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ABSTRACT 

 
Description of Isoscalar Giant Dipole Resonance in Nuclei.  

(December 2006) 

Oleksiy Grigorievich Pochivalov, B.S., Kiev State University 

Chair of Advisory Committee: Dr. Shalom Shlomo 

 
 
Applicability of the Hartree-Fock (HF) based random phase approximation (RPA) with 

several Skyrme effective interactions to the description of the isoscalar giant monopole 

(ISGMR) and the isoscalar giant dipole resonance (ISGDR) in 90Zr, 116Sn, 144Sm and 
208Pb nuclei has been investigated. The existing Skyrme interactions SL1, SkM*, SGII, 

Sly4 and Sk255 were used. Hartree-Fock description of the ground state properties of all 

nuclei of interest was obtained using these Skyrme interactions.  

Transition strength distributions for the ISGMR and the ISGDR in nuclei of interest 

were calculated using coordinate space representation for the RPA in the Green’s 

function formalism with discretized continuum. A method of projecting out the spurious 

state contribution from the transition strength distribution and the transition density of 

the ISGDR was employed to eliminate spurious state mixing, due to a not fully self-

consistent description of the particle-hole interaction within the RPA.  

Differential cross sections of 240 MeV �-particles inelastic scattering on all nuclei of 

interest were calculated using the folding model within the distorted wave Born 

approximation (DWBA). Optical potentials were obtained by folding HF ground state 

densities with a �-nucleon density dependent Gaussian interaction. Parameters of the 

interaction were obtained by fitting experimental angular distribution of �-nucleus 

elastic scattering.   

The inelastic differential cross sections were calculated using both collective and 

microscopic transition densities. Possible underestimations of the energy weighted sum 

rule for the case of the ISGDR are reported. 
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An alternative description for the ISGDR in nuclei based on the Fermi liquid drop 

model (FLDM) with the collisional Fermi surface distortion was investigated. The 

FLDM dispersion relation was obtained from the linearized Landau-Vlasov equation. 

Centroid energies, E0 and E1, and widths, �0 and �1, of the ISGMR and ISGDR, 

respectively, were calculated as functions of the damping parameter using appropriate 

boundary conditions. Comparison of the theoretical ratios of the ISGDR and ISGMR 

centroid energies, E1/E0, to the experimental values resulted in a damping parameter 

equal to 0.5, however, systematic overestimation of energy of the ISGMR and ISGDR 

by 2.0-2.5 MeV was observed. The applicability of the HF-RPA to the description for 

the ISGDR in nuclei is confirmed. 
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CHAPTER I 

INTRODUCTION 

 

Analyses of collective excitations in nuclei1have provided important information about 

properties of the nuclear interaction, non-equilibrium processes in nuclei, and the 

properties of infinite nuclear matter. In particular, compression modes, such as isoscalar 

monopole and isoscalar dipole excitations, have been of great interest in nuclear research 

because of their relevance to the extraction of the value of the nuclear matter 

incompressibility coefficient. Under existing laboratory conditions, the parameters of the 

infinite nuclear matter cannot be measured directly. However, knowledge of such 

parameters, in particular, the nuclear matter incompressibility coefficient, is very 

important in many areas of physics research, such as astrophysics, nuclear structure and 

heavy ion collisions.      
Collective nuclear excitations have been experimentally observed throughout the 

periodic table. Such excitations are identified as the occurrence of resonance peaks in the 

transition strength distribution obtained by a weak external field that excites the nucleus. 

These excitations usually exhaust a large fraction of the total transition strength for a 

given external field, hence the name giant resonances. It was also noted that average 

energies and widths of such resonances in different nuclei behave as smooth functions of 

the nuclear mass number A. Such a behavior is a strong indication of a coherent motion 

of nucleons, hence, collective nature of these excited states. 

Collective nuclear excitations, and particularly, giant resonances are identified by the 

amount of change of total momentum J, total spin �S and total isospin �T, that are 

transferred to the ground state of the nucleus as a result of interaction with a weak 

external field. In this dissertation, the discussion is limited only to the �S = 0 (electric), 

and the �T = 0 (isoscalar) excitation modes. From a macroscopic point of view, such 

excitations correspond to in-phase motion of nucleons with opposite spin and isospin. 

From a microscopic point of view, nuclear collective excitations can be described as a 

                                                                        

This dissertation follows the style of Physical Review C. 
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superposition of multiple single particle – single hole excitations (in Tamm-Dankoff or 

Random Phase Approximations). In the latter case, the �S and �T are the spin and 

isospin of each particle-hole pair, respectively. In this dissertation, for the purpose of 

simplicity, we limit our microscopic studies to random phase approximation (RPA).   

Over the years RPA has been proven to be one of the most successful approaches of  

the microscopic description of nuclear excitation. This success can be attributed to the 

main idea of the approximation, namely, that a nuclear collective excitation can be seen 

as a superposition of correlated single particle – single hole excitations of the correlated 

nuclear ground state. The random phase approximation can be built on any of the models 

providing information on the single particle structure of the nuclear ground state. 

Therefore, an obvious choice is to give a formulation of the RPA on the basis of Hartree-

Fock single particle energies and wave functions, obtained by solving the single particle 

Hartree-Fock equations.  This Hartree-Fock based RPA formalism have been extensively 

used in the description of collective excitations and has been proven to be a successful 

approach in describing some of the characteristic features of several giant resonances.   

There are many choices of the nucleon-nucleon interaction that can be used within 

the Hartree-Fock method. In this dissertation we limit our choices to various 

parameterizations of the zero-range density-dependent Skyrme-type nucleon-nucleon 

interaction, due to the apparent success of the Hartree-Fock calculations with the Skyrme 

interactions in describing nuclear ground state properties such as binding energies, root-

mean-square radii, etc. Another reason for the choice of zero-range nucleon-nucleon 

interaction is the simplicity of the numerical application of the Hartree-Fock method 

with such interactions. Further reasoning for the choice of nucleon-nucleon interaction 

will be explained in the following. 

The zero-range effective nucleon-nucleon interaction was first formulated by Skyrme 

[1], [2], from an expansion of the nucleon-nucleon interaction in momentum space. 

Later, in order to account for the density saturation effects in nuclei, an additional zero-

range density-dependent term was introduced by Vautherin and Brink [3]. 

Comprehensive HF calculations of the root-mean square radii and single particle energy 
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levels, performed for a wide range of double-closed shell nuclei showed better 

agreement with the available experimental data than those obtained using effective 

interaction derived from Brueckner’s theory [4]. Over the years, various 

parameterizations of the Skyrme interaction have been developed [5] and multiple 

additional zero-range terms have been introduced in order to improve the ground state 

description and to account for generally known features of the nucleon-nucleon 

interaction, such as momentum and density dependent [6] and tensor [7] terms. One of 

the concerns with the Skyrme effective interaction is that different parameterizations, 

corresponding to different values of parameters of the nuclear matter, are known to 

satisfactorily reproduce properties of ground state of finite nuclei. It is especially true for 

such an important nuclear matter parameter as the nuclear matter incompressibility 

coefficient, Knm. Thorough research [8] has shown that the ground state properties of a 

wide range of nuclei is well reproduced by the Skyrme force parameterizations, 

corresponding to a very wide range for the value of Knm. Also, there were no indications 

that the nuclear matter incompressibility is correlated with any other nuclear matter 

parameter. The issue of the value of nuclear matter incompressibility coefficient needs to 

be addressed.  

Additional information, obtained by studying isoscalar giant monopole resonance 

(ISGMR), the breathing compression mode of collective excitations of nuclei [9], 

narrowed the range of values of the nuclear matter incompressibility coefficient to 

210 ± 20 MeV. That confirmed the value of the nuclear matter incompressibility 

coefficient Knm, determined earlier in Ref. [10].  

It was first pointed out in Ref. [11], that the HF-RPA results for the centroid energy 

of the isoscalar giant dipole resonance (ISGDR), 1E , obtained with the interactions 

adjusted to reproduce the ISGMR data, are higher than the experimental values [12,13]. 

This discrepancy between theory and experiment was also reported in more recent 

publications [14-16]. There have been quite a few recent non-relativistic HF-RPA [17-

21] and relativistic mean-field based RPA  [22,23] calculations for the ISGDR, 

addressing issues of (i) spurious state mixing (SSM), (ii) the strength of the lower 
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component (at 1��), and (iii) the value of nmK  deduced from the centroid energy 1E  of 

the ISGDR compression mode (at 3 ��). The issue of spurious state mixing in the 

strength distribution and transition density of the ISGDR has been successfully 

addressed in Refs. [17,18] by carrying out accurate microscopic calculations for the 

strength distribution function ( )ES , and projecting out the SSM contribution. However, 

discrepancies of 1-2 MeV between centroid energies calculated within the HF-RPA 

method, and experimentally measured energies [24-26] of the ISGDR, are still being 

observed. These discrepancies in the isoscalar dipole energies indicate that the 

consistency in the results of the HF-RPA calculations with the Skyrme interactions for 

various collective excitations in nuclei must be verified. It can be achieved by careful 

study of the HF-RPA description for the isoscalar giant dipole resonance and the 

isoscalar giant monopole resonance modes, in a wide range of nuclei, using a variety of 

known parameterizations of the Skyrme nucleon-nucleon interaction. Reproduction of 

the experimentally measured energies for both the isoscalar monopole and isoscalar 

dipole resonances may serve as a criterion for better applicability of a given Skyrme 

interaction and indicate that the corresponding value of nuclear matter incompressibility 

coefficient is the most realistic. 

The above considerations show the importance of systematic experimental and 

theoretical studies of ISGDR excitation in a wide range of nuclei. 

The choice of the Skyrme-type effective interaction in this dissertation can be 

explained by two major advantages of implementation of this interaction within the HF-

RPA. First, according to the Thouless theorem [27], the integrated energy weighted 

transition strength, corresponding to a given excitation operator, calculated within the 

HF-RPA, should be equal to the energy weighted sum rule obtained from the HF ground 

state, provided that all terms of the particle-hole interaction were consistently retained 

within the HF-RPA interaction. This assures the self-consistency of the method. Second, 

using a Skyrme-type nucleon-nucleon interaction one operates with a particle-hole 

interaction that has delta-dependence in coordinate space. In such a case, it is possible to 

formulate the RPA equations in the coordinate representation using the Green’s function 
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formalism [28,29]. The configuration space matrix formulation of the RPA has a strong 

limitation on the maximal excitation energy for which the transition strength can be 

calculated, due to the requirement of having a large number of particle-hole 

configurations that should be considered for high excitation energy.  The free-system 

particle-hole Green’s function required in the RPA equation can be obtained either by 

directly calculating the Green’s function of the Hartree-Fock mean field (see Ref. [30]) 

or by using the Hartree-Fock single-particle energies and wave functions within the 

spectral representation of the response function. The latter method of calculation of the 

free-system Green’s function requires proper discretization of the single-particle 

continuum, and an artificial width can be assigned by smearing the transition strength 

distribution with a certain function, for example, the Lorentzian. In the case of the direct 

calculation of the Hartree-Fock Green’s function, the particle escape width is accounted 

for within the continuum RPA calculations; however, smearing may still be needed in 

order to take into account additional width due to coupling to more complex two-

particle-two-hole configurations. 

The main experimental tool for studying isoscalar giant resonances is inelastic � -

particle scattering. An � -particle has total spin 0=S  and isospin 0=T , therefore, only 

0=∆S  and 0=∆T  modes can be excited in the target nucleus as a result of the 

inelastic reaction, which either eliminates or greatly reduces interference of other 

excitations. Also, angular distributions of inelastically scattered � -particles at small 

angles are characteristic of some excited multipolarities, which in the case of � -particle 

scattering, are determined by the amount of transferred orbital momentum, L . 

Observing such characteristic behavior in the experimentally determined angular 

distributions, at a given excitation energy, simplifies the identification of contributions 

from modes of different multipolarity. Another reason for the usefulness of studying 

inelastic �-particle reactions is that current methods of extracting the sum rule strength 

from differential cross sections have proven to be reliable. Such an extraction is usually 

done in the analysis of a particular � -particle scattering reaction, using the formalism of 

the distorted wave Born approximation (DWBA). According to scattering theory, the 



       
           

6 

differential cross sections of inelastically scattered � -particles are proportional to the 

square of the transition amplitude fiT , which within the DWBA is found in terms of 

incoming and outgoing distorted waves, and matrix elements of a two-body � -nucleon 

interaction between the ground state i  and the excited state f . It is known that in the 

Born approximation, in the case of the zero-range two-body interaction, the transition 

amplitude for excitation of multipolarity L  satisfies the following relationship: 

 ( ) ( )�∝ qrjrdrrT L
L
trfi ρ2 .  (1.1) 

Here ( )rL
trρ  is the radial part of the transition density for the excited state with 

multipolarity L , ( )qrjL  being the spherical Bessel function, and q  being the transferred 

momentum. It was shown in Ref. [31] that, to a good approximation, this relation also 

holds for a more realistic case of a finite range Gaussian type two-body interaction. 

Therefore, one is provided with a direct dependence of the transition amplitude on the 

transition strength function, corresponding to the excitation operator 

( ) ( )� =
= A

i iLMiLLM rYqrjF
1

ˆ . For first order in ( )qr , the long wave-length limit, the 

excitation operator for multipolarity L has the same form as the isoscalar 

electromagnetic operator: 

 ( )�
=

∝
A

i
iLM

L
iLM rYrF

1

ˆ ,     2≥L ,     0=∆T . (1.2) 

Since for both the isoscalar monopole and the isoscalar dipole excitations first order 

terms in the expansion of Bessel function vanish, next order terms allowed by parity 

conservation are: 

 �
=

∝
A

i
irF

1

2
00 ,     0=L ,     0=∆T , (1.3) 

 ( )�
=

∝
A

i
iMiM rYrF

1
1

3
1 ˆ ,      1=L ,     0=∆T . (1.4) 

The theoretical and experimental descriptions of isoscalar giant monopole and isoscalar 

giant dipole excitations in terms of the sum rules for the simple operators (1.3) and (1.4), 

are common in the literature. 
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We have pointed out earlier that the difference between the experimentally obtained 

centroid energy 1E  of the ISGDR and theoretical values calculated using the self-

consistent HF-RPA with effective interactions associated with 230=nmK  MeV (which 

is known to successfully reproduce the experimental values of the centroid energy 0E  of 

the ISGMR, see Refs. [16], [32,33]) needs to be addressed. Moreover, the experimental 

value for the ratio of the isoscalar dipole to the isoscalar monopole centroid energies 

( ) 09.056.10/1 exp ±=EE  is close to the prediction of the hydrodynamic model [34] but 

lies significantly below the theoretical results for ratio 0/1 EE  obtained in both the RPA 

and the scaling-like calculations. To understand conflicting results for the energy ratio 

0/1 EE  and to resolve the value of the nuclear matter incompressibility coefficient, 

nmK , deduced from data on the ISGMR and the ISGDR, further analysis is needed.   

In an attempt to resolve these issues we turn to the Fermi liquid drop model (FLDM) 

with the dynamical Fermi surface distortion (FSD). Within the FLDM the basic equation 

of motion for the particle density variations in the nuclear interior can be derived from 

the p
�

-moments of the collisional kinetic Landau-Vlasov equation [35]. 

  StfUfvf
t prr δδδδδ =∇⋅∇−∇⋅+

∂
∂

���

����
, (1.5) 

where fδ , Uδ  and Stδ  are small variations of the Wigner distribution function, the 

effective interaction and the collision integral, respectively, v
�

 is the velocity field and 

r
�

�
∇  and p

�

�
∇ are gradients with respect to r

�
and p

�
 phase space variables. Relations 

between the collisional sound relaxation time and dynamic coefficients of the dispersion 

relation  

 0222
0

2 =+− qiqc ωγω , (1.6) 

where c0 is the sound velocity in the nuclear interior and � is the friction coefficient, 

are obtained by taking into account the FSD effect up to multipolarity l = 2, and 

assuming that the particle density variations in the nuclear interior behave as plane 

waves. Assuming sharp density distribution, and considering that from the macroscopic 

point of view, the isoscalar monopole excitation corresponds to a spherically symmetric 
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inflation and contraction of the nucleus and the isoscalar dipole excitation corresponds to 

contraction and dilatation of the nucleus along an arbitrary axis at constant volume, we 

write the macroscopic boundary conditions on the moving nuclear surface in the form of 

the appropriate secular equations:  

 ( ) ( ) ( ) 010 =+− qrjffqrqrj µσ , (1.7) 

 for the ISGMR, and   

 ( ) ( ) 026
9
1

11 =
�
�
�

�

�
�
�

�
′′−	

	




�

�
�



�
−

= eqRreq

F

eq

F qrjqrjK
ρ
µ

ρ
µ

,  (1.8) 

for the ISGDR, where K is the nucleus incompressibility coefficient, q is the transferred 

momentum, ji(x) are the spherical Bessel functions, f� and f� are the surface and dynamic 

amplitudes, respectively, and �F is the dynamic friction coefficient. Finding the lowest 

non-zero solution q of equation (1.7) for the ISGMR, and equation (1.8) for the ISGDR, 

and using the dispersion relation (1.6), allows us to calculate the centroid energies, E0, 

E1, and the collisional widths, �0, �1, as the real and imaginary parts of the found 

eigenfrequencies 	, for the ISGMR and the ISGDR, respectively. The ratios obtained, 

for E1/E0, are compared with the experimental values, to determine the best model 

parameters. Centroid energies of the ISGMR and the ISGMR, found at given parameters, 

are used for direct comparison with the experimental data and with the results of 

microscopic (RPA) calculations.  

In this dissertation, a full microscopic description of the isoscalar monopole and the 

isoscalar dipole excitations in 90Zr, 116Sn, 144Sm and 208Pb nuclei is given, based on the 

HF-RPA calculations with a Skyrme-type effective interaction. Calculations are 

performed using the Green’s function formalism with discretized continuum. For the 

purpose of comparison with the recent experimental data and systematic studies of the 

effects of different parameterizations of Skyrme-type interaction based on this 

comparison, the selection of nuclei is limited to 90Zr, 116Sn, 144Sm, and 208Pb, and 

calculations are performed using various parameterizations of the Skyrme interaction. 

The effect of spurious state mixing in the transition strength distribution and transition 

density due to possible not full self-consistency is eliminated by use of a method of a 
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projecting operator. Based on obtained results, the DWBA analysis of 240 MeV α -

particle scattering reactions is performed for the nuclei considered. Optical potentials are 

obtained by using the folding model [36] with the microscopic HF ground state densities 

and a two-body �-nucleon density dependent Gaussian interaction. Transition potentials 

are calculated by folding the �-nucleon interaction with either microscopic or collective 

transition densities. The inelastic cross-section calculated using both the microscopic and 

the collective transition potentials are compared and possible discrepancies of 

determining sum rule strengths are evaluated. As an alternative way to describe the 

isoscalar dipole excitation in nuclei, the formalism of the Fermi liquid drop model with 

the dynamically distorted Fermi surface is presented. The effects of variation of the 

damping parameter on the position of centroid energies of the ISGDR and the ISGMR in 

nuclei of interest are investigated. A comparison of the FLDM results with the 

experimental data, and with the results of microscopic (HF-RPA) calculations, is 

presented. 

This dissertation is organized into the following Chapters. In Chapter II we present a 

description of the Hartree-Fock formalism. Chapter III is dedicated to a description of 

the self-consistent Hartree-Fock based RPA. In Chapter IV the distorted wave Born 

approximation for the case of inelastic scattering of two nuclei is discussed in detail. In 

Chapter V the Fermi liquid drop model with collisional Fermi surface distortion is 

outlined. In Chapter VI the results are presented, which are then summarized in Chapter 

VII. 
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CHAPTER II 

HARTREE-FOCK DESCRIPTION OF NUCLEAR GROUND STATE 

 

The success of the phenomenologically introduced shell model in describing ground 

state properties of nuclei justifies the assumption that nucleons move independently in 

an average potential produced by all of the nucleons. To provide a more precise 

description of the nuclear ground state one can use the Hartree-Fock method for the 

microscopic calculations of the single-particle wave functions and energies. The idea of 

the Hartree-Fock approximation is that the ground state wave function of the system of A 

particles can be approximated by the fully antisymmetrized product of the single particle 

wave functions, i.e. the Slater-determinant, which are obtained under the assumption that 

each particle is moving independently in the mean field created by all other single 

particles of the system, and that the approximated ground state wave function minimizes 

the expectation value of the total Hamiltonian of the system.  

In the formalism of second quantization (see Appendix A) the initial non-relativistic 

Hamiltonian of the system of A interacting particles is given by  

 �� +++ +=
ijkl

kljiklij
ij

jiij aaaavaatH ˆˆˆˆ
4
1ˆˆˆ

, , (2.1) 

where ijt  is the kinetic energy, ijlkijklklij vvv −=, is the two-body interaction and +
iâ  and 

iâ  denote the single particle creation and annihilation operators, respectively. Since the 

nucleus is a system of fermions, the wave function of any state of such a system must be 

totally antisymmetric under the interchange of the coordinates of any two nucleons. For 

a nucleus that consists of A nucleons, the approximated wave function � satisfying the 

required antisymmetry is a Slater-determinant  

 ∏
=

+=Φ
A

i
ia

1

0 , (2.2) 

built from wave functions of the lowest single-particle states, which are eigenfunctions 

of single-particle Hamiltonian h, 
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 )()()( rrrh kkk

��� ϕεϕ = . (2.3) 

In the expressions above, the sub index i and k labels the single particle state of 

particular nucleon.  

To obtain the explicit form of the single particle Hamiltonian satisfying the 

requirement of the minimization of the expectation value of the total Hamiltonian the 

variational principle must be applied. Defining the expectation value of the total 

Hamiltonian of the system as 

 
ΦΦ

ΦΦ
=

H
E , (2.4) 

we demand the minimization of the expectation value  

 0=Eδ . (2.5) 

Note for the future: indices 1 � i , j � A and m >A  will describe occupied and 

unoccupied single-particle states, respectively.   

Using properties of Thouless’ variational wave function [27]  

 ( ) Φ�
�

�
�
�

�=Φ′ � �
∞

+= =

+

1 1

exp
Am

A

i
immi aaCδ , (2.6) 

where 
Cmi is an arbitrary constant that can be taken as a small variable, it is easy to see 

that  the variation of the � can be written as 

 
.mimi

mi

immi
mi

aaC

aaC

+∗

+

�

�

Φ=Φ

Φ=Φ−Φ′=Φ

δδ

δδδ
 (2.7) 

Therefore, as the 
Cmi and 
C* mi can be considered as independent variations we can 

rewrite the variational principle (Eqs. (2.4) and (2.5)) in the form of  

 0ˆ =ΦΦ + Haa mi . (2.8) 

From Eq. (2.8), using the definition of the total Hamiltonian (2.1) and properties of 

commutators of the operators of creation and annihilation (see Appendix A) we write the 

variational condition (2.5) as: 

 0
1

, =+≡ �
=

A

j
ijmjmimi vth . (2.9) 



       
           

12 

Eq. (2.9) defines the single-particle Hartree-Fock Hamiltonian, applicable for all 

occupied and unoccupied states. 

Considering the fact that Eq. (2.9) does not connect occupied states i with 

unoccupied states m we can conveniently choose the single-particle states so that they 

will diagonalize separately the sub-matrixes hii’ and hmm’. Eq. (2.9) will then read 

 �
=

′′′ +=
A

j
jkkjkkkkk vt

1
,δε . (2.10) 

According to the second quantization formalism, the coordinate representation of the Eq. 

(2.10) can be written as 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .,

,
2

1

3*

3

1

22
2

� �

� �

=

=

′′′′−

�
�

�
�
�

�
′′′+∇−=

A

j
kjj

k

A

j
jkkk

rdrrrrvr

rrdrrrvr
m

r

�����

�������

ϕϕϕ

ϕϕϕϕε
 (2.11) 

Equation (2.11) represents a system of linked integro-differential equation and in case of 

general non-local nucleon-nucleon interaction, finding the solution of such a system of 

equations can be very challenging. However, in case of general zero range nucleon-

nucleon interaction, ( ) ( )rrrfrrv ′−=′ ����� δ),( , where ( )rf
�

 represents, for example, 

density or momentum dependence, Eq. (2.11) can be greatly simplified: 

 Therefore, solving by iteration Eq. (2.11) we obtain single-particle energies and single-

particle wave functions. Knowing the single-particle energies and single-particle wave 

functions the total ground-state wave function and ground-state energy of the system of 

A nucleons are obtained as follows: 
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�

=Φ

)(...)()(

)(...)()(
)(...)()(

det
!

1

21

22221

11211

AAAA

A

A

rrr

rrr

rrr

A
���
����

���

���

ϕϕϕ

ϕϕϕ
ϕϕϕ

, (2.12) 

and  
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==
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+=ΦΦ=

A

nm
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A

m
m

A

nm
mnmn

A

m
mmHF

v

vtHE

1,
2
1

1

1,
2
1

1

ˆ

ε
. (2.13) 

Choosing a zero-rage Skyrme-type interaction greatly simplifies the calculations by 

conforming the exchange term of the interaction in Eq. (2.11) to the form of the direct 

term.  In the following we present method of resolving of the single-particle Hartree-

Fock equations with the extended Skyrme-type effective interaction in the coordinate 

representation:     

In coordinate space the extended Skyrme-type effective interaction can be written in 

coordinate space in terms of a two-body central C
ijV , a spin-orbit ..OS

ijV , a density 

dependent ..DD
ijV , a tensor T

ijV , and a three-body velocity and density dependent ..DD
ijkV  

zero-range interactions in the form [3, 5, 7]: 

 [ ] �� ++++=
ijk

DD
ijk

ij

T
ij

DD
ij

OS
ij

C
ijSkyrme VVVVVv ......

6
1

2
1

, (2.14)    

 

( ) ( )
( ) ( ) ( )[ ]

( ) ( ) ijjiijij

ijjijiijij

jiij
C

ij

krrkPxt

krrrrkPxt

rrPxtV

����

������

��

−+

+−+−+

+−+=

δ

δδ

δ

σ

σ

σ

22

22
11

00

1

1
2
1

1

,    (2.15) 

 ( )( ) ijjijiij
OS

ij krrkiWV
������

×+−= σσδ0
.. ,       (2.16) 

 ( ) ( ) ( )ji
ji

ij
DD

ij rr
rr

PxtV
��

��

−
+

+= δρ ασ

2
1

6
1

33
.. ,  (2.17) 

 
( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )jiijjiijjiijjjiiji

jiijjiijjijiji
T

ij

cckrrkkrrkU

cckkkrrTV

ττδσσσδσ

ττσσσσδ

��������������

�����������

��

�
��

� +−−−

+��

�
��

� +−−=

.
3
1

2
1

..
3
1

2
1 2

,  (2.18) 

 
( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ijkjjiijij

ijkjjikjjiijij
DD

ijk

krrrrkPxt

krrrrrrrrkPxtV
������

����������

−−+

+−−+−−+=

δδ

δδδδ

σ

σ

2323

22
1313

..

1

1
2
1

,  (2.19) 
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where σ
ijP  is the spin exchange operator, kσ�  is the Pauli spin operator, kτ�  is the isospin 

operator, and 
2

ji
ijk

∇−∇
=

��
�

 and  
2

ji
ijk

∇−∇
=

��
�

 are the momentum operators acting on 

the right and on the left, respectively. The parameterizations of the Skyrme interaction 

used in this dissertation are presented in Table I. 

 
 
 

TABLE I. Parameterizations of the Skyrme-type effective interaction used in the dissertation. 
 SL1a SkM*b SGIIc SLy4d Sk255e 

0t  -1326.28 -2645.0 -2645.0 -2488.91 -1689.35 

1t  943.90 410.0 340.0 486.82 389.30 

2t  -235.66 -135.0 -41.9 -546.39 -126.07 

3t  14658.60 15595.0 15595.0 13777.0 10989.60 

0x  0.310 0.090 0.090 0.834 -0.1461 

1x  0.700 0 -0.0588 -0.344 0.1160 

2x  -1.120 0 1.425 -1.000 0.0012 

3x  0 0 0.06044 1.354 -0.7449 

0W  130.0 130.0 105.0 123.0 95.39 
α  1 1/6 1/6 1/6 0.3563 
T  -80.0 0 0 0 0 
U  -200.0 0 0 0 0 

13t  -16690.2 0 0 0 0 

23t  8478.83 0 0 0 0 

13x  2.99 0 0 0 0 

23x  -1.0 0 0 0 0 
a Ref. [7] 
b Ref. [5] 
c Ref. [33] 
d Ref. [37] 
e Ref. [38] 
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One also needs to take into account that in the interaction part of the total 

Hamiltonian there is the contribution of the Coulomb interaction between each pair of 

protons 

 
2
1

,
2
1

,

2

jiji

Coulomb
ij

rr

e
v

ττ
δδ�� −

= ,  (2.20) 

Therefore, in the single particle Hartree-Fock equations there are two contributions:  

  
( ) ( ) ( )2/1,,

2/1,,2/1,,

2

2

2
1

,

.
jj

ii
j

Dir
Coulomb r

rr

rr
rd

e
v σϕ

σϕσϕ
δϕ

τ

�
��

��
�

′−
′′

′= �
�

∗

, (2.21) 

 
( ) ( ) ( )

rr

rrr
rd

e
v jjiiii

j
Exch
Coulomb ′−

′′
′= �

�
∗

��

���
� 2/1,,2/1,,2/1,,

2

2

2
1

,

..
.

σϕσϕσϕ
δϕ

τ
, (2.22) 

direct Coulomb term (for the case of point-particle protons), and exchange Coulomb 

term, respectively. The exchange term is small compared to the direct term, and, in order 

to simplify numerical calculations, it is neglected, or approximated with an expression 

that depends only upon the local proton density. 

Now defining the nucleon, ( )r
�

τρ , the kinetic energy, ( )r
�

ττ , and the spin current, 

( )rJ
��

τ  densities  (� denotes isospin), obtained from the single-particle wave functions, as 

follows: 

 ( ) ( ) ( )��
=

∗=
A

i
ii rrr

1

,,,, τσϕτσϕρ
σ

τ
���

,                      ( ) ( )�=
τ

τρρ rr
��

,  (2.23) 

 ( ) ( )��
=

∇=
A

i
i rr

1

2
,,

σ
τ τσϕτ ���

,                                     ( ) ( )�=
τ

τττ rr
��

, (2.24) 

 ( ) ( ) ( )[ ]��
= ′

∗ ′×′∇−=
A

i
ii rrirJ

1 ,

,,,,
σσ

τ σσστσϕτσϕ ������
,   ( ) ( ),�=

τ
τ rJrJ
����

 (2.25) 

and collecting coefficients at the appropriate terms we can rewrite Eq. (2.11) with the 

Skyrme nucleon-nucleon interaction (defined in Eqs. (2.14-2.19) in simple form: 

 ( ) ( ) ( )( ) ( ) ( )τσϕετσϕσττ
τ

,,,,
2

2

rrrWirU
rm iii

��������
�

��
=�

�

�
�
�

�
×∇−+∇∇− ∗ , (2.26) 
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Where ( )rm
�∗

τ , ( )rU
�

τ , and ( )rW
��

τ  are the effective mass, effective central and effective 

spin-orbit interaction potentials, respectively, and are given by: 
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 (2.27)  
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( ) ( ) ( )[ ] [ ] ( )
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rJrxtrJUrJxtxt

rJttrrWrW

�����

���
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1

3
5

5
8
1

34
2
1

1
24
1

1
16
1

12
5

8
1

8
1

2
1

. (2.29) 

Solving the system of equations (2.26) we can find the single-particle energy iε  and 

wave function ( )τσϕ ,,ri

�
 for each of the A single-particle states and, thus, specify the 

ground state wave function Φ  (see Eq. (2.2)). Knowledge of Φ  allows the calculation 

of the energy and other properties of a nucleus in its ground state. 

The expectation value of the total Hamiltonian calculated for the wave function Φ  

contains contributions from the ground state energy of a nucleus as well as the energy of 

oscillations of the system around its center of mass and energy of rotation of the system 

as a whole. For spherical systems the rotational energy contribution vanishes. Since in 

this dissertation the nuclei of interest are considered to be spherically symmetric, in the 

following discussion only the treatment of the center of mass motion will be described.  

 Factorization of the wave function Φ  in order to separately describe the motion of the 

center of mass and the motion of nucleons relative to it cannot be accomplished in a 

simple manner. An exact calculation of the ground state energy from the expectation 

value of the total Hamiltonian is particularly difficult. To a good approximation, the 

ground state energy can be obtained by subtracting the expectation value of the center of 

mass energy ΦΦ
M

PCM

2

2

, where M is the total mass of a nucleus and  

�
=

∇−=
A

i
iCM iP

1

�
�

�
, from the expectation value of the total Hamiltonian. Using the 

definition of the kinetic energy density ( )r
�τ  given by Eq. (2.24), the matrix element of 

M
PCM

2

2

, can be evaluated as: 
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 ( ) ( ) ( )
��

�
�
�

��

�
�
�

∇−=ΦΦ � ���
=

∗
A

ji
ji

CM rrrdrrd
MM

P

1,

2

,

22

,,,,
22

τσϕτσϕτ
τσ

�������
. (2.30) 

The second term in the r. h. s. of the Eq. (2.30) is difficult to calculate, and it is common 

in the literature to use the approximation, based on the harmonic oscillator model 

ω�
4
3

2

2

=ΦΦ
M

PCM , with (	 is the angular frequency) 3141 −= Aω� . 

For spherical closed shell nuclei the Hartree-Fock equations (Eq. (2.26)) can be 

simplified.  In such a case a single-particle state i can be specified by the following set of 

quantum numbers: the principal number n, the angular momentum j and its z-component 

m, the orbital momentum l, the spin s = 21 , and the z-component of the isospin 

21±=τm . In this case of interest, the single-particle wave function can be separated 

onto the radial, total angular momentum and the isospin parts as: 

 ( ) ( ) ( ) ( )τχστσϕ
τ

α
mjlmi rY

r
rR

r ,ˆ,, =�
, (2.31) 

where � denotes the quantum numbers n, j, l, τm  corresponding to a single particle state 

i and ( )τχ
τm  is the eigenfunction of the z-component of the isospin operator, 

 ( )
ττ τδτχ mm ,= . (2.32) 

The total angular momentum component of the single-particle wave function is given by 

 ( ) ( ) ( )σµσ
sl

sl

mlm
mm

sljlm rYjmmmlrY ˆ
2
1

,ˆ �= , (2.33) 

where jmmml sl2
1  is the Clebsch-Gordan coefficient and ( )σµ

sm  denotes the 

eigenfunction of the z-component of the spin operator,  

 ( )
σσδσµ mms ,= . (2.34) 

Using the orthonormality of spherical harmonics, 

 ( ) ( ) ( )
�

+=∗

m
jlmjlm

j
rYrY

π
σσ

4
12

,ˆ,ˆ , 



       
           

19 

and the definitions of nucleon and kinetic densities (Eqs. (2.23) and (2.24)) we obtain in 

a spherically symmetric nucleus: 

 ( ) ( ) ( ) ( )� +==
ljn

rRj
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rr
,,

2
2 12

4
1
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ααττ π
ρρ �

, (2.35) 
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. (2.36) 

Due to the spherical symmetry, the spin current density ( )rJ
��

τ  is a vector in the direction 

r
r

r
�

=ˆ : ττ J
r
r

J =⋅
�

�
. Therefore, from Eq. (2.25) we obtain: 
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where  

 ( ) ( ) ( ) ( ) ( )� ��

�
��

� −+−++=
αα

αααααατ π ljn

rRlljjj
r

rJ
,,

2
2 4

3
1112

4
1

. (2.38) 

After substitution of the wave function given in Eq. (2.31) into Eq. (2.26) we obtain the 

single-particle Hartree-Fock equations for the radial component of the wave function 

( )rRi : 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )[ ] ( ) ( )rRrW

r
lljj

rmdr
d

r
rU

rR
rmdr

d
rR

r
ll

rR
rm

rR

i
iiii

ii
ii

iii

�
�
�

�

�
�
�

� −+−++		



�
��


�
++

′		



�
��


�
−�

�

�
�
�

� ++′′−=

∗

∗∗

τ
τ

τ

ττ

ε

4311
2

1

2
1

2
2

2

2

2

�

��

, (2.39) 

where the terms ( )rm∗
τ2

2
�

, ( )rUτ , and ( )rWτ  are obtained from Eqs. (2.27), (2.28), and 

(2.29), by substitution of particle density, ( )r
�

τρ , kinetic density, ( )r
�

ττ , and spin current 

density, ( )rJ
��

τ , by the radial forms ( )rτρ , ( )rττ , and ( )rrJ
�

τ , from Eqs. (2.35), (2.36), 
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and (2.37), respectively. The set of equations (2.39) allows us to calculate single particle 

energies and the radial part of the single-particle wave functions of all possible states i 

following an iteration procedure. By taking initial set of orthogonal single-particle wave 

functions one calculates the nucleon, kinetic and spin current densities. Using these 

calculated function, one obtains initial radial shapes of ( )rm∗
τ2

2
�

, ( )rUτ , and ( )rWτ , 

which are used to calculate a new set of single particle energies and wave functions. 

Solution is found by repeating this procedure until a desired conversion of the Hartree-

Fock ground state energy and the wave function is achieved.    

In the next chapter it will be shown how the knowledge of the nuclear ground state 

wave function, obtained by solving the Hartree-Fock equations, allows us to investigate 

the excited states of a nucleus. 
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CHAPTER III 

SELF-CONSISTENT HARTREE-FOCK BASED RANDOM PHASE 

APPROXIMATION DESCRIPTION OF NUCLEAR EXCITED STATES 

 

Within the Random-Phase-Approximation (RPA), nuclear excited states are described in 

terms of superposition of one-particle – one-hole excitations of a system of nucleons in 

its ground state, which contains particle-hole correlations. Since nuclear excitations in 

the continuum have contributions from a large number of particle-hole states, the RPA 

equations formulated in particle-hole configuration space in terms of A and B matrices 

are hard to solve numerically. Therefore, in this study the coordinate space formulation 

of RPA in terms of Green’s functions will be used. In the following we derive the 

coordinate Green’s function formalism for Hartree-Fock based RPA (HF-RPA) 

calculations using the time-dependent Hartree-Fock approach [28]. We then describe the 

applications of this formalism to the HF-RPA calculations with the Skyrme-type 

effective nucleon-nucleon interaction, and later discuss a method of elimination of the 

spurious state mixing from the RPA transitional strength distribution and from the 

corresponding transition density of the isoscalar giant dipole resonance. 

 

A. Green’s Function Formalism of HF-RPA in Coordinate Representation and RPA 

with Skyrme Effective Interaction 

 

In the previous chapter we obtained the self-consistent single particle Hartree-Fock 

Hamiltonian for the most general type of the effective nucleon-nucleon interaction (see 

Eqs. (2.10)) in the form: 

 .)( exchvvth ++= ρ . (3.1)  

where t  is the kinetic energy operator, )(ρv  is the density-dependent average field 

operator, and .exchv  is the exchange interaction.  

It needs to be noted, that for the case of Skyrme nucleon-nucleon interaction, both 

direct and exchange terms of the single particle interaction are density dependent. Due to 
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our expressed interest in the application of the HF-RPA with the Skyrme nucleon-

nucleon interaction, this property of the single particle interaction will be considered by 

default.  

As in the previous chapter, the nucleon density ( )r
�ρ  is defined as: 

 ( ) ( ) ( )��
=

∗=
A

i
ii rrr

1 ,

,,,,
τσ

τσϕτσϕρ ���
, (3.2) 

where ( )τσϕ ,,ri

�
 are single-particle eigenfunctions, corresponding to single particle 

eigenenergies iε  of the self-consistent Hartree-Fock equation:  

 ( ) ( )τσϕετσϕ ,,,, rrh iii

�� = . (3.3) 

In the time dependent theory, the system of nucleons in its ground state is introduced 

into a weak harmonic external field of the form: 

 ( ) ( ) ( ) ��
���

Et
i

Et
i

erferftrf +−
+= ˆˆ,ˆ , (3.4) 

where E is the energy of the excitation, E = �	. Considering ( )rf
�

 as a small 

perturbation, we will look for the single-particle perturbed wave functions to the first 

order with the same harmonic time dependence: 

 ( ) ( ) ( ) ( ) ��
����

Et
i

i

Et
i

iii ererrtr τσϕτσϕτσϕτσϕ ,,,,,,,,,~ ′′+′+=
−

, (3.5) 

where we take ( )τσϕ ,,ri

�′ , ( )τσϕ ,,ri

�′′ , the perturbed coordinate single-particle wave 

functions to be orthogonal to ( )τσϕ ,,ri

�
, the Hartree-Fock single-particle wave 

functions. Hence, we can expect that the perturbed time-dependent nucleon density is 

exhibiting the same behavior as the external field and to the first order can be written as: 

 ( ) ( ) ( ) ( ) ��
����

Et
i

Et
i

ererrtr ∗−
′+′+= ρρρρ ,~ , (3.6) 

where ( )r
�ρ  is the unperturbed nucleon density defined in Eq. (3.2), and the perturbed 

coordinate-dependent nucleon density is given by: 

 ( ) ( ) ( ) ( ) ( )( )��
=

∗∗ ′′−′=′
A

i
iiii rrrrr

1 ,

,,,,,,,,
τσ

τσϕτσϕτσϕτσϕρ �����
. (3.7) 
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Now, according to perturbation theory, we can formally write the new single-particle 

time-dependent-Hartree-Fock Hamiltonian as: 

 ( ) ( )
( )

( ) ( )
( )

( ) .�

�

�

�

����
Et

i

r

Et
i

r

TD er
h

rfer
h

rfhth
	
	




�

�
�



�
′++

	
	




�

�
�



�
′++= ∗

+
+−

ρ
δρ
δρ

δρ
δ

ρρ

 (3.8) 

where h  is the unperturbed single-particle HF Hamiltonian, ( )rf
�

 is the  weak external 

perturbation interaction, and 
δρ
δh

 is the formal functional differentiation of the single-

particle Hamiltonian with respect to the density, taken at ( )r
�ρρ = . The term 

δρ
δ +h

 

represents all possible non-hermitian contributions in the single particle HF Hamiltonian. 

Then, the time dependent HF equations take the form of: 

 

( )

( ) ( ) ( ) ( ) ( )trer
h

rfer
h

rfh

dt
trd

i

ii

Et
i

Et
i

i

,,,~

,,,~

τσϕερ
δρ
δρ

δρ
δ

τσϕ

�����

�

�

��

	
	



�
�
�


�
−		




�
��


� ′++		



�
��


� ′++

=

∗
+

+−
. (3.9) 

In expression (3.9), the coefficients at the exponents are considered to be independent of 

each other and provide us with the equations for the perturbed part of the single particle 

wave functions. To the first order, we obtain:  

 ( ) ( ) ( ) ( ) ( ) ( )τσϕτσϕρ
δρ
δτσϕε ,,,,,, rErr

h
rfrh iiii

����� ′=		



�
��


� ′++′− , (3.10) 

 ( ) ( ) ( ) ( ) ( ) ( )τσϕτσϕρ
δρ
δτσϕε ,,,,,, rErr
h

rfrh iiii

����� ′′−=		



�
��


� ′++′′− ∗
+

+ , (3.11) 

Formal solution of the equations (3.10) and (3.11) for the single particle wave function 

perturbations ( )τσϕ ,,ri

�′ , ( )τσϕ ,,ri

�′′  can be obtained as: 

 ( ) ( ) ( ) ( )τσϕρ
δρ
δ

ε
τσϕ ,,

1
,, rr

h
rf

Eh
r i

i
i

����
		



�
��


� ′+
−−

−=′ , (3.12) 

 ( ) ( ) ( ) ( )τσϕρ
δρ
δ

ε
τσϕ ,,

1
,, rr

h
rf

Eh
r i

i
i

����
		



�
��


� ′+
+−

−=′′ ∗
+

+ . (3.13) 
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 Using the definition (3.7) we obtain the following expression for the perturbed 

(transition) single-particle density, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )��
=

∗
		



�
��


�

+−
′+

+
−−

′+
−=′

A

i
i

ii
i r

Eh
hrrf

Eh
rhrf

rr
1 ,

,,
)()(

,, τσϕ
ε

δρδρ
ε

ρδρδτσϕρ
τσ

�
����

��
.   

  (3.14)  
We can define a bare Green’s function according to the Green’s function method in 

spectral representation, 

 ( ) ( ) ( )� �
=

∗
± �

�

�
�
�

�

+−
±

−−
=

A

i
i

ii
i r

EhEh
rErrG

1
222111

,,,
21

0 ,,
11

,,,,
2121

τσϕ
εε

τσϕ
ττσσ

����
 

 ( ) ( )×=� � ∗

mi
mi rr

,
111111

,,,

,,,,
2121

τσϕτσϕ
ττσσ

��
 

 ( ) ( )222222 ,,,,
11 τσϕτσϕ
εεεε

rr
EE im

imim

��∗
�
�

�
�
�

�

+−
±

−−
. (3.15) 

Then Eq. (3.14) for the transition density associated with the single-particle perturbing 

operator ( )rf
�ˆ can be rewritten in form: 

 ( ) ( ) ( ) ( )( ) ( )��
±

+
+

±
�
�
�

�
�
�

′′		



�
��


�
±+′±′′′−=′ r

hh
rfrfErrGrdEr

������� ρ
δρ
δ

δρ
δρ ,,

2
1

, 0 . (3.16) 

According to the Green’s function method, the solution for ( )Er ,
�ρ′  can be formally 

presented by the following expression:  

 ( ) ( ) ( ) ( )rfErrGrdErEr RPA
tr ′′′−==′ �

������
,,,, ρρ . (3.17) 

Such a formal solution demands the RPA-Green’s function to be written in the form:   

 ( ) 100 ˆ1
−

+= GVGG ph
RPA , (3.18) 

where ( )ErrG ,,0 ′��
 is the free particle-hole Green’s function formally defined as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
�

�
�
�

�

�
�
�

�

+−+
′′

−
++−

′′
=′

∗∗∗∗

mi im

mimi

im

imim

iE
rrrr

iE
rrrr

ErrG
,

0 ,,
ηεε
ϕϕϕϕ

ηεε
ϕϕϕϕ ��������

��
, (3.19) 

and phV̂  is the effective particle-hole interaction obtained as a functional derivative of 

the energy density with respect to the ground-state density of the many-body system 
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obtained by solving the Hartree-Fock problem, ( )rph hV �ρρδρδ
=

=ˆ . Therefore, equation 

(3.18) together with Eq. (3.19) allows us to find the RPA Greens function ( )ErrG RPA ,, ′��
 

from the knowledge of single-particle energies and wave functions obtained within the 

Hartree-Fock approximation. 

A direct way to find energies of excited states of a nucleus is by searching for poles 

of ( )ErrG RPA ,, ′��
.  Such a procedure should be avoided from the numerical point of 

view. A way to avoid numerical calculations with such singularities is to use averaging 

procedure on the RPA Green’s function over some energy interval νΓ  around excited 

state of interest, νEE = . From the physics point of view, introduction of the interval νΓ  

can be explained by the argument that the energy of any excited state has a certain width. 

Following this idea we redefine the RPA Green’s function as: 

 

( )

( ) ( ) ( ) ( ) ( )
� �

Γ+

Γ−

∗∗

�
�

�
�
�

�

−+′
′

−
+−′

′
′′

=′

ν ν

νν

ν

νν

ν
ν

ν
ν

η
ρρ

η
ρρ2

2

,,,,
,

,,
E

E

trtrtrtr

RPA

iEE
ErEr

iEE
ErEr

EEKEd

ErrG

����

��

,  (3.20) 

where νΓ  is the width of the excited state ν  and ( )EEK ′,  is an averaging function, 

chosen based on the model of the width of excited state ν . If ( )EEK ′,  is chosen to be a 

Lorentzian and 0>E , the expression (3.18) is reduced to: 

 ( ) ( ) ( )
� Γ+−

′
=′

∗

ν νν

νν ρρ
2

,,
,,

iEE
ErEr

ErrG trtrRPA
��

��
. (3.21) 

In order to find the energies of the excited states of a nucleus, we introduce the transition 

strength function ( )ES  for the one body excitation operator ( )rf
�ˆ . It is defined for 

0>E  as: 

 
( ) ( )

( ) ( ) ( ) ( )( )[ ] ( )� ��

�

−′′′

=−=

∗+

ν
ννν

ν
ν

δρρ

δν

EErdrdrfErErrf

EEfES

trtr

������ ˆ,,ˆ

ˆ0
2

. (3.22) 
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For the case when the excited state ν  has the energy width νΓ , we can substitute the 

energy delta dependence by: 

 ( ) �
�

�
�
�

�

Γ+−
−→−

2
1

Im
1

νν
ν π

δ
iEE

EE . (3.23) 

Substituting expression (3.23) into Eq. (3.21) and comparing the result with Eq. (3.21) 

we obtain: 

 ( ) ( ) ( )[ ] ( ) ( ){ }[ ]fEGfTrrdrdrfErrGrfES RPARPA ˆˆˆIm
1ˆ,,Imˆ1 ⋅⋅=′′′= ��

+

ππ
������

. (3.24) 

This function peaks when the frequency of the external field is such that νω E=�  and, 

therefore, studying the behavior of this function allows us to specify the energies of the 

excited states of a nucleus. 

Using Eq. (3.22) we now can redefine the transition density as: 

 ( )
( )

( ) ( )� ′��

�
��

� ′′
∆

∆= rdErrGrf
EES

E
Er RPA

tr

�����
,,Im

1
,

π
ρ . (3.25) 

Note that ( )Ertr ,
�ρ , as defined in Eq. (3.25), is associated with the strength in the region 

2EE ∆±  and is consistent with 

 ( ) ( ) ( ) ErdrfErES tr ∆= �
2

,
���ρ , (3.26) 

that can be seen as a discretized expression of Eq. (3.22). 

Now, let us consider how such a useful quantity as a sum rule for one body 

Hermitian excitation operator ( )rf
�ˆ  can be found in terms of the RPA Green’s function. 

The energy moment kM  for the operator ( )rf
�ˆ  is defined as: 

 
( )

( ) ( ) ( ) ( ) ( )( )� ��

�

′′′=

=

∗+

ν
ννν

ν
ν

ρρ

ν

rdrdrfErErrfE

fEM

trtr
k

k
k

����� ˆ,,ˆ

0ˆ 2

. (3.27) 

Considering Eqs. (3.25) and (3.26) we can rewrite kM  in form: 

 ( )�
∞

=
0

dEESEM k
k . (3.28) 
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By direct substitution of ( )ES  from Eqn. (3.24) we finally obtain: 

 ( ){ }�
∞

��
�

��
� ⋅⋅=

0

ˆˆˆIm
1

dEfEGfTrEM RPAk
k π

.  (3.29) 

For  1=k  we obtain the energy-weighted strength. According to the Thouless 

theorem [27], value of energy moment kM  of order 1=k  evaluated within the RPA 

formalism using Eq. (3.29) is equal to the value of the energy weighted sum rule 

obtained as an expectation value of the double commutator of the single-particle 

excitation operator with the total Hamiltonian of the system on the HF ground state wave 

function: 

 [ ][ ] ΦΦ= fHfM ˆ,,ˆ
2
1

1 ,  (3.30)  

under the condition that particle and hole excitation energies and wave functions used in 

the RPA calculation were found within the HF formalism and the particle-hole 

interaction used in the RPA is obtained from HF Hamiltonian with all possible terms 

retained.  

It is also important to note that the strength function ( )ES  and the transition density 

( )Ertr ,
�ρ  of a state at energy nE  below the particle escape threshold (or having a very 

small width) can be obtained from Eqs. (3.24) and (3.25), respectively, by replacing 

( ) ( )ErrG RPA ,,Im1 ′��π  with  

 ( )( )EEErrG n
RPA

EE n

−′
→

,,Relim
��

. (3.31) 

 In case of a Skyrme-type nucleon-nucleon interaction, the zero-range particle-hole 

interaction can be obtained by functional differentiation of the energy density: 

 ( ) ( ) ( )[ ] ( )[ ]
tsst

ttss

tsts
ph

H
rrrrV

′′

′−′−

′′

′⋅−+′⋅−+′−=′ � δρδρ
δττσσδ

2

,,,
16
1 1111,

��������
, 

where H  is the sum of the Skyrme interaction and kinetic energy densities (see 

APPENDIX B), and s, s` and t, t` are the third components of the spin and isospin, 

appropriately. Using Eqs. (B.30) and (B.31) we obtain the following: 
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( ) ( ) ( ) ( )( )[
( )( )] ( )rrVd

cbarrrrV
t
ph

ph

′+∇′+∇′∇+∇+

∇′−∇′∇−∇+∇′+∇+∇′+∇+′−=′
������

������������

,

, 2222δ
, (3.32) 

 

( ) ( ) ( ) ( )( )[
( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( )
( )( ) ( ) ( )( )
( )( ) ( ) ( )( )]∇′+∇′′∇′+∇′+′∇+∇∇+∇+

∇′−∇′′∇′−∇′+′∇−∇∇−∇+

∇′+∇′′∇+∇+∇′−∇′′∇−∇+

′∇′+∇′∇+∇+′∇′−∇′∇−∇+∇′+∇′∇+∇+

∇′−∇′∇−∇+∇′+∇+∇′+∇′−=′

������������

������������

������������

����������������

������������

σσσσ
σσσσ
σσσσ

σσσσ

δ

q

p

hg

fed

cbrrrrV
t

ttt
ph

2222,

, (3.33) 

where 

 ( )( )σσττσσττ ′⋅′⋅+′⋅+′⋅+= ′′
��������

GGFF aaaaa , 

 ( )( )σσττσσττ ′⋅′⋅+′⋅+′⋅+= ′′
��������

GGFF bbbbb , 

 ( )( )σσττσσττ ′⋅′⋅+′⋅+′⋅+= ′′
��������

GGFF ccccc , (3.34) 

 ( )( )σσττσσττ ′⋅′⋅+′⋅+′⋅+= ′′
��������

GGFF ddddd , 

and the definitions of appropriate coefficients, given in terms of Skyrme parameters and 

particle and kinetic energy densities, ρ  and τ , have the form: 

( ) ( )( )ρτρτρ α 2
2323128

12
1364

1
38

3
04

3 344534 ∇+++∇−++= xttttaF , 

( ) ( )( ) ( )τρρτρ α
232396

12
23128

12
1313192

1
38

1
004

1 4534121 xttxttxtaF +−∇−∇−−−−+−=′ , 

( ) ( )( ) ( )τρρτρ α
232396

12
23128

12
1313192

1
38

1
004

1 4534121 xttxttxtaG +−∇−∇−+−−−−= , 

 ( ) ( ) ( )τρρτρ α
232396

12
2323384

12
13192

1
38

1
04

1 454334 xtxttttaG +−∇+−∇−−−−=′ , 

 

 ( ) ( )ρρ 232364
1

1332
1

2232
1

132
3 4545 xttxttbF +−−+−−= , 

 ( ) ( ) ( ) ( )ρρ 2323192
1

1313192
1

2232
1

1132
1 2122121 xtxtxtxtbF +−+++−+=′ , 

 ( ) ( ) ( ) ( )ρρ 2323192
1

1313192
1

2232
1

1132
1 2122121 xtxtxtxtbG +−−++−−= , 

 ρρ 23192
1

1396
1

232
1

132
1 ttttbG −+−=′ , 

 

 ( ) ( )ρρ 2323128
1

1364
1

2232
1

132
3 4545 xttxttcF +++++= , 

 ( ) ( ) ( ) ( )ρρ 2323384
1

1313192
1

2232
1

1132
1 87212121 xtxtxtxtcF +++−+++−=′ , 
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 ( ) ( ) ( ) ( )ρρ 2323384
1

1313192
1

2232
1

1132
1 87212121 xtxtxtxtcG ++−−++−−= , 

 ( )ρρ 2323384
1

13192
1

232
1

132
1 47 xttttcG ++−+−=′ , 

 

 ( ) ( )ρρ 2323128
5

1364
1

2232
3

132
3 4545 xttxttd F +−++−= , 

 ( ) ( ) ( ) ( )ρρ 2323384
1

1313192
1

2232
1

1132
1 1611212121 xtxtxtxtd F +−+−+−+−=′ , 

 ( ) ( ) ( ) ( )ρρ 2323384
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1313192
1

2232
1

1132
1 1611212121 xtxtxtxtdG +−−−+−−−= , 

 ( )ρρ 2323384
1

13192
1

232
1

132
1 411 xttttdG +−−−−=′  

 

 ( ) ( )( )( )σσττσσ ′⋅′⋅++′⋅−−= ������
UTUTbT 348

1
16
1 , 

 ( ) ( )( )( )σσττσσ ′⋅′⋅−−′⋅+= ������
UTUTd T

16
1

16
1 3 , 

 ( ) ( )( )ττ ′⋅++−−= ��
UTUTe 332

1
32
3 ,  (3.35) 

 ( ) ( )( )ττ ′⋅−++−= ��
UTUTf 332

1
32
3 , 

 TT bc −= , eg = , fh = , ep −= , fq −= .  

So, the free-system Green’s function is obtained by substitution into the Eq. (3.19) 

single-particle wave functions and single-particle energies obtained as solutions of the 

Hartree-Fock equations (2.39). The RPA Green’s function, then, is constructed using 

equations (3.18), (3.19) and (3.32). 

 

B. Elimination of Spurious State Contribution from Strength Distribution Function 

of Isoscalar Giant Dipole Excitation 

 

Now we will consider the analysis and elimination of the Spurious State Mixing (SSM) 

from the strength distribution function of the ISGDR and from the results of calculations 

of the inelastic cross sections.  

For future references we need to mention, that within the collective model, the 

energy weighted sum rule 1M  (EWSR) associated with an excitation 

operator ( ) ( )rYrff LMLM ˆ= is given by [39]:  
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∞
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�

. (3.36) 

Assuming that there is only one collective state [3,10] with energy collE , exhausting 

100% of the EWSR associated with the excitation operator ( ) ( )rYrff LMLM ˆ= , the form 

for the corresponding transition density is found as: 

 ( ) ( ) ( )( ) ( ) ( )�
�
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� +−+−= 022
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d
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�
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�+
dr
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rdf 0ρ
.  (3.37) 

Let us consider the isoscalar dipole excitation operator  

 ( )�
=

=
A

i
irff

1

�
, (3.38) 

here the single particle operators  

 ( ) ( ) ( )rYrfrf M ˆ1=�
,              ( ) ( )rrYrf M ˆ11 =�

. (3.39) 

According to the definition of the RPA Green’s function (3.21), we can approximate the 

response function ( ) ( ) ( )ErrGErrR RPA ,,Im1,', ′= ���� π  in form of the sum of separable 

terms 

 ( ) ( ) ( ) ( )� ′=′
n

nnn rrEdErrR
���� ρρ,, , (3.40)  

where  ( )Ed n  accounts for the energy dependence of ( )ErrR ,, ′��
. In case of a discretized 

continuum calculation, the sum in Eq. (3.40) has only one term for each value of the 

discretized excitation energy E. Then, depending on the form of the coefficient ( )Ed n , 

( )rn

�ρ  is proportional to the transition density associated with the resonance and as such 

may contain a spurious state contribution due to approximations employed in the RPA 

calculations. In general, due to the finite value of the artificially introduced smearing 

width Γ , the sum in Eq. (3.40) may contain multiple terms.  
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Assuming that the density ( )rn

�ρ has contributions of the resonance, ( )rn

�
3ρ , and of a 

spurious state, ( )rn

�
1ρ , we express it as, 

 ( ) ( ) ( )rbrar nnnnn

���
13 ρρρ += , (3.41) 

with the amplitudes of the intrinsic resonance state and the spurious state na  and nb , 

respectively, satisfying following condition. 

 0.122 =+ nn ba ,  (3.42) 

Note that we impose a condition on ( )rn

�
3ρ , associated with the isoscalar giant dipole 

resonance (ISGDR), that it fulfills the translation invariance condition for all n :  

 ( ) ( ) 031 =� rdrrf n

��� ρ . (3.43) 

From Eqs. (3.40) and (3.41) we have with an obvious notation 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )�

�

�

�

′

+

+′

+′=′

rrbEd

rrabEd

rrbaEd

rraEdErrR

nnnn

nnnnn

nnnn
n

n

nnn
n

n

��

��

��

����

11
2

31

13

33
2,,

ρρ

ρρ

ρρ

ρρ

. (3.44) 

From the decomposition of the response function R, Eq. (3.44) it becomes obvious, that 

the requited strength distribution, ( )ES , and the transition density, ( )rtr

�ρ , containing no 

spurious contributions, can be obtained from ( ) ( ) ( )� ′=
n

nnnn rraEdR
��

33
2

33 ρρ  using Eqs. 

(3.24) and (3.25) with scattering operator ( )rf
�

 from Eq. (3.39). However, the exact 

expression for 33R  is not known. To eliminate spurious state contributions from the 

transition strength distribution, ( )ES , we introduce a projection operator that projects out 

spurious contribution ( )rn

�
1ρ  in the transition density,  

  ( ) 1
1

ffrff
A

i
i ηηη −==�

=

�
, (3.45) 
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where ( ) ( ) ( )rfrfrf 1ηη −= ��
. Using Eqs. (3.24), (3.40) and (3.43) we obtain expression 

for the projection strength distribution, ( )ESη , 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )� ��

� ��

� ��

��

′′′

+′′′

+′′

=′′′=

n
nnnn

n
nnnnn

n
nnnn

rfrrrfrdrdbEd

rrfrrfrdrdbaEd

rrrfrdrdaEd

rfErrRrfrdrdES

������

������

�����

������

ηη

η

ηηη

ρρ

ρρ

ρρ

11
2

31

33
2

2

,,

. (3.46) 

The spurious state contribution is expressed in the last two term of the equation (3.41). 

Therefore the condition of projecting out the spurious state contribution from the 

transitional strength is: 

 ( ) ( )( ) ( )� =− 011 rrfrfrd n

���� ρη , for all n (3.47) 

We need to point out that all ( )rn

�
1ρ , taken in form of (3.37) (see Refs. [17,40]), coincide 

with the coherent spurious state transition density ( )rss

�ρ  (see Ref. [41]), 

 ( ) ( ) ( )rY
rAEm

rr M
ss

ssn ˆ4
2 1

0
2

1 ∂
∂

−==
ρπρρ ���

, (3.48) 

where ssE  is the spurious state energy and 0ρ  is the ground state density of the nucleus. 

Note that ( )rss

�ρ  in Eq. (3.48) is normalized to 100% of the energy weighted sum rule 

obtained using Eq. (3.36). Then the condition for calculating the coefficient η  is: 

 
( ) ( )
( ) ( )�

�=
rfrrd

rfrrd

ss

ss

���

���

1ρ

ρ
η . (3.49)  

Under the assumption that approximation (3.40) is correct, the coefficientη , satisfying 

condition (3.49) for all n gives us: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )� ��

��
′′

=′′′=

n
nnnn rrrfrdrdaEd

rfErrRrfrdrdES
�����

������

33
2

,,

ρρ

ηηη
. (3.50) 
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The spurious state contributions have been eliminated from the strength distribution 

function. To eliminate residual spurious contribution from the transition density of the 

ISGDR, we need to analyze the transition density associated with the strength ( )ESη . 

Using Eqs. (3.25), (3.41), (3.43), (3.44) and (3.50) we calculate  

 ( )
( )

( ) ( ) ( ) ( ) ( )[ ]rbrarrfrdEda
EES

E
Er ssnnn

n
nnn

������ ρρρρ η
η

η +′′
∆

∆= � � 33, . (3.51) 

Now, let us define the intrinsic transition density of the isoscalar giant dipole resonance 

as:  

 ( ) ( ) ( )ErErEr sstr ,,,
��� ραρρ η −= ,  (3.52) 

then according to the condition that in the intrinsic resonance state there is no spurious 

state contribution present (see Eq. (3.43)),, we can write, 

 ( ) ( ) ( ) ( ) ( )[ ] 0,,, 11 =−= �� ErErrfrdErrfrd sstr

������� αρρρ η . (3.53) 

Equation (3.53) is the condition that allows us to find value of coefficientα . 

 Proper normalization of the transition strength and transition density of the ISGDR 

requires knowledge of the mixing amplitudes na  and nb . Due to the fact that mixing 

amplitudes are not independent (see Eq. (3.42)) it is more convenient to look for the 

mixing amplitude of the spurious state nb . The value of nb  can be found from the 

expression for the strength distribution of spurious state: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )� ��� =′′=
n

ssnn rrfrdEdbrfErrRrdrdrfES
2

1
2

111 ,,
������� ρ . (3.54) 

The integral ( ) ( )� rrfrd ss

��� ρ1  can be evaluated using Eqs. (3.39) and (3.48) within the 

collective model (when 100% of the EWSR is exhausted at any chosen excitation 

energy): 

 ( ) ( )( ) ssss EA
m

rrfrd
π

ρ
4
3

2

22

1

���� =� . (3.55) 

That yields, 
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( )

( ) ( )( )2

1

12

�
=

rrfrd

ES
b

ss

n
n ��� ρ

. (3.56) 

In the present work, we take the excitation operator to be ( )� =
=≡ A

i irfff
1 33

�
, where 

( ) ( )rYrrf M ˆ1
3

3 =�
. For this operator, the value of η  associated with the spurious 

transition density ( )Erss ,
�ρ  is calculated analytically using the definition of the spurious 

transition density given by Eq. (3.48): 

 2

3
5

r=η .  (3.57) 

The numerical calculations of the projected out transition strength ( )ESη  involve 

separate calculation of the transition strength using excitation operator ( )rf
�

3 ,  

 ( ) ( ) ( ) ( )�� ′′= rfErrRrdrdrfES
����

333 ,, , (3.58) 

spurious operator ( )rf
�

1 ,  

 ( ) ( ) ( ) ( )�� ′′= rfErrRrdrdrfES
����

111 ,,  (3.59) 

and for the non-diagonal terms of the strength function two of them together 

 ( ) ( ) ( ) ( )�� ′′= rfErrRrdrdrfES
����

3113 ,, ,  (3.60) 

with the following correction for the spurious state contribution 

 ( ) ( ) ( ) ( )ESESESES 1
2

133 2 ηηη +−= . (3.61) 

By following the steps described above, we obtain the transition density, ( )Ertr ,
�ρ , and 

the strength distribution function, ( )ESη , of the isoscalar giant dipole resonance.  

To compare theoretical findings to the experimentally observed quantities we need to 

describe a particular nuclear reaction and obtain angular distributions using results of the 

HF-RPA calculations. In the next chapter we provide such a description within the 

Distorted-Wave-Born-Approximation (DWBA).      
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CHAPTER IV 

DISTORTED WAVE BORN APPROXIMATION 

 

A. Formal Solution of Scattering Problem 

 

The total wave function describing a direct nuclear reaction a + A →b + B in the center 

of mass frame of reference can be written as a superposition of all possible scattering 

channels: 

 ( )�=Ψ +

γ
γγγ ψξ r

�)(  (4.1) 

where ( )γγξ r
�

 is the wave function of relative motion and γψ  is the total internal wave 

function of the system in the reaction channel γ . The wave function )(+Ψ is the solution 

of the stationary Schrödinger equation 

 )()( ++ Ψ=Ψ EH  (4.2) 

and satisfies the boundary condition: 

 ( )�+ →Ψ +

β β
βααββα

ββ

αα ψψ
r

e
kkfe

rik
rkicallyassymptoti

����

,)( , (4.3) 

where αα
αψ rkie

��

is the plane wave in the incident channel α , 
β

β

ββ

ψ
r

e rik

 is the outgoing 

spherical waves in a given reaction channel β  and ( )βααβ kkf
��

,  is the scattering 

amplitude of the given reaction channel. 

The differential cross-section αβσd  for a transition from the channel α  to a channel 

β  is defined as the ratio between the outgoing flux per unit time through the element of 

area ( ) Ω= drrAd 2,ˆ ββ φθ
�

, and the incident flux per unit time per unit area,  

 
)(

2)(

α

β
β

αβσ
i

r

J

drJ
d �

Ω
= , (4.4) 



       
           

36 

where )(β
rJ  is the outgoing flux in the radial direction in channel β  and )(α

iJ
�

is the 

incident flux.  

Assuming the asymptotic forms of the total wave function to be 

( ) ( )
β

βαβ
β

ββ

ψ
r

e
kkf

rik��
,=Φ  for the outgoing channel and ( ) αα

α
α ψ rkie

��

=Φ  for the incoming 

channel and using the orthonormality of αψ  and βψ , which are functions of the internal 

coordinates of the participating nuclei, the probability flux in outgoing and incoming 

channels are obtained as, 

 
( )

2

2

)(
,

β

βααβ

β

ββ

µ r

kkfk
J r

��

�
= ,          

α

αα

µ
k

J i

�
=)( , (4.5) 

with  

 
Aa

Aa

Mm
Mm

+
=αµ ,     and       

Bb

Bb

Mm
Mm

+
=βµ  (4.6) 

are the reduced masses in the incoming channelα and outgoing channel β . Then, the 

differential cross-section in the center of mass frame of reference can be written in terms 

of the scattering amplitude: 

 ( ) 2
, βααβ

α

β

β

ααβ

µ
µσ

kkf
k

k

d

d ��
=

Ω
. (4.7) 

To find scattering amplitude ( )βααβ kkf
��

, , we need to solve the scattering problem given 

by equations (4.1), (4.2) and (4.3).  

For a specific scattering channel �, the total Hamiltonian of the system of projectile 

and target nuclei can be written as   

 βββ VTHH ++=  (4.8)  

where βH is the sum of the internal Hamiltonians of the projectile and the target, βT is 

the kinetic energy of relative motion of, and  βV  is the interaction between the projectile 

and the target. Then Eq. (4.2) takes the form: 
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 ( ) 0ˆ )( =Ψ−++ +EVTH βββ . (4.9) 

Multiplying this equation by ∗
βψ  from the left and integrating over the internal 

variables of the projectile and the target in the outgoing channel �, we obtain the 

equation for the wave function of the relative motion ( )ββξ r
�

: 

 ( ) ( ) ( ))(,ˆ +Ψ−=−+ ββββββ ψξε VrET
�

, (4.10) 

where Bb εεε β +=  is the sum of the excitation energies of the projectile and the target. 

The right hand side of the Eq. (4.10) is the usual scalar product integrated over the 

internal coordinates { }ς  in the scattering channel β : 

( ) { } { }( ) { }( ) ( ) { }( )�
++ Ψ≡Ψ ςςςψςψ ββββ

������
,,, )( rrVdV  

To find a solution of Eq. (4.10) we introduce an arbitrary spherically symmetric 

distorting potential ( )ββ rU  by adding ( ) ( )ββββ ξ rrU  both to the left and to the right hand 

side of the equation. The expression ( ) ( )ββββ ξ rrU  depends only on the relative distance 

between the projectile and the target, βr .  Therefore, by taking into account 

orthonormality of the total internal wave functions γψ  of different scattering channels, 

the additional distorting term can be expressed as ( ) ( ) ( ))(, +Ψ= ββββββ ψξ UrrU . 

Therefore, equation (4.10) reduces to: 

 ( ) ( ) [ ]( ))(
22

2
2

,
22

+Ψ−−=
	
	




�

�
�



�
+−∇− βββββββ

β

β
β

β

ψξ
µµ

UVrrU
k

r

��
� , (4.11) 

where  

 ( ).2
2 β
β

β ε
µ

−= Ek
�

 (4.12) 

Eq. (4.11) is an inhomogeneous differential equation, provided that the r.h.s. is a 

known function of βr . Therefore the general solution of equation (4.11), ( )ββξ r , is the 

sum of a particular solution of Eq. (4.11) and the general solution of the homogeneous 

equation: 
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 ( ) ( ) 0,
22

)(
22

2
2

=
	
	




�

�
�



�
+−∇− +

βββββ
β

β
β

β

χ
µµ

rkrU
k

r

����
� . (4.13) 

 The general solution of the Eq.(4.11), ( ) ( ) ( ) ( ) ( )βββββββ ξχξ rrkr part ���
., += + , must satisfy the 

following boundary conditions: 

i) ( ) + →+ ββ
ββχ rkiallyasymptotic erk

��
��

,)(  outgoing spherical wave; 

ii) ( )ββχ rk
��

,)(+  is regular at 0=βr
�

; 

iii) ( ) ( )ββξ rpart.   → allyasymptotic  outgoing spherical wave; 

iv) ( ) ( )ββξ rpart.
 is regular at 0=βr

�
.  (4.14) 

The solution of the homogeneous equation (4.13) that satisfies the given boundary 

conditions i) and ii) is: 

 ( ) ( ) ( ) ( )�
∞

=

+ +=
0

)( cos,f12
1

,
l

ll
il Prkeil

rk
rk l θχ ββ

δ

ββ
βββ
��

, (4.15) 

where lδ  is a phase shift, ( )θcoslP  is Legendre polynomial, θ  is the angle between the 

direction of the incident wave vector and βr
�

, and ( )ββ rkl ,f  is the regular solution of 

homogeneous equation:  

 
( ) ( ) ( ) 0,f

21
22

2
2

2

=
	
	




�

�
�



�
−+−+ ββββ

β

β
β

µ
rkrU

r
ll

k
dr
d

l
�

, (4.16) 

with the asymptotic form: ( ) 	



�
�


� +− → ∞→ lrl

l
rkrk δπ

ββββ β 2
sin,f . For reason of 

convenience, we express ( )ββ rkl ,f  in terms of functions ( )ββ rkl ,h , 

 ( ) ( ) ( )( )ββββββ rkrk
i

rk lll ,h,h
2

,f −= ∗ . (4.17) 

The functions ( )ββ rkl ,h  are defined as a combination of the regular and irregular 

solutions of Eq. (4.16) ( ) ( ) ( )ββββββ rkrkirk lll ,g,f,h += , hence, they also are solutions 

of Eq. (4.16). The asymptotic form of the functions ( )ββ rkl ,h  is: 
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 ( ) 	



�
�


� +− → ∞→ lrl

l
rkirk δπ

ββββ β 2
exp,h . (4.18) 

For the case of nuclear scattering reaction, the distorting potential βU  is the sum of 

the nuclear and Coulomb potentials i.e., ( ) ( ) βββββ reZZrUrU bB
nucl /2.)( += . Therefore, 

the total phase shift is given as: ( )
l

n
ll σδδ +=  , where )(n

lδ  and lσ  are the nuclear and 

the Coulomb phase shift, respectively. The Coulomb phase shift is well known: 

 ( )βσ inll ++Γ= 1arg . (4.19) 

Here ( )zΓ  is the gamma function and ( )βββ µ keZZn bB
22

�=  is the Sommerfeld 

parameter. For the relative distance βr  greater than some chosen value ar , the 

contribution of the nuclear term of the distorting potential can be neglected. Then, the 

solution ( )βββχ rk
��

,)(+  is dominated by Coulomb contribution, and for βr > ar , ( )ββ rkl ,f  

can be written in terms of analytically known outgoing Coulomb functions ( )ββ rkl ,Η : 

 ( ) ( ) ( ) ( )( )ββ
δ

ββββ
δ

β
rkerk

i
rke l

i
lrrl

i n
l

a

nucl
l ,,

2
,f 2.)(

Η−Η= ∗
> . (4.20) 

In the region βr < ar , ( )ββ rkl ,f  can be found only numerically. 

The nuclear phase shift )(n
lδ can be found by matching ( )

arrl rk <βββ ,f  and it’s 

derivative with ( )
arrl rk >βββ ,f  and it’s derivative at the point arr =β . Setting  ∞→βr  in 

Eq. (4.15) and using Eq. (4.20) and the asymptotic form for the Coulomb functions: 

( ) 	



�
�


� +−− →Η ∞→ lrl

l
rknrkirk σπ

βββββββ β 2
2lnexp, , we obtain the scattering 

amplitude ( )θββ
)0(f : 

 ( ) ( ) ( )( ) ( )� −+= +

l
l

i Pel
ik

f
n

ll θθ δσ

β
ββ cos112

2
1 )(2)0( , (4.21) 

where θ  is the angle between the incident and outgoing wave vector.  
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To complete the general solution for the wave function of relative motion ( )ββξ r , we 

need to find a particular solution of Eq. (4.11). This can be done within the Green’s 

function formalism. In terms of the Green’s function the particular solution is given by: 

 ( ) ( ) [ ]( )�
+Ψ−′′−= )(. ,, ββββββββ ψξ UVrrGrdrpart ����

. (4.22) 

Here the Green’s function ( )ββ rrG ′��
,  must satisfy the following equation: 

 ( ) ( ) ( )ββββββ
β

β
β

β

δ
µµ

rrrrGrU
k

r ′−=′
	
	




�

�
�



�
+−∇− ������

� ,
22

22
2

2

, (4.23) 

and the boundary conditions iii) and iv) of Eq. (4.14). Performing a multipole expansion 

of ( )ββ rrG ′��
,  we obtain: 

 ( ) ( ) ( ) ( )� ′
′

′
=′ ∗

ml
lmlm

l rYrY
rr

rrg
rrG

,

ˆˆ
,

, ββ
ββ

ββ
ββ
��

, (4.24) 

where ( )ββ rrg l ′,  satisfies equation 

 
( ) ( ) ( ) ( )ββββββ

ββ
β

ββ

δ
µµµ

rrrrgrU
r
ll

k
dr
d

l ′−=′
	
	




�

�
�



�
+++−− ,

1
222 2

2
2

2

2

22
���

. (4.25)  

According to the Green’s function formalism, the radial part of the Green’s function, 

( )ββ rrg l ′, , can be written in form: 

 ( ) ( ) ( ),,h,f
2

, 2 ><−=′ ββββ
β

ββ

µ
rkrk

W
rrg lll

�
 (4.26) 

where functions ( )ββ rkl ,f  and ( )ββ rkl ,h  are defined by Eqs. (4.16) and (4.17), 

<βr ( >βr ) is smaller (greater) of βr  and βr ′ , andW is the Wronskian: 

 ( ) ( ) ( ) ( )
.

,f
,h

,h
,f const

r

rk
rk

r

rk
rkW l

l
l

l =
∂

∂
−

∂
∂

=
β

ββ
ββ

β

ββ
ββ  (4.27) 

The Wronskian W  in Eq. (4.26) is a constant, hence, it can be evaluated at an arbitrary 

βr , for example, at ∞→βr . Utilizing the asymptotic forms for ( )ββ rkl ,f  and 

( )ββ rkl ,h , and setting ∞→βr , the value of the Wronskian is obtained: 

 βkW −= . (4.28) 
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Now, utilizing Eqs. (4.26) and (4.28) we can write expression for the Green’s function 

as: 

 ( ) ( ) ( ) ( ) ( )� ′
′

=′ ∗><

ml
lmlm

ll rYrY
rr

rkrk

k
rrG

,
2

ˆˆ
,h,f2

, ββ
ββ

ββββ

β

β
ββ

µ
�

��
. (4.29) 

Before writing down the complete solution of Eq. (4.11), we need to take into 

account that the asymptotic form (4.3) of the total outgoing wave function )(+Ψ  limits 

presence of the incoming flux only to the incident channel α . Therefore, the wave 

function of relative motion ( )ββξ r
�

 becomes: 

 

( ) ( )
( ) ( ) ( ) ( ) [ ]( ).,ˆˆ

,h,f2

,

,

)(
2

)(

��
+∗><

+

Ψ−⋅′
′

′
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lmlm
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p

UVrYrY
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rkrk
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rkr

βββββ
ββ

ββββ
β

β

β

αββββββ

ψ
µ

δχξ

�

�

���

 (4.30) 

Asymptotically, when ∞→βr , ββ kr ˆˆ → , behavior of the function ( )>ββ rkl ,h  is 

described as: ( ) ( ).)(22lnexp,h nucl
lll lrknrkrk δσπβββββββ ++−−→> . Therefore, the 

asymptotic form of the complete solution of the Eq. (4.11) can be written as:  

 

( ) ( )
( )

( )
( ) [ ]( ),,,

2
)()(

2ln

2

2ln
)0(

�
+∗−

−

−

Ψ−′′
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�
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�
+→

βββββββ
β

β

αβ
α

ααββ

ψχ
π
µ

δθξ

βββββ

ααααα
αα

UVrkrd
r

e

r
e

fer

rknrki

rknrki
rki

���

�

� ��

 (4.31) 

where ( )θαα
)0(f  is defined by Eq. (4.21), and the function ( )( )βββχ rk ,−  is the time reversed 

of the function ( )( )βββχ rk ,+ , defined as: 

 ( ) ( ) ( ) ( ) ( )� ∗+∗− −=
ml

lmlml
iil rYkYrkei

rk
rk

n
ll

,

)( ˆˆ,f
4

, ββββ
δσ

ββ
βββ

πχ ��
. (4.32) 

From the asymptotic form for the wave function of relative motion ( )ββξ r
�

, Eq. (4.31), 

we write the scattering as: 

 ( ) ( ) ( ) [ ]( )�
+∗− Ψ−′′−= )()(

2
)0( ,,

2
, βββββββ

β
αβααβααβ ψχ

π
µ

δθ UVrkrdfkkf
���

�

��
. (4.33) 
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B. Distorted Wave Approach to Inelastic Scattering 

 

The Distorted Wave Born Approximation (DWBA) is based on the following two 

approximations: 

1) We can assume, that in the expression (4.33) the term [ ]ββ UV −  is small, hence, it 

can be treated as a perturbation to the Hamiltonian βββ UTHH ++=′ . Under such 

assumption, terms ( ) βββ ψξ r
�

, corresponding to inelastic scattering channels in the 

expression (4.1), are also considered to be small.  Therefore, the r. h. s. of the Eq. 

(4.33) the total outgoing wave function )(+Ψ can be approximated by the elastic 

term only: 

 ( ) ααα ψξ r
�→Ψ +)( . (4.34) 

2) By choosing perturbed potential αU  in a way that the elastic cross-section 

calculated with the scattering amplitude ( )θαα
)0(f  from Eq. (4.21), fit the 

experimentally measured elastic cross-section at the given energy E , which 

implies  

 [ ]( ) 0, ≈− αααα ψψ UV , (4.35) 

we can approximate the wave function of the relative motion by distorted outgoing 

spherical wave:  

 ( ) ( )ααααα χξ rkr
���

,)(+≈ , (4.36) 

where ( )αααχ rk
��

,)(+  can be found using Eq. (4.15) and following the procedure 

discussed after it. 

Using the approximated form for the total outgoing wave function (4.34) and the 

outgoing wave function of relative motion (4.36), with the appropriate form of the 

distorted potential, we obtain the following approximate expression for the scattering 

amplitude: 

 



       
           

43 

 ( ) ( ) ( ) [ ] ( )( )�
+∗− −′′−= ααααβββββββ

β
αβααβααβ χψψχ

π
µ

δθ rkUVrkrdfkkf
�����

�

��
,,,

2
, )()(

2
)0( .   

  (4.37) 
It should be noted, that the wave function )(+Ψ , as it is given by Eq. (4.1) does not 

include terms which describe the formation of a compound nucleus and cannot be 

written as products of the intrinsic and the relative motion wave functions. In order to 

take into account absorption processes we can introduce an imaginary part to the nuclear 

part of the interaction αV . The imaginary part of the potential, introduces imaginary 

phase shifts, hence reduces the incident flux in the outgoing channel (absorption). 

During the typical inelastic scattering experiment a projectile nucleus remains in its 

ground state and a target nucleus is in the ground state before, and is excited by the 

interaction with the projectile, during the scattering, a + A →  a + A*. For such a 

reaction, following the DWBA, we can write expression for the inelastic scattering 

amplitude as: 

 ( ) ( ) ( )[ ]( ) ( )� ′−′′−= +∗− rkrUVrkrdkkf
�����

�

��
,,,

2
, )()(

2 ααααββββααβ χψψχ
π
µ

, (4.38) 

where µ  denotes the reduced mass, 

 
Aa

Aa

Mm
Mm

+
=µ , (4.39) 

and V  is the projectile-target interaction. The distorted potential ( )rUα  is chosen 

according the DWBA and the residual interaction ( )[ ]rUV α−  can be treated as a small 

perturbation. We demand that the elastic cross-section obtained with such distorted 

potential ( )rUα  fit the experimentally measured elastic cross-sections, thus, satisfying 

the condition: 

 ( )[ ]( ) 0, ≈− ααα ψψ rUV . (4.40) 

For βα ≠ , contribution from the distorted potential ( )rUα  in the scalar product 

( )[ ]( )ααβ ψψ rUV −,  is equal zero, due to orthonormality of αψ  and βψ . 



       
           

44 

For the case of a spinless projectile, that the matrix element ( )[ ]( )ααβ ψψ rUV −,  

describing transition between the ground state and an excited state with multipolarity l  

of the target nucleus can be written as a multipole expansion in spherical harmonics: 

 [ ]( ) ( )( ) ( )rYirTUV lm
l

lm ′−′=− ∗ ˆ, ααβ ψψ , (4.41) 

where ( )rTlm ′  is the radial form factor. 

Using the expressions for the incoming and outgoing distorted wave functions, 
( )( )βββχ rk ,+  and ( )( )βββχ rk ,− , respectively, and Eq. (4.40), we rewrite scattering 

amplitude (4.38) in the form: 

 ( ) ( ) ( ) ( ) ×−= � ∗+−−

2121

21

2211

2112

,,,
2

ˆˆ8
,

mmll

ll
lmmlml

illl IkYkYei
kk

kkf ll
αβ

σσ

βα
βααβ

πµ
�

��
  

 ( ) ( ) ( )�
∗∗ rYrYrYrd mllmml ˆˆˆˆ

2211
, (4.42) 

where  

 ( ) ( ) ( )�= drrkfrTrkfI llml
ll

lm ,,
21

21
αβ . (4.43) 

Expanding the product ( )rY ml ˆ
11

∗ ( )rYlm ˆ∗  in terms of the Clebsch-Gordan coefficients, 

 ( ) ( ) ( )( )
( ) ( )�

+

−=′

∗
′′

∗∗ ′′′
+′

++
=

1

1

11
ˆ000

124
1212

ˆˆ 111
1

ll

lll
mllmml rYlllmlmlml

l
ll

rYrY
π

,  (4.44) 

and performing the integration over the angle r̂  we reduce expression (4.42) 

to the form: 

( ) ( )
( ) ×⋅

+
++−= � +−−

21

212112

, 2

1
2 124

12
12

2

ll

ill
lm

lll lleI
l

l
il

kk
f σσ

βα
αβ π

µθ
�

 

  ( ) ( )αβ kYkYlllmlmlml mlml
ˆˆ000

2211212211
∗ . (4.45)  

Choosing the z-axis to be along the direction of the incident wave vector αk̂  and the y-

axis to be perpendicular to the plane of scattering (along the direction of βα kk
��

× ), we 
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can further simplify expression (4.45). The form of the spherical harmonics ( )αkY ml
ˆ

22

∗  in 

the new coordinate system is: 

 ( ) 0,
2

222 4
12ˆ

mml

l
kY δ

πα
+

=∗ , 

and the expression (4.45) can be written as:  

 ( ) ( )[ ]×+⋅++−= � −−

21

21

2112

,
12 exp1212

2

ll
ll

ll
lm

lll iIlil
kk

f σσµθ
βα

αβ
�

 

  ( )θmlYllllmlml −−
1

0000 2121 , (4.46) 

Here the radial form factor 21ll
lmI  is defined in Eq. (4.43) and ( )θmlY −1

 depends only on the 

angle between the incoming and outgoing momentums, αk  and βk . 

To complete the description of the scattering reaction within the DWBA we need to 

find the radial form factor in the expansion (4.46). In the following we will obtain 

expressions for the radial form factor (4.43) for the nuclear and Coulomb part of 

interaction. 

 

1. Nuclear Interaction 

 

For simplicity we assume the case of point-like projectile and spherically symmetric 

target nuclei. In this case we can assume that the projectile interacts with each nucleon 

of the target nucleus via a two-body effective interaction. Then, the density dependent 

nuclear effective interaction between the projectile and the target can written in form: 

 ( )( )� −=
i

ii rrrVV
��� ρ, , (4.47) 

where ir
�

 and ( )ir
�ρ  are the nucleon coordinates with respect to the center of mass of the 

target and target density at ir
�

, respectively. 

The nuclear part of the distorted potential αU  can be found as: 

 ( ) ( ) ( )( ) ( )� ′′′−′== rrrrVrdVrU nucl
0000

. ,, ρρψψα
���

, (4.48) 
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where ( )r′0ρ  is the ground state density in spherically symmetric target. Because the 

projectile is assumed to be a point-like particle the intrinsic wave functions of the system 

are replaced by the ground state and excited state wave functions of the target nucleus. 

By expanding V  in spherical harmonics, 

 ( )( ) ( )( ) ( ) ( )� ′′′
+

=′′− ∗

ml
lmlml rYrYrrrv

l
rrrV

,
00 ˆˆ,,

12
4

, ρπρ��
, (4.49) 

and introducing this expansion in Eq. (4.48), we obtain: 

 ( ) ( ) ( )( ) ( )�
∞

′′′′′==
0

000
2

00
. ,,, rrrrvrrdVrU nucl ρρψψα . (4.50) 

For a target’s excitation to a state with certain multipolarity l  the excitation can be 

considered as a small variation of the ground state density that will result in a small 

change of the effective interaction. To the lowest order, this effect can be accounted for 

by using the modified interaction,  

 ( )( ) ( )( ) ( ) ( )( )
( )r

rrrV
rrrrVrrrV

′∂
′′−∂

′+′′−=′′−′
0

0
000

,
,,

ρ
ρ

ρρρ
��

����
. (4.51)   

Then, the matrix element of the residual interaction can be calculated as: 

 ( ) ( ) ( )( ) ( ) ( )( )
( )� �

�

�
�
�

�

′∂
′′−∂

′+′′−′′=′
r

rrrV
rrrrVrrdV tr

lmlm
0

0
00

.
0

,
,,

ρ
ρ

ρρρψψ
��

����
, (4.52) 

where ( )rtr
lm ′�.ρ  is the transition density  at the point r ′�  in the target. We can write the 

transition density as: 

 ( ) ( ) ( )rYrr lm
tr
lm

tr
lm ˆ.. ρρ =�

. (4.53)    

 If the density dependence in the effective interaction potential ( )( )rrrV ′′− 0, ρ��
 can be 

factored, then using the expansion (4.49) and taking into consideration Eq. (4.53) we 

obtain: 

 ( ) ( ) ( ) ( )�
∞

∗ ×′′′−
+

=
0

.2
0. ˆ

12
4

, rrrdrYi
l

V tr
lmlm

l
reslm ρπψψ  



       
           

47 

 ( )( ) ( ) ( )( )
( ) �

�

�
�
�

�

′∂
′′∂′+′′

r
rrrv

rrrrv l
l

0

0
00

,,
,,

ρ
ρρρ , (4.54) 

Comparing Eq. (4.54) with the Eq. (4.41) we obtain the nuclear radial form factor, 

 ( ) ( ) ( )( ) ( ) ( )( )
( ) �

�

�
�
�

�

′∂
′′∂′+′′′′′

+
= �

∞

r
rrrv

rrrrvrrrd
l

rT l
l

tr
lm

tr
lm

0

0
00

0

.2. ,,
,,

12
4

ρ
ρρρρπ

. (4.55) 

The parameters of the two-body potential ( )( )rrrV ′′− 0, ρ��
 are found by fitting the 

experimentally measured differential of elastic scattering with the differential cross 

section obtained using the distorted potential from Eq. (4.50). In the case when the 

effective nuclear interaction is taken to have both real and imaginary components, the 

distorted potential for both parts can be calculated separately, using the same method. 

 

2. Coulomb Interaction 

 

As before, the projectile is assumed to be a point particle, so the Coulomb part, CV , of 

the projectile-target interaction potential can be written as: 

 � −
=

i i

P
C rr

eZ
V ��

2

, (4.56) 

where PZ  is the charge number of the projectile and ir
�

 is the proton coordinate in the 

target with respect to it’s center of mass. 

The Coulomb part, ( )rU Cα , of the distorted potential is given by: 

 ( ) ( )
�� ′−

′
′=		




�

�
�



�

−
=

rr
r

rdeZ
rr

eZ
rU c

P
i i

P
C ��

�
��

ρψψα
2

0

2

0 , , (4.57) 

 where ( )rc ′ρ  is the ground state charge density of the spherical target at the point r ′ . 

Let us expand 
rr ′− ��

1
in spherical harmonics: 

 ( ) ( )� ′
+

=
′−

∗
+

>

<

ml
lmlml

l

rYrY
r
r

lrr ,
1

ˆˆ
12

41 π
�� , (4.58) 
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where <r , >r , denote, respectively, the lesser and the larger of the radial coordinates r  

and r ′ . Substituting expansion (4.58) in the Eq. (4.57) we obtain the Coulomb part of 

the optical potential: 

 ( ) ( ) ( )�
�

�
�
�

�
′′′+′′′= ��

∞

r
c

r

cPC rrrdrrrd
r

eZrU ρρπα
0

22 1
4 . (4.59) 

For the transition from the ground state to some excited state of the target nucleus 

with the multipolarity l , the matrix element ( )0, ψψ Clm V  

 ( ) ( )
�� ′−

′
′=		




�

�
�



�

−
=

rr

r
rdeZ

rr
eZ

V lm
tr
c

P
i i

P
lmC ��

�
�

��
ρ

ψψψψ αβ
2

0

2

,, ,  (4.60) 

where ( )rlm
tr
c

�′ρ is the charge transition density at the point r
�′ in the target. 

Writing the charge transition density in the form (4.53) and using the expansion 

(4.58) we obtain: 

 ( ) ( ) ( ) ( )
�
�

�
�
�

�

′
′

′+′′′′
+

= ��
∞

−
+

+
∗

r
l

lm
tr
cl

r

lm
tr
c

l
llm

P
Clm r

r
rdrrrrd

r
rY

l
eZ

V 1
0

2
1

2

0
1ˆ

12
4

,
ρ

ρπψψ . (4.61) 

Therefore the Coulomb contribution to the radial form factor is given by:  

 ( ) ( ) ( )
�
�

�
�
�

�

′
′

′+′′′
+

= ��
∞

−
+

+
r

l
lm

tr
cl

r

lm
tr
c

l
l

PCoulomb
lm r

r
rdrrrrd

rl
eZ

rT 1
0

2
1

2
. 1

12
4 ρ

ρπ
. (4.62) 

The total optical potential αU  is a sum of the real and the imaginary parts of the 

nuclear contribution (Eq.4.50), and the Coulomb contribution (Eq. 4.59). The total 

transition potential for the target nucleus transition from the ground state to the excited 

state with multipolarity l is a sum of the matrix elements obtained with both, real and 

imaginary parts of the residual interaction (Eqs. 4.54) and the Coulomb matrix element 

(4.61).  
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CHAPTER V 

FERMI LIQUID DROP MODEL (FLDM) 

 

In the previous chapters we have shown the microscopic description of quantum 

mechanical many-body system. However, quantum mechanics of many-body system can 

be presented in several forms. In this chapter we will derive formalism of the Fermi 

liquid drop model for calculations of the isoscalar compression energies and widths 

starting from the time-depended Hartree-Fock approximation and implementing the 

Wigner function approach. 

 

A. Time Dependent Hartree-Fock Approximation in Phase Space 

 

For a system of A  particles, the most general density matrix is given by 

 ( ) ( ) ( )� ′′ΨΨ=′′ ∗

n
AnAnnAAA rrrrwrrrr
��������

,...,,...,,...,;,..., 1111ρ , (5.1) 

where ( )An rr
��

,...,1Ψ  are the orthonormal exact wave functions of the system and nw  is 

the probability that the system is in a state ( )An rr
��

,...,1Ψ , with the normalization  

 1
2

=ΨΨ=��
n

nA
n

nw . (5.2)  

The description of the system of A particles using density matrix 

( )AAA rrrr ′′ ����
,...,;,..., 11ρ  is not very applicable for calculations of observables associated 

with commonly used one- and two-body operators. In such calculations description of a 

many body system using one body density matrixes ( )rr ′��
,ρ  is more preferable:  

 ( ) ( )AAAA rrrrrrrdrdArr
���������

,...,,;,...,,..., 222 ′=′ � ρρ . (5.2) 

The equation of motion for the one-body density matrix ( )rr ′��
,ρ  can be obtained directly 

from the basic many-body Schrödinger equation for ( )An rr
��

,...,1Ψ . 
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 ( ) ( ) ( ) ( ) ( ) ( )rrErrrrrVrrrVrr
m i

i
i ′=′′′+′+′∇− �

�������������
,,,,,,

2
2

2

ρρρρ   (5.3) 

The equation (5.3) of motion for ( )rr ′��
,ρ  is coupled to a set of equations for higher order 

density matrices.  To avoid solving system of coupled equations for density matrixes for 

up to A particles we can use the variational methods for the solution of the quantum 

many-body problem, assuming certain form for the initial function ( )rr ′��
,ρ . Particular 

examples of the variational method are the Hartree-Fock (HF) and time-dependent-HF 

(TDHF) approximations.  

To obtain the TDHF equation of motion for a single particle matrix ( )rr ′��
,ρ , we start 

from the exact variational equation, taken in the form 

 ( ) ( ) 0ˆ
2

1

=Ψ−
∂
∂Ψ� tH
t

itdt
t

t

�δ , (5.4)    

where Ĥ is the exact Hamiltonian for the A  nucleon. In the case of a trial function given 

by the fully antisymmetrized product of the time-dependent single particle wave 

functions ( )trii ,
�ϕ , 

 ( ) ( )tDet
A

t iϕ1=Ψ ,               Ai ,...,1= . (5.5)    

The TDHF equation of motion for the time-dependent one body density matrix, 

( )trr ;, 21

��ρ , which is defined as 

 ( ) ( ) ( )�
=

∗=
A

i
ii trtrtrr

1
2121 ,,;,
���� ϕϕρ , (5.6) 

is given by 

 ( ) [ ] ( ) ( ) ( )[ ] ( )trrtrVtrVtrr
m

trr
t

i ;,,,;,
2

;, 212121
2
2

2
1

2

21

���������
� ρρρ −+∇−∇−=

∂
∂

. (5.7) 

The single–particle wave functions ( )tri ,
�ϕ  in the definition (5.6) are determined by HF 

equations with a self-consistent potential 

 ( ) ( ) ( )� ′′′= trrrvrdtrV ,,,
����� ρ , (5.8)    
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where ( )rrv ′��
,  is the two-body effective interaction and ( )tr ,

�ρ  is the time-dependent 

local density ( ) ( )trrtr ;,,
��� ρρ = . In equations (5.7) and (5.8), the non-local exchange 

potential has been omitted for notational simplicity. We need to note, that for the local 

(Skyrme-type) nucleon-nucleon effective interaction, the exchange term of the self-

consistent potential can be also expressed in form of Eq. (5.8). 

The time dependent Wigner distribution function defined as [42] 

 ( ) ( ) ( )� +−= ⋅− tsrsresdtprf spi ;2/,2/;, / ������� ��
� ρ , (5.9)    

where ( ) 2/21 rrr
��� += ,  21 rrs

��� −= , and ( )trr ;, 21

��ρ  is the time-dependent one body 

density matrix. The Wigner distribution function is interpreted as the quantum analog of 

the classical phase-space distribution function. The Wigner transform ( )prAW

��
,  for an 

arbitrary one-body operator Â  is presented as: 

 ( ) ( ) ( ) ( ) ( )��
⋅∗ +−==

i

psi
iiWW esrAsrsdprAA

��
�������� 2/2/ˆ2/,ˆ ϕϕ . (5.10)    

Using definition (5.10) we can write the composition formula for two one-body 

operators [43]: 

 ( ) ( ) ( ) ( )prBeprABA W
i

WW

���� �
� ,,ˆˆ 2/ Λ= , (5.11)     

where prpr ∇⋅∇−∇⋅∇=Λ
�����

.      

The collisionless quantum kinetic equation [44-46] is obtained by multiplying Eq. 

(5.7) by ( )[ ]spi
��

� ⋅− /exp , performing coordinate transformation 

( ) ( )2/,2/, 21 srsrrr
������ +−→ , and integrating the obtained expression over s

�
: 

 ( ) ( ) ( ) ( ) 0;,
2

sin;
2

;,
1

;, =	



�
�


� Λ−∇⋅+
∂
∂

tprftrVtprfp
m

tprf
t r

�����

�

������
.  (5.12)                             

Expanding 	



�
�


� Λ
��

2
sin , we obtain:  

 ( ) ( ) ( ) ( ) ( ) 0;,...
4!3

1
;;,

1
;,

3
2

=		



�
��


�
−Λ+Λ−−∇⋅+

∂
∂

tprftrVtprfp
m

tprf
t r

������������
 

  (5.13) 
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Neglecting the terms containing n
� , 2≥n  in the expansion, Eq. (5.13) is transformed to 

the so-called Landau-Vlasov equation [47] 

 ( ) ( ) ( ){ }tprftprhtprf
t

;,,;,;,
������ =

∂
∂

,  (5.14)    

where ( ) ( )trVmptprh ;2/;, 2 ��� +=  is the classical Hamiltonian and { }...,...  is a Poisson 

bracket.  

To obtain the hydrodynamic equations, we need to consider zero, first and second 

p
�

-moments of the phase-space kinetic equation (5.12). The zero-moment is obtained by 

integrating Eq. (5.12) with ( ) � pd
�

�
32/1 π ;  

 ( ) 0=⋅∇+
∂
∂

νν ρρ u
t

. (5.15) 

This is the equation of continuity, where the particle density ( )tr ,
�ρ  and the velocity 

field ( )tru ,
��

 are given as:      

 ( )
( )

( )�= tprf
pgd

tr ;,
2

, 3

��

�

�
�

π
ρ , (5.16)    

 ( ) ( ) ( )
( )�= tprf

m
ppgd

tr
tru ;,

2,
1

, 3

��
�

�

�

�
��

πρ
, (5.17)    

were, 4=g  is the spin-isospin degeneracy factor. 

The first moment is obtained by integrating Eq. (5.12) with ( ) ppd
��

� �
32/1 π , 

 ( ) ( )( ) ( ) ( ) ( )( ) =∇+
∂
∂

trutrutrmtrutrm
t

,,,,,
�����

µνµν ρρ                  

    ( ) ( ) ( )[ ]trVtrtrP ,,,
���

µνµνµµ ρδ ∇+∇− , (5.18) 

where ( )trP ,
�

νµ  is the pressure given as  

 ( )
( )

( )( ) ( )( ) ( )� −−= tprftrmuptrmup
pgd

m
trP ;,,,

2
1

, 3

����

�

�
�

µµνννµ π
. (5.19) 

Eq. (5.18) is an Euler-type equation for the system of particles. 
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Similarly, the second moment is obtained by integration of the Eq. (5.12) 

with ( ) ( )mppd 2/2/1 23

�
�

�π : 

 ( ) ( ) ( )( ) =∇+
∂
∂

trutrtr
t kinkin ,,, intint ���

νν εε  

 ( ) ( ) ( )( ) ( )ttqtrutrutrP ,,,,
2
1 ����

ννµννµνµ ∇−∇+∇− . (5.20) 

were ( )trkin ,int �ε  denotes the internal kinetic energy density 

 ( )
( )

( )( ) ( )�
−= tprf

m
trumppgd

trkin ;,
2

,
2

,
2

3
int ��

���

�

�
�

π
ε , (5.21) 

and ( )trq ,
�

ν  is the heat flux 

 ( )
( )

( )( ) ( )( ) ( )� −−= tprftrumptrmup
pgd

m
trq ;,,,

22
1

, 2

32

������

�

�
�

ννν π
. (5.22) 

The local equations (5.15), (5.18) and (5.20) have been deduced directly from the 

quantum equation (5.7) without any assumptions. However, these equations are not 

closed equations because the definitions of the quantities νµP , νq  and int
kinε  contain an 

unknown distribution function ( )tprf ;,
��

. Eqs. (5.15), (5.18) and (5.20) can be reduced 

to closed equations which involve only the local quantities ρ , u
�

, νµP  and int
kinε , if a 

reasonable assumption for the distribution function ( )tprf ;,
��

is made, see Refs. [48,49]. 

The continuity equation (5.15) leads to the energy-weighted sum rules. Let us 

consider the response of a system of particles to the external field [50] 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )�� −=−=−=
=

0
1

00 ˆˆˆ ttrrfrdttrfttftf
A

j
j δρδδ ����

, (5.23) 

where f̂  is the arbitrary single-particle operator and ( )r
�ρ  is the particle density operator 

 ( ) ( )�
=

−=
A

j
jrrr

1

ˆ ��� δρ .     

The solution to Eq. (5.4) for 00 +→−= tttδ  with ( )00
ˆˆˆ ttfHH −+= δ  and 

nnn EH Ψ=Ψ0
ˆ  gives for the rate of change of particle density  
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 ( ) ( ) ( ) ( ) ( )�
∞

≠
ΨΨΨΨ−−=ΨΨ

∂
∂=

∂
∂

0
0002

ˆˆ2ˆ
n

nnn frEEtrt
tt

�

�

� ρρρ
. (5.24) 

On the other hand, including ( )tVext  into the mean field V  in Eq. (5.12) and integrating 

Eq. (5.13) over time in a small interval [ ]ttt δ+00 ,  we find 

 ffff f
r

f
p

ˆ
2

sin
2

0
ˆ

0 	



�
�


� ∇⋅∇+= ��

���

�
    at     ttt δ+= 0 ,  0+→tδ , (5.25) 

where 0f  is the distribution function which corresponds to the initial ground state 0Ψ . 

From definition (5.17) and Eq. (5.25) we also obtain the velocity field as 

 f
m

u ˆ1
νν ∇−=      at           ttt δ+= 0 ,  0+→tδ . (5.26)    

Taking into account the continuity equation (5.15), along with equations (5.24) and 

(5.26), we obtain the local energy-weighted sum rule: 

 ( ) ( ) f
m

frEE
n

nnn
ˆˆ

2
ˆˆ 00

2

0
0

00 ∇⋅ΨΨ∇−=ΨΨΨΨ−�
∞

≠

���� ρρ . (5.27) 

Multiplying Eq. (5.27) by ( )rf
�ˆ  and integrating over the coordinate r

�
 we obtain the 

energy weighted sum rule for the single particle operator f̂ : 

 ( ) ( )�� ∇=ΨΨ−=
∞

≠

22

0

2

001
ˆ

2
ˆ frd

m
fEEm eq

n
nn

��� ρ . (5.28) 

 

B. Dynamic Distortion of Fermi Surface 

 

The collective dynamics of the Fermi liquid exhibits strong dependence on the 

dynamical distortion of the Fermi surface in momentum space [51-55]. In this 

dissertation we consider the effect of small deviations of the Fermi surface from the 

equilibrium spherical shape on the nuclear dynamics. In terms of the single particle time-

evolution operators ( )tχ̂  the time dependent single particle matrix ( ) ( )trrt ;,ˆˆ ′≡ ��ρρ  can 

be given in the form (see Ref. [56]): 
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 ( ) ( ) ( ) ( )��
�

��

�−��

�
��

�= tm
i

ttm
i

t χρχρ ˆexpˆˆexpˆ 0
��

, (5.29) 

where ( )t0ρ̂  is the time-even part of the density matrix. Considering time evolution as a 

small correction for the initial time even density matrix, we can write Eq. (5.29) in the 

form of expansion:  

 ( ) ( ) ( ) ( )�
∞

=
��

�
��

�

+
+=

0
0 ˆ,ˆ

1
1ˆˆ

n
n ttm

i
n

tt ρχρρ
�

. (5.30) 

The operators ( )tnρ̂  satisfy the recurrence relationships 

 ( ) ( ) ( )��
�

��

�= − ttm
i

n
t nn 1ˆ,ˆ1ˆ ρχρ

�
,     1=n , 2…  (5.31) 

Using rules of the Wigner transformation on Eq. (5.31), we obtain for the time 

depending Wigner distribution function: 

 ( ) ( ) ( ) ( )�
∞

=
��

�
��

� Λ
+

+=
0

;,
2

sin;,
1

12
;,;,

n
nscsph tprftprg

n
tprftprf

������

�

����
, (5.32) 

where ( )tprf sph ;,
��

, ( )tprg sc ;,
��

 and ( )tprf n ;,
��

 are the Wigner-transforms for the time-

even density ( )t0ρ̂ , ( )tmχ̂  and ( )tnρ̂ , respectively. 

We consider the lowest order in the expansions (5.32) in powers of � . The Wigner-

transforms for the commutators in the expansion (5.31), can be approximated as: 

 ( ) ( )[ ] [ ]PnscWn fgittm ,ˆ,ˆ �≈ρχ . (5.33) 

According to Eq. (5.33), in the lowest order in power of �  the distribution function 

( )tprf ;,
��

 can be written as: 

 ( ) ( )tgpgrftprf scrscpsph ;,;, ��

������ ∇−∇+≈ . (5.34) 

We start the investigation of the Fermi surface distortion effects by assuming the 

one-body density matrix ( )t0ρ̂  in Eq. (5.30) such that the corresponding distribution 

function ( )tprf sph ;,
��

 is spherically symmetric in momentum space. The result (5.34) 

states that the dynamic distribution function ( )tprf ;,
��

 can be obtained from the 

spherical distribution function ( )tprf sph ;,
��

 using a time-dependent shift in phase space: 
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 ( )tprgrrr scp ;,
������

�∇+=′→ ,     ( )tprgppp scr ;,
������

�∇−=′→ . (5.35) 

Assuming that the function ( )tprg sc ;,
��

 is a smooth function of the variables r
�

 and p
�

, 

we can expand it into a series in p
�

 and retain only the first two terms 

 ( ) ( ) ( ) ( ) ( )trptrtprg sc ,,;, 10 ����
νν χχ −≈ .  (5.36) 

Eq. (5.36) allows us to rewrite the coordinate transformation in the phase space as: 

 ( ) ( )trrr ,1 �
ννν χ−=′ , 

 ( ) ( ) ( ) ( )( ) µµννµνν χδχ ptrtrp ,, 10 �� ∇++−∇=′ . (5.37) 

Therefore, Eq. (5.34) takes form: 

 ( ) ( )tprftprf sph ;,;, ′′≈ ����
. (5.38) 

We assumed the Fermi surface for the distribution function ( )tprf sph ;,
��

 to be a sphere 

with radius Fp , therefore, from the form of Eqs. (5.37) and from Eq. (5.36) we can 

conclude that an excitation in the nucleus leads to the displacement of the Fermi sphere 

as a whole by the vector ( ) ( )tr ,0 ��
χ∇  and to its deformation into an ellipsoid. The 

deformation of the Fermi surface is a result of the non-local character of the time 

evolution operator, χ̂ , and disappears when ( ) ( ) 0,1 =tr
��χ . The vector ( ) ( )tr ,1 ��χ  can be 

interpreted as a time-dependent local displacement of particles from their equilibrium 

positions. 

We can describe the phase shift (5.37) using. the transformation matrix: 

 ( ) ( ) ( )trtra ,, 1 ��
µννµνµ χδ ∇+= ,  (5.39) 

and the inverse matrix ( )tra ,1 �−
νµ . Then, using equations (5.37), (5.38) and (5.39), with the 

definition of the local single-particle density matrix we obtain the local particle density 

in the form: 

 ( ) ( ) ( )trtraDettr ,,, 0
1 ′= − ��� ρρ νµ , (5.40) 

where 

 ( )
( )

( )�= tprf
pgd

tr sph ;,
2

, 30

��

�

�
�

π
ρ  (5.41) 
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is the initial time even unperturbed particle density. Using the fact that the distribution 

function ( )tprf sph ;,
��

 is an even function of the momentum, ( ) ( )tprftprf sphsph ;,;,
���� −= , 

along with Eqs. (5.37) and (5.39) we obtain the expression for the local velocity field: 

 ( ) ( ) ( ) ( )trtra
m

tru ,,
1

, 01 ��� χµµνν ∇= − . (5.42) 

The distribution function ( )tprf sph ;,
��

 is isotropic in momentum space, therefore, we can 

write the equation for the kinetic energy density in the form: 

 ( )
( )

( ) == � tprf
m

ppgd
trkin ;,

22
,

2

3

��

�

�
�

π
ε  

 ( ) ( ) ( ) ( ) ( )trutrmtrtrATrtraDet kin ,,
2
1

,,,
3
1 2int1 ����� ρεµνµν +− , (5.43) 

where ( ) ( ) ( )tratratrA ,,, 11 ��� −−= βνµβµν . The quantity ( )trkin ,int �ε  in Eq. (5.43) is the internal 

energy density associated with the distribution function ( )tprf sph ;,
��

, the Wigner-

transform of the initial time-even particle density. The first term in (5.43) does not 

depend on the velocity field, ( )tru ,
��

, and can be identified with the internal kinetic 

energy density for the case with deformation of the Fermi surface, int~
kinε . The deviation of 

the quantity int~
kinε  from the kinetic energy density int

kinε  vanishes in the local 

approximation, when ( ) ( ) 0,1 =tr
��χ . The second term in (5.43) is the collective kinetic 

energy density of a classical fluid, 

 ( ) ( ) ( )trutrmcoll
kin ,, 2

2
1 ��ρε = . (5.44) 

The collective kinetic energy density ( )coll
kinε   depends on the velocity field ( )tru ,

��
 due to 

the quasi-classical approximation (5.33) and assumption (5.36). Eq. (5.44) is also valid 

in the local approximation. Therefore, we can conclude, that the dynamical deformation 

of the Fermi surface does not change (for 2≤l ) the hydrodynamic relation between the 

collective kinetic energy density and the velocity field. In the following section we will 

show that the contribution from FSD to the kinetic energy density kinε  has a significant 

effect on the spectrum of the oscillations of nuclei. 
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Using definition (5.19) and expressions (5.34) and (5.37), we can write the 

expression for the pressure tensor in terms of the internal kinetic energy density and the 

local displacement field as: 

 ( )( ) ( ) ( )( )11int
3
21int

3
2int

3
2

µννµνµββνµνµ χχεδχεδε ∇+∇−∇−= kinkinkinP . (5.45) 

The distortion of the Fermi surface gives rise to the correction of the off-diagonal 

components of the pressure tensor. The heat flux, q
�

, defined by Eq. (5.22), is written in 

terms of Eqs. (5.34) and (5.37) and taken in an approximation linear in ( )1χ� . 

Let us consider the time evolution of the system as deviations of the density ( )tr ,
�ρ  

and velocity field ( )tru ,
��

 about the equilibrium values ( )req

�ρ  and ( ) 0=rueq

��
. In this 

case the distribution function ( )tprf sph ;,
��

 in Eq. (5.34) coincides with the static 

equilibrium distribution function, ( )prf eq

��
, . In such approximation, the time dependent 

particle density can be expressed in terms of the static equilibrium particle density and to 

the first order in ( )1χ�  is given as (see Eq. (5.40)): 

 ( ) ( ) ( ) ( ) ( )( )trrrtr eqeq ,, 1 ����
νν χρρρ ∇−≈ . (5.46) 

The continuity equation (5.15), taken with the time-dependent particle density from Eq. 

(5.46), provides us with the connection of the quantities u
�

 and ( )1χ� : 

 ( ) ( ) ( )trutr
t

,,1 ���� =
∂
∂ χ . (5.47) 

Eq. (5.47) confirms the interpretation of the ( )1χ�  as the time-dependent displacement 

field. In the following derivations we will assume the change of the particle density to be 

defined according to Eq. (5.46): 

 ( ) ( ) ( ) ( ) ( ) ( )( )trrrtrtr eqeq ,,, 1 �����
νν χρρρδρ ∇=−= . (5.48) 

If the Fermi surface remains spherical during the motion (first sound, ( ) ( ) 0,1 =tr
��χ ), 

then the pressure tensor is diagonal:  

 νµνµ δε int
3
2

kinP = . (5.49)  

According to Ref. [10] we can define the chemical potential λ , as: 
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 ( ) δρεεδλ /int
potkin += . (5.50) 

The chemical potential is constant in the equilibrium, therefore, we can use equilibrium 

condition ( )[ ] 0/int =+∇
eqpotkin δρεεδ

�
 along with the continuity equation (5.15), and 

obtain the equation for the first sound in nucleus as: 

 ( ) ( )11
2

2 1
ννµµ χρκχ eqmt

∇∇=
∂
∂

. (5.51) 

Here the local incompressibility coefficient is given as (see Ref. [10]): 

  ( ) ( )
eq

potkinr
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�
�



� +
=≡ 2

int2

δρ
εεδ

κκ �
. (5.52) 

For infinite nuclear matter ( )0=∇=∇ κρ
��

eq  this equation goes over to the ordinary 

equation for compression waves: 

 δρδρ 2
2

2

9
1 ∇=

∂
∂

K
mt

 , (5.53) 

where K  is the incompressibility coefficient of the nuclear matter 
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�

�
�



� +
= , (5.54) 

and AE /  is the nuclear matter binding energy per particle. 

We can take the dynamical FSD into account by using expression (5.45) and 

equations (5.46) and (5.52), and obtain a closed Euler-like equation for the zero-sound 

regime in the nucleus: 

 ( ) ( )
µββααµµ τχρκρχρ Λ∇+∇∇=

∂
∂

eqeqeqeq t
m

3
2

)( 11
2

2

, (5.55) 

where 

 ( ) ( ) ( )
αβγγβααβαβ δχχχ 1

3
211 ∇−∇+∇=Λ . (5.56) 

In the infinite nuclear matter 0=∇=∇=∇ κρτ
���

eqeq , and Eq. (5.55) can be written in the 

form: 
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 ( ) ( ) ( )1211
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3
2

9
2

9
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µααµµ χτχτρχρ ∇+∇∇	



�
�


� +=
∂
∂

eqeqeqeq K
t

m . (5.57) 

Eq. (5.57) describes elastic waves propagating in an infinite non-isotropic medium with 

Lame coefficients [57] 

 ( )eqeqLame K τρλ 2
9
1 += ,     eqLame τµ

3
2=  (5.58) 

The second term in Eq. (5.57) allows for two types of solutions: a longitudinal wave ( )1
lχ�  

( ( ) 01 =×∇ lχ�
�

) and a transverse wave ( )1
tχ�  ( ( ) 01 =⋅∇ tχ�

�
). It is easy to see, that due to the 

deformation of the Fermi surface, the nucleus incompressibility coefficient K  for the 

longitudinal wave ( )1
lχ�  gets renormalized, and becomes equal to eqeqKK ρτ /8+=′ .     

 

C. Relaxation Process and Viscosity Effect 

 

Incorporation of an inter-particle collision term into the equation of motion (5.7) for the 

one-body density matrix is needed in order to describe dissipative behavior.  

Following Ref. [58] and making use of the continuity equation (5.15), along with 

Eqs. (5.46), (5.47) and (5.54) the Euler-like equation (5.18) can be written as 

 0=∇+
∂

∂
νµµ

νρ P
t

u
m eq , (5.59) 

where eqρ  is the equilibrium particle density, νu  is the velocity field, and νµP  is the 

momentum flux tensor. 

The derivation of the momentum flux tensor νµP  in the Euler-like equation (5.59) 

depends on the equation of state of the nuclear Fermi liquid. In the nuclear interior, the 

momentum flux tensor, νµP , can be given as, see Ref. [58], 

 ( )ν
λµλµλµ δδ PPP += , (5.60) 

where λµδP is the dynamic part of the pressure tensor including pressure of external field 
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P F , (5.61) 

and ( )ν
λµδP  is the viscosity tensor 
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�
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�
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�
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+
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−= λµαα
λ
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µ

λν
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u

P
3
2

. (5.62) 

Here,  ν  is the viscosity coefficient, Fµ  is the FSD parameter, χ�  is the 

displacement field, and u
�

 is the velocity field, as defined in Eq. (5.47). In general, the 

kinetic coefficients Fµ  and ν  can be derived through the solution of the Landau’s 

dispersion equation, [59]. To derive expressions for these coefficients we will consider 

the collisional Landau-Vlasov equation for a small variation of the Wigner distribution 

function,  

 StfVfVff
t peqreqprreqp δδδδεδ =∇⋅∇−∇⋅∇−∇⋅∇+

∂
∂

������

������
. (5.63) 

Here eqε , eqV , and eqf  are the equilibrium energy density, Wigner transform of the 

equilibrium particle-particle interaction and equilibrium Wigner distribution function, 

and Vδ , fδ  and Stδ  are small variations of the particle-particle interaction, Wigner 

distribution function and collision integral from their equilibrium values, respectively. 

For simplification, we assume that the deformation of the Fermi surface is restricted by 

multipolarities 2≤l . The first p
�

-moment of Eq. (5.63) reproduces the fluid dynamics 

equation (5.59). Now assuming that the displacement function to be harmonic, 

 ( ) ( ) ( ) ( ) tiertr ω
µµ χχ −= �� 11 , , (5.64) 

we can rewrite Eq. (5.59) in the form: 
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. (5.65) 
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Here sub-index ω  indicates the Fourier transformation of the appropriate functions. 

Comparing the form of Eq. (5.65) with equations (5.59), (5.60), (5.61) and (5.62) we can 

conclude that for the distortion of the Fermi surface of multipolarities 2≤l the 

coefficients Fµ  and ν  can be given by: 

 eqF P
i

	



�
�


�

−
=

ωτ
ωτµ

1
Im ,     eqP

i
	



�
�


�

−
=

ωτ
τν

1
Re , (5.66) 

where eqFeqP ρε5
2≈  is the equilibrium pressure of the Fermi gas and τ  is the relaxation 

time for sound excitations in the Fermi liquid. We need to point out, that both Eqs. 

(5.59) and (5.65) were obtained from the collisional Landau-Vlasov equation (5.63), 

under the assumption that the variation of the collision integral Stδ  can be written in 

terms of the relaxation time τ  and the equilibrium forms of the total energy density and 

Wigner distribution function and their small variations (see Refs.[58] and [60]).  

Now, using the relation between the variation of the particle density, δρ , and the 

displacement field, ( )1χ� , Eq. (5.48), and assuming that the behavior of the displacement 

field can be approximated by a plane-wave ( ) ( ) ( )tirqitr ωχ µ −⋅ ���
exp~,1  we can rewrite 

Eq. (5.65) in the form:  

 0222
0

2 =−− qiqc γωω . (5.67) 

Here 0c  is the zero sound velocity  

 
�
�
�

�

�
�
�

�
+=

eq

FK
m

c
ρ
µ

12
9
12

0 , (5.68) 

and γ  is the friction coefficient 

 
meqρ

νγ
3

4= . (5.69) 

From the equations (5.66) and (5.67) we can see that the eigenfrequency of the 

oscillation of nuclear media has both real and imaginary parts. The real part of the 

eigenfrequency corresponds to the centroid energy of appropriate excitation, 

( )ω�Re=E . The imaginary part of the eigenfrequency corresponds to the width of 
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collective excitation, ( )ω�Im−=� , introduced due to the collisional damping effect of 

the dynamic Fermi surface deformation.   

To complete our model we need to approximate the relaxation time in the nuclear 

medium. To do so, we start from the expression for the variation of collision integral 

[60]: 
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  (5.70) 

Here { }( )jpw
�

 are the nucleon-nucleon scattering probabilities in nuclear medium, 

( )tprVmph jjjeq ,,2/2
.

��+=  - the classical single particle Hamiltonian in phase space, and  

{ }( )jfQ  is the Pauli blocking factor, given as: 

  { }( ) ( )( ) ( )( )43214321 1111 fffffffffQ j −−−−−=  (5.71) 

Under the assumption that the variation of the Wigner distribution function exhibits a 

harmonic time dependence ( )tif j ωδ −exp~ , we can rewrite Eq. (5.70) in the form: 
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( ))+−−−+ ωδ �4.3.2.1. eqeqeqeq hhhh  

 ( ) ( ) �
�
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�
�
�

−−+−−+ 2.1.4.3.4.3.2.1. eqeqeqeqeqeqeqeq hhhhhhhh δδ  

  (5.72) 

Then the relaxation time corresponding to the collisional damping can be defined as: 

 ( )
( )
( )�

�
∗

∗

Ω

Ω
=

fpYd

StpYd

lp
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δ

δ
ωτ ˆ

ˆ1

0

0
. (5.73) 

Now, let us consider the case of the equilibrium distribution function taken as: 

 ( ) ( ) 1
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prf eq

eq

λ��
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, (5.74) 

where T  is the temperature of nuclear medium in the equilibrium, and λ  is the chemical 

potential. Then the functional differentiation of the equilibrium distribution function 

with respect to classical Hamiltonian can be found as: 

 
( )

T

ff

h

f eqeq

eq

eq ..

.

. 1−
−=

δ
δ

, (5.75) 

and the relaxation time for the collisional damping can be reformulated as: 

 ( )
( )22/1

~

Tπω
τωτ

�+
= , (5.76) 

where oscillation frequency ω is complex and τ~  is an energy independent quantity. For 

the isoscalar collective excitations, this quantity can be taken as a temperature dependent 

function of the collisional relaxation parameter β  (see Refs. [58], [60]): 

 
βτ �

2

~
1 T= .  (5.77) 

Therefore considering the case of a cold nucleus ( 0=T ) we obtain the expression for 

the energy-dependent collisional relaxation time: 

 ( )
( )2

2

)Re(

4

ω
βπωτ

�

�= . (5.78) 
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D. Boundary Conditions 

 

In this dissertation, to derive the boundary conditions for the isoscalar compression 

excitations in finite nuclei we will assume a sharp particle density distribution 

 ( ) ( ) ( )( )tRrtrtrtotal −= θρρ ,,
��

,       ( ) ( )trtr eq ,,
�� δρρρ += , (5.79) 

where the vibrations of the nuclear surface for a given multipolarity L , can be written as:  

 ( ) ( ) ( )( )rYtRtR LSeq ˆ1 0β+= , (5.80) 

with the amplitude of the surface vibration ( ) ( )titS ωβ −exp~ . Then, considering the 

definition of the bulk density variation (5.48), we can write a solution of Eq. (5.65) 

corresponding to an isoscalar excitation of certain multipolarity L  in the form: 

 ( ) ( ) ( ) ( )rYqrjttr LLeqL
vol ˆ, 0ρβδρ =�

, (5.81) 

where ( )tLβ  is the time-dependent amplitude of density oscillations ( ) ( )titL ωβ −exp~ . 

The amplitudes ( )tLβ  and ( )tSβ  are related to each other by the boundary condition for 

the velocity field on the moving nuclear surface. The macroscopic boundary conditions 

for the total particle density, obtained as a solution of Eq. (5.65) and satisfying 

continuity equation (5.15), taken on the moving nuclear surface (5.80) is given by the 

following(see Ref. [60]), 

 ( ) ( ) ( )rYtRtru LSeqRrr
eq

ˆ, 0β�� =
=

,   (5.82)  

 ( ) ( ) ( )rYPttrP LSRrrr
eq

ˆ, 0σδβδ =
=

�
. (5.83) 

On the left hand side of Eqs. (5.82) and (5.83) we have the radial components of the 

velocity field, ru , and the pressure tensor variation, rrPδ , on the nuclear surface, 

respectively. By inserting Eq. (5.81) in the definitions of the velocity field ( )tru ,
��

, Eq. 

(5.47), and the pressure tensor variation ( )trPrr ,
�δ , (5.60), we obtain expression for the 

boundary conditions on the nuclear surface in terms of the oscillation amplitudes ( )tLβ  

and ( )tSβ : 
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 ( ) ( ) ( ) ( ) ( ) ( )rYtRrY
r
qrj

q
ttru LSeqL

L
Lr ˆˆ1

, 002
ββ ��� =

∂
∂

= , (5.84) 
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�
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. (5.85) 

From Eq. (5.84) we obtain the relation between the oscillation amplitudes ( )tSβ  and 

( )tLβ : 

 ( ) ( ) ( )txjtx LLS ββ ′= , (5.86) 

where eqqRx = , and ( )xjL′ is the first derivative of the spherical Bessel function, see Ref. 

[61].  

From the macroscopic point of view, the isoscalar dipole excitation corresponds to 

inflation and dilatation of the nucleus along an arbitrary direction at the constant nuclear 

surface. Therefore, the surface contribution to the variation of density is given by 

following: 0=σδP . Then, from Eq. (5.85), we obtain the boundary condition for the 

isoscalar dipole excitation in the form of the following secular equation for the 

transferred momentum q : 

 ( ) ( ) 026
9
1

11 =
�
�
�

�

�
�
�

�
′′−	

	




�

�
�



�
−

= eqRreq

F

eq

F qrjqrjK
ρ
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ρ
µ

. (5.87) 

In the case of the isoscalar monopole excitation, the additional contribution to the 

pressure tensor variation from the surface pressure can be taken in the form:  

 .2 eqRP σδ σ = ,  (5.88) 

where σ  is the surface tension coefficient. Therefore, from Eqs. (5.83), (5.85), (5.86) 

and (5.88) we obtain: 

 
( ) ( ) ( ) ( ) ( )qrjrq
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mm
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ρ
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. (5.89) 

 By defining damping amplitudes as follows: 

 2
0

2
cRm

f
eqeqρ

σ
σ = ,    and    2

0

4
mc

f Fµ
µ = , (5.90) 
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where 0c  is the zero-sound velocity as it is given in Eq. (5.68), and using recurrent 

relations for the spherical Bessel functions 

 ( ) ( ) ( )xjxj
x
n

xj nnn 1+−=′     and   ( )( ) ( )xjxxjx
dx
d

n
n

n
n

1+
−− −= , 

we obtain the secular equation for the transferred momentum q corresponding to the 

isoscalar monopole excitation: 

 ( ) ( ) ( )[ ] 010 =+−
= eqRr

qrjffqrqrj µσ . (5.91) 

. 

E. Translation Invariance Condition and Isoscalar Giant Resonance Description 

 

A general condition of translation invariance states that any internal excitation must not 

affect the center of mass motion of the system. For the case of nuclear excitation this 

condition can be written as: 

 ( )� = 0, trrrd total

��� δρ . (5.92) 

In the case of interest, the total variation of the particle density must be given in terms of 

the variation of bulk density and the variation of nuclear surface (see Eqs. (5.79) and 

(5.80)): 

 ( ) ( ) ( ) ( ) ( )rYRtrRtrtr LeqSeqeqtotal ˆ,, 0βδρδρδρ −+= ��
, (5.93) 

Expressing the variation of bulk particle density in terms of the oscillation amplitude and 

using Eq. (5.86), we obtain an expression for the total particle density variations for 

multipolarity 1≠L : 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )rYqRjrR
q

qrjrRttr LeqeqLeqLeqLtotal ˆ1
, 0ρδθβδρ �

�

�
�
�

� ′−+−=�
. (5.94) 

Integrating Eq. (5.94) over �� Ω rdrdr ˆ
3 and using recurrence relations for the spherical 

Bessel functions we will see that the condition (5.92) is readily satisfied for any 1≠L . 

On the other hand, integration of Eq. (5.94) over �� Ω rdrdr ˆ
3 is not equal zero. 

Demanding that condition of invariance must be satisfied for any internal excitation we 
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can re-define the total particle density variation for the case of isoscalar dipole excitation 

as:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )rYqRjrR
q

a
qrjrRttr eqeqeqeq ˆ1

, 10111 ρδθβδρ �
�

�
�
�

� ′−−+−=�
,  (5.95) 

where the constant a  is obtained using the condition  (5.92) and is given by 

 ( ) ( )xjxxja 11 / ′= ,     eqqRx = . (5.96) 

Note, that by re-defining the variation of total particle density for the isoscalar dipole we 

eliminate the spurious contribution to the isoscalar dipole excitation energy. 

Based on the derivation given above, we conclude that within the Fermi liquid drop 

model with the collisional Fermi surface distortion centroid energies and widths of the 

isoscalar compression modes can be found as lowest non-zero solutions of the 

appropriate equations for the boundary conditions. These solutions must satisfy the 

dispersion relation, defined by Eqs. (5.66) - (5.69), taken with the energy-dependent 

collisional relaxation time given by Eq. (5.78). 
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CHAPTER VI 

DESCRIPTION OF GIANT RESONANCES IN 90Zr, 116Sn, 144Sm AND 208Pb 

 

In this chapter we present the results of a microscopic and macroscopic analysis of 

isoscalar monopole and isoscalar dipole giant resonance excitations in 90Zr, 116Sn, 144Sm 

and 208Pb. The microscopic analysis is based on self-consistent HF-RPA calculations 

with the SL1, SkM*, SGII, Sly4 and Sk255 Skyrme effective interactions. Results of 

microscopic calculations are used in a study of possible discrepancies in describing 

excitation of the isoscalar dipole mode in −α particle scattering reactions, which are 

introduced by the use of collective instead of microscopic transition densities. The 

macroscopic analysis is performed within the Fermi liquid drop model with collisional 

Fermi surface distortion. The results of calculations for the position and collisional 

widths of the isoscalar monopole and dipole excitation modes are compared to the 

results of microscopic calculations and to the experimentally obtained values. 

 

A. Microscopic Analysis 

 

In our calculations we used the SL1, SkM*, SGII, Sly4 and Sk255 Skyrme interactions, 

parameterizations which are given in Table I. These interactions are claimed to be 

successful in reproducing both the ground state properties and the average energies of 

the isoscalar giant monopole resonance excitations in heavy nuclei. To confirm these 

claims, in Section B. values for the binding energy per nucleon obtained with all 

interactions of interest are compared to the experimentally obtained results. Also, results 

for the root mean-square radii are presented. Using SL1, SkM*, SGII, Sly4 and Sk255 

interactions average energies for the isoscalar giant monopole resonance are calculated 

and compared to experimentally obtained values in Section C. Fractions of the energy 

weighted sum rule exhausted within the experimentally observed region of excitation 

energy 355 ≤≤ E  MeV are presented in the same section. Comparison of these results 
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proves the acceptability of these interactions in the description of isoscalar monopole 

resonance in heavy nuclei.  

In order to obtain particle and hole wave functions and energies for both discrete and 

continuum states we start our calculations by finding the numerical solutions of radial 

Skyrme-based Hartree-Fock equations (2.39). In our calculations we discretize the 

single-particle continuum by placing a nucleus inside a sufficiently large sphere and 

imposing the boundary condition that wave functions of the continuum states vanish on 

the sphere’s surface. Calculations with a discretized single-particle continuum were 

performed, for example, by Liu and Brown [62] and by Agrawal, Shlomo and Sanzhur 

[18]. In the mentioned works, the continuum appears to be well approximated by the set 

of discrete particle-hole states obtained using the bounding sphere whose radius was 

taken to be >2.5 times larger than the nuclear radius.  

Using Hartree-Fock single-particle energies and wave functions, we obtain the radial 

part of the PRA Green’s function defined by Eqs. (3.18), and (3.19), with the particle-

hole interaction obtained as a functional double-derivative of the total energy density for 

the unperturbed Hartree-Fock single particle Hamiltonian with respect to the ground-

state density of the many-body system, obtained by solving the Hartree-Fock problem. 

Using the obtained RPA Green’s function, we calculate the transition strength 

distribution function (3.24) for the single particle excitation operators 

  �==
i

iL Yrf 00
2

0
ˆ  and ( )iM

i
iL rYrf ˆˆ

1
3

1 �== , (6.1) 

for the isoscalar giant monopole resonance and isoscalar giant dipole resonance, 

respectively. In the case of the monopole excitation, the transition strength distribution 

function is calculated directly using Eq. (3.24). The energy weighted sum rule for the 

isoscalar giant monopole resonance is calculated as the first energy moment of the 

isoscalar monopole strength distribution. In the case of the isoscalar dipole excitation, 

we employ the method of projecting out spurious state contribution, as described in 

Chapter III. By separately calculating ( )ES3 , ( )ES13  and ( )ES1 , and using Eq. (3.61), 

we obtain the isoscalar dipole strength distribution function ( )ESη , with no spurious 
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state contribution. The isoscalar giant dipole resonance transition density ( )Ertr ,ρ  is 

calculated by projecting out the spurious state transition density ( )rssρ  from the 

transition density ( )Er,ηρ , obtained using the isoscalar giant dipole strength distribution 

( )ESη  and the projection operator 13 fff ηη −= .  

The angular distributions for the inelastic scattering of 240 MeV −α particles on the 

nuclei of interest are calculated within the distorted-wave Born approximation. In this 

dissertation, attention is focused on the isoscalar dipole excitation in target nuclei. The 

real and imaginary parts of the optical potential are found by folding the radial part of 

the Hartree-Fock ground state density ( )r0ρ  with the real and imaginary parts of the α -

nucleon effective interaction, respectively. The α -nucleon effective interaction is taken 

in the form of a density-dependent Gaussian potential:  

 ( )( ) ( )( ) ( )( ) WV

rr

W

rr

V eriWerVrrrV αα ρβρβρ
22

3/2
0

3/2
00 11,

′−
−

′−
−

′++′+=′′−

����

��
. (6.2) 

Parameters V , Vβ , Vα  and W , Wβ , Wα  of the α -nucleon effective interaction are 

determined by fitting experimentally measured angular distributions for the case of 

elastic scattering with the angular distributions obtained using optical potential (see 

Table VII). The real and imaginary parts of the radial form factor are obtained by folding 

HF-RPA transition density with the transition potential. The transition potential is 

calculated as a convolution of the transition density with the following expression: 

 ( )( ) ( )( ) ( ) ( )( )
( )r

rrrV
rrrrVrrrVtr ′∂

′′−∂
′+′′−=′′−

0

0
000

,
,,

ρ
ρ

ρρρ ����
, (6.3) 

where  ( )( )rrrV ′′− 0, ρ��
 is the α -nucleon effective interaction as defined in Eq. (6.2). 

To study possible discrepancies that may arise in experimental analysis, we also perform 

calculations of the angular distribution using the collective form of the corresponding 

transition density:   

 ( ) ( ) [ ] ( )
dr

rd
rrrrrcoll

tr
02

3
52

0 310
ρρρ −+∝ . (6.4) 

In our numerical DWBA calculations, the computer code PTOLEMY [63] was used. 
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1. Nuclear Ground State 

 

In this section we evaluate the ability of the Hartree-Fock calculation with the Skyrme-

type effective interaction to describe the nuclear ground state.   Ground state root-mean 

square (RMS) radii and binding energies of 90Zr, 116Sn, 144Sm and 208Pb nuclei are 

obtained as a result of the Hartree-Fock calculations performed with SL1, SKM*, SLy4 

and Sk255 Skyrme-type effective interactions. Binding energy per nucleon obtained in 

the nuclei of interest calculated using various effective interactions are given in Table II. 

In Table III we present results for the mass, neutron, proton and charge root-mean-

square radii for nuclei of interest. Overall satisfactory agreement with experimentally 

measured charge RMS radii and binding energies can be seen. 

 
 
 

TABLE II. Binding energy per nucleon in 90Zr, 116Sn, 144Sm and 208Pb nuclei obtained from the 
HF calculations with SL1, SkM*, SGII, Sly4 and Sk255 nucleon-nucleon interactions. The 
experimental values are obtained from Ref. [64]. 

 Interaction 90Zr 116Sn 144Sm 208Pb 
SL1 -8.85 -8.56 -8.39 -7.96 

SkM* -8.70 -8.45 -8.24 -7.87 
SLy4 -8.73 -8.48 -8.28 -7.86 
SGII -8.91 -8.65 -8.42 -8.01 

AE / , (MeV) 

Sk255 -8.99 -8.75 -8.55 -8.09 
AE / , (MeV) Exp. -8.71 -8.52 -8.30 -7.87 
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TABLE III. Ground state root-mean square radii obtained from the HF calculations with SL1, 
SkM*, SLy4, SGII, and Sk255 Skyrme interactions. 

m
r 2 , 

n
r 2 , 

p
r 2 , 

c
r 2  denote mass, 

neutron, proton and charge root-mean square radii, respectively. Experimental radii are taken 
from Ref. [65].   

Nucleus Interaction 90Zr 116Sn 144Sm 208Pb 
SL1 4.24 4.62 4.95 5.59 

SkM* 4.26 4.62 4.95 5.55 
SLy4 4.27 4.63 4.95 5.56 
SGII 4.23 4.60 4.92 5.54 m

r 2 , (fm) 

Sk255 4.26 4.63 4.95 5.59 
SL1 4.27 4.67 4.98 5.66 

SkM* 4.29 4.66 4.98 5.62 
SLy4 4.30 4.67 4.98 5.62 
SGII 4.26 4.63 4.95 5.59 n

r 2 , (fm) 

Sk255 4.31 4.69 5.01 5.69 
SL1 4.20 4.56 4.90 5.49 

SkM* 4.22 4.56 4.90 5.45 
SLy4 4.23 4.57 4.90 5.46 
SGII 4.20 4.55 4.89 5.46 p

r 2 , (fm) 

Sk255 4.20 4.54 4.88 5.44 
SL1 4.28 4.63 4.97 5.54 

SkM* 4.30 4.63 4.97 5.51 
SLy4 4.30 4.64 4.97 5.52 
SGII 4.28 4.62 4.96 5.52 c

r 2 , (fm) 

Sk255 4.28 4.61 4.94 5.50 

c
r 2 , (fm) Exp. 4.27 4.63 4.94 5.50 

  

 

 

 

2. Isoscalar Monopole Resonance 

 

Calculated isoscalar monopole ( 0=L ) transition strength distributions for 90Zr, 116Sn, 
144Sm and 208Pb nuclei obtained using SL1, SkM*, SGII, Sly4 and Sk255 effective 

interactions are presented in Figure 1. The thin solid line represents the results of the 

microscopic (HF-RPA) calculations. Also shown are the isoscalar monopole strength 

distributions extracted from the experimental data on the inelastic �-particle scattering 

on the nuclei of interest [66].  



       
           

74 

 

FIG. 1. Isoscalar monopole strength distributions in 90Zr, 116Sn, 144Sm and 208Pb nuclei obtained 
using SL1 Skyrme interaction (thin solid line). The circles with the error bars show the 
experimentally extracted strength distribution S(E) for the ISGMR in nuclei of interest [66].  

 

 

 

The HF-RPA strength distributions for 144Sm and 208Pb appear to be in good agreement 

with the experimental data. The HF-RPA isoscalar monopole resonance appear to be 

shifted with respect to the experimentally observed peak in both 90Zr and 116Sn. We need 

to point out that a small fraction of strength is predicted to be present at higher excitation 

energies. The isoscalar monopole strength distributions obtained in the HF-RPA 

calculations with SkM*, SGII, SLy4 and Sk255 Skyrme interactions are presented in 

Figure 2.    
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FIG. 2. Isoscalar monopole strength distributions in 90Zr, 116Sn, 144Sm and 208Pb nuclei obtained 
using SkM*, SGII, Sly4 and Sk255 Skyrme interactions.  
 

 

  

The average energy of the isoscalar giant monopole resonance is calculated as the ratio 

of the first and the zeroth energy-moments of the presented transition strength 

distributions, 01. MMEave = . In Table IV we present the average energies for the 

isoscalar giant monopole resonance states, .0aveE . The results of HF-RPA calculations 

appear to be in a good agreement with the experimental data. 
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TABLE IV. Energies of the isoscalar monopole excitation E0 in 90Zr, 116Sn, 144Sm and 208Pb 
nuclei obtained using SL1, SKM*, SGII, Sly4, and Sk255 interactions. 

Nucleus Interaction 90Zr 116Sn 144Sm 208Pb 
SL1 18.53 16.57 15.98 14.3 

SKM* 17.97 16.26 15.57 14.3 
SGII 18.09 16.65 15.27 13.78 
Sly4 18.45 16.90 15.95 14.3 

.0aveE  (MeV) 

Sk255 19.06 17.37 15.88 14.08 

exp0E (MeV) 17.81 32.0
20.0

+
−

a) 15.85 ± 0.20b) 15.40 ± 0.40b) 13.96 ± 0.20b) 

 a Ref. [25] 
 b Ref. [24] 
 

 

In the region of excitation energy 355 ≤≤ xE  MeV available for experimental 

observation we find that the isoscalar giant monopole resonance almost entirely exhausts 

the energy weighted sum rule 1M (see Table V). Therefore, we can conclude that most of 

the isoscalar monopole strength in the nuclei of interest is located below 35 MeV 

excitation energy. 

 

 

TABLE V. Percentage of the energy weighted sums rule (%EWSR’s) of the isoscalar monopole 
excitation exhausted in the excitation energy interval 355 ≤≤ E  MeV in 90Zr, 116Sn, 144Sm and 
208Pb nuclei. %EWSR’s are obtained using SL1, SkM*, SGII, Sly4, and Sk255 interactions. 

Nucleus Interaction 90Zr 116Sn 144Sm 208Pb 
SL1 96.3 96.6 96.6 96.3 

SkM* 96.2 96.5 96.5 96.4 
SGII 96.3 96.5 94.1 96.4 
Sly4 96.0 96.3 95.9 96.3 

EWSR%
 

Sk255 96.3 96.4 94.0 96.3 
EWSR%  Exp. 100 ± 12a) 112 ± 15b) 92 ± 12b) 99 ± 15b) 

  a Ref. [25] 
  b Ref. [24] 
 

 

 

In Figure 3 we plot the calculated ISGMR average energies, obtained using the HF-RPA 

method with a variety of Skyrme-type interaction parameterizations, as a function of 
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nuclear mass number, and compare them with experimentally obtained data. Also shown 

in Figure 3 is the empirical mass dependence of the ISGMR excitation energy given by 
3/19.79 −= AE  MeV [67]. 

 

 

 
FIG. 3. Centroid energies of the ISGMR for 90Zr, 116Sn, 144Sm, and 208Pb obtained within the HF-
RPA formalism with SL1 (filled circles), SKM* (filled triangles “up”), SGII (filled triangles 
“down”), and Sk255 (filled stars). Experimental data is presented by filled squares. The dashed 
line represents the empirical mass dependence of the ISGMR energy 3/19.79 −= AE .  
 

 

 

 

3. Isoscalar Giant Dipole Resonance 

 

The isoscalar dipole transition strength distribution functions are obtained from self-

consistent HF-RPA calculations with different Skyrme-type effective interactions, using 

a method of projecting out the spurious state contribution. The results of the calculations 

performed with SL1 Skyrme interaction are presented in Figure 4.  
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FIG. 4. Strength distribution functions of the ISGDR in 90Zr, 116Sn, 144Sm and 208Pb nuclei 
obtained using SL1 Skyrme interaction (thin solid line).  The experimentally extracted strength 
distributions S(E) of the ISGDR in nuclei of interest [66] are shown be the data point with error 
bars.     
 

 

 

The obtained strength distributions clearly exhibit two characteristic peaks of the ISGDR 

in all nuclei considered. However, the position of the calculated low excitation energy 

and the high excitation energy components of the ISGDR strengths do not represent 

experimental data. The HF-RPA calculations for both of the components of the isoscalar 

dipole excitation predict presence of the ISGDR strength beyond the excitation energy 

region where the ISGDR strength was experimentally observed. The results of the HF-

RPA calculations for the strength distribution functions of the ISGDR in 90Zr, 116Sn, 
144Sm and 208Pb nuclei obtained using SkM*, SGII, Sly4, and Sk255 Skyrme interactions 

are presented in Figure 5.   
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FIG. 5. Strength distribution functions of the ISGDR in 90Zr, 116Sn, 144Sm and 208Pb nuclei 
obtained using SkM*, SGII, Sly4, and Sk255 Skyrme interactions.  
 

 

 

In Table VI we summarize the calculated energies of the lower (at 1 ω� ) and higher (at 

3 ω� ) components of the isoscalar dipole resonance peaks and compare them with 

experimentally obtained values. Our results for the percentages of the energy weighted 

sum rule for the dipole excitation operator, calculated as the ratio of the energy-moment 

M1 from Eqs. (3.28) and the exact energy weighted sum rule calculated using Eq.(3.30), 

that was exhausted within the experimentally measured region of the excitation energy 

( 355 ≤≤ xE  MeV) in the considered nuclei, are also presented in Table VI. 
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TABLE VI. The average energies and percentages of the EWSR exhausted within the energy 
interval of 5.0<E<35.0 MeV for the low excitation energy, ELE, and the high excitation energy, 
EHE, of the ISGDR excitation in 90Zr, 116Sn, 144Sm, and 208Pb nuclei. Experimental data is also 
presented. 

  ELE ISGDR 
(MeV) 

EWSR 
(%) 

EHE ISGDR 
(MeV) 

EWSR 
(%) 

90Zr SL1 13.45 16.9 29.69 71.8 
 SkM* 11.67 8.84 27.44 82.6 

 SGII 12.30 10.4 28.09 81.5 
 Sly4 12.22 10.2 28.35 79.9 
 Sk255 11.72 7.92 28.16 83.1 
 Exp.a) 17.1 ± 0.4 13 ± 3 26.7 ± 0.5 70 ± 10 

116Sn SL1 13.65 17.2 28.56 68.2 
 SkM* 11.73 17.1 26.65 71.8 
 SGII 11.71 15.2 26.76 73.2 
 Sly4 11.77 15.5 27.21 70.5 
 Sk255 11.29 13.2 26.95 73.0 
 Exp. 14.38 ± 0.25 25 ± 15 25.50 ± 0.60 61 ± 15 

144Sm SL1 12.68 20.6 26.93 66.6 
 SkM* 11.46 12.9 25.50 78.5 
 SGII 11.85 13.5 25.87 77.3 
 Sly4 11.85 13.6 26.32 75.7 
 Sk255 11.73 12.0 26.19 78.1 
 Exp.b) 14.00 ± 0.30 32 ± 15 24.51 ± 0.40 64 ± 12 

208Pb SL1 12.42 30.7 26.27 61.3 
 SkM* 10.97 19.4 23.77 74.7 
 SGII 10.84 18.5 23.94 75.6 
 Sly4 10.92 18.9 24.68 73.6 
 Sk255 10.26 16.4 23.65 77.5 
 Exp.b) 13.26 ± 0.30 24 ± 15 22.20 ± 0.30 88 ± 15 

  a Ref. [25] 
  b Ref. [24] 
 

 

 

Due to the fact that most of the isoscalar dipole energy weighted sum rule has been 

observed within the region of experimentally measured excitation energies for all nuclei 

of interest, it is possible to make a meaningful comparison between the ISGDR and the 

ISGMR average energies obtained theoretically, both by using the HF-RPA and Fermi-

liquid drop model (see Chapter VI), and experimentally observed values. Figure 6 shows 

such a comparison. 
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The values for the high lying component of the ISGDR obtained within the HF-RPA 

formalism are higher than the respective experimental values by 1.5 to 3.0 MeV. One of 

the possible explanations for this phenomenon is the overestimation of the energy 

weighted sum rules in experimental analysis of the measured inelastic scattering cross 

sections. Such overestimations, first studied in Ref. [68] for the case of the ISGMR, 

might result in reported experimental energies lower than actual, since locating, in the 

experimental analysis, nearly 100% of the energy weighted sum rule within a certain 

excitation energy region might not guarantee that the energy weighted sum rule was 

actually exhausted and it can be seen in Fig. 4. that there is considerable strength 

predicted above the 35 MeV limit of the data.  

We also need to point out that the use of different Skyrme force parameterizations, 

corresponding to the different values of the nuclear matter incompressibility coefficient, 

results in different values of the high lying component of isoscalar dipole excitation in 
90Zr, 116Sn, 144Sm and 208Pb nuclei. In general, the values of the low-lying component of 

the ISGDR within the HF-RPA method are underestimated with respect to the 

experimental values by 1.5-3.5 MeV for heavy nuclei. It has to be noted, that for 90Zr the 

low energy component of the ISGDR is also underestimated; however, the value of 

underestimation is much greater, 3.5 to 5.0 MeV. As our results show, the HF-RPA 

calculations with the Skyrme-type effective interaction do not provide correct 

descriptions of the low-energy features of the ISGDR. To verify the obtained results for 

the high-energy component of the strength function of the ISGDR, we also completed 

fully self-consistent HF-RPA calculations of the ISGDR excitation, with accurately 

introduced the spin-orbit, momentum and Coulomb terms [69, 70]. The results of these 

calculations will be presented in following section. 

Also in Figure 6 we present data regarding the centroid energies of the ISGMR, E0, 

and ISGDR, E1, obtained using microscopic (HF-RPA) and collective (FLDM) methods, 

and its comparison to the experimentally obtained values. As we can see, the HF-RPA 

calculations successfully reproduce experimental values for the ISGMR in all four 

nuclei, however, the calculated values for the centroid energy of ISGDR systematically 
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exceeds the experimental values by 1.5-2.5 MeV. On the other hand the collective model 

based FLDM calculations with the collisional damping overestimates both E0 and E1 by 

1.5-2.5 MeV in all four nuclei. 

 

   

 
FIG. 6. Centroid energies E0 and E1 of the ISGMR and ISGDR excitations, respectively, 
obtained from the HF-RPA and the FLDM calculations. The experimental data [24,25] is 
presented by solid black line. We can see that the results of the microscopic (HF-RPA) as well as 
macroscopic (FLDM) calculations, systematically overestimate the centroid energy of the dipole 
excitation. The experimental values of the monopole energy are successfully reproduced by the 
HF-RPA calculations; however, the FLDM results show an overestimate on the order of 2.5 
MeV, for E0 as well as E1. 
 

 

 

 

 

 



       
           

83 

4. Isoscalar Dipole Resonance Excitation from Cross Section Analysis 

 

Parameters of the nucleon-α interaction (Eq. 6.1) for various Skyrme force 

parameterizations were obtained as result of the fit to the experimentally measured 

angular distributions of elastically scattered 240 MeV α -particles on 90Zr, 116Sn, 144Sm 

and 208Pb nuclei (see Refs. [24, 25]). These parameters are presented in Table VII. In 

Figure 7 we present a sample of elastic cross section calculated with the parameters 

obtained by such fit for the case of the SLy4 Skyrme force parameterization (solid line). 

Filled circles represent the experimentally measured elastic cross sections. 

 

 

 

TABLE VII. Parameters of the density-dependent Gaussian form of the α -nucleon effective 
interactions for SL1, SkM*, SGII, Sly4 and Sk255 Skyrme-type interactions. 
Nucleus Interaction Vα (fm2) Vβ (fm2) V (MeV) Wα (fm2) Wβ (fm2) W (MeV) 

SL1 3.70 -1.90 38.32 4.10 -1.90 15.63 
SkM* 3.70 -1.90 38.54 5.10 -1.90 12.56 
SGII 3.80 -1.90 38.61 4.70 -1.90 12.77 
SLy4 3.60 -1.90 41.06 4.60 -1.90 12.92 

90Zr 

Sk255 3.70 -1.90 39.66 4.60 -1.90 13.03 
SL1 3.70 -1.90 42.51 5.10 -1.90 6.85 

SkM* 3.60 -1.90 43.33 5.10 -1.90 6.89 
SGII 3.30 -1.90 43.44 6.70 -1.90 6.87 
SLy4 3.10 -1.90 47.10 6.60 -1.90 6.98 

116Sn 

Sk255 3.20 -1.90 44.62 6.60 -1.90 6.90 
SL1 3.60 -1.90 40.52 5.10 -1.90 10.65 

SkM* 3.6 -1.90 38.12 5.10 -1.90 10.72 
SGII 3.80 -1.90 37.89 5.10 -1.90 10.83 
SLy4 3.60 -1.90 40.36 5.10 -1.90 10.58 

144Sm 

Sk255 3.60 -1.90 40.32 5.10 -1.90 10.61 
SL1 2.90 -1.90 53.0 6.10 -1.90 7.53 

SkM* 2.90 -1.90 49.86 6.90 -1.90 6.45 
SGII 3.20 -1.90 45.43 8.90 -1.90 3.71 
SLy4 2.90 -1.90 54.05 7.00 -1.90 5.98 

208Pb 

Sk255 2.90 -1.90 51.42 8.80 -1.90 3.70 
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The obtained parameters were used to calculate the transition potential (see Eq. 4.54) 

needed in the calculations of differential cross sections of inelastic reactions. 

 

 

 
FIG. 7. Elastic scattering distributions for 240 MeV �-particles, obtained from the HF 
calculation for the ground state density using Sly4 interaction. Experimental data is presented by 
black dots. Solid lines present the best fit, obtained with the parameters given in Table VI.     
 

 

 

In the procedure, we first use the HF-RPA method with the projected out SSM to 

obtain the strength distribution function (see Eqs. (3.24), (3.57)-(3.60) and (3.61)), and 

to calculate fraction of EWSR exhausted for each excitation energy bin (0.2 MeV). The 

solid line in the top panel of Figure 8 represents the results of such a calculation for 208Pb 

nucleus completed using SL1 Skyrme interaction. Using this information we calculate 

transition densities for each excitation energy bin, normalized to the fraction of EWSR, 
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exhausted (see Eqs. (3.25) and (3.52)). By use of the microscopic shape of the transition 

density and the fraction of the EWSR exhausted at a given excitation energy we 

calculate the double-differential cross section and the angle of maximal cross section 

(presented in the middle panel of Fig. 8). In the experimental analysis it is customary to 

normalize the transition density to the 100% EWSR for each excitation energy region, 

and because our goal is the comparison of theoretical calculations with the 

experimentally obtained data, we renormalize microscopic transition density to the 100% 

EWSR exhausted for each excitation energy, and obtain a differential cross section at the 

angle of maximal cross section presented in the bottom panel of Figure 8. 

 

 

 

 
FIG. 8. Fractions of the EWSR of the ISGDR exhausted at a given excitation energy, calculated 
using the RPA with the SL1 Skyrme interaction (solid line) and the collective (dashed line) 
transition densities, are presented in the top panel. The middle panel presents the double-
differential cross section calculated using the RPA transition density, obtained at the angle of 
maximal cross section. In the bottom panel we present the differential cross section. The solid 
line presents the result obtained using the RPA transition density renormalized to the 
100%EWSR exhausted at a given excitation energy. The dashed line is obtained with the 
collective transition density. 
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In the bottom panel, the solid line presents the differential cross section at the angle 

of maximal cross-section that is obtained using the microscopic shape of the transition 

density renormalized to the 100% of the EWSR exhausted for each excitation energy 

bin. The dashed line presents the differential cross section at the angle of maximal cross 

section, obtained using the collective transition density (see Eq. (6.4)). Then, the dashed 

line in the top panel represents the fraction of the EWSR exhausted at a given excitation 

energy bin, as it would be calculated in the experimental analysis (with the collective 

shape of the transition density).  

The analysis explained above has been completed for 90Zr, 116Sn, and 144Sm, and the 

results for the %EWSR exhausted are presented in Figure 9 (for the SL1 interaction), in 

Figure 10 (for all nuclei of interest for the SkM*, SGII, Sly4 and Sk255 interactions). 

 

 

 

  
FIG. 9. Same as the top panel of Figure 8 with the SL1 interaction for 90Zr, 116Sn, and 144Sm. 
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FIG. 10. Same as Figure 9 with the SKM* (top left), SGII (top right), SLy4 (bottom left) and 
Sk255 (bottom right) interactions for 90Zr, 116Sn, 144Sm and 208Pb nuclei. 
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As we can see the major finding of this calculation is that both the microscopic and the 

collective models predict the presence of the ISGDR strength outside of the 

experimentally explored region of 5-35 MeV. We also observe the trend of 

overestimation of the EWSR exhausted by the collective approximation of the transition 

density, which is widely used in the experimental studies. 

To validate the results of our HF-RPA calculations we have performed the HF-RPA 

calculations with the fully self-consistent particle-hole interaction (see Refs. [69, 70]). 

The calculations were done with the SGII Skyrme interaction. The results of such 

calculations for nuclei of interest are presented in Table VIII. 

 
 

 

TABLE VIII. Centroid energies of the ISGMR, E0, and the ISGDR, E1, obtained within fully 
self-consistent HF-RPA calculations [69,70] with the SGII interaction are presented for 90Zr, 
116Sn, 144Sm, and 208Pb nuclei. 

Nucleus E0 (MeV) E1 (MeV) 
90Zr 17.89 28.88 

116Sn 16.38 27.39 
144Sm 15.34 26.42 
208Pb 13.50 24.04 

 

 

 

Comparison of the result of the fully self-consistent HF-RPA calculations, and of the 

HF-RPA calculations without the spin-orbit and Coulomb particle-hole interactions with 

the experimentally obtained values of the centroid energies of ISGMR and ISGDR, 

shows that both methods are quite successful in reproducing the energies of the 

breathing mode, E0, but overestimate the isoscalar dipole energies, E1, by 1-1.5 MeV 

for the fully self-consistent calculations and by 1.5-3.0 MeV for the calculations with 

approximated spin-orbit, momentum and Coulomb terms, . Hence, the ratios E1/E0 are 
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also overestimated with respect to experimental values. To address these issues we have 

turned to the Fermi liquid drop model with the collisional Fermi surface distortion. 

  

B. Calculation of Centroid Energies E0 and E1, Widths �0 and � 1, and Ratios 

E1/E0 within FLDM 

 

To calculate the centroid energies of the isoscalar monopole and the isoscalar dipole 

resonance excitations, E0 and E1, and their widths, and widths �0, and � 1, respectively, 

we apply the Fermi liquid drop model with the effect of collisional damping, developed 

in Chapter V. The basic equation of motion for the bulk particle density variation in the 

nuclear interior, derived from the collisional Landau-Vlasov equation (5.63), under the 

assumption of the sharp density distribution (Eqs. (5.79), (5.80)), is presented in Eq. 

(5.65), with the bulk density variation defined by Eq. (5.48). The Fermi surface 

distortion is accounted for through the kinetic coefficients (Eqs. (5.66)) in the 

expressions for the sound velocity, 0c , and the friction coefficient, γ , given by 

equations (5.68) and (5.69), respectively. The dispersion equation corresponding to the 

equation of motion is presented in Eq. (5.67).  

To find the centroid energies E0, and E1, and the widths �0, and � 1, of the ISGMR 

and ISGDR, respectively, we look for the lowest non-zero solutions of the secular 

equations describing the boundary conditions for the isoscalar monopole (Eq. (5.91)) and 

dipole (Eq. (5.87)) resonances, which satisfy the dispersion relation (5.67).  According to 

equations (5.66), (5.68), and (5.69), the positions ωRe�=E , and the widths 
2qγ�=Γ of the compression modes depend on the relaxation time, τ . Considering the 

nucleus to be cold, we take the relaxation time to be dependent on the collisional 

damping parameter, �, and the position of the resonance (Eq. (5.78)). Finding solutions 

for equations (5.91) and (5.87), augmented by the dispersion relation (5.67), gives us the 

dependence of the centroid energies of the isoscalar monopole and the isoscalar dipole 

excitations and their widths on the damping parameter β .  
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We carried out calculations using the following nuclear parameters: the nuclear 

surface tension was taken to be σ =1.2MeV/fm2, the equilibrium nuclear radii, densities 

and Fermi energies for the nuclei of interest were determined from the experimentally 

measured rms-radii (see Ref. [65]) as  

 3/1
0

.exp

2
3
5 ArrReq == , (6.5) 

 34
3

eq
eq R

A
π

ρ = , (6.6) 

 ( ) 2
0

232 8/9 rmF �πε = . (6.7) 

The nucleus incompressibility K was determined from the experimental energy of the 

giant monopole resonance .exp0E and experimental rms-radii by using the scaling model 

definition. Namely, 

 ( )2
.exp2

.exp

2

0E
rm

K
�

= . (6.8) 

Plots of the centroid energies of the ISGMR and ISGDR as a function of the 

damping parameter β  for the nuclei of interest are presented in Figure 11.  As we can 

see, for all four nuclei the centroid energies of both the ISGDR, E1, and the ISGMR, E0, 

are monotonic functions of β .  We need to point out that the ISGDR energy E1 varies 

with β  much faster than the ISGMR energy E0. Equations (5.66) are valid for any 

relaxation times and, thus, describe the rare and the frequent collisions limit, as well as 

the intermediate cases. In the rare collision regime ( 1Re >>τω , large β ), the 

compression mode energies E0 and E1 are saturated at certain values, which correspond 

to the zero sound velocity ( )( ) mKc F 9/524
0

εω +=∞→ . In the frequent collision 

regime ( 1Re <<τω , small β ), the contribution from the Fermi surface distortion in 

zero-sound velocity goes to zero, due to 000
 → →τωµF , and both energies E0 and E1 

reach the first sound limit of the liquid drop model (LDM) at mKcc 910 == .  
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FIG. 11. Centroid energies of the ISGMR, E0, and the ISGDR, E1, in 90Zr, 116Sn, 144Sm and 208Pb 
nuclei presented as functions of the damping parameter β . 
 

 

 

Our calculations also show the non-monotonic behavior of the widths �0 and �1 of 

the ISGMR and the ISGDR, respectively. This behavior is a consequence of the memory 

effect (ω -dependence) in the friction coefficient γ  (see Eqs.(5.66) and (5.69)). In the 

rare collision regime the widths exhibit the quantum behavior, τ1∝Γ , while in the 

frequent collision regime we observe the hydrodynamic behavior, τ∝Γ . As it can be 

seen in Figure 12, the width of the ISGDR, �1, is significantly larger than width of the 

ISGMR, �0. 
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FIG. 12. Collisional widths �0 and �2 in 208Pb of the ISGMR and ISGDR, respectively. A 
smooth non-monotonous dependence of the widths of collective excitation on the dampening 
parameter β  is observed 
 

 

 

The relative location of the dipole and monopole energies for the four nuclei of 

interest 90Zr, 116Sn, 144Sm, and 208Pb is given by  

 ( ) 86.175.101 , −=∞→τFLDMEE , (6.9) 

 ( ) 80.176.101 −=SCEE ,  (6.10) 

 ( ) 76.162.101 −=RPAEE , (6.11) 

where ( ) ∞→τ,01 FLDMEE  was obtained in the zero-sound limit ∞→τ , and ( )RPAEE 01  

corresponds to  the result of the microscopic HF-RPA calculations, presented in the 

previous sections of this chapter. 

The ratio ( )SCEE 01 is for the scaling model of Ref. [32], where 
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rm

K
E F
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ε+= � . (6.12) 

The ratios of Eq. (6.3) exceed the LDM estimate ( ) 43.101 =LDMEE and the 

experimental data ( ) 8.056.101 .exp ±=EE  of Ref. [24, 25]. The enhancement of the 

ratio ( ) ∞→τ,01 FLDMEE  with respect to the LDM estimate is due to the fact that the Fermi 

surface distortion effect on the monopole energy E0 is relatively small and E0 appears 

closer to the prediction of the classical LDM. On the other hand, due to the Fermi 

surface distortion, the FLDM centroid energy of the isoscalar dipole resonance E1 is 

significantly shifted up with respect to the LDM result. 

The variation of the damping parameter β  in equation (5.78) allows us to fit the 

ratio ( )FLDMEE 01  to the experimental value, ( ) .exp01 EE . In Figure 13 we show the 

dependence of the energy ratio 01 EE  on the nuclear mass number A . Considering the 

dependence of the centroid energy ratio ( )FLDMEE 01  on the damping parameter, β , we 

find a good agreement between the experimental centroid energy ratio ( ) .Exp01 EE and 

the results of the FLDM calculations for the value of the damping parameter, 5.0≈β  

(bright blue line in Fig. 13). 

To compare the collisional widths of the isoscalar compression excitations with the 

experimental values reported in literature we calculate root-meen-square widths 

assuming a Gaussian form for the strength function and using the relation 

2ln24 22 σ=Γ .  In Figure 14 we have plotted the A-dependence of the collisional 

rms-widths for the ISGMR, �0, and the ISGDR, �1, (given by the dot lines) evaluated 

for the collisional damping parameter 5.0=β . The deviation of the FLDM collisional 

rms-widths � from the reported experimental rms-width �exp. (see Refs. [24, 25]), can be 

explained by an additional contribution to � exp due to the fragmentation width. 
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FIG. 13. Dependence of the energy ratio E1/E0 on the nuclear mass number A. The ratio 
(E1/E0)FLDM is obtained within the current model with the relaxation parameter (see Eq. 5.78) 
�� 0 (dark red dashed line, LDM), �� � (dashed green line, zero sound regime), and � = 0.5 
(solid blue line). The experimental ratios [24,25] for the nuclei of interest are presented by the 
solid black line. Also presented are ratios obtained as results of the HF-RPA calculations, 
performed with SGII (dash dot), SLy4 (dash dot dot), and Sk255 (short dot) Skyrme interactions. 
 

 

We need to point out that the value of 5.0=β  is significantly smaller than the 

values of 25.45.1 −=β  obtained for nuclear matter [71-73]. Also, the fact that, for a 

finite nuclear system, the damping effects are enhanced in the surface region because of 

the diffuseness of the equilibrium phase-space distribution function in the collision 

integral [74], needs to be taken into consideration. Within the Fermi liquid drop model, 

this surface enhancement of the two-body relaxation can be phenomenologically 

imitated as an additional contribution to the collision integral and can lead to an effective 

decrease of the value of damping parameter with respect to the collisional damping 

parameter of the nuclear matter. 
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FIG. 14. Dependence of the ISGMR rms-width, �0, and the ISGDR rms-width, �1, on the 
nuclear mass number A. The FLDM result (dot-line) is obtained using the relaxation time of Eq. 
(5.78) with damping parameter � = 0.5. The experimental data is taken from Refs. [24,25]. 
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CHAPTER VII 

SUMMARY 

  

In this dissertation we have presented a microscopic description of giant resonance 

excitations in several nuclei based on Hartree-Fock-RPA calculations performed with 

various Skyrme effective interaction parameterizations. Five of the existing 

parameterizations, namely SL1 [7], SkM* [5], SGII [33], Sly4 [37] and Sk255 [38], with 

the value of the nuclear matter incompressibility coefficient ranging from 215 MeV to 

254 MeV were used in the analysis of collective excitations in 90Zr, 116Sn, 144Sm and 
208Pb nuclei. 

A theoretical description of the ground states of 90Zr, 116Sn, 144Sm and 208Pb nuclei 

was obtained within the Hartree-Fock method using all five Skyrme force 

parameterizations. Calculated values of the charge root-mean-square radii and binding 

energies are in satisfactory agreement with the experimental data.  

 The coordinate space formulation of the RPA Green’s functions was used to obtain 

transition strength distributions for isoscalar monopole and isoscalar dipole excitations 

in 90Zr, 116Sn, 144Sm and 208Pb nuclei. The single-particle continuum was discretized and 

the width of excited single-particle states was approximated by introducing a Gaussian 

half-width into the free system Green’s functions. The issue of the spurious state 

contribution at non-zero excitation energy in the isoscalar dipole strength distribution 

function due to the not fully self-consistent description of the particle-hole effective 

interaction within the RPA, has been addressed by the introduction of the projection 

operator,  

 ( ) 1
1

ˆˆˆ ffrff
A

i
i ηηη −==�

=

�
. 

The transition strength distribution functions, calculated with this correction, were used 

to determine the quantities of interest for the case of the isoscalar giant dipole resonance, 

such as average resonance energies, sum rules, and transition densities. 
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Fractions of the energy weighted sum rule exhausted within the experimentally 

accessible excitation energy region were calculated. Based on the results of calculations, 

it was concluded that practically the entire isoscalar monopole and isoscalar dipole 

energy weighted sum rule was located below the 35 MeV excitation energy in all nuclei 

considered. The theoretical results for the average (centroid) isoscalar monopole and 

isoscalar dipole resonance energies were compared to experimental values for 90Zr, 
116Sn, 144Sm and 208Pb nuclei [24,25]. The HF-RPA average energies of the isoscalar 

monopole appeared to be in a good agreement with the experimental data for all Skyrme 

interactions used. However, for the interactions which give higher value for the nuclear 

matter incompressibility coefficient, namely, SL1 (230 MeV) and Sk255 (254 MeV), the 

average energies of the isoscalar monopole excitation were overestimated with respect to 

the experimental values by 0.8 MeV and 1.2 MeV (for SL1 and Sk255, respectively) in 

lighter nuclei. The HF-RPA results for the isoscalar dipole resonance provided 

information for both the low excitation energy component (at 1��) and the high 

excitation energy component (at 3��) of the resonance. The average energies of the high 

excitation energy component of the strength distribution appeared systematically higher 

than the experimentally observed values, by 1.5 to 3 MeV in all nuclei of interest. The 

average energies of the low excitation energy component of dipole resonance appeared 

systematically lower than experimental values by about 5 MeV in the case of 90Zr and by 

about 3 MeV for 116Sn, 144Sm and 208Pb nuclei. This might be an indication that a 

Skyrme type effective nucleon-nucleon interaction needs additional terms to describe the 

full complexity of the collective excitation in nuclei. It may also be necessary to consider 

higher order terms (such as two-particle-two-hole excitations of the ground state) in the 

theoretical calculations. 

The differences of the DWBA descriptions of inelastic scattering reactions based on 

collective and microscopic transition densities were also investigated. The DWBA 

calculations were performed for 240 MeV �-particles scattering on 90Zr, 116Sn, 144Sm and 
208Pb target nuclei. The optical potentials were obtained by folding the Hartree-Fock 

ground state density with a density-dependent Gaussian-shape �-nucleon interaction. 



       
           

98 

The parameters of the �-nucleon interaction were obtained by fitting experimentally 

measured elastic cross-sections for all nuclei of interest.  

Transition potentials were calculated by folding the transition interaction expressed 

in terms of the �-nucleon effective interaction and its derivative with respect to the 

ground state density, with both microscopic (RPA) and collective model transition 

densities. Hartree-Fock ground state densities were used for calculations of the collective 

transition densities. Angular distributions of 240 MeV �-particles were obtained for the 

isoscalar dipole excitations of all of the target nuclei of interest. Analysis of the 

calculated inelastic cross sections under the assumption of the microscopic results as the 

experimental data, has shown that experimental analysis based on the DWBA reaction 

description and collective transition densities tend to overestimate the energy weighted 

sum rules for the isoscalar giant dipole resonance excitation. This conclusion might be 

important for interpretation of the experimental results. Particularly, in the case of 

isoscalar dipole resonance, obtaining 100% of the energy weighted sum rule within a 

certain excitation energy region does not assure that the entire energy weighted sum rule 

for the low excitation energy and the high excitation energy components of the isoscalar 

dipole resonance was found. That might indicate that the contribution to the transition 

strength at higher excitation energies has to be taken into consideration, which would 

raise the values of average resonance energies.   

The inability of the HF-RPA description to correctly reproduce the average energies 

for the isoscalar giant dipole resonance was also observed. An alternative approach to 

studying properties of collective excitations, particularly, Fermi liquid drop model with 

the dynamical Fermi surface distortion was also investigated.    

The relation of the Fermi liquid drop model and the time-dependent Hartree-Fock 

approximation was investigated within the Wigner distribution function formalism. A 

simple dispersion relation for the Fermi liquid with the dynamic (collisional) Fermi 

surface distortion was obtained from the linearized Landau-Vlasov kinetic equation. 

Appropriate boundary conditions for isoscalar monopole and isoscalar dipole excitations 

were drawn, and the centroid energies and the collisional widths of isoscalar monopole 
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and dipole excitations, as functions of the damping parameter �, were calculated. From 

the comparison of the theoretically calculated result (for the ratios of the centroid 

energies of the isoscalar dipole and the isoscalar monopole, E1/E0) to the experimental 

values of the ratios of isoscalar dipole to isoscalar monopole centroid energies, E1/E0exp., 

the value of the damping parameter was deduced to be � = 0.5. Theoretical values of the 

root-mean-square widths of the isoscalar monopole and dipole excitations, 

corresponding to the mentioned value of the damping parameter, are lower than the 

experimentally observed root-mean-square widths for both the ISGMR and the ISGDR. 

The observed underestimation can be explained by the fact that only the collisional 

contribution to the widths was taken into account by the FLDM calculations. Also, more 

realistic approach to the description of the shape of the particle density on the nuclear 

surface might introduce additional contribution to the collisional width. It must be noted, 

that for the deduced value of the damping parameter the values of the calculated centroid 

energies were systematically higher than the experimental values for all nuclei of interest 

by 2.5 to 3 MeV and 3 to 4.5 MeV, for the isoscalar monopole and the isoscalar dipole 

resonances, respectively.  Therefore, further investigation of this issue is necessary. 
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APPENDIX A 

 

SECOND QUANTIZATION 

 

In this appendix we describe the second quantization (SQ) formalism. This formalism is 

an alternative formulation of the usual quantum mechanics, which has turned out to be 

very useful for handling the many-body problem. We are interested in the use of the SQ 

for fermions, and in the following we will give a short introduction and some important 

formulae.   

We start with a complete orthogonal set of single-particle states µ , where µ  

stands for a set of quantum numbers, for example: 

(i) spatial coordinate r
�

, spin zσσ ≡ , and isospin zττ ≡  τσ ,,r
�

 

(ii) the quantum numbers of an oscillator basis  nljm  

Orthogonality and completeness are expressed as 

 µµδµµ ′=′ ,             1=�
µ

µµ . (A.1) 

(For continuous quantum numbers such as r
�

, the µµδ ′  will mean ( )rr ′− ��δ  and the sum 

�
µ

will be replaced by � rd
�

.) 

The coordinate representation of the state µ  is given by  

 ( ) ( ) µτστσϕϕ µµ 111111 ,,,,1 rr
�� == . (A.2) 

Starting with this set of single-particle states, we can construct a complete orthogonal set 

of totally antisymmetric A-body wave functions as: 

 ( ) ( ) ( ) ( ){ }≡=Φ �
P

APPsign
A

A
AA µµµµ ϕϕ �1

!

1
,...,1

11...  

 { }A��
A

�1det
!

1
. (A.3) 
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In this equation, ( ) ( )A�1  are particle indices. We can also characterize the wave 

function 
Aµµ ...1

Φ  by the “occupation numbers”, { }µn , which for a system of fermions 

indicate whether a particular number µ is contained in the A  numbers { }Aµµ �1 . 

Obviously we have  

 An =�
µ

µ . (A.4) 

We now can construct a Hilbert space, which contains a vacuum (no particle) 0 , all 

the one–particle states, all the antisymmetrized two-particle states, and so on… 

H = {H0, H1, H2,…}.      

The wave functions { }µµµ nA
Φ=Φ ...1

 correspond to basis states ,..., 21 nn  in this Hilbert 

space, which characterized by the occupation numbers µn (occupation numbers 

representation), such that  

 { }( ) ,...,,...,1,...1 21 nnAAn =Φ
µ

. (A.6) 

These states are orthonormalized  

 ......,...,...,,,...,...,,
22112121 µµ

δδδµµ nnnnnnnnnnnn ′′′=′′′  (A.7) 

We now will address ourselves to a fermion system. Since µn  can only have values 0 

and 1, we may define the action of the annihilation operator µâ  as 

 ,...0,...,,...1,...,ˆ 11 === µµµ nnnna ,      0,...0,...,ˆ 1 ==µµ nna , (A.8) 

from which, by taking a complex conjugate, we get the creation operator, +
µâ , as 

  ,...1,...,,...0,...,ˆ 11 ===+
µµµ nnnna ,      0,...1,...,ˆ 1 ==+

µµ nna . (A.9) 

From definitions (A.8) and (A.9) we gain the fact that 

 ( )
��

�
�

�

=

≠
=+ ++

,for,,...,...,

,for,0
,...,...,,...,ˆˆˆˆ

1

1

νµ

νµ

µ

νµµννµ
nn

nnnaaaa  (A.10) 

and, hence, get the anti-commutation relations, 



       
           

106 

 [ ] { } µνµννµνµνµ δ=+≡≡ +++
+

+ aaaaaaaa ˆˆˆˆˆ,ˆˆ,ˆ . (A.11) 

In the same way, one can show that 

 [ ] [ ] 0ˆ,ˆˆ,ˆ ==
+

++
+ νµνµ aaaa . (A.12) 

The state with the occupation numbers 0,...0,0,0 =  is the vacuum. We thus have  

µµ  allfor ,00ˆ =a , hence, 

 ( ) 0ˆ...ˆ0ˆ,...,...,
11

+++ == ∏ A
aaann

n

νν
µ

µν
µ . (A.14) 

 

1. Field operators in the coordinate space 

Using the single-particle wave functions ( )111 ,, τσϕ µ r
�

 in the Eq. (A.2) we can define 

creation and annihilation operators ( )τσ ,,ˆ ra
�+ , ( )τσ ,,ˆ ra

�
, which depend on the 

coordinates r
�

, σ , and τ : 

 ( ) ( )�=
µ

µµ τσϕτσ arra ˆ,,,,
��

;    ( ) ( )� ++ =
µ

µµ τσϕτσ arra ˆ,,,,
��

. (A.15) 

With Eq. (A.1) we can invert this relation, 

 ( ) ( )��
∗=

τσ
µµ τστσϕ

,

,,,,ˆ rarrda
���

,      ( ) ( )��
++ =

τσ
µµ τστσϕ

,

,,,,ˆ rarrda
���

, (A.16) 

and gain anticommutators 

 ( ) ( )[ ] =′′′ +
+ τστσ ,,,,, rara
��

 

 ( ) ( )[ ] ( )rraarr ′−=′′′ ′′+
+∗�

��� δδδτσϕτσϕ ττσσνµ
νµ

νµ ˆ,ˆ,,,,
,

, (A.17) 

 ( ) ( )[ ] ( ) ( )[ ] 0,,,,,,,,,, =′′′=′′′ +
++

+ τστστστσ rararara
����

. (A.18) 

We can express the many-body wave function in Eq. (A.3) by 

 ( ) { }( ) ( ) ( ) An nnnaAa
A

AA
A

,...,,1...0
!

1
,...,1,...,1 21...1

=Φ=Φ
µµµ , (A.19) 

and 
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 { }( ) ( ) ( ) 0...1,...,1
!

1
...1,...,, 21 AaaA

A
dAdnnn nA

++Φ= � µ
. (A.20) 

 

2. Representation of operators 

Starting from a vacuum 0  we have expressed all states of the many-body system by 

creation and annihilation operators +
µâ , µâ . In the following, the same will be done for 

operators. We have to distinguish between one- and two-body operators. 

A one-body operator of an A-particle system, is given by the sum of A operators if̂  

which act on the coordinate of particle i: 

 �
=

=
A

i
ifF

1

ˆˆ . (A.21) 

Its matrix elements in the µ  representation are 

 νµµν ff ˆ= , (A.22) 

that is, 

 ( ) ( )�=
ν

ννµµ ϕϕ ifif î . (A.23) 

The representation of F̂  in the operators +
µâ , µâ  is given by 

 � +=
νµ

νµµν
,

ˆˆˆ aafF . (A.24) 

To show this, we need to prove that 

 ( ) Φ=Φ ��
′

′
+

′
µµ

µµµµ
,

ˆˆ,...,1,...,1ˆ aafAAf
i

i . (A.25) 

On the l. h. s., from Eqs. (A.19), (A.16), and (A.23)we have 

 

( ) ( ) ( )

( ) ( ) ( ) =Φ

=

� �

�

i
i

Ai
i

i

A

AiA
aaiAf

nnnaiaAaf

µµ
µµµµµ ϕϕϕ

...

1

1

11
ˆ...ˆ01......ˆ

,...,,...,1......0ˆ

  

 ( ) ( ) ( )�� � Φ
i A

AiAi
aaiAf

µ µµ
µµµµµµµ ϕϕϕ

...1

11
ˆ...ˆ01...... . 
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This is identical to the r. h. s.: 

 ( ) ( ) ( ) =Φ′
+

′
′� � µµµµµµµ

µµ µµ
µµ ϕϕϕ aaaaiAf

AiA

A

ˆˆˆ...ˆ01......
11

1...

 

 ( ) ( ) ( ) Φ�� � 11

1

ˆ...ˆ...ˆ01......
...

µµµµµµ
µ µµ

µµ ϕϕϕ aaaiAf
iAiA

A

i
i

. 

In the most general case if̂  will be an integral operator (a “nonlocal” one-particle 

operator): 

 ( ) ( ) ( )τσϕτσϕ
τσ

ττσσ ′′′′′= ��
′′

′′ ,,,,,ˆ
,

, rrrfrdrf
�����

. (A.26) 

A two-particle operator as, for example, a two-body interaction, is given by a sum of 

operators ijv  which acts on the coordinates of the particles i and j 

 ��
≠=<

≡=
A

ji
ij

A

ji
ij vvV ˆ

2
1ˆˆ

1

. (A.27) 

In complete analogy to Eq. (A.24), we can show that V̂  can be written as 

 ( )��
′′

′′
++

′′′′
′′

′′
++

′′ −==
νµµν

µννµµνµννµµν
νµµν

µννµνµµν
,,

ˆˆˆˆ
4
1ˆˆˆˆ

2
1ˆ aaaavvaaaavV , (A.28) 

where  

 νµµνµνµννµµν ′′′′′′ =− vvv  (A.29) 

is the fully antisymmetrized matrix element of the interaction. 

In the most general case, ijv  will be an integral operator in two variables, with matrix 

elements given as: 

 ( ) ( ) ( ) ( ) ( )� ′′
∗

′′ =′′= 434,3,2,1214321ˆ *
νµνµνµµν ϕϕϕϕνµµν vddddvv . (A.30) 
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APPENDIX B 

 

ENERGY DENSITY CONTRIBUTIONS FROM DENSITY DEPENDENT AND 

TENSOR TERMS OF THE EXTENDED SKYRME FORCE 

 

In this appendix, the total energy density of the Skyrme effective interaction is found for 

closed-shell axially symmetric nuclei.  

 
( )

( ) ( ) ( ) ( ) ( )rHrHrHrHrH

rHrdV

TDDOSCSkyrme

SkyrmeSkyrme
�����

��

+++=

=ΦΦ �
....

. (B.1) 

The central and the spin-orbit term contributions to the energy density are well known 

from literature (see Ref. [3]): 

 

( ) ( ) [ ]

( ) ( )

( ) ( ) ( ) ( )[ ]

( ) ( )

( ) ( ) ( ) ( )[ ]

[ ] ( ) ( )( ) [ ] ( )rJxtxtrJrJtt

rrrrxtxt

rrxtxt

rrrrxtxt

rrxtxt

xtrxtrH

np

nnpp

nnpp

npC

������

����

��

����

��

�

2
2211

22
21

22
2211

2
2211

2211

2211

22
00

2
00

16
1

16
1

2
1

2
1

3
16
1

2
1

1
2
1

13
16
1

2
1

2
1

4
1

2
1

1
2
1

1
4
1

2
1

2
1

2
1

1
2
1

+−+−+

∇+∇�
�

�
�
�

�
	



�
�


� ++	



�
�


� ++

∇�
�

�
�
�

�
	



�
�


� +−	



�
�


� +−

+�
�

�
�
�

�
	



�
�


� +−	



�
�


� +−

�
�

�
�
�

�
	



�
�


� ++	



�
�


� ++

+	



�
�


� +−	



�
�


� +=

ρρρρ

ρρ

τρτρ

τρ

ρρρ

;  (B.2) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]rJrrJrrJrWrH nnppOS

������������� ∇+∇+∇−= ρρρ0.. 2
1

, (B.3) 

This is done through calculations of matrix elements of these components for the Slater 

determinant wave function Φ  given by Eq. (2.13). For a two-body interaction 

�
ij

ijV2
1 such a matrix element is given by: 
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 ( ) ijPPPVijV
ij

Tr

ij
ij �� −=ΦΦ 12121212 1

2
1

2
1 σ , (B.4) 

while for three-body interaction �
ijk

ijkV6
1  the matrix element becomes: 

 (�� −−=ΦΦ
ijk

TrTr

ijk
ijk PPPPPPVijkV 2232323121212123 1

6
1

6
1 σσ  

 TrTrTr PPPPPPPPP 232323131313131313
σσσ +−  

 ) ,131313232323 ijkPPPPPP TrTr σσ+  (B.5) 

where ij  and ijk  are products of single particle wave functions ( )1ri

�ϕ , ( )2rj

�ϕ , and 

( )3rk

�ϕ , and rP , σP , and TP  are exchange operators for special, spin, and isospin 

coordinates, respectively. The explicit form of the spin exchange operator is: 

 ( )mnnmP σσσ ��+= 1
2
1

, (B.6)  

where nσ�  and mσ�  are spin operator acting on the single-particle wave functions 

depending coordinates nr
�

 and mr
�

, respectively, which, in spin coordinate representation, 

are the Pauli  matrices. We assume that there is no charge mixing as a result of isospin 

coordinate exchange, and, thus, the isospin exchange operator is given by: 

 
mn

T
nmP ττδ= , (B.7) 

where nτ  and mτ  are marking the isospin coordinates ( 2
1+=τ  for protons and 

2

1−=τ  

for neutrons). 

The results of calculations are expressed in terms of nucleon densities ( )r
�

τρ , ( )r
�ρ , 

kinetic energy densities ( )r
�

ττ , ( )r
�τ , and spin current densities ( )rJ

��

τ , ( )rJ
��

, where 

index τ  denotes the isospin. These densities are defined in terms of single-nucleon wave 

functions: 

  ( ) ( ) ( )��
=

∗=
A

i
ii rrr

1

,,,, τσϕτσϕρ
σ

τ
���

,        ( ) ( )�=
τ

τρρ rr
��

; (B.8) 
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 ( ) ( )��
=

∇=
A

i
i rr

1

2
,,

σ
τ τσϕτ ���

,                     ( ) ( )�=
τ

τττ rr
��

; (B.9) 

 ( ) ( ) ( )[ ]��
= ′

∗ ′×′∇−=
A

i
ii rrirJ

1 ,

,,,,
σσ

τ σσστσϕτσϕ ������
,     ( ) ( )�=

τ
τ rJrJ
����

. (B.10) 

Before evaluating matrix elements (B.4) and (B.5) for the density dependent and 

tensor terms of the Skyrme interaction, it is useful to introduce several identities, which 

involve single-nucleon wave functions and will be used in all derivations below. 

Under the assumption of time reversal invariance, if state i is occupied, then the time 

reversed state i~  is also occupied. For spinor particles, the wave function ( )τσϕ ,,~ ri

�
 of 

state i~  can be obtained from wave function ( )τσϕ ,,ri

�
 as: 

 ( ) ( ) ( )τσσϕτσϕτσϕ ,,2,,ˆ,,~ −−=Θ= ∗ rrr iii

���
,        2

1±=σ . (B.11) 

Therefore, from Eq. (B.7) and (B.10) it followsthat 

 ( ) ( ) ( )rrr
i

ii

���
τσσ ρδτσϕτσϕ

212
1

21 ,,,, =� ∗ . (B.12) 

From expression (B.11) and from the explicit form of the Pauli matrices, the following 

identity can be deduced: 

 ( ) ( ) 0,,,,
21 ,,

2211 =� ∗

σσ
τσϕσσστσϕ

i
ii rr
���

, 

or in the spinor form: 

 ( ) ( ) 0=� ∗

i
ii rr
��� ϕσϕ . (B.13) 

The condition of the time reversal invariance, together with Eqs. (B.8), (B.9), and 

(B.13), provide us with the following results: 

 ( ) ( ) ( )rrr
i

ii

�����
τ

σ
ρτσϕτσϕ ∇=∇� ∗

2
1

,

,,,, , (B.14) 

 ( ) ( ) ( ) ( )rrrr
i

ii

����
ττ

σ
τρτσϕτσϕ −∇=∇� ∗ 2

2
1

,

2 ,,,, . (B.15) 

Finally, using the identity     

 ( )( ) ( )( ) ( )( )22112
1

22113
1

2121 σσσσσσ ������������
×∇×∇+∇∇=∇∇  

 ( )( ) ( )( )2

22

2

11 σσ ����
⊗∇⊗∇+ , (B.16) 
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where indices 1 and 2 by operators ∇
�

 and σ� indicate that these operators act on 

functions of coordinates 1r
�

 and 2r
�

 respectively, we evaluate in terms of the spin 

currents, the expression: 

 ( ) ( )( )( ) ( ) ( )� ∇∇∗∗

ji
jiiji rrrr

,
221121212211 ,,,, τϕτϕσστϕτϕ ������������

, (B.17) 

where the third term is a product of two second-rank tensors. Under the assumption of 

the axial symmetry together with the time reversal invariance, and upon insertion of Eq. 

(B.14) into (B.17), the only non –vanishing term is the term containing 

( )( )2211 σσ ����
×∇×∇ . Therefore, according to definition (B.10), we obtain: 

 ( ) ( )( )( ) ( ) ( ) ( ) ( )212
1

,
221121212211 31

,,,, rJrJrrrr
ji

jiiji

����������������
τττϕτϕσστϕτϕ −=∇∇� ∗∗ . (B.18) 

Now we can express the contributions to the energy density from density dependent and 

tensor terms of the Skyrme interaction in terms of nucleon, kinetic energy, and spin 

current densities defined in Eqs. (B.8)–(B.10). 

 

1. Density dependent term: ( ) ( ) ( )ji
rr

ijij rrPxtV ji −+= + δρ ασ
2336

1 1
��

 

Following Eq. (B.4) with the spin and isospin exchange operators defined by the Eqs. 

(B.6) and (B.7), taking into account presence of aδ -function that renders 112 =rP , and 

eliminating terms that vanish because of Eq. (B.10), one obtains: 

 ( ) ( ) ( ) ( ) =Φ−+Φ= +
� ji

rr
ij

ij
DD rrPxtV ji ����

δρ ασ
233

1
. 1

6
1

2
1

 

 ( ) ( )� �
�

�
�
�

�
	



�
�


� −+−−+

ij
ji

rr ijxrrijt
jiji

ji

ττττ
α δδδρ

2
1

2
1

1
12
1

323

����

. 

Integrating over one of the special variables and using Eq. (B.8) yields: 

 ( ) ( ) ( )( ) ( )( )� � �
�

�
�
�

�
	



�
�


� +−+=
τ

τ
α ρρρ 2

1
3

2
32

1231
. 1

2
xrxrrrd

t
V DD

����
. 

Hence, the contribution to the energy density from this term is: 

 ( ) ( )( ) ( ) ( ) ( )( )( )[ ]2
1

3
22

32
1231

. 1
2

++−+= + xrrrxr
t

H npDD

���� ρρρρ αα . (B.19) 
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2. Density dependent term: 

 ( ) ( ) ( ) ( ) ( )[ ]22
1313 1

2
1

ijkjjikjjiijijijk krrrrrrrrkPxtV
����������

−−+−−+= δδδδσ . 

To calculate matrix elements of the first and second terms we use Eq. (B.5). Using the 

properties of integration of the δ -functions one obtains: 

  ( ) ( ) ( ) ( ) ( ) ( )[ ] =Φ−−+−−+Φ= � 22
1313

2
.. 1

12
1

ijkjjikjjiijij
ijk

DD krrrrrrrrkPxtV
����������

δδδδσ  

  ( )( ) ( ) ( ) ( ) ijkPPPkrrrrPxPPijk
t T

ijij
r

ijijkjjiij
T
jkjk

ijk

σσσ δδ −−−+−� 1121
6

2
13

13
�����

. 

We can again substitute 1=r
ijP . Using Eqs. (B.6) and (B.7) for spin and isospin 

exchange operators, the explicit form of 2
ijk
�

 ( ( )22
4
12 2 jjiiijk ∇+∇∇−∇−=

���
), and omitting 

the terms which vanish because of Eq. (B.13), one can rewrite the expression above in 

the following form: 

 

( ) ( ) ( ) [ ]

( )( ) ( ) ( )��
�−+−��

� −+

�
�
�

∇+∇∇∇−−−= �

kjjikj
xx

rrrrijk
t

V jjii
ijk

kjjiDD

ττττττ δδδ

δδ

1
2
1

1
2
1

1

2
24

1313

22132
..

������

 

 ( )( )[ ( ) ( )] ijkx
kjjikjjiji
�
�
�

−−∇∇− ττττττ δδδσσ 1113
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Integrating over any two special coordinates and using Eqs. (B.14), (B.15), and (B.18), 

we obtain: 
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Using identities: 
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, (B.21) 

integrating by parts and performing some algebra, one obtains: 
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Therefore, contribution to the energy density is: 
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3. Density dependent term: ( ) ( ) ( )[ ]ijkjjiijijijk krrrrkPxtV
������

−−+= δδσ
2323 1  

Equation (B.5) for the matrix element of this term reduces to 



       
           

115 

 

( ) ( ) ( ) ( )[ ]

( )( ) ( ) ( )×−−+−

=Φ−−+Φ=

�

�

kjjiij
T
jkjkikij

ijk

ijkjjiijij
ijk

DD

rrrrPxPPkkijk
t

krrrrkPxtV

������

������

δδ

δδ

σσ

σ

23
23

2323
3

..

12
6

1
6
1

 

 ( ) ijkPPPk T
ijij

r
ijij

σ−1
�

. 

For this term we use 1−=r
ijP . Using the definitions of inm
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with Eqs. (B.6), (B.7), and (B.13), the above expression can be rewritten in the following 

form: 
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To obtain terms containing ( ) ( )mnmn σσ ����
∇∇  we integrate by parts, and use Eq. (B.13) 

and the property of a δ -functions: ( ) ( )mnmmnn rrrr
������

−∇−=−∇ δδ . Utilizing Eqs. (B.8)-

(B.12), after integration over two arbitrary special coordinates we obtain: 
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After collecting similar terms (having utilized Eqs. (B.20) and (B.21)) we arrive at: 
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4. Tensor force term: ( ) ( )( ) ( )[ ] ( )jiijjiijjijijiij cckkkrrTV ττσσσσδ �����������
..2

3
1

2
1 +−−= . 

According to Eq. (B.4), the matrix element of this term has the form: 

( ) =ΦΦ= �
ij

ijT VV
2
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, 

where we have accounted for the fact that adding the complex conjugate term doubles 

matrix element of the direct term, ( ) ( ) ( )[ ] ( )jiijjiijjiji kkkT ττσσσσ �������� 2
3
1

2
1 − . In the above 

expression we can use 1=r
ijP . Moreover, considering the fact, that a tensor interaction 

gives a non-zero contribution only when it acts on a spin triplet state, we can substitute 

1=σ
ijP  as well. Considering the formal definition of the isospin exchange operator 

( )mn
T

nmP ττ ��+= 12
1 , we obtain: 

 12 −= T
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.     

Using the explicit form of nmk
�

, Eqs. (B.8) and (B.24), and keeping only the terms which 

do not vanish due to Eq. (B.13) and due to the axial symmetry, we obtain: 
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Using the identity: 

 ( )( ) ( )( ) ( )( )ADBCDBCADCBA
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××+= , (B.25) 

we rewrite term ( ) ( )ijji ∇∇
���� σσ  as: 

 ( ) ( ) ( )( ) ( )( )jjiijijiijji σσσσσσ ������������ ×∇×∇−∇∇=∇∇ . 

Now, by making use of Eqs. (B.11) and (B.18) we obtain: 
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Therefore, the contribution to the energy density from this term is:  
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5. Tensor force term:  

 ( ) ( )( )[ ( ) ( ) ]( )jiijjiijjiijjjiijiij krrkkrrkUV ττδσσσδσ �������������� −−−=
3
1

2
1

. 

According to the Eq. (B.4), the matrix element of this term is: 
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In this case we are allowed to use 1−=r
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ijP . Following the same line of inquiry 

as for the previous term yields: 
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Integrating the expression above over any of two coordinates gives: 
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Therefore, the contribution to the energy density from the second term of the tensor-

interaction is: 
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Combining Eqs. (B.19), (B.22), and (B.23), we get the contribution to the energy 

density for density dependent terms: 
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By combining Eqs. (B.26) and (B.27), one obtains the contribution to the energy density 

from tensor-interaction terms: 
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6. Local energy density of the extended Skyrme nucleon-nucleon interaction. 

Sum of the central, spin-orbit, density dependent and tensor terms of the energy density 

provides an expression:  
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Using the definition of the particle kinetic energy density (B.9), the total local energy 

density can be written as: 

 CoulombSkyrme
n
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22 ττ
,  (B.31) 

where HCoulomb is the Coulomb energy density contribution, containing both direct and 

exchange terms: 
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