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ABSTRACT 

 

Development of an Infrared Absorption Spectroscope Based on Linear Variable Filters. 

(December 2006) 

Felipe Guimarães Nogueira, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Ricardo Gutiérrez-Osuna 

 

The objective of this thesis is to develop a low-cost infrared absorption spectroscope 

based on linear variable filter (LVF) technology for the automated detection of gases and 

vapors, and the semi-automated detection of liquids. This instrument represents an 

alternative to electronic-nose instruments based on cross-selective gas sensor arrays.  

Instead, the proposed instrument uses the idea of computational “pseudo-sensors”, 

whereby spectral lines in an analytical instrument are clustered into groups and used as 

independent variables. We characterize the system on a number of performance metrics, 

uncovering its detection limits and resolving power. We present calibration methods to 

estimate the concentration of analytes in a matrix of absorbing species, as well as signal 

processing techniques for spectral classification. Specifically, we validate the instrument 

on a mixture calibration problem with simple and complex chemicals, and compare the 

efficiency of different calibration methods to estimate the concentration of one analyte in 

the matrix.  Moreover, we demonstrate the use of the instrument on two real-world 

applications in the foodstuffs domain: oil adulteration and trans fatty acid (TFA) 

detection. The instrument, combined with signal processing techniques, is able to fully 
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discriminate oils, as well as classify margarine and spreads onto high-TFA and low-TFA 

groups. Despite operating at a low spectral resolution, our results show that the LVF 

based spectroscope is a promising alternative to traditional analytical techniques for 

selected niche applications. 
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CHAPTER I 

 INTRODUCTION 

 
Arrays of cross-selective chemical sensors, commonly referred to as electronic noses, 

have been developed during the past two decades as a low-cost alternative to the analysis 

of volatile compounds (Persaud & Dodd, 1982). The e-nose approach is very effective 

when one wishes to obtain a holistic response to the sample. However, since the 

detection principle in these instruments is combinatorial (i.e., many volatiles are detected 

by a single sensor, and vice-versa), it becomes challenging to determine which 

component in a mixture is responsible for the response of the array.  Unless a proxy can 

be found for the measurand of interest (i.e., the target analyte is correlated with an easily 

measurable variable), the results of e-nose instruments can be misleading.  For instance, 

in a now classical study (Pinheiro et al., 2001) it was shown that the response of an 

electronic nose to the headspace of wine during the fermentation process is due to the 

alcohol content of the wine rather than its aroma. Further, electronic noses are limited to 

the analysis of volatile species, which may have a different composition than the liquid 

(or solid) sample that one is interested in analyzing.  

In analogy with the electronic-nose paradigm, an array of “pseudo-sensors” may 

be obtained by selectively clustering the response of an analytical instrument according 

to its independent variable (i.e., retention time in a gas chromatograph, absorption 

wavelengths in a Fourier Transform Infrared Spectrometer (FTIR), or mass/charge ratios 

                                                 
This thesis follows the style of Biological Cybernetics. 



 2

in a mass spectrometer) (Nagle et al., 1998).  To date, the use of this approach has been 

limited to laboratory settings due to the cost, and size of the instruments. Advances in 

micro- and nano- fabrication technology are, however, likely to overcome these issues 

(Bacon et al., 2004; Badman & Cooks, 2000; Taylor et al., 2003).  Along these lines, 

(Rubio et al., 2004) have shown that an IR detector can be coupled with a Fabry-Perot 

tunable filter to produce a miniaturized IR spectrometer.  In a related article, the authors 

propose to use an optical filter array atop a thermopile array (Rubio et al., 2005).  

Among the advantages of this approach over traditional electronic-nose instruments are 

interpretability (i.e. the ability to correlate spectral features with molecular structure) and 

contact-free sensing, which helps prevent sensor drift. In this thesis, we present a low-

cost instrument based on infrared spectrometry.   

In contrast with these previous efforts, the objective of this thesis is to develop a 

system based on a linear variable filter (LVF), which acts as a bank of optical filters, and 

a pyroelectric detector array, for the automated detection and characterization of 

chemical gas and liquid chemicals. The advantage of this approach is that it can be easily 

interpreted as a low-resolution IR spectrum.  On the down side, the sensitivity of this 

device can be significantly lower than that of e-nose sensors. Among the many 

challenges of LVF based spectroscopy are the relatively low signal-to-noise ratio and the 

reduced resolving power of the instrument, which make the characterization and 

classification of similar compounds difficult. In order to overcome these challenges, we 

provide several signal processing techniques, particularly for data acquisition and the 

associated data preprocessing. We complement the discussion of the signal processing 
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methods by providing techniques for calibration, which consists of building predictive 

mathematical models for concentration of an analyte in a matrix of absorbing species, 

and classification of spectral patterns via statistical machine learning techniques. Finally, 

we show a comparison between popular calibration methods for the data acquired by the 

instrument, and demonstrate the use of the instrument on two real-world foodstuff 

applications.  

I.1. Organization   

The remaining sections of the thesis are organized as follows. Chapter II provides a 

review on the fundamentals of infrared absorption spectroscopy, as well as an overview 

of traditional and innovative infrared system components, configurations and methods. 

A description of the proposed system, as well as the system characterization is covered 

in Chapter III. Chapter IV discusses processing techniques for calibration and spectral 

classification. Chapter V provides a calibration example and an evaluation of the system 

for two real-world applications in the foodstuffs domain. Finally, we conclude the thesis 

by pointing out future directions for research in Chapter VI. 
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CHAPTER II 

 BACKGROUND REVIEW 

In this chapter, we briefly discuss the fundamental principles of infrared absorption 

spectroscopy (Schilz, 2000; Schmidt, 2005; Stuart, 2004), and give an overview of the 

current (Chou, 1999; Passerini et al., 2003) and future technology (Andresen & Fulop, 

2005) that have motivated this research. 

II.1. Fundamental principles of infrared absorption spectroscopy 

II.1.1. Electromagnetic radiation 

Since the introduction of Maxwell’s classical theory of electro- and magneto-dynamics 

in 1864, we have been able to interpret electromagnetic radiation beyond the visible 

spectrum. According to Maxwell’s equations, radiation is considered as two mutually 

perpendicular electric )( 'E  and magnetic )(H  fields, oscillating in single planes to each 

other (Stuart, 2004). The vector product HES ×= '  is called Poynting vector, and 

follows the direction of energy flow. A complete sinusoidal cycle along S is referred to 

as the wavelength (i.e. energy) of an electromagnetic traversal wave (i.e. light).  

Plank explained that energy E  relates proportionally to frequency v , with a  

proportionality constant ( sJh 3410626.6 −×= ) as follows 

vhE ×=  (1) 
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Light propagates in a vacuum at a constant speed 18 310997925.2 −±×= smc , 

and relates wavelength λ  and frequency v  such that λ×= vc  (Schmidt, 2005). Thus, 

energy can be expressed as 

λ
chE ×=  (2) 

or, in terms of its reciprocal length, i.e. wave number 
λ
1

=k , as 

kchE ××=  (3) 

Vibration and rotation of atoms and molecules can be represented by discrete 

energy levels. A stream of particles, i.e. quanta, of energy interacts with matter by either 

absorption or emission. However, in order for interaction to occur, a quantum of energy 

must exactly fit between neighboring energy levels (Stuart, 2004). For instance, given 

two neighboring atomic energy levels E1 and E2, absorption occurs when frequency is 

given by  

h
EEv )( 12 −=  (4) 

 
The electromagnetic radiation spectrum ranges, in wavelength, from millions of 

kilometers to fractions of femtometers, and is conventionally divided in many regions, as 

illustrated in Fig 1. In terms of wavelength, the infrared region spans from 1mm to 

750nm, and is divided into three sub-regions: near (i.e. 0.75-5 μm), mid (i.e. 5-30 μm) 

and far (i.e. 30-1000 μm) infrared. The near infrared region is closest to the visible 

spectrum, whereas the far infrared, as the name implies, is farthest. Most of the 

discussion from here on will be concerned with the mid infrared region. Care must be 
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taken when using these infrared sub-region definitions, since there is no international 

standard for these specifications, and authors often disagree on the subject. 

 

II.1.2. Infrared absorptions and normal modes of vibration 

Fundamentally, the field of infrared absorption spectroscopy strides to determine the 

differences in energy caused by the absorption of infrared radiation when reflected or 

transmitted through a medium. In order for infrared absorption to occur, energy must 

cause a change in a molecule’s electric dipole moment. This assertion is referred to as 

the selection rule. The selection rule implies that only heteronuclear diatomic or 

polyatomic molecules may show absorption in the infrared region. 

Changes in the dipole moments of a polyatomic molecule can be considered in 

terms of molecular vibrations and rotations. These movements occur according to the 

 

 

Fig 1. The electromagnetic spectrum in different units (Schmidt, 2005). 
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molecule’s degrees of freedom. There are basically three types of degrees of freedom: 

translational, rotational and vibrational. The total number of a molecule’s degrees of 

freedom is the sum of translational, rotational and vibrational degrees of freedom. For 

any molecule with N atoms, it follows that the total number of degrees of freedom it 

possesses is 3N. A general rule of thumb is that, since larger molecules have more 

degrees of vibration, they generally have many more peaks of absorption then smaller 

molecules. In addition, bonds of atoms that are farther away in the periodic table shows 

stronger bands than the contrary because they have stronger dipole momentum (Stuart, 

2004).  

Each molecule produces a unique infrared absorption spectrum because of its 

particular bonds and structures. A mid infrared absorption spectrum of a molecule may 

be conceptually divided into two regions, namely the functional-group region and the 

fingerprint region. To illustrate this idea, Fig 2 shows the plot of the mid infrared 

spectrum of Hexanol, with the marked division between functional and fingerprint 

regions. As with the determination of near, mid and far infrared regions, there is 

currently no international standard or governing body to establish a set of specification 

to define these regions. The functional region is considered to have absorption bands due 

to molecular functional group bonds, whereas the fingerprint contains the response to the 

intrinsic skeletal vibrations, mostly unique to each molecule.  
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The division of the infrared spectrum into functional and fingerprint regions is 

important to analytical spectroscopy. The functional region typically offers more general 

information about a certain compound’s chemical structure than the fingerprint region. 

By performing spectral analysis of the principal bands found in the functional region, we 

are generally able to correlate the sample to functional groups, which is particularly 

useful in the preliminary steps of molecular identification. On the other hand, infrared 

absorption in the fingerprint region of molecules that belong to the same functional 

group can be quite different. Peaks in the fingerprint region are very useful for 

classification, or in the last steps of molecular identification.  

There are many factors that can make experimental infrared spectroscopy less 

than straightforward, and which can complicate a successful interpretation of the 

spectrum. When first observing infrared absorption profiles, one may easily realize that 

absorption bands aren’t infinitely narrow. Broadening of bands can be attributed to many 

 

Fig 2. Conceptual division of the mid IR spectra of Hexanol into functional and 
fingerprint regions. 
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factors such as collision between molecules, finite lifetime of state transitions, time 

varying energy states or the Doppler effect (Stuart, 2004).  

Experimentally, spectral absorption lines of molecules may vary tremendously 

because of solvents, temperature and other environmental factors in place. Different 

temperatures may cause fluctuation in the number of vibrational and rotational degrees 

of freedom. For instance, at low temperatures one can selectively freeze degrees of 

rotational freedom (Schmidt, 2005). Solvents may interact with the molecule, also 

causing a change in a molecules’ absorption lines. Nonetheless, in most cases, the major 

absorption lines of a given molecule are still apparent regardless of the solvent used or 

temperature changes.   

In addition, there are other complicating factors such as overtone, combination 

bands, Fermi resonance, coupling and vibration-rotation bands. Overtone bands are 

integer multiples of the fundamental frequency, which is proportional to wavenumber. A 

spectral measurement may show energy absorbed at a fundamental frequency of a band 

as well as at its overtone. Combination bands are additive in the sense that if a molecule 

possesses bands at two different fundamental frequencies, it may show absorption of 

energy at a frequency equivalent to the sum of these two fundamental frequencies. On 

the other hand, a Fermi resonance may split an absorption band in two when an overtone 

frequency exists in the same or similar region as a fundamental frequency. Coupling 

occurs when adjacent atoms in a molecule have similar frequencies, which lead to a 

change in overall frequency of the bands. Vibration-rotation bands occur when rotational 

motion is induced by a vibrational transition (Stuart, 2004).  
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These complicating factors must be taken in account when selecting or designing 

an infrared absorption spectroscope. Fortunately, there is a great variety of components 

that allows enormous flexibility in the design and configuration of infrared systems. In 

the next section, we discuss the current and future infrared system component 

technologies.  

II.2. Infrared system components  

Most infrared absorption spectroscopes share a common set of components: an infrared 

source, a sample chamber and a detector. In this section we provide an overview of the 

most common components, and discuss their functionality. This discussion is not 

intended as a complete reference; further information about this and other components 

can be found at (Andresen & Fulop, 2005; Rogalski, 2002; Schilz, 2000; Schmidt, 2005; 

Workman Jr., 1998). 

II.2.1. Detectors 

Although infrared detector materials and technologies have evolved tremendously in the 

past few decades, their basic principles of operation remain very similar. Fundamentally, 

infrared light is sensed by using either a photon or a thermal detector. Examples of 

photon-based sensing are photovoltaic, photoconductive , photodiode, photoemissive 

and photoelectromagnetic detectors. Thermal-based sensing of infrared light is obtained, 

for instance, by employing thermoelectric, thermoresistive or thermoconductive 

detectors. Furthermore, although the denomination of certain infrared detectors (e.g. 

photoacoustic or optopneumatic) may suggest the use of disparate techniques, their 
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fundamental detection principles still lies or is complemented by  thermal or photon 

interaction with sensing materials. In this section we briefly discuss the fundamental 

principles of most popular photon and thermal infrared detector technologies on the 

market today.  

II.2.1.1. Thermoelectric detector 

The building blocks of thermoelectric detectors (i.e. thermopiles) are thermocouples: 

devices that convert temperature into electrical signals. A thermocouple is made up of 

junctions of different metals, which generate a voltage potential directly proportional to 

temperature. As illustrated in Fig 3, there are two junctions in a thermocouple. One 

junction is made sensitive to radiant flux, while another is coupled with a heat sink 

material to provide a reference. Inside a thermopile is a series of miniaturized 

thermocouples arranged to obtain an improved output signal. In terms of infrared 

detectors, the thermopile is the simplest technology. It offers a slow response, DC 

stability, no need for a bias and sensibility to all wavelengths (Chou, 1999). 

 

 

 

Fig 3. Schematic of a thermopile device. 



 12

II.2.1.2. Thermistor bolometer detector 

Thermistor bolometers are semiconductor devices that change resistance when exposed 

to infrared radiation. Infrared radiation interacts with the sensor by causing the 

fluctuation of surface temperature, which is detected by a sintered metal oxide material 

with high temperature coefficient of resistance. 

II.2.1.3. Pyroelectric detector  

Pyroelectric detectors are made of crystals, such as lithium tantalate, which exhibit 

spontaneous polarization or a concentrated electric charge that is temperature dependent 

(Chou, 1999). Changes in temperature generated by incident infrared radiation causes a 

flow of current that is proportional to the intensity of radiation. Pyroelectric detectors are 

more sensitive than thermoelectric or thermistor bolometer detectors. In addition, they 

show much larger current output and temperature stability, which allows for easier 

interaction with electronic circuits. The basic inner workings of a pyroelectric sensor are 

illustrated in Fig 4 below. 

 

 

 
Fig 4. Schematic of a pyroelectric detector (Chou, 1999). 
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II.2.1.4. Photoconductive detector  

This type of device detects the effects of a quantum of energy (i.e. photon) incident on a 

semiconductor material. As seen previously, the energy of a photon is based upon its 

wavelength; photons with shorter wavelengths possess more energy than those with 

longer wavelengths. A photon with sufficient energy can excite an electron from a non-

conducting to a conducting state. By examining the difference in conductivity, a photon 

detector is able to determine the number of photons in a pulse of monochromatic light. 

This type of sensor typically targets specific frequencies and requires cooling in order to 

function properly. In general, photon detectors are employed when high performance is 

required, such as medical bio-imaging or certain military infrared target detection 

applications.  

II.2.1.5. Luft detector  

Named after its inventor Karl Luft, the Luft detector is an optopneumatic detector. It 

examines the difference in pressure between a zero gas cell – which is inert to infrared 

radiation – and a sample gas cell when exposed to infrared radiation at wavelengths that 

cause absorption. By analyzing the pressure difference, a Luft detector is able to 

determine the concentration of the analyte in the sample cell. This pressure-based device 

typically employs either a diaphragm or a small passage between the chambers to 

measure pressure difference. In the case of a diaphragm, pressure is measured as changes 

in capacitance caused by the movement of the diaphragm due to unequal pressure 

between the chambers. In the second approach, a micro-flow sensor is placed at a small 

passage to measure detectable flows when pressures between chambers are distinct. This 
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detector finds many applications as an analyzer, but may suffer from external factors 

such as small vibrations and temperature changes in the environment. A micro-flow 

based Luft detector is illustrated in Fig 5.  

 

 

II.2.1.6. Photoacoustic detector  

A photoacoustic detector detects intermittent infrared radiation incident in a sample. 

Temperature changes caused by absorption produce a transient pressure response that is 

captured by a microphone or piezoelectric device. The system injects the sample gas 

inside a sealed compartment with a window capable of infrared transmission. An 

external infrared source emits pulses that penetrate the window, are absorbed by the 

 
Fig 5. Schematic of a Luft detector (Chou, 1999). 
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sample, and are measured as oscillating pressure changes by the photoacoustic detector. 

The transduction principles used in photoacoustic detector is illustrated in Fig 6.  

 

 

II.2.1.7. New trends in infrared detector technology 

In the past decade, there have been world-wide efforts to develop new and improved 

infrared detection technologies for a number of commercial and military applications. 

Two-dimensional sensing of multi-color (i.e. multi-spectral) thermal radiation has been 

the focus of much of this research. In addition, commercial applications such as 

analytical spectroscopy have motivated the development of simpler and cost-effective 

technologies for room-temperature thermal sensing, which has inspired this research. In 

this section we discuss two important infrared detection technologies, focal plane arrays 

and linear variable filter based pyroelectric detector array, which have emerged, as a 

result of high performance and low-cost application demands, respectively. 

 

 

 

 

 
Fig 6. Schematic of a photoacoustic detector (Chou, 1999). 
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II.2.1.7.1. Focal plane array (FPA)  

Applications in security, defense and biotechnology have been major targets of recent 

research in infrared detection technology. In the field of defense and security, 

applications have stressed a need for multi-band operation for simultaneous long-range 

detection and identification of threats, detection of low-contrast targets, improved 

warning against missile threats, defeating counter measures and the detection of recently 

buried mines (Andresen & Fulop, 2005). Needs such as these have led to the 

development of what is known as the 3rd generation in infrared detectors: focal plane 

arrays (FPA) with high pixel count and simultaneous dual band operation.  

Most FPAs are arrays of photon detectors based on variable gap semiconductor 

technologies, which are manufactured using band gap engineering techniques. 

Fundamentally, these techniques consist of carefully blending semiconductor and semi-

metal materials, such that the band gap between valence and conducting state of the 

resulting alloy can be precisely specified to suit a specific range of wavelengths of the 

infrared electromagnetic spectrum. The main materials used in this technology today are 

HdCdTe and GaAIAs/GaAs QWIP (quantum well infrared photoconductor), but the 

adoption of Type-II InAs/GaInSb superlattice (T2SL) in future technology is expected 

(Andresen & Fulop, 2005).  

Thermal detector technologies are also present in some FPA devices (e.g. 

microbolometers), and but they have been, until recently, less common. This detector 

technology was popularly believed to be much slower and less sensitive in comparison 

with photon detectors, and therefore it was much less exploited for commercial or 
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military purposes. As a result, efforts in the widespread development of thermal 

detectors for FPAs were exceptionally small (Rogalski, 2002). Today, however, this 

technology has been shown to provide fast imagery at room-temperature at rates of 30 

frames per second. Nonetheless, for high-performance applications, thermal detection is 

still inferior to photon detection based FPAs.  

FPA detectors are often categorized by whether or not they require cooling. 

Typically, cooled FPAs are based on photon detection technologies, whereas uncooled 

FPAs are based on thermal detectors. FPA detectors that require coolers for proper 

operation typically offer superior sensitivity and higher frame rates. On the other hand, 

uncooled FPA devices are generally lighter, smaller, more shock-resistant, power-

efficient and have lower costs. However, despite the advantages of uncooled FPAs, their 

cost remains too high for widespread proliferation (Andresen & Fulop, 2005).  

II.2.1.7.2. LVF and μArray 

The need for simpler solutions for analytical measurements has prompted the 

development of uncooled infrared detectors, an example of which is the LVF 

spectrometer used in this thesis (Passerini et al., 2003). The device consists of a linear 

variable filter (LVF) placed in front of an array of 64 pyroelectric sensors (μArray; IR 

Microsystems, Lausanne, Switzerland), as illustrated in Fig 7. The LVF serves as a bank 

of optical band-pass filters, screening the spectra such that each sensor in the 64-pixel 

detector receives different wavelengths. This detector offers affordable, reliable, rugged, 

simple to use, room temperature spectrometry in the mid infrared region at the cost of 

lower resolution and lower sensitivity. The resolution power of the detector is limited by 
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the number of pixels in the array and the optical properties of the LVF. In addition, 

sensitivity is lower because the LVF diffuses a considerable amount of radiation before 

it reaches the detector. In this work, we characterize a system based on this technology, 

and present signal-processing techniques that address issues of low resolution, low 

sensitivity spectrometry.  

 

II.2.2. IR sources 

Light sources can be categorized as continuum or line radiators (Chou, 1999). A 

continuum radiator, as the name suggests, provides radiation distributed across a wide 

spectral range, whereas a line radiator provides radiation at specific set of distinct 

spectral lines. Examples of continuum and line radiators are incandescent lights and 

lasers, respectively. The determination of which type of source, and what characteristics 

it should possess, depends invariably on the target application. The most important 

characteristic of a type of radiator is intensity. Light may be measured as energy in units 

of Watt seconds. The intensity of irradiation, known as radiant flux eφ , is defined by the 

 

 
 

Fig 7. Schematic of an LVF based detector. 
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quotient of energy over time – and can be measured simply as Watts. Any regular 

incandescent light source emits infrared radiation, and a source as small as a pen 

flashlight provides enough radiation for the detection of most hydrocarbons, CO2 and 

CO (Chou, 1999). However, most system configurations for analytical measurements 

require potent, i.e. high intensity, sources to avoid saturation of the signal acquisition 

equipment. The intensity distribution generally shows a maximum with specific half-

width, and the shape of the energy distribution depends on what type of emitter is used 

(Schmidt, 2005). 

II.2.2.1. Modulation  

Modulation of the infrared radiation emission is often desired or required. For instance, 

pyroelectric sensors require modulation in order to define a basis for change in current 

flow. Intensity modulation is typically achieved through voltage modulation at the 

emitter or through a mechanical chopper positioned in the light path.  

II.2.3. Gas cell  

Gas cells can be found in various shapes and formats, and are designed for use with 

specific sampling methods. In transmission sampling techniques, the length of the cell 

determines the path length in which the sample is subject to absorption. The amount of 

radiation absorbed is proportional to the path length. Typically, small cells (e.g. 10cm in 

length) are intended for use with concentrated gases, gas mixtures and vapors (>1% 

levels) at ambient temperatures and pressures. Infrared radiation enters or leaves the gas 

cell through windows, which are made of a special material intended to have to the least 
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absorption possible at the wavelengths under observation. A list of these materials is 

provided in Table 1. In addition, the selection of the window depends on the type of 

solvent and sample to be used in the experiments, as well as the operating conditions 

(e.g. shock or temperature).  

 The detection of trace gases (e.g. 1-1000 ppm) in diluted mixtures typically 

requires much longer gas cells, with path length in the range of 1-20 meters. For 

environmental applications, such as the detection of toxic gases in a chemical plant, gas 

cells are replaced by optical equipment with telescopic properties, and path lengths of 

several hundreds of meters are used (Workman Jr., 1998). 

 

 

II.3. Infrared system configurations 

The infrared system components mentioned in section II.2 can be complemented with 

other optical or mechanical devices, and arranged to form complete spectroscopy 

systems. The most typical infrared system configurations for spectroscopy are dispersive 

and interferometric. In this section we discuss the fundamental principles of such 

systems. 

Table 1 Common IR transmitting window materials. Adapted from Workman Jr., 1998. 

Material Useful range 
 (cm-1; transmission) 

Refractive Index at 
 1000 cm-1 

Water Solubility 
(g/100ml, H2O) 

Sodium chloride (NaCl)  40,000–590 1.49 35.7 
Potassium bromide (KBr)  40,000–340 1.52 65.2 
Cesium iodide (CsI)  40,000–200 1.74 88.4 
Calcium fluoride (CaF2)  50,000–1,140 1.39 Insoluble 
Barium fluoride (BaF2)  50,000–840 1.42 Insoluble 
Silver bromide (AgBr)  20,000–300 2.2 Insoluble 
Zinc sulfide (ZnS)  17,000–833 2.2 Insoluble 
Zinc selenide (ZnSe)  20,000–460 2.4 Insoluble 
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II.3.1. Dispersive 

Dispersive infrared instruments, also referred to as grating or scanning spectrometers,  

measure dispersed infrared radiation obtained via dispersive gratings. The instrument 

typically utilize a grating monochromator, which allows scanning of the spectrum by 

mechanically rotating an element, which blocks all wavelengths except for the ones of 

interest. Illustrated in Fig 8, a dispersive infrared spectrometer consists of a source, 

reference chamber, chopper, grating monochromator, slit, detector and a set of mirrors. 

The source emits infrared radiation simultaneously to a reference and a sample cell, 

where absorption occurs. Both infrared beams go to a chopper that lets through only one 

beam at a time. After passing the chopper, an individual beam reaches a grating 

monochromator, which allows passage of certain wavelengths selectively to the detector. 

 

 

 

 
Fig 8. Diagram of the infrared radiation path in a dispersive infrared spectrometer. 

Adapted from ("FT-IR vs. dispersive infrared " 2002). 
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II.3.2. Interferometric 

In contrast, an interferometric device measures the temporal coherence of an incident 

infrared radiation beam. As illustrated in Fig 9, an interferometric system consists of a 

source, a beamsplitter, two mirrors, a laser and a detector. Light travels from the source 

to the beamsplitter where it is split into two parts. The beamsplitter causes one part to be 

transmitted to a stationary mirror, and another to be reflected from a moving mirror that 

oscillates at a constant velocity according to a very precise laser. The moving mirror 

makes the two beams travel different distances, causing an interference pattern to be 

created when they recombine at the beamsplitter. After leaving the beamsplitter, the 

pattern is sent through the sample, where absorption occurs, to be detected at the sensor 

all at once. After the signal is acquired, a computer is used to perform a Fourier 

transform on the interference pattern to convert it to a single beam spectrum. In addition, 

a reference signal must be collected for the calculation of absorption using Beer-

Lambert’s Law (See Section II.4.1.1). 

 



 23

 

II.4. Infrared spectroscopy methods 

Infrared spectroscopy methods are analytical techniques used to obtain the infrared 

spectra of materials. A good understanding of the available sampling methods is 

important to any experimental design. In this section we describe two common infrared 

spectroscopy methods: transmission and reflectance. 

II.4.1. Transmission 

Transmission spectroscopy is the most common method used by infrared 

instrumentation, and it can be performed in liquids, solids and gases. Samples contained 

inside cells absorb infrared radiation that is transmitted from an infrared emitter through 

a medium and sensed by a detector in the other side, as illustrated in Fig 10. As 

mentioned previously, the difference in energy caused by absorption yields information 

 
 

Fig 9. Path of the infrared beam in a Fourier Transform Infrared (FTIR) spectrometer. 
Adapted from ("FT-IR vs. dispersive infrared " 2002). 
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about the sample under observation. A principle that is of fundamental importance to 

quantitative analysis in transmission spectroscopy is Beer-Lambert’s Law.   

 

 

II.4.1.1. Beer-Lambert Law 

The Beer-Lambert's Law states that the amount of absorption suffered by an infrared 

beam of radiation when transmitted through a sample is proportional to the path traveled 

and the sample’s concentration. According to Beer-Lambert’s Law, absorption A relates 

to concentration c and path length l by a molar absorptivity coefficient ε, which is 

unique to a particular sample, as follows 

A=εcl (5) 

Absorption also relates to intensity I and transmittance T as follows 

A=log Io – log I = log (Io/I) (6) 

T=I/Io (7) 

A= – logT (8) 

where I and Io are the intensities of the infrared radiation bean before and after being 

subjected to absorption. As we can observe, absorption is dimensionless and provides 

quantitative means to derive concentration.  

 

Fig 10. Simple schematic of the absorption by transmission method (Workman Jr., 
1998). 
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 There are several limitations to Beer-Lambert’s Law that can make the empirical 

relationship between infrared light and absorption become non-linear: 

• electrostactic interactions between nearby molecules can cause deviations in 

absorptivity coefficients at high concentrations 

• particulates in the sample, fluoresecence or phosphorescence of the sample 

can cause the scattering of light 

• high analyte concentration can cause changes in refractive index  

• concentration changes can cause shifts in chemical equilibria  

• stray light  

Under certain operating conditions, Beer-Lambert’s Law must be modified to 

accommodate other important properties of the interaction between light and matter. For 

example, it may be important to consider scattering when calculating the infrared 

absorption spectrum of micro- and macroscopic cell tissue because of membrane 

boundaries, or when using infrared spectroscopy in astronomical observations because of 

clouds or other natural phenomena. Typically, the term scattering is used to collectively 

describe various physical phenomena which distort a light beam in its geometrically 

correct light path, possibly changing its wavelength, such as refraction, diffraction, 

reflection. A detailed discussiong of scattering in spectroscopy  is presented elsewhere 

(Schmidt, 2005). Unless otherwise stated, references to Beer-Lambert’s Law will assume 

it to be in its simple (i.e. linear) and unmodified form. The extent to which these issues 

apply in our experiments will be discussed in Chapter V. 
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II.4.2. Reflectance  

Reflectance spectroscopy methods are also used to obtain the infrared spectrum of 

solids, gases or liquids, but are specially useful in some instances when normal 

absorption spectroscopy is not feasible (Schmidt, 2005). Reflectance methods allows for 

non-invasive, contact-free measurements of solid materials on the surface of complex 

shaped objects. 

Photons that are incident on a material can suffer specular, diffuse or internal 

reflection. Reflectance spectroscopy concerns itself with the study of infrared radiation 

that undergoes any of such events. Typically, the type of sample determines what 

technique of reflectance can be used. In specular reflectance, also known as external 

reflectance, the instrument can measure infrared light that is reflected from smooth 

surfaces, as illustrated in Fig 11. Diffuse reflection methods can be used to measure the 

infrared absorption spectra of powders and rough solids. In diffuse reflection, a sample’s 

surface is illuminated with infrared radiation and the scattered light is collected via 

appropriate optical components to generate its absorption spectrum. Internal reflection 

method is the most flexible in terms of sample preparation, and can be used, for instance, 

to determine the infrared absorption fingerprint of fats. Internal reflection at boundary 

layers of materials with different refractive indices is accompanied by a small 

displacement (approximately 1 wavelength) into the thinner medium (Schmidt, 2005). In 

the presence of a potential absorber, this displacement may cause a small attenuation of 

the signal. The most widely used technique of internal reflectance is known as attenuated 

total reflectance (ATR). Total reflectance refers to a method where energy is completely 
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reflected when incident at a material at an angle larger than a critical angle. A critical 

angle is derived from the refractive indices of the materials. In ATR a sample is placed 

in contact with a crystal, and an infrared radiation beam is aligned in an angle larger than 

that of the critical angle, such that it undergoes total reflectance. However, a small 

portion of energy is lost due to absorption by the sample at particular wavelengths. ATR 

measures the difference in energy caused by the absorption at the sample surface.  

 

 

II.5. Conclusion 

The objective of this chapter was to introduce the reader to the fundamentals of infrared 

absorption spectroscopy. We presented a theoretical background into the field, and 

elucidated the various component technologies (i.e., infrared source, chamber; detector) 

and infrared spectroscopy methods (i.e., transmission, reflectance) that are important for 

understanding infrared absorption spectroscope instruments. In the next chapter we 

present a new infrared absorption spectroscope system, named Infrared Integrated 

 

 

Fig 11. Simple schematic of the spectral reflection method for infrared absorption 
spectroscopy (Workman Jr., 1998).  
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System (IRIS), based on LVF optics and 1D array of pyroelectric detectors for the 

automated detection of gases, vapours and gaseous mixtures. 
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CHAPTER III 

 INFRARED INTEGRATED SYSTEM  

The Infrared Integrated System (IRIS) that has been developed as part of this thesis is a 

dispersive analytical spectroscope designed for automated measurements of the infrared 

absorption spectra of concentrated gases, gas mixtures and vapors, and for the semi-

automated measurement of liquids. It is intended to be a low-cost alternative to typical 

dispersive and non-dispersive infrared spectroscopes, and be capable of functioning in 

rugged operating conditions with minimal maintenance requirements.  In this chapter we 

discuss the architecture, the system characterization and the performance analysis of 

IRIS. 

III.1. System components 

The system is composed primarily of an infrared source, chopper, gas chamber, infrared 

detector, valves and a pressure sensor. Fig 12 illustrates a high-level schematic diagram 

of IRIS. In this section we discuss the details of each component, and its purpose in the 

overall execution of the system.  
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III.1.1. Detector 

The infrared detector combines a linear variable filter (LVF) and an array of 64 

pyroelectric detectors; it can be purchased from IR Microsystems (www.ir-

microsystems.com). As illustrated in Fig 13, the LVF is a wedge-shaped optical filter 

that functions as a wavelength dispersive optical component, allowing certain 

wavelengths to pass through at certain positions in a linear fashion. Due to optical 

limitations, a manufactured LVF can only range from an initial wavelength to twice that 

wavelength; in the case of IRIS, the LVF covers the range 5.27-10.5μm (i.e. 1898-955 

cm-1), which spans a large portion of the mid infrared fingerprint and functional regions. 

The LVF sits atop a 64-pixel pyroelectric detector array, which has a surface area of 14.7 

x 3.5 mm2 and pixel pitch of 0.2 mm (interlaced). Each pixel in the array extends an area 

of 0.12 x 1 mm2.  

 

 
 
 

Fig 12. High-level schematic diagram; P: pump, R: reference gas, S: samples, PS: 
pressure sensor, G: gas cell, C: mechanical chopper, and D: detector. 
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The detector offers a direct PC connection through a RS232 port, and comes with 

a device driver for rapid integration with National Instruments’ Labview software. The 

device driver consists of a so-called virtual instrument (vi) module of the 64-channel 

parallel readout, which can be polled in synchronization with the chopper via software 

configuration directives. 

          

 

 

Fig 13. Top-left: Photograph of an LVF. Top-right: a diagram of the infrared radiation 
path as it passes through the LVF and reaches a detector array. Bottom-left: a display of 
the linear wavelength output characteristic of the LVF. Bottom-right: rendering of the 

LVF’s physical aspects (JDSU, 2006).  
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III.1.2. Source and chopper 

The infrared source is an 11 W thermal emitter supplied by Boston Electronics (model 

IR-12K). This source has 80% emissivity in the infrared region, and is typically operated 

at 825Co temperature with a 5V-power supply. As shown in Fig 14 , the coil is mounted 

horizontally on a cylindrical alumina substrate, and is suited for use with a parabolic 

mirror. In IRIS, a parabolic mirror is necessary to obtain collimated infrared beams at 

the LVF; collimation affects the resolution power of the system, as discussed later in 

section III.3.4. In a nutshell, the more perpendicular the incident infrared light is with 

respect to the LVF surface, the higher the capability of IRIS to discriminate absorption at 

different, yet close wavenumbers. 

 
 

Pyroelectric detectors require a modulated signal for correct operation, which can 

be accomplished by means of chopper or a trigger. The trigger transforms the emitter 

power supply from a DC into an AC power supply, and is typically modulated by an 

 

 

 

Fig 14. Schematic of the infrared source (model IR-12K from Boston Electronics).  
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external clock frequency. In contrast, the chopper is a mechanical device consisting of a 

rigid and flat vane mounted on a motor that rotates with a limited angle, opening and 

closing the light path with a given frequency.  The movement of the blade follows the 

direction of the current flow in the motor winding. Thus, alternating the current causes 

the blade to open and close the chopper at a frequency range from DC to 50Hz. In order 

to avoid jitter, IRIS employs a chopper for signal modulation. Another advantage of a 

chopper based system is that it enables the use of sources with high thermal mass for 

high wattage. In the IRIS configuration, the chopper is operated by a driver, which 

provides a 10Hz TTL signal, and allows the chopper to have a frequency stability of 

0.005% (IR Microsystems, 2004). 

III.1.3. Chamber and windows 

IRIS uses a gas cell from Buck Scientific (model Beta Gas Cell) as the gas chamber. The 

gas cell is 100mm long and 25mm in diameter. Shown in Fig 15, the gas cell has a Pyrex 

body and two Pyrex filling stems that are used as inlet and outlet in the gas circuit. Two 

zinc selenide (ZnSe) windows (25mm diameter, 4mm thickness) were special ordered 

for the ends of the gas cell (Cradley Crystals Corporation; Nizhni Novgorod, Russia);  

though significantly more expensive than other materials (e.g., NaCl, KBr), ZnSe can 

withstand exposure to most non-acidic solvents, and has low absorption in the mid 

infrared region, making it ideal for our purposes.  A leak-tight assembly, capable of 

withstanding 15-psig pressure, was achieved by using 1mm-thick rubber washers 

between each ZnSe window and the Pyrex body. 
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III.1.4. Pump, valves, samples and other components 

IRIS uses an oil-less diaphragm pump from GAST (model 10D1125-101-1052). This 

pump features a DC motor capable of 15-psig maximum pressure. IRIS employs the 

pump in pressure mode in order to pressurize the gas chamber which leads to 

improvement in signal response for low-concentrated gases.  

The valves used are from Clippard (model EC-2M-12). These valves have a fast 

response time, and operate in a quiet fashion. The valves’ moving parts travels less than 

0.007 inches, and sustain pressures up to 100 psi to ensure a secure seal. The valves are 

mounted onto 4-channel manifolds, as shown in Fig 16.  

 

Fig 15. Top: photograph of two gas cells of different lengths. Bottom: a gas cell’s 
component arrangement (model Beta Gas Cell from Buck Scientific). 
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As illustrated also in Fig 17, samples are placed inside 200ml glass containers, 

which are enclosed with lids that have inlet and outlet openings. A separate sample 

container is destined for a gas filter that is used in the system for the measurement of 

reference gases.  

 

 

 
 

Fig 16. Valves mounted onto a 4-channel manifold. 
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III.1.5. Electronic circuitry 

The electronic circuits designed to drive all the IRIS components are described in this 

section. In essence, a host computer controls all operations in IRIS through a data 

acquisition card (DAQ) from National Instruments (model USB-6009). Two analog 

input channels in the DAQ are utilized to read the amplified pressure sensor signal, and 

six digital output channels are utilized for controlling the pump and valves. As discussed 

earlier, data from the LVF are read in through an RS-232 interface. 

To measure pressure inside the gas chamber we used a differential pressure 

sensor (Honeywell model 24PCCFA6D). This piezoresistive device has two ports for 

differential sensing. In IRIS, one of the ports is connected to the gas circuit and the other 
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Fig 17. Close-up view of the gas circuit in IRIS. 
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is left open, such that the sensor provides gauge measurements with ambient pressure as 

the reference. The pressure sensor provides a stable mV output for the 0.5-250 psi range, 

with a linear relationship of 15mV per psi. As mentioned earlier, the maximum pressure 

provided by the pump is 15-psi, which is well in the range of the pressure sensor. The 

DAQ, however, is unable to operate in the mV range, so an amplification circuit, 

illustrated in Fig 18, is required. IRIS utilizes the pump, valves and the output of the 

pressure sensor to pressurize the gas chamber to a desired level with precision.  

 
 

A driver circuit is also used to control the valves, as illustrated in Fig 19. Except 

for the exit valve downstream from the gas cell, all valves in IRIS are used in pairs to 

seal the inlet and outlet of each sample container (refer to Fig 12).  In the case of the exit 

valve, V2 in the driver circuit is not connected.  

 

 
 

Fig 18.  Pressure sensor signal amplification circuit. PS 01 and PS 02 are the differential 
pressure sensor output. The values of the resistors R1 and R2 are 1KΩ and 100 KΩ, 

respectively.  DAQ I2 and DAQ I3 are the amplified differential input to the DAQ. The 
operation amplifier is a standard 741. 
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III.2. Configuration 

The IRIS configuration enables a completely automated method of measuring the 

infrared absorption spectrum of gases or gas mixtures. Fig 20 illustrates a detailed 

diagram of the IRIS setup. The air pump is placed upstream from the sample containers, 

and used to provide air flow to or pressurize the gas cell. A maximum pressure of 15-

psig can be achieved in the gas chamber. IRIS allocates one inlet channel to a dry 

reference gas (filtered room air).  Liquid or solid samples can be placed in any of three 

different sample containers, which are individually enclosed by a pair of valves. By 

enclosing the containers, contamination between samples is minimized. The gas in the 

headspace of the sample container is pumped to the gas chamber, where it is typically 

pressurized. The infrared source is powered when the system is turned on, and provides 

the infrared radiation necessary for the measurement of the infrared absorption spectra of 

the pressurized gas in the gas cell. As with the source, the chopper and the detector are 

 

 
 

Fig 19. Valve driver circuit. DO is the DAQ output control for the valves. V1 and V2 are 
the output of the circuit. Note that V1 and V2 are operated simultaneously. The 

operation amplifier used is a 741; the MOSFET is an ECG261.  
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also powered when the system initializes. The detector automatically takes one 

measurement every second, and transmits the data through the 64-channel parallel 

readout circuit and serial port to the computer.  

IRIS can be operated by the user through a graphical user interface, as illustrated 

in Fig 21. There are 3 modes of operation: manual, automated and scripted. A user can 

manually save and load data from a reference gas to obtain an infrared absorption 

spectrum of a sample. The interface allows the user to manually control the pump and 

any of the valves with the click of a button. In the automated measurement mode, 

complete measurement cycle processes are prerecorded, and can be played from a pull-

down menu. Examples of such processes are system cleaning or individual sample 

measurements. Scripted execution mode provides the user with the ability to execute 

complex sequence of events from a spreadsheet file (CSV format), thus allowing for 

enormous flexibility in experimental design. 

There are two configuration parameters of interest to the operation of IRIS: phase 

angle and integration time. The phase angle determines the phase offset between the 

chopper period and the polling of data from the detector array.  Thus, by adjusting the 

phase angle parameter, the user can set the detector to poll data in precise 

synchronization with the chopper. The integration time parameter allows the user to 

specify the number of periods in which measurements are averaged. This is particularly 

useful when attempting to identify gases close to the detection limits of the instrument. 

All things being equal, longer integration time yields more precise measurements as a 

result of averaging out uncorrelated noise. 
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III.3. Characterization 

In order to determine whether IRIS can be used in a specific laboratory or field 

application, it is necessary to understand its capabilities. Knowledge about the system’s 

limitations is also required prior to experimental planning, analytical process or protocol 

 

 

Fig 21. IRIS software interface. On the left, the device status panel displays the state of 
the pump and valves, and allows their manual control. The pressure indicator displays 

real-time information about the pressure level inside the gas chamber. On the top-center, 
the virtual spectroscope displays the intensity of the signal captured at each wavelength 
in the detector array. On the bottom-center, the tabbed panel allows for rapid access to 

the three execution modes available (i.e. scripted execution, manual execution, 
automated execution) and to the configuration settings.  
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design. In addition, it is important to provide the means to evaluate the level of 

confidence of a measurement for risk assessment, and to make the user aware that in 

some cases (e.g. when near detection thresholds) it may be necessary to have an 

independent measurement technique for validation. In this section, we provide the 

system characterization by evaluating a number performance metrics; uncovering the 

detection limits and resolving power of IRIS.  

III.3.1. Performance metrics and analysis 

In this section we present a number of performance metrics used to evaluate gas 

detection systems (Chou, 1999), and analyze IRIS based on them. These metrics can be 

used to establish qualitatively or quantitatively the performance of most gas detection 

technologies. 

III.3.1.1. Accuracy, precision and repeatability 

Accuracy is the correctness of a measurement, which is assessed by comparing the 

measurement with the ground truth or an accepted value. Currently, there is no standard 

in which to compare gas detection systems. Thus, the term accuracy is often widely but 

inappropriately used. Precision is a quantifiable measure that indicates the system’s 

ability to produce repeatable results. In the context of chemical detection systems, 

repeatability refers to the systems’ ability to provide similar measurements of 

concentrations when subjected to exactly calibrated gas samples. A system can therefore 

be precise but not necessarily accurate, since accuracy can only be determined when 

compared to a standard  (Chou, 1999). We will limit our evaluation in terms of the 
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capability of the system to obtain consistent and precise measurements, and compare it 

to high-resolution FTIR spectra from the online database at the National Institute of 

Standards and Technology’s (NIST) Chemistry WebBook (Linstrom & Mallard, 2003). 

Another important metric that relates to precision is uncertainty. Uncertainty 

indicates the reliability of a single measurement output. Precision errors are typically 

interpreted as zero-mean random variables whose uncertainties can be reduced by 

replication (Tripp & Tcheng, 1999). There can be many sources of uncertainties within 

an instrument, and they can be jointly represented as a combined standard uncertainty uc. 

In IRIS, there are three main sources of uncertainty: fluctuation in emissivity by the 

source, noise at the detector, and inexact pressurization of the gas cell. Since fluctuation 

in emissivity by the source and in readings at the detector cannot be individually 

examined in our system, we investigate raw signals to derive the uncertainty that results 

from the joint effect of these sources. 

 For this purpose, raw signals were sampled every second, for approximately 15 

hours. We estimated the raw signal’s expanded uncertainty by calculating the positive 

square root of the raw signal variance multiplied by a coverage factor of 2. This type of 

uncertainty estimate is consistent with NIST’s guidelines for Type B evaluation of 

uncertainty from experimental data (Taylor & Kuyatt, 1994). Fig 22 illustrates the 

system response at every second for approximately 15 hours after the device’s required 

warm up period. Fig 23 shows the relative uncertainty, which was obtained by dividing 

uncertainty by the mean of the measurements. The average relative expanded uncertainty 

of the raw signal measurements is estimated to be 8.36%. In addition, we investigate the 
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uncertainty due to inexact pressurization at the chamber by performing similar 

procedures (i.e. Type B evaluation) for raw signals acquired from 480 same-pressure-

configuration measurements. The resulting expanded uncertainty due to inexact 

pressurization is estimated to be 2.76%. Therefore IRIS’s combined expanded 

uncertainty with a coverage factor of 2 is estimated to be 11.12%. By analyzing the 

NIST Quantitative Infrared Database, we can see that on average their high resolution 

instrumentation and methods showed an expanded uncertainty estimate of 2.2%. 

Therefore, IRIS represents a considerable precision tradeoff when compared to the 

instrument used to obtain the NIST Quantitative Infrared Database.  

 

 

 

 
Fig 22. Raw signal measurements over an approximately 15-hour period. Random levels 

of noise, represented as sudden changes in detected intensity, can be observed.  
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III.3.1.2. Linearity 

Linearity refers to the extent to which the output signal of the system changes linearly 

when exposed to linear changes in the concentration of the sample. In order to achieve 

linearity, most infrared detectors need to be calibrated. It is important to notice that 

measurements of absorption derived from Beer-Lambert’s law are restricted to a range 

of acceptable concentrations. For instance, when the concentration level is close to 

saturation, the calculated transmittance is extremely low causing unacceptably high 

absorption measurements. Typically, Beer-Lambert law’s useful (i.e. linear) 

concentration range results in absorption responses from 0.15 to 0.85 (arbitrary units). 

 

 
Fig 23. Relative uncertainty by pixel, calculated by dividing the expanded uncertainty by 

the mean of the measurements.  
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III.3.1.3. Specificity or selectivity 

The specificity or selectivity of a gas detector device indicates its ability to detect a 

target gas without being affected by the presence of other interfering gases. Infrared 

absorption spectroscopes for gas detection are among the devices with least specificity 

properties. In particular, IRIS will respond to any heteronuclear diatomic or polyatomic 

molecule in the infrared radiation path that causes sensible absorption in the 5.27-

10.5μm wavelength range. Nonetheless, infrared absorption systems can accurately 

target specific gases by using signal processing techniques if sufficient knowledge about 

the matrix is available (See section IV.4).  

III.3.1.4. Interferences 

Gas detectors are not selective to a single gas. In terms of infrared absorption 

spectroscopes, when absorption bands of chemicals in a mixture overlap, they are 

reflected in an additive manner. Albeit chemicals have unique infrared absorption 

spectra, portions of spectrum may be very similar. This can be exemplified when 

analyzing the functional region of the spectrum of certain chemicals that belong to the 

same functional group. In this scenario, the absorption spectrum of the interfering gas 

can appear simply as an additive factor to the chemical under observation. IRIS’s 

wavelength range comprises of only a portion of the functional and fingerprint regions. 

If the interfering gas have undistinguishable features in the fingerprint as well, it 

becomes impossible to separate the interfering gas from the measurand. In addition, 

limitations in resolution may also mask spectral differences in chemical mixtures. For 
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this reason, it is recommended that the operator of IRIS have some prior knowledge of 

the mixture before performing analytical measurements. 

III.3.1.5.  Response/recovery time 

Response/Recovery time indicates the time needed for a sensor to read a percentage of 

the full-scale after being exposed to full-scale concentration. For instance, R90=30s 

indicates that 90% of the full-scale can be read in 30 seconds after exposure to saturation 

concentration. In infrared absorption spectroscopes, the measurand is typically contained 

in a remote gas cell, which is not in direct contact with the sensor. Since measurement is 

performed remotely, the response/recovery time is only limited by the sampling rate of 

the detector. In terms of response/recovery time, infrared detector technologies are 

generally much superior to chemical sensor technologies, whose time constants are 

typically one or two orders of magnitude larger, particularly in the case of recovery 

times. The transient response of the gas or detector array to the infrared radiation are 

orders of magnitude shorter than the sampling time, and can be neglected. Therefore, a 

steady-state response is reached in IRIS within one sampling period (1 sec); thus 

R100=1s, which is in pair with the scan time required by most FTIR instruments on the 

market today. 

III.3.2. Detection limits and sensitivity 

Two metrics are commonly used to convey information about a device’s detection 

limits: limit of quantitation (LOQ) and limit of detection (LOD). LOQ is defined as the 

lowest concentration of an analyte in a sample that can be determined with acceptable 
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precision and accuracy under stated operational conditions. LOD is defined by the 

International Union of Pure and Applied Chemistry (IUPAC) as follows (Thomsen et al., 

2003): 

 
The limit of detection, expressed as concentration, cL, or the quantity, qL, is 
derived from the smallest measure, xL, that can be detected with reasonable 
certainty for a given analytical procedure. The value of xL is given by the 
equation xL = xbi + ksbi where xbi is the mean of the blank measures, sbi is the 
standard deviation of the blank measures, and k is a numerical factor chosen 
according to the confidence level desired. 

 
 

In general, the numerical factor is chosen as k=3 to give a level of confidence of 

approximately 90%. In practice, LOD is typically determined by following one of two 

approaches: method of detection limit (MDL) or instrument detection limit (IDL). MDL 

refers to the lowest concentration of analyte in blank or sample that a method can detect 

reliably, whereas IDL is defined as the smallest signal above background noise that an 

instrument can detect reliably. Fundamentally, MDL and IDL differ in the sampling 

method. In MDL we examine a spiked solution with a small concentration of an analyte 

(approximately 5% above noise level) in a sample matrix, whereas in IDL we examine a 

blank (e.g. reagent water). In other words, IDL considers clean matrices, whereas MDL 

considers real-life matrices. Therefore, MDL is typically found to be more realistic but 

2-5 times worse than IDL. LOD indicates the level at which we can distinguish a signal 

from the background noise, but does not necessarily indicate the smallest concentration 

that can be measured. It is agreed that, in order to measure concentration levels, the 

solution must yield a signal that is 10 standard deviations from the blank (Thomsen et 
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al., 2003). Thus LOQ = 10 × sbi = 3.3 LOD. Fig 24 shows the IRIS detection limits 

obtained by using IDL and tap water as the blank.  

 

 
 

In our case, because of the unavailability of an instrument (e.g. photoionization 

detector) to measure concentrations or a chemical process (e.g. gravimetric) to generate 

a gas with precise sample concentration, and because gas measurements in IRIS are 

obtained from volatile-organic-compounds (VOC) of liquid samples inside a sample 

compartment delivered to the gas cell, we will discuss sensitivity in terms of the 

concentration of the sample in the liquid phase. Sensitivity to a particular chemical 

depends on its concentration in a matrix and its extinction (i.e. absorptivity) coefficient 

profile. To exemplify this concept, consider the absorption spectra of acetone in water 

 

 

Fig 24. IRIS absorption detection limits. 
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matrix at 1:100 dilution – using water in a separate sample compartment to acquire a 

reference gas – as illustrated in Fig 25.  This solution was chosen because of acetone’s 

high evaporation rate (i.e. 7.7 w.r.t. n-Butyl Acetate) and defined absorption peaks in the 

LVF region. The solution has a total volume of 100ml, and is placed in a cylinder shaped 

glass compartment ( 4.4 cm in height by 4.4 cm in diameter). 

 
 
In order to express detection limits xL in terms of concentration, we use 

sensitivity S, which is the slope of the calibration curve, i.e., S = 

Δconcentration/Δabsorption 

cL = k × sbi × S  (9) 

 

 
Fig 25. Average of 47 measurements of the infrared absorption spectra of VOC 

components for 1:100 dilution of acetone in water at 12 psi. Notice that, in order to 
obtain just the peaks that are due to acetone, we have taken water vapor as a reference 

spectrum.  
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Using the largest response (pixel 29), the sensitivity for the liquid solution above is 

estimated as:  

 S = ( 1% – 0%)/( 0.1204 abs – 0) = 8.3056% / abs   

which, using sbi=0.0186  (sample standard deviation of the blank samples), yields a 

detection limit for acetone (in water matrix) of: 

cL = 3 × sbi × S = 3 × 0.0186 × 8.3056 = 0.46% 

III.3.3. Resolving power 

Resolving power R is a metric used to compare different spectrometers, and is defined as 

δλλ , where lambda is the wavelength range, and δλ  is the smallest wavelength 

interval that can be resolved (Passerini et al., 2003). Generally, this interval is 

determined by the limitation imposed from a specific component in the system. In IRIS, 

the two elements that impose the most limitations are the LVF filter and the number of 

pixels in the detector array. The LVF manufacturer reports that the filter has a resolution 

of 1.5% of the transmitted wavelength, when the illuminating beam is collimated and 

perpendicular to the filter plane (Passerini et al., 2003). The resolution power of the LVF 

is therefore 66)5.1( >×== λλδλλR . However, employing an LVF with a larger 

resolving power would not improve the resolving power of IRIS, since the detector array 

imposes the main limitation to the system ( i.e. R = 64). It is important to note that LVFs 

with much larger resolving powers (e.g. R = 20000) have been reported  (JDSU, 2006), 

which would warrant the use of larger (e.g. 128-pixel) detector arrays.  
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III.3.4. Resolution and intensity losses 

Placement of the paraboloidal reflector plays an important role in the resolution of IRIS. 

As stated in (Passerini et al., 2003), resolution is dependent on the quality of light 

collimation. The ability of the system to deliver collimated infrared beams that are 

perpendicular to the detector depends not only on the quality of the paraboloidal 

reflector, but also on the distance between the paraboloidal reflector and the LVF. Fig 26 

shows the relationship between signal intensity and source-detector distance, when a 

3.46μm filter is introduced on the light path. Notice that the tradeoff between intensity 

and distance is also reflected in the signal’s full-width at half-maximum (FWHM), 

which can be used as an indicator of resolution. For instance, at a 2 cm distance from the 

detector, the paraboloidal reflector poses the FWHM across more than 4 pixels, resulting 

 

 

Fig 26. Signal intensity as a factor of source-detector distance. Adapted from Passerini et 
al., 2003. 
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in a resolution of 0.096 μm and resolving power R = 36 (Passerini et al., 2003). 

Although moving the source away from the detector may improve resolution, ultimately, 

improvement is bound by the resolution power of IRIS (i.e. R = 64). 

III.3.5. Steady state 

IRIS reaches a steady delivery state at approximately 20 minutes after it is powered. Fig 

27 shows the response of each pixel with respect to time after initial power-up as a false 

color image.  

 
 

Notice that the intensity at most pixels is higher initially than after it reaches 

stability. This can be explained by principles of self-emission (Couture, 2001): although 

detector materials are designed to have low absorption, and low corresponding emission, 

the emissivity of all materials is a function of temperature and wavelength. As the 

 
Fig 27.  False color image of raw signal response after initial power-up. 
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temperature at the detector rises because of exposure to the infrared source, so does its 

self-emission. As a result, a decrease in the AC amplitude of the signal generated by 

source and chopper can be observed. Furthermore, during this initialization period the 

source reaches its final and stable operating temperature (i.e. 850 Co). 

III.4. Conclusion 

Recent advances in pyroelectric detector array and LVF technologies have inspired the 

development of IRIS (Infrared Integrated System). IRIS is a low-cost spectroscope 

designed for the measurement of infrared absorption spectra in gases, vapours and gas 

mixtures in the mid infrared region. Though a bench-top configuration at its present 

stage, the prototype can be easily enhanced to yield a compact and ruggedized 

instrument. In this chapter, we have explained the system configuration details, and 

discussed the system characteristics in terms of performance metrics commonly used to 

describe gas detection systems. 
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CHAPTER IV 

 SPECTRAL SIGNAL PROCESSING 

The objective of the spectral signal processing techniques presented in this chapter is to 

assist with the detection, identification and concentration analysis of chemicals present 

in a sample. The class of signal processing problems that involves characterization of the 

input signal is referred to as signal interpretation (Oppenheim & Schafer, 1996). In 

infrared absorption spectroscopy, signal interpretation for the purpose of concentration 

analysis is referred to as calibration, which can be simply viewed as a multivariate 

regression problem. Detection and identification are signal interpretation problems that 

can be solved through pattern recognition. As illustrated in Fig 28, there are typically 

five stages in a pattern recognition system: data acquisition, preprocessing, feature 

selection, classification and validation.  

 

 

 

Fig 28. Stages of a pattern recognition problem (Gutierrez-Osuna, 1998). 
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This chapter is not intended as a complete reference for techniques that can be 

utilized at each stage. Instead, our discussion simply focuses on those techniques that 

will be employed on the experimental analyses performed in the following chapter. Most 

of the algorithms mentioned in this chapter, and many other mathematical and statistical 

techniques for analytical chemistry, can be found under the denomination of 

chemometrics. Nevertheless, we will retain the term pattern recognition when referring 

to such techniques.  

Successful detection and discrimination of analytes rely heavily upon the choice 

of signal processing technique employed. Therefore, bearing an understanding about 

signal processing approaches is critical for the correct interpretation of the data 

generated by IRIS. We organize the discussion of calibration and pattern classification as 

follows. In sections IV.1 through IV.3, we discuss techniques for spectral acquisition, 

preprocessing, and feature selection which are important for both calibration and 

classification problems. Subsequently, in section IV.4, we discuss calibration methods 

which are used to build predictive mathematical models for concentration on an analyte 

in a matrix of absorbing species. Section IV.5 provides classifiers for pattern 

recognition. Finally, in section IV.6, we present a validation strategy that is employed in 

calibration and classification techniques used throughout the experimental chapter of this 

manuscript.  
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IV.1. Acquisition of spectra 

IV.1.1. Chemical modulation with lock-in amplification 

Lock-in amplifiers are commonly used to extract signals with a known carrier from a 

noisy environment. The signal to be measured is modulated with a carrier frequency, 

then amplified with a lowpass filter tuned to the carrier frequency (EG&G Princeton 

Applied Research, 1984).  

In addition to the LVF and 64-pixel pyroelectric detector, the μArray device 

integrated in IRIS includes a built-in lock-in amplification circuit (IR Microsystems, 

2006). This circuit uses the frequency from the modulated light (obtained by chopping or 

pulsing), which is necessary for the normal operation of the pyroelectric sensor array, as 

a carrier frequency to also to cancel the effect of high frequency noise captured by the 

detector array. Specifically, this lock-in amplifier circuit uses the 10Hz frequency of the 

chopper as a carrier frequency. The amplified signal is averaged over a period of 1 

second and transmitted via the RS232 cable to the computer.   

 The idea of lock-in amplification can be further extended as a sampling 

technique by intermittently delivering the chemical vapors to the gas cell. In this case, 

the carrier frequency is determined by the frequency of chemical modulation. Signal 

acquisition needs to be performed continuously, and the chemical modulation frequency 

has to be lower than the sampling or noise frequency, so that the latter can be averaged 

out. Throughout this manuscript, we will refer to this technique as chemical modulation 

with lock-in amplification (CM/LA). 
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IV.1.2. Signal integration 

In the signal-integration mode of operation, the reference spectrum is acquired and 

averaged for a certain period of time, followed by acquisition and averaging of sample 

spectra for a same length period. The rationale behind this method is that averaging of 

each spectra over a (relatively long) period of time eliminates uncorrelated noise (See 

section III.3.1.1). The resulting signals are used to calculate the infrared absorption of 

the measurand according to Beer-Lambert’s Law. 

IV.1.3. CM/LA vs. integration time 

As previously discussed in section III.3.1.1, precision errors are typically interpreted as 

zero-mean random variables whose uncertainties can be reduced by replication. Here we 

discuss the merits of the two methods that utilize replication as a way to decrease 

precision error: CM/LA and signal integration.  

In IRIS, the use of CM/LA as a sampling technique can be particularly beneficial 

during the device’s initialization period (See section III.3.5). During initialization, sensor 

drift prevents long interval periods between reference and sample measurements, thus 

typically making CM/LA a more attractive technique to achieve signal averaging than 

integration. However, when the system reaches stability, there is a tradeoff between 

CM/LA and integration. For the same number of measurements, CM/LA takes longer 

because of the additional time needed to clean and pressurize the system, which are 

required twice with every modulation cycle. However, since the averaging of repeated 

measurements leads to cancellation of random noise, CM/LA also results in a signal that 

is less affected by imprecise pressurization. 
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IV.1.4. Difference spectra 

Difference spectra is a technique commonly used to uncover embedded infrared 

absorption spectra from a matrix or mixture. This is carried out by simply subtracting the 

infrared spectrum of one or more components from the combined system (Stuart, 2004). 

For instance, the infrared absorption spectrum of a sample contained in a mixture can be 

revealed by subtracting the infrared absorption spectrum of the matrix from the mixture. 

It is important to notice that if mixture components interact, the difference spectrum may 

reflect this behavior as positive or negative peaks. 

In IRIS, difference spectra is particularly useful if the matrix has strong 

absorption peaks in LVF region, which makes it difficult to interpret visually the 

sample’s infrared absorption spectrum. For instance, water and water vapor are common 

matrix components that show significant infrared absorption in the LVF region, and can 

be subtracted from the mixture by way of difference spectra. 

IV.1.5. Deconvolution 

Deconvolution aims to remove distortions caused by the instrument on the underlying 

signal. The process of deconvolution for an infrared absorption spectroscope consists of 

compensating for the intrinsic linewidths of bands, making it possible to resolve 

overlapping bands. In IRIS, moving the infrared emitter closer to the detector leads to 

worse collimation and increased full width at half maximum (FWHM) of wavelength 

coverage at every pixel (See section III.3.4). Therefore, in a situation where the source 

and detector must be close (i.e. less than 10 cm), such as for the analysis of liquid 

samples, deconvolution may reveal spectral features which are otherwise blurred away.  
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IV.2. Preprocessing  

Preprocessing the data is a critical step for spectral analysis and classification. 

Preprocessing can be employed as a preliminary step for exploratory data analysis, or as 

a tool for transforming the data prior to calibration/classification. In this section, we will 

outline and discuss the preprocessing techniques that are used for the analysis of 

experimental data obtained with IRIS. 

IV.2.1. Normalization  

Normalization is the last preprocessing step prior to classification (Gutierrez-Osuna et 

al., 2003). The goal of normalization is to adjust the measurand (i.e., range, offset, 

variance) in order to obtain the most meaningful sample inter-comparisons. Three 

normalization procedures are briefly discussed in this section: autoscaling, sensor 

normalization, and vector normalization. It is important to understand which 

normalization procedure to use, since using the wrong technique may remove or mask 

critical information in the spectra. Furthermore, there are instances when more then one 

technique is appropriate (Egan et al., 2003). 

 

Autoscaling performs centering and normalization to unit variance on a pixel-by-pixel 

basis. Centering is performed by calculating a set-mean spectrum kx  for each 

wavenumber, and subtracting it from each sample: 

kki
centered

ki xxx −= ,,   (10)
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where kix ,  represents the recorded absorption value from the ith sample at the kth 

wavelength. Autoscaling is then completed by dividing the centered spectrum by the 

standard deviation sk calculated at each wavelength: 

k

centered
kiautoscaled

ki s
x

x ,
, =   (11)

Autoscaling is typically used when we want to promote that each wavelength in the 

spectrum has the same influence upon the classifier, regardless of its dynamic range.  On 

the downside, autoscaling can introduce noise from wavenumbers with weak absorption. 

 

Sensor normalization bounds the ranges of values across each wavelength to [0,1]. This 

is achieved by subtracting the minimum and dividing by the range of the wavelength 

across the entire dataset (Gutierrez-Osuna et al., 2003): 
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where kix ,  refers to the absorption value of the ith sample at the kth wavelength.  

Similarly to autoscaling, sensor normalization ensures that the magnitude of each 

wavelength is comparable, thus preventing large absorptions at a single wavelength from 

overwhelming the classifier.  Likewise, it can also introduce noise from weak absorption 

lines. Unlike autoscaling, however, sensor normalization is sensitive to outliers. 
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In vector normalization, each spectrum is scaled such that it becomes a unit vector (i.e. a 

vector whose length is 1). This is achieved by dividing the value at each wavelength k in 

a spectrum i by the norm of the spectrum: 

∑
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,ˆ   (13)

Imprecision in the instrumentation may lead to experimental variations of concentration 

in the sample cell for repeated measurements. Since concentration effects are linear with 

respect to infrared absorption measurements (See section II.4.1.1), these unintentional 

variations of concentrations results in a proportional variation in the infrared absorption 

measurements. A treatment of the data using vector normalization removes these 

concentration effects, and is particularly useful in pattern classification, where 

concentration information is irrelevant. However, vector normalization should not be 

employed in applications where concentration effects carry important information (i.e., 

calibration).  

IV.3. Feature selection and extraction 

Each wavenumber in a spectrum can be treated as an independent variable that conveys 

unique information about the chemical structure of an analyte or the composition of a 

mixture. However, a typical FTIR spectroscope, which can record spectra at resolutions 

of 0.125 cm-1, produces tens of thousands of unique infrared absorption measurements at 

different wavenumbers in the mid infrared region (4000-600 cm-1). In order to make the 

classification of spectral patterns computationally efficient, dimensionality reduction 
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techniques should be employed in these cases (See sections IV.3.1 and IV.3.2). In 

addition, dimensionality reduction techniques are useful in exploratory data analysis 

because they assist with the visualization of high-dimensional data, i.e., by 

transformation into a lower-dimensional space (Brereton, 2002).  

IRIS generates infrared absorption information on 64 wavenumbers, which 

implies 64 dimensions. Therefore, IRIS suffers much less from dimensionality problems 

than high-resolution infrared spectrometers. Nonetheless, these techniques are still 

extremely useful to highlight differences or provide visual cues as to what are the main 

relationships between spectra and analytes. 

IV.3.1. Feature extraction 

In this section we discuss two popular feature extraction techniques: Principal 

Component Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is a 

dimensionality reduction technique that attempts to retain as much of the variance in the 

original high-dimensional space as possible (Loeve, 1963). Fundamentally, this is 

achieved by projecting the original data onto the eigenvectors corresponding to the 

largest eigenvalues of the covariance matrix. As a result, the coordinate axes are 

transformed and aligned with the directions of highest variance. The eigenvectors and 

the projections of the data onto them are commonly referred to as the loadings and the 

scores, respectively. A detailed algorithmic discussion of PCA for spectral analysis can 

be found in (Fukunaga, 1990).  

In contrast to PCA, LDA takes class labels into account. LDA is a dimensionality 

reduction technique that attempts to retain as much class discriminatory information as 
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possible (Fisher, 1936). This is achieved by finding a projection that maximizes the ratio 

of between-class SB to within-class SW scatter. Specifically, LDA tries to maximize the 

objective function: 

WSW

WSW
WJ

W
T

B
T

=)(   (14)

where W is the projection matrix, and the scatter matrices Sw in defined as follows: 
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μ 1  is the mean of the i-th class, C is the total number of classes, N is 

the total number of observations, and ωi refers to the ith class. In turn, SB is defined as 

follows: 
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μμ 11  is the pooled mean, and N is the total number of 

observations. 

Thus, the directions that maximize the objective function are those that maximize 

between-class separability while minimizing within-class variability. Furthermore, since 

the rank SB is at most C–1 (i.e., because of the constraint ∑
∈

=
ix

iiN
N ω

μμ
1 ), the data can be 

projected onto a space with at most C–1 dimensions.  
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IV.3.2. Feature selection 

The goal of feature selection is to find the best subset of features that explains the data. 

Unlike feature extraction, this dimensionality reduction technique does not perform a 

transformation of the coordinate space, and is particularly useful if further manipulation 

requires that features retain interpretable measurement units.  

Albeit the best subset could be obtained by investigating every possible 

combination features, this is typically computationally unfeasible for a large feature 

space. In such case, suboptimal strategies which favor computational efficiency should 

be employed. The selection criteria of features in pattern-recognition problem generally 

focus on the minimization of classification error rate or the maximization of inter-class 

distances. In this section we discuss two popular feature selection methods: sequential 

forward selection, and sequential backward selection. 

 

Sequential forward selection (SFS) performs a sequential bottom-up search to add 

features to a feature set, one at a time, until a final feature set is reached. Specifically, 

SFS initializes a feature set X to null, and proceeds by iteratively adding features that 

maximizes the following criterion function (Webb, 2002): 

)( jj XJJ ξ+=  

where jξ  refers to the jth feature (i.e. the jth pixel of the detector array in IRIS). As 

mentioned above, the specific function J() is typically based on classification error rate 

or class separability (Webb, 2002). The main drawback of SFS is that once features are 
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added, they cannot be removed from the subset. This becomes a problem if previously 

added features become redundant due to newly added features.  

 

Sequential backward selection (SBS) performs a top-down elimination of features from 

the feature set until a final feature set is reached. SBS estimates how each feature 

contained in the feature set affects the system, and eliminates the feature that contributes 

the least. Specifically, SBS initializes the feature set to contain all features, and proceeds 

by iteratively removing the features that maximizes the following criterion function 

(Webb, 2002):   

)( jj XJJ ξ−=  

where jξ  refers to the jth feature (i.e. the jth pixel of the detector array in IRIS). Similarly 

to SFS, the execution steps can not be retracted, and therefore once a feature is 

eliminated, it can not be reinserted. 

Floating versions of these algorithms have been shown to provide near-optimum 

results (Pudil et al., 1994). Such methods are freely allowed to correct wrong decisions 

in regards to adding or removing features made in previous steps. Thus, this 

backtracking process enables the algorithm to find a near-optimal solution. 

 

Plus-L-minus-R selection (PLMR) is a combination of generalized versions of SFS and 

SBS. In a forward search (i.e. L>R), the algorithm consists of first adding L and then 

removing R features that maximizes some criteria function. The algorithm initializes the 

feature subset to null, and proceed by iteratively performing SFS for L times, followed 



 67

by SBS for R times. In a backward search (i.e. L<R), the algorithm proceeds in the 

reverse order. Unlike SFS and SBS, the algorithm can retract steps and avoid 

redundancy of features to a degree of selectivity specified in the L and R parameters. 

IV.4. Calibration 

Calibration is one of the most important tasks in quantitative infrared absorption  

analysis. It seeks to uncover the relationship between absorption and concentration in the 

presence of instrumental or experimental artifacts, and typically involves regression 

analysis for the development of a predictive mathematical model. Beer-Lambert’s Law 

(See section II.4.1.1) predicts a linear relationship between absorption and concentration, 

which has been proven empirically for low absorption values (Adams, 2004). In a simple 

linear model, the estimated absorption iŷ  of a given analyte depends on its concentration 

ix  as follows: 

ii bxay +=ˆ   (17)

where a and b are constant coefficients that represent the bias and the gradient of the 

regression line, respectively. This model can be further simplified by assuming that the 

matrix containing the analyte is the reference, which leads to the elimination of the bias 

coefficient and a regression through the origin:  

ii bxy =ˆ   (18)

The relationship between absorption iŷ  and concentration xi is given by the coefficient 

b, which can be used to estimate unknown concentration from recorded spectra: 
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x i
i =ˆ   (19)

The assumption of a linear model is not always correct (See section III.3.1.2). 

Discussions about more complex non-linear models, such as polynomial regression, as 

well as details about errors and goodness of fit can be found elsewhere (Adams, 2004; 

Mark & Workman Jr., 2003).  

 Up to this point, the discussion has focused on estimating concentration ix̂  from 

a single independent variable iy . In reality, the spectrum obtained by IRIS contains 

simultaneous measurements at 64 different wavelengths, which requires the use of a 

more sophisticated approach, termed multivariate regression. In multivariate regression, 

not all wavelengths in the spectrum contribute in an equal manner to the construction of 

a good prediction mathematical model. In particular, when calibrating for analytes in the 

presence of other absorbing species, using certain wavelengths may in fact hinder the 

performance of the final model. Furthermore, with high resolution spectroscopes, the use 

of the entire spectrum for calibration becomes computationally intensive. Therefore, 

performing a selection of variables for regression is often important. The treatment of 

variable (a.k.a. feature) selection is deferred to section IV.3.  

Commonly used statistical methods for multivariate regression include classical 

least squares (CLS) (Adams, 2004), inverse least squares (ILS) (Adams, 2004), principal 

component regression (PCR) (Vigneau et al., 1997), partial least squares regression 

(PLSR) (Geladi & Kowalski, 1986) and soft independent modeling of class analogy 

(SIMCA) (Wold, 1976) . A brief presentation of each method follows. 
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IV.4.1. Classical least squares (CLS)  

In CLS (also known as the K-Matrix method), a regression model is built based on the 

recorded mixture matrix and its corresponding composition matrix, as follows:  

XKY ×=   (20)

where each column in Y (n × m) represents the measured spectrum for a mixture, each 

column in X (c × m) represents the concentration of each mixture, K (n × c) is the 

sensitivity matrix we want to obtain, n represents the number of wavelengths (i.e. 64 in 

IRIS), m represents the number of mixtures, c represents number of analytes in a 

mixture. K is obtained via inverse squares as follows: 

1)( −×××= TT XXXYK   (21)

The estimated concentration X̂  of an unknown mixture Yu can then be 

calculated as follows: 

YuKKKX TT ×××= −1)(ˆ   (22)

CLS is a intuitive extension of ordinary least squares applied to multivariate 

regression, but in order to be used it requires knowledge of the complete composition of 

the calibration mixture (i.e. the concentration all absorbing species). When there is only 

partial information about the composition of the mixture, an alternative method such as 

ILS must be applied. 
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IV.4.2. Inverse least squares (ILS) 

In the ILS regression model (also known as the P-Matrix method), the dependent 

variable is the concentration matrix and the independent variable is the mixture matrix as 

follows: 

YPX ×=   (23)

where columns in Y (n × m) represents the measured spectrum for a mixture, each 

column in X (c × m) represents the concentration of each mixture, P (c × n) is the 

calibration matrix we want to obtain, n represents the number of wavelengths (i.e. 

resolution) of the spectrum, m represents the number of mixtures and c is the number of 

known analyte concentrations in the mixture. P is obtained via inverse squares as 

follows: 

1)( −×××= TT YYYXP   (24)

The estimated concentration X̂  of the mixture Yu of unknown composition can 

then be estimated by using P as follows: 

YuPX ×=ˆ   (25)

In ILS, concentration is defined as a function of the recorded response spectra, and 

knowledge of the complete composition of the calibration mixture is not necessary. 

However, it requires that the number of calibration mixtures be larger than the number of 

features (i.e. wavelengths), and only the composition (i.e. concentration) information 

about analyte to be predicted is needed. To avoid overfitting, the number of samples 

generally has to be much larger then the number of variables. When there is a limitation 

to the number of samples, a feature selection technique (See section IV.3) is typically 
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employed to select only the features that are relevant to the regression analysis.  

Furthermore, collinearity of features may add redundancy and hinder the performance of 

the resulting ILS prediction model. If collinearity of variables poses a problem, an 

alternative regression analysis method such as PCR should be used. 

IV.4.3. Principal component regression (PCR) 

Fundamentally, PCR combines PCA (See section IV.3.1) with a multivariate regression 

analysis technique such as ILS. PCR uses PCA to obtain the principal components of the 

mixture matrix, and performs ILS on the transformed coordinate space. Consequently, 

since the principal components are orthogonal and in the direction of highest variation, 

PCR avoids feature collinearity issues that might be present if only ILS was used. 

Specifically, the PCR heuristic is as follows: 

Step 1. Perform mean-centering for the concentration vector x and spectral 

matrix Y.  

xxxcentred −=  (26)

YYY centred −=  (27)

Step 2. Perform PCA on centredY , and retrieve the loadings (eigenvectors) and 

scores (principal components) for the desired number of principal components q. 

)(, centeredYPCAscoresloadings ←  (28)

qscoresS ..1=  (29)

qloadingsL ..1=  (30)
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Step 3. Perform mean-centering for the spectra matrix Yu of samples of unknown 

composition.  

YYuYucentred −=  (31)

Step 4. Project Yu onto the L loading vectors to obtain the scores Su on the 

principal components subspace. 

LYuSu centred ×=  (32)

Step 5. Perform ILS and adjust the bias to obtain the estimates for concentration. 

),,(ˆ SuSxILSx centred=  (33)

xxx += ˆˆ  (34)

where the column vector x (m × 1) contains the concentration of the analyte for m 

examples; rows of matrix Y (m × n) are the corresponding spectra; rows of matrix Yu (r × 

n) are the spectra of r examples of unknown composition; x̂  (r × 1) is the estimated 

concentration vector corresponding to Yu; L (n × q) and S (m × q) contain the ordered 

(i.e. by decreasing variability) q principal components coefficients and projections, 

respectively; n represents the number of wavelengths of the spectrum (i.e. resolution, 

which in IRIS corresponds to the number of pixels: n=64), m represents the number of 

mixtures and c is the number of known analyte concentrations in the mixture.  

 PCR generally works well when variability in the mixture matrix Y can be 

strongly attributed to the calibration analyte. If the calibration analyte does not provide a 

major source of variability in the multi-component mixture, an alternative regression 

model, such as PLSR, may be more appropriate. 
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IV.4.4. Partial least squares regression (PLSR) 

Analogous to PCR, PLSR combines some aspects of principal component analysis with 

multivariate regression analysis.  PLSR is particularly useful when trying to predict a 

small set of concentrations from high-resolution spectra (Abdi, 2003). PLSR differs from 

PCR by attempting to minimize the potential effects of wavelengths having large 

variances but which are irrelevant to the calibration model. This is achieved by finding a 

set of components, referred to as latent vectors, which decompose the concentration 

matrix X and the spectral matrix Y, with the constraint that they explain as much about 

the covariance between X and Y as possible. In order to achieve this, a stepwise 

algorithm calculates the loading and score matrices one vector at a time in the order of 

their contribution to the variance until the desired model has been obtained. There are 

many implementations for PLSR, which typically target either prediction or calibration 

problems. Since we are concerned with calibration, we present a PLSR algorithm, named 

PLS1, for calibration (Haaland & Thomas, 1988). The PLS1 algorithm is as follows  

Step 1. Perform mean-centering for the concentration vector x and spectra matrix 

Y. Centering eliminates the need to fit a nonzero intercept and can reduce the 

number of factors required to construct a model. 

xxx −=  (35)

YYY −=  (36)

Step 2.  Form a weight vector hŵ  by obtaining a least squares solution to 

Y
T
h EwxY +×= . 
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1)(ˆ −××= xxxYw TT
h  (37)

normalize hŵ  (38)

Step 3. Form the score vector ht̂  by obtaining a least squares solution to the 

model Y
T
hh EwtY +×= ˆ . 

hh
T

hhh wYwwwYt ˆ)ˆˆ(ˆˆ 1 ×=×××= −  (39)

Step 4. Relate score vector ht̂  to concentration by obtaining the least squares 

solution to xhh etvx +×= ˆ  . 

)ˆˆ(ˆˆ h
T
hhh ttxtv ××=  (40)

Step 5. Form the PLS loading vector for Y, hb̂ , by obtaining the least squares 

solution to the model Y
T
hh EbtY +×= ˆ . 

)ˆˆ(ˆˆ
h

T
hhh tttYb ××=  (41)

Step 6. Calculate the spectral EY and concentration e residuals for Y and x, 

respectively.  

T
hhY btYE ˆˆ ×−=  (42)

hhx tvxe ˆˆ ×−=  (43)

Step 7. Increment h, substitute EY for Y and ex for x in Step 2 and continue for 

desired number of loading vectors 
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The concentration x̂  of an analyte embedded in a mixture of unknown 

composition can then be estimated by using B and 0b  as follows: 

hbYxb ˆ
0 ×−=  (44)

Yubbx h ×+= ˆˆ 0    

The selection of the optimum number of factors is important for the performance 

of the prediction model. As with the number of principal components in PCR, the use of 

too many latent vectors may lead to overfitting. Thus, an optimum number of factors 

consists of typically the least number of factors that does not significantly increase 

prediction error variance. An optimal number of factors can be selected via cross-

validation, in a manner described in Section IV.6.1. 

IV.5. Classification 

As mentioned previously, detection, identification and classification of analytes in a 

blank or a mixture can be solved with pattern-recognition techniques. Classification is an 

integral part of any pattern-recognition problem. Classification consists of assigning a 

physical object or event to one of several pre-specified categories (Duda et al., 2001). A 

myriad classification techniques have been developed in the statistical and neural 

machine learning domains.  Typically, the optimal choice for a classifier is problem-

dependent. In this section, we will discuss classification methods employed in the 

experimental evaluation of IRIS: the quadratic classifier, which belongs to the family of 

parametric techniques, and the nearest neighbor classifier, which is a representative from 

non-parametric techniques.   
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IV.5.1. Quadratic classifiers 

A quadratic classifier assumes that each class-conditional density is normally distributed 

(i.e., in a 64-dimensional space for IRIS). A minimum-error-rate classification can be 

achieved by classifying the analyte x to the class ω the maximizes the following 

discriminant function (Duda et al., 2001): 

 )(ln)|(ln)( iii Pxpxg ωω +=  (45)

where 
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Which, after dropping the constant term π2ln
2
d

− , can be expressed as  

 0)( i
t
ii

t
i wxwxWxxg ++=  (47)

 

with 

,1
iiiw μ−∑=  (48)

,
2
1 1−∑−= iiW  and (49)

( )iiii
t
ii Pw ωμμ lnln

2
1

2
1 1

0 +∑−∑−= −  (50)

 

where x is the 64-component column vector that represents the infrared absorption 

spectrum; iμ is the 64-component mean vector of the ith class;  i∑  is the covariance 

matrix of the ith class; and ( )iP ω  is the prior probability of the ith class.  
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IV.5.2. K-nearest neighbors (KNN) 

In contrast to the quadratic classifier, the KNN algorithm does not assume an underlying 

probability distribution. KNN estimates the posteriori probability that class ωi  is the 

correct class for sample x by calculating the fraction of the k nearest samples to x that are 

labeled ωi, as follows (Duda et al., 2001): 
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(51)

For all applications of KNN in this thesis, we assume the Euclidean distance to be the 

metric for the scalar distance between any two patterns.   

IV.6. Validation 

Validation is typically the last stage in a pattern classification or calibration problem. 

The validation stage seeks to determine the extent to which a trained model generalizes 

well for previously unseen data. It is particularly useful for model and parameter 

selection, as well as for estimating the true error rate of a classifier (Gutierrez-Osuna, 

2002). In general, validation consists of splitting the data into training and validation 

sets. The training set is used to train the model, enabling it to adapt a set of meta-

parameters, while the validation set is used to measure the performance of the model. 

Among the most commonly used validation methods are holdout, bootstrap, k-fold and 

leave-one-out cross-validation. In this section we will discuss the leave-one-out cross-

validation method, which is the validation technique used throughout the experimental 

chapter of this manuscript. 
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IV.6.1. Leave-one-out cross-validation (LOO) 

As with other validation methods, LOO seeks to determine the extent to which a trained 

model generalizes well for previously unseen data. In LOO, an error rate is estimated by 

training the classifier with n – 1 samples, and testing it with the remaining sample. This 

procedure is repeated n times, until every sample in the dataset has been used as a test-

set  (Webb, 2002). The final model is selected based on the average performance over all 

partitions.  
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CHAPTER V 

 EXPERIMENTAL 

Infrared absorption spectroscopy has proven to be a powerful analytical method for a 

vast number of applications, including quality control, industrial process monitoring, 

failure analysis, forensic identification and food fraud. The goal of this chapter is two-

fold. The first objective is to demonstrate the efficacy of IRIS as an analytical tool for 

gases. In this realm, we will show how IRIS can be used to estimate the concentration of 

an analyte in the presence of other infrared absorbing species in the gas phase. The 

second objective is to demonstrate the use of IRIS on real-world applications. In 

particular, we have selected two foodstuffs applications in the domain of edible oils and 

fats: oil adulteration and trans fatty acid detection. We chose this domain because oils 

and fats have well-resolved absorption bands in the mid infrared region, which can be 

assigned to chemical functional groups.  

V.1. Calibration 

In this section, we demonstrate the use of CLS, ILS, PCR and PLSR calibration 

techniques (See section IV.4) to build predictive mathematical models for the 

concentration of an analyte in a matrix of interfering absorbing species. In particular, we 

will demonstrate the calibration for acetone embedded in a matrix of water, isopropyl 

alcohol and witch hazel; these analytes were chosen so that we could obtain a mixture of 

simple (e.g. acetone) and complex (e.g witch hazel) absorbing species in highly 

concentrated gas form. We choose to focus on one analyte in the mixture in order to 
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keep the discussion concise, but the model can be built for any of the mixture 

components. A comparison of the calibration results will also be provided. 

V.1.1. Experimental procedures 

Mixtures were prepared in liquid phase. No treatment of the analyte or mixture prior to 

sampling was performed. Each analyte was inserted with a 10 cc syringe into a glass 

vial, whose headspace was directly placed in the gas flow path.  

IR spectra were recorded from the headspace of the liquid mixtures, pressurized 

to 12 psig in the gas cell. Chemical modulation with lock-in amplification, with a carrier 

frequency of 0.05 Hz, was used as a sampling technique to improve precision. Five 

cycles were executed per sample, and the resulting spectra were averaged.  

V.1.2. Spectra of the mixture components 

The mixtures consisted of four common household chemicals and solvents: isopropyl 

alcohol, acetone, witch hazel and water. Fig 29 through Fig 32 show the infrared 

absorption spectrum of acetone, isopropyl alcohol, water and witch hazel, respectively. 

For comparison purposes, the figures display the infrared spectra obtained by a high-

resolution FTIR instrument, as well as the spectra retrieved by IRIS. From these figures, 

we observe that the center wavelength of some strong absorption bands vary from one 

chemical to another, while others are very close, which enables the formulation of a 

quite interesting mixture problem.  
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Fig 29.  Infrared absorption spectrum of acetone in gas phase. i) High-resolution 
spectrum obtained via FTIR. Adapted from NIST (Linstrom & Mallard, 2003). ii) 

Infrared absorption spectrum obtained by IRIS. 
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Fig 30. Infrared absorption spectrum of isopropyl alcohol in gas phase. i) High-
resolution spectrum obtained via FTIR. Adapted from NIST (Linstrom & Mallard, 

2003). ii) Infrared absorption spectrum obtained by IRIS. 
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Fig 31. Infrared absorption spectrum of water in gas phase. i) High-resolution spectrum 
obtained via FTIR. Adapted from NIST (Linstrom & Mallard, 2003). ii) Infrared 

absorption spectrum obtained by IRIS. 
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All elements in the matrix showed important infrared absorption peaks centered 

at different wavenumbers in the LVF region. The application of the four calibration 

methods mentioned in section IV.4 follows.  

V.1.3. Results and discussions 

Thirteen mixtures with a range of acetone concentrations and random proportions of the 

matrix components were prepared, as summarized in Table 2. Fig 33 shows the 

corresponding infrared absorption spectra of the thirteen mixtures studied.  
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Fig 32. Infrared absorption spectrum of witch hazel in gas phase obtained by IRIS. FTIR 

spectra was not available at the NIST site. 
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We can observe that the absorption bands of the different components in the 

mixture overlap in many instances. Thus, the exact contribution of each component to 

Table 2 Mixture composition. The values in each column below the analytes indicate the percentage by 
weight of each component in the corresponding mixture. 

No. Acetone (%) Witch hazel (%) Water (%) Alcohol (%) 

1 6  5  90  0  
2 2  18  80  0  
3 4  0  50  46  
4 1  0  70  29  
5 8  0  80  12  
6 8  0  90  2  
7 2  0  80  18  
8 6  0  34  60  
9 10  30  60  0  

10 0  40  30  30  
11 0  40  30  30  
12 0  60  40  0  
13 10  10  70  10  
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Fig 33. Infrared absorption spectra of thirteen mixtures with dissimilar proportions of 

acetone, alcohol, witch hazel and water obtained by IRIS.   
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the infrared absorption profile of the mixture cannot be determined simply by visual 

inspection. Nonetheless, the intensity of the major peaks can serve as evidence for 

presence and concentration of the different mixture components  

V.1.3.1. Calibration results with CLS 

Since the concentration of all interfering spectral species are known, CLS calibration can 

be performed. As described in section IV.4.1, the mixture composition information 

(Table 2) is used as the composition matrix X, and the recorded mixture spectra is used 

as our mixture matrix Y.  We utilize leave-one-out (LOO) cross-validation (See section 

IV.6.1) to estimate the concentration of acetone for every spectrum in Y. The resulting 

estimate for the concentration of acetone from all mixtures against its true value is 

illustrated in Fig 34. The calculated MSE error estimate for this model is 0.59, whereas 

the correlation coefficient between true and estimated concentrations is 0.9786. 
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V.1.3.2. Calibration results with ILS 

In this experiment, we assume that only the concentration of acetone is known. As 

described in section IV.4.2, we build the concentration vector for acetone from the 

composition information in Table 2, and the recorded mixture spectra is used as our 

mixture matrix Y. We utilize leave-one-out (LOO) cross-validation to estimate the 

concentration of acetone for every spectrum in Y. The resulting estimate for the 

concentration of acetone from all mixtures against their true value is illustrated in Fig 35. 

The calculated MSE error estimate for this model is 0.46, whereas the correlation 

coefficient between true and estimated concentrations of acetone is 0.9834. 
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Fig 34. Estimated concentration of acetone from the mixtures described in Table 2 using 

classical least squares calibration and leave-one-out cross-validation.  
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V.1.3.3. Calibration results with PCR 

As before, we build the concentration matrix from the mixture composition information 

in Table 2, and the mixture matrix Y from the recorded mixture spectra, as described in 

section IV.4.3. We utilize a two-loop LOO cross-validation process to identify the 

optimal number of latent vectors for the calibration model. The outer LOO loop 

evaluates the MSE estimate according to the optimal number of principal components 

returned by the inner LOO loop. Fig 36 illustrates the average behavior of the MSE 

estimate as a function of the number of principal components obtained by double loop 

LOO cross validation; the optimal number of principal components is 4, which is the 

same as the number of mixture components. This is attributed to the fact that infrared 
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Fig 35.  Estimated concentration of acetone from the mixtures described in Table 2 using 

inverse least squares calibration and leave-one-out cross-validation.  
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absorption responds linearly and in an equal manner across all wavenumbers to changes 

in concentration (See section II.4.1.1), thus the total number of degrees of freedom (i.e. 

sources of variability) equals the number of mixture components, provided that the 

mixture components have distinct spectra. 

In Fig 37, we can observe high similarities between the spectra of the mixture 

components (See section V.1.2) and the principal component loadings. For instance, the 

location and shape of  the prominent peaks of the first and second principal component 

loading vector closely resembles the absorption spectrum of IPA and acetone, 

respectively. The correlation between the principal component scores and the true 

concentration of acetone is shown in Fig 38; the second principal component is the most 

correlated with acetone concentration. 
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Fig 36. Average behavior of mean square error (MSE) estimate as a function of the 

number of principal components obtained for PCR via double loop LOO cross 
validation.   
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Fig 37. First four principal component loadings.   
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Fig 38. Correlation between principal component score vectors and true 

concentration of acetone.     
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The resulting estimate for concentration of acetone from all mixtures against its 

true value is illustrated in Fig 39. The calculated MSE error estimate for this model is 

0.50, whereas the correlation coefficient between true and estimated concentrations is 

0.9837.  

 

V.1.3.4. Calibration results with PLSR 

In this case, we build the concentration matrix from the mixture composition information 

in Table 2, and the mixture matrix Y from the recorded mixture spectra, as described in 

section IV.4.4. We utilize a two-loop LOO cross-validation technique to identify the 

optimal number of latent vectors for the calibration model. The outer LOO loop 
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Fig 39.  Estimated concentration of acetone from the mixtures described in Table 2 using 

principal component regression calibration and leave-one-out cross-validation.  
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evaluates the MSE estimate according to the number of latent vectors returned by the 

inner LOO loop. Fig 40 illustrates the average behavior of the MSE estimate as a 

function of the number of latent vectors obtained by double loop LOO cross validation; 

the optimal number of latent vectors is 4, which is the same as the number of mixture 

components. This is attributed to the fact that infrared absorption responds linearly and 

in an equal manner across all wavenumbers to changes in concentration (See section 

II.4.1.1), thus the total number of degrees of freedom (i.e. sources of variability) equals 

the number of mixture components, provided that the mixture components have distinct 

spectra.  

In Fig 41, we can observe high similarities between the spectra of the mixture 

components (See section V.1.2) and the latent vector’s loadings. For instance, the 

location and shape of  the prominent peaks in the first latent vectors closely resembles 

the absorption spectrum of acetone. The correlation between the latent vector scores and 

the true concentration of acetone is shown in Fig 42. For this model, the first latent 

vector is the most correlated with acetone concentration. 
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Fig 40. Average behavior of the mean square error (MSE) estimate as a function of the 

number of latent vectors obtained for PLSR via double loop LOO cross validation.   
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Fig 41. First four latent vectors.   
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The resulting estimate for the concentration of acetone from all mixtures against 

its true value is illustrated in Fig 43. The calculated MSE error estimate for PLSR is 

0.47, whereas the correlation coefficient between true and estimated concentrations for 

this model is 0.9836.  
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Fig 42. Correlation coefficient between PLSR score vectors and true concentration of 
acetone.     
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Using the correlation coefficient between the true and estimated concentrations 

as a comparison metric, the ILS, PCR and PLSR calibration models demonstrated 

similar efficiency, outperforming PCR by a small margin. 

V.2. Edible oils and fats 

In the second part of this chapter, we evaluate IRIS on two real-world applications of 

infrared absorption spectroscopy in the edible oils and fats domain: adulteration of oils 

and trans fatty acid detection. We selected two important applications in this domain 

because oils and fats have well defined infrared absorption peaks in the LVF region.  In 

this section, we provide a general background on the chemical properties and infrared 
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Fig 43.  Estimated concentration of acetone from the mixtures described in Table 2 using 

partial least squares regression calibration and leave-one-out cross-validation.  
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absorption of oils and fats, and defer further the discussion about the two particular 

applications to sub-sections V.2.2 and V.2.3. 

Edible oils and fats are composed primarily of saturated and unsaturated fatty 

acids. A fatty acid is a carboxylic (i.e. organic) acid with a typically long aliphatic (i.e. 

open-chain) structure. A fatty acid is said to be saturated if it contains no double bonds 

between carbon atoms in the aliphatic chain, thus becoming fully saturated with 

hydrogen atoms. On the contrary, unsaturated fatty acids contain carbon chains with 

double bonds. If an unsaturated fatty acid contains only one double bond in the aliphatic 

structure, it is referred to as monounsaturated. Likewise, if it contains more than one 

double bond between the carbon atoms, it is referred to as polyunsaturated. Unsaturated 

fatty acids in naturally-occurring edible oils are found in the cis (“on the same side”, in 

Latin) configuration, as illustrated in Fig 44. The presence of double bonds in 

unsaturated oils makes them more chemically reactive than saturated fats. In fact, the 

reactivity is proportional to the number of double bonds in the carbon chain. Therefore, 

unsaturated fatty acids, particularly polyunsaturated, are extremely vulnerable to heat, 

oxygen and light, which makes them unsuitable for the use in non-perishable food 

products (Milosevic & Kocak, 2004). 

 In order to make oils and fats more resistive to oxidation and rancidity, 

manufacturers typically employ an industrial process called hydrogenation, which 

consists of adding hydrogen atoms to unsaturated double bond sites. Specifically, in this 

process, hydrogen atoms are added to oils at elevated temperatures in the presence of a 

metal catalyst. The hydrogenation process results in either partially or fully 
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hydrogenated fatty acids. Partial and full hydrogenation differ mainly in the number of 

unsaturated fatty acids in the trans (“on the opposite side”, in Latin) configuration left as 

a byproduct of the hydrogenation process, and in the degree of saturation achieved. The 

trans fatty acid configuration is also illustrated in Fig 44. Fully hydrogenation yields a 

higher percentage of saturated fats per volume than partial hydrogenation with almost no 

trans fatty acids. Furthermore, hydrogenation raises the melting point of oils, and the 

resulting substance is typically in a semisolid or solid state at room temperature, such as 

margarine and shortening. 

 
 

Most of the commercially-available margarines, spreads and shortenings are 

manufactured through the partial hydrogenation of soybean oil, and contain a 

considerable amount of trans fatty acids. The consumption of trans fatty acids increases 

the risk of coronary heart disease, and has been in the center stage of debate by health 

activists. We defer further discussions about trans fatty acids, as well as the 

experimentation with margarine and spreads, to section V.2.3. An overview of the 

characterization of edible oils by means of mid infrared spectra using IRIS follows.  
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Fig 44. i) Saturated fatty acid. ii) Unsaturated fatty acid in cis configuration. iii) 

Unsaturated fatty acid in trans configuration.  
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V.2.1. The mid infrared spectra of oils and fats 

The mid infrared region contains a wealth of information about the characteristic 

molecular vibration frequencies of edible oils and fats. Table 3 lists the frequency bands 

and shoulders of edible oils in the mid infrared region, along with the assigned 

functional group, mode of vibration and the intensity (Guillen & Cabo, 1997). 

Fig 45 illustrates the infrared absorption spectrum of olive oil in the mid infrared 

region, obtained by an FTIR instrument, as well as the spectra obtained by IRIS. The 

numbers atop each major peak indicate the frequency band assignment according to 

Table 3. Six vibration frequencies seem to strongly contribute to the infrared absorption 

spectrum obtained by both instruments. Although at smaller resolution, IRIS is able to 

capture the influence of all the major absorption peaks, and a clear correlation can 

observed with the high resolution spectra from the FTIR instrument, as indicated by the 

numbers atop the peaks.  
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Table 3 Twenty five important frequency bands and shoulders of edible oils in the mid infrared region, 
along with the assigned functional group, mode of vibration and the intensity. Adapted from Guillen & 
Cabo, 1997. 

No. Frequency (cm-1) Functional Group Mode of vibration Intensitya 

1 3468 (b) –C=O (ester) Overtone   w 
2 3025 (s) =C–H (trans-) Stretching  vw 
3 3006 (b) =C–H (cis-) Stretching  m 
4 2953 (s) –C–H (CH3) Stretching (asym)  m 
5 2924 (b) –C–H (CH2) Stretching (asym)  vst 
6 2853 (s) –C–H (CH2) Stretching (sym)  vst 
7 2730 (b) –C=O (ester) Fermi resonance  vw 
8 2677 (b) –C=O (ester) Fermi resonance  vw 
9 1746 (b) –C=O (ester) Stretching  vst 
10 1711 (s) –C=O (acid) Stretching  vw 
11 1654 (b) –C=C– (cis-) Stretching  vw 
12 1648 (b) –C=C– (cis-) Stretching  vw 
13 1465 (b) –C–H (CH2,CH3) Bending (scissoring)  m 
14 1418 (b) =C–H– (cis-) Bending (rocking)  w 
15 1400 (b)  Bending  w 
16 1377 (b) –C–H (CH3) Bending (sym)  m 
17 1319 (b,s)  Bending  vw 
18 1238 (b) –C–O, –CH2 – Stretching, bending  m 
19 1163 (b) –C–O, –CH2 – Stretching, bending  st 
20 1118 (b) –C–O Stretching  m 
21 1097 (b) –C–O Stretching  m 
22 1033 (s) –C–O Stretching  vw 
23 968 (b) –HC=CH– (trans-) Bending out of plane  w 
24 914 (b) –HC=CH– (cis-) Bending out of plane  vw 
25 723 (b) –(CH2)n –, –HC=CH– (cis-)  Bending (rocking)  m 
a  w, weak; vw, very weak; m, medium; vst, very strong; st, strong. 
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V.2.2. Oils 

Five samples of commercially available edible oils were analyzed using IRIS. The 

objective of this study was to determine if the samples could be discriminated based on 

their infrared absorption spectra through statistical machine-learning techniques. Among 

the many applications of oil discrimination using infrared spectroscopy, the 

determination of authenticity for the prevention of food fraud is an important one. Food 

fraud consists of the adulteration of food products by substituting something of higher 

value with something of lower grade, typically for the purpose of economic gain. Food 

fraud is viewed as a serious issue by the United States Food and Drug Administration 

 

Fig 45. Infrared absorption spectrum of olive oil in the mid infrared region. i) Spectrum 
obtained by a high resolution FTIR spectroscope (Guillen & Cabo, 1997). ii) Spectrum 

obtained by IRIS. The numbers atop each major peak indicates the frequency band 
assignment in 0. 
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(FDA), since it can make it difficult for honest companies to compete in the marketplace 

and, more importantly, can cause severe health problems for consumers. Because of the 

superior flavor and potential health benefits of olive oil, it is typically sold at a premium 

when compared to other vegetable oils. Many approaches for the detection of olive oil 

adulterations using infrared absorption spectroscopy have been previously reported (Lai 

et al., 1995; Ulberth & Buchgraber, 2000). The purpose of this study is to demonstrate 

IRIS capabilities (and limitations) for the classification of oils. 

V.2.2.1. Experimental procedures 

Five samples of commercial products were obtained from local supermarkets.  The 

collection includes all major oils used in the American diet. Table 4 and Table 5 show 

the composition and class assignment of each sample, respectively.  

 

 
 

 
 

IR spectra were recorded from a film of pure oil between two zinc selenide 

(ZnSe) disks.  Specifically, a 0.0125 mm Teflon spacer was placed between the two 

ZnSe disks (25 mm diameter), and the gap was filled with a thin (i.e. 6μL) oil film. Five 

Table 4 Composition of the samples as provided by the producers. 
 Canola Peanut Corn Safflower  Olive 

Saturated Fat (%) 7.1  17.9  14.3  7.1  14.3  
Trans Fat (%) 0  0  0  0  0.0  
Polyunsat Fat (%) 28.6  35.7  57.1  71.4  10.7  
Monosat Fat (%) 57.1  42.3  28.6  14.3  71.4  

Table 5 Samples’ producers. 

 Canola Peanut Corn Safflower Olive 

Producer Hill Country LouAna Hill Country LouAna Star 
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spectra were collected from each sample. Each spectrum was obtained by placing the 

liquid cell on the light path, and immediately recording and integrating (i.e. averaging) 

250 continuous measurements at a rate of one measurement per second. Because of the 

relatively low SNR, high degree of perpendicularity of the infrared radiation beams in 

respect to the infrared windows, and small thickness of the liquid samples, we neglect 

artifacts that may arise due to scattering of light, and use the Beer-Lambert Law in its 

original form to calculate absorption. 

V.2.2.2. Results and discussions  

Fig 46 illustrates the acquired infrared absorption spectra of all oil samples. It can be 

observed that, aside from fluctuations due to experimental errors (mainly imprecision in 

the concentration of the samples), their spectra are nearly identical and practically 

indistinguishable to the naked eye.  
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However, there are a few subtle differences in these spectra that can be amplified 

via preprocessing techniques. Since absolute concentration information is irrelevant to 

the analysis and classification of the samples, we performed vector normalization on 

each spectrum (See section IV.2.1); thus, all remaining manipulations were performed 

on normalized spectra. Additionally, in an exploratory manner, we performed 

differential (See section IV.1.4) and second-derivative spectroscopy. Fig 47 illustrates 

the result of normalizing the sample spectra to unit vector. Fig 48 shows the spectra after 

subtracting the canola oil infrared spectrum, and Fig 49 shows the second-derivative of 

the spectra.  
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Fig 46. Infrared absorption spectra of five edible oils obtained in IRIS. 
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Fig 47. Spectra of edible oils normalized to unit vector. 
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Fig 48.  Spectra of edible oils after subtracting the infrared spectrum of peanut oil. 

 



 105

 
 

By visual inspection of these three plots, we can observe that the classification 

problem is not trivial. Without regard for the physicochemical significance, we perform 

plus-L-minus-R (PLMR) feature selection (See section IV.3.2) to retrieve the best 

features (i.e. wavenumbers) for classification using proximity (i.e. Euclidean distance) of 

the spectra as a discriminatory criteria. The PLMR criteria for selecting or removing 

features are based on the best classification rate obtained via LOO cross-validation after 

testing every feature available for inclusion and exclusion, respectively. The parameters 

for the PLMR algorithm were L=4 and R=3, and the algorithm stops when the 

classification rate decreases or ceases to improve..  The selected features, as well as 

classification rates with a 1NN rule are presented in Table 6. 
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Fig 49.  Second derivative spectra of edible oils.  
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As shown in Table 6, using two features of the second derivative spectra and 

1NN with LOO we are able to obtain complete separability of the samples. It has been 

reported that the ratio between certain peaks in the mid infrared region contains 

information about the degree of unsaturation of vegetable oils (Guillen & Cabo, 1998). 

Specifically, there is a high correlation (i.e. > 0.99) between the ratio of the bands 

2120 AA ,  146 AA  and 216 AA , where xA indicates the absorption at the wavenumber 

given by index x in 0, and the degree of saturated, monounsaturated and polyunsaturated 

acyl groups in oils and fats. The absorption bands 20A and 21A  are located in the LVF 

region, and their peaks correspond to pixels 19 and 20 in the detector array, respectively. 

By performing feature selection in the second derivative spectra, we find (See Table 6) 

that the absorption bands around pixels 19, 20 and 21 (i.e. ~1109–1130 cm-1) contain 

rich discriminatory information. This can be attributed to differences in the percentage 

by weight of polyunsaturated acyl groups given by the ratio 2120 AA , which is 

highlighted by taking the second derivative of the spectra. Fig 50 shows the second 

derivative of the spectra at 968 versus that at 1,110 cm-1. From this figure, a clear 

distinction among classes can be observed. Fig 51 shows the ratio 2120 AA  on the 

original spectra. From this figure, clear indication of the degree of correlation between 

Table 6 Selected features and their corresponding 1NN/LOO classification rates obtained from PLMR 
feature selection for the chosen preprocessing techniques.  The PLMR parameters are L=4 and R=3. 

 Selected features kNN with 
LOO classification rate (%) 

Vector normalization 968, 1234, 1590, 1777 cm-1 86   
Difference spectra 1052, 1080, 1099, 1109 cm-1 84  
Second derivative spectra 967, 1109  100  
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the ratio 2120 AA with the amount of polyunsaturated acyl groups in the oils can be 

observed.  
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Fig 50. Second derivative at 968 versus 1110 cm-1.  
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Therefore, despite the lower resolution spectra, the discrimination of edible oils 

is possible with IRIS. Another important application of infrared spectroscopy in the food 

domain is the detection trans fatty acids (TFA) in manufactured food products. 

Particularly, in 2006 the FDA has stipulated mandatory labeling of TFA content in food 

products due to increased concerns of possible health problems associated with the 

consumption of TFA. In the next section we investigate the potential use of IRIS for the 

detection of TFA in margarine and spreads.  

V.2.3.  Trans fatty acids (TFA) 

Recently, there has been a growing concern about the increased risk of coronary heart 

disease (CHD) due to the consumption of trans fatty acids (TFA). Specifically, TFA has 
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Fig 51. Ratio of absorption 2120 AA  (See  Table 3), which is indicative of the percentage 

by weight of polyunsaturated acyl groups in edible oils. 
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been shown to raise low-density lipoprotein cholesterol (LDL-C or “bad” cholesterol), 

which is a major risk factor of CHD. Based on metabolic studies conducted in 1997 

(Ascherio, 1997), it is estimated that approximately 30.000 premature deaths per year in 

the United States can be attributed to consumption of TFA. TFA health threats have 

prompted the FDA to require mandatory labeling of TFA content in manufactured food 

products. The FDA allows manufacturers to choose which methodology to use for 

obtaining the trans fat content in foods, but indicates that the official methods from the 

Association of Official Analytical Chemists (AOAC) and the American Oil Chemists 

Society (AOCS) are considered appropriate and compliant with trans fat nutrition 

labeling requirements (Milosevic & Kocak, 2004). The AOAC and AOCS 

organizations’ official methods are based on infrared absorption spectroscopy or gas 

chromatography. Among the main advantages of infrared absorption spectroscopy over 

gas chromatography are the reduced sample preparation time and the ability to perform 

online measurements through the ATR method (See section II.4.2). Online 

measurements are particularly important for real-time monitoring of  heat-induced trans 

fat formation in food products. However, for offline measurements, transmission 

methods (See section II.4.1) can also produce reliable results. 

In order to comply with FDA labeling requirements, trans fatty acid content 

below 0.5g may be reported as 0g. Likewise, TFA content must labeled at increments of 

0.5g, and is considered to be misbranded if the nutrient content of the composite samples 

exceed 120% of labeling value (Food and Drug Administration, 2003). In this section, 

we will evaluate the use of IRIS for the detection of TFA content in food products. In 
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order to achieve this, we will perform experiments with commercially available 

margarine and spreads found in two different packages: sticks and tubs. Fig 52 illustrates 

the two different types of packaging for spread.  

 

V.2.3.1. Experimental procedures 

Six samples of commercial products were obtained from local supermarkets.  The 

collection includes three pairs of spread and margarine from three major brands. Table 7 

and Table 8 show the class assignment and composition of each sample, respectively. 

Since margarine and spreads are water-in-oil emulsions, the samples were melted to 

obtain a samples consisting of only oil.  

 

 
 

 

i) ii)

 

Fig 52. Two types of spread packaging. i) Tub ii) Stick  

Table 7 Samples’ producers, type and class assignment. 

 
HEB 

Margarine 
in tub 

HEB 
Margarine 

in stick 

HEB 
Spread 
in tub 

HEB 
Spread 
in stick 

IMP 
Spread 
in tub 

IMP 
Spread 
in stick 

Producer HEB HEB HEB HEB Imperial Imperial 
Class Assignment 1 2 3 4 5 6 
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IR spectra were recorded from a film of pure oil between two ZnSe disks.  

Specifically, a 0.0125 mm Teflon spacer was placed between the two ZnSe disks (25 

mm diameter), and the gap filled with a thin (i.e. 6μL) film. Three spectra were collected 

from each sample. Each spectrum was obtained by placing the liquid cell on the light 

path, and immediately recording and integrating (i.e. averaging) 250 continuous 

measurements at a rate of one measurement per second. Because of the relatively low 

SNR, orthogonality of the infrared radiation beams in respect to the infrared windows, 

and small thickness of the liquid samples, we neglect artifacts that may arise due to 

scattering of light, and use the Beer-Lambert Law in its original form to calculate 

absorption. 

V.2.3.2. Results and discussions 

Fig 53 shows the infrared absorption spectra of margarine and spread samples. The solid 

and dashed lines in the figure represent samples in stick form and tub packages, 

respectively. By carefully examining Fig 53, we can observe a small discrepancy on the 

fingerprint region between the spectra of samples from the two types of packaging. The 

distinction is more evident near 968 cm-1, which is precisely where the TFA infrared 

Table 8 Composition of the samples as provided by the manufacturers. 

Class 1 2 3 4 5 6 

Serving Size (g) a 14.0  14.0  14.0  14.0  14.0  14  
Total Fat (g) a 11.0  11.0  7.0  8.0  7.0  9.0  
Saturated Fat (%)b 18.2  18.2  21.4  18.7  21.4  22.2  
Trans Fat (%)b 9.1  27.2  7.1  25.0  7.1  27.8  
Polyunsat Fat (%)b 45.4  22.7  50.0  31.2  42.9  22.2  
Monosat Fat (%)b 27.3  31.9  28.6  31.2  21.4  27.8  
a approximate values given by manufacturers; rounded to the nearest decimal. b percentage of total fat. 
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absorption band is centered (See Table 3). The type of packaging used indicates the 

consistency of the margarine or spread. Tub margarines are softer because they have a 

higher ratio of liquid oil to hydrogenated fat when compared to stick form. Since the 

process of partial hydrogenation yields unsaturated fatty acids in the trans configuration 

(which are in semisolid or solid state at room temperature), typically the more solid the 

margarine or spread is, the higher the TFA content present. 

 
We eliminated concentration factors from the sample spectra by performing unit 

vector normalization. The resulting spectra are illustrated in Fig 54. We can observe that 

vector normalization improves slightly the visual discernment of samples having 

different TFA content. 

 

1000 1100 1200 1300 1400 1500 1600 1700 1800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

wavenumber

ab
so

rp
tio

n

 

 
1
2
3
4
5
6

 
Fig 53.  Infrared absorption spectra of margarine and spread samples. Dashed and solid 

lines represent samples in stick and tub packages, respectively.  Three replicates per 
sample are shown. 
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Since the main ingredient of the selected margarines and spreads is soybean oil, 

we use the difference spectra to remove the contribution of soybean oil from the mixture. 

The soybean oil spectrum is obtained in the same manner as discussed in section 

V.2.2.1. However, because of experimental imprecision during the acquisition of the 

sample spectra, we scale the soybean spectrum to fit each target sample spectrum by 

means of least squares optimization. The result of this difference spectra method at the 

TFA absorption band is illustrated in Fig 55. 
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Fig 54. Infrared absorption spectra of margarine and spread samples normalized to a unit 

vector. 
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The lack of samples with diverse TFA content prevents us from using calibration 

methods to build and evaluate a good mathematical predictive model for TFA 

concentration. Assuming that, after performing the difference spectra with respect to 

soybean oil, the peak at 978 cm-1 shows absorption only due to TFA, we estimate the 

TFA limit of detection (LOD) in a manner described in section III.3.2: 

S = ( 27.8% – 7.1%)/( 0.0421 abs – 0.0085) = 616% / abs   

where 27.8% and 7.1%, and are the percentage of TFA content with respect to total fat 

of classes 5 and 6. Likewise, 0.0421 and 0.0085 are the average absorptions at 978 cm-1 

as illustrated in Fig 55 for classes 5 and 6, respectively.  

Using sbi=0.0053 (average sample standard deviation of all classes), yields a TFA 

detection limit as a percentage of total fat of: 
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Fig 55.  TFA infrared absorption band of margarine and spreads after the subtraction of 

the infrared spectrum of soybean oil.  
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cL = 3 × sbi × S = 3 × 0053 × 616 = 9.8% 

Thus, we estimate LOD for the class with highest fat content per serving (class 1) 

in terms of weight as follows:≈ 

 LOD = 9.8% × 11g ≈  1g 

The relatively high LOD can be attributed to experimental uncertainty, due 

mostly to imprecise adjustments of the liquid cell, which led to small variations of the 

path length. The estimated LOD of 1g is below (by a factor of 6) the necessary LOD for 

compliance with FDA labeling requirements. However, from Fig 55, it is clear that IRIS 

can be used for the classification of margarine and spreads based on TFA levels. Based 

on the available samples, a 1NN classifier with LOO cross-validation is able to 

successfully classify all samples into either high-TFA or low-TFA content. These results 

indicate that the detection of high levels of TFA content in food products is possible 

using IRIS.  

V.3. Conclusion 

We have shown that concentration of acetone in the presence of other absorbing species 

can be estimated in IRIS using PLSR with an uncertainty of approximately ± 0.8 % 

(derived from MSE), and that oils can be fully separated due to degree of 

polyunsaturation using pattern classification methods. Furthermore, we have 

demonstrated that samples of margarine and spreads can be fully classified by IRIS into 

groups according to their level of trans fatty acid content.  
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CHAPTER VI 

 CONCLUSIONS AND FUTURE WORK 

In this thesis,  we have proposed a low-cost infrared absorption spectroscope based on 

linear variable filter (LVF) technology for the automated detection of gases and vapors, 

and the semi-automated detection of liquids. We have characterized the system on a 

number performance metrics, uncovering its detection limits and resolving power. 

Furthermore, we have presented calibration methods for building predictive 

mathematical models for concentration of analytes in a matrix of absorbing species, as 

well as the associated signal processing techniques for spectral classification.  

 Despite operating at low-resolution, LVF based spectroscopy is a promising 

method for the characterization of chemicals. We have demonstrated the use of the 

instrument for two real-world applications in the edible oils and fats domain: oil 

adulteration and trans fatty acid detection.  We have shown that the spectra of peanut, 

corn, canola, safflower and olive oil obtained by the instrument can be fully classified 

via statistical machine learning techniques, and that we can successfully distinguish 

products (e.g. spreads and margarine) by their levels of trans fatty acid content. 

Furthermore, when combined with machine learning techniques, the instrument can be 

used to determine the concentration of an analyte (i.e. acetone) in a matrix of other 

simple and complex absorbing species (i.e. water, alcohol and witch hazel, in our case) 

with a high level of precision (i.e. uncertainty of  ± 0.8 %). Clearly, this uncertainty 

estimate depends largely on the characteristic infrared spectra of the samples and 

matrices, and, therefore, should not be generalized to other calibration problems. 
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Nonetheless, these results suggest that LVF based spectroscopy is a viable alternative to 

traditional high-cost Fourier-Transform Infrared (FTIR) spectroscopy for the 

quantitative and qualitative analysis of liquids and concentrated gases in carefully-

selected niche applications. However, one notable challenge remains: the detection of 

trace gases. 

There are several directions for improvements in the system, the most critical being 

enhancing the instrument’s detection limit for gas measurements. Fortunately, there are 

several ways in which the detection limit and signal-to-noise ratio (SNR) can be 

improved: 

 By adding a preconcentrator, the concentration of the measurand gas in the gas 

cell prior to measurement can be increased 10-100 times. Thus, since 

absorption is linearly dependent on concentration (See section II.4.1.1), 

detection limit could be improved by a similar factor. 

 By replacing the current gas cell by a long-path gas cell, the detection limit of 

the system could also be improved. This can be attributed to the fact that 

absorption is linearly dependent on the distance traveled by the infrared 

radiation (See section II.4.1.1). Furthermore, instrument purging and 

pressurization with a non-absorbing gas in the LVF region could be useful for 

avoiding saturation and improving detection for trace gases in the long-path gas 

cell.  

 By employing a pyrolyzer, we can potentially improve sample discrimination. 

Pyrolyzers provide sample degradation under controlled conditions, with the 
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goal of rendering a sample into a more suitable form for a subsequent 

analytical procedure. For the purpose of trace gas detection, pyrolysis can 

increase the concentration of the sample’s volatile and semi-volatile 

compounds in the gas cell. Likewise, by fractionated pyrolysis, we could 

analyze fractions of the sample at different temperature at different times, thus 

further improving the discrimination of samples.  

 By using a circulation pump, we could ensure that the concentration of the 

measurand gas in the gas approaches the headspace saturation levels. 

 By adding a temperature controller at the sample cell, we could improve SNR, 

particularly for liquid measurements, since infrared spectral response is greatly 

affected by the temperature of the analyte as well as that of the windows.  

A final direction for improvement, though not one we can directly address, is 

towards the resolving power of the system. Resolution could be enhanced by using a 

larger array (e.g. 128 or 256) of pyroelectric sensors coupled with higher resolution 

LVFs (Passerini et al., 2003), with the tradeoff of increased cost.  
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APPENDIX A 

PARTS LIST 
 

Table A.1 Parts list.  
Part Description Qty Price Vendor 

Infrared Emitter (model 
IR-12K) 

11W thermal emitter with 
emissivity of 0.8. 

1 $61 Boston Electronics 
91 Boylston St. 
Brookline, MA 02445 USA 

Parabolic Reflector Used with the IR-12K thermal 
emitter 

1 $80 Boston Electronics 
91 Boylston St. 
Brookline, MA 02445 USA 

Heatsink Custom built in aluminum 1 $100 N/A 
Gas Cell (model Beta Gas 
Cell) 

Cell has a Pyrex body with 
two Pyrex filling stems 

1 $192 Buck Scientific 
58 Fort Point Street.  
East Norwalk, CT 06855 USA 

Liquid Cell (Beta Cell 
Kit) 

Includes Demountable Cell 
Holder, Assorted Teflon 
Spacers, Slide Plate Holder 

1 $50 Buck Scientific 
58 Fort Point Street.  
East Norwalk, CT 06855 USA 

Infrared Transmitting 
Window 

Zinc selenide window  with 
anti-reflectance coating 

4 $106 
each 

Cradley Crystals 
8, Verhnevolzhskaya nab., 
Nizhni Novgorod, 603005, 
Russia. 

Pressure Transducer 
(model Honeywell 
24PCCFA6D) 

Piezoresistive device with 
two-port differential sensing 
(0.5-250 psi range) 

1 $21 Allied Electronics, Inc. 
7410 Pebble Drive 
Fort Worth, TX 76118 USA 

Chopper Kit Kit contains a mechanical 
chopper and driver 

1 $505 Electro-Optical Products Corp.
88-65 76th Avenue 
Glendale, NY 11385 
U.S.A. 

μArray Kit Kit contains a 64-pixel 
pyroelectric detector coupled 
with an LVF 

1 $4265 IR Microsystems 
PSE-C 
CH-1015 Lausanne 
Switzerland 

Data Acquisition Card 
(DAQ) (model USB-
6009) 

Multifunction I/O 1 $249 National Instruments 
11500 N Mopac Expwy 
Austin, TX 78759 USA 

Oil-less Diaphragm Pump 
(model 10D1125-101-
1052) 

Pressure/vacuum pump 1 $50 Gast Manufacturing, Inc  
P.O. Box 97  
Benton Harbor, MI 49023-
0097 USA 

Valves (model EC-2M-
12) 

 9 $22 
each 

Clippard USA 
7390 Colerain Ave 
Cincinnati OH 45239 USA 

Manifold (4-channel, 
model 15481-4) 

For use with valves  (model 
EC-2M-12) 

3 $9 Clippard USA 
7390 Colerain Ave 
Cincinnati OH 45239 USA 

Miscellaneous (gas 
circuit) 

Includes polyurethane tube, 
check valve (model MJCV-1), 
air filter 

1 $20 N/A 
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Table A.1 Continued. 
Part Description Qty Price Vendor 

Miscellaneous (electronic 
parts) 

Includes 1 opAmp (model 
741) and 6 Regulators (model 
ECG261) 

1 $10 Radio Shack 
Culpepper Plaza 
1673 Texas Ave. S 
College Station , TX 77840 
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