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ABSTRACT 
 
 
 

Effects of Aging and Exercise Training on the Mechanisms of Angiotensin II-Induced 

Vasoconstriction in Rat Skeletal Muscle Arterioles. (December 2006) 

Yoonjung Park, B.A., Seoul National University; 

M.S., Seoul National University; 

M.A., The University of Texas at Austin 

Chair of Advisory Committee: Dr. Robert B. Armstrong 

 
 

Aging is associated with increases in regional and systemic vascular resistance 

and impaired ability to increase blood flow to active muscles during exercise. Aging 

enhances vasoconstrictor responsiveness in both humans and animals, and an increase in 

Angiotensin II-induced vasoconstriction is one possible mechanism for old age-

associated increase in muscle vascular resistance. The purpose of this study was to 

determine 1) whether aging alters Ang II-induced vasoconstriction, 2) whether exercise 

training attenuates the age-associated alteration in Ang II-mediated vasoconstriction, and 

3) the mechanism(s) through which aging and exercise training alter Ang II-induced 

vasoconstriction in rat skeletal muscle arterioles. Male Fischer 344 rats were assigned to 

4 groups: Young sedentary (YS; 4 months), old sedentary (OS; 24 months), young 

trained (YT) and old trained (OT). Exercise-trained groups performed treadmill 

exercises for 60 min/day at 15 m/min, on a 15º incline for 5 days/week for 10-12 weeks.  

First-order (1A) arterioles were isolated from soleus and gastrocnemius muscles for in 
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vitro experimentation. Intraluminal diameter changes were determined in response to the 

cumulative addition of Ang II (3×10-11 - 3×10-5 M). Ang II dose responses were then 

determined following the removal of endothelium and treatment with NG-nitro-L-

arginine methyl ester (L-NAME, 10-5 M), a nitric oxide synthase (NOS) inhibitor. Ang 

II-induced vasoconstriction was augmented in the aged skeletal muscle arterioles, both 

in soleus and gastrocnemius muscles, and age-associated increases in Ang II-induced 

vasoconstriction were abolished with the removal of endothelium and with L-NAME. 

Exercise training ameliorated the age-induced increase in Ang II-vasoconstriction, and 

this alteration was eliminated by the removal of endothelium and with NOS inhibition. 

These findings suggest that aging enhances Ang II-induced vasoconstrictor responses in 

the arterioles from both soleus, high oxidative, and white portion of gastrocnemius, low 

oxidative glycolytic muscles, and this age-associated change occurs through an 

endothelium-dependent NOS signaling pathway. These results also demonstrated that 

exercise training can ameliorate the age-associated increase in Ang II vasoconstriction in 

the arterioles from both high oxidative and low oxidative glycolytic muscles through an 

endothelium-mediated NOS mechanism. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Aging, exercise training, cardiovascular system, and control of muscle flood 

flow 

By the year 2020, the average life expectancy will be 82.0 years for women and 

74.2 years for men, and by the year 2040, it will increase to 83.1 years for women and 

75.0 years for men (94). The number of the population in the United States over 65 years 

old will rise to 52 million by the year 2020 and to 68 million by the year 2040. This 

rapid growth of the elderly will have an enormous impact on future health care costs (94). 

A characteristic of this population is the high prevalence of cardiovascular diseases, 

which negatively affect both life expectancy and quality of life, and are associated with 

an impaired ability for adaptation to environmental change (91). Epidemiological studies 

have reported that advancing age, genetic factors, diabetes, lipid levels, and sedentary 

lifestyle are all risk factors for cardiovascular disease, such as coronary artery disease, 

hypertension, congestive heart failure, and stroke (39, 57). For example, advancing 

aging is highly correlated with the prevalence of hypertension, incidence of 

atherothrombotic stroke, and incidence of coronary heart disease (57).  

 
_________________ 
This dissertation follows the style and format of American Journal of Physiology-Heart 
and Circulatory Physiology. 
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The old age-related impairment of the cardiovascular system is associated with 

various detrimental changes of cardiovascular structure and function. In terms of 

cardiovascular structure, aging results in increased vascular intimal thickness, vascular 

stiffness, left ventricular wall thickness and left atrial size (37, 55, 57, 76).  Functional 

changes of the cardiovascular system with aging include decreased end diastolic filling 

pressure at rest (68), although systolic function is not significantly altered with aging, 

which preserves ejection fraction and stroke volume (90). Also, cardiac responsiveness 

to β-adrenergic stimuli is decreased with aging, confirming that increases in heart rate 

and myocardial contractility induced by catecholamines or exercise are diminished in 

elderly people and peak cardiac output at maximal exercise is consequently reduced with 

aging (32, 56). 

One of the key interventions that is able to prevent and reduce the risk of 

cardiovascular disease is long term regular physical activity. The benefits of chronic 

physical activity have been reported both in healthy subjects and old patients (12). 

However, aging itself limits elderly individuals to continue a physically active life style 

due to a significantly reduced exercise capacity and maximal aerobic capacity (41, 78). 

This decline in exercise capacity is in part due to an attenuated ability to increase blood 

flow to working muscle during exercise, as well as a diminished ability to elevate 

cardiac output during exercise (63). It has been reported that skeletal muscle perfusion 

during muscle stimulation and exercise is lower in old animals (50, 75) and humans (5, 

60, 64, 82, 84, 86, 106), although skeletal muscle blood flow is not altered with aging 

during rest (18, 41, 111). Irion et al. (50) reported that blood flow is significantly lower 
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in aged rats undergoing intermittent tetanic contractions compared to younger animals.  

Likewise, Musch et al. (75) reported that muscle blood flow in conscious exercising rats 

was reduced with advanced age to highly oxidative muscle, but was increased with aging 

to low oxidative muscle although blood flow to total hindlimb muscles was not different 

between young and old rats during exercise. Human data also indicate that leg muscle 

blood flow is lower with advanced age during submaximal exercise in sedentary men (5, 

82) and women (84) and endurance-trained men (86). For example, Proctor et al. (86) 

demonstrated during whole body exercise that leg blood flow and vascular conductance 

were lower in aged individuals compared to younger counterparts. Several potential 

problems with the experimental approach of using whole body exercise to determine 

whether local vascular factors limit skeletal muscle perfusion with aging is that the lower 

old age-associated exercise hyperemia could result from limited cardiac output (32, 56) 

or a smaller muscle mass (35) among elderly subjects.  To overcome these potential 

limitations, Lawrenson el al. (60) measured muscle blood flow and vascular resistance 

during small muscle mass knee extensor exercise which would not elicit maximal 

cardiac output and found that knee extensor blood flow was lower and vascular 

resistance higher across a range of work rates in aged men relative to young subjects. 

These findings indicate that local factors, such as decreased responsiveness to 

vasodilator stimuli and/or increased responsiveness to vasoconstrictor stimuli could 

underlie the old age-associated reduction in muscle blood flow during exercise (60). 

One of the potential local mechanisms that could mediate an impaired ability to 

increase skeletal muscle blood flow with aging is a diminished endothelium-dependent 
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vasodilator function. Furchgott and Zawadzki (34) firstly found the important role of the 

endothelium in the vasodilation of the vascular system caused by the endothelium-

dependent vasodilator ACh. They demonstrated the role of endothelial cells to release a 

factor that causes vasodilation in the vessel, termed endothelium-derived relaxing factor 

(EDRF), which modulates the vascular response (34). This factor has been identified as 

nitric oxide (NO) (81). NO synthesis is catalyzed by the constitutive enzyme, nitric 

oxide synthase (NOS), from the terminal guanidine of L-arginine, which is calcium 

(Ca++)/calmodulin-dependent (80). Since NO is rapidly diffusible, once it is synthesized, 

it can easily move into the smooth muscle cell through the cell membrane where it plays 

an important role in regulating the constriction of smooth muscle in the vascular system 

(33). 

Although the effect of aging on endothelium-dependent vasoreactivity varies 

with species and vascular beds (48, 112), aging-induced impairment of endothelial 

function in various vascular beds has been well documented (16, 21, 22, 30, 36, 46, 71, 

98, 118). Desouza et al. (22) reported that vascular responsiveness to the endothelium-

dependent vasodilator, ACh, is decreased, but vasodilatation to an endothelium-

independent vasodilator, nitroprusside, is unchanged in the forearm of aged humans. 

Woodman et al. (118) reported similar finding with isolated feed artery from the rat 

skeletal muscles. They found that endothelium-dependent dilation to ACh was lower in 

old soleus muscle feed arteries, whereas endothelium-independent dilation to sodium 

nitroprusside (SNP) was not different in skeletal muscle feed arteries from young and old 

rats. Moreover, our laboratory has shown similar results in the arterioles isolated from 
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skeletal muscle in aged rats. Specifically, it was reported that endothelium-dependent 

vasodilator responses to ACh are diminished with aging in first-order (1A) arterioles 

from the soleus muscle, a highly oxidative muscle, but not from the superficial portion of 

gastrocnemius muscle, a low-oxidative glycolytic muscle (71, 98). Furthermore, age-

related differences in ACh-induced vasodilatation of soleus muscle arterioles between 

young and old rats are abolished with NG-nitro-L-arginine methyl ester (L-NAME), a 

NOS antagonist (71, 98). These findings indicate that aging impairs endothelium-

dependent and NO-mediated vasodilatation in 1A soleus muscle arterioles.  

Long-term aerobic exercise training has been reported to ameliorate the age-

associated dysfunction of both central and peripheral cardiovascular function (78). For 

example, 16 weeks of endurance training results in a significant increase in leg blood 

flow and vasodilator capacity in both men and women (64). Also, cross-sectional studies 

report that physically active individuals and aged endurance athletes have greater 

endothelium-dependent vasodilation through the NOS mechanism (22, 106). Moreover, 

several animal studies have supported the finding that exercise training results in 

enhanced endothelium-dependent vasodilation in conduit arteries (19, 20) and skeletal 

muscle arterioles (71, 98). Spier et al. (98) reported that the exercise training-induced 

reversal of the age-related endothelial dysfunction in soleus muscle arterioles is 

mediated through the NO signaling pathway.  



 6

1.2 Aging, vasoconstrictor mechanisms of blood flow and exercise training 

In addition to impaired endothelium-dependent vasodilator function with aging, 

the age-associated reduction in skeletal muscle blood flow capacity could be due to an 

enhancement of resistance vessel vasoconstrictor responsiveness. Three major 

vasoconstrictor mechanisms have been described: noradrergic-, endothelin-1 (ET-1)- and 

Ang II- mediated mechanisms. Since these are potentially important factors that control 

muscle blood flow at rest and during exercise, understanding the mechanism of effects 

of aging and exercise training on these factors is important. 

Aging causes progressive increases in the sympathetic vasoconstrictor outflow to 

skeletal muscle in resting humans, and it is evidenced by elevations in muscle 

sympathetic nerve activity (MSNA) and basal norepinephrine (NE) spillover rates (97). 

However, age-associated responsiveness or sensitivity to α-adrenergic receptors is 

controversial. For example, no changes in age-associated responsiveness or sensitivity to 

α-adrenergic stimulation (26, 96), age-related attenuated vasoconstrictor responsiveness 

to sympathetic stimulation (14, 104), or elevated adrenergic sensitivity of the leg 

vasculature in older men (25, 54) have been reported. Although some studies have 

reported that leg blood flow is not changed with aging in isolated contracting muscles 

(51), in exercising rats (75), and in humans performing leg exercise (85), studies have 

supported an age-associated reduction in the ability to increase muscle blood flow during 

exercise as previously mentioned (50, 52, 60, 62, 86). Reductions in basal limb blood 

flow and vascular conductance with aging have been reported to be related to enhanced 

sympathetic α-adrenergic vasoconstriction (25). Koch et al. (54) reported greater 
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reduction in leg vascular conductance to sympathetic stimulation during exercise in older 

men whereas increase in sympathetic outflow to local cold stimulation during the cycle 

ergometer exercise was not different. Also, impaired functional sympatholysis in the 

forearm vascular beds during rhythmic handgrip exercise was found in older men 

indicating the impaired ability to blunt sympathetic α-adrenergic vasoconstriction with 

advancing age causing the reduction in blood flow to exercising muscle (24). 

Although the mechanisms through which aging and exercise training alter 

endothelium-dependent vasodilation have been previously investigated (21, 71, 98, 106), 

the effects of aging and exercise training on the modulation of vasoconstrictor responses 

in the peripheral resistance vasculature have not been clearly delineated. Alterations in 

resistance vessel sensitivity to vasoconstrictors may contribute to the age-related 

reduction in exercise tolerance and skeletal muscle blood flow capacity. The 

mechanisms through which aging and exercise training affect noradrenergic- and ET-1-

mediated vasoconstriction have been recently investigated in our laboratory (27, 28). 

Donato el al. (27) found that aging is associated with an augmented α-adrenergic 

vasoconstriction in soleus muscle arterioles and exercise training attenuated this 

augmentation in old rats.  The aging- and training-associated alterations in α-adrenergic 

vasoconstriction are mediated through an endothelium-dependent mechanism, since the 

aging and exercise training effects are abolished with the removal of the endothelium.  

Donato et al. (28) also reported that aging is associated with an enhancement of 

ET-1 sensitivity in 1A arterioles from the white portion of the gastrocnemius muscle, but 

not in 1A arterioles from the soleus muscle. This enhanced vasoconstrictor response to 
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ET-1 in gastrocnemius muscle arterioles from old rats is due to augmented 

vasoconstrictor response mediated through ETa receptors on the smooth muscle, but not 

through ETb receptors.  Thus, aging has been shown to enhance vasoconstrictor 

responses of skeletal muscle arterioles through α-adrenergic and ET receptors.  However, 

despite α-adrenergic and ET receptors both being present on vascular endothelial and 

smooth muscle cells, the aging and exercise training effects of α-receptor-mediated 

vasoconstriction occurred through the endothelial cells, whereas the aging effect 

mediated through the ETa-receptor occurred through the smooth muscle cells. No study 

has been reported that investigated the mechanisms for the effects of aging and training 

on Ang II-induced vasoconstriction, which is one of the possible vasoconstriction 

mechanisms in the skeletal muscle arterioles. 

1.3 Ang II 

Ang II is the main biologically active peptide of the renin-angiotensin system 

(RAS), which plays a major physiological role in regulation of the cardiovascular system. 

Disorders of the RAS are associated with the pathophysiology of renal diseases, 

hypertension, and chronic heart failure (61).  Ang II is generated by the angiotensin-

converting enzyme (ACE), which is an ectoenzyme that catalyzes the extracellular 

conversion of Ang I to Ang II. Also, another enzyme, renin, is involved in regulation of 

the Ang II synthesis in the RAS. Renin is released from the juxtaglomerular cells of the 

kidney into the circulation where it converts angiotensinogen to Ang I.  Ang II also plays 

an important physiological role in the regulation of blood pressure, plasma volume, and 

sympathetic nervous activity (7); it is in this capacity that Ang II, as a potent 
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vasoconstrictor, can serve to regulate blood flow through alteration in vascular tone and 

conductance, and ultimately serve to regulate mean arterial blood pressure (102, 105).  

The vascular effects of Ang II are mediated through direct action of Ang II on 

Ang II receptors. Final cardiovascular responses to Ang II are determined by the result 

of combined action of Ang II receptors. Two major subtypes of Ang II receptors have 

been mainly defined on the basis of their different pharmacological and biochemical 

properties: Ang II type 1 receptor (AT1R) and Ang II type 2 receptor (AT2R) (53, 69, 74).  

The locations of AT1R and AT2R vary depending on species of animal and tissue 

type. AT1R are located in the cardiovascular, renal, endocrine, and nervous systems in 

humans (3). In the vasculature, AT1R are primarily concentrated on smooth muscle cells 

with relatively low levels in the adventitia (2, 121) and endothelial cells (88). In contrast 

to AT1R, AT2R are highly present in fetal tissues, and its expression is rapidly decreased 

after birth, but, in adults, AT2R expression is detectable in various tissues including the 

vasculature (1). AT2R are expressed both in endothelial and smooth muscle cells in rat 

mesenteric arteries and skeletal muscle arterioles (65, 77).  

AT1Rs are involved in most of the well-known physiological effects of Ang II, 

and this subtype is the major effector mechanism of Ang II-mediated vascular functions 

(92). Activation of AT1R results in stimulation of vasoconstriction, vascular cell 

hypertrophy and hyperplasia, and sodium retention (7). Also, physiological effects of 

this receptor have also been reported to include stimulation of reactive oxygen species 

(ROS) (89) and induction of inflammatory (72), thrombotic (113), and fibrotic (107) 

processes. In terms of vasoconstriction, binding of Ang II to AT1R stimulates G protein-
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coupled activation of phospholipase C (PLC) and results in phosphatidylinositol (PIP3) 

hydrolysis and formation of inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 

activates the movement of Ca2+ from sarcoplasmic reticulum (SR), and DAG leads 

protein kinase C (PKC) to activate the sodium/hydrogen (Na+/H+) exchanger (110). 

Consequently, it results in increased intracellular free Ca2+ concentration and actin-

myosin interaction in vascular smooth muscle cells and, subsequently, vascular smooth 

muscle contraction. Thus the overall signaling pathway through AT1R binding results in 

vasoconstriction in the vasculature (110).  

AT2R has a less well-defined role in the cardiovascular system, but there is 

growing evidence that the AT2R plays an important role in cardiovascular physiology. 

Overall, AT2R appears to counter-regulate the excitatory effect of AT1R, including 

vasodilation, antigrowth, antihypertrophic effects, and depressor regulation of blood 

pressure (11, 47, 66).  There are evidences showing AT2R has a significant role to 

control vascular tone by mediating vasodilation and counterbalancing the AT1R-

mediated vasoconstriction of Ang II. AT2R stimulates endothelium-dependent 

vasodilation by release of NO (11, 61), which counteracts with the direct smooth muscle 

contraction that is mainly mediated by the AT1R. Moreover, Ichiki et al. (49) found that 

AT2R knock-out mice have higher blood pressure compared to the wild-type control 

mice, and Munzenmaier et al. (73) reported that pharmacological blockade of AT2R 

augments the pressor effect of Ang II in the rat. AT2R–mediated signaling works through 

a G protein coupling mechanism to mediate cardiovascular actions (47). Binding to 

AT2R stimulates several cascades, including activation of protein phosphatases and 
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protein dephosphorylation, stimulation of phospholipase A (PLA2) and release of 

arachidonic acid (AA), sphingolipid-derived ceramide, and increase in cyclic guanosine 

3',5'-monophosphate (cGMP) level through a NO mechanism, which cause the 

vasodilation (47).  

It has been well-documented that activation of AT1R mediates vasoconstriction 

of conduit coronary arteries (103), but several studies relating to pharmacological 

properties suggest that AT2R may mediate vasodilation of large conduit vessels (95, 117) 

and the coronary microcirculation (119) through the endothelium. In addition, studies 

have reported that, in endothelial cells, AT1R plays a role of vasodilation through an 

eNOS mechanism (8), whereas activation of AT2R on the smooth muscle cells exert a 

functional vasodilation via neuronal NOS (nNOS) and a soluble guanylate cyclase (sGC) 

pathway (15). Since Ang II exerts direct effects on both endothelial and smooth muscle 

cells in the vasculature, Ang II-induced vasoconstriction is determined by the net 

interactions between smooth muscle and endothelial cells. In order to explain the 

mechanisms of Ang II-induced vasoconstriction to control blood flow, Ang II-induced 

vasodilation through the endothelium is also critical (40), although the majority of 

studies in the literature have focused on the Ang II-induced vasoconstriction role 

through smooth muscle. Moreover, Gruetter et al. (38) reported that Ang II-induced 

vasoconstriction is attenuated by the release of a substance from the endothelium and 

enhanced by removal of endothelium. Specifically, Ang II activates NO production by 

vascular endothelial cells through AT1R activation (10) and/or through AT2R activation 

(93, 116). Therefore, identifying the interaction between the smooth muscle and 
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endothelial cell response is important for understanding the mechanism(s) of effects of 

aging and exercise training on Ang II-induced vasoconstriction in resistance arterioles. 

Ang II has been shown to play a role in the vasomotor activity in various 

microvascular beds (44), but few studies investigating the direct effects of Ang II on the 

microcirculation have been performed. The degree of Ang II-induced vasoconstriction 

gradually diminishes with increasing Ang II concentration above a certain point of 

concentration.  Zhang et al. (119) recently reported that the more potent vasoconstriction 

occurs at a lower concentration of Ang II (1nmol/L), where there is less vasoconstriction 

at higher concentrations (10nmol/L) in coronary arterioles. This is consistent with the 

findings in the perfused heart showing that the magnitude of coronary vasodilation is 

increased with increasing Ang II concentrations (83). This lower constrictor response at 

higher concentrations of Ang II may depend on the interaction of the smooth muscle cell 

and endothelial cell response to Ang II.  

1.4 Aging, exercise, and Ang II 

Limited information is available regarding changes in Ang II vasoreactivity with 

aging in the microcirculation. Although aging is associated with lower plasma renin 

activity in normal individuals (115), evidence suggests no aging effect on plasma Ang II 

concentration (29). Moreover, few studies have investigated possible changes of Ang II 

receptor density with aging, and what has been reported provides no clear pattern. 

Daubert et al. (13) reported that the density of Ang II receptor binding sites is lower in 

old mouse brains, whereas Heymes et al. (45) found that mRNA levels of both AT1R and 

AT2R subtypes are markedly up-regulated in the myocardium of aged rats. More 



 13

significantly, the effect of aging on Ang II-induced vasoconstriction in skeletal muscle 

arterioles has not been shown, although understanding the effect of aging on Ang II-

induced vasoconstriction in skeletal muscle arterioles may be potentially important since 

Ang II-induced vasoconstriction may be one of the important contributing factors to the 

age-associated reduction in blood flow to skeletal muscles during exercise. 

During dynamic exercise, the plasma Ang II levels are increased in an intensity-

dependent manner (101, 108), and as a result, Ang II may be more involved in 

determining the blood flow response during exercise. Ang II is a potent vasoconstrictor 

in the cardiovascular system during exercise (102, 105) in that it increases the pressor 

response and may be involved in redirecting blood flow from the splanchnic and renal 

regions toward active muscles (102). However, no study has been reported regarding the 

effect of long-term exercise training on Ang II-induced changes in blood flow and 

vascular conductance. Moreover, the effect of exercise training on Ang II-induced 

vasoconstriction in the skeletal muscle resistance vessels also has not been investigated. 

Overall, the role of Ang II has been investigated in the control of blood flow and 

vascular conductance during acute exercise. However, studies on the effect of aging and 

endurance exercise training on Ang II-mediated vascular responses are lacking. 

1.5 Purpose and hypotheses 

The central hypothesis for this study is that aging diminishes vascular 

conductance due to a shift of interaction between vascular smooth muscle cells and 

endothelial cells, and that exercise training serves to attenuate this effect.  One possible 

mechanism for old age-related reductions in vascular conductance is an enhanced 
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vasoconstrictor responsiveness to Ang II, and that exercise training may serve to 

diminish Ang II-mediated vasoconstriction. 

 The overall purpose of this dissertation research is to determine whether aging 

alters Ang II vasoreactivity in skeletal muscle resistance arterioles and whether exercise 

training can ameliorate the putative old age-associated alteration in Ang II-induced 

vasoconstriction. A secondary purpose is to elucidate the mechanism(s) of the aging and 

exercise training effects on Ang II-induced vasoconstrictor response of skeletal muscle 

resistance arterioles from old rats. Therefore, six hypotheses were tested: 

1) There will be higher Ang II-induced vasoconstriction of arterioles from soleus 

and gastrocnemius muscles in old rats compared to that in young animals. 

2) Removal of the endothelium will abolish the age-associated difference of Ang 

II-mediated vasoconstriction in arterioles from soleus and gastrocnemius 

muscles. 

3) Inhibition of NOS activity with L-NAME will abolish the age-associated 

difference in Ang II-mediated vasoconstriction in soleus and gastrocnemius 

muscle arterioles. 

4) Exercise training will decrease Ang II-mediated vasoconstriction in aged 

arterioles from soleus and gastrocnemius muscles to levels at or near that in 

young sedentary animals. 

5) Removal of endothelium will abolish the exercise training-associated reduction 

in Ang II-mediated vasoconstriction in aged arterioles from soleus and 

gastrocnemius muscles. 
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6) Inhibition of NOS activity with L-NAME will abolish the exercise training-

associated reduction of Ang II-mediated vasoconstriction in aged arterioles 

from both soleus and gastrocnemius muscles. 
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CHAPTER II 

 

EFFECTS OF AGING AND EXERCISE TRAINING ON THE MECHANISMS 

OF ANGIOTENSIN II-INDUCED VASOCONSTRICTION IN RAT SKELETAL 

MUSCLE ARTERIOLES 

 

2.1 Introduction 

It is well documented that aging has a detrimental effect on the cardiovascular 

system and that aging is an independent risk factor for cardiovascular diseases, such as 

atherosclerosis, hypertension, and coronary artery disease (31). In addition to increased 

risk of cardiovascular disease with aging, aerobic exercise capacity declines with 

advancing age. This decline in exercise capacity is partly due to an attenuated ability to 

increase blood flow to working muscle during exercise, through both declines in 

maximal cardiac output (63) and skeletal muscle blood flow during exercise (60).  

One of the potential local mechanisms that could mediate an impaired ability to 

increase skeletal muscle blood flow with aging is an impaired endothelium-dependent 

and nitric oxide (NO)-mediated vasodilator function (16, 21, 22, 30, 36, 46, 71, 98, 118). 

Long-term aerobic exercise training has been also reported to ameliorate the age-

associated dysfunction through the endothelium-dependent vasodilation and the NOS 

signaling pathway mechanism in humans and animals (22, 98, 106). 

Although the mechanisms through which aging and exercise training alter 

endothelium-dependent vasodilation have been previously investigated, the effects of 
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aging and exercise training on the modulation of vasoconstrictor responses in the 

peripheral resistance vasculature have not been clearly delineated. Recently, however, 

Donato el al. (27) reported that aging is associated with an augmented α-adrenergic 

vasoconstriction in soleus muscle arterioles and exercise training attenuates this 

augmentation in old rats through an endothelium-dependent mechanism. Donato et al. 

(28) also found that aging is associated with an enhancement of ET-1 sensitivity in 1A 

arterioles from the white portion of the gastrocnemius muscle through augmented 

vasoconstrictor response mediated through ETa receptors on the smooth muscle and not 

through the endothelium.   

Ang II is the main biologically active peptide of the renin-angiotensin system 

(RAS), which exerts both hemodynamic and renal effects.  Ang II also plays an 

important physiological role in the regulation of blood pressure, plasma volume, and 

sympathetic nervous activity in the cardiovascular system (7).  In regard to the 

regulation of blood pressure, Ang II is a potent substance capable of constricting 

arterioles. Two subtypes of Ang II receptors have been mainly defined on the basis of 

their different pharmacological and biochemical properties.  Ang II type 1 receptor 

(AT1R), which is involved in most of the well-known physiological effects of Ang II and 

exerts potent vasoconstriction in the blood vessels, and Ang II type 2 receptor (AT2R), 

which has a less well-defined role but appears capable of counterbalancing some of the 

effects of AT1R stimulation (53, 69, 74). However, studies have reported that, in 

endothelial cells, AT1R also plays a role of vasodilation through an eNOS mechanism (8, 
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87), whereas activation of AT2R in the smooth muscle cell still exert a functional 

vasodilation via nNOS and sGC pathway (15). 

Since Ang II exerts direct effects on both endothelial and smooth muscle cells in 

the vasculature, Ang II-induced vasoconstriction is determined by the interaction of 

vasoconstrictor and vasodilator influences mediated by smooth muscle and endothelial 

cells. Therefore, understanding the role of the smooth muscle and endothelial cells is 

important to elucidate the mechanism(s) of the effect of aging and exercise training on 

Ang II-induced vasoconstriction in the resistance arteriole.  

Limited information is available regarding changes in Ang II vasoreactivity with 

aging in the microcirculation. Moreover, no direct studies have been conducted 

regarding the effects of aging or exercise training on Ang II-induced vasoconstriction in 

skeletal muscle arterioles. Therefore, the purpose of this study is to determine whether 

and through what mechanism(s) aging and exercise training affect Ang II-mediated 

vasoconstriction in rat skeletal muscle resistance arterioles. Based on results showing 

age enhances α-adrenoceptor-mediated vasoconstriction via diminished endothelium 

dependent NOS mechanism (27), we hypothesized that aging would enhance Ang II-

induced vasoconstriction through an impaired endothelium-dependent NOS signaling 

pathway, and that exercise training would attenuate the increased Ang II-mediated 

vasoconstriction through the endothelium NOS mechanism. 
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2.2 Methods 

2.2.1 Animals 

Male Fischer 344 young (3-6 months) and old (22-24 months) rats were obtained 

from the National Institutes for Aging (NIA/Harlan) and housed in a temperature-

controlled (23±2°C) room with a 12:12 light-dark cycle. Water and rat chow were 

provided ad libitum. All animal procedures were approved by the Texas A&M 

University Laboratory Animal Care Committee and complied with the guidelines of the 

National Research Council Guide for the Care and Use of Laboratory Animals. 

2.2.2 Exercise Training 

Training consisted of the following 10-12 weeks running program, executed on a 

motor-driven treadmill. During habituation, the rats walked on the treadmill at 10 m/min 

(0° incline) and then speed was increased to 15 m/min, 5 min/day for 3 days.  After 

habituation on the treadmill, young and old rats were assigned to one of four groups, 

young sedentary (YS), young exercise-trained (YT), old sedentary (OS), and old 

exercise-trained (OT). Exercise-trained rats performed treadmill running at 15 m/min on 

a 15° incline, 60 min/day, 5 days a week for 10 to12 weeks as previously described (20, 

98). A minimum of 48 hours was allowed between the execution of experiments and the 

final bout of exercise. 
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2.2.3 Microvessel Preparation 

The rats were anesthetized with pentobarbital sodium (60 mg/kg ip) and the 

gastrocnemius-plantaris-soleus muscle group from the hindlimb was carefully dissected 

free and placed in cold (4°C) physiological saline solution (PSS) that contained 

145.0 mM NaCl, 4.7 mM KCl, 2.0 mM CaCl2, 1.17 mM MgSO4, 1.2 mM NaH2PO4, 

5.0 mM glucose, 2.0 mM pyruvate, 0.02 mM EDTA, 3.0 mM MOPS buffer, and 1 g/100 

ml BSA at pH 7.4. With a dissecting microscope (Olympus SVH10), 1A arterioles from 

the soleus muscle and the white portion of the gastrocnemius muscle were isolated and 

removed from the surrounding muscle tissue as previously described (67, 70). The 

arterioles were transferred to a Lucite chamber that contained PSS equilibrated with 

room temperature. Each end of the arteriole was cannulated with a micropipette and 

secured with nylon suture. After cannulation of the arterioles, the microvessel chamber 

was transferred to the stage of an inverted microscope (Olympus IX70) equipped with a 

video camera (Panasonic BP310), video caliper (Microcirculation Research Institute), 

and data acquisition system (MacLab/Macintosh) for on-line recording of intraluminal 

diameter. The arterioles were initially pressurized to 70 cmH2O with two independent 

hydrostatic pressure reservoirs. Leaks were detected by pressurizing the vessel and then 

closing the valves to the reservoirs and verifying that intraluminal pressure remained 

constant. The arterioles that did not hold pressure were discarded. The arterioles that 

were free from leaks were warmed to 37°C and allowed to develop initial spontaneous 

tone during a 30- to 60-min equilibration period.  
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2.3.4 Experimental Design 

Protocol I. Concentration-response relations to the cumulative addition of Ang II 

[3×10-11 to 3×10-5 M] were determined in arterioles from the soleus and gastrocnemius 

muscles from YS, OS, YT, and OT groups. Diameter was recorded for 3 minutes 

following each addition of Ang II. The arterioles were allowed to develop at least 15% 

spontaneous tone prior to addition of Ang II. 

Protocol II. To determine whether alterations induced by aging and exercise 

training from protocol I were mediated through the vascular endothelium, the 

endothelium was denuded from the gastrocnemius and soleus muscle arterioles from the 

YS, YT, OS, and OT by passing 5 ml of air through the lumen of the vessel. In order to 

insure full removal of the endothelium, the arterioles were exposed to ACh [3×10-5 M]. 

Vessels that exhibited vasodilation of more than 5% were excluded from further study. 

Following the ACh test, the vessels were washed several times with PSS and allowed to 

develop spontaneous tone prior to the Ang II dose response. The diameters of denuded 

1A arterioles from gastrocnemius and soleus muscles were measured in response to 

increasing concentrations of Ang II [3×10-11 to 3×10-5 M]. 

Protocol III. Since results from protocol II indicated that the effects of aging and 

exercise training were endothelium-dependent, another series of studies was performed 

to determine whether the alteration of the endothelium by aging and exercise training 

was mediated through the NOS signaling pathway. After the arterioles were allowed to 

develop spontaneous tone, they were incubated for 20 minutes with L-NAME [10-5 M] 

and the Ang II dose response [3×10-11 to 3×10-5 M] was performed. 
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2.2.5 Muscle Citrate Synthase Activity 

Sections of the soleus and white gastrocnemius muscles from each animal were 

stored at -80°C for determination of citrate synthase activity (100), a measures of muscle 

oxidative capacity, to determine the efficacy of the training regimen. Likewise, the heart 

was removed to determine whether exercise training elevated heart-to body mass ration, 

an indicator of an exercise trained state. 

2.2.6 Data Analysis 

Actual diameter was measure in response to Ang II and was expressed as a 

percentage of constrictor response according to the following formula:   

Vasoconstriction (% Maximal Response) = [(Db – Ds)/(Db) ×100]  

where Db is the initial baseline diameter recorded immediately before the addition of the 

Ang II and Ds is the steady-state diameter measured after each dose of Ang II. Dose 

response curves were analyzed by two-way ANOVA with repeated measure on one 

factor (Ang II dose). Pairwise comparisons between specific levels were made through 

post-analysis (LSD). A one-way ANOVA was performed to determine significance of 

differences among groups in citrate synthase activity, body weight, and muscle weight. 

All values were presented as mean ± SEM. Significant differences were indicated by P ≤ 

0.05. 
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2.3 Results 

2.3.1 Animal Characteristics 

The animals’ age at the time of study was approximately 6 months (range, 4-7 

month) for the young rats and 25 months (range, 24-25 month). Body mass was greater 

in old sedentary than in young sedentary rats (YS: 342 ± 6 g; OS: 431 ± 4 g), and 

exercise training reduced body mass in old rats (OS: 431 ± 4 g; OT: 396 ± 6 g), but not 

in young rats (YS: 342 ± 6 g; YT: 331 ± 7 g) (Table 2.1).  Although only soleus muscle 

mass was increased with age, both soleus and gastrocnemius muscle mass-to-body mass 

ratio were decreased with aging and exercise training in young and old rats. Also, only 

soleus muscle mass-to-body mass ratios was increased with exercise training in young 

and old rats (Table 2.1). 

Heart mass and left ventricle mass-to-body mass ratio were higher in the exercise 

trained groups and citrate synthase activity was higher in soleus muscle from both young 

and old trained rats (Soleus; YS 20.0 ± 0.6, OS: 17.5 ± 0.9, YT: 25.9 ± 0.9, OT: 23.4 ± 

1.3) indicating the efficacy of the exercise training regimen (P<0.05). However, citrate 

synthase activity in the white portion of gastrocnemius was not altered by exercise 

training in either young or old rats (Table 2.1). 

2.3.2 Isolated Vessel Characteristics 

Maximal intraluminal diameters of soleus muscle arterioles were not different 

among groups, but maximal intraluminal diameters of gastrocnemius muscle arterioles 

were increased with age. Exercise training tended to increase maximal diameter of 

gastrocnemius muscle arterioles in old rats (P=0.057) (YS: 151 ± 4, OS: 172 ± 5, YT: 
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156 ± 7, OT: 188 ± 7) (Table 2.2). Initial spontaneous tone developed was not different 

among groups in arterioles from soleus and gastrocnemius muscles. 

2.3.3 Ang II Vasoconstrictor Studies 

Vascular sensitivity (EC50). There were no aging and exercise training effect on 

vascular sensitivity (EC50) in the rat skeletal muscle arterioles (Table 2.3). 

Effect of aging. Aging enhanced Ang II-mediated vasoconstrictor response in the 

1A arterioles from both soleus (Figure 2.1 A) and gastrocnemius (Figure 2.1 B) muscles.  

Vasoconstrictor response to single dose of Ang II. Ang II-induced 

vasoconstriction with a single dose of Ang II at the concentration of 1×10-8 M also 

resulted in a higher vasoconstrictor response in aged arterioles from soleus (A) and 

gastrocnemius (B) muscles (Figure 2.2). This difference was similar to the concentration 

with the cumulative addition of Ang II (Figure 2.1). These results indicate that the 

difference in Ang II-induced vasoconstriction between young and old skeletal muscle 

arterioles is concentration-dependent, not time-dependent. 

Effect of removal of endothelium. The biphasic responses of Ang II-mediated 

vasoconstriction, which is a lower vasoconstrictor response at higher concentration of 

Ang II (higher than 3×10-7 M), were abolished with the removal of the endothelium in 

both young and old rats (Figure 2.3). More importantly, the removal of the endothelium 

resulted in an elimination of the age-associated difference in Ang II-mediated 

vasoconstriction of soleus (Figure 2.3 A) and gastrocnemius (Figure 2.3 B) muscle 

arterioles from young and old rats.
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Table 2.1     Animal characteristics of YS, OS, YT, and OT groups. 

 Sedentary Exercise-Trained 
 Young (YS) Old (OS) Young (YT) Old (OT) 

N 29 29 23 20 

Body Mass (g) 342 ± 6 431 ± 4* 331 ± 7 396 ± 6‡

Soleus Muscle Mass 
(mg) 150 ± 4 170 ± 4* 158 ± 5 174 ± 6 

Gastrocnemius Muscle 
Mass (mg) 1,756 ± 33 1,804 ± 37 1,713 ± 30 1,702 ± 47 

Soleus Muscle 
Mass/Body Mass  
Ratio (mg/kg) 

441 ± 10 395 ± 10* 480 ± 13† 438  ± 12‡

Gastrocnemius Muscle 
Mass/Body Mass  
Ratio (mg/kg) 

5,160 ± 98 4,182 ± 85* 5,208 ± 119 4,295 ± 94 

Heart Mass (mg) 909 ± 33 1,168 ± 37* 949 ± 36 1,176 ± 37 

Heart Mass/Body Mass 
Ratio (mg/kg) 2,657 ± 124 2,709 ± 94 2,867 ± 90† 2,969 ± 117‡

LV Mass/Body Mass 
Ratio (mg/kg) 1,822 ± 71 1,887 ± 35 2,252 ± 59† 2,215 ± 66‡

Soleus muscle citrate 
synthase activity 
(µmol/min/g wet Wt) 

20.0 ± 0.6 17.5 ± 0.9* 25.9  ± 0.9† 23.4  ± 1.3‡

White portion of 
gastrocnemius  muscle 
citrate synthase activity 
(µmol/min/g wet Wt) 

12.0 ± 0.3 12.1 ± 0.6 12.1 ± 0.6 13.0 ± 1.0 

Wt is weight; LV is left ventricle. * indicates significant difference between young sedentary and 
old sedentary, † indicates significant difference between young sedentary and young trained, ‡ 
indicates difference between old sedentary and old trained, P<0.05. Values are means ± SEM 
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Table 2.2    Characteristics of 1A arterioles from soleus and the superficial portion of 
gastrocnemius muscles from YS, OS, YT, and OT groups. 

 
 Sedentary Exercise-Trained 

 Young (YS) Old (OS) Young (YT) Old (OT) 

N 36 32 21 15 

Soleus Muscle 
Arteriole Lumen 
Diameter (µm) 

120 ± 3 125 ± 4 112 ± 4 118 ± 4 

Gastrocnemius Muscle 
Arteriole Lumen 
Diameter (µm) 

151 ± 4 172 ± 5* 156 ± 7 188 ± 7 

Soleus Muscle 
Arteriole Spontaneous 
Tone (%) 

51 ± 3 45 ± 3 50 ± 4 40 ± 4 

Gastrocnemius Muscle 
Arteriole Spontaneous 
Tone (%) 

45 ± 3 40 ± 3 50. ± 4 47 ± 4 

* indicates significant difference between young sedentary and old sedentary, † indicates 
significant difference between young sedentary and young trained, ‡ indicates difference 
between old sedentary and old trained, P<0.05. Values are means ± SEM  
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Table 2.3 Vascular sensitivity (EC50) to Ang II in arterioles from soleus and the 
superficial portion of gastrocnemius muscles. 

 
 Soleus Muscle 

Arterioles EC50 
(M) 

Gastrocnemius Muscle 
Arterioles EC50 

(M) 

YS 2.3 E−10 ± 0.6 E−10 1.5 E−10 ± 0.3 E−10

YS-E 2.4 E−9 ± 1.0 E−9 1.7 E−8 ± 0.3 E−8 #Young 
(YS) 

YS+L-NAME 4.0 E−9 ± 2.2 E−9 1.9 E−8 ± 0.9 E−8

OS 3.0 E−10 ± 1.5 E−10 1.6 E−10 ± 0.5 E−10

OS-E 8.6 E−9 ± 6.6 E−9 #
7.4 E−8 ± 3.4 E−8 #

Sedentary 

Old 
(OS) 

OS+L-NAME 4.0 E−9 ± 2.2 E−9 2.6 E−8 ± 1.1 E−8 Ψ

YT 1.2 E−10 ± 0.4 E−10 1.3 E−10 ± 0.6 E−10

YT-E 1.0 E−8 ± 0.4 E−8 1.3 E−8 ± 0.7 E−8Young 
(YT) 

YT+L-NAME 1.6 E−8 ± 0.6 E−8 § 7.0 E−9 ± 3.2 E−9

OT 1.7 E−10 ± 0.6 E−10 1.5 E−10 ± 0.5 E−10

OT-E 1.8 E−8 ± 1.0 E−8 #
6.4 E−8 ± 1.4 E−8 #

Exercise-
Trained 

Old 
(OT) 

OT+L-NAME 6.7 E−9 ± 3.4 E−9 1.4 E−9 ± 0.5 E−9 Ψ

-E is endothelium removed. # indicates significant effect of removal of endothelium, § 
indicates significant effect of treatment of L-NAME, Ψ indicates significant different between 
endothelium removed and L-NAME, P<0.05. Values are means ± SEM 
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Figure 2.1 Comparison of vasoconstrictor response to the cumulative addition of Angiotensin 
II between young sedentary (YS) and old sedentary (OS) in soleus (A) and 
gastrocnemius (B) muscle arterioles. Values are means ± SEM. 
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Figure 2.2 Comparison of vasoconstrictor response to the single dose of Angiotensin II 

[10-8 M] between young sedentary (YS) and old sedentary (OS) in soleus (A) and 
gastrocnemius (B) muscle arterioles. Values are means ± SEM. * indicates 
significantly different between YS and OS. (P<0.05) 
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Figure 2.3  Effect of removal of endothelium on vasoconstrictor response to the cumulative 

addition of Angiotensin II among young sedentary (YS), endothelium removed 
young sedentary (YS-E), old sedentary (YS) and endothelium removed old 
sedentary (OS-E) in soleus (A) and gastrocnemius (B) muscle arterioles. Values are 
means ± SEM. 
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Effect of NOS inhibition. Treatment with L-NAME resulted in a linear increase 

in the vasoconstrictor response to Ang II rather than the biphasic response occurring at 

the higher concentrations of Ang II in soleus and gastrocnemius muscle arterioles. 

(Figure 2.4). More importantly, age-related difference in Ang II-mediated 

vasoconstriction of soleus (Figure 2.4 A) and gastrocnemius (Figure 2.4 B) muscle 

arterioles were abolished by the removal of the endothelium. 

Effect of exercise training. Exercise training decreased Ang II-mediated 

vasoconstrictor responses in arterioles from both soleus (P<0.05) (Figure 2.5 A) and 

gastrocnemius (P<0.05) (Figure 2.5 B) muscles of old rats, but training had no effect on 

arterioles from young rats from the soleus (P=0.607) and gastrocnemius (P=0.965) 

muscles.  

Effect of removal of endothelium in old exercise trained arterioles. Following 

removal of vascular endothelium, the above-mentioned exercise training-mediated 

alterations in Ang II-induced vasoconstriction of soleus (Figure 2.6 A) and 

gastrocnemius (Figure 2.6 B) muscle arterioles from old rats were abolished. 

Effect of NOS inhibition in old exercise trained arterioles. In the presence of L-

NAME, the training-related decrease in Ang II-mediated vasoconstriction of old rat 

soleus (Figure 2.7 A) and gastrocnemius (Figure 2.7 B) muscle arterioles were likewise 

abolished.
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Figure 2.4 Effect of L-NAME on vasoconstrictor response to the cumulative addition of 

Angiotensin II among young sedentary (YS) young sedentary with L-NAME 
(YS+L-NAME), old sedentary (OS) and old sedentary with L-NAME (OS+L-
NAME) in soleus (A) and gastrocnemius (B) muscle arterioles. Values are means ± 
SEM. 
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Figure 2.5 Effect of exercise training on vasoconstrictor response to the cumulative addition of 
Angiotensin II among young sedentary (YS), young exercise trained (YT), old 
sedentary (OS) and old exercise trained (OT) in soleus (A) and gastrocnemius (B) 
muscle arterioles. Values are means ± SEM. 
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Figure 2.6 Effect of removal of endothelium on vasoconstrictor response to the cumulative 
addition of Angiotensin II among old sedentary (OS), old exercise trained (OT), 
endothelium removed old sedentary (OS-E), and endothelium removed old exercise 
trained (OT-E) in old soleus (A) and gastrocnemius (B) muscle arterioles. Values 
are means ± SEM. 
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Figure 2.7 Effect of L-NAME on vasoconstrictor response to the cumulative addition of 
Angiotensin II among old sedentary (OS), old exercise trained (OT), old sedentary 
with L-NAME (OS+L-NAME), and old exercise trained with L-NAME (OT+L-
NAME) in old soleus (A) and gastrocnemius (B) muscle arterioles. Values are 
means ± SEM. 
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Figure 2.8 Comparison of effect of removal of endothelium and L-NAME on vasoconstrictor 
response to the cumulative addition of Angiotensin II in young and old sedentary 
soleus (A) and gastrocnemius (B) muscle arterioles. Values are means ± SEM. 
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Figure 2.9 Comparison of effect of removal of endothelium and L-NAME on vasoconstrictor 
response to the cumulative addition of Angiotensin II in young and old exercise 
trained soleus (A) and gastrocnemius (B) muscle arterioles. Values are means ± 
SEM. 
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Comparison between removal of endothelium and L-NAME. Ang II-mediated 

vasoconstriction appeared to be identical between arterioles with the endothelium 

removed and those treated with L-NAME from young and old soleus muscle (Figure 

2.8). In both young and old exercise trained arterioles from soleus muscle, the effects of 

removal of the endothelium on Ang II-mediated vasoconstriction were also not different 

from treatment with of L-NAME (Figure 2.9 A). However, in arterioles from exercise 

trained gastrocnemius muscle, Ang II-mediated vasoconstriction in L-NAME treated 

arterioles was higher compared to endothelium removed arterioles in old trained rats; 

responses in young trained rat gastrocnemius muscle arterioles were not different (Figure 

2.8 B). 

 

2.4 Discussion 

The purpose of this study was to determine 1) whether aging alters Ang II-

induced vasoconstriction of skeletal muscle arterioles, 2) whether exercise training 

modulates Ang II-induced vasoconstriction in young and old animals, and 3) 

mechanisms of putative aging- and exercise training-induced differences in Ang II-

induced vasoconstriction in skeletal muscle arterioles. The present study provides 

several unique findings. First, aging enhances Ang II-induced vasoconstrictor responses 

in arterioles from both the highly oxidative soleus muscle and low-oxidative superficial 

portion of gastrocnemius muscle. Second, the age-associated enhancement of Ang II-

induced vasoconstriction occurs through an endothelium-dependent NOS signaling 

mechanism. And third, exercise training ameliorates the age-associated increase in Ang 
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II-mediated vasoconstriction in both soleus and gastrocnemius muscles, and this too 

occurs through an endothelium-dependent NOS signaling pathway. 

2.4.1 Determination of Ang II-induced vasoconstriction 

Unlike  other vasoconstrictor responses in the vasculature, Ang II-induced 

vasoconstriction is a biphasic response, where the most potent vasoconstriction occurs at 

the lower concentrations of Ang II (119). Our results (Figure 2.1) are consistent with 

those findings showing lower vasoconstrictor responsiveness with the highest 

concentrations of Ang II. Many studies have reported that activation of AT1R results in 

vasoconstriction through increased Ca++ availability in the smooth muscle cell and 

binding to AT2R causes vasodilation through increased NO synthesis (7, 11, 42, 65, 110). 

Thus, it appears that the net Ang II-induced vasoconstriction is the result of an 

interaction between vasoconstrictor influence via AT1R and vasodilator influence 

through AT2R. However, this view may be somewhat misleading for gaining 

understanding of the mechanisms of Ang II-induced vasoconstriction because several 

studies have reported the presence of vascular endothelial cell AT1R which ,when 

stimulated, result in vasodilation (8, 87). What is clear is that the endothelium plays a 

very important role in modulating Ang II-induced contraction of blood vessels through 

an endothelium dependent vasodilator mechanism (8, 38, 40, 109, 120). Therefore, Ang 

II-induced vasoconstriction may be determined by the interaction of vasoconstrictor 

signals mediated through AT1R and the vasodilator influence mediated through 

endothelial cells AT1R and AT2R. Although AT2R are also located on smooth muscle 

cells in various vascular beds which mediate vasodilation (15), vasoconstriction 
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mediated through AT1R is the predominant smooth muscle cell response. Our findings in 

skeletal muscle arterioles support the idea that the endothelium plays an important role 

in determining the biphasic Ang II-induced vasoconstrictor response (Figure 2.3). 

2.4.2 Age-associated enhancement in Ang II-induced vasoconstriction 

In humans, it has been shown that aging results in lower leg blood flow at rest 

and during exercise (5, 23, 60, 82, 84, 86). Although an impairment of endothelium-

dependent vasodilator function has been reported as a mechanism for this age-associated 

decrease in muscle blood flow in human (21, 71, 98, 118) and rats (21, 71, 98, 118), the 

role of vasoconstrictor mechanisms to explain the reduced blood flow capacity to the 

skeletal muscle with advancing aging has not been as thoroughly explored. Recently, our 

laboratory found that old age-related reductions in the ability to increase muscle blood 

flow during exercise may be due to alterations in vasoconstrictor responsiveness. Donato 

et al. (27, 28) found that an augmented α-adrenergic vasoconstriction and ET 1-mediated 

vasoconstriction may play an important role in determining age-associated reduction in 

skeletal muscle blood flow. One other possible vasoconstrictor mechanism may be an 

enhanced Ang II-mediated vasoconstriction, since it is well established that Ang II acts 

as a potent vasoconstrictor (102). Studies concerning the effect of aging on Ang II-

induced vasoconstriction are limited and equivocal. Mixed findings have been reported 

regarding the effect of aging on Ang II-related vascular responses; decreased vascular 

responsiveness to Ang II in aorta in rats with advancing age (9) and no effect of aging on 

constrictor response to Ang II in rat mesenteric resistance arteries (58). The discrepancy 

in these results may be due to differences in vessels studied. The present study 
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demonstrates that there is greater Ang II-induced vasoconstriction in arterioles from 

skeletal muscles of old rats (Figure 2.1).  

Musch et al. (75) reported that although total hindlimb muscle blood flow is not 

altered with advanced age during submaximal treadmill exercise in rats, blood flow to 

specific muscles or muscle parts are altered based on the oxidative potential of the 

muscle.  For example, perfusion of highly oxidative muscles (e.g., the soleus muscle) is 

lower during exercise in old rats, whereas blood flow to low oxidative muscles (e.g., the 

white portion of gastrocnemius muscle) is greater. Results from the present study 

showing enhanced Ang II-mediated vasoconstriction with old age in soleus muscle 

arterioles are consistent with the lower exercise hyperemia in the soleus muscle of aged 

rats.  However, data from gastrocnemius muscle arterioles showing enhanced Ang II-

mediated vasoconstriction appear to be at odds with the observation by Musch et al. (75) 

of a greater muscle perrfusion during exercise in this low oxidative muscle.  Two factors 

could serve to explain this apparent discrepancy.  First, several previous studies (6, 70, 

71, 98) as well as the present study (Table 2.2) report that the luminal diameter of feed 

arteries and arterioles are enlarged in the white portion of gastrocnemius muscle from 

old rats.  The increased size of the resistance vasculature in low oxidative muscles such 

as the white gastrocnemius muscle could contribute to the old age-related elevation in 

muscle blood flow during exercise despite a greater Ang II-induced vasoconstriction. A 

second potential factor contributing to the higher perfusion of low oxidative muscle is a 

change in the muscle recruitment pattern during exercise with aging. During moderate to 

high intensity treadmill running (20 m/min), the intensity of exercise used by Musch et 
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al. (75) to measure muscle blood flow in young and old rats, the muscles recruited in the 

young animals would predominantly be the high oxidative muscles, such as the soleus 

muscle, with little recruitment of low oxidative muscle (17, 59).  However, perfusion of 

the highly oxidative hindlimb muscles in the old rats is lower than that in the young 

animals (75).  The compromised delivery of oxygen to high oxidative muscle would 

likely cause premature fatigue of these muscles and necessitate the recruitment of other 

low oxidative muscles in order to maintain the exercise intensity imposed on the animals.  

Thus, the higher blood flow to low oxidative muscles in the older rats may more closely 

reflect a change in the motor unit recruitment pattern with age and consequently greater 

muscle activity and metabolism in the low oxidative muscle rather than a change in the 

vasomotor properties of the arterioles.   

2.4.3 Mechanisms for age-related increase in Ang II-induced vasoconstriction 

The present study indicates that the mechanisms for the age-associated alteration 

in Ang II-induced vasoconstriction is an endothelium-dependent mechanism, since aging 

differences were abolished with the removal of the endothelial cell layer (Figure 2.3). 

Previous studies have shown that aging-induced alterations in NE-mediated 

vasoconstrictor responses occur through an endothelium-dependent mechanism (27), 

whereas aging-induced enhancement of ET 1-mediated vasoconstriction is a smooth 

muscle cell-dependent mechanism through the ETa receptors (28). Results from the 

present study, as well as these of NE-mediated vasoconstriction (27), are consistent with 

previous studies reporting that endothelial vasodilator function declines with age (21, 71, 

118). Moreover, previous studies demonstrating Ang II-induced vasoconstriction has an 
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endothelium-dependent component supports the finding of this study. For example, 

Gruetter et al. (38) reported that malfunction of the endothelium significantly increases 

Ang II-induced contraction in rat aorta and bovine coronary artery, and Haberl et al. (40) 

suggested that Ang II produces a vasodilator factor from the endothelium in the rat 

cerebral arterioles. Therefore, dysfunction of endothelial cell signaling with aging can be 

an important mechanism to determine an age-associated enhancement of Ang II-

mediated vasoconstriction. 

As previously described, endothelium-dependent vasodilation is n aimportant 

factor in determining Ang II-induced vasoconstrictor responsiveness. Three pathways 

responsible for endothelium-dependent vasodilation are currently known: NO, which is 

released by action of NOS, prostacyclin (PGI2), which is formed through 

cyclooxygenase (COX), and endothelium-derived hyperpolarizing factor (EDHF).  The 

present results indicate that the NOS signaling pathway plays the major role in 

determining the age-associated alteration in Ang II-induced vasoconstriction, since this 

age-associated difference is eliminated with treatment of L-NAME in the arterioles from 

soleus (Figure 2.4 A) and gastrocnemius (Figure 2.4 B) muscles. Moreover, as illustrated 

in Figure 2.8, the effect of NOS blockade and effect of the removal of endothelium on 

Ang II-induced vasoconstrictions are comparable in arterioles from soleus (Figure 2.8 A) 

and gastrocnemius (Figure 2.8 B) muscles. These results suggest that NO is the major 

mechanism responsible for the endothelium-dependent vasodilator component of Ang II-

induced vasoconstriction in rat skeletal muscle arterioles. Although some studies have 

reported that Ang-II induced vasodilation through the endothelium is dependent on the 
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COX mechanism in rat cerebral arterioles (40) or, neither NOS nor COX (4), the 

preponderance of evidence demonstrates that Ang II-induced constriction is modulated 

by the release of endothelium-derived NO through endothelial AT1R in rat carotid artery 

(8) and cultured endothelial cell from rat aorta (87), and endothelial AT2R (65) in rat 

mesenteric resistance arteries and in rat aorta (116). Pueyo et al. (87) found that NO 

production in the endothelial cell is augmented by Ang II infusion and this increased NO 

production is abolished by losartan, an AT1R-specific antagonist. They also found that 

cyclic GMP levels are increased with Ang II infusion, but it is reduced with losartan. 

These data suggest that Ang II can elicit endothelium-dependent vasodilation by Ang II-

induced NO release and it may modulate the direct vasoconstrictor effects of Ang II on 

smooth muscle cells through increased cGMP production. Moreover, Ang II infusion 

with NG-monomethyl-L-arginine (L-NMMA), another NOS antagonist, results in less 

NO production and the treatment of L-NAME with Ang II decreases blood flow and 

vascular conductance (105).  

2.4.4 The effect of exercise training on Ang II-induced vasoconstriction 

Although several studies have been performed to investigate the effects of 

chronic exercise training on vasoconstrictor responsiveness to NE and ET-1 (20, 27, 99), 

no direct study elucidating the effect of endurance training on Ang II-induced 

vasoconstriction has been reported. It is believed that this present study is the first to 

examine the long-term exercise training effect on vasoconstrictor responsiveness to Ang 

II in rat skeletal muscle arterioles in young and old rats. Our results indicate that exercise 

training reduces Ang II-mediated vasoconstriction in arterioles from soleus and 
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gastrocnemius muscles of old rats, but has no effect on arterioles from young rats 

(Figure 2.5).  This present study is consistent with the study of Donato et al. (27) 

showing that the effect of exercise training on the NE-mediated vasomotor response 

occurs only in aged skeletal arterioles, whereas previous studies also reported that long-

term exercise training reduces NE-mediated vasoconstrictor responsiveness in 

abdominal aortas from young animals as well (20, 99). This discrepancy related to the 

effects of exercise training on NE-mediated vasoconstriction in young animals may be 

due to different adaptations to exercise in different vascular beds or differences in the 

type of artery studied, i.e., conduit arteries vs. resistance arterioles. It has shown that 

endurance training can increase leg blood flow in aged humans (22, 64, 106) and that the 

mechanism for this exercise training-induced increase in blood flow in the elderly is 

through endothelium-dependent vasodilation (19, 20, 22, 98, 106). Our results suggest 

that endurance exercise training can also ameliorate an age-associated enhancement of 

Ang II- induced vasoconstriction through an endothelium-dependent pathway, and that 

this may be one contributing mechanism to enhance blood flow in trained elderly 

individuals.  

2.4.5 The mechanism for exercise training-associated reduction in Ang II-induced 

vasoconstriction 

In addition, the present results suggest that the mechanism of this reduced Ang 

II-induced vasoconstriction in exercise trained arterioles from old skeletal muscle is the 

endothelium-dependent NOS signaling pathway (Figure 2.6 & Figure 2.7). It has been 

shown that activation of endothelial AT1R and AT2R results in the release of NO (8, 65, 
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87, 116) and PGI2 (40), which promote vasodilation in the blood vessel. The present 

study indicates that NO is fully responsible for the exercise training-associated reduction 

in Ang II-induced vasoconstriction in the rat skeletal muscle arterioles (Figure 2.9). 

Although no direct studies were performed to investigate the possible PGI2  and EDHF 

mechanisms on Ang II-induced vasoconstrictor responses, the notion that training 

primarily affects the endothelial NOS signaling pathway is supported by the finding of 

Spier et al. (98), who found that exercise training enhances the endothelium-mediated 

vasodilation via the NOS pathway in rat skeletal muscle arterioles from old rats.  

One of the mechanisms to improve vasodilator function by exercise training is 

increased eNOS mRNA and protein expression in the vascular endothelium through a 

vascular shear stress stimulus (98). Exposure of the endothelium to exercise-induced 

increases in Ang II concentration is another possible mechanism to increase eNOS 

expression in the endothelium. The plasma concentration of Ang II is increased during 

dynamic exercise, and there is a reported doubling during exercise at 80% of maximal 

heart rate (114). Also, it has been reported that Ang II increases eNOS mRNA and 

protein expression (43, 79).  Hennington et al. (43) found that acute Ang II-infusion (8 

ng/kg/min) for 110 minutes resulted in increased renal eNOS mRNA, but no change in 

renal eNOS protein concentration, whereas chronic Ang II-infusion (5 ng/kg/min) for 10 

days increased renal eNOS protein content, but no change in renal eNOS mRNA (43). 

Olson et al. (79) also found that in the bovine pulmonary artery endothelium that eNOS 

mRNA expression was increased 2.4-fold with 4 hours of 1µM Ang II infusion and 

eNOS protein content was elevated 3.3-fold with Ang II infusion for 8 hours. These data 
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suggest that chronic elevations in plasma Ang II concentration with dynamic exercise 

training could serve as a stimulus to increase levels of eNOS mRNA and protein in the 

endothelium. Consequently, there could be a greater vasodilator component to Ang II 

vasomotor responses in arterioles from exercise trained animals, resulting in a 

diminished net vasoconstrictor response. 

2.4.6 Conclusion and significance 

In conclusion, Ang II-induced vasoconstriction is determined by the net effects 

of a potent smooth muscle cell vasoconstrictor response and less potent endothelium-

dependent vasodilator influence via a NOS signaling pathway. With aging, Ang II-

mediated vasoconstriction is enhanced due to an age-associated dysfunction of the 

endothelium-dependent NOS vasodilator mechanism. Exercise training can ameliorate 

this age-associated enhancement of Ang II-induced vasoconstriction through an 

enhancement in the endothelium-dependent NOS signaling pathway.  

Although the majority of studies in the literature have focused on the role of Ang 

II in the regulation of renal and splanchnic blood flow, Ang II is also important for the 

regulation of skeletal muscle blood flow during exercise. Since aging can elevate the 

Ang II-induced vasoconstrictor responsiveness of skeletal muscle arterioles and exercise 

training can ameliorate this enhanced vasoconstriction to Ang II, these data in the 

present study suggest that the effects of aging and exercise training on skeletal muscles 

vasomotor responsiveness to Ang II may play a role in old age-associated reductions in 

skeletal muscle blood flow and the training-induced restoration of muscle perfusion 

during exercise. 
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CHAPTER III 

SUMMARY AND CONCLUSION 

 

 

The overall purpose of this dissertation research was to determine whether aging 

alters Ang II vasoreactivity of skeletal muscle resistance arterioles and whether exercise 

training can ameliorate possible alterations in Ang II-induced vasoconstriction. A 

secondary purpose was to elucidate the mechanism(s) of possible aging and exercise 

training effects on Ang II-induced vasoconstrictor responses of skeletal muscle 

resistance arterioles from old rats. We tested six hypotheses and found that: 

1) there was higher Ang II-induced vasoconstriction in arterioles from soleus and 

gastrocnemius muscles of old vs. young rats (Figure 2.1), 

2) removal of the endothelium abolished the age-associated difference of Ang II-

mediated vasoconstriction in soleus and gastrocnemius muscle arterioles 

(Figure 2.3), 

3) inhibition of NOS activity with L-NAME abolished the age-associated 

difference in Ang II-mediated vasoconstriction in soleus and gastrocnemius 

muscle arterioles (Figure 2.4), 

4) exercise training decreased Ang II-mediated vasoconstriction in aged arterioles 

from soleus and gastrocnemius muscles (Figure 2.5), 
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5) removal of the endothelium eliminated the exercise training-associated 

reduction in Ang II-mediated vasoconstriction in arterioles from soleus and 

gastrocnemius muscles of old rats (Figure 2.6), and 

6) inhibition of NOS activity with L-NAME eliminated the exercise training-

associated reduction of Ang II-mediated vasoconstriction in arterioles from 

both soleus and gastrocnemius muscles of aged rats (Figure 2.7). 

In conclusion, aging results in enhanced Ang II-mediated vasoconstriction in the 

arterioles from the rat skeletal muscle due to age-associated dysfunction of endothelium-

dependent NOS signaling pathway. However, exercise training could ameliorate this 

age-associated increase in Ang II-induced vasoconstriction in the arterioles from the rat 

skeletal muscle through an enhanced endothelium-dependent NOS signaling mechanism. 
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