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ABSTRACT 
  

Improving Performance and Rotordynamic Characteristics of Injection Compressors via 

Much Longer Balance-Piston and Division-Wall Seals. (December 2006) 

 Margarita Rodrigues Rodrigues, B.S., Universidad Simón Bolívar 

Chair of Advisory Committee: Dr. Dara W. Childs 

 
 
 

Predictions are presented for a selected compressor using longer hole-pattern 

seals with L/D ratios from 0.5 to 2.5.  Results were obtained for back-to-back and in-line 

compressors with the seal located at mid-span and at 82% of rotor span respectively, 

considering different seal lengths, radial seal clearances, as well as constant clearance 

and convergent-tapered seal geometries. 

Predictions of the synchronous rotordynamic coefficients and leakage were 

estimated using a code developed by Kleynhans and Childs with zero preswirl and 

constant pressure ratio of 0.5.  This code does not include moment coefficients; which 

can affect the results.   

Results of all configurations show an increase of stiffness and damping 

coefficients with increasing seal length. In addition, a significant reduction in leakage 

(approximately 47 percent) as L/D increases is exhibited for constant clearance and 

convergent-tapered hole-pattern seals.     

For the back-to-back compressor, the stability analysis predicts that the system 

is stable for all speeds and L/D ratios.  In fact, the rotor cylindrical-bending mode 

becomes more stable with lengthening the seals, for both constant clearance and 

convergent-tapered hole-pattern seals.  For constant clearance seals (Case A), the 

synchronous response at mid-span show a critical speed at 8,000 rpm (cylindrical-

bending mode) for all L/D ratios, while a reduction of 85 percent in the peak response is 

exhibited as L/D increases.  Case B, in which the radial clearance is increased as L/D 

increases to have the same leakage as case A, slightly increases the synchronous 

response of the model compared to case A.  For convergent-tapered seals (Case C), 

the synchronous response at mid-span shows a higher critical speed (9,000 rpm) for all 

L/D ratios, and a larger reduction (89 percent) in peak response with increasing L/D, 
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compared to Case A.  However, the magnitude of the peak response is larger for 

convergent-tapered seals than that for constant clearance seals, for all L/D ratios.   

For in-line compressor, the stability analysis predicts two critical speeds at 6,000 

(conical mode) and 18,000 rpm (first bending mode) respectively.  Both modes are 

predicted to be stable for all speed and L/D ratios.  Synchronous response at the mid-

span for Case A shows the peak response at the first critical speed is slightly reduced 

as L/D increases while the response at the second critical speed is increased for most 

of the cases.  In addition, the second critical speed is reduced from 18,000 to 13,000 

rpm, which is not a concern because it remains above the running speed.  This was 

also the trend for convergent-tapered hole-pattern seal.  In addition, the increase of 

radial clearance in Case B slightly increases the amplitude of vibration, compared to 

Case A. 
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NOMENCLATURE 

 

Cr  Radial Clearance   [L] 

C   Direct Damping   [FT/L] 
c   Cross-coupled Damping  [FT/L] 

effC   Effective Damping   [FT/L] 

D  Seal Diameter    [L] 

E  Modulus of Elasticity   [F/L2] 

f  Reaction Force Vector  [F] 

K   Direct Stiffness    [F/L] 

k   Cross-coupled Stiffness   [F/L] 

Keff  Effective Stiffness   [F/L] 

L  Seal Length    [L] 

N  Rpm     [1/T] 

P  Pressure    [F/L2] 

R   Gas Constant    [FL/(MT)] 

T  Temperature    [ Θ ] 

X,Y   Displacement Directions   [L] 
••

YX,    Velocities     [L/T] 

m&   Mass Flow Rate   [M/T] 

γ   Gamma Factor   [-] 

μ   Absolute Viscosity   [F.T/L2] 

ρ    Density of Gas     [M/L3] 

Ω  Excitation Frequency   [1/T] 

ω  Running Speed   [1/T] 

criticalω   Critical Speed    [1/T] 

 

Contractions 

BTB  Back-to-back    [-] 

C.G.  Center of Gravity   [L] 

pk-pk  Peak to Peak    [-] 
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PR  Pressure Ratio   [-] 

PS   Preswirl Ratio    [-] 

 

Subscripts 

in  Inlet     [-] 

ex  Exit     [-] 

R  Seal Reservoir value   [-] 

S  Seal Sump value   [-] 
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INTRODUCTION 
 

Injection compressors require comparatively long annular seals with high 

pressure drops across them that have a significant impact on rotordynamic 

characteristics.  High pressure compressors are designed with stages arranged in either 

the in–line or back-to back configuration of Figure 1. 

 

 

a) 

b) 

Figure 1 a) In-Line and b) Back-to-back Compressor Configurations [1] 

 

In the in-line or straight-through compressor, the flow goes from stage to stage 

in a straight line, entering from the left and discharging on the right.  For the back-to-

back configuration, flow enters from the left to right through the first three stages, and 

then follows a cross-over duct to the right-hand side of the machine, and continues from 

right to left through the last three stages, discharging at the center.  A major advantage 

of this design is that smaller axial thrust is produced in contrast to in-line configurations 

[1].  Figure 2 shows the locations of annular seals within a typical centrifugal 

compressor. 

 

 

 

 

 
 
This thesis follows the style and format of the ASME Journal of Engineering for Gas Turbines and Power. 
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Figure 2 Annular Seal Locations for a Typical In-line Centrifugal Compressor [1] 
 

For a straight-through compressor, the balance piston seal absorbs the full head 

rise of the machine, and it is used to limit axial thrust.  In this configuration, the pressure 

ratio across the balance piston seal is typically between 40 and 50%.  For a back-to-

back compressor, the division wall seal is roughly centered at rotor mid-span and 

absorbs about one half of the machine’s head rise, and deals with higher density gas.  

In addition, back-to-back compressors have pressures ratios across the division-wall 

seal of 50 to 60%. 
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LITERATURE REVIEW 
 

Most of the initial rotordynamic instabilities experienced with centrifugal 

compressors were resolved by increasing the first critical speed through stiffening the 

rotor and/or shortening the bearing span.  Fowlie and Miles [2] presented the case of 

three large centrifugal compressors (the Kaybob compressors) with severe instability 

problems which were resolved only by increasing the first critical speed through 

shortening the rotor and increasing the shaft diameter.  Also, Fulton [3] cited another 

case where the increase of the first critical speed through reducing the bearing span 

and reducing the balance piston diameter had a decisive influence on the instability of a 

centrifugal compressor. 

For rotor stability evaluation of high pressure machines, Fulton [3] proposed a 

“Rotor Stability Criteria” based on the “flexibility ratio” and the average gas density.  

Sood [4] defined the rotor flexibility ratio as the ratio of maximum continuous speed and 

the first critical speed on stiff support.  Figure 3 illustrates the rotor stability plot. 

 

 

Figure 3 Rotor Stability Plot.  Fulton [3] 
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The lines represent the approximate threshold condition where subsynchronous 

vibration could occur.  Note that going above the line implies an increasing tendency for 

subsynchronous vibration to occur while staying below the line indicates that the rotor is 

less susceptible to such vibration.  Increasing gas density slopes down the line, 

because high gas forces acting on the rotor require the increase of rotor stiffness to 

resist subsynchronous vibration.  Hence, stiffening the rotor to increase the first critical 

speed implies a low flexibility ratio, and thus a more likely stable rotor. 

Since the 1960s, annular seals using smooth rotors and honeycomb stators 

have been used in some petrochemical compressors, providing significant impact on 

stability and rotor response.  Figure 4 shows a hole-pattern-stator seal. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Hole-Pattern Seal [9] 

γ = 0.684 

 
Hole-pattern seals are basically a plain-seal that has had many radial holes 

drilled partially through it from the inside outward.  The hole-pattern on the surface of 

the seal can be manufactured using a milling (round hole) or electrical discharge 

machining (honeycomb pattern).  In Figure 4, gamma factor, γ , represents the hole-

area density factor that is the fraction of area taken by the holes.  Hole-pattern seals are 

generally manufactured more quickly and less expensively than honeycomb seals, and 

use softer materials; therefore, reducing the possibility of damage during rubs. 
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For motion about a centered position, Kleynhans and Childs [5] developed the 

following model for honeycomb and hole-pattern gas seals, 

 

( ) ( )
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where K, k, C, and c are the frequency-dependent direct stiffness, cross-coupled 

stiffness, direct damping and cross-coupled damping, respectively.  In addition,  is 

the reaction force vector; X and Y are the relative displacements between the sea and 

the rotor.  Effective stiffness  and effective damping  are also function of the 

excitation frequency as defined in Equations (2) and (3). 

sf

effK effC

 

( ) ( )ΩΩ+Ω= cKKeff      (2) 

( ) ( )
Ω
Ω

−Ω=
kCCeff      (3) 

 

effC  combines C, the stabilizing direct damping coefficient, and k, the 

destabilizing cross-coupled stiffness coefficient.  Definitions apply only for small motion 

about a centered position. 

Kleynhans and Childs’ model predicted that hole-pattern seals have a strongly 

frequency dependent stiffness and damping coefficients.  For high pressure centrifugal 

compressors, the predicted direct stiffness values at the running speed can be on the 

same order or higher than the bearings, and this implies that back-to-back machines 

could possibly accept more stages without instability problems. 

Several test results for honeycomb and hole-pattern seals have validated 

Kleynhans and Childs predictions.  Dawson [6] presents results for a honeycomb-

stator/smooth-rotor seals and showed that its rotordynamic characteristic are frequency-

dependent.  In addition, Holt [7] tested two hole-pattern-stator seal with different cell 

depths, and he measured strongly frequency dependent direct stiffness and damping 

values, supporting Kleynhans and Childs model and predictions.  In addition, he 
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showed that an increase in hole depth increased the effective stiffness while decreasing 

the effective damping.   

Subsequent tests to support the predictions were performed by Weatherwax and 

Childs [8] at a supply pressure of 70 bars and different eccentricities to examine the 

effect of eccentricity on the rotordynamic characteristics and leakage.  Their results 

showed good agreement with predictions with no effect on rotordynamic and leakage 

characteristics up to 50% eccentricity ratio.   

Wade [9, 10] tested a hole-pattern gas seal to determine the influence of testing 

parameters such as pressure ratio, inlet fluid preswirl, rotor speed, and radial clearance.  

He also tested the seal under choked flow conditions, and found that there was not a 

significant change in seal behavior when the seal transitioned to the choked condition.  

His results showed that the pressure ratio, inlet fluid preswirl, speed, and specially the 

radial clearance caused a significant effect on the rotordynamic characteristics of the 

seals, in good agreement with theory predictions.   

Sprowl [11] compared constant clearance smooth and honeycomb annular gas 

seals.  His measurement confirmed the frequency-dependent nature of the honeycomb 

seal for all level of preswirl in good agreement with prediction, especially at 35% and 

50% backpressure.  However, for low backpressures, there are some discrepancies 

between measurements and theory for K values that may be due to the theoretical 

prediction of choked flow in the seal.  In summary, all these results have confirmed the 

prediction accuracy of Kleynhans and Childs’ two-volume model. 

Honeycomb and hole-pattern seals have been used to eliminate or reduce 

rotordynamic stabilities in several industrial turbomachines by developing large stiffness 

and damping coefficients.  For instance, Childs and Moyer [12] discuss an application of 

honeycomb seals to eliminate rotordynamic instabilities of the High Pressure Oxygen 

Turbopump of the Space Shuttle Main Engine.  Zeidan et al. [13] eliminated chronic 

instabilities in two centrifugal gas compressors by replacing labyrinth seals with 

honeycomb seals.  Also, Sorokes, et al. [14] eliminated a stability problem for a high 

pressure compressor replacing a labyrinth with a honeycomb seal.  Armstrong and 

Perricone [15] used the same approach to eliminate rotordynamic instability in a steam 

turbine.  Recently, Moore et al. [16] presented test results for a back-to-back centrifugal 
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compressor that used a hole-pattern division-wall seal to remarkably good effect, 

improving the compressor’s stability with increasing differential pressure. 
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OBJECTIVES 

 

One of the significant subjects that will be investigated through this analysis is 

the influence of implementing much longer hole-pattern seals on back-to-back 

compressors with seal at mid-span and in-line compressors with the seal at 82% of 

rotor span, in regard to their impact on rotordynamic stability, synchronous response, 

and leakage. 

Another important point that will be addressed is the predicted impact of 

convergent-tapered hole-pattern seal, and seal clearances as design parameters.  

Finally, the compressors dynamic characteristics for mechanical test condition 

(in the absence of pressure) will be investigated for each increased rotor length, and the 

improvement on the response of the rotor at this condition will be shown. 

To achieve these objectives, this study compares predicted rotordynamic 

coefficients of different seal configurations for different L/D ratios.  Also, stability 

analysis and synchronous response for different L/D ratios will be compared to 

understand the influence of these parameters on the performance of representative 

compressors. 
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DESCRIPTION OF THE ROTORDYNAMIC MODEL 
 

Figure 5 shows the rotordynamic model of a seven-stage, back-to-back (BTB) 

natural gas centrifugal compressor with a nominal speed of 10,000 rpm.  For simplicity, 

the model does not include lumped masses for the compressor wheels.  The total 

bearing span of the compressor rotor is 1.27 m, with a total mass of 142.66 kg.  This 

model includes bearing support mass equivalent to 22.73 kg, and a coupling mass of 

6.35 kg attached on the left end of the rotor.  Its center of gravity (C.G.) is approximately 

0.608 m from the left end of the rotor.  Five-pad tilting pad bearings (with load between 

pads configuration) support the rotor at both free ends.  Left and right bearings are 

placed at 6.35 cm from both ends. 
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Figure 5 Rotordynamic Model of Natural Gas Centrifugal Compressor 
 

The synchronous response plots at bearing location and bearing mid-span are 

shown in Figures 6 and 7, with 144.02 gr-mm of unbalance at the bearing mid-span.  

The model contained only the bearing reaction forces (no seals).  The predicted first 

and second critical speeds are 5,000 and 18,000 rpm, respectively.  Note that the 

response plots show a well-damped first critical speed.  At bearing mid-span, the 

critical-speed responses are larger than that at bearing location.   
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The first critical speed is associated with a cylindrical mode, and the second 

critical speed is associated with the bending mode.  Both modes are predicted to be 

always stable (log dec > 0).  Figures 8 and 9 illustrate the first and second mode shape 

of the system. 

 

at Left Bearing Location

0.E+00

2.E-02

4.E-02

6.E-02

0 5000 10000 15000 20000 25000

Speed [rpm]

A
m

pl
itu

de
 [m

m
 p

k-
pk

]

Running 
Speed

at Left Bearing Location

0.E+00

2.E-02

4.E-02

6.E-02

0 5000 10000 15000 20000 25000

Speed [rpm]

A
m

pl
itu

de
 [m

m
 p

k-
pk

]

Running 
Speed

 

at Right Bearing Location

0.0E+00

2.5E-02

5.0E-02

7.5E-02

0 5000 10000 15000 20000 25000

Speed [rpm]
A

m
pl

itu
de

 [m
m

 p
k-

pk
] Running 

Speed

at Right Bearing Location

0.0E+00

2.5E-02

5.0E-02

7.5E-02

0 5000 10000 15000 20000 25000

Speed [rpm]
A

m
pl

itu
de

 [m
m

 p
k-

pk
] Running 

Speed

 

Figure 6 Synchronous Response to Unbalance at Both Bearing Locations for the Rotor 
Model supported by Tilting Pad Bearings 
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Figure 7 Synchronous Response to Unbalance at Mid-span for the Rotor Model 
supported by Tilting Pad Bearings 
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Damped Eigenvalue Mode Shape Plot
Compressor Rotor Model (1.27m_length)

f=5160.9 cpm
d=.0325 zeta
N=5000 rpm

forward
backward

 
Figure 8 Rotor Mode Shape at the First Critical Speed with Tilting Pad Bearings 

 

Damped Eigenvalue Mode Shape Plot
Compressor Rotor Model (1.27m_length)

f=17796.3 cpm
d=.0 zeta
N=18000 rpm

forward
backward

 
Figure 9 Rotor Mode Shape at the Second Critical Speed with Tilting Pad Bearings 
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DESCRIPTION OF PROCEDURE AND CONFIGURATIONS 
 

Leakage and rotordynamic coefficients will be calculated for hole-pattern seals 

that have L/D ratios of 0.5, 1, 1.5, 2, and 2.5.  Lengthening the hole-pattern seals 

implies a better rotordynamic performance because the seal’s stiffness and damping 

coefficients increases, while the leakage decreases.  However, the increase in seal 

length implies an increment in the bearing span, and it lowers the first critical speed of 

the system. 

Equation (4) shows that the first natural frequency for a uniform cylindrical beam 

with pinned ends is, 

 

23 −⋅= DLE
natural ρ

ω      (4) 

 

showing that the natural frequency is inversely proportional to the bearing span 

squared.  This dependency and the Fulton diagram of Figure 3 have caused a strong 

resistance to increasing bearing span of compressors. 

The hole-pattern seal leakage and rotordynamic coefficients will be predicted 

using a code (based on a constant temperature bulk-flow model) developed by 

Kleynhans and Childs [4].  It is important to remark that this code does not include 

moment coefficients; parameters than can effect the results.  All the coefficients will be 

calculated at a pressure ratio of 0.5.  The pressure ratio is defined as the exit pressure 

divided by the inlet pressure.  Table 1 shows the input parameters required. 
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Table 1 Seal Dimensions and Input Parameters 
Seal Diameter 0.1524 [m] 

L/D Ratio 0.5, 1, 1.5, 2, 2.5 

Inlet Clearance 0.3048 [mm] 

Exit Clearance 0.3048 [mm] 

Cell Volume / Area Ratio 3.299 [mm] 

Reservoir Pressure PR 34.474 10 6 [Pa] 

Sump Pressure PS 17.237 106 [Pa] 

Reservoir Temperature TR 104.44 [ºC] 

Operating Speed ω 10000 [rpm] 

Gamma Factor γ  0.684 

Inlet Preswirl Ratio 0 

Absolute Viscosity μ  2.0 10-5 [Pa sec] 

Molecular weight 16.043 

Specific heat ratio  1.299 

 

 

All the predicted stiffness and damping coefficients for hole-pattern seals are 

strongly frequency dependent; therefore, these “synchronous” rotordynamic 

coefficients, to be used in the synchronous response, were calculated using the values 

at the running speed for each respective case.  Figures 10 and 11 illustrate the plots of 

the frequency dependent ( )ΩK , ( )Ωk , ( ),ΩC  and ( )Ωc  for constant clearance and 

convergent-tapered hole-pattern seals with L/D ratio of 0.5. 



14  

0.0E+00

4.0E+07

8.0E+07

1.2E+08

0 5000 10000 15000
Speed [rpm]

D
ire

ct
 S

tif
fn

es
s 

K
 [N

/m
]

0.0E+00

4.0E+07

8.0E+07

1.2E+08

0 5000 10000 15000
Speed [rpm]

D
ire

ct
 S

tif
fn

es
s 

K
 [N

/m
]

 

0.E+00

2.E+06

4.E+06

6.E+06

0 5000 10000 15000
Speed [rpm]

C
ro

ss
-c

ou
pl

ed
 S

tif
fn

es
s 

k 
[N

/m
]

0.E+00

2.E+06

4.E+06

6.E+06

0 5000 10000 15000
Speed [rpm]

C
ro

ss
-c

ou
pl

ed
 S

tif
fn

es
s 

k 
[N

/m
]

 

Running 
speed 

Running 
speed 

 

0.E+00

4.E+04

8.E+04

1.E+05

0 5000 10000 15000
Speed [rpm]

D
ire

ct
 D

am
pi

ng
 C

 [N
.s

/m
]

0.E+00

4.E+04

8.E+04

1.E+05

0 5000 10000 15000
Speed [rpm]

D
ire

ct
 D

am
pi

ng
 C

 [N
.s

/m
]

 

-2700

-1800

-900

0
0 5000 10000 15000

Speed [rpm]

C
ro

ss
-c

ou
pl

ed
 D

am
pi

ng
 c

 
[N

.s
/m

]

-2700

-1800

-900

0
0 5000 10000 15000

Speed [rpm]

C
ro

ss
-c

ou
pl

ed
 D

am
pi

ng
 c

 
[N

.s
/m

]

 

Running 
Speed 

Running 
speed 

Figure 10 Direct and Cross-coupled Stiffness and Damping Coefficients for Constant 
Clearance Hole-Pattern Seal with L/D Ratio of 0.5 
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Figure 11 Direct and Cross-coupled Stiffness and Damping Coefficients for Convergent-
Tapered Hole-Pattern Seal ( 2/ =rexrin CC ) with L/D Ratio of 0.5 

 

Note from the plots that the direct stiffness for convergent-tapered hole-pattern 

seal is greater than for constant clearance hole-pattern seal.  With constant clearance 

seals, low or even negative direct stiffness values can occur especially at low 

frequencies.  The use of convergent-tapered hole-pattern seal completely eliminates 

this undesirable situation, a reason that supports the use of convergent-tapered seals.  
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Due to the pressure and frequency dependency of the hole-pattern seal, seal 

coefficients will be calculated at 500 rpm increments from 500 rpm to 15000 rpm, with 

its corresponding pressure supply value.  Figure 12 shows the linear pressure versus 

speed relationship used to calculate the rotordynamic coefficients of the hole-pattern 

seal. 
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Figure 12 Pressure-running Speed Dependent Relationship Plot 
 

Separate rotor models will be developed for each increased seal length.  The 

seal’s effect on each compressor rotor model will be presented at two alternative 

locations: for a back-to-back compressor with seal at mid-span, and a in-line 

compressor with seal at 82% of the rotor span.   

This analysis will include the influence on injection compressors of both constant 

clearance and convergent-tapered hole-pattern seals, as well as the influence of 

clearance as a design parameter.  Table 2 shows the cases to be considered in this 

analysis.  For case B, calculations were performed to select an increased clearance that 

would maintain the same leakage as the original with L/D=0.5.  Those larger radial 

clearances were chosen to minimize rubbing at seal location. 
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Table 2 Cases Performed for Each Rotordynamic Model 

 L/D Inlet Clearance 
[mm] 

Exit Clearance 
[mm] Description 

0.5 0.3048 0.3048 

1 0.3048 0.3048 

1.5 0.3048 0.3048 

2 0.3048 0.3048 

CASE A 

2.5 0.3048 0.3048 

Constant-clearance 

constant clearance 

hole-pattern seal as L/D 

increases 

0.5 0.3048 0.3048 

1 0.3683 0.3683 

1.5 0.4191 0.4191 

2 0.4547 0.4547 

CASE B 

2.5 0.4851 0.4851 

Increasing Cr, to have 

the same leakage as 

Case A for L/D = 0.5 

0.5 0.6096 0.3048 

1 0.6096 0.3048 

1.5 0.6096 0.3048 

2 0.6096 0.3048 

CASE C 

2.5 0.6096 0.3048 

Convergent-tapered 

hole-pattern seal with 

 as L/D 

increases 

2/ =rexrin CC
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COMPARISON OF ROTORDYNAMIC CHARACTERISTICS FOR LONGER 
HOLE-PATTERN SEALS 

 

This section illustrates and compares the synchronous rotordynamic 

characteristics and leakage of constant clearance and convergent-tapered hole-pattern 

seals with L/D ratios of 0.5, 1, 1.5, 2, and 2.5.  In addition, the results presented show 

the influence of radial seal clearance as a design parameter.  A code based on the work 

of Kleynhans and Childs is used to predict all the coefficients.  Table 1 shows the input 

parameters required.  Note that the moment coefficients are not included in this code. 

All the predicted stiffness and damping coefficients for hole-pattern seals were 

calculated using the results from Figures 10-12 to establish the seal coefficients at each 

speed to be used in the synchronous response. 

The zero preswirl condition and the 50% pressure ratio are used in all 

calculations.  Parameters of interest reported are direct and cross-coupled stiffness and 

damping, effective stiffness and damping, leakage flow rate and static stiffness, for each 

case describe in Table 2. 

 

Synchronous Direct and Cross-coupled Stiffness 
 

The effect of lengthening the seals on direct and cross-coupled stiffness for all 

cases is presented in Figures 13 through 15.  One interesting trend observed in each 

case is the increase of direct stiffness as L/D increases.  In general, L/D of 2.5 shows 

the greatest overall direct stiffness as speed increases for all cases.  Note from Figure 

12 that for L/D > 1.5, the direct stiffness is reduced. 

Looking at the plots of direct stiffness across the three cases presented, the 

hole-pattern seals exhibit an increase in direct stiffness as rotational speed increases 

for Each L/D, showing speed-dependent direct stiffness.  These plots show that the 

direct stiffness for the convergent-tapered hole-pattern seal is smaller than the constant 

clearance hole-pattern seal for L/D > 0.5.  These results do not agree with Fleming’s 

predictions [17] that a convergent-tapered-bore seal has significantly more direct 

stiffness than constant clearance seals.  The increase in radial clearance for constant 
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clearance hole-pattern seals as L/D increases causes a decrease of direct stiffness 

compared to case A.   

An increase of cross-coupled stiffness is visible as L/D increase for all cases.  In 

addition, cross-coupled stiffness increases as rotational speed increases.  The 

convergent-tapered hole-pattern seal exhibits larger cross-coupled stiffness than the 

constant clearance hole-pattern seal for all L/D.  In addition, the increase in radial 

clearance as L/D increases for constant clearance seal slightly decreases the cross-

coupled stiffness. 
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Figure 13 Synchronous Direct and Cross-coupled Stiffness versus Shaft Speed with 
50% Pressure Ratio for Constant Clearance Hole-Pattern Seals as L/D Increases  

(Case A) 
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Figure 14 Synchronous Direct and Cross-coupled Stiffness versus Shaft Speed with 
50% Pressure Ratio Increasing Radial Seal Clearance, Holding Leakage Constant as 

L/D Increases (Case B)
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Synchronous Direct Damping 
 

Comparisons of direct damping for increased seal length of constant clearance 

and convergent-tapered hole-pattern seals are illustrated in Figures 16 through 18.   

For all cases, an increase of the direct damping is visible across the speed 

range as L/D increases, since the direct damping is roughly proportional to the 

differential pressure, which is increasing linearly with speed.  Note that the greater 

magnitude of direct damping occurs at L/D ratio of 2.5. 

The constant clearance hole-pattern seal exhibit on average larger direct 

damping for each L/D ratio than that for the convergent hole-pattern seals.   
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Figure 16 Synchronous Direct Damping versus Shaft Speed with 50% Pressure Ratio 
for Constant Seal Clearance as L/D Increases (Case A) 

 

Figure 17 illustrates the effect of increasing clearances to keep leakage constant 

for a constant clearance hole-pattern seal while increasing L/D.  Note that the direct 

damping is smaller because of the increase in clearance for each L/D ratio, compared 

to case A.   
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Figure 18 Synchronous Direct Damping versus Shaft Speed with 50% Pressure Ratio 
for Convergent-Tapered Hole-Pattern Seal with 2CC exrinr =/ as L/D Increases     

(Case C) 
 

From Figure 18, an increase of direct damping as L/D increases is visible for 

case C.  The direct damping for convergent-tapered seal shows a stronger linear 

relationship as speed increases, compared to that with constant clearance seals, 

especially at speed higher than 10,000 rpm. 

 

Synchronous Effective Stiffness and Damping 
 

Effective stiffness ( ) and damping ( ) were defined previously in 

Equations (2) and (3).  Comparisons of effective stiffness and damping for different seal 

length are presented in Figures 19-21. 

effK effC

In general, the effective stiffness increases as seal length increases, showing 

large effective stiffness values at high speeds.  The largest effective stiffness value is 

on the order of magnitude of approximately 108 N/m.  

Looking at the effective stiffness plots for constant clearance and convergent-

tapered hole-pattern seals, the constant clearance seals exhibit larger effective stiffness 

than the convergent-tapered hole-pattern seals at all L/D ratios.  In addition, the 

effective stiffness of constant clearance at each L/D ratio is decreased when their radial 

clearance is increased, keeping leakage constant.  
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The effective damping of the seal is one of the best indicators in determining the 

stability of a roughened stator annular gas seal.  For all seals, the effective damping 

visibly increases as L/D increases.  The constant clearance seal exhibits on average 

larger effective damping than the convergent-tapered hole-pattern seal at any L/D ratio, 

especially at lower speeds.   

In addition, the effective damping value is reduced with increasing radial 

clearance for all L/D ratios. 
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Speed with 50% Pressure Ratio for Constant Seal Clearance as L/D Increases       
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Figure 21 Synchronous Effective Stiffness ( ) and Damping ( ) versus Shaft 
Speed with 50% Pressure Ratio for Convergent-Tapered Hole-Pattern Seal with as L/D 

Increases (Case C) 
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Leakage Flow Rate 
 

The effect of lengthening the seals on leakage performance is illustrated in 

Figures 20 through 22.  As mentioned before, the code based on the work of Kleynhans 

and Childs is used to predict leakage for all conditions.  This code uses a Blasius 

friction factor model shown in Equation 5. 
 

Rem
ff n=       (5) 

 
The values used for the Blasius friction factor model were nrotor = 0.0586,                  

mrotor = -0.2170, nstator = 0.0785, and nrotor = -0.1101. 

For both constant clearance and convergent-tapered hole-pattern seals, the 

leakage flow rate significantly decreases as the seal length increases.  At L/D = 2.5, the 

constant clearance and convergent-tapered hole-pattern seals leak an average of 47 

percent less than at L/D=0.5.   

As shown in Figures 22 and 23, a significant reduction of leakage flow rate is 

observed from convergent-tapered hole-pattern seals to constant clearance hole-

pattern seals.  The increase in average clearance introducing a convergent-tapered 

seal increases leakage.  At any L/D ratio, the constant clearance hole-pattern seal leaks 

an average of 35% less than the convergent-tapered hole-pattern seal. 
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Figure 22 Leakage Flow Rate versus L/D for Constant Clearance Hole-Pattern Seal 
(Case A) 
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Figure 23 Leakage Flow Rate versus L/D for Convergent-Tapered Hole-Pattern Seal 
with 2CC exrinr =/ as L/D Increases (Case C) 

 

For case B, the increased radial clearance for each increased length was 

calculated to maintain the same leakage flow rate as the original one with L/D=0.5 (3.6 

kg/s approximately). 
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Static Stiffness 

 

The static stiffness, , is the zero-frequency intercept for effective stiffness.  

Figures 24 through 26 show the static stiffness as L/D increases for all three cases.   

staticK

From Figures 24 and 25, a significant reduction of the static stiffness as L/D 

increases is observed.  For case A, a reduction of approximately 80 percent is observed 

as L/D increases from 0.5 to 2.5.  For case B, the reduction of static stiffness is 

approximately 76 percent with increasing L/D from 0.5 to 2.5.  In addition, for case B the 

static stiffness drops faster as L/D increases from 0.5 to 2 than for case A.  
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Figure 24 Static Stiffness versus L/D Ratios for Case A 
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Figure 25 Static Stiffness versus L/D Ratios for Case B 
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Figure 26 shows the effect of convergent-tapered hole-pattern seals on the 

static stiffness as L/D increases.  A reduction of 16 percent in static stiffness is 

observed with increasing L/D from 1 to 2.5.  This tendency is not observed as L/D 

increases from 0.5 to 1. 

Comparisons of the static stiffness for constant clearance and convergent-

tapered seal indicate that convergent-tapered seals exhibit larger static stiffness values 

than constant clearance seals for all L/D ratios. 
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Figure 26 Static Stiffness versus L/D Ratios for Case C 
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PREDICTIONS OF STABILITY AND SYNCHRONOUS RESPONSE FOR 
REPRESENTATIVE COMPRESSOR WITH LONGER HOLE-PATTERN SEALS 
 

This section presents and compares the stability analysis and the synchronous 

response for two representative compressors with longer seals.  The effects of longer 

constant clearance and convergent-tapered hole-pattern seals on stability and linear 

response are presented at two alternative locations: for back-to-back compressor with 

seal at bearing mid-span, and for in-line compressor with seal at 82% of the bearing 

span. 

The synchronous rotordynamic coefficients obtained for each hole-pattern seal 

configuration, are coupled to the rotordynamic model to perform a linear stability 

analysis.  The stability model includes the tilting pad bearings, the bearing supports, 

and the hole-pattern seal.  In addition, an estimated imbalance is used along with the 

rotordynamic coefficients of the model to calculate the synchronous response to 

unbalance for each L/D ratio. 

 

Back-to-back Compressor with Seal at Mid-span 

 
 Stability Analysis 

 

The key parameter used to analyze rotordynamic stability of the system is the 

logarithmic decrement or log dec.  Figure 27 illustrate the stability map of the system for 

two different cases. 

For all cases, the system logarithmic decrement was predicted to be positive 

over all speed range, which means that the system is stable.  Note that for both cases, 

the log dec for the cylindrical modes remains almost constant with increasing running 

speed.  However, the bending mode for the larger rotor becomes less stable as running 

speed increases, while for the shorter rotor becomes more stable with increasing 

running speed.  
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   a)      b) 

Figure 27 Logarithmic Decrement versus Rotor Speed for a) Rotor Model of 1.27 m 
Length with Constant Clearance Hole-Pattern (Case A), and b) Rotor Model of 1.5 m 

Length with Convergent-Tapered Hole-Pattern Seal (Case B) 
 

To compare the stability for the different cases, Figures 28 through 30 illustrate 

the damped natural frequencies versus damping exponent for all L/D ratios.  The 

damping exponent determines whether the vibration will grows exponentially (unstable) 

or die out (stable).  For all cases, the system is predicted to be stable (damping 

exponent < 0) for each L/D ratio.  Note that for all the cases, the stability of the system 

is considerably improved as L/D increases.   
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Figure 28 Damped Natural Frequency versus Damping Exponent for Case A with Seal 
at Mid-span for the First Critical Speed (8,000 rpm) Associated with a Cylindrical Mode 
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Figure 29 Damped Natural Frequency versus Damping Exponent for Case B with Seal 
at Mid-span for the First Critical Speed (8,000 rpm) Associated with a Cylindrical Mode  
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Figure 30 Damped Natural Frequency versus Damping Exponent for Case C with Seal 
at Mid-span for the First Critical Speed (9,000 rpm) Associated with a Cylindrical Mode  
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Synchronous Response to Unbalance 

 

This section presents the influence on the synchronous response to unbalance 

of increasing L/D for a back-to back compressor with seal at mid-span for cases A, B, 

and C.  The unbalance mass used for the synchronous response predictions is 144.02 

gr-mm applied at the mid-span.  This analysis is performed for different seal lengths, 

clearances, and for constant clearance and convergent-tapered hole-pattern seals. 

Figures 31 and 32 illustrate the synchronous response at the bearings and mid-

span for case A with seal at the mid-span at each L/D ratios. 
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Figure 31 Synchronous Responses to Unbalance at Both Bearing Locations, Case A 
with Seal at Mid-span 
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Figure 32 Synchronous Response to Unbalance at Mid-span, Case A with Seal at    

Mid-span 
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Note from Figure 31 that the first critical speed remains constant and the 

amplitude of vibration shows a significant reduction of approximately 86 percent as L/D 

is increased from 0.5 to 2.5, for both bearings.  However, from 11,000 to 13,000 rpm 

approximately, the amplitude of vibration increases as L/D increases. 

Looking at Figure 32, the synchronous response shows a critical speed at 8,000 

rpm approximately.  Comparison of the responses for each L/D reveals a significant 

reduction of approximately 85 percent in the response from 4.4*10-3 mm pk-pk to 6.3*104 

mm pk-pk.  These results demonstrate a dramatic improvement of the synchronous 

response with increasing seal length. 

Figure 33 illustrates the shaft deflections at the first critical speed of the rotor 

model for each L/D ratio, using a constant-clearance hole-pattern seal at bearing mid-

span.  The shaft deflection is reduced with increasing seal length. 
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Figure 33 Shaft Deflection for Each L/D Ratio, Case A with Seal at Mid-span for the 
First Critical Speed (8,000 rpm) 

 

Figures 34 and 35 compare the synchronous response at bearing locations and 

mid-span for all L/D ratios, for case B.  The constant clearance hole-pattern seal is 

located at the bearing mid-span.  
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Figure 34 Synchronous Response to Unbalance at Both Bearing Locations, Case B with 
Seal at Mid-span 
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Figure 35 Synchronous Response to Unbalance at Mid-span, Case B with Seal at Mid-
span 

 

Note that at both bearing locations, the response of the first critical speed (8,000 

rpm) is substantially reduced with increasing seal length.  At both bearings, a reduction 

of approximately 79 percent in the response is observed with L/D increasing from 0.5 to 

2.5.  In addition, the response at the running speed is reduced as L/D increases, at both 

bearing locations.   

Also a clearly reduction in response at the critical speed and running speed is 

exhibited at rotor mid-span.  The model exhibits a reduction of approximately 77 percent 

in the response with L/D increasing from 0.5 to 2.5. 
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Comparison of case A and B reveals that the increment of radial seal clearance 

slightly affects the synchronous response of the system.  Increasing the seal clearance 

as L/D increases slightly increases the amplitude of vibration compared to that with 

constant clearance, showing almost no effect on the response. 

Figure 36 shows the shaft deflection for this case at the critical speed of the 

model for all L/D ratios.  Note the significant reduction in amplitude at the bearing mid-

span as L/D increases. 
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Figure 36 Shaft Deflection for Each L/D Ratio, Case B with Seal at Mid-span for the 
First Critical Speed (8,000 rpm) 

 

The influence of convergent-tapered hole-pattern seal on the synchronous 

response of the system will be shown through Figures 37-39. 

Figures 37 and 38 compare the synchronous response at bearing location and 

bearing mid-span for different L/D ratios, using a convergent-tapered hole-pattern seal 

at bearing mid-span. 
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At Right Bearing Location
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Figure 37 Synchronous Response to Unbalance at Both Bearing Locations, Case C 
with Seal at Mid-span  
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Figure 38 Synchronous Response to Unbalance at Mid-span, Case C with Seal at Mid-
span  

 

Looking at the synchronous response at both bearing locations, a significant 

reduction of approximately 89 percent in the critical speed response is exhibited as L/D 

increases from 0.5 to 2.5.  At the rotor mid-span, the peak response is substantially 

reduced from 0.009 to 0.001 mm pk-pk (89 percent) as L/D increases.  

Comparison of the synchronous response for constant clearance and 

convergent-tapered hole-pattern seals reveals that the critical speed is increased from 

8,000 to 9,000 rpm, respectively.  At rotor mid-span, convergent-tapered hole-pattern 

seal shows larger amplitude of vibration than that with constant clearance hole-pattern 

seal for all L/D ratios.   
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Figure 39 illustrates the shaft deflection for each L/D ratio, using convergent-

tapered hole-pattern seals at the bearing mid-span.  Note that the amplitude of vibration 

for the first critical speed (9,000 rpm) is dramatically reduced as L/D increases. 
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Figure 39 Shaft Deflection for Each L/D Ratio, Case C with Seal at Mid-span for the 
First Critical Speed (9,000 rpm) 

 

Seal rubs is one of the concerns that inhibit the use of larger seals.  In response 

to that, the synchronous response at both seal ends was performed for all L/D ratios 

and all three cases.  With the seal at mid-span, the synchronous responses for all L/D 

ratios at both seal ends show almost not difference from the response at the seal 

center; that implies the seal clearance is large enough to avoid seal rubs. 

 

In-Line Compressor with Seal at 82% of Rotor Span 
 

 Stability Analysis 

 

Figure 40 illustrate the stability map of the system at two different configurations.  

For all cases, the system logarithmic decrement was predicted to be positive over all 

speed range, which means that the system is stable.  This trend suggests that the 

increase of seal length while increasing the rotor length does has a significant impact in 

the stability of the system. 
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Figure 40 Logarithmic Decrement versus Rotor Speed a) Rotor Model of 1.57 m Length 
with Constant Clearance Hole-Pattern Seal at 82% of Rotor Span, b) Rotor Model of 

1.27 m Length with Convergent-Tapered Hole-Pattern Seal at Rotor Mid-span 

a) b) 

 

Figures 41 through 43 illustrate the damped natural frequencies versus damping 

exponent for all L/D ratios to compare the stability for the different cases.  For the three 

seal options A, B, and C, the system is predicted to be stable (damping exponent < 0).  

Note that although the system is stable for all L/D ratios, the damping exponent decays 

as the seal length increases, especially for case A moving from L/D=0.5 to L/D=1, and 

case B. 
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Figure 41 Damped Natural Frequency versus Damping Exponent for Case A with Seal 
at 82% of Rotor Span at First Critical Speed (6,000 rpm) 
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Figure 42 Damped Natural Frequency versus Damping Exponent for Case B with Seal 
at 82% of Rotor Span at First Critical Speed (6,000 rpm) 
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Figure 43 Damped Natural Frequency versus Damping Exponent for Case C with Seal 
at 82% of Rotor Span at First Critical Speed (6,000 rpm) 

 

Synchronous Response to Unbalance 

 

The synchronous response to unbalance of a in-line compressor model for each 

L/D ratio is plotted for comparison.  This analysis is performed for the three cases A, B, 

and C. 
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Figures 44 and 45 show the synchronous response at bearing locations and 

mid-span respectively, using a constant clearance hole-pattern seal (Case A) at 82 % of 

rotor span. 
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at Right Bearing Location
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 Figure 44 Synchronous Response to Unbalance at Both Bearing Locations, 

Case A with Seal at 82% of Rotor Span 
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Figure 45 Synchronous Response to Unbalance at Mid-span, Case A with Seal at 82% 
of Rotor Span 

 
Note from the plots that the first critical speed remains constant (6,000 rpm) and 

the response is slightly reduced with increasing L/D.  Although the second critical speed 

is considerably reduced with increasing L/D, dropping from 18,000 to 13,000 rpm, it 

remains well above the running speed.  In addition, the amplitude of vibration related to 

the second critical speed is reduced, especially at the right bearing location.  This trend 

is not observed either at the left bearing location or the rotor mid-span.  
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Figure 46 shows the shaft deflections at both critical speeds for the rotor model 

using a constant clearance hole-pattern seal (Case A) at 82% bearing span.  Note that 

the amplitude at some L/D ratios is even increased as L/D increases, compared with the 

initial one for both critical speed.  Note that for the first mode, the seal is located near a 

node; therefore, it has a minimal impact on the response as L/D increases.  For the first 

and second critical speed, the rotor shows larger amplitudes at the left bearing location 

than at the mid-span and right bearing, respectively, in good agreement with the 

synchronous response plots.   
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Figure 46 Shaft Deflection for Each L/D, Case A with Seal at 82% of Rotor Span for a) 
First Critical Speeds (6,000 rpm), and b) Second Critical Speeds (18,000-13,000 rpm)  
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Synchronous responses for each L/D ratio for case B with seal at 82% rotor 

span are presented in Figures 47 and 48.  Although the first critical speed (6,000 rpm) 

remains constant with increasing L/D, the relative peak response at bearing location 

and rotor mid-span is slightly reduced.  However, the second critical speed is reduced 

from18,000 to 13,000 rpm as L/D increases from 0.5 to 2.5.  Note that at the right 

bearing location, the amplitude of vibration related to the second critical speed is 

decreased from 0.057 to 0.028 mm pk-pk.  However, this tendency is not exhibited at 

the left bearing and bearing mid-span.   
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Figure 47 Synchronous Response to Unbalance at Both Bearing Locations, Case B with 
Seal at 82% of Rotor Span 
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Figure 48 Synchronous Response to Unbalance at Mid-span, Case B with Seal at 82% 
of Rotor Span 
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Comparisons of synchronous response for case A and B with the seal at 82% 

rotor span show a slight increase in the amplitude of vibration with increasing the seal 

clearance. 

Figure 49 shows the shaft deflections for different L/D ratios for case B.  It can 

be seen that a slightly reduction in amplitude occurs at the first critical speed as L/D 

increases, since the seal is near a node.  At the second critical speed (first bending 

mode), larger amplitudes of vibration are observed at bearing locations than at bearing 

mid-span.   
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Figure 49 Shaft Deflection for Each L/D, Case B with Seal at 82% of Rotor Span for a) 
First Critical Speeds (6,000 rpm), and b) Second Critical Speeds (18,000-13,000 rpm) 
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The influence of convergent-tapered hole-pattern seal located at 82% of rotor 

span on the synchronous response of the system will be shown through Figures 50-52. 

Synchronous responses for different L/D ratios are presented in Figures 50 and 

51.  A small reduction in the response at the first critical speed (6,000 rpm) is observed 

as L/D increases from 0.5 to 2.5.  In addition, the second critical speed is reduced from 

18,000 to 13,000 rpm.  Note that only the response at the right bearing location for the 

second critical speed is decreased by 40 percent as L/D increases. 

In general, synchronous responses for convergent-tapered hole-pattern seal 

located at 82% bearing span show larger amplitudes as L/D increases than for the 

constant clearance hole-pattern seal at the same position. 
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Figure 50 Synchronous Response to Unbalance at Both Bearing Locations, Case C 

with Seal at 82% Rotor Span 
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Figure 51 Synchronous Response to Unbalance at Mid-span, Case C with Seal at 82% 
of Rotor Span  
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Figure 52 illustrates the shaft deflections ratio of case C for each L/D. 
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Figure 52 Shaft Deflection for Each L/D Ratio, Case C with seal at 82% of Rotor Span 
for a) First Critical Speed (6,000 rpm), and b) Second Critical Speed (18,000-13,000 

rpm) 
 

In addition, synchronous responses at the edges of the seal were performed for 

all L/D ratios and all three cases to verify seal rubs.  With the seal at 82% of rotor span, 

the synchronous responses for all L/D ratios at both seal ends show almost the exactly 

response at the seal center; that implies the seal clearance is large enough to avoid 

seal rubs.
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Rotor Response to Unpressurized Seals 
 

The synchronous response of the rotor during mechanical test (without 

pressure) is shown in Figures 53 and 54.  Note that the first and second critical speed is 

reduced, while the relative response is reduced as the rotor length increases.  The first 

critical speed is lowered from 5,000 rpm with the original rotor length to 4,500 rpm with 

the longer rotor.  The second critical speed is 18,000 rpm with the original rotor, and is 

lowered to 14,000 rpm with the longer rotor.  The reduction in amplitude of vibration 

using the longer rotor at the first critical speed is about 23 percent, and at the second 

critical speed is 30 percent on average, compared to the response with the original rotor 

length. 
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Figure 53 Synchronous Response to Unbalance at Both Bearing Locations for Different 
Rotor Lengths in the Absence of Pressure  
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Figure 54 Synchronous Response to Unbalance at Mid-span for Different Rotor Lengths 
in the Absence of Pressure 
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SUMMARY AND CONCLUSIONS 
 

This thesis presents the significant changes in performance and rotordynamic 

characteristics for a representative compressor model with longer hole-pattern seals, in 

particular improving leakage, stability and synchronous response for the back-to-back 

compressor with seal at mid-span.  Predictions are compared for hole-pattern seals with 

L/D ratios that varies from 0.5 to 2.5.  Results were obtained for back-to-back 

compressor with seal at mid-span and in-line compressor with seal at 82% of rotor 

span, considering different radial seal clearances, as well as constant clearance and 

convergent-tapered seal geometries. 

Theoretical predictions for leakage and rotordynamic coefficients of the hole-

pattern seal were calculated for the different configurations using a code based on the 

two-control volume model for annular gas seals developed by Kleynhans and Childs [4].  

It is important to remark that this code does not include moment coefficients; 

parameters than can effect the results.  

Results of the hole-pattern seal for all configurations indicate that the stiffness 

and damping coefficients increase as seal length increases.  As L/D increases, 

predictions show higher direct stiffness values at the running speed.  In addition, the 

results confirm the frequency-dependent model of Kleynhans and Childs.  Convergent-

tapered hole-pattern seals (Case A) exhibited reduced direct and larger cross-coupled 

stiffness compared with the constant clearance hole-pattern seal as L/D increases.  In 

addition, the convergent-tapered hole-pattern seals (Case C) show less damping than 

the constant clearance hole-pattern seals as L/D increases.  The increase of radial 

clearance as L/D increases for constant clearance seals (Case B) had an effect on the 

rotordynamic coefficients; the stiffness and especially damping is reduced, compared to 

that with constant clearance as L/D increases.  

Predictions for leakage flow rate exhibit a significant reduction of approximately 

47 percent as L/D increases from 0.5 to 2.5, for both constant clearance and 

convergent-tapered hole-pattern seals, showing that seal length is an important factor to 

minimize leakage.  Results for constant clearance hole-pattern seals show an average 

of 35 percent less leakage than the convergent-tapered hole-pattern seals for each L/D 
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ratio.  Cases B and C maintain constant a leakage flow rate value of 3.6 kg/s, while 

increasing L/D, the same leakage as Case A for L/D ratio of 0.5. 

Results for static stiffness show a significant reduction with increasing L/D ratios 

for cases A and B.  However for convergent-tapered seals, the reduction in static 

stiffness as L/D increases from 1 to 2.5 is just about 16 percent.  In addition, 

convergent-tapered seal exhibits larger static stiffness values, compared to constant 

clearance seals.   

For back-to back compressor with the seal located at mid-span, the influence of 

increasing L/D on stability and synchronous response results is significant.  The linear 

stability analysis of the rotor model predicts a critical speed at 8,000 rpm for all L/D, 

associated with a cylindrical bending mode.  For all cases, the system is predicted to be 

stable for all speeds, and all L/D ratios.  In fact, comparisons of damping exponents for 

each L/D ratio indicate that the cylindrical bending mode becomes more stable with 

increasing L/D ratio for the three cases A, B, and C. 

The most impressive result for is the dramatic reduction in synchronous 

amplitude as L/D increases for the constant clearance and convergent-tapered hole-

pattern seal.  For case A, the synchronous response at the bearing mid-span shows a 

critical speed at 8,000 rpm for all L/D ratios.  Results show a substantial reduction of 85 

percent in the peak response as seal length increases from 0.5 to 2.5.  In addition, the 

response at bearing location is significantly reduced.  Increasing the radial seal 

clearance while L/D increases, slightly increases the synchronous response of the 

model compared with constant clearance.  For convergent-tapered hole-pattern seals, 

the synchronous response at the bearing mid-span shows not only a higher critical 

speed (9,000 rpm) for all L/D ratios, but also a larger reduction (89 percent) in peak 

response with increasing seal length, compared to that for constant clearance hole-

pattern seals.  However, the magnitude of the peak response is larger for convergent-

tapered hole-pattern seals than for constant clearance hole-pattern seals, for all L/D 

ratios.  Synchronous response at seal ends for all cases indicates that seals do not rub. 

In summary, results show that long hole-pattern seals located at the mid-span 

are a potential application to improve leakage performance and synchronous response 

of back-to-back compressors.  Results indicate that the increase of seal’s stiffness and 

damping is significant to not only keep the critical speed constant, while simultaneously 
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the leakage is reduced, the stability improved and the peak response remarkable 

reduced. 

On the other hand, for in-line compressor with the seal at 82% of rotor span, the 

linear stability analysis predicts two critical speeds occurring at 6,000 and 18,000 rpm 

respectively.  The first critical speed corresponds to the rotor conical mode, showing 

larger amplitudes at the left bearing location.  The second critical speed is associated 

with the rotor first bending mode.  Both modes are predicted to be stable (log dec > 0) 

for all speed and L/D ratios.  However, the conical mode becomes less stable with 

increasing L/D, especially for cases A and B.  

For all cases, the peak response at the mid-span relative to the first critical 

speed is slightly reduced as L/D increases since the seal is near a node, while the 

response at the second critical speed is generally increased.  Note that although the 

second critical speed is reduced as L/D increases, dropping from 18,000 to 13,000 rpm, 

it remains well above the running speed.  Some other rotors might have a second 

critical speed that drops into the running speed as L/D increases; however, that was not 

the case for this model.  Also, the amplitude of vibration at both critical speeds is larger 

with increasing of radial clearance as L/D increases, compared to that for constant 

radial clearance.  Seal rubs is not a concern for this case.  In conclusion, for in-line 

compressors the increment of seal length does not have any impact of interest. 

Synchronous response of the rotor during mechanical test (without pressure) 

shows two critical speeds occurring at 5,000 and 18,000 rpm respectively.  As seal 

length increases, the synchronous response at both critical speeds are reduced.  

However, the second critical speed is reduced from 18,000 rpm to 14,000 rpm. 
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