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ABSTRACT 
 

Determining the Nutritional Requirements for Optimizing Flowering of the Nobile 

Dendrobium as a Potted Orchid.  (December 2006) 

Rebecca Gayle Bichsel, B.S., University of Missouri-Columbia

Co-Chairs of Advisory Committee:  Dr. Terri Starman 
        Dr. Yin-Tung Wang 

 
 

Five experiments were conducted to determine how nitrogen (N), phosphorus 

(P), and potassium (K) rate and fertilizer termination time, duration of N application, and 

cold duration and light intensity affect growth and flowering of Dendrobium nobile Red 

Emperor ‘Prince’.  The N, P, and K experiments were a factorial combination of five 

nutrient rates and three termination dates (1 Sept., 1 Oct., and 1 Nov. 2005).  N and K 

rates were 0, 50, 100, 200, and 400 mg•L-1.  Phosphorus rates were 0, 25, 50, 100, and 

200 mg•L-1.  For all nutrients, terminating fertilization on 1 Oct. or 1 Nov. resulted in 

thinner pseudobulbs.  Pseudobulbs grew taller as N rate increased, peaking at 100 and 

200 mg•L-1.  There were interactions between N rate and fertilizer termination time on 

all reproductive characteristics.  For all fertilizer termination times, flower number 

increased once N was applied.  When terminated on 1 Nov., 200 and 400 mg•L-1 N 

caused a delay for the first flower to reach anthesis.  Plants required more days to full 

flower when supplied with 200 mg•L-1 N until 1 Oct.  All P rates resulted in taller plants 

with equally more nodes compared to 0 mg•L-1.  For all three termination times, plants 

that were not supplied with P bloomed later than those receiving P.  Plants produced the 

most flowers when P fertilization was terminated on 1 Oct.  Plants required fewer days 

to reach full flower at the 1 Sept. P termination time.  As K rate increased from 0 to 100 

mg•L-1, height increased, with no further increase at higher rates.  Total flower number 

and flowering node number were the lowest at 0 mg•L-1 K.  Leaf number increased as N 

and K rates increased up to 200 mg•L-1.  Nitrogen application did not affect vegetative or 

flowering characteristics when one rate was applied at four termination dates.  In the last 
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experiment, plants cooled at 10 °C for 2, 4, or 6 weeks with light or 4 weeks in darkness 

produced similar higher number of flowers per plant than those cooled in darkness for 2 

or 4 weeks or those that remained in a greenhouse. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 v 

ACKNOWLEDGEMENTS 
 
 I would like to thank my family, Carlos and Nolan, for their support, patience 

and love throughout the past two years and always.  I thank my son, Nolan, who has 

always given me the reason to better myself and who has sacrificed a lot of time without 

me in order for me to fulfill this goal.  I especially thank my husband, Carlos, for always 

supporting and encouraging me.   

I would like to thank Dr. Terri Starman for accepting me into her program, for 

giving me the opportunity to obtain this degree; and for her support and guidance 

throughout the past two years.  Thanks to Dr. Yin-Tung Wang for his support and 

guidance and the opportunity to work with orchids.  Thanks also to Dr. Tom Cothren for 

serving on my committee and for always taking time to meet with me when needed. 

I thank Kristen Eixmann for always being willing to help and for her hours spent 

in both the greenhouse and with my statistical analysis.  It would have been difficult to 

make it through this process without her.  I also thank Christine Yen for all the hours she 

generously gave to help me take data for this project. 

Recognition must be given to the Fred C. Gloeckner Foundation, Inc. for helping 

fund this research project and the Texas Ornamental Enhancement Endowment (TOEE) 

for their partial funding of this project.  Recognition also goes to Yamamoto 

Dendrobiums in Hawaii for their generous donation of the plant material. 

 
 
 
 
 
 
 
 
 
 
 
 



 vi 

TABLE OF CONTENTS 
 
 Page 

ABSTRACT…………………………………………………………………..  iii 

ACKNOWLEDGEMENTS…………………………………………………..   v 

TABLE OF CONTENTS……………………………………………………..    vi 

LIST OF TABLES……………………………………………………………  viii 

LIST OF FIGURES…………………………………………………………...      xi 

CHAPTER  

 I  INTRODUCTION AND REVIEW OF KEY LITERATURE..  1 

   Mineral Nutrition of Orchids………………………………….       5 
   Photoassimilates and Carbon Availability……………………     11 
   Flower Initiation and Flower Development…………………...     12  

 II FERTILIZER RATE AND DURATION EFFECT ON  
  GROWTH AND FLOWERING OF DENDROBIUM RED  
  EMPEROR ‘PRINCE’………………………………………...     17 

  Introduction……………………………………………………     17 
  Materials and Methods………………………………………...     19 
  Results:  Experiment 1………………………………………...     24 
  Results:  Experiment 2………………………………………...       33 
  Results:  Experiment 3………………………………………...     39 
  Results:  Experiment 4………………………………………...       43 
  Discussion……………………………………………………..     44 

 III EFFECT OF COLD DURATION AND LIGHT ON FLOWER 
  BUD INITIATION OF DENDROBIUM RED EMPEROR  
  ‘PRINCE’……………………………………………………..     50 

  Introduction…………………………………………………...      50 
  Materials and Methods………………………………………..     51 
  Results………………………………………………………...      54 
  Discussion…………………………………………………….        57 

 IV SUMMARY OF FINDINGS…………………………………      61 

LITERATURE CITED…………………………………………………….....      63 

APPENDIX A………………………………………………………………...      67 

APPENDIX B………………………………………………………………...      85 

APPENDIX C………………………………………………………………...      87 



 vii 

    Page 

VITA………………………………………………………………………….      91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 viii 

LIST OF TABLES 
 

TABLE Page 

1 The amount of chemicals used to prepare nutrient solutions of  
 various nitrogen, phosphorus, and potassium concentrations…….   21 

2    ANOVA for the effect of nitrogen rate and fertilizer termination 
 time on vegetative parameters measured at pseudobulb maturity  
 of Dendrobium Red Emperor ‘Prince’…………………………….  24 

3 Effect of nitrogen rate regardless of fertilizer termination time on 
 vegetative parameters measured at pseudobulb maturity for  
 Dendrobium Red Emperor ‘Prince’……………………………….  26 

4 ANOVA for the effect of nitrogen rate and fertilizer termination  
 time on chlorophyll readings of lower, middle and upper leaves  
 measured at pseudobulb maturity for Dendrobium Red Emperor 
 ‘Prince’……………………………………………………………  26 

5 Effect of nitrogen rate regardless of fertilizer termination time on  
      chlorophyll readings of lower, middle and upper leaves measured  
 at pseudobulb maturity for Dendrobium Red Emperor ‘Prince’….  28 

6 ANOVA for the effect of nitrogen rate and fertilizer termination  
      time on reproductive parameters measured at time of full flower  
 for Dendrobium Red Emperor ‘Prince’……………………………  28 

7 ANOVA for the effect of nitrogen rate and fertilizer termination  
      time on number of flowers per node measured at time of full flower 
 for Dendrobium Red Emperor ‘Prince’……………………………  32 

8 Effect of nitrogen rate regardless of fertilizer termination time on 
      number of flowers per node measured at time of full flower for  
 Dendrobium Red Emperor ‘Prince’……………………………….  33 

9 Effect of fertilizer termination time regardless of nitrogen rate on 
      number of flowers per node measured at time to full flower for  
 Dendrobium Red Emperor ‘Prince’……………………………….  33 

10 Effect of phosphorus rate regardless of fertilizer termination time  
      on vegetative parameters measured at pseudobulb maturity for  
 Dendrobium Red Emperor ‘Prince’………………………………           34 

11 Effect of fertilizer termination time regardless of phosphorus rate  
 on vegetative parameters measured at pseudobulb maturity for  
 Dendrobium Red Emperor ‘Prince’………………………………   35 
 
 



 ix 

TABLE  Page 

12 Effect of phosphorus rate regardless of fertilizer termination time   
      on reproductive parameters measured at time of full flower for 
 Dendrobium Red Emperor ‘Prince’……………………………….   36 

13 Effect of  fertilizer termination time regardless of  phosphorus rate  
 on reproductive parameters measured at time of full flower for  
 Dendrobium Red Emperor ‘Prince’……………………………            37 

14 The effect of phosphorus rate regardless of fertilizer termination  
 time on number of flowers per node measured at time of full  
 flower for Dendrobium Red Emperor ‘Prince’……………………  38 

15 Effect of fertilizer termination time regardless of phosphorus rate  
      on number of flowers per node measured at time of full flower for  
 Dendrobium Red Emperor ‘Prince’……………………………….  38 

16 Effect of potassium rate regardless of fertilizer termination time  
      on vegetative parameters measured at pseudobulb maturity for  
      Dendrobium Red Emperor ‘Prince’……………………………….    40 

17 Effect of potassium rate regardless of fertilizer termination time on 
 reproductive parameters measured at time of full flower for 
      Dendrobium Red Emperor ‘Prince’……………………………….   41 

18 Effect of potassium rate regardless of fertilizer termination time on  
 number of flowers per node measured at time of full flower on  
 Dendrobium Red Emperor ‘Prince’……………………………….  42 

19 Effect of fertilizer termination time on reproductive parameters 
      taken at time of full flower for Dendrobium Red Emperor ‘Prince’    43 

20 Effect of light or darkness and 2, 4, or 6 weeks at 10 °C in growth  
chambers on reproductive parameters measured at time of full  
flower for Dendrobium Red Emperor ‘Prince’……………………           55 

21 Effect of light or darkness and 2, 4, or 6 weeks at 10 °C in growth 
 chambers on flower number per node measured at time of full  
 flower for Dendrobium Red Emperor ‘Prince’……………………    56 

A1 Trade and common names, target organisms, foliar spray application 
rates, and dates used for insect and disease control during vegetative  

      and reproductive growth of Dendrobium Red Emperor ‘Prince’…    68 

A2 ANOVA for the effect of phosphorus rate and fertilizer termination  
 time on vegetative parameters measured at pseudobulb maturity for 
 Dendrobium Red Emperor ‘Prince’ (Expt. 2)………………….....   74 
 



 x 

TABLE  Page 

A3 ANOVA for the effect of phosphorus rate and fertilizer termination  
 time on reproductive parameters measured at time of full flower for 
 Dendrobium Red Emperor ‘Prince’ (Expt. 2)……………………..  75 

A4 ANOVA for the effect of phosphorus rate and fertilizer termination 
  time on flower number per node measured at time of full flower for 
 Dendrobium Red Emperor ‘Prince’ (Expt. 2)……………………..  76 

A5 ANOVA the effect of potassium rate and fertilizer termination on 
 vegetative parameters measured at pseudobulb maturity for 
 Dendrobium Red Emperor ‘Prince’ (Expt. 3)……………………..  77 

A6 ANOVA for the effect of potassium rate and fertilizer termination  
 time on reproductive parameters measured at time of full flower for 
 Dendrobium Red Emperor ‘Prince’ (Expt. 3)……………………..  78 

A7 ANOVA for the effect of fertilizer termination time on vegetative 
 parameters measured at pseudobulb maturity for Dendrobium Red  
 Emperor ‘Prince’ (Expt. 4)………………………………………..  79 

A8 ANOVA for the effect of fertilizer termination time on reproductive  
 parameters measured at time of full flower for Dendrobium Red  
 Emperor ‘Prince’ (Expt. 4)…………………………………………  80 

A9 Leaf number, leaf node number and leaf retention percentage for  
 nitrogen (N) (Expt. 1) and potassium (K) (Expt. 3) measured at  
 pseudobulb maturity for Dendrobium Red Emperor ‘Prince’……..    81 

A10 ANOVA for the effect of cold duration and light or no light on  
 vegetative parameters measured at pseudobulb maturity for 
 Dendrobium Red Emperor ‘Prince’ (Expt. 5)……………………..  83 

A11 ANOVA for the effect of cold duration and light or no light on 
 reproductive parameters measured at time of full flower for  
 Dendrobium Red Emperor ‘Prince’ (Expt. 5)……………………..  84 

A12 ANOVA for the effect of cold duration and light or no light on  
 flower number per node measured at time of full flower for  
 Dendrobium Red Emperor ‘Prince’ (Expt. 5)……………………..  84 

B1 Total ammonium (NH4), nitrate (NO3) and percentage of NH4 and  
 NO3 in nitrogen (N), phosphorus (P), and potassium (K) treatments 
 applied to Dendrobium Red Emperor ‘Prince’……………………    86 

 

 
 
 



 xi 

LIST OF FIGURES 
 

FIGURE Page 

1 Timeline of growth and development for Dendrobium Red  
      Emperor ‘Prince’………………………………………………….    23 

2 Effect of nitrogen rate and fertilizer termination time on leaf  
      number measured at pseudobulb maturity for Dendrobium Red 
 Emperor ‘Prince’………………………………………………….  25 

3 Effect of fertilizer termination time regardless of nitrogen rate  
      on pseudobulb width and thickness measured at pseudobulb 
 maturity for Dendrobium Red Emperor ‘Prince’…………………  27 

4 Effect of nitrogen rate and fertilizer termination time on  
 reproductive parameters measured at time of full flower for  
 Dendrobium Red Emperor ‘Prince’………………………………  30 

5 Effect of phosphorus rate and fertilizer termination time on days 
 to anthesis measured at time of full flower for Dendrobium Red  
 Emperor ‘Prince’………………………………………………….   36  

6 Effect of potassium rate and fertilizer termination time on 
  pseudobulb thickness measured at pseudobulb maturity on  
      Dendrobium Red Emperor ‘Prince’……………………………….  39 

A1 Average weekly day and night temperature and daily light integral  
 in the greenhouse at canopy level (4 Feb. - 28 April 2005) 
      (vegetative growth).………………………………………………     69          

A2 Average weekly day and night temperature and daily light integral  
 in the greenhouse at canopy level (29 April - 21 June 2005)  
 (vegetative growth).………............................................................          70 

A3 Average weekly day and night temperature and daily light integral 
 in the greenhouse at canopy level (22 June - 13 Oct. 2005)  
 (vegetative growth and maturation period).………………………          71 

A4 Average weekly day and night temperature and daily light integral 
 in the greenhouse at canopy level (14 Oct. 2005 - 5 Jan. 2006)  
      (maturation period and flower initiation).………………………...            72 

A5 Average weekly day and night temperature and daily light integral 
 in the greenhouse at canopy level (6 Jan. - 31 March 2006)  
      (flower initiation and development).……………………………... 73 

 

 



 xii 

FIGURE                                                                                                                Page 

A6 Average weekly day and night temperature in greenhouse B at  
canopy level (4 Nov. 2005 - 31 Jan. 2006)……………………….  82 

    



 1 

CHAPTER I 
 

INTRODUCTION AND REVIEW OF KEY LITERATURE 
 

 

Orchidaceae is the largest family in the plant kingdom containing approximately 

750 genera and more than 25,000 species.  Orchids are divided into two groups: 

epiphytic and terrestrial.  In their  natural habitat, epiphytic orchids absorb nutrients from 

rain water as it passes over their roots.  Other sources of water include dew, fine droplets 

from mist or fog, and water vapor.  Roots of orchids have a velamen, a layer outside of 

the exodermis, which wraps around them and acts like a sponge to absorb water.  Orchid 

species that grow in dry habitats have more velamen layers and cell walls that are thicker 

and more lignified (Pridgeon, 1987).  Some epiphytic orchids have enlarged stem-like 

structures called pseudobulbs that are storage organs (Hew and Yong, 2004). 

Although there are several characteristics that vary among the flowers of various 

orchids, all orchid flowers have some common characteristics including three sepals and 

three petals.  A lip, or labellum, is formed by the modified lower petal that is usually 

differentiated from other petals by their size, shape or color.  Another characteristic of 

most Orchidaceae plants is their elongated leaves with parallel veins, which have 

varying shapes and sizes and are considered either thin or thick- leaved (Hew and Yong, 

2004). 

In the past decade, orchid sales have been rapidly increasing in the United States 

and around the world.  Because of the much increased production of the Phalaeanopsis 

Bl. orchid, which is recognized as one of the easiest orchids to grow in a home 

environment, popularity of orchids as a flowering potted plant has increased 

significantly  (Griesbach, 2000;   Wang, 2004).     They have a low light requirement and  
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can flower up to four months and often longer, which makes them a very desirable plant 

that gives the consumer great satisfaction. 

Phalaenopsis are now being produced on a large scale in many countries 

including China, Japan, Germany, the Netherlands, Taiwan, and the United States 

(Griesbach, 2000; Wang, 2004).  Roughly 75% of the potted orchids produced today are 

Phalaenopsis and they can be purchased in a wide selection of flower colors and shapes 

(Frownie, 2006).  Celebrities, retailers and e-commerce companies have helped to 

promote the sales for potted orchids in the United States (Britt, 2000), and today they 

can be purchased at supermarkets and mass-market outlets at varying prices (Laws, 

2004). 

There has been increased supply of orchids due to greater advances in 

propagation techniques.  Young plant production is dominated by Taiwan and Thailand, 

while finished production is concentrated in Japan,  the Netherlands, and the  United 

States (Laws, 2004).  Orchids are now recognized as a profitable crop by commercial 

growers (Britt, 2000).  In 2005, the USDA estimated the wholesale value of potted 

orchids in the United States to be $144 million, with Phalaenopsis having the largest 

percentage of this value.  Orchids continue to be the only potted flowering plants to 

increase in wholesale value while the production of Euphorbia pulcherrima Willd. ex 

Klotzsch (poinsettia), the number one flowering potted plant, has been on the decline in 

recent years (USDA, 2006). 

Phalaenopsis orchids have been a main focus for commercial growers for the 

past few years; therefore, most of the research has been directed toward them and their 

growing requirements have been studied in detail (Sakanishi et at., 1980; Wang, 1998, 

2000; Wang and Konow, 2002).  Other orchid hybrids which are economically important 

such as Aranda (Arachnis xVanda), Oncidium Sw., Mokara (Arachnis xAscocentrum 

xVanda), and Dendrobium need to be researched to learn their requirements for 

flowering (Hew and Yong, 2004). 

  Although Phalaenopsis remain the most popular potted orchid sold, the types of 

orchids on the market are becoming more diversified.  Potted, blooming Dendrobiums 
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Sw. are being cultivated at an ever increasing rate.  There have been more than 15 seed-

propagated dendrobium hybrids introduced for pot plant production by the University of 

Hawaii (Leonhardt, 2000).  Hybrids made from Dendrobium nobile Lindl. orchid have 

the potential to become very popular in the flowering potted plant market because as 

tastes of the consumer change, the demand for the types of orchids that are produced will 

also change.  The main use for Dendrobium nobile orchids is the attainment of 

commercial hybrids (Dematte and Graziano, 2000), but they are also used as flowering 

potted plants, cut flowers, and corsages (Yamamoto Dendrobiums, 2006). 

Dendrobium is a widely distributed genus that can be found in Australia, East 

Indies, Far East, India, the Philippines, and South Pacific Islands (Fennel, Jr., 1965). 

Dendrobium nobile is native to Burma, India, Indochina, and Thailand (Yamamoto 

Dendrobiums, 2006).  Of the Dendrobium species, Dendrobium nobile is one of the most 

cultivated because of its potential to flower abundantly when grown under optimal 

conditions (Baker and Baker, 1996).  In their natural habitats, Dendrobium nobile is 

epiphytic and usually grows on trees.  Their growth habit is sympodial (Hew and Yong, 

2004).  Between December and January of each year, vegetative growth begins by 

activating a vegetative bud at the base of the old pseudobulb, leading to producing a new 

pseudobulb.  Leaves are alternate and flower buds are formed in the leaf axis.  The 

pseudobulbs mature by November and December of the next year.  After one year of 

growth, the pseudobulb begins to produce flowers in February and March of the 

following year, following adequate cooling.  Up to three flowers can be formed at each 

node (Rotor, Jr., 1952), which can be fragrant and last from 3 to 6 weeks or longer if 

conditions are favorable (Baker and Baker, 1996). 

The pseudobulbs of well-grown Dendrobium nobile ultimately reach a height of 

61 cm or taller.  Pseudobulbs start to mature once the terminal leaf has fully unfolded 

(Nash, 1996).  In Dendrobium Snowflake ‘Red Star’ and Dendrobium Malones 

‘Fantasy’  (both being the nobile type), the terminal leaf is formed early and shorter 

pseudobulbs are produced when there is a difference between day and night 

temperatures, e.g. 27/17 °C day/night, but with an average temperature, e.g. 22 °C 
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(Ichihashi, 1997).  Terminal leaf formation is affected by night temperatures, but 

cultivars vary in their requirements for night temperature.  Acceleration of terminal leaf 

formation occurs at 15 to 20 °C for Dendrobium Snowflake ‘Red Star’ and at 20 °C for 

Dendrobium Malones ‘Fantasy’.  High temperatures of 30-35 °C are not desirable 

because pseudobulb diameter can be small and temperatures below 15 °C can prevent 

pseudobulb growth (Ichihashi, 1997).  It is recommended that fertilizer be terminated 

once the terminal leaf appears (Nash, 1996). 

Nobile dendrobiums may be deciduous and lose leaves from the previous year 

once they have been subjected to cold air for a period of time.  It is believed that 

deciduous dendrobiums need to go through a resting period in order to form flower buds 

and that during this resting period, only sufficient amounts of water to prevent loss of 

turgidity are given to plants and temperature is reduced to 10 °C.  There is no scientific 

evidence that a resting period is necessary.  This belief may be due to the cold 

temperatures keeping plants from flowering.  Once flower buds have formed, irrigation 

and temperature are increased to aid in flower development (Pring, 1967).  It is not 

uncommon for smaller inflorescences to develop at the upper and basal parts of the 

pseudobulb as compared to inflorescences with a larger diameter on the remainder of the 

pseudobulb (Rotor Jr., 1952).  Vegetative buds (keikis) are formed in the place of flower 

buds if no resting period is allowed (Pring, 1967). 

It has also been determined that fertilization with a complete fertilizer is not 

always as important for growth as the potting mixture and its ability to retain water and 

nutrients (Wang, 1996).  Wang and Konow (2002) grew Phalaenopsis Atien Kaala 

[Phalaenopsis (Snow Swallow xHisa Nasu)] in either Douglas fir (Pseudotsuga 

menziesii (Mirb.) Franco) bark only or a bark-peat mix and supplied them with one of 

four complete fertilizer formulations.  Regardless of fertilizer applied, the bark-peat 

medium was found to hold and make available to the plant more nutrients, had a lower 

pH, and resulted in larger plants than those grown in the bark only.  Fir bark alone does 

not hold much water initially, which can pose problems to newly planted orchids.  Once 

it starts to hold more water, bark used as the lone medium component can decompose 
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quickly and can tie up nutrients posing problems to plants.  Medium containing a 

mixture of bark and peat has a better water and nutrient holding capacity than bark 

alone.  The carbon dioxide uptake through photosynthesis is reduced if water is 

withheld; therefore, medium should never become completely dry (Wang et al., 2005). 

Today, most commercial growers mix their own growing media.  Most of the 

mixes still contain bark, but they also have one or more other materials such as perlite, 

sphagnum peat, sphagnum moss, and coconut husk chips, etc. that absorb water (Wang 

et al., 2005). 

 

Mineral Nutrition of Orchids   

Availability.  In their native habitat, the ecosystem surrounding epiphytic orchids 

supplies nutrients to the plants.  Humus, tree bark, and the velamen can all absorb and 

retain water.  Usually the host tree provides much needed nutrients as rain water washes 

over the leaves, as well as organic matter that collect in tree crevices.  Water droplets 

containing nutrients then spread over the surface of the roots due to the small hairs on 

the root itself.  Plant growth is at an optimum when the availability of water is constant.  

Other factors that affect nutrition include plant age, medium, and decomposition rate of 

the medium (Poole and Sheehan, 1982). 

The major chemical macronutrients contained in rain running down tree trunks 

are nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg), but  phosphorus  

(P) is a minor component because it is not easily leached from leaves (Pridgeon, 1987).  

Nitrogen, P, and K are the three macronutrients focused upon when forming a fertilizer 

for application because they makeup most of the plants’ composition.  Nitrogen is of the 

greatest importance in research due to its abundance in the plant.  However, N is 

dependent on other nutrients for its effectiveness (Hew and Yong, 2004).  For example, 

K is required to activate and synthesize nitrate reductase (Marschner, 2003). 

 Deficiency.  Although orchids require similar nutrition to that of other plants, 

symptoms, depending upon the orchid species, are slow to appear due to the ir ability to 

translocate certain nutrients from older leaves and pseudobulbs to growing tissues (Hew 
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and Yong, 2004).  This phenomenon is mainly observed in the orchids of epiphytic 

origin where supply of nutrients is more limited and  irregular in their natural habitat.  

Nitrogen deficiencies took up to three weeks to become noticeable, while P and K took 

more than three months for symptoms of deficiency to appear in Vanilla Mill. grown in 

gravel culture (Hew and Yong, 2004).  Fresh and dry weights, leaf size, and stem 

diameter were all reduced by N deficiency in Vanilla, but details on rates were not 

reported.  When grown in gravel culture with N levels of 0, 10, or 81 mg•L-1 and K 

levels of 0, 7, or 40 mg•L-1, the highest N and K levels resulted in increased vine growth 

(Poole and Sheehan, 1982).  Nitrogen also resulted in darker green leaves in vanilla, 

whereas K had no effect on color. 

 Deficiencies of both N and P can affect photosynthesis.  Nitrogen is required for 

the formation of chloroplasts.  Up to 75% of total organic N can be found in the 

chloroplasts of green leaf cells (Marschner, 2003).  A deficiency of N can lead to 

decreased photosynthetic efficiency.  This is also true for P, where carbohydrates 

accumulate in leaves and roots of P deficient plants and the feedback inhibition reduces 

the photosynthetic efficiency of source leaves (Marschne r, 2003). 

Nitrogen.  For optimal growth, the N content in plants is between 2 and 5% of 

the plants dry weight.  This is dependant on factors such as the plant species, stage of 

development, and the organ in which it is found. 

During the past, most orchid production research in the U.S. has been focused on 

Phalaenopsis to help growers produce them more efficiently.  Earlier studies performed 

by Poole and Seeley (1978) used a hybrid Phalaenopsis in nutrient culture grown in 

ceramic pots and supported with glass spheres.  Nitrogen was supplied at 50, 100, or 200 

mg•L-1.  It was found that with nutrients applied three times per day, 100 mg•L-1 

nitrogen (N) resulted in the best growth.  Nitrogen concentration at 200 mg•L-1 

decreased height, leaf number and root dry weight.  In contrast, Wang (1996) grew a 

hybrid Phalaenopsis in containers with a medium of 70% Douglass fir bark and 30% 

peat moss and determined that high fertility was required.  Six complete fertilizers were 

applied to provide either 100 or 200 mg•L-1 N.  Plants that were supplied with 200 mg•L-
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1 N had more and larger leaves and a greater shoot fresh weight than those supplied with 

100 mg•L-1 N.  Nitrogen supplied at 200 mg•L-1 can benefit young plants by allowing 

them to grow more rapidly (Wang, 1996).  Increased nutrient levels resulted in plants 

that produced more leaves that were both larger and darker green, leading to better 

flowering (Wang and Gregg, 1994).  Generally, when an orchid is large before being 

forced to flower, it will produce more flower buds or inflorescences (Runkel et al, 2005).  

In contrast to Phalaenopsis, the production requirements for Dendrobium nobile remain 

largely undocumented in the recent scientific literature. 

Dendrobium nobile plants grown in sphagnum moss (Sphagnum magellanicum 

Brid.) or hemlock (Conium maculatum L.) bark were given 10 different combinations of 

0, 250, 500, and 1000 mg•L-1 N, P, and K over a period of 2 years (Miwa and Ozaki, 

1975).  Pseudobulb number, pseudobulb length and width, and leaf number were all 

highest at 1000 mg•L-1 N.  With the exception of one nutrient combination containing 

500 mg•L-1 N, 1000 mg•L-1 N produced the least flowering nodes and resulted in the 

greatest number of aerial shoots (keikis).  Nutrient combinations containing no P 

decreased the pseudobulb number, pseudobulb length and width, and leaf number.  

Flowering node number and number of flowers per node decreased and flowering was 

delayed.  Potassium was not shown to have effects on plants at any level.  Due to its 

water and nutrient holding capacity, plants potted in sphagnum moss resulted in 

increased vegetative and reproductive growth compared to those grown in hemlock bark 

(Miwa and Ozaki, 1975). 

It has also been found that other greenhouse grown crops also have decreased 

growth when supplied with highest levels of N.  Smith et al. (1998) grew Alstroemeria 

‘Parigo Pink’ in pots in a medium of sphagnum moss peat, polystyrene beads, and 

vermiculite.  Plants were supplied with N concentration levels of 0, 3.5, 7, 14, 28.5, or 

57 mmol•L-1.  The number of vegetative stems and flower production increased with 

fertilizer solutions up to 28.5 mmol•L-1 and then decreased at 57 mmol•L-1 N.  Fertilizer 

supplied at 28.5 mmol•L-1 was determined to be optimum for production of plants that 
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produced more flowers of higher quality than plants supplied with the lower or higher 

rates of N. 

 Crops in general have higher yields when N is supplied as a combination of 

ammonium (NH4
+) and nitrate (NO3

-), but their optimal proportion is dependent upon 

total N supply, content of N in soil, and plant species (Marschner, 2003).  There is 

generally a lower rate of NH4
+

 and NO3
- uptake in orchids compared to those of other 

plant types (Hew and Yong, 2004).  It was found that fertilizing Cattleya plants weekly 

with NH4
+ resulted in increased fresh weight, dry weight of roots, and leaf area than 

those that received NO3
- fertilizer (Poole and Sheehan, 1982).  However, plants that were 

fertilized with either the NH4
+

 or NO3
-
 at intervals of two or three weeks showed no 

differences in growth.  Plants that received the NH4
+

 demonstrated more leaf chlorosis 

after ten months (Poole and Sheehan, 1982).   

The use of NO3-N versus ammonium nitrate (NH4NO3) was tested on orchid 

embryos at a constant pH level.   For both Cymbidium Sw. and Cattleya Lindl., NH4NO3 

was superior to NO3
- (Poole and Sheehan, 1982).  When grown in liquid culture media, 

there was a preferential uptake of NH4
+

 over NO3
-
 by Dendrobium tissues.  Once NH4

+ 

had been depleted, the tissues started to take up NO3
-.  The uptake of NH4

+ generally 

hindered the uptake of NO3
-.  There is a relationship between the uptake of NH4

+
 and 

NO3
-
 by orchids and the pH level in the media.  While orchid tissues are taking up NH4

+, 

there is a decrease in pH, which is due to the efflux of protons.  Once ammonium ions 

have been exhausted, NO3
- is used and the pH level begins to increase due to efflux of 

hydroxyl ions (Hew and Yong, 2004).   

Hew et al. (1993) compared N uptake of two terrestrial orchids, Bromheadia 

finlaysonia Lindl. and Cymbidium sinese (Jackson) Willd. with the epiphytic orchid  

Dendrobium White Fairy (Dendrobium Singapore White xDendrobium Walter Omaze).  

Plants were grown hydroponically with various N sources.  The Dendrobium was found 

to have the highest NO3
- uptake rate of the three.  When grown in a nutrient solution 

with NO3
- (10 m?) as the nitrogen source, Dendrobium and Cymbidium demonstrated a 

linear rate of NO3
- uptake over a period of 40 days of 0.94 and 0.33 µmol/g/fw/hr, 
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respectively.  When Cymbidium sinense was supplied NH4NO3 as a N source for 30, 60, 

90 and 100 days, it had faster root and leaf growth as well as higher photosynthetic rate 

when compared to the use of NO3
- or NH4

+ as the only nitrogen source.  The highest 

chlorophyll concentration resulted from NH4
+

 at all treatment days.  As the rate of 

NH4NO3 increased, the flower number also increased in Cattleya Trimos G when grown 

on tree bark (Hew and Yong, 2004). 

Phosphorus.  Most healthy plant vegetative tissues contain 0.3 -0.5% of P in dry 

matter (Marschner, 2003); however, P toxicity in more sensitive plants may occur at 

these level.  Phosphorus concentration above 1% in dry matter may cause toxicity.  

Phosphorus deficiencies can cause a decrease in leaf number, leaf size, and leaf surface 

area.  Root and shoot growth may decrease, and cause a reduction in shoot-root dry 

weight ratio (Marschner, 2003). 

Wang (2000), found that there was a decrease in flower number when 

Phalaenopsis was grown in a mixture of 80% Douglas fir bark and 20% sphagnum peat 

were switched to low N (30 mg•L-1) and high P (390 mg•L-1) and K (506 mg•L-1) levels 

at the beginning of being induced to spike, and concluded that adequate N levels were 

more essential to flowering than high P levels.  The control was a high N soluble 

fertilizer containing 100, 43, and 83 mg•L-1 of N, P, and K, respectively,  used at every 

irrigation.  High P and low N rates also resulted in fewer new leaves and increased lower 

leaf abscission.  Growth and flowering of Phalaenopsis were not affected by varying 

rates of P.  For Phalaenopsis, 25-50 mg•L-1 P were adequate to produce a good crop 

(Wang et al, 2005). 

Research to determine how growth and flowering were affected by 27 treatment 

combinations of 0, 500 and 1000 mg•L-1 N, P and K was performed on Dendrobium 

moschatum (Buch.-Ham.) Sw. ‘Wall’.  Plants were grown in pots with a media of hard 

wood charcoal.  There was an increase in vegetative growth and flowering with the 

addition of 500 mg•L-1 P, without further increase in growth at 1000 mg•L-1 P.  When 

analyzed together, the interaction of N and P made a significant difference on leaf 

number and flower longevity.  Leaf number increased as higher or increased levels of N 
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and P were applied, while flower longevity decreased at 0 mg•L-1 P combined with both 

higher levels of N.  Phosphorus and K interacted to increase flower size and flower 

longevity with combinations of P and K above 0 mg•L-1 (Bhattacharjee, 1981).   

Whitcher et al. (2005) also found that lower levels of P were needed for 

vegetative growth and flower number of two greenhouse grown crops, New Guinea 

impatiens (Impatiens hawkeri Bull.) ‘Paradise Violet’ and vinca (Catharanthus roseus 

(L.) G. Don) ‘Pacifica Red’, when grown in a soilless media in recirculating 

subirrigation in a greenhouse.  Phosphorus rates were applied at 0, 0.1, 0.25, 0.5, 1, 2, 4, 

16, 32, or 64 mM.  A quadratic-linear segmented model analysis showed that for New 

Guinea impatiens, a P rate between 0.1 and 0.96 mM was best for dry shoot weight and 

flower number.  A P range of 0.45 to 1.25 mM was optimum when the same parameters 

were measured for vinca.  Zhang et al. (2004) found similar results when they grew  

Scaevola aemula R. Br. ‘New Wonder’ in pots with Pro-Mix BX in a greenhouse.  

Plants were supplied with P concentrations of 0, 14.5, 29.0, 43.5, 58.0, 72.5, or 87.0 

mg•L-1.  When supplied with P concentrations greater than 14.5 mg•L-1, there was a 

decrease in shoot dry weight, length, and number and leaf size, with a severe decrease at 

rates higher than 43.5 mg•L-1 P.  It is obvious that P is not needed in high concentration 

for optimal plant growth. 

Potassium.  Potassium should be found in the range of 2-5% of plant dry weight 

of vegetative tissues, tubers, and fleshy fruits for optimal plant growth (Marschner, 

2003).  When K is in excess, it can hinder the uptake and physiological accessibility of 

Ca and Mg (Marschner, 2003).  On the other hand, K deficiencies can retard growth and 

K in mature leaves and stems can be moved to new tissues causing them to become 

chlorotic or necrotic under severe deficiency conditions (Marschner, 2003). 

Poole and Seeley (1978) conducted research on Phalaenopsis, Cymbidium, and 

Cattleya orchids to determine the N, K, and Mg effects on growth and  mineral 

composition of orchids.  Phalaenopsis were supplied with 100, 200, or 300 mg•L-1 K 

and Cattleya and Cymbidium with 50, 100, or 200 mg•L-1 K in a nutrient culture setting 

in ceramic pots in a greenhouse.  They found that for all three orchid genera, 50 mg•L-1 
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K was sufficient for orchid growth and higher levels had no further affects except in 

Cattleya at 200 mg•L-1 K, which resulted in fewer leaves.  The amount of Ca and Mg in 

orchid leaves decreased when K increased for all three genera at all three nutrient 

solution levels, except for Mg concentration in Cattleya (Poole and Seeley, 1978). 

Contrasting results have been reported for research performed on other 

greenhouse grown crops.  Woodson and Boodley (1982) grew ‘Forever Yours’ roses 

(Rosa Hybrid Tea) in the greenhouse in recirculating nutrient solutions.  Potassium was 

supplied at 0.25, 2.5, 5.0, or 10.0 meq/liter.  As the supply of K increased from 0.25 to 

10.0 meq/liter, flower number and stem length increased, suggesting that high levels of 

K are required for this rose when grown in a recirculating nutrient solution.  Also, the K 

concentration from 0.25 to 10 meq/liter did not decrease Ca and Mg levels in ‘Forever 

Yours’ roses.  In opposition, Haley and Reed (2004) reported that New Guinea 

impatiens, vinca, and petunia (Petunia xhybrida Hort. Vilm.-Andr.) grown in a 

recirculating subirrigation system and supplied with K concentrations of 0, 0.5, 1.0, 1.5, 

2.0, 3.0, 6.0, 9.0, or12.0 mM had maximum growth at levels ranging from 1.0 to 6.0 

mM.  Plants supplied with higher amounts resulted in decreased height, shoot dry 

weight, and leaf number. 

 

Photoassimilates and Carbon Availability   

 Leaves are the  main contributor of photoassimilates for most plants.  Assimilates 

are usually imported to young, expanding leaves from other sources.  Other organs, such 

as pseudobulbs, may produce some assimilate.  Pseudobulbs are sinks during early 

development, but later become sources of assimilates.  Assimilate movement throughout 

orchids follows a different pattern than other higher plants.  Research performed on two 

thick- leaved sympodial orchids, Dendrobium Rong Rong and Dendrobium Jashika Pink 

suggests that when flowers are present they compete for assimilates from the 

pseudobulbs, stem internodes, roots, and when present, the vegetative basal shoot (Hew 

and Yong, 2004).  The method used for proving the competition for assimilates was not 

mentioned.  Orchid flowers have the ability to obtain assimilates from leaves both 
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nearby and distant.  Therefore, there is minimal vascular restriction on movement of 

assimilates to the flower. 

Dendrobiums are considered to have crassulacean acid metabolism (CAM) and 

take up CO2 at night (Hew and Yong, 2004) which enables them to use water more 

efficiently in dry environments (Taiz and Zeiger, 2002). Typically, the epiphytic orchids 

have more environmental stress in their natural habitats compared to when grown under 

controlled environments and are known to be slow growing.  The slow growth may be 

accredited to the way these plants acquire carbon.  Supplying CAM plants with a foliar 

fertilizer at night was found effective when stomata were open (Hew and Yong, 2004).  

However, dendrobiums are thick- leaved and must be sprayed from the under surface 

where stomata are present making this method economically difficult for commercial 

growers (Hew and Yong, 2004). 

 

Flower  Initiation and Flower Development 

 Genetic, environmental, and physiological factors including juvenility, 

photoperiod, and temperature all influence orchid flower bud initiation.  After flower 

bud initiation, the buds of epiphytic orchids rely on photassimilates from leaves, 

pseudobulbs, and roots in order to continue developing (Hew and Yong, 2004).  

Knowledge of flowering seasonality and the factors that affect flowering are necessary 

to program plants to flower for specific market dates.  Over a period of five years, Hew 

and Yong (2004) investigated the control of flowering in Dendrobium Jaquelyn Thomas.  

As plants matured, there was an increase in inflorescences (exact numbers not reported) 

that reached a maximum at three to four years.  During the first year, flowering peaked 

in the summer.  During the five-year evaluation period, flowering seasonality fluctuated. 

 It is not uncommon for dendrobiums to flower more than once per year.  The 

average juvenile phase for most orchids is two to three years; however, some can remain 

juvenile for up to 13 years.  Orchids chosen for commercial production usually have a 

juvenile stage of 12-36 months (Hew and Yong, 2004).  Once the juvenile stage is over 

there is a period of maturation, which differs depending on the cultivar.  At the 



 13 

beginning of the maturation process, the terminal leaf forms, however the length of time 

needed between terminal leaf formation and pseudobulb maturity is unclear.  In 

Dendrobium Snowflake ‘Red Star’, a longer period for maturation and flower bud 

development is needed if the terminal leaf is formed early (i.e. June and July) (Ichihashi, 

1997).  Pseudobulbs can mature in two weeks after the terminal leaf has formed if the 

temperature is kept below a maximum of 15 °C (Ichihashi, 1997).  In contrast, it can take 

more than a month for pseudobulbs to mature when grown below a maximum winter 

temperature of 25 °C (Ichihashi, 1997).  

If pseudobulbs are not fully mature, they will not respond to low temperatures 

and therefore will not initiate flower buds.  Ichihashi (1997) reported that under 25 °C 

day/15 °C night conditions, Dendrobium Hinode ‘Toutenkou’ (Dendrobium (Winter Star 

x Snowflake)) had fewer flowers on the upper nodes and Dendrobium Snowflake ‘Red 

Star’ produced aerial shoots.  Both clones required temperatures above 25 °C day/15 °C 

night in order for pseudobulbs to mature timely for flower induction. 

Many species in Orchidaceae need a period of vernalization after maturation to 

induce flowering.  This is also true for tropical orchids (Hew and Yong, 2004).  In 

commercial production of Phalaenopsis, day/night temperatures of 25/20 °C are used to 

promote flowering. Spiking of Phalaenopsis hybrids is triggered by air temperatures of 

26 °C or lower (Sakanishi et al., 1980). 

The effect of temperature on Dendrobium nobile is critical during both vegetative 

growth and flower initiation.  During the spring and summer in both Hawaii and Japan, 

nobile dendrobiums are grown in lower elevations where the pseudobulbs can mature 

completely in a warmer climate before being taken to higher elevations where flower 

initiation can begin under cooler conditions (Nash, 1996).  The initiation of flower buds 

is best at day/night temperatures of 25/10 °C for Dendrobium Snowflake ‘Red Star’ 

(Ichihashi, 1997).  Flower bud differentiation improved in both Dendrobium Snowflake 

‘Red Star’ and Dendrobium Hinode ‘Toutenkou’ with day temperatures of 25 °C and 

below and night temperatures of 10-13 °C (Ichihashi, 1997).  In Dendrobium Malones 

‘Fantasy’, flower bud initiation was optimal at night temperatures between 7.5 and10 °C.  
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The number of flower buds decreased and flowering was delayed with night 

temperatures of 15 °C or higher (Suto et al., 1984).  The cooler temperatures (10 to 15 

°C) together with the termination of fertilizer after pseudobulb maturity produces the 

best flower display of Dendrobium nobile (Nash, 1996).  For all cultivars, flower bud 

initiation is inhibited by day temperatures above 25 °C (Ichihashi, 1997). 

 Temperature can also be used to manipulate timing of flower bud initiation and 

flowering.  Raising or lowering the air temperature in the greenhouse can be used to 

manipulate the flowering date once spiking has taken place (Wang, 1998).  Wang (1997) 

reported that spiking can be delayed by maintaining temperatures above 28 °C all day.  

Flowering of a first generation Phalaenopsis pulcherrima hybrid is delayed by cool day 

temperatures of 25 °C and warm night temperatures of 30 °C (Wang, 2007).  Cool day 

temperature of 20 °C and warm night of 25 °C induced flowering, whereas warm day of 

25 °C and cool night of 20°C inhibit flowering.  Flower induction begins as temperatures 

fall below 26 °C for four to five weeks.  Phalaenopsis plants with a young inflorescence 

can become an aerial shoot known as a keiki, in place of a flower bud when temperatures 

remain at 28 °C or higher (Lopez et al., 2005).   

 After a low temperature treatment of 10 °C for 16 hours daily over a period of 

30-40 days, flower initiation of nobile dendrobiums was accelerated when there was an 

increase of night temperature from 10 °C to 25 °C (Sinoda et al., 1988).  Lopez and 

Runkle (2004) reported a decrease in time from visible inflorescence to flower opening 

in Zygopetalum Hook. (Zygopetalum Redvale ‘Fire Kiss’) when there was an increase in 

temperature (14 °C to 26 °C).  The average number of flowers was not no tably affected 

by temperature.  For Dendrobium nobile, despite photoperiod, 13 °C (details were not 

given as to whether this temperature was constant or average), was found to trigger 

flower bud initiation.  Dendrobium nobile usually begins flowering in February or 

March, which can be too early for the Easter holiday.  Plants grown at 18 °C for up to 4 

months had delayed flowering until the preferred blooming date (Rotor Jr., 1952). 

 Photoperiodic response is important in controlling flowering in many plant 

species.  Orchids, like other plants, can be classified into three groups:  Short day (SD), 
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long day (LD), and day neutral (DN).  Those with origin close to the Equator are 

believed to be more affected by changes in daylength than those found in more 

temperate areas.  Rotor, Jr. (1952) found that Phalaenopsis amabilis (L.) Bl. grown in an 

18 °C (comparisons to other temperatures were not reported) greenhouse supplied with 

uninterrupted short days encouraged flowering and inflorescence stalks and old stalks to 

produce lateral flowering branches throughout the year.  Long days gave the plants a 

specific once-a-year flowering period, but did not hinder flowering.  Some of the 

dendrobium hybrids are considered day neutral and not affected by daylength for 

flowering (Hew and Yong, 2004). 

In addition to the photoperiod needed for flowering, some orchids also require 

certain light intensity for best growth and flowering.  If plants are subjected to low light 

or darkness, spiking of Phalaenopsis does not occur even under optimum temperature 

conditions (Wang, 1995).  To obtain 100 percent flowering of Phalaenopsis a light level 

of 250 µmol•m-2•s-1 or higher is necessary (Wang, 1997).  In order for Dendrobium 

nobile to reach their full flowering potential, they must have reached maturity under 

high- light conditions before the cooling period (Nash, 1996).  A study suggests the 

photosynthetic capacity of Dendrobium Jaquelyn Thomas can be increased by increasing 

irradiance (decreasing % shade in the greenhouse) on their leaves, thus increasing flower 

number (Hew and Yong, 2004).  For Dendrobium Nodoka and Dendrobium Snowflake 

‘Red Star’ (both the nobile type), high light is not necessary during flower bud initiation.  

However, exposure to low light (an exact light amount was not stated) during this time 

can result in leaf chlorosis and defoliation (Ichihashi, 1997).  Cymbidiums need a 

combination of low temperatures and a certain light intensity in order to flower.  A 

period of full sunlight was needed for Vanda Miss Joaquim and Arachnis Maggie Oei to 

flower, while high light intensities (above 700 µmol• m-2•s-1) reduced flowering of 

Oncidium Goldiana (Hew and Yong, 2004). 

Light can be used to manipulate the timing of flowering.  Wang (1998) 

performed five experiments giving Phalaenopsis TAM Butterfly various cycles of 

darkness and light.  Cycles were, 1 day darkness/1 day light; 4 days darkness/3 day light; 
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7 days darkness/7 days light, and the control (natural photoperiod).  The greenhouse was 

provided with shade and the maximum PPF was 360 µmol•m-2•s-1.  Results showed that 

plants subjected to four days of darkness followed by three days of light for three months 

suspended spiking for three months without a decrease in flower number when plants 

were finally brought to flowering. 
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CHAPTER II 
 
 

FERTILIZER RATE AND DURATION EFFECT ON GROWTH 

AND FLOWERING OF Dendrobium RED EMPEROR ‘PRINCE’ 

 
Introduction 
   

There has been increased supply of orchids due to greater advances in 

propagation techniques.  Young plant production is dominated by Taiwan and Thailand, 

while finished production is concentrated in Japan, the Netherlands, and the United 

States (Laws, 2004).  Orchids are now recognized as a profitable crop by commercial 

growers (Britt, 2000).  In 2005, the USDA estimated the wholesale value of orchids in 

the United States to be $144 million, with Phalaenopsis having the largest percentage of 

this value.  Orchids continue to be the only potted flowering plants to increase in 

wholesale value while the production of Euphorbia pulcherrima Willd. ex Klotzsch 

(poinsettia), the number one potted flowering plant, has been on the decline in recent 

years (USDA, 2006). 

Dendrobium is a widely distributed genus that can be found in Australia, East 

Indies, Far East, India, the Philippines, and South Pacific Islands (Fennel, Jr., 1965). 

Dendrobium nobile is native to Burma, India, Indochina, and Thailand (Yamamoto 

Dendrobiums, 2006).  Of the Dendrobium species, Dendrobium nobile is one of the most 

frequently cultivated because of its potential to flower abundantly when grown under 

optimal conditions (Baker and Baker, 1996).  Uses for Dendrobiums, in general, include 

cut flowers and potted plants (Dole and Wilkins, 2005). 

Although Phalaenopsis remain the most popular potted orchid sold, the types of 

orchids on the market are becoming more diversified.  Potted, blooming Dendrobiums 

Sw. are being cultivated at an ever increasing rate.  There have been more than 15 seed-

propagated dendrobium hybrids introduced for potted plant production by the University 

of Hawaii (Leonhardt, 2000).  Hybrids made from Dendrobium nobile Lindl. 

(Dendrobium nobile) orchids have the potential to become very popular in the flowering 



 18 

potted plant market because, as tastes of the consumer change, the demand for the types 

of orchids that are produced will also change.  Orchid hybrids which are economically 

important such as Aranda (Arachnis xVanda), Oncidium Sw., Mokara (Arachnis 

xAscocentrum xVanda), and Dendrobium need to be researched to develop their 

requirements for flowering (Hew and Yong, 2004). 

During the past, most orchid production research in the U.S. has been focused on 

Phalaenopsis to help growers produce them more efficiently.  In contrast to 

Phalaenopsis, the production requirements for Dendrobium nobile remain largely 

undocumented in the recent scientific literature.  In one study, Dendrobium nobile plants 

grown in sphagnum moss (Sphagnum magellanicum Brid.) or hemlock (Conium 

maculatum L.) bark were given 10 different combinations of 0, 250, 500, and 1000 

mg•L-1 N, P, and K over a period of 2 years (Miwa and Ozaki, 1975).  Pseudobulb 

number, pseudobulb length and width, and leaf number were all highest at 1000 mg•L-1 

N.  With the exception of one nutrient combination containing 500 mg•L-1 N, 1000 

mg•L-1 N, plants produced the least flowering nodes and resulted in the greatest number 

of aerial shoots (keikis).  Nutrient combinations containing no P decreased the 

pseudobulb number, pseudobulb length and width, and leaf number.  Flowering node 

number and number of flowers per node decreased with no P and flowering was delayed.  

Potassium at any level was shown to not have effects on plants.  Due to it s water holding 

capacity, Dendrobium nobile plants potted in sphagnum moss resulted in increased 

vegetative and reproductive growth compared to those grown in bark (Miwa and Ozaki, 

1975).  The requirements for nutrition, temperature, and light of the more modern 

dendrobium cultivars need to be investigated. 

 The overall objective of the first three experiments was to determine how various 

rates of nitrogen (N) (Expt. 1), phosphorus (P) (Expt. 2), and potassium (K) (Expt. 3) 

and nutrient termination times would affect growth and flowering of Dendrobium nobile 

Red Emperor ‘Prince’.  The objective of the fourth experiment was to determine 

optimum N termination time, while still applying all other nutrients, for vegetative and 

reproductive growth. 
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Materials and Methods  

 
One-year-old Dendrobium nobile Red Emperor ‘Prince’ liners, each having a 

single pseudobulb, were received from Yamamoto Dendrobiums, Mountain View, 

Hawaii, on 3 Feb. 2005.  The young plants had been propagated from single-node stem 

cuttings in 72-cell plug trays filled with sphagnum moss as the root substrate.  After 

arrival, pseudobulbs were potted on 4 Feb. 2005 in a root substrate of 2 coarse peat : 1 

perlite (no. 3) : 1 diatomite (no. 3) (90% silicon dioxide, 10% elemental minerals) 

(Diatomite USA, Elma, N.Y.) (by volume) with 0.5 g•L-1 Micromax, (a micronutrient 

source, The Scotts Company, Marysville, Ohio) and 5.0 g•L-1 powdered dolomite.  

Plants were potted in 10.2 cm top diameter (414 mL) standard round plastic pots. 

Immediately after potting, plants were watered  with reverse osmosis (RO) water 

containing a fungicide (Banrot 40% WP, Scotts-Sierra Crop Protection Company, 

Marysville, Ohio) at a rate of 59.8 mg•L-1 to prevent root rot.  Plants continued to be 

watered with RO water until 22 Feb. 2005 when treatments commenced. 

 Experiments 1-3 were factorial treatment combinations of five N, P, or K rates 

and three fertilizer termination times.  The five rates for N and K were 0, 50, 100, 200, 

and 400 mg•L-1 and for P were 0, 25, 50, 100, and 200 mg•L-1.  In all rates, Ca and Mg 

were held at a fixed rate.  In 0 mg•L-1 rates, only the nutrient being tested was 

eliminated.  The three fertilizer termination times for all experiments were 1 Sept. (FT-1, 

209 DAP), 1 Oct. (FT-2, 239 DAP), and 1 Nov. (FT-3, 270 DAP) 2005.  At each 

fertilizer termination time, all nutrients were terminated.  A single plant represented an 

experimental unit and each treatment was replicated 10 times in a randomized complete 

block design within each experiment.  There were 150 total plants in each experiment. 

Each experiment was designed to allow for only N, P, or K rate to increase while 

all other nutrient rates were held constant.  Total N stayed constant at 100 mg•L-1 in the 

P (Expt. 2) and K (Expt. 3).  P was held constant at 200 mg•L-1 in the N (Expt. 1) and 

250 mg•L-1 in the K (Expt. 3) experiment.  K was kept constant at 250 mg•L-1 in the N 

(Expt. 1) and P (Expt. 2) experiments.  All nutrient solutions had a common 100 mg•L-1 

Ca (CaCl2•2H2O) and 50 mg•L-1 Mg (MgSO4•7H2O).  Table 1 shows how nutrient 
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solutions were supplied to increase N, P, or K in each of the 3 experiments while holding 

all other nutrients constant. 

At the beginning, fifteen pots were placed in each 29.5 x 50.5 cm molded 

carrying tray (4.00 AZ Transport Tray (15), Landmark Plastic Corporation, Akron, 

Ohio). Initially, the molded carrying trays were spaced 7.6 cm apart to simulate 

commercial growing cond itions. To prevent lodging, plants were supported in July 2005, 

with 8-10 mm diameter bamboo stakes (Bamboo Stake Co., Lakeland, Fla.) cut at 30.5 

cm.  On 6 Aug. 2005, plants from the middle row of the carrying trays were removed 

and placed in additional trays to improve spacing and air circulation.  In December 2005, 

to prepare for flowering, each of the 10.2 cm pots was placed inside a 14.6 cm (1.77 L) 

pot surrounded by pea gravel and given additional support with 12-14 mm diameter 

bamboo stakes cut at 61 cm.  Pots were spaced at 232.3 cm2. 

For all experiments, pots were watered by hand at each watering by applying 100 

mL of nutrient solution per pot.  As plants grew, 150 mL of nutrient solution was applied 

per pot.  After the termination of fertilization, plants were watered with plain RO water 

by hand-held hose.  Insecticides and fungicides were applied at recommended rates as 

needed throughout the growing period (Table A1).   

 Plants were grown in a glass and polycarbonate greenhouse until the time of full 

flower.  From February to December 2005, temperature set points in the greenhouse 

were 24 °C day/18 °C night and actual average temperatures were 24 ± 11.5 °C day/20 ± 

11 °C night.  From February to April, if two new shoots emerged from the base of the 

old pseudobulb, the second emerging shoot was removed to maintain one shoot per 

plant.  From March to May, flower buds that formed on some of the old pseudobulbs 

were removed as needed to keep plants vegetative.  Starting 15 Dec. 2005, temperature 

set points were 18 °C day/15 °C and actual average temperatures were 18 ± 9.5 °C 

day/14 ± 6 °C night to promote flower initiation.  On 17 Jan. 2006 after flower initiation, 

temperature set points in the greenhouse were 22 °C day/17 °C night and actual average 

temperatures were 22 ± 6 °C day/18 ± 4.5 °C night through flower development (Fig. 1).  

HOBO H8 data loggers (Onset Computer Corp., Bourne, Maine) were used to measure 
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and record the actual greenhouse temperature (Figures A1-A5).  Greenhouse light levels 

were monitored at plant canopy level using line quantum sensors (LQS 50-3, Apogee 

Instruments Inc., Logan, Utah) (Figures A1-A5).  The maximum daily light level ranged 

from a high of 10 mol•m-2•d-1 in June to a low of 2 mol•m-2•d-1 in January.  

  

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 Plant height, pseudobulb node number, pseudobulb width and thickness, leaf 

number, and chlorophyll readings data were taken in December after all pseudobulbs had 

matured.  Pseudobulb maturation was defined as the time when the uppermost leaf had 

fully expanded, the pseudobulb had swollen, and the top of the pseudobulb became 

rounded.  Height was measured from the base to the top of the pseudobulb.  Pseudobulb 

Table 1.  The amount of chemicals used to prepare nutrient solutions of various 
nitrogen (N), phosphorus (P), and potassium (K) concentrations. 

  Rate  (g•L-1) KH 2PO4 KNO3 NH4
 NO3 NH4

 H3 PO4 

Expt. 1 (N)      
 0 8.42 0 0 0 
 50 8.42 0 1.37 0 
 100 8.42 0 2.75 0 
 200 8.42 0 5.48 0 
 400 8.42 0 10.97 0 
Expt. 2 (P)      
 0 0 6.20 0.30 0 
 25 1.06 5.42 0.60 0 
 50 2.11 4.64 0.89 0 
 100 4.21 3.07 1.54 0 
 200 8.44 0 2.75 0 
Expt. 3 (K)      
 0 0 0 0.30 7.12 
 50 1.67 0 0.77 5.70 
 100 3.35 0 1.26 4.27 
 200 6.69 0 2.24 1.46 
 400 6.69 4.97 0 1.46 
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width and thickness measurements were taken with a digital caliper (Model 06-664-16, 

Control Company, Friendswood, Texas).  Several locations on the pseudobulb were 

measured and the thickest/widest portion of the pseudobulb was recorded.  The leaf 

number was the number of leaves remaining on the plant  in December.  The chlorophyll 

reading was measured using a Minolta chlorophyll meter (model SPAD-502, Spectrum 

Technologies, Inc., Plainfield, Ill.) for the lower, middle and upper leaves.  The lower 

leaf was at one of the bottom three nodes, the middle leaf was midway on the 

pseudobulb, and the upper leaf was the upper most fully expanded leaf.  All 

measurements were taken at the point halfway between the leaf apex and leaf base and 

between the side margins and the midrib at the widest point. 

 In February and March 2006, flowering data were collected including total 

flower number, flowering node number, apical non-flowering node number, flower 

number per node, middle flower diameter, days to anthesis, and time to full flower.  

Apical non-flowering node number was the number of nodes above the last flowering 

node at the top of the pseudobulb.  This is important because flowers to the top of the 

pseudobulb are more aesthetically desirable.  Flower diameter was measured from one 

flower per plant at the middle flowering node.  Days of anthesis were the days from 

planting to the day the petals of the first flower were observed separating on each plant.  

Time to full flower was number of days between anthesis and the time when all flowers 

on the plant were fully open. 
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Figure 1.  Timeline of growth and development for Dendrobium Red Emperor ‘Prince’. 

  

 

In Expt. 4, plants were fertilized at each watering with the same 100 mg•L-1 N 

fertilizer solution as in the previous N experiment, while P was held constant at 200 

mg•L-1 and K at 250 mg•L-1.  Calcium (CaCl2•2H2O) was supplied at 100 mg•L-1 and 

Mg (MgSO4•7H2O) at 50 mg•L-1.  At each fertilizer termination time, N was removed 

from the nutrient solution but P, K, Ca, and Mg continued until time of full flower.  

There were four termination times 1 Sept., 1 Oct., 1 Nov., and 1 Dec.  Control plants 

received continuous N (FT-C) until the time of full flower.  There were 10 replications 

per treatment arranged in a randomized complete block design.  There were a total of 50 

plants. 

Data were analyzed using ANOVA and least squared difference (LSD) test by 

SAS program (SAS 8.01; SAS Institute, Cary, N.C.). 

  March 2006 

  Vegetative Growth  
24 °C day/18 °C night  
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Pseudobulb  
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Flower bud  
  initiation 

 
Full flower 

Low Temperature  
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December - January Increased 
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night 

 

 Flower bud                
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One-year-old 
pseudobulb 

February 4, 2005 
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Results:  Experiment 1 
 

The objective of experiment 1 was to determine the effect of nitrogen (N) rate 

and fertilizer termination time (FT) on Dendrobium Red Emperor ‘Prince’. 

For the vegetative parameters measured at pseudobulb maturity, there were no 

interactions between N rate and fertilizer termination time with the exception of leaf 

number (Table 2).  For 0 mg•L-1 N, plants retained more leaves when fertilization was 

terminated at FT-1 than at FT-2 or FT-3 (Fig. 1).  When absent of N, five to six leaves 

were present on plants when fertilizer was terminated at FT-1 (1 Sept. 2005) than when 

it was applied for an additional 30 or 60 more days.  The second (FT-2) and third (FT-3) 

termination times resulted in plants having similar number of leaves at each of the N 

rates above 0 mg•L-1.  For all fertilizer termination times, plants produced similar 

number of leaves at N rates from 50 to 400 mg•L-1 (Fig. 2).  

 

   

 

 

For all fertilizer termination times, plants became taller as N rate increased from 

0 to 50 mg•L-1 (Table 3), reaching the peak at 100 and 200 mg•L-1 N.  Plants were 

shorter when N increased to 400 mg•L-1 N.  Plants fertilized with N at 50 mg•L-1 had 

more pseudobulb nodes than those with 0 mg•L-1 N but fewer than those fertilized with 

Table 2.   ANOVA for the effect of nitrogen rate and fertilizer termination time on 
vegetative parameters measured at pseudobulb maturity of Dendrobium Red 
Emperor ‘Prince’. 

Pseudobulb  Plant 
height 
(cm) 

Pseudobulb  
node no. Leaf no. 

Width 
(mm) 

Thickness 
(mm) 

Nitrogen rate (N) (mg•L-1) *** *** *** *** *** 
Fertilizer termination time 
(FT) (d)  NS NS NS ** *** 
N × FT NS NS ** NS NS 
NS, **, *** Not significant or significant at P = 0.01, 0.001, respectively. 
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400 mg•L-1 N.  The total pseudobulb node number was largest at 100 and 200 mg•L-1 N 

(Table 3). 
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Figure 2.  Effect of nitrogen rate and fertilizer termination time on leaf number measured 

at pseudobulb maturity for Dendrobium Red Emperor ‘Prince’.   
FT-1= first fertilizer termination time, 1 Sept. 2005. 
FT-2= second fertilizer termination time, 1 Oct. 2005. 
FT-3= third fertilizer termination time, 1 Nov. 2005. 
Bars indicate ± standard error of the mean. 
  

 

Pseudobulb width and thickness were significantly affected by both N rate and 

fertilizer termination time (Table 2).  N rates did not result in any difference in either 

pseudobulb width or thickness except at 400 mg•L-1 N which resulted in smaller 

pseudobulb width and thickness (Table 3).  Pseudobulbs were wider and thicker when 

fertilization was terminated at FT-1 compared to FT-2 and FT-3, with no differences 

between the latter two (Fig. 3). 

There were no interactions between N rate and fertilizer termination time and 

there was no effect of fertilizer termination time on chlorophyll readings for lower, 
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middle, and upper leaves, but all three were significant for N rate (Table 4).  On lower 

leaves, chlorophyll readings were the lowest at 0 mg•L-1 N, while all other N rates were 

similar (Table 5).  Chlorophyll reading of middle leaves increased from 0 to 400 mg•L-1 

N.   On the upper leaves, 50 mg•L-1 N caused the highest chlorophyll reading, but it was 

not different at 100 or 400 mg•L-1 N. 

 

 

Table 3.   Effect of nitrogen rate regardless of fertilizer termination time 
on vegetative parameters measured at pseudobulb maturity for 
Dendrobium Red Emperor ‘Prince’. 

Pseudobulb 
Nitrogen rate 
(N) (mg•L-1) 

Plant height 
(cm) 

Pseudobulb
node no. 

Width 
(mm) 

Thickness 
(mm) 

0 36.1 cz 11.8 d 26.5 a 20.6 a 
50 56.2 b 18.7 c 26.1 a 20.4 a 
100 64.1 a 21.8 a 26.2 a 20.9 a 
200 63.3 a 21.2 a 25.8 a 20.4 a 
400 57.9 b 19.7 b 23.5 b 18.6 b 
zMean separation within columns by LSD at P = 0.05. 
 

 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 

Table 4.   ANOVA for the effect of nitrogen rate and fertilizer termination time 
on chlorophyll readings of lower, middle and upper leaves measured at 
pseudobulb maturity for Dendrobium Red Emperor ‘Prince’. 

Leaf position of chlorophyll reading  

Lower Middle  Upper 
Nitrogen rate (N) (mg•L-1) ** *** ** 
Fertilizer termination time 
(FT) (d)  

NS NS NS 

N × FT NS NS NS 
NS, **, *** Not significant or significant at P = 0.01, 0.001, respectively. 
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Figure 3.  Effect of fertilizer termination time regardless of nitrogen rate on pseudobulb 

width (A) and thickness (B) measured at pseudobulb maturity for Dendrobium 
Red Emperor ‘Prince’. 
FT-1= first fertilizer termination time, 1 Sept. 2005. 
FT-2= second fertilizer termination time, 1 Oct. 2005. 
FT-3= third fertilizer termination time, 1 Nov. 2005. 

 Mean separation by LSD at P = 0.05. 
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Table 5.  Effect of nitrogen rate regardless of fertilizer 
termination time on chlorophyll readings of lower, middle 
and upper leaves measured at pseudobulb maturity for 
Dendrobium Red Emperor ‘Prince’. 

Leaf position of chlorophyll reading Nitrogen rate (N) 
(mg•L-1) Lower Middle  Upper 
0  35.90 bz 37.23 d   41.70 bc 
50 50.26 a 50.81 c 47.16 a 
100 52.66 a 56.02 b     43.25 abc 
200 57.20 a 57.43 b 40.71 c 
400 59.19 a 64.87 a    45.87 ab 
zMean separation within columns by LSD at P = 0.05. 

Table 6.   ANOVA for the effect of nitrogen rate and fertilizer termination time on 
reproductive parameters measured at time of full flower for Dendrobium Red 
Emperor ‘Prince’. 

 
Total 
flower 

no. 
Flowering 
node no. 

Apical non-
flowering 
node no. 

Middle 
flower 
diam 
(cm) 

Days to 
anthesis  

Time to 
full 

flower 
(d) 

Nitrogen rate 
(N) (mg•L-1) *** *** *** *** *** *** 
Fertilizer 
termination 
time (FT) (d) *** *** *** ** *** NS 
N × FT *** ** ** * *** ** 
  NS, *, **, *** Not significant or significant at P = 0.05, 0.01, 0.001, respectively. 
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There were interactions between N rate and fertilizer termination time on all 

reproductive parameters measured at the time of full flower (Table 6).  As N rate 

increased from 0 to 50 mg•L-1, total flower number increased for all fertilizer termination 

times and continued to increase for FT-2 to 100 mg•L-1 N (Fig. 4A).  At 200 mg•L1 N, 

FT-1 and FT-2 flower numbers were similar to that at 100 mg•L-1 N.  When terminated 

at FT-3, total flower number decreased at 200 mg•L-1 N and 400 mg•L-1 N.  With FT-3, 

the total flower number decreased from 21 flowers to 12 flowers as N rate increased 

from 200 mg•L-1 to 400 mg•L-1. 

When no N was applied, plants had the least number of flowering nodes for all 

fertilizer termination times (Fig. 4B).  When fertilized with 50 or 100 mg•L-1 N, plants 

responded by producing more flowering nodes at all three fertilizer termination times.  

At FT-3, flowering node numbers decreased from 100 to 400 mg•L-1 N whereas 

flowering node numbers stayed unchanged when fertilizer was terminated at FT-1 and 

FT-2. 

At 0 mg•L-1 N, all fertilizer termination times resulted in plants having the least 

number of apical non-flowering nodes.  For FT-1 and FT-2, there was no difference 

between the numbers of apical non-flowering nodes produced at 50 to 400 mg•L-1 N 

(Fig. 4C).  From 50 to 200 mg•L-1 N and at FT-3, the number of apical non-flowering 

nodes was similar, but increased from six to nine apical non-flowering nodes from 200 

and 400 mg•L-1 N.   

At 0 mg•L-1 N, FT-1 plants had larger flowers than those when fertilizer was 

terminated at FT-2 or FT-3 (Fig. 4D).  Nitrogen rates from 50 to 200 mg•L-1 N produced 

plants with similar flower diameter for all fertilizer termination times.  FT-1 plants had 

the same flower diameter at all N rates.  At FT-3, plants supplied with 400 mg•L-1 N had 

decreased flower diameter, compared to 50, 100, and 200 mg•L-1 N, that was not 

different from 0 mg•L-1 N. 
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Figure 4.  Effect of nitrogen rate and fertilizer termination time on reproductive 

parameters measured at time of full flower for Dendrobium Red Emperor 
‘Prince’.  FT-1 = 1 Sept. 2005, FT-2 = 1 Oct. 2005, FT-3 = 1 Nov. 2005.  Bars 
indicate ± standard error of the mean. 
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Figure 4 continued. 
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Regardless of N rate, days to anthesis were similar for both FT-1 and FT-2 

fertilizer termination times (Fig. 4E).  At FT-3, 200 and 400 mg•L-1 N caused a delay for 

the first flower to reach anthesis.  The number of days to obtain full flower was similar 

for all N rates in FT-1 and FT-3 (Fig. 4F).  When 200 mg•L-1  N was applied until FT-2, 

plants required 11 days from anthesis to full flower compared to six days to reach full 

flower at 100 mg•L-1 N.  The length of time needed to reach full flower decreased to nine 

days for 400 mg•L-1 N at FT-2. 

There were no interactions between N rate and fertilizer termination time for 

number of flowers per node (Table 7).  Nitrogen rates of 100 and  200 mg•L-1 N produced 

the most nodes bearing three or four flowers (Table 8) whereas other N rates resulted in 

more nodes producing two flowers (Table 8).  At 0 mg•L-1 N, most nodes produced two 

flowers.  There was no difference in the number of nodes with one flower produced at 

any fertilizer rate.  For plants at both FT-1 and FT-2, there were more nodes with three 

flowers than at FT-3 (Table 9).  A greater number of nodes with two flowers were 

produced at FT-1, while FT-2 and FT-3 plants each had two nodes with two flowers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.   ANOVA for the effect of nitrogen rate and fertilizer 
termination time on number of flowers per node measured at 
time of full flower for Dendrobium Red Emperor ‘Prince’. 

Flower no. per node  

4 3 2 1 
Nitrogen rate (N) 
(mg•L-1) *** *** *** NS 
Fertilizer termination 
time (FT) (d) NS *** * NS 
N × FT NS NS NS NS 
NS, *, *** Not significant or significant at P = 0.05, 0.001, respectively. 
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Results:  Experiment 2 

The objective of experiment 2 was to determine the effect of phosphorus (P) rate 

and fertilizer termination time (FT) on Dendrobium Red Emperor ‘Prince’. 

Table 8.  Effect of nitrogen rate regardless of fertilizer termination 
time on number of flowers per node measured at time of full 
flower for Dendrobium Red Emperor ‘Prince’. 

Flower no. per node Nitrogen rate (N) 
(mg•L-1) 4 3 2 1 
0  0.0 cz 0.7 d 3.6 a 0.4 a 
50   0.4 bc 6.3 b 2.6 b 0.3 a 
100 1.4 a 7.5 a 1.3 c 0.3 a 
200 1.3 a   6.8 ab 1.5 c 0.4 a 
400    0.8 ab 4.8 c 2.0 b 0.3 a 
zMean separation within columns by LSD at P = 0.05. 

Table 9.  Effect of fertilizer termination time regardless of nitrogen rate on number of 
flowers per node measured at time to full flower for Dendrobium Red Emperor 
‘Prince’. 

Flower no. per node Fertilizer termination 
time (FT) (d) 4 3 2 1 
FT-1z   0.7 ay 5.7 a 2.7 a 0.2 a 
FT-2 1.1 a  5.7 a 2.0 b 0.4 a 
FT-3 0.5 a 4.3 b 1.9 b 0.5 a 
zFT-1 = 1 Sept. 2005, FT-2 = 1 Oct. 2005, FT-3 = 1 Nov. 2005. 
yMean separation within columns by LSD at P = 0.05.  
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With the exception of days to anthesis, interactions between P rate and fertilizer 

termination time were not significant for the vegetative (Table A2) and reproductive 

(Table A3) characteristics. 

Both P rate and fertilizer termination time affected vegetative growth including: 

plant height, pseudobulb node number, leaf number, and pseudobulb thickness.  

Phosphorus rate at 25 mg•L-1 caused plants to be taller than 0 mg•L-1 (Table 10).  

However, further increase of P to 200 mg•L-1 did not result in any additional increase in 

plant height.  Pseudobulb node number increased as P increased from 0 to 25 mg•L-1 and 

then remained unchanged as P was raised from 25 to 200 mg•L-1.  Leaf number was 

largest at P rates between 25 and 100 mg•L-1 with an average of 19 leaves.  Pseudobulb 

width was widest at 100 mg•L-1 P and least at 0 mg•L-1 P.  Pseudobulb thickness was 

similar at 25 to 200 mg•L-1 P, but was thinner at 0 mg•L-1 P.  There were no interactions 

for effects of fertilizer termination time on chlorophyll readings for lower, middle and 

upper leaves.  For P rate, only the chlorophyll reading for the middle leaves was 

significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10.  Effect of phosphorus rate regardless of fertilizer termination time 
on vegetative parameters measured at pseudobulb maturity for 
Dendrobium Red Emperor ‘Prince’. 

 Pseudobulb Phosphorus 
rate (P) 
(mg•L-1)  

Plant 
height 
(cm) 

Pseudobulb 
node no. 

Leaf 
no. 

Width 
(mm) 

Thickness 
(mm) 

0  55.3 cz  18.4 b 16.8 b   24.18 c 19.42 b 
25 60.1 b 19.8 a 18.4 a  24.72  bc 20.50 a 

50   62.3 ab 20.2 a 19.0 a 25.98 ab 21.08 a 
100 63.6 a 20.8 a 19.2 a   26.69 a 20.94 a 
200 62.6 a 20.6 a 17.1 b  25.89 ab 20.83 a 
zMean separation within columns by LSD at P = 0.05. 
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Plant heights were similar when fertilization was terminated at FT-1 or FT-3, but 

were taller at FT-2 (Table 11).  Pseudobulb node number was highest at FT-2 but not 

different than FT-1.  Leaf number was greater for FT-2, less for FT-1, and intermediate 

for FT-3.  Regardless of fertilizer termination time, pseudobulb widths were similar.  

Pseudobulb thicknesses were similar for FT-1 and FT-2, but thinner at FT-3. 

For flowering responses, days to anthesis was the only variable showing an 

interaction between P rate and fertilizer termination time (Fig.  5).  For all three 

termination times, plants that were not supplied with P flowered later than those 

receiving P.  At 50 mg•L-1 P, terminating nutrient application at FT-2 or FT-3 resulted in 

the least time to reach anthesis, 389 days. 

Total flower number per plant and time to full flower were affected by P rate and 

fertilizer termination time (Table A3).  Neither P rate nor fertilizer termination time had 

any effect on middle flower diameter.  Plants supplied with 25 to 200 mg•L-1 P all 

produced an average of 29 flowers per plant (Table 12). Regardless of P rate, flowering 

node numbers were similar.  The least number of apical non-flowering nodes was 

produced at 0 mg•L-1 P compared to rates of 25 to 200 mg•L-1 P.  Plants that were 

Table 11.  Effect of fertilizer termination time regardless of phosphorus 
rate on vegetative parameters measured at pseudobulb maturity for 
Dendrobium Red Emperor ‘Prince’. 

Pseudobulb 
Fertilizer 
termination 
time(FT) 
(d) 

Plant 
height 
(cm) 

Pseudobulb 
node no. Leaf no. 

Width 
(mm) 

Thickness 
(mm) 

FT-1y  60.4 bz   19.8 ab 17.6 b 25.76 a 21.06 a 
FT-2 62.8 a 20.7 a 18.7 a 25.88 a 20.70 a 
FT-3 59.1 b 19.4 b   18.0 ab 24.83 a  19.90 b 
zFT-1 = 1 Sept. 2005, FT-2 = 1 Oct. 2005, FT-3 = 1 Nov. 2005. 
yMean separation within columns by LSD at P = 0.05. 
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fertilized with 200 mg•L-1 P required two more days to reach full flower than plants 

supplied with other P rates. 
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Figure 5.  Effect of phosphorus rate and fertilizer termination time on days to anthesis 

measured at time of full flower for Dendrobium Red Emperor ‘Prince’.  FT-1 = 1 
Sept. 2005, FT-2 = 1 Oct. 2005, FT-3 =1 Nov. 2005.  Bars indicate ± standard 
error of the mean. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 12.  Effect of phosphorus rate regardless of fertilizer termination 
time on reproductive parameters measured at time of full flower 
for Dendrobium Red Emperor ‘Prince’. 

Phosphorus rate 
(P)(mg•L-1 ) 

Total 
flower no. 

Flowering 
node no. 

Apical non-
flowering 
node no. 

Time to 
full flower 

(d) 

0  23.0 bz  9.1 a 3.3 d 5 b 
25 28.7 a 10.0 a 4.1 c 6 b 

50 29.5 a 10.1 a   4.5 bc 6 b 

100 29.2 a  9.9 a   5.0 ab 5 b 
200 29.1 a  9.7 a 5.3 a 7 a 
zMean separation within columns by LSD at P = 0.05. 
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Plants produced the most flowers when fertilization was terminated at FT-2 

(Table 13).  Flowering node number was not different for FT-1 and FT-2, but were fewer 

at FT-3.  Flower diameter was similar for all fertilizer termination times.  Both FT-2 and 

FT-3 plants required more time to full flower than FT-1. 

Nodes with four, three, two and one flowers were significant for P rate (Table 

A4).  Plants that were supplied with 200 mg•L-1 P had more nodes bearing four flowers 

than any other rate (Table 14).  However, when provided with 25 to 200 mg•L-1 P, plants 

produced the highest number of nodes with three flowers.  At 0 mg•L-1 P, there were two 

more nodes with two flowers than at any other fertilizer rate.  Plants supplied with 0 

mg•L-1 P produced the most nodes with one flower.  At FT-1, the greatest number of 

nodes with two flowers was produced (Table 15).  More nodes with four flowers were 

produced at FT-2 and FT-3. 

 

 

 

Table 13.  Effect of fertilizer termination time regardless of 
phosphorus rate on reproductive parameters measured at 
time of full flower for Dendrobium Red Emperor ‘Prince’. 

Fertilizer 
termination 
time (FT) (d) 

Total 
flower 

no. 
Flowering 
node no. 

Middle 
flower 

diam (cm) 
Time to full 
flower (d) 

FT-1z   26.9 by     9.8 ab 6.9 a 5 b 

FT-2 29.8 a 10.3 a 6.9 a 6 a 
FT-3 26.9 b   9.3 b 6.9 a 7 a 
zFT1 = 1 Sept. 2005, FT-2 = 1 Oct. 2005, FT-3 = 1 Nov. 2005. 
yMean separation within columns by LSD at P = 0.05.  
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Table 14.  The effect of phosphorus rate regardless of fertilizer 
termination time on number of flowers per node measured 
at time of full flower for Dendrobium Red Emperor 
‘Prince’. 

Flower no. per node Phosphorus 
rate (P) 
(mg•L-1 ) 4 3 2 1 
0  0.03 cz 4.83 c 3.97 a 0.43 a 
25 0.90 b   7.07 ab 1.90 b 0.13 b 
50 1.07 b   7.28 ab 1.66 b 0.07 b 
100 0.77 b 7.87 a 1.27 b 0.03 b 
200 1.73 a 6.33 b 1.53 b 0.07 b 
zMean separation within columns by LSD at P = 0.05. 

Table 15.  Effect of fertilizer termination time regardless of phosphorus rate on 
number of flowers per node measured at time of full flower for 
Dendrobium Red Emperor ‘Prince’. 

Flower no. per node Fertilizer 
termination time 
(FT) (d) 4 3 2 1 
FT-1   0.5 bz 6.5 a 2.8 a 0.12 a 
FT-2 1.2 a 7.0 a 1.8 b 0.16 a 
FT-3 1.0 a 6.5 a 1.6 b 0.16 a 
zMean separation within columns by LSD at P = 0.05. 
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Results:  Experiment 3 

The objective of experiment 3 was to determine the effect of potassium (K) rate 

and fertilizer termination time (FT) on Dendrobium Red Emperor ‘Prince’. 

 Except for pseudobulb thickness, no variables measured were affected by 

interactions between K rate and fertilizer termination time (Table A5).  For all fertilizer 

termination times, pseudobulb thickness increased as K increased from 0 to 200 mg•L-1 

and then decreased at 400 mg•L-1.  Pseudobulb thickness at all fertilizer termination 

times was similar at any given K rate (Fig. 6). 

Potassium rate had no effect on lower and middle leaf chlorophyll readings or 

time to full flower (Tables A5 and A6).  Time of fertilizer termination did not affect 

vegetative growth and only nodes with two and four flowers and time to full flower were 

affected. 
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 Figure 6.  Effect of potassium rate and fertilizer termination time on pseudobulb 
thickness measured at pseudobulb maturity on Dendrobium Red Emperor 
‘Prince’. FT-1 = 1 Sept. 2005, FT-2 =1 Oct. 2005, FT-3 = 1 Nov. 2005.  Bars 
indicate ± standard error of the mean (but are too small to be seen). 
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Plant height and pseudobulb node number increased as K rate increased from 0 to 

100 mg•L-1, but were similar from 100 to 400 mg•L-1 K (Table 16).  As K rate increased 

from 0 to 200 mg•L-1, leaf number increased but did not increase further at 400 mg•L-1.  

Plants that received 0 mg•L-1 K had the highest chlorophyll reading in their upper leaves 

compared to those receiving 50 to 400 mg•L-1 K.  Application of K resulted in wider 

pseudobulbs, with no difference among plants supplied with 50 to 400 mg•L-1 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total flower number and flowering node number were the lowest at 0 mg•L-1 K 

but remained similar from 50 to 400 mg•L-1 K (Table 17).  Apical non-flowering node 

number was the lowest at 50 mg•L-1 K and the highest at 200 mg•L-1 K.  Flower 

diameter was largest at 200 mg•L-1 K.  When supplied with 0 or 50 mg•L-1 K plants took 

Table 16.  Effect of potassium rate regardless of fertilizer termination time on 
vegetative parameters measured at pseudobulb matur ity for Dendrobium 
Red Emperor ‘Prince’. 

Potassium rate  
(K) (mg•L-1) 

Plant 
height 
(cm) 

Pseudobulb 
node no. 

Leaf 
no. 

Upper leaf 
chlorophyll 

reading 
Pseudobulb 
width (mm) 

0  41.0 cz 14.6 c 4.8 d 54.5 a 23.01 b 
50 54.6 b 18.3 b 11.8 c 49.6 b 27.10 a 

100 59.0 a 20.1 a 14.4 b 48.3 b 27.57 a 
200 60.2 a 20.5 a 16.2 a 44.9 c 27.72 a 
400 59.1 a 20.0 a 16.3 a 49.3 b 27.80 a 
zMean separation within columns by LSD at P = 0.05. 
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the fewest number of days to anthesis while one to three more days were needed for all 

other K rates. 

The number of nodes with four, three, two, or one flowers was also significant 

for K rate.  As K rate increased from 0 to 400 mg•L-1 K, the number of nodes with four 

flowers increased (Table 18).  Nodes with three flowers were the greatest at 50 and 100 

mg•L-1 K and the least at 0 mg•L-1 K.  The greatest number of flowering nodes with two 

flowers and one flower was at 0 mg•L-1 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 17.  Effect of potassium rate regardless of fertilizer termination time 
on reproductive parameters measured at time of full flower for 
Dendrobium Red Emperor ‘Prince’. 

Potassium 
rate (K) 
(mg•L-1) 

Total 
flower 

no. 
Flowering 
node no. 

Apical 
non-

flowering 
node no. 

Middle 
flower 

diam (cm) 
Days to 
anthesis 

0 11.0 cz 5.1 b   4.1 bc 6.4 c   390 cd 
50 26.2 b 9.5 a 3.5 c 6.9 b 389 d 

100   28.5 ab 9.8 a   5.0 ab 7.1 b   391 bc 
200 29.0 a 9.4 a 5.6 a 7.4 a 393 a 

400 29.8 a 9.8 a   4.4 bc 7.0 b   392 ab 
zMean separation within columns by LSD at P = 0.05. 
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Apical non-flowering node number, nodes with four flowers, nodes with two 

flowers and time to full flower were significant for fertilizer termination time (Table 19).  

The number of apical non-flowering nodes was more at FT-3.  FT-2 and FT-3 resulted in 

the highest number of four flowers.  The least number of nodes with 2 flowers was 

produced at FT-2 and FT-3.  Flowering progressively delayed when terminating nutrient 

application was delayed from FT-1 to FT-3. 

  Time of terminating nutrient application had no effect on vegetative growth or 

flowering.  All plants averaged 55 cm tall with 19 nodes, 13 leaves, pseudobulb width of 

27 mm, and lower, middle and upper chlorophyll readings of 53, 55, and 49, 

respectively.  Plants had an average of 25 flowers, nine flowering nodes, a middle flower 

diameter of 7.0 cm, five nodes with three flowers and 0.18 nodes with one flower, and 

took 391 days to reach anthesis. 

 

 

Table 18.  Effect of potassium rate regardless of fertilizer termination time 
on number of flowers per node measured at time of full flower on 
Dendrobium Red Emperor ‘Prince’. 

Flower no. per node Potassium rate (K) 
(mg•L-1) 4 3 2 1 

0 0.1 c 1.1 d 3.4 a 0.5 a 

50   0.5 cb   6.4 ab 2.5 b 0.1 b 

100 1.1 b 6.9 a   1.8 bc 0.1 b 

200 2.4 a 5.5 c 1.3 c 0.1 b 

400 2.2 a   5.9 bc 1.6 c 0.1 b 
Mean separation within columns by LSD at P = 0.05. 
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Table 19.  Effect of fertilizer termination time on reproductive parameters 
measured at time of full flower for Dendrobium Red Emperor ‘Prince’. 

Flower no. per node Fertilizer 
termination  
time (FT) (d) 

Apical non-
flowering node 

no.  4 2 
Time to full 
flower (d) 

FT-1z   4.0 by 0.76 b 2.59 a 6 b 
FT-2   4.5 ab 1.38 a   2.08 ab   7 ab 
FT-3 5.0 a 1.71 a 1.63 b 8 a 
zFT-1 = 1 Sept. 2005, FT-2 = 1 Oct. 2005, FT-3 = 1 Nov. 2005. 
yMean separation within columns by LSD at P = 0.05. 
 

 

 

 

 

Results:  Experiment 4 

The objective of experiment 4 was to determine the effect of duration of nitrogen 

application. 

In this experiment, the duration of N application did not affect vegetative (Table 

A7) or flowering (Table A8) characteristics.  Plants in all treatments averaged 57.1 cm in 

height and had 20 pseudobulb nodes and 17 leaves.  Pseudobulb wid th and thickness was 

28.6 and 22.1 mm respectively.  Plants had an average of two nodes with four flowers, 

six nodes with three flowers, one node with two flowers and no nodes with one flower.  

There was an average of 28 total flowers per plant and middle flower diameter was 6.6 

cm.  On average, plants required 388 days to reach anthesis and eight more days to full 

flower. 
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Discussion 

Dendrobium Red Emperor ‘Prince’ and other Dendrobium nobile hybrids have 

the potential for increased production and to become a popular orchid sold on the mass 

market.  They have several attributes including the ability to closely space them in the 

greenhouse giving them a high value per square foot.  More important ly, they have long 

lasting flowers that come in many colors, which appeal to the customer.  Applying 

optimum amounts of nutrients for the correct length of time can help commercial 

producers increase the quality of this orchid and grow it more efficiently. 

Nitrogen.  A leaf, and potentially a flower, can be produced at every node.  Node 

number may be an indication of how many flowers can be produced (Rotor, 1952).  

Plants were taller and had a greater number of total pseudobulb nodes when they were 

supplied with 100 and 200 mg•L-1 N compared to lower and higher rates.  Wang (1996) 

used rates of 100 and 200 mg•L-1 N of six fertilizers containing varying percentages of 

N, P, and K as well as different sources of N and reported that Phalaenopsis grown in a 

medium of 70% fine grade fir bark and 30% peat moss, produced larger leaves that were 

wider when N was applied at the higher rate.  A similar number of leaves were produced 

when plants were supplied with 100 to 400 mg•L-1 N at all three fertilizer termination 

times.  Because these plants were both taller and had a greater pseudobulb node number, 

they also produced more flowers except for 200 mg•L-1 N applied until FT-3. 

Today, consumers prefer that leaves remain on nobile dendrobium potted plants 

when in full flower.  When not given N, leaf loss was greater than all other N rates, 

having only 38% leaf retention (Table A9).  When N continued to be withheld until the 

second and third termination times, leaf loss was greater than FT-1.  One of the typical 

signs of N deficiency in plants is the abscission of older leaves (Marschner, 2003). 

Pseudobulb width and thickness were affected by N rate and termination time.  

Application of 400 mg•L-1 N, was the only rate which caused pseudobulb width and 

thickness to decrease.  Because plants had thicker and wider pseudobulbs, it was 

determined that when fertilizer was terminated at FT-1 plants matured faster.  When 

plants were supplied with N until FT-2 and FT-3, they did not mature and were thinner 
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and narrower.  When pseudobulbs mature earlier, they can be forced to produce flowers 

and sold at earlier market dates. 

Total flower number and flowering node number decreased significantly when 

plants were not supplied N.  However, apical non-flowering nodes increased with 

application of N.  Since plants were shorter and had fewer nodes, they were not able to 

produce as many flowers.  Plants had an average of 10 flowers on plants receiving 0 

mg•L-1 N. 

When plants were supplied with 400 mg•L-1 N at FT-3, pseudobulbs remained 

vegetative for a longer period of time than those terminated fertilization at FT-1 or FT-2.  

Number of apical non-flowering nodes and days to anthesis increased, while flower 

number, flowering node number, and middle flower diameter decreased.  Plants that 

were terminated fertilization earlier and given 200 or 400 mg•L-1 N, stopped vegetative 

growth, matured earlier, and produced more flowers after the cold duration than those 

receiving 400 mg•L-1 N until FT-3.  The Yamamoto Dendrobium website (2006) 

suggests that plants not be supplied N after August when plants have already reached 

their final height. 

When N fertilization was terminated at FT-1, plants had an average of five more 

flowers than plants that were terminated fertilizer at the later times.  Rates of 100 to 400 

mg•L-1 N produced a greater number of flowers at FT-1 and FT-2.  Plants fertilized until 

FT-3 with 200 or 400 mg•L-1 N, had fewer flowers than those receiving lower rates of N.  

The addition of too much N from fertilizers is a common cause of poor flowering 

(Yamamoto Dendrobiums, 2006).  Again, this is probably due to the prolonged 

vegetative state and delayed pseudobulb maturation for plants fertilized until the latest 

fertilizer termination time.  Flowering characteristics were similar for FT-1 and FT-2 

termination times.  Therefore, in order to reduce inputs, fertilizer could be terminated 

earlier with similar results. 

 Before the termination of fertilizer, 13% of plants were lost in treatments 

receiving 400 mg•L-1 N for all termination times.  These plants had severe root injury 

due to excess salts and died.  Mineral salts can reach a toxic range that causes the growth 
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rate to decrease (Marschner, 2003).  Plants receiving 400 mg•L-1 N until FT-3 also had a 

greater occurrence of aerial shoots in place of flower buds.  Seventy percent of the plants 

in this treatment had aerial shoots (23 in total).  When pseudobulbs are not mature, they 

form aerial shoots (keikis) in place of flowers if supplied with too much fertilizer and/or 

inadequate cooling (Ichihashi, 1997).  Miwa and Ozaki (1975) grew Dendrobium nobile 

in sphagnum moss (Sphagnum magellanicum Brid.) or hemlock (Conium maculatum L.) 

bark and supplied them with 10 different combinations of 0, 250, 500 and 1000 mg•L-1 

N, P, and K over a period of 2 years.  At 1000 mg•L-1 N, the least flowering nodes were 

produced and resulted in the greatest number of aerial shoots (keikis).  Yamamoto 

Dendrobiums (2006) also cautions that excessive amounts of N can cause aerial shoots 

to form on the upper nodes.  This may be due to the prolonged vegetative state and 

pseudobulbs did not mature in time to differentiate flower buds while being cooled. 

 From the results of this experiment, 100 mg•L-1 N is recommended for 

Dendrobium Red Emperor ‘Prince’.  This rate provides the amount of nutrients the plant 

can use efficiently for vegetative and reproductive growth with the least fertilizer input.  

Application of 100 mg•L-1 N to plants results in similar or greater plant height, 

pseudobulb width and thickness, as well as similar flowering characteristics compared to 

plants receiving higher rates.  It is also recommended that fertilizer be terminated at FT-

1, which results in greater pseudobulb width and thickness.  This is comparable to Poole 

and Seeley’s (1978) findings for Phalaenopsis and Cymbidium grown in nutrient culture.  

Of the rates they used (50, 100, and 200 mg•L-1 N), 100 mg•L-1 N was recommended  

because it resulted in greater leaf and root dry weights, larger leaves, and increased plant 

height. However, each species of orchid has a different N requirement for optimal 

growth.  Poole and Seeley (1978) also reported that Cattleya grown under the same 

conditions and rates had larger leaves and greater dry weights of leaves and roots when 

supplied with 50 mg•L-1 N. 

Phosphorus.  In this experiment, it was found that of the three macronutrients, N, 

P, and K, P is not required in high concentrations (above 25 mg•L-1) by Dendrobium 

Red Emperor ‘Prince’.  Plants receiving P at rates greater than 0 mg•L-1 had similar 
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vegetative characteristics such as plant height, pseudobulb node number, and pseudobulb 

thickness.  In their native environments, epiphytic orchids receive their nutrients from 

several sources, but especially from rain water.  Phosphorus is the element found in the 

least amounts in rain water (Pridgeon, 1987).  It is  possible that epiphytic orchids grown 

in a controlled environment also need less P than N and K as do those in nature. 

Plant height, node number and leaf number were greater at the FT-2 fertilizer 

termination time.  When terminated fertilizer at FT-3, pseudobulb thickness was thinner 

indicating that the pseudobulb does not mature like plants being terminated fertilizer at 

an earlier time. 

Plants had two more nodes once P was applied, regardless of rate.  However, 

application of P increased total flower count, indicating P is needed for initiating more 

flower primordial.  Apical non-flowering node number increased as P rate increased, 

which may be considered as a negative effect on the appearance of a plant in full flower.  

Time to full flower was delayed with application of 200 mg•L-1 P, but similar at all other 

rates.  These results suggest that P requirement for Dendrobium Red Emperor ‘Prince’ is 

low for reproductive growth.  The FT-2 termination time resulted in similar or increased 

vegetative and reproductive characteristics compared to FT-1 and FT-3 termination 

times. 

Wang (2000) found that for Phalaenopsis grown in Douglas fir bark and 

sphagnum peat, 50 mg•L-1 P was adequate for good vegetative and reproductive growth.  

Similar to these findings, P rate recommendation for Dendrobium Red Emperor ‘Prince’ 

based on this experiment would be 25 mg•L-1 terminated at FT-2 for best vegetative and 

reproductive growth.  This recommendation reduces the input of fertilizer, time and 

expense for the producer. 

Potassium.  Besides N, it was determined that K is the other macronutrient that is 

needed at higher rates for optimal vegetative growth of Dendrobium Red Emperor 

‘Prince’.  Plants were taller and had higher pseudobulb node numbers with the 

application of 100 mg•L-1 K or more. 
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 It is important to retain the most leaves possible so those leaves can act as 

sources of photoassimulates to provide for flower development.  Applying adequate 

amounts of K to nobile dendrobiums increases leaf retention and flower size (Tables 16 

and 17).  When supplied with the 0 or 50 mg•L-1 K, there was severe leaf loss with 34 

and 62% leaf retention, respectively, suggesting that K supplied in amounts greater than 

50 mg•L-1 are necessary for adequate leaf retention (Table A9).  Plants supplied with 

100, 200, or 400 mg•L-1 K had 72, 80 and 82% leaf retention, respectively.  When grown 

in hard wood charcoal, there were beneficial effects on pseudobulbs of Dendrobium 

moschatum ‘Wall’ when supplied with 500 mg•L-1 K, but no further benefits were 

resulted from the application of 1000 mg•L-1 K.  Both 500 and 1000 mg•L-1 K levels 

resulted in plants that had more leaves than plants receiving 0 mg•L-1 K (Bhattacharjee, 

1981).  In contrast, Poole and Seeley (1978) reported Cymbidium plants had fewer leaves 

when supplied with 200 mg•L-1 K than plants receiving 50 or 100 mg•L-1.  They also 

determined that the K levels tested had no effect on growth of Phalaenopsis, Cattleya, 

and Cymbidium and therefore 50 mg•L-1 K was sufficient. 

 Fertilizer termination time had no effect on vegetative characteristics, but did 

affect apical non-flowering node number, nodes with four and two flowers and time to 

full flower.  Fertilizer termination at FT-2 resulted in similar or increased reproductive 

characteristics and therefore is the recommended fertilizer termination time. 

 Vegetative and reproductive characteristics were similar or greater at 100 mg•L-1 

K, with the exception of greater leaf number and pseudobulb thickness, and larger 

flowers when plants were supplied 200 mg•L-1 K.  Therefore, 100 mg•L-1 K is the 

recommended rate in order to produce quality plants and minimize the amount of 

fertilizer input. 

Experiment 4.  In Expt 4, only 100 mg•L-1 N was terminated at each fertilizer 

termination time while all other nutrients continued to be supplied until the end of the 

experiment.  Control plants received all fertilizer elements until termination of the 

experiment.  This experiment differs from Expt. 1, where all nutrients were terminated at 

each fertilizer termination time. 



 49 

There was comparatively no difference among the N termination times in this 

experiment.  Plants in this experiment received the same 100 mg•L-1 N solution used in 

Expt. 1.  Both vegetative and reproductive growth measurements were very similar to 

those recorded in experiment one.  Since NH4NO3 was used to provide N, the molar 

concentration of NO3
-
 and NH4

+ in the fertilizer solution was equal.  The ratio of NO3-N 

and NH4-N can affect plant growth and usually a mixed supply of NO3-N and NH4-N 

results in good plant growth (Marschner, 2003).  Control plants that continued to receive 

N and other nutrients until full flower were similar to plants that were terminated N at 

the four termination times but continued to receive all other nutrients.  When 

Phalaenopsis were terminated all fertilization at four different dates (1 Sept., 29 Sept., 

27 Oct., or 24 Nov.) or continuously fed, there was no difference in flower diameter, 

however, continuously fed plants produced more flowers than plants that had been 

terminated fertilizer on the three earlier dates (Wang, 2000). 

 The average height of the plant was shorter, but overall vegetative characteristics 

were similar for plants in Expt. 1 that received 100 mg•L-1 N and Expt. 4.  Differences 

between the two experiments were that in Expt. 1 when all fertilizer was terminated at 

FT-2, a greater number of flowers and flowering nodes were produced.  Times needed to 

reach anthesis and full flower were similar among the plants in control and the 

terminations times of Expt 4.  They were also similar to those plants supplied 100 mg•L-

1 N in Expt. 1 at all termination times.  Therefore it can be concluded that eliminating N 

only at each termination time had similar effects as eliminating all fertilizer at each of 

the termination times except for flower number and flowering node number, which 

reinforces that N should be terminated early for best flowering results. 
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CHAPTER III 
 
 

EFFECT OF COLD DURATION AND LIGHT ON FLOWER BUD 

INITIATION OF Dendrobium RED EMPEROR ‘PRINCE’ 

 

Introduction 

 In the floriculture industry, it is important to develop production schedules to 

control timing of flowering in order to meet consumer demand at holidays such as 

Christmas, Valentine’s Day, Easter and Mother’s Day.  For most orchids, this can 

usually be accomplished by controlling light intensity and temperature (Hew and Yong, 

2004). 

 In the case of Dendrobium nobile, flower initiation is controlled by cold 

temperatures (Rotor, Jr., 1952).  Day/night temperatures of 20 °C/10-12.5 °C were the 

optimum temperature for initiating flower buds. The effects of temperature on 

Dendrobium nobile are critical during both vegetative growth and flower initiation and 

development.  After a low temperature treatment of 10 °C for 16 hours daily over a 

period of 30-40 days, flower initiation of nobile dendrobiums was increased when there 

was an increase of night temperature from 10 °C to 25 °C (Sinoda et al., 1988).  During 

the period of cold treatment, aerial shoots (keikis) and flower number were reduced 

when the daytime temperatures reached 30 °C (Sinoda et al., 1988).  Despite 

photoperiod, 13 °C (details were not given as to whether this temperature was constant 

or average), was found to trigger flower bud initiation.  Dendrobium nobile species 

usually begin flowering in February or March, which can be too early for the Easter 

holiday.  Plants grown at 18 °C for up to 4 months after maturation delayed flowering 

until the preferred blooming date (Rotor Jr., 1952). 

 In addition to the photoperiod needed for flowering, some orchids also require a 

certain light intensity for both growth and flowering.  For Dendrobium Nodoka and 

Dendrobium Snowflake ‘Red Star’, high light is not necessary during flower bud 

initiation.  However, exposing to low light (an exact light amount was not stated) during 
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this time can result in chlorosis, loss of turgidity in pseudobulbs and defoliation 

(Ichihashi, 1997). 

 The objective of this experiment was to determine cold duration with or without 

light on flower initiation and development of Dendrobium Red Emperor ‘Prince’. 

 

Materials and Methods  

One-year-old Dendrobium nobile Red Emperor ‘Prince’ liners, each having a 

single pseudobulb, were received from Yamamoto Dendrobiums, Mountain View, 

Hawaii, on 3 Feb. 2005.  These young plants were propagated from single-node stem 

cuttings in 98-cell plug trays filled with sphagnum moss as the root substrate.  The 

pseudobulbs were potted on 4 Feb. 2005 in a root substrate of 2 coarse peat : 1 perlite 

(no. 3) : 1 diatomite (no. 3) (90% silicon dioxide, 10% elemental minerals) (Diatomite 

USA, Elma, N.Y.) (by volume) with 0.5 g•L-1 Micromax, (a micronutrient source,  The 

Scotts Company, Marysville, Ohio) and 5.0 g•L-1 powdered dolomite.  Plants were 

potted in 10.2 cm top diameter (414 mL) standard round plastic pots. 

Immediately after potting, plants were hand irrigated with reverse osmosis (RO) 

water containing a fungicide (Banrot 40% WP, Scotts-Sierra Crop Protection Company, 

Marysville, Ohio) at a rate of 59.8 mg•L-1 to prevent root rot.  Plants continued to be 

irrigated with RO water until 22 Feb. 2005 when treatments commenced. 

This experiment was a 3x2 factorial with three cold (10 °C) treatment durations 

(2, 4, and 6 weeks) and two light intensity levels of 100 µmol•m-2•s-1 or 0 µmol•m-2•s-1  

during the cooling duration with 10 replications.  Plants were fertilized with constant 

liquid feed Scott’s 20-10-20 (20N-4.4P-16.6K) at 0.5 g•L-1 (100 mg•L-1 N).  Pots were 

watered by hand at each watering by measuring 100 mL of nutrient solution per pot.  As 

plants grew, 150 mL of nutrient solution was applied per pot.  Fertilization was 

terminated on 1 Oct. 2005 and plants were irrigated with plain RO water thereafter. 

At the beginning, fifteen pots were placed in each 29.5 x 50.5 cm molded 

carrying tray (4.00 AZ Transport Tray (15), Landmark Plastic Corporation, Akron, 

Ohio).  Initially, the molded carrying trays were spaced 7.6 cm apart to simulate 
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commercial growing conditions.  To prevent lodging, plants were supported in July 

2005, with 8-10 mm diameter bamboo stakes (Bamboo Stake Co., Lakeland, Fla.) cut at 

30.5 cm (12 in.).  On 6 Aug. 2005, plants from the middle row of the carrying trays were 

removed and placed in additional trays to improve air circulation.  In December 2005, to 

prepare for flowering, each of the 10.2 cm (414 mL) pots was placed inside a 14.6 cm 

(1.77 L) pot surrounded by pea gravel and given additional support with 12-14 mm 

diameter bamboo stakes cut at 61 cm.  Pots were spaced at 232.3 cm2. 

Plants were grown in a glass and polycarbonate greenhouse until mature.  From 

February to December temperature set points in the greenhouse were 24 °C day/18 °C 

night and actua l average temperatures were 24 ± 11.5 °C day/20 ± 11 °C night.  From 

February to April 2005, if two new shoots emerged from the base of the old pseudobulb, 

the second emerging shoot was removed to maintain one shoot per pseudobulb.  From 

March to May, flower buds that formed on old pseudobulb were removed to keep plants 

vegetative.  HOBO H8 data loggers (Onset Computer Corp., Bourne, Maine) were used 

to measure and record the actual greenhouse temperature (Figures A1-A5).  Greenhouse 

light levels were monitored at plant canopy level using line quantum sensors (LQS 50-3, 

Apogee Instruments Inc., Logan, Utah) (Figs. A1-A5).  The maximum daily light level 

ranged from a high of 10 mol•m-2•d-1 in June to a low of 2 mol•m-2•d-1 in January.  

Insecticides and fungicides were applied at recommended rates as needed throughout the 

growing period (Table A1). 

Plants were kept in a greenhouse with temperature set points of 24 °C day/18 °C 

night and actual average temperatures of 22 ± 7.5 °C day/17 ± 8 °C night (Figure A6) to 

prevent them from receiving flower inducing temperatures.  Thirty plants each were 

placed in two growth chambers on 9 Dec.  The growth chamber with light had 

temperatures of 10 ± 3.5 °C throughout the six weeks of the experiment.  The growth 

chamber without light held a temperature of 10 ± 1 °C.  Plants with light received twelve 

hours of light per day.  While in the growth chambers, plants were irrigated with RO 

water as needed.  Ten control plants were left in the greenhouse with the same 

temperature set points of 24 °C day/18 °C night and actual average temperatures of 21 ± 
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8 °C day/16 ± 4.5 °C night.  The last groups of plants were moved out of the chambers 

on 19 Jan. 2006.  Once they were moved out of the chambers, plants were placed back 

into the greenhouse with temperature set points of 24 °C day/18 °C night and actual 

average temperatures of 21 ± 9.5 °C day/16 ± 3.5 °C night.  There were 70 plants total. 

 Plant height, pseudobulb node number, pseudobulb width and thickness, leaf 

number, and chlorophyll content data were taken in December after all pseudobulbs had 

matured.  Pseudobulb maturation was defined as the time when the uppermost leaf had 

fully expanded, the pseudobulb had swollen, and the top of the pseudobulb became 

rounded.  Height was measured from the base to the top of the pseudobulb.  Pseudobulb 

width and thickness readings were taken with a digital caliper (Model 06-664-16, 

Control Company, Friendswood, Texas).  Several locations on the pseudobulb were 

measured and the thickest/widest portion of the pseudobulb was recorded.  The leaf 

number was the number of leaves after some loss over the course of vegetative growth.  

The chlorophyll reading was measured using a Minolta chlorophyll meter (mode SPAD-

502, Spectrum Technologies, Inc., Pla infield, Ill.) for the lower, middle, and upper 

leaves.  The lower leaf was at one of the bottom three nodes, the middle leaf was 

midway on the pseudobulb, and the upper leaf was the top most fully expanded leaf.  All 

measurements were taken at the point halfway between the leaf apex and leaf base and 

between the side margins and the midrib at the widest point. 

 In February and March 2006, flowering data were collected including total 

flower number, flowering node number, apical non-flowering node number, flower 

number per node, middle flower diameter, days to anthesis and time to full flower.  

Apical non-flowering node number is the number of nodes above the last flowering node 

at the top of the pseudobulb.  This is important because flowers to the top of the 

pseudobulb are more aesthetically desirable.  Flower diameter was measured from one 

flower per plant at the middle flowering node.  Days of anthesis were the days from 

planting to the day the petals of the first flower were observed separating on each plant.  

Time to full flower was number of days between anthesis and when all flowers on the 

plant were fully open. 
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 Data were analyzed using ANOVA and Tukey’s honest significant difference test 

(HSD) by SAS program (SAS 8.01; SAS Institute, Cary, N.C.).  This method was used 

to compare plants in growth chambers to the control plants that were in the greenhouse.

  

Results 

 The objective of experiment 5 was to determine the effect of cold duration and 

presence of light on flower initiation. 

 Since the plants were all grown together until maturity, there was no difference 

for vegetative parameters measured of the control plants or the plants that were placed in 

growth chambers with or without light for two, four, or six weeks (Table A9).  Plants 

averaged 55.1 cm in height, had 18 nodes per pseudobulb, 17 leaves, and had a 

pseudobulb width and thickness of 27.3 and 21.6 mm, respectively.  For flowering 

parameters measured, only middle flower diameter was not affected by treatments 

(Tables A10 and A11) and averaged 6.9 cm. 

The control plants produced the least number of flowers (Table 20) compared to 

plants receiving the 10 °C cold treatments.  Plants placed in growth chambers with light 

at all three cold treatment durations and plants in the dark for four or six weeks all 

produced similar high number of flowers.  When cooled in darkness, at least four weeks 

of cooling was needed for high flower count.  Cooling for only two weeks in darkness 

resulted in fewer flowers similar to that of controls.   

Flowering node number for control plants and plants in the dark for two, four or 

six weeks was similar.  The largest number of flowering nodes was produced by plants 

that were in the growth chamber with light for two, four, or six weeks with no 

differences among the durations.  Plants in light for six weeks of cold had the least 

number of apical non-flowering nodes, while plants in the dark growth chamber for six 

weeks had the highest number of apical non-flowering nodes.  There was no difference 

between the control plants and plants in all other cold durations in the light and dark 

chambers for apical non-flowering node number.  The control plants and plants that were 

cooled in light or darkness for two weeks required the least time to reach anthesis.  



 55 

Plants in growth chambers with light or in darkness for six weeks required the most days 

to reach anthesis and needed 20 to 28 days more for the first flower to open than control 

plants and plants in light for two weeks.  Control plants required 7 to 17 more days to 

reach full flower than all other treatments.  Time to full flower was less and similar for 

plants in the light or dark for four or six weeks. 

 

 

 

 

 

 

 

 

Control plants and plants cooled for six weeks in light had the least nodes with 

four flowers at time of full flower (Table 21).  Plants cooled in the dark for four or six 

weeks or in the light for two or four weeks produced a similar and greater number of 

nodes with four flowers.  Control plants and plants in light for six weeks and in darkness 

 
Table 20.  Effect of light or darkness and 2, 4, or 6 weeks at 10 °C in growth chambers on 

reproductive parameters measured at time of full flower for Dendrobium Red 
Emperor ‘Prince’. 

Treatments 

Light level 
(µmol·m-2·s-1) 

Cold 
duration 
(weeks) 

Total 
flower no. 

Flowering 
node no. 

Apical 
non-

flowering 
node no. 

Days to 
anthesis 

Time to 
full 

flower 
(d) 

100 2 33.6 az 11.1 ab 1.9 ab 380 e 9 bc 
100  4 33.8 a 11.4 ab 1.3 ab 392 cd 5 c 
100 6 33.9 a 12.1 a 0.9 b 402 ab 4 c 
0 2 22.2 bc 8.8 c 2.6 ab 386 de 13 b 
0 4 27.6 ab 8.8 c 2.4 ab 397 bc 4 c 
0 6 28.3 ab 9.1 bc 2.8 a 408 a 5 c 
Controly 0 19.1 c 8.4 c 2.2 ab 382 e 21 a 
zMean separation within columns by Tukey’s honest range test at P = 0.05. 
yPlants remained in the greenhouse. 
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for two weeks produced a fewer number of nodes with four flowers.  With exception of 

control plants, plants in both light and dark at all three cold durations had more nodes 

with three flowers than any other flower numbers.  Plants receiving light for two, four or 

six weeks had seven or eight nodes with three flowers, while plants in the dark at the 

three durations had five or six nodes with three flowers.  Nodes with two flowers were 

greatest for the control plants and similar for plants in darkness for two weeks and plants 

in the light for six weeks.  All other light and cold duration treatments produced similar 

number of nodes with two flowers. 

 

 

 

Table 21.  Effect of light or darkness and 2, 4, or 6 weeks at 10 °C in growth 
chambers on flower number per node measured at time of full flower for 
Dendrobium Red Emperor ‘Prince’. 

Treatments  Flower no. per node 

Light level 
(µmol·m-2·s-1) 

Cold 
duration 
(weeks)  4 3 2 1 

100 2  1.6 ab 8.3 a 1.1 bc 0.1 b 
100 4  1.9 a 7.4 ab 1.9 bc 0.2 b 
100 6  0.1 c 8.9 a 3.0 ab 0.1 b 
0 2  0.2 bc 5.1 bc 2.6 abc 0.9 a 
0 4  2.3 a 5.4 bc 1.1 bc 0.0 b 
0 6  1.9 a 6.4 ab 0.7 c 0.1 b 
Controly 0  0.0 c 3.3 c 4.1 a 1.0 a 
zMean separation within columns by Tukey’s honest range test at P = 0.05. 
yPlants remained in the greenhouse. 
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Discussion 

 Plants were supposed to be held in a greenhouse at 24 °C day/18 °C night as to 

not receive cold temperatures that would induce flower bud differentiation.  However, 

all plants were erroneously subjected to temperatures below 15 °C in the greenhouse 

before going into the growth chambers.  The greenhouse failed to hold the temperature 

set points and between 4 Nov. and 31 Jan. 2006 temperatures fell below 15 °C for thirty-

two nights.  Although the critical temperature for flower initiation in Dendrobium Red 

Emperor ‘Prince’ is not known, it was assumed that all plants were subjected to 

temperatures low enough to initiate flower primordia.  When plants were put into growth 

chambers on 9 Dec. did no t have buds.  The lateral buds of control plants, which were 

left in the greenhouse for the duration of the experiment, began to swell on 19 Dec.; ten 

days after the other plants were placed in the growth chambers.  The control plants 

began to develop visible flower buds in the greenhouse, whereas the other plants did not 

develop visible flower buds until they were returned to the greenhouse after the various  

durations under 10 °C in growth chambers.  The 10 °C temperature effectively deferred 

them from producing visible flower buds in the growth chambers, but had no adverse 

effects on flower count once they were moved out of the chambers and flowered. 

 None of the plants in either the light or dark growth chambers had swollen lateral 

buds while given two, four, or six week of 10 °C.  Regardless of the duration of the 10 

°C treatment, once plants in the light chamber for two, four, or six weeks were moved 

back to the greenhouse at 24 ± 3.5 °C day/18 ± 3.5 °C night, the  lateral buds began to 

swell within three days.  Plants moved to the greenhouse after cold duration in darkness 

also had swollen lateral buds within three days of returning to the greenhouse, but buds 

did not increase in size as rapidly as plants that were cooled in light. 

 Compared to plants in other treatments, control plants required more days to 

reach full flower and produced the least number of flowers.  Therefore it was possible 

that although control plants were subjected to low temperatures, it may not have been 

low enough for a sufficient length of time.  In Dendrobium Malones ‘Fantasy’, flower 

bud initiation was optimal at night temperatures between 7.5 and 10 °C.  The number of 
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flower buds decreased and flowering was delayed with night temperatures of 15 °C or 

higher during the period of cold treatment (Suto et al., 1984).  However, it is possible 

that 15 °C at a longer duration could compensate for lower temperatures at shorter 

durations to trigger flower bud initiation.  Yamamoto Dendrobiums claims on its website 

that exposing the nobile dendrobium for one hour of night temperature at 14 °C daily for 

fours weeks was able to result in good flowering. Based on our results, this claim is 

certainly not completely true.  At least, it would not result in the highest possible flower 

count. 

It was found that for Dendrobium Red Emperor ‘Prince’, low temperatures (10 

°C) and duration of low temperatures are the factors that most effect swelling of lateral 

buds.  Lateral bud swelling can be postponed until a later date, if plants are kept in the 

light or dark at 10°C for six weeks.  Mainly due to the 10 °C temperature, plants that 

were given two weeks of cold duration in darkness or light required the least amount of 

time to anthesis because they were subjected to warm air earlier.  Plants left in the 

chambers for up to six weeks in either light or dark conditions delayed flowering by 

three to four weeks in some cases.  Rotor, Jr. (1952), grew Dendrobium nobile at 

temperatures of 13 or 18 °C to try to induce flowering.  Plants grown in 18 °C remained 

vegetative while those given 13 °C flowered regardless of photoperiod.  Perhaps if 

flowering needs to be postponed until a later date, plants could be kept at a higher 

temperature until a desirable time and then given low temperatures to initiate flowers.  

More research is needed to develop a technology to effectively defer flower initiation 

and/or flowering. 

Since plants cooled for four or six weeks in darkness at 10 °C produced similar 

amounts of flowers as those cooled in light for two, four, or six weeks, the data suggest 

that longer cooling durations may substitute for light for higher flower count.  

Yamamoto Dendrobiums (2006) suggests that plants need approximately one month of 

low temperature (below 14 °C) treatment to differentiate flower buds.  Since plants 

cooled for four or six weeks in darkness at 10 °C produced similar amounts of flowers as 

those cooled in light for two, four, or six weeks, the results from this current research 
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show that for Dendrobium Red Emperor ‘Prince’, two weeks at 10 °C in the light is just 

as effective as prolonging low temperatures for four or six weeks in light for total flower 

number.  However, since it its uncertain how much cold plants experienced before the 10 

°C treatment, this will have to be reinvestigated. 

 Although the dark growth chambers were effective in delaying flowering, the 

plants suffered more leaf loss than plants that received light.  Several leaves were lost 

from plants in the dark growth chambers for six weeks, and leaf abscission continued 

once plants were returned to the greenhouse.  The plants kept in darkness for four or six 

weeks each with several leaves remaining were not aesthetically acceptable once moved 

back to the greenhouse.  These two groups of plants developed large black spots on the 

leaves resembling fungal infection, probably due to moisture and/or lack of light in the 

chamber.  This is similar to the findings of Wang (1995) for Phalaenopsis kept in dark 

growth chambers at temperatures of 20°C day/15 °C night for six weeks which lost an 

average of one leaf per plant.  Dendrobium Nodoka and Dendrobium Snowflake ‘Red 

Star’ experienced leaf chlorosis and abscission under low light conditions (Ichihashi, 

1997). 

 Once plants reached full flowering, the only visible difference between plants in 

light or darkness for six weeks was the number of apical non-flowering nodes that 

remained above flowers.  Plants kept in darkness during the cold treatment had an 

average of two more apical non-flowering nodes than plants that received light.  As a 

result, plants transferred from the dark growth chamber after two weeks had 12 fewer 

total flowers than plants that received light for two weeks; however, the number of 

flowers was still adequate to be considered of good commercial quality. 

The growth chamber with light failed to hold 10 °C after the first two groups 

(two and four week) plants had been removed.  Because there was light in the growth 

chamber, the temperature rose two or three degrees above 10 °C during the light hours. 

However, on 27 Dec. when the chamber stopped holding 10 °C, temperatures began to 

rise between 14 and 16 °C during the light hours.  Plants in the six week cold duration 
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with light were moved to a different growth chamber on 3 Jan. 2006 to correct this 

problem. 
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CHAPTER IV 

 

SUMMARY OF FINDINGS 

 

 A series of five experiments were conducted on Dendrobium nobile Red 

Emperor ‘Prince’.  The objectives of the first three experiments were to determine the 

effects of N, P, and K and fertilizer termination time on the vegetative and reproductive 

growth. The objective of experiment four was to determine the effect of duration of 

nitrogen application, and the goal of the last experiment was to determine cold duration 

with or without light on flower initiation and development.   

• For all N rates, terminating fertilization at FT-2 and FT-3 resulted in thinner 

pseudobulbs. 

• In general application of 100 or 200 mg•L-1 N resulted in the tallest plants with 

the most leaves and greatest flower number. 

• Plants had increasingly higher chlorophyll readings in the middle leaves with 

increasing N rate. 

• When 400 mg•L-1 N was terminated at FT-3, flower number decreased and days 

to anthesis was delayed. 

• Plants fertilized with 400 mg•L-1 N until FT-3 resulted in plants with the greatest 

number of apical non-flowering nodes. 

• Nitrogen rates from 50 to 200 mg•L-1 N produced plants with similar flower 

diameter for all fertilizer termination times. 

• Regardless of N rate, days to anthesis were similar for both FT-1 and FT-2 

fertilizer termination times. 

• Plants required more days to obtain full flower when supplied 200 mg•L-1 N until 

FT-2. 

• Vegetative growth was adequate when plants received 25 to 50 mg•L-1 P. 
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• All P rates resulted in taller plants with equally more nodes compared to  

 0 mg•L-1 P. 

• Plants that received 25 mg•L-1 P or higher rates resulted in similar flower 

numbers. 

• For all three fertilizer termination times, plants that were not supplied with P 

bloomed later than those receiving P. 

• Plants in the P experiment produced the most flowers when terminated on FT-2. 

• Plants in the P experiment required fewer days to reach full flower when 

fertilizer application was terminated on FT-1. 

• Vegetative growth was adequate when plants were supplied with 100 mg•L-1 K. 

• Total flower number and flowering node number increased once K was applied 

and were similar at all rates above 0 mg•L-1 K. 

• Pseudobulb node number and leaf number remaining increased as N and K rates 

increased up to 200 mg•L-1. 

• Deficiencies of N and K resulted in severe premature leaf abscission. 

• In the K experiment, fertilizer termination time had no effect on vegetative 

growth. 

• The duration of N application (Expt. 4) did not affect vegetative or flowering 

characteristics. 

• For experiment 5, control plants remaining in a greenhouse produced the least 

number of flowers and required more days to reach full flower than all other 

treatments. 

• Plants cooled at 10 °C for 2, 4, or 6 weeks with light and for 4 or 6 weeks in the 

dark produced a similar high number of flowers per plant. 
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APPENDIX A 
 

CHEMICAL TABLE, LIGHT AND TEMPERATURE DATA, AND 

ANOVA TABLES FOR EXPERIMENTS 1-5 
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Table A1.  Trade and common names, target organisms, foliar spray application rates, and dates used for 
insect and disease control during vegetative and reproductive growth of Dendrobium Red 
Emperor ‘Prince’. 

                    
Trade name Common name Insect/Disease Application 
   Rate  Dates 
Avid Abamectin Spidermites 6 mg•L-1  5/25/05 and 5/31/05 
     
Azatin Azadirachtin Thrips/worms 29.7 mg•L-1 Multiple times between 6/17/05 

and 3/2/06 
     
Chipco Iprodione Fungus 1100 mg•L-1 Multiple times between 7/1/05 

and 9/27/05 
     
Conserve Spinosad Thrips 52.2 mg•L-1 5/15/05 and 3/9/06 
     
Decathlon Cyfluthrin Worms/thrips 132 mg•L-1 Multiple times between 6/17/05 

and 3/2/06 
     
Enstar S-kinopene Worms 244 mg•L-1  9/13/05 
     

Thiamethoxam Thrips 224.7 mg•L-1 5/10/05 Flagship 
    

Azoxystrobin Fungus 264.2 mg•L-1 10/18/05 and 11/14/05 Heritage 
    

Tau-fluvalinate Worms 133.8 mg•L- 9/13/05 Mavrik 
    

Copper sulfate pentahydrate Fungus 480.6 mg•L-1 5/18/05 Phyton 27 
    

Chlorfenapyr Spidermites 64.2 mg•L-1 Multiple times between 6/5/05 
and 8/15/05 

Pylon 
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Figure A1.  Average weekly day and night temperature and daily light integral in the greenhouse at canopy level (4 Feb. - 28 

April 2005) (vegetative growth). 
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Figure A2.  Average weekly day and night temperature and daily light integral in the greenhouse at canopy level (29 April - 21 
June 2005) (vegetative growth). 
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Figure A3.  Average weekly day and night temperature and daily light integral in the greenhouse at canopy level (22 June - 13 
Oct. 2005) (vegetative growth and maturation period). 
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Figure A4.  Average weekly day and night temperature and daily light integral in the greenhouse at canopy level (14 Oct. 2005 
- 5 Jan. 2006) (maturation period and flower initiation). 
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Figure A5.  Average weekly day and night temperature and daily light integral in the greenhouse at canopy level (6 Jan. - 31 

March 2006) (flower initiation and development). 
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Table A2.  ANOVA for the effect of phosphorus rate and fertilizer termination time on vegetative parameters 
measured at pseudobulb maturity for Dendrobium Red Emperor ‘Prince’ (Expt. 2). 

Position of chlorophyll leaf readings  Pseudobulb 
 

Plant 
height 
(cm) 

Pseudobulb 
node no. Leaf no. Lower Middle Upper  

Width 
(mm) 

Thickness 
(mm) 

Phosphorus rate (P) 
(mg•L-1) *** *** *** NS * NS  ** *** 
Fertilizer termination 
time (FT) (d) *** * * NS NS NS  NS *** 
P ×FT NS NS NS NS NS NS  NS NS 
NS, *, **, ***  Not significant or significant at P = 0.05, 0.01, 0.001, respectively. 
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Table A3.   ANOVA for the effect of phosphorus rate and fertilizer termination time on 
reproductive parameters measured at time of full flower for Dendrobium Red Emperor 
‘Prince’ (Expt. 2). 

 
Total 
flower 

no. 
Flowering 
node no. 

Apical non-
flowering 
node no. 

Middle 
flower 

diam (cm) 
Days to 
anthesis 

Time 
to full 
flower 

(d) 
Phosphorus rate (P) 
(mg•L-1) *** NS *** NS *** ** 
Fertilizer termination 
time (FT) (d) ** ** NS NS NS *** 
P × FT NS NS NS NS * NS 
NS, *, **, *** Not significant or significant at P = 0.05, 0.01, 0.001, respectively. 
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Table A4.  ANOVA for the effect of phosphorus rate and fertilizer 
termination time on flower number per node measured at time of full 
flower for Dendrobium Red Emperor ‘Prince’ (Expt. 2). 

Flower no. per node 
 4 3 2 1 

Phosphorus rate (P) 
(mg•L-1 ) *** *** *** *** 
Fertilizer termination 
time (FT) (d) ** NS ** NS 
P × FT NS NS NS NS 
NS, **, *** Not significant or significant at P = 0.01, 0.001, respectively. 
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Table A5.   ANOVA the effect of potassium rate and fertilizer termination on vegetative parameters measured at 
pseudobulb maturity for Dendrobium Red Emperor ‘Prince’ (Expt. 3). 

Leaf position for chlorophyll 
readings  

Pseudobulb 
 

 
Plant 
height 
(cm) 

Pseudobulb  
node no. Leaf no. Lower Middle Upper  

Width 
(mm) 

Thickness 
(mm) 

Potassium rate (K) 
( mg•L-1) *** *** *** NS NS ***  *** *** 
Fertilizer termination 
time (FT)  (d) NS NS NS NS NS NS  NS * 
K ×FT NS NS NS NS NS NS  NS * 
  NS, *, *** Not significant or significant at P = 0.05, 0.001, respectively. 
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Table A6.   ANOVA for the effect of potassium rate and fertilizer termination time on reproductive parameters 
measured at time of full flower for Dendrobium Red Emperor ‘Prince’ (Expt. 3). 

Flower no. per node 

 

Total 
flower 

no. 
Flowering 
node no. 

Apical non-
flowering 
node no. 4 3 2 1 

Middle 
flower 

diam (cm) 

Days to 
anthesis 

(d) 
Time to full 
flower (d) 

Potassium rate (K) 
(mg•L-1) *** *** *** *** *** *** ** *** *** NS 
Fertilizer termination 
time (FT) (days) NS NS * ** NS ** NS NS NS * 
K × FT NS NS NS NS NS NS NS NS NS NS 
NS, *, **, ***  Not significant or significant at P = 0.05, 0.01, 0.001, respectively. 
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Table A7.   ANOVA for the effect of fertilizer termination time on vegetative parameters 
measured at pseudobulb maturity for Dendrobium Red Emperor ‘Prince’ (Expt. 4). 

Pseudobulb  

Plant height 
(cm) 

Pseudobulb 
node no. 

Leaf 
no. 

Width 
(mm) 

Thickness 
(mm) 

Fertilizer termination 
time (FT) NS NS NS NS NS 
NS = Not significant. 
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Table A8.   ANOVA for the effect of fertilizer termination time on reproductive parameters measured at time 

of full flower for Dendrobium Red Emperor ‘Prince’ (Expt. 4). 

Flower no. per node 
 

Total 
flower 

no. 
Flowering 
node no. 4 3 2 1 

Middle 
flower 

diameter 
(cm) 

Days to 
anthesis 

Time to 
full 

flower 
(d) 

Fertilizer 
termination time 
(FT) NS NS NS NS NS NS NS NS NS 
NS =Not Significant. 
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Table A9. Leaf number, leaf node number and leaf retention 

percentage for nitrogen (N) (Expt. 1) and potassium (K) 
(Expt. 3) measured at pseudobulb maturity for Dendrobium 
Red Emperor ‘Prince’.   

Fertilizer 
Rate(mg•L-1) Leaf no. Leaf node no. % Retention 
Nitrogen (N)     
0 4.3 11.7 38 
50 12.6 18.7 67 
100 16.6 21.8 76 
200 18.4 21.2 87 
400 18.2 19.7 84 
    
Potassium (K)    
0 5.0 14.6 34 
50 11.8 18.3 62 
100 14.4 20.1 72 
200 16.2 20.2 80 
400 16.3 20.0 82 
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Figure A6.  Average weekly day and night temperature in the greenhouse B at canopy level (4 Nov. 2005 - 31 Jan. 2006). 
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Table A10. ANOVA for the effect of cold duration and light or no light on vegetative 

parameters measured at pseudobulb maturity for Dendrobium Red Emperor ‘Prince’ 
(Expt. 5). 

Pseudobulb 
 

Plant height 
(cm) 

Pseudobulb 
node no. Leaf no. Width (mm) 

Thickness 
(mm) 

Significance  NS NS NS NS NS 
NS=Not significant. 
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Table A11.  ANOVA for the effect of cold duration and light or no light on reproductive parameters measured 
at time of full flower for Dendrobium Red Emperor ‘Prince’ (Expt. 5). 

 
Total 

flower no. 
Flowering 
node no. 

Apical non-
flowering 
node no. 

Middle 
flower diam 

(cm) 
Days to 
anthesis 

Time to full 
flower (d) 

Significance ***      *** * NS *** *** 
NS, *, *** Not significant or significant at P = 0.05 and 0.001, respectively. 

Table A12.  ANOVA for the effect of cold duration and light or no light on 
flower number per node measured at time of full flower for 
Dendrobium Red Emperor ‘Prince’ (Expt. 5). 

 Flower no. per node 
 4 3 2 1 
Significance *** *** *** *** 
*** = significant at P = 0.001. 



 

 

85 

 
APPENDIX B 

 
NO3 VS NH4 PERCENTAGES 
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Table B1.  Total ammonium (NH4), nitrate (NO3) and percentage of NH4 
and NO3 in nitrogen (N), phosphorus (P), and potassium (K) 
treatments applied to Dendrobium Red Emperor ‘Prince’. 

 
Total NH4 

(mM) 
Total NO3 

(mM) % NH4 % NO3 
N rate (mg•L-1)  
     0 0 0 --- --- 
     50 1.79 1.79 50 50 
     100 3.57 3.57 50 50 
     200 7.13 7.13 50 50 
     400 14.28 14.28 50 50 
P rate (mg•L-1)     
     0 .387 6.78 5 95 
     25 .787 6.38 11 89 
     50 1.16 5.94 16 84 
     100 2.00 5.17 28 72 
     200 3.57 3.57 50 50 
K rate (mg•L-1)     
     0 6.81 .362 95 5 
     50 6.60 .999 87 13 
     100 5.51 1.64 77 23 
     200 4.23 2.91 60 40 
     400 1.32 5.13 20 80 
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APPENDIX C 
 

VEGETATIVE AND REPRODUCTIVE GROWTH (EXPTS 1-3) 
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Appendix C1.  Expt. 1 Nitrogen (N) vegetative (A) (14 Nov. 2005) and reproductive (B) 
(10 Mar. 2006) growth of Dendrobium Red Emperor ‘Prince’. 

 
 

 
                   (A) 

                  0         50          100     200          400       mg•L-1 N 
 
 

 
                      (B) 

 0         50          100     200          400       mg•L-1 N 
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Appendix C2.  Expt. 2 Phosphorus (P) vegetative (A) (14 Nov. 2005) and reproductive                
  (B) (10 Mar. 2006) growth of Dendrobium Red Emperor ‘Prince’. 

 
 
 

 
 (A) 
     0      50            100  200   400       mg•L-1 P 

 

 
 (B) 

   0      50            100  200   400       mg•L-1 P  
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Appendix C3.  Expt. 3 Potassium (K) vegetative (A) (14 Nov. 2005) and reproductive 
(B) (10 Mar. 2006) growth of Dendrobium Red Emperor ‘Prince’. 

 
 

 
 (A) 

                         0    50         100           200      400       mg•L-1 K    
  

 
 (B) 
  0  50             100             200       400       mg•L-1 K 
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