
APPROXIMATE CONVEX DECOMPOSITION AND ITS APPLICATIONS

A Dissertation

by

JYH-MING LIEN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2006

Major Subject: Computer Science

APPROXIMATE CONVEX DECOMPOSITION AND ITS APPLICATIONS

A Dissertation

by

JYH-MING LIEN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Nancy M. Amato
Committee Members, Ergun Akleman

Ricardo Gutierrez-Osuna
Donald H. House
John C. Keyser

Head of Department, Valerie E. Taylor

December 2006

Major Subject: Computer Science

iii

ABSTRACT

Approximate Convex Decomposition and Its Applications. (December 2006)

Jyh-Ming Lien, B.S., National ChengChi University

Chair of Advisory Committee: Dr. Nancy M. Amato

Geometric computations are essential in many real-world problems. One impor-

tant issue in geometric computations is that the geometric models in these problems

can be so large that computations on them have infeasible storage or computation

time requirements. Decomposition is a technique commonly used to partition complex

models into simpler components. Whereas decomposition into convex components re-

sults in pieces that are easy to process, such decompositions can be costly to construct

and can result in representations with an unmanageable number of components. In

this work, we have developed an approximate technique, called Approximate Convex

Decomposition (ACD), which decomposes a given polygon or polyhedron into “ap-

proximately convex” pieces that may provide similar benefits as convex components,

while the resulting decomposition is both significantly smaller (typically by orders of

magnitude) and can be computed more efficiently. Indeed, for many applications, an

ACD can represent the important structural features of the model more accurately

by providing a mechanism for ignoring less significant features, such as wrinkles and

surface texture. Our study of a wide range of applications shows that in addition to

providing computational efficiency, ACD also provides natural multi-resolution or hi-

erarchical representations. In this dissertation, we provide some examples of ACD’s

many potential applications, such as particle simulation, mesh generation, motion

planning, and skeleton extraction.

iv

To my parents

v

ACKNOWLEDGMENTS

This work could not be accomplished without support from many people.

I would like to thank my advisor, Nancy Amato, for her guidance. Throughout

my doctoral work she encouraged me to pursue my own research interests and to

develop independent thinking and research skills.

I would like to thank my undergraduate advisor, Tsai-Yen Li, for teaching me

about research.

I would like to thank my committee members, John Keyser, Donald House, Ergun

Akleman, and Ricardo Gutierrez-Osuna, who supported me through this challenging

journey.

I would like to thank everyone in the Algorithms & Applications Group in Para-

sol lab, in particular, Burchan Bayazit, Marco Morales Aguirre, Roger Pearce, Sam

Rodriguez, Xinyu Tang, Shawna Thomas, Aimée Vargas, and Dawen Xie, for being

my collaborators and my best friends for the past 6 years.

I would like to thank my wife, Shao-Jung Chang. Without her, I would not even

know about Texas A&M and helped me to make up my mind to pursue my Ph.D.

degree.

Finally, I would like to thank to my parents and my sisters for always being

there.

I consider myself very lucky to have so many great people in my life.

vi

TABLE OF CONTENTS

Page

CHAPTER

I INTRODUCTION . 1

A. Approximate Convex Decomposition (ACD) 2

B. Applications of ACD . 4

C. Outline of the Dissertation 6

II PRELIMINARIES AND RELATED WORK 9

A. Preliminaries . 9

1. Polygons . 9

2. Polyhedra . 10

3. Polyhedral Surface . 11

4. Approximately (τ) Convex 11

B. Related Work on Convex Decomposition 13

1. Convex Decomposition of Polygons 13

2. Convex Decomposition of Polyhedra 15

III APPROXIMATE CONVEX DECOMPOSITION (ACD) 18

A. Selection of Concavity Tolerance (τ) 20

B. Concavity . 21

1. Retraction Function 22

2. Bridges and Pockets 25

IV APPROXIMATE CONVEX DECOMPOSITION OF POLYGONS 27

A. Measuring Concavity . 28

1. Measuring Concavity for External Boundary (∂P0)

Points . 29

a. Straight Line Concavity (SL-Concavity) 30

b. Shortest Path Concavity (SP-Concavity) 32

c. Hybrid Concavity (H-Concavity) 37

2. Measuring the Concavity for Hole Boundary (∂Pi>0)

Points . 39

a. Concavity for Holes 40

b. Approximate Antipodal Pair, p and cw(p) 40

c. Measuring Hole Concavity 42

vii

CHAPTER Page

B. Resolving Concave Features 43

C. Correctness and Complexity Analysis 44

D. Experimental Results . 49

1. Implementation Details 49

2. Models . 50

3. Results . 50

a. ACD Is Significantly Faster and Produces Fewer

Components When τ > 0 52

b. ACD Is Always Faster When τ = 0 52

c. ACD of Models with the Same Shape but Dif-

ferent Complexity 53

d. Differences among the Concavity Measures 53

e. ACD of Holes . 54

f. ACD Generates Visually Meaningful Components 54

V APPROXIMATE CONVEX DECOMPOSITION OF POLY-

HEDRA . 62

A. Challenges in Extending to Three Dimensions 64

1. Measuring Concave Features 64

2. Resolving Concave Features 64

3. Our Solution: Feature Grouping 65

B. ACD of Polyhedra without Handles 66

1. Measuring Concave Features 66

2. Feature Grouping: Global Cuts 71

a. Pocket Boundaries 72

b. Identifying Knots 74

c. Computing Pocket Cuts 76

d. Weighting a Cut 77

e. Extracting Cycles from Graph GK 79

3. Resolving Concave Features 81

4. Complexity Analysis 81

C. ACD of Polyhedra with Arbitrary Genus 82

D. Experimental Results . 84

1. Implementation Details 84

2. Models . 85

3. Results . 86

a. ACDs Are Orders of Magnitude Smaller Than ECDs 86

viii

CHAPTER Page

b. Solid ACDs Are Only Slightly Larger Than

Surface ACDs . 89

c. ACDs with Feature Grouping Are Smaller Than

ACDs without Feature Grouping 89

E. Discussion of Limitations 90

VI APPLICATIONS OF APPROXIMATE CONVEX DECOM-

POSITION . 93

A. Point Location . 94

B. Shape Representation . 96

C. Motion Planning . 97

D. Mesh Generation . 99

VII SHAPE DECOMPOSITION AND SKELETONIZATION US-

ING ACD . 101

A. Related Work . 103

B. Framework . 105

1. Extracting Skeletons 106

2. Measuring Skeleton Quality 109

C. Putting It All Together . 113

D. Implementation and Results 113

1. Implementation Details 113

2. Experimental Results 115

E. Discussion . 122

VIII CONCLUSION AND FUTURE WORK 124

A. Conclusion . 124

B. Future Work . 125

REFERENCES . 127

VITA . 144

ix

LIST OF TABLES

TABLE Page

1 Nazca monkey (Figure 13(a)) decomposition using SL-, SP-, H1-,

and H2-Concavity with τ as 40, 20, 10, and 1 units. Recall that

the radius of the minimum enclosing circle of the monkey is 81.7 units. 31

2 Summary information for models studied. In this table, |v|, |r|

and |h| are the number of vertices, notches and holes, respectively,

and R is the radius of the minimum enclosing ball 51

3 Comparing the decomposition size and time of the ACD and the

MCD. Convexity and concavity in this table indicate the tolerance

of the ACD. Note that monkey2, heron2 and neuron are not listed

here because MCD does not work on these models. 53

4 Decompositions of 13 common models, where |r|% is the percent-

age of edges that are notches, |e| is the number of edges, and S

is the physical (file) size. All models are normalized so that the

radius of their minimum enclosing spheres is one unit. 87

5 Decompositions of 13 common models, where S and |Pi| are the

physical (file) size and the number of components of the decom-

position, resp. Feature grouping is used for ACDs. Note that the

David and the dragon models are not closed, thus they do not

have results for solid decomposition. 88

6 ACD v.s. ECD. 89

7 Studied applications and type of ACD used. 93

8 Experimental results of SSS . 117

9 Robustness tests using perturbed and skeletal deformed meshes.

DO is the graph edit distance between a skeleton extracted from

a perturbed or deformed mesh and a skeleton extracted from the

original mesh. D2
O is DO without counting operations on degree-2

nodes (which do not change the topology of the skeleton). 120

x

LIST OF FIGURES

FIGURE Page

1 (a) An exact convex decomposition (left) and an ACD (right) with

convexity less than 0.04 of the David model have 85,132 and 66

components, resp. (b) The convex hulls of the ACD components

represent David’s shape. 3

2 Snap shots of a particle system with 10000 particles using the full

model and convex hulls of ACD components. Which simulation

is generated with ACD? Here, using the ACD instead of the full

model is two times faster and does not introduce noticeable errors.

See ‘Point location’ in Chapter V for details. (The lower row uses

ACD.) . 5

3 Examples of shape decomposition using ACD. The convex hulls

of the components of the decomposition are also shown. 6

4 A difficult motion planning problem (a) in which the robot is re-

quired to pass through a narrow passage to move from the start

to the goal. In (b), a uniform sampling of 200 collision-free con-

figurations fails to connect the start to the goal. In contrast, in

(d), placing 200 samples around the openings of the ACD of the

environment (c) successfully connects the start to the goal. The

solution path is shown in (a). 7

5 A tetrahedral mesh is generated from the (simplified) convex hulls

of ACD components. The rightmost figure shows a deformation

using this mesh. 8

6 A simple polygon with nested holes. 10

7 A surface patch is convex if it lies entirely on the surface of its

convex hull. This figure shows a decomposition of a model into

convex and non-convex surface patches. 11

8 Vertex r is a notch and its concavity is measured as the distance

to the convex hull CHP . 12

xi

FIGURE Page

9 (a) Decomposition process. The tolerable concavity τ is user in-

put. (b) A hierarchical representation of polygon P . Vertex r is

a notch and concavity is measured as the distance to the convex

hull CHP . 20

10 Although polygon P1 is visually closer to being convex than poly-

gon P2, this is not identified by their convexity measurements,

as defined in Eqn 7.2, which are equal, i.e., convexity(P1) =

convexity(P2). 22

11 (a) Defining concavity retraction using the medial axis. (b) Straight

line distance concavity (left) and shortest path distance concavity

(right). 24

12 Vertices marked with dark circles are notches. Edge (5,7) is a

bridge with an associated pocket {(5, 6), (6, 7)}. Edge (8,1) is a

bridge with an associated pocket {(8, 9), (9, 0), (0, 1)}. 25

13 (a) The initial Nazca monkey has 1,204 vertices and 577 notches.

The radius of the minimum bounding circle of this model is 81.7

units. Setting the concavity tolerance at 0.5 units, and not al-

lowing Steiner points, (b) an approximate convex decomposition

has 126 approximately convex components, and (c) a minimum

convex decomposition has 340 convex components. 28

14 (a) The initial shape of a non-convex balloon (shaded). The bold

line is the convex hull of the balloon. When we inflate the balloon,

points not on the convex hull will be pushed toward the convex

hull. Path a denotes the trajectory with air pumping and path b

is an approximation of a. (b) The hole vanishes to its medial axis

and vertices on the hole boundary will never touch the convex hull. 29

15 Let r be the notch with maximum concavity measured using SL-

concavity. After resolving r, the concavity of s increases. If

concavity(r) < τ , then s will never be resolved even if concavity(s)

would be larger than τ if the model were to be resolved at r. 32

16 (a) Pρ is a simple polygon enclosed by a bridge β and a pocket ρ.

(b) Split Pρ into Pρβ− , Pρβ, and Pρβ+ . (c) V −
β = {v7, v8, v9} and

V +
β = {v5, v6, v10}. 33

xii

FIGURE Page

17 Shortest paths to the boundary of the convex hull. 36

18 SL-concavity can handle the pocket in (a) correctly because none

of the normal directions of the vertices in the pocket are opposite

to the normal direction of the bridge. However, the pocket in (b)

may result in non-monotonically decreasing concavity. 38

19 An example of a hole Pi and its antipodal pair. The maximum

distance between p and cw(p) represents the diameter of Pi. After

resolving p, Pi becomes a pocket and cw(p) is the most concave

point in the pocket. 41

20 While the distance between the antipodal pair (p, cw(p)) com-

puted using the principal axis is d, the diameter of the hole with

k turns is larger than k × d. Note that k can be arbitrarily large. . . 42

21 The original polygon has 816 vertices and 371 notches and three

holes. The radius of the bounding circle is 8.14. When τ = 5, 1,

0.1, and 0 units there are 4, 22, 88, and 320 components. 43

22 (a) If x ∈ ∂Pi>0, “Resolve” merges ∂Pi into P0. (b) If x ∈ ∂P0,

“Resolve” splits P into P1 and P2. (c) The concavity of x changes

after the polygon is decomposed. 44

23 An example of hole resolution. Holes and the external boundary

form a dependency graph which determines the order of resolu-

tion. In this case holes P1 and P3 will be resolved before P2 and

P4. Dots on the hole boundaries are the antipodal pairs of the

holes. 45

24 Point r1 is on the boundary of the convex hull and points r2 and

r3 are not. Point r3 is a notch and points r1 and r2 are not. 46

25 (a) Initial (top) and approximately (bottom) decomposed Maze

models. The initial Maze model has 800 vertices and 400 notches.

(b) Number of components in final decomposition. (c) Decompo-

sition time. (d) Convexity measurements. 55

26 (a) Initial model of Nazca Monkey; see Figure 13. (b) Number of

components in final decomposition. (c) Decomposition Time. (d)

Convexity measurements. 56

xiii

FIGURE Page

27 (a) Top: The initial Nazca Heron model bounding circle is 137.1

units. Middle: Decomposition using approximate convex decom-

position. 49 components with concavity less than 0.5 units are

generated. Bottom: Decomposition using optimal convex decom-

position. 263 components are generated. (b) Number of compo-

nents in final decomposition. (c) Decomposition time. (d) Con-

vexity measurements. 57

28 Left: monkey2. Right: heron2. (b) Number of components in

final decomposition. (c) Decomposition time. (d) Convexity mea-

surements. 58

29 (a) The initial model of neurons has 1,815 vertices and 991 notches

and 18 holes. The radius of the enclosing circle is 19.6 units. (b)

Decomposition using approximate convex decomposition. Final

decomposition has 236 components with concavity less than 0.1

units. (c) Number of components in final decomposition. (d)

Decomposition Time. The dashed line indicates the time for re-

solving all holes. (e) Convexity measurements. 59

30 Texas. Approximate components are 1-convex. 60

31 Deep cave. Approximate components are 0.1-convex. 60

32 Bird. Approximate components are 0.1-convex. 60

33 Mammoth. Approximate components are 0.2-convex. 61

34 The approximate convex decompositions (ACD) of the Armadillo

and the David models consist of a small number of nearly con-

vex components that characterize the important features of the

models better than the exact convex decompositions (ECD) that

have orders of magnitude more components. The Armadillo (500K

edges, 12.1MB) has a solid ACD with 98 components (14.2MB)

that was computed in 232 seconds while the solid “ECD” has

more than 726,240 components (20+ GB) and could not be com-

pleted because disk space was exhausted after nearly 4 hours of

computation. The David (750K edges, 18MB) has a surface ACD

with 66 components (18.1MB) while the surface ECD has 85,132

components (20.1MB). 63

xiv

FIGURE Page

35 Resolving concavity (a) using a cut plane that bisects a dihedral

angle results in (b) a decomposition with 10 components with

concavity ≤ 0.1. In contrast, (c) carefully selected cut planes

generate only 4 components with concavity ≤ 0.1. 65

36 The bridges and the pockets with and without bridge grouping

(clustering). 67

37 Top: An identified bridge/pocket pair. Bottom: Bridge/pocket

pairs from the teeth model. The rightmost model is shaded so

that darker areas indicate higher concavity. 69

38 A bridge patch and its supporting plane. 70

39 The process of grouping and resolving concave features. (a) Knots

(marked by spheres) from one of the pockets. (b) Knots from all

pockets and a pocket cut (shown in thick lines) connecting a pair

of knots. (c) Global cuts (thick lines) and the graphs GK. (d)

Solid (left) and surface (right) decompositions using the identified

global cuts. 73

40 The thin line in the plot is a pocket boundary of the Stanford

Bunny (indicated by an arrow) in concavity domain. Its simplifi-

cation is shown in a thicker line and identified knots are marked

as dots. The points on the boundaries of pockets of the Bunny,

Venus, and Armadillo models are knots. 75

41 (a) Identified knots of a pocket shown in dark circles. (b) All

pocket cuts that connect all pairs of knots in the pocket. (c) Non-

crossing pocket cuts. (d) Pocket cuts from bipartite matchings

between pairs of boundaries. 78

42 Left: A cup-shape pocket and its bridge. The black dots on the

boundary of the pocket are knots, which are very close to the

bridge. We know that this is a cup-shape pocket because its most

concave feature, x, is not a knot. Right: The bridge is subdivided

and the new pocket boundary is forced to pass x. 79

xv

FIGURE Page

43 Left: An example of GK (partially shown). Thicker pocket cuts

have smaller weights. Right: An extracted tree from GK. The

bold line is the best cut for the root. 80

44 Left: A cut κ around the neck. Mid: The best fit plane of κ. Its

intersection with the model does not match κ. Lighter and darker

shades shown in the figures indicate different components after

decomposition. Right: An improved cut plane. 82

45 (a) The pocket (shaded area) is enclosed in the projected bound-

aries of two bridges β and α. (b) Pockets after genus reduction. . . 83

46 Four handle cuts found in the David model. 85

47 Convex solid decomposition. The size and time of ACD with and

without feature grouping are shown for a range approximation

values τ . 90

48 Convex surface decomposition. The leftmost figure shows a re-

sult of the exact decomposition. The others are results of the

approximate decomposition. 91

49 Problems of finding meaningful cuts in the low concavity areas. . . . 92

50 Point location of 108 points in the teeth model (233,204 triangles),

in the elephant model (6,798 triangles), and in their solid ECD and

the convex hulls of the ACD0.02. Measured time includes time for

decomposition and point location. Point location in ACD0.02 of both

models has 0.99% errors. External points of 1000 samples in full model

and ECD are shown in the figures on the left and only the misclassified

(as internal) points in ACDs are shown on the right. 95

51 The features (circled) in polygons A and B have the same con-

cavity but have different effects on the shapes of A and B. For

polygon B, its concave feature has almost no effect on its overall

shape. 96

xvi

FIGURE Page

52 Hierarchical deformation. First, ACD is built from the input

model. Next, a tetrahedral mesh is built from the components

of ACD. Then, the input model is bound to the tetrahedral mesh.

Finally, deformations that are applied to the tetrahedral mesh can

be indirectly applied to the input model. 100

53 The skeleton (shown in the lower row) evolves with the shape

decomposition (shown in the upper row). 102

54 Simultaneous shape decomposition and skeleton extraction. The

set {Ci} is a decomposition of the input model P and initially

{Ci} = {P}. 103

55 This example shows a problem that arises when skeletonization

is based only on the centroids. Points b and d are the centers of

the openings and a, c and e are the centers of the components P1,

P2 and P3, respectively. This problem can be addressed using the

principal axis. 107

56 Using the principal axis of the convex hull CHC to extract a skele-

ton from a component. Skeletons are shown in dark thick lines

and skeletal joints are shown in dark circles and c denotes the

center of mass of CHC . (a) Opening centroids are connected to

both sides of c. (b) Opening centroids are connected to only one

side of c. 109

57 Notice the differences of these skeletons at the torso, the head,

and the fingers. 110

58 The error measurement for this skeleton, which intersects level

sets 4, 7 and 8, is 5
8
. 111

59 Final skeletons of a dragon polyhedron and a bird polygon ex-

tracted using different quality estimation functions: checking pen-

etration, measuring centeredness, and measuring convexity. The

maximum tolerable errors for centeredness and convexity are 0.2

and 0.3, respectively. 112

60 This figure shows the decomposition and the skeleton of a model

with 18 handles. 116

xvii

FIGURE Page

61 The decomposition with 0.7 convexity and the associated skeleton

of the dino-pet model (with 6,564 triangles) are computed in 1.5

seconds whereas Katz and Tal’s approach takes 57 seconds (on a

P4 1.5 GHz CPU with 512 Mb RAM). 118

62 The decomposition with 0.7 convexity and the associated skeleton

of the octopus model (with 8,276 triangles) are computed in 8.8

seconds whereas Wu et al.’s approach takes 53 seconds (on a P4

1.5 GHz CPU with 512 Mb RAM) using a simplified version of

this model (with 2,000 triangles). 118

63 An animation sequence obtained from applying the boxing motion

capture data to the extracted skeletons from a baby model and a

robot model. The motion capture data (action number 13 17) are

downloaded from the Carnegie Mellon University Graphics Lab

motion capture database. The first two figures in the sequence

are the shape decompositions and the skeletons of the baby and

the robot. Note that not all joint motions from the data are used

because the extracted skeletons have fewer joints. 121

64 (a) Decomposition that minimizes concavity. (b) Decomposition

using the proposed method. 126

1

CHAPTER I

INTRODUCTION

Shape is the essence of many geometric problems. One common strategy for dealing

with large, complex shapes is to decompose them into components that are eas-

ier to process. Many different decomposition methods have been proposed – see,

e.g., Chazelle and Palios [26] for a brief review of some common strategies. Of

these, decomposition into convex components has been of great interest because

many algorithms, such as collision detection, mesh generation, pattern recognition

[48], Minkowski sum computation [1], motion planning [57], skeletonization [89], and

origami folding [44], perform more efficiently on convex objects.

Convex decomposition of polygons is a well studied problem and has optimal

solutions under different criteria; see [70] for a good survey. In contrast, convex

decomposition in three-dimensions is far less understood and, despite the practical

motivation, little research on convex decomposition of polyhedra has gone beyond the

theoretical stage [33].

A major reason that convex decompositions are not used more extensively is that

they are not practical for complex models – an exact convex decomposition (ECD)

can be costly to construct and can result in a representation with an unmanageable

number of components. For example, while a minimum set of convex components can

be computed efficiently for simple polygons without holes [31, 32, 71], the problem

is NP-hard for polygons with holes [90]. This remains true in 3D for both solid

decompositions, which consist of a collection of convex volumes whose union equals

the original polyhedron, and surface decompositions, which partition the surface of

This dissertation follows the style of IEEE Transactions on Automation Science
and Engineering.

2

the polyhedron into a collection of convex surface patches. For example, a surface

ECD of the David model has 85,132 components (see Figure 1) and a solid ECD of

the Armadillo model has more than 726,000 components (see the figure on p. 63).

Similar statistics for additional models are shown in the table on p. 87 in Chapter V.

In this research, we propose and explore an alternative partitioning strategy

that decomposes a given model into “approximately convex” pieces that may pro-

vide similar benefits as convex components, while the resulting decomposition is both

significantly smaller (typically by orders of magnitude) and can be computed more

efficiently. Indeed, for many applications, such as skeletonization, an approximate

convex decomposition (ACD) can more accurately represent the important structural

features of the model by providing a mechanism for ignoring less significant features,

such as surface texture. ACD also simultaneously allows multi-resolution or hierar-

chical representations. The best way to illustrate ACD and its applications is through

the graphics and animations that can be found at: http://parasol.tamu.edu/∼neilien

A. Approximate Convex Decomposition (ACD)

Convex decomposition can be useful because many problems can be solved more ef-

ficiently for convex objects. However, generating convex decompositions can be time

consuming (sometimes intractable) and can result in unmanageably large decompo-

sitions. To address these issues, we propose a partitioning strategy that decomposes

a given 2D or 3D model into approximately convex components, resulting in an ap-

proximate convex decomposition (ACD) [85, 84, 88, 87]. We compute an ACD of a

model recursively until all components in the decomposition have concavity less than

some specified (tunable) parameter. Examples of ACD are shown in Figure 1.

For many applications, the approximately convex components of our ACD pro-

3

(a) (b)

Figure 1. (a) An exact convex decomposition (left) and an ACD (right) with convex-

ity less than 0.04 of the David model have 85,132 and 66 components, resp.

(b) The convex hulls of the ACD components represent David’s shape.

vide similar benefits as convex components, while the resulting decomposition is both

significantly smaller and can be computed more efficiently. We have shown both

theoretically and experimentally that the ACD of polygons with zero or more holes

and polyhedra with arbitrary genus can efficiently produce high quality decomposi-

tions. Applications that can benefit from this approach include collision detection

[88], penetration depth estimation, mesh generation [106], and motion planning [88].

Another important aspect of an approximate convex decomposition is that it can

more accurately represent important structural features of the model by providing a

mechanism for ignoring less significant features, such surface texture; see Figure 1(b).

We have shown that ACD can help applications such as skeletonization [89], percep-

tually meaningful decomposition [89], and shape deformation [106] to focus on the

global shape of the model.

4

Our work in ACD has attracted a wide range of interest from the academic

community and industry. In particular, we have received many requests to use ACD

in robot grasping and navigation, Minkowski sum computation, rapid prototyping,

and tele-immersion.

B. Applications of ACD

Decomposition is usually used to provide efficiency for the applications. Convex

decomposition provides even more efficiency because many algorithms work better

with convex objects. In many applications of convex decomposition, the convex hulls

of ACD components (and sometimes the components themselves) can be used by

methods that usually operate on convex polygons or polyhedra, making them more

efficient.

For example, point location, which is commonly used in particle simulation,

checks if a given point is inside or outside of a model. This operation can be done

more efficiently if the input model is convex. ACD can help improve the efficiently

of point location for non-convex models by replacing each ACD component with its

convex hull and then performing the point location using the convex hulls of the

ACD components. Since each ACD component is contained in its convex hull, the

point location may incorrectly identify some points as internal which they are in fact

external to the model. Figure 2 illustrates a result of this ACD-based particle system.

In this example, and indeed in many scenarios, the differences in the simulation using

the full model and the approximated representation using ACD are barely noticeable.

Another important benefit of ACD is that ACD can capture key structural fea-

tures. For example, the ACDs of the Armadillo and the David models in the figure

on p. 63 identify anatomical features much better than the ECDs. Other applications

5

Figure 2. Snap shots of a particle system with 10000 particles using the full model

and convex hulls of ACD components. Which simulation is generated with

ACD? Here, using the ACD instead of the full model is two times faster

and does not introduce noticeable errors. See ‘Point location’ in Chapter V

for details. (The lower row uses ACD.)

that exploit this property of ACD include shape representation (Figure 3), motion

planning (Figure 4), mesh generation (Figure 5).

In shape representation, we ensure that each component of ACD is within some

volumetric ratio of its convex hull, e.g., the volumetric ratio between all the ACD

components in Figure 3 and their convex hulls is larger than 70%.

In motion planning, we try to find a trajectory for a movable object to move from

a start to a goal configuration in an environment without colliding with obstacles.

ACD can help to identify narrow regions of the environment which are generally

difficult scenarios for the sampling-based motion planners [13]. In Figure 4, we show

that, with the same effort, the motion planning problem can be solved with ACD but

cannot be solved using uniform sampling. See ‘Motion planning’ in Chapter VI for

details.

ACD can also be used to generate tetrahedral meshes, which are commonly used

in simulating physically based systems, e.g., deformation, by further decomposing

6

Figure 3. Examples of shape decomposition using ACD. The convex hulls of the

components of the decomposition are also shown.

the convex hull of each ACD component into tetrahedra. Figure 5 shows a resulting

tetrahedral mesh using ACD and a deformation generated using the tetrahedral mesh.

Detailed descriptions of these applications can be found in Chapter VI and Chap-

ter VII.

C. Outline of the Dissertation

In this dissertation, we introduce a new approximate shape representation technique,

Approximate Convex Decomposition (ACD). Definitions and notation used through-

out the dissertation and related work on convex decomposition are discussed in Chap-

ter II. A general framework of ACD with a high level discussion of the technique is

presented in Chapter III. In Chapters IV and V, we describe techniques for com-

puting ACDs of two-dimensional simple polygons with or without holes and three-

dimensional polyhedral solids and surfaces of arbitrary genus, respectively. In both of

these two chapters, we provide results illustrating that our approach results in high

7

start goal

(a) (b) (c) (d)

Figure 4. A difficult motion planning problem (a) in which the robot is required to

pass through a narrow passage to move from the start to the goal. In

(b), a uniform sampling of 200 collision-free configurations fails to connect

the start to the goal. In contrast, in (d), placing 200 samples around the

openings of the ACD of the environment (c) successfully connects the start

to the goal. The solution path is shown in (a).

quality decompositions with very few components and applications showing that com-

parable or better results can be obtained using ACD decompositions in place of exact

convex decompositions (ECD) that are several orders of magnitude larger. Some

representative applications of ACD are presented in Chapters VI and VII.

8

(ACD) (tetrahedral mesh) (deformation)

Figure 5. A tetrahedral mesh is generated from the (simplified) convex hulls of ACD

components. The rightmost figure shows a deformation using this mesh.

9

CHAPTER II

PRELIMINARIES AND RELATED WORK

In this chapter, we first define notation that will be used throughout this dissertation

and then we discuss related work on convex decomposition of polygons and polyhedra.

A. Preliminaries

1. Polygons

A polygon P is represented by a set of boundaries

∂P = {∂P0, ∂P1, . . . , ∂Pi} ,

where ∂P0 is the external boundary and ∂Pi>0 are boundaries of holes of P . Each

boundary ∂Pi consists of an ordered set of vertices Vi which defines a set of edges

Ei. Figure 6 shows an example of a simple polygon with nested holes. A polygon

is simple if no nonadjacent edges intersect. Thus, a simple polygon P with nested

holes is the region enclosed in ∂P0 minus the region enclosed in ∪i>0∂Pi. We note

that nested polygons can be treated independently. For instance, in Figure 6, the

region bounded by ∂P0 and ∂P1≤i≤4 and the region bounded by ∂P5 can be processed

separately.

The convex hull of a polygon P , CHP , is the smallest convex set containing P .

P is said to be convex if P = CHP . Vertices of P are notches (non-convex features)

if they have internal angles greater than 180◦. A polygon C is a component of P if

C ⊂ P . A set of components {Ci} is a decomposition of P if their union is P and all

Ci are interior disjoint, i.e., {Ci} must satisfy:

D(P) = {Ci | ∪iCi = P and ∀i6=jC
◦
i ∩ C◦

j = ∅} , (2.1)

10

����������

���	�

����
 �����

���������

�

��� �

�����

Figure 6. A simple polygon with nested holes.

where C◦
i is the open set of Ci. A convex decomposition of P is a decomposition of

P that contains only convex components, i.e.,

CD(P) = {Ci | Ci ∈ D(P) and Ci = CHCi
}. (2.2)

A decomposition of P is said to resolve a notch v if v was a notch in P but is

not a notch in the decomposition of P .

2. Polyhedra

Similarly, a polyhedron P is also represented by a set of boundaries {∂Pi}. The

convex hull of a model P , CHP , is the smallest convex set enclosing P . P is said to

be convex if P = CHP . Edges of P are notches (non-convex features) if they have

internal angles greater than 180◦. We say Ci is a component of P if Ci ⊂ P . A set of

components {Ci} is a decomposition of P if their union is P and all Ci are interior

disjoint, i.e., {Ci} must satisfy:

D(P) = {Ci | ∪iCi = P and ∀i6=jC
◦
i ∩ C◦

j = ∅}, (2.3)

where C◦
i is the open set of Ci. A convex decomposition of P is a decomposition of

P that contains only convex components; see Eqn. 2.2. Also, decomposition of P is

said to resolve a notch e if e was a notch in P but is not a notch in the decomposition

11

convex

convexnon convex

no
n

co
nv

ex

no
n

co
nv

ex

convex

Figure 7. A surface patch is convex if it lies entirely on the surface of its convex hull.

This figure shows a decomposition of a model into convex and non-convex

surface patches.

of P .

3. Polyhedral Surface

For some applications, such as rendering [12], collision detection [12, 111], and pen-

etration decomposition [74], the model’s surface, rather than its solid components,

is of most interest. For such applications, it is useful to decompose boundaries of a

model into surface patches. We say C is a surface patch of P if C ⊂ ∂P . A set of

surface patches {Ci} is a surface decomposition of P if their union is ∂P and all Ci

are interior disjoint. A surface patch C is convex if C lies entirely on the surface of

its convex hull CHC , i.e., C ⊂ ∂CHC [33]. An illustration of this definition is shown

in Figure 7. A convex surface decomposition of P is a decomposition of ∂P that

contains only convex surface components.

4. Approximately (τ) Convex

The success of our approach depends critically on the accuracy of the methods we

use to prioritize the importance of the non-convex features. Intuitively, important

features provide key structural information for the application. For instance, visu-

12

P

r

HP

Figure 8. Vertex r is a notch and its concavity is measured as the distance to the

convex hull CHP .

ally salient features are important for a visualization application, features that have

significant impact on simulation results are important for scientific applications, and

features representing anatomical structures are important for character animation

tools. Although curvature has been one of the most popular tools used to extract

visually salient features, it is highly unstable because it identifies features from local

variations on the model’s boundary. In contrast, the concavity measures we consider

here identify features using global properties of the boundary. Figure 8 shows one

possible way to measure the concavity of a polygon as the maximal distance from a

vertex of P (r in this example) to the boundary of the convex hull of P . The intuition

is that when the concavity (of a polygon or a polyhedron P) obtained using a certain

concavity measure is “small enough” to be ignored, then P can be considered to be

convex or P can be represented by its convex hull. We formalize this intuition with

the following definition of τ -convex, where the parameter τ is used to control how

convex the components in the ACD will be.

Definition A.1. concavity and τ-convex. We say a polygon or a polyhedron P

has concavity(P) ≤ τ , or equivalently that P is τ -convex, if all vertices v of P have

concavity(v) ≤ τ , where concavity(ρ) denotes the concavity measurement of ρ.

13

B. Related Work on Convex Decomposition

Convex decomposition of polygons is a well studied problem and has optimal solutions

under different criteria. In contrast, convex decomposition in three-dimensions is far

less understood. In this section, we will review related work on convex decomposition

of polygons and polyhedra.

Another set of related work is mesh generation which decomposes a polygon or

a polyhedron into triangle, tetrahedral, quadrilateral or hexahedral meshes with an

arbitrary number of additional (Steiner) points. Many strategies are proposed to

generate meshes. A good survey of these strategies can be found in [101].

1. Convex Decomposition of Polygons

Many approaches have been proposed for decomposing polygons; see the survey by

Keil [70]. The problem of convex decomposition of a polygon is normally subject

to some optimization criteria to produce a minimum number of convex components

or to minimize the sum of the length of the boundaries of these components (called

minimum ink [70]). Convex decomposition methods can be classified according to the

following criteria:

• Input polygon: simple, holes allowed or disallowed.

• Decomposition method: additional (Steiner) points allowed or disallowed.

• Output decomposition properties: minimum number of components, shortest

internal length, etc.

For polygons with holes, the problem is NP-hard for both the minimum compo-

nents criterion [90] and the shortest internal length criterion [69, 91].

14

When applying the minimum component criterion for polygons without holes, the

situation varies depending on whether Steiner points (points in addition to the original

vertices) are allowed. When Steiner points are not allowed, Chazelle [28] presents an

O(n log n) time algorithm that produces fewer than 4 1
3

times the optimal number of

components, where n is the number of vertices. Later, Green [52] provided an O(r2n2)

algorithm to generate the minimum number of convex components, where r is the

number of notches. Keil [69] improved the running time to O(r2n log n), and more

recently Keil and Snoeyink [71] improved the time bound to O(n + r2 min (r2, n)).

When Steiner points are allowed, Chazelle and Dobkin [32] propose an O(n + r3)

time algorithm that uses a so-called Xk-pattern to remove k notches at once without

creating any new notches. An Xk-pattern is composed of k segments with one common

end point and k notches on the other end points.

When applying the shortest internal length criterion for polygons without holes,

Greene [52] and Keil [68] proposed O(r2n2) and O(r2n2 log n) time algorithms, re-

spectively, that do not use Steiner points. When Steiner points are allowed, there

are no known optimal solutions. An approximation algorithm by Levcopoulos and

Lingas [79] produces a solution of length O(p log r) with Steiner points, where p is

the length of perimeter of the polygon, in time O(n log n).

Not all convex decomposition methods fall into the above classification. For ex-

ample, instead of decomposing P into convex components whose union is P , Tor and

Middleditch [125] “decompose” a simple polygon P into a set of convex components

{Ci} such that P can be represented as CHP − ∪iCi, where “−” is the set differ-

ence operator, and instead of decomposing a polygon, Fevens et al. [49] partition a

constrained 2D point set S into convex polygons whose vertices are points in S.

Recently, several methods have been proposed to partition a polygon at salient

features. Siddiqi and Kimia [117] use curvature and region information to identify

15

limbs and necks of a polygon and use them to perform decomposition. Simmons and

Séquin [119] proposed a decomposition using an axial shape graph, a weighted me-

dial axis. Tănase and Veltkamp [126] decompose a polygon based on the events that

occur during the construction of a straight-line skeleton. These events indicate the

annihilation or creation of certain features. Dey et al. [45] partition a polygon into

stable manifolds which are collections of Delaunay triangles of sampled points on the

polygon boundary. Since these methods focus on visually important features, their

applications are more limited than our approximately convex decomposition. More-

over, most of these methods require pre-processing (e.g., model simplification [66])

or post-processing (e.g., merging over-partitioned components [45]) due to boundary

noise.

2. Convex Decomposition of Polyhedra

Convex decomposition of three-dimensional polyhedra is not as well understood as the

two-dimensional case. Although this topic has been studied for several decades, most

of the work focuses on refining the complexity requirements of Chazelle’s popular

notch cutting approach. Indeed, Chazelle’s notch-resolving approach has inspired

many other researchers to find more robust and efficient implementations. To resolve

a notch of a polyhedron P , a cutting plane, CHP , passing through the notch separates

the incident facets and results in a decomposition where the dihedral angles are both

less than 180◦.

Chazelle [27, 29] shows that at most r2+r+2
2

convex components will be generated

if only one cutting plane is used for each notch, ri, and its sub-notches, {rij}. Here rij

is the j-th sub-notch generated by intersecting ri and the cutting planes for rj, ∀i 6= j.

His method works by cutting all notches with cutting planes in an arbitrary order.

Therefore, the main issue of convex decomposition becomes how the polyhedron can

16

be cut by a given plane. First, the intersection of the plane and the polyhedron, W ,

is a set of simple polygons with holes which may enclose other polygons. Since these

polygons do not overlap, a tree structure of these polygons can be built in O(k log k)

time with k vertices in W . For a polygonal chain p, a polygonal chain q is p’s ancestor

if q contains p directly or indirectly, and a polygonal chain r is a child (descendant)

of p if r is contained in p directly (indirectly). This is called the polygon nesting

problem. This structure helps locate the polygon, s, in W that contains the notch to

be cut and all polygons inside s. The cutting process is then done by splitting the

edges and faces that intersect the cutting plane and that contain the polygon s and

descendants of s. His method generates the worst case optimal O(r2) convex parts

and uses O(nr3) time with O(nr2) space.

The notch cutting approach proposed by Bajaj and Dey [11] considered non-

manifold models which may contain notches with isolated vertices and edges, or non-

manifold vertices and edges and reflective edges with dihedral angles greater than

180◦. Since their plane cutting approach will generate non-manifold polyhedra even

if the initial model is manifold, each cutting procedure starts decomposing the model

by removing non-manifold features and then resolves a reflective edge using its plane

cutting. By using Bajaj and Dey’s approach [10] to solve the polygon nesting problem

and more careful analysis, they achieved a convex decomposition in O(nr2 + r
7

2) time

with O(nr + r
5

2) space. They also provide a similar but robust algorithm which

operates under finite precision arithmetic computations in O(nr2 + nr log n + r4)

time.

Hershberger and Snoeyink [56] obtained O(nr+r
7

3) worst-case time complexity by

studying the complexity of the horizon of a segment in an incrementally constructed

erased arrangement of n lines.

As mentioned in [33], despite the practical motivation, little research on the

17

convex decomposition of polyhedra has gone beyond the theoretical stage. Currently,

decomposing the surface of polyhedra [33, 34] is a more active research area due to its

simplicity in theory and implementation. A surface is called convex if it lies entirely

on the boundary of its convex hull. Therefore, surface decomposition is a problem of

generating a set of convex surfaces whose union is the surface the given model and

intersection is an empty set. The applications of convex surface decomposition include

rendering [12], collision detection [12, 111], and penetration depth [74]. Although

generating a minimum number of convex surfaces is still NP-complete, Chazelle et

al. [33] proposed several heuristics: space partition, space sweep, and flooding. They

concluded that flood-and-retract will be the simplest and most efficient.

18

CHAPTER III

APPROXIMATE CONVEX DECOMPOSITION (ACD)

Research in Psychology has shown that humans recognize shapes by decomposing

them into components [14, 95, 117, 120]. Therefore, one approach that may produce

a natural visual decomposition is to partition at the most visually noticeable features,

such as the most dented or bent area, or an area with branches. Our approach

for approximate convex decomposition follows this strategy. Namely, we recursively

remove (resolve) concave features in order of decreasing significance until all remaining

components have concavity less than some desired bound. One of the key challenges

of this strategy is to determine approximate measures of concavity. We consider this

question in later chapters. In this chapter, we assume that such a measure exists.

More formally, our goal is to generate τ -convex decompositions, where τ is a

user tunable parameter denoting the concavity tolerance of the application. (See

Definition A.1 on p. 12). P is said to be τ -approximate convex if concavity(P) < τ ,

A τ -convex decomposition of P , CDτ (P), is defined as a decomposition that contains

only τ -convex components; i.e.,

CDτ (P) = {Ci | Ci ∈ D(P) and concavity(Ci) ≤ τ}. (3.1)

Note that a 0-convex decomposition is simply an exact convex decomposition, i.e.,

CDτ=0(P) = CD(P).

Algorithm 1 describes a divide-and-conquer strategy to decompose P into a set

of τ -convex pieces. The algorithm first computes the concavity, and a point x ∈ ∂P

witnessing it, of the polygon or polyhedron P , i.e., x is one of the most concave

features in P . If the concavity of P is within the specified tolerance τ , P is returned.

Otherwise, if the concavity of P is above the maximum tolerable value, then the

19

Algorithm 1 Approx CD(P, τ)

Input. A polygon or a polyhedron, P , and tolerance, τ .
Output. A decomposition of P , {Ci}, such that max{concavity(Ci)} ≤ τ .
1: c = concavity(P)
2: if c.value < τ then
3: return P

4: else
5: {Ci}=Resolve(P , c.witness).
6: for Each component C ∈ {Ci} do
7: Approx CD(C,τ).

Resolve(P, x) sub-routine will produce two components by resolving the concave

feature at x, i.e., produce a decomposition of P in which x is a convex feature. In

the next two chapters, we will discuss in detail about how concavity can be measured

and how concave features can be resolved for polygons and polyhedra.

An overview of the decomposition process is shown in Figure 9(a). Due to the

recursive application, the resulting decomposition has a natural hierarchy represented

as a binary tree. An example is shown in Figure 9(b), where the original model P

is the root of the tree, and its two children are the components P1 and P2 resulting

from the first decomposition. If the process is halted before convex components are

obtained, then the leaves of the tree are approximate convex components. Thus,

the hierarchical representation computed by our approach provides multiple Levels of

Detail (LOD). A single decomposition is constructed based on the highest accuracy

needed, but coarser, “less convex” components can be retrieved from higher levels in

the decomposition hierarchy when the computation does not require that accuracy.

For some applications, the ability to consider only important features may not

only be more efficient, but may also lead to improved results. In pattern recognition,

for example, features are extracted from images and polygons to represent the shape

of the objects. This process, e.g., skeleton extraction, is usually sensitive to small

detail on the boundary, such as surface texture, which reduces the quality of the

20

�����
���	��
����
���������

�
����
�
����� �!�"�	
#$��%	&(' �*)

+,�	�

-.
 �./ �10

(a)

P1

CHP
P2

P

r

(b)

Figure 9. (a) Decomposition process. The tolerable concavity τ is user input. (b) A

hierarchical representation of polygon P . Vertex r is a notch and concavity

is measured as the distance to the convex hull CHP .

extracted features. By extracting a skeleton from the convex hulls of the components

in an approximate decomposition, the sensitivity to small surface features can be

removed, or at least decreased [83].

A. Selection of Concavity Tolerance (τ)

The main task that still needs to be specified in Algorithm 1 is how to measure the

concavity of a polygon or a polyhedron. We use concavity measurement at a point as

a primitive operation to decide whether a model P should be decomposed and to iden-

tify concave features of P . In principle, our approach should be compatible with any

reasonable measurement (the requirements for concavity measurement are discussed

in the next section), and indeed the selection of the measure for the concavity toler-

ance τ should depend on the application. For example, for some applications, such

as shape recognition, it may be desirable for the decomposition to be scale invariant,

i.e., the decompositions of two different sized models with the same shape should be

identical. Measuring the distance from ∂P to ∂CHP is an example of measure that

is not scale invariant because it would result in more components when decomposing

a larger model. An example of a measure that could be scale invariant would be a

unitless measure of the similarity of the model to its convex hull, or, one could simply

21

normalize distances, e.g., by dividing by a scale parameter s, d(∂P, ∂CHP)/s.

B. Concavity

In contrast to measures like radius, surface area, and volume, concavity does not

have a well accepted definition. For our work, however, we need a quantitative way

to measure the concavity of a polygon or polyhedron that can be computed in each

iteration of Algorithm 1. A few methods have been proposed [121, 19, 39, 20, 9] that

attempt to measure the concavity of an image (pixel) based polygon as the distance

from the boundary of P to the boundary of the pixel-based “convex hull” of P , called

CH ′
P , using Distance Transform methods. Since P and CH ′

P are both represented

by pixels, CH ′
P can only be nearly convex. Convexity measurements [123, 136] of

polygons estimate the similarity of a polygon to its convex hull. For instance, the

convexity of P can be measured as the ratio of the area of P to the area of the convex

hull of P [136] or as the probability that a fixed length line segment whose endpoints

are randomly positioned in the convex hull of P will lie entirely in P [136]. To our

knowledge, no concavity measure has been proposed for polyhedra.

Another complication with trying to use a global measure instead of a measure

related to a feature of the polygon P , such as convexity, it that it is difficult to use such

global measurements to efficiently identify where and how to decompose a polygon so

as to increase the convexity measurements of the components. For example, Rosin

[109] presents a shape partitioning approach that maximizes the convexity of the

resulting components for a given number of cuts. His method takes O(n2p) time

to perform p cuts. This exponential complexity forbids any practical use of this

algorithm in our case.

Although ACD is not restricted to a particular measure, most of the measures

22

P1 P2

Figure 10. Although polygon P1 is visually closer to being convex than polygon

P2, this is not identified by their convexity measurements, as defined in

Eqn 7.2, which are equal, i.e., convexity(P1) = convexity(P2).

we consider in this work define the concavity of a model P as the maximum concavity

of its boundary points, i.e.,

concavity(P) = max
x∈∂P

{concavity(x)} , (3.2)

where x are the vertices of P . We define the concavity of a point x, concavity(x),

as the distance from x to the boundary of the convex hull CHP . An important

consequence of this decision is that now we can use points with maximum concavity

to identify important features where decomposition can occur. This would not be

the case if we choose to sum concavities or if we used the convexity measurement in

[123, 136], where the convexity of a model P is defined as

convexity(P) =
volume(P)

volume(CHP)
. (3.3)

For example, the polygons, P1 and P2, shown in Figure 10 have the same convexity,

but P1 is visually closer to being convex than polygon P2.

1. Retraction Function

In this work, we will define concavity using a retraction function that traces a path to

the boundary of the convex hull. More formally, let retractx(t) : ∂P → CHP denote

23

the function defining the trajectory of x when x is retracted from its original position

to ∂CHP . When t = 0, retractx(t) is x itself. When t = 1, retractx(t) is a point on

∂CHP . Assuming that this retraction exists for x, we define

concavity(x) =

∫ retractx(1)

retractx(0)

|d`| , (3.4)

where d` is a differential displacement vector along the curve retractx(t), i.e., concavity(x)

is the arc length of the function retractx(t) with t from zero to one.

Intuitively, one can use the following analogy for the retraction function. Imagine

that P is a balloon placed in a mold with the shape of CHP . As we pump air into

the balloon P , it will gradually expand to assume the shape of CHP . The trajectory

for a point x on P is the path traveled by x during the inflation from its position on

the initial shape to its position on the the final shape of the balloon.

Unfortunately, although the intuition is simple, it is not easy to define or compute

such a retraction path. For example, we can define this balloon expansion as a process

of enlarging the inscribing balls of the points on the medial axis MA(P) of P . The

medial axis of P , MA(P), is the set of points in p ∈ P such that a maximal ball

centered at p and contained in P is tangent to the boundary of P in at least two

points. Let x be a point on ∂P but not on ∂CHP and let y be a point on MA(P)

whose maximum enclosing ball contacts ∂P at x. See Figure 11(a). At time t, x will

be retracted away from y in the direction of −→y x , i.e.,

xt+dt = retractx(t + dt) = xt + −−→yt xt dt , (3.5)

where dt is a unit time step. Another possible way of measuring concavity is to

model P using springs and then simulate inflation [72]. However, these methods are

computationally expensive.

We next define a class of retraction functions that have proven suitable for use in

24

x

P
y

MA(P)

∂CHP

(a)

∂CHP

P

x x

(b)

Figure 11. (a) Defining concavity retraction using the medial axis. (b) Straight line

distance concavity (left) and shortest path distance concavity (right).

ACD. In particular, as shown later in this dissertation, the properties of the retrac-

tion functions in this class can be exploited to establish the correctness of our ACD

approach.

Definition B.1. Let P = P 0 be a polygon or polyhedron and let P i+1 denote the

decomposition of P i that results when one or more notches of P i is resolved.

We say that a retraction function γ(x), or simply γ, is simple if:

concavityγ(P
i) ≥ concavityγ(P

j), ∀i < j, (3.6)

where concavityγ(P
k) = maxx∈V k{concaveγ(x)}, and we say γ is stable if:

γ(x) in P i ≥ γ(x) in P j ∀i < j (3.7)

Lemma B.2. If the retraction function γ is simple and stable, then the point x that

maximizes γ(x) must be a notch and resolving the concave feature at x in P i will

result in P i+1 that has monotonically decreasing concavity.

Proof. If the retraction function γ(x) is stable, then resolving notches in V i cannot

increase the concavity of the vertices in V i+1. Therefore, if the vertex x with maximum

concavity in P i is resolved, then the concavity of P i+1 cannot increase. Thus, x must

be in V i \ V i+1 and x must be a notch.

25

7

pocket

bridge

pocket
2

bridgepocket1

8
0

9

6

54

3

Figure 12. Vertices marked with dark circles are notches. Edge (5,7) is a bridge

with an associated pocket {(5, 6), (6, 7)}. Edge (8,1) is a bridge with an

associated pocket {(8, 9), (9, 0), (0, 1)}.

The correctness arguments we make regarding ACD in Chapter IV only assume

that the retraction function is simple and stable. That is, our framework is not

dependent on the particular retraction methods studied in this work, and in particular,

the same correctness guarantees will be provided by any retraction function that is

simple and stable.

2. Bridges and Pockets

Our concavity measures use the concepts of notches, bridges and pockets; see Fig-

ure 12. Recall that vertices of a polygon and edges of a polyhedron, respectively,

are notches if they have internal angles greater than 180◦. For a given polygon P ,

bridges are convex hull edges that connect two non-adjacent vertices of ∂P0, i.e.,

BRIDGES(P) = ∂CHP \ ∂P . Pockets are maximal chains of non-convex-hull edges

of P , i.e., POCKETS(P) = ∂P \∂CHP . Note that the same definitions of bridge and

pocket can also be applied to polyhedra.

Observation B.3 states the relationship between bridges, pockets, and notches

for polygons.

Observation B.3. Given a simple polygon P . Notches can only be found in pockets.

26

Each bridge has an associated pocket, the chain of ∂P0 between the two bridge vertices.

Hole boundaries are also pockets, but they have no associated bridge.

Because concave features, i.e., notches, can only be found in pockets we measure

the concavity of a notch x by

• associating each bridge with a unique pocket, and

• computing the distance from x to its associated bridge βx, i.e., concavity(x) =

dist(x, ∂CHP) = dist(x, βx).

For polygons, there is a natural one-to-one bridge/pocket matching that can be

obtained easily. In Chapter IV, we propose two practical simple and stable retraction

methods to compute concavity [85]: the straight-line distance to the bridge and the

length of the shortest path to the bridge that does not intersect the polygon; see

Figure 11(b).

Unfortunately, the techniques used for polygons do not extend easily to three-

dimensions. In particular, there is no trivial one-to-one bridge/pocket matching and

so we must define one and develop methods for computing it. In Chapter V, we

discuss how the bridge/pocket relationship can be computed. In addition, while SL-

concavity can still be computed efficiently, the best known methods for computing

shortest paths on polyhedra require exponential time [113] and even methods [36]

that approximate the shortest paths are too inefficient to be used in our approach.

27

CHAPTER IV

APPROXIMATE CONVEX DECOMPOSITION OF POLYGONS

In this chapter, we describe our strategy for decomposing a polygon, containing zero

or more holes, into “approximately convex” pieces. As we will see later in this chapter,

for many applications, the approximately convex components of this decomposition

provide similar benefits as convex components, while the resulting decomposition is

both significantly smaller and can be computed more efficiently. Features of this

approach are that it

• applies to any simple polygon, with or without holes,

• provides a mechanism to focus on key features, and

• produces a hierarchical representation of convex decompositions of various levels

of approximation.

Figure 13 shows an approximate convex decomposition with 128 components and a

minimum convex decomposition with 340 components [71] of a Nazca line monkey.†

Our algorithm computes an ACD of a simple polygon with n vertices and r

notches in O(nr) time. In contrast, as described in Chapter II, exact convex decom-

position is NP-hard [90, 69, 91] or, if the polygon has no holes, takes O(nr2) time

[32, 71].

We follow the divide-and-conquer strategy, as described in Algorithm 1, to decom-

pose a polygon P into a set of τ -convex pieces. Recall that the two main sub-routines

required for this algorithm include sub-routines that measure and resolve concave

†Nazca lines [25] are mysterious drawings found in southwest Peru. They have
lengths ranging from several meters to kilometers and can only be recognized by aerial
viewing. Two drawings, monkey and heron, are used as examples in this chapter.

28

(a) (b) (c)

Figure 13. (a) The initial Nazca monkey has 1,204 vertices and 577 notches. The

radius of the minimum bounding circle of this model is 81.7 units. Set-

ting the concavity tolerance at 0.5 units, and not allowing Steiner points,

(b) an approximate convex decomposition has 126 approximately convex

components, and (c) a minimum convex decomposition has 340 convex

components.

features. General issues and details regarding of our concavity measurements are

presented in Section A. Next, in Section B, we discuss how a concave feature with

unacceptable concavity can be resolved. In Section C, we analyze the complexity of

the method and provide implementation details and experimental results in D.

A. Measuring Concavity

Recall that the concavity of a boundary point x of a polygon P is the distance

from x to the boundary of P ’s convex hull. In this section, we will discuss how the

distance can be approximated for points that are on the external boundary and on

hole boundaries.

29

Pump in air

ab

(a)

Pi
x

x
′

vanished hole, P
v
i

(b)

Figure 14. (a) The initial shape of a non-convex balloon (shaded). The bold line is

the convex hull of the balloon. When we inflate the balloon, points not

on the convex hull will be pushed toward the convex hull. Path a denotes

the trajectory with air pumping and path b is an approximation of a. (b)

The hole vanishes to its medial axis and vertices on the hole boundary

will never touch the convex hull.

1. Measuring Concavity for External Boundary (∂P0) Points

An intuitive way to define concavity for a point x ∈ ∂P , concavity(x), is to consider

the trajectory of x when x is retracted from its original position to ∂CHP . Recall

that we let retractx(t) : ∂P → CHP denote the function defining the trajectory

of a point x ∈ ∂P when x is retracted from its original position to ∂CHP . More

details regarding the function retractx(t) can be found in Chapter III, where we also

describe the properties that we require for the retraction function. An intuition of

this retraction function is illustrated in Figure 14(a). Recall that we can think of P as

a balloon that is placed in a mold with the shape of CHP . Although the initial shape

of this balloon is not convex, the balloon will become so if we keep pumping air into

it. Then the trajectory of a point on P to CHP can be defined as the path traveled

by a point from its position on the initial shape to the final shape of the balloon.

Although the intuition is simple, a retraction path such as path a in Figure 14(a) is

not easy to define or compute.

Below, we describe three methods for measuring an approximation of this re-

30

traction distance that can be used in Algorithm 1. Recall that each pocket ρ on the

external boundary ∂P0 is associated with exactly one bridge β. In Section A.1.a,

this retraction distance is measured by computing the straight-line distance from x

to the bridge. Although this distance is fairly easy to compute, as we will see in Sec-

tion A.1.a, using it we cannot guarantee that the concavity of a point will decrease

monotonically. A method that does not have this drawback is shown in Section A.1.b,

where we extract a shortest path from x to the bridge from a visibility tree contained

in the pocket. Unfortunately, this distance is more expensive to compute. Hybrid

approaches that seek the advantages of both methods are proposed in Section A.1.c.

a. Straight Line Concavity (SL-Concavity)

In this section, we approximate the concavity of a point x on ∂P0 by computing the

straight-line distance from x to its associated bridge β, if any. Note that this straight

line may intersect P . Table 1 shows the decomposition of a Nazca monkey using

SL-concavity.

Although computing the straight line distance is simple and efficient, this ap-

proach has the drawback of potentially leaving certain types of concave features in

the final decomposition. As shown in Figure 15, the concavity of s does not decrease

monotonically during the decomposition. This results in the possibility of leaving

important features, such as s, hidden in the resulting components. This deficiency is

also shown in the first image of Table 1 (τ = 40) when the spiral tail of the monkey

is not well decomposed. These artifacts result because the straight line distance does

not reflect our intuitive definition of concavity.

31

Table 1— Nazca monkey (Figure 13(a)) decomposition using SL-, SP-, H1-, and

H2-Concavity with τ as 40, 20, 10, and 1 units. Recall that the radius of

the minimum enclosing circle of the monkey is 81.7 units.

τ = 40 τ = 20 τ = 10 τ = 1
SL-Concavity

(6 components) (13 components) (24 components) (90 components)
SP-Concavity

(12 components) (16 components) (26 components) (88 components)
H1-Concavity

(12 components) (16 components) (26 components) (88 components)
H2-Concavity

(12 components) (15 components) (25 components) (90 components)

32

� � �

Figure 15. Let r be the notch with maximum concavity measured using SL-concavity.

After resolving r, the concavity of s increases. If concavity(r) < τ , then

s will never be resolved even if concavity(s) would be larger than τ if the

model were to be resolved at r.

b. Shortest Path Concavity (SP-Concavity)

In our second method, we find a shortest path from each vertex x in a pocket ρ to

the bridge line segment β = (β−, β+) such that the path lies entirely in the area

enclosed by β and ρ, which we refer to as the pocket polygon and denote by Pρ. Note

that Pρ must be a simple polygon. See Figure 16(a). In the following, we use π(x, y)

to denote the shortest path in Pρ from an object x to an object y, where x and y

can be edges or vertices. Two objects x and y are said to be weakly visible [8] to

each other if one can draw at least one straight line from a point in x to a point in

y without intersecting the boundary of Pρ. A point x is said to be perpendicularly

visible from a line segment β if x is weakly visible from β and one of the visible lines

between x and β is perpendicular to β. For instance, points a and c in Figure 16(b)

are perpendicularly visible from the bridge β and b and d are not. We denote by V +
β

the ordered set of vertices that are perpendicularly visible from β, where vertices in

V +
β have the same order as those in ∂P0.

We compute the shortest distance to β for each vertex x in ρ according to the

process sketched in Algorithm 2. First, we split Pρ into three regions, Pρβ− , Pρβ,

and Pρβ+ as shown in Figure 16(b). The boundaries between Pρβ− and Pρβ and Pρβ

and Pρβ+ , i.e., aβ− and cβ+, are perpendicular to β. As shown in Lemma A.2, the

shortest paths for vertices x in Pρβ− or Pρβ+ to β are the shortest paths to β− or β+,

33

β− β+

Pρ

(a)

b

c
Pρβ−

Pρβ
Pρβ+

β− β+

ad

(b)

v10

b

b̂

v9

â

a
v5

v7

β− β+

v3

v6

v8

(c)

Figure 16. (a) Pρ is a simple polygon enclosed by a bridge β and a pocket ρ. (b) Split

Pρ into Pρβ− , Pρβ, and Pρβ+ . (c) V −
β = {v7, v8, v9} and V +

β = {v5, v6, v10}.

respectively. These paths can be found by constructing a visibility tree [53] rooted

at β− (β+) to all vertices in Pρβ− (Pρβ+).

The shortest path for a vertex x ∈ Pρβ to β is composed of two parts: the shortest

path π(x, y), from x to some point y perpendicularly visible to β, i.e., y ∈ V +
β , and

the straight line segment connecting y to β, π(y, β). Let V −
β = {v ∈ ∂Pρβ} \ V +

β .

Figure 16(c) illustrates an example of V +
β and V −

β . For each v ∈ V +
β , there exists a

subset of vertices in V −
β that are closer to v than to any other vertices in V +

β . These

vertices must have shortest paths passing through v. For instance, in Figure 16(c),

v8 and v7 must pass through v6. Moreover, these vertices can be found by traversing

the vertices of ∂Pρβ in order. For example, vertices between v6 and v10 must have

shortest paths passing through either v6 or v10.

We compute V +
β by first finding vertices in Pρβ that are weakly visible from β

34

Algorithm 2 SP Concavity(β,ρ)

1: Split Pρ into polygons Pρβ− , Pρβ , and Pρβ+ as shown in Figure 16(b).
2: Construct two visibility trees, T− and T+, rooted in β− and β+, respectively, to all

vertices in ρ.
3: Compute π(v, β), ∀v ∈ Pρβ− (resp., Pρβ+) from T− (resp., T+).
4: Compute an ordered set, V +

β , in Pρβ from T− and T+.

5: for each consecutive pair (vi, vj) ∈ V +
β do

6: for i < k < j do
7: π(vk, β) = min

(

π(vk, vi) + π(vi, β), π(vk, vj) + π(vj , β)
)

.

8: Return {x, c}, where x ∈ ρ is the farthest vertex from β with distance c.

and then filtering out vertices that are not perpendicularly visible from β. If a vertex

v ∈ Pρβ is weakly visible from β, both π(v, β−) and π(v, β+) must be outward convex.

Following Guibas et al. [53], we say that π(v, β−) is outward convex if the convex

angles formed by successive segments of this path keep increasing. Lemma A.1 [53]

states the property of two weakly visible edges. Our problem is a degenerate case of

Lemma A.1 as one of the edges collapses into a vertex, v. Therefore, finding weakly

visible vertices of β can be done by constructing two visibility trees rooted at β− and

β+.

Lemma A.1. [53] If edge ab is weakly visible from edge cd, the two paths π(a, c) and

π(b, d) are outward convex.

The following lemma shows that Algorithm 2 finds the shortest paths from all

vertices in the pocket ρ to its associated bridge line segment β.

Lemma A.2. Algorithm 2 finds the shortest path from every vertex v in pocket ρ to

the bridge β.

Proof. First we show that, for vertices v in region Pρβ− , π(v, β) must pass through β−

to reach β. If the shortest path π(v, β) from some v ∈ A does not pass through β−

then it must intersect β−a at some point which we denote â. Vertex v3 in Figure 16(c)

is an example of such a vertex. However, the shortest path from â to β is the line

35

segment from â to β−. This contradicts the assumption that π(v, β) does not pass

through β−. Therefore, all points in Pρβ− must have shortest paths passing through

β−. Also, it has been proved that the visibility tree contains the shortest paths [77]

from one vertex to all others in a simple polygon. Therefore, Line 3 in Algorithm 2

must find shortest paths to β for all vertices in Pρβ− . Similarly, it can be shown that

π(v, β) for all vertices in region Pρβ+ must pass through β+.

For vertices v in region Pρβ, we show that π(v, β) must pass through V +
β to reach

β. If v ∈ V +
β , then the condition is trivially satisfied. Hence we need only consider

v ∈ V −
β . Vertices v6 ∈ V +

β and v8 ∈ V −
β in Figure 16(c) are examples of such vertices.

If the shortest path π(v, β) for some v ∈ V −
β does not pass through V +

β then it must

intersect the segment perpendicular to β passing by some vertex in V +
β . Let v′ ∈ V +

β

be such a vertex and denote the point where π(v, β) intersects ⊥v ′β as b̂. Since the

shortest path from b̂ to β is a straight line to β and it passes through v′ ∈ V +
β , we have

a contradiction to the assumption that π(v, β) does not pass through some v ∈ V +
β .

Therefore, Algorithm 2 must find the shortest path to β for all vertices in Pρβ.

The concavity of a vertex v is the length of the shortest path from v to its

associated bridge β. To compute the SP-concavity of ∂P0, we find all bridge/pocket

pairs and apply Algorithm 2 to each pair. Examples of retraction trajectories using

SP-concavity are shown in Figure 17.

Next, we show that concavity(P) decreases monotonically in Algorithm 1 if we

use the shortest path distance to measure concavity. The guarantee of monotonically

decreasing concavity eliminates the problem of leaving important concave features

untreated as may happen using SL-concavity (see Table 1).

Lemma A.3. The concavity of ∂P0 decreases monotonically during the decomposition

in Algorithm 1 if we use SP-concavity.

36

Figure 17. Shortest paths to the boundary of the convex hull.

Proof. We show that the concavity of a point x in a pocket ρ of ∂P0 either decreases

or remains the same after another point x′ ∈ ρ is resolved. Let β be ρ’s bridge with

β− and β+ as end points. After x′ is resolved, ρ breaks into two polygonal chains,

from β− to x′ and from x′ to β+. New pockets and bridges will be constructed for

both polygonal chains. Since the shortest path from x to the previous bridge β must

intersect the bridge for x’s new pocket, the new concavity of x will decrease or remain

the same.

Finally, we show that Algorithm 2 takes O(n) time to compute SP-concavity for

all vertices on ∂P0.

Lemma A.4. Measuring the concavity of the vertices on the external boundary ∂P0

using shortest paths takes O(n) time, where n is the size of ∂P0.

Proof. For each bridge/pocket, we show that the SP-concavity of all pocket vertices

can be computed in linear time, which implies that we can measure the SP-concavity

of P in linear time. First, it takes O(n) time to split P into Pρβ− , Pρβ, and Pρβ+

by computing the intersection between the pocket ρ and two rays perpendicular to β

initiating from β− and β+. Then, using a linear time triangulation algorithm [30, 2],

we can build a visibility tree in O(n) time. Finding V +(β) takes O(n) time as shown

in [53]. The loop in Lines 5 to 8 of Algorithm 2 takes
∑

|j − i| ≤ n = O(n) time since

37

the (i, j) intervals do not overlap. Thus, Algorithm 2 takes O(n) time and therefore

we can measure the SP-concavity of P in O(n) time.

c. Hybrid Concavity (H-Concavity)

We have considered two methods for measuring concavity: SL-concavity, which can

be computed efficiently, and SP-concavity, which can guarantee that concavity de-

creases monotonically during the decomposition process. In this section, we describe a

hybrid approach, called H-concavity, that has the advantages of both methods — SL-

concavity is used as the default, but SP-concavity is used when SL-concavity would

result in non-monotonically decreasing concavity of P .

SL-concavity can fail to report a significant feature x when the straight-line path

from x to its bridge β intersects ∂P0. In this case, x’s concavity is under measured.

Whether a pocket can contain such points can be detected by comparing the directions

of the outward surface normals for the edges ei in the pocket and the outward normal

direction ~nβ of the bridge β. The decision to use SL-concavity or SP-concavity is

based on the following observation. Figure 18 illustrates this observation.

Observation A.5. Let β and ρ be a bridge and pocket of ∂P0, respectively. If

concavity(∂P) does not decrease monotonically using the SL-concavity measure, there

must be an edge e ∈ ρ such that the normal vector of e, ~ne, and the normal vector of

β, ~nβ, point in opposite directions, i.e., ~ne · ~nβ < 0.

This observation leads to Algorithm 3. We first use Observation A.5 to check

if SL-concavity can be used. If so, the concavity of P and its witness is computed

using SL-concavity. Otherwise, SP-concavity is used. This approach improves the

computation time and guarantees that the decomposition process has monotonically

decreasing concavity.

38

P

~nββ

~ne

e
ρ

(a)

β ~nβ

e

~ne
ρ

P

(b)

Figure 18. SL-concavity can handle the pocket in (a) correctly because none of the

normal directions of the vertices in the pocket are opposite to the nor-

mal direction of the bridge. However, the pocket in (b) may result in

non-monotonically decreasing concavity.

Another option is to use SL-concavity more aggressively to compute the decom-

position even more efficiently. This approach is described in Algorithm 4. First, we

use SL-concavity to measure the concavity of a given bridge-pocket pair. If the max-

imum concavity is larger than the tolerance value τ , we split P . Otherwise, using

Observation A.5, we check if there is a possibility that some feature with untolerable

concavity is hidden inside the pocket. If we find a potential violation, then SP-

concavity is used. This approach is more efficient because it only uses SP-concavity

if SL-concavity does not identify any untolerable concave features. We refer to the

concavities computed using Algorithm 3 and Algorithm 4 as H1-concavity and H2-

concavity, respectively.

Unlike H1-concavity, decomposition using H2-concavity may not have mono-

tonically decreasing concavity. Thus, the order in which the concave features are

found for H1- and H2-concavity can be different. Table 1 shows the decomposition

process using H1-concavity and H2-concavity, respectively. The decomposition us-

ing H1-concavity is identical to that using SP-concavity. The decomposition using

H2-concavity is more similar to the decompositions that would result from using SP-

concavity with a larger τ or from using SL-concavity with smaller τ . We also observe

39

Algorithm 3 H1-Concavity(β, ρ)

1: if No potential hazard detected, i.e., @r ∈ ρ such that ~nr · ~nβ < 0 then
2: Return SL-concavity and its witness. (Section A.1.a)
3: else
4: Return SP-concavity and its witness. (Section A.1.b)

Algorithm 4 H2-Concavity(β, ρ)

1: SL-concavity and its witness {x, c}. (Section A.1.a)
2: if c > τ then
3: Return {x, c}.

4: if No potential hazard detected, i.e., @r ∈ ρ such that ~nr · ~nβ < 0 then
5: Return {x, c}.

6: Return SP-concavity and its witness. (Section A.1.b)

that the relative computation costs of the different measures are, from slowest to

fastest: SP-concavity, H1-concavity, H2-concavity, and finally SL-concavity. Exper-

iments comparing decompositions using these concavity measures are presented in

Section D.

2. Measuring the Concavity for Hole Boundary (∂Pi>0) Points

Note that in the balloon expansion analogy, points on hole boundaries will never

touch the boundary ∂CHP of the convex hull CHP . The concavity of points in holes

is therefore defined to be infinity and so we need some other measure for them. We

will estimate the concavity of a hole Pi locally, i.e., without considering the external

boundary ∂P0 or the convex hull ∂CHP . Using the balloon expansion analogy again,

we observe the following.

Observation A.6. Pi will “vanish” into a set of connected curved segments forming

the medial axis of the hole as it contracts when ∂P0 transforms to CHP . These curved

segments will be the union of the trajectories of all points on ∂Pi to CHP once ∂Pi is

merged with ∂P0. Figure 14(b) shows an example of a vanished hole.

40

a. Concavity for Holes

Recall that, from Observation B.3 in Chapter III, ∂Pi can also be viewed as a pocket

without a bridge. The bridge will become known when a point x ∈ ∂Pi is resolved,

i.e., when a diagonal between x and ∂P0 is added which will make ∂Pi become a

pocket of ∂P0. If x is resolved, the concavity of a point y in ∂Pi is concavity(x) +

dist(x, y). We define the concavity witness of x, cw(x), to be a point on ∂Pi such

that dist(x, cw(x)) > dist(x, y), ∀y 6= cw(x) ∈ ∂Pi. That is, if we resolve x, then

cw(x) will be the point with maximum concavity in the pocket ∂Pi. For associate

distance measures (such as all those considered here), x and cw(x) are associative, i.e.,

cw(cw(x)) = x, so that if we resolve cw(x), then x will be the point with maximum

concavity in the pocket ∂Pi. See Figure 19. Intuitively, the maximum dist(p, cw(p)),

where p ∈ ∂Pi represents the “diameter” of Pi. The antipodal pair p and cw(p) of

the hole Pi represent important features because p (or cw(p)) will have the maximum

concavity on ∂Pi when cw(p) (or p) is resolved. Our task is to find p and cw(p).

A näıve approach to find the antipodal pair p and cw(p) of Pi is to exhaustively

resolve all vertices in ∂Pi. Unfortunately, this approach requires O(n2) time, where

n is the number of vertices of P . Even if we attempt to measure the concavity of Pi

locally without considering ∂P0 and CHP , computing distances between all pairs of

points in ∂Pi has time complexity O(n2
i), where ni is the number of vertices of Pi.

b. Approximate Antipodal Pair, p and cw(p)

Fortunately, there are some possibilities to approximate p and cw(p) more efficiently.

As previously mentioned, in our balloon expansion analogy, a hole will contract to the

medial axis which is a good candidate to find p and cw(p) because it connects all pairs

of points in the hole Pi. Once ∂Pi is merged to ∂P0, concavity can be computed easily

41

�

�

����� ��� 	�
� � ���
�

�

����� ���

����� ��� �

!#" $&% �(' ��)

Figure 19. An example of a hole Pi and its antipodal pair. The maximum distance

between p and cw(p) represents the diameter of Pi. After resolving p, Pi

becomes a pocket and cw(p) is the most concave point in the pocket.

from the trajectories on the medial axis. Since Pi is a simple polygon, the medial

axis of Pi forms a tree and can be computed in linear time [35]. We can approximate

p and cw(p) as the two points at maximum distance in the tree, which can be found

in linear time.

Another way to approximate p and cw(p) is to use the Principal Axis (PA) of

Pi. The PA for a given set of points S is a line ` such that total distance from the

points in S to ` is minimized over all possible lines κ 6= `, i.e.,

∑

x∈S

dist(x, `) <
∑

x∈S

dist(x, κ), ∀κ 6= `. (4.1)

In our case, S is the vertices of Pi. The PA can be computed as the Eigenvector with

the largest Eigenvalue from the covariance matrix of the points in S. Once the PA is

computed, we can find two vertices of Pi in two extreme directions on PA, and select

one as p and the other as cw(p). This approximation also takes O(n) time.

Concavity measured using the PA resembles SL-concavity because in both cases

concavity is measured as straight line distance and can be used when SL-concavity is

desired. However, using the PA to measure SP-concavity can result in an arbitrarily

large error; see Figure 20. Thus, when SP-concavity is desired, concavity should be

measured using the medial axis.

42

���
���
�

�

�

�����	��
 �

Figure 20. While the distance between the antipodal pair (p, cw(p)) computed using

the principal axis is d, the diameter of the hole with k turns is larger than

k × d. Note that k can be arbitrarily large.

c. Measuring Hole Concavity

For a polygon with k holes, we compute the antipodal pair, pi and cw(pi), for each

hole Pi, 1 ≤ i ≤ k. We use the antipodal pair of a hole to compute the concavity

of the hole. The reason of using the antipodal pair is to reveal the largest possible

concavity of the hole, thus revealing important features. A hole Pi is resolved when a

diagonal is added between pi and ∂P0. Let x be a vertex of P closest to pi (or cw(pi))

but not in Pi. Without loss of generality, assume pi is closer to x than cw(pi). We

define the concavity of a hole Pi to be:

concavity(Pi) = concavity(x) + dist(x, pi) + dist(pi, cw(pi)) + δ . (4.2)

Since all vertices in a hole have infinite concavity, the term δ is defined as concave(P0)

in Eqn. 4.2 to ensure that hole concavity is larger than the concavity of P0, and

concavity(x) + dist(x, pi) measures how “deep” the hole is from ∂P0. If x ∈ ∂P0,

concavity(x) is already known. Otherwise, x is a vertex of a hole boundary Pj 6=i and

concavity(x) = concavity(Pj).

Figure 21 shows an example of an ACD of a polygon with three holes.

43

(original) (τ = 5) (τ = 1) (τ = 0.1) (τ = 0)

Figure 21. The original polygon has 816 vertices and 371 notches and three holes.

The radius of the bounding circle is 8.14. When τ = 5, 1, 0.1, and 0 units

there are 4, 22, 88, and 320 components.

B. Resolving Concave Features

Given a polygon P , if the concavity of P is above the maximum tolerable value, then

the Resolve(P, x) sub-routine in Algorithm 1 will resolve the concave feature at the

vertex x with the maximum concavity. A requirement of the Resolve subroutine is

that if x is on a hole boundary (∂Pi, i > 0), then Resolve will merge the hole to

the external boundary and if x is on the external boundary (∂P0) then Resolve will

split P into exactly two components. See Algorithm 5 and Figure 22(a) and (b).

As described in Section A, the way we measure concavity and implement Re-

solve ensures that this is the case. For example, the concavity definition of the hole

boundary in Eqn. 4.2 implies the order of resolution of the holes. An example is

shown in Figure 23(b). Because x is the closest vertex to pi, the line segment pix will

not intersect anything.

Our simple implementation of Resolve runs in O(n) time. The process is applied

recursively to all new components. The union of all components {Ci} will be our final

decomposition. The recursion terminates when the concavity of all components of P

is less than τ . Note that the concavity of the features changes dynamically as the

polygon is decomposed (see Figure 22(c)).

44

�

�

� ���

� ���

�

� ���

�	��
��� ���

(a)

�

�	������ ���

�

������

(b)

� �

(c)

Figure 22. (a) If x ∈ ∂Pi>0, “Resolve” merges ∂Pi into P0. (b) If x ∈ ∂P0, “Resolve”

splits P into P1 and P2. (c) The concavity of x changes after the polygon

is decomposed.

Algorithm 5 Resolve(P , r)

Input. A polygon, P , and a notch r of P .
Output. P with a diagonal added to r so that r is no longer a notch.
1: if r ∈ ∂P0 then
2: Add a diagonal rx according to Eqn. 4.3, where x is a vertex in ∂P0.
3: else
4: Add a diagonal rx, where x is the closest vertex to r in ∂P0.

C. Correctness and Complexity Analysis

In this section, we will show that ACD will indeed produce ‘more and more convex’

components during the iterative decomposition process and will eventually produce

an exact convex decomposition when the value of τ is set as zero. We will also show

that ACD has O(nr) time complexity, where n and r are the numbers of vertices and

notches, respectively.

In Algorithm 1, we first find the most concave feature, i.e., the point x ∈ ∂P

with maximum concavity, and remove that feature x from P . In this section, we show

that x must be a notch (Lemma C.2) and that if the tolerable concavity is zero then

the result will be an exact convex decomposition, i.e., all notches must be removed

(Lemma C.3). First, observe that if x is a notch, then the concavity of x must be

larger than zero.

45

���

��� ���

���

���

��	

��

��

���

���

Figure 23. An example of hole resolution. Holes and the external boundary form

a dependency graph which determines the order of resolution. In this

case holes P1 and P3 will be resolved before P2 and P4. Dots on the hole

boundaries are the antipodal pairs of the holes.

Lemma C.1. If a point r ∈ ∂P is a notch, then concavity(r) is not zero.

Proof. Each point r on ∂P is a (i) a point on the convex hull of P (e.g., r1 in

Figure 24), (ii) a convex point, not on the convex hull of P (e.g., r2 in Figure 24), or

(iii) a notch (e.g., r3 in Figure 24). In case (i), then by definition concavity(r) = 0

and r is not a notch. In all other cases, and in particular when r is a notch, then

concavity(r) 6= 0 (since r is not on CHP , its distance to a bridge must be > 0).

Lemma C.2. The concavity measures we have proposed (SL, SP, H1 or H2) are

simple and stable. Hence, a point x ∈ ∂P with maximum concavity, i.e., @y ∈

∂P such that dist(y, CHP) > dist(x,CHP), must be a notch.

Proof. We first note that internal co-linear vertices do not contribute to the shape of

P . Therefore, without loss of generality, all our algorithms and analysis assume such

vertices do not exist (they can easily be removed in pre-processing), and hence we

are guaranteed that no two consecutive vertices on ∂P will have the same concavity.

We now show that SL-concavity and SP-concavity and our method for measuring

the hole concavity are both simple and stable. We first consider SL-concavity. Assume

β is aligned along the x-axis. SL-concavity is stable because vertices are always

46

r3

r2

r1

Figure 24. Point r1 is on the boundary of the convex hull and points r2 and r3 are

not. Point r3 is a notch and points r1 and r2 are not.

retracted in the direction of the y-axis. Let x be the lowest vertex on the y-axis.

Since all vertices are above x, x cannot have an internal angle less than 180◦, i.e., x

must be a notch. Therefore, SL-concavity must also be simple. We next consider SP-

concavity. Since all end points of the visibility tree are notches, resolving notches must

reduce the concavity and will not affect the concavity of the remaining vertices. Thus,

SP-concavity is simple and stable. For hole concavity, if we assume β is perpendicular

to the PA, then it is not difficult to see that hole concavity is similar to SL-concavity

with the PA serving as the y-axis (i.e., the maximum concavity of a hole is the distance

between the antipodal pair along the PA). Hence, hole concavity is also simple and

stable.

Although Algorithm 1 does not look for notches explicitly, Lemma C.2 establishes

that Algorithm 1 indeed resolves notches and only notches.

In Lemma C.3, we show that Algorithm 1 resolves all notches when the tolerable

concavity is zero. In this case, the approximate convex decomposition is an exact

convex decomposition, i.e., CDτ (P) is equal to CD(P).

Lemma C.3. Polygon P is 0-convex if and only if P is convex.

Proof. If P is convex, then P has no notches. In this case, the concavity of P is

maxx∈P{concavity(x)} = maxx∈∂P{∅} = 0. Assume P is not convex but that it has

47

zero concavity. Since P is not convex, P has at least one notch. From Lemma C.1,

we know that concavity(r) 6= 0 and thus also concavity(P) 6= 0. This contradiction

establishes the lemma.

Based on Lemma C.2 and Lemma C.3, we conclude our analysis of Algorithm 1

in Theorems C.4 and C.5.

Theorem C.4. When τ = 0, Algorithm 1 resolves all and only notches of polygon

P using the concavity measurements in Section A.

Proof. By Lemma C.2, we know that ACD resolves only notches, and by Lemma C.3

that ACD resolves all notches when τ = 0.

Theorem C.5. Let {Ci}, i = 1, . . . ,m, be a τ -convex decomposition of a polygon P

with n vertices, r notches and k holes. P can be decomposed into {Ci} in O(nr) time.

Proof. We first consider the case in which P has no holes, i.e., k = 0. We will show

that each iteration in Algorithm 1 takes O(n) time. For each iteration, we compute

the convex hull of P and the concavity of P . The convex hull of P can be constructed

in linear time in the number vertices of P [97]. To compute the concavity of P , we

need to find bridges and pockets and compute the distance from the pockets to the

bridges. Associating the bridges and pockets requires O(n) time using a traversal of

the vertices of P . When the shortest path distance is used, measuring concavity(P)

takes linear time as shown in Lemma A.4. When the straight line distance is used,

each measurement of concavity(x) takes constant time, where x is a vertex of P .

Therefore, the total time for measuring concavity(P) takes O(n) as well. Similarly,

we can show that the hybrid approach takes O(n) time. Moreover, Resolve splits P

48

into C1 and C2 in O(n) time. Thus, each iteration takes O(n) time for P when P

does not have holes.

If the resulting decomposition has m components, the total number of iterations

of Algorithm 1 is m − 1. Since each time we split P into C1 and C2, at most three

new vertices are created, the total time required for the m− 1 cuts is O(n+(n+3)+

. . . + (n + 3 ∗ (m − 2))) = O(nm + 3 × (m−1)2

2
) = O(nm + m2).

When k > 0, we estimate the concavity of a hole locally using its principal axis

(O(n) time) and add a diagonal between the vertex with the maximum estimated

concavity and its closest vertex of ∂P (O(n) time). For each hole that connects

to ∂P , at most three new vertices are created. Therefore, resolving k holes takes

O(nk + k2) time.

Therefore, the total time required to decompose P into {Ci} is O(nm + m2) +

O(nk + k2) = O(n(m + k) + m2 + k2) time. Since m ≤ r + 1 and k < r, O(n(m +

k) + m2 + k2) = O(nr + r2). Also, because r < n, O(nr + r2) = O(nr). Thus,

decomposition takes O(nr) time.

The number of components in the final decomposition, m, depends on the toler-

ance τ and the shape of the input polygon P . A small τ and an irregular boundary

will increase m. However, m must be less than r + 1, the number of notches in P ,

which, in turn, is less than bn−1
2
c. Detailed models, such as the Nazca line monkey

and heron in Figures 13 and 27, respectively, generally have r close to Θ(n). In this

case, Chazelle and Dobkin’s approach [32] has O(n+r3) = O(n3) time complexity and

Keil and Snoeyink’s approach [71] has O(n+r2 min {r2, n}) = O(n3) time complexity.

When r = Θ(n), Algorithm 1 has O(n2) time complexity.

49

D. Experimental Results

In this section, we compare the final decomposition size and the execution time of

the approximate convex decomposition (ACD) computed using different concavity

measures and with the minimum component exact convex decomposition (MCD)

[71]. We observe that ACD is significantly faster and produces fewer components

when τ > 0 and ACD remains significantly faster when τ = 0. We also observe that,

for models with the same shape but with different complexity, ACDs of these models

remain very similar, i.e., ACD is not very sensitive to the complexity of the models

with the same shape. We also compare the results and efficiency of ACDs computed

with different types of concavity measures. We see that ACD with SL-concavity is the

most efficient. We observe the same benefits (small size and high efficiency) for ACD

of polygons with holes. Finally, we show that ACD can generate visually meaningful

components.

1. Implementation Details

We implemented the proposed algorithm in C++, and used FIST [54] as the trian-

gulation subroutine for finding the shortest paths in pockets. Instead of resolving

a notch r using a diagonal that bisects the dihedral angle of r, we use a heuristic

approach intended to appeal to human perception. When selecting the diagonal for a

particular notch r, we consider all possible diagonals rx from r to a boundary point

x ∈ ∂P0. All diagonals are scored using the scoring function

f(r, x) =

0 : rx does not resolve r

(1+sc×concavity(x))
(sd×dist(r,x))

: otherwise, where sc and sd are user defined scalars

(4.3)

and the highest scoring one is selected as the diagonal for resolving r.

50

According to experimental studies [120], people prefer short diagonals to long

diagonals. Thus, in addition to the concavity, we consider the distance as another

criterion when selecting the diagonal to resolve r. Increasing sc favors concavity and

increasing sd places more emphasis on the distance criterion. In our experiments, we

found that by favoring shorter diagonal we can generate visually more meaningful

components, therefore sc = 0.1 and sd = 1 are used. This scoring process adds O(n)

time to each iteration and therefore does not change the overall asymptotic bound.

2. Models

The polygons used in the experiments are shown in Figures 25–33. Summary infor-

mation for these models is shown in Table 2. The model in Figure 29 has 18 holes

and all the other models have no holes. The models in Figure 26 and 27 are referred

to as monkey1 and heron1, respectively. Two additional polygons, with the same size

and shape as monkey1 and heron1, are called monkey2 and heron2.

3. Results

All experiments were done on a Pentium 4 2.8 GHz CPU with 512 MB RAM. For a

fair comparison, we re-coded the MCD implementation available at [122] from Java

to C++. To provide an additional metric for comparison, we estimate the quality of

the final decomposition {Ci} by measuring its convexity [136]:

convex({Ci}) =

∑

i area(Ci)
∑

i area(CHCi
)

, (4.4)

where area(x) is the area of an object x and CHx is its convex hull. Eqn. 4.4 provides

a normalized measure of the similarity of the {Ci} to their convex hulls. Thus, unlike

our concavity measurements, this convexity measurement is independent of the size,

i.e., area, of polygons. For example, a set of convex objects will have convexity 1

51

Table 2— Summary information for models studied. In this table, |v|, |r| and |h|

are the number of vertices, notches and holes, respectively, and R is the

radius of the minimum enclosing ball

Name Figure |v| |r| |h| R (units)

maze 800 400 0 15.3

monkey1 1204 577 0 81.7

monkey2 Same as monkey1 9632 4787 0 81.7

heron1 1037 484 0 137.1

heron2 Same as heron1 8296 4122 0 137.1

neuron 1815 991 18 19.6

texas 139 62 0 17.4

deep cave 348 153 0 12.9

bird 275 133 0 15.4

Mammoth 403 185 0 16.5

52

regardless of their size.

a. ACD Is Significantly Faster and Produces Fewer Components When τ > 0

A general observation from our experiments is that when a little non-convexity can be

tolerated, the ACD may have significantly fewer components and it may be computed

significantly faster; see Table 3. For example, in Figure 25, by sacrificing 0.005

convexity, i.e., with τ = 0.1, the ACD generates only 25% as many components as

the MCD and it is almost 8 times faster. In Figure 26, by sacrificing 0.003 convexity,

i.e., with τ = 0.1, the ACD has 8/10 the components of the MCD and it is 6.3

times faster. By sacrificing 0.06 convexity, i.e., with τ = 1, the ACD has 1/4 the

components of the MCD and it is 10 times faster. In Figure 27, by sacrificing 0.02

convexity, i.e., with τ = 0.1, the ACD has about 1/2 the components of the MCD

and it is 7.6 times faster.

Similar observations can be found in the results for the larger monkey and heron

models (Figures 26 and 27). For example, for the monkey, the radius of its bounding

circle is about 82, and so 0.1 concavity means a one pixel dent in an 820×820 image,

which is almost unnoticeable to the naked eye. Moreover, the convexity of 0.1-convex

components of monkey1 (monkey2) is 0.997 (0.995) and the convexity of 0.1-convex

components of heron1 (heron2) is 0.98 (0.976). No MCD data is collected for monkey2

and heron2 due to the difficulty of solving these large problems with the MCD code.

b. ACD Is Always Faster When τ = 0

We also observe that, when exact convex decomposition is needed (τ = 0), our method

does produce somewhat more components than the MCD (on average, 1.2 to 1.5 times

more than ECD), but it is also always faster than ECD, especially when the size of

the model is large. See Table 3.

53

Table 3— Comparing the decomposition size and time of the ACD and the MCD.

Convexity and concavity in this table indicate the tolerance of the ACD.

Note that monkey2, heron2 and neuron are not listed here because MCD

does not work on these models.

Name concavity convexity size time
τ (units) (unitless) (ACD:MCD) (ACD:MCD)

maze 0.1 99.5% 1.0:4.0 1.0:8.0
0.0 100.0% 1.3:1.0 1.0:6.0

monkey1 0.1 99.7% 8.0:10 1.0:6.3
0.0 100.0% 1.3:1.0 1.0:5.1

heron1 0.1 98.0% 1.0:2.0 1.0:7.6
0.0 100.0% 1.4:1.0 1.0:5.9

texas 0.1 98.0% 1.0:5.0 1.0:2.0
0.0 100.0% 1.5:1.0 1.0:2.0

deep cave 0.1 98.0% 1.0:8.0 1.0:2.7
0.0 100.0% 1.2:1.0 1.0:1.3

bird 0.1 98.0% 1.0:7.5 1.0:6.7
0.0 100.0% 1.4:1.0 1.0:1.6

mammoth 0.1 98.0% 1.0:8.0 1.0:7.8
0.0 100.0% 1.4:1.0 1.0:2.7

c. ACD of Models with the Same Shape but Different Complexity

This experiment, shown in Figure 28, reveals another interesting property of the

ACD: regardless of the complexity of the input, the ACD generates almost identical

decompositions for models with the same shape when τ is above a certain value. For

example when τ > 0.01, ACD generates the same number of components for both

monkey1 and monkey2 and for heron1 and heron2.

d. Differences among the Concavity Measures

The maze-like model (Figure 25) illustrates differences among the concavity measures.

When τ ≥ 10, the convexity measurements in Figure 25(d) show that SL-concavity

misses some important features that are found by SP-concavity (and thus also by H1-

54

concavity and H2-concavity). When τ is less than 5, the SL-concavity measurement

has similar output as SP-concavity and hybrid measurements. In Figure 25(c), we also

see that SP-concavity is more expensive to compute and that H2-concavity is “shape”

sensitive, i.e., H2-concavity requires more (less) time if the input shape is complex

(simple). Computing H2-concavity is also faster than computing H1-concavity.

e. ACD of Holes

We also observe that the ACD of polygons with holes can be generated efficiently

as ACD of polygons without holes. A polygonal model of planar neuron contours

is shown in Figure 29. It has 18 holes and roughly 45% of the vertices are on hole

boundaries. Figure 29(b) shows the decomposition using the proposed hole concavity

and SP-concavity measures. The dashed line (at Y = 0.06) in Figure 29(c) is the total

time for resolving the 18 holes. Once all holes are resolved, the ACD produces similar

results as before. No MCD was computed because the algorithm cannot handle holes.

f. ACD Generates Visually Meaningful Components

The ACD also generates visually meaningful components, such as legs and fingers of

the monkey in Figure 13 and wings and tails of the heron in Figure 27. More results

that demonstrate this property are shown in Figures 30 to 33. The main reason

for generating visually meaningful components is that ACD decomposes the models

at high concavity areas, which is usually the most dented or bent area, or an area

with branches. Experimental evidence indicates that these areas are the places that

humans decompose shapes into components [14, 95, 117, 120] for shape recognition.

55

(a)

0

0.05

0.1

0.15

0.2

 150 70 15 10 5 1 0.1 exact
Concavity Tolerance (τ)

T
im

e
(s

ec
)

straight line
shortest path
hybrid 1
hybrid 2
MCD

(c)

0

50

100

150

200

250

300

350

 150 70 15 10 5 1 0.1 exact
Concavity Tolerance (τ)

N
um

be
r

of
 C

om
po

ne
nt

s

straight line
shortest path
hybrid 1
hybrid 2
MCD

(b)

0

0.2

0.4

0.6

0.8

1

 150 70 15 10 5 1 0.1 exact
Concavity Tolerance (τ)

C
on

ve
xi

ty

straight line
shortest path
hybrid 1
hybrid 2

(d)

Figure 25. (a) Initial (top) and approximately (bottom) decomposed Maze models.

The initial Maze model has 800 vertices and 400 notches. (b) Number of

components in final decomposition. (c) Decomposition time. (d) Convex-

ity measurements.

56

(a)

0

0.1

0.2

0.3

0.4

0.5

 40 1 0.1 0.01 exact
Concavity Tolerance (τ)

T
im

e
(s

ec
)

 monkey
1

straight line
shortest path
hybrid 1
hybrid 2
MCD

(c)

0

100

200

300

400

500

 40 1 0.1 0.01 exact
Concavity Tolerance (τ)

N
um

be
r

of
 C

om
po

ne
nt

s

 monkey
1

straight line
shortest path
hybrid 1
hybrid 2
MCD

(b)

0

0.2

0.4

0.6

0.8

1

 40 1 0.1 0.01 exact
Concavity Tolerance (τ)

C
on

ve
xi

ty

 monkey
1

straight line
shortest path
hybrid 1
hybrid 2

(d)

Figure 26. (a) Initial model of Nazca Monkey; see Figure 13. (b) Number of com-

ponents in final decomposition. (c) Decomposition Time. (d) Convexity

measurements.

57

(a)

0

100

200

300

400

 10 1 0.1 0.01 exact
Concavity Tolerance (τ)

N
um

be
r

of
 C

om
po

ne
nt

s

 heron
1

straight line
shortest path
hybrid 2
MCD

(b)

0

0.1

0.2

0.3

0.4

 40 1 0.1 0.01 exact
Concavity Tolerance (τ)

T
im

e
(s

ec
)

 heron
1

straight line
shortest path
hybrid 2
MCD

(c)

0

0.2

0.4

0.6

0.8

1

 40 1 0.1 0.01 exact
Concavity Tolerance (τ)

C
on

ve
xi

ty

 heron
1

straight line
shortest path
hybrid 2

(d)

Figure 27. (a) Top: The initial Nazca Heron model bounding circle is 137.1 units.

Middle: Decomposition using approximate convex decomposition. 49

components with concavity less than 0.5 units are generated. Bottom:

Decomposition using optimal convex decomposition. 263 components are

generated. (b) Number of components in final decomposition. (c) De-

composition time. (d) Convexity measurements.

58

0

0.5

1

1.5

2

2.5

 40 1 0.1 0.01 exact
Concavity Tolerance (τ)

T
im

e
(s

ec
)

 monkey
2

straight line
shortest path
hybrid 2

0

0.5

1

 40 1 0.1 0.01 exact
Concavity Tolerance (τ)

T
im

e
(s

ec
)

 heron
2

straight line
shortest path
hybrid 2

(a)

 40 1 0.1 0.01 exact
Concavity Tolerance (τ)

N
um

be
r

of
 C

om
po

ne
nt

s

 monkey
2

1K

2K

3K

4K
straight line
shortest path
hybrid 2

 10 1 0.1 0.01 exact
Concavity Tolerance (τ)

N
um

be
r

of
 C

om
po

ne
nt

s
 heron

2

1K

2K

3K
straight line
shortest path
hybrid 2

(b)

0

0.2

0.4

0.6

0.8

1

 40 1 0.1 0.01 exact
Concavity Tolerance (τ)

C
on

ve
xi

ty

 monkey
2

straight line
shortest path
hybrid 2

0

0.2

0.4

0.6

0.8

1

 40 1 0.1 0.01 exact
Concavity Tolerance (τ)

C
on

ve
xi

ty

 heron
2

straight line
shortest path
hybrid 2

(c)

Figure 28. Left: monkey2. Right: heron2. (b) Number of components in final de-

composition. (c) Decomposition time. (d) Convexity measurements.

59

(a) (b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 30 20 10 1 0.1 0.01 exact
Concavity Tolerance (τ)

T
im

e
(s

ec
)

straight line
shortest path
hybrid 1
hybrid 2

(d)

0

100

200

300

400

500

600

700

800

 30 20 10 1 0.1 0.01 exact
Concavity Tolerance (τ)

N
um

be
r

of
 C

om
po

ne
nt

s

straight line
shortest path
hybrid 1
hybrid 2

(c)

0

0.2

0.4

0.6

0.8

1

 30 20 10 1 0.1 0.01 exact
Concavity Tolerance (τ)

C
on

ve
xi

ty

straight line
shortest path
hybrid 1
hybrid 2

(e)

Figure 29. (a) The initial model of neurons has 1,815 vertices and 991 notches and 18

holes. The radius of the enclosing circle is 19.6 units. (b) Decomposition

using approximate convex decomposition. Final decomposition has 236

components with concavity less than 0.1 units. (c) Number of compo-

nents in final decomposition. (d) Decomposition Time. The dashed line

indicates the time for resolving all holes. (e) Convexity measurements.

60

(SL, size=7) (SP, size=7) (H2, size=7) (MCD, size=38)

Figure 30. Texas. Approximate components are 1-convex.

(SL, size=49) (SP, size=48) (H2, size=49) (MCD, size=126)

Figure 31. Deep cave. Approximate components are 0.1-convex.

(SL, size=37) (SP, size=37) (H2, size=37) (MCD, size=75)

Figure 32. Bird. Approximate components are 0.1-convex.

61

(SL, size=35) (SP, size=34) (H2, size=34) (MCD, size=105)

Figure 33. Mammoth. Approximate components are 0.2-convex.

62

CHAPTER V

APPROXIMATE CONVEX DECOMPOSITION OF POLYHEDRA

In this chapter, we describe practical methods for computing a solid ACD of a poly-

hedron of arbitrary genus, which consists of a collection of nearly convex volumes

whose union equals the original polyhedron, and a surface ACD of a polyhedral sur-

face, which partitions the surface of the polyhedron into a collection of nearly convex

surface patches. Solid and surface ACD of polyhedra have many potential applica-

tions including shape representation (Figure 3), motion planning (Figure 4), mesh

generation (Figure 5), and point location (Figure 2).

Similar to 2D ACD, our general strategy is to iteratively identify the most concave

feature(s) in the current decomposition, and then to partition the polyhedron so that

the concavity of the identified features is reduced until they are convex ‘enough.’

While this follows the general approach used successfully for polygons, there are

several operations that were relatively straightforward for polygons but which become

nontrivial for polyhedra. The main challenges include computing the concavity of

features efficiently and resolving concave features to generate a small and high quality

decomposition. To deal with these technical challenges in 3D, we introduce a new

technique approximate feature grouping, which enables sets of features to be processed

together, which is both more efficient and produces better results.

As mentioned in Chapter II, convex decomposition of polyhedra is not as well un-

derstood as polygons and little research on the convex decomposition of polyhedra has

gone beyond the theoretical stage. Using the simple notch-cutting strategy, Chazelle

[29] shows that this strategy can generate the worst case optimal O(r2) convex parts

and uses O(nr3) time with O(nr2) space, where n and r are the number of edges and

notches, respectively. In contrast, even for very complex models, ACDs have very few

63

ECD

ECD

Figure 34. The approximate convex decompositions (ACD) of the Armadillo and

the David models consist of a small number of nearly convex components

that characterize the important features of the models better than the

exact convex decompositions (ECD) that have orders of magnitude more

components. The Armadillo (500K edges, 12.1MB) has a solid ACD with

98 components (14.2MB) that was computed in 232 seconds while the

solid “ECD” has more than 726,240 components (20+ GB) and could not

be completed because disk space was exhausted after nearly 4 hours of

computation. The David (750K edges, 18MB) has a surface ACD with

66 components (18.1MB) while the surface ECD has 85,132 components

(20.1MB).

components, typically several orders of magnitude fewer than the ECDs. The size

(memory) and computational time are also significantly less, particularly for the solid

ACDs. In this chapter, we demonstrate the feasibility of our approach by applying it

to a number of complex models; see Figure 34 and the table on p. 88.

ACD of polyhedra follows the same framework described in Algorithm 1 to de-

compose a polyhedron P into a set of τ -convex components. As in Chapter IV, we

will discuss two main sub-routines required by Algorithm 1, i.e., measuring and re-

solving of concave features of polyhedra. In Section A, we describe several challenges

of extending the concavity measures and resolution proposed for polygons to three-

64

dimensions. We then describe ACD for genus zero polyhedra (Section B) and then

for polyhedra of arbitrary genus (Section C). Finally, we present results in Section D.

A. Challenges in Extending to Three Dimensions

Recall that, for a given polygon, ACD computes the concavity of the polygon using

SL-, SP-, or H-concavity. Then, ACD resolves the polygon by adding a diagonal at

the notch with the maximum concavity. While these operations were straightforward

for polygons, they become nontrivial for polyhedra. In this section, we discuss the

challenges of measuring and resolving concave features of polyhedra.

1. Measuring Concave Features

The bridges and pockets of a polygon have a unique one to one map. Therefore,

the concavity of the vertices of a pocket can be measured as the distances to the

uniquely associated bridge. The unique mapping between pockets and bridges is no

longer available directly for polyhedra. The problem of obtaining the bridge/pocket

relationship is closely related to the problem of spherical [105] and simplical [73] pa-

rameterization. However, mesh parameterization is costly to compute. Polyhedron

realization [112] that transforms a polyhedron P to a convex object H can be com-

puted efficiently, but H is generally not the convex hull of P and cannot be determined

before performing the transformation.

2. Resolving Concave Features

A polygon with untolerable concavity is resolved by adding a diagonal at the most

concave feature (notch). This strategy is called notch-cutting, and can be easily

extended to 3D. The notch-cutting strategy [27] that splits a polyhedron with a cut

65

(a) (b) (c)

Figure 35. Resolving concavity (a) using a cut plane that bisects a dihedral angle

results in (b) a decomposition with 10 components with concavity ≤ 0.1.

In contrast, (c) carefully selected cut planes generate only 4 components

with concavity ≤ 0.1.

plane can be used to resolve notches in Algorithm 1. The details of this notch-cutting

strategy are discussed in [11]. Figures 35(a)(b) illustrate an ACD using cut planes

that bisect dihedral angles.

A difficulty of this approach is selecting “good” cut planes. For example, in Fig-

ure 35(c), carefully selected cut planes can generate fewer components than cut planes

that simply bisect the dihedral angles of notches. Unfortunately, good strategies for

finding such good cut planes are not well known. Joe [65] proposed an approach to

postpone processing notches whose resolution would produce small components, but

this strategy still produces many small components with sharp edges for large models,

especially for more complicated models that are commonly seen nowadays.

3. Our Solution: Feature Grouping

Just as ACD provides an approximation that is more practical than ECD, we will

address the challenges mentioned above using approximations that are more tractable,

and in some cases, also provide more meaningful solutions. In particular, for both

measuring and resolving concavities, we use a technique we call feature grouping to

66

collect sets of similar and adjacent features that can be processed together. Feature

grouping is both more efficient and can improve solution quality.

For measuring concavity, by allowing bridges to be formed from convex hull

patches instead of a single convex hull facet, we can both dramatically reduce the

number of bridges as well as decrease the cost of computing the pocket to bridge

matching. Figure 36 shows an example of the bridge/pocket relationship with and

without grouping. As we will see in Section 1, bridge patches can be used to provide

a conservative measure of concavity.

Resolution of concavity can also be improved by considering feature sets rather

than individual features when determining cut planes to resolve notches. As discussed

in Section 2. the quality of the decomposition can be greatly improved when the cut

plane is defined with respect to a notch set.

B. ACD of Polyhedra without Handles

We first discuss our strategy for computing an ACD of a genus zero polyhedron. This

strategy will be extended to handle polyhedra with non-zero genus in the next section.

1. Measuring Concave Features

Recall that we define the concavity of a vertex x as the distance from ∂P to the convex

hull boundary. Since there is no unambiguous mapping from notches to convex hull

facets in 3D as there was in 2D, we first must define one.

Our strategy to match bridges with pockets is to identify pockets by projecting

convex hull edges to the polyhedron’s surface. The “projection” of a convex hull

edge e is a path on the polyhedron’s surface ∂P connecting the end points of e; we

compute the paths on ∂P using Dijkstra’s algorithm. After the convex hull edges are

67

(bridges) (bridges)

(pockets)

without grouping

(pockets)

with grouping

Figure 36. The bridges and the pockets with and without bridge grouping (cluster-

ing).

68

projected, the set of all (connected) polyhedral facets bounded by the projected edges

forms a pocket. See Figure 37. After matching bridges with pockets, we measure the

concavity of x in pocket ρ as the straight line distance to the tangent plane of ρ’s

associated bridge β.

Feature grouping: bridge patches – a conservative estimation. Finding

pockets for all facets in ∂CHP can be costly for large models. It turns out we can

reduce this cost and still provide a conservative estimate of concavity by grouping

clusters of ‘nearly’ coplanar and contiguous facets to form a bridge patch (or simply a

bridge) on ∂CHP . We then designate a “supporting” plane that is tangent to ∂CHP

as a representative plane for all facets in the bridge and compute the concavity of

a vertex as the distance to the supporting plane of its bridge; see Figure 38. The

bridge patches can be selected so that the distance from all faces in the bridge patch

to the supporting plane will be guaranteed to be below some tunable threshold ε. For

example, when ε = 0.05, only 20 bridges are identified for the model in Figure 37

which has 4,626 facets on its convex hull.

One way to compute bridge patches is from an outer approximation of a polyhe-

dron. Here we use Lloyd’s clustering algorithm adapted from [38] to identify bridges

and to ensure that the maximum distance from the included facets to the supporting

plane is less than ε. Our clustering process is composed of the following two main

steps:

1. estimating the number k of the required bridges, and

2. grouping the convex hull facets into k clusters.

In the first step, we estimate the required bridge size for a given threshold ε by

incrementally creating bridges and assigning convex hull facets to the bridges until all

the convex hull facets are assigned. We say that a facet can be assigned to a bridge if

69

e

projection of e

(a projected edge)

pocket

bridge

(a bridge/pocket pair)

(bridges) (pockets) (concavity)

Figure 37. Top: An identified bridge/pocket pair. Bottom: Bridge/pocket pairs

from the teeth model. The rightmost model is shaded so that darker

areas indicate higher concavity.

70

supporting plane

bridge

pocket

< ε< ε

Figure 38. A bridge patch and its supporting plane.

Algorithm 6 CH cluster size estimation(CHP ,ε)

Input. A convex hull CHP and a threshold ε

Output. The number of bridges that can cover ∂CHP

1: Let B and K be two empty sets
2: repeat
3: Let β be a facet of ∂CHP that is not in K

4: B = B ∪ β

5: K = K ∪ C(β) . C(β) are facets that can be assigned to β

6: until K = ∂CHP

7: return the size of B

the distance between them is less than ε. Let C(β) be a set of connected facets that

can be assigned to the bridge β. Our estimation process is outlined in Algorithm 6.

In the second step, after we know the upper bound of the number of bridges

required, we can approximate the convex hull boundary. This can be solved using

Lloyd’s clustering algorithm introduced in [38], which iteratively assigns all convex

hull facets to the best bridges using a priority queue.

It is important to note that, as stated in Observation B.1, the estimated concavity

measurement computed this way is always greater than or equal to the concavity

measured as convex hull facets are projected individually. Therefore, the estimated

concavity is an upper bound for the actual concavity.

Observation B.1. The estimated concavity measurement is always greater than, in

an amount less than ε, or equal to the concavity measured as convex hull facets are

projected individually.

71

internal

opening

external

external

p

p

q

q

Polygonal surface ACD. In most cases, the previously

mentioned concavity measure can handle surfaces with open-

ings naturally. The case that requires more attention is when

a surface “exposes” its internal side to the surface of the con-

vex hull, e.g., the surface on the right. The internal side of a

surface is exposed to the convex hull surface if and only if at least one of the convex

hull vertices is concave. A convex hull vertex p is concave if its outward normals on

the convex hull and on the surface are pointing in opposite directions. The point p

(resp., q) in the figure above is concave (resp., convex).

Now, we can compute the pocket of a bridge β from the projection of β’s bound-

ary ∂β. Let e be an edge of ∂β. If e’s vertices are

• both convex, then project e as before,

• both concave, then e has no projection,

• one convex and one concave (e.g., the edge pq in the figure), then e’s projection

is the path connecting the convex end to the opening.

2. Feature Grouping: Global Cuts

When resolving concave features, the concept of feature grouping allows us to bet-

ter prioritize concave features for resolution and also results in a smaller and more

meaningful decomposition. We first describe our method for grouping features, and

then show how the groups are used to select cut planes to partition the model.

Our strategy of grouping concave features is a bottom-up approach in which crit-

ical points, called “knots”, on the boundary of each pocket are connected into local

feature sets, called “pocket cuts”, which are then grouped to form global feature sets,

called “global cuts”. This bottom-up approach attempts to (i) avoid high computa-

72

tional complexity, e.g., grouping features based on the solution of a maximum flow

problem [66] on the full surface ∂P , (ii) avoid enhancing feature quality [80], and

(iii) avoid using other processes, e.g., mesh simplification, to enhance features. Our

approach is illustrated in Figure 39 and sketched below.

1. Identifying knots. Knots are critical points on a pocket boundary ∂ρ identified

as notches of the simplified ∂ρ using the Douglas-Peucker (DP) algorithm [55]

with simplification threshold δ, 0 ≤ δ ≤ τ .

2. Computing pocket cuts. A pocket cut is a chain of consecutive edges in a pocket

ρ whose removal will bisect ρ. Here, pocket cuts are paths connecting pairs of

knots, and we consider all knot pairs for ρ.

3. Weighting cuts. The weight of a cut determines the quality of the cut. We

compute the weight of each pocket cut κ as W(κ) = ω(κ)γ(κ), where ω(κ) =

|κ |/
∑

v∈κ concavity(v) is the reciprocal of the mean concavity of κ and γ(κ)

is the accumulated curvature of the edges in κ. The curvature of an edge e is

measured using the best fit polynomial [63].

4. Connecting pocket cuts into global cuts. Our strategy is to organize the knots

and pocket cuts in a graph GK whose vertices are knots and edges are pocket

cuts. The cycle with the minimum weight in GK will be the global cut.

Next, we will provide more details and justify the choices of the steps mentioned

above.

a. Pocket Boundaries

First, it is natural to ask why the critical points on a projected bridge edge are of

interest. As knots are the critical points of a projected bridge edge πe, we also consider

a projected bridge edge as a critical representation of a polyhedral boundary. Note

73

(a) identifying knots (b) computing pocket cuts

(c) extracting global cuts (d) splitting the model

Figure 39. The process of grouping and resolving concave features. (a) Knots

(marked by spheres) from one of the pockets. (b) Knots from all pockets

and a pocket cut (shown in thick lines) connecting a pair of knots. (c)

Global cuts (thick lines) and the graphs GK. (d) Solid (left) and surface

(right) decompositions using the identified global cuts.

74

Algorithm 7 DP(L,δ)

Input. A polygonal chain, L = {v1, v2, · · · , vn}, and threshold, δ.
Output. A simplified polygonal chain L′.
1: Let vk ∈ L be the vertex whose distance dk to the line v1vn is larger than all the other

vertices in P

2: if dk > δ then
3: return L′ = { DP({v1, · · · , vk},δ), vk, DP({vk, · · · , vn},δ) }

that the end points of πe are both vertices of the convex hull. Intuitively, the vertices

of πe are samples of ∂P and therefore encode important geometric features related to

concavity over the traversal from one peak to another peak i.e., πe is an evidence that

shows how the convex hull vertices are connected on ∂P .

b. Identifying Knots

The Douglas-Peucker (DP) line approximation algorithm is shown to be good at

revealing critical points [128] and is used to identify knots. Let L be a polygonal chain

composed of n vertices {v1, v2, · · · , vn}. For a given threshold δ, the DP algorithm

produces a simplification of L, called L′. Algorithm 7 outlines a simple version of the

algorithm. A more efficient approach can be found in [55].

Using DP simplification to identify knots is natural for our purposes because it

resembles the concept of ACD. A critical point (resp., a knot) of a polyline π is a

farthest point from the line segment (resp., the bridge) connecting the end points of

π. This provides an explanation of why we can extract important concave features

by simplifying π∗
e(i). See Figure 40.

Given a pocket boundary πe(i), knots are critical points on πe(i) found by the

DP algorithm. To identify knots on πe(i), we first transform πe(i) in R3 into a two

dimensional line π∗
e(i) in the concavity space using the following function:

π∗
e(i) =

(

di, concavity(πe(i))
)

, 0 ≤ i ≤ 1, (5.1)

75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 d
i

 C
o

n
ca

vi
ty

Figure 40. The thin line in the plot is a pocket boundary of the Stanford Bunny

(indicated by an arrow) in concavity domain. Its simplification is shown

in a thicker line and identified knots are marked as dots. The points on

the boundaries of pockets of the Bunny, Venus, and Armadillo models are

knots.

where di = i · |e| and |e| is the length of e. Then π∗
e(i) is simplified using the DP

algorithm [55]. We call a vertex a “knot” if it is a notch in πe(i) with concavity larger

than δ, 0 ≤ δ ≤ τ .

The threshold δ controls the size of knots, i.e., a smaller δ implies more concave

features will be identified; in this chapter, we used δ = τ/10. We note that these

pocket boundaries have similar functionality as the exoskeleton that connects critical

points on ∂P coded with average geodesic distance [134].

76

c. Computing Pocket Cuts

A pocket cut is a chain of consecutive edges in a pocket ρ whose removal will bisect

ρ. For a given pair of knots, we can form a pocket cut by computing a path using

Dijkstra’s algorithm that maximizes the total concavity along the path connecting

the knots. Let Nρi
be a set of knots on the boundary between ρ and one of its

neighboring pockets ρi. Any path in ρ that connects any two knots between Nρi
and

Nρj
, i 6= j, is a pocket cut of ρ. Thus, a pocket with |Nρ| knots has O(|Nρ|

2) pocket

cuts. Figure 41(a) and (b) shows a pocket with its knots on the boundary and all of

its pocket cuts, respectively.

Not all of these O(|Nρ|
2) pocket cuts, denoted by Kρ, in ρ are interesting to us.

In fact, we only need to consider O(|nρ|) pocket cuts. This reduction is based on the

following observation.

Observation B.2. Let nρi
be a set of knots on the boundary between ρ and one of

its neighboring pockets ρi. Pocket cuts between each pair nρi
and nρj

in ρ form a

non-crossing minimum (weight) bipartite matching.

We say two pocket cuts κρ and κ′
ρ cross each other if κ′

ρ will become disconnected

after ρ is separated by κρ. Therefore, we disallow a knot to connect to more than one

knot from the same boundary but it is allowed to connect to knots from boundaries

of different neighboring pockets; see Figure 41(c). The result of this restriction is that

the pocket cuts between two boundaries form a bipartite matching of their knots and

only O(|Nρ|) pocket cuts need to be considered when connecting them into global

cuts; see Figure 41(d).

Let Kρ ⊂ Kρ be a subset of pocket cuts of ρ that satisfy these criteria. It is

easy to see that the size of Kρ is O(|Nρ|). Kρ can be extracted from Kρ using the

minimum weight bipartite matching (w.r.t. a weight function W) followed by an

77

iterative deletion of cross cuts.

Cup-shape pocket. Because knots are identified on the boundary of a pocket

ρ, we cannot find any pocket cut if the boundary of ρ is near its bridge β, e.g., a

cup shape pocket. Indeed, decomposing a cup shaped model into visually meaningful

components is known to be difficult. In our case, this problem can be easily identified

by checking if the vertex with the maximum concavity of ρ is a knot and, if not, as

illustrated in Figure 42, it can be solved by simply subdividing β and ρ into smaller

bridges and pockets and forcing the new pocket boundary to pass the maximum

concavity of ρ.

d. Weighting a Cut

The weight of a cut determines the quality of the cut. Curvature is known to be the

most popular tool to evaluate extracted features, e.g., for non-photorealistic rendering

[43], texture mapping [80], and shape segmentation [51]. However, estimating curva-

ture of an entire model is difficult. Expensive preprocessing, such as mesh smoothing,

simplification [66] and function approximation [100], or postprocessing, such as Hys-

teresis thresholding [63], are generally required. All these operations require input

from users.

Despite its ability to identify surface features, we argue that curvature, by itself,

is not sufficient to identify structural features. Thus, we define the weight of a cut as:

W(κ) = ω(κ)γ(κ), (5.2)

where ω(κ) = |κ |/concavity(κ) is the reciprocal of the mean concavity of a cut κ and

γ(κ) is the accumulated curvature of the edges in κ. The curvature of an edge e is

measured using the best fit polynomial [63] of the intersection of the model and the

plane bisecting e. Since curvature is only measured on cuts, instead of on the entire

78

(a): identified knots (b): all pocket cuts

(c): non-crossing pocket cuts (d): bipartite matching pocket cuts

Figure 41. (a) Identified knots of a pocket shown in dark circles. (b) All pocket cuts

that connect all pairs of knots in the pocket. (c) Non-crossing pocket cuts.

(d) Pocket cuts from bipartite matchings between pairs of boundaries.

79

bridge

cup−shape pocket

x

subdivided bridges

cup−shape pocket

x

Figure 42. Left: A cup-shape pocket and its bridge. The black dots on the boundary

of the pocket are knots, which are very close to the bridge. We know that

this is a cup-shape pocket because its most concave feature, x, is not a

knot. Right: The bridge is subdivided and the new pocket boundary is

forced to pass x.

model, the computation is less expensive.

e. Extracting Cycles from Graph GK

Recall that GK is a graph whose vertices and edges are knots and pocket cuts. Each

cycle in GK represents a possible way of decomposing the model. The process of

extracting cycles from GK used here is similar to that of constructing a minimum

spanning tree (MST) TK on GK by greedily expanding the most promising branch

into all its neighboring pockets in each iteration. A cycle is identified when two

growing paths of TK meet. With this high level idea in mind, we are going to discuss

technical details next.

Once pocket cuts from all pockets of a model P are computed, they can be

connected into cuts. Our strategy is to organize the knots and pocket cuts in a graph

and then to extract cuts from it. We define a graph GK = {V,E}, where V = ∪ρ∈P Nρ

and E = ∪ρ∈PKρ, i.e., knots and selected pocket cuts in P . We call such a graph GK

a cut graph. An example of GK is shown in Figure 43.

Let κρ be a pocket cut to be resolved, e.g., the pocket cut that contains the most

80

�
�

���

�

�����
	

�

��� �

Figure 43. Left: An example of GK (partially shown). Thicker pocket cuts have

smaller weights. Right: An extracted tree from GK. The bold line is the

best cut for the root.

concave vertex. To find cuts that include κρ, we extract TK rooted at κρ from GK.

TK is constructed so that a path from the root κρ to a leaf will consist of concave

features that can be resolved together.

The process of building a tree TK from GK is similar to that of constructing a

minimum spanning tree on GK. An exception is that we do not allow a node x of the

tree to grow into a pocket if the pocket is visited by an ancestor of x because a cut can

only visit a pocket once. For example, in Figure 43, the tree cannot expand from κ

to κ′. In addition, we allow new pocket cuts to be added during the tree construction

to explore low concavity areas, e.g., κ′′ in Figure 43. These new pocket cuts are

computed as the shortest paths measured in geodesic distance. A MST that is built

directly on vertices and edges of a polyhedron has been used for feature extraction,

e.g., [104]. However, unlike TK which is built on knots and pocket cuts, their MST

requires pruning to enhance long features.

A valid cut in TK consists of two paths from the root κρ to two leaves which end

at the same pocket and are from two different sub-trees of the root. The minimum

weighted cut in TK is the final cut for κρ.

81

3. Resolving Concave Features

For convex volume decomposition, we define the cut plane of a (global) cut κ as the

best fit plane of κ which can be approximated via a traditional principal component

analysis using points sampled on κ. For convex surface decomposition, we simply

split the surface at the edges of κ.

A plane E fits κ best if E minimizes

∑

e∈κ

concavity(e) × µE(e) , (5.3)

where µE(e) is the area between e and the perpendicular projection of e to E. E can

be approximated via a traditional principal component analysis using points sampled

on κ.

Note that, sometimes, the intersection of E and the model P does not match the

target cut κ. This happens when the intersection traverses different pockets than κ

does. It can be addressed by iteratively pushing E toward the vertices on the portion

of κ that is misrepresented by the intersection. An example of E and its improvement

is shown in Figure 44.

4. Complexity Analysis

Theorem B.3. Let {Ci}, i = 1, . . . ,m, be the τ -approximate convex decomposition

of a polyhedron P with ne edges with zero genus. P can be decomposed into {Ci} in

O(n3
e log ne) time.

Proof. First, we show that ACD of a polyhedron P requires O(nvne log nv) time for

each iteration in Algorithm 1, where nv and ne are the number of vertices and edges

in P , resp. The dominant costs are the pocket cut computation, which extracts

paths between knots on ∂P and can take O(ne log nv) time for each path extracted

82

perturbed best fit planebest fit planeextracted cut

���
���
���
���
���
���
���

�
�
�
�
�
�
�

cut

pertrub

cut

cut plane

cut

cut plane

Figure 44. Left: A cut κ around the neck. Mid: The best fit plane of κ. Its intersec-

tion with the model does not match κ. Lighter and darker shades shown

in the figures indicate different components after decomposition. Right:

An improved cut plane.

time using Dijkstra’s algorithm. To resolve all r notches in P , Algorithm 1 will take

O(rnvne log nv) = O(n3
e log ne).

Note that even though the time complexity of the proposed method is high, as

seen in our experimental results, this is usually a very conservative estimate because

the number of iterations required is usually small when the tolerance τ is not zero

and the total number of pocket cuts is usually quite small.

C. ACD of Polyhedra with Arbitrary Genus

Because the convex hull of a polyhedron P is topologically a ball, multiple bridges

may share one pocket for polyhedra with non-zero genus. For example, neither of the

bridges α or β in Figure 45(a) can enclose any region by themselves. We address this

problem by reducing the genus to zero.

Genus reduction is a process of finding sets of edges (called handle cuts) whose

removal will reduce the number of homological loops on the surface of P . The problem

83

�

�

(a)

handle cut

�

�

(b)

Figure 45. (a) The pocket (shaded area) is enclosed in the projected boundaries of

two bridges β and α. (b) Pockets after genus reduction.

of finding minimum length handle cuts is NP-hard [47]. Several heuristics for genus

reduction have been proposed (see a survey in [134]). The identified handle cuts

will then be used to prevent the paths of the bridge projections from crossing them.

Figure 45(b) shows an example of a handle cut and the new bridge/pocket relation

after genus reduction.

Although we can always use one of the existing heuristics, the bridge/pocket

relationship can readily be used for genus reduction. Our approach is based on the

intuition that the bridges that share the same pocket tell us approximate locations

of the handles and the trajectory of how a hand “holds” a handle roughly traces out

how we can cut the handle. For example, imagine holding the handle of the cup in

Figure 45 with one hand: the hand must enter the hole though one of the bridges,

e.g., β, and exit the hole from the other bridge, e.g., α. We call bridges that share a

common pocket a set of “handle caps” of the enclosed handles. A model may have

several sets of handle caps.

This intuition can be implemented by applying the following operations to iden-

tified handle cuts.

1. Flooding the polyhedral surface ∂P initiated from the projected boundaries of

a set of handle caps. Vertices in a wavefront will propagate to neighboring

84

unoccupied vertices.

2. Loops can be extracted by tracing in the backward direction of the propaga-

tion. For each pair of handle caps, we keep a shortest loop that connects their

projected boundaries, if it exists.

3. Let Gh be a graph whose vertices are the handle caps and whose edges are the

discovered handle cuts. Cycles in Gh indicate that the removal of all discovered

handle cuts will separate P into multiple components. We can prevent P from

being split by throwing away handle cuts so that no cycles are formed in Gh.

4. Check if the handle caps still share one pocket. If so, repeat the process de-

scribed above until the remaining handle cuts are found.

Figure 46 shows a result of our approach. Note that we may not always reduce

the genus of a model to zero because some handles can map to just one bridge, e.g., a

handle completely inside a bowl. These “hidden” handles will eventually be unearthed

as the decomposition process iterates if the concavity measurement of the handle is

untolerable. For many applications, this behavior of ignoring insignificant handles

can even represent the structure of the input model better [129].

D. Experimental Results

In this section, we compare exact (ECD) and approximate (ACD) convex decompo-

sition. In addition, we consider four variants of ACD, i.e., solid or surface ACD, and

ACD with or without feature grouping.

1. Implementation Details

There are three parameters, τ , ε, and δ, used in our proposed method. The first

parameter is the concavity tolerance τ , which is used to control how convex the final

85

c

d

a

c

b

d

a

b

Figure 46. Four handle cuts found in the David model.

components are and should be set according to the need of the application.

The second parameter is the bridge clustering threshold ε, which is the upper

bound of the difference between the estimated concavity and the accurate concavity

when the bridge clustering is not used. In our experiments, the value of ε does not

significantly affect the final decomposition and is always set to be ε = τ
2
.

The third parameter δ is used in the Douglas-Peucker (DP) algorithm [55], which

is used to identify knots on the pocket boundaries for concave feature grouping. The

value of δ is difficult to estimate and is set experimentally between τ
10

and τ
100

.

2. Models

The models used in the experiments in this section are summarized in Table 4. In

Table 4, for each model studied, we show the complexity of the model in terms of the

number of edges, the ratio of notches with respect to the edges, and the physical file

size in a simple BYU (Brigham Young University) format, which first defines all the

vertices of a model and then defines how these vertices are connected into facets. In

86

these 13 models, the David and the dragon models are not closed, i.e., with openings

on their boundaries, and all the other models are closed.

3. Results

All experiments were performed on a Pentium 2.0 GHz CPU with 512 MB RAM. Our

implementation of ACD of polyhedra is coded in C++. A summary of results for 13

models is shown in Table 5, which includes results from both solid and surface decom-

position, and in Figures 47 and 48, which contain results of several approximation

levels of ACD with and without feature grouping.

a. ACDs Are Orders of Magnitude Smaller Than ECDs

In Table 5, We show the size of the six decompositions, including solid ACD0.2, solid

ACD0.02, solid ECD, surface ACD0.2, surface ACD0.02, and surface ECD, in terms of

the number of final components and the physical file size in BYU format.

As seen in Table 5, the solid ACDs are orders of magnitude smaller than solid

ECD. The solid ACDs0.2 and solid ACDs0.02 have 0.001% and 0.1% of the number of

components that the solid ECDs have on average, resp. The physical file size of solid

ACDs0.2 and solid ACDs0.02 are 0.08% and 0.16% of the size of the solid ECDs on

average, resp. Note that the ECD process of the Armadillo model terminated early

because it required more disk space than the available 20 GB. The results for ECD

shown in Figure 47 are collected before termination, i.e., they are for an unfinished

ECD, so all components are not yet convex. Figure 47 also shows that the solid ACD

can be computed 72 times faster than the solid ECD. These times are representative

of the savings offered by solid ACD over ECD.

Although the file size of the surface ACDs is not significantly smaller than for

the surface ECD, the surface ACDs0.2 and surface ACDs0.02 have 0.02% and 0.2% of

87

Table 4— Decompositions of 13 common models, where |r|% is the percentage of

edges that are notches, |e| is the number of edges, and S is the physical

(file) size. All models are normalized so that the radius of their minimum

enclosing spheres is one unit.

models |r|% |e| S models |r|% |e| S

dinopet 34.9% 9,895 201 KB elephant 30.4% 10,197 206 KB

elephant 42.5% 18,594 379 KB inner ear 34.0% 48,354 1.0 MB

horse 34.4% 59,541 1.3 MB
screw
driver 45.5% 81,450 1.8 MB

bunny 40.5% 104,496 2.3 MB teeth 45.5% 349,806 7.9 MB

female 38.8% 365,163 8.5 MB venus 43.8% 403,026 9.3 MB

armadillo 41.4% 518,916 12.1 MB david 38.7% 748,893 18.0 MB

dragon 42.8% 1,307,170 31.7 MB

88

Table 5— Decompositions of 13 common models, where S and |Pi| are the physi-

cal (file) size and the number of components of the decomposition, resp.

Feature grouping is used for ACDs. Note that the David and the dragon

models are not closed, thus they do not have results for solid decomposi-

tion.

Solid
ACD0.2 ACD0.02 ECD

models |Pi| S |Pi| S |Pi| S

dinopet 13 252 KB 67 577 KB 5,607 38 MB

elephant 13 338 KB 136 1.4 MB 5,349 50 MB

bull 12 481 KB 211 2.3 MB 12,210 102 MB

inner ear 31 1.4 MB 181 3.6 MB 14,591 171 MB

horse 8 1.4 MB 77 2.4 MB 24,044 527 MB

screw-dr 1 1.8 MB 44 3.0 MB 43,180 2.0 GB

bunny 6 2.5 MB 178 6.6 MB 46,728 2.8 GB

teeth 11 9.4 MB 307 18.8 MB 135,224 7.5 GB

female 5 8.7 MB 67 10.9 MB 145,085 7.2 GB

venus 3 9.5 MB 273 32.8 MB 166,555 18.2 GB

armadillo 11 12.1 MB 98 14.2 MB 726,240 20+ GB

Surface
ACD0.2 ACD0.02 ECD

models |Pi| S |Pi| S |Pi| S

dinopet 12 205 KB 62 226 KB 1,297 224 KB

elephant 15 215 KB 123 250 KB 1,306 229 KB

bull 12 388 KB 191 446 KB 3,486 444 KB

inner ear 26 1.0 MB 89 1.1 MB 6,360 1.2 MB

horse 8 1.3 MB 47 1.3 MB 8,095 1.4 MB

screw-dr 1 1.8 MB 9 1.8 MB 15,052 2.1 MB

bunny 6 2.3 MB 97 2.4 MB 16,549 2.7 MB

teeth 29 8.0 MB 131 8.2 MB 67,059 9.4 MB

female 5 8.5 MB 50 8.6 MB 51,580 9.3 MB

venus 3 9.3 MB 164 9.6 MB 72,190 9.6 MB

armadillo 11 12.2 MB 85 12.4 MB 89,839 14.1 MB

david 10 18.0 MB 170 18.3 MB 85,132 20.1 MB

dragon 12 31.8 MB 237 32.1 MB 246,053 37.3 MB

89

the number of components that the ECD has on average. Figure 48 shows that ACDs

only require a small constant factor increase in the computation time over the linear

time surface ECD; this is representative of the relative cost of surface ACD and ECD.

Table 6 summarizes these statistics.

Table 6— ACD v.s. ECD.

% solid ECD % solid ECD % surface ECD % surface ECD
#components file size #components file size

ACD0.2 0.001% 0.08% 0.02% 88.3%
ACD0.02 0.1% 0.16% 0.2% 89.6%

b. Solid ACDs Are Only Slightly Larger Than Surface ACDs

Table 5 also shows that the size of the solid ACDs are about 1.6 times larger than

the surface ACDs due to the fact that the solid ACDs use cut planes to approximate

(possibly non-planar) concave features.

c. ACDs with Feature Grouping Are Smaller Than ACDs without Feature Grouping

This experiment studies the effect of feature grouping on the ACDs of the Armadillo

and the David models. We further investigate ACDs with different approximate lev-

els. Figures 47 and 48 show results of solid and surface decomposition for a range of

approximation value τ , respectively. Figures 47 and 48 show that feature grouping

successfully reduces the size of both solid and surface decompositions. In partic-

ular, we see a slowly increasing size for ACDs with feature grouping as the value

of τ decreases (i.e., as the convex approximation approaches an exact convex de-

composition). In addition, with feature grouping, ACD produces structurally more

meaningful components.

90

0

200

400
 0.02 0.04 0.08 0.2 τ

T
im

e
(s

ec
)

without featue grouping
with feature grouping

no feature grouping feature grouping[Chazelle 1981]

0

200

400

 0.02 0.04 0.08 0.2 τ#
of

 c
om

po
ne

nt
s

exact

time=364.9

size=98726, 240 componets

13, 068.6 seconds

acd0.02 acd0.02

size=388

time=290.1

Figure 47. Convex solid decomposition. The size and time of ACD with and without

feature grouping are shown for a range approximation values τ .

E. Discussion of Limitations

Despite our promising results, our current implementation for polyhedra has some

limitations which we plan to address in future work, some of which can be solved

without too much difficulty.

First, some uncommon types of open surfaces with “non-zero genus”,

see an example shown on the right, whose vertices on the convex hull are

all convex, cannot be handled correctly by the proposed method.

Second, splitting non-linearly separable features using a best fit cut

plane can still generate a visually unpleasant decomposition. One pos-

sible way to address this problem is to use curved cut “planes” whose concavity

should also be acceptable to ensure no new untolerable features are introduced by the

decomposition.

91

seconds

exact
ACD without feature grouping[Chazelle et al. 1995] ACD with feature grouping

components����������	

��� � ���� � ���� �

����
�� ���� ���
���� ����� �

���� ����� ���� 	��

��� �� ��	��� �� ��� ��� �� ��	��� �� ���

Figure 48. Convex surface decomposition. The leftmost figure shows a result of the

exact decomposition. The others are results of the approximate decom-

position.

Third, our feature grouping method has difficulty in collecting long features that

have relatively low concavity as demonstrated in Figure 49.

Finally, we would like to consider efficient alternatives to shortest paths for the

concavity measure, which is known to be a problem in NP hard [113] and has high

time complexity even if computed approximately [36], such as by using an adaptively

sampled distance field [50].

92

DavidArmadillo

ACD0.02
ACD0.04

Figure 49. Problems of finding meaningful cuts in the low concavity areas.

93

CHAPTER VI

APPLICATIONS OF APPROXIMATE CONVEX DECOMPOSITION

Many problems, such as checking if a point is inside or outside of a polygon, can

be solved more efficiently if they operate on convex objects. ACD components can

also provide similar functionality. In this chapter, we will present some of the many

potential applications of ACD. In most of these examples, a major gain in efficiency

is obtained by using the convex hulls of the ACD components (and sometimes the

components themselves) instead of using exact convex components. Sometimes using

the convex hulls of the ACD components might introduce errors into the resulting

computations, but in many cases these errors are small and can be tolerated. This

includes a large set of problems in computational geometry and graphics, such as col-

lision detection, mesh generation, pattern recognition, skeletonization, and origami

folding. In this chapter, we consider four applications including point location, shape

representation, motion planning, and mesh generation in a high level. Table 7 sum-

marizes the studied applications and type of ACD used in this applications chapter.

In Chapter VII, we will show in detail how ACD can be used to extract skeleton and

shape decomposition simultaneously.

Table 7— Studied applications and type of ACD used.

Application Solid/Surface Feature Grouping

Point location Solid No

Shape decomposition Surface Yes

Motion planning Surface Yes

Mesh generation Solid Yes

94

Algorithm 8 PointLocation ACD

Input. A polygon or a polyhedron P , tolerance τ , and a set of points S.
Output. Report points that are inside P and those that are outside P .
1: Generate ACDτ of P

2: for each point s ∈ S do
3: for each component C ∈ ACDτ do
4: if s ∈ CHC then
5: Mark s as inside
6: if s is not marked as inside then
7: Mark s as outside

A. Point Location

ACD type: solid ACD without feature grouping. Point location, which checks

if a point x is in a polygon or a polyhedron P , is a fundamental problem that can

be found in ray tracing, simulation, and sampling. Point location can be solved more

efficiently for convex objects than for non-convex objects. Point location for a convex

object P can be done by checking if a point is on the same side of all P ’s boundary.

Locating points for a non-convex model can benefit from ACD using the convex

hulls of its ACD components if some errors can be tolerated. Algorithm 8 outlines a

näıve ACD-based point location by iteratively locating each point against each convex

hull of the ACD component. If a point is inside one of the convex hulls, then the

point is reported as inside; otherwise outside. Algorithm 8 may mis-classify points,

which should be classified as external points but are classified as internal points using

ACD. This is due to the difference between the convex hulls of the ACD components

and the original model. Note that these misclassified points are usually close to the

boundary. The distance between the misclassified points and the model depends on

how convex the components are. This feature is very useful for some applications. For

example, in a particle system, shown in Figure 2, the motion of the particles can be

computed more efficiently using the ACD-based point location while the small errors,

95

introduced by ACD, in a system with thousands of particles are hardly noticeable.

Full model: 1 part

210.9 mins

ACD0.02: 411 parts

162.7 mins

ECD: 5,349 parts

57 hrs

ACD0.02: 204 parts

52.2 mins

Figure 50. Point location of 108 points in the teeth model (233,204 triangles), in the

elephant model (6,798 triangles), and in their solid ECD and the convex hulls

of the ACD0.02. Measured time includes time for decomposition and point

location. Point location in ACD0.02 of both models has 0.99% errors. External

points of 1000 samples in full model and ECD are shown in the figures on the

left and only the misclassified (as internal) points in ACDs are shown on the

right.

In our experiments, point location of 108 random points is performed for the

full model and for the convex hulls of the ACD0.02 components; point location in

the ACD did not utilize the hierarchical structure of the ACD, but simply tested

each component separately. As seen in Figure 50, even using this näıve strategy,

point location in the ACD is about 23% faster than in the original teeth model.

96

A B

Figure 51. The features (circled) in polygons A and B have the same concavity but

have different effects on the shapes of A and B. For polygon B, its concave

feature has almost no effect on its overall shape.

As seen with the elephant model, the advantage of the ACD over the ECD is even

more pronounced. In both experiments, more than 99% of the queries were answered

correctly using the ACD.

B. Shape Representation

ACD type: surface ACD with feature grouping. The components of an ACD

can also be used for shape representation. In this section, we present a strategy to

generate shape decomposition using ACD. In many cases the significance of a feature

depends on its volumetric proportion to its “base”. For example, a 5 cm stick on a

ball with 5 cm radius is a more significant feature than a 5 cm stick on a ball with

5 km radius. Another example illustrating this idea is shown in Figure 51. This

intuition can be captured by the concept of convexity defined as volume(P)
volume(CHP)

.

Algorithm 9 describes the ACD-based shape decomposition using convexity.

First, instead of using concavity, we use convexity to check if a component is ac-

ceptable. Next, if the component has untolerable convexity, then we decompose the

component. Figure 3 in Chapter I shows results from our approach that simply

replaces the decomposition criterion, i.e., concavity, with 0.7 convexity.

97

Algorithm 9 ShapeDecomp ACD

Input. A polygon or a polyhedron, P , and minimum convexity, ξ.
Output. A decomposition of P , {Ci}, such that min{convexity(Ci)} ≥ ξ.
1: if convexity(P) ≥ ξ then
2: return P

3: else
4: c = concavity(P)
5: {Ci}=Resolve(P , c.witness).
6: for each component C ∈ {Ci} do
7: ShapeDecomp ACD(C, ξ).

C. Motion Planning

ACD type: surface ACD with feature grouping. Motion planning provides

a tool to generate and control an object’s motion by allowing the user to set initial

and final arrangements of the objects and to specify constraints on the motion [75].

Motion planning has many applications, e.g., for navigating in the human colon or

removing a mechanical part from an airplane engine. The ACD components can help

to plan motion more efficiently. Since the motion planning problem has been shown

to be intractable [23], researchers have focused on sampling-based motion planning

strategies. The idea behind these strategies is to approximate the topology of the

free configuration space (C-space) of a robot by sampling and connecting random

configurations to form a graph [67, 132, 18, 86] (or a tree [76, 61, 96]) without explicitly

computing the C-space.

Sampling-based motion planners have been shown to solve difficult motion plan-

ning problems; see a survey in [13]. However, they also have several technical issues

limiting their success on some important types of problems, such as the difficulty of

finding paths that are required to pass through narrow passages.

ACD can address the so called “narrow passage” problem for some motion plan-

ning problems by sampling with a bias toward cuts between ACD components and

98

Algorithm 10 prm ACD

Input. A robot A and a polygon or a polyhedron, P , that describes the workspace.
Output. A roadmap R that encodes the free C-space of A.
1: Generate ACDτ of P

2: for each component C ∈ ACDτ do . sample configurations of A

3: for each centroid o of C and C’s openings do
4: repeat
5: randomly place A around o with a random orientation (and joint angles)
6: keep the configuration of A if collision free
7: until k samples are generated around o

8: Connect each sample to its nearby samples to form a roadmap R using simple local
planners.

the centroids of each component. Algorithm 10 shows an outline of this approach.

First the model used to represent the workspace is decomposed using ACD. Then the

robot is randomly placed near the centroids of the components and the cuts (open-

ings) between components. These randomly generated configurations then form a

network, called roadmap, by connecting each of them to its nearby configurations.

This sampling strategy is useful because narrow corridors usually have high con-

cavity and are identified during the decomposition process. Our strategy samples

configurations in these difficult areas and helps reveal the connectivity of the free

C-space.

Figure 4 in Chapter I illustrates the advantage of this sampling strategy over

uniform sampling [67]. In this example, we can see that the graph constructed using

ACD represents the free C-space better than using the uniform sampling [67] with

the same number (200) of collision-free samples.

Note that advantages of the ACD-based sampling are not only that more samples

are placed in the narrower (difficult) regions but also the connections between the

samples can be made more easily due to the nearly convex components.

99

Algorithm 11 Meshing ACD

Input. A polygon or a polyhedron, P , and tolerance τ .
Output. A tetrahedral mesh that approximates the shape of P

1: Generate ACDτ of P

2: Let M be an empty mesh
3: for each component C ∈ ACDτ do
4: Generate a tetrahedral mesh MC by triangulating (a subset of) the vertices of C.
5: M = M ∪ MC

D. Mesh Generation

ACD type: solid ACD with feature grouping. Mesh generation is a process of

decomposing a model into a set of tetrahedra or hexahedra. The resulting tetrahedral

or hexahedral meshes can then be used in many applications, such as for modeling

physically based deformation using Finite Element Method; see, e.g., [98].

The ACD components can be used to generate tetrahedral meshes from the

ACD components using Delaunay triangulation [17, 64]. Algorithm 11 outlines this

ACD-based mesh generation. This approach is favorable because it is known that

generating tetrahedral or hexahedral meshes is easier and faster for convex objects,

e.g., by connecting the centroid of the component to each vertex of the component

or using Delaunay triangulation.

Note that sometimes the convex hulls of ACD components can still contain many

triangles, thus the convex hulls may further simplified, e.g., using triboxes [40], to

generate even coarser meshes. These meshes can later be used for, e.g., surface

deformation. An illustration of this application is shown in Figure 52 and Figure 5

in Chapter I.

100

(1. input model) (2. ACD) (3. tetrahedral mesh)

(4. bind input to the mesh) (5. deform mesh) (6. deformed input)

Figure 52. Hierarchical deformation. First, ACD is built from the input model. Next,

a tetrahedral mesh is built from the components of ACD. Then, the input

model is bound to the tetrahedral mesh. Finally, deformations that are

applied to the tetrahedral mesh can be indirectly applied to the input

model.

101

CHAPTER VII

SHAPE DECOMPOSITION AND SKELETONIZATION USING ACD

Shape decomposition partitions a model into (visually) meaningful components. Re-

cently shape decomposition has been applied to texture mapping [110], shape manip-

ulation [66], shape matching [94, 45, 51], and collision detection [82]. Early work on

shape decomposition can be found in pattern recognition and computer vision; see

surveys in [108, 131].

A skeleton is a lower dimensional object that essentially represents the shape of

its target object. Because a skeleton is simpler than the original object, many op-

erations, e.g., shape recognition and deformation, can be performed more efficiently

on the skeleton than on the full object. The process of generating such a skeleton is

called skeleton extraction or skeletonization. Examples of automatic skeleton extrac-

tion include the Medial Axis Transform (MAT) [16] and skeletonization into a one

dimensional poly-line skeleton (or simply 1D skeleton) [24, 88, 66].

Skeletons have been extracted from different sources, such as voxel (image) based

data [135, 103, 15], boundary represented models [37, 4, 130], and scattered points

[127], and for different purposes, such as shape description [114, 115], shape ap-

proximation [5, 133], similarity estimation [58], collision detection [21, 62], biological

applications [3], navigation in virtual environments [81], and animation [124, 66].

Although it has been noted before that a good shape decomposition can be used

to extract a high quality skeleton [88, 66] and that a high quality skeleton can be used

to produce a good decomposition [82], this relationship between shape decomposition

and skeleton extraction is a relatively unexplored concept, especially in 3D. Instead,

when a relationship is noted, the skeletons are usually treated as an intermediate

result or a by-product of the shape decomposition.

102

0.0

Error

0.5

1.0

tolerance=0.2

Figure 53. The skeleton (shown in the lower row) evolves with the shape decompo-

sition (shown in the upper row).

In this chapter, we propose an integrated framework for simultaneous shape

decomposition and skeleton extraction that not only acknowledges, but actually ex-

ploits the interdependence between these two operations. First, a simple skeleton is

extracted from the components of the current decomposition. Then, this extracted

skeleton is used to evaluate the quality of the decomposition. If the skeleton is satisfac-

tory under some user defined criteria, we report the skeleton and the decomposition

as our final results. Otherwise, the components are further decomposed into finer

parts using approximate convex decomposition (ACD) [88, 85], which decomposes a

given component by ‘cutting’ its most concave features. Figure 54 illustrates this

proposed framework and Figure 53 shows an example of the co-evolution process of

the shape decomposition and skeleton extraction.

As we will show, our proposed approach has several advantages and makes con-

tributions as listed below.

• This recursive refinement strategy generates multi-resolution skeletons, from

coarse to fine levels of detail, which are useful for some applications.

103

acceptable

Compute Skeleton S from {Ci}

{Ci}

Decompose {Ci}

Check Quality of S

not
acceptable

Figure 54. Simultaneous shape decomposition and skeleton extraction. The set {Ci}

is a decomposition of the input model P and initially {Ci} = {P}.

• Divide-and-conquer algorithms that operate on the decompositions or skeletons

can be more efficient because refinement is applied to the more complex regions

but not to areas with less variation.

• The extracted skeleton is invariant under translation, rotation, and uniform

scale, and is not very sensitive to boundary noise and skeletal deformations.

• Our approach does not require any pre-processing, e.g., model simplification, or

any post-processing, e.g., skeleton pruning, which are required by many of the

existing methods, e.g., [82, 66, 130].

• Our framework is general enough to work for both 2D polygons and 3D poly-

hedra.

A. Related Work

Both shape decomposition and skeleton extraction have been studied for decades and

there is a large amount of previous work. In this review, we concentrate on recent

developments most relevant to our work.

Shape decomposition. Inspired by psychological studies, such as recognition

by components [14] and the minima rule [59, 60], methods have been proposed to

104

partition models at salient features to produce visually meaningful components. In

pattern recognition, Rom and Medioni [108] partition a model into a set of tubular

(generalized cylinder) shapes according to their curvature properties. As a prepro-

cessing step for mesh generation, Sonthi et al. [93] identify closed sets (loops) of

edges with required convexity and use them to decompose a model into solid parts.

However, these methods work best with simple models with sharp internal angles,

such as mechanical parts.

Methods that are applicable to models with general shapes also exist. Wu and

Levine [131] propose a partitioning method based on a simulated electrical charge

distribution on the surface of a model. Mangan and Whitaker [94] and Page et al.

[102] decompose polygonal meshes by applying watershed segmentation with cur-

vature computation. Li et al. [82] decompose polygonal meshes at critical points

along skeletons obtained via model simplification. Dey et al. [45] segment a model,

in R2 or R3, into stable manifolds, which are collections of Delaunay complexes of

sampled points on the boundary. Katz and Tal [66] cluster mesh facets into fuzzy

regions, carefully partition facets in those regions, and successfully produce perceptu-

ally clean cuts between decomposed components. A similar approach using a different

clustering technique can also be found in [92]. Interactive methods [78, 51] that iden-

tify features via human assistance have also been shown to produce high quality and

clean decompositions.

Skeletonization. The Medial Axis (MA), Voronoi diagram, Shock graph and

Reeb graph are common skeleton representations. Although the MA can represent a

lossless shape descriptor [16], it is difficult and expensive to compute accurately in

high (> 2) dimensional space [41]. Several ideas for approximating the MA have been

proposed, e.g., using Voronoi diagram, and its dual Delaunay triangulation [4, 6, 46],

of densely sampled points from the object boundary. Shock graphs [118, 42], another

105

representation of the MA, encode the formation order and, therefore, the importance

of each part of the MA. Reeb graphs, a type of 1D skeleton, extracted from various

Morse functions, are a powerful tool for shape matching [127, 116, 7, 58]. Since Morse

functions are defined on mesh vertices, re-meshing [58, 7] is usually needed to generate

a good (accurate) skeleton.

Several methods have been proposed to extract a skeleton from the components

of a decomposition [88, 66]. Skeletons can also be constructed by simplifying (con-

tracting) a polygonal mesh to line segments [82].

Multi-scale and multi-resolution skeletons. Multi-scale skeletons [107, 99]

consist of a set of skeletons, S0, . . . , SN , whose union represents a complete skeleton

of the model. S0 is the most important part of the skeleton, representing global

topology, while SN encodes local features and is sensitive to local changes. Multi-

resolution skeletons [58] consist of a set of skeletons, S0, . . . , SN , that encode topology

at different levels of detail. S0 will have the coarsest skeleton and SN will contain the

most detailed information. This representation is desired for some applications. For

instance, to extract similar items from a 3D database, a rough skeleton can be used

to reject many unlikely models and incrementally refine the skeleton to get better

matches. As previously mentioned, one of the features of our framework is that its

recursive nature results in the construction of multi-resolution skeletons.

B. Framework

We propose a framework that simultaneously performs shape decomposition and

skeleton extraction. For a given polyhedron P , Simultaneous Shape decomposition

and Skeleton extraction (SSS) (see Algorithm 12) constructs a skeleton for the model

from (local) skeletons extracted from each component of a decomposition, evaluates

106

Algorithm 12 SSS(P)

1: S = Ext Skeleton(P)
2: if Error(P, S) ≤ τ then
3: Report S as P ’s skeleton and report P as a component
4: else
5: {Ci} = Decompose(P)
6: For each C ∈ {Ci} do return SSS(C)

the extracted skeleton components, and continues refining the decomposition and the

associated skeleton components until the quality of the skeleton for each component

is satisfactory, e.g., the error estimation of the skeleton for the respective component

is smaller than a tunable threshold τ .

There are three important sub-routines in Algorithm 12: Ext Skeleton(P),

which extracts a skeleton from a component P ; Error(P, S), which estimates the

quality of the extracted skeleton; and Decompose(P), which separates P into sub-

components when the extracted skeleton is not acceptable. We discuss methods for

skeleton extraction Ext Skeleton(P) in Section 1, and methods for quality mea-

surement Error(P, S) in Section 2. Recall that our choice for the Decompose(P)

sub-routine is approximate convex decomposition.

1. Extracting Skeletons

In this section, we discuss two simple methods to extract a (local) skeleton from a

component of a decomposition. These local skeletons can be connected to form a

global skeleton of the input model. The centroid method is a simple approach that

can result in skeletons that do not represent the shape of the object. The second

method, based on the principal axis (defined below) of a component, is slightly more

expensive to compute, but leads to improved skeletons in some cases.

107

P2
c d e

P1

P3
a b

(using centroids)

P3

P1

b d
P2

c

(using the principal axis)

Figure 55. This example shows a problem that arises when skeletonization is based

only on the centroids. Points b and d are the centers of the openings and

a, c and e are the centers of the components P1, P2 and P3, respectively.

This problem can be addressed using the principal axis.

Using Centroids. One of the easiest ways to construct a skeleton for a com-

ponent C (in a decomposition) is to connect the centroids of the openings, called

opening centroids, on ∂C to the centroid of C. These openings are generated when a

component is split into sub-components during the decomposition process,

Several similar methods for extracting skeletons have been proposed [88, 66].

Although this approach is simple and generates fairly good results one of the major

drawbacks of this type of skeleton is its inability to represent some types of shapes. For

example, the skeleton of a cross-like model in Figure 55 extracted using its centroids

is only a line segment instead of two crossing line segments. The method described

next attempts to address this problem.

Using the Principal Axis. In this method, we extract a skeleton from a

component C (in a decomposition) using the principal axis of the convex hull CHC

of C. The principal of a set of points is defined in Eqn. 4.1 in Chapter IV. Instead

of connecting the centroids of C’s openings to the center of mass of C, we connect

108

these centroids to the principal axis enclosed in CHC . Figure 56 shows an example

of skeletons constructed in this manner.

Let PA(CHC) be a line through the center of mass of CHC parallel to the princi-

pal axis of CHC . Our method connects an opening centroid to one of the k points on

PA(CHC)∩CHC . These k points, denoted by P , evenly subdivide PA(CHC)∩CHC

into k + 1 line segments. The selection of the value of k is based on the desired

minimum skeleton link length. Let P ′ ⊂ P be a set of points to which the opening

centroids connect. Figure 56 illustrates P and P ′ with circles along PA(CHC). Then,

the final skeleton S of C contains line segments that connect the opening centroids

to P ′ and line segments that connect the P ′.

To minimize the chance of getting a long skeleton with many joints, we match the

opening centroids to P so that the cardinality of P ′ and the distances from the opening

centroids to P ′ are minimized. We solve this optimization matching problem using

dynamic programming. Details of how we find the optimal solution are discussed in

Section D.

In cases where all the points in P ′ lie only on one side of the center of mass c of

CHC , e.g., P ′ in Figure 56(b), line segments that connect to the points in P ′ are not

enough to represent the entire component. In such cases, the skeleton will connect

P ′ with the end point of P on the other side of the center of mass c. Similarly, when

P ′ contains only c, the skeleton will connect c with the end points of P on both sides

of c, e.g., the skeleton of the component P1 in Figure 55 (using the principal axis).

Figure 57 shows three skeletons: two extracted skeletons using the centroid and

the principal axis methods, and one skeleton manually generated by a professional

animator. One can see that the skeleton extracted using the principal axis is topo-

logically more similar to the animator generated skeleton than the skeleton generated

using the centroid method. In Section D, we analyze the similarity of these skeletons

109

(a)

PA(CHC)p

o

P ′

P

c

CHC

(b)

PA(CHC)

CHC

c

Figure 56. Using the principal axis of the convex hull CHC to extract a skeleton from

a component. Skeletons are shown in dark thick lines and skeletal joints

are shown in dark circles and c denotes the center of mass of CHC . (a)

Opening centroids are connected to both sides of c. (b) Opening centroids

are connected to only one side of c.

using graph edit distance.

2. Measuring Skeleton Quality

Although several criteria exist for measuring the quality of a skeleton, the general

principles we adopt are that the skeleton should reside in the interior of the model

and it should encode the “topology” of the model’s shape. Thus, using these general

criteria, our strategy to compute the quality of a skeleton S is to compare S with its

associated component C. In this section, we propose three methods for measuring

quality. This first method checks whether S intersects ∂C and the second method

checks the topological representation of S w.r.t. C. In the third method, we propose

an adaptive measurement based on the volume of the component.

An important property of these three methods is that the error of the skeleton

becomes smaller as the decomposition becomes finer. This property is justified at the

110

(centroids) (principal axis) (manually)

Figure 57. Notice the differences of these skeletons at the torso, the head, and the

fingers.

end of this section. Figure 59 shows extracted skeletons based on these three quality

measurements.

Checking penetration. Our first method measures the quality of S by checking

whether S intersects the component boundary ∂C. If so, the function Error(C, S)

returns a large number (larger than the tolerable value τ). Otherwise, zero will be

returned. The consequence is that C will be decomposed if ∂C ∩ S 6= ∅.

As seen in Figure 59, skeletonization using penetration detection stops evolving

after a few iterations and does not produce skeletons that represent the dragon or the

bird.

Measuring centeredness. In the second method, we measure the offsets of S

from the level sets of the geodesic distance map on ∂C. The value for each point in

this map is the shortest distance to its closest opening of C. Ideally, a skeleton should

pass through all connected components in all level sets. Therefore, this measurement

method simply checks the number of times that S does not do so. An example of this

measurement is shown in Figure 58.

Let LC be all the connected components in the level sets of C. We define the

111

skeleton

5 6
4

7

8

1

2

3

Figure 58. The error measurement for this skeleton, which intersects level sets 4, 7

and 8, is 5
8
.

error of a skeleton S as:

Err(C, S) =

∑

lc∈LC
f(lc, S)

|LC |
, (7.1)

where f(lc, S) returns 0 if S intersects component lc, and 1 otherwise, and |LC | is the

total number of the connected components in C. Details of how we compute the level

sets and f(lc, S) are discussed in Section D.

As seen in Figure 59, skeletonization using the centeredness measurement cap-

tures the shape of the dragon and the bird better then simply using penetration

detection, but it over segments the tail of the bird and does not produce accurate

skeletons in the feet of the dragon or the bird.

Measuring convexity. Our idea for the last quality measurement comes from

the observation that in many cases the significance of a feature depends on its volumet-

ric proportion to its “base”. This concept can be captured by using convexity. Recall

that we define the convexity of a component C defined as convexity(C) = volume(C)
volume(CHC)

,

where volume(X) is the volume of a set X. Thus, we can define the error measurement

as:

Err(C, S) = 1 − convexity(C) . (7.2)

Assume that the skeleton S is a good representation of the convex hull CHC .

Then, a smaller difference between CHC and C means that S is a better representation

of C. Thus, although the skeleton S is not included in Equation 7.2, S is implicitly

112

(checking penetration) (measuring centeredness) (measuring convexity)

Figure 59. Final skeletons of a dragon polyhedron and a bird polygon extracted using

different quality estimation functions: checking penetration, measuring

centeredness, and measuring convexity. The maximum tolerable errors

for centeredness and convexity are 0.2 and 0.3, respectively.

considered in terms of CHC .

As seen in Figure 59, using convexity produces the most realistic skeleton that

captures the overall shape of the dragon and the bird and also identifies the detailed

features of their feet.

Skeleton quality vs. ACD. Here, we show that the error measurements of a

skeleton, i.e., penetration, centeredness, and convexity, decrease as the input model is

decomposed. This is a critical property, which allows the SSS framework to terminate.

Lemma B.1. Let S be the skeleton of a polyhedron P and let S ′ be the skeleton of the

components of the ACD of P . The error estimation of S ′ must be smaller than the

error estimation of S measured using penetration, centeredness, and convexity defined

in Section 2.

Proof. We show that all error measurements become zero if the input model is convex.

For penetration, because the segments connecting any two points inside the convex

113

Algorithm 13 SSSACD(P)

1: Compute a skeleton S from P using the Principal Axis of CHC .
2: Estimate the quality of S using convexity.
3: if S is acceptable then
4: Report S as P ’s skeleton and report P as a component.
5: else
6: {Ci} = ACD(P).
7: For each C ∈ {Ci} do return SSSACD(C)

object must not intersect its boundary, a skeleton will never penetrate the object.

For the same reason, the skeleton must not be ‘outside’ of any level set of a convex

component. Finally, because the convexity of a convex object is one, its error must

be zero.

C. Putting It All Together

Algorithm 13 shows a fleshed-out version of the proposed simultaneous shape de-

composition and skeletonization framework. Here we suggest using the principal

axis, convexity and approximate convex decomposition for local skeleton extraction,

quality measurement and partitioning, respectively. Algorithm 13 is used for all the

experiments in Section D. We would like to emphasize that the choice of these meth-

ods is made based on our own experience. The framework is not restricted to these

selected sub-routines, which can be replaced by other methods to fit particular needs

of an application.

D. Implementation and Results

1. Implementation Details

From a Principal Axis to a Skeleton. Here, we show how a local skeleton can be

computed using the principal axis. Our goal is to find a mapping M : O → P from

114

the opening centroids O to the points P on the principal axis so that the total length

of the mapping and the number of the mapped points (joints) in P is minimized. We

let the score function F of a mapping M be defined as

F (M) = s1 · |M | + s2 · J(M) , (7.3)

where |M | and J(M) are the length and the number of joint of mapping M , and s1

and s2 are user specified scalars. s1 and s2 are constants set to ten and one, resp. A

brute force approach to find an optimal solution will take O(|P||O|) time, where |P|

and |O| are the number of vertices in P and O, respectively. This exponential time

complexity is in general impractical for most applications.

The main idea of finding the optimal mapping is to group opening centroids O

and connect each group to a point in P . After knowing how O is grouped, it takes

O(|P||O|) time to find a solution.

Grouping O can be done using dynamic programming. An observation that

enables us to group O is that two centroids are likely to be grouped when their

closest points in P are close. Thus, we first sort O with respect to the closest points

in P and then group the sorted elements of O. A dynamic programming approach

for grouping O is shown in Algorithm 14. In Algorithm 14, we use G[i, j] to denote

the optimal solution for the sub-problem {Oi, · · · , Oj}. We use GiGj to denote two

joints without merging two groups Gi and Gj. We use < GiGj > to denote the joint

that merges two groups Gi and Gj to one group.

Compute level sets and centeredness. A level set of a component C in a

decomposition is a set of points on the surface ∂C of the component with the same

geodesic distance to the closest opening of C. A connected component in a level set

is a list of connected edges, which usually forms a loop on ∂C. A level set can have

one or multiple connected component(s). These level sets can be computed, similar

115

Algorithm 14 Optimal Matching(O, P)

1: for i ∈ {1, · · · , |O|} do
2: G[i, i] = Oi

3: for l ∈ {2, · · · , |O|} do
4: for i ∈ {1, · · · , |O| − l + 1} do
5: j = i + l − 1
6: G[i, j] =< Oi · · ·Oj >

7: score = F (G[i, j],P) . F is defined in Eqn. 7.3
8: for k ∈ {i, · · · , j − 1} do
9: s = F (G[i, k]G[k + 1, j],P)
10: if s1 < score then
11: G[i, j] = G[i, k]G[k + 1, j]
12: score = s1

to the construction process of a Reeb graph [115], by flooding the entire ∂C from

the boundaries of the openings of C. In each iteration of this flooding process, the

wavefronts will propagate from the visited vertices to unvisited vertices via incident

edges.

To compute centeredness, we need to know how a skeleton S intersects the level

sets of C, i.e., we need the function f(lc, S) used in Eqn 7.1, which returns zero if

S intersects the level set lc. The function f(lc, S) can be implemented by simply

checking the intersection between each line segment of S and the triangulation of lc.

2. Experimental Results

The experiments in this section are used to demonstrate the efficiency, the robustness,

and several applications of the proposed method. The method was implemented in

C++ and all these experiments are performed on a Pentium 2.0 GHz CPU with

512 Mb RAM. Seventeen decompositions and their associated skeletons are shown in

Figures 59 to 63 and in Tables 8 and 9.

Efficiency. A summary of the studied models, which include several game

characters, a high genus model, and two scanned models, and the skeletonization

116

(input) (decomposition) (skeleton)

Figure 60. This figure shows the decomposition and the skeleton of a model with 18

handles.

and decomposition time of these models is shown in Table 8. Table 8 shows that the

processing time of SSS depends on both the size of the model and on the complexity of

the shape. For example, even though the model in Figure 60 has the fewest triangles,

its large genus (18) increases the processing time. In general, our proposed SSS

method can handle models with thousands of triangles in less than a half a minute

and scales well for models with tens or hundreds of thousands of triangles.

We further show that SSS is efficient by comparing our results to two recently

proposed shape decomposition and skeletonization methods that have been shown to

produce very promising results; see Figures 61 and 62, respectively. In both experi-

ments, SSS generates results similar to those results reported previously but SSS can

produce the shape decomposition and the skeletons about 30 times and 5 times faster

than those methods reported in [66] and [130], respectively. We note that there are no

well-accepted criteria to compare the quality of these decompositions and skeletons

quantitatively, and therefore we do not intend to claim that our results are necessarily

better.

Robustness. In this set of experiments, we show that SSS is robust under

perturbation and deformation, meaning that the shape decompositions and skeletons

117

Table 8— Experimental results of SSS

Model
Figure 60 Figure 63 Table 9 Figure 57 Figure 62 Figure 63 Table 9 Figure 53 Table 9

Size 1,984 3,392 5,660 6,564 8,276 11,180 39,694 48,312 243,442

Time 15.6 2.6 1.7 1.5 8.8 3.4 19.4 30.1 73.3
Note: Size is measured as the number of the triangles of each model and the processing time is measured in seconds.

118

(SSS) (Katz and Tal [66])

Figure 61. The decomposition with 0.7 convexity and the associated skeleton of the

dino-pet model (with 6,564 triangles) are computed in 1.5 seconds whereas

Katz and Tal’s approach takes 57 seconds (on a P4 1.5 GHz CPU with

512 Mb RAM).

(SSS) (Wu et al. [130])

Figure 62. The decomposition with 0.7 convexity and the associated skeleton of the

octopus model (with 8,276 triangles) are computed in 8.8 seconds whereas

Wu et al.’s approach takes 53 seconds (on a P4 1.5 GHz CPU with 512

Mb RAM) using a simplified version of this model (with 2,000 triangles).

119

remain approximately the same after the input models are perturbed and deformed.

The results are shown in Table 9.

Although there are no well accepted criteria to measure the differences among

decompositions, we can measure the similarity of these skeletons, e.g., using graph

edit distance [22] which computes the cost of operations (i.e., inserting/removing

vertices or edges) needed to convert one graph to another. In this section, we simply

associate one unit of cost with each operation.

We measure two types of distances, denoted as DO and D2
O. DO is the graph edit

distance from a skeleton to the skeleton extracted from the original mesh. Because

removing or inserting a degree-two node does not change the topology of a graph, we

are also interested in the distance, denoted as D2
O, that does not count operations

that create and remove degree-two nodes. Table 9 shows that DO remains small for

both perturbed and deformed models and D2
O is zero in all cases.

The extracted skeleton can be readily used to create animations. We demonstrate

this advantage by re-targeting motion captured data to the skeletons extracted using

our method. In Figure 63, we show a sequence of images obtained from a skeleton-

based boxing animation of a baby and a robot using motion data captured from an

adult male. Note that the baby and the robot models have different body proportions

and rest poses. Other animations, including walking and pushing a box, are provided

on our webpages. We use motion captured data instead of a hand-made animation to

show that the extracted skeletons are robust enough to be used by arbitrarily selected

motions and not only carefully designed motion. The motions, i.e., joint angles, are

manually copied from the captured data to the skeletal joints.

120

Table 9— Robustness tests using perturbed and skeletal deformed meshes. DO is

the graph edit distance between a skeleton extracted from a perturbed or

deformed mesh and a skeleton extracted from the original mesh. D2
O is

DO without counting operations on degree-2 nodes (which do not change

the topology of the skeleton).

Shape Decomposition. 70% convexity
Original Perturbed (random noise) Deformed

female
16 components

triceratop
9 components

horse
17 components female

16 components
horse

9 components

20 components

triceratop

female
horse

triceratop

18 components

20 components

9 components

Extracted Skeletons. 70% convexity
Original Perturbed Deformed

horsefemale

triceratop

DO = 0

D
2

O = 0

DO = 0

D2

O = 0

DO = 0

D
2

O = 0

female

triceratop

horse
DO = 2

DO = 1

DO = 3

D2

O = 0
D

2

O = 0

D
2

O = 0

triceratop

horse
female
DO = 2

D2

O = 0 DO = 6

D
2

O = 0

DO = 0

D
2

O = 0

121

Figure 63. An animation sequence obtained from applying the boxing motion capture

data to the extracted skeletons from a baby model and a robot model.

The motion capture data (action number 13 17) are downloaded from the

Carnegie Mellon University Graphics Lab motion capture database. The

first two figures in the sequence are the shape decompositions and the

skeletons of the baby and the robot. Note that not all joint motions from

the data are used because the extracted skeletons have fewer joints.

122

E. Discussion

In this section, we propose a framework that simultaneously generates shape decom-

positions and skeletons. This framework is inspired by the observation that both

operations share many common properties and applications but are generally con-

sidered as independent processes. This framework extracts the skeleton from the

components in a decomposition and evaluates the skeleton by comparing it to the

components. The process of simultaneous shape decomposition and skeletonization

iterates until the quality of the skeleton becomes satisfactory.

We studied two simple skeleton extraction methods, using the centroids and the

principal axis, and three quality evaluation measurements, that compute penetration,

centeredness and convexity, respectively. In the experiments, we demonstrate that

the proposed framework is efficient, robust under perturbation and deformation, and

can readily be used, e.g., to generate animations and plan motion.

There are several ways to extend the current work. First, there is a need to

establish a systematic framework for comparing qualities of shape decomposition and

skeletons using more quantitative measuring methods and benchmarks. Although the

proposed quality measurements are based on a general idea of what a good skeleton

should be, more studies are needed to investigate application-specific measurement

criteria that should produce better and more “comparable” results. Second, not all

models, such as a bowl, can have reasonable 1D skeletons. We are interested in using

the same framework to extract the approximated medial axis from the components

in a decomposition based on the idea that it is easier to extract the medial axis

from a convex object than from a non-convex object. Finally, because the extracted

skeletons and shape decompositions in our method co-evolve, we can provide more

meaningful shape decompositions by using information from the extracted skeletons,

123

e.g., merging components if the skeletons extracted from those components do not

change the global skeleton made from the entire decomposition.

124

CHAPTER VIII

CONCLUSION AND FUTURE WORK

A. Conclusion

In this dissertation, we proposed a method for decomposing a polygon or a polyhedron

into approximately convex components that are within a user-specified tolerance of

convex.

In Chapter IV, we presented ACD of simple polygons. For simple polygons, when

the tolerance is set to zero, our method produces an exact convex decomposition in

O(nr) time which is faster than existing O(nr2) methods that produce a minimum

number of components, where n and r are the number of vertices and notches, re-

spectively, in the polygon. We proposed some heuristic measures to approximate

our intuitive concept of concavity: a fast and less accurate straight line (SL) con-

cavity, a slower and more precise shortest path (SP) concavity, and hybrid (H1 and

H2) concavity methods with some of the advantages of both. We illustrated that

our approximate method can generate substantially fewer components than an exact

method in less time, and in all cases, producing components that are τ -approximately

convex. Our approach was seen to generate visually meaningful components, such as

the legs and fingers of the Nazca monkey and the wings and tail of the Nazca heron.

An important feature of our approach is that it also applies to polygons with

holes, which are not handled by previous methods. Our method estimates the con-

cavities for points in a hole locally by computing the “diameter” of the hole before

the hole boundary is merged into the external boundary.

In Chapter V, we extended the framework to decompose a given polyhedron of

arbitrary genus into nearly convex components. This provides a mechanism by which

125

significant features are removed and insignificant features can be allowed to remain

in the final approximate convex decomposition (ACD). We have also demonstrated

that the ACD framework is flexible – by simply changing the decomposition criterion

from concavity to convexity, the ACD can be used as a shape descriptor of the input

model.

In Chapters VI and VII, we presented several applications of ACD including

point location, shape representation, motion planning, mesh generation, and skeleton

extraction. In most of these applications, the convex hulls of the ACD components

are used to approximately represent the shapes of the objects.

B. Future Work

Shape computations play fundamental and critical roles in many fields. ACD is just a

starting point for approximating shapes and there is still a lot of work remaining to be

done. We believe that the concept of approximate convex decomposition can be ap-

plied to problems involving collision detection, shape rendering, shape simplification,

mesh compression, and shape identification. The study of these fundamental prob-

lems can be applied to more specific problems in the domains of robotics, computer

graphics, computational neuroscience and computational chemistry/biology.

Several methods developed in this dissertation, such as the bridge/pocket iden-

tification, feature extraction, and genus reduction, may have application to other

problems in computer graphics. How these tools can be applied to other areas re-

quires more research. For example, studying the resemblance between the vertices on

the convex hull and the critical points on an average geodesic distance coded mesh

may speed up many applications that require geodesic distance computation.

Finally, one criterion of the decomposition is to minimize the concavity of its

126

(a) (b)

Figure 64. (a) Decomposition that minimizes concavity. (b) Decomposition using

the proposed method.

components. Our decomposition method does not try to find a cut that splits a

given model P into two components with minimum concavity. There are two reasons

that we do not do so. First, greedily minimizing concavity does not necessarily

produce fewer components. Second, the decomposed components with minimum

concavity may not represent significant features. For instance, in order to minimize

the convexity of P in Figure 64(a), P will be decomposed into P1 and P2 so that

max (concavity(P1), concavity(P2)) is minimized. However, doing so splits the model

at unnatural places and will ultimately generate more components. Therefore, we are

interested in investigating whether a non-greedy method can reduce the size of the

decomposition and can still represent significant features.

127

REFERENCES

[1] P. K. Agarwal, E. Flato, and D. Halperin, “Polygon decomposition

for efficient construction of minkowski sums,” in European Symposium

on Algorithms, January, 2000, pp. 20–31. [Online]. Available: cite-

seer.nj.nec.com/agarwal00polygon.html

[2] N. M. Amato, M. T. Goodrich, and E. A. Ramos, “A randomized algorithm for

triangulating a simple polygon in linear time,” Discrete and Computational Ge-

ometry, vol. 26, pp. 245–265, 2001, special issue for the 16th ACM Symposium

on Computational Geometry (SoCG 2000).

[3] N. Amenta, S. Choi, M. E. Jump, R. K. Kolluri, and T. Wahl, “Finding alpha-

helices in skeletons,” Dept. of Computer Science, The University of Texas at

Austin, Tech. Rep., 2002.

[4] N. Amenta, S. Choi, and R. K. Kolluri, “The power crust, unions of balls,

and the medial axis transform,” Computational Geometry, vol. 19, no. 2-3, pp.

127–153, 2001. [Online]. Available: citeseer.nj.nec.com/amenta01power.html

[5] D. Attali, P. Bertolino, and A. Montanvert, “Using polyballs to approximate

shapes and skeletons,” in Proceedings of International Conference on Pattern

Recognition (ICPR’94), 1994, pp. 626–628.

[6] D. Attali and J.-O. Lachaud, “Delaunay conforming iso-surface; skeleton

extraction and noise removal,” Computational Geometry: Theory and

Applications, vol. 19, no. 2-3, pp. 175–189, 2001. [Online]. Available:

http://dept-info.labri.u-bordeaux.fr/ lachaud/pub.html

128

[7] M. Attene, S. Biasotti, and M. Spagnuolo, “Re-meshing techniques for topo-

logical analysis,” in Proc. of the Shape Modeling International (SMI’01), May

2001, pp. 142–151.

[8] D. Avis and G. T. Toussaint, “An optimal algorithm for determining the visi-

bility of a polygon from an edge,” IEEE Trans. Comput., vol. C-30, no. 12, pp.

910–1014, 1981.

[9] O. E. Badawy and M. Kamel, “Shape representation using concavity graphs,”

ICPR, vol. 3, pp. 461–464, 2002.

[10] C. Bajaj and T. K. Dey, “Polygon nesting and robustness,” Inform. Process.

Lett., vol. 35, pp. 23–32, 1990.

[11] ——, “Convex decomposition of polyhedra and robustness,” SIAM J. Comput.,

vol. 21, pp. 339–364, 1992.

[12] G. Barequet, B. Chazelle, L. Guibas, J. Mitchell, and A. Tal, “BOXTREE: A

hierarchical representation for surfaces in 3D,” Comput. Graph. Forum, vol. 15,

no. 3, pp. C387–C396, C484, Sept. 1996, proc. Eurographics’96.

[13] J. Barraquand, L. E. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, and

P. Raghavan, “A random sampling scheme for path planning,” Int. J. of Rob.

Res, vol. 16, no. 6, pp. 759–774, 1997.

[14] I. Biederman, “Recognition-by-components: A theory of human image under-

standing,” Psychological Review, vol. 94, pp. 115–147, 1987.

[15] I. Bitter, A. E. Kaufman, and M. Sato, “Penalized-distance volumetric skele-

ton algorithm,” IEEE Transactions on Visualization and Computer Graphics,

vol. 7, no. 3, pp. 195–206, 2001.

129

[16] H. Blum, “A transformation for extracting new descriptors of shape,” in Models

for the Perception of Speech and Visual Form, W. Wathen-Dunn, Ed. Cam-

bridge, MA: MIT Press, 1967, pp. 362–380.

[17] J.-D. Boissonnat, “Automatic solid modeler for robotics applications,” in

Robotics Research: Third International Symposium. MIT Press Series in Arti-

ficial Intelligence. Cambridge, MA: MIT Press, 1986, pp. 65–72.

[18] V. Boor, M. H. Overmars, and A. F. van der Stappen, “The Gaussian sampling

strategy for probabilistic roadmap planners,” in Proc. IEEE Int. Conf. Robot.

Autom. (ICRA), vol. 2, May 1999, pp. 1018–1023.

[19] G. Borgefors and G. S. di Baja, “Methods for hierarchical analysis of concavi-

ties,” in Proceedings of the Conference on Pattern Recognition (ICPR), vol. 3,

1992, pp. 171–175.

[20] ——, “Analyzing nonconvex 2d and 3d patterns,” Computer Vision and Image

Understanding, vol. 63, no. 1, pp. 145–157, 1996.

[21] G. Bradshaw and C. O’Sullivan, “Sphere-tree construction using dynamic me-

dial axis approximation,” in Proceedings of the ACM SIGGRAPH Symposium

on Computer Animation. ACM Press, 2002, pp. 33–40.

[22] H. Bunke and A. Kandel, “Mean and maximum common subgraph of two

graphs,” Pattern Recogn. Lett., vol. 21, no. 2, pp. 163–168, 2000.

[23] J. F. Canny, The Complexity of Robot Motion Planning. Cambridge, MA: MIT

Press, 1988.

[24] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popovic, “Interac-

tive skeleton-driven dynamic deformations,” ACM Transactions on Graphics,

130

vol. 21, no. 3, pp. 586–593, 2002.

[25] G. Castillero, “Ancient, giant images found carved into Peru

desert,” October 2002, National Geographic News. [Online]. Available:

http://news.nationalgeographic.com

[26] B. Chazelle and L. Palios, “Decomposition algorithms in geometry,” in Algebraic

Geometry and Its Applications, C. Bajaj, Ed. New York, NY: Springer-Verlag,

1994, ch. 27, pp. 419–447.

[27] B. Chazelle, “Convex decompositions of polyhedra,” in Proc. 13th Annu. ACM

Sympos. Theory Comput., 1981, pp. 70–79.

[28] ——, “A theorem on polygon cutting with applications,” in Proc. 23rd Annu.

IEEE Sympos. Found. Comput. Sci., 1982, pp. 339–349.

[29] ——, “Convex partitions of polyhedra: A lower bound and worst-case optimal

algorithm,” SIAM J. Comput., vol. 13, pp. 488–507, 1984.

[30] ——, “Triangulating a simple polygon in linear time,” Discrete Comput. Geom.,

vol. 6, no. 5, pp. 485–524, 1991.

[31] B. Chazelle and D. P. Dobkin, “Decomposing a polygon into its convex parts,”

in Proc. 11th Annu. ACM Sympos. Theory Comput., 1979, pp. 38–48.

[32] ——, “Optimal convex decompositions,” in Computational Geometry, G. T.

Toussaint, Ed. Amsterdam, Netherlands: North-Holland, 1985, pp. 63–133.

[33] B. Chazelle, D. P. Dobkin, N. Shouraboura, and A. Tal, “Strategies for polyhe-

dral surface decomposition: An experimental study,” in Proc. 11th Annu. ACM

Sympos. Comput. Geom., 1995, pp. 297–305.

131

[34] B. Chazelle and L. Palios, “Decomposing the boundary of a nonconvex poly-

hedron,” in Proc. 3rd Scand. Workshop Algorithm Theory, ser. Lecture Notes

Comput. Sci., vol. 621. Springer-Verlag, 1992, pp. 364–375.

[35] F. Chin, J. Snoeyink, and C. A. Wang, “Finding the medial axis of a simple

polygon in linear time,” Discrete and Computational Geometry, vol. 21, no. 3,

pp. 405–420, 1999.

[36] J. Choi, J. Sellen, and C. K. Yap, “Approximate Euclidean shortest paths in

3-space,” Internat. J. Comput. Geom. Appl., vol. 7, no. 4, pp. 271–295, Aug.

1997.

[37] J.-H. Chuang, C.-H. Tsai, and M.-C. Ko, “Skeletonization of three-dimensional

object using generalized potential field,” IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, vol. 22, no. 11, pp. 1241–1251, 2000.

[38] D. Cohen-Steiner, P. Alliez, and M. Desbrun, “Variational shape approxima-

tion,” ACM Trans. Graph., vol. 23, no. 3, pp. 905–914, 2004.

[39] A. G. Cohn, “A hierarchical representation of qualitative shape based on con-

nection and convexity,” in International Conference on Spatial Information

Theory, 1995, pp. 311–326.

[40] A. Crosnier and J. Rossignac, “Tribox-based simplification of three-dimensional

objects,” Computers & Graphics, vol. 23, no. 3, pp. 429–438, 1999.

[41] T. Culver, J. Keyser, and D. Manocha, “Exact computation of the medial axis

of a polyhedron,” Comput. Aided Geom. Des., vol. 21, no. 1, pp. 65–98, 2004.

[42] C. M. Cyr and B. B. Kimia, “3d object recognition using shape similarity-based

aspect graph,” in ICCV’01, 2001.

132

[43] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella, “Suggestive con-

tours for conveying shape,” ACM Trans. Graph., vol. 22, no. 3, pp. 848–855,

2003.

[44] E. D. Demaine, M. L. Demaine, and J. S. B. Mitchell, “Folding flat silhouettes

and wrapping polyhedral packages: New results in computational origami,”

in Symposium on Computational Geometry, 1999, pp. 105–114. [Online].

Available: citeseer.nj.nec.com/demaine99folding.html

[45] T. K. Dey, J. Giesen, and S. Goswami, “Shape segmentation and matching with

flow discretization,” in Proc. Workshop on Algorithms and Data Structures,

2003, pp. 25–36.

[46] T. K. Dey and W. Zhao, “Approximate medial axis as a voronoi subcomplex,”

in ACM Symposium on Solid Modeling and Applications, 2002, pp. 356–366.

[47] J. Erickson and S. Har-Peled, “Optimally cutting a surface into a disk,” in

Proceedings of the Eighteenth Annual Symposium on Computational Geometry.

2002, pp. 244–253.

[48] H. Y. F. Feng and T. Pavlidis, “Decomposition of polygons into simpler com-

ponents: Feature generation for syntactic pattern recognition,” IEEE Trans.

Comput., vol. C-24, pp. 636–650, 1975.

[49] T. Fevens, H. Meijer, and D. Rappaport, “Minimum convex partition of a con-

strained point set,” in Abstracts 14th European Workshop Comput. Geom. Uni-

versitat Polytènica de Catalunya, Barcelona, 1998, pp. 79–81.

[50] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones, “Adaptively sam-

pled distance fields: A general representation of shape for computer graphics,”

133

in Proc. ACM SIGGRAPH, 2000, pp. 249–254.

[51] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,

S. Rusinkiewicz, and D. Dobkin, “Modeling by example,” ACM Trans. Graph.,

vol. 23, no. 3, pp. 652–663, 2004.

[52] D. H. Greene, “The decomposition of polygons into convex parts,” in Compu-

tational Geometry, ser. Adv. Comput. Res., F. P. Preparata, Ed. Greenwich,

CT: JAI Press, 1983, vol. 1, pp. 235–259.

[53] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, “Linear-

time algorithms for visibility and shortest path problems inside triangulated

simple polygons,” Algorithmica, vol. 2, pp. 209–233, 1987.

[54] M. Held, “FIST: Fast industrial-strength triangulation of polygons,” University

at Stony Brook, Tech. Rep., 1998.

[55] J. Hershberger and J. Snoeyink, “Speeding up the Douglas-Peucker line sim-

plification algorithm,” in Proc. 5th Internat. Sympos. Spatial Data Handling,

1992, pp. 134–143.

[56] J. E. Hershberger and J. S. Snoeyink, “Erased arrangements of lines and convex

decompositions of polyhedra,” Comput. Geom. Theory Appl., vol. 9, pp. 129–

143, 1998.

[57] S. Hert and V. J. Lumelsky, “Polygon area decomposition for multiple-

robot workspace division,” International Journal of Computational Geometry

and Applications, vol. 8, no. 4, pp. 437–466, 1998. [Online]. Available:

citeseer.nj.nec.com/hert98polygon.html

134

[58] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii, “Topology matching for

fully automatic similarity estimation of 3d shapes,” in Proceedings of the 28th

Annual Conference on Computer Graphics and Interactive Techniques, 2001,

pp. 203–212.

[59] D. Hoffman and W. Richards, “Parts of recognition,” Cognition, vol. 18, pp.

65–96, 1984.

[60] D. Hoffman and M. Singh, “Salience of visual parts,” Cognition, vol. 63, pp.

29–78, 1997.

[61] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive config-

uration spaces,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 1997, pp.

2719–2726.

[62] P. M. Hubbard, “Approximating polyhedra with spheres for time-critical col-

lision detection,” ACM Transactions on Graphics (TOG), vol. 15, no. 3, pp.

179–210, 1996.

[63] A. Hubeli and M. Gross, “Multiresolution feature extraction for unstructured

meshes,” in Proceedings of the Conference on Visualization ’01, 2001, pp. 287–

294.

[64] B. Joe, “Geompack. A software package for the generation of meshes using

geometric algorithms,” Advances in Engineering Software and Workstations,

vol. 13, no. 5–6, pp. 325–331, Sept. 1991.

[65] ——, “Tetrahedral mesh generation in polyhedral regions based on convex poly-

hedron decompositions,” International Journal for Numerical Methods in En-

gineering, vol. 37, pp. 693–713, 1994.

135

[66] S. Katz and A. Tal, “Hierarchical mesh decomposition using fuzzy clustering

and cuts,” ACM Trans. Graph., vol. 22, no. 3, pp. 954–961, 2003.

[67] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” IEEE

Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, August 1996.

[68] J. M. Keil, “Decomposing polygons into simpler components,” Ph.D. disserta-

tion, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, 1983.

[69] ——, “Decomposing a polygon into simpler components,” SIAM J. Comput.,

vol. 14, pp. 799–817, 1985.

[70] ——, “Polygon decomposition,” in Handbook of Computational Geometry, J.-

R. Sack and J. Urrutia, Eds. Amsterdam: Elsevier Science Publishers B.V.

North-Holland, 2000, pp. 491–518.

[71] M. Keil and J. Snoeyink, “On the time bound for convex decomposition

of simple polygons,” in Proceedings of the 10th Canadian Conference on

Computational Geometry, M. Soss, Ed. Montréal, Québec, Canada: School

of Computer Science, McGill University, 1998, pp. 54–55. [Online]. Available:

citeseer.nj.nec.com/keil98time.html

[72] J. R. Kent, W. E. Carlson, and R. E. Parent, “Shape transformation for poly-

hedral objects,” SIGGRAPH Comput. Graph., vol. 26, no. 2, pp. 47–54, 1992.

[73] A. Khodakovsky, N. Litke, and P. Schröder, “Globally smooth parameteriza-

tions with low distortion,” ACM Trans. Graph., vol. 22, no. 3, pp. 350–357,

2003.

136

[74] Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha, “Fast penetration depth

computation for physically-based animation,” in ACM Symposium on Computer

Animation, 2002.

[75] J. C. Latombe, Robot Motion Planning. Boston, MA: Kluwer Academic Pub-

lishers, 1991.

[76] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees: Progress

and prospects,” in Proc. Int. Workshop on Algorithmic Foundations of Robotics

(WAFR), 2000, pp. SA45–SA59.

[77] D. T. Lee and F. P. Preparata, “Euclidean shortest paths in the presence of

rectilinear barriers,” Networks, vol. 14, pp. 393–410, 1984.

[78] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.-P. Seidel, “Intelligent mesh

scissoring using 3d snakes,” in Proceedings of the 12th Pacific Conference on

Computer Graphics and Applications (PG’04), October 2004, pp. 279–287.

[79] C. Levcopoulos and A. Lingas, “Bounds on the length of convex partitions of

polygons,” in Proc. 4th Conf. Found. Softw. Tech. Theoret. Comput. Sci., ser.

Lecture Notes Comput. Sci., vol. 181 , 1984, pp. 279–295.

[80] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, “Least squares conformal maps

for automatic texture atlas generation,” in Proceedings of the 29th Annual Con-

ference on Computer Graphics and Interactive Techniques, 2002, pp. 362–371.

[81] T.-Y. Li, J.-M. Lien, S.-Y. Chiu, and T.-H. Yu, “Automatically generating

virtual guided tours,” in Computer Animation. IEEE Computer Society, May

1999, pp. 99–106.

137

[82] X. Li, T. W. Toon, and Z. Huang, “Decomposing polygon meshes for inter-

active applications,” in Proceedings of the 2001 Symposium on Interactive 3D

Graphics, 2001, pp. 35–42.

[83] J.-M. Lien and N. M. Amato, “Approximate convex decomposition,” Parasol

Lab, Dept. of Computer Science, Texas A&M University, Tech. Rep. TR03-001,

Jan 2003.

[84] ——, “Approximate convex decomposition,” in Proc. 20th Annual ACM Symp.

Computat. Geom. (SoCG), June 2004, pp. 457–458, video Abstract.

[85] ——, “Approximate convex decomposition of polygons,” in Proc. 20th Annual

ACM Symp. Computat. Geom. (SoCG), June 2004, pp. 17–26.

[86] J.-M. Lien, S. L. Thomas, and N. M. Amato, “A general framework for sampling

on the medial axis of the free space,” in Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), September 2003, pp. 4439–4444.

[87] J.-M. Lien and N. M. Amato, “Approximate convex decomposition for poly-

gons,” Computational Geometry: Theory & Applications, vol. 35, no.1-2, pp.

100–123, 2006.

[88] ——, “Approximate convex decomposition of polyhedra,” Parasol Lab, Dept.

of Computer Science, Texas A&M University, Tech. Rep. TR06-002, Jan 2006.

[89] ——, “Simultaneous shape decomposition and skeletonization,” in Proceedings

of ACM Solid and Physical Modeling Symposium (SPM’06), June 2006.

[90] A. Lingas, “The power of non-rectilinear holes,” in Proc. 9th Internat. Colloq.

Automata Lang. Program., ser. Lecture Notes Comput. Sci., vol. 140, 1982, pp.

369–383.

138

[91] A. Lingas, R. Pinter, R. Rivest, and A. Shamir, “Minimum edge length parti-

tioning of rectilinear polygons,” in Proc. 20th Allerton Conf. Commun. Control

Comput., 1982, pp. 53–63.

[92] R. Liu and H. Zhang, “Segmentation of 3d meshes through spectral cluster-

ing,” in Proceedings of the 12th Pacific Conference on Computer Graphics and

Applications (PG’04), October 2004, pp. 298–305.

[93] Y. Lu, R. Gadh, and T. J. Tautges, “Volume decomposition and feature recog-

nition for hexahedral mesh generation,” in Proc. 8th International Meshing

Roundtable, October 1999, pp. 269–280.

[94] A. P. Mangan and R. T. Whitaker, “Partitioning 3d surface meshes using water-

shed segmentation,” IEEE Transactions on Visualization and Computer Graph-

ics, vol. 5, no. 4, pp. 308–321, 1999.

[95] D. Marr, “Analysis of occluding contour,” in Proc. Roy. Soc. London, 1977, pp.

441–475.

[96] E. Mazer, J. M. Ahuactzin, and P. Bessiere, “The Ariadne’s clew algorithm,”

in Journal of Artificial Robotics Research (JAIR), vol. 9, 1998, pp. 295–316.

[97] D. McCallum and D. Avis, “A linear algorithm for finding the convex hull of a

simple polygon,” Inform. Process. Lett., vol. 9, pp. 201–206, 1979.

[98] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler, “Stable real-time

deformations,” 2002, pp. 49–54.

[99] R. Ogniewicz and O. Kubler, “Hierarchic voronoi skeletons,” Pattern Recogni-

tion, vol. 28, no. 3, pp. 343–359, 1995.

139

[100] Y. Ohtake, A. Belyaev, and H.-P. Seidel, “Ridge-valley lines on meshes via

implicit surface fitting,” ACM Trans. Graph., vol. 23, no. 3, pp. 609–612, 2004.

[101] S. J. Owen, “A survey of unstructured mesh generation technology,” in 7th

International Meshing Roundtable, 1998, pp. 239–267.

[102] D. L. Page, A. F. Koschan, and M. A. Abidi, “Perception-based 3d triangle

mesh segmentation using fast marching watersheds,” in Proceedings of the 2003

Conference on Computer Vision and Pattern Recognition (CVPR ’03), 2003,

pp. 27–32.

[103] R. M. Palenichka, M. B. Zaremba, and U. du Quebec, “Multi-scale model-based

skeletonization of object shapes using self-organizing maps,” in 16th Interna-

tional Conference on Pattern Recognition (ICPR’02), 2002, pp. 10 143–10 147.

[104] M. Pauly, R. Keiser, and M. Gross, “Multi-scale feature extraction on point-

sampled surfaces,” in Proceedings of the Eurographics/ACM SIGGRAPH Sym-

posium on Geometry Processing, 2003, pp. 281–289.

[105] E. Praun and H. Hoppe, “Spherical parametrization and remeshing,” ACM

Trans. Graph., vol. 22, no. 3, pp. 340–349, 2003.

[106] S. Rodriguez, J.-M. Lien, and N. M. Amato, “Planning motion in completely

deformable environments,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),

May 2006, pp. 2466–2471.

[107] H. Rom and G. Medioni, “Hierarchical decomposition and axial shape de-

scription,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 15, no. 10, pp. 973–981, 1993.

140

[108] ——, “Part decomposition and description of 3d shapes,” in Proceedings of

International Conference on Pattern Recognition (ICPR’94), 1994, pp. 629–

632.

[109] P. L. Rosin, “Shape partitioning by convexity,” IEEE Transactions on System,

Man, and Cybernetics - Part A : System and Humans, vol. 30, no. 2, pp. 202–

210, March 2000.

[110] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe, “Multi-

chart geometry images,” in Proceedings of the Eurographics/ACM SIGGRAPH

Symposium on Geometry Processing, 2003, pp. 146–155.

[111] P. Schorn, “Accurate and efficient algorithms for proximity problems,” in Proc.

2nd Canad. Conf. Comput. Geom., 1990, pp. 24–27.

[112] A. Shapiro and A. Tal, “Polyhedron realization for shape transformation,” The

Visual Computer, vol. 14, no. 8/9, pp. 429–444, 1998.

[113] M. Sharir and A. Schorr, “On shortest paths in polyhedral spaces,” SIAM J.

Comput., vol. 15, pp. 193–215, 1986.

[114] D. J. Sheehy, C. G. Armstrong, and D. J. Robinson, “Shape description by

medial surface construction,” IEEE Trans. Visualizat. Comput. Graph., vol. 2,

no. 1, pp. 62–72, Mar. 1996.

[115] Y. Shinagawa and T. L. Kunii, “Constructing a reeb graph automatically from

cross sections,” IEEE Computer Graphics and Applications, vol. 11, no. 6, pp.

44–51, 1991.

[116] Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien, “Surface coding based on

morse theory,” IEEE Computer Graphics and Applications, vol. 11, no. 5, pp.

141

66–78, 1991.

[117] K. Siddiqi and B. B. Kimia, “Parts of visual form: Computational aspects,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 3,

pp. 239–251, 1995.

[118] K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker, “Shock

graphs and shape matching,” in ICCV, 1998, pp. 222–229. [Online]. Available:

citeseer.nj.nec.com/siddiqi98shock.html

[119] M. Simmons and C. H. Séquin, “2d shape decomposition and the automatic

generation of hierarchical representations,” International Journal of Shape Mod-

eling, vol. 4, pp. 63–78, 1998.

[120] M. Singh, G. Seyranian, and D. Hoffma, “Parsing silhouettes: The short-cut

rule,” Perception & Psychophysics, vol. 61, pp. 636–660, 1999.

[121] J. Sklansky, “Measuring concavity on rectangular mosaic,” IEEE Trans. Com-

put., vol. C-21, pp. 1355–1364, 1972.

[122] J. Snoeyink, “Minimum convex decomposition,” software. [Online]. Available:

http://www.cs.unc.edu/∼snoeyink/

[123] H. I. Stern, “Polygonal entropy: A convexity measure,” Pattern Recognition

Letters, vol. 10, pp. 229–235, 1989.

[124] M. Teichmann and S. Teller, “Assisted articulation of closed polygonal

models,” in Proceedings of the Eurographics Workshop, 1998, pp. 254–254.

[Online]. Available: citeseer.nj.nec.com/teichmann98assisted.html

[125] S. Tor and A. Middleditch, “Convex decomposition of simple polygons,” ACM

Transactions on Graphics, vol. 3, no. 4, pp. 244–265, 1984.

142

[126] M. Tănase and R. C. Veltkamp, “Polygon decomposition based on the straight

line skeleton,” in Proceedings of the Nineteenth Conference on Computational

Geometry (SoCG). ACM Press, 2003, pp. 58–67.

[127] A. Verroust and F. Lazarus, “Extracting skeletal curves from 3d scattered data,”

in International Conference on Shape Modeling and Applications. IEEE Com-

puter Society, 1999, pp. 194–201.

[128] E. R. White, “Assessment of line-generalization algorithms using characteristic

points,” The American Cartographer, vol. 12, no. 1, pp. 17–27, 1985.

[129] Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder, “Removing excess topology

from isosurfaces,” ACM Trans. Graph., vol. 23, no. 2, pp. 190–208, 2004.

[130] F.-C. Wu, W.-C. Ma, P.-C. Liou, R.-H. Laing, and M. Ouhyoung, “Skeleton

extraction of 3d objects with visible repulsive force,” in Computer Graphics

Workshop 2003, Hua-Lien, Taiwan, 2003.

[131] K. Wu and M. D. Levine, “3d part segmentation using simulated electrical

charge distributions,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 19, no. 11, pp. 1223–1235, 1997.

[132] Y. Wu, “An obstacle-based probabilistic roadmap method for path planning,”

Master’s thesis, Department of Computer Science, Texas A&M University, 1996.

[133] G. Wyvill and C. Handley, “The ‘thermodynamics’ of shape,” in Proc. of the

Shape Modeling International (SMI’01), May 2001, pp. 2–8.

[134] E. Zhang, K. Mischaikow, and G. Turk, “Feature-based surface parameteri-

zation and texture mapping,” Georgia Institute Technology, GIT-GVU-03-29,

2003.

143

[135] Y. Zhou and A. W. Toga, “Efficient skeletonization of volumetric objects,”

IEEE Transactions on Visualization and Computer Graphics, vol. 5, no. 3, pp.

196–209, 1999.

[136] J. Zunic and P. L. Rosin, “A convexity measurement for polygons,” in British

Machine Vision Conference, 2002, pp. 173–182.

144

VITA

Jyh-Ming Lien was born on January 27, 1977, in Taipei, Taiwan. He gradu-

ated from Taipei Municipal Chien Kuo High School in 1995 and received his B.S. in

Computer Science at National ChengChi University, Taipei, Taiwan, in 1999. From

1999, until now he has been a student and graduate assistant in the Department of

Computer Science at Texas A&M University.

Mr. Lien’s permanent address is: 3F No.11, Lane 1, Sec. 2, Chenggong Rd.,

Yonghe, Taipei, 234, Taiwan.

