with a set of assumptions that

are not unreasonable, one recovers the phenomena listed above. At the end, the

present theory leads back to conventional physics, except that Lorentz invariance
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and supersymmetry are violated at extremely high energy. To be more specific, one

obtains local Lorentz invariance (at low energy compared to the Planck scale), an

SO(N) unified gauge theory (with N = 10 as the simplest possibility), supersymmetry

of Standard Model fermions and their sfermion partners, and other familiar features of

standard physics. Like other attempts at superunification, the present theory involves

higher dimensions and topological defects.
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CHAPTER I

INTRODUCTION

Physics in the year 2006 is tightly constrained by experiment, observation, and math-

ematical consistency. The Standard Model provides a remarkably precise description

of particle physics, and general relativity is quite successful in describing gravita-

tional phenomena. At the same time, it is clear that a more fundamental theory is

needed for several distinct reasons. (1) The Standard Model (SM) contains many

unexplained features and parameters. (2) It is now known that neutrinos have small

masses, and such masses cannot be accommodated in the Standard Model: A Dirac

mass would require an extra field in each generation of fermions, and a Majorana

mass would break conservation of lepton number. On the other hand, both types

of masses fit naturally into a grand unified theory (GUT) like SO(10).(3) Calcula-

tions of the running coupling constants for the three forces of the Standard Model

show that they converge at high energy if one extends the Standard Model to include

both grand unification and supersymmetry (SUSY). At the same time, SUSY elim-

inates a problem posed by the quadratic divergence of the Higgs mass in the SM.

(4) Quantum field theory, which is the basis of the SM (and its extensions) appears

to be inconsistent with general relativity. (5) Standard physics fails to account for

the observations of dark matter, dark energy, scale invariance of fluctuations in the

cosmic microwave background, and preponderance of matter over antimatter. One is

then faced with the need for a more fundamental theory, but also with the fact that

such a theory must reproduce the very tightly-knit structure of standard physics in

the regimes where standard physics has been tested. Formulating a candidate for a

The journal model is Nuclear Physics B.
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fundamental theory is then a rather imposing task, with many potential routes to

failure when one compares with the extremely precise tests of certain aspects of stan-

dard physics. This may account for the common statement that superstring theory is

the only viable candidate for a fundamental theory. On the other hand, superstring

theory has a weak record of testable predictions, despite 30 years of intense effort by

a large community of brilliant mathematical physicists [1, 2, 3].

Here we consider an alternative and very different model for a fundamental the-

ory, which actually has much more ambitious goals than superstring theory, since

it begins with the point of view that a truly fundamental theory should aspire to

explaining the origins of

• Lorentz invariance

• gravity

• gauge fields and their symmetry

• supersymmetry

• fermionic fields

• bosonic fields

• quantum mechanics

• spacetime.

This dissertation essentially follows the order above, although the logical devel-

opment of the theory essentially follows the reverse order: In Chapter V, we introduce

the fundamental statistical picture, in which both spacetime coordinates and quan-

tum fields are defined in terms of the occupancies of states. In Chapter IV, a primitive

supersymmetry is first obtained between the initial bosonic and fermionic fields, and

then the more usual form of SUSY is obtained. In Chapter III, gauge fields and

gravity are found to follow from the assumption of a specific model for the behavior

of the fields in both four-dimensional external spacetime and a d-dimensional inter-
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nal space. (The present theory is similar to superstring theory in that it contains

higher dimensions, SUSY, and topological defects, but in other respects it is quite

different.) Finally, in this reversal of the order of presentation within the dissertation,

Lorentz invariance is derived as a low energy symmetry, together with the potential

for Lorentz violation at higher energies.

Before beginning the presentation of these novel elements of our theory, in the

next chapter, we establish a foundation by reviewing the most relevant aspects of

standard physics. In deciding how much of this introductory material to put in

appendices, and how much to include in the Introduction itself, we were guided by

the need for continuity in the presentation: The present theory predicts an SO(N)

grand unified gauge group, with N = 10 suggested by experiment, so it seems essential

that the various ideas for grand unification be reviewed. On the other hand, any GUT

is basically a generalization of the Standard Model (SM). For this reason, we begin

the Introduction with the SM, then pass to GUTs, then to SUSY, then to radiative

corrections with SUSY.

We relegate the following topics to 3 appendices: notation and conventions (for

gamma matrices etc.); complex representations; and two-component spinor algebra.

The motivation for both these appendices and the introductory material in the main

text is that we wish the dissertation to be readable by anyone has had a first course

in field theory, rather than just experts in particle physics.

Before considering the Standard Model (SM) and its extensions, it is worthwhile

to consider in a little more detail why these extensions are required. The SM is very

successful. For example, it predicted the existence of the W and Z bosons, gluons,

the charm quark, and the top quark, and the masses of the W and Z gauge bosons

[4], see Table I. However, as mentioned above, the SM is clearly not complete:
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Table I. Experimental and theoretical values of mass of W and Z bosons.

Experiment (GeV) SM Calculated (GeV)

Mass of W boson
80.454± 0.059 (UA2, CDF, and DO)

80.412± 0.042 (LEP2)
80.390± 0.018

Mass of Z boson 91.1876± 0.0021 91.1874± 0.0021

• There are no masses for the (left-handed) neutrinos. Neutrino oscillations have

been observed by the Super-Kamiokande experiment and others, and these os-

cillations require that the neutrinos have masses which are very small (¿ 1 eV

in the most plausible models).

• The energy scale difference between the SM scale (100 GeV) and the GUT scale

(1014−1015 GeV) is enormous, and it is not natural that there should be nothing

between the two scales.

• 23% of the energy density of the universe is apparently cold dark matter, which

must be stable and interact only weakly with ordinary matter. The SM provides

no such candidate.

• Radiative corrections to the masses of the SU (2) Higgs bosons diverge quadrat-

ically.

• There is no detailed mechanism to produce a negative mass-squared term, which

is required for SU (2) Higgs fields to acquire a nonzero vacuum expectation

value.

• The gravitational field escapes unification.
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• The SM cannot explain why there are 3 generations.

• The SM model cannot explain the quark mixing and neutrino mixing mass

matrices.

Therefore, when we aspire to a fundamental theory, it is required not only to

reproduce the successful parts of the SM at the electroweak energy scale, but also to

resolve at least some of these problems.

For example, an appropriate GUT yields natural neutrino masses; SUSY protects

the Higgs mass from a quadratic divergence; SUSY and GUTs lead to a beautiful

unification of coupling constants, as can be seen in Fig. 1; SUSY breaking can be

treated in a supergravity (SUGRA) model; and there are rich predictions concerning

dark matter, proton decay etc. The SuperKamiokande proton decay experiment has

determined the lower limit of the lifetime of the proton, at the 90% confidence level,

to be 2.3× 1033, 1.3× 1033, and 1.0× 1033 years for the p → ν̄K+, p → µ+K0, and

p → e+K0 modes, respectively, so the minimal SUSY SU (5) is excluded [6], with

limits of 2.6×1033 and 2.1×1033 years for p → e+π0 and p → µ+π0 [7]. Nevertheless,

future proton decay and dark matter experiments will increasingly move into regimes

where SUSY and GUT predictions may lead to experimental verification.

In Appendix A, we introduce our notations and conventions. In Section A of this

Introduction, we review the SM; in Section B, the gauge unification groups SU (N)

and SO (N); in Section C, SUSY.

A. Review of the Standard Model

1. Main Ideas

The fields of the SM are summarized in Table II.
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Fig. 1. Running gauge coupling constants in the SM and SUSY-SM. The vertical axis

is the inverse of the square of the gauge coupling constant, and the horizontal

axis is the energy scale. The broken line is for the SM, and the solid line is

for the SUSY-SM. The SM has only one Higgs doublet, but The SUSY-SM

calculation involves not only the SM fields and their superpartners but two

Higgs doublets [5].
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Table II. Field content of the Standard Model.

lepton doublet (left chiral)

fL−l1 =




fνe (e-neutrino)

fe (electron)




fL−l2 =




fνµ (µ-neutrino)

fµ (µ)




fL−l3 =




fντ (τ -neutrino)

fτ (τ)




quark doublet (left chiral)

fL−q1 =




fu (up)

fd (down)




fL−q2 =




fc (charm)

fs (strange)




fL−q3 =




ft (top)

fb (bottom)




lepton singlet (right chiral)

fR−l1 = Ee (electron)

fR−l2 = Eµ (µ)

fR−l3 = Eτ (τ)

quark singlet

fR−q1 = U,D (up, down)

fR−q2 = C, S (charm, strange)

fR−q3 = T,B (top, bottom)

gauge fields

Bµ (U (1)Y )

Aµ (SU (2)L)

Gµ (SU (3)C)

Higgs doublet

φ =




φ+

φ0


 and φc =




φ̄0

φ−


 = iσ2φ

∗
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The Standard Model is based on the gauge group SU(3)C × SU(2)L × U(1)Y ,

where C, L, and Y stand for color, left-handed, and hypercharge. The gauge interac-

tions are introduced by the covariant derivative, and the fermion-scalar interactions

are introduced by the Yukawa terms. The Lagrangian for the Standard Model is given

by

LSM = Lew + LQCD, (1.1)

where LQCD contains the SU(3)C physics and Lew the SU(2)L × U(1)Y physics, and

LQCD = −1

4
Gα

µνG
αµν +

∑

k

iq̄kγ
µDQCD

µ qk (1.2)

with

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , (1.3)

DQCD
µ qk =

[
∂µ + igs (λa/2) Ga

µ

]
qk, (1.4)

q =




qred

qgreen

qblue




, (1.5)
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where the generators are given by

λ1 =
1

2




0 1 0

1 0 0

0 0 0




λ2 =
1

2




0 −i 0

i 0 0

0 0 0




λ3 =
1

2




1 0 0

0 −1 0

0 0 0




,

λ4 =
1

2




0 0 1

0 0 0

1 0 0




λ5 =
1

2




0 0 −i

0 0 0

i 0 0




λ6 =
1

2




0 0 0

0 0 1

0 1 0




,

λ7 =
1

2




0 0 0

0 0 −i

0 i 0




λ8 =
1

2
√

3




1 0 0

0 1 0

0 0 −2




Tr {λiλj} =
1

2
δij, (1.6)

and

Lew = LSU(2)L×U(1)Y
+ Lfermion + Lscalar, (1.7)

where

LSU(2)L×U(1)Y
= −1

4
W a

µνW
aµν − 1

4
FµνF

µν , (1.8)

Lfermion =
∑

f

[
if̄LγµDew

µ fL + if̄RγµDew
µ fR

]
, (1.9)

Lscalar = Dew
µ φ†Dewµφ−m2φ†φ− λ

(
φ†φ

)2

+ GY f

[
f̄LφfR + f̄Rφ†fL

]
. (1.10)

W a
µν and Fµν are the SU(2)L and U(1)Y field strengths, f is a fermion field (lepton
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or quark), φ is the Higgs doublet, GY f is a Yukawa coupling, and

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gfabcW b

µW c
ν , (1.11)

Fµν = ∂µBν − ∂νBµ, (1.12)

Dew
µ fL =

[
∂µ + ig (τa/2) W a

µ + ig′ (Y/2) Bµ

]
fL, (1.13)

Dew
µ fR = [∂µ + ig′ (Y/2) Bµ] fR, (1.14)

Dew
µ φ =

[
∂µ + ig (τa/2) W a

µ + ig′ (Y/2) Bµ

]
φ, (1.15)

in the case of leptons. For quarks, however, the ∂µ term is to be omitted because it

is already included in (1.4). Here g and g′ are the SU(2)L and U(1)Y gauge coupling

constants, τa is a Pauli matrix, and Y is the hypercharge.

The Higgs doublet is

φ =




φ+

φ0


 where

φ+ ≡ (φ1 + iφ2) /
√

2

φ0 ≡ (φ3 + iφ4) /
√

2
, (1.16)

φc =




φ̄0

φ−


 = iσ2φ

∗, (1.17)

where the vacuum expectation value (V.E.V.) of the φ and φc produce masses for the

second component and the first component of the fermion doublet, respectively. The

potential V (φ) = −m2φ†φ + λ
(
φ†φ

)2
has a minimum at φ†φ = m2

2λ
, and we choose

our vacuum expectation values as

〈φi〉 = 0, for i = 1, 2, 4, (1.18)

〈φ3〉 = υ =
√

m2/λ, (1.19)
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so that

〈φ〉 =
1√
2




0

υ


 . (1.20)

We call the quantum fluctuations of φ3 about the value υ H (x):

H (x) = φ3 − υ. (1.21)

Then the mass of a fermion is

mf =
GY fυ√

2
. (1.22)

Next we determine the masses of the gauge bosons:

∣∣∣∣∣∣


ig

τa

2
≡Ta

W a
µ + ig′

Y

2
Bµ


 〈φ〉

∣∣∣∣∣∣

2

=
1

8

∣∣∣∣∣∣∣




gW 3
µ + g′Bµ g

(
W 1

µ − iW 2
µ

)

g
(
W 1

µ + iW 2
µ

) −gW 3
µ + g′Bµ







0

υ




∣∣∣∣∣∣∣

2

=

(
1

2
υg

)2

W+
µ W−µ +

1

8
υ2

(−gW 3
µ + g′Bµ

)2
+ 0

(
gW 3

µ + g′Bµ

)2

=

(
1

2
υg

)2

W+
µ W−µ +

1

8
υ2

(
g2 + g′2

)
ZµZ

µ + 0AµA
µ, (1.23)

where W±
µ ≡ (

W 1
µ ∓ iW 2

µ

)
/
√

2, Zµ ≡ W 3
µ cos θw − Bµ sin θw, and Aµ ≡ W 3

µ sin θw +

Bµ cos θw. θw is the Weinberg (or weak) angle and is defined by

cos θw =
g

(g2 + g′2)1/2
, sin θw =

g′

(g2 + g′2)1/2
. (1.24)

Therefore,

MW =
1

2
υg, MZ =

1

2
υ

(
g2 + g′2

)1/2
, MA = 0. (1.25)

The V.E.V. υ of the Higgs field is calculated as

υ =
2MW

g
=

1
(√

2GF

)1/2
= 246.2 (GeV) where GF = 1.16637 (2)× 10−5 GeV−2.

(1.26)

The quantum numbers of the fields are given in Table III.
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Table III. SU(2) and U(1) quantum numbers of Standard Model matter fields.

T T3 Y Q

ν 1/2 1/2 −1 0

e−L 1/2 −1/2 −1 −1

e−R 0 0 −2 −1

uL 1/2 1/2 1/3 2/3

dL 1/2 −1/2 1/3 −1/3

uR 0 0 4/3 2/3

dR 0 0 −2/3 −1/3

The electroweak gauge interaction Lagrangian density becomes

Lew-int. = −gJµ
a W a

µ − g′
1

2
Jµ

Y Bµ

= −gΨ̄LγµTaψLW a
µ − g′

1

2
Ψ̄γµY ΨBµ

= − g√
2
Ψ̄Lγµ (T1 + iT2) ψL

(
W 1

µ − iW 2
µ√

2

)
− g√

2
Ψ̄Lγµ (T1 − iT2) ψL

(
W 1

µ + iW 2
µ√

2

)

− (
g2 + g′2

)1/2
Ψ̄γµ

(
g2

g2 + g′2
T3 − g′2

g2 + g′2
Y

2

)
ψ

(
g

(g2 + g′2)1/2
W 3

µ −
g′

(g2 + g′2)1/2
Bµ

)

− gg′

(g2 + g′2)1/2
Ψ̄γµ

(
T3 +

Y

2

)
ψ

(
g′

(g2 + g′2)1/2
W 3

µ +
g

(g2 + g′2)1/2
Bµ

)

= − g√
2
Jµ

chargedW
+
µ − g√

2
Jµ†

chargedW
−
µ − (

g2 + g′2
)1/2

Jµ
neutralZµ − gg′

(g2 + g′2)1/2

≡e

Jµ
emAµ,

(1.27)
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where

Jµ
charged = Ψ̄Lγµ (T1 + iT2) ψL, (1.28)

Jµ†
charged = Ψ̄Lγµ (T1 − iT2) ψL, (1.29)

Jµ
neutral = Ψ̄γµ

(
g2

g2 + g′2
T3 − g′2

g2 + g′2
Y

2

)
ψ, (1.30)

Jµ
em = Ψ̄γµ

(
T3 +

Y

2

)

≡Q

ψ, (1.31)

with TiψR = 0. Therefore, the electric charge e and the charge operator Q are

e =
gg′

(g2 + g′2)1/2
, (1.32)

Q = T3 +
Y

2
. (1.33)

2. A Way to Obtain the SU (N) Generators

To obtain the generators of SU (N), we first determine the Cartan generators. As the

SU (N) group is rank N−1, there are N−1 traceless diagonal real Cartan generators

Ha and they are taken to satisfy

Tr (HaHb) =
1

2
δab. (1.34)

The general way to get the Cartan generators is

[Ha]ij =
1√

2a (a + 1)

(
a∑

k=1

δikδjk − aδi,a+1δj,m+1

)
where a = 1, · · · , N − 1,

(1.35)

which means that the Ha has 1 in the first a diagonal elements, and to make it

traceless the (a + 1)-th diagonal component must be −a, with the rest of the diagonal
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components being 0:

Ha =
1√

2a (a + 1)




11,1

. . .

1a,a

−aa+1,a+1

0a+2,a+2

. . .

0N,N




. (1.36)

The other adjoint representation states, which are not the Cartan generators,

have weight vector α satisfy

[Ha, Eα] = αaEα, (1.37)

where αa is the component of the weight vector α. Then we can determine Eα. As

Eα can be understood as the raising and lowing operator, it can be related to the

SU (N) generator Tj with j = N, · · · , N2 − 1 as

E±α =
1√
2

(Tj ± iTj+1) , (1.38)

where Ti and Ti+1 are given by

Tj =
1√
2

(E+α + E−α) , (1.39)

Tj+1 = − i√
2

(E+α − E−α) . (1.40)

The Cartan generators Ha are related to the SU (N) generator T as

Tj = Hj with j = 1, · · · , N − 1. (1.41)
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3. Example: SU (2)

The rank of SU (2) is 1, and there is one Cartan generator which is given by

H1 =
1

2




1 0

0 −1


 . (1.42)

The eigenvectors and the associated weights are

H1




1

0


 =

1

2
weight




1

0


 , (1.43)

H1




0

1


 = −1

2
weight




1

0


 . (1.44)

As the weights differ by ±1, we have one component root vectors α given by

α = ±1. (1.45)

Because of the relation

[H1, E±1] = ±1E±1, (1.46)

E±1 is determined to be

E+1 =
1√
2




0 1

0 0


 , (1.47)

E−1 =
1√
2




0 0

1 0


 , (1.48)

where the factor 1/
√

2 is to satisfy the relation

[Eα, E−α] = α ·H. (1.49)
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SU (2) has 22 − 1 = 3 generators. One of then corresponds to the Cartan generator,

T1 = H1

=
1

2




1 0

0 −1


 , (1.50)

and the others, T2 and T3, are related to E±1 as

E±1 =
1√
2

(T2 ± iT3) . (1.51)

Therefore we obtain T2 and T3 as

T2 =
1√
2

(E+1 + E−1)

=
1

2




0 1

1 0


 , (1.52)

T3 = −i (E+1 − E−1)

=
1

2




0 −i

i 0


 , (1.53)

and we can derive the Pauli matrices as essentially the SU (2) generators.

B. Gauge Unification

1. SU (N) and SO (N) Groups

a. SU(N)

When the generators of the SU (N) group are T , the special unitary operator U is

written as

U (α) = eiαaTa , (1.54)
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where αa is a parameter and Ta is required to be Hermitian because UU † = U †U = 1.

From the det (U) = 1 condition we obtain

det (U (α)) = det
(
eiαaTa

)
= det

(
eiD

)
=

∏
i

eiDii = eTr[iD] = eTr[iαaTa], (1.55)

where D = X (αiTi) X† with an operator X which satisfies det (X) = det
(
X†) = 1

and XX† = X†X = 1. The trace of D is

Tr (D) = Tr
(
X (αaTa) X†) = Xij (αaTa)jk X†

kl = X†
klXij (αaTa)jk

= Tr
(
X†X

=1
(αaTa)

)
= Tr (αaTa) . (1.56)

Therefore, to satisfy det (U) = 1 it is required that

Tr (αaTa) = 0 →
to be satisfied for arbitrary αa

Tr (Ta) = 0 (1.57)

Then the requirement for the generators T of a special unitary operator is:

Ta is traceless and Hermitian.

The number of generators corresponds to the number of independent variables

in the matrix. Since Ta is Hermitian, the N diagonal components of the matrix are

real, and only half of the off-diagonal complex components are independent. Since

Ta is traceless, the independent variables are reduced by one, and the order, which is

the number of generators, is given by

Order =
N2 −N

2
2 + N −1

traceless
= (N + 1) (N − 1) . (1.58)

Since the generators are traceless and Hermitian, we can produce a diagonal
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matrix by

[Ha]ij =
1√

2a (a + 1)

(
a∑

k=1

δikδjk − aδi,a+1δj,m+1

)
where a = 1, · · · , N − 1,

(1.59)

as we have already seen in the preceding section. Therefore the rank, which is the

number of diagonal matrices (Cartan generators), is given by

rank = N − 1. (1.60)

For the definition of a complex representation, please see Appendix B.

b. SO (N)

If the generators of the SO (N) group are represented by M , a special orthogonal

operator O is written as

O (ω) = eiωqMq , (1.61)

where ωq is a parameter, and Mq is required to be anti-symmetric because OT O =

OOT = 1. From the det (O) = 1 condition we obtain

det (O (ω)) = det
(
eiωqMq

)
= det

(
eiD

)
=

∏
i

eiDii = eTr[iD] = eTr[iωqMq ], (1.62)

where D = Y (ωabMab) Y T , with an operator Y which satisfies det (Y ) = det
(
Y T

)
= 1

and Y Y T = Y T Y = 1. The trace of D is

Tr (D) = Tr
(
Y (ωabMab) Y T

)
= Yij (ωabMab)jk Y T

ki = Y T
ki Yij (ωabMab)jk

= Tr
(
Y T Y (ωabMab)

)
= Tr (ωabMab) . (1.63)

Therefore, to satisfy det (O) = 1 it is required that

Tr (ωqMq) = 0 →
to be satisfied for arbitrary ωab

Tr (Mq) = 0. (1.64)
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Therefore the requirement for a special orthogonal operator is:

Mq is traceless and antisymmetric.

Since Mq is antisymmetric, all of the diagonal components are zero, and only

half of the off-diagonal components are independent. Therefore the order, which is

the number of generators, is given by

Order =
N2 −N

2
# of independent variables off-diag.

for SO (N) . (1.65)

Because the SO (N) generators are anti-symmetric matrices and the diagonal

components are zero, we cannot produce mutually commuting matrices by diagonal-

ization. To determine the rank of SO (N) we go back to the basic idea that SO (N)

describes a rotation in coordinate space. Then the generators carry two vector indices

and can be written as Mµν , which means that the generator rotates the vector index

ν into µ, and this corresponds to the angular momentum operator. Therefore Mµν is

antisymmetric under µ ↔ ν. The commutator of these generators is found to be

[Mµν ,Mρσ] = −i (δνρMµσ − δµρMνσ + δµσMνρ − δνσMµρ) , (1.66)

where the indices on the right-hand side indicate that one obtains a minus sign under

µ ↔ ν or ρ ↔ σ, and under µ ↔ ρ or ν ↔ σ. The “−i” on the right-hand side is

needed to satisfy the relation under Hermitian conjugation. The rank is the number of

mutually commuting generators. From the right hand side of (1.66) the commutator

vanishes when the indices µ, ν, ρ, and σ all have different values. Then, when the

rank is N , we need 2N different indices, and the size of the space is required to be

2N or 2N + 1 dimensional:

rank = N for SO (2N) and SO (2N + 1) . (1.67)
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Table IV. Summary of the simple Lie groups.

Group Rank Order Complex Rep.

SU (N) N − 1 (N + 1) (N − 1) N ≥ 3

SO (2N) N N (2N − 1) N = 5, 7, 9, · · ·
SO (2N + 1) N N (2N + 1) No

Sp (2N) N N (2N + 1) No

G2 2 14 No

F4 4 52 No

E6 6 78 Yes

E7 7 133 No

E8 8 248 No

.

2. Summary of Simple Lie Groups

Following Collins et al. [8] for the simple Lie groups other than SU (N) and SO (N),

we summarize their properties in Table IV.

3. Choice of the Grand Unified Group G

As discussed in Collins et al. [8], when we consider any candidate G for the grand

unified group, it must satisfy the following requirements:

• G contains the Standard Model, SU(3)C × SU(2)L × U(1)Y , so it must have a

rank of at least 4.

• G must have complex representations (see Appendix B) because parity violation
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requires that left- and right-handed fermions must belong to different represen-

tations of the gauge group. E.g. in SU (3), the 3 transforms differently from

3̄ ≡ 3∗.

• G should have a single gauge coupling so that all the interactions are unified,

and it should be a simple group. A simple group is a nontrivial group whose

only normal subgroups are the trivial group and the group itself, where a normal

subgroup N of a group G with elements g is defined by g−1Ng ⊆ N for all g.

• The known fermions should fit economically into representations of G, and since

the unified gauge theory should be renormalizable, it must be free of anomalies.

The groups which satisfy the above requirements are SU (N), SO (2N), or E6,

and among them the minimum choice is SU (5), SO (10), or E6. Here we review

SU (5) and SO (10).

4. SU(5)

In the Standard Model, the 3 gauge coupling constants are different. To see the

meaning of unification, we have to go to a unified theory which has SU(3)C×SU(2)L×
U(1)Y as a subgroup. Since the rank of SU(3)C , SU(2)L, and U(1)Y is 2, 1, and 1

respectively, the unified group G must be at least rank 4. The rank of SU(N) is

N − 1, so SU(5) can work for unification.

We can accommodate the 15 left-handed fermions (3 colors for u, d quarks and

antiquarks (12), electron and antielectron (2), and left-handed neutrino (1)) in a

representation of SU(5), but not in a single irreducible representation. The SU (3) ,
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SU (2) content is written as

5̄ 10
︷ ︸︸ ︷
(3̄, 1) + (1, 2) +

︷ ︸︸ ︷
(3, 2) + (3̄, 1) + (1, 1)

dc
i (ν, e−) (ui, di) uc

i ec

(1.68)

where each multiplet satisfies
∑

Q = 0.

The family of left-handed fermions fits into the 5 and 10 of SU (5) as follows.

First we have

ψL =




dc
1

dc
2

dc
3

e−

−ν




L

= 5̄, or ψc
R =




d1

d2

d3

e+

−ν̄




R

= 5. (1.69)

Then we consider the SU (5) product representation:

5× 5 = [(3, 1) + (1, 2)]× [(3, 1) + (1, 2)]

= [(6, 1) + (3, 2) + (1, 3)]S + [(3̄, 1) + (3, 2) + (1, 1)]A
≡10

, (1.70)

and the 10 is written in antisymmetric form as

χab =
1√
2




0 uc
3 −uc

2 −u1 −d1

−uc
3 0 uc

1 −u2 −d2

uc
2 −uc

1 0 −u3 −d3

u1 u2 u3 0 −e+

d1 d2 d3 e+ 0




L

. (1.71)

The gauge fields involve the adjoint representation, 5̄×5 = 24+1, and there are 24

generators. The SU (3) , SU (2) decomposition of the 24-dimensional representation
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is

24 = (8, 1)
gluons g

+ (1, 3)
Wi

+ (1, 1)
B︸ ︷︷ ︸

W±,Z0,γ

+ (3̄, 2)
X,Y

+ (3, 2)
X̄,Ȳ

(1.72)

The 5× 5 traceless matrix of gauge fields Aµ is

A ≡ 1√
2




SU (3)

X̄1 Ȳ1

X̄2 Ȳ2

X̄3 Ȳ2

X1 X2 X3

Y1 Y2 Y3

SU (2)




+
1

2
√

15




−2

−2

−2

3

3




B.

(1.73)

Since X transforms an anti-down quark into an electron and Y transforms an

anti-down quark into a neutrino, the charges of the new gauge bosons are

QX = 4/3, QY = 1/3 (1.74)

The Lagrangian is

L = i
(
ψ̄c

R

)
a
γµ


δab∂

µ + ig

(
24∑

j=1

1

2
λjA

µ
j

)

ab


 (ψc

R)b + iχ̄acγ
µ (Dµχ)ac , (1.75)

where

(Dµχ)ac = ∂µχac + ig

(
1

2
λ · Aµ

)

ad

χdc + ig

(
1

2
λ · Aµ

)

cd

χad, (1.76)

and

λj =




λSU(3)j 0

0 0


 j = 1, · · · , 8, where λSU(3)j is SU (3) λ.
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λ9 =




0

1 0

0 0

0 0

1 0 0

0 0 0
0




λ10 =




0

−i 0

0 0

0 0

i 0 0

0 0 0
0




.

The λ11, λ12, · · · , λ20 are obtained by continuing to put 1 and ∓i in the same pattern

in the off diagonal blocks.

λj =




0 0

0 τi


 i = 1, 2, 3, where τi is a Pauli matrix.

λ24 =
1√
15




−2

−2

−2

3

3




. (1.77)

Now let us consider gauge symmetry breaking. Two multiplets of the Higgs scalar

fields participate in the SU (5) model. One is a complex 5 dimensional representation

Ha (where the first 3 components are a color triplet and the last two components

are a color singlet - the SU (2) the Higgs doublet which we saw in SU (2) symmetry

breaking). The other is a real adjoint 24 dimensional representation Φa, which breaks

SU (5) into SU(3)× SU(2)× U(1).

For SU(5) symmetry breaking, we must not break the SU (3) and SU (2). The
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covariant derivative of the real adjoint 24 dimensional Higgs is

DµΦ = ∂µΦ + ig
∑
i,j

(TiA
µ
i ) Φ

= ∂µΦ + ig
∑

i,jk

icijkλkA
µ
i Φj/

√
2

= ∂µΦl + ig (AµΦ− ΦAµ) , (1.78)

where Φ ≡
24∑

j=1

Φjλj/
√

2 and Aµ ≡
24∑

j=1

λjA
µ
j /2. When the V.E.V. of Φ commutes

with the SU (3) and SU (2) parts of Aµ, we can break only the GUT gauge X and Y

symmetries. In general, the scalar fields self-coupling potential V (Φ) is

V (Φ) = −1

2
M2Tr

(
Φ2

)
+

1

4
a

[
Tr

(
Φ2

)]2
+

1

2
bTr

(
Φ4

)
, (1.79)

where we have required symmetry under Φ → −Φ. Then from ∂V (〈Φ〉) /∂Φ = 0 and

traceless conditions, the V.E.V. of Φ is

〈0|Φ |0〉 = υ0




1

1

1

−3/2

−3/2




≡ −
√

15

2
υ0λ24, (1.80)

where υ2
0 = 2M2/ (15a + 7b). Then the masses of X and Y bosons are

Lmass−X,Y =
g2

2
Tr

[
(A 〈Φ〉 − 〈Φ〉A)2]

=
1

2
g2υ2

0

25

8
Aµ

i Aiµ ≡ 1

2
M2

i Aµ
i Aiµ, (1.81)

→ M2
i = g2υ2

0

25

8
. (1.82)

Next we consider fermion masses. The Higgs V.E.V. 〈0|Φ |0〉 is GUT scale
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(1014 ∼ 1016 GeV) and these Higgses are not suitable for the origin of the fermion

masses. Therefore we consider a SU (5) invariant from the 5 Higgs,

H =




H1

H2

H3

φ+

φ0




with 〈0|H |0〉 =
1√
2




0

0

0

0

υ




. (1.83)

The invariant is produced from 5̄ × 10 × 5̄ and 10 × 10 × 5, and the fermion mass

terms are

(LY )mass =
υGD√

2

(
ψ̄c

R

)
a
(χL)a5 +

υGU√
2

εαβγ (χ̄c
R)αβ (χL)γ4 + h.c.

= −1

2
υGD

(
ēe + d̄αdα

)− υGU√
2

(ūαuα) , (1.84)

and

me = md =
1

2
υGD, mu =

1√
2
υGU . (1.85)

5. SO(10)

In SU(5), the representation of SU (5) is not irreducible because the 5̄ and 10 are in

different representations. SO (2N)N=5 contains a 16-dimensional (2N−1) irreducible

representation. SO (10) also contains SU (5) as a subgroup, and the representation

decomposes into

16 = 10 + 5̄︸ ︷︷ ︸
SU(5)

+ 1
right handed neutrino

(1.86)

For the spinorial representation, discussed in Refs. [9]-[10], we first consider a

Clifford algebra: 2n Hermitian matrices γ
(n)
i , i = 1, · · · , 2n, which are 2n×2n, satisfy

{γi, γj} = 2δij. (1.87)
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We can construct the γ(n) matrices in a systematic way by iteration: For n = 1, they

are Pauli matrices

γ
(1)
1 ≡ τ1 =




0 1

1 0


 , γ

(1)
2 ≡ τ2 =




0 −i

i 0


 , γ

(1)
3 ≡ τ3 =




1 0

0 −1


 .

(1.88)

When γ
(n)
i is given, we can construct γ

(n+1)
i as

γ
(n+1)
i = γ

(n)
i ⊗ τ3, (1.89)

γ
(n+1)
2n+1 = 1⊗ τ1, (1.90)

γ
(n+1)
2n+2 = 1⊗ τ2, (1.91)

where i = 1, · · · , 2n and γ
(0)
i = 0. The γFIV E matrix is defined by

γFIV E = (−i)n (γ1γ2 · · · γ2n) , (1.92)

and γFIV E anticommutes with all the other γi, {γFIV E, γi} = 0, with γ
(n+1)
FIV E = γ

(n)
FIV E⊗

τ3. The rotations in the i− j plane are given by Σij = 1
2
i [γi, γj], and the 2n spinor ψ

transforms under SO (2n) as

ψ → exp (iωjkΣjk) ψ. (1.93)

Since ΣjkγFIV E = γFIV EΣjk, the rotation does not change the eigenvalues of γFIV E

and we can reduce ψ into γFIV Eψ = ±ψ states. Then the chiral states

ψ± =
1

2
(1± γFIV E) ψ (1.94)

transform irreducibly, and these states give a 2n/2 = 2n−1 dimensional irreducible

representation. When n = 5, we obtain a 16 irreducible representation, in which all

16 fermion fields fit.
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The SO (10) invariant Lagrangian describing the interaction of Yang-Mills fields

with a multiplet of massless fermions is

L = −1

4

(
F jk

µν

)2
+ iψ̄+γµ

(
∂µ − igAjk

µ Σjk

)
ψ+. (1.95)

Now let us turn to the physical particle states. The states are summarized in

Table V. In an SU (5) representation the hypercharge Y is given by

Y = 2/3
(∑

color spins
)
−

(∑
weak spins

)
, (1.96)

and, because of the sign difference, SU (5) rotations raise (or lower) a color index and

lower (or raise) a weak index. Since SO (10) includes SU (5) as subgroup, SO (10)

rotations other than those in the SU (5) raise or lower any two color spins or two

weak spins.

Fermion masses again result from Yukawa couplings of the fermions to the Higgs

fields. Now neutrinos couple to the Higgs fields and can obtain masses. However,

the coupling of the Higgses depends on how SO (10) breaks into a subgroup, e.g.

SU (5)× U (1), or SU (4)× SU (2)× SU (2) etc.

C. Supersymmetry (SUSY)

Here we review the rudiments of SUSY. For a more detailed discussion, please see

Ref. [11].

1. Brief History of SUSY

Supersymmetry was originally motivated by interest in a possible symmetry between

fermions and bosons. To the author’s knowledge, the oldest physically motivated

SUSY is by H. Miyazawa in 1966 [12]. It uses a kind of superalgebra related to
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Table V. The states of the SO(10) matter fields.The SU(5) 5 and 10 representations

are part of the SO(10) 16 representation.

State Y

ui
L = |+−−+ +〉r , |+−+−+〉g , |+−+ +−〉b 1/3

di
L = |−+−+ +〉r , |−+ +−+〉g , |−+ + +−〉b 1/3

uic
L = |+ + +−−〉r , |+ +−+−〉g , |+ +−−+〉b −4/3

dic
L = |− −+−−〉r , |− − −+−〉g , |− − −−+〉b 2/3

νL = |+−−−−〉 −1

e−L = |−+−−−〉 −1

e+
L = |− −+ + +〉 2

NL = |+ + + + +〉 0

.

5̄
SU(5)

↔
SO(10)\SU(5)

10
SU(5)

dc
i (ν, e−) (ui, di) uc

i ec

.
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internal symmetry.

From the string theory side, the notion of a symmetry between fermionic and

bosonic modes started in 1971 [13]-[15]. However, these are two dimensional theories.

N = 1 supersymmetry was first proposed and formulated as a graded Lie algebra

by Y. A. Golfand and E. P. Likhtman in 1971 [16].

J. Wess and B. Zumino [17], and A. Salam and J. Strathdee [18], constructed

field theories with supersymmetry in 1974.

R. Haag, J. Lopuszanski, and M. Sohnius [19] proposed that supersymmetry

is the only possible symmetry between particles with different spins in which the

S-matrix is consistent with relativistic quantum field theory.

2. R-parity

In the minimal supersymmetric standard model (MSSM), we assume a new symmetry

which conserves B and L (baryon number and lepton number) in the renormalizable

superpotential. However, this symmetry cannot distinguish between the particle and

the SUSY partner because they have same quantum numbers except spin. Therefore,

we also include spin angular momentum conservation in the symmetry. This new

symmetry is called “R-parity” and defined as

PR = (−1)3(B−L)+2s . (1.97)

PR for the MSSM fields are given in Table VI (where the upper sign is for the particle

and the lower sign is for the antiparticle).

R-parity stabilizes the lightest sparticle and is thus important for SUSY to pro-

vide a candidate for dark matter.
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Table VI. R-parity of the fields of minimal supersymmetric standard model.

Lepton Quark Gauge Higgs

B − L ∓1 ±1/3 0 0

s 1/2 1/2 1 0

PR +1 +1 +1 +1

S-lepton S-quark Gaugino Higgsino

∓1 ±1/3 0 0

0 0 1/2 1/2

−1 −1 −1 −1

,

3. Neutralino as Dark Matter Candidate

The phenomenological requirements for dark matter are:

• It has to be electrically neutral and non-baryonic, and it can interact only

weakly with ordinary matter.

• It has to be stable (or have a cosmologically long lifetime).

Because of R-parity, sparticles are always created or destroyed in pairs, and the

lightest sparticle is stable. The lightest sparticle is now required to be electrically

neutral and also to have no color charge.

The WMAP data has determined that ΩCDM = 0.23 ± 0.04. Here CDM means

“cold dark matter” and the density parameter Ω is defined by Ω ≡ ρ

ρc

, where ρc ≡
3H2

8πG
= 9.47 × 10−27

[
kg/m3] = 5.32

[
GeV/m3] is the critical density. We have also

used the currently standard value of the Hubble parameter H = 71 km/s/Mpc=
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2.3× 10−18 [s−1]. Therefore the density of the dark matter ρDM is

ρDM = ΩCDM · ρc

= 0.19× 5.32 ∼ 0.27× 5.32
[
GeV/m3]

= 1.01 ∼ 1.44
[
GeV/m3] , (1.98)

and the density of any dark matter candidate needs to be equal to or smaller than

the value.

The photino, the zino, and the neutral Higgsinos, or a neutralino which is a

mixture of these, satisfy the above requirements and the lightest neutralino is a good

candidate for the dark matter. The density of the lightest neutralino is required to

be at most in the range

ρneutralino = 1.01 ∼ 1.44
[
GeV/m3] , (1.99)

and this condition is one of the constraints on the SUSY parameters.

4. Fermions (spin 1/2) and Sfermions (spin 0)

The minimum fermion content in four dimensions is a single left-handed two-component

Weyl fermion ψ. Since the fermion field is complex, the superpartner scalar sfermion

field is also complex. The action without any interaction is

S =

∫
d4x (Lscalar + Lfermion) , (1.100)

Lscalar = −∂µφ∗∂µφ; Lfermion = iψ†σ̄µ∂µψ. (1.101)

This is called the massless non-interacting Wess-Zumino model. This action is invari-

ant under the supersymmetry transformation

δφ = εψ; δφ∗ = ε†ψ†, (1.102)



33

δψα = −i
(
σµε†

)
α
∂µφ; δψ†α̇ = i (εσµ)α̇ ∂µφ

∗. (1.103)

However, when we calculate the commutator of two supersymmetry transforma-

tions, it turns out that the algebra does not close:

[δε2 , δε1 ] φ = −i
(
ε1σ

µε†2 − ε2σ
µε†1

)
∂µφ, (1.104)

[δε2 , δε1 ] ψα = −i
(
ε1σ

µε†2 − ε2σ
µε†1

)
∂µψα

+ iε1αε†2σ̄
µ∂µψ − iε2αε†1σ̄

µ∂µψ. (1.105)

For [δε2 , δε1 ] ψα, the second and third terms vanish when we apply the equation of

motion, but the algebra closes only classically. We want the algebra to close quan-

tum mechanically (i.e., without the equation of motion), and the trick invented to

accomplish this is the introduction of auxiliary fields.

Since the number of off-shell degrees of freedom for a fermion or the sfermion

is 4 or 2, respectively, to match the degrees of freedom we introduce a complex

bosonic auxiliary field, with 2 more degrees of freedom. Then the action including

the auxiliary field F is

Schiral =

∫
d4x

(−∂µφ∗∂µφ + iψ†σ̄µ∂µψ + F ∗F
)
. (1.106)

This action is invariant under

δφ = εψ; δφ∗ = ε†ψ†,

δψα = −i
(
σµε†

)
α
∂µφ− εαF ; δψ†α̇ = i (εσµ)α̇ ∂µφ

∗ − ε†α̇F ∗, (1.107)

δF = iε†σ̄µ∂µψ; δF ∗ = −i∂µψ
†σ̄µε, (1.108)

and now the SUSY algebra is closed even off-shell.
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5. Gauge Bosons (spin 1) and Gauginos (spin 1/2)

The action of a gauge supermultiplet is

Sgauge =

∫
d4x

(
−1

4
F a

µνF
µνa + iλ†aσ̄µDµλ

a +
1

2
DaDa

)
, (1.109)

where again to close the algebra an auxiliary field D is introduced. The d.o.f. (number

of degrees of freedom) of each gauge field is 3, the d.o.f. of each gaugino field is 4,

and each auxiliary field is a d.o.f.=1 real field. The action is invariant under a

supersymmetry transformation given by

δAa
µ = − 1√

2

[
ε†σ̄µλ

a + λ†aσ̄µε
]
,

δλa
α = − i

2
√

2
(σµσ̄νε)α F a

µν +
1√
2
εαDa,

δDa =
i√
2

[
ε†σ̄µDµλ

a −Dµλ
†aσ̄µε

]
, (1.110)

with

[δε2 , δε1 ] X = i
(
ε1σ

µε†2 − ε2σ
µε†1

)
DµX

where X corresponds to any of the gauge covariant fields F a
µν , λ

a, λ†a, Da. Dµ is the

covariant derivative.

The action is also invariant under the gauge transformation

δgaugeA
a
µ = −∂µΛa + gfabcAb

µΛc,

δgaugeλ
a = gfabcλbΛc. (1.111)
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6. Supersymmetric Gauge Interaction

The gauge interaction is introduced via a covariant derivative as usual. The super-

symmetric action is

S =

∫
d4x(Lgauge + Lchiral

−
√

2g
[
(φ∗T aψ) λa + λ†a

(
ψ†T aφ

)]

+ g (φ∗T aφ) Da), (1.112)

and the additional supersymmetry transformation is now given by

δφi = εψi

δ (ψi)α = −i
(
σµε†

)
α
Dµφi − εαFi

δFi = iε†σ̄µDµψi −
√

2g (T aφ)i ε
†λ†a. (1.113)

7. Chiral Interaction from Superpotential

To introduce interactions among the scalar and spinor fields, we require a superpo-

tential W which is given by

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk. (1.114)

Then the interaction terms are written as

Lint = −1

2
W ijψiψj + W iFi + c.c., (1.115)

where W i ≡ δ
δφi

W and W ij ≡ δ2

δφiδφj
W . The first term produces Yukawa interactions,

and also spinor mass terms for those spinors which can have mass even before the

Higgs mechanism. (Supersymmetry of course requires that a scalar and spinor in the

same multiplet must have the same mass.)
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The scalar potential V (φ, φ∗) is

V (φ, φ∗) = F ∗iFi +
1

2

∑
a

DaDa. (1.116)

D. Higgs Mass Radiative Correction

In the Standard Model, the scalar mass term is quadratically divergent when one in-

cludes radiative corrections. However, with SUSY, the quadratically divergent Higgs

mass radiative corrections turn out to cancel because the bosonic and fermionic loops

have opposite signs. Here we will consider the one loop correction.

1. Radiative Correction from Chiral Field

When an SU (2) Higgs field acquires a vacuum expectation value, with φ = (h + υ) /
√

2 where υ =
√

2 〈φ〉, the interaction Lagrangian for the chiral field and Higgs field

is

Lint = −λSφφφ̃†sφ̃s − λf

[
φψ†LψR + φψ†RψL

]

= −λs
h2

2
φ̃†sφ̃s −

√
2υλshφ̃†sφ̃s − λs

υ2

2
φ̃†sφ̃s

=−m2
f̃
φ̃†sφ̃s

− λf√
2

[
hψ†LψR + hψ†RψL

]
− λf√

2

[
υψ†LψR + υψ†RψL

]

=−[mf ψ†LψR+mf ψ†RψL]

, (1.117)

where λf and λs are coupling parameters, h is defined by φ = (h + υ) /
√

2, ψ is

a fermion, φ̃s is a sfermion, and mf and mf̃ are the fermion and sfermion masses

respectively. The 1-loop corrections come from the diagrams given in Figure 2.
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Fig. 2. 1-loop radiative correction of the Higgs mass from sfermion and fermion. (a)

and (b) are sfermion loops and (c) is the fermion loop. To show that the loga-

rthmic divergence also cancels under supersymmetry, diagram (b) is required.

a. Sfermion

First we calculate the mass correction from the sfermion loops. The 1-loop radiative

correction of the Higgs mass from Figure 2 (a) is

[
∆m2

h

]
(a)

= (−1) (2) (1) (1)

∫
d4k

(2π)4

(
−λs

2

) [
i

k2 −m2
f̃

]

=
Wick rotate

−λs
2π2

Γ (2)

∫
dkE

(2π)4

−k3
E

k2
E + m2

f̃

= λs
2π2

Γ (2)

∫
dkE

(2π)4

[
kE −

m2
f̃
kE

k2
E + m2

f̃

]

=
λs

8π2

[
k2

E

2
−

m2
f̃

2
ln

(
k2

E + m2
f̃

)]Λ

0

' λs

16π2

[
Λ2 − 2m2

f̃
ln

(
Λ

mf̃

)]
, (1.118)
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where we have used

∫
dDkE =

2πD/2

Γ (D/2)

∫
kD−1

E dkE, (1.119)

Γ (n) = (n− 1) Γ (n− 1) = (n− 1)! with Γ (1/2) =
√

π,

and

λs

2
υ2 = m2

f̃
. (1.120)

The 1-loop radiative correction of the Higgs mass from Figure 2 (b) is

[
∆m2

h

]
(b)

=

(−i

2!

)
(1) (1) (1 · 1)

∫
d4k

(2π)4

(
−
√

2υλs

)(
−
√

2υλs

)



(
i

k2 −m2
f̃

)2



= − (υλs)
2 2π2

Γ (2)

∫
dkE

(2π)4

k3
E(

k2
E + m2

f̃

)2

= −λs
2π2

Γ (2)

∫
dkE

(2π)4


 υ2λskE

k2
E + m2

f̃

−
υ2λsm

2
f̃
kE

(
k2

E + m2
f̃

)2




= − λs

8π2


υ2λs

2
ln

(
k2

E + m2
f̃

)
+

υ2λsm
2
f̃

2
(
k2

E + m2
f̃

)



Λ

0

≈ − λs

16π2

[
4m2

f̃
ln

(
Λ

mf̃

)
− 2m2

f̃

]
. (1.121)

b. Fermion

Next we calculate the 1-loop radiative correction of the Higgs mass from Figure 2 (c).
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[
∆m2

h

]
(c)

=

(−i

2!

)
(1) (1) (1 · 1)

∫
d4k

(2π)4

(
− λf√

2

)(
− λf√

2

)

· tr
[

i (γνkν + mf )

k2 −m2
f

i (γµkµ + mf )

k2 −m2
f

]
{(−1) (2)}

= −i2λ2
f

∫
d4k

(2π)4

[
1

k2 −m2
f

+
2m2

f(
k2 −m2

f

)2

]

= 2λ2
f

2π2

Γ (2)

∫
k3

EdkE

(2π)4

[
−1

k2
E + m2

f

+
2m2

f(
k2

E + m2
f

)2

]

= 2λ2
f

2π2

Γ (2)

∫
dkE

(2π)4

[
−kE +

3m2
fkE

k2
E + m2

f

− 2m4
fkE(

k2
E + m2

f

)2

]

= − λ2
f

4π2

[
k2

E

2
− 3

2
m2

f ln
(
k2

E + m2
f

)− m4
f

k2
E + m2

f

]Λ

0

' − λ2
f

16π2

[
2Λ2 − 12m2

f ln

(
Λ

mf

)
+ 4m2

f

]
, (1.122)

where the factor of −1 in {· · · } of the 2nd line arises because of the anticommutation

of the fermionic field, and the factor of 2 in {· · · } arises because

Lint (x1)Lint (x2) =
(
mfψ

†
L (x1) ψR (x1) + mfψ

†
R (x1) ψL (x1)

)

·
(
mfψ

†
L (x2) ψR (x2) + mfψ

†
R (x2) ψL (x2)

)

→ m2
fψ

†
L (x1) ψR (x1) ψ†R (x2) ψL (x2)

+ m2
fψ

†
R (x1) ψL (x1) ψ†L (x2) ψR (x2) ,

where the first term and the second term give the same contribution and thus produce

a factor of 2.

When the contributions from the sfermion and fermion are added together, the
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radiative corrections from chiral multiplet sum to give

∆m2
h = 2×

([
∆m2

h

]
(a)

+
[
∆m2

h

]
(b)

)
+

[
∆m2

H

]
(c)

= 2
λs

16π2

[
Λ2 + 6m2

f̃
ln

(
Λ

mf̃

)
+ 2m2

f̃

]
− λ2

f

16π2

[
2Λ2 − 12m2

f ln

(
Λ

mf

)
+ 4m2

f

]

=
Λ2

8π2

(
λs − λ2

f

)− 3

4π2

(
λsm

2
f̃
ln

(
Λ

mf̃

)
− λ2

fm
2
f ln

(
Λ

mf

))

+
1

4π2

(
λsm

2
f̃
− λ2

fm
2
f

)

= 0 when λs = λ2
f and m2

f̃
=

λs

2
υ2 =

λ2
f

2
υ2 = m2

f . (1.123)

The factor of 2 is included because there are R and L sfermions. Then the 1-loop

Higgs mass radiative correction from the chiral multiplet cancels exactly under SUSY.

Not only the quadratic divergence, but also the logarithmic divergence cancels when

λs = λ2
f and mf̃ = mf . Note again that we need to include the diagram as in Figure

2 (b) to obtain the cancellation of the logarithmic divergence.

2. Radiative Corrections from the Gauge and Gaugino and the Higgs and Higgsino

Fields

Now we consider the Higgs mass radiative corrections from the SU (2)×U (1) gauge,

gaugino, and Higgs fields, where the Higgs field contributions originate from the D-

term of (1.112). (There can be also corrections from the Higgs and Higgsino loops,

but these are treated exactly the same as in the fermion and sfermion case.). The

model now has two left chiral SU (2)L doublet Higgs fields (up type and down type).

Since the mass terms only contribute to a logarithmic divergence, and are thus not

important for a check of the quadratic divergence cancellation, we take all fields to

be massless. We start with the Lagrangian [20]
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Table VII. Summary of the fields in the SU(2)×U(1) Lagrangian density Eq. (1.124).

particles SUSY-particles

gauge W µ,±,W µ,3, Bµ λ±, λ3, λ0

up type Higgs (Yu = +1) φu ≡
(

φ+
u

φ0
u

)
ψuL ≡

(ψ+
uL

ψ0
uL

)

down type Higgs (Yd = −1) φd ≡
(φ0

d

φ−d

)
ψdL ≡

(ψ0
dL

ψ−dL

)

.

LSU(2)×U(1) = −1

4
~Wµν

~W µν − 1

4
BµνB

µν +
i

2

(−→
λ γµ∂µ

−→
λ − g2

−→
λ γµ ~Wµ

−→
λ

)
+

i

2
λ0γ

µ∂µλ0

+ i
∑

r=u,d

ψrLγµ∆21
µ ψrL +

∑

r=u,d

∣∣∆21µφr

∣∣2 − 1

2
g2
2

( ∑

r=u,d

φ†r
~τ

2
φr

)2

− 1

2
g2

Y

(
1

2

∑

r=u,d

Yrφ
†
rφr

)2

−
√

2g2

∑

r=u,d

(
φ†r
−→
λ

~τ

2
ψrL + ψrL

~τ

2

−→
λ φr

)

−
√

2gY

∑

r=u,d

[
Yr

2

(
φ†rλ0ψrL + ψrLλ0φr

)]
, (1.124)

where ∆21
µ ≡ ∂µ+ig2

~Wµ
~τ

2
+igY Bµ

Y

2
, Y is the hypercharge, W µ,± = (W µ

1 ∓ iW µ
2 ) /

√
2,

and λ± = (λ1 ∓ iλ2) /
√

2.

The propagators of the fields involved in (1.124) are summarized in Table VIII.
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Table VIII. The propagators of fields in Eq. (1.124). We choose the Feynman gauge

(ξ = 1) for the calculation of radiative corrections in this section. C is the

charge conjugation operator.

BµBν

W±
µ W±

ν ,W 3
µW 3

ν

−igµν

p2

−i
p2

(
gµν − (1− ξ) pµpν

p2

)

λDλ̄D, λM λ̄M
iγµpµ

p2

λMλM
iC−1γµpµ

p2

λ̄M λ̄M
−iγµpµC

p2

φφ∗ i
p2

ψLψL
1−γ5

2

iγµpµ

p2
1+γ5

2

The terms which contribute to the φu radiative corrections (1-loop) are

L =
i

2
[
√

2g2∂
µφ+∗

u W+
µ φ0

u −
√

g2
2 + g2

Y ∂µφ0∗
u Zµφ

0
u +

√
2g2∂

µφ0∗
u W−

µ φ+
u

−
√

2g2φ
+∗
u W+

µ ∂µφ0
u +

√
g2
2 + g2

Y φ0∗
u Zµ∂

µφ0
u −

√
2g2φ

0∗
u W−

µ ∂µφ+
u ]

+ φ0∗
u [

g2
Y + g2

2

4
ZµZ

µ +
g2
2

2
W−

µ W+µ

− g2
2

8
(2φ+∗

u φ+
u − 2φ0∗

d φ0
d + 2φ−∗d φ−d + φ0∗

u φ0
u)

− g2
Y

8
(2φ+∗

u φ+
u − 2φ0∗

d φ0
d − 2φ−∗d φ−d + φ0∗

u φ0
u)]φ

0
u

− g2

(
φ0∗

u λ̄−ψ+
uL + ψ+

uLλ+φ0
u

)
+

1√
2

√
g2

Y + g2
2

(
φ0∗

u λZψ0
uL + ψ0

uLλZφ0
u

)
, (1.125)
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Fig. 3. 1-loop radiative corrections to the Higgs mass from the Higgses, gauge bosons,

and gauginos. To show the cancellation of the quadratic divergence, not only

gauge and gaugino + Higgsino diagrams but also those for the Higgses are re-

quired. This is because the diagrams with the Higgs loops are introduced by the

D-term. Although (a) & (b), (c) & (d), (e) & (f), and (g) & (h) appear to be

the same diagrams, their couplings are different: (coupling)(a), (b) = −g2
Y /4,

−g2
2/4; (coupling)(c), (d) = −g2

Y /8, −g2
2/8; (coupling)(e), (f) = g2

Y /4, −g2
2/4;

(coupling)(g), (h) = g2
2/4, g2

Y /4.
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where

λ+ =
1√
2

(λ1 − iλ2) , (1.126)

λ− =
1√
2

(λ1 + iλ2) , (1.127)

λZ =
1√

g2
Y + g2

2

(g2λ3 − gY λ0) . (1.128)

Now we calculate the 1-loop radiative corrections depicted in Figure 3. There are

14 diagrams, and some of the diagrams are identical except for the couplings, with

the same mathematics. However, we will explicitly write each calculation for each

diagram.

The mass correction from Figure 3 (a) is

∆m2
(a) = (−1) (1) (1) (1)

∫
d4p

(2π)4

(
−g2

Y

4

)[
i

p2

]

=
g2

Y

4

2π2

Γ (2)

∫
p3

EdpE

(2π)4

1

p2
E

=
g2

Y

64π2
Λ2. (1.129)

The correction from Figure 3 (b) is

∆m2
(b) = (−1) (1) (1) (1)

∫
d4p

(2π)4

(
−g2

2

4

)[
i

p2

]

=
g2
2

4

2π2

Γ (2)

∫
p3

EdpE

(2π)4

1

p2
E

=
g2
2

64π2
Λ2. (1.130)
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The contribution from Figure 3 (c) is

∆m2
(c) = (−1) (2) (2) (1)

∫
d4p

(2π)4

(
−g2

Y

8

)[
i

p2

]

=
g2

Y

2

2π2

Γ (2)

∫
p3

EdpE

(2π)4

1

p2
E

=
g2

Y

32π2
Λ2. (1.131)

The contribution from Figure 3 (d) is

∆m2
(d) = (−1) (2) (2) (1)

∫
d4p

(2π)4

(
−g2

2

8

)[
i

p2

]

=
g2
2

2

2π2

Γ (2)

∫
p3

EdpE

(2π)4

1

p2
E

=
g2
2

32π2
Λ2. (1.132)

The correction from Figure 3 (e) is

∆m2
(e) = (−1) (1) (1) (1)

∫
d4p

(2π)4

(
g2

Y

4

)[
i

p2

]

= −g2
Y

2

2π2

Γ (2)

∫
p3

EdpE

(2π)4

1

p2
E

= − g2
Y

64π2
Λ2. (1.133)

The correction from Figure 3 (f) is

∆m2
(f) = (−1) (1) (1) (1)

∫
d4p

(2π)4

(
−g2

2

4

)[
i

p2

]

=
g2
2

4

2π2

Γ (2)

∫
p3

EdpE

(2π)4

1

p2
E

=
g2
2

64π2
Λ2. (1.134)
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The correction from Figure 3 (g) is

∆m2
(g) = (−1) (1) (1) (1)

∫
d4p

(2π)4

(
g2
2

4

)[
i

p2

]

= −g2
2

4

2π2

Γ (2)

∫
p3

EdpE

(2π)4

1

p2
E

= − g2
2

64π2
Λ2. (1.135)

The correction from Figure 3 (h) is

∆m2
(h) = (−1) (1) (1) (1)

∫
d4p

(2π)4

(
g2

Y

4

)[
i

p2

]

= −g2
Y

2

2π2

Γ (2)

∫
p3

EdpE

(2π)4

1

p2
E

= − g2
Y

64π2
Λ2. (1.136)

The correction from Figure 3 (i) is

∆m2
(i) = (−1) (1) (1) (1)

∫
d4p

(2π)4

(
g2

Y + g2
2

4
gµν

)[−igµν

p2

]

=
(
g2

Y + g2
2

) 2π2

Γ (2)

∫
p3

EdpE

(2π)4

1

p2
E + m2

=
g2

Y + g2
2

16π2
Λ2. (1.137)

The correction from Figure 3 (j) is

∆m2
(j) = (−1) (1) (1) (1)

∫
d4p

(2π)4

(
g2
2

2
gµν

)[−igµν

p2

]

= 2g2
2

2π2

Γ (2)

∫
p3

EdpE

(2π)4

1

p2
E + m2

=
g2
2

8π2
Λ2. (1.138)
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The correction from Figure 3-(k) is

∆m2
(k) =

(−i

2!

)
(1) (1) (1 · 1)

∫
d4p

(2π)4

(
− g2√

2
pµ

)

·
(
− g2√

2
pν

)[−igµν

p2

i

p2

]
{2}

= −g2
2

2

2π2

Γ (2)

∫
p3

EdpE

(2π)4

p2
E

p4
E

= − g2
2

32π2
Λ2, (1.139)

where the factor of {2} arises for the same reason as in (1.122). The correction from

Figure 3 (l) is

∆m2
(l) =

(−i

2!

)
(1) (1) (1 · 1)

∫
d4p

(2π)4

(√
g2

Y + g2
2

2
pµ

)

·
(√

g2
Y + g2

2

2
pν

) [−igµν

p2

i

p2

]
{2}

= −g2
Y + g2

2

4

2π2

Γ (2)

∫
p3

EdpE

(2π)4

p2
E

p4
E

= −g2
Y + g2

2

64π2
Λ2, (1.140)

where the factor {2} has the same origin as in (1.139). The correction from Figure 3

(m) is

∆m2
(m) =

(−i

2!

)
(1) (1) (1 · 1)

∫
d4p

(2π)4 (−g2) (−g2)

· tr
[
iγµpµ

p2

1− γ5

2

iγνpν

p2

1 + γ5

2

]
{(−1) (2)}

= −2g2
2

2π2

Γ (2)
≡1

∫
p3

EdpE

(2π)4

p2
E

p4
E

= − g2
2

8π2
Λ2, (1.141)

where the factor of −1 in {· · · } is from the anticommutation of the fermionic fields,
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and the factor of 2 in {· · · } arises for the same reason as in (1.140). Finally, the

correction from Figure 3 (n) is

∆m2
(n) =

(−i

2!

)
(1) (1) (1 · 1)

∫
d4p

(2π)4

(√
g2

Y + g2
2

2

)(√
g2

Y + g2
2

2

)

· tr
[
iγµpµ

p2

1− γ5

2

iγνpν

p2

1 + γ5

2

]
{(−1) (2)}

= − (
g2

Y + g2
2

) 2π2

Γ (2)
≡1

∫
p3

EdpE

(2π)4

p2
E

p4
E

= −g2
Y + g2

2

16π2
Λ2, (1.142)

where the factor {(−1) (2)} was explained immediately above (1.141). Then the total

1-loop radiative correction to the φ0
u Higgs mass is

∆m2
total =

g2
Y

64π2
Λ2 +

g2
2

64π2
Λ2 +

g2
Y

32π2
Λ2 +

g2
2

32π2
Λ2

− g2
Y

64π2
Λ2 +

g2
2

64π2
Λ2 − g2

2

64π2
Λ2 − g2

Y

64π2
Λ2

+
g2

Y + g2
2

16π2
Λ2 +

g2
2

8π2
Λ2 − g2

2

32π2
Λ2 − g2

Y + g2
2

64π2
Λ2

− g2
2

8π2
Λ2 − g2

Y + g2
2

16π2
Λ2

= 0, (1.143)

and the quadratic divergence thus cancels when all terms are included.

3. MSSM

The MSSM is an minimal extension of the Standard Model. Here minimal means:

• The only fields are those of the SM and their supersymmetric partners.

• All SU(3)C × SU(2)L × U(1)Y invariant renormalizable interaction terms are

allowed.
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• Two Higgs doublets are required because of the supersymmetry [11].

We saw above that when we have a superpotential we obtain all interactions

required in the model. The superpotential for the MSSM is given by

WMSSM = ūyuQHu − d̄ydQHd − ēyeLHd + µHuHd. (1.144)

Hu, Hd, Q, L, ū, d̄, ē are chiral superfields corresponding to the chiral supermul-

tiplets of the Higgs which couples to up-type fermions, the Higgs which couples to

down-type fermions, the left hand quark doublet, the left hand lepton doublet, the

right hand up-type quark, the right hand down-type quark, and the right hand elec-

tron, respectively. The last term is the supersymmetric version of the Higgs boson

mass, which guarantees that when one of the Higgs fields acquires a V.E.V. the other

does also.
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CHAPTER II

POTENTIAL VIOLATIONS OF LORENTZ INVARIANCE

A. Lorentz Symmetry

1. Lorentz Transformation of the Coordinates

First let us review the basic ideas of Lorentz invariance, which is assumed in all

of standard physics and even in superstring theory. In special relativity, or in a

locally inertial coordinate system, the coordinate xu is transformed under a Lorentz

transformation according to

x′µ = Λ ν
µ xν . (2.1)

The interval

ds = (ηµνxµxν)
1/2 , (2.2)

is required to be invariant under this transformation:

ds′ =
(
ηµνx′µx

′
ν

)1/2

=
(
ηµνΛ ρ

µ Λ σ
ν xρxσ

)1/2

!
= ds, (2.3)

where “
!
=” means “required”, and

ηµνΛ ρ
µ Λ σ

ν = ηρσ, (2.4)

ηµνΛ ρ
µ Λ σ

ν ησκ = ηρσησκ,

=⇒ ΛνρΛνκ = δρ
κ. (2.5)
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2. Lorentz Transformation of a Scalar Field

A Lorentz scalar is invariant:

φ′ (x′) = U (Λ) φ (x) U † (Λ)

= φ
(
Λ−1x

)
. (2.6)

3. Lorentz Transformation of a Vector Field

A vector field Aµ transforms exactly like the coordinates xµ:

A′
µ (x′) = U (Λ) Aµ (x) U † (Λ)

=
(
Λ−1

) ρ

µ
Aρ

(
Λ−1x

)
. (2.7)

4. Lorentz Transformation of a Spinor Field

The mathematical tools which relate the vector index and spinor index are the Pauli

matrices and gamma matrices for two and four component spinors, respectively. Here

we consider only the transformation of two-component spinors, since these provide

the fundamental description of fermions in SUSY, GUTs, and even the SM.

First we need to obtain the generators of Lorentz transformations for spinors.

Since a spinor is transformed into a spinor, a generator is required to have two spinor

indices. Each might be dotted or undotted at this point. (See Appendix A for the

meaning of dotted and undotted indices. A 2-component Weyl spinor with dotted

index transforms under a Lorentz transformation as right-handed, and one with un-

dotted index as left-handed.) If one is dotted and the other undotted, a right-handed

field is transformed into left-handed or vice-versa. When the field is massless, how-

ever, this is not possible, since a Lorentz transformation cannot change the spin in

this case. Therefore, the generator is required to have either two undotted or two
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dotted spinor indices.

We define the transformations of the 2-component spinors by

ψ′α (x′) = U (Λ) ψα (x) U † (Λ)

≈
(

δ β
α +

i

2
ωµν (σµν) β

α

)
ψβ

(
Λ−1x

)
, (2.8)

ψ′†α̇ (x′) = U (Λ) ψ†α̇ (x) U † (Λ)

≈ ψ†
β̇

(
Λ−1x

) (
δβ̇

α̇ −
i

2
ωµν

(
σ†µν

)β̇

α̇

)
, (2.9)

where ωµν is an infinitesimal parameter which is antisymmetric under µ ↔ ν. ωµν is

related to Λµν and ηµν by

Λµν = ηµν
symmetric

+ ωµν
anti-symmetric

. (2.10)

To have a non-vanishing transformation, σµν in (2.9) has to be also antisymmetric.

We now set out to derive this generator σµν .

The Lagrangian density is given by

L = −iψ†α̇ (x) (σ̄ν)α̇β ∂νψα (x) , (2.11)
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and this transforms as

L → −iψ′†α̇ (x′) (σ̄ν)α̇α ∂′νψ
′
α (x′)

= −iψ†
β̇

(
Λ−1x

) (
δβ̇

α̇ −
i

2
ωξκ

(
σ†ξκ

)β̇

α̇

)
(σ̄ν)α̇α

· (Λ−1
)χ

ν
∂χ

(
δ β
α +

i

2
ωξκ

(
σξκ

) β

α

)
ψβ

(
Λ−1x

)

≈ −iψ†
β̇

(
Λ−1x

) (
(σ̄ν)β̇β − i

2
ωξκ

[(
σ†ξκσ̄ν − σ̄νσξκ

)]β̇β
)

· (Λ−1
)χ

ν
∂χψβ

(
Λ−1x

)

!
= −iψ†

β̇

(
Λ−1x

)
(σ̄ν)β̇β ∂νψβ

(
Λ−1x

)
, (2.12)

where the ω2 term is ignored as usual. Then, from this requirement, we get

[
(σ̄ν)β̇β − i

2
ωξκ

[(
σ†ξκσ̄ν − σ̄νσξκ

)]β̇β
] (

Λ−1
)χ

ν
= (σ̄χ)β̇β , (2.13)

→
[
(σ̄ν)β̇β − i

2
ωξκ

[(
σ†ξκσ̄ν − σ̄νσξκ

)]β̇β
]

Λλ
χ

(
Λ−1

)χ

ν
= (σ̄χ)β̇β Λλ

χ

→
[(

σ̄λ
)β̇β − i

2
ωξκ

[(
σ†ξκσ̄λ − σ̄λσξκ

)]β̇β
]

= (σ̄χ)β̇β Ληχηλη.

By using (2.10) on the right hand side, we have

[(
σ̄λ

)β̇β − i

2
ωξκ

[(
σ†ξκσ̄λ − σ̄λσξκ

)]β̇β
]

= (σ̄χ)β̇β (gηχ + ωηχ) ηλη, (2.14)

→ − i

2
ωξκ

[(
σ†ξκσ̄λ − σ̄λσξκ

)]β̇β
= (σ̄χ)β̇β ωηχηλη,

→ − i

2

[(
σ†ξκσ̄λ − σ̄λσξκ

)]
ωξκ = σ̄κηλξωξκ. (2.15)

Recall that σξκ is antisymmetric under ξ ←→ κ, and the spinor indices are
(
σξκ

) β

α
.

Therefore, we expect that
(
σξκ

) β

α
has the form

(
σξκ

) β

α
= A

[(
σξ

)
αα̇

(σ̄κ)α̇β − (σκ)αα̇

(
σ̄ξ

)α̇β
]
,
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where the coefficient A is determined from (2.15) by using (C.20). We then obtain

σξκ =
i

2

[
σξσ̄κ − σκσ̄ξ

]
, (2.16)

σ̄ξκ = σ†ξκ

=
i

2

[
σ̄ξσκ − σ̄κσξ

]
. (2.17)

In summary, the Lorentz transformation of the spinor field is given by

ψ′α (x′) = U (Λ) ψα (x) U † (Λ)

≈
(

δ β
α +

i

2
ωµν (σµν) β

α

)
ψβ

(
Λ−1x

)
, (2.18)

ψ′†α̇ (x′) = U (Λ) ψ†α̇ (x) U † (Λ)

= ψ†
β̇

(
Λ−1x

) (
δβ̇

α̇ −
i

2
ωµν (σ̄µν)β̇

α̇

)
. (2.19)

B. Tests of Lorentz Symmetry

During the past few years there has been increasingly widespread interest in possi-

ble violations of Lorentz invariance [21]-[48]. There are several motivations for this

interest.

1. Theoretical

Every current candidate for a superunified theory contains some potential for Lorentz

violation, and the same is true for more restricted theories which attempt to treat

quantum gravity alone. (By a “superunified theory” we mean one which includes all

known physical phenomena, and which is valid up to the Planck energy.) Theories

with potential for Lorentz violation include superstring/M/brane theories, canonical

and loop quantum gravity, noncommutative spacetime geometry, nontrivial space-
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time topology, discrete spacetime structure at the Planck length, a variable speed

of light or variable physical constants, various other ad hoc theories, including one

that specifically addresses the GZK cutoff [22], and the theory presented in this dis-

sertation. Even in a theory which has Lorentz invariance at the most fundamental

level, this symmetry can be spontaneously broken if some field acquires a vacuum

expectation value which breaks rotational invariance or invariance under a boost. (It

should be mentioned that cosmology already provides a preferred frame of reference

– namely a comoving frame, in which the cosmic background radiation does not have

a dipole anisotropy – but this is not considered to be a breaking of Lorentz symme-

try, since the vacuum is still Lorentz invariant.) A second mechanism for Lorentz

violation is the “quantum foam” of Hawking and Wheeler, originally envisioned in

the context of canonical or path-integral quantization of Einstein gravity, but now

generalized to other theories with quantum gravity. A third possibility is a theory

in which Lorentz invariance is not postulated to be an exact fundamental symmetry,

but instead emerges as a low-energy symmetry, and that is the possibility explored

in this dissertation.

2. Experimental

Both terrestrial [23]-[34] and space-based [35]-[40] experiments have been designed

with exquisite precision which would permit detection of even tiny deviations from

certain aspects of Lorentz invariance. The systems include atoms, charged particles in

traps, masers, cavity-stabilized oscillators, muons, neutrons, kaons, and other neutral

mesons.
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3. Observational

Particles traveling over cosmological distances from bright sources (including pulsars,

supernovae, blazars, and gamma ray bursters) allow long-baseline tests which are

again sensitive to even tiny deviations from particular forms of Lorentz violation [41]-

[46].

Recall that Lorentz invariance in the context of general relativity means local

Lorentz invariance, or an invariance of the action under rotations and boosts involving

locally inertial frames of reference. There is clearly a connection with the equivalence

principle, which can also be tested in, e.g., space-based experiments. There is a close

connection with CPT invariance as well: According to the CPT theorem, Lorentz

invariance implies CPT invariance (with the supplementary assumptions of unitarity

and locality). It follows that CPT violation implies Lorentz violation, although the

reverse is not necessarily true. Finally, there is a connection to the spin-statistics

theorem, which follows from Lorentz invariance and microcausality.

We know that P (in the 1950s) and CP (in the 1960s) have previously been

found not to be inviolate symmetries, for reasons that are now understood in terms

of the standard electroweak theory and the CKM matrix. Perhaps CPT and Lorentz

symmetry are also not inviolate.

The most extensive theoretical program for systematizing potential forms of

Lorentz violation and their experimental signals is that of Kostelecký and cowork-

ers [23],[24],[29]-[38],[40],[46]. Their philosophy is to add small phenomenological

Lorentz-violating terms to the Lagrangian of the Standard Model, and then interact

with a wide variety of experiments that can detect such deviations from exact Lorentz

or CPT invariance. The point of view of this group is rather conservative: The fun-

damental theory (e.g., string theory) is pictured as Lorentz-invariant, with Lorentz



57

or CPT violation arising from some form of symmetry-breaking – for example, with a

vector field or more general tensor field acquiring a vacuum expectation value. Their

work has stimulated a considerable amount of experimental activity, with further

experiments planned for both terrestrial and space-based laboratories.

So far there is no undisputed evidence for Lorentz violation, and the only solid

results from both experiment and observation are strong constraints on particular

ways in which this symmetry might be broken. As an example of an astrophysical

constraint, we mention a recent paper by Stecker and Glashow [43], in which they

conclude “We use the recent reanalysis of multi-TeV [up to 20 TeV] gamma-ray

observations of [the blazar] Mrk 501 to constrain the Lorentz invariance breaking

parameter involving the maximum electron velocity. Our limit is two orders of mag-

nitude better than that obtained from the maximum observed cosmic-ray electron

energy.” Their analysis involves the processes

γ + γinfrared → e+ + e− if ce > cγ (2.20)

which can lead to inconsistency with the observation of 20 TeV photons and

γ → e+ + e− if ce < cγ (2.21)

which can lead to inconsistency with the observation of 50 TeV photons.

Another example of astrophysical constraints is the series of analyses by Jacob-

son et al. [41]-[44]. In Ref. [42], Jacobson, Liberati, Mattingly, and Stecker state

“We strengthen the constraints on possible Lorentz symmetry violation (LV) of order

E/MPlanck for electrons and photons in the framework of effective field theory (EFT).

The new constraints use (i) the absence of vacuum birefringence in the recently ob-

served polarization of MeV emission from a gamma ray burst and (ii) the absence

of vacuum Čerenkov radiation from the synchrotron electrons in the Crab nebula,
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improving the previous bounds by eleven and four orders of magnitude respectively.”

Jacobson, Liberati, and Mattingly [41] have obtained a very strong constraint on

a dispersion relation with a cubic term in the expression for E2:

E2 = p2 + p3/M. (2.22)

However, the constraint is less stringent for what may be the more natural form with

a quartic term:

E2 = p2 + p4/M2. (2.23)

Below we will derive the dispersion relation for a fundamental Lorentz-violating

theory [21, 47, 48] and will find that it is easily consistent with these constraints,

since it has a form quite different from either of those above.

Coleman and Glashow [22] proposed that the limiting velocity of protons, elec-

trons, etc. may be very slightly different from the speed of light. (See also Ref. [44].)

This is an ad hoc proposal, motivated by the apparent absence of a Greisen-Zatsepin-

Kuz’min (GZK) cutoff: Ultrahigh energy cosmic ray protons colliding with the cosmic

microwave background radiation should produce pions,

p + γcmb → p + π0. (2.24)

There should consequently be a cutoff in the spectrum of observed protons at about

50 EeV (or 5× 107 TeV), if they were created in processes at distances of more than

about 100 Mpc. But up to 300 EeV cosmic rays (presumably protons) appear to be

observed, although this is not entirely certain [58], and there are also theoretical ideas

for a closer origin [56].

We conclude by mentioning some reviews of terrestrial and space-based experi-

ments.
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Two reviews of atomic experiments to test both Lorentz and CPT symmetries, by

Bluhm [34], describe the following: (1) Penning trap experiments with electrons and

positrons, and with protons and antiprotons, which look for differences in frequencies

or sidereal time variations; (2) clock comparison experiments, with clock frequencies

typically those of hyperfine or Zeeman transitions; (3) hydrogen and antihydrogen

experiments involving ground-state Zeeman hyperfine transitions (at Harvard) or 1S-

2S transitions (proposed at CERN); (4) a spin-polarized torsion pendulum experiment

(at the University of Washington); (5) muon and muonium experiments.

Two reviews by Russell [38] discuss clock-based experiments to test Lorentz and

CPT invariance in space. Such experiments will probe the effects of variations in

both orientation and velocity. Among the systems are H masers, laser-cooled Cs and

Rb clocks, and superconducting microwave cavity oscillators. A number of specific

space missions have been planned or proposed.

Finally, a review by Kostelecký [46] contains a discussion of experiments involving

neutral meson (e.g. kaon) oscillations, a dual nuclear Zeeman He-Xe maser, and

cosmological birefringence, in addition to the systems mentioned above.

C. Review of Lorentz Violation Effects on Kinematics

We would like to use the cosmological observation results to see the Lorentz symme-

try violation effect in our theory, and we review the GZK cutoff, the vacuum pair

production, and vacuum Cerenkov radiation.

1. GZK Cutoff

Proton with sufficiently high energy will lose energy from inelastic collisions with

cosmic microwave background radiation (CBR) photons. This gives rise to the GZK
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cutoff, and protons with energy E > 5 × 1019 eV should not reach us from further

away than ∼ 50 Mpc (where 1 pc= 1 parsec= 3.26 light years). Ultrahigh energy

cosmic ray protons colliding with the CBR should produce pions:

p + γCBR → p + π0 (2.25)

However, up to 3× 1020 eV cosmic rays appear to be observed experimentally.

The incoming photon has energy ω and momentum (−ω cos θ,−ω sin θ, 0), and

the incoming fermion has mass ma, energy E, and momentum (p, 0, 0). The outgoing

fermion (excited state) has mass m2
b = m2

a + 4m2, energy E + ω, and momentum

(p− ω cos θ,−ω sin θ, 0). Then from kinematics, we obtain

2ωp (1 + cos θ) = 4m2 (2.26)

→ cos θ =
4m2

2ωp
− 1 ≤ 1

which is possible for

p ≥ 4m2

4ω
(GZK cut off) (2.27)

∼ 1× 1020 eV = 100 EeV (2.28)

with a 2.7 K CBR and 4m2 = 2mpmπ + m2
π.

As the density of the CBR is nγ = 550 photons/cm3 and the cross section is

σ = 200 µb, the mean path for interaction is (nγσ)−1 = 9× 1024 cm. Then the rough

distance scale L for loss of energy is

L = (E/4E) (nγσ)−1 (2.29)

where E is the initial energy of the proton, and 4E is the energy loss per collision,
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with 4E/E ≈ 20% [49]. Therefore

L ≈ 5× 9× 1024 cm

= 4.5× 1025 cm

' 5× 107 light years. (2.30)

2. Vacuum Pair Production

The process of vacuum pair production is

γ → e− + e+. (2.31)

When the 4-momenta of the photon, electron, and positron are

(ω, 0, 0, ω) ,
(
E =

√
p2 + m2, cos θ p, 0, sin θ p

)
,

(
E ′ =

√
p′2 + m2, cos θ′p′, 0, sin θ′p′

)
,

respectively, energy and momentum conservation give

ω = E + E ′, (2.32)

ω = sin θ p + sin θ′p′, (2.33)

0 = cos θ p + cos θ′p′. (2.34)

From the 2nd and 3rd equations we get

p′2 = p2 + ω2 − 2 sin θ ωp, (2.35)

and by using this p′2 in the 1st equation, we have

(
ω −

√
p2 + m2

)2

= p2 + ω2 − 2 sin θ ωp + m2, (2.36)
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so by rearranging this equation we obtain

√
p2 + m2

p
= sin θ. (2.37)

This relation can never be satisfied if the electron is massive.

However, when the electron’s energy-momentum dispersion relation is modified

to

E2 = p2 + m2 + anp
n where n > 2, (2.38)

we may be able to find a solution for vacuum pair production. The kinematics give

us
(
ω −

√
p2 + m2 + anpn

)2

= p2 + ω2 − 2 sin θωp + m2 + anp
n, (2.39)

and we obtain √
p2 + m2 + anpn

p
= sin θ < 1. (2.40)

Then when

anp
n < −m2 (2.41)

we have vacuum pair production.

We can also have vacuum pair production if the maximum speed of the electron

ce is different from the speed of light cγ:

ω = E + E ′, (2.42)

ω

cγ

= sin θp + sin θ′p′, (2.43)

0 = cos θp + cos θ′p′. (2.44)

From (2.43) and (2.44), by solving for p′2 and then inserting it into (2.42)), we obtain

2c2
γ

√
c2
ep

2 + c4
em

2 − (
c2
γ − c2

e

)
ω = 2pcγc

2
e sin θ < 2pcγc

2
e (2.45)



63

and at p = 0 there is a solution when

(
c2
γ − c2

e

)
ω > 2c2

γc
2
em. (2.46)

Since the right hand side is positive when cγ > ce, there can be a solution in this case.

When the photon’s energy ω is > 2c2
γc

2
em/

(
c2
γ − c2

e

)
, it decays into electron-positron

pairs.

As photons with energies up to 50 TeV are observed, and the electron mass is

mc2
e = 0.51 MeV, the difference of the maximum speed of the photon and electron

needs to satisfy
c2
γ

c2
γ − c2

e

>
ω

2mc2
e

∼ 5× 107. (2.47)

When δ is defined by ce = cγ (1− |−δ|) with cγ > ce, we obtain

|−δ| . 1× 10−8. (2.48)

3. Vacuum Cerenkov Radiation

The process of vacuum Cerenkov radiation is

χ → χ + γ. (2.49)

where χ is a charged fermion. If the 4-momenta of the incoming χ, the outgoing χ,

and the photon are

(
E =

√
p2 + m2

χ, p, 0, p
)

(
E ′ =

√
p′2 + m2

χ, cos θ′p′, 0, sin θ′p′
)

(ω, cos θω, 0, sin θω)
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respectively, energy and momentum conservation give us

E = ω + E ′, (2.50)

p = sin θω + sin θ′p′, (2.51)

0 = cos θω + cos θ′p′. (2.52)

From the 2nd and 3rd equations it follows that

p′2 = p2 + ω2 − 2 sin θωp,

and by using this p′2 in the 1st equation, we have

(
ω −

√
p2 + m2

χ

)2

= p2 + ω2 − 2 sin θωp + m2
χ.

Rearranging this equation we obtain

√
p2 + m2

χ

p
= sin θ. (2.53)

This relation can never be satisfied if χ is massive. The reason that this result is same

as that for vacuum pair creation is the crossing symmetry.

However, when the electron’s energy-momentum dispersion relation is modified

to

E2 = p2 + m2
χ + anpn where n > 2, (2.54)

we may be able to find a solution for vacuum pair production. The kinematics give

us
(
ω −

√
p2 + m2

χ + anpn
)2

= p2 + ω2 − 2 sin θωp + m2
χ + anp

n,

and we obtain √
p2 + m2

χ + anpn

p
= sin θ ≤ 1. (2.55)
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When

anpn < −m2, (2.56)

we then have vacuum pair production.

We can also have vacuum pair production if the maximum speed of the charged

particle χ, cχ, is different from the speed of the light cγ:

E = ω + E ′, (2.57)

p = sin θ
ω

cγ

+ sin θ′p′, (2.58)

0 = cos θ
ω

cγ

+ cos θ′p′. (2.59)

Then we obtain

2c2
γ

√
c2
χp2 + c4

χm2
χ −

(
c2
γ − c2

χ

)
ω = 2pcγc

2
χ sin θ < 2pcγc

2
χ, (2.60)

and at ω = 0,

p2
(
c2
χ − c2

γ

)
> 2c2

γc
2
χm2

χ. (2.61)

When cχ > cγ and the charged particle energy E =
√

c2
χp2 + c4

χm2
χ is > mχc2

χ

√
c2
χ + c2

γ

c2
χ − c2

γ

,

the charged particle spontaneously emits photons until the energy becomes <

mχc2
χ

√
c2
χ + c2

γ

c2
χ − c2

γ

.

Since electrons with energy up to 100 TeV are experimentally observed, and the

electron mass is mec
2
e = 0.51 MeV, the difference between the maximum speeds of

the photon and electron needs to satisfy

c2
e + c2

γ

c2
e − c2

γ

>

(
E

mec2
e

)2

∼ 4× 1016. (2.62)

When δ is defined by ce = cγ (1 + |δ|), with cχ > cγ, we obtain

|δ| . 10−17. (2.63)
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D. Lorentz Symmetry Violation in Our Model

We start with the Lorentz-violating action of a right-hand field, and obtain the cor-

responding left-hand field by using a well-known procedure. Once we have both the

right and left hand fields, we introduce fermion mass terms in the usual Yukawa form.

Then, by using the Euler-Lagrange equation, we obtain the energy-momentum dis-

persion relations, and we study the kinematics in conjunction with the observational

data.

Our action has a Lorentz-violating term, and we will explicitly show that the term

is invariant under rotations but not under boosts. Finally, since Lorentz violation does

not necessarily mean violation of CPT, we will consider the behavior under CPT, and

will obtain the interesting result that our Lorentz-violating term also violates CPT.

It is, in fact, odd under CPT.

1. Lorentz-violating Lagrangian and Its Kinematics

Now let us turn to our specific Lorentz-violating theory and some of its new predic-

tions. We begin with the action for a single initially massless Weyl fermion field [47],

and with the coupling to gauge fields and variations in eα
µ neglected:

S1 =

∫
d4xL1 (2.64)

L1 =
1

2
e ψ†1

(
1

2M
ηµν∂ν∂µ + ieµ

ασα∂µ

)
ψ1 + h.c. (2.65)

Here M is a fundamental mass which is comparable to the Planck mass, ηµν =

diag(−1, 1, 1, 1) is the Minkowski metric tensor, σk is a Pauli matrix, and σ0 is the

2 × 2 identity matrix. Also, eµ
α is the gravitational vierbein, which determines the
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gravitational metric tensor gµν through the relations

gµν = ηαβeα
µeβ

ν , eµ
αeα

ν = δµ
ν . (2.66)

A factor of e−1/2 has been absorbed in ψ1, where

e = det eα
µ = (− det gµν)

1/2 . (2.67)

Fundamental units are used as always, with ~ = c = 1. Finally, “h.c.” means “Her-

mitian conjugate”, and L1 has been written in its more fundamental and manifestly

Hermitian form. The action (2.65) is invariant under a rotation, but it is not invariant

under a Lorentz boost because of the first term. (Recall that the transformation ma-

trix Λ1/2 is unitary for a rotation and not for a boost [50].) At low energies, however,

this term is negligible and full Lorentz invariance is regained.

As before, we choose the directions of the spacetime coordinate axes to be such

that all the eµ
α are positive. If the term involving M is neglected, L1 has the form

appropriate for a right-handed field. I.e., in order for S1 to be invariant under local

Lorentz transformations at low energy, all the fundamental fermionic fields ψ1 must be

taken to transform as right-handed spinors. This is the reverse of the usual convention

in grand-unified theories, where they are all taken to be left-handed. However, we can

convert ψ1 to a left-handed field through the following well-known procedure [50]-[52],

which is based on the fact that (σ2)
2

= 1, (σ2)
†
= σ2, (σ2)

∗
= −σ2, and

σ2σkσ2 = − (
σk

)∗
. (2.68)

Let

ψL = σ2ψ∗1 or ψ1 =
(
σ2ψL

)∗
(2.69)

and substitute into (2.64), using (in the fourth step below) the fact that Grassmann
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fields like ψL anticommute:

L1 =
1

2
e

[(
σ2ψL

)∗]† ( 1

2M
ηµν∂ν∂µ + ieµ

ασα∂µ

) (
σ2ψL

)∗
+ h.c.

=
1

2
e

[(
1

2M
ηµν∂ν∂µ + ieµ

ασα∂µ

) (
σ2ψL

)∗]† (
σ2ψL

)∗
+ h.c.

=
1

2
e

[(
1

2M
ηµν∂ν∂µ + ieµ

ασα∂µ

)∗ (
σ2ψL

)]T (
σ2ψL

)∗
+ h.c.

= −1

2
e

[(
σ2ψL

)∗]T
[(

1

2M
ηµν∂ν∂µ − ieµ

α (σα)∗ ∂µ

) (
σ2ψL

)]
+ h.c

=
1

2
e ψ†L

(
σ2

)† [(
− 1

2M
ηµν∂ν∂µ + ieµ

α (σα)∗ ∂µ

) (
σ2ψL

)]
+ h.c.

=
1

2
e ψ†L

[(
− 1

2M
ηµν∂ν∂µ + ieµ

α

(
σ2σασ2

)∗
∂µ

)
ψL

]
+ h.c.

=
1

2
e ψ†L

[(
− 1

2M
ηµν∂ν∂µ + ieµ

ασα∂µ

)
ψL

]
+ h.c., (2.70)

where σ0 = σ0 and σk = −σk. Then ψL has the Lagrangian appropriate for a left-

handed field (when the term containing M is neglected), and the definition (2.69)

implies that it transforms as a left-handed field if ψ1 is required to transform as a

right-handed field [50]-[52].

If ψL corresponds to a particle with a Dirac mass m, it is coupled through this

mass to a right-handed field ψR. (The origin of this mass – i.e., the coupling to a

Higgs field which acquires a V.E.V. – is not considered here.) The Lagrangian density

for this pair of fields is then given by

e−1L = ψ†R

(
1

2M
ηµν∂ν∂µ + ieµ

ασα∂µ

)
ψR

+ ψ†L

(
− 1

2M
ηµν∂ν∂µ + ieµ

ασα∂µ

)
ψL

−mψ†RψL −mψ†LψR (2.71)

after an integration by parts to get the more familiar form. The resulting equations
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of motion can be written as

[
1

2M

(− e0
αeα

0 ∂0∂0 + ek
αeα

l ∂l∂k

)
+ ieµ

ασα∂µ

]
ψR −mψL = 0 (2.72)

[
− 1

2M

(− e0
αeα

0 ∂0∂0 + ek
αeα

l ∂l∂k

)
+ ieµ

ασα∂µ

]
ψL −mψR = 0 (2.73)

with k, l = 1, 2, 3. For simplicity, let us assume spatial isotropy and write

ek
α = λδk

α , eα
k = λ−1δα

k = λ−2ek
α (2.74)

e0
α = λ0δ

0
α , eα

0 = λ−1
0 δα

0 = λ−2
0 e0

α. (2.75)

After transforming to a locally inertial frame of reference, in which eµ
α = δµ

α, we have

[
(− β∂0∂0 + α∂k∂k) + i

(
σ0∂0 + σk∂k

)]
ψR −mψL = 0 (2.76)

[− (−β ∂0∂0 + α∂k∂k) + i
(
σ0∂0 − σk∂k

)]
ψL −mψR = 0 (2.77)

where

α =
(
2λ2M

)−1
, β =

(
2λ2

0M
)−1

. (2.78)

At fixed energy E and 3-momentum −→p , these become

−→σ · −→p ψR =
[(

βE2 − αp2
)

+ E
]
ψR −mψL (2.79)

−→σ · −→p ψL =
[(

βE2 − αp2
)− E

]
ψL + mψR (2.80)

where p is the magnitude of −→p , or, since (−→σ · −→p )
2

= p2,

[(
p2 + m2

)− [(
βE2 − αp2

)
+ E

]2
]
ψR

= −2m
(
βE2 − αp2

)
ψL (2.81)

[(
p2 + m2

)− [(
βE2 − αp2

)− E
]2

]
ψL

= 2m
(
βE2 − αp2

)
ψR. (2.82)
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We then obtain

A+ A− = − [
2m

(
βE2 − αp2

)]2
(2.83)

A+ =
(
p2 + m2

)− [(
βE2 − αp2

)
+ E

]2
(2.84)

A− =
(
p2 + m2

)− [(
βE2 − αp2

)− E
]2

(2.85)

and (discarding the unphysical root)

E2 =
(
p2 + m2

)
+

(
βE2 − αp2

) [
2
(
E2 −m2

)1/2 − (
βE2 − αp2

)]
. (2.86)

There are four solutions to this equation:

E2
1 =

1− 2βp + 2αβp2 −
√

1− 4β2m2 − 4βp + 4αβp2

2β2
, (2.87)

E2
2 =

1− 2βp + 2αβp2 +
√

1− 4β2m2 − 4βp + 4αβp2

2β2
, (2.88)

E2
3 =

1 + 2βp + 2αβp2 −
√

1− 4β2m2 + 4βp + 4αβp2

2β2
, (2.89)

E2
4 =

1 + 2βp + 2αβp2 +
√

1− 4β2m2 + 4βp + 4αβp2

2β2
. (2.90)

When p ¿ 1
α
, 1

β
, E2

1 and E2
3 behave like the normal solution E2 ' p2 + m2. Although

we have the exact solutions, it is not easy to use them directly and we will make the

approximation that the energy is large compared to the rest mass energy. If m2 is

totally neglected, for the moment, there are eight solutions

E = ∓ 1

2β
± 1

2β

[
1 + 4β

(
αp2 ± p

)]1/2

= ∓ 1

2β
± 1

2β

[
(1± 2βp)2 + 4βγp2

]1/2
(2.91)

where γ = α− β and the signs are independent.

The various solutions lead to interesting possibilities for new physics which will

be considered in detail elsewhere. For the moment, however, consider only the normal
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branch, for which the first sign is − and the last two signs are both +. The velocity

is then

v = ∂E/∂p (2.92)

=
[
(1 + 2βp)2 + 4βγp2

]−1/2
(1 + 2βp + 2γp)

=

[
1 + 4γ

p + αp2

1 + 4βp + 4βαp2

]1/2

. (2.93)

It follows that

v > 1 if α > β and v < 1 if α < β. (2.94)

As we will find below, the first possibility would imply vacuum Čerenkov radiation,

and the second pair production in vacuum, so the only plausible possibility is

α = β =
1

m̄
which implies that v = 1. (2.95)

(In the present paper we do not try to explain the origin of this condition, but simply

accept it as a phenomenological constraint on a cosmological scale, far from local

gravitational sources.) Then (2.91) becomes

E =
m

2

[
∓1±

(
1± 2

m
p

)]
(2.96)

= p,−p,−m + p,−m− p,m + p, m− p, p,−p

where

m = β−1. (2.97)

All massless particles thus travel at the speed of light c = 1. As usual, the destruction

operators for negative energies are reinterpreted as creation operators for antiparticles

with positive energies [47]. The implications of negative group velocities for particles

and antiparticles will be considered elsewhere, and the existence of very high-energy
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branches in the dispersion relation will be discussed below.

As E2
1 and E2

3 are the dispersion relations which are E2 ' p2+m2 when p ¿ 1
α
, 1

β
,

we work on these two possibilities. For a nonzero mass, but with β = α, (2.87) and

(2.89) gives

E2
1,3 =

1∓ 2αp + 2α2p2 −
√

(1∓ 2αp)2 − 4α2m2

2α2
(2.98)

where the upper sign is for E2
1 and lower sign is for E2

3 . We are primarily interested

in particles with large energy, for which m2 (or more precisely m2/p2) can be treated

as a perturbation:

E2 =
[
E2

]
m2=0

+
[
∂E2/∂m2

]
m2=0

m2. (2.99)

From (2.98) we obtain

∂E2
1,3/∂m2 = − 1

2α2

(−4α2)

2
√

(1∓ 2αp)2 − 4α2m2

=
1√

(1∓ 2αp)2 − 4α2m2

, (2.100)

and [
∂E2

1,3

∂m2

]

m2=0

= [1∓ 2αp]−1 (2.101)

or

E2
1,3 = p2 +

m2

1∓ 2αp
(2.102)

to lowest order in m2/p2, which reproduces the usual result E2 = p2 + m2 as αp → 0.
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The particle velocity is then v = ∂E/∂p = (∂E2/∂p) / (2E). or

v1,3 =

[
1± αm2

p (1∓ 2αp)2

] [
1 +

m2

p2 (1∓ 2αp)

]−1/2

≈ 1− m2

2p2

1∓ 4αp

(1∓ 2αp)2

= 1− m2

2p2

(
1− 1(

(2αp)−1 ∓ 1
)2

)
, (2.103)

so that

v → 1 as p →∞ (2.104)

and

v < 1 for
p < m/4 for E2

1

any p for E2
3

. (2.105)

Furthermore, it is easy to see that particles with p > m/4 for E2
1 will be super-

luminal by only an extremely small amount except when p lies in a narrow range of

energies near p = m/2 (i.e., αp = 1/2): Letting αp = 1/2 + δ in (2.103), we obtain

v − 1 ≈ 1

2

m2

m2

1

δ2
. (2.106)

For example, if m is ∼ 1 GeV and m were ∼ 1010 TeV, then δ ∼ 10−4 would imply

that (v − 1) ∼ 10−18, and the deviation falls like 1/δ2. However, it should also be

emphasized that superluminal velocities of any size are not a violation of causality

in the present theory, because all signals still propagate forward in time in the initial

(preferred) frame of reference.

We have other two energy-momentum dispersion relation E2
2 and E2

4 , and simi-
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larly we expand them with respect to m2.

E2
2,4 =

1∓ 2αp + 2α2p2 +
√

1− 4α2m2 ∓ 4αp + 4α2p2

2α2
(2.107)

→
m→0

(
α−1 ∓ p

)2
. (2.108)

where the upper sign is for E2
2 and lower sign for E2

4 .

∂E2
2,4

∂m2
=

−1√
1− 4α2m2 ∓ 4αp + 4αp2

→
m→0

−1

1∓ 2αp
. (2.109)

Therefore, we then have

E2
2,4 ≈ (m∓ p)2 − m2

1∓ 2p/m
. (2.110)

v2,4 =

[
∓ (m∓ p) +

∓m2

m (1∓ 2p/m)2

] [
(m∓ p)2 − m2

1∓ 2p/m

]−1/2

≈ ∓
[
1 +

(3m∓ 4p)

2m (m∓ p)2 (1∓ 2p/m)2

]
, (2.111)

so

v2,4 → ∓1 as p →∞ (2.112)

and

v2,4 → ∓
(

1 +
3

2

m2

m2

)
≡ v0 as p → 0. (2.113)

The particles with E2
4 are then slightly superluminal. For example, if m is ∼ 1 GeV

and m were∼ 1010 TeV, then v0−1 would be∼ 10−26. Again, however, a superluminal

velocity of any size in the present theory does not imply a violation of causality.

Now let us turn to the GZK cutoff, [22],[53]-[58] which results from collision of a

charged fermion with a blackbody photon. The incoming photon has energy ω and

momentum (−ω cos θ,−ω sin θ, 0) in units with ~ = c = 1. The incoming fermion has

mass ma, energy E, and momentum (p, 0, 0). The outgoing fermion has mass mb,
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energy E + ω, and momentum (p − ω cos θ,−ω sin θ, 0). If ω is small (as it is for a

blackbody photon), it is valid to use

∆E =
∂E

∂px

∆px +
∂E

∂py

∆py +
∂E

∂m2
∆m2 (2.114)

with ∂E/∂pk = v pk/p and v = ∂E/∂p, so that

1 + v cos θ =
∂E

∂m2

∆m2

ω
(2.115)

and the threshold is for a head-on collision. Consider the normal branch of the

dispersion relation, described by (2.101), (2.102), and (2.103). With ∂E/∂m2 =

∂E2/∂m2/ (2E), (2.115) becomes

2 (1 + v cos θ) (1∓ 2αp) p = ∆m2/ω (2.116)

where m2 has been neglected in comparison to p2. This quadratic equation in p has

a solution only if

2 (1 + v cos θ) > 8α ∆m2/ω for E2
1

2 (1 + v cos θ) > −8α ∆m2/ω for E2
3

, (2.117)

or

m > 8 (∆m2/4ω) for E2
1

any value of m̄ for E2
3

, (2.118)

where again α−1 = m. The E3 branch has a GZK cutoff at

pGZK =
[
−1 +

√
1 + 8α∆m2/ (4ω)

]
/4α →

α→0
∆m2/ (4ω) .

Therefore, the E3 branch is a modified version of the usual physical branch, but the

E1 branch can be interpreted as a totally new physical branch, because of its stronger

Lorentz violation.

If m is lower than eight times the standard GZK cutoff energy, therefore, the
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present theory implies that the GZK cutoff is eliminated for one of the physical

branches (the E1 branch). The reason for this is that the (1− 2p/m) factor in (2.102)

and (2.116) tends to push the cutoff up to higher energies even if m is large, and

completely eliminates it if m falls below 2 ∆m2/ω.

Finally, let us return to the standard astrophysical threat to a Lorentz-violating

theory, that it may lead to disagreement with the observations of high-energy matter

particles or photons, including prediction of new processes in the vacuum which are

not observed. An example is vacuum Čerenkov radiation. Conservation of energy

and momentum implies that

−ω = ∆E =
∂E

∂px

∆px +
∂E

∂py

∆py =
∂E

∂p
(−ω cos θ)

so this process can occur if

v = 1/ cos θ ≥ 1. (2.119)

If we were to have β < α, the particle velocity at high momentum would be greater

than the velocity of light, and there would be a radiation of photons in vacuum which

is in conflict with observation [22].

Next consider the process photon → e+e−, which will occur if

2E (p) = ω = 2p cos θ. (2.120)

The normal branch for E (p) corresponds to the choice of signs −, +, + in (2.91). For

20 or 50 TeV photons, it is reasonable to assume αp, βp ¿ 1, and keep only the terms

of first and second order in α and β. Then (2.91) gives E1,3 (p) ≈ p∓ γp2. When the

mass term in E (p)2 is also treated only to lowest order in α and β, it is simply m2.

(E.g., see (2.102).) For a massive particle, therefore, E (p) becomes

E1,3 (p) ≈
[(

p∓ γp2
)2

+ m2
]1/2

≈ p∓ γp2 + m2/2p
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and the condition for vacuum pair production is

1∓ γp + m2/2p2 = cos θ. (2.121)

This will have a solution if

p3 > m2/2|γ| when γ > 0 for E1 and γ < 0 for E3. (2.122)

Since observations indicate that 20 TeV photons do not decay in vacuum, |γ|−1 must

lie above the Planck energy.

If β = α, or γ = 0, the unphysical processes considered above do not occur. More

broadly, since many features of Lorentz invariance are retained in the present theory

(including rotational invariance and the same velocity c for all massless particles) it

appears that the theory is consistent with experiment and observation. The theory is

also fundamental, rather than ad hoc, and it leads to various new predictions. Here

we have emphasized one feature: the behavior of fermions at extremely high energy,

and the possible implications for the GZK cutoff.

2. Lorentz Symmetry Violation Term

Here we study in more detail the Lorentz-violating term

Lviolation = ψ†L

(
− 1

2M
ηµν∂ν∂µ

)
ψL.

To use (2.18) and (2.19), we write the spinor indices explicitly as

Lviolation = ψ†Lα̇

(
− 1

2M
σ0α̇αηµν∂ν∂µ

)
ψLα. (2.123)



78

Then under a Lorentz transformation,

Lviolation → ψ′†Lα̇ (x′)
(
− 1

2M
σ̄0α̇αηµν∂′ν∂

′
µ

)
ψ′Lα (x′)

=

(
− 1

2M

)
ψ†

β̇

(
Λ−1x

) (
δβ̇

α̇ −
i

2
ωµν (σ̄µν)β̇

α̇

)
σ0α̇α

· ηµν
(
Λ−1

)ξ

ν
∂ξ

(
Λ−1

)κ

µ
∂κ

(
δ β
α +

i

2
ωµν (σµν) β

α

)
ψβ

(
Λ−1x

)

=

(
− 1

2M

)
ψ†

β̇

(
Λ−1x

) [
σ̄0β̇β − i

2
ωµν

(
σ̄µν σ̄0 − σ̄0σµν

)β̇β
]

ηκξ∂ξ∂κψβ

(
Λ−1x

)
,

(2.124)

where we have used (2.4). Therefore, if the second term in [· · · ] vanishes, the action

is invariant.

a. Rotation

When the transformation is a rotation, we can take µ, ν → i.j, where i and j are

space coordinate indices. Then the second term is

ωµν

(
σ̄µνσ0 − σ0σµν

) → ωij

(
σ̄ijσ̄0 − σ̄0σij

)

= ωij
i

2

[
σ̄iσj − σ̄jσi

]
σ̄0 − ωij

i

2
σ̄0

[
σiσ̄j − σjσ̄i

]

= iωij

[−σiσj + σiσj
]

= 0. (2.125)

Therefore, the Lorentz-symmetry violating term is invariant under rotations.
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b. Boost

When the transformation is a boost, we can take µ → 0 and ν → i. Then the second

term is

ωµν

(
σ̄µνσ0 − σ0σµν

) → ω0i

(
σ̄0iσ̄0 − σ̄0σ0i

)

= ω0i
i

2

[
σ̄0σi − σ̄iσ0

]
σ̄0 − ωij

i

2
σ̄0

[
σ0σ̄i − σiσ̄0

]

= 2iω0iσ
i

6= 0. (2.126)

Therefore, the Lorentz-violating term is not invariant under a boost.

3. CPT Violation in Our Model

We saw that Lorentz symmetry is broken because of non-invariance under a boost

(although there is invariance under a rotation). The Lorentz-symmetry violating term

is

ψ†R
1

2M
ηµν∂ν∂µψR − ψ†L

1

2M
ηµν∂ν∂µψL, (2.127)

where each term is independently Lorentz-violating. Even if Lorentz symmetry is

broken, this does not mean that CPT is also violated. Therefore, we now consider

whether our Lorentz-violating terms are CPT conserving.

It is convenient to momentarily change from 2 component notation to 4 compo-

nent notation, with the Lorentz-violating terms rewritten as

ψ†R∂µ∂µ12×2ψR − ψ†L∂µ∂µ12×2ψL =

(
ψ†R ψ†L

)
∂µ∂µ




12×2 0

0 −12×2







ψR

ψL




=

(
ψ†R ψ†L

)
gµν∂µ∂νγ

5




ψR

ψL


 . (2.128)
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We will study the behavior of this term under parity, time reversal, and charge con-

jugation operations. We follow Ref. [59] in treating P, T, C for a 4 component

spinor.

a. Parity

Parity operation for a 4 component spinor is given by

PΨ (t, ~x) P = γ0Ψ (t,−~x) , (2.129)

so

PΨ† (t, ~x) gµν∂ν∂µγ
5Ψ (t, ~x) P = Ψ† (t,−~x) γ0 (−1)ν (−1)µ gµν∂ν∂µγ

5γ0Ψ (t,−~x)

= −Ψ† (t,−~x) (−1)ν (−1)µ gµν∂ν∂µγ
5Ψ (t,−~x)

= −Ψ† (t,−~x) gµν∂ν∂µγ
5Ψ (t,−~x) , (2.130)

where (−1)µ ≡ 1 for µ = 0 and (−1)µ ≡ −1 for µ = 1, 2, 3. This term is odd under

P .

b. Time Reversal

Time reversal for a 4 component spinor is given by

TΨ (t, ~x) T =
(
γ1γ3

)
Ψ (−t, ~x) , (2.131)

so

TΨ† (t, ~x) ∂ν∂µγ
5Ψ (t, ~x) T = Ψ† (−t, ~x)

(
γ3γ1

)
(− (−1)ν) (− (−1)µ)

· gµν∂ν∂µγ
5
(
γ1γ3

)
Ψ (−t, ~x)

= Ψ† (−t, ~x) gµν∂ν∂µγ
5Ψ (−t, ~x) , (2.132)
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and it is even under T .

c. Charge Conjugation

Charge conjugation for a 4 component spinor is given by

CΨ (t, ~x) C = −iγ2Ψ∗ (t, ~x) , (2.133)

so

CΨ† (t, ~x) ∂ν∂µγ
5Ψ (t, ~x) C = ΨT (t, ~x) γ2igµν∂ν∂µγ

5 (−i) γ2Ψ∗ (t, ~x)

= −ΨT (t, ~x) gµν∂ν∂µγ
5Ψ∗ (t, ~x)

= gµν∂ν∂µΨ† (t, ~x) γ5Ψ (t, ~x)

→ Ψ† (t, ~x) gµν∂ν∂µγ
5Ψ (t, ~x) , (2.134)

and it is even under C.

Therefore, CPT yields for this term

(−1) · (+1) · (+1) = −1, (2.135)

and it turns out that the Lorentz-violating term is CPT odd.

The behavior of this term under P, T, C, and CPT is summarized in Table IX.
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Table IX. P, T, C, and CPT of our Lorentz-symmetry violating term.

Ψ† (t, ~x) gµν∂ν∂µγ
5Ψ (t, ~x)

P −1

T +1

C +1

CPT −1

.
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CHAPTER III

ORIGIN OF GRAVITATIONAL AND GAUGE INTERACTIONS

A. Introduction

In this chapter, we derive both gauge and gravitational interactions from the following

fundamental action, which is itself derived from a microscopic statistical picture in

Chapters IV and V (see (4.117)):

S =

∫
dDx

[
1

2m
hMN∂MΨ†∂NΨ− µΨ†Ψ +

1

2
b
(
Ψ†Ψ

)2
]

(3.1)

with

Ψ =




z1

z2

...

zN




, z =




zb

zf


 . (3.2)

Here hMN = δMN is the initial metric tensor in a flat D-dimensional Euclidean space,

as discussed in Chapter V. This action has a “primitive supersymmetry”, in the sense

that the initial bosonic fields zb and fermionic fields zf are treated in exactly the same

way. The only difference is that the zb are ordinary complex numbers whereas the

zf are anticommuting Grassmann numbers. (Here, as in Ref. [21], “supersymmetry”

is taken to have its general definition [60],[61]: An action is supersymmetric if it is

invariant under a transformation which converts fermions to bosons and vice-versa.)

We will argue that standard physics can emerge from (3.1) at energies that are far

below the Planck scale, provided that specific kinds of topological defects are included

in the theory. For example, one can obtain an SO(10) grand-unified theory, containing

both the Standard Model and a natural mechanism for small neutrino masses [8],

[52],[62]-[71].
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B. Canonical Quantization in Lorentzian Spacetime

Functional-integral quantization can ordinarily be replaced by canonical quantization,

or vice-versa [72], through a procedure that is similar to that for a single particle.

In the present theory, whether this can be done consistently is a nontrivial issue,

because the resulting field theory has some very unconventional features. In the

present section it will simply be assumed that one can define quantized fields Ψ̂ etc.

in the usual way [72]-[80].

After a change from functional-integral to canonical quantization, and an inverse

Wick rotation from Euclidean to Lorentzian time (with SL = iS), the action (3.1)

becomes

ŜL = −
∫

dDx

[
1

2m
ηMN∂MΨ̂†

L∂NΨ̂L − µΨ̂†
LΨ̂L +

1

2
b
(
Ψ̂†

LΨ̂L

)2
]

(3.3)

where ηMN = diag(−1, 1, ..., 1). (We intend to consider the philosophical problem of

transformation from Euclidean to Lorentzian time elsewhere. Here we adopt the point

of view that one is allowed simply to perform mathematical transformations starting

with an abstract initial theory, as long as the transformations are mathematically

consistent and the final version of the theory correctly describes our observed physical

reality. It is important to recognize, however, that all Euclidean times are effectively

mapped into each single Lorentzian time via an inverse Wick rotation.) The notation

of (3.3) is rather awkward, however, so for the remainder of the paper we will let

ŜL → S, Ψ̂L → Ψ (3.4)

with the understanding that these are now quantized operators in Lorentzian space-

time. It is also understood that raising and lowering of indices is now done with the
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Minkowski metric tensor:

AµBµ = ηµνAµBν or in D dimensions AMBM = ηMNAMBN . (3.5)

Later in this section we will introduce the metric tensor associated with gravity and

general coordinate transformations. To avoid confusion, this metric tensor gµν will

always be shown explicitly, and simple raising and lowering of indices will always have

the interpretation (3.5).

With the above change of notation, and after an integration by parts, (3.3)

becomes

S = −
∫

dDx

[
− 1

2m
Ψ†∂M∂MΨ− µΨ†Ψ +

1

2
b
(
Ψ†Ψ

)2
]

. (3.6)

The resulting equation of motion is

[
− 1

2m
∂M∂M − µ + Vvac + b∆

(
Ψ†Ψ

)]
Ψ = 0 , Vvac = b

〈
Ψ†Ψ

〉
vac

(3.7)

where 〈· · ·〉vac represents a vacuum expectation value, and

Ψ†Ψ =
〈
Ψ†Ψ

〉
vac

+ ∆
(
Ψ†Ψ

)
. (3.8)

For the remainder of this section, we will consider either the vacuum or a noninter-

acting free field in the vacuum. We then have

(
− 1

2m
∂M∂M − µ + Vvac

)
Ψb = 0 ,

(
− 1

2m
∂M∂M − µ + Vvac

)
Ψf = 0. (3.9)

It will be assumed that the physical vacuum contains a condensate whose order

parameter

Ψcond = 〈Ψb〉vac (3.10)
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has the form

Ψcond = U n
1/2
condη0 (3.11)

U †U = η†0η0 = 1. (3.12)

(As discussed below Ψcond is dominantly due to a GUT field that condenses in the

very early universe. In the present theory, it is not static, but instead exhibits rota-

tions in space and time that are described by U . Other vacuum fields and physical

fields are viewed as “moving with the condensate”, in essentially the same way that

particles in an ordinary superfluid flow together. In the analogy of a superfluid, the

order parameter rotates in the complex plane, and this rotation gives the superfluid

velocity.) It will also be assumed that the order parameter can be written in the form

Ψcond = Ψc−ext (xµ) Ψc−int (xm, xµ) (3.13)

Ψc−ext (xµ) = Uext (xµ) n
1/2
ext (xµ) ηext (3.14)

Ψc−int (xm, xµ) = Uint (xm, xµ) n
1/2
int ηint (3.15)

where ηext and ηint are constant vectors. Let us define external and internal “super-

fluid velocities” by

mvM = −iU−1∂MU (3.16)

or

mvµ = −iU−1
ext∂µUext − iU−1

int∂µUint (3.17)

mvm = −iU−1
int∂mUint. (3.18)
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The fact that U is unitary implies that ∂MU †U = −U †∂MU with U † = U−1, or

mvM = i∂MU †U (3.19)

so that

v†M = vM . (3.20)

Here we will initially consider the case that

∂µUint = 0 (3.21)

in which case there are separate equations of motion for external and internal space-

time: (
− 1

2m
∂µ∂µ − µext

)
Ψc−ext = 0 (3.22)

(
− 1

2m
∂m∂m − µint + Vvac

)
Ψc−int = 0 (3.23)

with µint = µ − µext. The quantities Vvac, µint, and Ψint are allowed to have a slow

parametric dependence on xµ, as long as ∂µ∂µΨint is negligible.

When (3.14), (3.17), and (3.21) are used in (3.22), we obtain

η†extn
1/2
ext [

(
1

2
mvµvµ − 1

2m
∂µ∂µ − µext

)
− i

(
1

2
∂µvµ + vµ∂µ

)
n

1/2
extηext] = 0,

(3.24)

and its Hermitian conjugate

η†extn
1/2
ext [

(
1

2
mvµvµ − 1

2m
∂µ∂µ − µext

)
+ i

(
1

2
∂µvµ + vµ∂µ

)
n

1/2
extηext] = 0.

(3.25)
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Subtraction gives the equation of continuity

∂µj
µ
ext = 0 , jµ

ext = η†ext nextv
µηext (3.26)

and addition gives the Bernoulli equation of the condensate

1

2
mv̄2

ext + Pext = µext (3.27)

where

v̄2
ext = η†ext v

µvµ ηext (3.28)

Pext = − 1

2m
n
−1/2
ext ∂µ∂µn

1/2
ext . (3.29)

In the present theory, the order parameter in external spacetime, Ψext, has the

symmetry group U(1)× SU(2). The “superfluid velocity” in external spacetime, vµ,

can then be written in terms of the identity matrix σ0 and Pauli matrices σa :

vµ = vµ
ασα , µ, α = 0, 1, 2, 3. (3.30)

It is assumed that the basic texture of the order parameter is such that

v0
k = va

0 = 0 , k, a = 1, 2, 3 (3.31)

to a good approximation, yielding the simplification

1

2
mvαµvα

µ + Pext = µext. (3.32)

Letting Ψa represent either the general bosonic field Ψb or the general fermionic

field Ψf , which interacts only with the condensate and other vacuum fields, (3.6) gives

Sa = −
∫

dDx Ψ†
a

(
− 1

2m
∂M∂M − µ + Vvac

)
Ψa. (3.33)

Since Ψa satisfies a linear equation involving a Hermitian operator, it can be written
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in the form

Ψa (xµ, xm) = ψ̃r
a (xµ) ψint

r (xm) (3.34)

with a summation implied over repeated indices, as usual. The ψ̃r
a are field operators

and the ψint
r are a complete set of basis functions in the internal space, which are

required to be orthonormal,

∫
dD−4xψint†

r (xm) ψint
r′ (xm) = δrr′ , (3.35)

and to satisfy the internal equation of motion

(
− 1

2m
∂m∂m − µint + Vvac

)
ψint

r (xm) = εrψ
int
r (xm) . (3.36)

(The ψint
r are allowed to have a slow parametric dependence on xµ, as long as ∂µ∂µψ

int
r

is negligible.) As usual, only the zero modes with εr = 0 will be kept, since the higher

energies involve nodes in the internal space and are comparable to mP . When (3.34)-

(3.36) are used in (3.33), the result is

Sa = −
∫

d4x ψ̃†a

(
− 1

2m
∂µ∂µ − µext

)
ψ̃a (3.37)

where ψ̃a is the vector with components ψ̃r
a.

C. Origin of Gravitational Interaction

Let ψ̃a be rewritten in the form

ψ̃a (xµ) = Uext (xµ) ψa (xµ) . (3.38)

(The 2×2 matrix Uext multiplies each of the 2-component operators ψ̃r
a.) Here ψa has

a simple interpretation: It is the field seen by an observer in the frame of reference

that is moving with the condensate of the external space. In the present theory, the
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GUT condensate Ψcond forms in the very early universe, and the other bosonic and

fermionic fields Ψa are subsequently born into it. It is therefore natural to view them

from the perspective of the condensate.

Equation (3.38) is, in fact, exactly analogous to rewriting the wavefunction of a

particle in an ordinary superfluid moving with velocity vs: ψ′p (x) = exp (ivsx) ψp (x) .

Here ψp and ψ′p are the wavefunctions before and after a Galilean boost to the super-

fluid’s frame of reference.

When (3.38) is substituted into (3.37), the result is

Sa = −
∫

d4x ψ†a

[
(
1

2
mvµvµ − 1

2m
∂µ∂µ)

− µext − i

(
1

2
∂µvµ + vµ∂µ

)
ψa

]
. (3.39)

If ns and vµ are slowly varying, so that Pext and ∂µvµ can be neglected, (3.32) yields

the simplification

Sa =

∫
d4x ψ†a

(
1

2m
∂µ∂µ + ivµ

ασα∂µ

)
ψa. (3.40)

In the present theory, the gravitational vierbein is interpreted as the “superfluid

velocity” associated with the GUT condensate Ψcond:

eµ
α = vµ

α. (3.41)

The form of the action of the bosonic fields and the fermionic fields are same. When

pµ ¿ m̄, the first term of the action is negligible and we obtain

Sa →
∫

d4x ψ†a (ieµ
ασα∂µ) ψa. (3.42)

Then at low energy, we obtain the standard spin 1/2 fermionic action which interacts

with the gravitational field eµ
α. On the other hand, we also initially obtain spin 1/2
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bosons which will be considered below (and later transformed to scalar bosons and

auxiliary fields).

D. Origin of Gauge Interaction

Let us now relax assumption (3.21) and allow Uint to vary with the external coordi-

nates xµ. It is convenient to write

Ψc−int (xm) = Ũint (xµ, xm) Ψ̄c−int (xm)

= Ũint (xµ, xm) Ūint (xm) n
1/2
int (xm) ηint (3.43)

where nint (xm) = Ψ̄†
c−int (xm) Ψ̄c−int (xm) and Ψ̄int still satisfies the internal equation

of motion (
− 1

2m
∂m∂m − µint + Vvac

)
Ψ̄int (xm) = 0. (3.44)

This is a nonlinear equation because Vvac is largely determined by nint.

The internal basis functions satisfy (3.36) with εr = 0:

(
− 1

2m
∂m∂m − µint + Vvac

)
ψint

r (xm) = 0. (3.45)

This is a linear equation because Vvac (xm) is now regarded as a known function.

If the vacuum of the internal space had a trivial topology, the solutions to (3.44)

and (3.45) would be trivial, and the resulting universe would presumably not sup-

port nontrivial structures such as intelligent life. The full path integral involving

(1.1) contains all configurations of the fields, however, including those with nontriv-

ial topologies. In the present theory, the “geography” of the universe inhabited by

human beings involves an internal instanton in

d = D − 4 (3.46)
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dimensions which is analogous to a U(1) vortex in 2 dimensions or an SU(2) instan-

ton in 4 Euclidean dimensions. The standard features of four-dimensional physics

– including gauge symmetries and chiral fermions – arise from the presence of this

instanton.

In the following, it is not necessary to have a detailed knowledge of the internal

instanton. The only property required is a d-dimensional spherical symmetry for the

internal condensate, and, as a result, for the functions ψ̃int
r defined by

ψint
r = Ūintψ̃

int
r . (3.47)

To be specific, it is required that

Ki ψ̃int
r = 0 (3.48)

where

Ki = Kn
i ∂n (3.49)

is a Killing vector associated with the spherical symmetry of the internal metric tensor

gmn defined below. When Ki corresponds to the generators of group SO (N), i and

n are i = 1, · · · , N (N − 1) /2 and n = 1, · · · , N . At a given point, the derivatives of

(3.49) involve only the (d− 1) angular coordinates, and not the radial coordinate r,

so (3.48) states that nint and the ψ̃int
r are functions only of r.

The vierbein eµ
α of external spacetime was defined in (3.41). It is convenient

to define the remaining components of the vielbein in a slightly different way, by

representing mvM in terms of a set of matrices σA,

vM = vMAσA = vMασα + vMcσ
c, (3.50)
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and letting

eMc = −vMc , M = 0, 1, ..., D − 1 , c ≥ 4. (3.51)

(The σα are associated with Uext, and the σc with Uint. Since (3.18) implies that

vmα = 0, all the nonzero eMA have now been specified.) When (3.21) holds, the only

nonzero components of the metric tensor are

gµν = ηαβeµ
αeν

β. (3.52)

and

gmn = emcenc (3.53)

which are respectively associated with external spacetime and the internal space.

More generally, however, mvµ contains a contribution

mvµcσ
c = −iŨ−1

int (xµ, xm) ∂µŨint (xµ, xm) (3.54)

so that eµc is nonzero and the metric tensor has off-diagonal components

gµm = eµcemc. (3.55)

In the present theory, just as in classic Kaluza-Klein theories, it is appropriate to

write

eµc = Ai
µK

n
i vnc , gµm = Ai

µK
n
i gmn (3.56)

or, for later convenience,

mvµcσ
c = −Ai

µσi (3.57)

σi = mKn
i vncσ

c. (3.58)

For simplicity of notation, let

〈r|Q|s〉 =

∫
ddxψint†

r Qψint
s with 〈r|s〉 = δrs (3.59)
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for any operator Q, so that (3.47)-(3.49) and (3.18) give

〈r| (−iKi) |s〉 = 〈r| (−iKn
i ) (imvn) |s〉 = 〈r|σi|s〉 . (3.60)

With the definition

trs
i = 〈r| (−iKi) |s〉 (3.61)

we then have

〈r|σi|s〉 = trs
i . (3.62)

The Killing vectors have an algebra

KiKj −KjKi = −ck
ijKk (3.63)

or

(−iKi) (−iKj)− (−iKj) (−iKi) = ick
ij (−iKk) (3.64)

so the same is true of the matrices trs
i :

titj − tjti = ick
ijtk. (3.65)

With the more general version of (3.34) and (3.38),

Ψa (xµ, xm) = Uext (xµ) Ũint (xµ, xm) ψr
a (xµ) ψint

r (xm) , (3.66)

we have

∂µΨa = Uext (xµ) Ũint (xµ, xm) (∂µ + imvµασα + imvµcσ
c) ψr

aψ
int
r (3.67)
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and

∫
ddx Ψ†

a ∂µ∂µ Ψa

=

∫
ddxψint†

r ψr†
a ηµν (∂µ + imvµασα + imvµcσ

c)
(
∂ν + imvνβσβ + imvνdσ

d
)
ψs

aψ
int
s

= ψr†
a ηµν〈r| (∂µ + imvµασα + imvµcσ

c)
∑

t

|t〉〈t| (
∂ν + imvνβσβ + imvνdσ

d
) |s〉ψs

a

= ψr†
a ηµν〈r| (∂µ + imvµασα + imvµcσ

c)
∑

t

|t〉〈t| (
∂ν + imvνβσβ + imvνdσ

d
) |s〉ψs

a

= ψr†
a ηµν

[
δrt (∂µ + imvµασα)− iAi

µt
rt
i

] [
δts

(
∂ν + imvνβσβ

)− iAj
νt

ts
j

]
ψs

a

= ψ†a ηµν
[(

∂µ − iAi
µti

)
+ imvµασα

] [(
∂ν − iAj

νtj
)

+ imvνβσβ
]

ψa (3.68)

where (3.35), (3.31), and (3.62) have been used. The action (3.33) then becomes

Sa =

∫
d4x ψa

†(
1

2m
DµDµ +

1

2
ivµ

ασαDµ

+
1

2
Dµiv

µ
ασα − 1

2
mvαµvα

µ + µext)ψa (3.69)

after (3.36) is used, where

Dµ = ∂µ − iAi
µti. (3.70)

With the approximations above (3.40), (3.32) and (3.41) imply that

Sa =

∫
d4x ψa

†
(

1

2m
DµDµ + ieµ

ασαDµ

)
ψa. (3.71)

This is in fact the generalization of (3.40) when the “internal order parameter” is

permitted to vary as a function of the external coordinates xµ.

As in Ref. [21], let us postulate a cosmological model in which

eµ
α = λδµ

α ≡ ẽµ
α. (3.72)
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In this case (3.44) can be rewritten as

Sa =

∫
d4x g̃ ψ̄a

† (m̄−1g̃µνDµDν + ieµ
ασαDµ

)
ψ̄a (3.73)

where

g̃µν ≡ ηαβ ẽµ
αẽν

β , m̄ = λ2m (3.74)

g̃ = (− det g̃µν)
1/2 = λ−4 , ψ̄a = λ2ψa. (3.75)

(The tilde is a reminder that the above form is not general, and that g̃µν is not

a dynamical quantity.) In a locally inertial coordinate system with eµ
α = δµ

α , this

becomes

Sa =

∫
d4x ψa

† ((2m̄)−1 ηµνDµDν + iσµDµ

)
ψa (3.76)

where the bar has been removed from ψa for simplicity, so the fermionic and bosonic

actions are respectively

Sf =

∫
d4x ψf

† ((2m̄)−1 ηµνDµDν + iσµDµ

)
ψf (3.77)

and

Sb =

∫
d4xφb

† (ηµνDµDν + 2im̄σµDµ) φb (3.78)

where now

φb = ψb/ (2m̄)1/2 . (3.79)

Again, one regains the usual bosonic action excluding the gravitational interaction at

high energy,

Sb →
∫

d4x φ†bη
µνDµDνφb for pµ À m̄, (3.80)

and the usual fermionic action including the gravitational interaction at low energy,

Sf →
∫

d4x ψ†f iσµ Dµψf for pµ ¿ m̄, (3.81)
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where the expressions now include gauge couplings and are written in a locally inertial

coordinate system. In the chapter on the supersymmetrization of our theory, by using

a new method, we will recover the usual Lorentz symmetry and the usual gravitational

interaction of the bosonic fields at the low energy.



98

CHAPTER IV

SUPERSYMMETRY OF OUR THEORY

A. Supersymmetric Functional Integration and Supersymmetry Algebra

1. Functional Integral Invariance

Invariance of the functional integral under a supersymmetric transformation requires

that both the action and the functional integral volume element, or measure, are left

invariant. When there is no auxiliary field the action is given by

S =

∫
d4x

(
φ∗∂µ∂µφ + iψ†σ̄µ∂µψ

)
, (4.1)

and invariance of the action requires

δεS =

∫
d4x

(
δεφ

∗∂µ∂µφ + φ∗∂µ∂µδεφ + iδεψ
†σ̄µ∂µψ + iψ†σ̄µ∂µδεψ

)

=

∫
d4x(ψ†α̇f † (ε)α̇ ∂µ∂µφ + φ∗∂µ∂µ (f (ε)α ψα)

+ iφ∗g† (ε)α̇ σ̄µα̇α∂µψα + iψ†α̇σ̄µα̇αg (ε)α ∂µφ)

=

∫
d4x[ψ†α̇

(
f † (ε)α̇ ∂µ + iσ̄µα̇αg (ε)α

)
∂µφ

+ φ∗
(
f (ε)α ∂µ + ig† (ε)α̇ σ̄µα̇α

)
∂µψα]

≡ 0, (4.2)

where the surface terms are assumed to vanish and we have also assumed

δεφ = f (ε)α ψα, δεφ
∗ = ψ†α̇f † (ε)α̇ , (4.3)

δεψα = g (ε)α φ, δεψ
†
α̇ = g† (ε)α̇ φ∗. (4.4)
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The new fields φ′ and ψ′α are written as




φ′

ψ′α


 =




1 f (ε)α

g (ε)α 1







φ

ψα


 = M̃




φ

ψα


 , (4.5)

where M̃ is a supermatrix given by

M̃ =




1 f (ε)α

g (ε)α 1


 ,

and f (ε)α and g (ε)α are Grassmann spinor functions. From (4.2), we obtain

f † (ε)α̇ ∂µ + iσ̄µα̇αg (ε)α = 0, (4.6)

f (ε)α ∂µ + ig† (ε)α̇ σ̄µα̇α = 0. (4.7)

Energy-momentum fixed-k functional-integral volume-element invariance requires

that

dφ (k) dψ (k) = dφ′ (k) dψ′ (k) sdet
(
M̃

)
= dφ′ (k) dψ′ (k) (4.8)

and

sdet




1 f (ε)α

g (ε)α 1


 = det (1− f (ε)α g (ε)α) (det (1))−1 ≡ 1, (4.9)

where we have used sdet




A C

D B


 =det(A− CB−1D) (det (B))−1. Then we obtain

f (ε)α g (ε)α = 0. (4.10)

The requirement of the invariance of both the action and the functional integral

volume element cannot be simultaneously satisfied unless

f (ε)α = g (ε)α = 0, (4.11)
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and we could not have supersymmetry. We therefore need to introduce a bosonic

auxiliary field F , with the action given by

S =

∫
d4x

(
φ∗∂µ∂µφ + iψ†σ̄µ∂µψ + F ∗F

)
. (4.12)

The supersymmetry transformation is then

δεφ = f (ε)α ψα, δεφ
∗ = ψ†α̇f † (ε)α̇ (4.13)

δεψα = g (ε)α φ + h (ε)α F, δεψ
†
α̇ = g† (ε)α̇ φ∗ + h† (ε)α̇ F ∗ (4.14)

δεF = j (ε)α ψα, δεF
∗ = ψ†α̇j† (ε)α̇ (4.15)

where f (ε) , g (ε) , h (ε) , and j (ε) are anticommuting SUSY spinorial functions.

Invariance of the action requires

δεS =

∫
d4x(δεφ

∗∂µ∂µφ + φ∗∂µ∂µδεφ + iδεψ
†σ̄µ∂µψ

+ iψ†σ̄µ∂µδεψ + δεF
∗F + F ∗δεF )

=

∫
d4x(ψ†α̇f † (ε)α̇ ∂µ∂µφ + φ∗∂µ∂µ (f (ε)α ψα)

+ i
(
φ∗g† (ε)α̇ + F ∗h† (ε)α̇

)
σ̄µα̇α∂µψα

+ iψ†α̇σ̄µα̇α (g (ε)α ∂µφ + h (ε)α ∂µF )

+ ψ†α̇j† (ε)α̇ F + F ∗j (ε)α ψα)

=

∫
d4x[ψ†α̇

(
f † (ε)α̇ ∂µ∂µ + iσ̄µα̇α∂µg (ε)α

)
φ

+ φ∗
(
f (ε)α ∂µ∂µ + ig† (ε)α̇ σ̄µα̇α∂µ

)
ψα

+ ψ†α̇
(
iσ̄µα̇αh (ε)α ∂µ + j† (ε)α̇

)
F

+ F ∗ (
j (ε)α + ih† (ε)α̇ σ̄µα̇α∂µ

)
ψα]

≡ 0, (4.16)
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where the surface terms are assumed to vanish, and we obtain

f † (ε)α̇ ∂µ∂µ + iσ̄µα̇α∂µg (ε)α = 0 → g (ε)α = −iσν
αα̇∂νf

† (ε)α̇ , (4.17)

f (ε)α ∂µ∂µ + ig† (ε)α̇ σ̄µα̇α∂µ = 0 → g† (ε)α̇ = −if (ε)α σν
αα̇∂ν , (4.18)

iσ̄µα̇αh (ε)α ∂µ + j† (ε)α̇ = 0 → j† (ε)α̇ = −iσ̄µα̇αh (ε)α ∂µ, (4.19)

j (ε)α + ih† (ε)α̇ σ̄µα̇α∂µ = 0 → j (ε)α = −ih† (ε)α̇ σ̄µα̇α∂µ, (4.20)

where we have used σ̄µα̇ασν
αβ̇

+σ̄να̇ασµ

αβ̇
= −2ηµνδα̇

β̇
, and σµ

αα̇σ̄να̇β+σν
αα̇σ̄µα̇β = −2ηµνδβ

α,

and therefore σ̄µα̇ασν
αβ̇

∂µ∂ν =
[(

σ̄µα̇ασν
αβ̇

+ σ̄να̇ασµ

αβ̇

)
/2

]
∂µ∂ν = −δα̇

β̇
∂µ∂µ.

The fixed-k functional integration is given by

∫
dΦ′ (k) dΦ′† (k) eiS[φ′,φ′∗,F ′,F ′∗,ψ′,ψ′†], (4.21)

where

dΦ′ (k) ≡ dφ′ (k) dF ′ (k) dψ′ (k) , (4.22)

and the fields are transformed as



φ′

F ′

ψ′α




=




1 0 f (ε)α

0 1 j (ε)α

g (ε)α h (ε)α 1







φ

F

ψα



≡ M̃




φ

F

ψα




. (4.23)

Since the functional volume element is transformed as

dΦ′†dΦ′ = dΦ†dΦsdet
(
M̃ †

)
sdet

(
M̃

)
(4.24)
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the condition for sdet
(
M̃

)
=sdet

(
M̃ †

)
= 1 is

sdet




1 0 f (ε)α

0 1 j (ε)α

g (ε)α h (ε)α 1




= det







1 0

0 1


−




f (ε)α

j (ε)α




(
g (ε)α h (ε)α

)

 (det (1))−1

= det




1− f (ε)α g (ε)α −f (ε)α h (ε)α

−j (ε)α g (ε)α 1− j (ε)α h (ε)α




= (1− f (ε)α g (ε)α) (1− j (ε)α h (ε)α)

− (f (ε)α h (ε)α) (j (ε)α g (ε)α)

= 1− (f (ε)α g (ε)α + j (ε)α h (ε)α)

+ (f (ε)α g (ε)α) (j (ε)α h (ε)α)

− (f (ε)α h (ε)α) (j (ε)α g (ε)α)

≡ 1, (4.25)

and by ignoring the 4th power infinitesimal terms, we obtain

f (ε)α g (ε)α + j (ε)α h (ε)α = 0. (4.26)

Similarly, the requirement for sdet
(
M̃ †

)
= 1 is

f † (ε)α̇ g† (ε)α̇ + j† (ε)α̇ h† (ε)α̇ = 0. (4.27)
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With the use of (4.17) and (4.20), it can be rewritten as

f (ε)α g (ε)α + j (ε)α h (ε)α = −f (ε)α iσν
αα̇∂νf

† (ε)α̇ − ih† (ε)α̇ σ̄µα̇α∂µh (ε)α

= −if (ε)α σν
αα̇f † (ε)α̇ ∂ν + ih (ε)α σν

αα̇h† (ε)α̇ ∂ν

≡ 0, (4.28)

where we have used χ† (ε)α̇ σ̄µα̇αη (ε)α = −η (ε)α σµ
αα̇χ† (ε)α̇ in the second term of the

second line. We then obtain

f (ε)α = h (ε)α . (4.29)

2. Closure of Algebra

In this subsubsection, we will show that the requirements of action and functional

integral invariance which we have obtained in the previous subsubsection guarantee

closure of the algebra. The commutator of the supersymmetric transformations for

each field are

[δε2 , δε1 ] φ = (δε2δε1 − δε1δε2) φ

= δε2 (f (ε1)
α ψα)− δε1 (f (ε2)

α ψα)

= f (ε1)
α (g (ε2)α φ + h (ε2)α F )− f (ε2)

α (g (ε1)α φ + h (ε1)α F )

= [f (ε1)
α g (ε2)α − f (ε2)

α g (ε1)α]
(a)

φ + [f (ε1)
α h (ε2)α − f (ε2)

α h (ε1)α]
(b)

F

(4.30)
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[δε2 , δε1 ] ψα = (δε2δε1 − δε1δε2) ψα

= δε2 (g (ε1)α φ + h (ε1)α F )− δε1 (g (ε2)α φ + h (ε2)α F )

=
(
g (ε1)α f (ε2)

β ψβ + h (ε1)α j (ε2)
β ψβ

)

−
(
g (ε2)α f (ε1)

β ψβ + h (ε2)α j (ε1)
β ψβ

)

=
[
g (ε1)α f (ε2)

β − g (ε2)α f (ε1)
β + h (ε1)α j (ε2)

β − h (ε2)α j (ε1)
β
]
ψβ

= −
(
ψβg (ε1)β

)
f (ε2)α −

(
g (ε1)

β f (ε2)β

)
ψα +

(
ψβg (ε2)β

)
f (ε1)α

+
(
g (ε2)

β f (ε1)β

)
ψα +

[
h (ε1)α j (ε2)

β − h (ε2)α j (ε1)
β
]
ψβ

=
[
g (ε2)

β f (ε1)β − g (ε1)
β f (ε2)β

]

(a)

ψα + {−
(
ψβg (ε1)β

)
f (ε2)α

+
(
ψβg (ε2)β

)
f (ε1)α +

[
h (ε1)α j (ε2)

β − h (ε2)α j (ε1)
β
]
}ψβ

(b)

(4.31)

where in the 5th line we have used the Fierz identity (ξη) χα = − (ηχ) ξα − (χξ) ηα.

Then

[δε2 , δε1 ] F = (δε2δε1 − δε1δε2) F

= δε2 (j (ε1)
α ψα)− δε1 (j (ε2)

α ψα)

= j (ε1)
α (g (ε2)α φ + h (ε2)α F )− j (ε2)

α (g (ε1)α φ + h (ε1)α F )

= [j (ε1)
α h (ε2)α − j (ε2)

α h (ε1)α]
(a)

F + [j (ε1)
α g (ε2)α − j (ε2)

α g (ε1)α]
(b)

φ.

(4.32)
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Closure of the algebra means that all of the fields in the same multiplet satisfy the

same algebra, [δε2 , δε1 ] X = (· · · ) X, where X = φ, ψα, or F . Therefore, we require

(4.30− b) = f (ε1)
α h (ε2)α − f (ε2)

α h (ε1)α = 0 (4.33)

(4.32− b) = j (ε1)
α g (ε2)α − j (ε2)

α g (ε1)α = 0 (4.34)

(4.31− b) = 0 (4.35)

(4.30− a) = (4.31− a) = (4.32− a) . (4.36)

(4.33) is satisfied by using (4.29) since

(4.30− b) = f (ε1)
α h (ε2)α − f (ε2)

α h (ε1)α

= h (ε1)
α h (ε2)α − h (ε2)

α h (ε1)α = 0, (4.37)

and (4.34) is satisfied since

(4.32− b) = j (ε1)
α g (ε2)α − j (ε2)

α g (ε1)α

= ih† (ε1)α̇ σ̄µα̇α∂µiσ
ν
αα̇∂νf

† (ε2)
α̇

− ih† (ε2)α̇ σ̄µα̇α∂µiσ
ν
αα̇∂νf

† (ε1)
α̇

= ih† (ε1)α̇ σ̄µα̇α∂µiσ
ν
αα̇∂νf

† (ε2)
α̇

− ih† (ε2)α̇ σ̄µα̇α∂µiσ
ν
αα̇∂νf

† (ε1)
α̇

= f † (ε1)α̇ f † (ε2)
α̇ ∂µ∂µ − f † (ε1)α̇ f † (ε2)

α̇ ∂µ∂µ

= 0, (4.38)
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where we have used (4.17), (4.20), and (4.29). (4.35) is satisfied since

(4.31− b) = −
(
ψβg (ε1)β

)
f (ε2)α +

(
ψβg (ε2)β

)
f (ε1)α

+
[
h (ε1)α j (ε2)

β − h (ε2)α j (ε1)
β
]
ψβ

= εβγ
(
iσν

γα̇∂νf
† (ε1)

α̇
)

ψβf (ε2)α − εβγ
(
iσν

γα̇∂νf
† (ε2)

α̇
)

ψβf (ε1)α

+
[
h (ε1)α

(−ih† (ε2)α̇ σ̄µα̇β∂µ

)− h (ε2)α

(−ih† (ε1)α̇ σ̄µα̇β∂µ

)]
ψβ

=
(
∂νψ

βiσν
βα̇h† (ε1)

α̇
)

h (ε2)α −
(
∂νψ

βiσν
βα̇h† (ε2)

α̇
)

h (ε1)α

+ h (ε1)α

(
∂νψ

βiσν
βα̇h† (ε2)

α̇
)
− h (ε2)α

(
∂νψ

βiσν
βα̇h† (ε1)

α̇
)

= 0. (4.39)

Next we will prove (4.36).

(4.30− a) = f (ε1)
α g (ε2)α − f (ε2)

α g (ε1)α

= −h (ε1)
α iσν

αα̇∂νf
† (ε2)

α̇ + h (ε2)
α iσν

αα̇∂νf
† (ε1)

α̇

= −ih (ε1)
α σν

αα̇∂νh
† (ε2)

α̇ + ih (ε2)
α σν

αα̇∂νh
† (ε1)

α̇ . (4.40)

(4.32− a) = j (ε1)
α h (ε2)α − j (ε2)

α h (ε1)α

= −ih† (ε1)α̇ σ̄µα̇α∂µh (ε2)α + ih† (ε2)α̇ σ̄µα̇α∂µh (ε1)α

= −ih (ε1)
α σν

αα̇∂νh
† (ε2)

α̇ + ih (ε2)
α σν

αα̇∂νh
† (ε1)

α̇ (4.41)

≡ (4.40) .

(4.31− a) = g (ε2)
β f (ε1)β − g (ε1)

β f (ε2)β

= −εβα
(
iσν

αα̇∂νf
† (ε2)

α̇
)

f (ε1)β + εβα
(
iσν

αα̇∂νf
† (ε1)

α̇
)

f (ε2)β

= −ih (ε1)
β σν

βα̇∂νh
† (ε2)

α̇ + ih (ε2)
β σν

βα̇∂νh
† (ε1)

α̇ (4.42)

≡ (4.40) .
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and we have thus proved (4.36).

As a result, when the action and the functional integral volume element are

invariant under the supersymmetry transformation, it is guaranteed that the super-

symmetry algebra is closed.

Although we have started with a specific shape of the action as in (4.12), we

next consider the more general case. The expected supersymmetric action with a

minimum number of fields (one spinor fermion, one complex scalar boson, and one

real auxiliary field) would be given by

S =

∫
d4p

(2π)4

[
φ∗Oφφ + ψ†α̇Oα̇α

ψ ψα + F ∗OF F
]
, (4.43)

where the operators Oφ and OF , which are scalars, and Oψ, which is a matrix, are

chosen so that δεS = 0, under

δεφ = f (ε)α ψα, δεφ
∗ = ψ†α̇f † (ε)α̇ (4.44)

δεψα = g (ε)α φ + h (ε)α F, δεψ
†
α̇ = g† (ε)α̇ φ∗ + h† (ε)α̇ F ∗ (4.45)

δεF = j (ε)α ψα, δεF
∗ = ψ†α̇j† (ε)α̇ . (4.46)
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To obtain the constraint on the choice of Oφ, Oψ, and OF , we calculate δεS:

δεS =

∫
d4p

(2π)4 [(δεφ
∗) Oφφ + φ∗Oφ (δεφ) +

(
δεψ

†
α̇

)
Oα̇α

ψ ψα

+ ψ†α̇Oα̇α
ψ (δεψα) + (δεF

∗) OF F + F ∗OF (δεF )]

=

∫
d4p

(2π)4 [
(
ψ†α̇f † (ε)α̇

)
Oφφ + φ∗Oφ (f (ε)α ψα) +

(
g† (ε)α̇ φ∗ + h† (ε)α̇ F ∗) Oα̇α

ψ ψα

+ ψ†α̇Oα̇α
ψ (g (ε)α φ + h (ε)α F ) +

(
ψ†α̇j† (ε)α̇

)
OF F + F ∗OF (j (ε)α ψα)]

=

∫
d4p

(2π)4 [ψ†α̇
(
f † (ε)α̇ Oφ + Oα̇α

ψ g (ε)α

)
φ + φ∗

(
Oφf (ε)α + g† (ε)α̇ Oα̇α

ψ

)
ψα

+ ψ†α̇
(
Oα̇α

ψ h (ε)α + j† (ε)α̇ OF

)
F + F ∗ (

OF j (ε)α + h† (ε)α̇ Oα̇α
ψ

)
ψα]

≡ 0, (4.47)

and we obtain

f † (ε)α̇ Oφ + Oα̇α
ψ g (ε)α = 0 → f † (ε)α̇ = −Oα̇α

ψ

Oφ

g (ε)α , (4.48)

Oφf (ε)α + g† (ε)α̇ Oα̇α
ψ = 0 → f (ε)α = −g† (ε)α̇

Oα̇α
ψ

Oφ

, (4.49)

Oα̇α
ψ h (ε)α + j† (ε)α̇ OF = 0 → j† (ε)α̇ = −Oα̇α

ψ

OF

h (ε)α , (4.50)

OF j (ε)α + h† (ε)α̇ Oα̇α
ψ = 0 → j (ε)α = −h† (ε)α̇

Oα̇α
ψ

OF

. (4.51)

By using (4.49) and (4.51) to eliminate f (ε)α and j (ε)α in (4.26), we obtain

g† (ε)α̇

Oα̇α
ψ

Oφ

g (ε)α + h† (ε)α̇

Oα̇α
ψ

OF

h (ε)α = 0, (4.52)

→
(

g† (ε)α̇ h† (ε)α̇

)



Oα̇α
ψ /Oφ 0

0 Oα̇α
ψ /OF







g (ε)α

h (ε)α


 = 0
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and when

(
g† (ε)α̇ h† (ε)α̇

)



Oα̇α
ψ /Oφ 0

0 Oα̇α
ψ /OF


 =

(
h (ε)α −g (ε)α

)
, (4.53)

so (4.52) is satisfied. From (4.53), we have

h (ε)α = g† (ε)α̇

Oα̇α
ψ

Oφ

, (4.54)

g (ε)α = −h† (ε)α̇

Oα̇α
ψ

OF

, (4.55)

and from (4.49) and (4.54)

f (ε)α = −h (ε)α . (4.56)

As we have already seen in (4.30)∼(4.32), the commutator of the supersymmetry

transformation are

[δε2 , δε1 ] φ = [f (ε1)
α g (ε2)α − f (ε2)

α g (ε1)α]
(a)

φ + [f (ε1)
α h (ε2)α − f (ε2)

α h (ε1)α]
(b)

F

[δε2 , δε1 ] ψα =
[
g (ε2)

β f (ε1)β − g (ε1)
β f (ε2)β

]

(a)

ψα + {−
(
ψβg (ε1)β

)
f (ε2)α

+
(
ψβg (ε2)β

)
f (ε1)α +

[
h (ε1)α j (ε2)

β − h (ε2)α j (ε1)
β
]
}ψβ

(b)

[δε2 , δε1 ] F = [j (ε1)
α h (ε2)α − j (ε2)

α h (ε1)α]
(a)

F + [j (ε1)
α g (ε2)α − j (ε2)

α g (ε1)α]
(b)

φ.

By using (4.48)∼(4.51), (4.54)∼(4.56) we obtain

(4.30)-(a) = f (ε1)
α g (ε2)α − f (ε2)

α g (ε1)α

= −h (ε1)
α g (ε2)α + h (ε2)

α g (ε1)α

= h† (ε2)α̇

Oα̇α
ψ

OF

h (ε1)α − h† (ε1)α̇

Oα̇α
ψ

OF

h (ε2)α ,
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(4.31)-(a) = (4.30)-(a),

(4.32)-(a) = j (ε1)
α h (ε2)α − j (ε2)

α h (ε1)α

= −h† (ε1)α̇

Oα̇α
ψ

OF

h (ε2)α + h† (ε2)α̇

Oα̇α
ψ

OF

h (ε1)α ,

and therefore

(4.30)-(a) = (4.31)-(a) = (4.32)-(a). (4.57)

The others are

(4.30)-(b) = f (ε1)
α h (ε2)α − f (ε2)

α h (ε1)α

= −h (ε1)
α h (ε2)α + h (ε2)

α h (ε1)α

= 0,

(4.31)-(b) = −
(
ψβg (ε1)β

)
f (ε2)α +

(
ψβg (ε2)β

)
f (ε1)α

+
[
h (ε1)α j (ε2)

β − h (ε2)α j (ε1)
β
]
ψβ

= −h† (ε1)α̇

Oα̇β
ψ

OF

ψβh (ε2)α + h† (ε2)α̇

Oα̇β
ψ

OF

ψβh (ε1)α

+ [−h (ε1)α h† (ε2)α̇

Oα̇β
ψ

OF

+ h (ε2)α h† (ε1)α̇

Oα̇β
ψ

OF

]ψβ

= 0,

(4.32)-(b) = j (ε1)
α g (ε2)α − j (ε2)

α g (ε1)α

= h† (ε1)α̇

Oα̇α
ψ

OF

εαβ

(
h† (ε2)β̇

Oβ̇β
ψ

OF

)

− h† (ε2)α̇

Oα̇α
ψ

OF

εαβ

(
h† (ε1)β̇

Oβ̇β
ψ

OF

)

= 0.
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Therefore,

[δε2 , δε1 ] X =

(
h† (ε2)α̇

Oα̇α
ψ

OF

h (ε1)α − h† (ε1)α̇

Oα̇α
ψ

OF

h (ε2)α

)
X (4.58)

where X = φ, ψα, or F . We have thus proved that when both the action and the

functional integral volume element are invariant under supersymmetry, the algebra

closes in general for the matter supermultiplet.

a. Claim 1

When the action and the functional integral volume element are both invariant under

a supersymmetry transformation, the algebra of the supersymmetry is always closed.

(It is possible that this might be generalized to other symmetries.)

B. SUSY of Matter Field

1. Conventional Spin 1/2 Fermion and Spin 0 Boson

Although we can introduce any number of bosons and fermions in a multiplet in

general, here we consider the minimum case, which means the minimum number of

fields which make the action and the functional integration invariant under the SUSY

transformation. As we saw in the previous subsubsection, we need at least two boson

fields and one fermion field, and the minimum free field action was given by

S =

∫
d4p

(2π)4

[
φ∗Oφφ + ψ†α̇Oα̇α

ψ ψα + F ∗OF F
]
. (4.43)

From the conditions of invariance of the action and the functional integral volume

element, we obtained (4.54):

h (ε)α = g† (ε)α̇

Oα̇α
ψ

Oφ

, (4.54)
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and by eliminating g† (ε)α̇ and using (4.55),

h (ε)α = −εα̇β̇

Oβ̇η
ψ

OF

Oα̇α
ψ

Oφ

h (ε)η

= −εα̇β̇εηζ

Oβ̇η
ψ

OF

Oα̇α
ψ

Oφ

h (ε)ζ . (4.59)

This is satisfied when

−εα̇β̇εηζ

Oβ̇η
ψ

OF

Oα̇α
ψ

Oφ

= δα
ζ , (4.60)

and multiplying δζ
α on the both sides give

1

2
εα̇β̇εαη

Oβ̇η
ψ

OF

Oα̇α
ψ

Oφ

= 1. (4.61)

The left hand side of (4.61) is nothing but det (Oψ) /OF Oφ and we finally obtain

det (Oψ)

OF Oφ

= 1. (4.62)

This is an important result for showing that the functional integral with SUSY is

constant. We will prove this next.

The functional integral Z with SUSY and at a fixed energy-momentum k, with

an action is given by (4.43), is

Z
[
Φ′ (k) , Φ′† (k)

]
=

∫
dΦ′ (k) dΦ′† (k) e

i
R d4p

(2π)4
[φ′∗Oφφ′+ψ′†α̇ Oα̇α

ψ ψ′α+F ′∗OF F ′]
(4.63)

where we have defined

dΦ′ ≡ dφ′dφ′∗dF ′dF ′∗dψ′dψ′†. (4.64)

The functional integral of the bosonic part is

Zb−φ (k) =

∫
dφ′∗ (k) dφ′ (k) e

i
R d4p

(2π)4
[φ′∗Oφφ′]

=
π (2π)4

−iOφ (k)
, (4.65)
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Zb−F (k) =

∫
dF ′∗ (k) dF ′ (k) e

i
R d4p

(2π)4
[F ′∗OF F ′]

=
π (2π)4

−iOF (k)
. (4.66)

The functional integral of the fermionic part is

Zf (k) =

∫
dψ′† (k) dψ′ (k) e

i
R d4p

(2π)4
[ψ′†α̇ Oα̇α

ψ ψ′α]

=

∫
dψ′†

1̇
(k) dψ′1 (k) dψ′†

2̇
(k) dψ′2 (k)

· (1 + i

∫
d4p

(2π)4

[
ψ′†

1̇
O1̇1

ψ ψ′1 + ψ′†
2̇
O2̇2

ψ ψ′2 + ψ′†
2̇
O2̇1

ψ ψ′1 + ψ′†
1̇
O1̇2

ψ ψ′2
]

+
1

2!

∫
d4p

(2π)4

[
ψ′†

1̇
iO1̇1

ψ ψ′1 + ψ′†
2̇
iO2̇2

ψ ψ′2 + ψ′†
2̇
iO2̇1

ψ ψ′1 + ψ′†
1̇
iO1̇2

ψ ψ′2
]

·
∫

d4p′

(2π)4

[
ψ′†

1̇
iO1̇1

ψ ψ′1 + ψ′†
2̇
iO2̇2

ψ ψ′2 + ψ′†
2̇
iO2̇1

ψ ψ′1 + ψ′†
1̇
iO1̇2

ψ ψ′2
]
)

= +
1

2!

∫
dψ′†

1̇
(k) dψ′1 (k) dψ′†

2̇
(k) dψ′2 (k)

∫
d4pd4p′

(2π)8

· [2ψ′†
1̇

(p) iO1̇1
ψ ψ′1 (p) ψ′†

2̇
(p′) iO2̇2

ψ ψ′2 (p′)

+ 2ψ′†
2̇

(p) iO2̇1
ψ ψ′1 (p) ψ′†

1̇
(p′) iO1̇2

ψ ψ′2 (p′)]

=
[
−O1̇1

ψ (k) O2̇2
ψ (k) + O2̇1

ψ (k) O1̇2
ψ (k)

] 1

(2π)8

= det

(
−i

Oψ (k)

(2π)4

)
. (4.67)

Then the total functional integral is

Z [k] = Zb−φ (k) Zb−F (k) Zf (k)

=
π2 det

(
−i

Oψ(k)

(2π)4

)
(2π)4 (2π)4

(−i) Oφ (k) (−i) OF (k)

= π2 = k-independent constant, (4.68)

where we have used (4.62). The constant is unimportant because when a physical

value is calculated, it is divided by Z as in (4.116). Therefore, we have proved that
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the functional integration of the matter field SUSY is always constant for the minimal

number of fields.

a. Claim 2

For the general free field matter SUSY action (4.43), with the minimal number of

fields (one spinor fermion field, one complex scalar boson field, and one complex

bosonic auxiliary field), the fixed-k functional integral Z (k) is equal to a constant.

(This will work not only for the field theory but also for the supersymmetrization of

a statistical model.)

2. Unconventional Spin 1/2 Fermion and Spin 1/2 Boson

Here we will check whether the Claim 2 is true also for the spin 1/2 fermion and

spin 1/2 boson SUSY. We start with one spinor fermion and one spinor boson, and

we will check whether this is the minimal number of fields to have the action and

functional integral volume element invariance. The action of this model is

S =

∫
d4x

[
iψ̃†α̇σ̄µα̇α∂µψ̃α + iψ†α̇σ̄µα̇α∂µψα

]
, (4.69)

where ψ̃α and ψα are the spin 1/2 boson and spin 1/2 fermion, respectively.

As both of the fields are spinor, the SUSY transformation parameter function is

scalar:

δθψ̃α = a (θ) ψα, δθψ̃
†
α̇ = ψ†α̇a∗ (θ) , (4.70)

δθψα = b (θ) ψ̃α, δθψ
†
α̇ = ψ̃†α̇b∗ (θ) , (4.71)

where a (θ) and b (θ) are anticommuting scalar functions, and θ is a scalar SUSY
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parameter. The invariance of the action requires

δθS =

∫
d4x[i

(
δθψ̃

†
α̇

)
σ̄µα̇α∂µψ̃α + iψ̃†α̇σ̄µα̇α∂µ

(
δθψ̃α

)

+ i
(
δθψ

†
α̇

)
σ̄µα̇α∂µψα + iψ†α̇σ̄µα̇α∂µ (δθψα)]

=

∫
d4x[i

(
ψ†α̇a∗ (θ)

)
σ̄µα̇α∂µψ̃α + iψ̃†α̇σ̄µα̇α∂µ (a (θ) ψα)

+ i
(
ψ̃†α̇b∗ (θ)

)
σ̄µα̇α∂µψα + iψ†α̇σ̄µα̇α∂µ

(
b (θ) ψ̃α

)
]

=

∫
d4x[iψ†α̇ (a∗ (θ) + b (θ)) σ̄µα̇α∂µψ̃α

iψ̃†α̇σ̄µα̇α (a (θ) + b∗ (θ)) ∂µ

(
δθψ̃α

)
]

≡ 0, (4.72)

and we obtain

b (θ) = −a∗ (θ) , (4.73)

a (θ) = −b∗ (θ) . (4.74)

The SUSY transformation matrix is given as




ψ̃α

ψ̃α


 =




1 a (θ)

b (θ) 1







ψ̃′α

ψ̃′α


 = M̃




ψ̃′α

ψ̃′α


 , (4.75)

and the invariance of the functional integral volume element requires

Dψ̃αDψα = Dψ̃′αDψ′αsdet
(
M̃

)
= Dψ̃′αDψ′α, (4.76)
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which means

sdet
(
M̃

)
= sdet







1 a (θ)

b (θ) 1







= det (1− a (θ) b (θ)) (det (1))−1

≡ 1, (4.77)

so we obtain

a (θ) b (θ) = 0 → a (θ) = b (θ) . (4.78)

From (4.73) and (4.78), we have

a (θ) = b (θ) = iθ, (4.79)

where θ is a real Grassmann scalar, and we have obtained SUSY for the spin 1/2

fermion and spin 1/2 boson, in the form

δθψ̃α = iθψα, δθψ̃
†
α̇ = −iψ†α̇θ, (4.80)

δθψα = iθψ̃α, δθψ
†
α̇ = −iψ̃†α̇θ. (4.81)

The functional integral of this model is

Z (k) =

∫
dψ̃ (k) dψ (k) dψ̃† (k) dψ† (k) e

i
R d4p

(2π)4
[−ψ̃†α̇σ̄µα̇αpµψ̃α−ψ†α̇σ̄µα̇αpµψα]

=
det

(
i σ̄µα̇αkµ

(2π)4

)

det
(
i σ̄µα̇αkµ

(2π)4

)π2

= π2 = k-constant, (4.82)

where the mathematical details to show

∫
dψ̃ (k) dψ̃† (k) e

i
R d4p

(2π)4
[−ψ̃†α̇σ̄µα̇αpµψ̃α]

=
π2

det
(
i σ̄µα̇αkµ

(2π)4

)
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will be given below. Then Claim 2 is satisfied.

a. Closure of Algebra Check

According to Claim 1, since the action and functional integral volume element are

invariant, the algebra should be closed. We find

[δθ2 , δθ1 ] ψ̃α = δθ2 (iθ1ψα)− δθ1 (iθ2ψα)

= − (θ1θ2 − θ2θ1) ψ̃α, (4.83)

[δθ2 , δθ1 ] ψα = δθ2

(
iθ1ψ̃α

)
− δθ1

(
iθ2ψ̃α

)

= − (θ1θ2 − θ2θ1) ψα, (4.84)

and therefore the algebra is in fact closed.

3. Unconventional Spin 0 Fermion and Spin 0 Boson

Here we will check whether Claim 2 is true also for a spin 0 fermion and spin 0

boson SUSY. We start with one scalar fermion and one scalar boson, and we will

check whether this is the minimal number of fields to have the action and functional

integral volume element invariance. The action of this model is

S =

∫
d4x

[
φ∗∂µ∂µφ + φ̃∗∂µ∂µφ̃

]
, (4.85)

where φ and φ̃ are the spin 0 boson and spin 0 fermion, respectively.

As both of the fields are scalar, the SUSY transformation parameter function is
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scalar:

δθφ = c (θ) φ̃, δθφ
∗ = φ̃∗c∗ (θ) , (4.86)

δθφ̃ = d (θ) φ, δθφ̃
∗ = φ∗d∗ (θ) , (4.87)

where c (θ) and d (θ) are anticommuting scalar functions, and θ is a scalar SUSY

parameter. The invariance of the action requires

δθS =

∫
d4x[(δθφ

∗) ∂µ∂µφ + φ∗∂µ∂µ (δθφ)

+
(
δθφ̃

∗
)

∂µ∂µφ̃ + φ̃∗∂µ∂µ

(
δθφ̃

)
]

=

∫
d4x[

(
φ̃∗c∗ (θ)

)
∂µ∂µφ + φ∗∂µ∂µ

(
c (θ) φ̃

)

+ (φ∗d∗ (θ)) ∂µ∂µφ̃ + φ̃∗∂µ∂µ (d (θ) φ)]

=

∫
d4x[φ̃∗ [c∗ (θ) + d (θ)] ∂µ∂µφ + φ∗ [d∗ (θ) + c (θ)] ∂µ∂µφ̃]

≡ 0, (4.88)

and we obtain

d (θ) = −c∗ (θ) , (4.89)

c (θ) = −d∗ (θ) . (4.90)

The SUSY transformation matrix is given as




ψ̃α

ψ̃α


 =




1 c (θ)

d (θ) 1







ψ̃′α

ψ̃′α


 = M̃ ′




ψ̃′α

ψ̃′α


 , (4.91)

and the invariance of the functional integral volume element requires

DφDφ̃ = Dφ′Dφ̃′sdet
(
M̃ ′

)
= Dφ′Dφ̃′, (4.92)
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which means

sdet
(
M̃

)
= sdet







1 c (θ)

d (θ) 1







= det (1− c (θ) d (θ)) (det (1))−1

≡ 1, (4.93)

so we obtain

c (θ) d (θ) = 0 → c (θ) = d (θ) . (4.94)

From (4.89) and (4.94), we have

c (θ) = d (θ) = iθ, (4.95)

where θ is a real Grassmann scalar, and we have obtained SUSY for the spin 0 fermion

and spin 0 boson, which has the form

δθφ = iθφ̃, δθφ
∗ = −iφ̃∗θ, (4.96)

δθφ̃ = iθφ, δθφ̃
∗ = −iφ∗θ. (4.97)

The functional integral of this model is

Z (k) =

∫
dφ∗ (k) dφ (k) dφ̃∗ (k) dφ̃ (k) e

i
R d4p

(2π)4
[−φ∗pµpµφ−φ̃∗pµpµφ̃]

=
det

(
i kµkµ

(2π)4

)

det
(
i kµkµ

(2π)4

)π

= π = k-independent, (4.98)
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and Claim 2 is satisfied in this case also.

a. Closure of Algebra Check

According to Claim 1, since the action and functional integral volume element are

invariant, the algebra should be closed.

[δθ2 , δθ1 ] φ = δθ2

(
iθ1φ̃

)
− δθ1

(
iθ2φ̃

)

= − (θ1θ2 − θ2θ1) φ, (4.99)

[δθ2 , δθ1 ] φ̃ = δθ2 (iθ1φ)− δθ1 (iθ2φ)

= − (θ1θ2 − θ2θ1) φ̃, (4.100)

and therefore the algebra is closed.

C. SUSY of Gauge Field

We saw that the fixed-k functional integral of the free matter field supermultiplets is

k-independent. Here we will extend the argument to the gauge supermultiplet. First,

we will calculate the functional integral of the gauge field, and we consider the action
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of the non-interacting gauge field given by

S =

∫
d4x− 1

4
FµνF

µν (4.101)

=

∫
d4x− 1

4
(∂µAν − ∂νAµ) (∂µAν − ∂νAµ)

=

∫
d4x

1

2
gνξAν∂µ∂

µAξ +
1

2

(
gµξ∂µAξ

)2

=

∫
d4x

∫
d4pd4p′

(2π)8 ei(p′+p)·x
[
−1

2
gνξAν (p′) pµp

µAξ (p)

− 1

2

(
gµξpµAξ (p′)

)
(gνρpνAρ (p))

]

=

∫
d4p

(2π)4

[
−1

2
gνξAν (−p) pµp

µAξ (p)− 1

2

(−gµξpµAξ (−p)
)
(gνρpνAρ (p))

]

=
1

2

∫
d4p

(2π)4

[−gνξAν (p) pµp
µAξ (p) +

(
gµξpµAξ (p)

)
(gνρpνAρ (p))

]

=
1

2

∫
d4p

(2π)4

(
A0 A1 A2 A3

)
OA




A0

A1

A2

A3




, (4.102)

where in the 6th line we have used Aν (−p) = Aν (p), which follows from

Aν (p) =

∫
d4x

(2π)2Aν (x) e−ip·x.

The complex conjugate becomes

Aν (p) =

∫
d4x

(2π)2Aν (x) eip·x

= Aν (−p) .
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OA in (4.102) is given by

OA =




p2
1 + p2

2 + p2
3 −p0p1 −p0p2 −p0p3

−p1p0 p2
0 − p2

2 − p2
3 p1p2 p1p3

−p2p0 p2p1 p2
0 − p2

1 − p2
3 p2p3

−p3p0 p3p1 p2p1 p2
0 − p2

1 − p2
2




Since OA is Hermitian, there exists a unitary operator to diagonalize it, and we can

do the fixed-k functional integration.

Z (k) =

∫
dA0 (k) dA1 (k) dA2 (k) dA3 (k) eiS

=
π2

(
det

(−iOA/
[
2 (2π)4]))1/2

,

where we have used the fact that the determinant is invariant under the unitary

transformation. However, when we calculate the determinant, it turns out that

det OA = 0,

and we cannot define the functional integral for the gauge field when we use the action

given by (4.101)).

To define the functional integral for the gauge field, we introduce a gauge fixing

term into the action:

Sα =

∫
d4x

[
−1

4
FµνF

µν − 1

2α
(∂µA

µ)

]

=
1

2

∫
d4p

(2π)4

(
A0 A1 A2 A3

)
OAα




A0

A1

A2

A3




.
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where we have defined

OAα =




p2
1 + p2

2 + p2
3 − 1

α
p2

0 −p0p1 + 1
α
p0p1 −p0p2 + 1

α
p0p2 −p0p3 + 1

α
p0p3

−p1p0 + 1
α
p1p0 p2

0 − p2
2 − p2

3 − 1
α
p2

1 p1p2 − 1
α
p1p2 p1p3 − 1

α
p1p3

−p2p0 + 1
α
p2p0 p2p1 − 1

α
p2p1 p2

0 − p2
1 − p2

3 − 1
2α

p2
2 p2p3 − 1

α
p2p3

−p3p0 + 1
α
p3p0 p3p1 − 1

α
p3p1 p2p1 − 1

α
p2p1 p2

0 − p2
1 − p2

2 − 1
α
p2

3




.

The fixed-k functional integration with the gauge fixing term yields

ZA (k) =

∫
dA0 (k) dA1 (k) dA2 (k) dA3 (k) eiSα

=
π2

(
det

(−iOAα (k) /
[
2 (2π)4]))1/2

=
4
√−απ2 (2π)8

(−k2
0 + k2

1 + k2
2 + k2

3)
2 ,

since

det
(
OAα (k) /

[
2 (2π)4]) = − 1

16 (2π)16 α

(−k2
0 + k2

1 + k2
2 + k2

3

)4
.

With the gauge fixing term, we can define the functional integral.

The fixed-k functional integral for a spin 1/2 gaugino is

Zλ (k) =

∫
dλ† (k) dλ (k) ei

R
d4x(iλ†σ̄µ∂µλ)

=

∫
dλ† (k) dλ (k) e

i
R d4p

(2π)4
(−λ†σ̄µpµλ)

= det

(
i
σ̄µkµ

(2π)4

)

=
(−k2

0 + k2
1 + k2

2 + k2
3

) 1

(2π)8 .
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The fixed-k functional integral of a free ghost is

Zc (k) =

∫
dc̄ (k) dc (k) ei

R
d4x(−c̄∂µ∂µc)

=

∫
dc̄ (k) dc (k) e

i
R d4p

(2π)4
(c̄pµpµc)

= −i
(−k2

0 + k2
1 + k2

2 + k2
3

) 1

(2π)4 .

Then the overall fixed-k functional integral Z (k) is

Z (k) = ZA (k) Zλ (k) Zc (k)

=
4
√−απ2 (2π)8 (−k2

0 + k2
1 + k2

2 + k2
3) (−i) (−k2

0 + k2
1 + k2

2 + k2
3)

(−k2
0 + k2

1 + k2
2 + k2

3)
2
(2π)4 (2π)8

= (−i)
4

(2π)4

√−απ2.

The i comes from Zc (k), and the non-cancellation of an overall i can be interpreted to

mean that we failed to include all of the degrees of freedom. To cancel i, we introduce

one complex bosonic auxiliary field or two real bosonic auxiliary fields. In addition,

the functional integral is required to be independent of the gauge-fixing constant α.

Then the auxiliary field action can be written as

Sauxiliary =

∫
d4p

(2π)4

[
αB2 + D2

]
,

where B can be an auxiliary field associated with the BRST symmetry and D can be

the auxiliary field of SUSY. Then the auxiliary fields’ functional integral is

Zauxiliary (k) =

∫
dB (k) dD (k) e

i
R d4p

(2π)4
[αB2+D2]

=

√
π√

−i
(
α/ (2π)4)

√
π√

−i/ (2π)4

=
π (2π)4

−i
√

α
.
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The overall fixed-k functional integral including the auxiliary fields becomes

Z (k) = ZA (k) Zλ (k) Zc (k) Zauxiliary (k)

= (−i)
4

(2π)4

√−απ2π (2π)4

−i
√

α

= 4π2
√−1 = k independent.

Therefore, according to our proposed definition of SUSY, which is the requirement

that Z (k) be k independent, SUSY for the gauge field requires the action to be

S =

∫
d4x[−1

4
FµνF

µν − 1

2α
(∂µAµ)2 + iλ†σ̄µ∂µλ

− c̄∂µ∂µc + αB2 + D2].

D. Primitive Supersymmetry and Standard Supersymmetry in the Present Theory

In the next chapter, we will start with a very simple microscopic (Planck-scale) sta-

tistical picture and will obtain the following purely bosonic Euclidean action, given

in the next chapter as (5.40):

S̄E

[
Ψb, Ψ

†
b

]
=

∫
dDx

(
1

2m
∂MΨ†

b∂MΨb − µ Ψ†
bΨb + iṼ Ψ†

bΨb

)
. (4.103)

If F is a physical quantity determined by the observable fields Ψb,Ψ
†
b and the random

potential iṼ , its average value is given by

〈F 〉 =

〈∫
DΨbDΨ†

bF
[
Ψb, Ψ

†
b, Ṽ

]
e−S̄E[Ψb,Ψ

†
b]

∫
DΨ′

bDΨ′†
b e−S̄E[Ψ′b,Ψ

′†
b ]

〉
(4.104)

where 〈· · · 〉 here means an average over the postulated random imaginary potential

iṼ of (5.40), which has a Gaussian distribution and satisfies

〈
Ṽ

〉
= 0,

〈
Ṽ (x) Ṽ (x′)

〉
= bδ (x− x′) . (4.105)
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The presence of the denominator makes it difficult to perform this average, but we

replace the degrees of freedom in the denominator with fermionic degrees of freedom

Ψf by using a mathematical trick which is standard for treating random or disordered

system in condensed matter physics:

1
∫

DΨ′
bDΨ′†

b e−S̄E[Ψb,Ψ
†
b]

= det A =

∫
DΨfDΨ†

fe
−S̄E[Ψf ,Ψ†f ], (4.106)

where −S̄E

[
Ψb, Ψ

†
b

]
≡ Ψ†

bAΨb. Then we obtain

〈F 〉 =

〈∫
DΨbDΨ†

bDΨfDΨ†
f F

[
Ψb, Ψ

†
b, Ṽ

]
e−S̄E[Ψb,Ψ

†
b]

∫
DΨfDΨ†

fe
−S̄E[Ψf ,Ψ†f ]

〉

=

〈∫
DΨDΨ† F

[
Ψb, Ψ

†
b, Ṽ

]
e−S̄E[Ψ,Ψ†]

〉
. (4.107)

where we have grouped the bosonic and fermionic fields in vector form:

Ψ =




Ψb

Ψf


 . (4.108)

The Euclidean action with both bosons and fermions still has the basic form of (4.103):

S̄E

[
Ψ, Ψ†] =

∫
dDx

[
1

2m
∂MΨ†∂MΨ− µΨ†Ψ + iṼ Ψ†Ψ

]
. (4.109)

For a Gaussian random variable υ whose mean is zero, the result

〈
e−iυ

〉
= e−

1
2〈υ2〉, (4.110)

where

〈
e−iυ

〉
=

√
a

π

∫
dυe−iυe−aυ2

=

√
a

π

∫
dυe−a(υ+ i

2a)
2− 1

4a

= e−
1
4a
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and

e−
1
2〈υ2〉 = exp

(
−1

2

√
a

π

∫
dυυ2e−aυ2

)

= exp

(
−1

2

√
a

π

[−1

2a
υe−aυ2

]∞

−∞
+

1

2

√
a

π

(−1

2a

) ∫
dυe−aυ2

)

= exp

(
− 1

4a

)
,

implies that

〈
e−

R
dDxiṼ Ψ†Ψ

〉
= e−

1
2

R
dDxdDx′Ψ†(x)Ψ(x)〈Ṽ (x)Ṽ (x′)〉Ψ†(x′)Ψ(x′)

= e−
1
2
b
R

dDx[Ψ†(x)Ψ(x)]
2

, (4.111)

where we have also used (4.105). Then (4.107) can be rewritten as

〈F 〉 =

∫
DΨDΨ†Fe−S (4.112)

with

S =

∫
dDx

[
1

2m
∂MΨ†∂MΨ− µΨ†Ψ +

1

2
b
(
Ψ†Ψ

)2
]

. (4.113)

This action clearly has a primitive supersymmetry, under a global rotation of Ψ which

transforms bosons into fermions and vice-versa. The functional integral Z is

Z =

∫
DΨDΨ†e−S, (4.114)

and according to (4.104) with F = 1, we have just

Z = 1. (4.115)

To make the expression for 〈F 〉 independent of how the measure is defined in the

functional integral, we can rewrite (4.112) as

〈F 〉 =
1

Z

∫
DΨDΨ†Fe−S. (4.116)
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Notice that the fermionic variables Ψf represent true degrees of freedom, and that

they originate from the bosonic variables Ψ′
b, which is introduced in the denominator

of (4.104). The coupling between the fields Ψb and Ψf (or Ψ′
b) is due to the random

perturbing potential iṼ .

E. Emergence of the Usual SUSY at Low Energy

After a transformation to Lorentzian spacetime (see the earlier comments on this

transformation), the Euclidean action of (4.113) becomes

SL =

∫
dDx

[
1

2m
Ψ†∂M∂MΨ + µ2Ψ†Ψ− 1

2
b
(
Ψ†Ψ

)2
]

(4.117)

where ∂M is now defined by ∂M = ηMN∂N , with ηMN the D-dimensional Minkowski

metric tensor. Then if we choose specific fields ψb and ψf instead of the full set of

fields Ψb and Ψf , from the results of Chapter III, the free field action can be reduced

to

Sf =

∫
d4x ψf

† ((2m̄)−1 ηµν∂µ∂ν + iσµDµ

)
ψf . (4.118)

Sb =

∫
d4x ψb

† ((2m̄)−1 ηµν∂µ∂ν + iσµDµ

)
ψb. (4.119)

At low energy, m̄ À pµ ∼ O (TeV ), the first term is very small and we obtain

Sf '
∫

d4x
[
ψf

†iσµ∂µψf

]
. (4.120)

Sb '
∫

d4x
[
ψb
†iσµ∂µψb

]
. (4.121)

The functional integral of the bosonic part is

Zb =

∫
DψbDψ†be

i
R

d4x ψb
†iσµ∂µψb . (4.122)

To perform this functional integration we need to diagonalize the operator. But since
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iσµ∂µ is Hermitian, there exists a unitary operator U which diagonalizes it. And since

det
(
Uσµ∂µU

†) = det (U) det (σµ∂µ) det
(
U †) = det (σµ∂µ), it follows that

Zb (xi) =

∫
dψb (xi) Dψ†b (xi) ei

R
d4x ψb

†iσµ∂µψb

=
π2

det (σµ∂µ)
.

We now consider this process in more detail, with an explicit expression for

U =




a b

c d




=




aR + iaI bR + ibI

cR + icI dR + idI


 . (4.123)

The unitary condition requires that

b = −c∗, (4.124)

d = a∗, (4.125)

1 = |a|2 + |c|2 , (4.126)

and

U =




a −c∗

c a∗


 . (4.127)

Now, after we transform into momentum space, with

∫
d4xψb

†iσµ∂µψb =

∫
d4p

(2π)4 ψb
† (−σµpµ) ψb,
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we diagonalize σµpµ by using the unitary operator:

U (−σµpµ) U † =




a −c∗

c a∗







p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3







a∗ c∗

−c a




=




a −c∗

c a∗







(p0 − p3) a∗

+ (p1 − ip2) c

(p0 − p3) c∗

− (p1 − ip2) a

− (p1 + ip2) a∗

− (p0 + p3) c

− (p1 + ip2) c∗

+ (p0 + p3) a




=




(p0 − p3) |a|2 + (p0 + p3) |c|2

+ (p1 − ip2) ac + (p1 + ip2) a∗c∗

−2p3ac∗

− (p1 − ip2) a2 + (p1 + ip2) c∗2

−2p3a∗c

+ (p1 − ip2) c2 − (p1 + ip2) a∗2

(p0 + p3) |a|2 + (p0 − p3) |c|2

− (p1 − ip2) ac− (p1 + ip2) a∗c∗




.

(4.128)

Since the off-diagonal components must vanish, we obtain

− (
p1 − ip2

)
a2 +

(
p1 + ip2

)
c∗2 − 2p3ac∗ = 0, (4.129)

(
p1 − ip2

)
c2 − (

p1 + ip2
)
a∗2 − 2p0a∗c = 0. (4.130)

From (4.129)/ac∗ we have

(
p1 − ip2

) a

c∗
− (

p1 + ip2
) c∗

a
+ 2p3 = 0, (4.131)

and the solution for a
c∗ is either

a

c∗
=

p1 + ip2

(p1)2 + (p2)2

[
−p3 −

√
(p1)2 + (p2)2 + (p3)2

]
(4.132)

or else

a

c∗
=

p1 + ip2

(p1)2 + (p2)2

[
−p3 +

√
(p1)2 + (p2)2 + (p3)2

]
. (4.133)
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Here we choose

a

c∗
=

p1 + ip2

(p1)2 + (p2)2

[
−p3 −

√
(p1)2 + (p2)2 + (p3)2

]
(4.134)

and we obtain

a =
p1 + ip2

(p1)2 + (p2)2

[
−p3 −

√
(p1)2 + (p2)2 + (p3)2

]
c∗, (4.135)

a∗ =
p1 + ip2

(p1)2 + (p2)2

[
−p3 −

√
(p1)2 + (p2)2 + (p3)2

]
c. (4.136)

Then

|a|2 = a∗a =

[
p3 +

√
(p1)2 + (p2)2 + (p3)2

]2

(p1)2 + (p2)2 |c|2 . (4.137)

Since |a|2 + |c|2 = 1, we then obtain

|c|2 =
p2

1 + p2
2

2

[
(p1)2 + (p2)2 + (p3)2 + p3

√
(p1)2 + (p2)2 + (p3)2

] , (4.138)

and

|a|2 =

[
p3 +

√
(p1)2 + (p2)2 + (p3)2

]2

2

[
(p1)2 + (p2)2 + (p3)2 + p3

√
(p1)2 + (p2)2 + (p3)2

] . (4.139)

Since the diagonal components of Uσ̄µpµU
† involve ac and a∗c∗, from (4.135)×c and

(4.138) we obtain

ac =
p1 + ip2

p2
1 + p2

2

[
−p3 −

√
(p1)2 + (p2)2 + (p3)2

]
|c|2

=

[
−p3 −

√
(p1)2 + (p2)2 + (p3)2

]

2

[
(p1)2 + (p2)2 + (p3)2 + p3

√
(p1)2 + (p2)2 + (p3)2

] (
p1 + ip2

)
(4.140)
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a∗c∗ =

[
−p3 −

√
p2

1 + p2
2 + p2

3

]

2

[
(p1)2 + (p2)2 + (p3)2 + p3

√
(p1)2 + (p2)2 + (p3)2

] (
p1 − ip2

)
. (4.141)

Therefore, the (1, 1) component of UσµpµU
† becomes

[
Uσ̄µpµU

†]
(1,1)

=
(
p0 − p3

) |a|2 +
(
p0 + p3

) |c|2 +
(
p1 − ip2

)
ac +

(
p1 + ip2

)
a∗c∗

= p0 −
√

(p1)2 + (p2)2 + (p3)2

= p0 − |~p| , (4.142)

and the (2, 2) component of UσµpµU
† becomes

[
UσµpµU

†]
(2,2)

=
(
p0 + p3

) |a|2 +
(
p0 − p3

) |c|2 − (
p1 − ip2

)
ac− (

p1 + ip2
)
a∗c∗

= p0 +

√
(p1)2 + (p2)2 + (p3)2

= p0 + |~p| . (4.143)

The diagonalized operator has thus turned out to be

U (−σµpµ) U † =




p0 − |~p| 0

0 p0 + |~p|


 (4.144)

with

U =




a −c∗

c a∗


 , (4.145)

where a and c satisfy

|a|2 =

[
p3 +

√
(p1)2 + (p2)2 + (p3)2

]2

2

[
(p1)2 + (p2)2 + (p3)2 + p3

√
(p1)2 + (p2)2 + (p3)2

] , (4.146)

|c|2 =
(p1)

2
+ (p2)

2

2

[
(p1)2 + (p2)2 + (p3)2 + p3

√
(p1)2 + (p2)2 + (p3)2

] . (4.147)



133

Therefore we obtain

∫
dψ̃† (k) dψ̃ (k) ei

R
d4x(iψ̃†σ̄µ∂µψ̃) =

∫
dψ̃† (k) dψ̃ (k) det

(
U †) det (U)

· exp

[
−i

∫
d4p

(2π)4 ψ̃′†
(
Uσ̄µpµU

†) ψ̃′
]

=
π (2π)4

det [i (p0 − |~p|)]
π (2π)4

det [i (p0 + |~p|)]

=
π2 (2π)8

det
[−i

(
(p0)2 − |~p|2)] det (−i)

=
π2

det (ipµpµ) det (−i)
, (4.148)

where ψ̃′ = Uψ̃ and det (U) = det
(
U †) = 1.

It is consistent with our earlier Claim 2 to interpret the extra factor of det (−i)

as reflecting the need for an auxiliary field F . We therefore rewrite (4.148) as

∫
dψ̃†dψ̃ei

R
d4x(iψ̃†σµ∂µψ̃) =

1

det (ipµpµ) det (−i)

=

∫
dφdφ∗dFdF ∗e

i
R d4p

(2π)4
[−φ∗pµpµφ+F ∗F ]

=

∫
dφdφ∗dFdF ∗ei

R
d4x[φ∗∂µ∂µφ+F ∗F ]. (4.149)

The primitive spin 1/2 boson ψ̃ has thus been transformed into a spin 0 boson φ plus

an auxiliary field F .

Originally there were 4 degrees of freedom ψ̃, now transformed into 2 degrees

of freedom φ and 2 degrees of freedom F . Conservation of the number of degrees of

freedom, and the correct form of the action with φ and F , was achieved through a

straightforward mathematical transformation.

We have therefore obtained

S =

∫
d4x[φ∗∂µ∂µφ + F ∗F + ψf

†iσµ∂µψf ] (4.150)
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and standard SUSY has emerged as a low energy approximation within the present

fundamental theory.

F. Interpretation Using a Matrix Transformation

Our philosophy above (and throughout this dissertation) is that we are allowed to

perform any mathematical transformations, starting with the original theory in its

most primitive form, and ending with a theory that correctly describes experimental

observations, as long as the transformations are mathematically consistent and the

predictions for physical quantities 〈F 〉 = Z−1
∫

DΨ†DΨ FeiS are left unchanged. As

emphasized above, this means any functional integral is left unchanged.

If we assume a stable vacuum with no negative-energy bosonic states, the trans-

formation from ψ̃ to φ and F can be treated more explicitly. First, as we showed

above, the operator −σµpµ can be diagonalized by a unitary matrix U :

S =

∫
d4p

(2π)4

[
−ψ̃†σµpµψ̃

]

=

∫
d4p

(2π)4

[
−ψ̃†U †UσµpµU

†Uψ̃
]

=

∫
d4p

(2π)4


ψ̃′†




p0 − |~p| 0

0 p0 + |~p|


 ψ̃′


 , (4.151)

where

ψ̃′ = Uψ̃. (4.152)

with

ψ̃′ =




ψ̃′1

ψ̃′2


 . (4.153)
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Now we relate ψ̃′ to φ and F through




φ

F


 = M




ψ̃′1

ψ̃′2


 . (4.154)

(This transformation has determinant 1, and thus keeps the functional integral in-

variant, even though the trace is not conserved.) Then the action can be rewritten

as

S =

∫
d4p

(2π)4


ψ̃′†




p0 − |~p| 0

0 p0 + |~p|


 ψ̃′




=

∫
d4p

(2π)4


ψ̃′†MM−1




p0 − |~p| 0

0 p0 + |~p|


 M−1Mψ̃′




=

∫
d4p

(2π)4




(
φ∗ F ∗

)



(p0)
2 − |~p|2 0

0 1







φ

F







=

∫
d4x




(
φ∗ F ∗

)



∂µ∂µ 0

0 1







φ

F





 , (4.155)

where

M =




1√
p0+|~p| 0

0
√

p0 + |~p|


 , (4.156)

M−1 =




√
p0 + |~p| 0

0 1√
p0+|~p|


 , (4.157)

and we have shown that ψ̃ is transformed into φ and F by O = MU . Since both

det M and det U are 1, the functional integration stays the same.

Next we transform the source term for ψ̃ into the source terms for φ and F . The
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free field Lagrangian density of ψ̃ with a source term is written as

∫
d4xL =

∫
d4p

(2π)4

[
ψ̃† (−σµpµ) ψ̃ + Jψ̃ψ̃ + J†

ψ̃
ψ̃†

]
. (4.158)

When ψ̃ is transformed into φ and F by using the matrix O = MU , the Lagrangian

density is rewritten as

∫
d4xL =

∫
d4p

(2π)4

[
ψ̃† (−σµpµ) ψ̃ + Jψ̃ψ̃ + ψ̃†J†

ψ̃

]

=

∫
d4p

(2π)4 [−φ∗pµpµφ + F ∗F ]

+

∫
d4p

(2π)3

[
Jψ̃

(
U †M−1

)
MUψ̃ + ψ̃†U †M

(
M−1U

)
J†

ψ̃

]

=

∫
d4p

(2π)4

[−φ∗pµpµφ + F ∗F + Jφφ + φ∗J∗φ + JF F + F ∗J∗F
]
, (4.159)

where we have defined

Jψ̃U †M−1 =

(
Jφ JF

)
. (4.160)

G. Introduction of Gauge Fields with Supersymmetry

In Chapter III, we introduced the gauge field and gravitational vierbein simulta-

neously. However, in that chapter we saw that the action for the bosonic fields is

Lorentz-violating. In this chapter, we have shown that Lorentz invariance and cou-

pling to the gravitational vierbein are recovered at low energy, and that even standard

SUSY is recovered, but the argument above did not include coupling to the gauge

fields. We now set out to obtain the coupling of the transformed scalar boson fields φ

to the gauge fields (as opposed to the coupling of the original primitive bosonic fields

ψ̃ were obtained earlier).

We will show that the gauge fields can be introduced either before or after the

primitive spin 1/2 bosons are transformed into spin 0 bosons.
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1. Gauge Fields Introduced Before Spin 1/2 → Spin 0 Boson Transformation

With gauge fields present, there is no longer a separation of the Fourier-transformed

fields:

∫
d4x ψ̃† (x) σµAµ (x) ψ̃ (x)

=

∫
d4x

d4p

(2π)4

d4p′

(2π)4

d4p′′

(2π)4 e−ix·(p−p′−p′′)ψ̃† (p) σµAµ (p′) ψ̃ (p′′)

=

∫
d4p

d4p′

(2π)4

d4p′′

(2π)4 δ (p− p′ − p′′) ψ̃† (p) σµAµ (p′) ψ̃ (p′′)

=

∫
d4p′

(2π)4

d4p′′

(2π)4 ψ̃† (p′ + p′′) σµAµ (p′) ψ̃ (p′′)

=

∫
d4p

(2π)4

d4p′

(2π)4 ψ̃† (p) σµAµ (p− p′) ψ̃ (p′) .

However, since

Aµ (p− p′) =

∫
d4x e−i(p−p′)·xAµ (x)

and

A†
µ (p′ − p) =

∫
d4x ei(p′−p)·xA†

µ (x)

=

∫
d4x e−i(p−p′)·xAµ (x)

= Aµ (p− p′)

the matrix Aµ (p, p′) = Aµ (p− p′) with µ fixed is Hermitian and can be diagonalized

through a uniary transformation. (We have used the fact that Aµ (x) is Hermitian for

the original gauge fields before symmetry-breaking. Note that ψ̃ now has 2N rather

than 2 components for an N -dimensional nonabelian gauge representation, and that

Aµ is N × N . Nevertheless, one can diagonalize Aµ (p, p′) in both momentum space
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and in the N ×N gauge representation.) Then we can write

∫
d4p′d4p′′ ψ̃† (p′ + p′′) σµ

[
δp′+p′′,p′′p

′′
µ − Aµ (p′)

]
ψ̃ (p′′)

=

∫
d4p d4p′′ ψ̃† (p) σµ

[
δp,p′′p

′′
µ − Aµ (p− p′′)

]
ψ̃ (p′′)

=

∫
d4p d4p′ ψ̃′† (p) σµδp,p′

[
p′µ − A′

µ (p)
]
ψ̃′ (p′)

=

∫
d4p ψ̃′† (p) σµ

[
pµ − A′

µ (p)
]
ψ̃′ (p) .

(For simplicity, we have surpressed the index in the gauge representation, but it is

understood that A′
µ is diagonal also in this representation.) Then the arguments

from (4.123) to (4.149) still hold with pµ → pµ − A′
µ (p), and after undoing the

diagonalization and Fourier transform, we obtain (4.150) with ∂µ → Dµ.

2. Gauge Fields Introduced After Spin 1/2 → Spin 0 Boson Transformation

In an alternative approach, we start with the fundamental action

S = −
∫

dDx

[
− 1

2m
Ψ̃†∂M∂MΨ̃− µΨ̃†Ψ̃ +

1

2
b
(
Ψ̃†Ψ̃

)2
]

. (4.161)

When only the gravitational vierbein is introduced initially, the fields are written as

Ψ̃a (xµ, xm) = Uext (xµ) ψ̃r
a (xµ) ψ̃int

r (xm) , (4.162)

and we have

∂µΨ̃a = Uext (xµ) (∂µ + imvµασα) ψ̃r
aψ̃

int
r (4.163)
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so

∫
dD−4x Ψ̃†

a ∂µ∂µ Ψ̃a =

∫
dD−4x ψ̃int†

r ψ̃r†
a ηµν (∂µ + imvµασα)

· (∂ν + imvνβσβ
)
ψ̃s

aψ̃
int
s

= ψ̃r†
a ηµν〈r| (∂µ + imvµασα)

∑
t

|t〉〈t| (
∂ν + imvνβσβ

) |s〉 ψ̃s
a

= ψ̃r†
a ηµνδrt (∂µ + imvµασα) δts

(
∂ν + imvνβσβ

)
ψ̃s

a (4.164)

where (3.35) has been used. The action (4.161) then becomes

Sa =

∫
d4x ψ̃a

†δrtδts(
1

2m
∂µ∂µ +

1

2
ivµ

ασα∂µ

+
1

2
∂µiv

µ
ασα − 1

2
mvαµvα

µ + µext)ψ̃a, (4.165)

instead of (3.68). The approximations above (3.40), (3.32), and (3.41) imply that

Sa =

∫
d4x ψ̃a

†δrtδts

(
1

2m
∂µ∂µ + ieµ

ασα∂µ

)
ψ̃a

→
when p¿m

∫
d4x ψ̃a

†δrtδtsie
µ
ασα∂µψ̃a. (4.166)
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The functional integration with respect to the fundamental boson is

Z (xi) =

∫
dψ̃†a (xi) dψ̃a (xi) ei

R
d4x ψ̃a

†(−i)δrtδtseµ
ασα∂µψ̃a

=
π2

det (−δrtδtse
µ
ασα∂µ)

=
π2

det
(−iδrtδtsηαβeµ

α∂µeν
β∂ν

)
det (−iδrtδts)

≈ π2

det (−iδrtδtsgµν∂µ∂ν) det (−iδrtδts)

=

∫
dφ∗a (xi) dφa (xi) dF ∗

a (xi) dFa (xi)

· ei
R

d4x [φ∗aδrtδtsgµν∂µ∂νφa(p)+F ∗a δrtδtsFa], (4.167)

where we have assumed that ∂µe
ν
α is negligible as in (3.40). Then the action is

rewritten as

Sa =

∫
d4x [φ∗ag

µνδrtδts∂µ∂νφa + F ∗
a δrtδtsFa] . (4.168)

The internal rotation matrix Ũint (xµ, xm) has not been shown explicitly above. First,

in the trivial case when Ũint is a function of only the internal coordinates xm, we

would just have

Sa =

∫
d4x [φ∗ag

µνδrtδts∂µ∂νφa + F ∗
a δrtδtsFa]

=

∫
d4x [φr∗

a gµν (δrt∂µ) (δts∂ν) φs
a + F r∗

a δrtδtsF
s
a ]

=

∫
d4x[φr∗

a gµν〈r| (∂µ)
∑

t

|t〉〈t| (∂ν) |s〉φs
a

+ F r∗
a

∑
t

〈r|1|t〉〈t|1|s〉F s
a ]

=

∫
dDx

[
φint∗

r φr∗
a gµν (∂µ) (∂ν) φs

aφ
int
s + F int∗

r F r∗
a F s

aF int
s

]

=

∫
dDx [Φ∗

ag
µν (∂µ) (∂ν) Φa + F ∗

aF a] , (4.169)
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where

∫
dD−4xφint∗

r φint
s = 〈r|s〉φ = δrs, (4.170)

∫
dD−4xF int∗

r F int
s = 〈r|s〉F = δrs, (4.171)

and

Φa (xµ, xm) = φs
aφ

int
s , (4.172)

F a = F s
aF int

s . (4.173)

Now consider the nontrivial internal rotation matrix Ũint (xµ, xm) which we al-

ready considered in Chapter III:

Φa (xµ, xm) → Ũint (xµ, xm) Φa (xµ, xm) , (4.174)

F a (xµ, xm) → Ũint (xµ, xm) F a (xµ, xm) . (4.175)

After these internal rotations are introduced, the action becomes

Sa =

∫
dDx [Φ∗

ag
µν (∂µ) (∂ν) Φa + F ∗

aF a]

=

∫
dDx[φint∗

r φr∗
a gµν (∂µ + imvµcσ

c)

· (∂ν + imvνdσ
d
)
φs

aφ
int
s + F int∗

r F r∗
a F s

aF int
s ]

=

∫
d4x[φr∗

a gµν〈r| (∂µ + imvµcσ
c)

∑
t

|t〉

· 〈t| (∂ν + imvνdσ
d
) |s〉φs

a + F r∗
a 〈r|

∑
t

|t〉 〈t|s〉F s
a ]

=

∫
d4x

[
φr∗

a gµν
(
δrt∂µ − iAi

µt
rt
i

) (
δts∂ν − iAj

νt
ts
j

)
φs

a + F r∗
a δrtδtsF

s
a

]

=

∫
d4x

[
φ∗ag

µν
(
∂µ − iAi

µti
) (

∂ν − iAj
νtj

)
φa + F ∗

a Fa

]
(4.176)
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where we define as before

mvµcσ
c = −Ai

µσi, (4.177)

σi = mKn
i vncσ

c, (4.178)

trs
i = 〈r| (−iKi) |s〉 . (4.179)

In this alternative approach we have again obtained the gauge interactions for scalar

boson, as a low energy approximation.

H. Primitive Gaugino and Gravitino Fields

Let us now consider more general rotations which mix bosonic and fermionic degrees

of freedom. First consider the global supersymmetry transformation

Ψ → Ψ′ = U Ψ (4.180)

or, with bosonic and fermionic fields shown separately,




Ψb

Ψf


 →




Ψ′
b

Ψ′
f


 =



Ubb Ubf

Ufb Uff







Ψb

Ψf


 . (4.181)

If

U †U = 1 (4.182)

the action

S =

∫
dDx

[
1

2m
∂MΨ†∂MΨ− µΨ†Ψ +

1

2
b
(
Ψ†Ψ

)2
]

(4.113)

is invariant under this transformation, so the theory has a primitive supersymmetry

according to the definition given above. The elements of Ubb and Uff are ordinary

commuting variables, like the components of Ψb. The elements of Ubf and Ufb are

anticommuting Grassmann variables, like the components of Ψf .
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Now let us replace the picture of a rotating GUT-scale condensate by a more

general picture in which all the fields of the vacuum contain a rotation described by

a supermatrix U which varies as a function of the spacetime coordinates. With a

possible redefinition of the fermion fields, we can choose Uff = Ubb and write

Ψvac = U n1/2
vac Ψ0 (4.183)

where Ψ0 is constant and

Ψvac = 〈Ψ〉vac =



〈Ψb〉vac

〈Ψf〉vac


 (4.184)

U =



Ubb Ubf

Ufb Ubb


 (4.185)

Ψ0†Ψ0 = 1 . (4.186)

The generalizations of our earlier equations in Chapter III with no mixing of

bosons and fermions, are

mV µ = −iU−1∂µU (4.187)

∂mU = ∂mU = i U m vm (4.188)

V M = V M
α σα + V M

c σc , VM = VMασα + VMcσ
c (4.189)

Eµc = Ai
µK

n
i vnc (4.190)

Eµc = −Vµc (4.191)

where the last two expressions in (4.188) implicitly multiply a 2× 2 identity matrix,

and it is assumed that the internal coordinate space contains no supersymmetric

rotations.
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The fact that U is unitary implies that ∂MU †U = −U †∂MU with U † = U−1, or

mVM = i∂MU †U (4.192)

so that

V †
M = VM , V M† = V M . (4.193)

We can then write, e.g.,

V M =




V M
bb V M

bf

V M†
bf V M

bb


 . (4.194)

At this point, the logic in Chapter III can be repeated with

vM → VM , vM → V M (4.195)

eµ
α → E µ

α =




eµ
α fµ

α

fµ†
α eµ

α


 (4.196)

Ai
µ → Ai

µ =




Ai
µ Bi

µ

Bi†
µ Ai

µ


 . (4.197)

In particular, we obtain

Ψ (xµ, xm) = U (xµ, xm) Ψr (xµ) ψint
r (xm) , (4.198)

∂µΨ = U (xµ, xm) (∂µ + imVµασα + imVµcσ
c) Ψrψint

r (4.199)
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∫
ddx Ψ† ∂µ∂µ Ψ =

∫
ddxψint†

r Ψr†ηµν (∂µ + imVµασα + imVµcσ
c)

× (
∂ν + imVνβσβ + imVνdσ

d
)
Ψsψint

s

= Ψr† ηµν〈r| (∂µ + imVµασα + imVµcσ
c)

×
∑

t

|t〉〈t| (
∂ν + imVνβσβ + imVνdσ

d
) |s〉Ψs

= Ψr† ηµν
[
δrt (∂µ + imVµασα)− iAi

µt
rt
i

]

× [
δts

(
∂ν + imVνβσβ

)− iAj
νt

ts
j

]
Ψs

= Ψ†
ext η

µν
[(

∂µ − iAi
µti

)
+ imVµασα

]

× [(
∂ν − iAj

νtj
)

+ imVνβσβ
]

Ψext (4.200)

SL =

∫
d4x Ψ†

ext×
(

1

2m
DµDµ +

1

2
iV µ

α σαDµ +
1

2
DµiV

µ
α σα − 1

2
mV µ

α Vµα + µext

)
Ψext (4.201)

where

Dµ = ∂µ − iAi
µti . (4.202)

We also have the generalization

Ψ0†n1/2
vac

[(
1

2
mV µVµ − 1

2m
∂µ∂µ − µext

)
− i

(
1

2
∂µVµ + V µ∂µ

)]
n1/2

vacΨ
0 = 0 . (4.203)

Adding this equation to its Hermitian conjugate gives a still more general Bernoulli

equation

1

2
mΨ0† V µVµ Ψ0 + Pext = µext (4.204)

where

Pext = − 1

2m
n−1/2

vac ∂µ∂µn
1/2
vac. (4.205)

As before, it is assumed that the basic texture of the vacuum field rotations is such
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that

V k
0 = V 0

a = 0 , k, a = 1, 2, 3, (4.206)

and that the nonzero gauge potentials are not coupled to Ψ0 at energies well below

the GUT scale,, so that (4.204) reduces to

1

2
mV µ

α Vαµ + Pext = µext. (4.207)

When ∂µn
1/2
vac and ∂µVµ are neglected, (4.201) then simplifies to

SL =

∫
d4x Ψ†

ext

(
1

2m
DµDµ + iEµ

ασαDµ

)
Ψext . (4.208)

Since m is comparable to the Planck mass, it is reasonable to assume that the first

term can be neglected, giving

SL =

∫
d4x Ψ†

ext E
µ
ασαDµ Ψext (4.209)

or, with eµ
α again slowly varying,

SL =

∫
d4x e Ψ

†
ext E

µ
ασαDµ Ψext (4.210)

Ψext = e−1/2 Ψext , e = det (eαµ) . (4.211)

According to (4.196) and (4.197), the bosonic fields play the same role as before.

Namely, eµ
α is the vierbein representing the gravitational field, and Ai

µ is the potential

representing the gauge fields of a grand-unified theory – an SO(10) theory [63],[64],[65]

if the dimension of the internal space is 10. The fermionic fields can be interpreted in

an equally simple way: namely, fµ
α corresponds to a spin 2 gravitino and Bi

µ to spin 1

gauginos. Again, we have generalized the usual vocabulary, so that the superpartner

of the graviton is defined to be the gravitino, and the superpartners of gauge bosons to

be gauginos, even though these fermions would have quite unconventional properties
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in their initial primitive forms. However, just as in the case of the sfermions, these

primitive superpartners must be transformed to the physical gauginos and gravitinos

of standard SUSY. We will partially accomplish this in the present dissertation, and

will give a more complete treatment elsewhere.

I. Spin 1 Gaugino Transformed to Spin 1/2 Gaugino

When the gauge and gaugino fields are introduced before the sfermion is transformed

into a spin 0 scalar field, at low energy the action is given by

S =

∫
d4x




(
ψ̃†α̇ ψ†α̇

)



iσ̄µα̇α∂µ gσ̄µα̇αÃµ

gσ̄µα̇αÃ†
µ iσ̄µα̇α∂µ







ψ̃α

ψα





 . (4.212)

When we define



iσ̄µα̇α∂µ gσ̄µα̇αÃµ

gσ̄µα̇αÃ†
µ iσ̄µα̇α∂µ


 =




A C

D B


 , (4.213)

the action is

S =

∫
d4x




(
ψ̃† ψ†

)



A C

D B







ψ̃α

ψα







=

∫
d4x

[(
ψ̃† ψ†

)



1 0

DA−1 1




·




A 0

0 B −DA−1C







1 A−1C

0 1







ψ̃

ψ




]
(4.214)
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and then the functional integral is

Z =

∫
Dψ̃†Dψ̃Dψ†Dψ eiS

=

∫
Dψ̃†Dψ̃Dψ†Dψ exp

[
i

∫
d4x

(
ψ̃† ψ†

)



1 0

DA−1 1




·




A 0

0 B −DA−1C







1 A−1C

0 1







ψ̃

ψ




]

=

∫
Dψ̃′†Dψ̃′Dψ′†Dψ′sdet







1 0

DA−1 1




−1
 sdet







1 A−1C

0 1




−1


· exp

[
i

∫
d4x

(
ψ̃′† ψ′†

)



A 0

0 B −DA−1C







ψ̃′

ψ′




]

=

∫
Dψ̃′†Dψ̃′Dψ′†Dψ′

· exp

[
i

∫
d4x

(
ψ̃′† ψ′†

)



A 0

0 B −DA−1C







ψ̃′

ψ′




]
(4.215)
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where we have used

sdet (M1M2) = sdetM1sdetM2

M

M
= 1 → sdet

(
M

M

)
= 1

→ sdet (M) sdet

(
1

M

)
= 1

→ sdet

(
1

M

)
=

1

sdet (M)
, (4.216)

sdet




1 0

DA−1 1


 = sdet




1 A−1C

0 1


 = 1. (4.217)

Since A and B −DA−1C are not diagonal matrices, we define unitary operators by

Adiag = Uψ̃AU †
ψ̃
, (4.218)

ψ̃′diag = Uψ̃ψ̃′, (4.219)

(
B −DA−1C

)
diag

= Uψ

(
B −DA−1C

)
U †

ψ (4.220)

ψ′diag = Uψψ′, (4.221)

and the action is rewritten as

Z =

∫
Dψ̃′†diagDψ̃′diagDψ′†diagDψ′diag exp

[
i

∫
d4x

(
ψ̃′†diag ψ′†diag

)

·




Adiag 0

0 (B −DA−1C)diag







ψ̃′diag

ψ′diag




]
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=
∏

j

π2

det (iAdiag)
det

(
i
(
B −DA−1C

)
diag

)

=
∏

j

π2

det (−i∂µ∂µ) det (−i)
det

(
i
(
B −DA−1C

)
diag

)

=

∫
Dφ′∗diagDφ′diagDF ′∗

diagDF ′
diagDψ′†diagDψ′diag

· exp[i

∫
d4x[

(
φ′∗diag F ′∗

diag ψ′†diag

)

·




∂µ∂
µ 0 0

0 1 0

0 0 (B −DA−1C)diag







φ′diag

F ′
diag

ψ′diag




=

∫
Dφ′∗Dφ′DF ′∗DF ′Dψ′†Dψ′

· exp

[
i

∫
d4x[

(
φ′∗ F ′∗ ψ′†

)

·




∂µ∂
µ 0 0

0 1 0

0 0 iσ̄µ∂µ − gσ̄µÃ†
µ (iσ̄ν∂ν)

−1 gσ̄ξÃξ







φ′

F ′

ψ′




]
(4.222)

This is the fermion-sfermion decoupled formalism.

On the other hand, the action with a standard spin 1/2 gaugino (here the gauge
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field is not included for simplicity) is

S =

∫
d4x




(
φ∗ F ∗ ψ†α̇

)



∂µ∂µ 0 −√2gλα

0 1 0

−√2gλ†α̇ 0 iσ̄µ∂µ







φ

F

ψα







=

∫
d4x

[(
φ∗ F ∗ ψ†

)



1 0

DA−1 1




·




A 0

0 B −DA−1C







1 A−1C

0 1







φ

F

ψ




]
, (4.223)

where



A2×2 C2×1

D1×2 B1×1


 =




∂µ∂µ 0 −√2gλα

0 1 0

−√2gλ†α̇ 0 iσ̄µ∂µ




(4.224)

Then the functional integration is given by

Z =

∫
Dφ∗DφDF ∗DFDψ†Dψ exp

[
i

∫
d4x

(
φ∗ F ∗ ψ†

)



1 0

DA−1 1




·




A 0

0 B −DA−1C







1 A−1C

0 1







φ

F

ψ




]
. (4.225)
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Then by redefining the fields as




φ′

F ′

ψ′




=




1 A−1C

0 1







φ

F

ψ




, (4.226)

(
φ′∗ F ′∗ ψ′†

)
=

(
φ∗ F ∗ ψ†

)



1 0

C† (A−1)
†

1




=

(
φ∗ F ∗ ψ†

)



1 0

D (A−1)
†

1


 (4.227)

we obtain

Z =

∫
Dφ∗DφDF ∗DFDψ†Dψ exp

[
i

∫
d4x

(
φ′∗ F ′∗ ψ′†

)

·




A 0

0 B −DA−1C







φ′

F ′

ψ′




]

=

∫
Dφ′∗Dφ′DF ′∗DF ′Dψ′†Dψ′sdet




1 0

DA−1 1


 sdet




1 A−1C

0 1




· exp

[
i

∫
d4x

(
φ′∗ F ′∗ ψ′†

)



DµDµ 0 0

0 1 0

0 0 B −DA−1C







φ′

F ′

ψ′




]
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=

∫
Dφ′∗Dφ′DF ′∗DF ′Dψ′†Dψ′ exp[i

∫
d4x

(
φ′∗ F ′∗ ψ′†

)

·




∂µ∂µ 0 0

0 1 0

0 0 iσ̄µ∂µ −
(
−√2gλ† 0

)



∂µ∂µ 0

0 1




−1 

−√2gλ

0










φ′

F ′

ψ′




=

∫
Dφ′∗Dφ′DF ′∗DF ′Dψ′†Dψ′ exp

[
i

∫
d4x

(
φ′∗ F ′∗ ψ′†

)

·




∂µ∂µ 0 0

0 1 0

0 0 iσ̄µ∂µ − 2g2λ† 1
∂µ∂µ

λ







φ′

F ′

ψ′




]
, (4.228)

and this is the fermion-sfermion decoupled formalism of the usual SUSY.

Comparing the result from our primitive SUSY and standard SUSY, we see that

the condition required for the two results to be identical is

ig2σ̄µȧbÃ†
µ

σκ
bḃ
∂κ

2∂ν∂ν

σ̄ξḃcÃξ = −2g2λ†ȧ
1

∂µ∂µ

λc. (4.229)

Then as an example we can take

λc = ηḃσ̄
ξḃcÃξ (4.230)

λ†ȧ = Ã†
µσ̄

µȧbηb (4.231)

where we have defined

ηbηḃ = − i

4
σκ

bḃ
∂κ. (4.232)
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We need to check the existence of ηb. The matrix ηbηḃ is written as

ηbηḃ =




η1η1̇ η1η2̇

η2η1̇ η2η2̇


 (4.233)

and the determinant is

det ηbηḃ = 0. (4.234)

Therefore, when the determinant of the right hand side of (4.232) is zero, ηb exists.

This determinant is

det

(
− i

4
σκ

bḃ
∂κ

)
= − 1

16
(∂0∂0 − ∂1∂1 − ∂2∂2 − ∂3∂3) , (4.235)

and only when we have

∂0∂0 − ∂1∂1 − ∂2∂2 − ∂3∂3 = 0 (4.236)

does ηb exist. We leave a more general treatment of gauginos and gravitinos for

further work which will extend the results of this dissertation.
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CHAPTER V

STATISTICAL ORIGIN OF THE BOSONIC ACTION

In this chapter we turn to a different issue, following a treatment in Ref. [47] which

is included in this dissertation for completeness. Here we consider the origin of the

phenomenological action (4.113). We will show that this action follows from a simple

microscopic and statistical picture. Our starting point is a single fundamental system

which consists of Nw identical “whits”, with Nw variable. (“Whit”, whose meanings

include “particle” and “least possible amount”, is an appropriate name for the irre-

ducible objects that are postulated here.) Each whit can exist in any of Mw states,

with the number of whits in the ith state represented by ni. A microstate of the

fundamental system is specified by the number of whits and the state of each whit.

A macrostate is specified by only the occupancies ni of the states.

As discussed below, D of the states are used to define D coordinates xM in

Euclidean spacetime, mw of the states are used to define observable fields φk, and the

remaining (Mw −mw −D) states may be regarded as corresponding to fields that are

unobservable (at least at the energy scales considered here).

Let us begin by defining an initial set of coordinates XM in terms of the occu-

pancies nM :

XM = ±nMa0 (5.1)

where M = 0, 1, ..., D− 1. It is convenient to include a fundamental length a0 in this

definition, so that we can later express the coordinates in conventional units. As one

might expect, a0 will eventually turn out to be comparable to the Planck length:

a0 ∼ `P = (16πG)1/2 (5.2)

since a0 = m−1 ∼ m−1
P = `P according to (5.32).
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With the definition (5.1), positive and negative coordinates correspond to the

same occupancies. There are two relevant facts, however, which make this definition

physically acceptable: First, two points whose coordinates differ by a minus sign are

typically separated by cosmologically large distances. Second, and more importantly,

the fields φk need not return to their original values when they are evolved, according

to their equation of motion, from points with positive coordinates to points with

negative coordinates. I. e., the classical field configurations described by the two

sets of points can be regarded as distinct, and in this sense the points themselves

are distinct. The different branches of the field configuration are analogous to the

branches of a multivalued function like z1/2, which are taken to correspond to distinct

Riemann sheets.

At extremely small distances, spacetime is discrete in the present theory, with a

finite interval between two adjacent points XM and XM +δXM : δXM = a0. The XM

are divided into 4 external coordinates Xµ and (D − 4) internal coordinates Xm. In

the internal space it is natural to have variations on a length scale that is comparable

to `P . In external spacetime, on the other hand, we wish to consider fields which vary

much more slowly, and it is convenient to average over a more physically meaningful

length scale. Let us therefore consider a D-dimensional rectangular box centered on

a point X̄, with XM ranging from X̄M − aM/2 to X̄M + aM/2. For the (D − 4)

coordinates of internal space, am is taken to be the original fundamental length a0.

For the 4 coordinates of external spacetime, aµ is taken to be an arbitrary length a,

and we will find that the final form of the action is independent of this parameter.

In this coarse-grained picture, the density of whits in the ith state is

ρi

(
X̄

)
= Ni/∆V , i = 1, 2, ..., Mw (5.3)
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where

Ni =
∑
X

ni (X) , ∆V =
∏
M

aM = a4aD−4
0 (5.4)

and the values of X are those lying within the box centered on X̄. Let

φ2
k = ρk , k = 1, 2, ..., mw. (5.5)

The initial bosonic fields φk are then real (but defined only up to a phase factor ±1).

Let S̄
(
X̄

)
be the entropy of the single box at X̄ for a given set of densities ρi, as

defined by S̄
(
X̄

)
= log W

(
X̄

)
(in units with kB = ~ = c = 1). Here W

(
X̄

)
is the to-

tal number of microstates in this box at fixed ρi or Ni: W
(
X̄

)
= N (

X̄
)
!/Πi Ni

(
X̄

)
!,

with

N (
X̄

)
=

∑
i

Ni

(
X̄

)
. (5.6)

The total number of available microstates for all points X̄ is W = ΠX̄ W
(
X̄

)
, so the

total entropy is

S̄ =
∑

X̄

S̄
(
X̄

)
(5.7)

S̄
(
X̄

)
= log Γ

(N (
X̄

)
+ 1

)−
∑

i

log Γ
(
Ni

(
X̄

)
+ 1

)
. (5.8)

It follows that

∂S̄

∂Ni

(
X̄

) = ψ
(N (

X̄
)

+ 1
)− ψ

(
Ni

(
X̄

)
+ 1

)
(5.9)

∂2S̄

∂Ni′
(
X̄

)
∂Ni

(
X̄

) = ψ (1)
(N (

X̄
)

+ 1
)− ψ(1)

(
Ni

(
X̄

)
+ 1

)
δi′i (5.10)

where ψ (z) = d log Γ (z) /dz and ψ(n) (z) = dn+1 log Γ (z) /dzn+1 are the digamma



158

and polygamma functions, with the asymptotic expansions [81]

ψ (z) = log z − 1

2z
−

∞∑

l=1

B2l

2l z2l
(5.11)

ψ(n) (z) = (−1)n−1

[
(n− 1)!

zn
+

n!

2zn+1
+

∞∑

l=1

B2l
(2l + n− 1)!

(2l)! zn+2l

]
(5.12)

as z → ∞. For a À `P , we have N (
X̄

)
>>> n̄µ =

(
X̄µ/a0

)2
>>> 1 , so it is an

extremely good approximation to write

∂S̄

∂Nk

(
X̄

) = logN (
X̄

)− ψ
(
Nk

(
X̄

)
+ 1

)
(5.13)

∂2S̄

∂Nk′
(
X̄

)
∂Nk

(
X̄

) = −ψ(1)
(
Nk

(
X̄

)
+ 1

)
δk′k. (5.14)

We could express S̄ as a Taylor series expansion about the bare vacuum with

φk

(
X̄

)
= 0 for all k and X̄:

S̄ = Sbare +
∑

X̄,k

∑
n

bn

(
X̄

)
Nk

(
X̄

)n
(5.15)

b1

(
X̄

)
= logNbare

(
X̄

)− ψ (1) (5.16)

bn+1 = −ψ(n) (1) /n! , n = 1, 2, ... (5.17)

with

ψ (1) = −γ , γ = Euler’s constant (5.18)

ψ(n) (1) = (−1)n+1 n! ζ (n + 1) (5.19)

where Nbare

(
X̄

)
is the value of N (

X̄
)

when Nk

(
X̄

)
= 0 for all the observable

states k and ζ (z) is the zeta function. This is not physically appropriate, however,

because bosonic fields exhibit extremely large zero-point fluctuations in the physical

vacuum [82]. (These are analogous to the zero-point oscillations 〈x2〉 of a harmonic
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oscillator, but with a very large number of modes extending up to a Planck-scale

cutoff.) In fact, it is consistent with both standard physics and the treatment of this

paper to assume that

〈
φ2

k

〉
vac

= 〈ρk〉vac = 〈Nk〉vac /∆V ∼ `−D
P . (5.20)

Since there is no initial distinction between the states φk, it is reasonable to perform

a Taylor series expansion about the same value Nvac for each k, where

Nvac ∼ `−D
P ∆V ∼ (a/`P )4 >>> 1 (5.21)

if, e.g., a−1 ∼ 1010 TeV (with `−1
P = mP ∼ 1015 TeV). It is then an extremely good

approximation to use the asymptotic formulas above and write

S̄ = Svac +
∑

X̄,k

a1∆Nk

(
X̄

)
+

∑

X̄,k

a2

[
∆Nk

(
X̄

)]2
(5.22)

∆Nk

(
X̄

)
= Nk

(
X̄

)−Nvac (5.23)

a1 = logNvac − log Nvac , a2 = −1/ (2Nvac) (5.24)

whereNvac

(
X̄

)
is the value ofN (

X̄
)

when Nk

(
X̄

)
= Nvac for all k, and the neglected

terms are of order
[
∆Nk

(
X̄

)
/Nvac

]n
∆Nk

(
X̄

)
, n ≥ 2.

It is not conventional or convenient to deal with ∆Nk and (∆Nk)
2, so let us in-

stead write S̄ in terms of the fields φk and their derivatives ∂φk/∂xM via the following

procedure: First, we can switch from the original points X̄, which are defined to be

the centers of the boxes, to a new set of points X̃, which will be defined to be the

corners of the boxes. It is easy to see that

S̄ = Svac +
∑

eX,k

a1

〈
∆Nk

(
X̄

)〉
+

∑

eX,k

a2

〈[
∆Nk

(
X̄

)]2
〉

(5.25)

where 〈· · · 〉 in the present context indicates an average over the 2D boxes labeled
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by X̄ which have the common corner X̃. Second, we can write ∆Nk = ∆ρk∆V =

(〈∆ρk〉+ δρk) ∆V , with 〈δρk〉 = 0:

S̄ = Svac +
∑

eX,k

a1 〈〈∆ρk〉+ δρk〉∆V +
∑

eX,k

a2

〈
(〈∆ρk〉+ δρk)

2〉 (∆V )2 (5.26)

= Svac +
∑

eX,k

a1 〈∆ρk〉∆V +
∑

eX,k

a2

[〈∆ρk〉2 +
〈
(δρk)

2〉] (∆V )2 . (5.27)

Each of the 2D points X̄ surrounding X̃ is displaced by ±a/2 along the xµ axes and

±a0/2 along the xm axes. The last term above can therefore be rewritten

〈
(δρk)

2〉 =
∑

µ

(
∂ρk

∂Xµ

)2 (a

2

)2

+
∑
m

(
∂ρk

∂Xm

)2 (a0

2

)2

(5.28)

=
∑

µ

ρk

(
∂φk

∂Xµ

)2

a2 +
∑
m

ρk

(
∂φk

∂Xm

)2

a2
0 (5.29)

where the neglected terms involve higher derivatives and higher powers of a and a0.

Since ρk = ρvac + ∆ρk, with ∆ρk <<< ρvac = Nvac/∆V for normal fields, it is an

extremely good approximation to replace ρk by ρvac in the above expression, and to

neglect the term involving a2 (∆V )2 (∆ρk)
2 = − (∆Nk)

2 /2Nvac, so that we have

S̄ = S ′vac +
∑

eX,k

∆V

{
µφ̄2

k −
1

2m

[∑
µ

(
∂φ̄k

∂Xµ

)2 (
a

a0

)2

+
∑
m

(
∂φ̄k

∂Xm

)2
]}

(5.30)

where

m = a−1
0 , µ = m (logNvac − log Nvac) , φ̄k = φk/m (5.31)

and S ′vac = Svac −
∑

eX,k Nvac (logNvac − log Nvac). Recall that

m ∼ mP = `−1
P . (5.32)

The philosophy behind the above treatment is simple: We essentially wish to
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replace 〈f 2〉 by (∂f/∂x)2, and this can be accomplished because

〈
f 2

〉− 〈f〉2 =
〈
(δf)2〉 ≈ 〈

(∂f/∂x)2 (δx)2〉 = (∂f/∂x)2 (a/2)2 . (5.33)

The form of (5.30) also has a simple interpretation: The entropy S̄ increases with the

number of whits, but decreases when the whits are not uniformly distributed.

In the continuum limit,

∑

eX
∆V =

∑

eX
a4aD−4

0 →
∫

dDX =

∫ ∞

a

d4X

∫ ∞

a0

dD−4X (5.34)

(5.30) becomes

S̄ = S ′vac +

∫ ∞

a

d4X

∫ ∞

a0

dD−4X
∑

k

×
{

µφ̄2
k −

1

2m

[∑
µ

(
∂φ̄k

∂Xµ

)2 (
a

a0

)2

+
∑
m

(
∂φ̄k

∂Xm

)2
]}

= S ′vac +

∫ ∞

a0

dDx
∑

k

[
µΦ2

k −
1

2m

∑
M

(
∂Φk

∂xM

)2
]

(5.35)

where

xm = Xm , xµ = (a0/a) Xµ , Φk = (a0/a)2 φ̄k. (5.36)

The lower limit on each integral is the cutoff imposed by the size of the rectangular

boxes used in the coarse-graining above: a for Xµ, a0 for Xm, and a0 for any xM .

The continuum limit is an extremely good approximation for slowly varying fields in

external spacetime, but only a moderately good approximation within the internal

space, where the order parameter varies on a length scale comparable to `P . This

implies that terms involving higher derivatives ∂nφ̃k/∂ (xm)n can be significant in the

internal space.

Notice that the final form (5.35) is independent of the arbitrary length a which

was used for coarse-graining in external spacetime. The fields must be rescaled as a
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is varied, but this is already a familiar feature in standard physics [83].

A physical configuration of all the fields φk (x) corresponds to a specification of

all the densities ρk (x). In the present picture, the probability of such a configura-

tion is proportional to W = eS̄. In the Euclidean path integral, the probability is

proportional to e−SE , where SE is the Euclidean action. We conclude that

SE = −S̄ + constant. (5.37)

Choosing the constant to be zero, and employing the Einstein summation convention

for all repeated indices, we obtain

SE = −S ′vac +

∫
dDx

(
1

2m

∂Φk

∂xM

∂Φk

∂xM
− µΦkΦk

)
. (5.38)

The above result neglects interactions among the observable and unobservable

fields, which will arise from the higher-order terms neglected above. Since a detailed

treatment of these interactions would be quite complicated, we resort at this point

to a phenomenological description: We assume that probability can flow out of and

into each field, and that this effect can be modeled by a random optical potential iṼ

which has a Gaussian distribution, with

〈
Ṽ

〉
= 0 ,

〈
Ṽ (x) Ṽ (x′)

〉
= b δ (x− x′) (5.39)

where b is a constant.

If we also assume that the number of observable real fields Φk is even, we can

group them in pairs to form complex fields Ψb,k. Then we finally have SE = S0 +

S̄E

[
Ψb, Ψ

†
b

]
with

S̄E

[
Ψb, Ψ

†
b

]
=

∫
dDx

(
1

2m
∂MΨ†

b∂MΨb − µ Ψ†
bΨb + iṼ Ψ†

bΨb

)
(5.40)

where Ψb is the vector with components Ψb,k. This is the starting point for the
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discussion following Eq. (4.103) on page 125.
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CHAPTER VI

CONCLUSION

Here we will summarize the logical development of the present theory, starting with

the microscopic statistical picture at the end of this dissertation, and finishing with

the Standard Model presented at the beginning.

As mentioned in the Introduction, our microscopic picture is motivated by the

fact that a Euclidean path integral in quantum physics is equivalent to a partition

function in statistical physics. This suggests that a fundamental description of Nature

should start with some sort of statistical picture. The true picture is likely be richer

than the one presented here, in the same sense that the description of the hydrogen

atom in quantum electrodynamics is richer than the Bohr model, but it may never-

theless be related more closely to the ideas presented here than to those which are

currently more fashionable.

The present theory is more ambitious than other attempts at a fundamental the-

ory in that it aspires to explain the origins of

• Lorentz invariance

• gravity

• gauge fields and their symmetry

• supersymmetry

• fermionic fields

• bosonic fields

• quantum mechanics

• spacetime.

At the same time, it involves the familar concepts of grand unification, supersymme-

try, higher dimensions, and topological defects.
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The present theory begins by postulating a single fundamental system which

consists of Nw identical but distinguishable “whits”, with Nw variable. Each whit

can exist in any of Mw states, with the number of whits in the ith state represented

by ni. A microstate of the fundamental system is specified by the number of whits

and the state of each whit. A macrostate is specified by only the occupancies ni of

the states.

D of the states are used to define D coordinates xM in Euclidean spacetime, with

the value of xM proportional to the occupancy nM . Spacetime is then discrete, with

a lattice spacing that is comparable to the Planck length `P . There is consequently

an energy cutoff comparable to the Planck energy mP (in units with ~ = c = 1). mw

of the states are used to define real bosonic fields φk, with φ2
k proportional to the

density of whits in the kth state. Later the real fields are combined in pairs to form

complex bosonic fields.

We compute the entropy S̄ to lowest order in the fields and their derivatives,

and then define the Euclidean action S by S = −S̄. The result (5.38) does not have

a lower bound, so we must add the assumption that there is an unspecified perturb-

ing environment which can be represented by the addition of a random imaginary

potential to finally yield (5.40).

Fermionic fields and a primitive form of supersymmetry are obtained in Chapter

IV, via a simplified version of the arguments used to introduce unphysical versions

of SUSY in the context of disordered systems in condensed matter physics. Random

fluctuations in the imaginary potential, due to an unseen perturbing environment,

have been eliminated and replaced by the new fermionic variables, with the calculated

value of any physical quantity F left unchanged.

The next step is a transformation from Euclidean to Lorentzian time, via an

inverse Wick rotation. It is important to recognize that a single Lorentzian time is
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obtained from all Euclidean times. I.e., one must regard the physical reality at a single

Lorentzian time as a superposition of contributions from all of the original Euclidean

times. It is also important to recognize that classical trajectories and observers can

be defined only after the transformation to Lorentzian time. The basic point is that

a physical time coordinate should be defined in such a way that it can trace out

classical paths through the totality of all states in the path integral (i.e., all possible

field configurations over all points in spacetime). The Lorentzian time satisfies this

requirement whereas the Euclidean time does not. A more detailed discussion of this

somewhat philosophical point will be given elsewhere.

In Lorentzian spacetime, we now assume a simple cosmological model:

(1) In the early universe, the “−µ” term in the fundamental action causes one

of the bosonic fields to form a condensate near the Planck or GUT scale.

(2) As this condensate forms, a topological defect, which we call an instanton,

is frozen into a d = D − 4 dimensional internal space. This instanton is assumed

to have d-dimensional spherical symmetry. If d = 10, one obtains an SO(10) grand

unified gauge theory. Details of the internal space, and the origin of the gauge fields,

are given in Chapter III.

(3) In 4-dimensional external spacetime, there is a general U (2) rotation of the

fields which is present from the beginning (just as a nonzero angular momentum is

present from the beginning in the formation of a planetary system or galaxy). This

U (2) rotation is somewhat analogous to the rotation of the U (1) order parameter

ψs = n
1/2
s eiθs in the complex plane for an ordinary superfluid which is flowing with a

velocity ~vs = ~∇θs. If one shifts to the “frame of reference” associated with the “flow”

of the 2-component fields, we showed in Chapter III that one obtains the usual action

for a Weyl fermion at low energy (compared to the Planck scale). I.e., we obtained the

action that is appropriate for a fundamental fermion field with the correct coupling to
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the gravitational vierbein eµ
α, which is defined in the present theory to be essentially

a “superfluid velocity” component vµ
α: eµ

α = −vµ
α.

(4) Initially the action for fundamental bosons has the same form as that for

fermions. Through a transformation of the initial boson fields, however, we were able

to rewrite the action so that one obtain exactly the standard action for normal scalar

boson fields and auxiliary fields. It is remarkable that this transformation leaves both

the action and the measure in the path integral unchanged, while leading to the fields

and action required for conventional physics with supersymmetry.

(5) While focusing on the novel aspects of the present theory, we have also ob-

tained some interesting results in the context of conventional SUSY. For example, we

showed that invariance of both the action and the “volume element” in the functional

integral under a sypersymmetry transformation is sufficient to guarantee closure of

the SUSY algebra.

(6) At this point one has the fermions and sfermions, as well as the Higgs bosons

and Higginos, of the Standard Model augmented by SUSY. In addition, we have an

SO(10) unified gauge theory with the correct couplings to these other fields. These

results support the viability of the present approach. On the other hand, there

are other aspects of conventional physics which we have not yet derived and must

therefore postulate: The Einstein-Hilbert action of gravity, and the Maxwell-Yang-

Mills action of the gauge fields, as well as the corresponding action terms for gauginos

and gravitinos, are assumed to arise from a response of the vacuum to these fields

that is analogous to the diamagnetic response of electrons in a metal. We must also

assume that various interaction terms – for example, Yukawa couplings – arise from

our original action via mechanisms that we have not yet explored. There is thus a

considerable amount of work left to do in extending the theory.
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APPENDIX A

SOME NOTATION AND CONVENTIONS

Here we introduce some notation and conventions which are used in this dissertation.

A. Units

We use the convention

h = c = 1. (A.1)

There are then dimensional relations given by

[mass] = [energy] = [time]−1 = [length]−1 . (A.2)

B. Relativity and Tensors

We use the metric tensor

ηµν = ηµν =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, (A.3)

where the Greek indices, µ, ν etc., denote 4-space 0, 1, 2, 3 and the Roman indices, i,

j etc., denote 3-space 1, 2, 3. Vector indices are raised or lowered by the metric tensor

as

xµ = ηµνx
ν and xµ = ηµνxν , (A.4)

where xµ = (x0, ~x) and then xµ = ηµνx
ν = (−x0, ~x). The “ · ” product of two 4

vectors is defined by

p · x = ηµνp
µxν = −p0x0 + ~p~x. (A.5)
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The derivative operator is defined by

∂µ =
∂

∂xµ
=

(
∂

∂x0
, ~∇

)
. (A.6)

When the energy-momentum dispersion relation, p0 = |~p| for the massless field and

p0 =
√
|~p|2 + m2 for massive field with mass m is satisfied, we have

p2 = pµpµ

= − (
p0

)2
+ |~p|2

= 0 for the massless case, (A.7)

= −m2 for the massive case, (A.8)

where the repeated indices are assumed to be summed.

C. Quantum Mechanics

The energy and momentum operators are defined as

pµ = i∂µ. (A.9)

We define the Pauli sigma matrices as

σ1 =




0 1

1 0


 , σ2 =




0 −i

i 0


 , σ3 =




1 0

0 −1


 . (A.10)

With an identity matrix σ0,

σ0 =




1 0

0 1


 , (A.11)

we define σµ and σ̄µ as

σµ =
(
σ0, σi

)
, σ̄µ =

(
σ0,−σi

)
. (A.12)
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σµ and σ̄µ are related to the metric tensor ηµν as

σµσ̄ν + σν σ̄µ = σ̄µσν + σ̄νσµ = −2ηµν12×2. (A.13)

D. Dirac Matrices Algebra

We choose the 4× 4 Dirac matrices γ as

γµ =




0 σµ

σ̄µ 0


 , (A.14)

where σµ and σ̄µ are defined in (A.12), and then γ5 is given by

γ5 = iγ0γ1γ2γ3

=



−1 0

0 1


 . (A.15)

The anticommutation relation of γµ and γ5 is

{
γµ, γ5

}
= γµγ5 + γ5γµ

=




0 σµ

σ̄µ 0






−1 0

0 1




+



−1 0

0 1







0 σµ

σ̄µ 0




= 0. (A.16)
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The anticommutation relation of the Dirac matrices is

{γµ, γν} = γµγν + γνγµ

=




0 σµ

σ̄µ 0







0 σν

σ̄ν 0




+




0 σν

σ̄ν 0







0 σµ

σ̄µ 0




=




σµσ̄ν + σν σ̄µ 0

0 σ̄µσν + σ̄νσµ




= −2ηµν14×4, (A.17)

where we have used (A.13) in the last line.

From the trace of (A.17),

tr (γµγν + γνγµ) = tr (γµγν) + tr (γνγµ)

= 2tr (γµγν)

!
= tr (−2gµν14×4)

= −8ηµν ,

where in the 2nd line we have used tr (γµγν) = tr (γνγµ), or in general

tr (γµγν · · · γργσ) = tr (γσγρ · · · γνγµ) . (A.18)

In the 3rd line “
!
=” means “required”, and

tr (γµγν) = −4ηµν . (A.19)
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According to (A.14) and (A.15),

tr (γµ) = tr
(
γ5

)
= 0. (A.20)

The product of any odd number of γ’s can be always reduced to the sum of single γ’s

by using (A.17)−(A.19). (A.20) tells us that

tr (any odd number of γ′s) = 0. (A.21)

The trace of γµγνγ5 is also zero:

tr
(
γµγνγ5

)
= tr

(
[−4gµν − γνγµ] γ5

)

= −4gµνtr
(
γ5

)
=0

− tr
(
γ5γµγν

)

= −tr
(
γ5γµγν

)
= −tr

(
γµγνγ5

)
,

→ tr
(
γµγνγ5

)
= 0, (A.22)

where we have used (A.17) in the 1st line and (A.16) in the last line. Finally, we

obtain the trace of γµγνγργσ:

tr (γµγνγργσ) = tr ([−2ηµν − γνγµ] γργσ)

= −2ηµνtr (γργσ)− tr (γν [−2ηµρ − γργµ] γσ)

= 8ηµνηρσ + 2ηµρtr (γνγσ) + tr (γνγρ [−2ηµσ − γσγµ])

= 8ηµνηρσ − 8ηµρηνσ − 2ηµσtr (γνγρ)− tr (γνγργσγµ)

= 8ηµνηρσ − 8ηµρηνσ + 8ηµσηνρ − tr (γµγνγργσ) ,

where we have used tr (γνγργσγµ) = tr (γµγνγργσ), and therefore

tr (γµγνγργσ) = 4ηµνηρσ − 4ηµρηνσ + 4ηµσηνρ. (A.23)
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E. Delta Function and Fourier Transform

A simple definition of the delta function is given by

δ (x) =
d

dx
θ (x) where θ (x) = 0 for x < 0 and 1 for x > 0. (A.24)

The delta function satisfies

∫
dnxδ(n) (x) = 1, (A.25)

∫
dnxδ(n) (x− xa) f (x) = f (xa) . (A.26)

The Fourier transform used here is defined as

f (x) =

∫
d4p

(2π)4 eip·xf (p) and f (~x) =

∫
d3p

(2π)3 ei~p~xf (~p) , (A.27)

f (p) =

∫
d4xe−ip·xf (x) and f (~p) =

∫
d3pe−i~p~xf (~x) , (A.28)

with ∫
d4xe−i(p−p′)·x = (2π)4 δ(4) (p− p′) . (A.29)

F. Left and Right Handed Spinor Fields

The 4 component Dirac spinor Ψ is given by

Ψ =

(
ηα

χ†α̇

)
(A.30)

where ηα is a left hand 2 component spinor and χ†α̇ is a right hand 2 component

spinor. When Ψ in the Lagrangian density

L = iΨ̄γµ∂µΨ

is replaced by (A.30), then L is rewritten as

L = iη†α̇σ̄µα̇α∂µηα + iχασµ
αα̇∂µχ

†α̇. (A.31)
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In this dissertation, we redefine ηα and χ†α̇ as

ψLα = ηα,

ψα̇
R = χ†α̇,

and the Lagrangian density has the following form instead of (A.31):

L = iψ†Lα̇σ̄µα̇α∂µψLα + iψ†αR σµ
αα̇∂µψ

α̇
R.

When whether a field is right hand or left hand is not explicitly mentioned, it is

assumed that

iψ†σ̄µ∂µψ

is the right hand field’s Lagrangian density, and

iψ′†σµ∂µψ
′

is the left hand field’s Lagrangian density, where the field with “†” is assumed to be

always to the left of the sigma matrix.
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APPENDIX B

COMPLEX AND REAL REPRESENTATIONS

When the generators of a representation D are given by Ta, the commutation

relation is written as

[Ta, Tb] = ifabcTc. (B.1)

The complex conjugate of the commutation relation is

[T ∗
a , T ∗

b ] = −ifabcT
∗
c

→ [−T ∗
a ,−T ∗

b ] = ifabc (−T ∗
c ) , (B.2)

and −T ∗
a satisfies the same commutation relation as Ta. Since Hi ⊂ Ta, where Hi are

the Cartan generators, −H∗
i also satisfies (B.2). The Cartan generators are Hermitian

and their complex conjugates have the same eigenvalues, or weights. I.e., when the

weight of Hi is µi, the weight of −H∗
i becomes −µi. The complex conjugate of a

representation D is denoted as D̄. When D = D̄, D is called a real representation,

and when D 6= D̄, D is called a complex representation.

When the representation D is real, both weights µi and −µi are required to be in

the same representation. This means that there exists a trivial mapping Ta → −T ∗
a

given by

Ta = −OT ∗
a O−1, (B.3)

and since the Ta are Hermitian

T †
a = −O

(
T †

a

)∗
O−1

= −OT T
a O−1
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→
T

T ∗
a = − (

O−1
)T

TaO
T , (B.4)

where O is a matrix. Then by substituting (B.4) into (B.3), we have

Ta = O
(
O−1

)T
TaO

T O−1,

→ OT O−1Ta = TaO
T O−1

→ [
Ta, O

T O−1
]

= 0. (B.5)

To satisfy (B.5) for general generators Ta, OT O−1 is required to be proportional to

the identity (Schur’s lemma), and

OT O−1 = cI, (B.6)

→ OT = cO, (B.7)

where c is a constant. As double application of the transpose returns us to the original

matrix, (B.7) becomes

O = cOT

and by using this in (B.7) we have

OT = c2OT .

Therefore,

c = ±1,

and we finally obtain

OT = ±O, (B.8)

where + holds for a real representation and − for a pseudo-real representation.

When there is a matrix M which transforms Ta to make it purely imaginary (and
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thus antisymmetric in order to be Hermitian), we have

T ′∗
a = −T ′

a, (B.9)

with

T ′
a = M−1TaM.

Then the relation between Ta and T ∗
a is derived to be

T ′
a = (T ′

a)
†

= (T ′∗
a )

T

= −T ′T
a

= −MT T T
a

(
M−1

)T

!
= M−1TaM, (B.10)

so

Ta = −MMT T T
a

(
M−1

)T
M−1

= −MMT T T
a

(
MMT

)−1

= −MMT T ∗
a

(
MMT

)−1
because Ta = T †

a . (B.11)

Therefore,

O = MMT ,

→ OT = +O,

and when Ta can be transformed into purely imaginary matrices T ′
a, the representa-

tion is real. The reverese of the argument is also true and when the representation

is real there is a matrix M to transform Ta into a purely imaginary T ′
a, or when

the representation is pseudo-real (OT = −O), Ta cannot be transformed into pure
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imaginary matrices T ′
a.

For a more detailed discussion, please see Ref. [62].
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APPENDIX C

SPINOR ALGEBRA

Here we will review the two component spinor algebra. There are two kinds of

two component Weyl spinors given by

χα and χ†α̇ where α = 1, 2 and α̇ = 1̇, 2̇,

which transform as the representations
(

1
2
, 0

)
and

(
0, 1

2

)
, respectively, and these are

related by Hermitian conjugation

χα =
(
χ†α̇

)†
and χ†α̇ = (χα)† , (C.1)

χα =
(
χ†α̇

)†
and χ†α̇ = (χα)† . (C.2)

Raising and lowering of an index are achieved by using the antisymmetric tensors

εβα = −εβα =




0 1

−1 0


 , (C.3)

defined by

χβ = εβαχα and χβ = εβαχα, (C.4)

and

εβ̇α̇ = −εβ̇α̇ =




0 1

−1 0


 , (C.5)

since

χβ̇ = εβ̇α̇χα̇ and χβ̇ = εβ̇α̇χα̇, (C.6)

where the repeated indices are assumed to be summed. Since the ε are antisymmetric
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tensors, we obtain

εβαεγδ = −
(
δβ

γδ
α
δ − δβ

δδ
α
γ

)
, (C.7)

εβ̇α̇εγ̇δ̇ = −
(
δβ̇

γ̇δ
α̇
δ̇
− δβ̇

δ̇
δα̇

γ̇

)
, (C.8)

and when α = γ we obtain

εβαεαδ = −
(
δβ

αδα
δ − δβ

δδ
α
α

)

= −
(
δβ

δ − 2δβ
δ

)

= δβ
δ. (C.9)

εβ̇α̇εα̇δ̇ = δβ̇

δ̇
. (C.10)

The Weyl spinors χα and χ†α̇ are transformed by the SL (2, C) group, with M α
β

and M †α̇
β̇

respectively, which are 2× 2 complex matrices with determinant 1,

χ′β = M α
β χα, (C.11)

and the Hermitian conjugate gives us

χ′†
β̇

= χ†α̇M †α̇
β̇
. (C.12)

The SL (2, C) scalars are produced by

ηαχα ≡ ηχ, (C.13)

χ†α̇η†α̇ = (ηχ)† ≡ χ†η†, (C.14)

where we follow the convention that the contraction of the undotted indices is from

the upper left to the lower right and the contraction of the dotted indices is from the

lower left to the upper right. Therefore, χα can be considered to be two component

column, and χα to be two component row, with χ†α̇ two component column and χ†α̇
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two component row. From (C.11), raising the index by using εαβ, we obtain

χ′α = εαβχ′β

= εαβM γ
β χγ

= εαβM γ
β εγδχ

δ.

Since χαχα is an SL (2, C) scalar,

χ′αχ′α = εαβM γ
β εγδχ

δM ξ
α χξ

= χδεαβM γ
β εγδM

ξ
α χξ

!
= χαχα,

and we obtain

εαβM γ
β εγδ ≡

(
M−1

) α

δ
. (C.15)

Similarly from (C.12),

χ′†α̇χ′†α̇ = χ†
β̇
M †β̇

α̇εα̇ξ̇χ†γ̇M
†γ̇

ξ̇

= χ†
β̇
M †β̇

α̇εα̇ξ̇εγ̇δ̇M
†γ̇

ξ̇
χ†δ̇

!
= χ†α̇χ†α̇,

and we obtain

εα̇ξ̇εγ̇δ̇M
†γ̇

ξ̇
=

(
M †−1

)α̇

δ̇
. (C.16)

Next we review the properties of the sigma matrices σµ and σ̄µ. We define the

spinor indices on σµ and σ̄µ as

σµ
αα̇ and σ̄µα̇α, (C.17)

which means that σµ has lower indices, with the left side always undotted and the

right side always dotted, and σ̄µ has upper indices, with the left side always dotted
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and the right side always undotted. We obtain a new spinor ηα from χα̇ as

ηα = Vµσ
µ
αα̇χ†α̇,

where Vµ is a vector. Then by raising the index, we obtain

ηα = εαβηβ

= εαβVνσ
ν
αα̇χ†α̇

= εαβVνσ
ν
βα̇εα̇β̇χ†

β̇

= −Vνε
αβεβ̇α̇σν

βα̇χ†
β̇
.

By using ηα and ηα, we obtain an SL (2, C) scalar,

ηαηα = −Vνε
αβεβ̇α̇σν

βα̇χ†
β̇
Vµσ

µ
αα̇χ†α̇

= −VνVµχ
†
β̇
εαβεβ̇α̇σν

βα̇σµ
αα̇χ†α̇,

and the right hand side is required to be an SL (2, C) scalar. This is satisfied when

εαβεβ̇α̇σν
βα̇σµ

αα̇ ≡ σ̄νβ̇ασµ
αα̇, (C.18)

and

VνVµε
αβεβ̇α̇σν

βα̇σµ
αα̇ = VνVµσ̄

νβ̇ασµ
αα̇

= VνVµ
σ̄νβ̇ασµ

αα̇ + σ̄µβ̇ασν
αα̇

2

= VνVµ
−2gνµδβ̇

α̇

2

= −V µVµδ
β̇

α̇,

where we have used

σ̄νβ̇ασµ
αα̇ + σ̄µβ̇ασν

αα̇ = −2gνµδβ̇
α̇, (C.19)
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and we finally obtain

ηαηα = −VνVµχ
†
β̇
εαβεβ̇α̇σν

βα̇σµ
αα̇χ†α̇

= V µVµδ
β̇

α̇χ†
β̇
χ†α̇

= V µVµχ
†
α̇χ†α̇.

Therefore, from (C.18), we get

εαβεβ̇α̇σν
βα̇ = σ̄νβ̇α. (C.20)

By applying εγαεγ̇β̇ on both sides of (C.20), we find

εγαεγ̇β̇σ̄νβ̇α = εγαεγ̇β̇εαβεβ̇α̇σν
βα̇

= δ β
γ δ α̇

γ̇ σν
βα̇

= σν
γγ̇, (C.21)

where we have used (C.9). The Hermitian conjugate of (C.19) gives us

σµ
αα̇σ̄να̇β + σν

αα̇σ̄µα̇β = −2gνµδ β
α . (C.22)

To obtain the identity σ̄νβ̇δσ̄δ̇γ
ν = −2εδ̇β̇εγδ, we start from (C.19),

σ̄νβ̇ασµ
αα̇ + σ̄µβ̇ασν

αα̇ = −2gνµδβ̇
α̇,

→ εα̇γ̇εαβ

[
σ̄νβ̇ασ̄µγ̇β + σ̄µβ̇ασ̄νγ̇β

]
= −2gνµδβ̇

α̇,

→
×gµν

εα̇γ̇εαβ

[
σ̄νβ̇ασ̄γ̇β

ν

]
= −4δβ̇

α̇,

→
×εδ̇α̇

εαβ

[
σ̄νβ̇ασ̄δ̇β

ν

]
= −4εδ̇β̇,

→
×εγδ

εγδεαβ

[
σ̄νβ̇ασ̄δ̇β

ν

]
= −4εδ̇β̇εγδ,

→ − (
δγ
αδδ

β − δγ
βδδ

α

) [
σ̄νβ̇ασ̄δ̇β

ν

]
= −4εδ̇β̇εγδ
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→ −σ̄νβ̇γσ̄δ̇δ
ν + σ̄νβ̇δσ̄δ̇γ

ν = −4εδ̇β̇εγδ.

The left hand side is antisymmetric under γ ↔ δ, and the right hand side is also, so

we obtain

σ̄νβ̇δσ̄δ̇γ
ν = −2εδ̇β̇εγδ. (C.23)

Similarly, from (C.22) we obtain

σµ
αα̇σµγβ̇ = −2εβ̇α̇εγα. (C.24)

Multiplying σξ

γβ̇
by (C.19) gives

σξ

γβ̇
σ̄νβ̇ασµ

αα̇ + σξ

γβ̇
σ̄µβ̇ασν

αα̇ = −2gνµσξ
γα̇,

and with µ ↔ ξ (C.25) becomes

σµ

γβ̇
σ̄νβ̇ασξ

αα̇ + σµ

γβ̇
σ̄ξβ̇ασν

αα̇ = −2gνξσµ
γα̇.

By adding these two equations,

σξ

γβ̇
σ̄νβ̇ασµ

αα̇ + σµ

γβ̇
σ̄νβ̇ασξ

αα̇ +
(
σξ

γβ̇
σ̄µβ̇ασν

αα̇ + σµ

γβ̇
σ̄ξβ̇ασν

αα̇

)
= −2gνµσξ

γα̇ − 2gνξσµ
γα̇.

The expression inside the parenthesis is rewritten as

σξ

γβ̇
σ̄µβ̇ασν

αα̇ + σµ

γβ̇
σ̄ξβ̇ασν

αα̇ = −2gξµδα
γ σν

αα̇ = −2gξµσν
γα̇,

and we obtain

σξ

γβ̇
σ̄νβ̇ασµ

αα̇ + σµ

γβ̇
σ̄νβ̇ασξ

αα̇ = 2gξµσν
γα̇ − 2gνµσξ

γα̇ − 2gνξσµ
γα̇. (C.25)

Similarly, multiplying σ̄ξγ̇α by (C.22) gives

σ̄ξγ̇ασµ
αα̇σ̄να̇β + σ̄ξγ̇ασν

αα̇σ̄µα̇β = −2gνµσ̄ξγ̇β,
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and with ξ ↔ ν this equation becomes

σ̄νγ̇ασµ
αα̇σ̄ξα̇β + σ̄νγ̇ασξ

αα̇σ̄µα̇β = −2gνξσ̄µγ̇β.

By adding these two equations, we find

σ̄ξγ̇ασµ
αα̇σ̄να̇β + σ̄νγ̇ασµ

αα̇σ̄ξα̇β +
(
σ̄νγ̇ασξ

αα̇σ̄µα̇β + σ̄ξγ̇ασν
αα̇σ̄µα̇β

)
= −2gνµσ̄ξγ̇β− 2gνξσ̄µγ̇β

→ σ̄ξγ̇ασµ
αα̇σ̄να̇β + σ̄νγ̇ασµ

αα̇σ̄ξα̇β = 2gνξσ̄µα̇β − 2gνµσξ
γα̇ − 2gνξσµ

γα̇. (C.26)

More results on spinor algebra can be found in Ref. [84].



193

VITA

Seiichiro Yokoo received his Bachelor of Engineering degree in Instrumentation

Engineering from Keio University, Japan, in 1997. He subsequently entered graduate

school in physics at Texas A&M University, originally joining the experimental atomic

and molecular physics group. Then he changed his research area to theoretical high

energy physics, and he has now taken a number of courses in this area, done substan-

tial research in this area (some of which is described in this document), published

three high-energy papers in conference proceedings (with a fourth in preparation),

and recently given a talk on his work at the April Meeting of the American Physical

Society. He also has strong interests in the foundations of quantum theory and in

neuroscience. His permanent address is 286-5 Nanae, Tomisato, Chiba, 286-0221,

Japan.

The typist for this dissertation was Seiichiro Yokoo.


