DESCRIPTION OF ISOSCALAR GIANT DIPOLE RESONANCE IN NUCLEI

A Dissertation
by

OLEKSIY GRIGORIEVICH POCHIVALOV

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2006

Major Subject: Physics



DESCRIPTION OF ISOSCALAR GIANT DIPOLE RESONANCE IN NUCLEI

A Dissertation
by

OLEKSIY GRIGORIEVICH POCHIVALOV

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
Approved by:
Chair of Committee, Shalom Shlomo
Committee Members, Dave H. Youngblood

Joseph B. Natowitz
Ronald A. Bryan
Head of Department, Edward S. Fry

December 2006

Major Subject: Physics



iii

ABSTRACT

Description of Isoscalar Giant Dipole Resonance in Nuclei.
(December 2006)
Oleksiy Grigorievich Pochivalov, B.S., Kiev State University
Chair of Advisory Committee: Dr. Shalom Shlomo

Applicability of the Hartree-Fock (HF) based random phase approximation (RPA) with
several Skyrme effective interactions to the description of the isoscalar giant monopole
(ISGMR) and the isoscalar giant dipole resonance (ISGDR) in 907¢, 115Sn, "**Sm and
298pp nuclei has been investigated. The existing Skyrme interactions SL1, SkM*, SGII,
Sly4 and Sk255 were used. Hartree-Fock description of the ground state properties of all
nuclei of interest was obtained using these Skyrme interactions.

Transition strength distributions for the ISGMR and the ISGDR in nuclei of interest
were calculated using coordinate space representation for the RPA in the Green’s
function formalism with discretized continuum. A method of projecting out the spurious
state contribution from the transition strength distribution and the transition density of
the ISGDR was employed to eliminate spurious state mixing, due to a not fully self-
consistent description of the particle-hole interaction within the RPA.

Differential cross sections of 240 MeV a-particles inelastic scattering on all nuclei of
interest were calculated using the folding model within the distorted wave Born
approximation (DWBA). Optical potentials were obtained by folding HF ground state
densities with a a-nucleon density dependent Gaussian interaction. Parameters of the
interaction were obtained by fitting experimental angular distribution of a-nucleus
elastic scattering.

The inelastic differential cross sections were calculated using both collective and
microscopic transition densities. Possible underestimations of the energy weighted sum

rule for the case of the ISGDR are reported.



An alternative description for the ISGDR in nuclei based on the Fermi liquid drop
model (FLDM) with the collisional Fermi surface distortion was investigated. The
FLDM dispersion relation was obtained from the linearized Landau-Vlasov equation.
Centroid energies, EO and E1, and widths, I'0 and I'1, of the ISGMR and ISGDR,
respectively, were calculated as functions of the damping parameter using appropriate
boundary conditions. Comparison of the theoretical ratios of the ISGDR and ISGMR
centroid energies, E1/EQ, to the experimental values resulted in a damping parameter
equal to 0.5, however, systematic overestimation of energy of the ISGMR and ISGDR
by 2.0-2.5 MeV was observed. The applicability of the HF-RPA to the description for

the ISGDR in nuclei is confirmed.
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CHAPTER I

INTRODUCTION

Analyses of collective excitations in nuclei have provided important information about
properties of the nuclear interaction, non-equilibrium processes in nuclei, and the
properties of infinite nuclear matter. In particular, compression modes, such as isoscalar
monopole and isoscalar dipole excitations, have been of great interest in nuclear research
because of their relevance to the extraction of the value of the nuclear matter
incompressibility coefficient. Under existing laboratory conditions, the parameters of the
infinite nuclear matter cannot be measured directly. However, knowledge of such
parameters, in particular, the nuclear matter incompressibility coefficient, is very
important in many areas of physics research, such as astrophysics, nuclear structure and
heavy ion collisions.

Collective nuclear excitations have been experimentally observed throughout the
periodic table. Such excitations are identified as the occurrence of resonance peaks in the
transition strength distribution obtained by a weak external field that excites the nucleus.
These excitations usually exhaust a large fraction of the total transition strength for a
given external field, hence the name giant resonances. It was also noted that average
energies and widths of such resonances in different nuclei behave as smooth functions of
the nuclear mass number A. Such a behavior is a strong indication of a coherent motion
of nucleons, hence, collective nature of these excited states.

Collective nuclear excitations, and particularly, giant resonances are identified by the
amount of change of total momentum J, total spin AS and total isospin A7, that are
transferred to the ground state of the nucleus as a result of interaction with a weak
external field. In this dissertation, the discussion is limited only to the AS = 0 (electric),
and the AT = 0 (isoscalar) excitation modes. From a macroscopic point of view, such
excitations correspond to in-phase motion of nucleons with opposite spin and isospin.

From a microscopic point of view, nuclear collective excitations can be described as a

This dissertation follows the style of Physical Review C.



superposition of multiple single particle — single hole excitations (in Tamm-Dankoff or
Random Phase Approximations). In the latter case, the AS and AT are the spin and
isospin of each particle-hole pair, respectively. In this dissertation, for the purpose of
simplicity, we limit our microscopic studies to random phase approximation (RPA).

Over the years RPA has been proven to be one of the most successful approaches of
the microscopic description of nuclear excitation. This success can be attributed to the
main idea of the approximation, namely, that a nuclear collective excitation can be seen
as a superposition of correlated single particle — single hole excitations of the correlated
nuclear ground state. The random phase approximation can be built on any of the models
providing information on the single particle structure of the nuclear ground state.
Therefore, an obvious choice is to give a formulation of the RPA on the basis of Hartree-
Fock single particle energies and wave functions, obtained by solving the single particle
Hartree-Fock equations. This Hartree-Fock based RPA formalism have been extensively
used in the description of collective excitations and has been proven to be a successful
approach in describing some of the characteristic features of several giant resonances.

There are many choices of the nucleon-nucleon interaction that can be used within
the Hartree-Fock method. In this dissertation we limit our choices to various
parameterizations of the zero-range density-dependent Skyrme-type nucleon-nucleon
interaction, due to the apparent success of the Hartree-Fock calculations with the Skyrme
interactions in describing nuclear ground state properties such as binding energies, root-
mean-square radii, etc. Another reason for the choice of zero-range nucleon-nucleon
interaction is the simplicity of the numerical application of the Hartree-Fock method
with such interactions. Further reasoning for the choice of nucleon-nucleon interaction
will be explained in the following.

The zero-range effective nucleon-nucleon interaction was first formulated by Skyrme
[1], [2], from an expansion of the nucleon-nucleon interaction in momentum space.
Later, in order to account for the density saturation effects in nuclei, an additional zero-
range density-dependent term was introduced by Vautherin and Brink [3].

Comprehensive HF calculations of the root-mean square radii and single particle energy



levels, performed for a wide range of double-closed shell nuclei showed better
agreement with the available experimental data than those obtained using effective
interaction derived from Brueckner’s theory [4]. Over the years, various
parameterizations of the Skyrme interaction have been developed [5] and multiple
additional zero-range terms have been introduced in order to improve the ground state
description and to account for generally known features of the nucleon-nucleon
interaction, such as momentum and density dependent [6] and tensor [7] terms. One of
the concerns with the Skyrme effective interaction is that different parameterizations,
corresponding to different values of parameters of the nuclear matter, are known to
satisfactorily reproduce properties of ground state of finite nuclei. It is especially true for
such an important nuclear matter parameter as the nuclear matter incompressibility
coefficient, K,,,. Thorough research [8] has shown that the ground state properties of a
wide range of nuclei is well reproduced by the Skyrme force parameterizations,
corresponding to a very wide range for the value of K,,,. Also, there were no indications
that the nuclear matter incompressibility is correlated with any other nuclear matter
parameter. The issue of the value of nuclear matter incompressibility coefficient needs to
be addressed.

Additional information, obtained by studying isoscalar giant monopole resonance
(ISGMR), the breathing compression mode of collective excitations of nuclei [9],
narrowed the range of values of the nuclear matter incompressibility coefficient to
210+ 20 MeV. That confirmed the value of the nuclear matter incompressibility
coefficient K,,,,, determined earlier in Ref. [10].

It was first pointed out in Ref. [11], that the HF-RPA results for the centroid energy
of the isoscalar giant dipole resonance (ISGDR), E1, obtained with the interactions
adjusted to reproduce the ISGMR data, are higher than the experimental values [12,13].
This discrepancy between theory and experiment was also reported in more recent
publications [14-16]. There have been quite a few recent non-relativistic HF-RPA [17-
21] and relativistic mean-field based RPA [22,23] calculations for the ISGDR,

addressing issues of (i) spurious state mixing (SSM), (ii) the strength of the lower



component (at 1hw), and (iii) the value of K, deduced from the centroid energy E1 of

the ISGDR compression mode (at 3 hw). The issue of spurious state mixing in the
strength distribution and transition density of the ISGDR has been successfully
addressed in Refs. [17,18] by carrying out accurate microscopic calculations for the

strength distribution function S(E), and projecting out the SSM contribution. However,

discrepancies of 1-2 MeV between centroid energies calculated within the HF-RPA
method, and experimentally measured energies [24-26] of the ISGDR, are still being
observed. These discrepancies in the isoscalar dipole energies indicate that the
consistency in the results of the HF-RPA calculations with the Skyrme interactions for
various collective excitations in nuclei must be verified. It can be achieved by careful
study of the HF-RPA description for the isoscalar giant dipole resonance and the
isoscalar giant monopole resonance modes, in a wide range of nuclei, using a variety of
known parameterizations of the Skyrme nucleon-nucleon interaction. Reproduction of
the experimentally measured energies for both the isoscalar monopole and isoscalar
dipole resonances may serve as a criterion for better applicability of a given Skyrme
interaction and indicate that the corresponding value of nuclear matter incompressibility
coefficient is the most realistic.

The above considerations show the importance of systematic experimental and
theoretical studies of ISGDR excitation in a wide range of nuclei.

The choice of the Skyrme-type effective interaction in this dissertation can be
explained by two major advantages of implementation of this interaction within the HF-
RPA. First, according to the Thouless theorem [27], the integrated energy weighted
transition strength, corresponding to a given excitation operator, calculated within the
HF-RPA, should be equal to the energy weighted sum rule obtained from the HF ground
state, provided that all terms of the particle-hole interaction were consistently retained
within the HF-RPA interaction. This assures the self-consistency of the method. Second,
using a Skyrme-type nucleon-nucleon interaction one operates with a particle-hole
interaction that has delta-dependence in coordinate space. In such a case, it is possible to

formulate the RPA equations in the coordinate representation using the Green’s function



formalism [28,29]. The configuration space matrix formulation of the RPA has a strong
limitation on the maximal excitation energy for which the transition strength can be
calculated, due to the requirement of having a large number of particle-hole
configurations that should be considered for high excitation energy. The free-system
particle-hole Green’s function required in the RPA equation can be obtained either by
directly calculating the Green’s function of the Hartree-Fock mean field (see Ref. [30])
or by using the Hartree-Fock single-particle energies and wave functions within the
spectral representation of the response function. The latter method of calculation of the
free-system Green’s function requires proper discretization of the single-particle
continuum, and an artificial width can be assigned by smearing the transition strength
distribution with a certain function, for example, the Lorentzian. In the case of the direct
calculation of the Hartree-Fock Green’s function, the particle escape width is accounted
for within the continuum RPA calculations; however, smearing may still be needed in
order to take into account additional width due to coupling to more complex two-
particle-two-hole configurations.

The main experimental tool for studying isoscalar giant resonances is inelastic a -
particle scattering. An o -particle has total spin § =0 and isospin 7 =0, therefore, only
AS =0 and AT =0 modes can be excited in the target nucleus as a result of the
inelastic reaction, which either eliminates or greatly reduces interference of other
excitations. Also, angular distributions of inelastically scattered o -particles at small
angles are characteristic of some excited multipolarities, which in the case of a -particle
scattering, are determined by the amount of transferred orbital momentum, L.
Observing such characteristic behavior in the experimentally determined angular
distributions, at a given excitation energy, simplifies the identification of contributions
from modes of different multipolarity. Another reason for the usefulness of studying
inelastic a-particle reactions is that current methods of extracting the sum rule strength
from differential cross sections have proven to be reliable. Such an extraction is usually
done in the analysis of a particular a -particle scattering reaction, using the formalism of

the distorted wave Born approximation (DWBA). According to scattering theory, the



differential cross sections of inelastically scattered a -particles are proportional to the
square of the transition amplitude 7';, which within the DWBA is found in terms of
incoming and outgoing distorted waves, and matrix elements of a two-body a -nucleon
interaction between the ground state i and the excited state f . It is known that in the

Born approximation, in the case of the zero-range two-body interaction, the transition

amplitude for excitation of multipolarity L satisfies the following relationship:
T, o [ridrp:(r)j, (ar). (L.1)
Here p (r) is the radial part of the transition density for the excited state with

multipolarity L, j, (qr) being the spherical Bessel function, and g being the transferred
momentum. It was shown in Ref. [31] that, to a good approximation, this relation also
holds for a more realistic case of a finite range Gaussian type two-body interaction.
Therefore, one is provided with a direct dependence of the transition amplitude on the
transition strength function, corresponding to the excitation operator

F,, = ; JL (qri )Y iy (fl ) For first order in (qr), the long wave-length limit, the

excitation operator for multipolarity L has the same form as the isoscalar

electromagnetic operator:
Fyy <> 'Y, (#), L22, AT=0. (1.2)

Since for both the isoscalar monopole and the isoscalar dipole excitations first order
terms in the expansion of Bessel function vanish, next order terms allowed by parity

conservation are:

Fpo<dr’, L=0, AT=0, (1.3)

FlM“zrﬁYlM(Ai)’ L=1, AT=0. (1.4)

The theoretical and experimental descriptions of isoscalar giant monopole and isoscalar
giant dipole excitations in terms of the sum rules for the simple operators (1.3) and (1.4),

are common in the literature.



We have pointed out earlier that the difference between the experimentally obtained
centroid energy E1 of the ISGDR and theoretical values calculated using the self-

consistent HF-RPA with effective interactions associated with K =230 MeV (which

is known to successfully reproduce the experimental values of the centroid energy EO of
the ISGMR, see Refs. [16], [32,33]) needs to be addressed. Moreover, the experimental
value for the ratio of the isoscalar dipole to the isoscalar monopole centroid energies

(E1/E 0)exp =1.5610.09 is close to the prediction of the hydrodynamic model [34] but

lies significantly below the theoretical results for ratio £1/ EO obtained in both the RPA
and the scaling-like calculations. To understand conflicting results for the energy ratio
E1/EQ and to resolve the value of the nuclear matter incompressibility coefficient,

K, , deduced from data on the ISGMR and the ISGDR, further analysis is needed.

In an attempt to resolve these issues we turn to the Fermi liquid drop model (FLDM)
with the dynamical Fermi surface distortion (FSD). Within the FLDM the basic equation
of motion for the particle density variations in the nuclear interior can be derived from

the p -moments of the collisional kinetic Landau-Vlasov equation [35].
aiéwvv;@f—%;auﬁﬁ@f:aw, (1.5)
t

where ¢ , U and oSt are small variations of the Wigner distribution function, the
effective interaction and the collision integral, respectively, v is the velocity field and
6,.. and V ; are gradients with respect to 7 and p phase space variables. Relations
between the collisional sound relaxation time and dynamic coefficients of the dispersion
relation

@ —clq’ +iwyg® =0, (1.6)
where ¢ is the sound velocity in the nuclear interior and y is the friction coefficient,
are obtained by taking into account the FSD effect up to multipolarity / = 2, and
assuming that the particle density variations in the nuclear interior behave as plane

waves. Assuming sharp density distribution, and considering that from the macroscopic

point of view, the isoscalar monopole excitation corresponds to a spherically symmetric



inflation and contraction of the nucleus and the isoscalar dipole excitation corresponds to
contraction and dilatation of the nucleus along an arbitrary axis at constant volume, we
write the macroscopic boundary conditions on the moving nuclear surface in the form of

the appropriate secular equations:
qrjo(qr)_(fa+f,u)j1(qr):0’ (17)
for the ISGMR, and

{é{K—6ﬁle(qr)—2”—ij(qr)} =0, (1.8)

i i r=R

for the ISGDR, where K is the nucleus incompressibility coefficient, ¢ is the transferred
momentum, ji(x) are the spherical Bessel functions, f; and f, are the surface and dynamic
amplitudes, respectively, and ur is the dynamic friction coefficient. Finding the lowest
non-zero solution g of equation (1.7) for the ISGMR, and equation (1.8) for the ISGDR,
and using the dispersion relation (1.6), allows us to calculate the centroid energies, EO,
E1, and the collisional widths, 70, I'1, as the real and imaginary parts of the found
eigenfrequencies w, for the ISGMR and the ISGDR, respectively. The ratios obtained,
for E1/EQ, are compared with the experimental values, to determine the best model
parameters. Centroid energies of the ISGMR and the ISGMR, found at given parameters,
are used for direct comparison with the experimental data and with the results of
microscopic (RPA) calculations.

In this dissertation, a full microscopic description of the isoscalar monopole and the
isoscalar dipole excitations in 90Zr, 116Sn, 144Sm and 2°*Pb nuclei is given, based on the
HF-RPA calculations with a Skyrme-type effective interaction. Calculations are
performed using the Green’s function formalism with discretized continuum. For the
purpose of comparison with the recent experimental data and systematic studies of the
effects of different parameterizations of Skyrme-type interaction based on this
comparison, the selection of nuclei is limited to 90Zr, 116Sn, 144Sm, and 208Pb, and
calculations are performed using various parameterizations of the Skyrme interaction.
The effect of spurious state mixing in the transition strength distribution and transition

density due to possible not full self-consistency is eliminated by use of a method of a



projecting operator. Based on obtained results, the DWBA analysis of 240 MeV « -
particle scattering reactions is performed for the nuclei considered. Optical potentials are
obtained by using the folding model [36] with the microscopic HF ground state densities
and a two-body a-nucleon density dependent Gaussian interaction. Transition potentials
are calculated by folding the a-nucleon interaction with either microscopic or collective
transition densities. The inelastic cross-section calculated using both the microscopic and
the collective transition potentials are compared and possible discrepancies of
determining sum rule strengths are evaluated. As an alternative way to describe the
isoscalar dipole excitation in nuclei, the formalism of the Fermi liquid drop model with
the dynamically distorted Fermi surface is presented. The effects of variation of the
damping parameter on the position of centroid energies of the ISGDR and the ISGMR in
nuclei of interest are investigated. A comparison of the FLDM results with the
experimental data, and with the results of microscopic (HF-RPA) calculations, is
presented.

This dissertation is organized into the following Chapters. In Chapter Il we present a
description of the Hartree-Fock formalism. Chapter III is dedicated to a description of
the self-consistent Hartree-Fock based RPA. In Chapter IV the distorted wave Born
approximation for the case of inelastic scattering of two nuclei is discussed in detail. In
Chapter V the Fermi liquid drop model with collisional Fermi surface distortion is

outlined. In Chapter VI the results are presented, which are then summarized in Chapter

VIL
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CHAPTER II

HARTREE-FOCK DESCRIPTION OF NUCLEAR GROUND STATE

The success of the phenomenologically introduced shell model in describing ground
state properties of nuclei justifies the assumption that nucleons move independently in
an average potential produced by all of the nucleons. To provide a more precise
description of the nuclear ground state one can use the Hartree-Fock method for the
microscopic calculations of the single-particle wave functions and energies. The idea of
the Hartree-Fock approximation is that the ground state wave function of the system of A
particles can be approximated by the fully antisymmetrized product of the single particle
wave functions, i.e. the Slater-determinant, which are obtained under the assumption that
each particle is moving independently in the mean field created by all other single
particles of the system, and that the approximated ground state wave function minimizes
the expectation value of the total Hamiltonian of the system.

In the formalism of second quantization (see Appendix A) the initial non-relativistic
Hamiltonian of the system of A interacting particles is given by

A =D 1,474, %;ﬁj,k,a;a;@ak, 2.1)
i ij

where ¢ is the kinetic energy, v, =v;;, —V; is the two-body interaction and @ and

ijl
a, denote the single particle creation and annihilation operators, respectively. Since the
nucleus is a system of fermions, the wave function of any state of such a system must be
totally antisymmetric under the interchange of the coordinates of any two nucleons. For
a nucleus that consists of A nucleons, the approximated wave function @ satisfying the

required antisymmetry is a Slater-determinant

@) =]Ta/|0). (2.2)

built from wave functions of the lowest single-particle states, which are eigenfunctions

of single-particle Hamiltonian 4,
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h(F)p, () = €,¢,(r). (2.3)
In the expressions above, the sub index i and k labels the single particle state of
particular nucleon.
To obtain the explicit form of the single particle Hamiltonian satisfying the
requirement of the minimization of the expectation value of the total Hamiltonian the
variational principle must be applied. Defining the expectation value of the total

Hamiltonian of the system as
(@|H|®)
E=-—+--+-, (2.4)
(@)
we demand the minimization of the expectation value
OE=0. (2.5)
Note for the future: indices 1 <i, j <A and m >A will describe occupied and
unoccupied single-particle states, respectively.
Using properties of Thouless’ variational wave function [27]
oo A
) = {exp S S (sc,aa )}| »), 2.6)
m=A+1 i=l
where 0C,,; is an arbitrary constant that can be taken as a small variable, it is easy to see

that the variation of the @ can be written as

|60) =| )~ | @) = 2, &\paya|®)

mi"m~i

2.7
(85 = (0[S &Ca'a @7

mi i "m*
mi

Therefore, as the 6C,,; and 6C ,,; can be considered as independent variations we can

rewrite the variational principle (Egs. (2.4) and (2.5)) in the form of
(®la;a,H|®)=0. (2.8)
From Eq. (2.8), using the definition of the total Hamiltonian (2.1) and properties of

commutators of the operators of creation and annihilation (see Appendix A) we write the

variational condition (2.5) as:

hmi

A
Lo ¥ D Vi =0, (2.9)
j=1
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Eq. (2.9) defines the single-particle Hartree-Fock Hamiltonian, applicable for all
occupied and unoccupied states.

Considering the fact that Eq. (2.9) does not connect occupied states i with
unoccupied states m we can conveniently choose the single-particle states so that they

will diagonalize separately the sub-matrixes &;;> and hy,,,. Eq. (2.9) will then read
A
E 0y =ty + D Vi - (2.10)
j=1
According to the second quantization formalism, the coordinate representation of the Eq.
(2.10) can be written as

£.0.(F)= —%Wk (7)+ | v(;,;')i\q)j(;')fdzr}% (7)

j=1

2.11)

-3 0 ()6 b

Equation (2.11) represents a system of linked integro-differential equation and in case of
general non-local nucleon-nucleon interaction, finding the solution of such a system of
equations can be very challenging. However, in case of general zero range nucleon-
nucleon interaction, v(7,7") = f(F)8(F —7’), where f(F) represents, for example,
density or momentum dependence, Eq. (2.11) can be greatly simplified:

Therefore, solving by iteration Eq. (2.11) we obtain single-particle energies and single-
particle wave functions. Knowing the single-particle energies and single-particle wave
functions the total ground-state wave function and ground-state energy of the system of
A nucleons are obtained as follows:

o) 0,1 .. @,71)

cI>=Ldet (/)I(,FZ) (/)2972) ¢AFF2)

Jal

, (2.12)

o (r) @, () . @, (F)

and
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(2.13)

Choosing a zero-rage Skyrme-type interaction greatly simplifies the calculations by

conforming the exchange term of the interaction in Eq. (2.11) to the form of the direct

term. In the following we present method of resolving of the single-particle Hartree-

Fock equations with the extended Skyrme-type effective interaction in the coordinate

representation:

In coordinate space the extended Skyrme-type effective interaction can be written in

coordinate space in terms of a two-body central V,.jc , a spin-orbit V,.jS - a density

dependent V,”, a tensor V,/, and a three-body velocity and density dependent V,;*

zero-range interactions in the form [3, 5, 7]:

ijk

VSkyrme :%Z[‘/IJC +‘/USO DD +V ]+ ZVDD ,
ij

1]k

VU = (1+x0P )5(?[ rj)+
(1+x1 [k25r—r) ( ) ]+,
(1+x2P")k 5(r -7 )

VSO = iWyhe, 8 -7, )G, + G, )xK,,

ijk J

. %tm 1+ x,P0 26 7, )G, 7. )+ 66 - 7)o, -7 2 |+

23(1+x23P" )k §(r —r )§(r -7, )/;U

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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where P is the spin exchange operator, &, is the Pauli spin operator, 7, is the isospin

— — — —

operator, and k; = # and k; = # are the momentum operators acting on

the right and on the left, respectively. The parameterizations of the Skyrme interaction

used in this dissertation are presented in Table L.

TABLE I. Parameterizations of the Skyrme-type effective interaction used in the dissertation.

SL1* SkM*® SGII® SLy4‘ Sk255°

t -1326.28 -2645.0 -2645.0 -2488.91 -1689.35
t, 943.90 410.0 340.0 486.82 389.30
1 -235.66 -135.0 -41.9 -546.39 -126.07
t 14658.60 15595.0 15595.0 13777.0 10989.60
X, 0.310 0.090 0.090 0.834 -0.1461
X, 0.700 0 -0.0588 -0.344 0.1160
X, -1.120 0 1.425 -1.000 0.0012
X, 0 0 0.06044 1.354 -0.7449
W, 130.0 130.0 105.0 123.0 95.39
a 1 1/6 1/6 1/6 0.3563
T -80.0 0 0 0 0
U -200.0 0 0 0 0
ts -16690.2 0 0 0 0
1y 8478.83 0 0 0 0
X3 2.99 0 0 0 0
Xy -1.0 0 0 0 0

A Ref. [7]

" Ref. [5]

© Ref. [33]

4 Ref. [37]

° Ref. [38]
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One also needs to take into account that in the interaction part of the total
Hamiltonian there is the contribution of the Coulomb interaction between each pair of

protons

2
e

v?oulomb — —5 6 , (220)

ij — -
ri_rj

Therefore, in the single particle Hartree-Fock equations there are two contributions:

2o 29 (7 oli2)p(Fol/2)
VCD‘ou'Zombwj = 5‘rl %J-dr Z ’7 _ ’—;/ ¢j (r, O-j ,1/2), (221)
2
> g7, 12)p,(Fo12)p, (70,10 2)
vgou;l(;;nb.¢j = 57‘ 1 %jd’” Z F _ ;:/ . . s (222)
2

direct Coulomb term (for the case of point-particle protons), and exchange Coulomb
term, respectively. The exchange term is small compared to the direct term, and, in order
to simplify numerical calculations, it is neglected, or approximated with an expression
that depends only upon the local proton density.

Now defining the nucleon, p, (? ), the kinetic energy, 7, (? ), and the spin current,

J . () densities (z denotes isospin), obtained from the single-particle wave functions, as

follows:

p.()=3Y ¢/(F.0.00,F.0.7). pF)=Y 0. @23
(=YY o) . (M=), @24

7.)= =3 0 (0.0 0,0 I (0l60). IF)=-S7.() @25)

i=l 0,07
and collecting coefficients at the appropriate terms we can rewrite Eq. (2.11) with the

Skyrme nucleon-nucleon interaction (defined in Eqgs. (2.14-2.19) in simple form:

V+U.(F)-iw, (F)(?x 6)}4 (F,o.71)=¢0.(F,0.7), (2.26)
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Where m’(7), U_.(F), and WT (F) are the effective mass, effective central and effective

spin-orbit interaction potentials, respectively, and are given by:

h’ /| 1 1 B
o ) 2m ok 1+§x1 +1, 1+5x2 p(7)
1 1 1 -
_Z I §+x1 -1, §+x2 pr(’”)

1 1 - -
g 5+ )+ 0 ) o) )

(2.27)

1 -
+Et23 (1+x23 )prz (’")

U.(F)=1 (1+ xoj (1+ xojp,
Alf1rh) s xzﬂ H o) oe[ Lo )
l r r _

2
N, o
s (S e Ten )
e 16200316+ 7) (o OV 074 V20, (. 7))
+L e oo 9,0+ 0, 0

_9_16{t13(5+4x13)+%t23(4+5x23)}(p(F)V2p_T(7)+(6,0_,(7))2)

(2.28)



17

W)= W90 6)+ 9. ()l ~.17.7)

1 -y 5 -y 1 I
__[tl'xl +thZ]J(r)+_UJT(r)__t23(l+x23)pf(r)‘,1(r)

8 12 16

: | ) (2.29)
_a[l‘n (x13 _1)+5t23 (4+3x23 )j|p—r (’7)]1(?)

1 5 |- /. 1 T (e
_g[ST_EU}J—T (’”)_%[tnxm +153X5; ]p(’")-,—f(r)

Solving the system of equations (2.26) we can find the single-particle energy &; and
wave function @, (¥,0,7) for each of the A single-particle states and, thus, specify the

ground state wave function @ (see Eq. (2.2)). Knowledge of & allows the calculation
of the energy and other properties of a nucleus in its ground state.

The expectation value of the total Hamiltonian calculated for the wave function &
contains contributions from the ground state energy of a nucleus as well as the energy of
oscillations of the system around its center of mass and energy of rotation of the system
as a whole. For spherical systems the rotational energy contribution vanishes. Since in
this dissertation the nuclei of interest are considered to be spherically symmetric, in the
following discussion only the treatment of the center of mass motion will be described.

Factorization of the wave function @ in order to separately describe the motion of the
center of mass and the motion of nucleons relative to it cannot be accomplished in a
simple manner. An exact calculation of the ground state energy from the expectation
value of the total Hamiltonian is particularly difficult. To a good approximation, the

ground state energy can be obtained by subtracting the expectation value of the center of

P2
mass energy (®|—=L|®), where M is the total mass of a nucleus and
2M

A
P, = —ihZVi , from the expectation value of the total Hamiltonian. Using the
i=1

definition of the kinetic energy density 7(7) given by Eq. (2.24), the matrix element of

2
M

, can be evaluated as:
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ZA:
i,j=1

(@2 @)=— {ja’rf(r)

Zjd?(/)ﬁ(?,a,r)ﬁ(pj(?,d,f)( } (2.30)

o7

The second term in the r. h. s. of the Eq. (2.30) is difficult to calculate, and it is common

in the literature to use the approximation, based on the harmonic oscillator model

-1/3

2
<‘1>|§LAZ|CI>> = %ha), with (w is the angular frequency) h@w=41A""".

For spherical closed shell nuclei the Hartree-Fock equations (Eq. (2.26)) can be
simplified. In such a case a single-particle state i can be specified by the following set of
quantum numbers: the principal number 7, the angular momentum j and its z-component
m, the orbital momentum /, the spin s = 1/ 2, and the z-component of the isospin

m, =£1/2. In this case of interest, the single-particle wave function can be separated

onto the radial, total angular momentum and the isospin parts as:

R,(r)

¢i (F’ o, T) = lem (f’ O-)Zmr (T) 4 (23 1)

where a denotes the quantum numbers n, j, [, m_ corresponding to a single particle state
iand %, (7) is the eigenfunction of the z-component of the isospin operator,

X, (2)=6,, . (2.32)

The total angular momentum component of the single-particle wave function is given by

A 1
lem (r,d): Z<l§mlmv

mymg

jm>Y,m, (Fu,, (o), (2.33)

where <l Tmym, ‘ jm> is the Clebsch-Gordan coefficient and x,, (o) denotes the
eigenfunction of the z-component of the spin operator,

u, (0)=6,, . (2.34)

o,my

Using the orthonormality of spherical harmonics,

* A N 2 . + 1
z lem (l", G)lem (r" O') — ( iﬂ. ) ’
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and the definitions of nucleon and kinetic densities (Eqgs. (2.23) and (2.24)) we obtain in

a spherically symmetric nucleus:

47;2 > (2, +DR(r), (2.35)
n,jgsl

z (). + 1)|:(ng (F)JZ N l, (l:2+ 1) R (r):l ‘ (2.36)

Mgl r

p.(F)=p.(r)=

- 1
£ 7)=50)= -

Due to the spherical symmetry, the spin current density J ; (¥) is a vector in the direction

F=l fT L= J, . Therefore, from Eq. (2.25) we obtain:
r r
— A 7 — 7~
T(7) ==Y 9 (7.0) - (VX&) (7.0)" =
Lo ' ' 2.37)
WL R | EAC
where
1 . (s 312
J \r)= 2j, +1 +1)=1,\, +1)—=|R,\r). 2.38
)= e X o) G #4402 R e

After substitution of the wave function given in Eq. (2.31) into Eq. (2.26) we obtain the

single-particle Hartree-Fock equations for the radial component of the wave function

er(r)= 5 - r L g ) d(h—zr)jze;w

dr 2m(

2m;(r) r
. (2.39)
1d( n [, +1) =11 +1)-3/4]
Joo () bl 0 el

where the terms U, (r), and W, (r) are obtained from Egs. (2.27), (2.28), and

2m, (r)’

(2.29), by substitution of particle density, p, (r), kinetic density, ,(7), and spin current

density, jr (), by the radial forms P, (r), T, (r), and J, (r)7 , from Egs. (2.35), (2.36),
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and (2.37), respectively. The set of equations (2.39) allows us to calculate single particle
energies and the radial part of the single-particle wave functions of all possible states i
following an iteration procedure. By taking initial set of orthogonal single-particle wave

functions one calculates the nucleon, kinetic and spin current densities. Using these

2

calculated function, one obtains initial radial shapes of ———
2m;(r)

, U, (r), and W, (r),
which are used to calculate a new set of single particle energies and wave functions.
Solution is found by repeating this procedure until a desired conversion of the Hartree-
Fock ground state energy and the wave function is achieved.

In the next chapter it will be shown how the knowledge of the nuclear ground state
wave function, obtained by solving the Hartree-Fock equations, allows us to investigate

the excited states of a nucleus.
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CHAPTER 1II

SELF-CONSISTENT HARTREE-FOCK BASED RANDOM PHASE
APPROXIMATION DESCRIPTION OF NUCLEAR EXCITED STATES

Within the Random-Phase-Approximation (RPA), nuclear excited states are described in
terms of superposition of one-particle — one-hole excitations of a system of nucleons in
its ground state, which contains particle-hole correlations. Since nuclear excitations in
the continuum have contributions from a large number of particle-hole states, the RPA
equations formulated in particle-hole configuration space in terms of A and B matrices
are hard to solve numerically. Therefore, in this study the coordinate space formulation
of RPA in terms of Green’s functions will be used. In the following we derive the
coordinate Green’s function formalism for Hartree-Fock based RPA (HF-RPA)
calculations using the time-dependent Hartree-Fock approach [28]. We then describe the
applications of this formalism to the HF-RPA calculations with the Skyrme-type
effective nucleon-nucleon interaction, and later discuss a method of elimination of the
spurious state mixing from the RPA transitional strength distribution and from the

corresponding transition density of the isoscalar giant dipole resonance.

A. Green’s Function Formalism of HF-RPA in Coordinate Representation and RPA

with Skyrme Effective Interaction

In the previous chapter we obtained the self-consistent single particle Hartree-Fock
Hamiltonian for the most general type of the effective nucleon-nucleon interaction (see
Egs. (2.10)) in the form:

h=t+v(p)+v

exch. *

(3.1)
where ¢ is the kinetic energy operator, v(p) is the density-dependent average field
operator, and v, , is the exchange interaction.

It needs to be noted, that for the case of Skyrme nucleon-nucleon interaction, both

direct and exchange terms of the single particle interaction are density dependent. Due to
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our expressed interest in the application of the HF-RPA with the Skyrme nucleon-
nucleon interaction, this property of the single particle interaction will be considered by
default.
As in the previous chapter, the nucleon density p(7) is defined as:
A
plF)=2.2 ¢/ (7.0.7)p,(F.0.7), (3.2)
i=l o,
where @, (F,o,7) are single-particle eigenfunctions, corresponding to single particle
eigenenergies &, of the self-consistent Hartree-Fock equation:
ho(F,0.7)=¢ep(F,0,7). (3.3)
In the time dependent theory, the system of nucleons in its ground state is introduced

into a weak harmonic external field of the form:

BB
fED)=FFe "+ 7 [Fe (3:4)
where E is the energy of the excitation, E = hw. Considering f(7) as a small
perturbation, we will look for the single-particle perturbed wave functions to the first

order with the same harmonic time dependence:

Et l,Et

P

¢.(F.o.1.0)= @ (F.o0.7)+¢(F.0.0)e " +¢lF.o.0)e ", (3.5)
where we take ¢/ (7,0,7), X (7,o,7), the perturbed coordinate single-particle wave
functions to be orthogonal to Q(F ,0,7), the Hartree-Fock single-particle wave

functions. Hence, we can expect that the perturbed time-dependent nucleon density is

exhibiting the same behavior as the external field and to the first order can be written as:
] B
pF.t)=p(F)+ p(Fe " +p"(Fe " (3.6)
where p(7) is the unperturbed nucleon density defined in Eq. (3.2), and the perturbed

coordinate-dependent nucleon density is given by:

P )=S0 F.0.0)p: 7.0 7) 0" (7. 0. D, (. 0.7)). 3.7)

i=l o,
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Now, according to perturbation theory, we can formally write the new single-particle
time-dependent-Hartree-Fock Hamiltonian as:

JEt

0 (f)Je’h. (3.8)
p(7)

+

i (1) = h+[f(f)+%

p(7

where £ is the unperturbed single-particle HF Hamiltonian, f(7) is the weak external

perturbation interaction, and — is the formal functional differentiation of the single-

p

+

particle Hamiltonian with respect to the density, taken at p = p(7). The term

&
represents all possible non-hermitian contributions in the single particle HF Hamiltonian.

Then, the time dependent HF equations take the form of:

L dp.(F,o,1,1)
h——— "=
dt 39)
L . £t - G
ne| FO+ L @) e+ O+ T o @A) = 5.0 2)
op op

In expression (3.9), the coefficients at the exponents are considered to be independent of
each other and provide us with the equations for the perturbed part of the single particle

wave functions. To the first order, we obtain:

(h—é‘,-)€0§(?,0,T)+[f(?)+%P'(?)J¢i (.o.0)=EglFonr).  (3.10)

+

é;‘p p’*(f)}o,» (F,0.7)=-E@[(F,0,7), (3.11)

(e )¢7(?,a,f)+(f+(?)+

Formal solution of the equations (3.10) and (3.11) for the single particle wave function

perturbations ¢/(7,c,7), ¢/(¥,0,7) can be obtained as:

e L ) A 6.12)

(p:(aa,f)=‘—1{f+(f)+ p'*(?)j% G.0.7). G1%)
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Using the definition (3.7) we obtain the following expression for the perturbed

(transition) single-particle density,

(e SN o (. o | LTV O Ip) p'(F) | FF)+ p () Sp) ) (-
)= -3 Tl .| L 2P 0, S0 DNy (.,

i=l o,7

(3.14)
We can define a bare Green’s function according to the Green’s function method in

spectral representation,

. 2 . (= 1 1 -
Gg(rl’rz’E):z Z(Di (’"1’61’71){ * j|¢i (rz’az’fz)
=1

Py h—-¢—-E h-&+E

:Z Z¢j(’71’0-1’71)¢m(7'1’0-1’71)x

0,,0,.,7,,T,

+

1 1 e ~
Lﬁ‘m _gi —E_Sm _gi+E:|¢m(r2’02’72)¢i(r2’o-2’12)’ (315)

Then Eq. (3.14) for the transition density associated with the single-particle perturbing

operator f (¥) can be rewritten in form:

P 0)=-L [ a7 E){( £(7)% 1 (?’))+(%i » jp’(?')} 16

According to the Green’s function method, the solution for p’(¥, E) can be formally
presented by the following expression:
p(F.E)=p, (7, E)==[dF'G*" (7.7, E)f (7). (3.17)
Such a formal solution demands the RPA-Green’s function to be written in the form:
" =G"(1+v,6°)", (3.18)

where G°(7,7’, E) is the free particle-hole Green’s function formally defined as:

O A TN "

, . - , (3.19)
i E—-¢, +€ +in E+e, —€ +in

and Vph is the effective particle-hole interaction obtained as a functional derivative of

the energy density with respect to the ground-state density of the many-body system
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obtained by solving the Hartree-Fock problem, \7 =oh/ 5,0| - Therefore, equation

(3.18) together with Eq. (3.19) allows us to find the RPA Greens function G*™ (¥,7’, E)
from the knowledge of single-particle energies and wave functions obtained within the
Hartree-Fock approximation.

A direct way to find energies of excited states of a nucleus is by searching for poles
of G*(F,7’,E). Such a procedure should be avoided from the numerical point of
view. A way to avoid numerical calculations with such singularities is to use averaging

procedure on the RPA Green’s function over some energy interval I, around excited
state of interest, £ = E,,. From the physics point of view, introduction of the interval I,
can be explained by the argument that the energy of any excited state has a certain width.
Following this idea we redefine the RPA Green’s function as:
G (7,7, E)=
S e | B FEDFE) o, FEpFE)] (320
Z J‘ dEK(E,E tr } |4 tr ‘ v/: __ tr ) |4 tr ‘ |4
y T E-E, +in E+E, —in
E,~ % v v

where I', is the width of the excited state v and K (E,E’) is an averaging function,

chosen based on the model of the width of excited state v. If K(E,E’) is chosen to be a

Lorentzian and E > 0, the expression (3.18) is reduced to:

- E,)p,(F.E,)
GRPA Iot r tr . 321
Z E-E, +il,/2 G20

In order to find the energies of the excited states of a nucleus, we introduce the transition

strength function S(E) for the one body excitation operator f (7). It is defined for

E >0 as:
=z\ (0| 7w 8(E-E,)=
Z[ﬂ( P, (7., )p. (7. E,) f (7)drdr (£~ E, )

(3.22)
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For the case when the excited state v has the energy width I',, we can substitute the

energy delta dependence by:

1 1
S(E-E,)—>—-—Im . (3.23)
V4 E-E, +il,/)2
Substituting expression (3.23) into Eq. (3.21) and comparing the result with Eq. (3.21)
we obtain:
1 . »/
E)=—[[ 7' 7)m|c™(7.7. E)} (F)ardF = —Im[Tr{f G (E) 7. 3.24)
V4

This function peaks when the frequency of the external field is such that ziw = E, and,

therefore, studying the behavior of this function allows us to specify the energies of the
excited states of a nucleus.

Using Eq. (3.22) we now can redefine the transition density as:

p,(F.E)= ){ Im G *" (7’ ”,E)}d?’. (3.25)

SERE = f(F
Note that p, (F,E), as defined in Eq. (3.25), is associated with the strength in the region

E + AE/2 and is consistent with

=[[ 2, (.E) f(F)dF‘z /AE : (3.26)

that can be seen as a discretized expression of Eq. (3.22).

Now, let us consider how such a useful quantity as a sum rule for one body

Hermitian excitation operator f () can be found in terms of the RPA Green’s function.

The energy moment M, for the operator f(7) is defined as:
A 2
M :Z(E livI71o)
B ] 0o, .5, (7. )7 s

(3.27)

Considering Eqs. (3.25) and (3.26) we can rewrite M, in form:

=

M, = j E'S(E)dE . (3.28)

0
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By direct substitution of S(E) from Eqn. (3.24) we finally obtain:

- j E' Im[ Tr{f G (E)- f}}dE (3.29)

For k =1 we obtain the energy-weighted strength. According to the Thouless

theorem [27], value of energy moment M, of order k =1 evaluated within the RPA

formalism using Eq. (3.29) is equal to the value of the energy weighted sum rule
obtained as an expectation value of the double commutator of the single-particle
excitation operator with the total Hamiltonian of the system on the HF ground state wave

function:
Lol . 1)

under the condition that particle and hole excitation energies and wave functions used in
the RPA calculation were found within the HF formalism and the particle-hole
interaction used in the RPA is obtained from HF Hamiltonian with all possible terms

retained.

It is also important to note that the strength function S(E) and the transition density
P, (7,E) of a state at energy E, below the particle escape threshold (or having a very
small width) can be obtained from Eqs. (3.24) and (3.25), respectively, by replacing
(1/7)ImG*™ (¥,7", E) with

lim ReG*™(F,7",E)E, — E). (3.31)

E—>E,
In case of a Skyrme-type nucleon-nucleon interaction, the zero-range particle-hole
interaction can be obtained by functional differentiation of the energy density:
—-—-/ vv————/ tt————/ §2H

Vph(r r r—r Zlé[l+ Hl+ : W,
where H is the sum of the Skyrme interaction and kinetic energy densities (see
APPENDIX B), and s, s™ and ¢, ¢ are the third components of the spin and isospin,
appropriately. Using Egs. (B.30) and (B.31) we obtain the following:
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F')[a + b(@2 +V?2 4V 4V7? )+ c(ﬁ - V)(V' - V,)

V(7. 7)=05(F
Vo , 3.32
+dV+V)\T + )+ v, (7 7) G2
VLG )= 0 -7 b (V2 4972 4924972 )+ (V- V)0 -¥)
+d' V4V +V )4 ea(V -V -V)6" + f6(V+ V)" + V)5
+6(V V) (7 =)+ ne(V + V)’ (V' + V') , (3.33)
+p6(V -V - V)5 + (V' -V (V' - V"))
146V + VIV + V) + 6V + V) (v + V)
a=a,+a,7-7 +a,6-6 +a,(t-7)5-6"),
b=b, +b,7 T +b,6 6 +b(¢-7)G &),
c=cp+c T T +c,6-6 +cy(7-7')6-6), (3.34)

d=d, +d,7 T +d,6-6"+d,(7-7')G-5),

and the definitions of appropriate coefficients, given in terms of Skyrme parameters and

particle and kinetic energy densities, o and 7, have the form:

_3 3, H@
=3l H3LP" + g
ap :_%to(l"'zxo)_s
ag =—+1,(1-2x,)-Lt,p% -

g =—

13(4T 3V ,0) 128 23(5+4x23)(47+3vzp)’
sLP% = 192 13(1 x13)(4’[ 3V ,0) 128t23vp

192 li; (1 + X5 )(47 3V p) 128 t23V P o5l (5 +4x,, )7 )
Iy (5 +4xy, )t )

Iy (5 +4x,, )T ’

Tt~ 5P — 153 13(47 3V ,0)— 384 23(3‘|'4X23)V p—

lt2(5+4x2) 3P~ o 23(5+4x23)p

b, =—31,—

by =51, (1+2x) =51, (1+ 25, )+ 51, (2+ x5 )p = 5 15, (14 2%, ) o,
by =31, (1=2x )= 51, (1+2x,)+ 751, (2= x3)p — sty (1+ 25, )p
be =351 =331, 56130 ~ 0313 P »

Cr = 3_32t1 +3_12t2 (5+ 4x2)+6_14t13p+ﬁt23 (5+4x23 ),0 ,

Cp :_T12t1(1+2x1)+§t2(1+2x2) 192 13(1+2'x13)p+384 23(7+8x23)p
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Cq :_%t1(1_2x1)+3_12t2(1+2x2) 53 13(1 2x13)p+384 23(7+8x23)p,

_ 1 i
Co =—5h t5t — 1t P+ 23(7+4x23 ),0,

dy :%tl_%t2(5+4x2) 64 [0 — 128 23(5+4x23),0,

d =—3—12t1(l+2x1)—%t2(1+2x2) 192 13(1+2x13),0 384 23(11+16x23),0
dg; :—%tl(l—le)—§t2(1+2x2)—ﬁt13(l—2x13)p—ﬁt23(11+16x23)p,
d

G :_%tl_ 192 L3P — 384 23(11+4x23)p

b =—L(T-U)s-6"'+LBT+U)7-7')6-5),
d" =T +30)6-6" ~(T-U)7-7')G- &),

—3(T-U)+50BT+U)7-7), (3.35)
(z-77),
"=-b", g=e,h=f,p=—e,q=—Ff.

So, the free-system Green’s function is obtained by substitution into the Eq. (3.19)

f=-2T+U)+50BT-U)7

single-particle wave functions and single-particle energies obtained as solutions of the
Hartree-Fock equations (2.39). The RPA Green’s function, then, is constructed using
equations (3.18), (3.19) and (3.32).

B. Elimination of Spurious State Contribution from Strength Distribution Function

of Isoscalar Giant Dipole Excitation

Now we will consider the analysis and elimination of the Spurious State Mixing (SSM)
from the strength distribution function of the ISGDR and from the results of calculations
of the inelastic cross sections.

For future references we need to mention, that within the collective model, the

energy weighted sum rule M, (EWSR) associated with an excitation

operator f,,, = f(r)Y,,, (7)is given by [39]:
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=

M\(fu )= [E S(E)E

0

_ﬁi{@(df(’”)jz +L(L+1)(f(r)j2|0>:l. (3.36)

C2m 47 dr r

Assuming that there is only one collective state [3,10] with energy E_,, exhausting

coll »

100% of the EWSR associated with the excitation operator f,,, = f (r)y, iy (7), the form

for the corresponding transition density is found as:

L o | P A e )

2m\ M, (fp )Eoy |\ ar r
" df(r) dp, (’”)} ' (3.37)
dr  dr

Let us consider the isoscalar dipole excitation operator
=2 1), (3.38)

here the single particle operators

f(F)=f(r)y,, (7), fi(F)=r1,,, (7). (3.39)
According to the definition of the RPA Green’s function (3.21), we can approximate the
response function R(F ,F' E ) = (1/ 7Z')Im G (F 7 E ) in form of the sum of separable

terms

R(F, 7, E)=)d,(E)p,(F)p,(F"), (3.40)

where d, (E) accounts for the energy dependence of R(F,7’, E). In case of a discretized
continuum calculation, the sum in Eq. (3.40) has only one term for each value of the
discretized excitation energy E. Then, depending on the form of the coefficient d, (E),
p, (7) is proportional to the transition density associated with the resonance and as such

may contain a spurious state contribution due to approximations employed in the RPA
calculations. In general, due to the finite value of the artificially introduced smearing

width I', the sum in Eq. (3.40) may contain multiple terms.
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Assuming that the density p, (¥)has contributions of the resonance, L3 (), and of a
spurious state, pnl(F ), we express it as,
p.(F)=a,p,(F)+b,p, (7). (3.41)
with the amplitudes of the intrinsic resonance state and the spurious state a, and b, ,

respectively, satisfying following condition.
a’+b>=1.0, (3.42)
Note that we impose a condition on pn3( ), associated with the isoscalar giant dipole
resonance (ISGDR), that it fulfills the translation invariance condition for all #» :
[ £,(F)p,(F)dF =0. (3.43)
From Egs. (3.40) and (3.41) we have with an obvious notation
R(F, 7' E)= Zd (Ea,p,s(F)p,s (F)+
S d, (Bl b, 0,0 () ()
2.d,(Ep,a,p, [F)p,(F)+

>.d,(Eb,;p,(F)p, ()

(3.44)

From the decomposition of the response function R, Eq. (3.44) it becomes obvious, that

the requited strength distribution, S(E), and the transition density, p, (¥), containing no

spurious contributions, can be obtained from R,; = z d, (E)a 2P, (7 )pn3 (') using Egs.

n

(3.24) and (3.25) with scattering operator f (F ) from Eq. (3.39). However, the exact
expression for R,; is not known. To eliminate spurious state contributions from the
transition strength distribution, S(E), we introduce a projection operator that projects out

spurious contribution Pm( ) in the transition density,

A

£, =2 1,F)=f-nf, (3.45)

i=1
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where f, (F)= (7 )—7]f1 (). Using Eqs. (3.24), (3.40) and (3.43) we obtain expression

for the projection strength distribution, S, (E),

S, (E)= [[didF’f, (F)R(F, 7", E)f, (F") =
> d,(E)a; [[drdif(7)p, (F)p,s (F)+

2y d,(E)a,b, [[drdr, (7)o, (F)f (F)p,s (F)+
> d, (B, [[ardiF, (7)o, (F)o. (F)f, ()

(3.46)

The spurious state contribution is expressed in the last two term of the equation (3.41).
Therefore the condition of projecting out the spurious state contribution from the

transitional strength is:
[ a7 (£ (7)=nf, (7))o, (F) =0, for all n (3.47)
We need to point out that all p,, (F ), taken in form of (3.37) (see Refs. [17,40]), coincide

with the coherent spurious state transition density p,, () (see Ref. [41]),

_ - |n* 4z 9 .
Pnl(")zpss(’”)=— %F%Ym(’”) (3.48)

where E_ is the spurious state energy and p, is the ground state density of the nucleus.
Note that p (¥) in Eq. (3.48) is normalized to 100% of the energy weighted sum rule

obtained using Eq. (3.36). Then the condition for calculating the coefficient 7 is:

o A
[drp, (7)1, (F)

Under the assumption that approximation (3.40) is correct, the coefficient7, satisfying

(3.49)

condition (3.49) for all n gives us:
s, (E)= [[drdr'f, (F)R(F, 7", E)f, (F) =

> d, (E)a; [[aidrf (7)o, (F)p,s (7 (350
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The spurious state contributions have been eliminated from the strength distribution
function. To eliminate residual spurious contribution from the transition density of the

ISGDR, we need to analyze the transition density associated with the strength S, (E).

Using Egs. (3.25), (3.41), (3.43), (3.44) and (3.50) we calculate

p, 7. E)=———=2"a,d (E)] di },(F )p,,(F)la, p,,(F)+b,p,, (7). 3.51)

1/S E)AE

Now, let us define the intrinsic transition density of the isoscalar giant dipole resonance

as:
p, 7. E)=p, (7. E)-a p(F,E), (3.52)
then according to the condition that in the intrinsic resonance state there is no spurious

state contribution present (see Eq. (3.43)),, we can write,
[art,(F)p, (7. E)=[ ait,(F)p, (7. E)-ap,, (7. E)]=0. (3.53)
Equation (3.53) is the condition that allows us to find value of coefficientc .

Proper normalization of the transition strength and transition density of the ISGDR

requires knowledge of the mixing amplitudes a, and b, . Due to the fact that mixing

amplitudes are not independent (see Eq. (3.42)) it is more convenient to look for the

mixing amplitude of the spurious state b, . The value of b, can be found from the

expression for the strength distribution of spurious state:
’ ——/ —_ — — 2
= ([ drdrf, F)R(F, 7", E)f, (7 an d,(E )(j aif, ). ) . (3.54)

The integral .[ drf, (7 )p” () can be evaluated using Eqgs. (3.39) and (3.48) within the

collective model (when 100% of the EWSR 1is exhausted at any chosen excitation
energy):
(= e R
[ s, (o, G == AJE, . 359

That yields,
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o S(E)
" ([ar P, )

(3.56)

In the present work, we take the excitation operator to be f = f, = z:l fi (Fl ), where

f,(7F)=r1,,, (7). For this operator, the value of 77 associated with the spurious
transition density p, (¥, E ) is calculated analytically using the definition of the spurious

transition density given by Eq. (3.48):

5
n==(r"). (3.57)
The numerical calculations of the projected out transition strength S, (E) involve

separate calculation of the transition strength using excitation operator f, (¥),

Sy(E)=[[ drarf,(F)R(. 7', E)f, (7"), (3.58)
spurious operator f, (7),
$,(E) = [[ drarf,(F)R(F, 7", E)£,(F) (3.59)
and for the non-diagonal terms of the strength function two of them together
S (E) = [[ drdrf, (F)R(F, 7", E)f, (7"), (3.60)

with the following correction for the spurious state contribution

S,(E)=5S,(E)-2n S,(E)+n°S,(E). (3.61)
By following the steps described above, we obtain the transition density, p,. (7,E), and
the strength distribution function, S, (E), of the isoscalar giant dipole resonance.

To compare theoretical findings to the experimentally observed quantities we need to
describe a particular nuclear reaction and obtain angular distributions using results of the
HF-RPA calculations. In the next chapter we provide such a description within the

Distorted-Wave-Born-Approximation (DWBA).
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CHAPTER 1V

DISTORTED WAVE BORN APPROXIMATION
A. Formal Solution of Scattering Problem

The total wave function describing a direct nuclear reaction @ + A —b + B in the center
of mass frame of reference can be written as a superposition of all possible scattering

channels:

v =3¢y, (4.1)
/4

where &, (Fy) is the wave function of relative motion and ¥, is the total internal wave

function of the system in the reaction channel y. The wave function ¥ is the solution

of the stationary Schrodinger equation

HY" = E¢Y 4.2)
and satisfies the boundary condition:
ikgrg
Rl Z D N Z ) (4.3)
5 "s
ikgrg

where ¥, e"*™ is the plane wave in the incident channel &, ¥ is the outgoing

"'s
spherical waves in a given reaction channel S and f,, (k k ) is the scattering

amplitude of the given reaction channel.

The differential cross-section do,, for a transition from the channel & to a channel
[ is defined as the ratio between the outgoing flux per unit time through the element of

area dA = 7y 6, qﬁ)rﬁ2 dQ , and the incident flux per unit time per unit area,

Ao,z =", 4.4)
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where J#' is the outgoing flux in the radial direction in channel 8 and J® is the

incident flux.
Assuming the asymptotic forms of the total wave function to be

ik/),r/f

o = Vsf (lga,lg ﬁ) for the outgoing channel and o = 78 e for the incoming

o

"s
channel and using the orthonormality of ¥, and ¥4, which are functions of the internal

coordinates of the participating nuclei, the probability flux in outgoing and incoming

channels are obtained as,

fli i)

hk hk
JP =P o)==, (4.5)
Hp Tg My
with
o= Mg gy = M (4.6)
m,+M, m,+M,

are the reduced masses in the incoming channel @ and outgoing channel £ . Then, the

differential cross-section in the center of mass frame of reference can be written in terms

of the scattering amplitude:

ddaﬂ :&kﬁ

Za Folbo iy ) @.7)
aQ  u, k,

To find scattering amplitude f,; (Ea,E P ), we need to solve the scattering problem given

by equations (4.1), (4.2) and (4.3).
For a specific scattering channel S, the total Hamiltonian of the system of projectile
and target nuclei can be written as

H=H;+T;+Vy (4.8)
where H 4 is the sum of the internal Hamiltonians of the projectile and the target, 7, is

the kinetic energy of relative motion of, and V/ is the interaction between the projectile

and the target. Then Eq. (4.2) takes the form:
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(H,+T,+V,—E}¥" =0. (4.9)
Multiplying this equation by l//ﬂ from the left and integrating over the internal

variables of the projectile and the target in the outgoing channel S, we obtain the

equation for the wave function of the relative motion &, (?ﬂ ):
(7, +e, - E)E,F,)=(y,.v,2), (4.10)
where £, =€, + £, is the sum of the excitation energies of the projectile and the target.

The right hand side of the Eq. (4.10) is the usual scalar product integrated over the

internal coordinates {¢} in the scattering channel /3 :

vy v, 2 )= [ alehy, (&)W, (7. {e)e (7. {c)
To find a solution of Eq. (4.10) we introduce an arbitrary spherically symmetric

distorting potential U , (rﬁ) by adding U, (rﬁ )fﬁ (rﬁ) both to the left and to the right hand
side of the equation. The expression U 4 (rﬁ )cfﬁ (rﬁ) depends only on the relative distance
between the projectile and the target, r;. Therefore, by taking into account
orthonormality of the total internal wave functions y, of different scattering channels,
the additional distorting term can be expressed as U 4 (rﬁ )fﬁ (rﬁ ) = (l// 5U ﬁ‘P(” )

Therefore, equation (4.10) reduces to:

K’ Wk )
(_ 241 Vir~ 2#5 +Uﬁ(rﬁ)J§ﬁ(rﬁ):_(l//ﬁ’[Vﬁ ~U, ), (4.11)

where

(E-e¢,). (4.12)

Eq. (4.11) is an inhomogeneous differential equation, provided that the r.h.s. is a

known function of r; . Therefore the general solution of equation (4.11), & 5 (rﬁ ) is the

sum of a particular solution of Eq. (4.11) and the general solution of the homogeneous

equation:
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h2 thZ
(_% vgﬁ_ﬁwﬁ(rﬁ)]gﬁ (k,.7)=0. (4.13)

The general solution of the Eq.(4.11), &, (rﬁ)= ;((ﬁ+) (Ig 5075 )+ ) é”“”)( ﬁ) must satisfy the
following boundary conditions:

asymptotically

)y M( Ty )% e 4 outgoing spherical wave;

.. [ESI N — . - .

) y (kﬁ,rﬁ) 1s regular at rp = 0;

iii) f part. (rﬂ) —wymprotically s outgoing spherical wave;

iv) f part (r/,) is regular at 75, =0. (4.14)

The solution of the homogeneous equation (4.13) that satisfies the given boundary
conditions 1) and ii) is:

1

(21 +1)i'e 1, (k 5, ;) (cos ), (4.15)

NgE

Z'(;)(kﬁ,;:ﬁ): 2 rﬂ Z

Il
[=)

B
where J, is a phase shift, P, (cos @) is Legendre polynomial, @ is the angle between the
direction of the incident wave vector and 7, and f, (k 5215 ) is the regular solution of

homogeneous equation:

d’ +1) 24
[dr +k2 - (r2 )_ 7 Uﬁ(rl,)}f,(kﬁ,rﬂ)zo, (4.16)
B

with the asymptotic form: f, (k 575 )T) sin(k 5" —%+ 51) . For reason of
convenience, we express f, (k Py ) in terms of functions h, (k 575 ),

£, (kg ry)= 2(h (kg )=, (k5 7). (4.17)
The functionsh, (k s rﬁ) are defined as a combination of the regular and irregular

solutions of Eq. (4.16) h, (kﬂ T ) =if, (kﬁ Ny )+ g, (kﬁ Ny ), hence, they also are solutions

of Eq. (4.16). The asymptotic form of the functions h, (k 5 rﬁ) is:
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_ a
hl(kﬁ,rﬁ)v)expl(kﬁrﬁ —?+5,j. (4.18)

For the case of nuclear scattering reaction, the distorting potential U 4 is the sum of
. . _ (nucl.) 2
the nuclear and Coulomb potentials i.e., U, (rﬁ ) =Uyg (rﬁ )+ ZyZ,e" I rs. Therefore,

the total phase shift is given as: 0, = 5,(") +0, , where §,"” and o, are the nuclear and
the Coulomb phase shift, respectively. The Coulomb phase shift is well known:

o, =arg [ +1+ing). (4.19)
Here I'(z) is the gamma function and n, = Z,Z,e* u, / (n°k ﬁ) is the Sommerfeld
parameter. For the relative distance r; greater than some chosen value r, , the
contribution of the nuclear term of the distorting potential can be neglected. Then, the
solution ;(}” (E s Fﬁ) is dominated by Coulomb contribution, and for r;>7,, f, (k 575 )
can be written in terms of analytically known outgoing Coulomb functions H, (k 5215 ):

¢t (k rﬁ] o, :é (H;“ (k. 1,)— "1, (kcy 7, )) (4.20)
In the region ry;<r,.f, (k 5215 ) can be found only numerically.

The nuclear phase shift 5 can be found by matching f, (k 57 ] <r, andit’s

and it’s derivative at the point r; =r,. Setting r; — e in

I>I

derivative with (kﬁ, rﬁX

Eq. (4.15) and using Eq. (4.20) and the asymptotic form for the Coulomb functions:

H, (kﬁ N )T exp i(kﬁ rg—ngln2ksr, —% + 0, ] , we obtain the scattering
amplitude 55 (6):

£9(0)= Z 20+ 1(2“”“5 ) 1)P,(cosl9), (4.21)

1

where @ is the angle between the incident and outgoing wave vector.
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To complete the general solution for the wave function of relative motion & (rﬁ ) we

need to find a particular solution of Eq. (4.11). This can be done within the Green’s

function formalism. In terms of the Green’s function the particular solution is given by:
&y (7,)= [ drsG iy 7y Ny o lv, — Ul ). (4.22)
Here the Green’s function G(Fﬁ , Fﬁ') must satisfy the following equation:

o V2 _h%j,
241, & 2y

+U 4(ry )Jc(fﬁ 75)= 8, 7). (4.23)

and the boundary conditions iii) and iv) of Eq. (4.14). Performing a multipole expansion

of G(?ﬁ,Fﬂ') we obtain:

60,.7)= 25y (), ), 20
tm TsTp

where g,(rﬂ,r;) satisfies equation

B d? K2 B2 l(l+1) , ,
{_Zﬂﬂ o o oy *Uﬁ(”ﬂ)Jgf(”ﬁ’rﬂ)ﬁ(rﬂ—rﬁ)- (4.25)

According to the Green’s function formalism, the radial part of the Green’s function,

g, (rﬂ , rg ), can be written in form:

’ 2#
&l ) == kg () (4.26)
where functions f, (k5,75 ) and h, (k;, ;) are defined by Egs. (4.16) and (4.17),

rp(rp.) is smaller (greater) of rp and r}, and W is the Wronskian:

)ah,(kﬁ,rﬂ) )af,(kﬂ,rﬁ)

W=~Ff\k,,r
l(ﬁ d arﬁ arﬁ

- l( 5:75 = const. (4.27)

The Wronskian W in Eq. (4.26) is a constant, hence, it can be evaluated at an arbitrary
ry, for example, at r; — oo Utilizing the asymptotic forms for f, (k 575 ) and
h, (k 575 ), and setting r; — oo, the value of the Wronskian is obtained:

W=k, (4.28)
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Now, utilizing Egs. (4.26) and (4.28) we can write expression for the Green’s function

as:

) Zﬂﬁz ( ’”ﬁ<)h (k ’”ﬁ>)

kg m rﬁrﬁ Y, (% )Ylm (fﬁ ) (4.29)

G(F,.7;

Before writing down the complete solution of Eq. (4.11), we need to take into
account that the asymptotic form (4.3) of the total outgoing wave function ¥ limits
presence of the incoming flux only to the incident channel ¢ . Therefore, the wave

function of relative motion & 5 (Fﬁ) becomes:

55(7,3)_/1’2”(* Fg )05 —
4.30
2,uﬁ ZJ‘d_., k rﬁ;)}; (k rﬁ>)Ylm(f'é)Ylm(fﬁ) (l//ﬁ,[V U ]\P(+)) ( )
/B l,m B'B

Asymptotically, when rg = oo, P/,), Sk 5 behavior of the functionh, (k Y rﬁ>) 18
described as: h, (kﬁ g ) exp(kﬁ ry—ngIn2k,ry — )2+ 0, + 5" ). Therefore, the

asymptotic form of the complete solution of the Eq. (4.11) can be written as:

OO P Ul P
Sp\rp)— + ’

To

J-drﬁlé )*( ’7/;)(’///:”[‘//:’ _Uﬁ]\ym )

(4.31)

Ky e ilkgrp—ngin2kgry)

27h?

where f.”(8) is defined by Eq. (4.21), and the function ;((ﬁ‘) (x 4 rﬁ) is the time reversed

of the function ;((ﬁ+)(k 575 ), defined as:

2576 7)== X ) e ) v, (6 ) @32
BB Lm

From the asymptotic form for the wave function of relative motion & 5 (?ﬁ ), Eq. (4.31),

we write the scattering as:

Foplluiky)= £2(0)5,5 —2 Idﬁzz“( v v, U, o). @33
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B. Distorted Wave Approach to Inelastic Scattering

The Distorted Wave Born Approximation (DWBA) is based on the following two

approximations:

1) We can assume, that in the expression (4.33) the term [Vﬁ -U ﬂ] is small, hence, it
can be treated as a perturbation to the Hamiltonian H = H 5+ T +U . Under such
assumption, terms & 5 (Fﬁ )l// 5 » corresponding to inelastic scattering channels in the

expression (4.1), are also considered to be small. Therefore, the r. h. s. of the Eq.

(4.33) the total outgoing wave function " can be approximated by the elastic

term only:
O S E(F v, (4.34)
2) By choosing perturbed potential U, in a way that the elastic cross-section

calculated with the scattering amplitude £, (8) from Eq. (4.21), fit the

experimentally measured elastic cross-section at the given energy E, which
implies
.. v. Ul w.)=0. (4.35)

we can approximate the wave function of the relative motion by distorted outgoing
spherical wave:

&)= 20k, 7). (4.36)

where y'" (ka , Fa) can be found using Eq. (4.15) and following the procedure

o
discussed after it.
Using the approximated form for the total outgoing wave function (4.34) and the
outgoing wave function of relative motion (4.36), with the appropriate form of the
distorted potential, we obtain the following approximate expression for the scattering

amplitude:
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faﬁ(ka’kﬁ): 052) aﬁ 2 J.drﬁz,(g )X(kﬁ”_;ﬁ/xl/jﬁ’[vﬁ_l]ﬁ] l/jalc(;)(kaf’?‘a))‘
(4.37)
It should be noted, that the wave function ¥, as it is given by Eq. (4.1) does not

include terms which describe the formation of a compound nucleus and cannot be
written as products of the intrinsic and the relative motion wave functions. In order to
take into account absorption processes we can introduce an imaginary part to the nuclear

part of the interaction V,,. The imaginary part of the potential, introduces imaginary

phase shifts, hence reduces the incident flux in the outgoing channel (absorption).
During the typical inelastic scattering experiment a projectile nucleus remains in its
ground state and a target nucleus is in the ground state before, and is excited by the
interaction with the projectile, during the scattering, a + A — a + A", For such a
reaction, following the DWBA, we can write expression for the inelastic scattering

amplitude as:

faﬁ(l;w’lgﬁ):_

zﬂhzjd’ﬁ)*( N V=0, () wo 2 (&, 7)), 438)

where 1 denotes the reduced mass,

m,M ,
=—"— 4.39
M M, (4.39)

and V is the projectile-target interaction. The distorted potential U, (r) is chosen
according the DWBA and the residual interaction [V -U, (r)] can be treated as a small

perturbation. We demand that the elastic cross-section obtained with such distorted

potential U, (r) fit the experimentally measured elastic cross-sections, thus, satisfying

the condition:

..v-u, ) v,)=o0. (4.40)

For o # 3, contribution from the distorted potential U, (r) in the scalar product

(l// 5> [V -U a(r)] l//a) is equal zero, due to orthonormality of ¥, and ¥/, .
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For the case of a spinless projectile, that the matrix element (l// 5> [V -U a(r)] l//a)

describing transition between the ground state and an excited state with multipolarity /

of the target nucleus can be written as a multipole expansion in spherical harmonics:

V-0 v )= T, 0N 1) ¥ (), (441)
where 7, () is the radial form factor.
Using the expressions for the incoming and outgoing distorted wave functions,
zg)(k ﬁ,rﬁ) and X(ﬁ_)(k 5> rﬁ), respectively, and Eq. (4.40), we rewrite scattering

amplitude (4.38) in the form:

B e A A
[ary,, (), ()Y, (7), (4.42)
where
1 = [ £, kpor )1, (), (ko) (4.43)

Expanding the product Y, (7) ;' (#) in terms of the Clebsch-Gordan coefficients,

v, (@)= 3 \/Mgmlml

e\ Ar(2+1)

X

and performing the integration over the angle 7 we reduce expression (4.42)

0 (7). (444

to the form:
— 2/1 / 12 —h=1 211 +1 L 1hl yiloy+op,)
1 0)==1m v ; i, +1) 8
<lmllm1 |1,m, Y101, 0[1,0)Y,,, (€, ., (£, ). (4.45)

Choosing the z-axis to be along the direction of the incident wave vector lga and the y-

axis to be perpendicular to the plane of scattering (along the direction of Ea Xk 5)> We
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can further simplify expression (4.45). The form of the spherical harmonics Y,:mz (Iga) in

the new coordinate system is:

Yljmz (lfc\a): 212;15%0’

and the expression (4.45) can be written as:

£, (Q)Z_hiﬂk V201 i 2 111 explile, + 0, X
o 1.1,

(Iml, — m|1,0)(101,0[1,0)Y, _,,(6), (4.46)
Here the radial form factor 7,/ is defined in Eq. (4.43) and ¥, _, (6) depends only on the

angle between the incoming and outgoing momentums, k, and k.

To complete the description of the scattering reaction within the DWBA we need to
find the radial form factor in the expansion (4.46). In the following we will obtain
expressions for the radial form factor (4.43) for the nuclear and Coulomb part of

interaction.
1. Nuclear Interaction

For simplicity we assume the case of point-like projectile and spherically symmetric
target nuclei. In this case we can assume that the projectile interacts with each nucleon
of the target nucleus via a two-body effective interaction. Then, the density dependent

nuclear effective interaction between the projectile and the target can written in form:

v=3v{7-7l.p)). (4.47)

where 7, and ,0(7,) are the nucleon coordinates with respect to the center of mass of the

target and target density at r,, respectively.

The nuclear part of the distorted potential U, can be found as:

o))y (), (4.48)

U (r) = o, Vi) = [ar v (F =7
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where p, (') is the ground state density in spherically symmetric target. Because the

projectile is assumed to be a point-like particle the intrinsic wave functions of the system
are replaced by the ground state and excited state wave functions of the target nucleus.

By expanding V in spherical harmonics,

)=

S0l +1

viF-7 o WGP E). @49)

and introducing this expansion in Eq. (4.48), we obtain:
U;ucl. (r) = (l/jo’Vl/jo ) = J-dr,r,zvo (r’ r, Po (’/))po (r/)- (4.50)
0

For a target’s excitation to a state with certain multipolarity / the excitation can be
considered as a small variation of the ground state density that will result in a small
change of the effective interaction. To the lowest order, this effect can be accounted for

by using the modified interaction,

v (771, p, (r))
V(7 =71, p,(r)=V(F =71, 0, (") + po (") . 4.51
qr r po(r )) qr r ,00(1’ )) po(rl 8,00(7‘/) ( )
Then, the matrix element of the residual interaction can be calculated as:
, ot e OV (7 =71, 0,()
Wi Vwy) = [di pi (F) VI(7F =71 0 () + po () (J |, 452

9P, (r ,)
where o) (7 ) is the transition density at the point 7" in the target. We can write the
transition density as:

P (F)= pi, (r)Y,, (7). (4.53)

, 0, (")) can be

If the density dependence in the effective interaction potential V(]? 7

factored, then using the expansion (4.49) and taking into consideration Eq. (4.53) we

obtain:

47[ . * [ A ¢ v . 7
(l//Zm’Vres.l//O):m(_l)llllm(r)}[drr zplm(r )X
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R N G R

Comparing Eq. (4.54) with the Eq. (4.41) we obtain the nuclear radial form factor,

) Y 2 S , , AV, (1,1, po(r”
7—'lm.(r): m dr r zplm- (r )|:vl (r,l" 7100 (r ))+ pO (r ) l(ap (f/o)( )):| . (455)
0 0

. Po (+')) are found by fitting the

The parameters of the two-body potential V(]? — 7

experimentally measured differential of elastic scattering with the differential cross
section obtained using the distorted potential from Eq. (4.50). In the case when the
effective nuclear interaction is taken to have both real and imaginary components, the

distorted potential for both parts can be calculated separately, using the same method.
2. Coulomb Interaction

As before, the projectile is assumed to be a point particle, so the Coulomb part, V., of

the projectile-target interaction potential can be written as:
V.= Z Z,e’

where Z, is the charge number of the projectile and r, is the proton coordinate in the

, (4.56)

target with respect to it’s center of mass.

The Coulomb part, U . (r), of the distorted potential is given by:

Z 2 , w ’
Uac(r){%,Zﬁyfo]zzpezjdf P (’i,), (4.57)

r—r

where p. (") is the ground state charge density of the spherical target at the point .

Let us expand in spherical harmonics:

|4> — /|

r—r

1

;:z Ty )y, (7), (4.58)

- 7 Il
r—r 0+
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where r

<? >’

denote, respectively, the lesser and the larger of the radial coordinates r

and r’. Substituting expansion (4.58) in the Eq. (4.57) we obtain the Coulomb part of
the optical potential:

U,.(r)=42Z e [ j ar'r’p, (v’ j dr'r'p.( )} (4.59)

For the transition from the ground state to some excited state of the target nucleus

with the multipolarity /, the matrix element (y,,,V ., )

Zpe’ P
(wﬁ,Vcwa){%m,Zﬁ ] 2, [ Pnl”). (4.60)

|I"—I"

where p. (')is the charge transition density at the point 7”in the target.

Writing the charge transition density in the form (4.53) and using the expansion

(4.58) we obtain:

r 2142 tr ’ T L{rmr’
mjd ’zpclm(r)w’jdrpr’T_(l)} (4.61)

(WZm’VCWo):

47ZZPe2 YZ; A,
20+1

Therefore the Coulomb contribution to the radial form factor is given by:

4ﬂZ : 1 f 7 71+ tr 717 c Im
T'lri”"‘l"mb- (r) = 2l :el |:rl+l ,[dr r l zpc lm( )+ r j p rl/l (l ):| : (462)
0 r

The total optical potential U, is a sum of the real and the imaginary parts of the

nuclear contribution (Eq.4.50), and the Coulomb contribution (Eq. 4.59). The total
transition potential for the target nucleus transition from the ground state to the excited
state with multipolarity / is a sum of the matrix elements obtained with both, real and

imaginary parts of the residual interaction (Egs. 4.54) and the Coulomb matrix element

(4.61).
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CHAPTER V

FERMI LIQUID DROP MODEL (FLDM)

In the previous chapters we have shown the microscopic description of quantum
mechanical many-body system. However, quantum mechanics of many-body system can
be presented in several forms. In this chapter we will derive formalism of the Fermi
liquid drop model for calculations of the isoscalar compression energies and widths
starting from the time-depended Hartree-Fock approximation and implementing the

Wigner function approach.

A. Time Dependent Hartree-Fock Approximation in Phase Space

For a system of A particles, the most general density matrix is given by

P (Fs P ) = >w, ¥, (Froen 7 (7 7Y, 5.1)

where ¥, (7....,7,) are the orthonormal exact wave functions of the system and w, is

the probability that the system is in a state ¥, (7,...,7, ), with the normalization

S, =Sl

The description of the system of A particles using density matrix

P 1. (5.2)

PP P 7 7L ) is not very applicable for calculations of observables associated
with commonly used one- and two-body operators. In such calculations description of a
many body system using one body density matrixes p(7,7’) is more preferable:

PFF) = A dFy oy (F Ty By T oo By ). (5.2)
The equation of motion for the one-body density matrix p(7,7’) can be obtained directly

from the basic many-body Schrodinger equation for ¥, (Fl sy ).
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2
_;"’_v P VP F)+ DV )= EoG ) 53
m

The equation (5.3) of motion for p(r, ') is coupled to a set of equations for higher order
density matrices. To avoid solving system of coupled equations for density matrixes for
up to A particles we can use the variational methods for the solution of the quantum
many-body problem, assuming certain form for the initial function p(7,7’). Particular
examples of the variational method are the Hartree-Fock (HF) and time-dependent-HF
(TDHF) approximations.

To obtain the TDHF equation of motion for a single particle matrix p(7,7’), we start

from the exact variational equation, taken in the form
12} . a R
s ¥ (o)fin—-~ H|¥(t)) =0, (5.4)
where H is the exact Hamiltonian for the A nucleon. In the case of a trial function given

by the fully antisymmetrized product of the time-dependent single particle wave

functions @, (Fl 1),

i=1..,A. (5.5)

‘P(t):ﬁDet”Q. ().

The TDHF equation of motion for the time-dependent one body density matrix,

,0(?1 5 ;t), which is defined as
A
p(F.7it) =Y ¢,(7.0)p; (7.1), (5.6)
i=1

is given by

N R - .o
lif‘la,o(rl,rz;t)———[V2 -V ]p rl,rz, [V rl, ) V(rz,t)]p(rl,rz;t). 5.7

The single—particle wave functions ¢, (¥,¢) in the definition (5.6) are determined by HF
equations with a self-consistent potential

V(7 1)=[ar V(7,7 )p(F'.1), (5.8)
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where v(7,7’) is the two-body effective interaction and p(F,7) is the time-dependent
local density p(7,t)= p(7,7;t). In equations (5.7) and (5.8), the non-local exchange

potential has been omitted for notational simplicity. We need to note, that for the local
(Skyrme-type) nucleon-nucleon effective interaction, the exchange term of the self-
consistent potential can be also expressed in form of Eq. (5.8).

The time dependent Wigner distribution function defined as [42]
FF, pst) = [dse 0 p(F =512,7 +5 1 2;1), (5.9)
where 7 = (7 +7,)/2, 5=7 —F,,and p(7,7,;t) is the time-dependent one body
density matrix. The Wigner distribution function is interpreted as the quantum analog of

the classical phase-space distribution function. The Wigner transform A,, (7, p) for an

arbitrary one-body operator A is presented as:

&)y =4, 7. 5)= X [d50; (F=512)Ap,(F+5 127 (5.10)
Using definition (5.10) we can write the composition formula for two one-body
operators [43]:

(4B), = A, (7. p)e ™ B, (7. p). (5.11)
where /Kz?r ﬁp —ﬁr -ﬁp.
The collisionless quantum kinetic equation [44-46] is obtained by multiplying Eq.

(5.7) by exp[— (i/n)p-5 ], performing coordinate transformation
(Fl 5 )— (F =5/2,7 +5/2), and integrating the obtained expression over s :

if(f,;s;miﬁ-v,f(f,ﬁ;t)—%v(f;asm(ﬁxjf(f,m):o. 5.12)
ot m 7] 2

Expanding sin[g K) , we obtain:

Jd . _ - - - h? (- -
Ef(hp;t)+;p-V,f(r,p;t)—V(r;t)(—A+l,—(A) —---jf(r,p;t)=0



52

Neglecting the terms containing %", n =2 in the expansion, Eq. (5.13) is transformed to

the so-called Landau-Vlasov equation [47]
0 .. . - -
= [ Bit) = {0, pio). S (7, o)l (5.14)

where A(F, p;t)= p*/2m+V(F;t) is the classical Hamiltonian and {.......} is a Poisson

bracket.
To obtain the hydrodynamic equations, we need to consider zero, first and second

p -moments of the phase-space kinetic equation (5.12). The zero-moment is obtained by

integrating Eq. (5.12) with (1/27#)’ I dp;

0
gp+vv(p-uv)=o. (5.15)

This is the equation of continuity, where the particle density p(7,7) and the velocity

field ii(r,t) are given as:

- gdp .
p(F.0)=| ) ) (5.16)
i) e\ [ 8D D o
sl )

were, g =4 is the spin-isospin degeneracy factor.
The first moment is obtained by integrating Eq. (5.12) with (I/Zﬂh)3 I dpp,

%(mp(f’,t)uv(?,t))+Vﬂ(mp(F,t)uv(F,t)uﬂ(f,l))Z

— |v,p,(F.0)+6,0(F. 0V V(1) (5.18)

where P, (¥,1) is the pressure given as

PuF0)= [ = mu G, GG r). 519

Eq. (5.18) is an Euler-type equation for the system of particles.
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Similarly, the second moment is obtained by integration of the Eq. (5.12)
with (17270’ [ dp(p* 1 2m):

a mt nt -

§8km( )+V (gkm (r t) (r’t)):

_%p o)V ity (7o) + ¥, (7.0)) - V1, ). (5.20)

int

were £, (r t) denotes the internal kinetic energy density

o dp (p-mii(7,0))} .,
and g, (7,t) is the heat flux
q,(r.1)= 2;2 ( j;p) (p, —mu, (F,0)(p—mid(7,0)) f(F, pst).  (5.22)

The local equations (5.15), (5.18) and (5.20) have been deduced directly from the

quantum equation (5.7) without any assumptions. However, these equations are not

closed equations because the definitions of the quantities P,,, g, and £ contain an

unknown distribution function f (F , ﬁ;t). Egs. (5.15), (5.18) and (5.20) can be reduced

int

to closed equations which involve only the local quantities p, u, P, and g, ,if a

reasonable assumption for the distribution function f (F , ﬁ;t)is made, see Refs. [48,49].

The continuity equation (5.15) leads to the energy-weighted sum rules. Let us

consider the response of a system of particles to the external field [50]
A
F0)=fole—1,)=> £ 7)ol —1,) = [drf (F)p(F)o(e —1,), (5.23)
Jj=1
where f is the arbitrary single-particle operator and p(7) is the particle density operator

5(7)= 36— 7).

J=1

The solution to Eq. (5.4) for & =1—1, — +0 with H = H, + f6(r—1t,) and

H 0| ‘Pn> =E, | ‘Pn> gives for the rate of change of particle density
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PENR(0) =3 (E, ~ E N,

2
h n#0

% - 9 ()

flw ). (5.24
" jiw). 520

AN, e,

On the other hand, including V,_, (r) into the mean field V in Eq. (5.12) and integrating

Eq. (5.13) over time in a small interval [t,,7, + o] we find
2 . h < f ”]? ~
f=f0+%sm EVI.,-V; fof at t=t,+d&, &—+0, (5.25)

where f, is the distribution function which corresponds to the initial ground state ¥, .

From definition (5.17) and Eq. (5.25) we also obtain the velocity field as

u =—lvvf at t=t,+&, & —>+0. (5.26)

Y m
Taking into account the continuity equation (5.15), along with equations (5.24) and
(5.26), we obtain the local energy-weighted sum rule:

S (E, - E N [N, 0, [7190) ==V a5 5.27)

n#0

Multiplying Eq. (5.27) by f () and integrating over the coordinate 7 we obtain the

energy weighted sum rule for the single particle operator f :

m; = i (En —-E, )K‘Pn

n#0

2

1) = % [arp,, (7 . (5.28)

B. Dynamic Distortion of Fermi Surface

The collective dynamics of the Fermi liquid exhibits strong dependence on the
dynamical distortion of the Fermi surface in momentum space [51-55]. In this
dissertation we consider the effect of small deviations of the Fermi surface from the
equilibrium spherical shape on the nuclear dynamics. In terms of the single particle time-
evolution operators #(¢) the time dependent single particle matrix p(r)= p(7,7’;¢) can

be given in the form (see Ref. [56]):
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ﬁ(r>=exp[§m;z(r>}ﬁo (t>exp[—;'m;z(r>] (5.29)

where P, (¢) is the time-even part of the density matrix. Considering time evolution as a

small correction for the initial time even density matrix, we can write Eq. (5.29) in the

form of expansion:

p0)= 5,0+ L i, 0] (5.30)

mhﬁl{imﬂdﬁﬂ&ﬂ, n=1,2... (5.31)

Using rules of the Wigner transformation on Eq. (5.31), we obtain for the time

depending Wigner distribution function:

=

16500 FulF i 23, Gopsin RA |1 G, 63

where fsph (F , ﬁ;t), 8. (F , ﬁ;t) and f, (F, ﬁ;t) are the Wigner-transforms for the time-
even density P, (t), m#(t) and p, (¢), respectively.

We consider the lowest order in the expansions (5.32) in powers of 7. The Wigner-

transforms for the commutators in the expansion (5.31), can be approximated as:

[m2(0). 5, ()], =itlg...f.],. (5.33)
According to Eq. (5.33), in the lowest order in power of 7 the distribution function

f(?, ﬁ;t) can be written as:

f(;:’ﬁ’t)zfvph(;:-l_v[)gvc’ﬁ_vfgvc’t) (534)
We start the investigation of the Fermi surface distortion effects by assuming the

one-body density matrix p, (r) in Eq. (5.30) such that the corresponding distribution

function f, (7, pst) is spherically symmetric in momentum space. The result (5.34)

S,

states that the dynamic distribution function f(F, p;f) can be obtained from the

spherical distribution function f, (¥, p;t) using a time-dependent shift in phase space:
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Foi'=r+V g (F.pst), p—p =p-V,g.(F pt). (5.35)
Assuming that the function g_ (7, p:t) is a smooth function of the variables 7 and p,
we can expand it into a series in p and retain only the first two terms
g.(F.pit)= O F.0)- p, 2V (F.1). (5.36)
Eq. (5.36) allows us to rewrite the coordinate transformation in the phase space as:
r=r, = (F0),
P, =V, 2F 1)+, +V, 2 F0)p,. (5.37)
Therefore, Eq. (5.34) takes form:
fE pir)= £, (7. p'se). (5.38)
We assumed the Fermi surface for the distribution function f,, (7, p;t) to be a sphere
with radius p,., therefore, from the form of Eqs. (5.37) and from Eq. (5.36) we can
conclude that an excitation in the nucleus leads to the displacement of the Fermi sphere
as a whole by the vector V ;((0) (7,¢) and to its deformation into an ellipsoid. The
deformation of the Fermi surface is a result of the non-local character of the time

evolution operator, 7, and disappears when 7" (7,1)=0. The vector 7" (7,) can be

interpreted as a time-dependent local displacement of particles from their equilibrium
positions.

We can describe the phase shift (5.37) using. the transformation matrix:
a,,(F.t)=38,, +V, 2V (7 1), (5.39)
and the inverse matrix a;; (F,t). Then, using equations (5.37), (5.38) and (5.39), with the

definition of the local single-particle density matrix we obtain the local particle density

in the form:

p(7,t) = Det

a, (F.1) oy (7'1), (5.40)

where

m0ﬂ=h§%fwﬁﬁﬂ (5.41)
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is the initial time even unperturbed particle density. Using the fact that the distribution

function fsph (F, ﬁ;t) is an even function of the momentum, fsph (F , ﬁ;t) = fsph (F — ﬁ;t),

along with Egs. (5.37) and (5.39) we obtain the expression for the local velocity field:
u, ()= L a2 7V, 2 o). (5.42)
m

The distribution function f,, (7, p;t) is isotropic in momentum space, therefore, we can

write the equation for the kinetic energy density in the form:

- dp p* . _
6w )= [ ELL 6.

2 Detlag, .o)rr|4,, G.)

e:;;(f,r)+%mp(f,t)u2(f,r), (5.43)

where A, (F,t)=a,;(F,t)ay, (F,1). The quantity £} (7,¢) in Eq. (5.43) is the internal
energy density associated with the distribution function f, (7, p;t), the Wigner-

transform of the initial time-even particle density. The first term in (5.43) does not
depend on the velocity field, u (F,t), and can be identified with the internal kinetic
~ int

energy density for the case with deformation of the Fermi surface, £, . The deviation of

~int int

the quantity £, from the kinetic energy density &;, vanishes in the local

approximation, when ;Z“) (7,t)=0. The second term in (5.43) is the collective kinetic

energy density of a classical fluid,

(coll)

£ = L p(F, 1 (7.1). (5.44)

The collective kinetic energy density S,Ef:”) depends on the velocity field i(7,t) due to

the quasi-classical approximation (5.33) and assumption (5.36). Eq. (5.44) is also valid
in the local approximation. Therefore, we can conclude, that the dynamical deformation
of the Fermi surface does not change (for / < 2) the hydrodynamic relation between the
collective kinetic energy density and the velocity field. In the following section we will

show that the contribution from FSD to the kinetic energy density &,, has a significant

effect on the spectrum of the oscillations of nuclei.
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Using definition (5.19) and expressions (5.34) and (5.37), we can write the
expression for the pressure tensor in terms of the internal kinetic energy density and the

local displacement field as:
P, =3e0d, =3V (e 20)s, —2en (v 2 +V, 7). (5.45)
The distortion of the Fermi surface gives rise to the correction of the off-diagonal
components of the pressure tensor. The heat flux, g, defined by Eq. (5.22), is written in
terms of Egs. (5.34) and (5.37) and taken in an approximation linear in ;Z(l)
Let us consider the time evolution of the system as deviations of the density p(7,t)

and velocity field i(7,¢) about the equilibrium values p, . () and U, (¥)=0. In this
case the distribution function f,, (7, p;t) in Eq. (5.34) coincides with the static
equilibrium distribution function, f,, (7, p). In such approximation, the time dependent

particle density can be expressed in terms of the static equilibrium particle density and to

the first order in 7" is given as (see Eq. (5.40)):
p(7.1) -V, (o, )2 (F.1)). (5.46)

The continuity equation (5.15), taken with the time-dependent particle density from Eq.

(5.46), provides us with the connection of the quantities # and Z(l)

% 7VGFE ) =i(7r). (5.47)

Eq. (5.47) confirms the interpretation of the ;Z(l) as the time-dependent displacement

field. In the following derivations we will assume the change of the particle density to be
defined according to Eq. (5.46):
sp(7,1) = p(7,1)- =V, (., ®x"(F.1)). (5.48)
If the Fermi surface remains spherical during the motion (first sound, ;Z(l) (F,1)=0),
then the pressure tensor is diagonal:
P,=3 8,‘:,‘,‘15m (5.49)

According to Ref. [10] we can define the chemical potential A, as:
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A=6lem+e,, )i dp. (5.50)
The chemical potential is constant in the equilibrium, therefore, we can use equilibrium
condition ?[5 (8,1;; +E,, )/ §qu =0 along with the continuity equation (5.15), and

obtain the equation for the first sound in nucleus as:

0 w_1 )
?Zﬂl :ZV‘uvaquV : (551)
Here the local incompressibility coefficient is given as (see Ref. [10]):
S’let +&
k=x(F)= (("—2")] . (5.52)
op
eq

For infinite nuclear matter (@pe .= Vi = O) this equation goes over to the ordinary

equation for compression waves:

2
1
—dp=—KVp, 5.53
2% o P (5.53)
where K is the incompressibility coefficient of the nuclear matter
e +e ) 5* E
K=9p, | ———""| =9p, k=9p. =, (5.54)
LI[ 5[02 . q q 5p2 A v

and E/ A is the nuclear matter binding energy per particle.
We can take the dynamical FSD into account by using expression (5.45) and
equations (5.46) and (5.52), and obtain a closed Euler-like equation for the zero-sound

regime in the nucleus:

A 0y, 2
mp‘—"l ?1/11 :Vﬂpeqwa(peqzal )+§Vﬁfqu/uﬁ’ (555)
where
Ay =V 20 +V 2 =3V, 216, (5.56)

In the infinite nuclear matter 676 g = ﬁpe g = Vi =0, and Eq. (5.55) can be written in the

form:
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9’ 1 2 2
mp,, 871,(}) = (5 Kp,, + gfeqjvﬂva 70+ Efequ 0. (5.57)

Eq. (5.57) describes elastic waves propagating in an infinite non-isotropic medium with

Lame coefficients [57]

1 2
ﬂ’Lame = 5 (erq + 2z.eq )’ lLlLame = E z.eq (558)

The second term in Eq. (5.57) allows for two types of solutions: a longitudinal wave )Zl(l)

(Vx 7" =0) and a transverse wave 7" (V-7 =0). It is easy to see, that due to the
deformation of the Fermi surface, the nucleus incompressibility coefficient K for the

longitudinal wave ;Z,(l) gets renormalized, and becomes equal to K" = K + 87, 0! Pey-

C. Relaxation Process and Viscosity Effect

Incorporation of an inter-particle collision term into the equation of motion (5.7) for the
one-body density matrix is needed in order to describe dissipative behavior.

Following Ref. [58] and making use of the continuity equation (5.15), along with
Egs. (5.46), (5.47) and (5.54) the Euler-like equation (5.18) can be written as

ou,

“ ot

where p, is the equilibrium particle density, u, is the velocity field, and P,, is the

mp +V,p,=0, (5.59)

momentum flux tensor.

The derivation of the momentum flux tensor F,, in the Euler-like equation (5.59)

depends on the equation of state of the nuclear Fermi liquid. In the nuclear interior, the

momentum flux tensor, Pvﬂ, can be given as, see Ref. [58],

P, =P, +5P) (5.60)

Au

where P, is the dynamic part of the pressure tensor including pressure of external field
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M 90
oP, =£§p§l —ﬂ{a’“ J e 2y ) } (5.61)

19 arﬂ ar, 3 7 i

and é‘Pﬂ(;) is the viscosity tensor

éP(V)

Au

0
_ M M 2y s (5.62)
Jr, dr; 3

Here, v is the viscosity coefficient, g, is the FSD parameter, ¥ is the
displacement field, and u is the velocity field, as defined in Eq. (5.47). In general, the
kinetic coefficients 4, and v can be derived through the solution of the Landau’s

dispersion equation, [59]. To derive expressions for these coefficients we will consider

the collisional Landau-Vlasov equation for a small variation of the Wigner distribution

function,
9 - - - - - -
§§+Vp€eq-VF@‘—V;éV-foeq—V;Veq-VﬁﬁzdS’t. (5.63)
Here €,,, V,,, and f,, are the equilibrium energy density, Wigner transform of the

equilibrium particle-particle interaction and equilibrium Wigner distribution function,

and 0V, & and OStr are small variations of the particle-particle interaction, Wigner

distribution function and collision integral from their equilibrium values, respectively.
For simplification, we assume that the deformation of the Fermi surface is restricted by

multipolarities / <2 . The first p -moment of Eq. (5.63) reproduces the fluid dynamics
equation (5.59). Now assuming that the displacement function to be harmonic,
2V )= 2V (F)e, (5.64)

we can rewrite Eq. (5.59) in the form:

P W7 1
—wtp 0 Py oy 0 RT g pa L
peqzﬂ,a) m ﬂ VpquV,a) 1+(wRT)2 1% eq ‘L[V,[l)
io— " vpa ] (5.65)

vieq vio
# m

1+ (w,7)°
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Here sub-index @ indicates the Fourier transformation of the appropriate functions.
Comparing the form of Eq. (5.65) with equations (5.59), (5.60), (5.61) and (5.62) we can
conclude that for the distortion of the Fermi surface of multipolarities / < 2 the

coefficients 4, and Vv can be given by:

wr T
M= Im( jPeq, V= Re( jPeq, (5.66)

l-iwr l-iwr
where P, =2¢&,p,, is the equilibrium pressure of the Fermi gas and 7 is the relaxation

time for sound excitations in the Fermi liquid. We need to point out, that both Egs.
(5.59) and (5.65) were obtained from the collisional Landau-Vlasov equation (5.63),
under the assumption that the variation of the collision integral 5S¢ can be written in
terms of the relaxation time 7 and the equilibrium forms of the total energy density and
Wigner distribution function and their small variations (see Refs.[58] and [60]).

Now, using the relation between the variation of the particle density, dp, and the
displacement field, ;Z(l), Eq. (5.48), and assuming that the behavior of the displacement
field can be approximated by a plane-wave }(/(}) (7,t) ~ explig - 7 —iax) we can rewrite
Eq. (5.65) in the form:

@ —clq’ —iywg’ =0. (5.67)

Here c, is the zero sound velocity

¢ =L{K+12ﬂ—F}, (5.68)
9m peq
and ¥ is the friction coefficient
y=¥_ (5.69)
3p,,m

From the equations (5.66) and (5.67) we can see that the eigenfrequency of the
oscillation of nuclear media has both real and imaginary parts. The real part of the
eigenfrequency corresponds to the centroid energy of appropriate excitation,

E = Re(hw). The imaginary part of the eigenfrequency corresponds to the width of
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collective excitation, [ = —Im(h a)), introduced due to the collisional damping effect of
the dynamic Fermi surface deformation.

To complete our model we need to approximate the relaxation time in the nuclear

medium. To do so, we start from the expression for the variation of collision integral
[60]:

dp.dp.dp
&5i(7, p)= [ L2 w{p Doy + b — By — 5a)x

(27m)
;5@;{{; D1

2—de cos

(heq3( )+heq4( ) heq.l(t_t’)_heql(t_t,)

ﬁ_;df’(ava )+ 0V, (")~ 0V, (') - 6V, ()

h

(5.70)

Here w({ﬁj }) are the nucleon-nucleon scattering probabilities in nuclear medium,
h,, ;= pf. /2m+ V(F D j,t) - the classical single particle Hamiltonian in phase space, and
Q({f i }) is the Pauli blocking factor, given as:

olr D=0~ )= £)ff = A1, 0= £)0= 1) (5.71)

Under the assumption that the variation of the Wigner distribution function exhibits a

harmonic time dependence & ; ~ exp(—iax), we can rewrite Eq. (5.70) in the form:

dp.,dp.dp
&5i(7, p) = [ L {5 N, + b — By — )%

(27m)
g&f”’ ) 25 Vo (8l 41—y — By + )+
l':l eq.i
5(heq 1 + h heq.S - heq.4 - ha)))+

({f })(éV +OV, — oV, - V,) {( (heq3+h hqll—heq_2+ha))+
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5(heq.l + heq.Z - heq.3 - heq.4 - ha)))+

5(heq.1 +heq.2_heq.3 - heq.4 )_ §(heq.3 + heq.4 - heq.l - heq.Z )}:|

(5.72)

Then the relaxation time corresponding to the collisional damping can be defined as:
1 Jde, Y (p)s
o) [ao, v, (5

Now, let us consider the case of the equilibrium distribution function taken as:

fo (7. D)= [1 + exp(wﬂ , (5.74)

where T is the temperature of nuclear medium in the equilibrium, and A is the chemical

(5.73)

potential. Then the functional differentiation of the equilibrium distribution function

with respect to classical Hamiltonian can be found as:

&.,  f.l=1.,)

=— , 5.75
o, T (5.75)
and the relaxation time for the collisional damping can be reformulated as:
4 (5.76)

)= )

1+ (haw/24T)

where oscillation frequency @is complex and 7 is an energy independent quantity. For
the isoscalar collective excitations, this quantity can be taken as a temperature dependent

function of the collisional relaxation parameter f (see Refs. [58], [60]):

2
1. (5.77)
T g

Therefore considering the case of a cold nucleus (7" = 0 ) we obtain the expression for

the energy-dependent collisional relaxation time:

o) = M. (5.78)
(Re(rw))’
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D. Boundary Conditions

In this dissertation, to derive the boundary conditions for the isoscalar compression

excitations in finite nuclei we will assume a sharp particle density distribution

P Fo1)= p(F.1) 6(r—R()).  p(F.1)=p,, +3p(F.1). (5.79)
where the vibrations of the nuclear surface for a given multipolarity L, can be written as:
R(t)= R, (1+ B; (e),,(7)). (5.80)

with the amplitude of the surface vibration S (r) ~ exp(—iax). Then, considering the

definition of the bulk density variation (5.48), we can write a solution of Eq. (5.65)

corresponding to an isoscalar excitation of certain multipolarity L in the form:

9" (7.1)= B.(1)p., ji(ar ), (7). (5.81)
where 3, (¢) is the time-dependent amplitude of density oscillations A3 . (t) ~ exp(—iax).
The amplitudes /3, (¢) and B (r) are related to each other by the boundary condition for

the velocity field on the moving nuclear surface. The macroscopic boundary conditions
for the total particle density, obtained as a solution of Eq. (5.65) and satisfying
continuity equation (5.15), taken on the moving nuclear surface (5.80) is given by the

following(see Ref. [60]),
u, (?,t)|r:R€q =R, Bs(t)Y,,(7), (5.82)
5P, (F.1) _, = Bst)oP, Y, (7). (5.83)

On the left hand side of Eqgs. (5.82) and (5.83) we have the radial components of the

velocity field, u, , and the pressure tensor variation, 0P, , on the nuclear surface,

respectively. By inserting Eq. (5.81) in the definitions of the velocity field i(7,z), Eq.
(5.47), and the pressure tensor variation oP, (F ,t), (5.60), we obtain expression for the

boundary conditions on the nuclear surface in terms of the oscillation amplitudes S, (¢)

and S, (r):
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0 (7.1)= 4,0 )

Y, (f) = ReqﬁS (t)YLO (f) > (5.84)
q> or

o, (w):g(K—6”—FJap(?,t>—zﬂFﬁL(ﬁjz(qrmo(ﬂ:ﬁs (16, 7,0(7). (5:55)

eq

From Eq. (5.84) we obtain the relation between the oscillation amplitudes S (r) and
B, (t ) :
xpBs(e)=j, (x)B,(¢). (5.86)

where x=¢R, ,and j, (x)is the first derivative of the spherical Bessel function, see Ref.

eq?
[61].

From the macroscopic point of view, the isoscalar dipole excitation corresponds to
inflation and dilatation of the nucleus along an arbitrary direction at the constant nuclear
surface. Therefore, the surface contribution to the variation of density is given by

following: dP, = 0. Then, from Eq. (5.85), we obtain the boundary condition for the

isoscalar dipole excitation in the form of the following secular equation for the

transferred momentum ¢ :

9 eq eq

P(K%&JL(W)—Z&K(W)} =0. (5.87)

r=R,,

In the case of the isoscalar monopole excitation, the additional contribution to the
pressure tensor variation from the surface pressure can be taken in the form:
oP, = ZG/R (5.88)

eq.
where o is the surface tension coefficient. Therefore, from Eqgs. (5.83), (5.85), (5.86)
and (5.88) we obtain:

Jolrg) 1 . 2

Jlra)_ (K —6ﬂ—FJ(rq)Jo(rq)— i (rq)jiqr). (5.89)

peq m 9m eq eq

By defining damping amplitudes as follows:

26 and fﬂ :4_’11};’

—_— —2 N
mp,, R, ¢ mc,

fs (5.90)
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where ¢, is the zero-sound velocity as it is given in Eq. (5.68), and using recurrent

relations for the spherical Bessel functions

5= 20,0 and ()= = (),

we obtain the secular equation for the transferred momentum ¢ corresponding to the

isoscalar monopole excitation:

lgrio(ar)=(r, + £,)ir(ar)] _, =o0. (5.91)

E. Translation Invariance Condition and Isoscalar Giant Resonance Description

A general condition of translation invariance states that any internal excitation must not
affect the center of mass motion of the system. For the case of nuclear excitation this

condition can be written as:
[dFFdp, . (7,1)=0. (5.92)

In the case of interest, the total variation of the particle density must be given in terms of
the variation of bulk density and the variation of nuclear surface (see Egs. (5.79) and
(5.80)):

P, (7.1) = 80(F.1)+ p,,6(R,, — r)Bs ()R, Y, (7). (5.93)
Expressing the variation of bulk particle density in terms of the oscillation amplitude and
using Eq. (5.86), we obtain an expression for the total particle density variations for

multipolarity L #1:
- : 1 y .
5pmml (r’t) = ﬂL (t)|:9(Req - r).]L (qr)+ ga(Req - r).]L (qReq ):|peqYL0 (r) . (594)

Integrating Eq. (5.94) over ” r’drd€Q), and using recurrence relations for the spherical

Bessel functions we will see that the condition (5.92) is readily satisfied for any L #1.

On the other hand, integration of Eq. (5.94) over ﬂr3 drdQ, is not equal zero.

Demanding that condition of invariance must be satisfied for any internal excitation we
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can re-define the total particle density variation for the case of isoscalar dipole excitation

as:
S(7.0)= 5, (t){e(Ra, —r)j (qr)+1_7“5(Req ~r)jllgR, )}peqno(f), (5.95)

where the constant a is obtained using the condition (5.92) and is given by

a=j(x)/x(x), x= qR,, . (5.96)
Note, that by re-defining the variation of total particle density for the isoscalar dipole we
eliminate the spurious contribution to the isoscalar dipole excitation energy.

Based on the derivation given above, we conclude that within the Fermi liquid drop
model with the collisional Fermi surface distortion centroid energies and widths of the
isoscalar compression modes can be found as lowest non-zero solutions of the
appropriate equations for the boundary conditions. These solutions must satisfy the
dispersion relation, defined by Eqgs. (5.66) - (5.69), taken with the energy-dependent

collisional relaxation time given by Eq. (5.78).
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CHAPTER VI

DESCRIPTION OF GIANT RESONANCES IN *°Zr, ''Sn, **Sm AND 2%Pb

In this chapter we present the results of a microscopic and macroscopic analysis of
isoscalar monopole and isoscalar dipole giant resonance excitations in 27r, 11°Sn, *Sm
and “**Pb. The microscopic analysis is based on self-consistent HE-RPA calculations
with the SL1, SkM*, SGII, Sly4 and Sk255 Skyrme effective interactions. Results of
microscopic calculations are used in a study of possible discrepancies in describing
excitation of the isoscalar dipole mode in & — particle scattering reactions, which are
introduced by the use of collective instead of microscopic transition densities. The
macroscopic analysis is performed within the Fermi liquid drop model with collisional
Fermi surface distortion. The results of calculations for the position and collisional
widths of the isoscalar monopole and dipole excitation modes are compared to the

results of microscopic calculations and to the experimentally obtained values.

A. Microscopic Analysis

In our calculations we used the SL1, SkM*, SGII, Sly4 and Sk255 Skyrme interactions,
parameterizations which are given in Table I. These interactions are claimed to be
successful in reproducing both the ground state properties and the average energies of
the isoscalar giant monopole resonance excitations in heavy nuclei. To confirm these
claims, in Section B. values for the binding energy per nucleon obtained with all
interactions of interest are compared to the experimentally obtained results. Also, results
for the root mean-square radii are presented. Using SL1, SkM*, SGII, Sly4 and Sk255
interactions average energies for the isoscalar giant monopole resonance are calculated
and compared to experimentally obtained values in Section C. Fractions of the energy
weighted sum rule exhausted within the experimentally observed region of excitation

energy 5 < E <35 MeV are presented in the same section. Comparison of these results
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proves the acceptability of these interactions in the description of isoscalar monopole
resonance in heavy nuclei.

In order to obtain particle and hole wave functions and energies for both discrete and
continuum states we start our calculations by finding the numerical solutions of radial
Skyrme-based Hartree-Fock equations (2.39). In our calculations we discretize the
single-particle continuum by placing a nucleus inside a sufficiently large sphere and
imposing the boundary condition that wave functions of the continuum states vanish on
the sphere’s surface. Calculations with a discretized single-particle continuum were
performed, for example, by Liu and Brown [62] and by Agrawal, Shlomo and Sanzhur
[18]. In the mentioned works, the continuum appears to be well approximated by the set
of discrete particle-hole states obtained using the bounding sphere whose radius was
taken to be >2.5 times larger than the nuclear radius.

Using Hartree-Fock single-particle energies and wave functions, we obtain the radial
part of the PRA Green’s function defined by Eqgs. (3.18), and (3.19), with the particle-
hole interaction obtained as a functional double-derivative of the total energy density for
the unperturbed Hartree-Fock single particle Hamiltonian with respect to the ground-
state density of the many-body system, obtained by solving the Hartree-Fock problem.
Using the obtained RPA Green’s function, we calculate the transition strength

distribution function (3.24) for the single particle excitation operators
fL:O = Z’?ZYOO and fL:I =ZI;3Y1M (ﬁ)’ (6.1)

for the isoscalar giant monopole resonance and isoscalar giant dipole resonance,
respectively. In the case of the monopole excitation, the transition strength distribution
function is calculated directly using Eq. (3.24). The energy weighted sum rule for the
isoscalar giant monopole resonance is calculated as the first energy moment of the
isoscalar monopole strength distribution. In the case of the isoscalar dipole excitation,
we employ the method of projecting out spurious state contribution, as described in

Chapter III. By separately calculating S, (E), S (E) and S, (E), and using Eq. (3.61),

we obtain the isoscalar dipole strength distribution function S, (E), with no spurious
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state contribution. The isoscalar giant dipole resonance transition density o, (r,E) is
calculated by projecting out the spurious state transition density o (r) from the
transition density p, (r, E), obtained using the isoscalar giant dipole strength distribution
S, (E) and the projection operator fo=F—1f.

The angular distributions for the inelastic scattering of 240 MeV « — particles on the
nuclei of interest are calculated within the distorted-wave Born approximation. In this
dissertation, attention is focused on the isoscalar dipole excitation in target nuclei. The
real and imaginary parts of the optical potential are found by folding the radial part of

the Hartree-Fock ground state density p, (r) with the real and imaginary parts of the & -

nucleon effective interaction, respectively. The & -nucleon effective interaction is taken

in the form of a density-dependent Gaussian potential:

|77 |77

’IOO(’/)):V(1+IBVpg/3(r,))€_ “ +iW(1+:3ng/3(’/))€ o (62

Parameters V, B,, &, and W, B,,, &, of the a -nucleon effective interaction are

v(F-7

determined by fitting experimentally measured angular distributions for the case of
elastic scattering with the angular distributions obtained using optical potential (see
Table VII). The real and imaginary parts of the radial form factor are obtained by folding
HF-RPA transition density with the transition potential. The transition potential is
calculated as a convolution of the transition density with the following expression:

s Po (r/))
9p, (l”)

P (r')) is the @ -nucleon effective interaction as defined in Eq. (6.2).

, ~oVir—r
P i

v, (7 -7 : (6.3)

2o (r)=V(F -7

where VQF -7

To study possible discrepancies that may arise in experimental analysis, we also perform
calculations of the angular distribution using the collective form of the corresponding

transition density:
P (r) o< 10rp, (r)+ [31’2 _%<r2>]dpd#(r). (6.4)
r

In our numerical DWBA calculations, the computer code PTOLEMY [63] was used.
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1. Nuclear Ground State

In this section we evaluate the ability of the Hartree-Fock calculation with the Skyrme-
type effective interaction to describe the nuclear ground state. Ground state root-mean
square (RMS) radii and binding energies of *°Zr, ''°Sn, '**Sm and ***Pb nuclei are
obtained as a result of the Hartree-Fock calculations performed with SL1, SKM*, SLy4
and Sk255 Skyrme-type effective interactions. Binding energy per nucleon obtained in
the nuclei of interest calculated using various effective interactions are given in Table II.
In Table III we present results for the mass, neutron, proton and charge root-mean-
square radii for nuclei of interest. Overall satisfactory agreement with experimentally

measured charge RMS radii and binding energies can be seen.

TABLE II. Binding energy per nucleon in *Zr, ''°Sn, "**Sm and ***Pb nuclei obtained from the
HF calculations with SL1, SkM*, SGII, Sly4 and Sk255 nucleon-nucleon interactions. The
experimental values are obtained from Ref. [64].

Interaction N7y Mogp Mgy %pp

SL1 -8.85 -8.56 -8.39 -7.96

SkM* 870 -845 -824 -7.87

E/A, (MeV) SLy4 -8.73 -8.48 -8.28 -7.86
SGII -8.91 -8.65 -842 -8.01

Sk255 -899 -8.75 -8.55 -8.09

E/A,(MeV) Exp. 871 852 -830 -7.87




TABLE III. Ground state root-mean square radii obtained from the HF calculations with SL1,
SkM*, SLy4, SGII, and Sk255 Skyrme interactions. m, m, J<r2>p, m denote mass,

neutron, proton and charge root-mean square radii, respectively. Experimental radii are taken
from Ref. [65].

Nucleus Interaction %7y 16gn  #gy; 208pp

SLI 424 462 495 5.9
SKM* 426 462 495 555

7Y dm)  SLy4 427 463 495 5.56
" SGI 423 460 492 554
Sk255 426 463 495 559

SL1 427 467 498  5.66
SKM* 429 466 498 5.62
(r*) . (fm) SLyd 430 467 498 5.62

SGII 426 4.63 495 559
Sk255 431 4.69 501 5.69

SL1 420 456 490  5.49

SKM#* 422 456 490 545

(r*) . (fm) SLyd 423 457 490  5.46
P

SGII 420 455 489 546
Sk255 420 454 488 544

SL1 428 463 497 554
SKM* 430 463 497 5.5l
(r*) . tm) SLyd 430 464 497 552

SGII 428 462 496 552
Sk255 428 461 494 550

(r*) . (im) Exp. 427 463 494 550

2. Isoscalar Monopole Resonance

Calculated isoscalar monopole ( L = 0 ) transition strength distributions for 9OZr, ”6Sn,
144Sm and ***Pb nuclei obtained using SL1, SkM*, SGII, Sly4 and Sk255 effective
interactions are presented in Figure 1. The thin solid line represents the results of the
microscopic (HF-RPA) calculations. Also shown are the isoscalar monopole strength
distributions extracted from the experimental data on the inelastic a-particle scattering

on the nuclei of interest [66].
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FIG. 1. Isoscalar monopole strength distributions in 07r, 1S, **Sm and ***Pb nuclei obtained
using SL.1 Skyrme interaction (thin solid line). The circles with the error bars show the

experimentally extracted strength distribution S(E) for the ISGMR in nuclei of interest [66].

The HF-RPA strength distributions for '**Sm and **Pb appear to be in good agreement

with the experimental data. The HF-RPA isoscalar monopole resonance appear to be

shifted with respect to the experimentally observed peak in both **Zr and ''®Sn. We need

to point out that a small fraction of strength is predicted to be present at higher excitation

energies. The isoscalar monopole strength distributions obtained in the HF-RPA

calculations with SkM*, SGII, SLy4 and Sk255 Skyrme interactions are presented in

Figure 2.
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FIG. 2. Isoscalar monopole strength distributions in *°Zr, ''"®Sn, '**Sm and ***Pb nuclei obtained
using SkM*, SGII, Sly4 and Sk255 Skyrme interactions.

The average energy of the isoscalar giant monopole resonance is calculated as the ratio
of the first and the zeroth energy-moments of the presented transition strength

distributions, E

a

. =M /M, .In Table IV we present the average energies for the
isoscalar giant monopole resonance states, EO_ , . The results of HF-RPA calculations

appear to be in a good agreement with the experimental data.
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TABLE IV. Energies of the isoscalar monopole excitation E0 in 7r, 1S, **Sm and ***Pb
nuclei obtained using SL.1, SKM*, SGII, Sly4, and Sk255 interactions.

Nucleus Interaction N7y 116 %Sm 208pp,

SL1 18.53 16.57 15.98 14.3

SKM:* 17.97 16.26 15.57 14.3

EO,, (MeV) SGII 18.09 16.65 15.27 13.78

Sly4 18.45 16.90 15.95 14.3

Sk255 19.06 17.37 15.88 14.08

EO,,, (MeV) 17817029 15.85£0.20” 15.40+0.40° 13.96+ 0.20"

aRef. [25]
® Ref. [24]

In the region of excitation energy 5 < E_<35 MeV available for experimental
observation we find that the isoscalar giant monopole resonance almost entirely exhausts
the energy weighted sum rule M (see Table V). Therefore, we can conclude that most of
the isoscalar monopole strength in the nuclei of interest is located below 35 MeV

excitation energy.

TABLE V. Percentage of the energy weighted sums rule (%EWSR’s) of the isoscalar monopole
excitation exhausted in the excitation energy interval 5 < E < 35 MeV in 97, 1188n, **Sm and
298pp nuclei. %EWSR’s are obtained using SL.1, SkM*, SGII, Sly4, and Sk255 interactions.

Nucleus  Interaction 7y 1165 Sm 2%8py
SL1 96.3 96.6 96.6 96.3
SkM* 96.2 96.5 96.5 96.4

% EWSR SGII 96.3 96.5 94.1 96.4
Sly4 96.0 96.3 95.9 96.3
Sk255 96.3 96.4 94.0 96.3

% EWSR Exp. 100£12°  112£15° 92412 99+ 15"

T Ref. [25]

® Ref. [24]

In Figure 3 we plot the calculated ISGMR average energies, obtained using the HF-RPA

method with a variety of Skyrme-type interaction parameterizations, as a function of
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nuclear mass number, and compare them with experimentally obtained data. Also shown

in Figure 3 is the empirical mass dependence of the ISGMR excitation energy given by

E=799A""° MeV [67].

19F SL1 1
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FIG. 3. Centroid energies of the ISGMR for 7r, 11Sn, **Sm, and *®Pb obtained within the HF-
RPA formalism with SL.1 (filled circles), SKM* (filled triangles “up”), SGII (filled triangles
“down”), and Sk255 (filled stars). Experimental data is presented by filled squares. The dashed

-1/3

line represents the empirical mass dependence of the ISGMR energy E =79.9A

3. Isoscalar Giant Dipole Resonance

The isoscalar dipole transition strength distribution functions are obtained from self-
consistent HF-RPA calculations with different Skyrme-type effective interactions, using
a method of projecting out the spurious state contribution. The results of the calculations

performed with SL1 Skyrme interaction are presented in Figure 4.
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FIG. 4. Strength distribution functions of the ISGDR in *Zr, ''Sn, '**Sm and ***Pb nuclei
obtained using SL.1 Skyrme interaction (thin solid line). The experimentally extracted strength
distributions S(E) of the ISGDR in nuclei of interest [66] are shown be the data point with error
bars.

The obtained strength distributions clearly exhibit two characteristic peaks of the ISGDR
in all nuclei considered. However, the position of the calculated low excitation energy
and the high excitation energy components of the ISGDR strengths do not represent
experimental data. The HF-RPA calculations for both of the components of the isoscalar
dipole excitation predict presence of the ISGDR strength beyond the excitation energy
region where the ISGDR strength was experimentally observed. The results of the HF-
RPA calculations for the strength distribution functions of the ISGDR in 97r, 1168n,
144Sm and 2°®Pb nuclei obtained using SkM*, SGII, Sly4, and Sk255 Skyrme interactions

are presented in Figure 5.
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FIG. 5. Strength distribution functions of the ISGDR in *Zr, '"Sn, '**Sm and ***Pb nuclei
obtained using SkM*, SGII, Sly4, and Sk255 Skyrme interactions.

In Table VI we summarize the calculated energies of the lower (at 1@ ) and higher (at
3hw) components of the isoscalar dipole resonance peaks and compare them with
experimentally obtained values. Our results for the percentages of the energy weighted
sum rule for the dipole excitation operator, calculated as the ratio of the energy-moment
M, from Egs. (3.28) and the exact energy weighted sum rule calculated using Eq.(3.30),
that was exhausted within the experimentally measured region of the excitation energy

(5 < E_ <35 MeV) in the considered nuclei, are also presented in Table VI.



TABLE VI. The average energies and percentages of the EWSR exhausted within the energy
interval of 5.0<E<35.0 MeV for the low excitation energy, E,x, and the high excitation energy,
Eyi, of the ISGDR excitation in 9OZr, 116Sn, 144Sm, and *®*Pb nuclei. Experimental data is also

presented.
EiEis6pr EWSR Eur is6pr EWSR
(MeV) (%) (MeV) (%)
N7zr SL1 13.45 16.9 29.69 71.8
SkM:* 11.67 8.84 27.44 82.6
SGII 12.30 10.4 28.09 81.5
Sly4 12.22 10.2 28.35 79.9
Sk255 11.72 7.92 28.16 83.1
Exp.” 17.1£04  13£3  267+05 70%10
15Sn SL1 13.65 17.2 28.56 68.2
SKM* 11.73 17.1 26.65 71.8
SGII 11.71 15.2 26.76 73.2
Sly4 11.77 15.5 27.21 70.5
Sk255 11.29 13.2 26.95 73.0
Exp. 1438+025 2515 25.50+0.60 6115
"Sm SL1 12.68 20.6 26.93 66.6
SkM:* 11.46 12.9 25.50 78.5
SGII 11.85 13.5 25.87 77.3
Sly4 11.85 13.6 26.32 75.7
Sk255 11.73 12.0 26.19 78.1
Exp.”  14.00£0.30 32+15 2451+040 64112
208pp, SL1 12.42 30.7 26.27 61.3
SKM:* 10.97 19.4 23.77 74.7
SGII 10.84 18.5 23.94 75.6
Sly4 10.92 18.9 24.68 73.6
Sk255 10.26 16.4 23.65 71.5
Exp.” 13261030 24+15 22201030 88%15
A Ref. [25]
® Ref. [24]

Due to the fact that most of the isoscalar dipole energy weighted sum rule has been
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observed within the region of experimentally measured excitation energies for all nuclei

of interest, it is possible to make a meaningful comparison between the ISGDR and the

ISGMR average energies obtained theoretically, both by using the HF-RPA and Fermi-

liquid drop model (see Chapter VI), and experimentally observed values. Figure 6 shows

such a comparison.
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The values for the high lying component of the ISGDR obtained within the HF-RPA
formalism are higher than the respective experimental values by 1.5 to 3.0 MeV. One of
the possible explanations for this phenomenon is the overestimation of the energy
weighted sum rules in experimental analysis of the measured inelastic scattering cross
sections. Such overestimations, first studied in Ref. [68] for the case of the ISGMR,
might result in reported experimental energies lower than actual, since locating, in the
experimental analysis, nearly 100% of the energy weighted sum rule within a certain
excitation energy region might not guarantee that the energy weighted sum rule was
actually exhausted and it can be seen in Fig. 4. that there is considerable strength
predicted above the 35 MeV limit of the data.

We also need to point out that the use of different Skyrme force parameterizations,
corresponding to the different values of the nuclear matter incompressibility coefficient,
results in different values of the high lying component of isoscalar dipole excitation in
%07r, 1°Sn, **Sm and **®Pb nuclei. In general, the values of the low-lying component of
the ISGDR within the HF-RPA method are underestimated with respect to the
experimental values by 1.5-3.5 MeV for heavy nuclei. It has to be noted, that for **Zr the
low energy component of the ISGDR is also underestimated; however, the value of
underestimation is much greater, 3.5 to 5.0 MeV. As our results show, the HF-RPA
calculations with the Skyrme-type effective interaction do not provide correct
descriptions of the low-energy features of the ISGDR. To verify the obtained results for
the high-energy component of the strength function of the ISGDR, we also completed
fully self-consistent HF-RPA calculations of the ISGDR excitation, with accurately
introduced the spin-orbit, momentum and Coulomb terms [69, 70]. The results of these
calculations will be presented in following section.

Also in Figure 6 we present data regarding the centroid energies of the ISGMR, EO,
and ISGDR, E1, obtained using microscopic (HF-RPA) and collective (FLDM) methods,
and its comparison to the experimentally obtained values. As we can see, the HF-RPA
calculations successfully reproduce experimental values for the ISGMR in all four

nuclei, however, the calculated values for the centroid energy of ISGDR systematically
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exceeds the experimental values by 1.5-2.5 MeV. On the other hand the collective model
based FLDM calculations with the collisional damping overestimates both E0O and E1 by
1.5-2.5 MeV in all four nuclei.

29
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FIG. 6. Centroid energies EO and E1 of the ISGMR and ISGDR excitations, respectively,
obtained from the HF-RPA and the FLDM calculations. The experimental data [24,25] is
presented by solid black line. We can see that the results of the microscopic (HF-RPA) as well as
macroscopic (FLDM) calculations, systematically overestimate the centroid energy of the dipole
excitation. The experimental values of the monopole energy are successfully reproduced by the
HF-RPA calculations; however, the FLDM results show an overestimate on the order of 2.5
MeV, for EO as well as E1.



4. TIsoscalar Dipole Resonance Excitation from Cross Section Analysis

Parameters of the nucleon- & interaction (Eq. 6.1) for various Skyrme force
parameterizations were obtained as result of the fit to the experimentally measured
angular distributions of elastically scattered 240 MeV « -particles on 97r, 11%Sn, *4Sm
and 2*®Pb nuclei (see Refs. [24, 25]). These parameters are presented in Table VIL. In
Figure 7 we present a sample of elastic cross section calculated with the parameters
obtained by such fit for the case of the SLy4 Skyrme force parameterization (solid line).

Filled circles represent the experimentally measured elastic cross sections.

TABLE VII. Parameters of the density-dependent Gaussian form of the ¢ -nucleon effective
interactions for SL1, SkM*, SGII, Sly4 and Sk255 Skyrme-type interactions.

Nucleus Interaction ¢, (fmz) ,BV (fmz) V MeV) «ay (fmz) ,b’w (fmz) W (MeV)

SL1 3.70 -1.90 38.32 4.10 -1.90 15.63

SkM" 3.70 -1.90 38.54 5.10 -1.90 12.56

907 SGII 3.80 -1.90 38.61 4.70 -1.90 12.77
SLy4 3.60 -1.90 41.06 4.60 -1.90 12.92

Sk255 3.70 -1.90 39.66 4.60 -1.90 13.03

SL1 3.70 -1.90 4251 5.10 -1.90 6.85

SkM" 3.60 -1.90 43.33 5.10 -1.90 6.89

1%Sn SGII 3.30 -1.90 43.44 6.70 -1.90 6.87
SLy4 3.10 -1.90 47.10 6.60 -1.90 6.98

Sk255 3.20 -1.90 44.62 6.60 -1.90 6.90

SL1 3.60 -1.90 40.52 5.10 -1.90 10.65

SkM" 3.6 -1.90 38.12 5.10 -1.90 10.72

Sm SGII 3.80 -1.90 37.89 5.10 -1.90 10.83
SLy4 3.60 -1.90 40.36 5.10 -1.90 10.58

Sk255 3.60 -1.90 40.32 5.10 -1.90 10.61

SL1 2.90 -1.90 53.0 6.10 -1.90 7.53

SkM" 2.90 -1.90 49.86 6.90 -1.90 6.45

208pp SGII 3.20 -1.90 4543 8.90 -1.90 3.71
SLy4 2.90 -1.90 54.05 7.00 -1.90 5.98

Sk255 2.90 -1.90 51.42 8.80 -1.90 3.70
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The obtained parameters were used to calculate the transition potential (see Eq. 4.54)

needed in the calculations of differential cross sections of inelastic reactions.
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FIG. 7. Elastic scattering distributions for 240 MeV a-particles, obtained from the HF
calculation for the ground state density using Sly4 interaction. Experimental data is presented by
black dots. Solid lines present the best fit, obtained with the parameters given in Table VI.

In the procedure, we first use the HF-RPA method with the projected out SSM to
obtain the strength distribution function (see Egs. (3.24), (3.57)-(3.60) and (3.61)), and

to calculate fraction of EWSR exhausted for each excitation energy bin (0.2 MeV). The

solid line in the top panel of Figure 8 represents the results of such a calculation for ***Pb

nucleus completed using SL1 Skyrme interaction. Using this information we calculate

transition densities for each excitation energy bin, normalized to the fraction of EWSR,
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exhausted (see Eqgs. (3.25) and (3.52)). By use of the microscopic shape of the transition
density and the fraction of the EWSR exhausted at a given excitation energy we
calculate the double-differential cross section and the angle of maximal cross section
(presented in the middle panel of Fig. 8). In the experimental analysis it is customary to
normalize the transition density to the 100% EWSR for each excitation energy region,
and because our goal is the comparison of theoretical calculations with the
experimentally obtained data, we renormalize microscopic transition density to the 100%
EWSR exhausted for each excitation energy, and obtain a differential cross section at the

angle of maximal cross section presented in the bottom panel of Figure 8.
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FIG. 8. Fractions of the EWSR of the ISGDR exhausted at a given excitation energy, calculated
using the RPA with the SL1 Skyrme interaction (solid line) and the collective (dashed line)
transition densities, are presented in the top panel. The middle panel presents the double-
differential cross section calculated using the RPA transition density, obtained at the angle of
maximal cross section. In the bottom panel we present the differential cross section. The solid
line presents the result obtained using the RPA transition density renormalized to the
100%EWSR exhausted at a given excitation energy. The dashed line is obtained with the
collective transition density.
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In the bottom panel, the solid line presents the differential cross section at the angle
of maximal cross-section that is obtained using the microscopic shape of the transition
density renormalized to the 100% of the EWSR exhausted for each excitation energy
bin. The dashed line presents the differential cross section at the angle of maximal cross
section, obtained using the collective transition density (see Eq. (6.4)). Then, the dashed
line in the top panel represents the fraction of the EWSR exhausted at a given excitation
energy bin, as it would be calculated in the experimental analysis (with the collective
shape of the transition density).

The analysis explained above has been completed for 9OZr, ”6Sn, and 144Sm, and the
results for the %EWSR exhausted are presented in Figure 9 (for the SL1 interaction), in
Figure 10 (for all nuclei of interest for the SkM*, SGII, Sly4 and Sk255 interactions).

E1TO SL1

/E
B
L L L

S(EYE
T T T T

/E
T T T

0 10 20 30 40 50
E [MeV]

=)
(=]

FIG. 9. Same as the top panel of Figure 8 with the SL1 interaction for *Zr, ''°Sn, and '**Sm.
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As we can see the major finding of this calculation is that both the microscopic and the
collective models predict the presence of the ISGDR strength outside of the
experimentally explored region of 5-35 MeV. We also observe the trend of
overestimation of the EWSR exhausted by the collective approximation of the transition
density, which is widely used in the experimental studies.

To validate the results of our HF-RPA calculations we have performed the HF-RPA
calculations with the fully self-consistent particle-hole interaction (see Refs. [69, 70]).
The calculations were done with the SGII Skyrme interaction. The results of such

calculations for nuclei of interest are presented in Table VIIIL

TABLE VIII. Centroid energies of the ISGMR, EO, and the ISGDR, E1, obtained within fully
self-consistent HF-RPA calculations [69,70] with the SGII interaction are presented for 7y,
116Sn, 144Sm, and “®Pb nuclei.

Nucleus E0 (MeV) E1 (MeV)
7y 17.89 28.88
1esn 16.38 27.39
Sm 15.34 26.42
2%py 13.50 24.04

Comparison of the result of the fully self-consistent HF-RPA calculations, and of the
HF-RPA calculations without the spin-orbit and Coulomb particle-hole interactions with
the experimentally obtained values of the centroid energies of ISGMR and ISGDR,
shows that both methods are quite successful in reproducing the energies of the
breathing mode, EO, but overestimate the isoscalar dipole energies, E1, by 1-1.5 MeV
for the fully self-consistent calculations and by 1.5-3.0 MeV for the calculations with

approximated spin-orbit, momentum and Coulomb terms, . Hence, the ratios E1/EQ are



89

also overestimated with respect to experimental values. To address these issues we have

turned to the Fermi liquid drop model with the collisional Fermi surface distortion.

B. Calculation of Centroid Energies EO and E1, Widths /0 and /" 1, and Ratios
E1/E0 within FLDM

To calculate the centroid energies of the isoscalar monopole and the isoscalar dipole
resonance excitations, E0 and E1, and their widths, and widths /0, and /" 1, respectively,
we apply the Fermi liquid drop model with the effect of collisional damping, developed
in Chapter V. The basic equation of motion for the bulk particle density variation in the
nuclear interior, derived from the collisional Landau-Vlasov equation (5.63), under the
assumption of the sharp density distribution (Egs. (5.79), (5.80)), is presented in Eq.
(5.65), with the bulk density variation defined by Eq. (5.48). The Fermi surface
distortion is accounted for through the kinetic coefficients (Egs. (5.66)) in the

expressions for the sound velocity, ¢, , and the friction coefficient, ¥, given by

equations (5.68) and (5.69), respectively. The dispersion equation corresponding to the
equation of motion is presented in Eq. (5.67).

To find the centroid energies EO, and E1, and the widths 70, and /" 1, of the ISGMR
and ISGDR, respectively, we look for the lowest non-zero solutions of the secular
equations describing the boundary conditions for the isoscalar monopole (Eq. (5.91)) and
dipole (Eq. (5.87)) resonances, which satisfy the dispersion relation (5.67). According to
equations (5.66), (5.68), and (5.69), the positions E =7 Rew, and the widths

' =hy ¢’ of the compression modes depend on the relaxation time, 7 . Considering the

nucleus to be cold, we take the relaxation time to be dependent on the collisional
damping parameter, S, and the position of the resonance (Eq. (5.78)). Finding solutions
for equations (5.91) and (5.87), augmented by the dispersion relation (5.67), gives us the
dependence of the centroid energies of the isoscalar monopole and the isoscalar dipole

excitations and their widths on the damping parameter £ .
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We carried out calculations using the following nuclear parameters: the nuclear
surface tension was taken to be o =1.2MeV/fm2, the equilibrium nuclear radii, densities
and Fermi energies for the nuclei of interest were determined from the experimentally

measured rms-radii (see Ref. [65]) as

R, = §<r2>exp'=r0A”3, (6.5)
3A

=24 6.6

Peq 47R;, (6.5

e, =07)"n*18m r?. (6.7)

The nucleus incompressibility K was determined from the experimental energy of the

giant monopole resonance EO,,, and experimental rms-radii by using the scaling model

definition. Namely,

2
m ()
exp.

K= 1 (6.8)

Plots of the centroid energies of the ISGMR and ISGDR as a function of the

damping parameter S for the nuclei of interest are presented in Figure 11. As we can

see, for all four nuclei the centroid energies of both the ISGDR, E1, and the ISGMR, EO,

are monotonic functions of . We need to point out that the ISGDR energy E1 varies
with £ much faster than the ISGMR energy EO. Equations (5.66) are valid for any
relaxation times and, thus, describe the rare and the frequent collisions limit, as well as
the intermediate cases. In the rare collision regime (Re@ 7 >>1, large f), the

compression mode energies EO and E1 are saturated at certain values, which correspond

to the zero sound velocity ¢, = = \/ (K + (24/ S)SF )/9m . In the frequent collision

regime (Rew 7 << 1, small f), the contribution from the Fermi surface distortion in

zero-sound velocity goes to zero, due to #, ————0, and both energies EO and E1
@yt—0

reach the first sound limit of the liquid drop model (LDM) at ¢, =c¢, =/ K/9m .
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FIG. 11. Centroid energies of the ISGMR, EO, and the ISGDR, E1, in *Zr, ''°Sn, '**Sm and ***Pb
nuclei presented as functions of the damping parameter /3 .

Our calculations also show the non-monotonic behavior of the widths /0 and 71 of
the ISGMR and the ISGDR, respectively. This behavior is a consequence of the memory
effect (w-dependence) in the friction coefficient ¥ (see Eqs.(5.66) and (5.69)). In the

rare collision regime the widths exhibit the quantum behavior, I" o< 1/ 7, while in the

frequent collision regime we observe the hydrodynamic behavior, I"e< 7. As it can be
seen in Figure 12, the width of the ISGDR, 71, is significantly larger than width of the
ISGMR, 70.
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FIG. 12. Collisional widths 70 and 72 in ***Pb of the ISGMR and ISGDR, respectively. A
smooth non-monotonous dependence of the widths of collective excitation on the dampening
parameter [ is observed

The relative location of the dipole and monopole energies for the four nuclei of

interest 90Zr, 116Sn, 144Sm, and 2®Pb is given by

(EVEO),y .. =1.75-1.86, (6.9)
(E1/E0),. =1.76-1.80, (6.10)
(EV/EO0),,, =1.62-1.76, (6.11)

where (E1/E0) was obtained in the zero-sound limit 7 — oo, and (E1/E0)

FLDM ,7—o0 RPA
corresponds to the result of the microscopic HF-RPA calculations, presented in the
previous sections of this chapter.

The ratio (E1/E0),. is for the scaling model of Ref. [32], where
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K . [TK+(27/25)e
W, and 151sc_h\/5 m<r2> E (6.12)

The ratios of Eq. (6.3) exceed the LDM estimate (E1/E0),,,, =1.43and the

EO,,. ="

experimental data (E1/ EO)exp_ =1.56+0.8 of Ref. [24, 25]. The enhancement of the

ratio (E1/E0),,,., - With respect to the LDM estimate is due to the fact that the Fermi

surface distortion effect on the monopole energy EO is relatively small and EO appears
closer to the prediction of the classical LDM. On the other hand, due to the Fermi
surface distortion, the FLDM centroid energy of the isoscalar dipole resonance E1 is
significantly shifted up with respect to the LDM result.

The variation of the damping parameter f in equation (5.78) allows us to fit the

ratio (E1/EO0),,,,, to the experimental value, (E1/E0), . In Figure 13 we show the

dependence of the energy ratio E1/EQ on the nuclear mass number A . Considering the

dependence of the centroid energy ratio (E 1/E 0) on the damping parameter, S, we

FLDM

find a good agreement between the experimental centroid energy ratio (E 1/E 0).. and

Exp.
the results of the FLDM calculations for the value of the damping parameter, £ = 0.5
(bright blue line in Fig. 13).

To compare the collisional widths of the isoscalar compression excitations with the
experimental values reported in literature we calculate root-meen-square widths

assuming a Gaussian form for the strength function and using the relation

I'> =40?/21n2 . In Figure 14 we have plotted the A-dependence of the collisional
rms-widths for the ISGMR, ¢0, and the ISGDR, &1, (given by the dot lines) evaluated
for the collisional damping parameter f = 0.5. The deviation of the FLDM collisional
rms-widths ¢ from the reported experimental rms-width oy, (see Refs. [24, 25]), can be

explained by an additional contribution to ¢ ¢y, due to the fragmentation width.
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FIG. 13. Dependence of the energy ratio E1/EQ on the nuclear mass number A. The ratio
(E1/EOQ)g1py 18 obtained within the current model with the relaxation parameter (see Eq. 5.78)
f—0 (dark red dashed line, LDM), f—o (dashed green line, zero sound regime), and S = 0.5
(solid blue line). The experimental ratios [24,25] for the nuclei of interest are presented by the
solid black line. Also presented are ratios obtained as results of the HF-RPA calculations,
performed with SGII (dash dot), SLy4 (dash dot dot), and Sk255 (short dot) Skyrme interactions.

We need to point out that the value of B =0.5 is significantly smaller than the
values of f=1.5-4.25 obtained for nuclear matter [71-73]. Also, the fact that, for a

finite nuclear system, the damping effects are enhanced in the surface region because of
the diffuseness of the equilibrium phase-space distribution function in the collision
integral [74], needs to be taken into consideration. Within the Fermi liquid drop model,
this surface enhancement of the two-body relaxation can be phenomenologically
imitated as an additional contribution to the collision integral and can lead to an effective
decrease of the value of damping parameter with respect to the collisional damping

parameter of the nuclear matter.
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FIG. 14. Dependence of the ISGMR rms-width, 60, and the ISGDR rms-width, ¢1, on the
nuclear mass number A. The FLDM result (dot-line) is obtained using the relaxation time of Eq.
(5.78) with damping parameter S = 0.5. The experimental data is taken from Refs. [24,25].
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CHAPTER VII

SUMMARY

In this dissertation we have presented a microscopic description of giant resonance
excitations in several nuclei based on Hartree-Fock-RPA calculations performed with
various Skyrme effective interaction parameterizations. Five of the existing
parameterizations, namely SL1 [7], SkM* [5], SGII [33], Sly4 [37] and Sk255 [38], with
the value of the nuclear matter incompressibility coefficient ranging from 215 MeV to
254 MeV were used in the analysis of collective excitations in 90Zr, 116Sn, 144Sm and
2%8ph nuclei.

A theoretical description of the ground states of 90Zr, 116Sn, 14Sm and 2°®Pb nuclei
was obtained within the Hartree-Fock method using all five Skyrme force
parameterizations. Calculated values of the charge root-mean-square radii and binding
energies are in satisfactory agreement with the experimental data.

The coordinate space formulation of the RPA Green’s functions was used to obtain
transition strength distributions for isoscalar monopole and isoscalar dipole excitations
in *°Zr, ''°Sn, "**Sm and 2**Pb nuclei. The single-particle continuum was discretized and
the width of excited single-particle states was approximated by introducing a Gaussian
half-width into the free system Green’s functions. The issue of the spurious state
contribution at non-zero excitation energy in the isoscalar dipole strength distribution
function due to the not fully self-consistent description of the particle-hole effective
interaction within the RPA, has been addressed by the introduction of the projection
operator,

AEDNAOENES

i=1

~3

The transition strength distribution functions, calculated with this correction, were used
to determine the quantities of interest for the case of the isoscalar giant dipole resonance,

such as average resonance energies, sum rules, and transition densities.
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Fractions of the energy weighted sum rule exhausted within the experimentally
accessible excitation energy region were calculated. Based on the results of calculations,
it was concluded that practically the entire isoscalar monopole and isoscalar dipole
energy weighted sum rule was located below the 35 MeV excitation energy in all nuclei
considered. The theoretical results for the average (centroid) isoscalar monopole and
isoscalar dipole resonance energies were compared to experimental values for *°Zr,
116Sn, 144Sm and 2°*Pb nuclei [24,25]. The HF-RPA average energies of the isoscalar
monopole appeared to be in a good agreement with the experimental data for all Skyrme
interactions used. However, for the interactions which give higher value for the nuclear
matter incompressibility coefficient, namely, SL.1 (230 MeV) and Sk255 (254 MeV), the
average energies of the isoscalar monopole excitation were overestimated with respect to
the experimental values by 0.8 MeV and 1.2 MeV (for SL1 and Sk255, respectively) in
lighter nuclei. The HF-RPA results for the isoscalar dipole resonance provided
information for both the low excitation energy component (at 1ho) and the high
excitation energy component (at 3hw) of the resonance. The average energies of the high
excitation energy component of the strength distribution appeared systematically higher
than the experimentally observed values, by 1.5 to 3 MeV in all nuclei of interest. The
average energies of the low excitation energy component of dipole resonance appeared
systematically lower than experimental values by about 5 MeV in the case of %7r and by
about 3 MeV for 116Sn, 144Sm and *°*Pb nuclei. This might be an indication that a
Skyrme type effective nucleon-nucleon interaction needs additional terms to describe the
full complexity of the collective excitation in nuclei. It may also be necessary to consider
higher order terms (such as two-particle-two-hole excitations of the ground state) in the
theoretical calculations.

The differences of the DWBA descriptions of inelastic scattering reactions based on
collective and microscopic transition densities were also investigated. The DWBA
calculations were performed for 240 MeV a-particles scattering on 97r, 11%Sn, **Sm and
208pp, target nuclei. The optical potentials were obtained by folding the Hartree-Fock

ground state density with a density-dependent Gaussian-shape a-nucleon interaction.
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The parameters of the a-nucleon interaction were obtained by fitting experimentally
measured elastic cross-sections for all nuclei of interest.

Transition potentials were calculated by folding the transition interaction expressed
in terms of the a-nucleon effective interaction and its derivative with respect to the
ground state density, with both microscopic (RPA) and collective model transition
densities. Hartree-Fock ground state densities were used for calculations of the collective
transition densities. Angular distributions of 240 MeV a-particles were obtained for the
isoscalar dipole excitations of all of the target nuclei of interest. Analysis of the
calculated inelastic cross sections under the assumption of the microscopic results as the
experimental data, has shown that experimental analysis based on the DWBA reaction
description and collective transition densities tend to overestimate the energy weighted
sum rules for the isoscalar giant dipole resonance excitation. This conclusion might be
important for interpretation of the experimental results. Particularly, in the case of
isoscalar dipole resonance, obtaining 100% of the energy weighted sum rule within a
certain excitation energy region does not assure that the entire energy weighted sum rule
for the low excitation energy and the high excitation energy components of the isoscalar
dipole resonance was found. That might indicate that the contribution to the transition
strength at higher excitation energies has to be taken into consideration, which would
raise the values of average resonance energies.

The inability of the HF-RPA description to correctly reproduce the average energies
for the isoscalar giant dipole resonance was also observed. An alternative approach to
studying properties of collective excitations, particularly, Fermi liquid drop model with
the dynamical Fermi surface distortion was also investigated.

The relation of the Fermi liquid drop model and the time-dependent Hartree-Fock
approximation was investigated within the Wigner distribution function formalism. A
simple dispersion relation for the Fermi liquid with the dynamic (collisional) Fermi
surface distortion was obtained from the linearized Landau-Vlasov kinetic equation.
Appropriate boundary conditions for isoscalar monopole and isoscalar dipole excitations

were drawn, and the centroid energies and the collisional widths of isoscalar monopole
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and dipole excitations, as functions of the damping parameter S, were calculated. From
the comparison of the theoretically calculated result (for the ratios of the centroid
energies of the isoscalar dipole and the isoscalar monopole, E1/E0) to the experimental
values of the ratios of isoscalar dipole to isoscalar monopole centroid energies, E1/EQcyp,
the value of the damping parameter was deduced to be = 0.5. Theoretical values of the
root-mean-square widths of the isoscalar monopole and dipole excitations,
corresponding to the mentioned value of the damping parameter, are lower than the
experimentally observed root-mean-square widths for both the ISGMR and the ISGDR.
The observed underestimation can be explained by the fact that only the collisional
contribution to the widths was taken into account by the FLDM calculations. Also, more
realistic approach to the description of the shape of the particle density on the nuclear
surface might introduce additional contribution to the collisional width. It must be noted,
that for the deduced value of the damping parameter the values of the calculated centroid
energies were systematically higher than the experimental values for all nuclei of interest
by 2.5 to 3 MeV and 3 to 4.5 MeV, for the isoscalar monopole and the isoscalar dipole

resonances, respectively. Therefore, further investigation of this issue is necessary.



[13]
[14]

[15]

100

REFERENCES

T. H. R. Skyrme, Phil. Mag. 1, 1043 (1956); T. H. R. Skyrme Nucl. Phys. 9, 615
(1959).

J. S. Bell and T. H. R. Skyrme, Phil. Mag. 1, 1055 (1956).

D. Vautherin and D. M. Brink, Phys. Rev. C §, 626 (1972).

J. W. Negele, Phys. Rev. C 1, 1260 (1970).

J. Friedrich and P. -G. Reinhard, Phys. Rev. C 33, 335 (1986).

M. Waroquier, J. Sau, and K. Heyde, Phys. Rev. C 19, 1983 (1979).

K. -F. Liu, H. Luo, Z. Ma, Q. Shen, Nucl. Phys. A534, 1 (1991).

M. Beiner, H. Flocard, N. Van Giai, and P. Quentin, Nucl. Phys. A238, 29 (1975).
A. Kolomiets, O. Pochivalov, and S. Shlomo, Phys Rev. C 61, 034312 (2000).

J. P. Blaizot, Phys. Rep. 64, 171 (1980).

T. S. Dumitrescu and F. E. Serr, Phys. Rev. C 27, 811 (1983).

H.P Morsch, M. Rogge, P. Turek, and C. Mayer-Boricke, Phyes. Rev. Lett. 45, 337
(1980).

C. Djalali, N. Marty, M. Morlet, and A. Willis, Nucl. Phys. A380, 42 (1982).

H. L. Clark, and Y. —W. Lui, and D. H. Youngblood, Phys. Rev. C 63, 031301(R)
(2001).

B. F. Davis, U. Garg, W. Reviol, M. N. Harakeh, A. Bacher, G. P. Berg, C. C.
Foster, E. J. Stephenson, Y. Wang, J. Jinecke, K. Pham, D. Roberts, H. Akimune,
M. Fujiwara, and J. Lisantti, Phys. Rev. Lett. 79, 609 (1997).

I. Hamamoto, H. Sagawa, and X. Z. Zhang, Phys. Rev. C §7, R1064 (1998).

S. Shlomo and A. 1. Sanzhur, Phys. Rev. C 65, 044310 (2002).

B. K. Agrawal, S. Shlomo, and A. I. Sanzhur, Phys. Rev. C 67, 034314 (2003).
A. Kolomiets, O. Pochivalov and S. Shlomo, Progress in Research (Cyclotron
Institute, Texas A&M University, Texas, 1999), p. III-1.

M. L. Gorelik, S. Shlomo and M. H. Urin, Phys. Rev. C 62, 044301 (2000).



[32]
[33]
[34]

[35]
[36]
[37]

[38]
[39]

[40]
[41]

101

G. Colo, N. Van Giai, P. F. Bortington, and M. R. Quaglia, Phys. Lett. B 485, 362
(2000).

D. Vretenar, A. Wandelt, and P. Ring, Phys. Lett. B 487, 334 (2000).

J. Piekarewicz. Phys. Rev. C 62, 051304(R) (2000).

D. H. Youngblood, H. L. Clark, and Y. —W. Lui, Phys. Rev. C 61, 034315 (2004).
D. H. Youngblood, H. L. Clark, and Y. —W. Lui, Phys. Rev. C 61, 054312 (2004).
M. Uchida, H. Sakaguchi, M. Itoh, M. Yosoi, T. Kawabata, Y. Yasuda, H. Takeda,
T. Murakami, S. Terashima, S. Kishi, U. Garg, P. Boutachkov, M. Hedden, B.
Kharraja, M. Koss, B. K. Nayak, S. Zhu, M. Fujiwara, H. Fujimura, H. P. Yoshida,
K. Hara, H. Akimune, and M. N. Harakeh, Phys. Rev. C 69, 051301 (2004).

D. J. Thouless, Nucl. Phys. 22, 78 (1961).

G. F. Bertsch and S. F. Tsai, Phys. Rep. 18, 125 (1975).

S. F. Tsai, Phys. Rev. C 17, 1862 (1978).

S. Shlomo and G. F. Bertsch, Nucl. Phys. A243, 507 (1975).

A. M. Bernstein, in Advances in Nuclear Physics, edited by M. Baranger and E.
Vogt (Plenum, New York, 1969), Vol. 3, p. 379.

S. Stringary, Phys. Lett. 108B, 232 (1982).

N. Van Giai and H. Sagawa, Nucl. Phys. A371, 1 (1981).

H. L. Clark, Y. -W. Lui, D. H. Youngblood, K. Bachtr, U. Garg, M. N. Harakeh
and N. Kalantar-Nayestanski, Nucl. Phys. A649, 57c (1999).

O. Bohigas, A. M. Lane, and J. Martorell, Phys. Rep. 51, 267 (1979).

G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).

E. Chabanat, P. Bonche, P. Haensel, J. Meyer and R. Schaeffer, Nucl. Phys. A635,
231 (1998).

B. K. Agrawal, S. Shlomo and V. Kim Au, Phys. Rev. C 68, 031304(R) (2003).
A. Bohr and B. Mottelson, Nuclear Structure (Benjamin, London, 1975), Vol. 11,
p- 399.

S. Shlomo, Pramana-J. §7, 557 (2001).

G.F. Bertsch, Suppl. Prog. Theor. Phys. 74, 115 (1983).



[42]
[43]

[58]

[59]
[60]
[61]

[62]
[63]

102

E. P. Wigner, Phys. Rev. 104, 749 (1932).

P. Ring and P. Schuk, The Nuclear Many-Body Problem (Springer-Verlag, New
York 1980), p. 603.

V. M. Kolomietz and H. H. K. Tang, Phys. Scripta 24, 915 (1981).

A. K. Kerman and S. E. Koonin, Ann. Phys. 100, 332 (1976).

D. M. Brink, M. Di Toro, Nucl. Phys. A372, 151 (1981).

A. Vlasov, J. Phys. (USSR) 9, 25 (1945).

C.Y. Wong and J. A. McDonald, Phys. Rev. C 16, 1196 (1977).

C.Y. Wong, J. A. Maruhn, and T. A. Welton, Nucl. Phys. A253, 469 (1975).
G. F. Bertsch, edited by R. Balian, M. Rho, and G. Ripka, Nuclear Physics with
Heavy Ions and Mesons (North-Holland, Amsterdam, 1978), Vol. 1, p. 207.

G. Bertsch, Nucl. Phys. A249, 253 (1975).

G. Holtzwarth and G. Eckart, Nucl. Phys. A325, 1 (1979).

G. Eckart, G. Holtzwarth, and J. P. Da Providencia, Nucl. Phys. A364, 1 (1981).
G. Holtzwarth and G. Eckart, Nucl. Phys. A396, 171c (1983).

V. M. Kolomietz, Sov. J. Nucl. Phys. 37, 325 (1983).

D. J. Thouless, Nucl. Phys. 21, 225 (1960).

L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959), p.
47.

A. G. Magner, V. M. Kolomietz, H. Hofmann, and S. Shlomo, Phys. Rev. C 51,
2457 (1995).

D. Kiderlen, V. M. Kolomietz, and S. Shlomo, Nucl. Phys. A608, 32 (1996).

V. M. Kolomietz and S. Shlomo, Phys. Rev. C 61, 064302 (2000).

P. Ring and P. Schuk, The Nuclear Many-Body Problem (Springer-Verlag, New
York 1980), p. 527.

K. F. Liu and G. E. Brown, Nucl. Phys. A265, 385 (1976).

M. Rhoades-Brown, M. H. Macfarlane, and Steven C. Pieper, Phys. Rev. C 21,
2417 (1980); M. H. Macfarlane and S. C. Pieper, Argonne National Laboratory
Report No. ANL-76-11, Rev. 1, 1978 (unpublished).



[64]
[65]

[66]
[67]

[68]
[69]

[70]

[71

—
~J
[\

—
3
(O8]
—_— e

[74

103

G. Audi and A. H. Wapstra, Nucl. Phys. A565, 1 (1993).

E. G. Nadjakov, K. P. Marinova, and Yu. P. Gangrsky, Atomic Data and Nuclear
Data Tables 56, 134, (1994).

D. H. Youngblood (private communications)

D. H. Youngblood, P. Boducki, J. D. Bronson, U Grag, Y. —-W. Lui and C. M.
Rozsa, Phys. Rev. C 23, 1997 (1981).

P. Chomas, T. Suomijarvi, N. Van Giai, and J. Treiner, Phys. Lett. B 281, 6 (1992).
T. Sil, S. Shlomo, B. K. Agrawal and P. G. Reinhard, Phys. Rev. C 71, 034316
(20006).

S. Shlomo, Tapas Sil, V. Kim Au and O. G. Pochivalov, Phys. Atom. Nucl. 69,
1132 (2006).

H. S. Kohler, Nucl. Phys. A378, 159 (1982).

M. M. Abu-Samreh and H. S. Kohler, Nucl. Phys. A552, 101 (1984).

P. Danielewicz, Phys. Lett. 146B, 168 (1984).

V. M. Kolomietz, S. V. Lukyanov, V. A. Plujko, and S. Shlomo, Phys. Rev. C 58,
198 (1998).



104

APPENDIX A
SECOND QUANTIZATION

In this appendix we describe the second quantization (SQ) formalism. This formalism is
an alternative formulation of the usual quantum mechanics, which has turned out to be
very useful for handling the many-body problem. We are interested in the use of the SQ
for fermions, and in the following we will give a short introduction and some important
formulae.

We start with a complete orthogonal set of single-particle states | ,u> , where u

stands for a set of quantum numbers, for example:

(1) spatial coordinate 7, spin 0 =0, and isospin T=7,

(i1) the quantum numbers of an oscillator basis |nl]m>

Orthogonality and completeness are expressed as
(ulw)=3,,. 2 |aul =1 (A1)

(For continuous quantum numbers such as 7, the 5ﬂ . will mean &(7 —7’) and the sum

z will be replaced by Id? )

u

The coordinate representation of the state | ,u> is given by

0,()=0,(.0,.7)=(7.0..7| ). (A2)
Starting with this set of single-particle states, we can construct a complete orthogonal set

of totally antisymmetric A-body wave functions as:

( szgn P{¢ﬂ ¢ﬂ }E
’ z 1 A
1
VA !det{/“‘l SN (A.3)
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In this equation, (1)---(A) are particle indices. We can also characterize the wave

function &, , by the “occupation numbers”, { n, }, which for a system of fermions

U
indicate whether a particular number u is contained in the A numbers { Mol A}.

Obviously we have

don,=A. (A.4)

y7i

We now can construct a Hilbert space, which contains a vacuum (no particle) |O>, all

the one—particle states, all the antisymmetrized two-particle states, and so on...
H={Hy, H, 7b,...}.

The wave functions @, -

o, = Py, correspond to basis states |n1,n2,...> in this Hilbert

space, which characterized by the occupation numbers n,, (occupation numbers

representation), such that

cp{n#}(l,...A): (Lo Alny,n,,..0). (A.6)
These states are orthonormalized
<n1,n2,...,nﬂ,... nf,n;,...,n;,...> =0,,0, ;0 . .. (A7)

utu

We now will address ourselves to a fermion system. Since n,, can only have values 0

and 1, we may define the action of the annihilation operator a, as

= 0,...) =0, (A.8)

aﬂ‘nl,...,nﬂ = 1,...> = ‘nl,...,nﬂ = O,...> , aﬂ‘nl,...,nﬂ

. . . . A4
from which, by taking a complex conjugate, we get the creation operator, a,, as
A+ — — _ A+ — —
aﬂ‘nl,...,nﬂ —O,...>—‘n1,...,nﬂ —1,...>, aﬂ‘nl,...,nﬂ —1,...>—0. (A9)

From definitions (A.8) and (A.9) we gain the fact that

0, for u#v,
@,a7 +a7a, )ty ) = (A.10)
‘nl, n >, for u=v,

e My seen

and, hence, get the anti-commutation relations,
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la,.6;] ={a,.a:} =a,ar +aza, =5, (A.11)
In the same way, one can show that
la,.a,] =lag.a;] = (A.12)

The state with the occupation numbers

, ,> = |0> is the vacuum. We thus have

a ﬂ|O> =0, for all i, hence,

|"1’ oy, H( )

7

.4y |0). (A.14)

Va

1. Field operators in the coordinate space
Using the single-particle wave functions ¢, (Fl O, Tl) in the Eq. (A.2) we can define
creation and annihilation operators 4" (7,o,7), a(7,o,7), which depend on the

coordinates ¥, o,and 7 :

alF,o.t)=> ¢, 0.7)a,; o (Fo17)=>0,l(F07). (A.15)
"

u

With Eq. (A.1) we can invert this relation,
G = ZIdWZ (F,o.t)a(F,0.7), a) = z.[dmﬂ (F,o,7)a" (F,0,7), (A.16)

and gain anticommutators

[a(?,a, t).a*(F, o, r')L =

> 0,F.0.0)0,F .0\ a,.a;], =6,,6.6F-7). (A.17)
7R
[a(F,0.7).a(F",0".7)], = [a+(F, o,7).a* (¥, a’,z")L =0. (A.18)

We can express the many-body wave function in Eq. (A.3) by

A)=@y, (1., A) = (0la(A)...a(l)n,,ny,.on,),  (A.19)

o, (L, 1
1M A \/;

and
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MMy, =jd1...dALcI>{ (1., A)a™ (1)..a* (A)0). (A.20)

Jar "

2. Representation of operators

Starting from a vacuum |0> we have expressed all states of the many-body system by
creation and annihilation operators &;, a .- In the following, the same will be done for
operators. We have to distinguish between one- and two-body operators.

A one-body operator of an A-particle system, is given by the sum of A operators f,

which act on the coordinate of particle i:

>

F= ZA: , (A21)

i=l

Its matrix elements in the | ,u> representation are

Fur =(u|f]V). (A22)

that is,

=" £,.0,00). (A.23)
The representation of F in the operators a,, a, is given by
F=Yf,a.a,. (A.24)
uyv
To show this, we need to prove that
> fio(l.... A)=(1. ,A|ZfW ala,|®). (A.25)
On the I. h. s., from Egs. (A.19), (A.16), and (A.23)we have
2 f{0la(4).al)-al}ny e, ) =
z Z f ¢:UA l ”'¢,U1 (1)<0|&:UA ”'&,U] |q)> =

i

ZZ zfﬂﬂ ¢ﬂA ¢ﬂ 1)<0|a : &ﬂ1|q)>

Lof
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This is identical to the r. h. s.:

Z zfﬂﬂ ¢ﬂA ¢ﬂ ¢ﬂ1 1)<0|aﬂA A+A |q)>

.

2.2 200 (4)-0,, -0, (N0, 4,4, | ®).

iof
In the most general case fl will be an integral operator (a “nonlocal” one-particle
operator):

fo(F.0.2)= 3 [dF fr oo (7.7 )07 0. 7). (A.26)

O'
A two-particle operator as, for example, a two-body interaction, is given by a sum of

operators v, which acts on the coordinates of the particles i and j
V=3,
<j=1

In complete analogy to Eq. (A.24), we can show that V can be written as

l\)|>—‘

i . (A.27)

i

~ 1 . 1
_ A+ A+ A A _ _ A+ A+ A A
V= 5 z Vv @,y A, A, = Z z (vﬂm,v, Vi )aﬂav a,a, , (A.28)
s u—ty
where
Vourv = Vawir =Yty (A.29)

is the fully antisymmetrized matrix element of the interaction.

In the most general case, v; will be an integral operator in two variables, with matrix

elements given as:

Ve = (v il vy =[d1 a2 a3 d4 ¢;,()p, 2(1.23.4)p, (3)p, (4). (A.30)
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APPENDIX B

ENERGY DENSITY CONTRIBUTIONS FROM DENSITY DEPENDENT AND
TENSOR TERMS OF THE EXTENDED SKYRME FORCE

In this appendix, the total energy density of the Skyrme effective interaction is found for

closed-shell axially symmetric nuclei.
(@

kyrme q)> = J'd?H Skyrme (;: )
HSkyrme(F): H,. (?)+ Hs.o.(F)+ HD.D.(F)+ H, (F)

. (B.1)

The central and the spin-orbit term contributions to the energy density are well known

from literature (see Ref. [3]):

1 1 I |
Hc(r)z§t0[1+§x0Jp2(r)—Eto(§+xOJ[p; +Pf]

2 , (B2
_%{3;1(1+ ! xlj t2(1+—x2ﬂp(")vzp(”)
%Méﬂljﬂz (s ﬂ[,) FIV*p, )+ 2,720, 7)
+ =720+ 7 )l 0 7 6)
Heo ()= =2 W [pERIG)+ p, (P97, 00+ 2, ()77, ) (B.3)

This is done through calculations of matrix elements of these components for the Slater

determinant wave function & given by Eq. (2.13). For a two-body interaction

%ZVH such a matrix element is given by:
i



110

<‘I’|Z |CI)> 22<ZJ|V12(1 P12P1(2;P1€)l]> (B.4)

)

while for three-body interaction ¢ Z ;« the matrix element becomes:
ijk

<(I)|z ijk | q)> 6 Z<ijk |V123 (1 - P1'2P1(27P1§ - P2'§P2§P2T23
ijk ijk
~ PLPI Py + PLPSPLPLPI Py,
+ PLPSPLPLPSPL ) ijk), (B.5)
where |l]> and |l]k> are products of single particle wave functions ¢, (Fl), ?; (Fz), and

o, (?3 ),and P", P°,and P” are exchange operators for special, spin, and isospin

coordinates, respectively. The explicit form of the spin exchange operator is:

R;=%0+@6n, (B.6)

where &, and &, are spin operator acting on the single-particle wave functions

n

depending coordinates 7, and r, , respectively, which, in spin coordinate representation,

are the Pauli matrices. We assume that there is no charge mixing as a result of isospin

coordinate exchange, and, thus, the isospin exchange operator is given by:

P, =0, (B.7)

where 7, and 7,, are marking the isospin coordinates (7 =+ for protons and 7 = —%

for neutrons).

The results of calculations are expressed in terms of nucleon densities p, (7), p(7),

kinetic energy densities 7. (r), 7(¥), and spin current densities J ; (), J(F), where

index 7 denotes the isospin. These densities are defined in terms of single-nucleon wave

functions:

A

SY oo e o), pli)=Yp.6): ®.3)

i=l o
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=Yoo . oF)= 37, (7): B.9)

i=l o
A
7.7) ==Y ¢! (7.0, 0V g, (7.0, )x(ol6]o?)],  T(F)=Y7.(F). B.10)
i=l 0,07 T
Before evaluating matrix elements (B.4) and (B.5) for the density dependent and
tensor terms of the Skyrme interaction, it is useful to introduce several identities, which
involve single-nucleon wave functions and will be used in all derivations below.

Under the assumption of time reversal invariance, if state i is occupied, then the time

reversed state i is also occupied. For spinor particles, the wave function @; (F,o,7) of
state i can be obtained from wave function o, (F,o,7) as
. (F.0,7)=0¢,(7,0,7)=-20¢;(F~0,7), o=%1. (B.11)
Therefore, from Eq. (B.7) and (B.10) it followsthat
Z(p F.0.7)0,(F.0,.7)=16,, p.(F). (B.12)
From expression (B.11) and from the explicit form of the Pauli matrices, the following
identity can be deduced:

> ¢ (F.0,.7)0,|6]0,)0,(F.0,.7)=0,

i,00,0,
or in the spinor form:

Z(o, F)op, (F (B.13)

The condition of the time reversal invariance, together with Eqgs. (B.8), (B.9), and

(B.13), provide us with the following results:
Yo/ (F.0.t)Vo,(F.0,7)=1Vp,(F), (B.14)
>/ (F.00V0,(F,0,7)=1Vp (F)-7,(F). (B.15)
Finally, using the identity
(6162 X5-16-2 ) = %(vla-l XvZOﬁ-Z )+%(vl X 6-1 XvZ X 52 )

+(v, 06 )7, 04, (B.16)
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where indices 1 and 2 by operators V and & indicate that these operators act on
functions of coordinates 7, and 7, respectively, we evaluate in terms of the spin

currents, the expression:

z¢ r1’71 rz’fz (V v XG102 (rl’fl)¢ji(’72’fz)’ (B.17)

where the third term is a product of two second-rank tensors. Under the assumption of
the axial symmetry together with the time reversal invariance, and upon insertion of Eq.

(B.14) into (B.17), the only non —vanishing term is the term containing

(ﬁl X0, )(62 X0, ) Therefore, according to definition (B.10), we obtain:
2oi(.5)p) (7.7,) V.V, 06,6.)0, (5.2 ), (7. 2,) = =17, (7)7,, (7). (B.18)

Now we can express the contributions to the energy density from density dependent and
tensor terms of the Skyrme interaction in terms of nucleon, kinetic energy, and spin

current densities defined in Eqgs. (B.8)—(B.10).

1. Density dependent term: V; = ¢t; (1 +x,P;7 ),0”’ (HT”)S(r —r, )

i J
Following Eq. (B.4) with the spin and isospin exchange operators defined by the Egs.
(B.6) and (B.7), taking into account presence of a d -function that renders P, =1, and

eliminating terms that vanish because of Eq. (B.10), one obtains:

Vi =5 (@[S gulixy ot (ol -7 @) =
1, VS 1 y
12 <l]|,0 ( )5("1 - {1_55@@ +x3(g_ 51,1/- jj|| l]> :

Integrating over one of the special variables and using Eq. (B.8) yields:

V,ﬁ%:%jd{p“(?){ F1+1x,) Zp, H

Hence, the contribution to the energy density from this term is:

Hy), I[P”’” Ji+4x,)- 0% (F)p2(F)+ p2 (7))o, +4)). (B.19)




113

2. Density dependent term:

1 P - - . - - - . o \=
Vi =§t13(1+x1313;)[k;5(ri _rj)5(rj _rk)+ 5(”[ _rj)5(r‘ _rk)kijz]'

J

To calculate matrix elements of the first and second terms we use Eq. (B.5). Using the

properties of integration of the o -functions one obtains:

1 P _ _ ~ _ _ _ _ o\~
Vzgzz)) :E<¢‘Zt13(l+x13qu)[kzy?5(”i _rj)a(rj _rk)+5(ri _rj)a(rj _rk)k;] ‘cb):

ijk

%z<ljk |(1 - ZP;-P]]]; Xl + XBP; )5(’7, - Fj )5(1_;] - i_”;( )];; (1 — P”’PUUP”T } ljk> )

ijk

We can again substitute P =1. Using Egs. (B.6) and (B.7) for spin and isospin
exchange operators, the explicit form of k; (k) =—14 (Vf —2V,V, +V? )), and omitting

the terms which vanish because of Eq. (B.13), one can rewrite the expression above in

the following form:

Vi = D (ko 7)ol —a){[vf—zijﬂ
ijk

|:(1 +%X13 )(1 - 51/-@ )_ (x13 +% )5717/- (1 - 5T/Tk )j|

~(©,9 6,6, )n.sl1- S, ., 8 S, (- S, . )]}I ijk)

Integrating over any two special coordinates and using Eqgs. (B.14), (B.15), and (B.18),

we obtain:
v =12 [ 1 rx) pVip—2pt—~p (Vo
Y 2 2
1 1 I
- Z{EPTZVZP TS PPV P = PP —EpTVpTVp}j

~ (x5 +% )Z{ppfvzpf -2pp,7, —%p(ﬁpf f - p2v2p, +2p7r, +%pf (Vo. )2}
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1 R 1
_EXIB(ZPT‘IJT_p JZ)"'ZE{prJTZ_p ‘]3}}

Using identities:

(Vo.) = %Vzpf AN (B.20)
= = 1
Vop=3V o p)-p. Vi p-pVp.]. (B:21)
integrating by parts and performing some algebra, one obtains:
Vi, =12 Jar 45 4, Xl 0V, )+ 26V, 7))

+56-25,), ()0, (I pl)- (1 +2 0,3 (), (7)+ 92 (), 7)

~( 5o, P2, )+ 3o, (717, )+ 2,717, )

Therefore, contribution to the energy density is:

) == 16 45 o070, () 92150, )

t

e, (7))

0 2500, (), (G 2o, (07, 7)., (07, ()T 7)

+26-25,)0, ()0, (V)= 425 o3 (), )+ 92

2o, ()24 2,173 (B.22)

3. Density dependent term: V,, =t,, (1 +x, B ) [l:” o (Fl —7 )5 (F, —7 )l; ]

i

Equation (B.5) for the matrix element of this term reduces to
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VD(?A = 6<¢|th3(l+x23 [k 5)’ =7 )5(}’ ;’;c)];q] |(1)> =

5k, 2827 -0 -

k,(1- P/ PP PT )ijk).

gy -y

Vo A e
,and k,, =——"5

For this term we use B; =—1. Using the definitions of l;nm = 5

with Egs. (B.6), (B.7), and (B.13), the above expression can be rewritten in the following

form:

VD(%. _t23 <Uk| (1+1x23+§ (x23+_ J [(2 5 )V 5 )61
24 % 2

_(2_5’ffk )vlé‘;i_?/) 5(7'/ _’7k) 6j +5rmvl<5(ri _rj) 5(F/ _7}{) V[
_517'”6"5(’7" _FJ) 5('7' _’71() v1']"'()523"‘57,@) 5(’7, _’7]) 5(’71' _’7k)

J

+§rjrk (1+§rirfx23) 5(’7; _?') 5(7" _Fk) (Vjvk) (6-j6-k) |l]k>

—

To obtain terms containing (ﬁnvm) (6,6, ) we integrate by parts, and use Eq. (B.13)
and the property of a o -functions: Vnﬁ (F -7 )= —Vm5 (7 —7,). Utilizing Eqgs. (B.8)-

(B.12), after integration over two arbitrary special coordinates we obtain:

Ve =k d{(l +%x23) (2/)21—%/)(%)2 —Z{pff—%pﬁpﬁmip(%f )Z}J

T

+(X23 +% )Z{zpprfr_%p(vpr)z_przfr+ipr(ﬁpr)2}+52{%pr‘13_2p JTZ}

T T

1 - = 1
_Ex23(p ‘12 _Z{IOT‘] Jz' _EIO JTZ _pr‘lf}jj|

After collecting similar terms (having utilized Egs. (B.20) and (B.21)) we arrive at:
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H, =2 e o} (090, 00+ 9207, )
116 (4+5x, ) 02 (FIV?p, (7 )+p:(f)vzpp(f))+§(8+7x23)pp(f)pn(f)VZp(f)
+§(1+x23 N2 (F)e, (7)+ o2 (F)e, (7))+§(2+x23 Vo2 (F)e, (F)+ p2 (F)e, (7))

5+ 450, (7)o, (el 2 (14 2 o, (P12 () + p, (P2 7)
3o, U+ )L s GGG B2

4. Tensor force term: V; =%T§(Fi —r [( ik XO‘ k,,)—g(&,&j )12”2 +c.c.] (j.fj).

According to Eq. (B.4), the matrix element of this term has the form:

1
=5<<1>|zv,~,-|<1>>=
ij

where we have accounted for the fact that adding the complex conjugate term doubles

matrix element of the direct term, [ o, U —i(oﬁ'i&j) k;. (fifj ) In the above
expression we can use P, =1. Moreover, considering the fact, that a tensor interaction
gives a non-zero contribution only when it acts on a spin triplet state, we can substitute

P7 =1 as well. Considering the formal definition of the isospin exchange operator

P! =1(1+7%,7,), we obtain:

Using the explicit form of knm , Egs. (B.8) and (B.24), and keeping only the terms which

do not vanish due to Eq. (B.13) and due to the axial symmetry, we obtain:

V=3T3 (eli-7) 09 ) 092 00,) (79,)] (6., 1) i)
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Using the identity:
(4B)CD)=(AC)BD)+(Cx B)Dx A). (B.25)
we rewrite term (" ﬁi) (*]Vi) as:
69,)(6,9,)=09 )6.6,)-.x6,)7,%x65,).
Now, by making use of Egs. (B.11) and (B.18) we obtain:
o = —%T [aF 7,()], (7).
Therefore, the contribution to the energy density from this term is:

HY = —%T J, ), (F). (B.26)

5. Tensor force term:
v, :—U( ,,,)5r—*)(61?)—%(65 i, o7 -7 )k, z.2,)

According to the Eq. (B.4), the matrix element of this term is:
A N ' o .
:_Z l]|[( i u)dr_r (O-'kij) 3(60- k§ llk 1)(1_PiiPii PUT)ZJ>

In this case we are allowed to use P, =—1, P =1. Following the same line of inquiry

as for the previous term yields:
v = ot -r Mo Jo,v )= Yoo o, 41l
Integrating the expression above over any of two coordinates gives:
v =—Ujdr[J +I2(F)+72(F)]

Therefore, the contribution to the energy density from the second term of the tensor-

interaction is:

HO (7 :4—U[J F)+ 02 (F)+ 72 ()] (B.27)
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Combining Egs. (B.19), (B.22), and (B.23), we get the contribution to the energy

density for density dependent terms:

HD.D.(F): HL()I.)D. +HL()2.)D. +H(D3.)D. =

Byt PN )= PN )+ 2+ )

12

_19%[%53 (4+5x23)+t13(5+4x13 )} (,OZ (F)VZ,O” (7)+ pj (F)Vzpp (;7))

1 R - - -
+Etz3(l+xz3 )(/); (’")Vzpp (r)+p3(r)V2pn (’”))

+9_16{%t23(8+7x23)_t13(5_2x13 )}pp (F)pn(F)Vzp(F)

+$[t23(2+x23)+t13(2+x13)] (pi(F)Tn(7)+p3(?)Tp(7))
+%t23(l+x23)(p§(7)fp (7)+ p2(7)e, (7))

+ i[t” (5+4x,,)+ %tw (4—x, )},0,, (F)p, (F)e(7)

: {%t23(4+3x23)+t13(x13 _1)} (pp(F)Jj(F)+p”(F)J; (F))

T
~ 545, (V3 6)+ , (7)12(F)

1 T (N [
_4_8[t23x23 +tl3xl3]p(r)‘]p(r)‘]n (")

By combining Egs. (B.26) and (B.27), one obtains the contribution to the energy density

from tensor-interaction terms:

1, ()= 101 0) =2 01 7,007,020 0)+ 2200 629
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6. Local energy density of the extended Skyrme nucleon-nucleon interaction.
Sum of the central, spin-orbit, density dependent and tensor terms of the energy density

provides an expression
Hw,,,ﬁ):gto(l+§x0jp2(f>——ro(§+xoj[p;(ﬂw;(f)]
iz el oo
T e B R P P
oy ) 0 3) o, (0, ()7

(5 (e . 0 00,0, 0)

+ %tﬁ (1+x, 02 (7)z, (F)+ p2(7)e, (7))
bl 240,24 02O, () + 026, )

—%{3t1(1+%x1j —t2(1+%x2ﬂp(7ﬁzp(’7)

1 I B
_%[twg_2x13)—5123(84_7x23)}/)p(r)pn(r)vzp(r)

+L{3tl %Hljﬂz(%xzﬂ(pp(fwzp,,<f>+pn(f>w<f>)

16

ol (90, )+ 20, ()
—L[zm(mxw>+§t23(4+sx23ﬂ(p;(f)van@)w:(f)vzpp(f))

192
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(
_%|:t13(x13 _1)+%t23 (4+3x23 )}(pp (7)-75 (F)+pn (’7)‘7; (F)) (B.30)
-é{tlxl+r2x2+sr—§v}f,,<f>1(f> il oG, (717, 6)
‘EW[P FVI(F)+p, (VI (7)+ p, (FIVT, (7))

Using the definition of the particle kinetic energy density (B.9), the total local energy

density can be written as:

2'2 1'2
H = 2 n + 2 - +HSkyrme +HCoulomb ’ (B31)
mp mn

where Hcouiomp 1s the Coulomb energy density contribution, containing both direct and

exchange terms:

Lh(’” r 12

- —/

r—r

Hcm,,omﬁ p () L)1 gl (B.32)




121

VITA

Oleksiy Grigorievich Pochivalov was born in Moscow, Russian Federation in 1975. He
attended High School No.140 of the Gorkiy district in Tashkent, Uzbekistan before
being admitted to the Physics Department of Kiev State University, Kiev, Ukraine in
1992. He graduated from Kiev State University in 1997, with a B.S. degree in nuclear
and particle physics, and after passing the entrance examination, started his graduate
study at the Kiev Institute for Nuclear Research. In 1998 he was accepted to the
Graduate Program at Texas A&M University. In 1999 he had temporarily left the
program due to family matters. In 2001 he was re-accepted to the Graduate Program at
Texas A&M University, and came to College Station to pursue his Ph. D. in physics. He
can be reached at the Department of Geology and Geophysics, Texas A&M University
Mail Stop 3115, College Station, TX 77843-3115.



