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ABSTRACT 

Delayed Neutron Emission Measurements for U-235 and Pu-239. 

(December 2006) 

Yong Chen, B.S., Tsinghua University; 

M.S., Tsinghua University 

Chair of Advisory Committee: Dr. W. Dan Reece 

The delayed neutron emission rates of U-235 and Pu-239 samples were measured 

accurately from a thermal fission reaction. A Monte Carlo calculation using the Geant4 

code was used to demonstrate the neutron energy independence of the detector used in the 

counting station.  

A set of highly purified actinide samples (U-235 and Pu-239) was irradiated in these 

experiments by using the Texas A&M University Nuclear Science Center Reactor. A fast 

pneumatic transfer system, an integrated computer control system, and a 

graphite-moderated counting system were constructed to perform all these experiments. 

The calculated values for the five-group U-235 delayed neutron parameters and the 

six-group Pu-239 delayed neutron parameters were compared with the values 

recommended by Keepin et al. (1957) and Waldo et al. (1981). These new values differ 

slightly from literature values. The graphite-moderated counting station and the 

computerized pneumatic system are now operational for further delayed neutron 

measurement.  
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CHAPTER I 

INTRODUCTION 

A prompt neutron is a neutron immediately emitted by a nuclear fission event (10-14 

s), as opposed to a delayed neutron which is emitted by one of the fission products anytime 

from a few milliseconds to a few minutes later. These “delayed neutrons” are the result of 

the beta transitions that occur after fission product decay (Roberts et al. 1939). 

There are over 270 radionuclides that have been identified as delayed neutrons 

precursors (DNP) (Brady and England 1989). Keepin et al. (1957) reported delayed 

neutron emission data by using six groups. Twelve parameters are needed to define a set of 

the six-group delayed neutron data for a specific fissile nuclide and specific 

fission-inducing neutron energy. These parameters include six relative yields (known as A), 

and six decay constants (known as λ) and I is the pseudo group number. The equation for 

delayed neutron emission rate (DNP(t)) is shown in Eq. (1).  

∑
=

−=
I

i

t
i

ieAtDNP
1

)( λ .                (1) 

Although this is a very mature field, we have found many interesting things while 

investigating delayed neutron parameters. Reece and Wang (2005) used Monte Carlo 

calculations to perform sensitivity studies on the uncertainty of the individual delayed 

neutron constants. They found that the system of variables used to describe delayed 

neutron yields constitutes an ill-posed problem, meaning that arbitrarily small changes in 
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the data will produce arbitrarily large changes in the constants themselves. This suggests 

that small errors in flight times and the different energy responses of the detectors for 

individual groups could have a large effect on the assignment of delayed neutron 

parameters. 

 

1.1 OBJECTIVE 

The primary objective of this work was to use the Texas A&M University Nuclear 

Science Center Reactor (NSCR) and a special designed graphite-moderated counting 

system to measure the time-dependent delayed neutron emission rates. We irradiated 

samples in the NSCR at a position with highly thermalized neutron fluence rate. The 

sample was pneumatically transferred to a counting station composed of graphite and 3He 

detectors. The geometry was optimized to minimize any energy dependence in the energy 

spectrum of the delayed neutrons. Much effort was put into accurately assessing the flight 

time of the sample as it leaves the reactor until it enters the counting station. An in-core 

switch and an optical sensor in the detector array were used to get precise sample flight 

times. Three multi-channel analyzers (MCA), using in multi-scaler mode were used to 

record the detector signals. We developed a computer program to control the pneumatic 

sample transfer system. Three samples (two U-235s and one Pu-239) were irradiated and 

measured in this project.  
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1.2 THEORY 

The mechanism of delayed neutron emission in fission is well understood in 

principle (Bohr and Wheeler 1939). The beta-decay of a nuclide (Z, N) with high decay 

energy, usually called the delayed neutron precursor (DNP) can populate excited states. 

The daughter nuclide (Z+ l, N-1) in excited state may be lying above the neutron binding 

energy. The daughter nuclide can possibly de-excite into the nucleus (Z+ 1, N-2) through 

the emission of a neutron. The timescale of these emissions of delayed neutrons from the 

daughter nuclide is controlled by the half-life of the parent nuclide (Z, N). Those 

radionuclides which have a few neutrons in excess of a closed neutron shell are most 

likely to emit delayed neutron through this process. 

Fig. 1 is a typical decay scheme with delayed neutron emission for precursor Br-87 

(Charlton 1998). Br-87 decays to ground state Kr-87 and excited state Kr-87* by beta 

emission with a 55 s half life. Then Kr-87* can decay by neutron emission. The half life of 

this neutron emission depends on the half life of Br-87’s beta emission.   
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Fig. 1. Decay scheme for Br-87 (with 55 s half- life). 
 

The production rate of a particular delayed neutron precursor (DNP) during 

irradiation is determined below.  

NY
dt

dN
fC λφ −∑= ,                   (2) 

where N is the atom density of the DNP, YC is the yield probability of the DNP from a 

fission reaction, ΣfФ is the fission rate and λ is the decay constant of the DNP. The neutron 

capture cross section of the DNP is ignored in this equation and the parents of the DNP are 

assumed to decay instantly after the fission reaction. 

This equation can easily be solved for N as function of the irradiation time, t, as 

shown in Eq. (3). 

87Br 

87Kr* 86Kr Neutron 

Emission 
87Kr 

87Rb 

87Sr 

β 

β

β

β 
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)1()( tfC e
Y

tN λ

λ
φ −−

Σ
= .                           (3) 

To obtain the neutron emission rate from Eq. (2), we multiply both sides by the 

decay constant of the DNP and the probability that the DNP undergoes decay by the 

neutron emission (Pn). Further, the neutron emission rate after an actinide sample has 

been removed from the reactor can be found by knowing the irradiation time, t. The 

equation for the delayed neutron emission rate [DNP(t)], from all of the DNPs ( the total 

number of DNP is, i, Pni, Yci and λi represents for a special DNP)at time, t, after an 

irradiation for a time, tr, is:  

∑
=

−−−Σ=
I

i

tt
fii

iri eeYcPntDNP
1

)1()( λλφ .                  (4) 

We choose tr (about 200 s) for detection time that is much larger than the half-life of 

the longest lived DNP [the longest half-life of DNP (Br-87) is 55.6 s], then Eq. (4) reduces 

to: 

∑
=

−Σ=
I

i

t
fii

ieYcPntDNP
1

)( λφ                                         (5) 

To organize the large number of DNPs, Keepin et al. (1957) introduced the 

suggestion of the “six-group” pseudo model to describe delayed neutron emission for both 

fast and thermal neutron-induced fission. The relative yields assigned to six-group based 

model [shown in Eq. (7)] can be determined from the value of vD (the total number of 

delayed neutrons emitted per fission) which comes from the delayed neutron emission 

probabilities and cumulative yields for each precursor in this pseudo group. The relative 

yield due to several DNP’s in a pseudo group is shown in Eq. (7) (N represents the number 
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of DNPs in the special pseudo group). 

∑
=

=
N

i
iiDj YcPnv

1
,                                (6) 

∑
= 6

j
Dj

Dj
j

υ

υ
α .                                      (7) 

Using Eq. (6) and Eq. (7), Eq. (5) can be simplified to the result shown in Eq. (8).  

∑
=

−Σ=
6

1

)(
j

t
jfDj

jevtDNP λαφ .                             (8) 

We combine all the unknown quantities on the right hand side of Eq. (8) are 

combined and a new variable Ai is defined as shown in Eq. (9) 

∑
=

−=
6

1

)(
j

t
j

jeAtDNP λ .                          (9) 

This six pseudo group model was used in this thesis for the calculation of delayed 

neutron parameters. Table 1 shows the literature values of the delayed neutron parameters 

for U-235 irradiated by thermal neutrons (Keepin et al. 1957). 

 

Table 1. Six-group model with twelve parameters for U-235. 
Group DNP Half-life (s) Yield 

1 87Br 55.9 0.033 

2 88Br 22.7 0.219 

3 93Rb 6.24 0.196 

4 139I 2.3 0.395 

5 91Br 0.61 0.115 

6 96Rb 0.23 0.042 
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1.3 THE HISTORY OF DELAYED NEUTRON MEASUREMENT SYSTEMS 

The delayed neutron measurement systems always consist of three major 

components: (1) a neutron source for sample irradiation, (2) a sample transfer system, and 

(3) a detector assembly counting system. The neutron source may be a sample irradiated in 

nuclear reactor, a neutron generator, or a spontaneous fission source, such as AmBe. Most 

neutron sources [(α, n) or (γ, n) reaction] have the higher neutron average energy than that 

of the delayed neutron DNPs. The neutron source may be moderated by lower atom 

number materials (like hydrogen or carbon). For the second part, most systems use a 

pneumatic transfer technique. The samples were sent to and from the irradiation position 

in a sealed capsule. The primary requirements of the sample transfer system are speed and 

reliability. 

The third component of the DN measurement system consists of a detector system 

and the associated electronics. The detector system includes the neutron detectors, a 

moderator and shielding station. The most common neutron detectors have been used is 

BF3 detectors because of their good sensitivity and reasonable low cost. The more 

efficient 3He neutron detectors have been used as well though more expensive. A 

disadvantage of 3He detectors is their greater relative sensitivity to gamma radiation. 

Since delayed neutrons have a wide range energy spectrum, the energy efficiencies are 

extremely important to each measurement system.  

Keepin et al. (1957) performed a detailed study of delayed neutron emission at the 

Los Alamos National Laboratory using Godiva Reactor between the years 1954-1975. 

The “six-group” concept introduced as his major results was widely used. The neutron 
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detector was a 1.25 cm diameter BF3 proportional counter in “long” geometry (Hanson 

and Mckibben 1947), modified by adding a shaped sleeve of boron plastic around the 

central BF3 tube. The flight time of the fissile sample from the point of irradiation to the 

counting station was 50 milliseconds.   

Jewell et al. (1968) at the Lawrence Radiation Laboratory were the first to study an 

energy-independent, high neutron-efficiency graphite-moderated counting system. They 

used 40 1.5 m long BF3 proportional counters imbedded in a graphite cylinder (1.83 m 

long and 1.53 m in diameter) surrounded by 60 cm water shielding for absorbing and 

reflecting neutrons.  

Waldo et al. (1981) used the Lawrence Livermore Pool-Type Reactor for thermal 

fission delayed neutron measurements. The counting station consisted of 20 3He detectors 

placed concentrically around the sample and embedded in polyethylene. The rabbit 

transfer time was 1 s and the detector dead time was 3.1 µs. To decrease the sample 

transfer time, one detector was placed just above the reactor pool to get the shortest 

sample transfer distance. Because of the long sample flight time, he introduces a 

“five-group” model.  

Charlton (1998) used NSCR for fast fission delayed neutron measurements. The 

detector array consisted with three BF3 tubes embedded in a 40 cm polyethylene 

cylindrical block. A cadmium sheath surrounded the outside of the block to absorb any 

extraneous or background source of thermal neutrons.  
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1.4 PREVIOUS EFFORTS AT UNCERTAINTY FOR DELAYED NEUTRON 

PARAMETERS 

As mentioned previously, Reece and Wang (2005) are exploring the methodology of 

assigning values to delayed neutron parameters. Three FORTRAN programs were written 

and used to simulate the measurement of delayed neutrons. The literature values for the 

six delayed neutron groups were used to generate the delayed neutron count rate as a 

function of time. The time steps were chosen to simulate the dwell time in a MCA. The 

count in a particular channel is simply the neutron count rate times the dwell time. The 

initial time steps were in 25-millisecond increments up to 10 s, and then 0.5-s time steps 

are taken up to 100 s. Finally, 10-s time steps are taken up to 280 s.  

There are experimental and conceptual limits on how small or large the time steps 

can be: too long and the count rate changes significantly during the time step; too short 

and the Poisson variation of the counts is increased excessively. Based on a few 

calculations in which the dwell times were adjusted, these time steps were found to be 

close to optimal. Time steps shorter than about 25 milliseconds are difficult to use for a 

variety of reasons, but fortunately 25 milliseconds is sufficiently short so that the 

shortest-lived group can still be adequately quantified. The breaks at 10 seconds and 100 

seconds are because the counts in a channel are nearing 2500, the limit for 2% relative 

uncertainty for Poisson distributed variables, and because the length of the longer time 

step will have less than 5%-10% change during the new dwell time.  

After assigning time steps and computing the counts at each time, the FORTRAN 

programs take the counts from a particular time channel based on theoretical count rate 
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and dwell time. These counts are distributed randomly using the IMSL (Visual Numerics 

2005) ANORIN routine that uses an inverse Poisson distribution.  

 These randomly distributed counts are used as “simulated data” in each of the three 

codes to find the six-group yields, the six decay constants, and an arbitrary constant that 

includes the fluence, sample size, and detector efficiency. The three algorithms are used to 

search for those variables that minimize the sum of the square of the differences between 

the simulated data and the fits generated using the algorithms.  

 

1.4.1 Algorithm 1 matrix inversion 

These three codes diverge in their methods to estimate the original parameters used 

to generate the simulated data. The matrix inversion method is the algorithm used by 

Keepin et al. (1957), Waldo et al. (1981), and others to optimize the selection of group 

parameters.  

The delayed neutron counts, in a MCA, are governed by Eq. (10). 

∑
=

−=
I

i

t
i

ieAtptY
1

0 0

)()( λ ,                                     (10) 

where Ai is the yield of the ith precursor group, λi is the decay constant for the ith group, I is 

the number of groups (assumed to be six in this thesis), p is a proportionality constant that 

depends on the neutron fluence rate, the mass and isotopic purity of the sample, the 

detector efficiency, and the dwell time of the MCA. It is also important that the irradiation 

times are long enough so that the delayed neutron precursors are at saturation. The 

superscript 0 designates that these are the optimal values. When fitting experimental data, 
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the difference between observed data and the best guessed A and λ values can be written 

as Eq. (11): 

∑
=

−−=
I

i

t
i

ieAtptYtZ
1

)()()( λ ,                                         (11) 

where with no superscript 0, the A’s and λ’s are estimates of A0 and λ0, and Z is the 

difference between observed and estimated data. The guess of A and λ can be improved by 

substituting: 

ii
new
i

ii
new
i AAA

λλλ ∆+=

∆+=
.                                         (12) 

If E2 is the square of the differences between the experimental and calculated points, 

it is also the squared differences between Z(t) and the contributions of the ∆Ai’s and ∆λi’s, 

giving: 

2

0 0

2 )()()()(∑ ∑
∞

= =

−
⎥
⎦

⎤
⎢
⎣

⎡
∆−∆−=

i

I

i
iii

t tAAetptZtWE i λλ ,                        (13) 

 

where W (t) is the reciprocal of the variance of the data point at t. When E2 is minimized, 

this is the best fit of the data. At this minimum, the derivatives will approach zero. If  

[ ]

∑

∑
∞

=

−

∞

=

−−

=

=

0
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∆Ai and ∆λi can be found by inverting the G and H matrix and solving for the individual 

∆Ai and ∆λi terms like so: 

⎟
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These new estimates are used in Eq. (12) and the process is continued until the 

differences between successive iterations are small. 

 

1.4.2 Algorithm 2 Levenberg-Marquardt method 

The second method was used by researchers from the late 1960’s until today. The 

heart of the algorithm is based on work by Levenberg (1944) and further developed by 

Marquardt (1963). Both algorithm 2 and 3 discussed below are simplex algorithms. 

Simplex algorithms are a class of algorithms that seek maxima or minima by assessing the 

local gradient among the variables to be optimized and following this gradient until it 

approaches zero – the location of local maxima or minima.  

 

1.4.3 Algorithm 3 Quasi-Newton method 

The last method was from a routine provided by the IMSL library. This routine used 

a Quasi-Newton method (Gill and Murray 1972) with a finite difference gradient to help 

locate a minimum. This routine has the advantage of looking over a wide range of 
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variables to find global minimums.  

1.4.4 Results from the three algorithms 

This simulation was as close as one can hope to get to a perfect experiment. The 

flight time of the sample from the reactor after irradiation was zero. The detector dead 

time for the high count rates in the experiment is zero. There is no energy dependence 

among the detectors. There are no background counts. There is no drift in voltage or 

change in sensitivity during the experiment. In short, the only uncertainly in the simulated 

experiment comes from the Poisson distribution of the counts themselves and the 

rounding from real numbers to integers to simulate counts. Even these effects are 

minimized by having a high initial count rate (400,000 cps) and optimized dwell time. 

 

Delayed Neutron Count Rates vs. Time
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Fig. 2. Delayed neutron count rates vs. time. 
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Graphs of the theoretical curve and Poisson distributed data and smooth fitted 

function data are given in Fig. 2. 

A glance at the differences between the Poisson distributed values and the values 

generated from the variables produced by the simplex fit shows how well the values fit the 

data. Within the resolution of the graphs, the theoretical and simplex fits values can’t be 

distinguished most of the time. A plot of weighted residuals, that is, the deviations divided 

by the respective weighting factor is shown in Fig. 3. This is a powerful tool for locating 

bias in a statistical fit. Fig. 3 shows no pattern to the weighted residuals. 

 

Weighted Residuals vs. Time
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Fig. 3. Weighted residuals as a function of time. 
 

Although these fits look superb, there is reason to challenge these results. Table 2 

shows the variation of the twelve parameters within different fitting method. These 
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parameters vary by as much as 73%.  

 
Table 2. Variance of the parameters when using different fitting methods. 

 Keepin’s matrix Levenberg-Marquardt Quasi-Newton 

λ1/λ1
0 0.9995 1.0005 0.9688 

λ2/λ2
0 1.0002 1.0001 0.9655 

λ3/λ3
0 0.9996 0.9992 0.7423 

λ4/λ4
0 1.0001 0.9988 0.6348 

λ5/λ5
0 1.0041 1.0310 0.3353 

λ6/λ6
0 0.9925 0.9917 0.5530 

a1/a1
0 0.9995 0.9993 0.6726 

a2/a2
0 1.0004 1.0002 0.7254 

a3/a3
0 0.9986 1.0002 0.4294 

a4/a4
0 1.0013 0.9993 0.4865 

a5/a5
0 0.9908 1.0004 1.7365 

a6/a6
0 1.0166 1.0398 2.3556 

E2 645.2630 644.5337 640.1092 

               

Even in this ideal measurement, very small changes can have large effects on the 

delayed neutron parameters. We realized that the different neutron energy for the 

individual delayed neutron group and the energy responses of the detector array could also 

have a large effect on the parameters.   

The delayed neutron energy spectrum for thermal neutron fission of U-235 with all 
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the six groups is shown in Fig. 4 (Charlton 1998).  
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Fig. 4. U-235 delayed neutron energy spectrum. 
 

Table 3. Delayed neutron average energy for U-235 with six-group model. 
Delayed neutron Group Number Average Energy (keV) 

1 400.3 

2 466.5 

3 437.6 

4 552.4 

5 513.2 

6 535.2 

 

The U-235 delayed neutron-energy varies from 0 to 1.5 MeV. From Table 3, we can 

see the delayed neutron average energy also varies among groups (Brady and England 
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1989). The size of the neutron detector, moderator material, and counting geometry can 

make appreciable differences in the detector energy response. As discussed before, this 

small error in the measurement can result in a large error in the value of the delayed 

neutron parameters. A neutron-energy independent counting station is needed for our 

experiment. The new counting station constructed using graphite was designed by using 

modern Monte Carlo software to minimize the effect of neutron energy. 
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CHAPTER II 

EXPERIMENT SETUP 

Pure samples of fissile materials were irradiated in a highly-thermalized position in 

the NSCR, pneumatically transferred to a graphite-moderated counting system 

immediately after irradiation and the neutron emission rate counted as a function of time.  

The delayed neutron measurements were performed at NSC reactor during last ten 

years (Saleh 1995, Charlton 1998). The main part of this experiment is a new 

graphite-moderated counting station. The fast pneumatic transfer system we used follows 

the design by Charlton (1998). The samples were transferred in the core and irradiated for 

a pre-selected time period and then were transferred again to a graphite-moderated 

counting station. The count rates were acquired by three MCAs in a pre-selected dwell 

time. When the detection was finished, the samples were transferred to a remote storage 

for further decay. The pneumatic transfer system was controlled by C program written by 

Yong Chen and Alfred Hanna.  

Three 3He detectors (CANBERRA model 2006) were placed at different distances 

from the counting station receiver. The energy response function of each detector was 

determined using the GEANT4 code developed by CERN (European Organization for 

Nuclear Research 2005). A C language program written by Yong Chen and Alfred Hanna 

was used to drive a CTR05 counter board to control the pneumatic system, including a 

precise timer to measure flight time with error on the order of 0.001 second.  
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2.1 PNEUMATIC TRANSFER SYSTEM 

The transfer system follows the design used by Charlton (1998). Polyethylene 

tubing (2.5 cm O.D.) was used for sample line and 2 cm O.D. air hose for CO2. CO2 gas 

was supplied at 80 psi (3 s for each time) to transfer the sample which was controlled by 

the integrated computer system. A photosensor located at the counting station and a switch 

sensor in the core was used to measure the sample transit time from the core to the detector. 

The measured sample transfer time for this system is from 0.6 s to 1.2 s.  

An in-core receiver with a switch sensor was designed, built for the irradiation of the 

samples and accurate flight time measurement. The device consisted of three individually 

machined aluminum parts with threaded connections. A radiation-resist sealant was used 

to seal the joints. This in-core receiver can be placed in a pre-installed aluminum stander 

in the core. 30 feet aluminum gas line and sample line was weld in the receiver to match 

the distance from the core to the reactor pool water level. A wire fastened inside the gas 

line was ready for the signal transfer for the switch sensor. Fig. 5 is a cross-sectional view 

of the internals of the in-core receiver.  
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Fig. 5. Pneumatic in-core receiver (cross-sectional view). 
 

When the sample comes to the core receiver, the weight of the sample closes the 

switch to send out a signal. When the sample leaves the receiver, the different mass of the 

two sides of the switch makes the switch open. The signals were send out when the sample 

arrived and leaved the switch through the wire in the gas line.  

Fig. 6 shows the configuration of the pneumatic transfer system.  

 

Gas line 

Sample pipe 

Signal wire 

Sample 

Switch 

Aluminum can 
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Fig. 6. Fast pneumatic transfer system schematic (PN-1, PN-2 and PN-3 are electrically 
operated pneumatic valves). 

 

2.2 THE 3He DETECTOR COUNTING STATION 

Three 3He tubes (LND Model 252) were embedded in the holes of a 

graphite-moderated counting station at different positions (Fig. 7 and Fig. 8). To decrease 

the effects resulted from the gamma rays, 4 cm of lead shot surrounds each detector tube. 

A thin aluminum can was used to contain the lead shot and fasten the individual detector 
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in the graphite blocks.  Also, because the counting station is constructed with graphite 

blocks, we can move the blocks to accommodate different detector distances. 

The 3He tubes are located at different distances from the sample receiver. By doing 

this we are able to reconstruct the entire delayed neutron count rate as a function of time 

for a single radiation. The 3He detectors farthest from the sample will collect the first part 

of the spectrum when the count rates are high and the nearest detector is paralyzed by the 

count rate. The 3He detectors closet to the sample will collect the spectrum near the end of 

the counts when the count rate is low and the far detectors produce few counts. The 

relative efficiency of the detectors was measured by swapping the 3He detectors among 

the positions while exposing them to an AmBe neutron source. 

The counting station was constructed using graphite to minimize any effects of the 

delayed neutron energy spectrum. We used the GEANT4 code to simulate the detector 

efficiencies for different distances and different neutron energies. The code is listed in 

Appendix A. 
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Fig. 7.  The 3He detector (LND model 252). 
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Fig. 8. The 3He detector array (with exploded view). 
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Fig. 9 shows the detector efficiency (the ratio of the number of the recoil protons 

divided by the number of the initial neutrons) as a function of monoenergetic neutron 

energy for selected energies. Note that the detection efficiency for three positions is 

constant in the delayed neutron energy range from 100 keV to 1000 keV.  
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Fig. 9. Detector efficiency for three detectors (position 1 is 40 cm from the receiver; 
position 2 is 60 cm from the receiver and position 3 is 70 cm from the receiver).  

 

The relative efficiencies of the detectors in different positions were measured by 

putting individual detector in same position against a constant AmBe neutron source. The 

calibration time is 30 min for each detector. The results are shown in Table 4. 
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Table 4. Relative efficiency of the detectors (position 1 is 40 cm from the receiver; position 
2 is 60 cm from the receiver and position 3 is 70 cm from the receiver).  

 Position 1 Position 2 Position 3 

Detector 1 
1.01±0.002 1.0±0.003 1.01±0.003 

Detector 2 
1.0±0.001 1.0±0.002 1.0±0.002 

Detector 3 
1.02±0.002 1.03±0.003 1.03±0.002 

 

2.3 ELECTRONICS SETUP 

The system electronics are shown in Fig.10. Three 3He detectors were embedded in the 

downstairs graphite-moderated counting station. Since the graphite is electric conductive 

material, a special designed stander for three preamplifiers (CANBERRA model 2006), 

high voltage supply connectors and sensor connectors was placed near the counting system 

and the reactor pool at the upstairs level to keep certain distance from the detectors and the 

preamplifiers connected with high voltage supply cables. The amplifiers, high voltage 

supplies and the Multiport II MCA from CANBERRA with three ports were placed in a 

counting room near the reactor bridge at upstairs level. 
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Fig. 10. System electronics. 
 

A series of cables (almost 100 feet for each) runs from the counting station to the 

counting room around the reactor wall. The Multiport II MCA is fully remote-controlled 

under Genie 2000 via standard Genie 2000 tools. The distance from high voltage supplies 

to the stander of preamplifiers was around 100 feet. To maintain the 1000 volt working 

voltage required by the detector, a large (2 cm) diameter cable was substituted for the 

normal (0.6 cm) diameter coaxial signal cable.   
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Computer  
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2.4 INTEGRATED COMPUTER CONTROL SYSTEM 

A C language program was used to control the operations of the three solenoids to 

effectively transfer the sample to and from the reactor and collect the signals from the 

sensors installed on the sample’s track to measure the transit time.   

As shown in Fig.11, the C language program was written (with the cooperation of 

Alfred Hanna) to automatically control the irradiations. The copy of this C program is 

given in Appendix B. This code allows for three settings: two sensors, one sensor or no 

sensor. If the program is expected in the “no sensor” and “one sensor” mode, the code 

assigns a 1 s flight time. The program prompts the user to input the specific irradiation 

parameters (irradiation time and total counting time), then executes the delayed neutron 

measurement. First, the sample is transferred into the core from the receiver, where it is 

irradiated for the specified time period. Then, the sample is transferred to the counting 

station, and the actual sample transit time is recorded (in the “two sensor” mode). When 

the sample reaches the counting station (noted by the photosensor), the MCA begins 

counting with the specified dwell time. After reaching the total counting time, the sample 

is transferred from the counting station to a remote storage location in the Nuclear Science 

Center lower research level. The program will read the permit signal from the reactor 

control room and the initial signal from the sensors. If the readings of the system setting 

are not in agreement with the user’s specification, the program terminates.  



 29

 

Fig. 11. Computerized control system for pneumatic transfer system.  
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CHAPTER III 

PROCEDURE 

The samples were irradiated in the NSCR core at a power lever of 100 kW and an 

irradiation time of 180 s. All the irradiations were conducted in position B-1 of the NSCR 

which has a highly thermalized neutron fluence rate. After the irradiation, the samples 

were transferred to the 3He detectors counting station. The count rates in pre-selected 

dwell time (25 milliseconds) were collected by the MCAs. The total counting time is 200 

s. The flight times were recorded by the control program with a precise timer. When the 

measurements finished, the samples were then transferred to a remote storage location for 

further decay. All of these experiments were controlled by a C program.  

Three irradiations were performed for each of the U-235 and Pu-239 samples and 

four blank irradiations to test the system. These samples were fabricated by Oakridge 

National Laboratory in Tennessee and used by Charlton (1998) in his experiments. The 

samples were pressed oxide aluminum pellet and were contained in a weld titanium 

capsule as shown in Fig. 12. We welded the samples in a small plastic tube with foam 

stuffing for protecting them during the transfer process and avoiding any contamination to 

the pneumatic system. Table 5 shows the pertinent information of each sample.  
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Table 5. Samples used in this work. 
Element Sample Number Actinide Mass (mg) Purity (%) Assay Date 

U-235 397-22-5 12.27 97.663 ± 0.003 Oct 1,1987 

U-235 397-22-6 11.95 97.663 ± 0.003 Oct 1, 1987 

Pu-239 114-57-3 10.0 99.745 ± 0.003 Sept 1, 1978 

Al blank  48.2 100.0 n/a 

 

 

Fig. 12. Sample design. 
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Fig. 13 shows the graphite counting station and Fig. 14 shows the electronics and 

computer control of the counting station.  

 

 

Fig. 13. The counting station. 
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Fig. 14. The electronics and computer control of the counting system.  
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CHAPTER IV 

RESULTS AND CONCLUSIONS 

The measured delayed neutron emission rates equal to the measured time-dependent 

count rates for each detector divided by the relative detector efficiencies and individual 

detector energy efficiencies. The emission rates measured by the three detectors were 

merged together. Detector 1 with the shortest distance to the sample had the highest 

measured count rates. However it had very large dead time during the early part of the 

measurement. On the other hand, detector 3 with the longest distance to the sample had 

lower measured count rates. But it had essentially no dead time.  During the decay of the 

samples, the dead time of each detector decreased with the decrease of gamma rays and 

delayed neutron emission rates. We separated the total detection time into three parts (0 s 

to 10 s, 10 s to 50 s, and 50 s to 200 s). For the first part, we used the count rates measured 

by detector 3, detector 2 for the second part, and detector 3 for the third part.  

Parameters (relative yields and decay constants) for five of the traditional six-groups 

were acquired from the count rates by using a least squares fitting technique developed by 

Reece and Wang (2005). Eq. (9) was used as the model for the parameter fitting.  

Fig. 15 shows the measured delayed neutron count rates for U-235. The sample 

flight time was 1.124 s.  
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Fig. 15. Measured delayed neutron emission rates (s-1) for U-235. 
 

To compare our measured delayed neutron emission rates and literature values, we 

separated the time scale in Fig. 15 into three parts: 0-10 seconds, 10-50 seconds, and 

50-200 seconds. 
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Fig. 16. Measured delayed neutron emission rates (s-1) for U-235 (0 s-10 s). 
 

Fig. 16 shows the measured delayed neutron emission rate at the beginning of the 

counting period. We know that delayed neutron group 5 and group 6 with short half-lives 

dominate at this time. Our measurement values appear to lower than Keepin’s values.  
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Fig. 17. Measured delayed neutron emission rates (s-1) for U-235 (10 s-50 s). 
 

Fig.17 shows the measured delayed neutron emission rate in the middle of the 

counting period. We know that delayed neutron group 2, 3 and 4 dominate at this time. 

Our measured values seem to match Keepin’s values.  
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Fig. 18. Measured delayed neutron emission rates (s-1) for U-235 (50 s-200 s). 
 

Fig. 18 shows the measured delayed neutron emission rate at the end of the counting 

period. We know that delayed neutron group 1 dominates at this time. Our measurements 

appear to be higher than those calculated values using Keepin’s values.  

These differences may come from the energy-dependent detector efficiencies for the 

different counting stations used. Keepin et al. (1957) used paraffin as moderating material. 

The neutron absorption cross section for the hydrogen is much larger than that for carbon. 

Because of the difference in thermal neutron absorption, Keepin’s counting system may 

have a higher detector efficiency for the high-energy delayed neutron group 6 and lower 

detector efficiency for the low-energy delayed neutron group 1 compared with our 

counting system, using graphite.   
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The measured delayed neutron emission rate for Pu-239 is shown in Fig.19. The 

sample flight time is 1.203 s. 
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Fig. 19. Measured delayed neutron emission rates (s-1) for Pu-239. 
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Fig. 20. Measured delayed neutron emission rates (s-1) for Pu-239 (0 s-10 s). 
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Fig. 21. Measured delayed neutron emission rates (s-1) for Pu-239 (10 s-50 s). 
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Fig. 22. Measured delayed neutron emission rates (s-1) for Pu-239 (50 s-200 s). 
 

We see roughly the same pattern of response for Pu-239 as we did for U-235 which 

were shown in Fig.20, Fig.21 and Fig.22. The relative yields were then normalized to 

unity in order to match the formulation of Eq. (9). The equation for normalization is as 

follows, 

∑
=

= 6

1j
j

j
j

A

A
α ,                                                                    (18) 

where αj is the normalized relative yield and Aj is determined above. Table 6 contains the 

values of the group decay constants and the relative group yields in the five-groups 

structure for U-235 and Pu-239. 
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Table 6. Measured delayed neutron parameters (decay constants and relative yields) for 
U-235 and Pu-239. 
 U-235 Pu-239 
  This work Keepin et al. 

1957 
Waldo et al. 
1981 

This work Keepin et al. 
1957 

Waldo et al. 
1981 

λ1 0.0121 0.01244 0.01255 0.0122 0.0128 0.01246 

α1 0.033 0.033 0.033 0.027 0.035 0.0269 

λ2 0.0317 0.0305 0.0309 0.0311 0.03 0.02941 

α2 0.223 0.219 0.205 0.278 0.298 0.259 

λ3 0.08 0.1114 0.114 0.092 0.12375 0.0714 

α3 0.145 0.196 0.199 0.082 0.211 0.111 

λ4 0.275 0.3013 0.328 0.22 0.31 0.212 

α4 0.41 0.395 0.388 0.204 0.326 0.2246 

λ5 2.09 1.136 2.06 0.345 1.1214 0.324 

α5 0.158 0.115 0.175 0.229 0.086 0.209 

λ6   3.013   1.26 2.6965 1.28 

α6   0.042   0.149 0.044 0.169 

 

The measurements by Keepin et al. (1957) and Waldo et al. (1981) were performed 

in a thermal irradiation position. The values measured here are close to those of Waldo et 

al. (1981). However, we do see minor differences between our data and the data of Keepin 

et al. (1957), particularly in the first 10 seconds after irradiation and after 150 seconds 

post-irradiation. 

 



 44

CHAPTER V 

SUMMARY AND FUTURE WORK 

A new delayed neutron counting system has been installed at the Nuclear Science 

Center using graphite as the moderating medium in the counting station.  The pneumatic 

transfer and the operation of the counting system is computer controlled.  The flight times 

can be measured to within a millisecond.  Knowing the flight times accurately allows the 

combination of multiple runs with minimal error.  By combining multiple runs the effects 

of Poisson statistical variation can be minimized.  Furthermore, because of the varying 

distances of the detectors from the counting station receiver, the count rate can be 

collected from entry into the counting station out to 200 seconds and beyond for each 

sample. Detector 1 with the shortest distance to the sample is saturated at the beginning of 

the counting period because of high counts rate. However, Detector 3 with the longest 

distance to the sample works well at this time. At the end of the counting period, detector 

3 collects few counts because of the distance from the samples, but detector 1 works well 

because it is closer. The relative efficiencies for individual detectors were measured 

carefully so the output of the three detectors could be combined.  

Initial runs have been made with U-235 and Pu-239 and our data suggest that the 

system is working properly. 

Several tasks remain that can improve the system.  The shortest flight time achieved 

so far is around 600 milliseconds.  Because group 6 has an average half life of around 300 
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milliseconds, the signal from this group has already died to about 25% of its original value.  

Efforts to decrease the flight time should continue.  Another important advance would be 

to pulse the reactor and then transfer the sample to the counting station.  This would 

minimize the effects of the long-lived precursors and a much stronger group 6 signal could 

be obtained. 

With this new data, further work could be done on resolution of mathematical 

methods to describe delayed neutron counts rate as a function time and, hopefully, any 

bias in the literature values could be corrected. 
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APPENDIX A 

GEANT4 CODE FOR DETECTOR ARRAY 

 

 

 

 

 

 

 

 

 

 

 

 

 



// -------------------------------------------------------------- 
//      GEANT 4 - A01app program written by Yong Chen 
//      main.c 
// -------------------------------------------------------------- 
#include "G4RunManager.hh" 
#include "G4UImanager.hh" 
#include "G4UIterminal.hh" 
#include "G4UItcsh.hh" 
#include "A01DetectorConstruction.hh" 
#include "LHEP_PRECO_HP.hh" 
#include "A01PrimaryGeneratorAction.hh" 
#include "A01TrackingAction.hh" 
#include "A01SteppingAction.hh" 
#include "A01EventAction.hh" 
#include "A01RunAction.hh" 
#ifdef G4VIS_USE 
#include "A01VisManager.hh" 
#endif 
 
int main(int argc,char** argv) 
{ 
        // RunManager construction 
  G4RunManager* runManager = new G4RunManager; 
 
#ifdef G4VIS_USE 
  // Visualization manager construction 
  G4VisManager* visManager = new A01VisManager(); 
  visManager->Initialize(); 
#endif 
 
  // mandatory user initialization classes 
  runManager->SetUserInitialization(new A01DetectorConstruction); 
   
  //LHEP * thePList = new LHEP; 
  LHEP_PRECO_HP * thePList = new LHEP_PRECO_HP; 
 
  runManager->SetUserInitialization(thePList); 
 
  // initialize Geant4 kernel 
  runManager->Initialize(); 
 
  // mandatory user action class 
  runManager->SetUserAction(new A01PrimaryGeneratorAction); 
 
  // optional user action classes 
  runManager->SetUserAction(new A01RunAction); 
  runManager->SetUserAction(new A01EventAction); 
  runManager->SetUserAction(new A01SteppingAction); 
  runManager->SetUserAction(new A01TrackingAction); 
 
  if(argc>1) 
  // execute an argument macro file if exist 
  { 
    G4UImanager* UImanager = G4UImanager::GetUIpointer(); 
    G4String command = "/control/execute "; 
    G4String fileName = argv[1]; 
    UImanager->ApplyCommand(command+fileName); 
  } 
  else 
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  // start interactive session 
  { 
    G4UIsession* session = new G4UIterminal(); 
    session->SessionStart(); 
    delete session; 
  } 
 
#ifdef G4VIS_USE 
  delete visManager; 
#endif 
 
  delete runManager; 
 
  return 0; 
} 
// -------------------------------------------------------------- 
//      GEANT 4 - A01app 
//      A01DetectorConstruction.c 
// -------------------------------------------------------------- 
 
#include "A01DetectorConstruction.hh" 
#include "G4Material.hh" 
#include "G4Element.hh" 
#include "G4MaterialTable.hh" 
#include "G4Isotope.hh" 
#include "G4VSolid.hh" 
#include "G4Box.hh" 
#include "G4Tubs.hh" 
#include "G4LogicalVolume.hh" 
#include "G4VPhysicalVolume.hh" 
#include "G4PVPlacement.hh" 
#include "G4PVParameterised.hh" 
#include "G4SDManager.hh" 
#include "G4VSensitiveDetector.hh" 
#include "G4RunManager.hh" 
#include "G4VisAttributes.hh" 
#include "G4Colour.hh" 
#include "G4ios.hh" 
 
A01DetectorConstruction::A01DetectorConstruction() 
{;} 
A01DetectorConstruction::~A01DetectorConstruction() 
{;} 
 
G4VPhysicalVolume* A01DetectorConstruction::Construct() 
{ 
// constructMaterials 
 
  G4double a; 
  G4double z; 
  G4double density, temperature, pressure; 
  G4double weightRatio,abundance; 
  G4String name; 
  G4String symbol; 
  G4int nElem,natoms,iz,n,ncomponents; 
 
  // elements for mixtures and compounds 
   
  a = 14.01*g/mole; 
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  G4Element* elN = new G4Element(name="Nitrogen", symbol="N", z=7., a); 
  a = 16.00*g/mole; 
  G4Element* elO = new G4Element(name="Oxigen", symbol="O", z=8., a); 
  a = 10.81*g/mole; 
  G4Element* elB = new G4Element(name="Boron", symbol="B", z=5., a); 
  a = 18.99*g/mole; 
  G4Element* elF= new G4Element(name="Flourine", symbol="F", z=9., a); 
  a = 2*g/mole; 
  G4Element* elH= new G4Element(name="Hy", symbol="H", z=1., a);  
   
  G4Isotope* He3 = new G4Isotope(name="He3", iz=2, n=3, a=3*g/mole); 
  G4Element* elHe  = new G4Element(name="helium3", symbol="He", ncomponents=1); 
  elHe->AddIsotope(He3, abundance= 100.*perCent); 
 
  // Air 
  density = 1.29*mg/cm3; 
  air = new G4Material(name="Air", density, nElem=2); 
  air->AddElement(elN, weightRatio=0.7); 
  air->AddElement(elO, weightRatio=0.3); 
//He3 gas 
 
  density = 0.7144*mg/cm3; 
  pressure = 405.3e+3*pascal; 
  temperature = 300.*kelvin; 
  He3Gas = new G4Material(name="He3Gas", density, nElem=1, kStateGas, temperature, pressure); 
  He3Gas->AddElement(elHe, natoms=1); 
 
 // graphite 
  a = 12.01*g/mole; 
  density = 2.1*g/cm3; 
  graphite = new G4Material(name="graphite", z=6., a, density); 
 
  //vaccum 
  density     = universe_mean_density;                //from PhysicalConstants.h 
  pressure    = 1.e-19*pascal; 
  temperature = 0.1*kelvin; 
  G4Material* Galactic = new G4Material(name="Galactic", z=1., a=1.01*g/mole, density, 
                   kStateGas,temperature,pressure); 
 
  G4cout << G4endl << "The materials defined are : " << G4endl << G4endl; 
  G4cout << *(G4Material::GetMaterialTable()) << G4endl; 
 
   
  // geometries -------------------------------------------------------------- 
  // experimental hall (world volume) 
  G4VSolid* worldSolid = new G4Box("worldBox",2.0*m,2.0*m,2.0*m); 
  G4LogicalVolume* worldLogical 
    = new G4LogicalVolume(worldSolid,Galactic,"worldLogical",0,0,0); 
  G4VPhysicalVolume* worldPhysical 
    = new G4PVPlacement(0,G4ThreeVector(0,0,0),worldLogical,"worldPhysical",0,0,0); 
 
  //main box 
  G4VSolid* mainSolid = new G4Box("main",100.0/2*cm,100.0/2*cm,110.0/2*cm); 
  G4LogicalVolume* mainLogical 
    = new G4LogicalVolume(mainSolid,graphite,"mainLogical",0,0,0); 
  G4VPhysicalVolume* mainPhysical 
    =new G4PVPlacement(0,G4ThreeVector(0,0,0),mainLogical,"mainPhysical",worldLogical,0,0);   
   
  // source position (-25,25,0)  
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  //airbox P1 
   G4VSolid* airSolid = new G4Box("airbox",10.0/2*cm,10.0/2*cm,110.0/2*cm); 
  G4LogicalVolume* airLogical 
    = new G4LogicalVolume(airSolid,air,"airLogical",0,0,0); 
  G4VPhysicalVolume* airPhysical 
    =new 
G4PVPlacement(0,G4ThreeVector(35.0*cm,25.0*cm,0.*cm),airLogical,"airPhysical",mainLogical,0,0); 
 
    //He3 tubs 
  G4VSolid* He31Solid = new G4Tubs("He31Tubs",0.*m,2.54/2*cm,20.0/2*cm,0.,2.*M_PI); 
  G4LogicalVolume* He31Logical 
    = new G4LogicalVolume(He31Solid,He3Gas,"He31Logical",0,0,0); 
  G4VPhysicalVolume* He31Physical 
    =new 
G4PVPlacement(0,G4ThreeVector(0.*cm,0.*cm,0.*cm),He31Logical,"He31Physical",airLogical,0,0); 
  
  //P2 
   G4VSolid* air2Solid = new G4Box("air2box",10.0/2*cm,10.0/2*cm,110.0/2*cm); 
  G4LogicalVolume* air2Logical 
    = new G4LogicalVolume(air2Solid,air,"air2Logical",0,0,0); 
  G4VPhysicalVolume* air2Physical 
    =new 
G4PVPlacement(0,G4ThreeVector(-25.0*cm,-15.0*cm,0.*cm),air2Logical,"air2Physical",mainLogical,0,0); 
  
    //He3 tubs 
  G4VSolid* He32Solid = new G4Tubs("He32Tubs",0.*m,2.54/2*cm,20.0/2*cm,0.,2.*M_PI); 
  G4LogicalVolume* He32Logical 
    = new G4LogicalVolume(He32Solid,He3Gas,"He32Logical",0,0,0); 
  G4VPhysicalVolume* He32Physical 
   =new 
G4PVPlacement(0,G4ThreeVector(0.*cm,0.*cm,0.*cm),He32Logical,"He32Physical",air2Logical,0,0); 
  
     //P3 
   G4VSolid* air3Solid = new G4Box("air3box",10.0/2*cm,10.0/2*cm,110.0/2*cm); 
  G4LogicalVolume* air3Logical 
    = new G4LogicalVolume(air3Solid,air,"air3Logical",0,0,0); 
  G4VPhysicalVolume* air3Physical 
    =new 
G4PVPlacement(0,G4ThreeVector(25.0*cm,-25.0*cm,0.*cm),air3Logical,"air3Physical",mainLogical,0,0); 
 
    //He3 tubs 
  G4VSolid* He33Solid = new G4Tubs("He33Tubs",0.*m,2.54/2*cm,20.0/2*cm,0.,2.*M_PI); 
  G4LogicalVolume* He33Logical 
    = new G4LogicalVolume(He33Solid,He3Gas,"He33Logical",0,0,0); 
  G4VPhysicalVolume* He33Physical 
    =new 
G4PVPlacement(0,G4ThreeVector(0.*cm,0.*cm,0.*cm),He33Logical,"He33Physical",air3Logical,0,0); 
 
  // return the world physical volume ---------------------------------------- 
 
  G4cout << G4endl << "The geometrical tree defined are : " << G4endl << G4endl; 
  return worldPhysical; 
} 
// -------------------------------------------------------------- 
//      GEANT 4 - A01app 
//      A01DetectorConstruction.c 
// -------------------------------------------------------------- 
#include "A01PrimaryGeneratorAction.hh" 
//#include "A01PrimaryGeneratorMessenger.hh" 



 53

 
#include "G4Event.hh" 
#include "G4ParticleGun.hh" 
#include "G4ParticleTable.hh" 
#include "G4ParticleDefinition.hh" 
#include "Randomize.hh" 
#include "G4Geantino.hh" 
 
A01PrimaryGeneratorAction::A01PrimaryGeneratorAction() 
{ 
 
  G4int n_particle = 1; 
  particleGun  = new G4ParticleGun(n_particle); 
 
  G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable(); 
  G4String particleName; 
  G4ParticleDefinition* particle 
                    = particleTable->FindParticle(particleName="neutron"); 
  particleGun->SetParticleDefinition(particle); 
  particleGun->SetParticlePosition(G4ThreeVector(-25.0*cm,25.0*cm,0.*cm)); 
  particleGun->SetParticleEnergy(0.1*MeV); 
 
} 
 
A01PrimaryGeneratorAction::~A01PrimaryGeneratorAction() 
{ 
  delete particleGun; 
 
} 
 
void A01PrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent) 
{ 
//direction  
   
  G4double xi1 = G4UniformRand(); 
  G4double xi2; 
  G4double xi3; 
 
  //4pi 
  G4double cosThita = 2.0*xi1 - 1.0; 
 
  //2pi 
  //G4double cosThita = xi1; 
  G4double sinThita = sqrt(1.0 - cosThita*cosThita); 
  G4double sumofPhi; 
 
  do 
  { 
 xi2 = 2.0*G4UniformRand()-1.; 
 xi3 = G4UniformRand(); 
 sumofPhi = xi2*xi2+xi3*xi3; 
  }while (sumofPhi>1.); 
 
  G4double cosPhi = (xi2 * xi2-xi3 * xi3) / sumofPhi; 
  G4double sinPhi = 2.*xi2*xi3/sumofPhi; 
 
  G4double x0 = sinThita*cosPhi; 
  G4double y0 = sinThita*sinPhi; 
  G4double z0 = cosThita; 
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  particleGun->SetParticleMomentumDirection(G4ThreeVector(z0,x0,y0)); 
 
  particleGun->GeneratePrimaryVertex(anEvent); 
 
} 
// -------------------------------------------------------------- 
//      GEANT 4 - A01app 
//      A01SteppingAction.c 
// -------------------------------------------------------------- 
#include "A01SteppingAction.hh" 
//#include "def.h" 
#include "G4SteppingManager.hh" 
#include "G4Track.hh" 
#include "G4Step.hh" 
#include "G4StepPoint.hh" 
#include "G4TrackStatus.hh" 
#include "G4VPhysicalVolume.hh" 
#include "G4ParticleDefinition.hh" 
#include "G4ParticleTypes.hh" 
#include "G4VProcess.hh" 
 
A01SteppingAction::A01SteppingAction() 
{;} 
A01SteppingAction::~A01SteppingAction() 
{;} 
int hitsForproton1; 
int hitsForproton2; 
int hitsForproton3;   
void A01SteppingAction::UserSteppingAction(const G4Step * theStep) 
{ 
  G4Track * theTrack = theStep->GetTrack(); 
  G4int CSD = theTrack->GetCurrentStepNumber(); 
  G4int PD = theTrack->GetParentID(); 
 
  G4ParticleDefinition * particleType = theTrack->GetDefinition(); 
// proton detection 
  if(PD==1) 
    
  {                
       if((particleType==G4Proton::ProtonDefinition())) 
 
   {     //G4cout << " get proton" << G4endl; 
 G4StepPoint * theNextPoint1 = theStep->GetPreStepPoint(); 
        G4VPhysicalVolume * theNextPV1 = theNextPoint1->GetPhysicalVolume(); 
        if(theNextPV1!=NULL) 
 {  
  G4String theNextPV1name = theNextPV1->GetName(); 
  if (theNextPV1name(0,4)=="He31") 
  { 
                    const G4VProcess* process  = theTrack->GetCreatorProcess() ; 
   if (0 != process ) 
   { G4String aaa = process->GetProcessName(); 
     G4ProcessType bbb = process->GetProcessType(); 
    if(CSD==1)      
    { 
                                 // G4cout << " get proton in He31 " << G4endl; 
                                  
                                    
                 hitsForproton1 = hitsForproton1 +1; 
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                 //G4cout << "Total hitsForproton1: " << hitsForproton1 << G4endl; 
                               } 
    
    } 
 
  } 
             
  if (theNextPV1name(0,4)=="He32") 
  { 
                    const G4VProcess* process  = theTrack->GetCreatorProcess() ; 
   if (0 != process ) 
   { G4String aaa2 = process->GetProcessName(); 
     G4ProcessType bbb2 = process->GetProcessType(); 
    if(CSD==1)      
    { 
                                  //G4cout << " get proton in He32 " << G4endl; 
                                  
                                   
                 hitsForproton2 = hitsForproton2 +1; 
 
                 //G4cout << "Total hitsForproton2: " << hitsForproton2 << G4endl; 
                               } 
    
    } 
 
  } 
            
  if (theNextPV1name(0,4)=="He33") 
  { 
                    const G4VProcess* process  = theTrack->GetCreatorProcess() ; 
   if (0 != process ) 
   { G4String aaa3 = process->GetProcessName(); 
     G4ProcessType bbb3 = process->GetProcessType(); 
    if(CSD==1)      
    { 
                                  //G4cout << " get proton in He33 " << G4endl; 
                                 
                 hitsForproton3 = hitsForproton3 +1; 
 
                 //G4cout << "Total hitsForproton3: " << hitsForproton3 << G4endl; 
                               } 
    
    } 
 
   } 
    
   
  } 
 
   
    } 
  } 
// -------------------------------------------------------------- 
//      GEANT 4 - A01app 
//      A01EventAction.c 
// -------------------------------------------------------------- 
 
#include "A01EventAction.hh" 



 56

#include "A01EventActionMessenger.hh" 
#include "G4Event.hh" 
#include "G4EventManager.hh" 
#include "G4HCofThisEvent.hh" 
#include "G4VHitsCollection.hh" 
#include "G4TrajectoryContainer.hh" 
#include "G4Trajectory.hh" 
#include "G4VVisManager.hh" 
#include "G4SDManager.hh" 
#include "G4UImanager.hh" 
#include "G4ios.hh" 
 
 
A01EventAction::~A01EventAction() 
{ 
;} 
 
void A01EventAction::BeginOfEventAction(const G4Event* evt) 
{ 
  G4int event_id = evt->GetEventID(); 
 
  if ((event_id < 100) || (event_id%10000 == 0)) 
    G4cout << ">>> Event " << evt->GetEventID() << G4endl; 
} 
 
void A01EventAction::EndOfEventAction(const G4Event* evt) 
{}; 
// -------------------------------------------------------------- 
//      GEANT 4 - A01app 
//      A01RunAction.c 
// ------------------------------------------------------------- 
 
#include "A01RunAction.hh" 
#include "G4Run.hh" 
#include "G4RunManager.hh" 
#include "G4UnitsTable.hh" 
 
A01RunAction::A01RunAction() 
{;} 
 
A01RunAction::~A01RunAction() 
{;} 
 
void A01RunAction::BeginOfRunAction(const G4Run* aRun) 
{  
  G4cout << "### Run " << aRun->GetRunID() << " start." << G4endl; 
 
} 
 
void A01RunAction::EndOfRunAction(const G4Run* aRun) 
{ 
       
  G4cout << "\n--------------------End of Run------------------------------\n"; 
  G4cout 
     << "\n Total hits in position 1 : " << hitsForproton1 
     << "\n Total hits in position 2 : " << hitsForproton2 
     << "\n Total hits in position 3 : " << hitsForproton3 
     << G4endl;  
           G4cout << "\n------------------------------------------------------------\n"; 
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Delayed neutron measurement program written by Alfred Hanna and Yong Chen 

/******************************************************************* 
* Name:      main.c 
******************************************************************** 
#include "main.h" 
#include "variables.h" 
 
void main() 
{ 
 initialize (); 
 
 bit_num=3; 
 ULStat = cbDBitIn (BoardNum, port_type, bit_num, &bit_value); 
 
 if (bit_value == 1)          // permit 
reading 
 { 
  printf("You NEED the PERMIT to run the system!\n"); 
  main (); 
 } 
 else 
 { 
  clear_screen (); 
  sensor_menu ();          //Sensor 
selection  
 
  ULStat = cbDIn (BoardNum, port_type, &bit_value); 
 
  if (flag_sensor == 1 && bit_value > 0xF7)       
  
   printf("Check the sensors or power -- No sensors selection.\n"); 
 
  else if ((flag_sensor == 2 && bit_value > 0xF3)) 
   printf("Check the sensors or power -- One sensor selection.\n"); 
 
  else if (flag_sensor == 3 && bit_value != 0xF3) 
   printf("Check the sensors or power -- Two sensors 
selection.\n"); 
 
  else 
  { 
   while (1) 
   { 
    clear_screen (); 
    main_menu (); 
   } 
  } 
  exit(0); 
 } 
 } 
 
 



 59

void shoot_solenoid_1 (void) 
{ 
  printf("Solenoid 1 fired!\n\n"); 
  ULStat = cbDOut(BoardNum =0,AUXPORT,1); 
  delay_3s (); 
        ULStat = cbDOut(BoardNum =0,AUXPORT,0); 
} 
 
 
void shoot_solenoid_2 (void) 
{ 
  printf("Solenoid 2 fired!\n\n"); 
  ULStat = cbDOut(BoardNum =0,AUXPORT,2); 
  delay_3s (); 
  ULStat = cbDOut(BoardNum =0,AUXPORT,0); 
} 
 
void shoot_solenoid_3 (void) 
{ 
  printf("Solenoid 3 fired!\n\n"); 
  ULStat = cbDOut(BoardNum =0,AUXPORT,4); 
  delay_3s (); 
  ULStat = cbDOut(BoardNum =0,AUXPORT,0); 
} 
 
void close_all_solenoid(void) 
{ 
 
  ULStat = cbDOut(BoardNum =0,AUXPORT,0); 
} 
 
#define BIOS_VIDEO   0x10 
 
void clear_screen (void) 
{ 
 COORD coordOrg = {0, 0}; 
 DWORD dwWritten = 0; 
 HANDLE hConsole = GetStdHandle(STD_OUTPUT_HANDLE); 
 if (INVALID_HANDLE_VALUE != hConsole) 
  FillConsoleOutputCharacter(hConsole, ' ', 80 * 50, coordOrg, 
&dwWritten); 
 
 MoveCursor(0, 0); 
 
    return; 
} 
 
void 
MoveCursor (int x, int y) 
{ 
 HANDLE hConsole = GetStdHandle(STD_OUTPUT_HANDLE); 
 
 if (INVALID_HANDLE_VALUE != hConsole) 
 { 
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  COORD coordCursor; 
  coordCursor.X = (short)x; 
  coordCursor.Y = (short)y; 
  SetConsoleCursorPosition(hConsole, coordCursor); 
 } 
 
    return; 
} 
 
void 
GetTextCursor (int *x, int *y) 
{ 
 HANDLE hConsole = GetStdHandle(STD_OUTPUT_HANDLE); 
 CONSOLE_SCREEN_BUFFER_INFO csbi; 
 
 *x = -1; 
 *y = -1; 
 if (INVALID_HANDLE_VALUE != hConsole) 
 { 
  GetConsoleScreenBufferInfo(hConsole, &csbi); 
  *x = csbi.dwCursorPosition.X; 
  *y = csbi.dwCursorPosition.Y; 
 } 
 
    return; 
} 
/******************************************************************* 
* Name:      execute_menu.c 
******************************************************************** 
 
#include "main.h" 
#include "execute_menu.h" 
 
int execute_menu (void)     { 
 if (flag == 1) 
 { 
  flag = 0; 
  result_menu (); 
 } 
  
 printf("Press 1 and then Enter key to shoot the sample.\n"); 
 printf("Press 2 and then Enter key to return to main menu.\n"); 
 
 for (i=0;i<41;++i) 
  selection[i] = 0; 
 i=0; 
 
 while ((ch = getchar()) != '\n') 
  selection[i++] = ch; 
 
 if (flag == 1) 
 { 
  flag = 0; 
  result_menu (); 
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 } 
 
 if((selection[0] == '1' && selection[1] == 0))      { 
  flag=0; 
  printf("Enter irradiation time in seconds --> "); 
  scanf("%d", &irradiation_time); 
  printf("\nEnter reading time for the\n     detector in seconds "); 
  printf("and press\n     Enter to execute the program --> "); 
  scanf("%d", &detector_time); 
  clear_screen (); 
  RegName = LOADREG1; 
  ULStat = cbCLoad (BoardNum, RegName, LoadValue);  
  core_sample_inside_flag = 0; 
  detector_sample_pass_flag = 0; 
  core_no_sensor_flag = 0; 
  detector_no_sensor_flag = 0; 
  loadreg2_flag=0; 
  loadreg3_flag=0; 
  loadreg4_flag=0; 
  core_init_count=0; 
  detector_init_count=0; 
  core_final_count=0; 
  detector_final_count=0; 
  flag_core=0; 
  detector_sensor_trigger=0; 
  two_sensor_execution_flag=0; 
  one_sensor_execution_flag=0; 
  no_sensor_execution_flag=0; 
  min=0; 
  sec=0; 
  millisec=0; 
   
  while (1) 
  { 
   
   CounterNum = 1; 
   ULStat = cbCIn (BoardNum, CounterNum, &count); 
   if(!(current_value == count)) 
   { 
    master_clock_conversion (); 
 
 
    if(flag_sensor == 3)    { 
     two_sensor_execution (); 
     if(two_sensor_execution_flag == 5) 
     { 
      break; 
     } 
    } 
 
    else if(flag_sensor == 2) //  using only detector sensor 
    { 
     
     one_sensor_execution (); 
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     if(one_sensor_execution_flag == 5) 
     { 
      break; 
     } 
 
    } 
   
    else if (flag_sensor == 1) // using no sensor 
    { 
     no_sensor_execution (); 
     if(no_sensor_execution_flag == 5) 
     { 
      break; 
     } 
    } 
 
    else 
    { 
     printf("break out!!!!!!\n\n"); 
     break; 
    } 
     
   } 
   current_value = count; 
 
  } 
 } 
 
 else if((selection[0] == '2' && selection[1] == 0))   
 //return to main_menu 
 { 
  clear_screen (); 
  main_menu (); 
 } 
 
 else       { 
  clear_screen (); 
  flag=0; 
  printf("Value input was incorect, please re-enter the correct 
selection.\n\n"); 
  execute_menu (); 
 } 
 execute_menu (); 
 return 0; 
} 
/******************************************************************* 
* 
* Name:      master_clock_conversion.c 
******************************************************************** 
 
#include "main.h" 
#include "master_clock_conversion.h" 
 
void master_clock_conversion (void) 
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{ 
 MoveCursor (0, 0); 
 sec = (count-5536)/1000; 
 sec_total = 60*min+sec; 
 millisec = count-1000*sec-5536; 
    millisec_total = sec_total*1000+millisec; 
    sec1 = sec%10; 
 sec2 = (sec-sec%10)/10; 
 min1 = min%10; 
 min2 = (min-min%10)/10; 
 millisec1 = (millisec%100)%10; 
 millisec2 = ((millisec-millisec1)/100)%10; 
 millisec3 = (millisec-millisec1-10*millisec2)/100; 
  
 if (count==65535) 
 { 
  ++min; 
  clear_screen (); 
 } 
 printf("Master Clock: %d%d:%d%d:%d%d%d\n", min2, min1, sec2, sec1, 
millisec3, millisec2, millisec1); 
} 
/******************************************************************* 
* 
* Name:      no_sensor_execution.c 
******************************************************************** 
 
#include "main.h" 
#include "no_sensor_execution.h" 
 
void no_sensor_execution (void) 
{ 
 
 if (no_sensor_execution_flag == 0) 
 { 
  no_sensor_execution_flag++; 
  printf("Solenoid 1 fired!\n\n"); 
  ULStat = cbDOut(BoardNum =0,AUXPORT,1); //Solenoid 1 fired 
  core_init_count = millisec_total; 
 } 
  
 if ((no_sensor_execution_flag == 1) && (core_init_count + 1000 == 
millisec_total)) 
 { 
  no_sensor_execution_flag++; 
  ULStat = cbDOut(BoardNum =0,AUXPORT,0); 
  core_init_count = millisec_total; 
  flag_core = irradiation_time*1000 + core_init_count; 
 } 
 
 if (flag_core == millisec_total && no_sensor_execution_flag == 2) 
 { 
   
  no_sensor_execution_flag++; 
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  printf("Solenoid 2 fired!\n\n"); 
  ULStat = cbDOut(BoardNum =0,AUXPORT,2);//shoot solenoid 2 
  core_final_count = millisec_total; 
 } 
 if ((no_sensor_execution_flag == 3)&& (core_final_count + 1000 == 
millisec_total)) 
 { 
  no_sensor_execution_flag++; 
  ULStat = cbDOut(BoardNum =0,AUXPORT,0); 
  detector_init_count = millisec_total; 
  flag_detector = detector_time*1000 + detector_init_count; 
   
 } 
  
 if (flag_detector == millisec_total && no_sensor_execution_flag ==4) 
 {  
  no_sensor_execution_flag++; 
  detector_final_count = millisec_total; 
  shoot_solenoid_3 (); 
   
 } 
} 
/******************************************************************* 
* 
* Name:      one_sensor_execution.c 
******************************************************************** 
 
#include "main.h" 
#include "one_sensor_execution.h" 
 
void one_sensor_execution (void) 
{ 
 
 if (one_sensor_execution_flag == 0) 
 { 
  one_sensor_execution_flag++; 
  printf("Solenoid 1 fired!\n\n"); 
  ULStat = cbDOut(BoardNum =0,AUXPORT,1); //Solenoid 1 fired 
  core_init_count = millisec_total; 
 } 
  
 if ((one_sensor_execution_flag == 1) && (core_init_count + 1000 == 
millisec_total)) 
 { 
  one_sensor_execution_flag++; 
  ULStat = cbDOut(BoardNum =0,AUXPORT,0); 
  core_init_count = millisec_total; 
  flag_core = irradiation_time*1000 + core_init_count; 
 } 
 
 if ((flag_core == millisec_total) && (one_sensor_execution_flag == 2)) 
 { 
  one_sensor_execution_flag++; 
  printf("Solenoid 2 fired!\n\n"); 
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  ULStat = cbDOut(BoardNum =0,AUXPORT,2);//shoot solenoid 2 
  core_final_count = millisec_total; 
 } 
  
 bit_num=2; 
 ULStat = cbDBitIn (BoardNum, port_type, bit_num, &bit_value); 
 detector_sensor_trigger = bit_value; 
 
 if (detector_sensor_trigger == 1 && detector_sample_pass_flag == 0 && 
one_sensor_execution_flag == 3) 
 { 
  one_sensor_execution_flag++; 
  detector_sample_pass_flag++; 
  detector_init_count = millisec_total; // Timestamp - record time 
sample arrived in the detector 
  ULStat = cbDOut(BoardNum =0,AUXPORT,0); 
  flag_detector = detector_time*1000 + detector_init_count; 
 } 
 if (flag_detector == millisec_total && one_sensor_execution_flag == 4) 
 { 
  one_sensor_execution_flag++; 
        detector_final_count = millisec_total; // Timestamp - record 
time sample left the detector 
  shoot_solenoid_3 (); 
 } 
 
 
} 
/******************************************************************* 
* 
* Name:      two_sensor_execution.c 
******************************************************************** 
 
#include "main.h" 
#include "two_sensor_execution.h" 
 
void two_sensor_execution (void) 
{ 
 if (two_sensor_execution_flag == 0) 
 { 
  two_sensor_execution_flag++; 
  printf("Solenoid 1 fired!\n\n"); 
  ULStat = cbDOut(BoardNum =0,AUXPORT,1); //Solenoid 1 fired 
 } 
 
 // Read the value off the sensor in the core 
 
 bit_num=1; 
 ULStat = cbDBitIn (BoardNum, port_type, bit_num, &bit_value); 
 core_sensor_trigger = bit_value; 
 
 if (two_sensor_execution_flag == 1 && core_sensor_trigger==0) 
 { 
  two_sensor_execution_flag++; 
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  ULStat = cbDOut(BoardNum =0,AUXPORT,0); 
  core_init_count = millisec_total; 
  flag_core = irradiation_time*1000 + core_init_count; 
 } 
 
 if ((flag_core == millisec_total) && (two_sensor_execution_flag == 2)) 
 { 
  two_sensor_execution_flag++; 
  core_final_count = millisec_total; // Timestamp - record time 
sample left the core 
 
  printf("Solenoid 2 fired!\n\n"); 
  ULStat = cbDOut(BoardNum =0,AUXPORT,2); 
 } 
 
 // Read the value off the sensor in the detector 
 
 bit_num=2; 
 ULStat = cbDBitIn (BoardNum, port_type, bit_num, &bit_value); 
 detector_sensor_trigger = bit_value; 
 
 if (detector_sensor_trigger == 1 && detector_sample_pass_flag == 0 && 
two_sensor_execution_flag ==3) 
 { 
  two_sensor_execution_flag++; 
  detector_sample_pass_flag++; 
  detector_init_count = millisec_total; // Timestamp - record time 
sample arrived in the detector 
  ULStat = cbDOut(BoardNum =0,AUXPORT,0); 
  flag_detector = detector_time*1000 + detector_init_count; 
 } 
 if (flag_detector == millisec_total && two_sensor_execution_flag == 4) 
 { 
  two_sensor_execution_flag++; 
        shoot_solenoid_3 (); 
  detector_final_count = millisec_total; // Timestamp - record time 
sample left the detector 
 } 
} 
 
/******************************************************************* 
* 
* Name:      test_menu 
******************************************************************** 
 
#include "main.h" 
 
extern char selection[40]; 
extern char ch;     // character 
extern int i;     // position in the array 
 
void test_menu (void)     //main_menu --> Selection 2 - 
Testing the solenoids 
{ 
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 // Initializes Solenoids to be closed 
 
 close_all_solenoid (); 
 
 printf("Press 1 and then Enter key to activate Solenoid 1.\n"); 
 printf("Press 2 and then Enter key to activate Solenoid 2.\n"); 
 printf("Press 3 and then Enter key to activate Solenoid 3.\n"); 
 printf("Press 4 and then Enter key to return to main menu.\n"); 
 
 for (i=0;i<41;++i) 
  selection[i] = 0; 
 i=0; 
 
 while ((ch = getchar()) != '\n') 
  selection[i++] = ch; 
 
 if(selection[0] == '1' && selection[1] == 0) //shoots sample --> 
Dout1 using decimal value 1 
 { 
  clear_screen (); 
  shoot_solenoid_1 (); 
  test_menu (); 
 } 
else if(selection[0] == '2' && selection[1] == 0) 
 { 
  clear_screen (); 
  shoot_solenoid_2 (); 
  test_menu (); 
 } 
else if(selection[0] == '3' && selection[1] == 0) 
 { 
  clear_screen (); 
  shoot_solenoid_3 (); 
  test_menu (); 
 } 
 else if(selection[0] == '4' && selection[1] == 0) 
 { 
  clear_screen (); 
  main_menu (); 
 } 
 else        //wrong selection, re-enter the 
selection 
 { 
  clear_screen (); 
  printf("Value input was incorect, please re-enter the correct 
selection.\n\n"); 
  test_menu (); 
 } 
} 
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