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ABSTRACT 

 
 

Continuous Reservoir Simulation Incorporating 
 

Uncertainty Quantification and Real-time Data. (December 2006) 
 

Jay Cuthbert Holmes, B.A., Rice University 
 

Chair of Advisory Committee: Dr. Duane A. McVay 
 
 
 

A significant body of work has demonstrated both the promise and difficulty of 

quantifying uncertainty in reservoir simulation forecasts. It is generally accepted that 

accurate and complete quantification of uncertainty should lead to better decision 

making and greater profitability. Many of the techniques presented in past work attempt 

to quantify uncertainty without sampling the full parameter space, saving on the number 

of simulation runs, but inherently limiting and biasing the uncertainty quantification in 

the resulting forecasts. In addition, past work generally has looked at uncertainty in 

synthetic models and does not address the practical issues of quantifying uncertainty in 

an actual field. Both of these issues must be addressed in order to rigorously quantify 

uncertainty in practice. 

In this study a new approach to reservoir simulation is taken whereby the 

traditional one-time simulation study is replaced with a new continuous process 

potentially spanning the life of the reservoir. In this process, reservoir models are 

generated and run 24 hours a day, seven days a week, allowing many more runs than 

previously possible and yielding a more thorough exploration of possible reservoir 
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descriptions. In turn, more runs enabled better estimates of uncertainty in resulting 

forecasts. A new technology to allow this process to run continuously with little human 

interaction is real-time production and pressure data, which can be automatically 

integrated into runs.  

Two tests of this continuous simulation process were conducted. The first test 

was conducted on the Production with Uncertainty Quantification (PUNQ) synthetic 

reservoir. Comparison of our results with previous studies shows that the continuous 

approach gives consistent and reasonable estimates of uncertainty. The second study was 

conducted in real time on a live field. This study demonstrates the continuous simulation 

process and shows that it is feasible and practical for real world applications.  
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This thesis follows the style of SPE Reservoir Evaluation & Engineering. 

1 

INTRODUCTION 

 

Reservoir management is generally considered a continuous process that should 

span the entire life of a reservoir.1-2 Furthermore, reservoir simulation, with its unique 

predictive capabilities, is widely regarded as a critical tool in modern reservoir 

management practice.3 Reservoir simulation yields an assessment of reservoir properties 

and, when a forecast run is made, an assessment of future production. These assessments 

feed directly into the decision-making process. In his rules for decision making, 

Howard4 establishes that it is necessary to assign probabilities to all possible outcomes 

of uncertain events. Therefore, making a good decision requires taking into account all 

possible outcomes and so it is necessary to quantify the uncertainty in forecasts. 

Conversely, if the uncertainty quantification in a forecast is incomplete, or nonexistent, 

then the decision may be poor. For this reason it is necessary to rigorously quantify 

uncertainty in production forecasts.  

Capen5 demonstrated thirty years ago that people in the petroleum industry 

significantly underestimate uncertainty in their assessments. In keeping with this 

tendency, reservoir simulation engineers traditionally take only limited consideration of 

uncertainty and often times do not try to quantify it at all. Quantifying uncertainty in 

production forecasts, of course, is not a trivial undertaking. The reservoir parameter 

space, the set of all possible combinations of reservoir parameters, is literally infinite.
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Attempts at uncertainty quantification in more recent studies, specifically Floris et al.,6 

have shown that, even when we explicitly try to quantify uncertainty in simulation 

studies, we still tend to underestimate it. It is therefore worthwhile to explore reservoir 

simulation techniques aimed at better quantifying uncertainty in forecasts. 

Typically, reservoir simulation is only utilized at discrete points in the life of a 

reservoir. Reservoir studies are expensive and time-consuming due to the time and 

manpower required to tune and history match a simulation model. As such, traditional 

simulation studies usually can only be justified when considering a major investment. 

Taken individually, smaller reservoir management decisions typically do not warrant the 

expense of a simulation study and thus must proceed without simulation results. 

Inaccurate forecasts or no forecasts at all can lead to sub-optimal operations and 

significant economic consequences. Clearly, reservoir management would benefit if a 

calibrated simulation model was available at any time. 

One way to address these issues is to treat simulation as a continuous process, 

similar to how simulation is employed in weather forecasting. In continuous simulation 

history match runs will be made twenty-four hours a day, seven days a week over the 

course of the reservoir’s life. When new data, both static and dynamic, are available they 

will be added to the history matching process. The wide-spread utilization of real time 

data acquisition systems makes it practical to build such a system. A continuous 

simulation system will provide ready access to an up-to-date model for use in day-to-day 

reservoir management. As such, the costs of the study can be amortized over the life of 

the field. Perhaps more importantly, continuous simulation offers years with which to 
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conduct a more exhaustive search of the reservoir parameter space. In turn, more 

thoroughly exploring the parameter space should result in better uncertainty 

quantification. 

This thesis explores this idea of continuous reservoir simulation through the use 

of a continuous reservoir simulation software system. This system is described in detail 

below. The system was tested on two reservoirs. The first test was conducted on a 

synthetic model from the Production forecasting with UNcertainty Quantification 

(PUNQ) study.6-8 The other test was performed on a live producing field. Results of the 

synthetic test show reasonable agreement with previous PUNQ work. The field test 

demonstrates that it is practical to apply this process to a real field. 
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BACKGROUND 

 

Uncertainty Quantification Techniques 

In the past decade, there has been a significant amount of work towards 

developing more rigorous uncertainty quantification techniques. Of particular interest is 

the work coming out of the PUNQ study. A joint effort of several industrial and 

academic partners, this study used multiple synthetic reservoirs to test numerous history 

matching and uncertainty quantification techniques.  

To date, the PUNQ work is probably the most thorough treatment of uncertainty 

quantification in production forecasts. This study attempted a comprehensive survey of 

history matching/optimization techniques and uncertainty quantification methods. It is 

important here to distinguish between history matching and uncertainty quantification. 

History matching techniques take reservoir models and tune them so they match 

production and pressure data. In general, history matching works by generating and 

adjusting models in order to minimize an objective function. An objective function 

compares simulation results to observed data in order to quantitatively describe how well 

a simulation model represents an actual reservoir. Uncertainty quantification methods 

utilize the results of these simulation runs as the basis for a probabilistic forecast. 

 One group of history matching techniques investigated in the PUNQ study is 

gradient techniques. Gradient-based methods for optimization work by calculating 

sensitivity of the objective function to certain parameters. Using these sensitivities the 

reservoir model can be adjusted until one with a minimal objective value is found. 



 

 

5 

Gradient methods are attractive as they can be computationally efficient, but have the 

downside of being easily trapped in local minima. This shortcoming of easily getting 

stuck in local minima prevents gradient methods from fully characterizing a complex 

parameter space and thus they do not provide a good basis for uncertainty quantification. 

 A more successful technique studied in the PUNQ work and elsewhere9-10 is the 

Genetic Algorithm (GA). GAs are a broad class of optimization algorithms with a 

variety of applications.11 GAs are based loosely around the rules that govern genetics in 

nature. In a GA, “generations” of unique reservoir models are created by mixing 

parameter values of previously run models in a process known as “breeding.” For each 

model in the generation a simulation run is made and an objective function value 

calculated. These models then serve as the basis for creating a subsequent generation. In 

addition, parameter values of new models are randomly changed in a process known as 

“mutation.” In some implementations, some members of the previous generation 

“survive” and are included in the new generation. In addition, a generation can include 

new members that are generated using the same process used to create the first 

generation. In time this process will sample a significant portion of the reservoir 

parameter space and result in the creation of some very good history matched models. 

Genetic Algorithms have the desirable property of being a powerful global 

optimization tool capable of very accurate history matches while concurrently 

thoroughly exploring the parameter space for accurate uncertainty quantification. Unlike 

gradient methods, Genetic Algorithms can cope with multiple local minima. In order to 

accomplish this Genetic Algorithms must make a large number of runs, which is 
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computationally intensive. For some optimization applications this is viewed as a 

drawback. For our application, however, a large number of runs more thoroughly 

explores the parameter space and should allow for better uncertainty quantification.  

In addition to traditional Genetic Algorithms, the PUNQ study looked at the 

Markov Chain Monte Carlo (MCMC) which is statistically more rigorous. This 

technique can be considered to be a type of GA. Here a model is initially created by 

breeding members of a parent generation. After that the model is run, an objective 

function value calculated and then the model is mutated. If the mutation improves the 

objective function value the model is kept, otherwise it reverts to its previous state. The 

model is then mutated and run again and again until an acceptable objective function 

value is reached. At this point the model is considered “matched” and saved for later use 

in generating probabilistic forecasts. Like other GAs, the MCMC method results in an 

excellent exploration of the parameter space as well as good individual history matched 

models. 

In addition to looking at history matching techniques, the PUNQ study 

investigated methods for quantifying the uncertainty in forecasts utilizing a set of 

matched reservoir models. While the forecast uncertainty quantification technique 

cannot be entirely separated from the history match method, the techniques fall into two 

broad classes. In the first, class forecasts are created by taking a set of runs around a 

single optimum or a handful of local optima and using these to construct a forecast. This 

type of uncertainty quantification can be used with any history matching technique, so 

long as you can identify minima. The second group of uncertainty methods attempts to 
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fully sample the parameter space to more fully describe the uncertainty in the forecasts. 

This is accomplished by running models that attempt to sample the full parameter space 

rather than models focused around minima. This group is limited to techniques that 

sample a wide range of the parameter space, namely GAs and MCMC.  

 

Real-time Data and Ensemble Kalman Filter 

Another important issue in reservoir management is the management of data.12 

The last decade or so has seen a dramatic increase in the use of real-time data acquisition 

technology. This technology has been quite valuable for monitoring and short-term 

optimization.13 However, despite the large investment companies have made in real-time 

data acquisition, it is not being used to its full potential in full-field reservoir simulation. 

Barden14 has demonstrated a semi-analytical full-field modeling application employing 

real-time data. Real-time data appears to be an under-utilized resource that will facilitate 

a continuous simulation environment. 

An automatic history matching and uncertainty quantification method that could 

make use of this real-time data, and which has recently gained a lot of attention, is the 

Ensemble Kalman Filter (EnKF).15-16 The EnKF is distinctly different from the methods 

investigated in the PUNQ study in that it can continuously integrate data and update 

models. The PUNQ study methods attempt to quantify uncertainty at a fixed point in the 

reservoir’s life. There is a fixed set of observed data which is history matched against 

and a fixed forecast period. In contrast to this, the EnKF works by updating static and 
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dynamic model parameters at each time step for which observed data are available, as 

explained below. 

In an EnKF an ensemble of unique initial reservoir models is created. This 

ensemble of models is created so that the ensemble as whole represents the variability in 

the underlying reservoir parameters. For each model a simulation run is made. During 

this simulation run observed data are incrementally integrated into the model via an 

assimilation step. In this assimilation step reservoir properties, including static properties 

such as porosity and permeability, are modified so that the model matches the observed 

data. By constructing the initial ensemble to represent the variability in reservoir 

properties, the resulting set of production forecasts should in theory represent the 

uncertainty in future production. This technique is attractive as it is computationally very 

efficient. Unfortunately, the physically unrealistic practice of changing static properties 

in the assimilation step causes these properties to head towards extreme values. In 

addition, the individual members of the ensemble tend to converge to similar solutions. 

The EnKF is still a topic of active research for history matching and more work is 

needed. 

 

Justification for Continuous Approach 

 The reservoir parameter space is usually extremely large, even with a coarse 

parameterization of the reservoir. Obviously, we cannot make a simulation run for every 

possible combination of reservoir parameters. Despite the vastness of the parameter 

space, the techniques presented in the PUNQ study attempt to quantify uncertainty with 
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relatively few runs. Techniques like the gradient methods attempt to quantify uncertainty 

using just a few hundred runs. The GAs and the MCMC make more runs, ranging from 

one thousand to several thousand runs. Even with the GA and MCMC techniques, 

however, there are practical limitations because they are being applied in the context of 

one-time studies, where there are time and budget constraints. Indeed, this is a limitation 

of all one-time simulation studies, where only so many runs can be made in limited 

period of time. However, if it were possible to make many more runs, one could better 

explore the parameter space. 

 Even though techniques that make thousands of runs were examined, the PUNQ 

study offers little insight into practical implementation using realistically sized models. 

The PUNQ study used small simulation models that could be run quickly even on 

desktop computers. It is not uncommon, however, for real world simulation models to 

take hours or even days to run on powerful servers. One way to approach uncertainty 

quantification with large simulation models, and make as many runs as possible, is to 

treat history matching and uncertainty quantification as a continuous process. This 

continuous process will entail making history match runs continuously over the life of 

the reservoir. Even with large simulation models this offers the potential to make tens of 

thousands of simulation runs over the life of the reservoir. These thousands of runs 

should yield a more thorough exploration of the parameter space and better probabilistic 

forecasts. 

 Currently, the tools exist with which to build a system that continuously history 

matches a petroleum reservoir and generates probabilistic forecasts. The real-time data 
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acquisition technology needed to build a system has already been widely implemented. 

Uncertainty quantification techniques have advanced to the point where they can be 

adapted for continuous simulation. Such a system promises to give better uncertainty 

estimates of future production through a more exhaustive search of possible reservoir 

combinations. The objectives of this study are to implement a continuous simulation 

process and to evaluate its practicality and effectiveness in generating probabilistic 

forecasts in producing oil and gas fields. The process will be evaluated on two 

reservoirs, the PUNQ synthetic reservoir and a live field. 
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CONTINUOUS SIMULATION PROCESS 

 

Overview 

 Conducting simulation in the continuous manner described above requires the 

combination of several components. First, the reservoir must be analyzed in order to 

determine uncertain parameters and their associated uncertainty. Because we will be 

making many more simulation runs than traditional studies, we can consider many more 

parameters for our model. Next, a method of sampling the parameter space and 

generating reservoir models is needed. In turn this requires code to automatically run 

these simulations and read the results. An objective function is used to evaluate the 

ability of an individual model to reproduce the observed data. As new data are acquired 

from the field, they are added to the objective function calculation. Finally, the results of 

individual runs are combined into probabilistic forecasts. Below, I will describe the 

implementation of each of these elements in this study. 

 

Parameter Space Exploration 

 Before we can begin making simulation runs it is necessary to first evaluate the 

underlying reservoir and determine which uncertain parameters will be considered. In 

general this is a manual process and relies on the ability of the reservoir engineer to 

make assessments based on the available data. In the tests conducted here the parameters 

considered are porosity and permeability. After we identify the parameters of interest, 

we assign distributions (either discrete or continuous) to quantitatively represent the 
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uncertainty in these parameters. By identifying uncertain parameters and assigning 

distributions to model their uncertainty we define the parameter space. This process of 

identify uncertain parameters and assessing distributions is fairly consistent with what is 

traditionally done when assessing input uncertainty in a simulation study. One key 

difference here, though, is that it is not necessary to severely reduce the number of 

parameters in order to expedite the study. 

 In this system, the search of the parameter space is controlled by a Genetic 

Algorithm. The GA was chosen for its ability to optimize while at the same time 

exploring the parameter space. The discussion here will be limited to the specific GA 

implemented for this system. GAs are a broad class of algorithms, so for a more general 

discussion see Goldberg.11 As described in the background, the Genetic Algorithm 

works by building and running “generations” of reservoir models.  

 The first generation of models is created by randomly sampling the probability 

distributions of the uncertain parameters. The synthetic and live field tests conducted 

here both used generations of 250 models. So in both tests, 250 random reservoir models 

were created to form the initial generation. Each initial model is run in the reservoir 

simulator. The results of the simulation run are read and used to calculate an objective 

function as described below.  

For this process to be practical, simulation runs must automatically run without 

human interaction. In this study, a commercial simulator, Eclipse, was used for which 

we did not have access to the source code. This required the creation of a “wrapper” 

around the simulator. This simply entails additional code to create a file for each run, 
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submit it to the simulator, and read the results. This process, obviously, could be 

streamlined by working directly with the simulator source code. 

 After creating the initial generation, subsequent generations are created by both 

“breeding” new models from the previous generation and generating new random 

models. In this implementation the GA uses a “tournament” breeding selection 

technique. To create a new model two pairs of models from the previous generation are 

selected at random. The model with the lower objective function value is then selected 

from each pair. A new model is then created by “cross-breeding” the selected models. 

Cross-breeding is used here to randomly sampling parameter values with equal weight 

from the two selected models to create a new model. The idea here is that selecting 

parents based on their ability to reproduce observed data, as measured by the objective 

function, will in turn lead to “child” models that better match the field history. This 

mirrors the natural concept of “survival of the fittest.” 

 Another concept from nature incorporated in the GA is “mutation.” In the 

mutation process the value of an individual parameter is replaced with a value randomly 

sampled from the probability distribution of that parameter. The purpose of mutation is 

to force a more thorough exploration of the parameter space, and thus prevent the GA 

from getting stuck in local minima, by investigating additional parameter values. In this 

work a mutation rate of 10% was used. This means that in generating a new reservoir 

model a given parameter has a 10% chance of being mutated and replaced with a new 

value sampled from the underlying distribution of that parameter. 
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In addition to models created by breeding, each generation contains a set of new 

random models created in the same manner as those in the initial generation. This is a 

form of “migration” in which a generation includes new “immigrant” models alongside 

models generated from the previous generation. The purpose of these models, like 

mutation, is to ensure that the search is broad and does not get trapped in isolated regions 

of the parameter space. Because it consists of models generated by randomly sampling 

parameter distributions, this set, as well as the initial generation, can be thought of as a 

small Monte Carlo method. Because these random models are run alongside models 

generated by the GA, they provide an opportunity to evaluate the GA’s ability to 

optimize and generate better than random history matches. Fig. 1 shows the average 

objective function value for random models compared to those generated by the GA for 

the live reservoir test. From this figure we see that the GA produces models that are, on 

average, better than random models. 
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Fig. 1 – Value of optimization – Field A. On average, the GA generates models that 
better reproduce the field’s history than do models randomly generated from the prior. 
Also, we see a major shift in the average objective function value in the 32nd generation. 
This shift corresponds to the introduction of tubing pressure data into the objective 
function calculation. In addition, after the first 10 generations or so the average objective 
function value of GA models appears to remain essentially constant with the exception 
of the shift due to the introduction of tubing pressure data. This stabilization is believed 
to be a function of the randomness introduced in each generation through both 
immigrant models and mutation. 
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Objective Function 

 An objective function is used to quantitatively evaluate how well an individual 

model reproduces the observed data from the field. This function is used in the 

construction of probabilistic forecasts and is utilized by the GA to guide the parameter 

space search. At a minimum a reservoir simulation objective function attempts to 

measure the ability of a model to reproduce dynamic field data, such as production and 

pressure data. Because the objective function is used to guide the parameter space 

search, the objective function also attempts to measure how well a model honors the 

prior static data. This is accomplished through the use of a prior term that is designed to 

measure the deviation of static parameter values in a given model from their expected 

value. 

 The objective function used in this work is similar to the objective function 

definition used in Eclipse’s SimOpt package.17 This function takes the form: 

 priorfLf *25.0*75.0 += ……………………………………………(1) 

Where the likelihood term is the modified sum-of-squares term given by: 
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The prior term is also modeled with a modified sum-of-squares. All parameters used in 

this study are modeled with a log normal distribution, so the prior term is given by: 
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The prior term assists the search of the parameter space by preventing the Genetic 

Algorithm from tending toward extreme values. This term is not intended to be a 

rigorous statistical evaluation of the model’s fit to prior data. All parameters used are log 

normally distributed multipliers with a mean value of 1 and Log(1) equals 0, so Eq. 3 

can be reduced to: 
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Continuous Data 

 At various points in time during this simulation process new data from the field 

will become available. It is advantageous to include new data in the process as quickly 

as possible because, at least in theory, more information about the field should lead to 

better forecasts and assessments of uncertainty. We can not simply add data as soon as it 

becomes available, however, as additional data will alter the objective function 

definition and could disrupt the selection process used by the GA to choose “parent” 

models. For this reason data are only added in between GA generations. 

 

Forecasting 

 The final step in the continuous simulation process is combining the results of 

simulation runs into probabilistic forecasts. Forecasting is not done continuously, but 
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rather at discrete points as needed. As in the Barker et al.7 importance sampling and 

pilot-point approaches, forecasts are generated only using runs with an objective 

function below a certain acceptable threshold. This threshold value, 1.7 in Barker et al.7 

and the synthetic reservoir test, is the level at the match to observed data is deemed 

adequate. In addition, because the GA can over-sample a limited subsection of the 

parameter space, the acceptable models are compared to each other and if any two were 

deemed too close in terms of parameter values the model with the higher objective 

function value was removed. This pair by pair comparison is calculated as the sum of 

squares difference between the parameter values in one model and the corresponding 

parameters in the other. This results in an N-1 by N-1 comparison between all N 

acceptable models, which is computationally intensive. In practice this comparison 

resulted in the removal of just a handful of runs in the synthetic test and none in the live 

field test. After this filtering a forecast is generated in which the forecast values of 

acceptable models are equally weighted in the forecast distribution. This equal weighting 

is justified given the large sample of acceptable matches obtained by the continuous 

simulation process. Because this process gives a large sample of matched models, we 

can obtain smooth and complete forecast distributions with equally weighted forecasts. 

This is in contrast to other methods that attempt to define a forecast distribution based on 

at most a couple dozen matched models. In these methods weighting using the objective 

function is needed to infer a forecast distribution shape from a limited sample of the 

parameter space. Since we have a large and broad sample of the parameter space we can 

simply rely on relative frequency to construct our forecasts. 
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Barker et al.7 provide an alternative approach to creating probabilistic forecasts 

which they claim is statistically rigorous. Rather than use equal weighting, Barker 

models uncertainty using the exponential likelihood function: 
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They state that Eq. 5 requires that the production data be independent measurements 

with normally distributed error. Unfortunately, the authors neither reference nor provide 

a derivation of this formula. However, Eq. 5 appears to be an adaptation of likelihood 

function for normal distributions, given by Vose18 as: 
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Here xi  is observation from an independent experiment. The major problem with 

adapting this formula for use in production forecasts is the assumption of independent 

measurements with normally distributed error. In production forecasts the same 

observation (such as the pressure in a given well) is made at multiple points in time. 

Obviously, the pressure in a well is not completely independent from the pressure at an 

earlier or later point in time. When dependant data points such as these are used in the 

likelihood function the assumption of independence is violated and the statistical validity 

of the approach is called in to question. Without any guidance from the authors in the 

form of a derivation or reference, this issue cannot be reconciled and, for this reason, I 

do not use this likelihood definition to weight forecasts. I have included this discussion 

simply to explain why my approach differs from previous work. 
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Summary 

 Thus, we see that continuous simulation is a multi-step process. First, a suitable 

parameter space is defined. Next, the GA explores this parameter space by generating 

and running models. The GA is guided in its search by an objective function evaluation 

of each model, which is also used for generating forecasts. This objective function is 

updated with new data soon after it becomes available. Finally, the results of individual 

runs are combined into probabilistic forecasts.  
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SYNTHETIC RESERVOIR STUDY 

 

Overview 

 The first test of the continuous simulation process was conducted on the PUNQ-

S3 synthetic reservoir. This reservoir is a synthetic reservoir used in the PUNQ 

discussed above. In the PUNQ work simulation runs were matched against 8 years of 

observed data and forecasts were made out to 16.5 years of production. In this synthetic 

test the PUNQ-S3 field was continuously simulated starting in the 4th year of production 

and continuing through the end of the 8th, making forecasts out to 16.5 years. During this 

simulated 5 year period 45,000 simulation runs were made. The results of these runs 

were combined into probabilistic forecasts at several points during the test. Before 

examining these runs, however, we will look at the PUNQ-S3 model and the 

parameterization used in this test.  

 As mentioned, the PUNQ-S3 synthetic reservoir was used in the PUNQ study 

described above and has been extensively studied by others since. An Eclipse simulation 

model and other associated data for this reservoir are publicly available online.19 By 

most standards the PUNQ-S3 reservoir is a small model with just 1761 active cells. On a 

modern desktop computer a single simulation run takes less than a minute, which is 

advantageous for making a large number of runs. 

 The PUNQ-S3 reservoir model is a five-layer, three-phase synthetic reservoir 

based on an actual field operated by Elf. The field contains six producing wells, which  
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are shown on a structure map in Fig. 2. Layers one, three and five are of relatively high 

quality with maximum porosity of roughly 30% and maximum horizontal permeability 

of about 1 Darcy. Layers two and four are of substantially lower quality. The truth case 

porosity, horizontal and vertical permeability maps are shown in Figs. 3-17.  

 I parameterized the PUNQ-S3 reservoir using six homogenous regions per layer. 

Included in the online PUNQ-S3 dataset is a geological description. This geological 

description indicates that the reservoir is marked by wide southeasting high-quality 

streaks. For this reason I defined regions that approximate these streaks, rather than 

using rectangular regions. The regions are shown in Fig. 18. While a more rigorous 

parameterization based on geostatisical methods may be possible, the use of 

homogeneous regions was chosen in order to be consistent with the actual field case 

where a lack of data prevents a more complex parameterization. 

 Instead of using porosity and permeability values directly, the parameters used 

are porosity and permeability multipliers. These multipliers are applied to permeability 

and porosity base maps in running the simulation. The effect is the same as if porosity 

and permeability values were used directly, but this approach simplifies the  
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implementation. The base maps used constant values of porosity, horizontal permeability 

and vertical permeability by layer and these are listed in Table 1. 

 Six regions per layer times five layers times three parameters (horizontal 

permeability, vertical permeability and porosity) gives a total of 90 parameters. We are 

able to use so many parameters because the continuous simulation process, when run 

over time, allows us to make many more runs than normally possible. To generate new 

models multipliers are randomly sampled from known distributions. Both vertical and 

horizontal permeability multipliers are modeled using a log-normal distribution with a 

mean of 1 and a standard deviation of 1. The log-normal distribution was chosen based 

on Craig et al.’s20 use of this distribution with layered reservoirs. In order to prevent 

extreme and unrealistic values of permeability the distribution is capped on the upper 

end at a value of 4. If the log-normal distribution is not capped then it is theoretically 

possible to have multipliers approaching infinity, which of course is unreasonable. The 

porosity multiplier was modeled using a log-normal distribution with a mean of 1 and a 

standard deviation of one-half. Porosity was capped with a maximum value of 2.28. The 

distributions used for permeability and porosity multipliers are shown in Figs. 19 and 20. 
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Table 1 – Synthetic Test Base Porosity and Permeability. 
Layer Porosity Horizontal 

Permeability (md) 
Vertical 

Permeability (md) 
1 22 % 500 200 
2 10 % 50 15 
3 22 % 500 200 
4 16 % 250 40 
5 22 % 500 200 
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Fig. 2 – Structure of the PUNQ synthetic reservoir. 
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Fig. 3 – Truth case porosity for PUNQ reservoir - layer 1. 
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Fig. 4 – Truth case porosity for PUNQ reservoir - layer 2. 
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Fig. 5 – Truth case porosity for PUNQ reservoir - layer 3. 
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Fig. 6 – Truth case porosity for PUNQ reservoir - layer 4. 
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Fig. 7 – Truth case porosity for PUNQ reservoir - layer 5. 
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Fig. 8 – Truth case horizontal permeability for PUNQ reservoir - layer 1. 
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Fig. 9 – Truth case horizontal permeability for PUNQ reservoir – layer 2.  
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Fig. 10 – Truth case horizontal permeability for PUNQ reservoir - layer 3.  
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Fig. 11 – Truth case horizontal permeability for PUNQ reservoir - layer 4. 
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Fig. 12 – Truth case horizontal permeability for PUNQ reservoir - layer 5. 
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Fig. 13 – Truth case vertical permeability for PUNQ reservoir - layer 1.  
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Fig. 14 – Truth case vertical permeability for PUNQ reservoir - layer 2. 
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Fig. 15 – Truth case vertical permeability for PUNQ reservoir - layer 3. 



 

 

39 

 
Fig. 16 – Truth case vertical permeability for PUNQ reservoir - layer 4. 



 

 

40 

 
Fig. 17 – Truth case vertical permeability for PUNQ reservoir - layer 5. 
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Fig. 18 – Synthetic test multiplier regions. The multiplier regions used to parameterize 
PUNQ reservoir for the synthetic test. 
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Permeability Multiplier Distribution (Synthetic Test)
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Fig. 19 – Synthetic test permeability multiplier distribution. The distribution used for the 
permeability (both vertical and horizontal) multiplier parameters in synthetic test. This is 
a capped lognormal distribution with a mean of 1, a standard deviation of 1, capped at 
4.0. 
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Porosity Multiplier Distribution (Synthetic Test)
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Fig. 20 – Synthetic test porosity multiplier distribution. The distribution used for 
porosity multiplier parameters in synthetic test. This is a capped lognormal distribution 
with a mean of 1, a standard deviation of 0.5, capped at 2.28. 
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Parameter Space Search 

 As mentioned above, 45,000 simulation runs were made corresponding to a five 

year period in the reservoir’s life. Rather than run in real time, in order to continuously 

simulate over a significant percentage of the reservoir’s life while conducting the test in 

a timely fashion, time was “accelerated” so that 750 simulation runs correspond to a 

month in the life of the reservoir. This effectively means that every simulation run maps 

to a point in the reservoir’s life. For instance runs 1-750 were run in January of Year 4 

and were matched against any data available at that time. Similarly, runs 9000 to 9750 

map to January of Year 5 and were matched against the data available at that point in 

time. Stepping through the historical data one month (or 750 runs) at a time, 45000 runs 

of the PUNQ-S3 reservoir were made, replicating five years of continuous simulation. 

Fig. 21 shows the cumulative number of runs made versus the producing time of the 

reservoir. 

The data set used in the objective function is the same used in previously 

published work and is summarized in Table 2. We can see that new data is available 

roughly every half a year. This additional data was included in the objective function  
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calculation at the corresponding point in time in the reservoir’s life. Since the objective 

function is used in the GA for selection and adding new data essentially changes the 

objective function definition, care must be taken in when data is added in order to avoid 

disrupting the GA. So that the objective function used within a given GA generation is 

identical and directly comparable between all runs, data was only added at the beginning 

of a month (which corresponds to the start of new a generation). 

Fig. 22 shows the objective function values for all runs made in this test, listed 

by time in the reservoir’s life when they were run. We see that there are several points in 

the process where the objective function values shift. These shifts are caused by adding 

new data and thus changing the objective function definition. Because the objective 

function value changes with time, care must be taken when making comparisons 

between runs made at different points in time. This is especially an issue when 

combining individual runs into probabilistic forecasts. In order to address this forecasts 

are only created from runs made during a set period of time and thus evaluated with 

comparable objective functions. 
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Table 2 – Synthetic Test Observed Data. (After Gu and Oliver16) 
Time (days) WBHP WGOR WWCT 

1.01 6 - - 
91 6 - - 

182 6 - - 
274 6 - - 
366 6 - - 

1461 6 - - 
1642 - 6 - 
1826 6 6 - 
1840 6 - - 
1841 - 6 - 
2008 - 6 - 
2192 6 6 - 
2206 6 - - 
2373 - 6 - 
2557 6 6 - 
2571 6 - - 
2572 - - 1 
2738 - 6 - 
2922 6 6 6 
2936 6 - - 
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Fig. 21 – Synthetic test run number by time. Run number versus point in reservoir life 
for the synthetic test. 
 
 
 
 



 

 

48 

 
Fig. 22 – Synthetic test objective function. Objective function values for all runs made 
during the synthetic test. We see several shifts in the magnitude of the objective 
function, notably at 4.5 and 5 years. These shifts correspond to the introduction of 
additional data points to the objective function. 
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Forecasts 

At discrete points throughout the simulation process probabilistic forecasts were 

generated which represent the forecast that would have been available at a given point in 

the life of the field. Forecasts were made at 4.5 years, 5 years, 6 years, 7 years, and 8 

years. These probabilistic forecasts were created by taking all the runs made over the 

past year (or half year at 4.5 years) with an objective function value below a fixed cutoff 

of 1.7 as done in Barker et al.7 In addition, the runs were filtered to remove runs with 

nearly identical parameter values. The purpose of this filtering is to prevent the forecast 

from being biased due to over sampling a particular region of the parameter space. After 

filtering, each run was given equal weight in the forecast. These forecasts are shown 

individually in Figs. 23-28 and the cumulative distributions of these forecasts are shown 

together in Fig. 29.  

These probabilistic forecasts are shown together in Fig. 30 along with the 

PUNQ-S3 forecasts published in Barker et al.7 and forecast ranges created using the 

EnKF by Gu and Oliver.16 It should be noted that all the published forecasts, including 

the EnKF ranges, were created using the full 8 years of production history. We see that 

the uncertainty predicted by most of the previous work falls within the range predicted 

by the new forecasts. Also, the mean value of these forecasts lies very close to the truth 

case. Capturing the truth case as well as the range of uncertainty predicted by previous 

studies provides anecdotal evidence that the approach taken in this study quantifies the 

uncertainty in forecast at least as well as other methods. While differences in 

parameterization and simulators make direct comparisons precarious, we can draw some 
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general conclusions from this figure. First, we see that the uncertainty ranges in our 

forecasts are wider than most published forecasts. This is likely a result of the wide 

uncertainty we considered in the parameterization this reservoir, which in turn we were 

able to explore thanks to the large number of runs enabled by the continuous simulation 

process. In light of Capen’s4 work, which demonstrated the tendency to vastly 

underestimate uncertainty and the fact that several published forecasts miss the truth 

case, perhaps it is desirable that our uncertainty quantification be wide enough to ensure 

they reliably predict the truth case. In addition, we see a lot of scatter in the ranges of the 

published forecasts which qualitatively suggests a lot of uncertainty surrounding these 

forecasts. The fact that most of the published ranges lie within our ranges indicates that 

our approach does a good job in quantifying this uncertainty. 

In addition, we see in Fig. 30 that as time progresses the forecast distributions 

narrow and shift slightly. This is the behavior we would expect as additional information 

(i.e. new production and pressure data) should alter our assessments if the data are of any 

value. We see that this narrowing and shifting is most dramatic in the early forecasts. 

Again this seems reasonable as early on the data set used in the objective function is 

smaller and each new data point will have a larger impact on the objective function 

value. As time progresses, the size of the data set grows. In turn the relative impact of 

any individual data point decreases and the narrowing continues, but appears less 

dramatic. Stated more generally, as more information about an event becomes available 

the uncertainty around that event should decrease.  
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PUNQ Forecasts for 4-4.5 Years
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Fig. 23 – Synthetic test forecast – 4 to 4.5 years. The forecast generated from runs 1 – 
4500. 
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PUNQ Forecasts for 4.5-5 Years
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Fig. 24 – Synthetic test forecast – 4.5 to 5 years. The forecast generated from runs 4501-
9000. 
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PUNQ Forecasts for 5-6 Years
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Fig. 25 – Synthetic test forecast – 5 to 6 years. The forecast generated from runs 9001-
18000. 
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PUNQ Forecasts for 6-7 Years
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Fig. 26 – Synthetic test forecast – 6 to 7 years. The forecast generated from runs 18001 - 
27000. 
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PUNQ Forecasts for 7-8 Years
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Fig. 27 – Synthetic test forecast – 7 to 8 years. The forecast generated from runs 27001 – 
36000. 
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PUNQ Forecasts for 8-9 Years
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Fig. 28 – Synthetic test forecast – 8 to 9 years. The forecast generated from runs 36001 – 
45000. 
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Fig. 29 – Synthetic test forecast CDFs. A comparison of the cumulative distribution 
functions for the various forecasts made during the synthetic test. 
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Fig. 30 – Synthetic test forecasts compared. A comparison of forecasts from the 
synthetic test to published forecast for the PUNQ reservoir.  
(Published forecasts after Barker et al.7 and Gu and Oliver16) 
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In addition to providing probabilistic production forecasts, it was expected that 

this process would provide a probabilistic assessment of reservoir properties. Such 

information could be valuable in routine reservoir management tasks, such as infill 

drilling. Probabilistic assessments of reservoir properties were generated from the same 

set of runs used in forecasting. Assessments were created by combining the parameter 

values into a distribution with equal weighting. In layers and regions in which wells 

were completed the distributions of parameters varied significantly from the prior 

parameter distributions. For parameters in places where wells were not completed, 

however, there seems to be little deviation from the prior distribution. Recalling the prior 

distribution of the permeability multiplier (Fig. 19), we can see an example of this in 

Fig. 31, which shows the prior distribution, the distribution of the horizontal 

permeability multiplier in layer 4, region 4 where a well is completed and the 

distribution in layer 1, region 4 where there is not a well. In this figure we see that the 

revised distribution for layer 4, region 4 deviates significantly from the prior. 

Meanwhile, the revised assessment of the horizontal permeability multiplier in layer 1, 

region 4 is quite similar to the underlying prior distribution. This behavior is typical of 

the other regions in regions in the reservoir. Thus, this process seems to allow us to only 

narrow our assessments of reservoir properties in certain regions by providing us with 

revised distributions for our parameters. 
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Fig. 31 – Synthetic test revised permeability multiplier assessments.



 

 

61 

Summary of Results 
 
 This synthetic test demonstrates the value of the continuous simulation process. 

By making many runs, we are able to consider a wide range of uncertainty in our 

parameterization. Also, this test demonstrates how we can generate reliable probabilistic 

forecasts early in the life of the reservoir and narrow our uncertainty ranges over time. In 

addition, the synthetic test shows that we can make improvements to our assessments of 

reservoir properties. 
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LIVE RESERVOIR STUDY 

 

Description of Field and Simulation Model 

 The second test of the continuous reservoir simulation process is a three month, 

77,500 simulation run test conducted on a live field. Contractual obligations restrict the 

use of the field’s real name and it will henceforth be referred to by the pseudonym “Field 

A.” Field A is a mature, layered, domestic tight gas field. The wells in Field A are 

equipped with real-time monitoring systems that report flow rates and tubing head 

pressures, amongst other information. Over a three-month period Field A was 

continuously simulated while receiving daily updates of real-time data.  

Field A, the subject of this test, is not a traditional clearly delineated reservoir. 

Instead it is a subsection of a much larger tight gas field. The edge of the subsection is 

treated as a no-flow boundary. Fig. 32 shows a structure map of this subsection. In Fig. 

33 we see the well locations in the simulation model. Within the subsection, as well as in 

the surrounding areas of the larger field, well spacing and reservoir quality are fairly 

consistent and there are no known faults or flow barriers. Given these properties there is 

no reason to expect significant net flow across the subsection boundary. Therefore, it is 

reasonable to model this subsection in such a way. 

Field A was modeled using a 13,824 cell single-phase Eclipse simulation model. 

This model is laid out as a 6-layer 48 by 48 grid. As mentioned above, Field A is a 

layered reservoir. There are six major producing layers, all separated by breaks and, to 

the best of our knowledge, not naturally in communication. There is, however, limited  
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Fig. 32 – Field A structure map. 
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Fig. 33 – Field A well locations. This map shows the location of producing wells in the 

Field A simulation model.
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communication via wellbores and this communication is modeled in the simulator. The 

layers are shown in the cross-section in Fig. 34. From this figure we see that the thickest 

layers are layers 3 and 6. 

Field A is a mature field that first began producing 59 years ago. It was initially 

developed on 640-acre spacing. Later, well spacing was reduced to 320-acre and then 

160-acre spacing. Presently, 80-acre infill wells are being drilled in some parts of the 

field with plans for additional 80-acre infill wells in the coming years. Thus, despite the 

field’s age, Field A remains attractive for future development and stands to benefit from 

the use of this system. Cumulative production for the field is shown in Fig. 35. We can 

see that the field has produced approximately 70 million Mscf of gas during its 

productive life. 

The quality and quantity of data available for model construction and history 

matching is limited due to the age of the field and the several changes in ownership and  
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operators. This lack of data would make conducting a deterministic reservoir study 

extremely problematic; however, in the context of uncertainty quantification additional 

uncertainty in the data will simply result in more uncertainty in the forecasts. The 

geologist at the current operator has mapped both the structure of the field and the 

thickness of individual layers. These maps were used directly and served as the basis for 

the simulation model.  

Porosity and permeability were not as well defined as very little measured 

porosity and permeability data exists. Therefore, it is impossible to apply geostatistical 

techniques to describe the spatial distribution of these properties. As with the synthetic 

test, constant values of porosity and horizontal permeability, based on the geologist’s 

estimates, were assigned to individual layers. As mentioned above, the individual layers 

are separated by shale breaks and so vertical permeability is not applicable. The base 

porosity and horizontal permeability values are given in Table 3. 
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Fig. 34 - Field A cross section. Cross section from Field A showing the six producing 
layers.  
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Fig. 35 – Field A historical gas production. This figure shows cumulative gas production 
to the start of the test of live field test. We see that cumulative production is just above 
70 million mscf. 
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Table 3 - Field Test Base Porosity and Permeability. 
Layer Porosity Horizontal Permeability (md) 

1 5 % 0.7 
2 5 % 0.7 
3 3 % 0.1 
4 5 % 0.7 
5 3 % 0.1 
6 3 % 0.1 
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Parameter Space Search 
 

To generate individual models in the history matching and uncertainty 

quantification process Field A was parameterized much like the synthetic test. The 

properties adjusted in the GA were porosity and horizontal permeability. To generate an 

individual model, porosity and permeability multipliers were applied to individual 

regions within each layer. In this case, nine square regions were used in each of the six 

layers. These regions are shown on the grid in Fig. 36. Two properties times six layers 

times nine regions gives a total of 108 parameters to be adjusted by the GA. Given the 

large amount of uncertainty in the values of porosity and permeability, the ranges used 

for these parameters are accordingly wide. Like in the synthetic test, we should be able 

to handle this large number of parameters because we are able to make a large number of 

runs. Prior multipliers for both properties were described using a capped log-normal 

distribution and are shown in Figs. 37 and 38. We note that these distributions are much 

wider than those used for the synthetic test. These wider multiplier distributions 

represent the additional uncertainty (due to limited data) in this live field test. 

Like the data used in model construction, the data available for history matching 

are mixed. The objective function contains two types of data: pressure and production. 

For production data from past years, annual gas production for each individual well is 

used. For the current, partial year, year-to-date gas production for each well is used. Two 

types of pressure data were available. First, a number of calculated bottomhole shut-in 

pressures were available for various wells. These pressure data date from roughly 1970 

through the early 1990’s. In computing the objective function these pressures were  
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Fig. 36 – Field A multiplier regions. The multiplier regions used to parameterize the live 
field test. 
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Fig. 37 – Field A permeability multiplier distribution. Prior distribution used for the 
permeability multiplier parameter in the live field test. 
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Fig. 38 – Field A porosity multiplier distribution. Prior distribution used for the porosity 
multiplier parameter in the live field test. 
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compared to the average simulated pressure of the group of cells in which the well was 

completed. In order to compare an observed shut-in well pressure to a simulated cell 

block pressure, the observed pressures were corrected using the correction technique 

described by Peaceman.21 Peaceman provides an equation to convert an observed shut-in 

pressure to a simulation well-block pressure based on reservoir properties, well-block 

size and shut-in time. The second type of pressure data available is flowing tubing 

pressures from the real-time data acquisition systems and is described below. 

 As mentioned previously, all wells in the Field A are equipped with real-time 

data acquisition systems. These monitoring systems are able to record and report data 

about five times a second. Constraining and matching a full field simulation model, 

however, does not require data at this frequency and so averaged daily data are gathered 

from the field. Of the data received, production rates are the most reliable as they are 

used for sales contracts. Given their reliability they are updated daily both in the 

simulation constraints and in the objective function. Adding production data to the 

constraint file simply involves adding an additional time-step corresponding to a 

particular day and constraining wells with the actual rate observed on that day. To assess 

the match to current year production rates, the objective function contains a data point 

for the year-to-date production in each well. When new real-time data are added, the 

value of this year-to-date production point in the objective function is incremented to 

reflect the most recent value of year-to-date production. 

Relative to production data, tubing pressures can sometimes be unreliable. For 

this reason it is useful to have a human review of the pressure data before adding it to the 
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objective function. In addition to ensuring data quality, there are other reasons for not 

automatically adding new pressure points to the objective function. As mentioned above 

adding more production data to the objective function simply involves incrementing the 

year-to-date production data point for a given well. Therefore, adding new production 

data does not entail adding additional data points to the objective function. When you 

add new pressure data, however, you are adding additional points to the objective 

function, which has the potential to significantly shift the magnitude of the objective 

function for a given model. In the extreme case, too many points for any single type of 

data will result in reservoir models predominately conditioned to that type of data as 

opposed to models that match a set of data representative of the field’s entire history. 

While a shift may occur regardless of how and when the pressure data are added, it can 

be better monitored and managed if the data are added manually and less frequently. In 

addition, given the low permeability in this field, pressures do not change rapidly and so 

the pressure one day is highly dependent on the previous day. Although pressure data are 

available daily, given these concerns it does not make sense to add pressure data every  
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day. Therefore, once a month a tubing pressure data point for each of the fifteen flowing 

wells is added to the objective function. The system began running without tubing 

pressure data and the first data was included beginning with the 8000th run 

(approximately ten days into the test). 

The model contains 40 wells, most of which are still producing. Of these 

producing wells, all but 15 are on artificial lift. Since the pressure data received from the 

field is tubing head pressure there must be some modeling of wellbore pressure drop in 

order to utilize this data for history matching. To accomplish this, the simulation model 

contains a wellbore model which can only model pressure drop in the 15 free flowing 

wells. Using this wellbore model, calculated tubing head pressures are generated for the 

appropriate wells by the simulator at times for which observed data are available. These 

calculated pressures are then compared to the observed pressures in calculating the 

objective function. The real-time tubing pressure data are particularly valuable given the 

lack of any recent shut-in pressure data. 
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Forecasts 

 History matching against these pressure and production data, Field A was 

simulated over a period of three months. During this three-month period 77,500 

simulation runs were made. These 77,500 runs were divided among 310 Genetic 

Algorithm generations, each with 250 members. The forecasts for this field were run 

through January 1, 2026, and all the forecasts reported here were made through that date.  

For the purposes of generating forecasts only runs with an acceptable objective 

function value were considered. The threshold used for this test was 3.0. This objective 

function threshold was deemed to represent an adequate match to the observed shut-in 

pressure, production, and tubing pressure data. Fig. 39 shows the objective function 

values for the runs included in the forecast, sorted by GA generation number. We can 

see a discontinuity in these values at the 32nd generation. This discontinuity was the 

result of introducing additional data, specifically tubing pressures, into the objective 

function at this point. Because this appears to be a major discontinuity, two sets of 

forecasts were created: one for the first 32 generations (first 8000 runs) and one for the 

remaining generations (runs 8001-77,500). Of the first 8000 runs, 3473 runs were below 

the cutoff and therefore included in the forecast. Obtaining a suitable match became 

significantly more difficult with the inclusion of tubing pressure data. Of the remaining 

69500 runs, only 5311 were below the cutoff and used for forecasting. The equally 

weighted forecasts for the field test are shown in Figs. 40-41. The forecast in Fig. 41 

predicts cumulative production of roughly 80-90 Bscf of gas by 2026. This represents an 

additional 10-20 Bscf of production beyond the current cumulative of roughly 70 million  
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Fig. 39 – Field A objective function values. Live field test objective function values for 
runs used in forecasts. 
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Fig. 40 – Field A forecast without tubing pressure. Live field test forecast from early 
runs made without tubing pressure data, runs 1 - 8000. 
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Fig. 41 – Field A forecast with tubing pressure. Live field test forecast from runs made 
with tubing pressure data, runs 8001 – 77,500. 
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mscf. We can see that the distribution in the forecast made matching with tubing 

pressures are significantly narrower than those made without tubing pressures data. I 

suspect that the addition of tubing pressure eliminated many models with unrealistically 

high pore volume thus causing this shift. 

 The forecasts from this live field test differ noticeably from the synthetic test. 

Most notably we see in Fig. 39, with the exception of the discontinuity at the 31st 

generation, the objective function values are relatively stable with no noticeable 

narrowing or shifting. This is likely due to the limited time period over which this 

process was run (3 months for Field A vs. 4 years for the synthetic test) as well as the 

age of the field when the process was initiated (59 years for Field A vs. 3 years for the 

synthetic test). At the end of the synthetic test the process had been running for roughly 

half of the life of the field, compared to less than 0.5% of the life of the field in the live 

field test. The live field test, however, does demonstrate the feasibility of performing the 

continuous process on a live field. Furthermore, although forecasts remain stable over 

time, the live field test has demonstrated that it is possible to use production uncertainty 

quantification techniques to generate probabilistic forecasts for a real field. 
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 As with the synthetic test, it was hoped that the results of the simulation runs in 

the live field test could be used to narrow parameter probability distributions. Fig. 42 

shows the prior distribution for the porosity multiplier, the distribution for the porosity 

multiplier in layer 1, region 1 obtained from acceptable runs, and the distribution for the 

porosity multiplier in layer 3, region 4 obtained from acceptable runs. We see the 

distribution for layer 1, region 1 is significantly different from the prior distribution. 

Thus, this provides us with an updated assessment of porosity in this part of the 

reservoir. Unfortunately, as with the synthetic test, assessments can be narrowed only in 

some regions. Fig. 42 also shows that the revised distribution for the porosity multiplier 

in layer 3, region 4 barely deviates from the prior. I believe the distribution in layer 3, 

region 4 remains constant because the observed data are not as sensitive to the reservoir 

properties in this region. Thus, we are able to revise our assessments of parameters in 

certain parts of the reservoir though not everywhere. 
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Fig. 42 – Field A revised porosity multiplier assessments.
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Summary of Results 

 This live field test demonstrates that the continuous simulation process is feasible 

and practical for real reservoirs. We are able to apply this approach in real time to an 

actual field and generate probabilistic forecasts from the simulation results. Furthermore, 

like the synthetic test, the simulation results allow us to narrow our assessments of some 

reservoir properties. 
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CONCLUSIONS AND RECOMMENDATIONS 

 

Conclusions 

 Continuous simulation is a promising tool for reservoir management. We can 

draw the following conclusions from the tests described above: 

 

1. The synthetic test demonstrates that the continuous simulation process can quantify 

uncertainty in forecasts by making simulation runs throughout the life of a field, thus 

allowing a more thorough exploration of the parameter space than previously possible. 

Furthermore, the synthetic test shows that uncertainty quantification in forecasts 

improves as more data are acquired.  

 

2. The live reservoir test demonstrates that the continuous simulation process is feasible 

and practical for use on actual fields and could be applied immediately to real world 

problems.  

 

3. Both tests demonstrate that continuous simulation can allow reservoir engineers to 

narrow assessments of reservoir properties. These improved assessments of reservoir 

properties can be utilized in future reservoir management tasks (i.e. infill drilling). Thus, 

the continuous simulation process provides benefits beyond production forecasts. 
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Recommendations for Future Work 

 To the best of my knowledge, the work presented here is the first implementation 

of this continuous reservoir simulation process. In conducting this study several 

additional areas for future work were identified, specifically: 

1. In this work the search of the parameter space was guided by a Genetic Algorithm. In 

theory, however, this continuous approach should work with other techniques for 

searching the parameter space. It would be useful to examine the behavior of the 

continuous approach using other search techniques, for example the Markov Chain 

Monte Carlo. 

2. So far, the only data incorporated during the continuous process were dynamic data 

(rates and pressures). This approach should be expanded to handle the inclusion of new 

static data, as such data will almost certainly be acquired over the life of a reservoir. 

3. One of the main premises of this work is that improved uncertainty quantification 

obtained through the use of the continuous approach should improve the decision 

making process.  It would be useful to test this system in association with specific 

reservoir management decisions (for instance, drilling a new well). 
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4. The size (number of grid blocks) of the simulation models used here were fixed for 

the duration of the continuous simulation process. Over the life of an actual reservoir 

technology and objectives will change, likely requiring models of varying resolution.  

Further work is required to investigate the reusability of previous simulation results 

when switching to more (or less) detailed models. 

5. Making simulation runs continuously produces a large quantity of data in the form of 

simulator output. Approximately 280 gigabytes of simulation results were accumulated 

during the course of the three-month test on Field A. Techniques for storing and 

managing these data will be necessary in order to run this process for longer periods of 

time. 
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NOMENCLATURE 

 

c = Normalization constant 

f  = Objective function 

fprior  = Objective function prior term 

L  = Likelihood function 

Pi  = Parameter 

yi
calc  = Simulated data point 

yi
obs  = Observed data point 

xi = Experimental data point 

� = Normal distribution mean 

�p = Expected value of parameter  

� = Standard deviation of normal distribution  

�i = Standard deviation of error in observed data  

�p = Standard deviation of parameter distribution 
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