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ABSTRACT 

 

Flow Assurance and Multiphase Pumping. 

(December 2006) 

Hemant G. Nikhar, B.S., Indian School of Mines, Dhanbad 

Chair of Advisory Committee: Dr. Stuart L. Scott 

 

A robust understanding and planning of production enhancement and flow assurance is required 

as petroleum E&P activities are targeting deepwaters and long distances. Different flow 

assurance issues and their solutions are put together in this work. The use of multiphase pumps 

as a flow assurance solution is emphasized. Multiphase pumping aids flow assurance in different 

ways. However, the problem causing most concern is sand erosion. This work involved a 

detection-based sand monitoring method. 

 

Our objectives are to investigate the reliability of an acoustic sand detector and analyze the 

feasibility of gel injection as a method to mitigate sand erosion. Use of a sand detector coupled 

with twin-screw pumps is studied under varying flow conditions. The feasibility of gel injection to 

reduce slip and transport produced solids through twin-screw pump is investigated. A unique full-

scale laboratory with multiphase pumps was utilized to carry out the experimental tests.   

 

The test results indicate that acoustic sand detection works in a narrow window around the 

calibration signature. An empirical correlation for predicting the twin-screw pump performance 

with viscous fluids was developed. It shows good agreement in the practical operational limits – 

50% to 100% speed. The results indicate that viscous gel injection should be an effective erosion 

mitigation approach as it reduces slip, the principle cause of erosive wear. To correlate the 

performance of viscous fluid injection to hydroabrasive wear, further experimental investigation is 

needed. 
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NOMENCLATURE 

 

A Constant 

a Coefficient 

An Surface area 

B Constant 

b Coefficient 

BBo Oil formation volume factor, reservoir bbl/stb 

C Constant 

c Coefficient 

Cvisc Viscosity coefficient 

D Constant 

d Coefficient 

δ Clearance between screw tip and casing 

dp Diameter of pipe, ft 

ΔP  Differential pressure, psig 

ΔPf Frictional pressure drop 

Dp Pipe diameter, in 

Dt Screw tip diameter 

ε Pipe roughness 

E Constant 

e Exponent 

F Constant 

f  Friction factor 

f(vs) Sand Noise, 100 nV 

G Constant 

g(vs) Background noise, 100 nV 

Gc Gel concentration, lb/1000gal 

gc Gravity constant 

Gceff Effective concentration of gel, lb/1000gal 

Gci Gel concentration in injected fluid, lb/1000gal 

Gcw Gel concentration in water, lb/1000gal 

h Payzone thickness, ft 

H Constant 

J Productivity index, stb/day/psi 

k Permeability of porous media 

L Length of pipeline, ft 

l Length of leak path 
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μ Viscosity, cp 

μe Effective viscosity of power law fluid 

μeff Effective viscosity, cp 

N Rotary speed, RPM 

NRe Reynolds number 

p Reservoir pressure, psig 

pi Pressure downstream of screw thread 

pi+1 Pressure upstream of screw thread 

pwf Bottomhole pressure, psig 

q Liquid flow rate, bbl/day 

Qgel Gel flow rate, bbl/day 

qh Heat flow rate 

qi Injection flow rate 

Qs,i Slip flow across screw thread 

qw Base flow rate 

Qw Water flow rate, bbl/day 
ρ Density, lb/cu. ft 

re Reservoir radius, ft 

rw Wellbore radius, ft 

s Skin factor, dimensionless 

Tamb Ambient temperature 

TCL Center line temperature 

Un Overall heat transfer coefficient  

v Velocity of fluid 

 v  Average velocity of fluid, ft/min 

vs Velocity of sand, m/sec 
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1. INTRODUCTION 
 

The petroleum exploration and production operations are targeting fields in deep and ultra-deep 

waters throughout many parts of the world. Flow assurance deals with the risks and problems 

arising from the properties and behavior of produced hydrocarbons, associated fluids and solids. 

As oil and gas production moves to deeper waters, produced fluids need to be transported 

through longer tiebacks and taller risers. This trend requires a robust understanding and planning 

of production enhancement and flow assurance in increasingly demanding conditions.  

 

The well fluids: gas, oil, condensate, water and sand cause problems like hydrate formation, wax, 

asphaltene, and scale deposition, corrosion and erosion due to sand and other solids. Thermal 

and hydraulic risks are main issues related to flow assurance. Hydrates, wax, and asphaltene are 

the concerns with thermal risks and slugging and erosion are the concerns with hydraulic risks. 

Flow assurance strategies are based on thermal management, pressure management, chemical 

treatments, and mechanical remediation. Among pressure management techniques comes 

multiphase boosting and pipeline blowdown (in case of extreme blockage due to hydrates). 

 

A majority of the world’s oil and gas are contained in poorly/weakly consolidated reservoirs. 

Thus, the production strategies should now be shifting from maximum sand free rates to 

maximum allowable sand rates. In addition, they are driven by technical advances in detection, 

handling and disposal of sand and by increasing demand for oil and gas. 

 

Multiphase boosting provides an effective solution to drawdown the flowing wellhead pressure 

and compensate for increased static or frictional flowline inlet pressure and therefore 

considerably reduce the risk related to the most oilfield developments. For enhanced production 

and flow assurance, multiphase boosters provide significant cost savings and higher production 

rates. Multiphase pumping has consistently demonstrated its superiority over the conventional 

systems under different operating conditions. Multiphase boosters aid in flow assurance by 

mixing phases, pushing them together and regulating the flow. Multiphase boosting also reduces 

the cooldown and minimizes slugging. Boosting the untreated produced fluids gives a 

considerable positive change in temperature, which is not possible with conventional pumping 

without separation. A higher temperature due to multiphase boosting reduces the need for 

chemical treatments and contamination is minimized. Among multiphase boosters, the twin-screw 

multiphase pumps are most popular and widely deployed. 

________ 
This thesis follows the style of SPE Production & Facilities. 
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With this background, the most robust twin-screw pumps need to be better equipped to handle 

concentrations of abrasive solids as they rely on very precise clearances for efficient 

performance. The objectives of this study are to study the reliability of acoustic sand detector, 

analyze slip flow as a function of different parameters, analyze the feasibility of gel injection 

process, and predict the performance of twin-screw pump with viscous fluids. The following 

approach is considered:  

 Review of global activities in deepwaters and historical oil prices that are driving the 

economic viability of previously marginal fields. 

 Introduction to flow assurance and discussion of different flow assurance issues, 

understanding of chemistry and physics involved, mitigation strategies and methods. 

 Discussion of multiphase pumping technologies, their suitability to improve the flow 

assurance and potential huge savings in investments. 

 Problems due to solids production and their effects on the performance of twin-screw 

pumps and overall production system. 

 Visual study of solid particles transport in liquid. 

 Methods to detect sand in multiphase flow and coupling of sand detector with multiphase 

pump. Performance and reliability of sand detector. 

 Discussion of factors contributing to the efficiency of twin-screw pumps and slip flow 

analysis. 

 Transportation of solids in multiphase flow and through multiphase pumps. Approaches 

to the problem of solids transport to minimize erosive tendency. 

 Investigation of viscous gel injection as an important method to transport the sand 

particles. Problems and concerns about injecting gels in deepwater pipelines. Effective 

viscosities achieved on injection of concentrated gel through commercially available 

tubing sizes. 

 Experimental study of twin-screw pump performance with fluids of different viscosities 

and data collection. Formulation of empirical tool for predicting performance under 

viscous flow. 

 Discussion of future work needed and conclusions about experimental work and flow 

assurance from integrated production management point of view. 

 

This thesis is divided into nine sections. Section 2 is a literature review of the flow assurance 

issues and multiphase pumping as a flow assurance strategy. It describes the characteristics of 

deepwater oilfields, flow assurance issues, subsea process, multiphase pumping and integrated 

production modeling in general. 
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Section 3 discusses flow assurance issues in detail. It starts with brief description of flow 

assurance challenge, and discusses importance of correct fluids sampling and compositional 

characterization, flow assurance strategies, proactive flow assurance, slugs and their mitigation, 

solids deposition in brief, screening techniques for solids formed in hydrocarbon streams, 

management of waxes and hydrates, asphaltene inhibition, describes various chemicals used in 

production operations, blockages, pigging and plugging while plugging, thermal insulation, 

heating and operability.  

 

Section 4 discusses multiphase pumping from flow assurance point of view. Conventional and 

modern production systems and advantages of multiphase pumping are discussed. Possibility of 

step-out tiebacks with the help of multiphase pumping is discussed. Multiphase pump types, 

performance, characteristics, costs, operational and location considerations and suitable 

scenarios for application are discussed.  

 

Section 5 deals with the formation of gas hydrates and scales. It starts with description of gas 

hydrates as a multitude of field problems. Detection of hydrate nuclei, agglomeration, differential 

scanning calorimetry, and different means of inhibiting or dissociating hydrates, advantages of 

LDHI’s are discussed. Flow assurance needs for hydrate slurry, NGH transport, cold flow, and 

different mitigation strategies are also discussed. Description of scales, contributing factors, 

formation process and mechanism is provided in scales section. Scale formation locations, 

detection, techniques for prediction from history and current data, remediation and prevention 

methods are also discussed. 

 

Section 6 details the experimental facility used for solid-liquid flow visualization, sand detector 

study, twin-screw pump behavior with viscous fluids and under the conditions of gel injection. 

 

Section 7 deals with handling of produced solids in surface production systems. It starts with 

description of typical deepwater reservoirs with loose consolidation, process, modes and nature  

of sand production and flow. This section then discusses erosive wear in twin-screw pumps, 

different approaches to analyze wear and parameters affecting wear. It then discusses sand 

detection method, calibration and testing of sand detector, performance of detector under 

varying conditions, solids transport, and slip flow in twin-screw pump. Different approaches to 

the problem of wear are presented and use of high viscosity gels is emphasized as an effective 

strategy. The characteristics of gel used for experiment are described, behavior of gels with 

different viscosities flowing through tubings of different size are analyzed. A method for 



 4

predicting effective viscosity on injection of gel with particular viscosity is described. An empirical 

correlation for viscous flow behavior in twin-screw pump is formulated and discussed.  

 

Section 8 discusses an integrated approach to flow assurance. Different strategies and methods 

for oilfield management, asset management, need for integration of Reservoir, wellbore, subsea, 

pipeline and process systems for effective flow assurance. 

 

Section 9 describes the summary, conclusions and recommendations of this work. 
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2. LITERATURE REVIEW 
 

This section is a literature review on the flow assurance issues and multiphase pumping as a flow 

assurance strategy. Discussion on the characteristics of deepwater oilfields, flow assurance, 

subsea process, multiphase pumping and integrated production modeling in general set a stage 

for flow assurance interest. 

 

Petroleum exploration and production operations are targeting fields in deep and ultra-deep 

waters throughout many parts of the world. Fig. 1 shows the trend in oil prices since 1996. Oil 

prices have been steadily going up as world’s demand is constantly increasing and easy supplies 

are not in plenty. Increasing oil prices have sent the operators to deeper waters, longer distances 

and tougher environments. Fig. 2 shows the worldwide interest in scientific drilling in the form of 

Deep Sea Drilling Program (DSDP), Ocean Drilling Program (ODP), and Integrated Ocean Drilling 

Program (IODP). This shows that new locations are being searched for new resources to meet 

the ever increasing demand of energy. The low-hanging fruit in many deep water areas has been 

picked up1. This trend requires a robust understanding and planning of production enhancement 

and flow assurance in increasingly demanding conditions.  
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 Fig. 1: Historical Oil Prices2
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The well fluids: gas, crude oil, condensate, water along with sand cause many problems including 

hydrate formation, wax, paraffin and asphaltene deposition, scale deposition, corrosion and 

erosion due to sand and other solids. Flow assurance is a multidisciplinary process involving 

sampling, laboratory analysis, production and facilities engineering working together to assure 

uninterrupted optimum productivity from an oilfield. Flow assurance predictive modeling is an 

important foundation for production system selection and design of operational strategies. 

Multiphase boosting is considered a highly competitive alternative to other boosting alternatives. 

For  enhanced  production  and  flow  assurance,  multiphase  boosters  provide  significant  cost  

 

 

     DSDP (1968-1983) 

ODP   (1984-2003) 

    IODP  (2004 Onwards) 

Fig. 2: Scientific Drilling Across World Oceans3

 

savings and production enhancements. The multiphase boosting technology can be applied on 

either the surface or subsea for multiphase transport, flow assurance, subsea process / raw 

water injection, simultaneous water and gas injection, wet gas compression, pressure reduction 

of system without conventional separation to prevent hydrate formation. This can increase the oil 

production by reducing the flowing wellhead pressure; improve flow assurance by handling 

untreated well fluid streams or injection streams. 
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Deepwater Oilfields 

Many deepwater oilfield problems are characteristic of the reservoir environment. They tend to 

be turbidite sandstone formations and while the water depth is large, the depth of formation 

between seabed and reservoir of interest is very small4. As a result, the reservoirs tend to be low-

energy having relatively low pressures and temperatures compared to conventional reservoirs at 

similar TVD. Not only is the pressure for driving the fluids to surface is limited but also the heat 

needed for avoidance of solids formation is low. Lower pressures invariably call for need to 

maintain the reservoir pressure by waterflooding or similar means and artificial means such as 

gas lift and multiphase boosting. On the positive side, these reservoirs have excellent 

permeability as the degree of consolidation is much less. But this again presents the problem of 

sand production and sand erosion in the flow assurance equipment of highest interest – 

multiphase booster. 

 

 

Fig. 3: Deepwater Basins Worldwide5

 

Fig. 3 shows deepwater basins containing hydrocarbons around the world. It can be seen that 

most of the development is around the continents and step-out to long distances is still to come. 

There is a huge potential for long distance tiebacks and flow assurance challenge will be 

enormous. Fig. 4 shows the progress of water depths for exploration, drilling and production 

activities. After 1975, the exploration depths have been increasing steadily. During 1990s depths 
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of platforms and subsea activities started setting new records and further advancement is 

continuing. 

 

Fig. 4: Water Depth Progress5 

 

Fig. 5 shows the number of deepwater developments between 1994 and 2004. Number of new 

deepwater fields coming up continues to increase year by year. 

 

Fig. 5: Number of Deepwater Developments6 
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The first subsea Christmas tree was installed in 1961 and it took industry 37 years to complete 

1000 subsea wells. By 2010, additional 1000 subsea wells are expected to flow. Expected subsea 

capital expenditure will exceed US$ 48 billion7. Geographically, the investments will be 

concentrated in the North Sea, Gulf of Mexico, Brazil, and West Africa. 

 

Flow Assurance 

Traditionally, flow assurance means unclogging wells, tieback lines and jumpers, gathering 

stations and risers of deposits of paraffin, scales or hydrates. The conditions are so diverse and 

pervasive that there is no unique solution. Sometimes chemical treatment is the answer, other 

times insulating the flow lines can solve the problem. Sometimes a combination of both will be 

required. The main issues related to flow assurance are thermal risks and hydraulic risks. 

Hydrates formation, paraffin deposition, and asphaltene deposition are concerns with thermal 

risks while slugging and erosion are concerns with hydraulic risks. 

 

The key drivers to system deliverability will be reservoir energy, depth, offset distances from 

gathering stations, and fluid properties. Flow lines and tubing sizes are optimized looking at 

erosional velocity constraints and slugging tendency. Reservoir drive mechanism, fluid 

compositions, field layout will determine the system deliverability. The approaches to keep up 

with the deliverability of a production system are gas lift, multiphase boosting – downhole and 

surface, water injection, and separation. 

 

In a dynamic situation, each potential problem exhibits different behavior as a function of 

temperature and pressure and to some extent, flow rate. Waxes, hydrates and scales exhibit a 

sort of phase behavior as they appear and agglomerate in flow stream. Without sufficient data, 

the flow assurance systems are over designed. Inappropriate solutions may create additional 

concerns such as slugging and associated problems to multiphase flow.  

 

With real time system surveillance, the entire production network can be optimized. In addition 

to production optimization, flow assurance can be supported using the data to predict the 

potential bottlenecks and schedule the remedial actions such as changing the rate of LDHI to 

planning a comprehensive work-over. 

 

Modern proactive approach is feeding real time data into dynamic production models that among 

other things enable prediction of flow problems in sufficient time to take mitigating action. To 

shift from reactive to proactive mode, one requires timely and appropriate information. Through 

systematic data gathering trends affecting flow efficiency can be identified and mitigating 
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prognosis can be developed. Data acquisition for flow assurance benefits the overall asset 

management. Measurements such as distributed temperature and multiphase flow parameters 

improve and refine the accuracy of the predictive models. 

 

Extensive studies to analyze the total systems over the life of the field, evaluating fluid 

characterization and running dynamic flow simulations to determine required paraffin and 

hydrate management, chemical injection, and liquid slugging management. It covers analysis of 

the production system from reservoir to export system to optimize the hydrocarbon recovery over 

the life of the field. The flow assurance strategy should encompass a combined design and 

management philosophy for all of the following depending upon fluid properties and operating 

conditions: 

 System deliverability, 

 Gas hydrates 

 Paraffin / asphaltenes 

 Sand deposition 

 Erosion 

 Liquid slugging 

 Corrosion 

 Scale 

 Emulsion 

 Foaming 

 

The strategy adopted is applied during detailed system design, developing operating procedures, 

and during operations to maximize the profitability of the field. Based on the flow-assurance 

analysis results, a design philosophy and functional specs must be developed for the flowing 

elements: 

 Well completion (tubing sizing, etc) 

 Flow lines, risers, sub sea manifolds sizing 

 Thermal management (insulation/heating) 

 Chemical dosing system 

 Pigging strategy 

 

The first step in design of deepwater sub sea facilities is to collect and analyze the reservoir fluids  

at reservoir conditions. Laboratory analysis provides the quantitative information on fluid 

composition, chemistry and physical properties. Without fluids information, large safety factors 

and unwanted process equipment might come into picture. 
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To prevent and manage hydrate formation, combination of either chemical dosing or thermal 

management may be applied. The cool-down time can be designed to be sufficient for the 

operator to take remedial action. Remedial action may include flowline / riser pressure to reduce 

below hydrate formation region. 

 

Depending on the cloud point temperature and paraffin content, paraffin may deposit on the 

walls of tubing, flowline and risers; which may totally block the flow depending on deposition rate. 

Based on the laboratory measurements, multiphase flow and thermal simulations of the 

production system, the potential severity of the deposition can be evaluated. To prevent and 

manage the paraffin deposition, combination of chemical dosing, thermal management, and 

pigging may be applied. A cost/benefit analysis of these solutions should be conducted before 

final selection of the strategy. 

 

Both hydrodynamically-induced and terrain-induced slugs can form and travel in the surface 

networks. Transient dynamic analysis of the flowlines and risers must be conducted to evaluate 

potential severity of the slugging tendency and severity. From the point of view of slugging 

causing serious ramifications for operations at the receiving facilities, hydrostatic head is a great 

challenge for ultra deepwater developments. Subsea process with improved subsea water 

separation and multiphase boosting will eliminate the risk of hydrates formation and hydrostatic 

heads.  

 

Corrosion inhibition philosophy depends primarily on the produced fluid composition, water 

chemistry, operating conditions and flow regime. For erosional velocity limits API 14E guidelines 

are adopted as the base line and also various types of sand and erosion monitors are available 

for subsea application. Flow assurance continues to be a major concern for deepwater and long 

subsea tieback distances. 

 

Hydrate Management 

As oil and gas developments move into deeper waters, the hydrates become a critical design 

consideration. Different methods starting with heat retention by means of insulation, providing 

active heating to keep the system out of hydrate formation region, are adopted. The extent of 

active heating required for ultra and super deep water developments is such that considerable 

topside costs are incurred apart from footprint. The trend is therefore away from heat retention 

or active continuous heating more towards chemicals and intervention. 
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The intervention heating can be provided by intervention vessel to flowline designed to be able to 

receive electrical power based on requirement for any small length section at a given time. A 

hydrate plug can be remedied without footprint.  

 

Chemical way of hydrate management involves low dosage hydrate inhibitors – kinetic and anti-

agglomerates. On a volume basis, they cost 3 to 4 times as conventional inhibitors but the 

dosage rates are so low that costs differ significantly when rates are normalized. A benefit of 

multiphase pumping is that the stream temperature rises by as it passes through the pump. 

 

Stranded Gas 

The gas resource which has been discovered, but remains un-marketable or unusable for either 

physical or economic reasons is called stranded gas. The associated gas that is produced offshore 

is increasingly becoming a challenge8. Stranded gas transport must be justified with innovative 

concepts which can be commercialized. Some of the novel processes include liquefied natural gas, 

compressed natural gas, and electricity generation and distribution. These processes are complex 

and need considerable investment. Natural gas hydrate technology (NGH) proposes to convert 

the associated natural gas into solid gas hydrates in a controlled manner. The basis behind this 

technology is large storage potential of hydrates to encapsulate gas molecules. Dissociation of 

these hydrates can yield gas up to 180 times their volume. When stored at temperatures below 

freezing point at atmospheric pressures, these hydrates are stable.  

 

In hydrate slurry process, produced well fluid is separated into oil and gas, gas is further 

converted into hydrates which are then mixed with chilled crude, creating slurry. This slurry can 

be stored in tanks at suitable temperature and transported.  

 

Subsea Process 

The subsea process is considered to include downhole equipment, separation, pumping, 

compression, and metering. The subsea systems on a broader perspective cover: 

 Pipeline / flowlines heating systems;  

 Downhole / subsea separation; 

 Subsea chemical distribution; 

 Subsea multiphase boosting, single phase boosting, wet gas compression and dry gas 

compression; 

 Control / service buoys / spars; 

 Power / communication umbilicals; 

 Wireless communication; 

 

http://en.wikipedia.org/wiki/Economic
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 Subsea power generation / distribution / delivery 

 

Since water has density higher than oil, enough separation subsea would enhance the flow 

assurance via multiphase boosting by reducing the flowline backpressure and hydrostatic head in 

the vertical sections. Separation of gas subsea enhances the efficiency of boosting. Water 

separation will always need an injection well or some kind of disposal system for produced water. 

An example of subsea water separation system is ABB system installed on Troll Pilot in 2001. A 

typical separation system comprises horizontal three phase gravity based separator, a cyclonic 

inlet device and a water re-injection system. In case of Troll, the subsea water separation 

enabled additional production of 15000 bopd due to elimination of bottlenecks which were 

otherwise present in the system due to need to handle excessive water production. 

 

Although subsea process has positive impact on flow assurance, there are some uncertainties. A 

water cut of more than 2% could lead to hydrates formation. On the contrary, removal of water 

from produced well fluid leads to rapid cooldown and potentially deposition of paraffin or 

asphaltenes. Water separation minimizes the chemical injection requirements. Subsea process 

helps heating up of the fluids at seabed during start up itself. Lower pressures in flowlines for 

subsea developments with subsea process have potentially lower risks of hydrates formation. 

 

VASPS  

The vertical annular separation and pumping system (VASPS) represents an innovative separation 

and ESP system. After gas / liquid mixture is passed through a helical section, the liquid is 

pumped by ESP and gas is allowed to flow on its own9. The subsea separation reduces the 

bottomhole pressure allowing a higher flow rate. Fig. 6 shows main components of a VASPS. 

VASPS is basically a dummy well close to a producing well. Multiphase fluid produced by well 

enters tangentially into VASPS. This fluid flows in helical path and centrifugal forces separate the 

gas and liquid. 

 

The gas “self”-flows and liquid is pumped out with an ESP to the host facility in separate flowlines. 

This separation close to producer well ensures reduced backpressure and reservoir energy is not 

wasted in overcoming the gravitational and frictional losses in the multiphase flow. 
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Fig. 6: VASPS Main Components9 

 

Multiphase Pumping 

Since the very early days of oil and gas production, the transport of untreated well fluids 

(multiphase) using reservoir energy over a short distance had been in practice. There was no 

device available to directly pressure boost the stream in case reservoir energy was insufficient. 

The only feasible approach was separating the liquid and gas phases and transporting them 

separately. Multiphase pumps have now become a reality. 

 

As opposed to conventional technology, which requires liquid and gas to be separated before 

pumping and compression can take place, the multiphase pumps generate pressure to the 

unprocessed stream. Multiphase pumps provide an effective solution to drawdown the flowing 

wellhead pressure and compensate for increased static or frictional flowline inlet pressure and 

therefore considerably reduce the reservoir risk related to most oilfield developments. 

 

While the use of long pipelines and flowlines allows for better economics, it imposes higher 

backpressures on wells and hampers production. Gravitational losses can become significant for 

higher density fluids in ultra deepwater developments. While these energy losses are significant, 
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it is interesting to note that some form of energy input to transport the fluids will improve the 

ultimate recovery and reduce wastage of non-renewable natural resources in deepwater. 

Multiphase pumping is one such energy input. 

 

Maintaining a high backpressure is a production practice that wastes reservoir energy. Energy 

that could be used to move reservoir fluids to the wellbore and out of the well is instead lost to 

flow through a choke or long flowline. The multiphase pumps are able to flow any untreated well 

stream without slugging or surging. They are flow assurance tools of prime importance. There 

are two main families of multiphase pumps – rotodynamic pumps and positive displacement 

pumps. Rotodynamic pumps comprise a number of impeller and stator stages on a single shaft 

that rotates at a high speed. The impellers generate kinetic energy in the enclosed fluid which 

forms a pressure boost. These pumps are better suited to applications with higher fluid viscosities 

and gas void fractions. The positive displacement multiphase pumps are generally of twin-screw 

type, in which a pair of shafts with machined helical profiles are meshed together and rotated 

together and rotated in opposite directions to form sealed ‘locks’ of fluid. These locks transfer the 

fluid-stream longitudinally through the pump, producing a pressure rise against the pump 

discharge. The working principle of twin-screw pump is like a piston pump with an infinite length 

of stroke which leads to uninterrupted transport of fluid10. The twin-screw pumps operate at 

lower speeds than rotodynamic pumps, require constant torque drives and can pump higher 

viscosity fluids. Once installed subsea, access to the equipment for monitoring, adjustments, 

maintenance or repair becomes a high-tech and huge-cost affair. Therefore, thorough surface 

testing is essential before marinization. 

 

Reservoir pressure alone is insufficient to provide the flow assurance, so in addition to the normal 

methods of reservoir pressure maintenance by waterflooding and primary artificial lift by gas lift, 

ESPs are increasingly being used. In deepwaters and for very long tiebacks, the pressure boost 

from ESP’s may not be sufficient. Here, the multiphase pumps become very important as they 

enhance the recovery from deepwater fields.  

 

The multiphase pumping technology can allow marginal fields to become economic, and field life 

and recovery can be extended. The decision about implementing the multiphase pumping is 

complex11. The expected boost in production must be weighed against the cost of the pump, its 

maintenance and the power requirement. 

 

Subsea multiphase pumping bypasses the technology gap that exists in subsea processing. In 

addition to the pressure boost, these pumps aid in flow assurance by mixing, pushing and 

 



 16

regulating the flow of untreated well fluids11. Multiphase pumping has a potential to bring 

attractive and extra degrees of freedom to the petroleum exploitation schemes, particularly deep 

sea. 

 

Inbuilt Capability of Twin-Screw Pumps to Handle Slugs 

The incoming fluid in a twin-screw pump is diverted to both ends of the screws, and fluid fills up 

the volumetric chamber between screw flanks. The screw profile axially transports the fluid from 

the ends to the center of the pump where fluid rejoins and leaves the pump chamber. This 

feature allows the pump to handle severe liquid slugs12. Liquid slugs are split and hit the end of 

each screw at exactly the same time. Thus any force or thrust caused by liquid slugs occur at the 

opposite end of each screw at exactly the same time and counters each other. There is a zero 

net resultant force. Other types of pumps often require thrust bearings and have limitations on 

the capability to handle slugs. 

 

Suitability of Helico-Axial Pumps for Field Developments 

Obtaining reservoir data for new oilfields is often difficult. Practically, such data evolve over the 

life of the field and can change the demands imposed on the pumps. Helico-axial multiphase 

pumps have high degree of inherent flexibility as speed can be varied for desired performance, 

number of pumps installed can be phased in as required, number of stages can be changed to 

suit changing pressure requirements and internal cartridge with entirely different hydraulic 

characteristics can be installed if different capacity is needed at some point in the life of the 

field13. 

 

Economics 

As mankind continues to discover the hydrocarbon reserves in ever deeper waters, or try to make 

marginal fields economic, field development can go ahead only if a means of reducing the life-of-

field costs below currently achievable levels is found.  

 

When compared to other alternatives of the initial complementary development, export systems 

deploying multiphase pumps are very competitive in terms of CAPEX and OPEX. This technology 

has ability to eliminate export process system comprising of separators, pumps, compressors, 

flaring network, safety system for pressure vessels, electrical equipment and gas turbines, etc. 

Multiphase pumps offer higher operating flexibility and phasing in of the investment for field 

development than the conventional separator installations, where for example, gas compressor 

can not be designed for variable inlet conditions such as pressures and flow rates11. The 

modularized subsea multiphase pumps allow easy integration with other production facilities or 
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infrastructure. Retrofitting in existing set-up is also possible. The payback time of installed pump 

systems is in months rather than years as production is enhanced by several thousand barrels of 

oil per day. 

 

It is possible to deploy light intervention vessels for interventions of the compact multiphase 

pumps without the need for large service vessels14. Typical weight of the pump, motor and 

intervention tool is less than 15 tons. A replacement can be done within 24 hours. 

 

System Design with Multiphase Pumps for Flow Assurance 

As tieback distances increase and production moves to deepwater, the challenges related to flow 

assurance escalate significantly. In a development applying subsea process and boosting, the 

flow assurance risks would be reduced during the normal operation15. Multiphase boosting has a 

positive effect; as it reduces the cooldown and minimizes slugging. Further to this, the subsea 

separation adds to the hydraulic stability of the fluids flow. 

 

As multiphase pumps are good in handling slugs, it is desirable that field piping, upstream of the 

pump be modeled using multiphase simulation tools to determine the size and frequency of slugs. 

Installation of slug catcher downstream of the pump and before any separator is a valid decision. 

Multiphase pumps are also recommended for transporting well streams from artificially lifted 

wells to overcome the flow resistance to multiphase stream. Subsea boosting will enable longer 

tiebacks. Subsea separation could provide an economic alternative for de-bottlenecking existing 

surface facilities. Subsea gas separation may allow oil and gas to be separated at seabed and 

transported to different surface facilities allowing better usage of infrastructure15. 

 

An ongoing and constructive interaction between the field architects and pump designers is a 

must, as it is vital to understand the complete flow assurance issues, production profile over time 

and optimize the pump selection and export pipeline configuration accordingly13. 

 

Higher Ultimate Recovery 

Lowering the backpressure gives maximum ultimate recoveries from a reservoir. But this means 

pressure drops below bubble point pressure early in the life of reservoir and the fluid flow 

becomes multiphase. No other equipment except multiphase pumps can handle the two phase 

flow. Thus, the multiphase pumps will be one of the best investments since it will accelerate 

production, increase ultimate recoveries and will eliminate the footprint of other equipment and 

facilities (separators, two pipelines, etc.) which would otherwise be needed. 
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Reduced flaring 

Multiphase pumping can, in certain cases of production from more than one source, allow 

positive choking to achieve stable co-mingled production from several sources, boosting the 

weaker wells in order to flow with the strong one(s). There may be some cases where the same 

principle could be applied to co-mingled production from several zones within the same well. It 

can also enhance the regulatory compliance by reducing flaring. The desired mix of two or more 

live oils may be governed by multiphase pumping and its associated commercial value in the 

downstream segment10. Mixing different oils while they are being produced or transported is not 

always feasible due to reasons like source pressure differences. Subsea multiphase pumping 

brings about the blending of different oils by commingling approach. 

 

Integrated Production Modeling  

The primary benefit of integrated modeling is that the artificial and conservative boundary 

constraints between traditional decoupled models are removed. In conventional developments, 

this is not much important but as the water depths increase, the direct costs to the facilities of 

the conservative assumptions have a dramatic effect, for mechanical design and flow assurance 

performance requirements of flowlines and risers. Integrated production modeling is not 

necessarily as straightforward as some software developers might suggest. Significant additional 

effort can be required to set up and run such a model16.  

 

During the facility concept evaluation and selection phase of most deepwater projects, there is a 

fundamental decision to be made between wet versus dry trees. Calculating the comparative 

capital costs is relatively simple, but the real value difference often lies in the projected well 

intervention costs and predicted frequencies of occurrence. For ultra- and super-deepwater 

projects, the cost differentials become even more critical to correct concept selection. 

 

Generally a steady state analysis is sufficient. However, when more complex situations are 

considered, the actual multiphase flow regime may not be stable under all operating conditions 

and transient analysis may be preferred. Conventional design of production systems took each 

section of the system and analyzed separately. Each problem would be looked into by an isolated 

specialist not aware of the big picture. This practice often resulted into conflicts in the design of 

component systems, poor communication and reactive rather than proactive approach to oilfield 

operations and reservoir management including the flow assurance issues. Design of whole 

system from reservoir to downstream process must now be integrated to realize the early 

production from marginal fields in a competitive marketplace. 
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3. FLOW ASSURANCE 
 

Introduction 

This section carries further the discussion on flow assurance into details. Challenges to flow 

assurance, importance of fluids sampling and compositional characterization, flow assurance 

strategies, proactive approach, slugs, solids deposition, and their mitigation are described. 

Techniques for screening of solids formed out of hydrocarbons, management of waxes, 

asphaltenes, hydrates and remediation are discussed. Description of pigging, thermal insulation, 

heating and chemical treatments is given in the discussions. 

 

Flow assurance has been an emerging multi-disciplinary subject addressing the hydrocarbon 

production from offshore fields. Flow assurance deals with the risks and problems arising from 

the properties and behavior of the produced hydrocarbons, associated fluids, and solids. The 

phrase “Garantia de Fluxo” was coined by Petrobras in the early 1990s meaning “Guarantee the 

Flow”. The field of flow assurance is relatively immature as most of the phenomena in multiphase 

flow are not well understood yet. 

 

To address to the specific flow assurance problems, there are different flow assurance strategies, 

including thermal management (insulation, electrical heating and fluid circulation heating), 

pressure management (boosting, blow down), chemical treatments (various inhibitors, dissolvers, 

etc), and mechanical remediation techniques (pigging, jetting, cutting, etc.). 

 

Multiphase Flow 

Production operations span over reservoir, wells, flowlines, and host facilities. Each element of 

the system affects performance of the others. Mutual compatibility of all elements is necessary 

for efficient production operations. Multiphase flow study and behavior prediction is difficult 

because of changing flow regimes and phase velocity differences. Multiphase flow is transient 

because of slugging, flow rate changes; blow down, pigging, pumps and compressors, well 

operations and downstream process operations. 

 

Subsea field development with multiphase transport to the process facility is increasingly being 

adapted as the preferred concept. For effective flow assurance and operability, the complete 

system lifecycle including startup, steady state, rate change and shut-in must be considered1. An 

integrated, optimized subsea solution where the benefits of subsea separation, pumping and 

thermal management are objectively evaluated and implemented, needs a cross-functional 

approach from project inception to execution. 
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Flow Assurance Challenge 

As oil and gas production moves to deeper waters, the produced fluids need to be transported 

through longer tiebacks. Deepwater and remote reservoirs means higher pressures, higher 

temperatures, sand production due to poor consolidation or high drawdown and cooler ambient 

temperatures inviting hydrates and wax formation problems. 

 

Longer tiebacks are more prone to solids accumulation, scales, and hydrate plugging. These 

oilfields are thus very high risk yet marginal due to the costs involved and the highly competitive 

market. Added to this are stricter environmental standards by various governments that prohibit 

any release of hydrocarbons. 

 

Produced water is a highly significant component of the flow assurance challenge. Complete 

separation and disposal of water subsea could be the most effective flow assurance strategy. But 

this may not be the most economic.  Thermal  insulation and chemical inhibition are currently the  

 

 

Fig. 7: Asphaltene, Wax and Hydrate Envelopes17

 



 21

most effective yet economic methods. Also, higher the volume of water present in system, the 

greater will be the dose needed of chemical inhibitors. Toughest deepwater challenges are 

extremely tall risers, complex subsea systems, and high intervention costs. 

 

Fig. 7 shows the phase envelopes of solids which are the potential flow assurance issues with 

almost every oilfield. Hydrates and waxes appear in the picture when temperature drops below 

hydrate equilibrium conditions and wax appearance temperature respectively, which vary with 

pressure and temperature of the system. It can be observed that asphaltenes can precipitate 

under wide spectrum of conditions and the well’s production path may not have sufficient 

window of opportunity for production in the absence of a suitable inhibition or flow assurance 

strategy. 

 

Fluids Sampling  

Fluids characterization by thorough testing of real fluid samples under realistic conditions is very 

crucial. Fluids sampling is the first step in assessing solids formation characteristics. Care while 

collecting and transporting a sample is essential to prevent irreversible phase behavior since 

asphaltene precipitation reversibility is uncertain. If the fluids do not truly represent the produced 

fluids, the conclusions drawn at the end of analysis may not be valid for the system. Sampling of 

formation water is equally important as the water chemistry has a direct influence on scaling 

tendency, hydrate formation and corrosion. Availability of a representative water sample for new 

fields could be a challenge as the wells are initially completed well above the WOC, and the new 

wells in a new field initially produce with almost no water cut. 

 

A detailed knowledge of sampling tools helps in judging the sampling method so that sample can 

best represent the reservoir or produced fluids. Drill stem tester (DST), reservoir characterization 

instrument (RCI), modular dynamic tester (MDT) are some of the sampling tools. The single-

phase multi chamber (SPMC) (after Schlumberger) has capability to maintain the sample pressure 

above reservoir pressure and thereby avoid release of solution gas and precipitation of solids. 

Obtaining the most representative sample from reservoir and transporting it unaltered to 

laboratory for analysis is the key to accurate fluid compositional characterization. 

 

Fluid Compositional Characterization 

The crude oil may contain a very large number of components. For each component, critical 

temperature, critical pressure, and acentric factor must be known for predictive PVT analysis of 

the crude. As it is not practical for thousands of components, it is difficult to fine tune the PVT 

model in conformance with laboratory PVT analysis. 
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In the fluid analysis laboratory, the fluid sampler (SPMC) is validated by determining the pressure. 

The sample is next heated to reservoir temperature and then subjected to continued agitation for 

a prolonged period to ensure homogenization. A portion of the homogenized sample is subjected 

to single stage flash to determine GOR, C36+ composition, density, and API gravity. Then the 

fluid is subjected to gas chromatography. Based on the chromatography results and GOR the live 

oil composition is calculated. Another portion of the sample is subjected to saturate-aromatic-

resin-asphaltene (SARA) analysis. The fraction with boiling point less than 300 0C is 

chromatographed for saturates and aromatics content, while the fraction boiling above 300 0C is 

analyzed for asphaltene by gravimetric method. 

 

Phase Envelopes 

Fig. 8 is a simplified version of fig. 7 for illustration purposes. Fig. 8 illustrates the thermodynamic 

phase boundaries for potential hydrocarbon solid formation. The production P-T pathway would 

depend on specific hydrodynamic and thermal characteristics of the production system. Fig. 8 

illustrates that the production PT pathway of a system can potentially intersect one or more of 

the phase envelopes, which means there is a potential for formation of hydrocarbon solids in the 

system. Crossing the phase envelopes does not necessarily imply that there will be flow 

assurance problems because formation of the solids does not necessarily mean deposition or 

blockage. 
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Fig. 8: Schematic Thermodynamic Conditions of Flow Assurance18
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Flow Assurance Design Strategies 

The design for flow assurance can be either robust or adaptable. 

 

Robust Design 

The design can take anything unknown and uncertainties. This design is over conservative and 

typically needs heavy CAPEX. However, the results are not necessarily optimum. 

 

Adaptable Design 

This design strategy takes into consideration the changes in reservoir and surface network 

conditions. The pipelines and umbilicals installed subsea require contingency repair capability. As 

drilling and workovers become increasingly complicated with increasing water depths, pipelines 

and umbilicals also become more complicated for deep waters. Their repair capability also needs 

to be more reliable and accurate. 

 

Proactive Flow Assurance  

New technologies are destined to transform the oil industry by enabling remote 3D visualization, 

4D seismic, intelligent completions, and smart wells. Downhole pressure and temperature 

monitoring, sand monitoring with acoustic devices, corrosion probes, and more recently the 

integrated multi-array subsea sensor capable of measuring metal loss, pressure and temperature, 

sand and hydrate monitoring with acoustics, solution conductivity and heat transfer 

characteristics can detect hydrate precipitation, sand production, organic solids formation and 

deposition, erosion and corrosion. It also helps in determining the real-time temperature profile 

of the flowline for feeding into process chemistry software to predict the deposit formation19. 

Real-time temperature profile can be obtained by installing optic fiber on the exterior of the 

flowline and using sensing technology. Fiber optic sensing technology can provide quasi-

distributed temperature and pressure measurements. 

 

Integrated real-time flow assurance correlated with modeled simulations helps evolve the 

optimized intervention strategies and accelerate production, improve expected ultimate recovery, 

reduce CAPEX, reduce OPEX by reasonable and productive interventions and ultimately make 

longer tiebacks a reality. 

 

Distributed Temperature Measurement  

This technology is based on fiber optics. For the purpose of temperature measurement, the fiber 

optic carries an intense laser pulse. Fig. 9 shows the scattered light spectrum showing Raman 

scattering. The light is scattered by molecular and density fluctuations of fiber’s glass (Raleigh 
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Scattering) and by molecular vibrations and rotations of glass molecules (Raman Scattering). The 

Raleigh  scattering  is  temperature  insensitive and the Raman scattering antistoke component is 
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Intensity 

0

Wavelength
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Stokes

Fig. 9: Scattered Light Spectrum 

 

temperature dependent. Ratio of these quantities is directly proportional to temperature at the 

location. Location can be determined by optical time-domain reflectometry (OTDR). Thus 

distributed temperature measurement gives accurate temperatures along the entire length of 

fiber. Application of this technology has made possible the distributed temperature measurement. 

 

Need for Modeling 

Evaluation of the flow assurance issues can help formulate a suitable strategy to mitigate some 

or all of the problems. Evaluation of potential issues and prediction needs modeling of the entire 

system from sand face to the host facility and further downstream to process. Modeling offers 

operators the following advantages:  

 Enables safe operation 

 Optimizes new and existing systems 

 Reduces downtime 

 Screening of different options 

 Reduces uncertainty 
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 Describes mathematically what has happened, what is happening and what will happen 

in a physical system 

 

Table 1 shows a timeline for evolution of different comprehensive predictive tools for flow 

assurance study and design. 

 

Table 1: Flow Assurance Simulation Tools Evolution 

Year  Simulation Tool 

1980 SINTEF Multiphase Flow Lab 

1980 IFE OLGA Code 

1983 SINTEF-IFE 

1985 OLGA Compositional 

1988 OLGA w/water 

1989 OLGA 1.0 

1994 PeTra 1 

1998 OLGA 2000 

1999 PeTra 2 

2004 PeTra 3 

2006 OLGA 5 

 

Modeling of multiphase production systems needs an integrated approach comprising of the 

following components: 

 Multiphase flow models 

 PVT properties 

 Hydrate equilibrium 

 Wax deposition 

 Asphaltene precipitation 

 Scale precipitation 

 Slug prediction 

 Emulsion behavior 

 Oil water gas separation 

 Sand transport 
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Flow Assurance Design 

At the time of discovery, the oilfield is appraised for commercial viability and to obtain necessary 

geological, geophysical and engineering information needed for development planning. Design 

process starts with reservoir fluid analysis and fluid properties modeling. The correlations are 

then used in thermal-hydraulic modeling of complete production system from sandface to topside, 

including wellbores, flowlines and risers. The model determines optimum line size and assesses 

of potential for formation of solids like hydrates, asphaltenes and waxes. After this assessment, 

the need for thermal insulation is evaluated and chemical inhibitors are assessed for dosing 

application. 

 

Flow assurance issues must be addressed and incorporated in the design of production system. 

Characterization of formation fluids is most important step for assessment of flow assurance 

issues ahead of time. Proper collection and transportation of representative reservoir fluids to 

laboratories is first step in fluids characterization. 

 

Determination of solid formation boundaries is carried out by asphaltene precipitation tests, wax 

deposition tests and hydrate formation tests. Result of these tests can be used as input to 

industry preferred dynamic thermal-hydraulic models like OLGA to investigate and predict system 

behavior under different scenarios. After adequate investigation, the window of opportunity for 

operation or “flowing” the system can be determined and operational strategies can be chalked 

out. 

 

An effort to mitigate and resolve any flow assurance issues by appropriate or optimal design of 

the system can be devised after the above mentioned stage. From flow assurance point of view, 

all system downstream of the reservoir is in focus. Thermal management, pressure management, 

chemical treatment, and remediation options should be incorporated into the system and 

operational strategies.  

 

Thermal management – hot fluid circulation, direct heating, and insulation can help mitigate wax 

and hydrate problems. Pressure management – multiphase boosting or depressurization can help 

in asphaltene or hydrate problems. Chemical management can cover a wide variety of flow 

assurance problems. Remediation is a reactive technique to solve any severe blockage – coiled 

tubing intervention, pigging, to name a few.  
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Slugging 

Fluids entering the host process facility are desired to be stable in composition and flow. The 

process system may get upset or face severe stress if the incoming flow is unstable and fluid 

composition is drastically varying.  As oil and gas production operations are moving to deep 

waters from shallow waters, the riser lengths have increased from a few hundred feet to over a 

few thousand feet. After primary depletion, the oil and gas production rates are not stable and 

water cut is prominently high. 

 

With presence of free gas in liquid (or multiphase) production system, liquids can not be 

continuously produced. Liquids keep accumulating till the free gas flow is completely blocked and 

gas builds up enough pressure to “lift” the liquid column through the riser. When this “lift” 

phenomenon occurs, a large amount of liquid is received at the host process facility. This 

intermittent bulk of liquid is called slug. Slugs can severely disturb the process or can even force 

a shutdown. The huge gas bubble following liquid slug has higher pressure than normal pipeline 

pressure at the receiving end. When this gas enters the system, system can get over pressurized 

and most of the gas may end up in flare, and is thus wasted adding to the environmental costs. 

 

Length of a liquid slug and size of the gas bubble can be several times the height of riser, 

depending on flowing GOR and other fluid physical and compositional properties. 

 

Types of Slug 

There are three main types of slugs20. 

 

Hydrodynamic Slugs 

The hydrodynamic slugs are formed due to instability of waves at certain gas-liquid flow rates. 

 

Terrain Induced Slugs 

They are caused by accumulation of liquid phase and periodic lifting by gas phase in flowline dips. 

Terrain slugs occur during normal production operations and also after a shutdown. 

 

Operationally Induced Slugs 

They are generated by changing the steady state conditions; such as restart, pigging, etc. Slug 

induced in pigging operation is a challenge for the receiving end of flow line.  
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Methods to Mitigate Slugs 

Subsea Separation 

The inputs to the problem of slug are free gas and liquid. If they both coexist in flow and when 

the riser geometry and pipeline’s vertical ups and downs due to uneven seafloor are favorable, 

slugs can not be avoided, unless very stable flow rates can be maintained outside the slug 

formation conditions. Subsea separation of gas and liquids can solve the slugging problem.  

 

Topside Choking 

By choking the flow at the top of riser, the gas bubble behind the liquid slug will pressurize faster 

and will push the liquid column more frequently and slower. This will smoothen the slug patterns 

and the process at the host facility is disturbed to a lesser extent. 

 

Increasing Gas Flow 

Liquid accumulation may occur in the riser and pipeline due to insufficient velocity of gas. Gas 

velocity can be increased by introducing enough additional gas in the stream at the riser base.  

 

Favorable Riser Base Geometry 

If the riser geometry can be designed such that there are minimum ups and downs along the 

seafloor and no depression at the bottom of riser, then the liquid accumulation tendency will 

reduce and the flow will be smooth overall.  

 

Solids Deposition 

The effects of solids formed out of produced fluid hydrocarbon and their potential to disrupt 

production due to deposition in the production systems are detrimental. The inorganic solids 

arising from aqueous phase also pose a serious threat to the flow assurance. Fig. 10 shows 

different locations in a production system where solids can potentially build up either as deposits 

on inner walls of flowlines or sediments on bottom of vessels and pipelines. 

 

Paraffin Waxes 

As oil and gas flowlines move to deeper waters, wax deposition becomes a common occurrence. 

The cost of remediation or mitigation of wax deposition increases with water depth, therefore 

avoiding or minimizing the wax deposition becomes a key issue in flow assurance. 
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Fig. 10: Solid Buildup Locations in the System18 

 

Paraffin wax is a group of straight-chain alkanes that contains more than 15 carbon atoms and 

has very little branching21. One paraffin molecule may have more than 80 carbon atoms. The 

bigger the molecule size, higher is the melting temperature. Paraffin is deposited in the form of 

crystalline solids which may collect on the wall of flow line / tubing / pipeline, slowly chocking off 

the production. In some cases, the paraffin deposits have caused breaking up of the sucker rod 

pump and in some cases, the paraffin accumulation blocks the formation. Petroleum waxes have 

been characterized into two categories – macro crystalline (n-alkanes) and microcrystalline (iso-

alkanes and cyclo-alkanes). The high molecular weight paraffins present in crude oil are soluble 

under reservoir conditions. 

 

Waxes are crystalline and are characterized by wax appearance temperature and pour point22. 

The factors affecting wax properties are oil composition, temperature, and pressure, paraffin 

concentration, nucleating material, shear rate and flow rate. Above wax appearance temperature, 

wax is soluble in the crude oil. 
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In all pipelines, fluid cools as it travels downstream due to the loss of thermal energy to the 

surroundings. When pipeline temperature reaches wax appearance temperature, the wax 

transports by molecular diffusion. Flow at the center of pipeline is turbulent and the wall is 

stationery. Precipitation of wax crystals on pipe wall creates a concentration gradient across the 

cross section. The dissolved wax diffuses towards the wall and builds up into a thick layer over 

time23. The reduced diameter due to wax deposition can still allow the flow of fluids through the 

pipeline but at a higher pumping cost and less throughput. 

 

The waxy crude fluid dynamics is governed by API gravity, specific heat, viscosity, pour point, 

and yield stress. Near the pour point region, waxy crudes show non-Newtonian rheology. Under 

the static conditions, waxy crudes crystallize to form a gel24. Partial or complete crystallization of 

crude oil requires a finite higher start up pressure to initiate flow. Thus prolonged shutdowns can 

mean higher startup pressures. The pour point depressants incorporate themselves at the edge 

of growing wax crystal and retard nucleation process eventually forming smaller crystals. The 

smaller wax crystals have lower gelation tendencies. Chemically, the pour point depressants (PPD) 

are alkylated naphthenes, alkylated sugar esters, glycidil ester, acrylated copolymers etc. PPDs 

reduce the pour point, viscosity, and yield stress. Waxy crudes show non-Newtonian behavior 

below pour point and Newtonian behavior above pour point. 

 

For most reliable wax calculations, measured n-paraffin concentrations instead of estimated 

concentrations are preferred. Wax appearance temperature (WAT) is very difficult to measure as 

most experimental methods can detect finite amount of wax. Also calculation of WAT is difficult 

as it is influenced by the traces of heaviest n-paraffins. 

 

Tang et al.25 designed a cold disk wax deposition apparatus for measurement of wax deposition 

rates. This apparatus requires very small amount of crude (115 ml) as compared to conventional 

loop tests for wax deposition. The tests for determination of wax deposition rates become very 

simple and fast with this apparatus. 

 

Petrobras R&D developed a versatile wax damage removal method which can safely and 

efficiently handle wax removal situations26. The chemical reaction between two nitrogenous salts 

in emulsion is exothermic. The quantities of nitrogen and the heat generated promote irreversible 

fluidization of wax deposits. 
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Wax control additives (wax crystal modifiers) – typical copolymers are ethylene vinyl acetate 

(EVA), vinyl acetate olefins, and alkyl esters of styrene maleic anhydrite, alkyl phenols, 

polyalkylmethacrylates, alpha olefins and polyalkylacrylates27. 

 

Asphaltenes 

The word "asphaltene" was coined by Boussingault in 1837 when he noticed that the distillation 

residue of some bitumen had asphalt-like properties. Asphaltenes are metallic molecular 

substances that are found as impurities in crude oil, along with resins, aromatics, and saturates. 

They are insoluble precipitates of hydrocarbons such as polyaromatics, formed from resins as a 

result of oxidation. 

 

Little is known about their actual chemical properties, but there are some theories as to how 

asphaltene molecules are formed and behave. They are presumed to be very large, for example, 

with molecular weights that can be in the millions. But even this is not certain; as different 

methods used to derive the weights often yield different results. The chemical structure is, too, 

difficult to determine and can vary from source to source. Usually, they are composed of oxygen, 

nitrogen, and sulfur, combined with the metals nickel, vanadium, and/or iron. They are of 

particular interest to the petroleum industry because of their depositional tendency in flowlines. 

They continue to be a problem, as their removal is a time-consuming and expensive process. 

 

Normal pressure depletion, acid stimulation, gas lift operations, miscible flooding, etc., are 

conducive to asphaltene precipitation. Asphaltene precipitation in porous media can cause 

diffusivity reduction and wettability alteration. 

 

Identification of thermodynamic conditions at which asphaltenes begin to form and their rate of 

deposition are important in evaluating the flow assurance issues. If asphaltenes are predicted or 

anticipated, production engineers need to understand the hydrodynamic implications and devise 

a suitable flow assurance strategy. But their classification depends largely on their behavior in the 

solvents. 
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Preliminary Screening for Solids 
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Fig. 11: De Boer Plot 

 

The asphaltenes screening sequence is based on De Boer plot, asphaltenes to resin ratio, 

colloidal instability index, and asphaltene stability index. Since the reliability of the predictive 

tools for asphaltene precipitation is not clear, the screening criteria serve the purpose better. 

Preliminary screening for wax formation includes stock tank oil wax content, cross polar 

microscopy, wax appearance temperature and preliminary thermodynamic modeling. Fig. 11 

shows De Boer Plot. De Boer plot indicates the conditions where asphaltene problem has 

different degrees of severity. Y-axis shows difference between reservoir pressure and bubble 

point while X-axis shows the in-situ density of reservoir fluid.  

 

Cross Polar Microscopy for Wax Appearance 

In this technique, a drop of homogenized oil sample is taken on a slide at reservoir conditions 

and kept under microscope to visually observe the wax appearance temperature. Cooling is 

controlled at very slow rate. The temperature at which first bright spots are observable under 

microscope is determined as WAT. Wax problem becomes a concern if the wax content is greater 

than 2 weight % or if the wax appearance temperature is in excess of 120 0F. 
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Isobaric Cooling for Wax Appearance 

 scattering system is used to continuously record the 

nd Dead Oil Viscosity Measurements for Wax Appearance 

earance temperature by 

he WAT is that temperature which changes the rheological behavior of the fluid under 

The fluid is charged in a PVT cell and light

change in transmittance. The fluid is isothermally flashed and equilibrated at desired pressure. 

The light transmittance and temperature are recorded continuously. The wax and asphaltene 

onset behavior is observed to be almost similar at pressures close to reservoir pressure18. 

Running these tests at pressures below reservoir conditions gives more convincing results. 

 

Live a

Jamaluddin et al.18 suggested a method to estimate the oil wax app

measuring viscosity at reducing temperature. The reservoir fluid is allowed to achieve thermal 

and hydraulic equilibrium in an electromagnetic HPHT viscometer. Viscosity is recorded at a 

series of decreasing temperatures. Fig. 12 shows change in viscosity with temperature. The 

transition from curvature to straight line on a semi-log scale indicates the WAT.  

 

T

decreasing temperature and the results are used to verify CPM results for WAT. 

 

 

Fig. 12: WAT Measurement Using Viscosity16
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Experimental Tests for Solid Formation Characterization  

scattering system, charging a volume of 

ixed wavelength light scattering gives onset of asphaltene destabilization pressure and variable 

of Asphaltene 

 paper at isobaric conditions close to bubble 

ooling for Hydrate Formation 

sferred into a PVT cell and system pressure is reduced 

 reverse test is carried out to study the hydrate dissociation. There is a difference between 

Isothermal Depressurization for Asphaltene Precipitation 

The isothermal depressurization is carried out using light 

fluid to reservoir conditions in a HPHT PVT cell. Light transmittance scan is used to establish 

reference baseline. The cell contents are depressurized while scanning. Any change in 

transmittance characteristic is a reflection of various fluid properties and potential appearance of 

solids and gas. Also, at the end, rinsing the PVT cell with toluene determines any residual 

asphaltenes. Contrary to what may seem logical, the asphaltenes have been reported to form 

even at pressures above the reservoir pressure18. 

 

F

wavelength light scattering can give more information to understand the asphaltene growth and 

deposition rate28. 

 

HPHT Filtration for Bulk Precipitation 

The filtration is maintained through 22 micron filter

point pressure by using high pressure helium at downstream side of the filter29. After complete 

displacement of fluid at almost isobaric conditions, the residual asphaltene content is determined. 

This method gives the amount of asphaltenes greater than particle size of 22 microns. By 

carrying out this filtration test under different pressures the evidence of change in asphaltene 

precipitation can be substantiated. 

 

Isobaric C

The fluid at reservoir conditions is tran

below bubble point to separate the gas phase. Subsequently water is added to the cell and again 

the system is equilibrated to the desired pressure. Isobaric cooling is started. At onset of hydrate 

formation, a larger volume of gas enters the hydrate cavity. A substantial decrease in volume of 

the system is observed during hydrate formation.  

 

A

hydrate dissociation and formation temperatures due to transient hysterasis. Hydrates are 

discussed in more details in “Solids Formation and Deposition” section. 
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Management of Waxes and Hydrates 

can be further controlled by thermal, chemical and 

axy Crude Restart Behavior 

, the gelled oil restart is the oldest one30. After a prolonged 

he processes that crude oil undergoes during cooling are described as follows: 

l to equilibrium viscosity 

 

he point at which oil starts gelling is characterized by pour point temperature. At this 

Hydrates once detected in the system, 

compositional management. Waxes are also managed by thermal, chemical and mechanical 

means. Asphaltene removal is mainly achieved by the use of solvents. 

 

W

Among the flow assurance issues

emergency or planned shutdown, the waxy components of crude oil crystallize and the whole 

volume of oil inside pipeline becomes congealed. In such a case, to restart the flow, an extra 

pressure is needed. An accurate knowledge of the restart pressure helps operators control their 

CAPEX by avoiding the risk of pipeline failure and resulting production deferment. Almost all new 

and majority of old pipelines are in the areas favorable for crude oil gelation. 

 

T

From reservoir temperature where most live oil is liquid, a temperature change occurs where 

high molecular weight paraffin molecules become unstable and precipitate. This condition 

corresponds to wax appearance temperature. The oil changes to suspension from liquid. Further 

cooling causes more wax molecules to precipitate and oil rheology changes from Newtonian to 

non-Newtonian. Near pour point, the oil starts congealing and for small stresses, the system 

behaves like a solid. To make it flow it needs stress greater than the critical stress, called yield 

stress. Uhde and Kopp30 described the waxy crude cold restart process as: 

 Travel of initial pressure wave front down the line 

 Yielding of gelled oil 

 Breakdown from initia

 Line clearing  

T

temperature, wax deposition is enough in oil to begin gelling. Wax gel can form early or after a 

long time after shutdown depending on fluid chemistry and system thermo-hydraulics. Fig. 13 

shows different inhibition and remediation methods for waxes and hydrates. 
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Fig. 13: Management of Hydrates and Waxes 

 

Paraffin Mitigation Methods 

The paraffin mitigation methods21 are discussed below 

 

Mechanical Removal 

The typical mechanical removal methods are running scrappers in borehole and pigging in 

pipelines at some intervention frequency. For deepwaters, frequent intervention is not possible. 

Pigging is discussed in more details in the blockages and pigging section. 
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Thermal Methods 

The thermal methods include heat retention, active heating and use of suitable exothermic 

chemical reactions. Thermal insulations, bottomhole heaters, hot oil circulation, steam circulation, 

and on demand “intervention” heating are appropriate for deepwaters.  

 

Chemical Treatment 

Chemical treatment includes the use of solvents like produced condensate, xylene, toluene, 

benzene, carbon tetrachloride, trichloroethylene, perchloroethylene, carbon disulphide and 

terpenes. High specific gravity is an important factor that will help solvents penetrate and 

dissolve the paraffin deposition typically on bottom of the flow-section. Some of the solvents 

mentioned above are problematic - chlorinated hydrocarbons cause poisoning of downstream 

process, aromatic solvents have low specific gravities and it is difficult to use them on the well 

bottoms, they also have low flash points and handling becomes difficult, while carbon disulphide 

is highly effective but is very highly flammable with toxic fumes. 

 

Use of Dispersants and Detergents 

These chemicals cause paraffin molecules to repel each other and metal surfaces. Naturally 

occurring asphaltenes sometimes can act as dispersant. 

 

Crystal Modifiers 

They are polymeric materials which prevent paraffin deposition by disrupting nucleation, 

cocrystallizing. The crystal modifiers are effective in limited types of crudes. Commercially they 

are called pour point depressants. 

 

Asphaltene Inhibitor Treatments 

The asphaltic crudes are known to occur worldwide. Various flow assurance problems are 

associated with asphaltene precipitation and deposition31. The recent industry experience shows 

that inhibition rather than removal of asphaltene deposits is more cost effective. The typical 

return for every dollar invested in inhibition can be in the range from $9 to $33 31. The inhibitors 

peptize the asphaltenes in a manner similar to naturally occurring resins and keep them in 

solution. Since the inhibitors are synthetic, their composition is further optimized in laboratory to 

optimize the performance to suit typical crude. Thus, the inhibitors prevent the destabilization 

and deposition of asphaltenes over a broad range of pressures, temperatures and shear 

conditions.  
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Production Chemicals 

Oil and gas production comes by flow. So, essentially, all oil and gas production operations are 

directly or indirectly the flow assurance activities. For ensuring “flow” i.e. production, various 

chemicals are used in the entire system. The most common objectives of using chemicals are 

prevention of corrosion, scales, wax deposition, hydrate formation, asphaltene deposition, 

bacteria control, demulsification, oxygen scavenging, and gas sweetening.  

 

Chemical treatments can be applied at topside, subsea or downhole. Any chemical injection 

system must be designed to be effective, reliable, forgiving and redundant. Chemical injection in 

conjunction with system design can maximize the production capacity of the system17. Fig. 14 

shows the types of chemical treatments for different flow assurance issues in oil and gas industry. 
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Fig. 14: Various Chemicals Used in Oil and Gas Production Operations 

 

The recommended chemicals, produced fluids, completion fluids, and hydraulic fluids should be 

screened for mutual compatibility17. No unforeseen solids, emulsions, foams, etc should be 

encountered when chemicals enter the system. The chemicals also should not change the 

calorific value of the hydrocarbons and should not cause any harm to the environment when 

discharged overboard through produced water. 
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Blockages and Pigging 

Early detection of pipeline blockages is the best strategy for more effective pigging32. Early 

knowledge of location and severity of pipeline blockage enables the operator to take more 

informed decision on pigging operation strategy. This is possible by determining the number of 

flow constrictions that exist.  

 

In locating the blockages the principle used is pressure transient initiated by shortly altering the 

mass influx at the inlet. The transient propagates in pipeline and is partially reflected back at 

blockage. The reflection propagates back to the inlet upstream and results in pressure variation. 

The monitoring of these variations yields information useful for analyzing the blockage location 

and severity. 

 

Modern methods for blockage detection are gamma ray absorption scanning of pipeline and 

distributed pressure / temperature monitoring. Gamma ray absorption pipe scanner can 

accurately identify the location and severity of blockage due to solids formation and deposition 

but it does not give continuous information. Radioactive source usage keeps this technology on a 

shelf of not so popular ones.  

 

Fiber-optic (distributed measurement) pressure and temperature data can identify the blockage 

location and severity based on pressure drop monitoring. It can give continuous real time 

information and based on which, the chemical inhibition strategy can be optimized. The most 

demanding requirement of this technology is that, fiber-optic cable must have an interface with 

flowing stream inside the flowline. Construction of this capability in a pipeline becomes a 

specialized job. 

 

Paraffin and produced solids are handled with pigging. Pigs include poly, scrapper, foam, gel, etc. 

used solo or in combination with other types. If pigging is frequently required in long subsea 

pipelines, then subsea pig launchers may be needed. Depending on the frequency of pigging 

operation, launcher with multiple pigs held ready may be required to avoid frequent ROV trips for 

loading and launching the pigs. Pig travel velocity can be increased when it has crossed the 

constrictions.  

 

Pigging is a mature technology. With new smart pigs, it is possible to internally “log” a pipeline 

for sites of solids deposits, wall thickness, corrosion, flow rates, and temperature data. This 

information helps in talking the corrective actions.  
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On the down side, pigs sometimes can get stuck due to heavy deposits, odd constrictions, and 

other mechanical reasons. Retrieval of a stuck pig may even require a major intervention or 

shutting down of a pipeline. Pigging of large diameter and long distance gas lines is easier 

compared to pigging of similar line carrying heavy crude, as later have more probability of getting 

the pig stuck. Pigging operation also causes gigantic slugs and arrival of slug at host facility or 

terminal can even throw everything out of control if adequate capacity for slug handling is not 

available or designed. Pigging also needs pipelines to be strong structurally. Subsea pig launching 

is relatively a new technology. 

 

Plugging While Pigging 

Aidan23 suggested the mechanism of pipeline plugging while pigging-wax is scrapped off as pig 

travels, scrapped wax accumulates downstream of the pig, wax accumulation gets harder as oil is 

squeezed out, finally when the accumulation of wax grows enough in mass that friction exceeds 

the force available due to pressure upstream, the pipeline gets plugged. 

 

To avoid such an accumulation ahead of the pig, there should be something which will keep the 

scrapped wax mass continuously flowing and clearing from the path of pig. This is possible if a 

suitable port is built into pig which will allow desired fluid flow to carry away the scrapped wax. 

Size of this port should be optimum as too small size will have insufficient flow to carry away the 

scrapped wax and too large size will divert all flow through the port and pig may completely stop 

moving23. Bypass flow through the port should be sufficiently greater than rate of wax removal 

ahead of pig. 

 

Importance of Transient Behavior 

No insulation is perfect. Whatever the amount of CAPEX for installing the best possible pipeline 

thermal insulation system, all pipelines are going to cool down in the event of unexpected 

prolonged shut downs. The transient behavior of the system becomes important as water depths 

increases. 

 

Thermal Insulation 

The revenue loss, risk from hydrates formation, paraffin accumulation, and adverse fluid viscosity 

effects due to low temperatures can be minimized with effectively insulated flowlines. The heat 

retention characteristics are quantified by the heat transfer coefficient Un 33. Radial heat flow is 

give by the following equation  
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                                                                      ( )ambCLnnh TTAUq −=                                                (1) 

 

where, qh is heat flow rate, Un is overall heat transfer coefficient, An is surface area, TCL is 

centerline temperature, and Tamb is ambient temperature. The desirable Un values are in the 

range 0.1 – 1.0 Btu/hr-ft2-OF 33. 

 

Insulation Materials 

The oil and gas industry uses polypropylene, polyethylene and polyurethane as insulating 

material for pipelines. Table 2 shows the thermal conductivities of different insulation materials. 

 

Table 2: Thermal Conductivities of Insulation Materials  

Insulation 

Material 

Thermal Conductivity 

(Btu/hr-ft2-OF) 

Polyethylene 0.20 

Polypropylene 0.13 

Polyurethane 0.07 

 

These materials are used in different combinations and configurations to insulate the pipelines 

resulting in composite thermal conductivities ranging from 0.07 Btu/hr-ft2-OF to 0.13 Btu/hr-ft2-OF. 

 

The insulation material is further broadly classified into two types – dry insulation and wet 

insulation. Dry insulations need a protective covering which will prevent the ingress of water 

when system is submerged for subsea applications. Wet insulations need no barrier to prevent 

water ingress or have no effect or degradation even when water enters and stays in the material 

matrix. The examples of dry insulation are mineral wool, fiberglass, extruded polystyrene, 

polyurethane foam, etc. The examples of wet insulation are polypropylene, polyurethane, 

syntactic polyurethane, syntactic polypropylene, etc. 

 

General Requirements for Insulation Selection 

Flow assurance analysis is necessary prior to the selection and configuration of pipeline insulation. 

This may include: 

 Flash analysis for hydrate formation temperature. 

 Thermal-hydraulic analysis along the entire length and route of pipeline. 

 Heat transfer analysis for determination of type and thickness of insulation along the 

pipeline. 
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 Transient heat transfer analysis and development of cool down curves to assess the risk 

of blockage due to potential hydrate formation or wax-gelling. 

 

Pipe-in-Pipe is a flowline concentrically positioned inside a protective jacket pipe and annulus 

filled with polymeric foam of low density, particulate insulation or vacuum. They are simple and 

economic to fabricate and strong enough for unlimited depths. Pipe-in-pipe insulations are 

suitable for pipelines producing from HPHT formations in deepwaters. The outer pipe is generally 

called carrier pipe and it can house multiple lines apart from production flowline such as control 

lines, chemical inhibitor lines, and power cables. Insulating all the lines together is more 

economic than insulating each line individually. Dulang field, Malaysia, Seahorse and Tarwhine 

fields, Australia, and Mobile Bay flowline system are examples of pipe-in-pipe applications. 

 

Non-Jacketed Insulation Systems do not have protective outer pipe. The insulation coated 

on the main flowline should be strong enough to withstand the hydrostatic head and other forces 

due to water currents, subsea installation process, etc. 

 

Syntactic Insulation coating has an elastomer, polyurethane, or polypropylene matrix with 

hollow microspheres distributed. The concentration of microspheres in the matrix and their 

strength can be designed to suit the application requirements. Typically, syntactic foams are used 

for high pressure applications. 

 

As insulation foams have tendency to “creep” excessively at high flowline temperatures, they can 

be combined with syntactic coatings to form multilayer insulation with alternating layers of 

syntactic and foam material. 

 

The elastomeric coatings for flowlines could be promising as they are strong at depths up to 

3000 ft and stable at temperatures up to 300 0F. 

 

The insulation in wellbore is also one concept to raise the wellhead temperature34. The 

possibilities are multilayer thin film insulation coating and low thermal conductivity completion 

fluid. When gas temperature used for gas lift in insulated wells is high enough, heat loss can be 

minimized and wells can flow above WAT beyond wellhead. 
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Heating 

Flowlines without active heating will eventually cool down during a shutdown. The vertical 

temperature distribution of sea water (Fig. 15) explains the reason for rapid cool down of 

pipelines. The heating systems should allow the fluid temperature inside the pipeline to stay 

above WAT during normal flow and should also be able to heat the fluid reasonably fast after a 

prolonged shutdown planed or unplanned.  

 

Operators prefer to have least trouble restarting the flow after a shutdown. Call-out electric 

heating similar to Nakika field in Gulf of Mexico is one example35. 

 

 

Fig. 15: Seawater Temperature Gradients36

Temperature of Seawater [oC]

 

Heated bundles are of two types37 - electric heating and heating by thermal fluid circulation. 

Electric heating needs a large amount of power, subsea electric connectivity, and footprint for 

power generation. However, there are several success stories of thermal fluid circulation heating. 
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To investigate the effect of change in heat loss characteristics of a system, a simulation study 

was carried out. The parameters of production system and reservoir fluid are shown in table 3. 

 

Table 3: Production System and Reservoir Fluid 

Reservoir pressure 5000 psi 

Reservoir temperature 200 0F 

GOR 350 

Oil API 20 

Water cut 0% 

Well depth 10000 ft 

Tubing ID 4.8” 

Flowline 8”, 10 miles 

All risers 8”, 360 ft 

Surface temperature 60 0F 

Liquid PI 2 stb/d/psi 

 

Fig. 16 shows a flow diagram of simulated flow loop. 

 

 

Fig. 16: Flow Model Schematic 

 

The seabed temperature is 200 0F. Using a twin-screw pump with nominal capacity of 2000 m3/h, 

simulations run show that the burial of tieback will prevent heat loss. This can improve 

deliverability by about 1000 stbo/day if the pressure at host facility is around 250 psig.  
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Fig. 17 shows that the deliverability of a well can be improved if the flowline going to host facility 

is thermally insulated. Better insulation means better retention of pipeline heat and hence better 

flow assurance leading to a higher deliverability. 
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Fig. 17: Deliverability Affected by Cooling Effect of Pipeline 

 

Pipeline Configurations for Heating 

Pipeline with Insulation Coating 

In this insulation configuration, the pipeline is coated with thermal insulation material. This option 

can not keep the oil flow above WAT for long even if the upstream feed is actively heated.  

 

Insulated Pipe-in-Pipe 

In this configuration, the annulus between two pipes is filled with an insulation material. The 

insulated pipe-in-pipe can keep the temperature of the system temperature satisfactorily within 

acceptable range but again for prolonged shutdowns, the system will not stay above WAT for 

long. This calls for active heating. 

 

Pipeline Bundle with Hot Fluid Flow in the Annulus 

This configuration has thermal fluid in the annulus between two pipelines. Thermal fluid is heated 

with  external  heat  and  circulated  through  the  annulus.  Circulation has two alternatives – co-  
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Fig. 18: Co-Current Flow of Heating Fluid37 

 

 

 

Fig. 19: Counter-Current Flow of Heating Fluid37 

 

current flow and counter-current flow. Fig. 18 and fig. 19 illustrate the performance of co-current 

and counter-current hot-fluid flow bundles. In the illustrated case, the co-current flow of heating 
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fluid (generally water) performs better than counter-current flow in keeping the whole system 

above WAT37. 

 

Overall performance of thermal fluid heating in the annulus depends upon various factors like 

pipeline length specific heat content of the fluid, specific heat content of fluid being transported 

and ambient temperature. 

 

Pipeline Bundle with Annulus filled with Glycol and two or more circulation lines inside for thermal 

fluid circulation and cold fluid return is one type of configuration. This configuration has no 

benefit over the concentric pipeline bundle and the construction cost is higher. 

 

At the locations where flowline route has substantial highs and lows to trap gas, the release of all 

the gas even with complete blowdown is not possible. In such cases, the hydrate problem 

becomes tough to resolve without direct heating options. Direct impedance heating can save up 

to 30% in investments as compared to PIP38. 

 

Subsea Processing 

The main drivers behind subsea processing is reducing or eliminating the need for surface 

structures, reducing personnel exposure to the HSE hazards, increasing flow rates and 

maintaining them for longer period with higher expected ultimate recovery. 

 

 

 

Fig. 20: Offshore Systems5

 

Fig. 20 shows the different types of systems for offshore oil and gas production activities. With 

increasing water depth, the need to minimize structural costs arises. This concern is taken care of 

by structures like TLP, FPS, SPAR, FPSO and subsea technology. 
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Downstream flow assurance problems are minimized if the crude is processed close to wellhead. 

Subsea processing equipment should be simple, reliable, and capable to continue working with 

minimum intervention. Adoption of this technology for field applications has been slow. Although 

multiphase pump systems are simpler than subsea separation, they can not pump wet gas (98 – 

100 % GVF) for long time. Subsea separation overcomes these problems. Separation of water 

significantly reduces the power consumption. By separating gas from water, hydrate formation 

problem can also be mitigated. Apart from being costly, subsea separation is not considered 

reliable.  

 

Subsea separation, if reliable and successful, will give the following benefits: 

 Reduced backpressure on the well 

 Improved boosting efficiency by separating gas and liquid 

 Reduced multiphase flow losses  

 Reduced accumulation of sand in pipeline 

 Reduced slugging problems at host facility. 

 

In mitigating the hydrate formation problem, a three phase subsea separator can be more 

effective than a two phase separator39. Typically, separators on the surface or subsea are prone 

to sand accumulation, paraffin buildup, emulsification of liquids, and foaming. The performance 

of separator is further wellfluid specific. Certain components in separators like level sensors and 

controllers are high risk items as they can fail most frequently.  

 

Operability  

The method to operate and coordinate with flow assurance requirements is known as  operability. 

Design and operation of production systems must consider the entire system from reservoir to 

export, all possible modes of operation: startup, normal production, shutdown and restart, non 

routine operations like well testing, pigging, etc. over the entire life of development. The 

operability design may include the following steps: 

 Developing the preliminary operating strategies / philosophies 

 Determination of process equipment, pumps, and storage tank 

 Developing the operating envelopes for given system design (maximum to minimum 

temperatures, pressures, rates, etc) 

 Consideration of non-routine operations 

 Chemical dosing strategies – rates and durations 
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Flow Assurance – Operability and Risk 

The investigation of different issues regarding pipeline sizing, routing and layout is possible with 

steady state tools. But the operability analysis like slugging, start-up, shutdown, ramp-up, choke 

down, pigging and blowdown needs to be investigated using dynamic tools. Operability analysis 

helps: 

 Minimize CAPEX and improve the flow assurance 

 Remove unnecessary conservatism and minimize uncertainty with  

o Reservoir and production profiles 

o System performance and deliverability 

o Fluid composition and properties.  

o Solids formation and blockage potential. 

 Optimize the solution. 

 

Drag Reducers 

They are long chain, ultra high molecular weight polymeric compounds. The typical molecular 

weights are 1 to 10 million. When pipeline flow is turbulent, the cross section is divided into three 

regions – laminar sublayer, buffer region, and turbulent core. Laminar layer tends to be 

stationary while turbulent core is moving fastest. Because of a wide difference in velocities, the 

buffer region experience turbulent eddies. This activity “draws down” the hydraulic energy of the 

stream and upstream end gets additional back pressure. 

 

With concentrations of order of a few ppm, drag reducers suppress turbulent eddies in buffer 

region and hydraulic energy is better utilized in moving fluid instead of overcoming “random 

drag”. The use of drag reducers can reduce frictional pressure drop by up to 70%. Difference in 

frictional pressure drop with and without the use of drag reducer is known as drag reduction. 

 

A marginal development does not mean marginal engineering; the level of efforts 

needed is much greater in early stages of engineering! 
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4. MULTIPHASE PUMPING 

 

This section discusses the conventional and modern production systems, multiphase pumping 

technology and it’s superiority over single phase pumping, types of multiphase pumps, 

performance characteristics, costs, operational and location considerations, suitable cases for 

application and potential improvement in flow assurance. 

 

Modern Production Engineering  

The productivity index (PI) of a well is defined as flow rate delivered at sand-face per unit 

drawdown and is denoted as J. 
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where, k is permeability of formation, h is payzone thickness, μ is viscosity of oil, re is reservoir 

radius, rw is wellbore radius and s is the skin factor. 

 

To improve the production under given conditions, petroleum engineers have only limited 

variables with which they can play. The options are well bottomhole pressure reduction, wellbore 

skin reduction, stimulation, and in some rare cases reduction of oil viscosity in situ by miscible 

flooding, microbial treatment, or some thermal recovery method. It is not practical to increase 

the drawdown by increasing reservoir pressure although water flooding or gas injection is 

implemented for reservoir pressure maintenance. The bottomhole pressure reduction is possible 

with reduction of backpressure by subsurface artificial lift or surface pressure boosting by adding 

energy to the stream. Fig. 21 shows the effect of backpressure on the flow rate of a well. 

 

For deep waters and long offsets, the challenge is to engineer a system that can reliably deliver 

fluids from deep waters over long offset distances to the host process facilities. For this reason, 

“delivery” rather than traditional “production” is more appropriate term. The current record for 

maximum tieback lengths for gas developments is 120 km and for oil/gas developments is 65 

km1. Depleting onshore reserves and economics is bound to force E&P business to move further 
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deep and  further  long.  A  recent  review  shows  that  over  the  next few years, more than 

250 new offshore developments, 80% in shallow  waters  for  small  developments  and  20%  in  
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Fig. 21: Well Performance at Different Backpressures 

 

deep and ultra-deep waters for large fields40 are coming up. The application of subsea 

compression and separation in shallow water fields is increasing and this requires incorporation of 

the subsea boosting capacity in the network to tieback production to existing platforms. The 

platforms continue to supply energy for subsea process and boosting. 

 

For successful development of long distance delivery systems (LDDS), the industry needs 

successful design and operation of subsea multiphase production system. There is a need to 

evaluate entire system from the reservoir to export1. The system designers need to consider 

reservoir characteristics, production profiles, produced fluid properties and behavior, design of 

system components and operating strategies. 

 

The conventional boosting technologies can tolerate only trace amounts of gas in liquid. 

Multiphase boosting is the most popular modern technology which is helping develop oilfields 

throughout the world without conventional large investments for facilities upstream to main 

stabilization unit. With multiphase boosting, it has been possible to add energy to the untreated 

wellstream and reduce the well bottomhole pressure to improve delivery. 
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Artificial Lift  

If the bottomhole pressure in a well is sufficient to push the liquid to surface and produce at a 

commercially viable rate, the well is “self flowing”. In cases where additional energy needs to be 

added to the column to make the well produce the well is said to be on “artificial lift”. Artificial 

lifts are of several different types – mechanical lift, for example ESP and hydrodynamic lift for 

example gas lift. ESP lifts liquid up the column by mechanical pumping, whereas in the gas-lift, 

gas is injected into the  liquid column in well to reduce the mixture density and “lift” up. 

 

Properly applying the artificial lift is a cross functional process that relies on understanding 

hydraulic, mechanical and electrical basics. Decision-making will depend on the experience and 

technology. Even when oil prices are low, installing artificial lift or switching to a different lift 

system can increase oil output and economic return. Therefore, it is important to minimize the 

well interventions and deferred production, reduce installation costs and operating expenses, and 

decrease failure frequencies. Relative performance is one key measure for artificial-lift systems. 

Higher efficiency or lesser failures does not make any system better. The systems that will give 

maximum NPV can be called the best ones. The lift methods should be monitored continuously to 

optimize the well performance. The monitoring systems that provide real-time data to help 

operators make decisions are essential. These systems use surface and downhole measurements 

to determine if problems exist. In high-cost areas, the use of these data in reducing or 

eliminating the failures justifies monitoring system investments. Once there is confidence in this 

approach, the industry will move towards closed-looped automation and will use computers to 

make real-time operational decisions.  

 

Multiphase Pumping 

The mid eighties and nineties saw the first multiphase pumps as a means to boost the untreated 

well streams. It was followed by successful trials around the world. Of all the subsea process 

technologies, multiphase boosting is comparatively most mature. Potentially, the multiphase 

boosting reduces the number of wells required for field development15. Typically, the reservoir 

pressure in a field development applying subsea process will be very low as compared to the 

conventional subsea development (wet trees + surface process).  

 

Today, several pump manufacturers offer their multiphase pumping equipment in increasingly 

demanding and competitive oil industry. Multiphase pumping is a proven technology that has 

consistently demonstrated its importance under different operating conditions. The increasing use 
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of this new technology prompts the need to understand the interaction between the reservoir, 

well, and the surface networks involving multiphase pumps. The reservoir, well and surface 

network conditions change continuously throughout the life of the oilfield. Start-ups and 

conditions like unplanned shutdowns may change the working conditions for a multiphase pump. 

The pumps need to be designed for widest anticipated operating conditions and capacities within 

economic limits.  

 

Till a few years back, majority of the surface tests for multiphase pumps involved testing only 

with water or oil. But now the time has arrived when everyone have realized the importance of 

testing these engineering marvels underwater and under the multiphase flow regimes involving 

gas volume fractions. 

 

As the name suggests, multiphase pumps boost the fluids containing more than one phase. It 

means they are capable of handling and boosting the fluids without going for liquid gas 

separation thereby saving on footprint and CAPEX. Petrobras have reported a reduction in 

onboard equipment, decreased energy demand, reduced gas flaring, and a lower operating noise 

level by switching over to multiphase pumping in Campos basin41. 

 

Subsea boosting has a significant impact later in the field life to maintain the flowing pressure 

and produce at the plateau for a longer period of time15. Subsea boosting may eliminate the need 

for gas lift and other artificial lift when reservoir has depleted of energy. But many operators still 

hesitate to be the first users of subsea technology before the benefits are fully understood. One 

of the main concerns for operators is the uncertainty related to the operating expenditures and 

intervention costs for unforeseen events. Intervention and repairs could be expensive and long 

waiting times for the intervention vessels and resources are significant risk contributors. Contrary 

to this hesitation, several oil companies have mentioned this technology as mature and reliable 

from their experience15. 

 

 

Conventional Production System 

When the wellfluid reaches surface, it is directed to a manifold. The reservoir fluid consists of oil, 

gas, water, and sediment solid particles. Conventionally, the untreated fluid is not transported to 

long distances. The oil, gas, water, and solids are separated and then pipelined or stored for bulk 

transport. Fig. 22 shows a typical conventional production system. 
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Fig. 22: Conventional Production System 
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Modern Artificial Lift 

Traditionally, the artificial lift has been referred  to  as  downhole  pumping  and  gas  lift.  Today,  
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Fig. 23: Deliverability with Different Pump Power 
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artificial lift is not limited to wellbore, but also includes all methods applied to lift or boost the 

produced fluids to destination42. 

 

Deepwater and ultra deepwater developments have forced a broader definition of artificial lift. A 

combination of downhole pumping or gas lift with surface multiphase pumps constitutes modern 

artificial “lift” to transport the wellfluids. Wet gas compression with multiphase “compressors” 

also classify under the modern artificial lift. 

 

Fig. 23 shows an example of improved well deliverability with bigger size and capacity of 

multiphase booster pump. 

 

Multiphase Production System 

The multiphase production systems represent a significant departure from the conventional 

operations. When the need for an offshore structure and other process facilities is eliminated by 

switching over to multiphase pumping, the savings realized are very attractive and highly 

significant. Fig. 24 shows a reduced footprint when compared to fig. 22, due to the use of 

multiphase pump and elimination of conventional separation system. 
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Fig. 24: Drastically Reduced Footprint and by Application of Multiphase Pumping 

 

There is an increasing interest in subsea multiphase boosting, as more and more deep sea 

resources continue to be discovered and become economic as technology is advancing and oil 

prices going up. Fig. 25 shows the reserve sizes for different types of deepwater development 

systems. The subsea wellheads eliminate the need for dry facilities and structures. But they alone 
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Fig. 25: Deepwater Systems and Reserve Size5

 

are not sufficient to lower the abandonment pressure on wells largely because of long tiebacks. 

High back pressure on wells wastes the reservoir energy and impacts the ultimate recovery in a 

negative way43. Subsea multiphase pumping helps reduce the back pressure and bring the 

production from otherwise abandoned wells to substantial profits. 

 

The most commercialized form of subsea process technology is multiphase boosting44. Multiphase 

boosting can be used in conjunction with other subsea process systems. Any separation which is 

not complete gives some gas in the liquid flow or liquid in gas flow. Such condition can easily 

arise in subsea process and hence multiphase boosting / wet gas compression turns out to be the 

best options for onward journey of oil and gas to host facility. 

 

By boosting the produced fluids, there is a considerable positive change in temperature. This 

reduces the need for methanol, glycol or other flow assurance chemicals15. As a consequence, 

there is a reduced need for chemical recovery from treated fluids downstream and process is 
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more environment-friendly at effluent discharge point. Fig. 26 shows the rise in temperature of 

fluid flow through riverside twin-screw pump at speeds ranging from 700 RPM to 1700 RPM. 
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Fig. 26: Change in Temperature of Stream by Boosting with Twin-Screw Multiphase Pump 

 

Tieback Distance 

To investigate the application of twin-screw pump for high GOR production, a simulation study 

was carried out. The main parameters of production system and properties of the reservoir fluid 

are shown in table 4. 

 

Table 4: Parameters of Production System and Reservoir Fluid 

Reservoir pressure 3500 psi 

Reservoir temperature 300 0F 

GOR 20000 

Water cut 0% 

Well depth 5000 ft 

Tubing ID 4.8” 

Flowline ID 6.0” 

Surface temperature 60 0F 

Liquid PI 2 stb/d/psi 
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 Fig. 27: Tieback Distance for High GOR Stream Boosting Using Twin-Screw Pump 
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Fig. 28: GVF Variation with Distance under Different Scenarios 
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Using a twin-screw pump with nominal capacity of 700 m3/h, the simulations run for 900 bbl/day 

liquid rate show that twin-screw pump can increase the tieback distance by about 200 km for the  

host facility to operate at 200psi. In this case if some conventional pumping technology is used, 

the pump will lose priming several times during operation and will need several interventions and 

restarts. This case, being a high GOR case, was not investigated for gas lift and combinations 

with other lift options. Fig. 27 shows the results of using a twin-screw pump as compared to 

natural flow and illustrates that tie-back distances can be increased if twin-screw multiphase 

pump is used. 

 

In this study, the GVF at pump suction was found to be 88%. Fig. 28 shows the trend of GVF 

along the pipeline with and without twin-screw pumping. Fig. 29 shows the actual record of 

tieback distances in oil industry.  

 

 

Fig. 29: Subsea Tieback Distances in Record5

 

Multiphase Pump Types 

Several multiphase pumping technologies have developed over the last few decades as a result 

of the quest for transporting unprocessed wellfluids over long distances. The broad categories 

are positive displacement and rotodynamic. Fig. 30 shows that use of multiphase pumps is going 

up, whereas fig. 31 shows that twin-screw multiphase pumps are gaining popularity. 

 

Among the rotodynamic and positive displacement technologies, the Helico-Axial rotodynamic 

pumps have the capacities to pump much larger volumes of fluids than positive displacement 

type pumps. Fig. 32 shows different types of multiphase pumping technologies. 
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Fig. 30: Worldwide Multiphase Pumps Installations by 200245
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Fig. 31: Twin-Screw Pump Installations in Canadian Oil Sands46

 

Positive Displacement Pumps 

Positive-displacement pumps operate by forcing a fixed volume of fluid from the inlet pressure 

section of the pump into the discharge zone of the pump. These pumps generally tend to be 

 



 61

larger than equal-capacity dynamic pumps. As long as the seal between displacing impeller and 

stationary case is maintained, these pumps can “compress” the gas along with pumped liquid. 
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Fig. 32: Types of Multiphase Pumps 

 

 

 

Fig. 33: Twin-Screw Pump47
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Fig. 34: Twin-Screw Pump Top View48

 

Twin-Screw Pump 

The incoming fluid in a twin-screw pump is diverted to both ends of the screws and fluid fills up 

the volumetric chamber between screw flanks. The screw profile axially transports the fluid from 

ends to the center of pump where fluid rejoins and leaves the pump chamber.  

 

Because  of  the  precise  timing  gears,  there  is no contact between pairs of screws or between 

screws and surrounding housing. This allows the pump to handle a variety of abrasives. The 

typical twin-screw pump module consists of an electrical motor, pump, cooling system, oil refilling 

and instrumentation. The system design is based on proven equipment and components are 

selected based on high reliability. Figures 33, 34, and 35 show the inside construction of twin-

screw multiphase pumps. The mechanical seals designed to prevent scaling and sand flow, to 

restrict axial displacement and to prevent damage to static seals. 

 

 

Fig. 35: Twin-Screw Pump Cut View49 
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Fig. 36 shows the photographs of twin-screw multiphase pumps installed at Texas A&M Riverside 

campus. This is a LSJIS model Flowserve twin-screw pump with 10105 bbl/day throughput and 

pressure boost up to 500 psig. 

 

      

Fig. 36: Flowserve LSJIS Twin-Screw Pump at Texas A&M University Riverside Campus 

 

Progressing Cavity Pump 

A progressing cavity pump (PCP) moves fluid by means of a cavity, which progresses along the 

body of the pump. As the cavity moves, fluid is sucked in to fill the cavity, further rotation of the 

pump causes the fluid to flow and be delivered from the pump. The concept was invented by 

French designer René Moineau. They were developed during 1980s for oilfield application.  

 

Fig. 37: PCP Principle50

 

The rotor of the pump is a steel helix which is coated with a smooth hard material, normally 

chromium. The rotor fits inside a pump body (the stator) which normally is elastomer lined steel 

tube. The stator has a helical cavity. The rotor turns inside the helical stator in such a way that 

one point along the helix is at the edge of the cavity, and the opposite point is at its center. 

Rotation of the rotor inside the stator causes the cavity to progress along the pump thus inducing 

fluid flow.  It tolerates very low inlet pressures50. PCP working principle is shown in fig. 37. 

 

http://en.wikipedia.org/wiki/Rotor
http://en.wikipedia.org/wiki/Helix
http://en.wikipedia.org/wiki/Chromium
http://en.wikipedia.org/wiki/Rubber
http://en.wikipedia.org/wiki/Steel
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While progressing cavity pumps offer a long life and reliable service, abrasive fluids significantly 

shorten the life of the stator. A unique feature of the progressing cavity pump is the design of its 

stator. Common designs are the "Equal-walled" stator and the "Unequal-walled" stator. The latter, 

being unequal in wall-thickness allows for larger sized-solids to pass through because of its ability 

to compress under pressure. The interface between rotor and stator is lubricated by the fluid 

being pumped, however if the pump is allowed to 'run dry', rapid deterioration of the stator 

results. The term "run dry" is loosely related to the pump's self-priming capabilities. This means 

the pump is able to run dry for a given period of time while it draws in the pumped medium. 

 

The progressing cavity pumps were specifically designed for crude oil lifting and gas well 

dewatering. The rotary action of the PCP outperforms the reciprocating pumps, its operating 

efficiency surpasses conventional electric submersible pumps and it is ideal for dewatering 

gaseous formations because it is never affected by gas lock. High production rates and abrasives 

content call for frequent replacement of the wearable stator. 

 

An all-metal PCP has been developed and testing is underway since early 2005 50. This design 

eliminates elastomeric stator. The stator is hydroformed and metals are so chosen that they can 

withstand temperatures more than 200 0C. During thermal expansions and contractions, the 

clearance between stator and rotor should not change significantly and this is achieved by 

choosing the same metal for both.  

 

Piston Pumps 

The piston pumps are double acting reciprocating pumps. The system includes two check  valves  

on  both  suction  and  discharge  sides.  The principle  of operation is very simple. 

 

Overall efficiency is good compared to other multiphase boosting technologies. They can handle 

high GVFs for extended period with high pressure boost. Their versatility makes them suitable for 

single or multiple wells application. Fig.38 shows a RamPump.  

 

The RamPump™ by Weatherford is a duplex piston pump that operates using a hydraulic power 

system. The benefits of this type of system are most apparent to applications needing lower 

operating pressures of wells to maintain or even improve production but do not have the space 

to install separators, flash tanks, compressors, liquid pumps and vapor recovery units to 

drawdown the surface pressure. This pump alone can be used to lower the wellhead pressure by 

creating a low pressure zone between the well and the high backpressure node such as upstream 

end of a long flowline or downstream separator thus minimizing equipment requirements. Further 
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system modularity ensures relocation of the unit. A number of RamPumps are in operation in the 

Gulf of Mexico.  

 

 

Fig. 38: RamPump51 

 

The Mass Transfer Pump by National Oilwell first installed in Canada in 1998 is the first type of 

piston pump applied for multiphase boosting. A number of mass transfer pumps are in operation 

in Canada. 

 

Diaphragm Pumps 

A diaphragm pump is a positive displacement pump that uses a combination of the reciprocating 

action of a rubber or Teflon diaphragm and suitable non-return check valves to pump a fluid. 

Sometimes this type of pump is also called membrane pump or peristaltic pump. There are two 

main types of diaphragm pump. In the first type, the diaphragm is sealed with one side in the 

fluid to be pumped, and the other in air or hydraulic fluid. The diaphragm is flexed, causing the 

volume of the pump chamber to increase and decrease. A pair of non-return check valves 

prevents reverse flow of the fluid.  

 

 

http://en.wikipedia.org/wiki/Pump#Positive_displacement_pump
http://en.wikipedia.org/wiki/Rubber
http://en.wikipedia.org/wiki/Teflon
http://en.wikipedia.org/wiki/Diaphragm
http://en.wikipedia.org/wiki/Check_valve
http://en.wikipedia.org/wiki/Fluid
http://en.wikipedia.org/wiki/Peristaltic_pump
http://en.wikipedia.org/wiki/Air
http://en.wikipedia.org/wiki/Hydraulic_fluid
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The second type of diaphragm pump has one or more unsealed diaphragms with the fluid to be 

pumped on both sides. The diaphragm(s) again are flexed, causing the volume to change. When 

the volume of a chamber of either type is increased (the diaphragm moving up), the pressure 

decreases, and the fluid is drawn into the chamber. When the chamber pressure later increases 

from decreased volume (the diaphragm moving down), the fluid previously drawn in is forced out. 

Finally, the diaphragm moving up once again draws fluid into the chamber, completing the cycle. 

This action is similar to that of the cylinder in an internal combustion engine. 

 

Rotodynamic Pumps 

The dynamic pumps work on the principle that kinetic energy is transferred to the fluid. These 

pumps are based on bladed impellers which rotate within the fluid to impart a tangential 

acceleration to the fluid and a consequent increase in the energy of the fluid. The purpose of the 

pump is to convert this energy into pressure energy of the fluid.  

 

Helico-Axial Pump 

The helico-axial pump was developed by Poseidon Group and is now manufactured by Framo and 

Sulzer. The fluid flows horizontally through a series of pump stages consisting of helical impellers 

and stationary diffuser. 

 

 
Fig. 39: Hydraulic Design of Helico-Axial Pump52

 

The number of stages depends on the required head. The number of stages is limited by the 

dynamic behavior of the rotating assembly. The special shape of the impeller limits accelerations 

and also low-pressure zones. The initial shape was invented in the late seventies by Souriau and 

Arnaudeau15. This shape was improved later several times. It avoids the phase separation and 

 

http://en.wikipedia.org/wiki/Internal_combustion_engine
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facilitates the gas carry over, providing good performance in multiphase flow. This feature 

enables stable operation, independent of conditions such as transients and slugging. The 

specially designed (Fig. 39) axial flow stages prime the main production pump and push the gas-

liquid flow stream into the stages. Gas volume is reduced through the Poseidon system by 

compression. 

 

Multistage Centrifugal Pump 

Downhole ESP’s manufactured by Baker-Centrilift and Schlumberger-REDA are widely in use. 

Multi-stage centrifugal pumps are adaptable to many different environments because they are 

available in a variety of configurations. Recently, the ESP’s have been developed to work with 

harsh conditions like abrasive solid content and gas presence and highly corrosive fluids and 

environment. 

 

0

500

1000

1500

2000

2500

0 100,000 200,000 300,000 400,000 500,000 600,000

QT (bbl/day)

Δ
P 

(p
si

)

Piston Technology

Helico-Axial Technology

Twin-Screw Technology

PCP Technology

 
Fig. 40: Operating Envelopes for Multiphase Pumping44 

 

Multiphase Pump Performance 

The multiphase pumping technologies are compared in the following figure (fig. 40) based on 

operating envelope provided by manufacturers.  
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Performance Characteristics 

 

 

 

ΔP 

 
Flow Rate

Fig. 41: Centrifugal Pump Behavior 

 

One outstanding capability of dynamic pumps is that they can operate safely even with discharge 

valve closed. The pressure does not exceed a definite limit called shut off pressure. Fig. 41 shows 

the performance behavior of centrifugal pumps. Fig. 42 shows the performance of twin-screw 

multiphase pumps. 

 

On the contrary, positive displacement pumps can generate extraordinarily high discharge 

pressures. If the discharge line is closed, the fluid will try to escape from the weakest point on 

equipment or piping. The discharge pressure can stabilize at a limiting value if clearance is 

enough to allow large slip flow. The change in flow rates against differential is fairly flat unlike 

dynamic pumps. Dynamic pumps are highly sensitive to change in differential pressure.  

 

Positive displacement pumps need no priming and in turn can operate on high GVFs. Centrifugal 

pumps with single stage commercially available may develop only 100 psi pressure boost 

whereas pressures up to 500 psi can be expected from the most common positive displacement 

pumps. Piston pumps can develop pressures easily above 10000 psi.  
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Fig. 42: Twin-Screw Pump Performance 

 

Cost 

Higher precision needed in clearances and small tolerances make the positive displacement 

pumps significantly costlier than dynamic pumps. Piston pumps have a very complicated 

mechanical design as compared to the centrifugal pumps. Gear pumps are simplest in 

construction. Owing to close clearances, abrasives present in fluids can significantly damage the 

positive displacement pumps.  

 

Operational Considerations 

The place where multiphase pumps are in the highest demand is subsea and deep sea. The most 

severe operational concerns are sand erosion, seal failure, high temperatures, presence of 

hydrates in fluid stream and long term performance under water. The screw wear resulting from 

sand erosion represents the primary cause of pump downtime53. 

 

Apart from these concerns, the power supply reliability for the pumps is a major concern. There 

is a substantial loss of power when power is transmitted over long distances. A subsea step-up 

using subsea transformer is not desirable for majority of operators. Instead they prefer to rely on 

high quality umbilical made to perform well under deepwater environments. The equipment must 
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be tested on surface by physically simulating the marine deepwater wet conditions to study the 

performance and reliability. Once marinized, the intervention to solve even the most trivial 

problem that hampers the operation of these pumps would cost huge amounts of money. The 

operating efficiency of the pump is less because of the voltage losses in the power umbilical and 

in the pump motor. 

 

Multiphase Boosting System Location Considerations 

The performance of modern production system based on multiphase boosting system is very 

sensitive to the location of pump. Theoretically, multiphase boosters can be located anywhere 

from the wellhead, up to the riser base, on the host platform or shore pumping station10.  

 

If the system is located close to wellhead, the backpressure on the flowline will be higher than 

those close to the riser base or further on the host platform. Further, this leads to longer power 

umbilicals. 

 

On one hand, higher backpressures mean lower volumetric flow rates leading to fewer losses 

associated with acceleration and friction. The higher backpressures lead to higher mixture 

densities, and higher gravitational losses in vertical flow sections. The optimum location of the 

multiphase booster will depend upon parameters like fluid properties, fluid velocities, pipe 

diameter, roughness, inclination, gas liquid ratio, etc. 

 

Along a horizontal and little horizontally-inclined flowline, the best location for a pump will be 

close to the wellhead. The high pressure on the downstream of the pump will lead to higher 

suction pressures, less gas volume fraction and consequent less requirement of power. For 

inclined flowlines, the best location of the pump could be close to riser base. The higher gas 

volume fraction reduces the gravitational losses but adds to the frictional losses. Higher 

volumetric flow rates will need more booster power. This location will save CAPEX on power 

umbilical. For a given booster capacity, it should be located as close to the wellhead as possible 

to allow maximum liquid flow under minimum volumetric flow rate. 

 

Typical Cases Where Multiphase Boosting is Suitable 

The following common cases14 are most suitable for multiphase boosting: 

 

 

 

 

 



 71

Medium to Long Tiebacks  

The multiphase boosting was originally conceptualized to enable tieback of remote marginal fields 

to the existing host facilities; overcoming frictional and static losses. The increased fluid velocities 

stabilize the flow regime and prevent severe slugging. 

 

Medium to Low GOR 

A GOR below 1000 scf/bbl is very favorable for multiphase boosting. Anything above 1000 scf/stb 

will need wet gas compression. 

 

Limited Energy Reservoirs and Deep Waters  

In deepwater and in cases where reservoir drive is weak, the high static backpressure on the 

flowline hampers higher rates of production and multiphase boosting becomes necessary. By 

adding the necessary energy to the stream the backpressure on wellhead and thereby reservoir 

can be reduced. This will improve the production rates and recovery. 

 

Some of the recent field applications of multiphase boosting are Draugen, North Sea, Lufeng, 

South China Sea, Topacio, Zafiro, and Ceiba, West Africa. Multiphase pumps installed as retrofit 

later in the life of a field helps improve the economics. Devon Canada saved $84000 in OPEX 

when they switched over to twin-screw pump for reducing backpressure in the line to take the 

system outside hydrate formation region54.  

 

Some concerns about subsea multiphase pumping are large power requirements for large pumps, 

sophisticated and expensive umbilicals for longer tieback distances, wet gas compression 

capability, intervention costs, and erosion due to abrasive solids. 
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5. SOLIDS FORMATION AND DEPOSITION 
 

This section deals with the formation of gas hydrates and scales. It starts with the description of 

gas hydrates and continues with detection of hydrate nuclei, agglomeration, differential scanning 

calorimetry, different means of inhibiting or dissociating hydrates, and advantages of LDHI’s. The 

flow assurance needs for hydrate slurry, NGH transport, cold flow, and different mitigation 

strategies have been discussed. In the section for oilfield scales, the description of scales, 

contributing factors, formation process and mechanism is provided. Also, the scale formation 

locations, detection, techniques for prediction from history and current data, remediation and 

prevention methods are discussed. 

 

Gas Hydrates 

The existence of gas hydrates was recognized by Davy nearly 200 years ago. Sir Humphrey Davy 

observed the hydrates experimentally in 1810. It took another 100 years for oil industry to 

recognize the hydrates as a major issue in flow assurance. Most of the research has been done 

over past 50 years. The gas hydrates are non-stochiometric clatherates of water and gas. These 

crystals contain 85% or more water on a molecular basis55. 

 

The hydrate crystals form because the gas molecules dissolved in water support an open ordered 

crystalline system at a temperature higher than freezing point of pure water. Gas molecules 

occupy the empty spaces. Larger molecules (up to butane) create more order and more stable 

hydrates56. 

 

Gas hydrates form at low temperatures (below 2 0C) and high pressures. The subsea pressure 

and temperature especially under deepwater scenarios and under permafrost are conducive for 

hydrates to form or exist with stability. As water is abundantly available on the earth, only 

availability of gas molecules under right conditions is needed for existence or formation of 

hydrates. 

 

The common types of hydrate structures are sI, sII, and sH. These structures differ in the 

number and size of cages, and in their unit cells. Type of guest molecule determines the type of 

hydrate crystal structure. Methane and ethane form sI structures, butane forms sII structures 

and larger guest molecules form sH type hydrate structures. sI and sII have cubic structure 

whereas sH has hexagonal structure. More hydrate structures possibly exist in nature, but the oil 

and gas industry is mainly concerned with sI, sII and sH types as they are most common. Table 

5 describes the structural properties of sI, sII and sH type gas hydrates. sI structure occurs in  
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two sizes, small cage and large cage. Small cage is made of 12 pentagons and large cage 

structure is made of 12 pentagons as well as 2 hexagons. The sI structure contains 46 water 

molecules. 

 

Table 5: Structural Properties of Gas Hydrates57

Property sI sII sH 

Lattice Type Primitive Cubic Face-Centered Cubic Hexagonal 

Number of water molecules 

per unit cell 

46 136 34 

Ratio of number of small to 

large cavities 

0.33 2 5 

Average cavity radius (nm) 

[number of cavities per unit 

cell (cavity type)] 

0.395 [2 (512)] (S) 

0.433 [6 (51262)] (L) 

0.391 [16 (512)] (S) 

0.473 [8 (51264)] (L) 

0.391 [3 (512)] (S) 

0.406 [2 (435663)] (S) 

0.571 [1 (51268) (L) 

 

sII structure also has two sizes, small cage and large cage. Small cage is made of 12 pentagons 

and large cage structure is made of 12 pentagons as well as 4 hexagons. sII structure contains 

136 water molecules. sH structure has three cage sizes, two small cage sizes and one large cage 

size. The first small cage is made of 12 pentagons, second small cage size is made of 3 squares, 

6 pentagons, and 3 hexagons. The large cage structure is made of 12 pentagons and 8 hexagons. 

The sH structure contains 34 water molecules. 

 

The kinetics of formation and dissociation of hydrates with time is the most challenging concern 

for the interest of oil and gas industry. Hydrate nucleation is the process of appearance of 

hydrate crystals, their growth and progression to critical size for stable continued growth. 

Nucleation begins with very small number of constituent molecules, typically ranging from ten to 

a thousand. Hydrate nucleation is not heat or mass transfer limited, but growth of nuclei is 

limited by both processes. When small aggregates of hydrate crystals exceed the critical size, 

they start growing58. Experimental detection of onset of nucleation is difficult. Compared to 

thermodynamic investigations for hydrates, the kinetic studies are yet to be fully understood. 

Growth of the nuclei depends on interfacial area, pressure, temperature and supercooling. 

Induction period is the time elapsed between crystallization onset and formation of critical sized 

stable nuclei. 

 

The purpose of almost all offshore platforms right from the initial time is making conditions 

favorable for flow assurance. The primary functions of offshore platforms like separation, 
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compression, pumping and dehydration lead to hydrate prevention. The cost of preventing 

hydrate formation by pipeline insulation or thermodynamic inhibitors can be a significant 

economic factor while considering the marginal developments.  

 

Devon, Canada for their Ferrier Field installed a twin-screw pump to reduce the pressure below 

200 psig at 5 0C. The result was that the field continued production round the year which was 

otherwise frozen up for 210 days every year. The payback period of the pump was much less 

than estimated one year54. Devon saved more than $84000 a year in OPEX. 

 

Field Problems  

Under deepwater conditions, the hydrates formed in manifolds and flowlines are difficult to 

dissociate and remove as reducing the production system pressure is difficult. Some method to 

remove pipeline liquids and gas by pumping could be helpful59. This method can best match with 

multiphase pumping. 

 

As one remediation measure to mitigate hydrate blockage in pipeline, depressurization can take 

days of flow interruption. It is not always practical to apply heat to the exact location of the plug. 

In such a case, line depressurization at both ends is needed. For long multiphase pipelines under 

deepwater environment, thermal insulation alone can not assure heat retention for continued 

fluid flow. Methanol dosed in gas phase comes into contact with the water phase and dissolves 

providing necessary inhibition. A significant amount of methanol is finally lost in the gas phase 

downstream60. 

 

Some deepwater locations have another unique problem. Gas seepage on ocean floor and 

associated hydrate mounds is a common occurrence. Routing of pipelines around such structures 

lead to dissociation of hydrates and further destabilization of pipeline foundation which can lead 

to complicated structural failures and subsequently hampering the flow assurance. Jolliet TLP in 

the Gulf of Mexico had such concerns for its foundations and pipelines. 

 

Extreme conditions encountered while drilling in deepwater could be favorable for formation of 

hydrates. If hydrate crystals occur in drilling fluids, there can be drastic changes in mud 

rheological properties causing plugging and damage to drilling equipment61. The plot (fig. 43) 

shows vulnerability of deepwater drilling fluids to hydrate problem. In drilling operations the 

stopped circulation can trigger formation of hydrates and conditions can be stable if proper 

inhibition or remediation strategies are not adapted to.  

 

 



 75

 

Fig. 43: Vulnerability of Drilling Mud System to Hydrate Formation61

 

Hydrates can also accumulate in the inlet separators and eventually interfere with the level 

control instrumentation and upset process62. 

 

Hydrate Layer as Source-Cum-Cap Rock 

This is a unique situation that helps maintain the hydrocarbon production from a formation. The 

in-situ gas hydrates on the top of Mesokhaya gas reservoir in Siberia act as cap rock and also 

helps replenish the depleting reservoir by dissociation of hydrates. Permafrost and deepwater are 

probable locations for more such reserves. There is a need to study the phenomena of such 

process to arrive at a predictive capability. Predictive capability of dissociation of naturally 

occurring hydrate layer will enable simulation studies which will help in engineering and planning 

the production facilities and networks. 

 

Hydrate Nuclei Detection by Ultrasonics 

Velocity, amplitude, frequency spectrum and phase shift are the acoustic quantities which can be 

used as an indication of hydrate crystallization63. Frequency spectrum and amplitude are stable 

for pressure changes and sensitive to appearance of hydrate crystals. Ultrasonic detection could 

detect the presence of minute hydrate crystals and nuclei while there is no sign of hydrate 

formation from system pressure. Thus, the onset of hydrate formation will be possible to detect 

and suitable actions for assuring flow can be taken in advance. 
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Agglomeration 

When the hydrate nuclei comes in contact with each other and joins to form larger particles, the 

process is named agglomeration. Once the critical size of nuclei is achieved and they are in 

contact with each other in numbers, the rate of hydrate formation is very fast or even 

catastrophic which can totally block the pipelines. 

 

At the gas and water interface, there is maximum possible interaction between both molecules 

and hence hydrate formation is easy. As interfacial area is increased by stirring or using suitable 

additives, hydrate nucleation can be accelerated. 

 

 

Fig. 44: Hydrate Equilibrium Curves8

 

The conditions favoring hydrate formation are function of composition of gas and water phases, 

temperature and pressure. A typical hydrate equilibrium curve is shown in fig. 44. Left side of the 

curve indicates conditions favorable for hydrate formation. Hydrate locus shows temperatures 

along the X-axis and pressures along the Y-axis. At bubble point, the slope of curve changes 

sharply and below bubble point, curve shows presence of water, hydrocarbon liquid, hydrate 
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crystals and vapor. Above bubble point the curve shows no vapor phase. Hydrates form at the 

interface between hydrocarbon phases, and free water phase55.  

 

Methane, ethane, propane, butane, nitrogen, carbon dioxide, and hydrogen sulfide are the most 

common reservoir gases that form hydrates. N-butane to oil industry is known as the heaviest 

hydrate forming alkane64. Two distinct types of hydrates - dispersed (particle size < 1 mm) and 

granular (particle size > 1 mm) were observed by Fadnes et al.65 at low and high water cuts 

respectively.  

 

Differential Scanning Calorimetry 

The usual method to determine the thermodynamic conditions of the formation of hydrates in 

drilling mud formulations is to use PVT cell with visual observation and pressure and temperature 

measurements. This technique requires complex instrumentation and often does not permit to 

work with a whole formulation (especially in the presence of solids). Moreover, PVT cells do not 

give a quantitative evaluation of the kinetic properties of hydrate formation. 

 

 

Fig. 45: Detection of Phase Transition Using Heat Flow as a Function of Time, Temperature and 

Pressure61

 

The Differential Scanning Calorimetry (DSC) to determine the thermodynamic equilibrium 

properties and kinetics of hydrate formation in mud formulations, particularly in the presence of 
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large amounts of mineral is easier and less time consuming as compared to the PVT technique. 

This technique allows the measurement of heat transfers as a function of time, temperature and 

pressure and thus detects phase transitions. It requires smaller sample volumes. DSC records the 

heat flow as a function of temperature. The endothermic peaks (negative on heat transfer scale) 

indicate phase changes and the corresponding temperatures61. Exothermic peaks indicate 

formation of hydrates. Fig. 45 illustrates behavior of heat flow with temperature for air and 

methane at 0.1 MPa and 10 MPa pressures respectively. 

 

Remediation methods for tackling the problem of hydrates in oilfield are also well known but the 

drive to continuous flow of hydrocarbons calls for prevention rather than cure of hydrate 

blockage problems.  

 

Means of Inhibiting / Dissociating Hydrates 

The following are methods for inhibiting or remediation of the hydrates in oil and gas industry: 

1. Removing one of the components. 

2. Heating the system to exceed hydrate formation temperature. 

Electrical heating, thermal insulation, and hot stabilized oil circulation are preferred 

methods. 

3. Depressurizing the system below hydrate formation pressure. 

4. Dosing the system with external chemical inhibitors which can be thermodynamic or 

kinetic. Methanol, glycol injection and unconventional inhibitors are the examples. 

5. Maintaining high flow velocities by appropriately sizing the pipelines. 

6. Coiled tubing cleanout. Most critical part is access to location with coiled tubing although 

many service companies provide this service currently35. 

 

Thermodynamic Inhibition  

The thermodynamic inhibitor is a third active component added to a two component system (gas 

and water). It changes the energy of intermolecular interaction and changes thermodynamic 

equilibrium. It works by lowering the hydrate formation temperature at the cost of a high 

concentration of inhibitor per unit mass of water present in the system. Thermodynamic 

inhibition moves the system away from thermodynamic stability of hydrate formation. 

 

Water phase from natural gas can be removed by absorption (glycol), adsorption (desiccant), or 

condensation (glycol/methanol injection). Absorption and adsorption involves mass transfer of 

the water molecules into liquid solvent or a crystalline structure and condensation involves 

cooling of gas stream and subsequent injection of inhibitor (thermodynamic).  

 



 79

The distances over which gas was being transported began to increase in 1930s and following 

World War II the natural gas process industry grew rapidly. Dry desiccant (silica gel and 

activated alumina) were popular in the beginning. 1950s saw the first installation of glycol 

dehydration in Texas66. It remains the most popular gas dehydration process to meet most of the 

pipeline specifications. As glycol accumulates in pipelines, it degrades and becomes acidic. This 

may trigger the problem of corrosion. 

 

The deliquescing desiccants offer many advantages such as no volatile organic compound 

emissions and aromatic hydrocarbon emissions, no ground contamination, no fire hazard, low 

CAPEX, and OPEX. To meet the pipeline specifications and hydrate control, desiccants are an 

inexpensive method. Desiccant dehydration is well suited for remote, unmanned locations67. As 

desiccant drying equipment is simpler, as compared to glycol, membrane filters and regenerative 

absorption, it comes cheaper. The operating costs are influenced by temperature, pressure and 

water vapor removal requirement. Desiccant do not react with hydrogen sulfide, thus it can 

effectively dehydrate the sour gas. 
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Fig. 46: Shifting of Hydrate Equilibrium by Addition of Methanol58 
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Sub-cooling can be stated as the hydrate formation curve shift to the left when system is treated 

with an inhibitor. Sub-cooling is the difference between temperatures at which hydrates 

dissociate and the actual fluid temperature. In other words, degree of sub-cooling means the 

temperature difference by which hydrate dissociation point rolls back after treating the system 

with an inhibitor .Degree of sub-cooling needed determines the hydrate inhibitor type. Fig. 46 

illustrates the shifting of hydrate equilibrium by addition of methanol to gas and water system. 

With addition of methanol, the equilibrium shifts to the left giving more margin to the production 

operations from flow assurance point of view. 

 

Once the type of inhibitor to be used is established, field trials in alternate pipeline systems 

should be carried out. For trials, the main production lines should be avoided before the type and 

dose validation for produced fluid to assure recovery of the system in case of hydrate formation 

during trial. Also, all the variables for hydrate formation such as pressure, temperature, and 

stream composition should be monitored. Initial dosing should always be higher than determined 

in laboratories as this would positively ensure inhibition of hydrates. Once inhibition is guaranteed 

from trials, the dosing can be optimized. 

 

Surfactants and Hydrate Formation 

Surfactants can significantly alter the surface or interfacial free energies even at low 

concentrations. Some surfactants are suitable as kinetic inhibitors in the flowing pipelines while 

others could be suitable for storage of hydrates for solid state transportation or preservation. 

 

Kinetic Inhibition 

Kinetic inhibitors do not lower the hydrate formation temperature. They work by changing 

diffusive-sorptional exchange at gas – inhibitor – water interface. Primarily they get adsorbed on 

the surface of both hydrate microcrystals and water droplets. They decrease the growth of nuclei 

to critical size, prevent coagulation, sedimentation, and prevent large plugs in flow paths.  

 

The kinetic inhibition allows the hydrate system to exist in thermodynamic stability region, but 

the small nuclei are kept from agglomerating to larger masses. However, the kinetic inhibitors 

known are effective for sub-cooling up to 10 0C. Probably, the KIs effective for higher degree of 

sub-cooling are yet to be discovered68. Oil industry is focused on a third type of hydrate inhibitors 

called anti-agglomerates. 

 

Thermodynamic inhibitors are added at 10-60 wt%, whereas kinetic inhibitors and anti-

agglomerates are added at less than 1 wt%. Looking at the concentration needs in case of anti – 
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agglomerates and kinetic inhibitors, even if they are costly chemicals as compared to methanol or 

glycol, their choice for hydrate inhibition can be significantly small when total volume, storage 

needs, and transportation costs are compared68. The KI VIMA-VCap developed by Exxon was 

used at a rate of 0.5 gal/day in West Pembina field for oil flowline hydrate inhibition, against the 

previous use of 260 gallons of methanol, twice a week62. Fig. 47 shows the comparison between 

quantities of methanol, glycol (monoethylene) and anti-agglomerate (VIMA-VCap) needed to 

achieve similar sub-cooling. 

 

 

Fig. 47: Comparison of Inhibitor Quantities Needed to Achieve Sub-Cooling62  

 

Potential advantages of AAs and KIs over thermodynamic inhibitors include smaller umbilicals, 

smaller pumps, smaller storage, and less frequent transportation for supply. 

 

During the prolonged shutdowns, the degree of sub-cooling may seem beyond the inhibition 

capacity of some kinetic inhibitors. At the same time, hydrate nucleation is greatly reduced 

because of lack of turbulence. At the startup, methanol should be pumped and then switch over 

to KI injection during normal production. Anti-agglomerates are much less dependent on degree 

of sub-cooling. Injection of anti-agglomerates may be more effective even in case of prolonged 

shutdowns as they prevent agglomeration of hydrate nuclei. But AAs are known to be working 
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only in conjunction with presence of a liquid hydrocarbon phase68. The AAs must have the ability 

to produce low viscosity hydrate slurry. AAs do not depend on chemisorption as in case of KI. 

One mechanism whereby AAs control hydrate crystals from agglomerating is emulsification of 

water phase in oil phase. If emulsion phase change occurs or oil phase passes through cloud 

point, the AA may not be as effective. In case of significant water cut increase, water phase may 

become continuous and AA may be ineffective. KIs can not handle higher degree of sub-cooling 

and AAs can not handle excessive water cuts. 

 

Development of kinetic hydrate inhibitors is inspired by the kinetic ice inhibitors as ice and gas 

hydrates have similarities in composition. Poly-N-Vinyl pyrrolidone (PVP) has been knows as ice 

inhibitor and antifreeze proteins found in fish have inspired KI research in E&P companies68. In 

early 1993, Shell identified PVP, its polybutyl derivative, agrimer P-904 as a KI.  

 

Unlike scale inhibitors, KIs are not able to check the growth of larger hydrate crystals56. This may 

be because of the fact that hydrates are able to grow over the entire surface instead of just 

certain growth site.  

 

Advantages of LDHI’s  

Following are the advantages69 of low dosage hydrate inhibitors (LDHIs):  

 Lower chemical costs on total stock 

 Lower transportation costs 

 Lower manpower requirement as less total stock needs to be handled 

 No contamination of topside and downstream facilities with undesirable alcohol 

o MeOH adversely affects the separation process as it makes the aqueous phase 

lighter and density difference between oil and water phases diminishing.  

o Also it adversely affects the quality of disposed produced water making it 

environmentally unsafe. 

o MeOH or glycol concentration in the vicinity of high salinity water can accelerate 

scale precipitation. 

o On the refining side, high concentration of MeOH adversely affects the efficiency 

of wastewater biotreaters. 

 Less pump maintenance is needed as smaller pumps and much smaller dosing rates are 

required 

 Intervention-less shut-ins as LDHIs shows good performance even during lengthy 

shutdowns. 

 Accelerated production  
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o As LDHIs allow higher water production rates, restarts and planned shutdowns 

are simpler to manage. 

 Delay in water-cut related curtailment 

o Wells do not need to be shut down because of hydrate or other problems arising 

out of high water cuts. 

 Improved operational flexibility 

o As LDHIs are compatible with other chemicals, changing for unexpected 

conditions is easier. 

 Increased ultimate recovery 

o As wells keep flowing continuously, the problem of liquid load-up in gas wells is 

minimized and it helps a well to produce more as compared to the wells having 

frequent trouble. 

 

Chemistry of KHI’s – typical KHI’s are polyvinylpyrrolidone (PVP), hydroxycellulose (HEC), 

polyvinylcaprolactam (PVCap) 27. PVP can provide less amount of sub-cooling (10 0F) for short 

period of time (20 minutes) while PVCap can provide a higher sub-cooling (18 0F) for more than a 

month. 

 

While studying the effect of inhibitors on hydrates, the following parameters70 are of interest: 

 Induction time to the onset of hydrate crystal formation. 

 Induction time to the onset temperature of hydrate formation. 

 Initial growth rate of hydrate crystals. 

 Extent and time to agglomeration. 

 Total gas consumption for conversion into hydrates. 

 

Determination of Induction Time 

The most important technique in the study of hydrate behavior is determination of induction time. 

Direct determination of induction time is difficult as it is a stochastic parameter for large number 

of hydrate crystals. Cingotti et al.71 developed a concept of determining the hydrate crystal 

particle size distribution in suspension by turbidity measurement. The turbidity sensor they used 

is a UV-visible analyzer that measures the attenuation of polychromatic beam in the wavelength 

range of 230-750 nm. The identical elements in sensor act as light source and collimator. Light 

scattering in the path is measured.  

 

This method quickly determines the efficiency of kinetic inhibitors both quantitatively and 

qualitatively. Induction time is the period between the moments the system enters hydrate 
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region and the hydrate crystals start forming. Induction time determines the efficiency of 

inhibitor. Fig. 48 illustrates the ease with which different additives can be evaluated for their 

effectiveness as hydrate inhibitors. Comparison shows that an additive showing behavior similar 

to additive C can be an efficient hydrate inhibitor. 

 

Fig. 48: Effect of Inhibitors on Number of Hydrate Particles Formed with Time71

 

Desirable Properties of Chemical Additives 

For any application in oil and gas industry, the following properties are desirable for all types of 

chemical additives: 

 Chemical additives must be compatible with other additives. 

 Solubility must be examined over all possible temperature range. 

 Viscosity should not be a limiting factor in pumping. 

 Environment standards must be met or exceeded. 

 Concentration requirements for effective inhibition should be as low as possible. 

 

Flow Assurance Needs 

To make hydrate slurries flow in the pipelines, water film should be prevented from forming on 

the pipe inner wall. Water film can lead to growth of nuclei and blocking of the entire cross 

section. Emulfip 102b, a flow assurance chemical can stabilize the hydrate (water) - oil emulsion 
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and prevent agglomeration of crystals8. The anti-agglomerates are a better alternative to the 

traditional methanol injection.  

 

For qualification of hydrate control strategy for flow assurance, the following aspects of hydrates 

need to be considered65: 

 Composition, density, heat capacity, heat of dissociation, thermal conductivity and 

viscosity 

 Equilibrium 

 Kinetics 

 Inhibition 

 Blockage potential 

 

The laboratory characterization of hydrates includes study of thermodynamic equilibrium 

conditions, amount of sub-cooling required, degree of hydrate formation and change in rheology. 

The evaluation of inhibitors is focused on their ability to prevent agglomeration of hydrate nuclei 

and minimize rheology alteration. Addition of inhibitors increases the environmental concerns 

downstream. Methanol has been known to cause total hydrocarbon content of produced water 

effluent to exceed allowable limits in the Gulf of Mexico. 

 

 

Fig. 49: Shifting of Hydrate Equilibrium by Presence of Electrolyte and MeOH72
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The dissolved salts in produced water help inhibit hydrate formation to some extent64. Where 

water salinity is not enough to inhibit hydrate formation, the flow of hydrates as slurry in pipeline 

using kinetic inhibitors is attractive for high water cut systems. Tohidi et al.64 has shown that 

electrolytes present in system shift the hydrate equilibrium curve to the left. Fig. 49 shows that 

addition of salt to water in water-hydrocarbon system shifts the hydrate equilibrium to the left. 

 

The unconventional inhibitors are effective at much less concentrations as compared to typical 

methanol and glycol injection requirements65. In oil industry, it is often difficult to introduce any 

new technology or any new chemical. Consequences of failure are so severe that the operators 

remain very conservative in adapting anything new for the first time.  

 

 

Fig. 50: Options for Transport of NGH73
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Emulsion Flow in Arctic Environment  

In environments with subzero ambient temperatures, like in Alaska, the concept of oil-in-brine 

transportation in pipelines could be successful74. Brine will not freeze even at the freezing point 

of water. Oil in water emulsions flow more readily than water in oil emulsions. This is why some 

wells which produce emulsions usually flow oil in water emulsions as it can more easily flow in 

the porous media. 

 

NGH Transport 

Natural gas hydrates (NGH) in the meta-stable range of pressures / temperatures allow handling 

at atmospheric pressures at subzero temperatures (23 0F). Close to 5000 trillion cubic ft natural 

gas is stranded worldwide73. This is mainly because pipelines are impractical. Hydrate    transport     

systems are Eastern Canada, Venezuela, Trinidad, Egypt and Indonesia. In many cases, the oil 

production costs are very high because of need to re-inject associated produced gas. NGH 

systems are safer than LNG, GTL, or CNG transport systems and have lower CAPEX and OPEX. 

NGH can also be   adapted to store the gas being flared. A comparison of NGH carried on carrier, 

VLCC and LNG carrier is shown in fig. 50.  

 

 

Fig. 51: Conversion of Natural Gas to NGH75

 

The schematic process for natural gas to NGH conversion and transport is illustrated by Mark et 

al. 75. The produced gas from wells comes to stabilization facility where most of the condensate is 

separated and gas is diverted to hydrate formation reactor. After hydrate slurry is formed, it goes 
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to a slurry / gas separator. Hydrate slurry along with free water goes to water removal screens 

and further cooling. After cooling, hydrates are stored temporarily before loading into ship for 

onward transport. Condensate is separately transported. Fig. 51 shows this process. 

 

However, Mackagon and Holditch76 concluded that specific energy of gas hydrates is lower than 

LNG, GTL. In fig. 52, the steep lines (grey and red dotted) show energy concentration of natural 

gas hydrates and methane hydrates respectively. The rest of four curves show energy 

concentration of free (non-hydrated) gas. Thus, hydrates are less concentrated in energy when 

compared to free gas products (LNG, GTL). Further, preparation of hydrates and re-gasification 

takes 12-16% energy of the transported gas. This makes NGH transport over long distances 

unattractive. Short distance transport in slurry form is however feasible. 

 

 

Fig. 52: Energy Concentration in Hydrates and Free Gas76

 

Cold Flow Technology for Hydrates 

This technique allows hydrates to form but not agglomerate and flow in pipeline without 

insulation. The key factor is stability of hydrate slurry. LDHI and AAs help produce hydrate micro 

crystals but prevent from agglomerating. The cold hydrate slurry behaves linear for solids 

concentration up to 40%. Beyond 40% solids (hydrates) viscosity increases sharply and behavior 

is non-linear. Fig. 53 shows trend of hydrate slurry viscosity with varying hydrate concentration 

by weight. Experience of mining industry also conforms to this trend. For long flowlines, the cold 
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oil viscosity is high and can reduce the production rate but multiphase pumps can effectively 

overcome this issue. 

 

 

Fig. 53: Cold Slurry Flow6

 

Hydrate Mitigation Strategies 

Chemical Inhibition 

Thermodynamic and kinetic inhibitors are used as chemical inhibitants. In systems with constant 

potential of hydrates formation, the inhibitors are used on a continuous basis. Systems where 

hydrates do not form when system is running are treated with chemical inhibitors if any 

prolonged shutdown occurs. Sometimes, the wells are bullheaded with MEG to prevent hydrate 

formation in borehole. A sophisticated chemical inhibition strategy can be based on real-time 

water cuts, gas, oil compositions, pressure and temperature along the system. 

 

Heating 

Electrical heating can be useful especially after prolonged shutdown. Heating can maintain the 

temperature of stagnant fluid trapped in pipeline outside the hydrate formation region. Electrical 

heating is more reliable than other methods. But the CAPEX for system installation in deepwater 

and long tiebacks can be gigantic. 

 

Hot Fluid Circulation 

Hot fluid circulation serves as warm-up for pipelines after shutdown and before startup for 

hydrate free flow. The time needed to achieve the warm up will depend on length, depth and 

volume of the pipeline. 
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Thermal Insulation 

Thermal insulations are discussed in more detail in “Flow Assurance”. Thermal insulations keep 

the pipeline temperature outside the hydrate formation region, when in normal operation. The 

biggest disadvantage with thermal insulation material is that it traps the moisture and trapped 

moisture corrodes the outer wall of the pipeline, as in case of BP’s North Slope Alaskan pipeline 

recently. 

 

System Depressurization 

System depressurization removes the system out of the hydrate formation region by disturbing 

the equilibrium necessary for hydrate occurrence. Depressurization can be looked at as a last 

resort when neither chemical nor thermal strategies seem to be effective in case of prolonged 

and severe shutdown. 

 

Scales 

Scales are inorganic crystalline deposits that cake perforations, casing, production tubing, valves, 

chokes and flowlines. Oilfield scales are deposited from oilfield brines when there is a disturbance 

in the thermodynamic and chemical equilibrium that may result in certain degree of super 

saturation. The disturbance in thermodynamic and chemical equilibrium can be a change in 

pressure, temperature, pH and ionic composition77. Certain areas like North Sea and Canada 

consider scale as one of the top issues for flow assurance78. 

 

Scales form from solution by first forming a chance assembly of growth units. If radius of the 

assembly is greater than the critical radius, it grows to a macroscopic size56. The rate of scale 

crystal formation depends on driving forces. A wide variety of solids formed this way can hamper 

the recovery of hydrocarbons.  

 

Formation Waters 

Water found on this planet is rich in dissolved minerals as a result of mineral diagenesis, marine 

and fresh water life byproducts, and water evaporation78. Typically, increase in temperature 

increases the solubility of water for mineral ions, but it is not necessary that all ions will conform 

to the general trend. Calcium carbonate shows higher solubilities between 25 0C and 100 0C than 

around 200 0C. 

 

Presence of CO2 and H2S further complicates the carbonates solubility behavior. This is due to the 

acidic nature of water with dissolved CO2 or H2S. Upon pressure reduction, these gases release 

out of the solution and solubility is reduced causing deposition of scale.  
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Scale Formation Process 

Scale deposition means equilibrium of dissolved salts with solid salt. Dissolution of scaled salt is 

influenced by pressure, temperature, surface area, pH, movement of fluid, and solubility product.  

Scale formation starts with homogeneous nucleation - formation of unstable cluster of atoms78. 

Local disturbances in equilibrium forms atom clusters into seed crystals which grow further by 

absorbing more ions. Surface free energy of crystals decreases with increasing radius after critical 

size is achieved. Larger crystals are more conducive for stable crystal growth whereas small 

crystal seeds may re-dissolve back. Heterogeneities along flow path such as small dents or 

projections within flowline and locations of rough surface initiate crystal growth.  High turbulence 

also catalyzes scale formation and deposition.  

 

Principle Mechanisms of Formation of Scales 

There are three principle mechanisms77 of formation of scales: 

1. Reduction in pressure or increase in temperature of brine, leading to a reduction in the 

solubility of salt. This mechanism mostly leads to formation of carbonate scales, such as 

calcium carbonate. 

     Ca(HCO3)2 = CaCO3 + CO2 + H2O 

 

2. Mixing of water rich in barium, calcium, strontium cations with sulfate rich seawater 

leading to sulfate scales precipitation. 

     Ba2+ / Sr2+ / Ca2+  + SO4
2- = BaSO4 / SrSO4 / CaSO4

 

3. Brine evaporation in HPHT wells. Typically in gas wells with very low water cut leads to 

evaporation of brine in stream and deposition of salt crystals as scale.  

      

In the life of every oilfield, the physical environments conducive for scale deposition vary as 

water cuts and water qualities vary. The phases in the life of oilfield are typically – natural 

depletion, pressure maintenance by water flooding, artificial lift, EOR, and abandonment. 

 

During natural depletion, calcium carbonate scale is predominant. As the system pressure falls, 

the point where gas is released out of the fluid moves further upstream – starting from surface 

system, to wellhead to well and reservoir. The chemical treatment point also needs to move 

upstream with the life of field77. 

 

Normally, in case of water injection, before injection water breakthrough, only carbonate and 

sulfide scale is predominant. As injection water breaks through, barium sulfate scales form at 5-
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15% commingling. With time, water cut increases and it becomes possible to re-inject the 

produced water with some seawater and again there is formation of scale due to difference in 

chemistries. But when produced water re-injection exceeds 60% of injection fluid, the scale 

formation tendency declines. 

 

Scale Formation Locations  

The main scale formation locations are: 

 Around the injection well where injected fluid comes into contact with reservoir brine. 

 Locations of injected and produced fluid convergence paths. 

 Multilateral wells where brines from different layers enter and commingle. 

 Manifolds where different wells inflow produced waters of different chemistries. 

 Locations of major pressure reductions such as chokes. 

 

 

Fig. 54: Scale Deposition Locations77

 

Fig. 54 shows the locations of scale deposition. The potential locations where scales can form are 

shown by letters a to k. Each letter has a meaning in this figure as described below: 

      a               point of mixing of seawater and produced water to supplement injection 

      b               around injection well on reservoir face 

      c, d, e, f     inside the formation where injected and formation water chemistries differ 

      g               junction of a multilateral well 
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      h               subsea manifold 

      i                surface facilities 

      j                water production from aquifer for water-injection process 

      k               separators 

 

Types of Inorganic Scales 

The types of inorganic scales are: 

 Carbonates 

• They are a result of pressure reduction 

• They are pH and temperature dependent 

 Sulfates 

• They are a result of mixing of waters 

• Higher solubility in cold water 

 Sulfides 

• Corrosion 

• H2S 

 Oxides 

• Corrosion 

• Silica 

 Hydroxides 

• Corrosion 

• Also result due to stimulation treatments 

 Naturally occurring radioactive materials 

 Naphthanates 

• High Naphthenic acid content 

• Calcium or divalent cation source 

            

Detection of Scale 

Early warning of scaling conditions would be valuable to operators. Intelligent wells will soon 

have design to detect change in produced water chemistry. Downhole electrochemical sensors 

capable to detect pH and chloride ion concentration change, along with temperature, pressure 

and multiphase flow measurement is included in BP Amoco’s integrated scale management 

system. This will detect potential carbonate buildup and drive strategies for chemical treatments. 
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Prominent change in scale forming ions such as barium or sulfate coinciding with increased water 

cut and reduced oil production can indicate injection water breakthrough and conditions suitable 

for scale formation. 

 

NODAL analysis can indicate tubing scale if the well suddenly indicates tubing constraints78. 

Identification of increasing reservoir constraints on production also implies scale in formation 

matrix. 

 

Prediction Techniques 

Geo-chemical models based on thermodynamics and geochemical databases can predict phase 

equilibrium78. The inputs required include pressure, temperature, elemental concentration of 

dissolved minerals, and gas composition. Highly developed geo-chemical models can predict the 

future scaling tendencies. For new developments where no prior information on scale formation 

is available, the geo-chemical models prove to be of immense utility as scale problems for future 

can be studied and mitigation strategies can be incorporated into engineering at design stage of 

the development. The following techniques are useful for assessing the potential for formation of 

scale and prediction of future behavior based on chemical, thermal and fluid flow data: 

 Bottle tests 

 Thermodynamic geochemical modeling  

 Software  

• Commercial 

o Scalechem (OLI, USA) 

o Multiscale (Petrotech, Norway) 

o Geochemists Workbench (Bekthe)  

• In house by E&P 

o SPAM (BP)  

o SASP (Saudi Aramco) 

 Near IR spectroscopy 

 Pressurized fluid imaging 

 Capillary tube blocking 

 

Fig. 55 outlines a workflow for scale prediction and further risk assessment towards selection of 

prevention / remediation strategy. Initial chemical analysis is based on fluid samples from 

reservoir, wellhead or separator. The chemical analysis measures pH, cation concentration, anion 

concentration, H2S content, organic acid content, carbonate, sulfate and other dissolved solids 

content. With this information and scale prediction software, the super-saturation and mass of 
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precipitation of different types of scale under the pressure and temperature condition prevailing 

within the production system. Based on super-saturation and precipitation mass predicted, the 

risk of scale deposition at various locations is assessed. Based on risk assessed, the need for 

inhibition is ascertained. The monitoring of fluids chemistry has to be a continuous process for 

the proactive management of scales problem. 

 

The reservoir simulation models may be used to investigate the water flow profiles during 

production and treatment (scale squeeze) to evaluate treatment performance77. This can be used 

to investigate scaling tendency of well fluid as it reaches the vulnerable part. The detailed scale 

control program at the project development stage – 

 Investigation of reservoir model to study impact of scale deposition in wells. 

 Lab analysis of produced water samples, injection water samples, available potential 

inhibitors to identify the best one. 

 Assessment of required quantity and dosage rate of inhibitors. 

 Economics 

 

The knowledge of flow paths within reservoir matrix, well completions, scale prediction, inhibitor 

selection, treatment monitoring and analysis needs a cross functional multidisciplinary effort for 

effective reservoir management. 

 

The main scale control techniques are injection water source selection, chemical inhibition, 

remediation, and flow conformance77. 

 

Scale Removal 

Scale removal can be as costly as $2.5M per well excluding the deferred revenue due to deferred 

production78. Dissolution of carbonate scales is simple but dissolution of acid-insoluble scales is 

complex. Barium, strontium and calcium sulfate scales are insoluble in acid79. Dissolution of metal 

sulfate requires separation of the scaling metal ion.  

 

All completion hardware, formation matrix and topside hardware should be safe from any type of 

potential damage as a result of scale removal technique. Strength of scale deposit and texture 

drive the choice of scale removal technique78. The following tables (tables 6, 7, and 8) summarize 

the scale removal techniques. 
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Fig. 55: Scale Prediction Workflow77

 

Scale treatment takes place in two chemical stages – dissociation of scale ions by scale dissolver 

and chemical reaction between components in scale dissolver and dissolved scale. As low 

solubility  scales  take long time to dissolve, their removal is essentially a soak process. The scale 
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Table 6: Mechanical Scale Removal Methods 

Mechanical Removal 

Method Description Hard 

Bridge 

Advantages Disadvantages 

Positive 

Displacement 

Fluid-Motor 

and Mill 

‘Moineau’ motor and mill. Can clean. Small cuttings 

make cleaning 

easy.  

Not suitable with high 

temperatures and/or  scale 

dissolvers as stator 

elastomer fails. 

Impact 

Hammer 

Percussion hammer powered 

by fluid power. Impacts 

shatter scale deposits. 

Can clean. Simple and 

robust 

Large cutting size. Cleaning 

of cuttings can be 

problematic. 

 

removal chemicals are needed to be in scaled intervals for sufficient time. The scale removal 

chemicals can be placed by coiled tubing or bullheaded.  

 

Table 7: Jet Blasting Scale Removal Methods 

Jet Blasting 

Method Description Hard Bridge Tubular Advantages Disadvantages 

Scale Blasting Nozzle head rotated 

by two nozzles 

offset from tool axis. 

Viscous brake 

controls speed. 

 Can clean. Complete 

wellbore 

coverage. 

 

 

Bridge Blasting Radial jets follow 

‘Moineau’ motor and 

mill. 

Can clean. Can clean  High temperature 

is a limitation. 

 

Coating of oil on scale deposit prohibits optimum reaction between scale dissolver chemical and 

scale deposit. To remove oil film and alter the wettability of scale to water wet, pre-flush ahead 

of scale dissolver can help in optimal cleaning of oil. Such pre-flush can consist of 5 – 10% 

mutual solvent with surfactant.  

 

Scale Prevention 

Scale prevention by chemical inhibition is better than mechanical cure just as in the case of 

medical practice. Methods can be simple as dilution and highly advanced as cost-effective 

threshold inhibitors. Dilution is employed in high salinity wells. Dilution method continuously 

supplies fresh water in the wellbore to reduce the saturation of scale forming ingredients. A small  
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Table 8: Chemical Methods 

Chemical Cleaning 

Method Description Tubular Advantages Disadvantages 

Fixed Wash 

Tool 

Tool with many large diameter nozzles. 

Used with chemical dissolvers. 

Can 

clean. 

Simple and 

robust 

 

Fluid power is lost to 

circulating friction. 

Spinning 

Jetting Tool 

Rotational torque provided by nozzles 

offset from main axis. Used with chemical 

dissolvers. 

Can 

clean 

Simple and 

complete 

wellbore 

coverage 

No speed control 

and inefficient jet 

action at high rotary 

speeds. 

Indexed 

Jetting Tool 

Used with coiled tubing unit. Pressure 

cycling rotates nozzle head by 900. Nozzle 

head houses multiple small diameter 

nozzles. Used with chemical dissolvers. 

Can 

clean 

 Needs coiled tubing 

unit and multiple 

runs for better 

cleaning. 

Turbine 

Powered 

Jetting 

Fluid turbine rotates nozzle head with two 

nozzles. 

Can 

clean 

Complete 

wellbore 

coverage 

Abrasives can not be 

passed through 

turbine due to 

potential damage. 

 

diameter (<1.5”) string is needed to supply the fresh water at the depth of dilution. 

 

Common scale inhibitors “chelate” or tie up the reactants in soluble form at the cost of 

consuming scale ions in stichiometric ratios78. Chelating inhibitors can control scale precipitation 

only for limited level of oversaturation. Because of high volumetric requirements, the cost-

effectiveness and efficiency is not always attractive. 

 

Threshold scale inhibitors (kinetic inhibitors) chemically interact with scale crystal nucleation sites 

and inhibit the crystal growth. Kinetic inhibition is a well known technique for scale prevention68. 

Scale inhibitors work by blocking the growth sites on the surface of chance assembly. The 

assemblies which are kept from growing to critical radius fall apart and scale is effectively 

inhibited. The required concentration of threshold inhibitors can be 1000 times less as compared 

to chelating inhibitors. Thus economically, they are much more attractive and more efficient.  

 

The scale inhibitors when made to adsorb in the formation matrix or precipitating in pore spaces 

can work wonders in preventing scales over a period long enough to match a couple of years, if 

treatment is properly designed and executed78. This can maintain the well’s productivity by 

keeping formation (scale) damage and tubular blocking to the minimum. 
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6. EXPERIMENTAL SETUP 
 

This section details the experimental facility used for solid-liquid flow visualization, sand detector 

study, twin-screw pump behavior with viscous fluid and under the conditions of viscous gel 

injection.  

 

The experiments were carried out at Texas A&M University Petroleum Engineering laboratory and 

Riverside Campus field lab. Sand and water flow visualization experiments were carried out using 

the flow loop which is shown in fig. 56. The laboratory scale multiphase flow facility includes a 

hopper, a centrifugal pump, liquid and gas mass flow meters, transparent sections, and 2” piping. 

The hopper also works as a recirculation tank. 

 

 

Fig. 56: Visualization Loop Flow Diagram 

 

 

Compressed 
Air 

Pump 

Gas Flow 
Meter 

Liquid Flow 
Meter 

Sand 
Detector Gel 

Injector 
Transparent 

Section 
Transparent 

Section 
 

Hopper 

Fig. 57: Transparent Section 
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Fig. 57 shows the transparent section of the flow loop for visually studying the solid-liquid flow. 

Figures 58 and 59 shows the visualization setup and a screen showing the magnified image of 

sand particles flowing with water flow. 

 

 

Fig. 58: Visualization Setup 

 

 

Fig. 59: Image of Sand Particles Flowing in Water 

 

The field scale multiphase flow facility includes two full size twin-screw pumps, 6” and 4” suction 

piping, 3” discharge piping, centrifugal feed pumps, liquid storage and recirculation tanks. 

Schematic flow diagram for the setup is shown in fig. 60. 

 

Data Acquisition is real time and is incorporated into LabView 7.0 interface on a PC. The service 

software for sand detector can be separately run for calibration and other options. The speed 

control systems for twin-screw pumps work independently and can be operated in local and 

remote modes.  
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Fig. 60: Riverside Facility Flow Diagram 

 

Description of Riverside Facility 

Liquid Storage Tanks 

There are two open tanks of capacity 40 barrels each. One tank is connected to the flow loop 

while other tank is used to store a reserve quantity of water. Fig. 61 shows the liquid tanks. 

 

 

Fig. 61: Tanks and Feed Pumps 
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Compressed Air Source 

 

 
Fig. 62: Pressure Vessel for Compressed Air Storage 

 

A 49 HP air compressor capable to deliver a pressure of 110 psig is hooked up with the air 

storage tank in which compressed air is stored up to 90 psig and supplied to the flow loop as 

needed. Air storage tank is a 420gallon pressure vessel (fig. 62). 

 

 

Fig. 63: Centrifugal Feed Pumps 
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Centrifugal Pumps 

The centrifugal feed pumps (fig. 63) are so networked that they can be run in parallel or in 

series. They provide a boost to the liquid from storage tank to the suction of twin-screw 

multiphase pumps through measurement skid and 4” suction piping with acoustic sand detector. 

The pump specifications are 15 HP, 230/460 V, 37/18.5 A, 60 Hz. Configuration to operate in 

both series and parallel gives flexibility to control the suction conditions of the twin-screw pumps. 

For high speed requirements, flow at the suction needed is on a higher side and feed pumps can 

be operated in parallel. For low differential pressure needs across twin-screw pumps, the 

pressure at suction needed is on a higher side and feed pumps can be operated in series. 

 

Flow Measurements 

The metering skid consists of oil, water and gas legs (fig. 64). Only water and gas legs were used 

for this experimental study. Gas volume fraction (GVF) is controlled by adjusting the flow rate of 

air or liquid or both by manually throttling the valves. This gives a wide range of suction 

conditions. Phases are metered individually and then mixed at the end of metering skid. Sand is 

monitored in main suction piping. Liquid coriolis meter is a 3” Micromotion Elite Series mass flow 

sensor; model CMF300M420NU while gas coriolis meter is a 1” Micromotion Elite Series mass flow 

sensor, model CFM100M329NU. 

 

 

CMF 100
Gas 

CMF 300
Liquid 

CMF 200
Liquid 

Fig. 64: Gas (Red Line), Water (Blue Line) and Oil (Green Line) Coriolis Meters 

 

Fluids Used 

 Water 
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 Guar gel 29.77 lb/1000gal, 43.07 lb/1000gal and 53.09 lb/1000gal concentrations 

 Sand: Silica sand 20/40 

 

Acoustic Sand Detector 

The Roxar acoustic sand detector (fig. 65) is a non intrusive passive sensor with calculation and 

interface unit (CIU). It is clamped externally on the piping after a 900 bend. The CIU (fig. 66) 

converts the noise generated by particle impact to a measure of the quantity of particles flowing 

in the pipe. The specifications of sand detector are as following: 

 Fluenta SAM 400 TC 

 Smallest particle detectable 50 μm 

 Pipe dimensions                 => 2” 

 Power consumption  max    0.6 W 

 Supply voltage                   11-18 V 

 Pipe surface temperature    -60 0C to +115 0C 

 Ambient temperature         -40 0C to +80 0C 

 Dimensions                       Φ80 X 100 

 Weight                             3 kg 

 Ingress protection             IP 67 

 Material                            Stainless steel 

 Max cable length               1500 m 

 

 

Fig. 65: Acoustic Sand Detector 
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Fig. 66: Calculation and Interface Unit for Sand Detector 

 

Method of Sand Injection 

The sand is easily introduced into the flow loop by injecting through tank outlet using a 1” 

diameter PVC pipe that reaches the tank outlet on bottom (fig. 67). This pipe has one T attached 

on the bottom. One end of T is free and other end is connected to a small piece of pipe to ensure 

that it enters the 4” outlet and ensures sand flow exactly towards the suction of centrifugal 

pumps without falling down in tank or flowing to any other direction. A paper cone is used as a 

“funnel” for sand particles.  

 

        

Fig. 67: Pipe for Sand Injection through Tank Outlet (Left) and Paper Cone for Pouring Sand into 

the Pipe (Right) 
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Temperature, Pressure and Differential Pressure Measurements 

For the temperature measurement, direct immersion type Weed 201 RTDs are installed on 

suction and discharge of both twin-screw pumps. The data acquisition system receives pressure 

and differential pressure data from transmitters (fig. 68). 

 

 

Fig. 68: Pressure Transmitter on Suction of Flowserve Twin-Screw Pump 

 

Twin-Screw Pumps 

The main components of facility are the twin-screw pumps.  

 

Flowserve Twin-Screw Pump 

This is LSJIS model (Fig. 69) with a maximum throughput of 10105 bbl/day. It boosts pressure 

up to 500 psig and has no internal recirculation system. It is driven and speed controlled by Voith 

Turbo torque converter. Torque converter is driven by an electric motor which has an ABB 

variable frequency drive (VFD) for precise speed control. Flowserve twin-screw pump can be run 

at a top speed of 1800 RPM. 
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Fig. 69: Flowserve Twin-Screw Pump 

 

Voith Turbo Torque Converter  

The Flowserve twin-screw pump speed is controlled by Voith Turbo torque converter (fig. 70). 

Texas A&M University, Petroleum Engineering Dept. riverside facility is the first place in world to 

test  and  use  a  torque  converter  for  speed control of twin-screw pump. Torque converter is a  

 

 

Fig. 70: Voith Turbo Torque Converter 

 

hydrodynamic gear unit that can vary the speed and the torque between input and output shafts. 

The mechanical energy of the motor is converted into hydraulic energy through the pump wheel. 
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In the turbine wheel, the same hydraulic energy is converted back into mechanical energy and 

transmitted to the output shaft. The adjustable guide vanes regulate the mass flow. 

 

 

Fig. 71: Speed Control Hardware 

 

Fig. 71 shows the complete speed control hardware i.e. electric motor, torque converter, and 

gearbox for Flowserve twin-screw pump. 

 

 

Fig. 72: Remote Panel for Speed Control 

 

Fig. 72 shows the LCD screen of speed control remote panel for Flowserve twin-screw pump. Fig. 

73 shows the ABB VFD for speed control of Flowserve twin-screw pump electrical motor. 
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Fig. 73: ABB VFD for Electrical Motor 

 

Bornemann Twin-Screw Pump 

The Bornemann twin-screw pump, model MW-6.5zk-37, is a 10000 bbl/day pump that boosts the 

pressure up to 250 psig and has an internal recirculation system. It is driven by a 50 HP electrical 

motor and controlled by a Kimo MM3 Frequency Inverter, MotoMaster 37 FEP 37 kW, 3AC 380-

460 V, 73 A. Fig. 74 shows the Bornemann twin-screw pump. 

 

 
Fig. 74: Bornemann Twin-Screw Pump 

 

Data Acquisition 

Data acquisition is real time and is provided by National Instruments data acquisition board for 

Windows based PC along with LabView 7.0 
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Discharge Piping  

The twin-screw pumps feed to 3” discharge piping which loops back to the liquid tank. To 

simulate different field conditions, pressure can be built up to 500 psi by throttling a valve 

towards the end of 3” discharge piping (fig. 75). Finally, all fluid in the loop flows back to the 

tanks. 

 

Fig. 75: Valve used to Buildup High Pressure on Discharge Side 
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7. SOLIDS PRODUCTION AND MANAGEMENT 
 

This section deals with handling of the produced solids in surface production systems. It begins 

with the description of typical deepwater reservoirs with loose consolidation, process, modes and 

nature of sand production and flow. Erosive wear in twin-screw pumps, different approaches to 

analyze wear and parameters affecting wear are discussed. Sand detection method, calibration, 

testing and performance of sand detector under varying conditions are discussed. Slip flow in the 

clearances of twin-screw pumps, approaches to solving the problem of wear are studied and use 

of high viscosity gel is emphasized as an effective method. An empirical model for predicting 

viscous fluid flow across twin-screw pump is developed and prediction of effective viscosity 

across pump based on speed, flow rate and differential pressure is discussed. Also, prediction of 

effective viscosity in a pipeline flow based on viscosity of injected fluid and injection rate is 

discussed.  

 

At some stage in the life of a well, solids are produced80. They originate from reservoir rock, 

drilling activity, and from installed hardware. Identifying the type and source of solids is critical to 

determine the mitigating action. Mud filter cake and solids from completion fluids may be 

produced early in the life of well. But early detection of sand production indicates possible 

compromise of completion integrity or reservoir consolidation. 

 

Historically, sand control techniques such as expandable screens, gravel packs, frac packs, etc 

have been used. In cases where this is not possible, the conservative approach is to step down 

the production. All this leads to a reduction in revenue. 

 

 
Fig. 76: Sand Detector 
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Complete separation of solids is not a realistic approach due to operational limitations. Further, 

subsea process for desanding operation has its own limitations due to sand disposal problem. It 

is, therefore, necessary to flow oil and gas with sand content. Emphasis on maximum production 

rates within operational safety and economy have led to the development of the acoustic sand 

detector (fig. 76). Sand management strategies are now evolving. Maximum sand free rate 

objectives are superseded by maximum acceptable sand rates. This shift in philosophy is driven 

by technical advances in detection, handling and disposal of sand, and also by ever increasing 

demand for oil and gas. 

 

Deepwater Reservoirs 

Geologically young formations are poorly consolidated because of neutral or no cementation and 

they often lead to sand production81. The deepwater reservoirs are generally geologically 

different59. They are typically, large area, thick sand deposits with minimal aquifer support and 

not over-pressured. They are not associated with salt domes and hence their temperature is 

lower. They may contain silt fines and are poorly consolidated. Such formations may produce 

large amounts of sand into the production system and can potentially damage the system 

components. 

 

One option to protect the system is using gravel packs. The gravel packs have a tendency to 

choke themselves and stop producing. Hence, the wells completed in typical deepwater 

reservoirs need to have sand detection devices installed on flowlines so that in the event of high 

sand production, these wells can be shut down, or choked to produce at low rates. Surface 

monitoring and early detection of sand production is vital in providing mitigating actions 

downstream. Early detection can prevent incidents due to erosion and improve production. 

 

Maximum sand free production rates offer several benefits. As reservoir depletes, the nature and 

composition of produced fluid keeps on changing and maximum sand free rate also varies. Sand 

production if not monitored, can lead to tubular, piping or surface equipment and networks 

failure leading to loss of containment.  

 

Deepwater wells being typically high production wells are very sensitive to any concern which 

forces shutdown or intervention. Sand production is one such top concern for deepwater high 

production wells, as sand production can cause damage to equipment, deferred or lost 

production and environmental hazard due to potential loss of containment80. 
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Sand Production 

About 70% of the world’s oil and gas are contained in poorly/weakly consolidated reservoirs82. 

And about 37% of the producing formations are sandstones83. 

 

Sand production is a common problem in wells, especially when the reservoir is poorly 

consolidated. This process comprises of loss of mechanical integrity of rocks surrounding wellbore, 

separation of sand particles from rock mass due to hydrodynamic forces, and transportation of 

sand to wellbore and downstream. Sand grains from formation are able to mobilize once the 

retaining forces weaken.  Fig.  77  shows  the sand particles flowing with liquid.  

 

   

 

 

When the stress acting on s rock strength, shear failure 

takes place leading to breaking of the ing sand grains84. Drag forces 

exerted on sand grains cause them t d flow into the well and downstream. Drag 

forces are related to the . Cement bonds, intergranular 

friction, gravity and capillary forces s81. 

 

Fluid flow erodes the rock, ains into the wellbore and 

 the production systems. Sand production is known to show up with water breakthrough84. The 

f e equipment for handling, 

onitoring, workover and disposal of produced sand. 

 

Fig. 77: Sand Particles Flowing with Liquid 

 rock around the wellbore wall exceed

bonds between neighbor

o part loose an

product of fluid velocity and viscosity

oppose the movement of grain

 and with sufficient velocity, carries sand gr

to

formation rock strength properties are known to vary during the life of well85. 

 

Sand management encompasses the technologies for handling and well completion for 

production from weakly consolidated formations85. The technologies include completion methods 

to optimize production rates with sand content, downhole and sur ac

m
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 resulting into high 

in factor and reduced productivity. 

and filling up of 

parators. All put together gives us a reduced deliverability. Reliable measurement of sand 

here are three81 modes of sand production from the reservoirs: 

his is continuous sand production at steady average concentration. A part of the produced sand 

ore and may eventually block the perforated interval. This stage 

f the well fluid. 

ic 

d Flow 

 homogeneous  

spension all the time. There is a concentration gradient across the pipeline cross section. If the 

sufficient to keep the fast settling sand particles in suspension, the particles travel 

The ability to reliably predict sand production conditions, quantity, and nature of periodicity helps 

in decision for downhole sand control completion and sand production management. The CAPEX 

for downhole sand control could run into millions of dollars but still eventually

sk

 

The operators are aware of the dangers of solids produced from reservoir formation. Solids 

production is episodic and can cause extreme damage almost instantaneously. The consequences 

of this phenomenon are erosion of chokes, erosion of flowlines, equipment, 

se

content in flow streams is thus very important to take mitigating actions ahead of time. The sand 

content in produced fluids is a challenge to the E&P business.  

 

Modes of Sand Production 

T

 

Transient  

In transient sand production, the sand concentration typically declines with steady production 

conditions after a perforation, acid stimulation or propped frac flow back job.  

 

Steady State 

T

keeps on accumulating in wellb

can come sooner or later depending on the sand lifting capacity o

 

Catastroph

This is a sudden large production of sand “slug” due to major failure of formation cement or sand 

control completion.  

 

Nature of San

The sand concentration in production flowlines in an oilfield is not of the order of concrete slurry. 

The concentration of sand particles is substantially lower as compared to “slurry” concentration. 

Thus,  the  liquid  carrying  sand  particles  is  not  able  to  keep  the  particles  in

su

turbulence is in

with discontinuous jumps or roll along a sliding bed along the pipeline bottom. The sand particles 
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Fig. 78: Sand Mass Accumulation 

 

flow shows periodic patterns. Their concentration is not uniform when they are flowing with 

liquids. This is similar to “sand flow”-dune movement in deserts. The particles are lifted from one 

location, and shifted to another location. Fig. 78 shows the accumulation of sand particles in the 

periodic process of solid liquid flow. In  this process they settle and more particles accumulate  at  

 

a new place. When the e fluid flow, fluid once 

again starts tr tion diminishes, the 

fluid stream is process keeps on 

repeating in pipelines.  of sand and small 

for small conc omenon. 

 

Sand detector phenomenon. 

Sand  detector  output  confirmed  it by showing periodic picks and drops in signal amplitude and 

 

Fig. 79: Shifting of Accumulated Mass to Next Location Downstream 

 

size of accumulation is large enough to restrict th

ansporting the particles and as soon as the size of accumula

strong enough to completely wash out the accumulation. This 

The size of accumulation is large for large concentration

entrations. The photographs (figures 78 and 79) show this phen

 test with 0.09 g/sec average concentration was tried to study this 
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Fig. 80: Periodic Flow of Sand 

 

detected sand mass (fig. 80). In all cases, the output signal (sand mass) is a function of raw 

signal. Thus filtering “false” sand noise or any “false” particles noise is a key to rely on the 

acoustic sand detection devices. 

 

Management of Solids Production 

It is important to estimate the potential that a well can produce sand, the quantity and rate f 

sand production. For surface fac fficiency point of view, the “if”, 

“when” and “how fast” for sand production are very critical. Once it is known that the formation 

nce the sand particles part from the formation, it is also important that sand is efficiently 

ccumulation in wellbore can seriously hamper the normal 

 o

ilities design from safety and e

has a potential to produce sand, the sand management needs to be implemented through 

historic data analysis and provision for future monitoring with data acquisition.  

 

O

transported out of the wellbore. Sand a

production operation and intervention to de-sand the well may be needed. To ensure the 

successful transport of sand particles, the produced fluids must have enough energy and 

viscosity to keep sand particles from settling down. 
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omplete sand separation is the most conservative approach for sand management. However, 

oncentration can monitor the 

ffectiveness of the rate control being implemented for sand control. 

s twin-screw multiphase pumps rely on the tight clearances for efficiency, loosing tightness of 

stay unaffected for life of the pump is very important. 

ble 9: Circumferential Clearances 

C

due to practical limitations in solids separation techniques, the best separation process may not 

be the most economic. It is, therefore, necessary to allow the oil and gas  production with sand 

content. To keep the losses due to erosion under control, it is necessary to focus on the use of 

sand monitoring technology. When the produced sand concentration needs to be managed 

through controlled production rates, monitoring of sand c

e

 

The primary goal of sand monitoring is to have a control over erosion rate of production system. 

The erosion rates depend on density and velocity of fluid, sand particle size distribution, 

geometry of flow path, sand release rate from the formation and hardness of the metal hardware 

handling the fluid flow82. 

 

Wear In Twin-Screw Pumps 

A

clearances can have catastrophic effects on performance. A suitable configuration of sealing 

clearances is very important to avoid losing the boosting efficiency of twin-screw pumps. Table 9 

shows the circumferential clearances in different models of twin-screw pumps. Ensuring that the 

dimensions of clearances 

 

Ta

Twin-Screw Pump 
Circumferential 

Clearance (mm) 

Flowserve MPP-380 0.3048 - 0.3810 

Flowserve MPP-275 0.3048 - 0.3810 

Flowserve LSJIS 0.3048 - 0.3810 

Bornemann MW6.5zk37 0.1016 - 0.3048 

Livgidrom 0.2032 ash A9 2VV 16/25 0.1016 - 

 

The only means to completely avoid the wear of screws will be complete separation of produced 

solids from produced liquid and gas. Before choosing p, the potential for 

abrasive wear must be determined.  

 

Approaches to Anal

There can be three a  in scre

a multiphase pum

yze Screw Wear 

pproaches to analyze the wear ws: 
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Field Tests 

ll tests on all different pump models in subject. 

r process with a relatively simple 

lower costs. It is possible to simulate the conditions and clearances matching those 

sign before anything is sent to market or test a product like 

in-screw pump before it is purchased and installed. 

Velocity of flow in the clearances is the main parameter. The tip wear is caused by velocities 

 of clearances, sliding wear is predominant and wear losses 

mp by a factor of 10. Also, the wear losses increase proportionally with meshing ratio. Meshing 

me period during which a surface element of screw geometry is 

With field tests, the real wear on screws can be evaluated. This approach is expensive and time 

consuming. However, the wear characteristics will be valid only for the model tested. It will, 

therefore, be necessary to carry out a

 

Tribometers 

The tribometer is a device which allows simulation of the wea

process and 

in twin-screw pumps. But this will never represent the true geometry of screws and casing. 

Results obtained can be a general representation of wear process but they will not represent the 

true phenomena in the real pumps. 

 

Modeling with Computational Fluid Dynamics  

Computational fluid dynamics (CFD) is a sophisticated design and analysis technique. CFD has 

the power to simulate multiphase flow, with heat, mass and solids transfer, and chemical 

reactions. Using CFD gives an insight into the phenomena, predictive capability, and saves time. 

All “what if” scenarios can be tested before final physical model is manufactured. As simulation is 

fast, it is possible to improve the de

tw

 

To study the erosive process using CFD, it is necessary to have the dimensional profiles of screws 

and casing. This data is highly proprietary and pump manufacturers are reluctant to publish the 

complete dimensions and profiles of the twin-screw pump internals as the technology is still very 

new and very highly competitive.  

 

Parameters Affecting Wear 

composed of axial and circumferential components (fig. 81). The casing wear is mainly due to 

axial velocity. The wear losses are proportional to particle concentration and mean particle 

diameter86. For particle sizes smaller than clearances, the wear pattern is jet wear but with 

particle sizes approaching the size

ju

ratio is a fraction of the total ti

meshing with its counterpart. Table 10 shows the meshing ratios for different components in a 

twin-screw pump. 
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Fig. 81: Velocity Vectors at Screw Tip87

Table 10: Typical Meshing Ratios for Twin-Screw Pump86  

Element Meshing Ratio 

Housing 0.50 

Screw Top 0.80 

Screw Bottom 0.03 

Screw Flank 0.12 

 

The following picture of screw from a twin-screw ows wear prominently on the 

edges of screw threads. The locat ttern of wea irms the phenomenon illustrated in 

fig. 81.  The  velocity of backflow hest in the circumferential gap. Also, the velocity of 

relative motion between screw eing “displaced” is maximum on the periphery of 

the screws. The screw-edge fac  the flow is thus the weakest section. As any 

rosive action starts with the most vulnerable section first, the screw edge facing downstream is 

 

pump (fig. 82) sh

ion and pa r conf

 or slip is hig

 and the fluid b

ing downstream of

e

most vulnerable for wear. Hence, the screw edges erode faster as compared to any other area on 

the screw. Backflow or slip is thus a major contributor to the erosive wear on the screws. It is, 

therefore, important to study the slip flow in twin-screw pumps. Many authors have worked on 

investigation of slip flow. One recent work on slip is by Prang88. For laminar flow, the slip across a 
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Fig. 82: Screw Erosion on Edge 

 

thread of screw due to the pressure differential can be given by  

                                                                      ( )
l12

D4pp
Q

3
ti1i

is μ
δπ−

= +
,

                                             (4) 

where, pi and pi+1 are pressures on the ith and i+1th sides of the screw thread, Dt is screw tip 

diameter, δ is clearance between screw tip and casing, l is length of the leak path and μ is 

absolute viscosity of the fluid. La he screw gaps should be tight 

and slip flow is desired to be small. Fig. 83 illustrates the screw and clearance dimensions. 

crew thread is discuss

The hardness ratio between solid particle and wearing metal surface is an important parameter 

ile in 

peration. Strong material bonding will ensure resistance to bending and shearing stresses due 

minar flow is assumed here as t

 

The investigation of slip flow across a s ed in the solids transport section. 

for hydro abrasive wear. Vetter et al.84 found that the rate of wear jumps to higher values when 

the hardness ratio is close to one (fig. 84). For sand erosion mitigation, the hardness of screws 

should  exceed  1200, as hardness of silica sand is 1100 (Vickers). Screws and casing with very 

hard, reliably adhering coating having sufficient thickness will ensure minimum wear wh

o

to particle friction. Tough matrix will prevent brittle rupture and sufficient thickness (up to 1 mm) 

will help minimize the local indentation due to ploughing action of particles on screw / casing 

surfaces. Thus selection of hard coatings should be carefully taken into account to avoid the 
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possible flaking and should ensure long lasting bonding in abrasive service under multiphase 

environment.  

 

 

 

Fig. 84: Effect of Hardness Ratio84

 

 

 

Fig. 83: Screw and Circumferential Clearance 
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If the hard coating on screw surface is brittle it can develop fractures. The fractured hard coating

can wear off due to erosive action of back-flow89. Due to inadequate bonding between hard

coating and substrate metal surfaces, the loosened particles of hard coating can get carried away

ther locations and initiate wear more strongly than produced sand within twin-screw pum

other downstream components of the production system. 

Sand Detection 

The ability to accurately watch the sand concentration in the produced fluids and produc

ems will enable operators to optimize the production within safe limits for mech

integrity of well completions, pipelines and downstream process. With accurate data of s

production, better correlations for erosion will also be possible. Two types of acoustic 

detectors – intrusive and non-intrusive are available. Intrusive sand detectors penetrat

flowline. Their installation or replacement needs shutting down the flow. 

 

Fig. 85: Acoustic Sand Detector at Riverside 

 

Non-intrusive type detectors are able to detect smaller concentrations of sand as compared to 

intrusive types. The acoustic sand detector is ideal for production optimization for maximum sand 

ee flow or with maximum acceptable sand concentration, assurance on integrity of downhole 

sand control, early detection of sand production even in small quantities, and monitoring the 

sand concentration. Fig. 85 shows the acoustic sand detector installed at Texas A&M Riverside 

experimental facility. 

 

fr
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Acoustic sand detectors allow early detection while maximizing the production rates. If the flow 

conditions remain similar to those during calibration, the sand concentration in fluid stream can 

be accurately determined. Since these conditions change over the life of reservoir, there is a 

need to calibrate the detector several times. 

 

Low viscosity fluids, high gas rates, small flowline diameters, high velocity and large sand 

particles favor good sand detection with acoustic devices. High viscosity fluids, slugging, large 

diameter pipelines and small velocities, hydrate formation; wax deposition, small particle sizes 

and variable background noise hinder sand detection. Changing GORs, water cuts, temperature 

and velocity all affect detector accuracy. To detect the sand particles, they must impact the pipe 

wall at certain minimum velocity. Low fluid velocity results in creeping flow of sand on the bottom 

of flowline and it does not necessarily cause any measurable impact. As every flow has some 

noise, the acoustic sand d resence of sand particles, 

is output is distinctly more than the background noise. Thus the increase in signal above 

r should be installed after a 900 bend downstream of the wellhead. Before 

libration, the exact location of detector relative to bend is not critical. 

 Assuming that the average size and angularity of 

nd grains, and the fluid properties are steady, the increase in signal can give a measure of 

etector always gives a non-zero output. In p

th

background noise is measured to characterize sand concentration. 

 

Acoustic sand detectors perform best at locations where acoustic activity is ample within the 

pipeline. The most ideal location will be downstream of an elbow bend, and away from other 

sources of noise such as chokes, valves and equipment with high vibrations and noise levels. 

Preferably, the detecto

ca

 

To determine the sand concentration in flowlines, two parameters are needed – increase in 

acoustic signal and mixture velocity. The increase in signal by impact of sand particle with pipe 

wall depends on fluid velocity and viscosity.

sa

sand concentration. 

 

The chance that a sand particle will hit the pipe wall depends on the ratio of inertial to viscous 

forces exerted on the particle. The output from the device indicates kinetic energy of impacting 

particles. Coupled with velocity measurement, it gives the rate of sand production and sand 

concentration. Ideal location for acoustic sand detector would be away from sources of flow and 

other background noises. Lack of understanding on data interpretation from sand detectors can 

be useless and can incur huge losses. Overreacting on certain alarm may result in unnecessary 

deferment of production and under-reacting on reservoir sand release may eventually lead to 

well interventions.  
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F

 

ig. 86 shows the components of acoustic sand detector. The acoustic sensor is housed inside an 

e from any material like 

aint or grease. To avoid corrosion on the contact, a special corrosion inhibiting silicone gel is 

 

 

enclosure on a waveguide which can be fastened with strap and screw. The sensor tip is fastened 

tight in continuous physical contact with the pipeline. A spring inside the sensor housing keeps 

the sensor in tight contact. All gaps are water tight and air tight so that the device can be 

explosion safe. The power supply and signal output cable passes through a cable gland. The 

contact between pipeline and tip of the acoustic sensor should be fre

p

applied. This is recommended if the pipe surface is not corrosion resistant where paint, rust, salt 

is removed. In case of materials which are corrosion resistant, this may not be a necessity. 

Installation of detector must be completely tight as loose contact will introduce errors in 

measurement. 

 

 

 

 

 

 

 

 

 

 

 

1 Sensor 

2 Waveguide 

3 Junction Box 

4 Spring 

5 Seal Ring 

6 Cable Gland 

7 Detector Housing 

8 Label 

9 Clamp / Detector  

10 Mounting Straps 

11 Clamp Fastening Arrangement 

12 Cable 

Fig. 86: Roxar Sand Detector Components90 
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Sand Detector Calibration 

Background Noise  

Acoustic signal output from detector comprises of background noise and sand noise. Background 

noise needs to be separated to reveal the sand se. As every flow produces some noise, the 

acoustic detector always gives a non-zero output at no flow conditions. The background noise 

curve is defined90 by equation (5): 

  

                                                   =)(                                           (5) 

 

The background noise  87) is calibrated values at different flow 

rates and then fitting a 
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Fig. 87: Background
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 Noise Calibration 

Sand noise calibration specifies the sand noise at different sand concentrations. The sand noise 

rve is calibrated by specifying output signal values at different flow rates when sand is flowing 

                                                                           (9) 

 

 

 

Sand Noise  

cu

at the rate of 1 g/sec in stream. It is given90 by eq. (9). 
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Fig. 88: Pneumatic Pump for Controlled Sand Injection 

 

A controlled sand injection at 1 g/sec in the base flow having velocity greater than 1 m/sec was 

carried out using a pneumatic pump and a positive displacement mechanism (fig. 88). After 

calibration, the acoustic sand  the location of installation. 

oving the detector to a different location will invalidate the calibration and recalibration will be 

required. Fig. 89 shows the sand noise calibration curve. 

 detector should not be moved from

M
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Fig. 89: Sand Noise Calibration 

 

Sand Detector Test

or testing the sensitivity of detector after calibration, we tested sand detector in two different  

ing 

F
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Fig. 90: Noise Picked up from Rain Drops 
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Fig. 91: False Sand Noise Picked up from High Velocities 
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ways. During the first sensitivity test, the detector was powered on and data acquisition was in 

progress without any flow in the pipe and it was raining. The rain drops impacting on pipe-wall 

from outside caused noise. The noise levels recorded are shown in fig. 90. 

 

The second test was without any sand concentration in liquid flow. A wide range of velocities was 

achieved by changing the speed and controlling the differential pressures across the twin-screw-

pump. The detector turned out to be very sensitive. For flow without sand, raw signal levels were 

proportionate with fluid velocities. The data recorded is plotted as shown in fig. 91. The steps in 

noise signal amplitude shows changing differential pressure or step change in flow rates and 

thereby velocities. 

 

The introduction of gas in liquid flow introduces additional noise. The sand detector picks up 

noise due to free gas and interprets it as sand concentration. The raw signal picked up goes on 

increasing as the gas volume fraction of the flow increases. This increase continues till the total 

flow (gas + liquid) goes on increasing. When the total flow rate starts stabilizing, the raw signal 

again begins dropping. This is possibly due to less turbulence created as liquid volume fraction 

goes on decreasing. The flo  possible air flow rate due 

to compressor capacity. To increase gas volume fraction beyond a  certain  limit,  the  liquid  flow  

 

w loop and setup is limited by a maximum
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Fig. 92: Sand Detector Response at 1000 RPM 
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te needs to be controlled by throttling a valve on the liquid leg of metering. The maximum 

possible (at Riverside flow loop) total flow rate at 1000 RPM speed is about 8000 bbl/day and in 

case of 1600 RPM; it is about 10000 bbl/day. In both the cases, (figures 92 and 93) it was 

observed that the raw signal levels exceeded the sand noise detection threshold (185000 nV) at 

calibrated signature as soon as the gas phase enters the flow and the sand detector is not 

accurate in detecting the sand concentration. 

 

Fig. 94 shows that there is no predictable correlation between gas volume fraction and detected 

“false” sand at different flow rates (implied by different pump speeds). 

 

After establishing that sand detector is calibrated and sensitivity is confirmed, sand particles were 

introduced in the flow. Sand was introduced in the flow loop using a 1” PVC pipe with an open T 

on the bottom end (fig. 67). The bottom end was exactly placed inside the 4” outlet of the 40 

barrel yellow tank which connects to the centrifugal charging pump suction. This ensured no loss 

of any quantity of sand on the tank bottom due to settling, which can not be avoided otherwise. 

 

100 g, 200 g, 300 g and 640 g of sand were introduced in the pure water flow and sand detector 

measured  the  quantities output  (fig. 95).  It was  

 

Fig. 93: Sand Detector Response at 1600 RPM 

 

ra

  as  104 g,  202 g,  291 g  and  638 g  in  the  
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Fig. 94: Unpredictable Behavior 
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Fig. 95: Sand Detection in Pure Water 
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Fig. 96: Sand Detection in 2 cp Gel 

 

observed that with introduction of viscosity in base fluids, the response of sand detector for 

similar quantity of injected sand was different. In 2 cp liquid flow, 100 g, 200 g and 300 g of 

injected sand was measured as 32 g, 62 g and 92 g respectively (fig. 96); whereas, in 3 cp liquid 

flow 200 g, 400 g, 500 g and 600 g of injected sand quantities were measured as 23 g, 61 g, 90 

g and 107 g (fig. 97). It is observed that with increasing viscosity, the amplitude of raw signal 

and estimated sand mass goes on decreasing.  

 

With introduction of gas volume fraction in the stream, there is more acoustic noise and the 

detector becomes more sensitive and shows certain “false” sand quantity in the absence of sand 

particles. When actual sand is encountered, the amplitude of output signal is higher than in case 

of pure water under calibration conditions. In the presence of 50% GVF at 10000 bbl/day total 

flow rate, 100 g, 200 g, 300 g, and 600 g of injected sand quantities were interpreted as 317 g, 

640 g, 735 g, and 1499 g respectively (fig. 98). 

 

Fig. 99 shows the effect of viscosity and presence of GVF on detection of sand mass against 

injected sand mass in the flow-loop. 
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Fig. 97: Sand Detection in 3 cp Gel 
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Fig. 98: Sand Detection with 50% GVF and 10000 bbl/day Flow Rate 
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Fig. 99: Effect of Viscosity on Sand Detection 

 

rom all above sand detection tests, the estimated sand mass quantities were plotted against 

corresponding raw signal values. The plot shows a straight line (fig. 100). This plot shows that 

the straight line crosses X-axis at 185000 nV. This signal value matches with the threshold raw 

signal value marked in all other sand detection plots. The slope of this line will vary with 

calibration. With a calibration under different conditions, a general correlation valid for the 

current calibration of sand detector can be written as  

 

                                        Sand Mass = 0.0006 X Raw Signal – 1.1383                                 (7) 

 

where, the sand mass is in g/sec and raw signal is in 100 nV 

 

The detection of solids like sand particles with acoustic devices is reliable only when the actual 

flow conditions are close to the flow conditions at the time of calibration. 

F
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Fig. 100: Estimated Sand Mass against Raw Signal 

near gels transport proppants allowing settlement of proppants or with perfect suspension in 

properties of fracturing fluids are thinning on adequate residence time and resistance to thermal 

tremely easy pump-ability even at 

igh viscosities.  

produced sand through 

twin-screw multiphase pumps would be incorporation of gel injection capability upstream of the 

pump. This would allow suspension of sand particles on detection with sand detector, and 

enveloping the particles in gel bulk before passing through pump chamber to reduce friction and 

metal loss. 

 

 

Solids Transport 

Various types of gels are used as fracturing fluids for hydraulic fracturing to stimulate the 

formation. The viscous gels used posses certain special properties which enable them to suspend 

and efficiently transport proppants with minimum friction losses at minimum cost.  

 

Li

case of cross-linked gels. Viscosity imparts transportation capability to the fluid. Other desirable 

thinning. One modern characteristic of fracturing fluids is ex

h

 

Keeping the above type of fluid in mind, one option for transporting the 
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Analysis of Slip Flow 

Using the equation for slip across a screw thread by Prang et al.88, on screws with different 

clearances and leak path lengths, we investigated the effect of viscous gel in controlling the slip 

flow. 

 

The slip flow was calculated for water and a 50 cp liquid with different differential pressures for 

clearances ranging from 0.008” to 0.02”, across screw threads having 15” and 7.25” diameters 

respectively. By increasing the viscosity, the slip flow can be considerably controlled. For similar 

conditions, the slip flow can increase by up to more than 10 times if clearance is increased by up 

to 3 times. Fig 101 and 102 shows that slip flow is drastically reduced if a high viscosity fluid is 

sealing the clearances. 

 

By increasing the width of screw thread (leak path length), the slip flow can be effectively 

reduced at high differential pressures (fig. 103).  

 

Fig. 104 shows the slip rate behavior at different differential pressures with increasing viscosity. 

 

Figures 105 and 106 sh ferent differential 

es and viscosities. 

ow the effect of clearance size on slip flow at dif

pressur

 

Fig. 107 shows the effect of screw diameter on slip flow at different clearance sizes with a 10 cp 

liquid sealing the clearances. 
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Fig. 101: Slip Flow across 15” Diameter Screw with Pure Water 
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Fig. 102: Slip Flow across 7.25” Diameter Screw with 50 cp Fluid 



 137

4cp

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.5 0.75 1 1.25 1.5

Length of Leak Path (in)

Sl
ip

 F
lo

w
 (

m
3/

se
c)

DP 25psig DP 100psig DP 400psig DP 1000psig DP 1200psig  
Fig. 103: Effect o ance 

with 4 cp Fluid  

 

f Leak Path Length on Slip Flow across 15” Diameter Screw and 0.04” Clear

15" Screw Length
0.012" Clearance

1.315" Leak Path Length

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

0 20 40 60 80 100 120

Viscosity (cp)

Sl
ip

 R
at

e 
(m

3/
se

c)

DP 25psig DP 50psig DP 100psig DP 200psig DP 400psig  

Fig. 104: Effect of Differential Pressure on Slip 
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Approach to the Problem of Erosion 

There can be different possible approaches to tackle the problem of produced sand concentration 

passing through twin-screw pumps. Complete separation is not the most economic operation. 

Sand concentration has to pass through the pumps in such scenario. It is, therefore, necessary to 

devise some method which will take care of efficient transport without causing any metal loss in 

the screws and casing. 

 

Reduction of pump speed, diversion of high concentration “sand slug” to a mixing section so that 

sand particles are evenly mixed and suspended, and injection of high viscosity fluid to envelope 

sand particles on detection of sand concentration are a few possible solutions. We will focus on 

gel injection towards mitigating the problem of solids transport without causing damage to the 

metal of screws. Figures 108 and 109 depict the concept of gel injection system on detecting the 

sand concentration. 

w across Screw Threads of Different Diameters with a 10 cp F
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Fig. 108: Schematic Showing Sand Detection, Mixing and Gel Injection 

 

 gel storage tank, mixer, dosing pump with precise controls and metering 

system to keep track of the quantity being injected. Further, it will be necessary to have a special 

kind of gel which will be stable for long periods of time. Gels which would be easily pumpable 

 

 

Fig. 109: Gel Injection Concept 

 

In the event of very high sand concentration, it will still be necessary to divert the flow to a sand 

disposal system. Gel injection will need continuously pressurized injection system. In real oilfield, 

this system can be a
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The g ssel 

 with 

extern

pty is 

 

with commercially available oilfield dosing equipment and tubing sizes to current and future 

water depths are the need of time. 

Gel Injection 

el Injection setup at riverside facility is extremely simple (fig. 110). A small pressure ve

(25 gallon) can be filled with a gel of required viscosity and then pressurized to 115 psig

al compressed air to inject gel in flow loop. There is no flow meter on the outlet. A known 

volume of gel is filled up and while injecting at a fixed valve opening, the time to em

recorded to determine injection flow rate. 

 

Fig. 110: Gel Injection Setup 

 for experiments is a guar gum gel concentrate compatible with water. 

quid quickly viscosifies when it comes in contact with water. Adding gel concent

d slow rates in water tank while stirrer is running is very important to 

niform gel. Apart from stirring, mixing is achieved by continuously

liquid mix with a pump. The gel viscosity is determined with a Fann 35 viscometer. 

 

Gel Characterization 

The gel used The gel 

concentrate li rate 

at steady an achieve a 

clump-free u  re-circulating the 

 

                   Apparent viscosity = dial reading at 600 RPM / 2                                               

(8) 

 

The change in viscosity with the concentration shows a non-linear trend as shown in the 

following plot (fig. 111). The curve fit to the points of experimentally measured viscosities can be 

expressed as  
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Fig. 111: Gel Characteristics 

 

where μ is apparent viscosity in cp and Gc is gel concentration in lb/1000gal. If Gci is gel 

concentration in injection gel and Gc  is gel concentration in base flow, the effective 

concentration upon injection and mixing 

w

can be given by  

 

 

                                                                   
wi

wwii
eff qq

Gc
+

qGcqGc +
=                                                (10) 

 

Substituting Geff in the empirical equation for μ, the effective viscosity can be determined. 

 

                             1Gc345726530Gc004995320Gc000010470 23 +++= ...μ effeffeffeff                (11) 

e above relationship, it is possible to determine the viscosity resulting in a pipeline flow 

due to injection of high viscosity gel. Figures 112  and 114 illustrate the effect of varying the 

s significant if gel injection rates are high (>300 bbl/day). At the high base 

 

Using th

, 113

injection rate of concentrated gels (60, 80, 100, 110, 120 and 130 lb/1000gal) on effective 

viscosity of the base flow. For small base flow rates, the effect of concentrated gel injection on 

effective viscosity i
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ive viscosity trend flattens and different strengths of g

little effect on final effective viscosity. The gel used for experiments showed the following 

characteristics (table 11) when tested with Fann 35 viscometer. 

 

Table 11: Viscometer Readings for Gels 

Dial Readings 

flow rates, the effect el concentrate have 

Gel Strength 
(lb/1000gal) 100 RPM 300 RPM 600 RPM 

29.77 13 23 32 
43.07 27 42 55 
53.09 40 58 74 
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Fig. 112: Effective Viscosity in Main Flow Line with Gel Injection Rate of 100 bbl/day 

 

Applying the factors to determine effective viscosity, we find that the effective viscosities (table 

shear are different and hence the gel is not showing Newtoni12) at different rates of an behavior. 

 

Table 12: Effective Viscosities at Different Rotary Speeds 

 Effective Viscosity (cp) Gel Strength 
(lb/1000gal) 100 RPM 300 RPM 600 RPM 

29.77 39 23 16 
43.07 81 42 27.5 
53.09 120 58 37 
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Fig. 113: Effective Viscosity in Main Flow Line with Gel Injection Rate of 400 bbl/day 
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Fig. 114: Effective ty in Main  Line with l Injectio  of 700 bbl/day 
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The gel characteristics are calculated in table 13. 

 

Table 13: Pseudo-Plastic Parameters of Gels 

Gel Strength 
(lb/1000gal) 

Flow 
Behavior 
Index (n) 

Consistency 
Index (K)       

(dyne-sn/cm2) 
29.77 0.4764 6.01 
43.07 0.3891 18.93 
53.09 0.3515 33.04 

 

The flow behavior indices show that the gel is a pseudo-plastic power law fluid.  

 

Power-Law Fluid Flow 

The power law does not assume a linear relationship between shear stress and shear rate. The 

lower the value of n, the more shear thinning fluid is. The effective viscosity of power law fluid is 

given by  
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Figures 115 and 116 shows the change in effective viscosities for 2500 psig frictional pressure 

overcome in 500 ft and 5000 ft tubings, respectively. 
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by  

                                                

The Reynolds number for power-law fluid is given 

                       
e

N
μRe =                        p vD46715 ρ.                                      (13) 

where ρ is in pounds p inche v in f al Reynolds number for 

power law fluids where rb am he Reynolds number is 
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the friction factor is given by  

                                                                                
ReN

16fp =                                                          (14) 

For turbulent flow, the friction factor is given by  
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Each different viscosity of a power law fluid will have a unique value of n and K. So, the complete 

cha

 

racterization of a power law fluid is a tedious and complex process.  
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y  

   

For laminar flow, the frictional pressure drop is given b

p

p
f D92916

Lvf
P

ρ
=Δ                                                    (16)                                                                                                    

The frictional pressure drop for a power law fluid is given by  

                                                                             
p
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P
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ρ
=Δ                                                                  (17) 

Given the complex and tedious nature of analysis of power law fluid due to changing nature of 

flow behavior index for different strength of gel, the analysis for frictional pressure drop is carried 

out only for the experimental samples as n and K values need to be determined experimentally 

for each concentration (strength) of gel.  

 

Figures 117 and 118 show a comparison between possible gel injection rates with different sizes 

of 500ft long tubing as a function of viscosity, at 25 psig and 2500 psig pressure drops. 

 

Fig. 119 shows that beyond 0.75” tubing size, for a frictional pressure drop around 2500 psig, the 

flow rates do not differ much for a tubing length of 5000 ft, typically of deepwater depth. 
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Figures 120, 121, and 122 show a comparison between pipeline viscosities on injecting the three 

samples of gels, used for the experiments, through 0.75”, 1”, and 1.25” tubings with 2000 psig 

frictional pressure drop. 
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Fig. 123: Viscosities Achieved with Injection through 500 ft Long 1.25” Tubing at 2000 psig 

Frictional Pressure Drop (Pseudo-Plastic Fluid) 

 



 151

 

 

Figures 123, 124, and 125 demonstrate that with an increase in frictional resistance, the 

maximum pipeline viscosity by injecting concentrated gel goes on decreasing beyond a certain 

gel strength. This is prominently explained by fig. 125. 
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Fig. 124: Viscosities Achieved with Injection through 500 ft Long 0.25” Tubing at 2000 psig 

Frictional Pressure Drop (Pseudo-Plastic Fluid) 
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Newtonian Fluid Flow 

 possibilities. Determination of frictional 

ressure losses will involve evaluation of the type of flow – laminar or turbulent. Laminar flow 

has Reynolds number less than 2000 and turbulent flow has Reynolds number greater than 4000. 

The flow regime having Reynolds number between 2000 and 4000 is transition flow. The 

Reynolds number is defined as  

 

                                                                               

Injection of viscous gels through injection umbilicals into the flowlines will involve high frictional 

pressure drops. It is essential to investigate the flow rates and pressure drops for gels with piping 

diameters to arrive at practical range of operational

p

  
μ

ρν pd
N =Re

                                                    (18) 

 

where, NRe is Reynolds number, ρ is liquid density,ν is velocity of flow, dp is pipe diameter, and μ 

is viscosity of liquid. 

 

The Jain equation for friction factor is known to be accurate for a wide range of Reynolds number 

from less than 2000 to 108. The equation is  
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where, f is friction factor and ε is pipe roughness. This equation is valid for laminar, transition 

and turbulent flow. The frictional pressure drop is expressed as   
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where, ΔPf   is frictional pressure drop and gc is acceleration due to gravity. 

 

Using the equations for Reynolds number, friction factor and frictional pressure drop in an 

iterative process, it is possible to arrive at a stable solution for pressure drop or flow rate.  

 

Figures 126 and 127 show a comparison of gel injection rates possible with different sizes of 10 ft 

long tubing as a function of viscosity, at 25 psig and 75 psig frictional pressure drops. 
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Fig. 126: Flow Rate at 25 psig Pressure Drop through 10 ft Long Tubing as a Function of Viscosity 
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Fig. 127: Flow Rate at 75 psig Pressure Drop through 10 ft Long Tubing as a Function of Viscosity 
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Figures 128 and 129 show a comparison of gel injection rates possible with different sizes of 500 

ft long tubings as a function of viscosity, at 25 psig and 2500 psig frictional pressure drops 

respectively. 
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Fig. 128: Flow Rate at 25 psig Pressure Drop through 500 ft Long Tubing as a Function of 
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Figures 126, 127, 128, and 129 show that for real application of gel injection for controlling the 

slip flow across clearances in twin-screw pumps installed in moderately deep waters, the frictional 

pressure drop needed to be overcome will be in the range of a few thousand psig if commercially 

available tubing sizes are used. 
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Fig. 130: Frictional Pressure Drop at 300 bbl/day Injection Rate through 10 ft Long Tubing as a 

Function of Viscosity 
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Injection Rate through 1500 ft Long Tubing as a Fig. 131: Frictional Pressure Drop at 600 bbl/day 

Function of Viscosity 

 

The above plots (figures 130 and 131) indicate that for deep water depths, smaller tubings 

provide very high frictional pressure drops and hence small injection rates. For typically 500 ft 

water depths, tubing sizes of 0.75”, 1” and 1.25” were found to be most suitable for using with 

injection equipment which can overcome frictional pressure drops up to 2000 psig. In all analysis, 

a pipe roughness of 0.0006 ft was assumed before starting the iterations. In some cases (for 

tubing size up to 0.5”), iterative process gives friction factor higher than 1, which seems 

unrealistic. 

 

Effective Viscosity Determination Using Field Data 

Using the above analysis, and gel concentration-viscosity relation, it is possible to estimate the 

effective viscosity in a pipeline when other data is available. Perfect mixing is assumed in all 

analysis. 

 

Figures 132 and 133 show a comparison between effective viscosities achieved in pipeline flow 

with injection of viscous gels with different strengths through 500 ft long tubings of 0.75” a

d

nd 1” 

iameters respectively at a frictional pressure drop of 2000 psig. 
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Fig. 132: Effective Viscosity with Gel Injection through 500 ft Long 0.75” Tubing with 2000 psig 

Frictional Pressure Drop 
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Fig. 133: Effective Viscosity with Gel Injection through 500 ft Long 1” Tubing with 2000 psig 

Frictional Pressure Drop 
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Fig. 134: Effective Viscosity with Gel Injection through 500 ft Long 1.25” Tubing with 1500 psig 

Frictional Pressure Drop 

 

Fig. 134 shows that for umbilicals with larger diameters the frictional pressure drop needed to be 

overcome is less and hence injection rate is higher which gives higher effective viscosity. 

 

Fig. 135 shows a comparison of maximum gel injection rate which can be achieved by gels of 

different strengths under different combinations of tubing sizes and frictional drops. 

 

Figures 136 and 137 compare the effective viscosities in pipeline after gel injection under 

different combinations of tubing sizes and frictional pressure drops into 6000 bbl/day and 10000 

bbl/day base flow rates respectively. 
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Fig. 135: Injection Rates Po trengths and Tubing Sizes 
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Fig. 136: Viscosities Achievable at 6000 bbl/day Base Flow Rate and 500 ft Tubing Length 
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Fig. 1 ngth 37: Viscosities Achievable at 10000 bbl/day Base Flow Rate and 500 ft Tubing Le

 

0.2" Tubing

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

10 100 1000

Gel Strength (lb/1000gal)

Ef
fe

ct
iv

e 
Vi

sc
os

ity
 (c

p)

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

 
Fig. 138: Viscosities Achieved with Injection through 500 ft Long 0.2” Tubing  
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Fig. 139: Viscosities Achieved with Injection through 500 ft Long 0.25” Tubing  
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Fig. 140: Viscosities Achieved with Injection through 500 ft Long 1” Tubing  
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The above plots (figures 138, 139, and 140) indicate that there is a maximum effective viscosity 

achievable when a tubing size is used for gel injection. This maximum does not occur at 

maximum gel strength, and varies for tubing sizes and lengths. For a tubing size of 0.2”, this 

maximum is achieved when injected gel has 100 lb/1000bbl concentration, for 0.25” tubing, it is 

120 lb/1000gal and for 1” tubing, it will occur beyond the range of viscosities used in 

experiments. The gel strength at which maximum effective viscosity is achievable in a pipeline 

flow can be called as the optimum gel strength for that setup. Using gel strengths higher than 

optimum will result in higher frictional losses and effective concentration in pipeline upon 

injection will be less than with optimum gel strength hence reducing effective viscosities. Thus it 

is highly recommended that analysis for optimum gel strength be carried out before designing a 

gel injection system. 

 

Gel Injection Tests Upstream Twin-Screw Pump 

Experimental tests focused on gel injection were carried out and effects of gel injection on 

effective viscosity at different flow rates across pump chamber were studied. The first tests were 

with locked rotor with 16 cp, 26 cp and 35 cp gels (fig. 141). Next, a 100 cp gel was injected at 

different ffective 

viscosity across pump chamber could be estimated if data is available. 
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Fig. 141: Gel Injection with Locked Rotor Flow 
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 cp gel was injected at different flow rates and results were plotted on 

e same background plot (fig. 142). This plot confirms the concept mentioned above. Gel 

 the viscosities could be roughly “read” to 

The plot shows that with higher rate of gel injection, it is possible to increase the viscosity across 

the pump chamber and it can be estimated using differential pressure and total flow rate. The 

effective viscosity however, will depend on how quickly and effectively the injected gel disperses 

and mixes with the base fluid. The choice of gel to be used for the purpose is itself a topic of in 

depth research as fluid composition and properties produced in the oilfields vary across the world. 

Certain type of viscous gel will be readily miscible with one type of produced fluid to increase 

viscosity momentarily for transporting the detected sand particles but not for other formation 

fluids produced from another field. 

 

To study the behavior of running pump with viscous fluids, same viscosities of gel were used. At 

the 1200 RPM speed, 100

th

injection tests at 1400 RPM supported this concept and

be lying in between pure water and other tested viscosities (fig. 143). 
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Fig. 142: Gel Injection in Loop at Pump Speed 1200 RPM 
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Fig. 143: Gel Injection in Loop at Pump Speed 1400 RPM 

 

Prediction of Viscous Flow through Twin-Screw Pump 

Using data from different speed and viscosity tests on Flowserve twin-screw multiphase pumps, a 

correlation for predicting the flow rates at a given differential pressure and a give fluid viscosity 

was developed. The flow of viscous fluid across twin-screw pumps is obtained by multiplying the 

pure water flow by a coefficient called viscosity coefficient. 

 

                                                                                                                                              (21) 

 

The pure water flow is a function of differential pressure and pump rotary speed. 
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The viscosity coefficient is a function of viscosity, differential pressure and pump speed. The 

viscosity coefficient is empirically expressed as 

viscwgel CQQ =
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The correlation shows a good match with the experimental measurements (figures 144, 145, and 

146). The slight mismatch at higher viscosities for higher speeds is possibly because of difficulty 

faced by centrifugal charging pumps in handling viscous fluids sometimes entrapped with air 

bubbles. The entrapment of air bubbles in high viscosity gel takes more time to completely 

separate than the possible residence time in 40 barrel tank at high flow rates. The key limitation 

of the test loop is that fluid flows back to the tank which supplies fluid to loop. This gives very 

little residence time in case of air entrapment. Due to entrapped air, the flow measured using 

mass flow meter includes air bubble component and may significantly differ from the case in 

which there would be no entrapment of air bubbles. 
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Fig. 144: Twin-Screw Pump Performance for 16 cp Gel 
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Fig. 145: Twin-Screw Pump Performance for 26 cp Gel 
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Fig. 146: Twin-Screw Pump Performance for 35 cp Gel 
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Fig. 147: Gel Injection with Pressurized Air 

 

100 cp gel was injected against backpressure at three different base flow rates on the suction 

side of twin-screw pump at two speeds. The trend shows higher injection rates at higher base 

flow rates because of lower back pressures experienced at the injection point (fig. 147). 

 

Using the correlation and some known data, i.e. differential pressure, flow rate and speed, it is 

possible to estimate the viscosity of fluid across pump chamber. This is made easy by the use of 

solver tool in MS Excel (figures 148 and 149).  
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Fig. 148: Using Solver to Estimate Effective Viscosity 

 

 

Fig. 149: Viscosity Calculation in Progress 
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Fig. 150: Dispersion Dominated Mixing 

e two different behaviors at two speeds by gel injection tests. The first test at 1200 

RPM shows that the viscosity is reducing with increasing base flow rate (fig. 150). The second 

test at 1400 RPM shows that viscosity is increasing with increasing flow rate (fig. 151). This 

suggests that there are possibly two mechanisms of gel mixing in base fluid (water in this case). 

One is dispersion without active participation of churning in the mixing process and second is 

active churning process resulting in proper mixing. Thus 1200 RPM viscosity change is influenced 

by dispersion. There is better dispersion due to more residence time at lower flow rates. At 1400 

RPM, the viscosity change is influenced by active churning. There is better mixing due to better 

churning at higher flow velocities. 

 

Thus, mere injection of viscous gels will not be sufficient in increasing the viscosity across twin-

screw pump or any other equipment. Along with injection, proper mixing and in-situ blending 

must also be ensured to achieve the full utilization of concentrated gel. 

 

With fluids having high viscosities passing across the pump clearances, it is possible that fluid 

gets heated excessively due to viscous drag due to shearing of leaking liquid. This temperature 

rise can reduce the viscosity and hence special gels with thermally stable viscosity characteristic

 

We observ

s 
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will be required to effectively mitigate slip flow at high differential pressures and thus avoid or 

reduce erosion of screw edges due to sand particles. 
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Fig. 151: Churning Dominated Mixing 

 

The sand erosion will be a function of differential pressure across the twin-screw pump 

clearances when sand particles are passing. The more viscous the gel enveloping and carrying 

sand particles, the higher will be differential pressure for same flow rate as compared with a fluid 

of less viscosity. To estimate the effective viscosities needed across pump chamber at a given 

speed and given flow rate to increase the differential pressure (and thereby cushion the abrasive 

particles, the correlation described by eq. (21) is used and the following observation is made (fig. 

52). 1
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Fig. 152: Effective Viscosity Needed across the Pump Chamber to Increase DP by 10 psi above 

Pure Water Flow 

 

At lower speeds, the viscositi tial pressure are higher than 

t higher speeds. The relationship between effective viscosity, differential pressures, and erosion 

es needed for same change in differen

a

rates needs to be determined and that is a recommended future work in this direction. 
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8. INTEGRATED APPROACH TO FLOW ASSURANCE 
 

This section discusses the integrated approach to flow assurance. Different strategies and the 

methods for oilfield management, and asset management, are discussed along with the need for 

integration of reservoir, wellbore, subsea, pipeline and process systems for effective flow 

assurance. 

 

Introduction 

The historical accounting principles keep emphasizing that the lowest cost business will make 

highest profits and will become most successful. In the race to become the most profitable 

company, the E&P companies have been cutting costs, focusing on economies of scale, and 

consolidating through acquisitions, mergers and buyouts91. Tough competition among companies 

keeps the profits low and consumers are benefited. Companies without debt become most 

successful. The examples of debt-free companies are Cisco Systems, Dell, and Microsoft. All 

these companies work on the principle of maintaining minimum possible inventories. Capital, like 

land is not important these days for wealth creation. On the same lines, large E&P companies 

tend to work as investment bankers. E&P companies bring together other teams to develop new 

prospects, build facilities, organize transportation by pipelining or tankers, refine crude and 

distribute the product to end users. On development or while developing, a significant portion of 

production share is sold off to the competitors to recover investment and reduce risk. This also 

limits the opportunity to dominate. Currently, the world is rich with abundant supply of fossil 

fuels and other chemical products sourced from petroleum refiners, because of successful gas 

and oil exploration, production, transport and refining technologies. Other contributors to the 

success are skilled personnel and easy capital.  

 

Gas and oil industry is subject to major business cycle changes driven mainly through price 

fluctuations. In E&P industry over the last 22 years, it is estimated that unit costs have declined 

by two thirds and 80% of the improvement is due to continuously developing technology92. 

 

Management in Oil and Gas 

Before 1980s, the reservoir management was based on scarce production data, rudimentary tools 

and modular workflow. 1980s witnessed increasing interest in the use of SCADA systems, 

although initially limited to the process plants for monitoring the process. 1990s saw a boom in 

information technology. SCADA and DCS expanded from process monitoring to entire field 

surveillance. Multiphase meters on wells or clusters, and shifting of rudimentary simulators on 

workstations to more sophisticated and comprehensive simulators on petroleum engineer’s 
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laptops or desktops made it easy to better analyze and optimize every well, cluster, node, 

network and improvements still continue.  

 

Several new technologies brought “real-time” reservoir management into reality. To name a few 

of them – 4D seismic, intelligent wells, multiphase metering, multiphase pumping, improved, 

powerful and industry preferred dynamic simulation tools, etc.  

 

Internet is driving technology and commerce to grow at a geometric rate. Evolution of internet 

had a profound impact on the manner in which data is being transmitted and processed. With the 

advent of cheaper digital technologies, faster and quality data communication and storage, the 

number of computational tools available to a petroleum engineer continues to grow93. E&P 

companies are exploiting the benefits of highly “connected” fields for optimal operation of their 

assets. 

 

Wellbores are a link between reservoir and topside facilities. Production system includes and is 

characterized by reservoir, geology, petrophysics and fluid properties; wells; flow control devices; 

flowlines; flow assurance solutions such as multiphase boosting, thermal management, chemical 

management, and separation and stabilization facilities both subsea and topside.  

 

The flow assurance system becomes less effective with limited continuous information. Over-

design is often a result of scarce information. Dynamic simulation for wellbore and pipeline flow 

has been a domain of flow assurance and pipeline experts. Traditionally, a decoupled approach 

for subsea modeling has been adapted. Separate evaluation of wellbore or flowline thermal-

hydraulic behavior and communication to another design group for evaluation of topside facilities 

and formulation of operational procedures is the decoupled approach. 

 

Constraints and Recent Advances 

Unique constraints with deep sea developments stress the detailed dynamic analysis for optimal 

design of topside or host facilities. Since different mathematical codes and convergence 

procedures simulate different elements of a production system, instability arises when arriving at 

converging solutions. Definition of boundary conditions is very critical in such cases. Multiphase 

flow is highly complex and largely unpredictable over entire range of conditions. This leads to 

inconsistent correlations and leads to unstable or non-converging solutions94. Extensive 

localization of software tools and engineering efforts to wellbores, flowlines and topside facilities 

without complete communication among each other has limited the realization of whole system 
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modeling capability. Compatibility problems often arise when tools from different sources are 

coupled together.  

 

If computational time were not a limiting factor, the simultaneous solution of equations for 

reservoir and production facilities could be a possible approach. In this approach, the production 

network can be solved first and the solution is used as boundary conditions for reservoir model, 

to test if convergence occurs. In case of non-convergence, a new flow rate and conditions are 

assumed and model is iterated again94. In this implicit method, convergence can be very slow or 

may never be achieved. Explicit alternative to this is setting convergence conditions at 

bottomhole and then finding the solutions for network and reservoir. Explicit method will not be 

very accurate but will save the computational time. 

 

Recent advances in software tools, computer speed, and communication now enable the 

development of a complete dynamic model95. 

 

Optimization for Oilfield Management 

In mathematics, optimization is the discipline which is concerned with finding the maxima and 

minima of functions, possibly subject to constraints. In engineering, optimization is the best 

outcome that is achieved for a specified objective function honoring the system constraints. In 

oilfield, the objective function can represent production rate, cumulative ultimate recovery or 

more logically, the NPV. Constraints can be surface network, subsea environment, wellbore or 

reservoir limitations or the external delivery pressure and throughput.  

 

The short-term optimization of field management focuses on finding the optimum operational 

conditions such as choke settings, wellwise allocation of lift-gas and dosed chemicals, for 

maximum possible production rates while honoring the system constraints94.  

 

Medium-term optimization includes planning of startups and shutdowns to handle effect of 

transients. 

 

Long-term optimization looks at achieving maximum EUR and considers necessary de-

bottlenecking in the system to accommodate changing fluid composition and changing rates. 

Different analyses are needed at different stages in the life of a field. Early life and design stages 

are very critical as very little is known. Late life stages are also important as flow conditions are 

unstable. 
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There is a trade-off between production capacity and the cost of production to derive maximum 

recovery. Once the network configuration is optimized, it can be used to forecast the production. 

In forecast models, traditionally, the simultaneous interaction of reservoir, wellbore and surface 

networks were not adequately considered.  But in modern times, simultaneous interaction of 

different software tools has become very important. 

 

Asset Management 

E&P assets pass through different phases in their life. Typical phases are acquisition, exploration, 

development and abandonment. During these phases, importance of all the skills in achieving 

optimal productivity is not the same. Certain skills are more important than others at different 

times. Mistakes are less forgiving in highly competitive markets. Doing things right the first time 

becomes focus while evaluating each phase. Multidisciplinary cross-functional teams work in 

synergism for better ways to run E&P business and manage assets. 

 

Web Based Asset Management 

.Net is a Microsoft Web Services strategy to connect information, people, systems, and devices 

through software. .Net technology provides ability to quickly build, deploy, manage and use 

connected, security enhanced solutions. Systems integrate more rapidly, and realize the 

information exchange anytime, anywhere, on any device96. .Net is revolutionizing the way 

applications are interacting with each another – by providing a universal data format that lets the 

data be easily transformed or adopted. Communication is possible across platforms and operating 

systems, regardless of the programming languages in which the applications are written. For 

developers, it is possible to choose between developing each and every piece of application or 

absorbing the applications and modules created by others.  

 

Web based asset management is made possible by .Net. Information travels from wellsite to 

secure database and application servers. Web servers provide interconnectivity between wellsite 

and corporate intranet. Web servers, are primarily interface for petroleum experts within the 

organization and are capable of providing information to multiple users simultaneously. They 

capture and process the user’s request and send the requested information to user on their 

browser. Application servers house and run all applications for analysis of data. Database servers 

continuously receive and dispatch data. .Net enables quick retrieval and processing of large 

amount of oilfield data from any access point on the world-wide-web. 
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Need to Integrate 

Reservoir, wellbore, subsea, pipeline and process systems must be combined to simultaneously 

work for better analytical results as these systems physically work together. Fixed pressure, 

temperature, flow rate boundary is less realistic at any interface. Stand-alone reservoir simulation 

tools can work best for fixed boundary conditions, standalone wellbore and pipeline dynamic 

simulators work best for fixed sand face and downstream boundary conditions, and standalone 

process simulators work best taking downstream process as fixed domain. For the best and 

realistic results in analysis, simulation and prediction, all software tools must work simultaneously 

together and exchange data working towards common convergence.  

 

A large field often has multiple reservoirs which may or may not be directly communicating with 

each other. But if they produce to the same host facility through same flowlines, they are 

indirectly influencing each other. The boundary conditions for production could be identical. If 

they are on pressure maintenance through waterflooding fed by the same water injection facility, 

then injection boundary conditions are also identical. This scenario necessitates ability to simulate 

different reservoirs as coupled systems while retaining their individual models.  

 

The coupled dynamic models can be used for investigation of different scenarios including start-

up, shutdown, blow down, flaring, ramp-up, process upsets, reservoir upsets, wellbore changes 

in case of intelligent wells, etc. Specifically, this will be of great utility for facilities design as the 

slug catcher size can be optimized. Effects of pipeline induced offsets can be studied both 

upstream (wellbore and reservoir) and downstream (process facility) in case of hydrate, wax 

blockages or rupture.  

 

Modern Production Management Systems 

Online monitoring and surveillance tool for production system (wellbore, flowlines and host 

process system). It provides a real-time picture of conditions even in the absence of any 

instrumentation. With real-time production management model, it is possible to predict desired 

scenarios based on current snapshot. If the model is made to run offline (without real-time data 

input), system planning and strategic studies can be done. Predictive calculations can determine 

cool-down times for shutdown conditions. Based on cooldown time and fluid properties, 

formation of solids in pipeline is predictable. 

 

Production management system enables faster and accurate decision making, and formulating a 

proactive operating philosophy. This makes asset management more economic and efficient. 
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9. SUMMARY AND CONCLUSIONS 
 

This section details the summary, conclusions and recommendations from this study. 

 

Multiphase Pumping 

 Conventional production systems for deepwater and longer tiebacks are not adequate to 

attain maximum production potential of an oilfield. 

 Multiphase pumping is a form of energy input to untreated stream of produced fluids, 

which can overcome the losses due to backpressure and gravity, thus improving the 

ultimate recovery, especially in remote operating environments. However, in case of 

tubing limited wells, multiphase boosting will not necessarily have an impact on recovery 

levels. 

 Multiphase boosting is highly competitive in terms of CAPEX and OPEX over conventional 

production systems. Use of multiphase boosting can drastically reduce the footprint for 

operations. Use of subsea multiphase boosters allow long tieback distances and reduce 

the number of process platforms and main the host platform can still be stationed in 

shallow waters thus cutting on costs.  

 In case of conventional production system, where one phase line (gas or liquid) fails and 

repair or replacement is not economically viable, multiphase boosting can commingle the 

phases and produce to the host facility through single line after required modifications at 

both the ends. 

 Slip flow is one of the major causes of erosion at the edges of screws. 

 Viscous gel injection in Twin-screw pumps can very effectively reduce the slip flow even 

under high speeds. 

 

Flow Assurance 

 All flowlines eventually cool down in the absence of active heating or heat retention 

methods leading to thermal risks of flow assurance. 

 Estimation of conditions favorable for formation of hydrates, wax, corrosion, erosion, 

pressure drops are very important. These conditions can be either or more among 

temperature, pressure, fluid composition and fluid properties. Water depth or riser height 

and tieback distance are also very important parameters which can affect the flow 

assurance issues. 

 Use of low dosage inhibitors for hydrates considerably reduces the logistics and 

contamination of crude and produced water, offering huge reduction in OPEX over the 

life of the system.  
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 Presence of free gas phase in stream leads to hydraulic risks for flow assurance. 

 Subsea separation can add to the hydraulic stability of the flow. 

 Flow assurance design and monitoring is still evolving with development of new 

technologies for fluid sampling, analysis, data acquisition and modeling tools. 

 Multiphase pumps aid in flow assurance by mixing, pushing and regulating the flow of 

untreated fluids. 

 Twin-screw pumps have inbuilt capacity to handle slugs. With multiphase boosting, the 

higher velocities of untreated multiphase fluid stabilize the flow regime and prevent 

severe slugging. 

 Multiphase pumps can be effectively used for mitigating thermal risks of flow assurance 

as they reduce cooldown. Hence, hydrates and wax deposition problem can be mitigated 

to some extent. Complete mitigation will also need insulation and chemical inhibition in 

addition to multiphase boosting. 

 A marginal development does not mean marginal engineering; the level of efforts needed 

is much greater in the early stages of engineering. 

 

Sand Detection 

 Sand detector was coupled for the first time with a twin-screw multiphase pump on a 

flow loop. 

 Continuous monitoring of solids production can reduce the risk of severe erosion in 

production systems. Correct interpretation of acoustic data from sand and background 

noises is very important for correct decisions in oilfield.  

 Acoustic sand detectors in combination with other cross functional data are a proactive 

system to ensure safe optimization of production levels. 

 Acoustic sand detectors need certain minimum flow velocity for sand particles to impact 

and produce noise. Below the minimum velocities, the sand concentration interpreted is 

inaccurate. 

 Acoustic sand detector gives non zero output even in case of zero sand concentration 

due to background noises. Filtering of such noises is vital for reliability of acoustic devices. 

 With increasing fluid viscosity, the noise picked up for a given sand concentration flowing 

per unit time goes on diminishing.  

 With introduction of gas volume fraction in fluid, the noise levels detected go up in an 

unpredictable manner. 

 Calibration of sand detector is valid only for the flow conditions at the time of calibration. 

If there is any change in flow conditions for example, change in GOR or change in oil 
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viscosity, the sand detector does not give accurate results for mass. Recalibration several 

times is necessary to get the reliable results on measurement. 

 When noise picked up crosses certain threshold, sand mass is interpreted. This can be 

true even in absence of real sand if the noise produced by factors such as high gas 

velocities exceeds this threshold. 

 

Viscous Gels Injection and Twin-screw Pump Performance 

 Similar to proppants transport by gels in hydraulic fracturing, the high concentration of 

produced sand can be “transported” efficiently through twin-screw pumps to avoid 

excessive wear and tear. 

 The effective viscosity on mixing injected gel with a pipeline flow depends on the 

effective concentration of gel concentrate in a predictable manner. Thus, higher effective 

viscosities can be achieved by higher gel injection rates. 

 When gel injection viscosity is increased, the effective viscosity after injection has a 

limiting value after which, the effective viscosity will decrease further due to less flow as 

a result of higher friction factor and more laminar flow regime. 

 Upon injection, mixing or dispersion of gel with pipeline flow takes time. The time taken 

is more for higher difference in viscosity. Mixing gel with very high viscosities will be 

difficult or incomplete without some means of mixing in the pipeline. 

 The most suitable tubing size for injecting gels were found to be in the range of 0.75” to 

1.25” for depths up to 500 ft if gels 20 lb/1000gal to 130 lb/1000gal were used with a 

pressure of 2000 psi. For smaller tubing sizes, deepwaters and long distances are not 

feasible as frictional pressure drop exceeds 10000 psi in most cases and 

procuring/installing and operating an injection equipment to overcome this large pressure 

drop may not be justifiable. 

 For tubing sizes larger than 1.25” (in case of 500 ft water depth and 2000 psi injection 

equipment) the rate of injection will be very high and a need will arise to make and store 

large volumes of gel ready for use. 

 In gel injection for abrasion mitigation purpose, the stability of gel viscosity is very 

important as all gel will not be used instantly. Gel will be injected upon detection of sand 

concentration and stopped when (sand) concentration drops to negligible. This will need 

very accurate coordination between sand detection and gel injection. 

 Since gel injection tubing and vessel will be always pressurized to high pressures, the 

quality of valves closing and opening for stopping and starting gel injection will have to 

very reliable. 
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 Gels when used for subsea application to mitigate sand erosion must be stable in 

viscosity even at varying temperatures, as they will be injected from topside at ambient 

temperature, through umbilical passing into deepwater with a vertical seawater thermal 

gradient, and again entering a hot stream on injection when sand detection will trigger 

injection to envelope sand particles. 

 All gels used for this purpose will need to be readily miscible with fluids flowing in 

pipeline to assure effective boost in viscosity on time. 

 All types of inhibitors – for mitigating hydrates, wax, corrosion and solids erosion must be 

very effective at small concentrations yet must be very easily pumpable through small 

diameter tubings without any need for sophisticated injection equipment.  

 An empirical correlation for predicting performance of Flowserve twin-screw pump at 

riverside is developed. Using this correlation, it is possible to estimate viscosity across the 

pump screw at a given rotary speed and differential pressure. The model works well 

between the operating limits of the pump, i.e. 50% to 100% speed and was tested for 

viscosities between 1 cp and 35 cp. 

 Reduction of slip flow across the screw threads in twin-screw pumps can effectively 

reduce the erosion at screw thread edges and this can be achieved by injection of 

viscous gel. Gel injection, thus will have twofold purpose – arresting the slip and 

efficiently transporting the sand particles without letting them settle. 

 

Recommendations 

 The testing of twin-screw pump with varying sand concentrations and subsequent study 

of locked rotor performance to observe the effect on clearances. 

 Similar test with fluid having viscosity greater than water, to asses the range of 

viscosities needed which can substantially reduce erosion rate. 

 Visual study of wear patterns on screws and casing to correlate the effect of viscosity, 

rotary speed, sand concentration, and sand particle size and particle size distribution. 

 Economic analysis to investigate CAPEX and OPEX with and without sand mitigation 

measures for the typical entire subsea production system to arrive at a decision whether 

to implement any erosion mitigation method. 
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