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ABSTRACT 

Objective Assessment of Image Quality (OAIQ) in Fluorescence-Enhanced Optical 

Imaging. (December 2006) 

Amit K. Sahu, B. Tech., Indian Institute of Technology, Roorkee, India 

Co-Chairs of Advisory Committee: Dr. Eva Marie Sevick-Muraca 
                                                                            Dr. Mahmoud El-Halwagi 

 
The statistical evaluation of molecular imaging approaches for detecting, diagnosing, 

and monitoring molecular response to treatment are required prior to their adoption.  The 

assessment of fluorescence-enhanced optical imaging is particularly challenging since 

neither instrument nor agent has been established.  Small animal imaging does not 

address the depth of penetration issues adequately and the risk of administering 

molecular optical imaging agents into patients remains unknown.   Herein, we focus 

upon the development of a framework for OAIQ which includes a lumpy-object model 

to simulate natural anatomical tissue structure as well as the non-specific distribution of 

fluorescent contrast agents.  This work is required for adoption of fluorescence-enhanced 

optical imaging in the clinic. 

 Herein, the imaging system is simulated by the diffusion approximation of the 

time-dependent radiative transfer equation, which describes near infra-red light 

propagation through clinically relevant volumes.  We predict the time-dependent light 

propagation within a 200 cc breast interrogated with 25 points of excitation illumination 

and 128 points of fluorescent light collection.  We simulate the fluorescence generation 

from Cardio-Green at tissue target concentrations of 1, 0.5, and 0.25 µM with 



 iv

backgrounds containing 0.01 µM.  The fluorescence boundary measurements for 1 cc 

spherical targets simulated within lumpy backgrounds of (i) endogenous optical 

properties (absorption and scattering), as well as (ii) exogenous fluorophore cross-

section are generated with lump strength varying up to 100% of the average background.  

The imaging data are then used to validate a PMBF/CONTN tomographic reconstruction 

algorithm.  Our results show that the image recovery is sensitive to the heterogeneous 

background structures.  Further analysis on the imaging data by a Hotelling observer 

affirms that the detection capability of the imaging system is adversely affected by the 

presence of heterogeneous background structures.  The above issue is also addressed 

using the human-observer studies wherein multiple cases of randomly located targets 

superimposed on random heterogeneous backgrounds are used in a “double-blind” 

situation.  The results of this study show consistency with the outcome of above 

mentioned analyses.  Finally, the Hotelling observer’s analysis is used to demonstrate (i) 

the inverse correlation between detectability and target depth, and (ii) the plateauing of 

detectability with improved excitation light rejection. 
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1. INTRODUCTION1 

 

1.1 Motivation 

Molecular imaging has progressed significantly since the early literature promised its 

potential for disease diagnostic abilities.1-4  Novel approaches to molecular imaging are 

being devised in order to reshape the diagnosis and treatment of cancer.  Since the 

detection and localization of metastatic lesions have been proved stubbornly resistant to 

the conventional imaging techniques, newer molecular approaches are mainly focused to 

overcome this issue.  Currently, the “gold standard” for clinical molecular imaging is 

mainly based upon the nuclear techniques of gamma scintigraphy, positron emission 

tomography (PET), and single photon emission computed tomography (SPECT).5, 6  

Unlike nuclear imaging techniques, in which radiotracers release a single photon 

imaging event upon relaxation and cannot be reactivated in tissues, fluorescence-

enhanced optical imaging has higher signal-to-noise ratio (SNR) owing to the ability of 

a fluorophore to be repeatedly excited.7  In addition, fluorophores do not have an 

intrinsic half-life as do radiopharmaceuticals.  This greatly enhances the duration of time 

for imaging, which is limited in the case of nuclear imaging, and results in higher target-

to-background ratios (TBR).  Despite these advantages and the fact that its proposed 

development is ongoing for almost a decade, fluorescence-enhanced optical imaging 

with new molecular imaging agents has yet to progress into clinical studies on actual 

cancer patients.  One reason for this might be associated to the fact that the 
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administration of molecularly targeted fluorescent contrast agents (fluorophores) do not 

have a proven record of safety and efficacy and consequently represent an unknown risk 

to patients.  Yet in order to demonstrate the effectiveness of fluorescence imaging for 

cancer diagnostics, a large number of patient studies need to be performed to gather the 

appropriate statistics.  Hence there is a need to find an alternative approach through 

which fluorescence imaging systems can be assessed without injecting these contrast 

agents in cancer patients.  Experimental studies on tissue mimicking phantoms8-10 and 

simulation studies using synthetic measurements11 are the approaches that earlier 

workers have adopted as reliable alternatives.  But these studies have focused on 

detecting a fluorescent target in the presence of a homogeneous background.  The 

studies involving homogeneous backgrounds are important, but more or less irrelevant 

since in reality the tissue heterogeneity is almost always present in a structured 

anatomical background, which changes from patient to patient.  For molecularly 

targeting agents, heterogeneous distribution of the disease markers may be unevenly 

expressed at a lower level than in the target tissue.  Furthermore, the background 

variability could have a substantial effect on an observer’s detection performance and 

thus can not be ignored.12, 13 

Additionally, the popularity and credibility of nuclear techniques for the 

diagnostic medical imaging can be ascribed to the established tools for the objective 

assessment of image quality (OAIQ).14-16  These tools aid in the imaging equipment 

development, performance specification, comparison of different imaging systems, and 

the imaging technique optimization.  More importantly, they can be used to improve the 
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diagnostic ability of medical imaging systems.  Since fluorescence-enhanced optical 

tomography is a highly nonlinear inverse problem, OAIQ tools may not be directly 

applicable.  In the past, the evaluation of optical tomography systems mainly consisted 

of contrast-detail analysis17, 18 (minimum contrast level for detection and 

characterization) and statistical analysis8, 11, 19, 20 (mean square error, image standard 

deviation, etc) as reported in Table 1.1.  Although measures of contrast-detail and 

statistical analyses are important to test the feasibility of the fluorescence imaging, 

OAIQ tools are needed to aid in the optimization of instrumentation as well as the 

imaging algorithms for detection (is there a tumor present or not?) and estimation (what 

is the location or size of the tumor?) tasks.  In this context, the OAIQ tools are intended 

to be an aid in the understanding of the limitations of fluorescence-enhanced optical 

imaging technology for appropriate clinical application without exposing patients to 

unknown risks.  To our knowledge, there has been no attempt to assess the fluorescence-

enhanced optical imaging systems using OAIQ tools until now.  Although Pineda and 

Arridge21 used these tools for time domain optical tomography, their system, a 2D disc 

phantom, lacks a realistic description of a patient’s anatomy.  Besides, they use a diffuse 

optical tomography approach to image the endogenous optical properties in a 2D 

medium, which is in contrast to our study that involves an exogenous fluorescent 

imaging agent.  In this contribution we propose the employment of (i) a model to 

simulate the natural tissue structure, and (ii) the OAIQ tools to assess the detection task 

of the fluorescence-enhanced imaging.  The main goals of this dissertation will be to 

develop and use OAIQ tools to evaluate fluorescence imaging for clinical studies. 



 

Table 1.1 Review of the literature for the image quality assessment approaches in near-infrared (NIR) diffusion optical imaging. 

Authors Imaging 
modality Measurement Image reconstruction 

technique 
Image quality 

assessment tools Comments 

Pogue et al. 
(2000)17 

Diffuse 
optical 

tomography, 
DOT 
(no 

fluorescence) 

Epoxy resin phantoms to 
mimic optical properties 

of human breast; 16 point 
sources and 16 detector 

fibers. 

Newton-Raphson 
method with 

Levenberg-Marquardt 
regularization 

(finite element based) 
2D 

Contrast-detail 
analysis (minimum 
contrast level for 

detection and 
characterization) 

 
It is not possible for such nonlinear 
modalities to arrive at a single number 
which can provide the resolution limit 
achievable for such nonlinear imaging 
modalities. 

Roy et al. 
(2001)11 

DOT 
(fluorescence-

enhanced) 

Synthetic measurements 
on a frustum-shaped 

phantom; 43 source nodes 
and 42 detector nodes on 

the curved surface. 

Truncated Newton 
method with trust 

regions 
(finite element based) 

3D 

Statistical analysis 
(sum of square 
errors, mean of 
relative error, 

standard deviation) 

 
The statistical quantities on the left 
column are used to determine the 
convergence criteria for the inverse 
imaging algorithm. 

Pogue et al. 
(2002)20 

DOT 
(no 

fluorescence) 

100 repeated 
reconstruction of a 

simulated 2D test image 
with randomly distributed 

noise added. 

Newton-Raphson 
method with 

Levenberg-Marquardt 
regularization 

(finite element based) 
2D 

Statistical analysis 
(mean square error, 

MSE, over the 
image, image bias, 

image variance) 

 
1. Bias error dominates at high 
regularization parameter values while 
variance dominates as the near the 
optimal solution. 
2. In order to achieve a minimum MSE 
in the overall image with an increment 
in measurement noise, higher values of 
regularization parameters were needed. 

Song el al. 
(2002)19 

DOT 
(no 

fluorescence) 

Gelatin phantoms to 
mimic optical properties 

of human breast; 16 point 
sources (15 detector fibers 

for each). 

Newton-Raphson 
method with 

Levenberg-Marquardt 
regularization 

(finite element based) 
2D 

Statistical analysis 
(MSE over the 

image, image bias, 
image variance) 

 
1. Imaging performance is not limited 
by random measurement error, but 
rather by calibration issues. 
2. The minimization of the objective 
function is not always correlated with 
an overall image error decrease. 
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Table 1.1 Continued 

Authors Imaging 
modality Measurement Image reconstruction 

technique 
Image quality 

assessment tools Comments 

Millstein et 
al. 

(2003)8 

DOT 
(fluorescence-

enhanced) 

A cubic phantom box 
filled with Intralipid 

solution and a spherical 
heterogeneity (ICG); nine 

source fibers at the 
bottom and 14 detector 

fibers at the top. 

Iterative coordinate 
descent, ICD, algorithm 

based on Bayesian 
inversion strategy 
(finite-difference 

scheme) 
3D 

Statistical analysis 
(weighted average, 

normalized root 
mean square error, 

NRMSE) 

 
1. This method can track even very 
small changes in diagnostic lifetime 
imaging applications. 
2. For yield reconstructions, the error 
propagation study suggests that the 
qualitative results may be obtained by 
using simplified models rather than the 
full absorption problem. 

Dehgani et 
al. 

(2003)22 

DOT 
(no 

fluorescence) 

A cylindrical phantom 
filled with Intralipid 

solution and India ink; 
three measurement planes 
each with 16 sources and 

16 detectors. 

Levenberg-Marquardt 
algorithm 

(finite element based) 
3D 

Resolution studies 
(peak and full 
width at half 
maximum, 
FWHM) 

1. The study of variation in resolution 
of target with mid-plane and out-of-
plane movement. 
2. Report improvement in the image 
reconstruction when using a priori 
information. 

Millstein et 
al. 

(2005)23 

DOT 
 (fluorescence-

enhanced) 

A cylindrical plastic dish 
filled with solid gel 
(suspension of 1% 

Intralipid and agarose); a 
fluorescently labeled 

mouse tumor; 1D 
measurement scans. 

A binary hypothesis 
testing approach for 

detection; 
Maximum likelihood 

approach for 
localization. 

2D 

Probability of 
detection for a 

given false alarm 
rate; Cramer-Rao 
lower bound for 

localization 
estimation error. 

 
1. Detection studies are done using a 
statistical model of the measurement 
system validated using phantom 
studies. 
2. Actual tomographic reconstructions 
are not performed and the detection-
localization approaches presented are 
used as its complement. 

 

Gao et al. 
(2005)18 

DOT 
(no 

fluorescence) 

Simulated measurements 
on a 2D circular domain 

with two target 
inclusions;  

A modified generalized 
pulse spectrum 

technique (GPST) 
2D 

Target size and 
contrast analysis 

1. The GPST is validated using DOT 
experiments on human lower legs and 
forearms. 
2. The numerical phantoms were 
devised with reference to the anatomy 
and MRI images of the lower-leg and 
forearm. 5 
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1.2 Specific aims 

The specific aims of the dissertation are listed below: 

 

1. To employ a model to simulate both natural tissue heterogeneity as well as 

heterogeneous distribution in a molecularly targeted fluorophore: The lumpy-

object model was used to simulate the natural anatomical backgrounds.  The object 

model was employed in a finite element framework suitable for generating imaging 

data sets in fluorescence imaging. 

 

2. To validate tomographic imaging algorithm based upon finite elements for 

repetitious image reconstruction in the presence of simulated heterogeneity: The 

finite element based algorithm for fluorescence tomography developed by Dr. 

Ranadhir Roy was modified to incorporate lumpy-object model.  A large, breast- 

shaped geometry was used in simulation studies.  The heterogeneous backgrounds 

representing the tissue anatomy as well as the uneven fluorophore distribution were 

introduced using the lumpy-object model.  The sensitivity of the imaging algorithm 

to the simulated tissue heterogeneity in terms of the contrast level was investigated 

for tumor detection tasks. 

 

3. To employ the Hotelling observer model to assess imaging data sets generated 

by the forward predictor in the presence of lumpy backgrounds:  A finite 

element program was developed to solve the coupled diffusion equations, otherwise 
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known as the forward solver.  The assessment of imaging data sets generated by the 

forward solver in the presence of lumpy backgrounds was performed using an 

optimal linear observer, the Hotelling observer model.  The SNR of the Hotelling 

observer was analyzed as a function of background perturbations and tumor depth.  

The systematic errors and noise associated with the actual experimental conditions 

were incorporated into the simulated imaging data sets.  

 

4. To assess the detection performance of a Gauss-Newton based tomographic 

algorithm for multiple cases of randomly located targets superimposed on 

random heterogeneous backgrounds: A Gauss-Newton algorithm was developed 

for the tomographic problem of fluorescence imaging.  The finite element based 

forward solver developed for Hotelling observer studies was employed in the 

algorithm for Gauss-Newton updates.  The algorithm was implemented in Matlab 

(The Mathworks, Inc., Natick, MA) platform.  The targets were placed randomly 

inside the breast-shaped geometry with heterogeneous backgrounds simulated by 

lumpy-object model.  The human observer performing the detection task had no prior 

knowledge of either the location of the target or the background structure. 
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1.3 Organization of dissertation 

The organization of this dissertation is presented in Fig. 1.1 below. 

 

 

Fig 1.1 Organization of the dissertation. 
 

 

Section 1: Motivation for the development of an organized manner in 
which the fluorescence-enhanced optical imaging can be assessed 
objectively based upon the task at hand. 

Section 2: Background: a brief description of the physical model to 
describe the photon propagation, mathematical framework to solve 
the iterative image reconstruction problem, and the OAIQ tools for the 
assessment of the imaging system. 

Section 3: Validation of a finite element based tomographic algorithm 
for the repetitious image reconstruction in the presence of simulated 
heterogeneous backgrounds. 

Section 4: Assessment of the fluorescence imaging system using the 
Hotelling observer model. 

Section 5: Assessment of a Gauss-Newton based tomographic 
algorithm for multiple cases of randomly located targets in random 
heterogeneous backgrounds. 

Section 6: Significance of the research and suggestions for future 
work. 

Appendices: L2 norm, adjoint theorem, stationary process, central 
limit theorem, Hotelling t2 distribution, bias in Hotelling observer’s 
SNR. 
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2. BACKGROUND 

 

2.1 Fluorescence photon migration 

 Near-infrared (NIR) light within the 750-900 nm wavelength range can penetrate deep 

into the biological tissues because in this range, the absorption of photons by 

hemoglobin, water, and fat is least.  Consequently photons can travel several centimeters 

inside the tissue undergoing multiple scattering.  This is why the NIR light is essential 

for probing the molecular activity at a depth of more than few millimeters.  

Fluorescence- enhanced optical imaging uses NIR light and a fluorophore (a fluorescent 

contrast agent which enhances the optical contrast between normal and diseased tissue) 

to investigate the exogenous optical properties of the tissue medium such as the 

absorption coefficient owing to the fluorophore.  This, coupled with the fact that tissue 

autofluorescence is at minimum at NIR wavelengths, further enhances the optical 

contrast between the normal and diseased tissue and improves detection.  Thus, 

fluorescence imaging provides a way to non-invasively diagnose tissue anomalies since 

the difference in fluorophore cross section can be used to molecularly locate and 

characterize the diseased state of the tissue.     

 The propagation of the NIR photons through the tissue media can be modeled by 

the Boltzmann radiative transport equation (RTE).24  Although the full RTE is difficult 

to solve and is computationally intensive, several researchers have used it to model NIR 

light transport in tissue.25, 26  A simplification of the RTE, known as diffusion 

approximation, can be used to model light propagation in an isotropic scattering media 
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and results in significant computational savings.  The assumption here is that after 

multiple scattering events, photons will travel almost equally in all directions.  This is 

known as isotropic propagation and is a valid assumption if photons travel longer than 

the transport mean free path.  Recently, Tarvainen et al. have coupled RTE and diffusion 

approximation approach so that the RTE can be employed in subdomains where 

diffusion approximation is not valid.27, 28  In our system, the diffusion approximation to 

the RTE works well and has been employed as a physical model for light propagation.  

The photon diffusion equation in its most general form can be written as: 

[ ]1 ( , ) ( ) ( , ) ( ( , ) ( , )a
t D t t S t

c t
µ∂Φ

−∇⋅ ∇Φ + Φ =
∂
r r r r) r r                       (2.1) 

Here ( , )tΦ r is the photon fluence rate (photons/(cm2s)) at position r and time t; D is the 

photon diffusion coefficient (cm); aµ  is the absorption coefficient (cm-1); ( , )S tr is the 

photon source strength (photons/(cm3s)) at position r and time t; c is the speed of light in 

the medium.  In frequency domain photon migration (FDPM), a sinusoidal intensity 

modulated NIR light is used as a source and the diffusion equation is given by the 

Fourier transform of the above Eq. (2.1): 

[ ]( , ) ( ) ( , ) ( ( , ) ( , )a
i D S
c
ω ω ω µ ω ωΦ −∇⋅ ∇Φ + Φ =r r r r) r r                    (2.2) 

Here ω  is the modulation frequency of the NIR source (rad/s).  The above equation 

(2.2) has been used by researchers in optical tomographic problems using endogenous 

contrast (i.e. due to the uneven absorption of photons) between normal and diseased 

tissue.19, 29  But in reality the endogenous optical contrast between healthy and diseased 

tissue might not be sufficient for the detection and this necessitates the use of exogenous 
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contrast agents (fluorophores).  Exogenous fluorophores are introduced into the tissue 

for molecular targeting to a specific tissue region, such as the tumor.  When NIR light 

reaches a fluorophore molecule bonded to some tissue site, the fluorophore excites and 

thus fluoresces (Fig. 2.1).  When this excited fluorophore molecule releases its energy 

and comes to ground state, fluorescence emission occurs (see Jablonski diagram in Fig. 

2.2).  The fluorescent quantum yield, φ , of this process is given by the ratio of number 

of photons emitted to the number of photons absorbed.  Mathematically it can be 

represented by: 

nrK
φ Γ
=
Γ +

                                                        (2.3)         

Where Γ  is the first order rate constant for radiative relaxation and nrK  is the rate 

constant for non-radiative relaxation.  Similarly, the fluorophore lifetime, τ  (typically of 

the order of nanoseconds,) is the average time a fluorophore molecule spends in its 

excited state and mathematically can be given by: 

1

nrK
τ =

Γ +
                                                       (2.4) 
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Fig. 2.1 Illustration of the frequency domain photon migration.  Intensity modulated photon density wave 
of wavelength xλ  is launched into the system, which propagates and encounters a fluorophore molecule, 
giving rise to fluorescent emission wave of wavelength mλ . 
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Fig. 2.2 Jablonski diagram showing that the excited photon relaxes radiatively while emitting 
the fluorescence light.  Various S denote the singlet electronic states of the fluorophore 
molecule.  http://laxmi.nuc.ucla.edu:8248/M248_98/synprob/part1/prop_fprob.html. 

 

 

The generation and propagation of the fluorescence diffuse photon density waves can be 

described by the following coupled diffusion equations:30, 31 

[ ]( ) ( , ) ( ( ( , ) ( , )x x axi axf x
iD S
c
ωω µ µ ω ω⎡ ⎤−∇ ∇Φ + + Φ =⎢ ⎥⎣ ⎦

r r r) + r) r ri             (2.5) 

[ ]( ) ( , ) ( ) ( ) ( , )

1( ) ( , )
1

m m ami amf m

axf x

iD
c

i

ωω µ µ ω

φµ ω
ωτ

⎡ ⎤−∇ ∇Φ + + + Φ⎢ ⎥⎣ ⎦

= Φ
+

r r r r r

r r

i
                  (2.6) 
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Where the subscript x denotes excitation and m denotes emission∗.  The term ,ax miµ  is the 

absorption due to endogenous chromophores; ,ax mfµ  is the absorption due to the 

exogenous fluorophores.  The diffusion coefficient is given by: 

,
, , ,

1
3( (1 ))x m

ax mi ax mf sx m

D
gµ µ µ

=
+ + −

                                    (2.7) 

Where ,sx mµ  is the scattering coefficient and g is the coefficient of anisotropy of the 

medium.  The coefficient g is defined as the average cosine of the scattering angle, and 

varies from 0 (for an isotropic medium) to 1 (for a forward scattering medium).  For 

biological tissues, the typical value of g is greater than or equal to 0.9.  The coupled 

diffusion equations (2.5) and (2.6) can be solved employing one of the boundary 

conditions described in Section 2.1.1 to yield, 

,, ,( , ) exp( ( , ))
x mx m AC x mI iω θ ωΦ ∝ −r r                                        (2.8) 

Here ,x mΦ  is a complex number; ,x mθ are the measured phase lags and 
,x mACI are the 

amplitudes of the photon density wave at excitation/emission wavelengths.  The 

description of the finite element method (FEM) to solve the coupled diffusion equations 

(2.5) and (2.6) is given in the Section 2.2.1. 

 

 

 

 

                                                 
* Subscript x,m denotes two quantities, one with subscript x and the other with subscript m. For example, 
    ax,m+bx,m=0 actually is a set of the following two equations: ax+bx=0; am+bm=0.  
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2.1.1 Boundary conditions 

The most common types of boundary conditions to represent a tissue boundary (see Fig. 

2.3) are: (a) zero-boundary condition (Dirichlet type), (b) partial current boundary 

condition (Robin type), and (c) extrapolated boundary condition.  

 

(a) Zero-boundary condition (ZBC) 

Dirichlet boundary condition is often referred to as first-type boundary condition in 

mathematical terminology and specifies the value a solution takes on the boundary of the 

domain.  In the context of fluorescence photon migration, the zero-boundary condition 

imposes the fluence Φ  to be zero on and outside the boundary: 

, 0
( , ) 0 .x m z

ω
=

Φ =r                                                  (2.9) 

Although zero fluence boundary condition is unphysical and violates the diffusion 

approximation, it is mathematically simple to implement and researchers have advocated 

that it is a good approximation of the biological tissues.32 

 

 

 
Fig. 2.3 Boundary surface of the strongly scattering turbid medium.  The turbid 
medium and the outside have refractive indices of n1 and n2 respectively.  n̂  is the 
outward drawn normal to the surface of the boundary. 
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(b) Partial current boundary condition (PCB) 

The Robin boundary condition is often referred to as the third-type boundary condition 

and specifies a value that a linear combination of the solution variable and its normal 

derivative takes on the boundary.  In the context of fluorescence photon migration, the 

partial current boundary condition is a sound representation of physics and signifies that 

the photons leaving the tissue surface never return and are governed by the Fresnel 

reflection at the tissue-outside interface:32-34 

,
, ,2 0.x m

x m x mD
n

γ
∂Φ

+ Φ =
∂

                                             (2.10) 

Where n denotes the outward normal to the surface; and γ  is the constant depending 

upon the optical refractive index mismatch at the boundary.  γ  is a function of the 

effective refractive index (Reff): 

1
.

1
eff

eff

R
R

γ
⎛ ⎞+

= ⎜ ⎟⎜ ⎟−⎝ ⎠
                                                 (2.11) 

Reff can be determined from the Fresnel’s reflections, Rj and Rφ , according to: 

1
.

1
j

eff

R
R

Rφ

⎛ ⎞+
= ⎜ ⎟⎜ ⎟+⎝ ⎠

                                                 (2.12) 

Where 

 
/ 2

0

2sin cos ( ) ,j FresnelR R d
π

θ θ θ θ= ∫                                     (2.13) 

/ 2
2

0

3sin cos ( ) ,FresnelR R d
π

φ θ θ θ θ= ∫                                   (2.14) 
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and RFresnel is the Fresnel reflection coefficient, a function of θ , the angle at which the 

light is incident on the boundary.32 

2 2

1 2 1 2

1 2 1 2

cos cos cos cos1 1( ) when 0
2 cos cos 2 cos cosFresnel c

n n n nR
n n n n

θ θ θ θθ θ θ
θ θ θ θ

⎛ ⎞ ⎛ ⎞′ ′− +
= + ≤ ≤⎜ ⎟ ⎜ ⎟′ ′+ −⎝ ⎠ ⎝ ⎠

     (2.15) 

( ) 1 when / 2,Fresnel cR θ θ θ π= ≤ ≤                                    (2.16) 

where n1 and n2 are the refractive indices of the turbid (tissue) medium and the outside 

medium, respectively; θ  and θ ′  are the incident angle from within the turbid medium 

and the refracted angle in the outside medium, respectively, and satisfy Snell’s law, 

1 2sin sinn nθ θ ′= .  cθ  is the critical angle for the total internal reflection at the 

tissue/outside boundary.  Eq. (2.12) through (2.15) show the dependence of Reff on the 

relative refractive index, 2 1/reln n n= .    

 

(c) Extrapolated boundary condition (EBC) 

The extrapolated boundary condition uses the concept of a hypothetical boundary at 

some distance from the tissue-outside interface.34  The location zb of the hypothetical 

boundary is obtained by extrapolating the fluence rate into the outside medium with the 

same slope as at the tissue-outside boundary.34  The fluence is assumed to be zero at the 

hypothetical boundary in PCB: 

, ( , ) 0 .
b

x m z z
ω

=
Φ =r                                                 (2.17) 

It is to be noted that the assumption of zero fluence at the extrapolated boundary does 

not imply that the fluence is actually zero there, and so PCB is not physical and merely 

serves as a simplification of the mathematics.  
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2.2 Fluorescence-enhanced optical tomography 

Optical tomography, in general, utilizes light in a specific wavelength range to 

transilluminate a highly scattering medium (like biological tissues), so that the resulting 

measurement of light intensity on the boundary of the medium can be used to obtain a 

spatial map of the optical properties of the medium.  Specifically, the fluorescence-

enhanced optical tomography uses intensity modulated NIR light (typically modulated at 

100 MHz) to activate fluorophores present in the medium, resulting in the boundary 

measurements of the amplitude as well as the phase of the emission light.  Consequently, 

the boundary measurements are used along with the coupled diffusion equations to 

reconstruct the spatial distribution of the optical properties of the medium, with the help 

of analytical or numerical techniques.  

Fluorescence-enhanced optical tomography typically involves two steps: (i) to 

solve the coupled diffusion equations for the boundary values of the emission fluence 

with an assumption that the spatial map of the optical properties of the medium is known 

(the forward problem); and (ii) to find the spatial map of the optical properties of the 

medium corresponding to minimum difference between the experimental boundary 

measurements and the measurements predicted by the forward model (the inverse 

problem).  The solution approaches to the inverse problem are often referred to as the 

image reconstruction techniques, probably since the map (image) of the interior optical 

properties is the main objective in solving the inverse problem.  By nature, the 

tomography problem is an iterative process in which the measurements resulting from an 

initial guess of optical properties are compared with the experimental measurements in 



19 

an optimization framework to obtain a subsequent guess.  The process is continued until 

some specific convergence criterion is met.  Usually if the difference between the 

experimental measurements and the forward model predictions is less than a tolerance 

value, the iterative process is stopped.  

The following sections describe the approaches to solve the forward and the 

inverse problem in fluorescence-enhanced optical imaging.  Specifically, the finite 

element representation of the forward problem is described in Section 2.2.1; and the 

optimization approaches to solve the inverse problem are described in Section 2.2.2.     

 

2.2.1 Modeling photon transport (forward problem) 

In the context of this dissertation, the forward problem refers to solving coupled 

diffusion equations (2.5) and (2.6) simultaneously for xΦ  and mΦ  employing one of the 

boundary conditions in Section 2.1.1 with the assumption that the interior optical 

property map (spatial values of ,ax miµ , ,ax mfµ , and ,sx mµ ) of the tissue or phantom 

medium is known.   

Finite difference (FD) and the finite element methods are two most common 

numerical techniques to solve a system of partial differential equations.  Unlike FD 

methods, using finite elements has many advantages, including: (i) problems can be 

solved on complex irregular regions; (ii) the domain can be discretized into nonuniform 

meshes to account for the solution gradients; and (iii) easier handling of the unusual 

specification of boundary conditions, such as boundary conditions involving fluxes.  

Therefore, we have employed a Galerkin-type finite element scheme to solve the 
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coupled diffusion equations in this work.35, 36  The various steps involved in the 

development of a finite element model and, subsequently, in the prediction of solutions 

are described below. 

 

Step 1: Discretization 

As a first step, the given domain is discretized into a collection of finite elements.  We 

prefer tetrahedral elements to discretize the solution domain due to their good 

adaptability to complicated geometries.  The meshing of the solution domain can be 

performed using GAMBIT® (Fluent Inc., Lebanon, NH) software, which outputs the 

numbering of nodes and elements along with the nodal connectivity information as text 

files. 

  

Step 2: Construction of weak form 

In finite difference techniques, the derivatives are approximated by finite differences 

with respect to the mesh introduced in the domain.  With the finite element method, the 

method of weighted residuals is applied to construct an integral formulation of the 

coupled diffusion equations called a variational problem.  The formulation for the 

excitation wave diffusion equation, Eq. (2.5), is described in detail here, and a similar 

methodology is adopted for the emission wave diffusion equation, Eq. (2.6).  

Accordingly, Eq. (2.5) is multiplied by a weight function, w, and integrated over the 

solution domain, Ω : 
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[ ] .x x axi axf x
iD wd S wd
c
ω µ µ

Ω Ω

⎛ ⎞⎡ ⎤−∇ ∇Φ + + Φ Ω = Ω⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
∫ ∫+i                (2.18) 

Using the chain rule,  

2( ) ( ) ( ) ( ),x x xw w w∇ ∇Φ = ∇ ∇Φ + ∇ Φi i                                (2.19) 

the above Eq. (2.18) becomes  

( ) .x x x x axi axf x
iD w D w w d S wd
c
ω µ µ

Ω Ω

⎛ ⎞⎡ ⎤∇ ∇Φ − ∇ ∇Φ + + Φ Ω = Ω⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
∫ ∫+i i        (2.20) 

According to the divergence theorem 

ˆ( ) ,d d
Ω Γ

∇ Ω = Γ∫ ∫p p ni i                                             (2.21) 

where p is a dummy vector; Γ  denotes the surface of the volume Ω ; and n̂  is the unit 

vector in the direction normal to the surface Γ .  Applying gradient theorem in Eq. (2.20) 

yields 

ˆ( ) .x x axi axf x x x
iD w w d D w d S wd
c
ω µ µ

Ω Γ Ω

⎛ ⎞⎡ ⎤∇ ∇Φ + + Φ Ω− ∇Φ Γ = Ω⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
∫ ∫ ∫+ ni i     (2.22) 

The above Eq. (2.22) is called the weak (or variational) form of Eq. (2.5). 

 

Step 3: Deriving interpolation functions 

In finite element approach, an approximate solution to the Eq. (2.5) is sought over each 

tetrahedral finite element (see Fig. 2.3).  Thus, the solution, e
xΦ , within a typical 

tetrahedral element eΩ  is given by the following polynomial approximation: 

1

( ),
eN

e e e
x xj j

j

ψ
=

Φ = Φ∑ r                                               (2.23) 



22 

where e
xjΦ  are the solution values at node j of the tetrahedral element eΩ ; ( )e

jψ r  are the 

interpolation functions; and Ne is the number of nodes in element eΩ  (Ne=4 since a 

tetrahedral has four vertices).  In order for the approximate solution, e
xΦ ,  to have a 

tendency to converge to the actual solution for higher discretization levels, the 

interpolation functions should be chosen such that the approximate solution, e
xΦ , 

satisfies following conditions:35, 36 (i) it must be continuous over the element, and at least 

once differentiable, as required by the weak form; (ii) it should be a complete 

polynomial; and (iii) all terms in the polynomial should be linearly independent.   

 
 

 

Fig. 2.3 A tetrahedral element ‘e’ with nodes ‘i’, ‘j’, ‘k’, and ‘l’.  In 
finite element method, a given domain is discretized into elements 
such as this one.  First, the solution is sought over each such 
individual element, and then the overall solution is obtained by 
combining the elemental solutions. 

 

 For the variational problem of Eq. (2.22), the minimum polynomial order is 

linear.  A complete linear polynomial is of the form 

1 2 3 ,e
x a a b x b y b zΦ = + = + + +b ri                                    (2.24) 

( , , )i i ii x y z

( , , )j j jj x y z

( , , )k k kk x y z
( , , )l l ll x y z

eΦ

e
iΦ

e
lΦ

e
kΦ

e
jΦ
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and it satisfies all of the above three conditions.  By definition, the above expression 

should satisfy 

1 2 3 , 1, 2,3, 4e e e e
xj j j ja b x b y b z jΦ = + + + =                              (2.25) 

i.e. it should yield the solution value at the node when provided with the nodal 

coordinates.  Equations (2.25) are solved for [a, b1, b2, b3] in terms of e
xjΦ s, and the 

resulting expressions for [a, b1, b2, b3] are used in Eq. (2.24), and are subsequently 

compared with Eq. (2.23) to obtain the expressions of interpolation functions ( )e
jψ r . 

 

Step 4: Developing finite element model using weak form 

In the Galerkin scheme, the weight functions are restricted to the solution space, and so  

, 1, 2,3, 4e
jw jψ= =                                             (2.26) 

are taken as the weight functions for the element eΩ .  Equations (2.23) and (2.26) are 

used along with the weak form given in Eq. (2.22) for element eΩ , to obtain 

4 4

1 1

ˆ( )

, 1, 2,3,4 (2.27)

e e

e

ee e e e e e e e e e e e
x i xj j axi axf i xj j x i x

j j

e e
i

iD d D d
c

S d i

ωψ ψ µ µ ψ ψ ψ

ψ

= =Ω Γ

Ω

⎛ ⎞⎛ ⎞ ⎡ ⎤∇ Φ ∇ + + Φ Ω − ∇Φ Γ⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

= Ω =

∑ ∑∫ ∫

∫

+ ni i

 
where e

xD  denotes the average value of the diffusion coefficient, xD , over the element 

eΩ , etc.  The above is a system of four equations with four unknowns as the nodal 

values of solution e
xΦ , and thus can be solved for e

xjΦ s for a given optical property map 

( , , )e e e
axi axf xDµ µ .  Alternatively, Eq. (2.27) can be written as: 
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4

1

( ) ( ) , 1, 2,3, 4e e e
x ij xj x i

j

i
=

Φ = =∑ K S                     (2.28) 

or simply represented as matrix multiplication: 

,e e e
x x xΦ =K S                                                    (2.29) 

such that  

4 4

1 1

( )

ˆ( ) ,

e

e

e e e e e e e e e e e
x ij x i xj j axi axf i xj j

j j

ee e e
x i x

iD d
c

D d

ωψ ψ µ µ ψ ψ

ψ

= =Ω

Γ

⎛ ⎞⎛ ⎞ ⎡ ⎤= ∇ Φ ∇ + + Φ Ω⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

− ∇Φ Γ

∑ ∑∫

∫

K +

n

i

i
     (2.30) 

( ) .
e

e e e
x i iS dψ

Ω

= Ω∫S                                               (2.31) 

In the above expression, e
xK  is called the overall elemental stiffness matrix; and e

xS  the 

local source matrix.   

 

Step 5: Imposing the boundary conditions 

As described in Section 2.1.1, a Robin type boundary condition is employed.  

Accordingly, the Eq. (2.10) for the excitation wavelength can be written as: 

2 0,
e

e ex
x xD

n
γ∂Φ

+ Φ =
∂

                                              (2.32) 

which can be rearranged to give: 

ˆ .
2

e
e e e ex
x x x xD D

n
γ∂Φ

= ∇Φ = − Φ
∂

ni                                       (2.33) 
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Equation (2.33) is used in Eq. (2.30) to impose the boundary conditions and the 

elemental stiffness ( e
xK ) and local source ( e

xS ) matrices for all the constituent elements 

of the domain is evaluated. 

 

Step 6: Assembling global matrices 

After performing the matrix evaluations for each individual element, a global stiffness 

matrix, xK , and a global source matrix, xS , is assembled by combining elemental 

stiffness matrices, e
xK , and local source matrices, e

xS , of all the constituent elements of 

the domain.  As a result, the forward problem of solving Eq. (2.5) for excitation fluence, 

xΦ , reduces to solving the following system of equations: 

 .x x xΦ =K S                                                     (2.34) 

The system of equations similar to the Eq. (2.34) is also assembled for the emission 

wave diffusion equation in Eq. (2.6).  The procedure described in the above steps is 

followed for the forward problem of solving Eq. (2.6) for emission fluence, mΦ , and the 

following system of equations is obtained: 

,m m x m x→Φ = ΦK B                                                (2.35) 

where mK  has same expression as xK  but with all subscripts ‘x’ replaced by ‘m’ to 

represent emission wavelength. x m→B  is the coupling matrix due to the coupling term, 

/(1 )axf iφµ ωτ+ , in Eq. (2.6) and its elemental counterpart is given by: 

( ) .
1e

e
axfe e e e

x m ij i j d
i

φµ
ψ ψ

ωτ→
Ω

⎛ ⎞
= Ω⎜ ⎟⎜ ⎟+⎝ ⎠
∫B                                     (2.36) 



26 

Step 7: Solving the system of equations 

In order to get the solutions of forward problem using finite elements, the system of 

linear equations in (2.34) and (2.35) are solved for vectors xΦ  and mΦ  containing the 

nodal values of the excitation and emission fluence, respectively.  A Gaussian 

elimination method is followed in this work to solve the system of equations. 

As illustrated in steps 1 thorough 7, the Galerkin method converts a differential 

equation to a linear system of equations by restricting the possible solutions and weight 

functions to a smaller finite space.  This is the central idea of the Galerkin method and it 

inherently seeks an approximation of the real solution; the approximation being more 

acceptable, the higher the level of discretization.  In this work, we have used reasonable 

meshing size to generate satisfactory solutions to the coupled diffusion equations. 

 

2.2.2 Image reconstruction (inverse problem)  

In the context of our research, the inverse problem involves the estimation of the 

fluorophore activity inside the 3D medium from the photon density wave measurements 

made at the surface.  Therefore, the absorption coefficient due to the fluorophores, 

,ax mfµ , is the unknown to be estimated spatially inside the 3D medium using the image 

reconstruction techniques. 

 The tomographic problem of estimating spatial map of ,ax mfµ  is formulated in an 

optimization framework where the spatial distribution of the optical property, ,ax mfµ , 

corresponding to the minimum difference between the experimental boundary 
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measurements and the measurements predicted by the forward solver is found.  The 

boundary measurements can be xΦ , mΦ , or both, depending upon the imaging system 

requirements.  The formulation of optimization problem for mΦ  as the boundary 

measurements and axfµ  as the unknown optical property is described in this section.  A 

similar methodology is adopted to solve the inverse problem for systems involving 

different boundary measurements. 

  The tomography problem can be represented as: 

min ,
m

axf

E
µ Φ                                                       (2.37) 

where 
m

EΦ  is the error (mismatch) between the experimentally measured fluence, meas
mΦ , 

and the one calculated using forward problem, calc
mΦ .  It is to be noted that meas

mΦ  and 

calc
mΦ  are the vectors containing the fluence values at only the detector points of the 

surface where the measurements are made.  If [r] is the residual vector defined as: 

[ ] ,calc meas
m mr = Φ −Φ                                                 (2.38) 

then 
m

EΦ  can be written as: 

*1 [ ] [ ],
2m

E r rΦ =                                                     (2.39) 

where superscript * denotes the conjugate transpose of the vector.  Equations (2.37) and 

(2.39) signify that the tomographic problem is reduced to the problem of minimization in 

a least-square sense.  Optimization methods to solve the minimization problem in Eq. 

(2.37) are discussed in the following sections. 
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2.2.2.1 Newton method 

In all iterative optimization schemes, an initial guess of the optimization variables ( axfµ ) 

is made.  At each subsequent iteration, an objective function (
m

EΦ ) is evaluated and the 

next set of optimization variable values is constructed according to the optimization 

algorithm.  This process stops when a specific optimization stopping criterion is met. 

In the Newton method, the error function 
m

EΦ  is first approximated using 

Taylor’s series expansion in axfµ  truncated after the quadratic term: 

2 *

*

1( ) ( ) ( ) ( )
2

1( ) ,
2

m m m m

m m m

axf axf axf axf

axf E E

E h E E h h E h

E h h h

µ µ µ µ

µ
Φ Φ

Φ Φ Φ Φ

Φ

+ ≅ +∇ + ∇

= + +J H
             (2.40) 

where 
mEΦ

J  is the Jacobian matrix of the error function; and 
mEΦ

H  is the Hessian matrix 

of the error function.  In order to minimize the error function in Eq. (2.40), the first order 

necessary condition of a null gradient is then applied, 

1

( )

( ) .

m

m m

m m

axf
E E

E E

E h
h

h
h

µ
Φ Φ

Φ Φ

Φ

−

∂ +
= + =

∂
⇒ = −

J H 0

H J
                                   (2.41) 

Here h provides a descent direction for the subsequent Newton step.  So the iterative 

optimization scheme for Newton method is 

 1
1( ) ( ) ( ) ,

m maxf k axf k E Eµ µ
Φ Φ

−
+ = − H J                                    (2.42) 
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where the subscript k denotes the iteration number; and the matrices 
mEΦ

J  and 
mEΦ

H  are 

evaluated with ( )axf kµ .  The Hessian matrix in Eq. (2.42) is not explicitly inverted, 

instead the system of linear equations  

,
m mE k Ed

Φ Φ
= −H J                                                  (2.43) 

is solved for dk and the next iterate is taken as 

1( ) ( ) .axf k axf k kdµ µ+ = +                                             (2.44) 

The system of equations in Eq. (2.43) is called Newton equations; and the above Eq. 

(2.44) is the Newton iterative scheme, where the iterations are stopped when the value of 

the error function, 
m

EΦ , reduces to less than a certain tolerance value. 

 In most cases, the Hessian matrix, 
mEΦ

H , is ill-conditioned, and thus its direct 

inversion in solving the Newton equations given in Eq. (2.43) using row reduction 

techniques such as Gauss elimination method should be avoided because they are 

susceptible to round off errors.  Therefore, Conjugate gradient (CG) method is generally 

used to solve Newton equations because it does not require second derivatives and it has 

low storage requirements.  Accordingly, the minimization problem: 

min
m mE Ed
d

Φ Φ
+H J                                               (2.45) 

is solved for the Newton search direction, d.  Here ...  denotes the L2 norm (see 

Appendix A). The CG algorithm to solve the above Eq. (2.45) is given as: 
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Both Polak-Ribiere and Fletcher-Reeves algorithms are popularly used.  Some workers37 

have also used a modification of Polak-Ribiere algorithm in the optical tomography 

problem.  

Generally, the Newton method is unreliable unless started close enough to the 

solution.  When started far from the solution, line search should be performed along the 

Newton search direction, dk, to make method more robust (damped Newton). But, once 

iterations near solution, then the unit step length works fine for subsequent iterations.  In 

addition, the calculation of Hessian matrices at each iteration is computationally 

intensive and is usually not feasible.  For these reasons, the Newton method is usually 

modified in one way or the other, and the resulting methods are called modified Newton 
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method.   In the following sections, we describe modified Newton approaches that have 

been utilized in our image reconstruction techniques. 

 

2.2.2.2 Gauss-Newton method 

In the description of Newton’s method, we showed that the Jacobian of error function is 

given by ( ),
mmE axfE µ

Φ Φ= ∇J  which can alternatively be written as 

[ ]

* * *1 [ ] [ ] [ ] [ ],
2 calcrm m

E r r r r
Φ Φ

⎛ ⎞= ∇ = =⎜ ⎟
⎝ ⎠

J J J                       (2.46) 

where 
[ ] calcr mΦ
=J J  follows from Eq. (2.38) since meas

mΦ  are boundary measurements and 

do not depend upon the optimization variable axfµ .  Similarly the Hessian of the error 

function, 2 ( ),
mmE axfE µ

Φ Φ= ∇H  can be expressed as 

2 * *
[ ]

1

1 [ ] [ ] [ ] ,
2 calc calc im m m

m

E i r
i

r r r
Φ Φ Φ

=

⎛ ⎞= ∇ = +⎜ ⎟
⎝ ⎠

∑H J J H                 (2.47) 

where m is the length of residual vector, [r].  The above Eq. (2.47) shows that for each 

Newton step of Eq. (2.42), m Hessian matrices need to be calculated.  This is usually 

inconvenient and highly computationally intensive.  This motivates Gauss-Newton (GN) 

method for non-linear least square problems as in Eq. (2.37).   

 In GN method, the second term from Eq. (2.47) is dropped and the Hessian is 

approximated as: 

* ,calc calc
m m m

EΦ Φ Φ
=H J J                                                (2.48) 

and, thus, the system of linear equations 
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* * [ ],calc calc calc
m m m

kd r
Φ Φ Φ

= −J J J                                         (2.49) 

is solved for approximate Newton step dk at each iteration.  Hence, the GN iterative 

scheme can be written as: 

* 1 *
1( ) ( ) ( ) [ ].calc calc calc

m m m
axf k axf k rµ µ −

+ Φ Φ Φ
= − J J J                              (2.50) 

In fluorescence-enhanced tomography problems, the GN Hessian matrix, *
calc calc
m mΦ Φ

J J , is 

generally ill-conditioned since the number of boundary measurements are usually less 

than the unknowns that are to be estimated.  In addition, the general nonlinear relation 

between fluence and the optical properties adds to the ill-conditioning of the Jacobian 

matrix, calc
mΦ

J .  For this reason, the system of equations such as in Eq. (2.49) is solved in 

a least square sense: 

* *min [ ] ,calc calc calc
m m mk

kd
d r

Φ Φ Φ
+J J J                                       (2.51) 

for the GN search directions, dk.  In this work, we have used conjugate gradient method, 

as described in the previous sections, to solve Eq. (2.51) for the GN search directions, dk.   

 

2.2.2.3 Truncated Newton method 

In large-scale optimization problems, finding the solutions of Newton equations in Eq. 

(2.43) is expensive, and so Dembo and Steinhaug38 introduced the idea of finding only 

the approximate solutions of the Newton equations.  They argued that, when far from the 

minimum, Newton equations need not be solved accurately; instead they suggested 

solving the equations by CG method where the iterations are truncated before an 
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accurate solution is reached.  Dembo and Steinhaug suggested using the size of the 

relative residual as the stopping criterion, such that if the relative residual,  

2

*
* 2

0.1min , ( )
( )
m m

k
E E k k

k k

d
g g

g g k
Φ Φ

+ ⎛ ⎞≤ ⎜ ⎟
⎝ ⎠

H J
,                               (2.52) 

then the CG iteration is truncated and dk is used as the search direction for the next step 

of the minimization problem.  Thus dk is set to be dj, the search direction for the next 

step of the truncated Newton (TN) iterative scheme: 

1( ) ( ) .axf j axf j jdµ µ+ = +                                             (2.53) 

 In addition, the full Hessian matrix, 
mEΦ

H , is not calculated since only the 

product 
mE d

Φ
H  is required.  This product is calculated using the finite difference 

formula given as 

( ) ( )
( ) ,m m

m

E axf E axf
E axf

d
d

µ σ µ
µ

σ
Φ Φ

Φ

+ −
⋅ =

J J
H                          (2.54) 

where σ  is taken to be as /machine precision d .   

 

2.2.2.4 Trust region methods 

Similar to Newton method, TN method to update optimization variables in Eq. (2.53) 

also needs line search along the TN step direction, dj, if started far from the solution.  

Line search methods need an “exact” or “close approximation” to the Jacobian matrix 

for efficient performance, which is often computationally intensive.  An alternative to 

line search is trust region method, in which approximate solution is constrained to lie 
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within a specific region where the quadratic model of the objective function is 

sufficiently accurate.  Previous researchers in our lab39 have incorporated a TN based 

algorithm with trust regions to solve the fluorescence tomography problem.  They have 

validated this algorithm to reconstruct interior absorption optical property map from 

synthetic measurements of fluorescence emission light performed on a 2D geometry.40   

 

2.2.2.5 Constrained optimization 

The optimization strategies discussed in the above Section 2.2.2.1 through 2.2.2.4 are 

unconstrained methods, meaning that there is no check on the value the optimization 

variable might assume during the optimization process.  One obvious place where this 

might be problematic is fluorescence imaging.  In fluorescence imaging the physical 

parameters which are needed to be estimated as an outcome to the optimization process 

can not be a negative value.  Using unconstrained methods, there is no control over what 

value an optimization variable should assume, and this necessitates the use of 

constrained optimization methods. 

 In our lab, Roy and Sevick-Muraca41 have developed an active constraint 

truncated Newton method using simple bounds suitable for fluorescence optical 

tomography.  A detailed discussion of the simple bound constrains can be found in 

literature.42, 43   

 

 

 



35 

2.3 Object models 

In Section 1, we have reported that previous tomographic studies of detectability were 

done with target superimposed upon a spatially uniform background.  In this work, 

however, the spatial inhomogeneity of exogenous and endogenous optical properties of 

the background is one of our primary concerns.  The increase in complexity owing to the 

variability in the background can be achieved in several ways, but only those models are 

considered which lead to a description that is mathematically tractable.  Two models are 

considered to simulate the normal background anatomy as a representation of the non-

specific distribution of the fluorescent agent as well as the natural heterogeneity of the 

endogenous tissue optical properties.  The first model, the lumpy-object model, is 

described in the following section and has been used in this work.  The second model, 

the clustered lumpy-object model, is also described here and is the focus of our future 

studies involving the heterogeneous backgrounds.  

 

2.3.1 Lumpy-object model 

The lumpy-object model was developed by Rolland and Barrett44 with the assumption 

that the background is a wide-sense stationary process (see Appendix A).  The lumpy 

backgrounds consist of a random number of single structures or “blobs” located at 

random locations in the field of view (FOV).  Mathematically these structures can be 

represented as: 

0 0
1

( ) ( , ),
pN

n
n

b b lump l w
=

= + −∑r r r                                      (2.55) 
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where ( )b r  is the lumpy background; 0b  is the spatial mean of the lumpy background; 

Np is the Poisson-distributed number of lumps comprising the lumpy background; and nr  

is the uniformly distributed location of nth lump. The function lump has the following 

form: 

2 2
3

0 0 02 2

1( , ) exp exp ,
2 ( ) 2

n n
nlump l w l l d

w V wΩ

⎛ ⎞ ⎛ ⎞− − − −
− = ⎜ ⎟ − ⎜ ⎟

⎜ ⎟ ⎜ ⎟Ω⎝ ⎠ ⎝ ⎠
∫

r r r r
r r r         (2.56) 

where l0 is the lump strength, w is the lump width, Ω  is the domain, and V(Ω ) is the 

volume of the domain. The second term45 in this expression satisfies the requirement that 

the mean of the lumpy background is equivalent to bo, i.e. 0( )b b=r .  This can be 

deduced by noticing that the mean of function lump in Eq. (2.56) is equal to zero. 

 

2.3.2 Clustered lumpy-object model 

In order to synthesize more complicated and realistic objects, Bochud et al.46 extended 

the lumpy object model in 2D.  Their model is known as clustered lumpy-object model 

and it basically clusters the lumps (similar to the lumpy objects described previously) 

around certain cluster centers which are uniformly distributed within the FOV.  The 

mathematical form of the clustered lumpy objects is: 

0
1 1

( ) ([ ]( ) , ),
cl n

n

N K

k nk
n k

clb R l wφ
= =

= Λ − −∑∑r r r r                               (2.57) 

where Ncl is the number of clusters; Kn is the number of lumps defined by function Λ  in 

the nth cluster; rk is the center of nth cluster; rnk is the center of the kth lump function in 

the nth cluster; and l0 and w are the parameters that characterize the shape of the lumps 



37 

as described below.  The rotation of the lumps is represented by rotation matrix 
n

Rφ .  

The quantities Ncl and Kn are both Poisson distributed.  The center of a cluster rk is 

uniformly distributed over the FOV, and the locations of lumps rnk within a cluster are 

Gaussian distributed around rk.  The lump function Λ  is given by: 

2

0 0 2([ ]( ) , ) exp
2n

n nk
k nkR l w l

wφ

⎛ ⎞− − −
Λ − − = ⎜ ⎟

⎜ ⎟
⎝ ⎠

r r r
r r r                      (2.58) 

Bochud et al. generated these lumps in 2D, so the angle nφ  was uniformly distributed 

between 0 and 2π.  For a 3D geometry, the various lumps inside a cluster are rotated by a 

solid angle uniformly distributed between 0 and 4π. 

 

2.4 Objective assessment of image quality (OAIQ) 

Any image assessment method is acceptable if it objectively quantifies the usefulness of 

the images for performing some specified task.  Figures of merit for such task-based 

measures of image quality must be computable and scalar, so that its use in the 

optimization of the imaging system and the assessment of observer performance is not 

subject to misinterpretation.  The following four elements are the key to the objective 

assessment of the image quality:44 

1. Specification of a task: Almost all medical imaging systems are designed with a 

task in mind.  This task might be detecting a tumor inside a human breast or it 

might be estimating the exact size and location of the tumor.      

2. Description of the data: Most of the researchers in the field of image science 

assess the quality of their images by comparing them with the ones produced by 
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some previously established method.  Based upon the comparisons, they 

conclude that their method has some advantages.  This method is not objective 

because the authors pick a single or in some cases a few images for the purpose 

of comparison.  In contrast, OAIQ considers a number of images of some 

specific type for a data acquisition system and the statistics of the ensemble is 

studied.  The ensemble incorporates both the variations coming from the 

measurement noise as well as the objects (patients).   

3. Description of the observer: Once the task and the set of objects have been 

specified, there needs to be an observer or the strategy to acquire the information 

from the data set.  Despite the anthropomorphic implication of the term observer, 

often times computer algorithms or mathematical observer models serve this 

purpose for human beings.  A special type of observer, known as ideal observer, 

which utilizes all the available statistical information of the task to maximize the 

task performance will be discussed in the following sections. 

4. Figure of merit: Figures of merit are a way of reporting how well the observer 

performs the task at hand.  Some popular figures of merit for detection tasks 

include signal-to-noise ratio (SNR) and area under the curve (AUC) of receiver 

operating characteristic (ROC) curve.47-49 

 

OAIQ incorporates these four elements to obtain quantitative measures of the image 

quality.  The nomenclature convention of Barrett and Myers44 has been followed in this 

section. 
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2.4.1 System model 

The imaging system can be modeled using the imaging equation: 

( ) ,= +g H f n                                                     (2.59) 

where f is the object being imaged, H is an operator that describes how the imaging 

system maps the object being imaged to the discrete vector of measurements g, and n is 

the noise in the measurement system (which may or may not depend on f).  So g is 

actually the noisy image data returned by the imaging system.  For example in 

fluorescence-enhanced optical imaging, the imaging operator H is provided by the 

coupled diffusion equations (2.5) and (2.6); and g can be a vector containing the 

excitation and/or emission fluence values ( /x mΦ Φ ), which is characterized by the 

amplitude and phase values of the photon density waves.  In some cases, the 

measurement noise may be described by a Gaussian or Poisson distribution.  The 

imaging operator H is a nonlinear operator in f in case the objects being imaged are the 

absorption optical parameters ( , ,,ax mi ax mfµ µ ) or the lifetime of the fluorophore (τ ), 

respectively known as absorption imaging and lifetime imaging.  After the data g have 

been acquired, they can be used in an imaging reconstruction algorithm O, as described 

in Section 2.2.2, to determine or “reconstruct” an estimate, f̂ , of the original object f: 

ˆ ( ).=f O g                                                       (2.60) 

For detection tasks to be described in the following sections, both operators H and O can 

be used for the image quality assessment purposes.  Observer studies on H are known as 

hardware design, while on O are known as software optimization.44 
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2.4.2 Detection tasks 

In this work we restrict our discussion to the binary detection tasks, where two possible 

hypotheses are known as signal-present hypothesis (H1) and signal-absent hypothesis 

(H0).  For example, in breast cancer detection, the H1 hypothesis is that the image data is 

taken from a patient who has a tumor in the FOV, while the H0 is that the data are from a 

patient who does not have a tumor. 

1

0

: ( )
: ( )

H
H

g = H f + t + n
g = H f + n

                                           (2.61) 

Here f represents the normal, non-tumor portion of the anatomy, while t represents the 

tumor portion (signal) of the object.  Both f and t are stochastic and vary from patient to 

patient.  The observer performance is limited by the randomness in f and the noise in the 

system.12  To simulate the normal background anatomy, both lumpy-object and clustered 

lumpy-object models can be used to represent the non-specific distribution of the 

fluorescent contrast agent ( ,ax mfµ ) and the natural heterogeneity of the endogenous tissue 

optical properties ( ,ax miµ , and ,sx mµ ). 

 In detection problems, an observer uses an imaging data vector g to infer which 

of the above described hypotheses was the source of the detected imaging data.  Two 

restrictions are imposed on the manner the observer makes a decision. First, decisions 

are nonrandom meaning that repeated observations of the same data g must result in 

same decision.  Second, every observation results in an unequivocal decision.  With 

these assumptions, the detection problem is essentially partitioning the imaging data 

space into distinct regions.  In binary detection problems, the above is accomplished by 
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defining a test statistic, t, and then comparing it to a decision threshold, tc, in order to 

make decisions.  The test statistic is related to the imaging data through a discriminating 

function ( )T t=g .   

 For linear observers, ( )T g  is a linear function of the imaging data, g: 

( ) ,TT =g w g                                                     (2.62) 

where superscript T denotes the transpose; and w is a vector of same length as g (say M).  

In case g is complex, superscript T denotes the conjugate transpose and t is taken as the 

real part of the outcome of Eq. (2.62).  The decision boundary based on t is an 

isocontour of this function Tw g , which is a hyperplane in M-dimensional space.  Note 

that the test statistic can be a nonlinear function of the imaging data, but discussions are 

restricted to the linear observers in this work.  Still, irrespective of its functional 

dependence, the test statistic t is a random variable through its dependence on g.  As a 

result, the probability density functions (PDF) on t can be defined.  The PDFs on t 

depend on the underlying hypothesis, and are denoted as ( | )jpr t H  for hypothesis Hj.  

In general detection problems, the degree of overlap of the density functions of the test 

statistic determines the separability of the two hypotheses.  This overlap determines the 

detectability of the target; the more the overlap the less detectable the target is.  A 

measure of this overlap is given by the signal-to-noise ratio associated with t: 

1 0
2 2

1 0

,
( ) / 2

t

t t
SNR

σ σ

−
=

+
                                          (2.63) 
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where subscripts denote the corresponding hypotheses; jσ  is the standard deviation of t 

under Hj hypothesis; and 
j

t  denotes the mean of t under hypothesis Hj.  It is to be 

noted that Eq. (2.63) assumes that the test statistic is normally distributed under both 

hypotheses. 

 In order to find an optimal linear observer, the expression for a linear 

discriminant that maximizes the measure of separability as given is Eq. (2.63) is 

generally needed.  Barrett and Myers44 show that the linear discriminant that maximizes 

the SNR takes the form: 

1
opt lin g

−= ∆w K g                                                   (2.64) 

when the imaging data g have equal covariance Kg under each hypothesis.  The resulting 

SNR is then given by  

2 1 ,T
opt lin gSNR −= ∆ ∆g K g                                              (2.65) 

where ∆g  is the difference in the means of the data under the H1 and H0 hypotheses, 

averaged over all sources of variability. 

 An expression very similar to Eq. (2.65) was first given by Hotelling50 for sample 

means and covariances (see Appendix B), so opt linw  is called Hotelling discriminant and 

the observer who implements the optimal linear observer is called Hotelling observer.  

To adopt this terminology, the subscript opt lin is replaced with Hot henceforth. 

 In order to demonstrate that the Hotelling observer is indeed optimal in an SNR 

sense, it should be established that it achieves equal or better SNR than that achieved by 
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an arbitrary discriminant w.  An arbitrary discriminant has an SNR according to Eq. 

(2.63) of 

2
2 ( ) .

T

T
g

SNR ∆
=w

w g
w K w

                                               (2.66) 

Thus it must be shown that 

2
1( )T

T
gT

g

−∆
≤ ∆ ∆

w g g K g
w K w

 

2 1( ) ( )( ),T T T
g gor −∆ ≤ ∆ ∆w g w K w g K g                      (2.67) 

since T
gw K w  is always positive.  To show that Eq. (2.67) holds, start with its left-hand 

side and use triangle equality to get 

2 2 22 1/ 2 1/ 2 1/ 2 1/ 2( ) .T T T
g g g g

− −⎡ ⎤∆ = ∆ ≤ ∆⎣ ⎦w g w K K g w K K g                  (2.68) 

Writing the norms of the vectors as inner products yields 

2 1/ 2 1/ 2 1/ 2 1/ 2 1( ) ( ) ( )( ) ( ) ( )( ).T T T T T
g g g g g g

− − −∆ ≤ ∆ ∆ = ∆ ∆w g K w K w K g K g w K w g K g   (2.69) 

This proves the inequality in Eq. (2.67), which shows that SNR in Eq. (2.65) is that of an 

optimal linear observer which performs equal to or better than any other arbitrary linear 

observer in an SNR sense.  Consequently, we have used the Hotelling observer in this 

work to assess the hardware of our imaging system. 

 

2.4.3 Hardware design 

The design of an imaging system should enable the observer to optimally perform the 

intended tasks.  It is not feasible to optimize the system parameters after the system has 

been built.  Thus, it is necessary to accurately model the imaging system and assess the 
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quality of the data from the simulated imaging systems.  A mathematically ideal 

observer should be employed to optimize the hardware parameters for a specific task. 

 Since the ideal Bayesian observer requires complete knowledge of the statistics 

of the image data under both hypotheses, the use of its performance as a figure of merit 

is limited.44  In fluorescence-enhanced optical imaging the high computation time of the 

forward problem prohibits the use of ideal Bayesian observer.  As an example, the fixed 

mesh forward solver takes approximately 20 seconds for a domain with ~7000 nodes on 

a LINUX workstation with AMD Opteron 250 (2.4 GHz) and 4.0 GB RAM, which does 

not include the time for generation of the lumps.  For ideal Bayesian observer 

performance studies, the forward solver has to be run at least one hundred thousand 

times, which would take roughly about 20×105 seconds ≈ 23 days, and thus is not 

computationally feasible.  Similarly, the Bayesian observer performance studies on the 

inverse imaging algorithm using the above mentioned domain would require more than 4 

years.  Therefore, a far more computationally feasible ideal linear observer, the Hotelling 

observer, needs to be employed.44, 51  

As described in the above Section 2.4.2, the Hotelling observer requires 

estimates on the first and second order statistics on the data g.  It computes the 

confidence level using only the linear manipulations on the data g and maximizes the 

SNR of the test statistics.  The Hotelling observer’s test statistic is given by the equation: 

1( ) .T
Hot gχ −= ∆g g K g                                                (2.70) 
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Where ∆g  is the difference in the means of the data under the H1 and H0 hypotheses, 

averaged over all sources of variability; and Kg is the average covariance of the data g.  

Mathematically, 

( ) ( ) .∆ = −g g f + t g f                                            (2.71) 

Note that since the fluorescence-enhanced optical imaging system is nonlinear, ( )g t ≠ 

( ) ( )+ −g f t g f .  The SNR of the Hotelling test statistic as a figure of merit44, 45 is 

given by Eq. (2.65), which can be written as: 

2 1T
Hot gSNR −= ∆ ∆g K g                                               (2.72) 

In Eq. (2.72), the calculation of the inverse of the covariance matrix, 1
g
−K , is a 

computationally intensive step.  Two sources of randomness in fluorescence imaging are 

the objects f and noise n in the measurement data.  Since statistical properties of noise n 

may depend on f, two types of averages are defined: 

|
,f n f

=g g                                                     (2.73) 

.f f
=g g                                                      (2.74) 

The first average is the conditional average over all the realizations of n for a fixed f.  

The second average is over both the noise as well as object variations.   

The overall covariance matrix, Kg, is given by the following expression: 

,
( )( ) .T

g n f
=K g - g g - g                                             (2.75) 

Using the laws of conditional expectations, the above expression can be written: 
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|

|

|

| | |

|

|

( )( )

( )( )

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( )

( )( ) (

T
g n f f

T
f f f f n f f

T T T T
f f f f f f f f n f f

T T T
f f f f f fn f n f n ff f f

T
f f n f f

T
f f fn f f

=

= + − + −

= + − − + − + −

= + − − + −

+ −

= +

K g - g g - g

g - g g g g - g g g

g - g g - g g g g g g - g g g g g g - g

g - g g - g g g g g g - g g g

g g g - g

g - g g - g g
||

)( ) . ( )T
f fn fn f f

since− − + + =g g g 0 0 g g

 

This shows that Kg is a sum of two different covariance matrices: 

,g n g= +K K K                                                   (2.76)  

such that 

|
( )( )T

n f f n f f
=K g - g g - g                                       (2.77) 

is the average noise-covariance matrix; and  

|
( )( )T

g f f n f f
= − −K g g g g                                      (2.78) 

is the average-data covariance matrix.  Since ( )= +g H f n , Eq. (2.73) can be simplified 

as: 

|

|

| |

| |

( )

( )

( ) . ( )

f n f

n f

n f n f

n f n f
since

=

= +

= +

= =

g g

H f n

H f n

H f n 0

 

Using the above expression for fg  into Eq. (2.77) yields: 
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|
( )( )T

n f f n f f
=K g - g g - g  

                                ( )( )
|

( ) ( ) ( ) ( ) T

n f f
= + +H f n - H f H f n - H f  

|

T

n f f
= nn ,                                                        (2.79) 

where nnT is the tensor product of n with itself.  The values of gK  and nK  obtained 

from Eq. (2.78) and (2.79) are substituted in Eq. (2.76) to estimate the covariance matrix 

Kg, which, when substituted in Eq. (2.72), gives the estimate of the SNR of the Hotelling 

observer (the Hotelling SNR). 

 As an example, the CPU time required for the assessment of the tumor detection 

task using a domain with ~7000 nodes would roughly be one minute times the number of 

optical property maps used, which is computationally more feasible than to use a 

Bayesian observer. 
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3. EVALUATION OF ANATOMICAL STRUCTURE AND NON-

UNIFORM DISTRIBUTION OF IMAGING AGENT IN NEAR-

INFRARED FLUORESCENCE-ENHANCED OPTICAL 

TOMOGRAPHY∗ 

 

3.1 Introduction 

Fluorescence-enhanced optical imaging may hold promise for diagnostic cancer imaging 

with molecularly targeting fluorescent agents.  Currently, the “gold-standards” for 

clinical molecular imaging are the nuclear techniques of gamma scintigraphy, positron 

emission tomography (PET), and single photon emission computed tomography 

(SPECT).5, 6   Since radiotracers have a finite half-life and cannot be “re-activated” in 

vivo, the signal to noise available for planar imaging or tomographic reconstruction can 

be limiting.  A similar scenario exists for bioluminescence imaging which can also be 

starved for signal since the generation of light is governed by the diffusional encounter 

of an enzyme and its consumable substrate.  In contrast, fluorescence imaging may (i) 

have higher signal to noise ratio owing to the ability of a fluorophore to undergo 

repeated activation and radiative relaxation; (ii) result in enhanced target-to-background 

ratio (TBR) values since imaging can be delayed without concern of agent half-life or 

availability of substrate; but (iii) may suffer greater penetration losses at increasing 

                                                 
* Reprinted with permission from “Evaluation of anatomical structure and non-uniform distribution of 

imaging agent in near-infrared fluorescence-enhanced optical tomography,” by A. K. Sahu, R. Roy, A. 
Joshi and E. M. Sevick-Muraca, Optics Express 13, 10182-10199 (2005). ©2005 by Optical Society of 
America.  



49 

tissue depths than nuclear imaging approaches.7  The opportunity to conjugate 

fluorophores to targeting peptides, antibodies, and enzyme substrates has already been 

well demonstrated in several laboratories using small animal imaging.  

 When fluorophore excitation and emission occurs in the near-infrared range 

(750-900 nm) and light is multiply scattered as it travels a centimeter or more in tissues, 

image formation can be achieved from inversion of time-dependent measurements made 

at the tissue surface using the coupled diffusion equations.7, 10, 52-54  When used in small 

volumes, tomographic imaging requires the use of the time-dependent radiative transport 

equations (RTE),55 although some investigators have employed diffusion based 

tomography with time-invariant measurements.56  In addition, while diffusion-based 

tomography is performed across large volumes with measurements between points of 

illumination and collection on the tissue boundary, 3-D image reconstruction has also 

been developed for area illumination and collection.57, 58  Herein, we will focus on 

diffusion-based tomographic imaging from time-dependent measurements conducted in 

the frequency-domain between points of illumination and collection in the presence of 

natural anatomical heterogeneity and heterogeneous distribution of fluorescent agent in 

the geometry typical of human breast.  We chose this geometry owing to our past 

experimental studies involving a breast-shaped phantom59 and employ optical property 

values that are similar to those reported in the literature60-70 [13-23] and summarized in 

Table 3.1. 



 

Table 3.1 Experimental breast optical property values reported in literature.  

Authors 
λ  

(nm) 

aµ  

(cm-1) 

sµ '  

(cm-1) 
 Experimental method 

 
1989, Marchesini et 

al.60 

 
635 

 
≤0.2 

 
395±35*  

 
Absorbance was measured by an integrating 
sphere; extinction coefficient by 
goniophotometry; scattering coefficient by 
taking the average of the differences between 
the above two 

1990, Peters et al.61 
550 

 
1100 

200-300 
 

50-100 

300-900† 
 

100-500† 
 

Standard integrating sphere techniques to 
measure diffuse reflectance and 
transmittance; Monte Carlo simulations to 
derive the values of  optical properties  

1993, Kang et al.62 670 0.01-0.025 3-17  NIR Time Resolved Spectroscopy 

1996, Suzuki et al.63 753 
0.035-0.08 

 
0.0225-0.05 

7-10.75 
 

6.25-10.50 

(regular menstrual state) 
 

(irregular menstrual state) 

Time Resolved Spectroscopy  in the 
transmission geometry 

1996, Troy et al.64 

749 
 

789 
 

836 

0.0763-0.2592 
 

0.0163-0.0818 
 

0.0235-0.1077 

0.6148-1.3106 

0.5088-1.2205 

0.4776-1.0458 

 Double integrating sphere techniques 

1997, Tromberg et al.65 

 
674 

 
 
 

956 

0.035-0.04 

0.055-0.07 

0.085-0.1 
 

0.012-0.0165 

8.5-11.0 
 

7.9-9.1 
 

6.7-9.7 
 

6.7-7.9 

(normal breast) 
 

(tumor-containing breast) 
 

(normal breast) 
 

(tumor-containing breast) 

Multi-wavelength, high bandwidth 
Frequency Domain Photon Migration 
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Table 3.1 Continued 

Authors 
λ  

(nm) 

aµ  

(cm-1) 

sµ '  

(cm-1) 
 Experimental method 

1999, Grosenick et al.66 785 
0.082-0.12 

 
0.042 

9.4-11.6 
 

9.0-10.8 

(breast tumor tissue) 
 

(surrounding tissue) 
Time-domain optical mammography 

2001, Shah et al. 67 ‡ 
 

0.048-0.15 
0.016-0.064 

8.3-11.0 
 

6.7-8.3 

(premenopausal) 
 

(postmenopausal) 
Frequency Domain Photon Migration 

2002, Durduran et al. 68 
750 
786 
830 

0.046±0.024 
0.041±0.025 
0.046±0.027 

8.7±2.2 
8.5±2.1 
8.3±2.0 

 Employed a diffuse optical imager in the 
compressed breast geometry 

2003, Culver et al.69 

690 
750 
786 
830 

0.024 
0.0425 
0.039 
0.05 

10.8 
10.0 
9.75 
9.9 

 
Diffuse Optical Spectroscopy  based on 
Frequency Domain Photon Migration 
technique 

2004, Shah et al. 70 674 - 
- 

9.2-10.4 
 

8.8-9.6 

(premenopausal) 
 

(postmenopausal) 

Diffuse Optical Spectroscopy  based on 
Frequency Domain Photon Migration 
technique 

 
* Value of sµ (value of anisotropy coefficient, g, not reported). 

† Value of sµ with g=0.945-0.985. 
‡ Average value of four wavelengths of 674, 803, 849, and 956 nm. 
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The outline of this section is as follows: In Section 3.2, we present (i) the forward 

model and finite element mesh for predicting boundary measurements of frequency-

domain photon migration (FDPM) measurements between points of illumination and 

collection in the presence of optical property heterogeneity, and (ii) a brief description of 

the inversion scheme used to provide reconstructed images.  In Section 3.3, we provide 

example reconstructed images at varying levels of optical property heterogeneity to 

show the insensitivity to endogenous optical properties in fluorescence-enhanced optical 

imaging.  Our results also indicate the sensitivity of tomographic imaging to uneven 

distribution of molecularly targeted agents in normal tissues.  The results provide the 

framework for OAIQ.  

 

3.2 Methods 

Time-dependent, frequency-domain measurements consist of launching intensity 

modulated excitation light (typically modulated at 100 MHz) from a single point on the 

tissue boundary.  The intensity modulated excitation light propagates as a photon density 

wave through the tissue, activating fluorophores and generating intensity modulated 

emission light.  The generated emission photon density wave is phase-shifted and 

amplitude attenuated relative to its activating excitation light due to the decay kinetics of 

the fluorophore.  The emission photon density wave propagates to the tissue boundary 

where it is collected for evaluation of its amplitude and phase delay for input into the 

image reconstruction algorithm.  
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3.2.1 Forward model and finite element solver 

Near-infrared light propagation in tissues can be modeled by the diffusion approximation 

of the radiative transport equation.  In the frequency domain the photon diffusion 

equation is generally written as: 

( , ) ( ) ( , ) ( ( , ) ( , ).a
i D S
c
ω ω ω µ ω ωΦ −∇⋅ ∇Φ + Φ =⎡ ⎤⎣ ⎦r r r r) r r                  (3.1) 

Here ω  is the modulation frequency of the NIR source (rad/s); ( , )ωΦ r is the photon 

fluence rate (photons/(cm2s)) at position r ; D is the photon diffusion coefficient (cm); 

aµ  is the absorption coefficient (cm-1); ( , )S ωr is the photon source strength 

(photons/(cm3s)) at position r; c is the speed of light in the medium (cm/s). The 

generation and propagation of the fluorescence diffuse photon density wave can be 

described by the following coupled diffusion equations:  

( ) ( , ) ( ( ( , ) ( , ),axi axfx x x
iD S
c
ωω µ µ ω ω⎡ ⎤−∇⋅ ∇Φ + + Φ =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

r r r) + r) r r         (3.2)                            

( ) ( , ) ( ) ( ) ( , )

1( ) ( , ),2
1

ami amf

axf

m m m

x

iD
c

i

ωω µ µ ω

ωτφµ ω
ωτ

⎡ ⎤−∇⋅ ∇Φ + + + Φ =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦
+

Φ
+ ⎡ ⎤⎣ ⎦

r r r r r

r r
       (3.3) 

where the subscript x denotes excitation and m denotes emission.  The term ,ax miµ  

denotes the absorption due to endogenous chromophores; ,ax mfµ  denotes the absorption 

due to the exogenous fluorophores; φ  is fluorescent quantum; and τ  is fluorescent 

lifetime (s).  The diffusion coefficient is given by: 
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, ,,
,

1 ,
3 1( ( ))ax mi sx max mf

x mD
gµ µ µ −

=
+ +

                              (3.4) 

where ,sx mµ denotes the scattering coefficients at excitation and emission wavelength; 

and g is the coefficient of anisotropy of the medium.  We solve these equations with the 

Robin type boundary conditions: 

,
, ,2 0,x m

x m x mD
n

γ
∂Φ

+ Φ =
∂

                                         (3.5) 

where n denotes the outward normal to the surface and γ  is the constant depending upon 

the optical refractive index mismatch at the boundary. Eq. (3.2) through (3.5) can be 

solved numerically to yield, 

,, ,( , ) exp( ( , )).
x mACx m x mI iω θ ωΦ = −r r                                 (3.6) 

Here ,x mΦ  is a complex number, and ,x mθ is the measured phase lag and 
,x mACI  is the 

measured amplitude of the photon density wave at excitation and emission wavelengths. 

Unlike finite difference methods, finite element methods can solve coupled 

diffusion equations (3.2) and (3.3) over complex domains. We employ a Galerkin 

scheme for solution of these equations over a breast-shaped geometry described in Fig. 

3.1 and used in prior experimental studies in our laboratory.9   

 

3.2.2 Endogenous and exogenous optical property heterogeneity 

We consider the lumpy-object model developed by Rolland and Barrett12 to simulate the 

normal background anatomy as a representation of the non-specific distribution of the 
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fluorescent agent as well as the natural heterogeneity of the endogenous tissue optical 

properties. The lumpy backgrounds consist of a random number of single structures or 

“blobs” located at random locations.  Mathematically these structures can be represented 

as: 

1
( ) ( ),0

pN

n
b b lump n

=
= + −∑r r r                                                 (3.7) 

where ( )b r  is lumpy background; 0b  is the spatial mean of the background; Np is the 

Poisson-distributed number of lumps; and nr  is the uniformly distributed location of nth 

lump. The function lump has the following form: 

0 0

2 2
1 3( ) exp exp2 2( )2 2

,n nlump l dn Vw w
l

Ω

⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟− = −⎜ ⎟ ⎜ ⎟Ω⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫
r r r r

r r r          (3.8) 

where l0 is the lump strength, w is the lump width, Ω  is the domain, and V(Ω ) is the 

volume of the domain. The second term in this expression satisfies the requirement that 

the mean of the lumpy background is equivalent to bo, i.e., 0( )b b=r .45 

Lumpy backgrounds have the advantage of being mathematically/statistically 

tractable and stationary.44  This facilitates an organized manner for implementing OAIQ 

tools for image analysis. These lumpy backgrounds are represented in the uniform mesh 

of the FEM forward model of generated image data sets which are used to compute the 

tomographic reconstruction images. 
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Fig. 3.1 The geometry of the breast-shaped phantom.  The dimensions are in centimeters. 
The bigger cylindrical volume has a circular base of diameter 20 cm. The hemisphere has a 
radius of 5 cm. 

 

 
The breast geometry (shown in Fig. 3.1) consisted of two cylinders of radii 10 

cm and 5 cm with heights of 2.5 cm and 0.5 cm respectively, and a hemisphere of radius 

5 cm.  A total of 6956 nodes and 34413 tetrahedral elements were used to discretize the 

domain.  The lump strength, l0, was set to be a prescribed percentage ranging from 0 to 

100% of the mean background value b0; and the lump spread, w, and number of lumps, 

Np, were set to be 5 mm and 100 respectively.  As an example, 5% lumpy background of 

the endogenous or exogenous properties meant that the strength of lump, l0, was 0.05 

times the average background value (b0) of the optical property.   Due to the large 

volume and surface illumination of excitation light on the hemispherical portion, the 

intensity of the excitation light was found to be low outside the hemispherical portion of 

the simulated phantom.  As a consequence, simulated heterogeneity present in the 

cylindrical portions did not have an effect on the tomographic reconstruction.  Therefore 

heterogeneities were simulated only in the hemispherical portion of the breast-shaped 



57 

geometry.  Therefore, in the breast geometry, Ω  corresponds to the hemispherical 

portion and V(Ω ) corresponds to its volume (see Eq. (3.8)).  In order to position the 

lumps, a random number between 0 and +5 assigned the z-position of the center of the 

lump, and two random numbers between -5 and +5 assigned its x and y-position.  Only if 

the resulting center of the lump (x, y, z) resided within the hemisphere, was the 

heterogeneity counted as one of N lumps, where the value of N was fixed to 100. 

Lumps were generated for all endogenous ( axiµ , amiµ , sxµ , and smµ ) and 

exogenous ( axfµ  and amfµ ) optical parameters.   Lumps were first independently 

generated at prescribed percentages for endogenous properties of axiµ  and sxµ , and the 

exogenous property of axfµ .  The lump strengths in the optical parameters of amiµ  and 

amfµ  were taken to be a factor of that in axiµ  and axfµ  respectively.  The factor 

essentially reflects the wavelength-dependent absorption owing to tissue chromophores 

and can be thought of as the ratio of bulk extinction coefficients of tissue at excitation 

and emission wavelengths.  

Similarly the lump strength in the optical parameter of smµ  was taken to be a 

factor of that in sxµ .  The factor effectively represents the ratio of bulk wavelength 

dependent scattering efficiency at excitation and emission wavelengths.   In this study, 

we simulated indocyanine green (ICG) as the contrast agent.  Thus, the multiplication 

factors were taken considering the absorption and emission spectra of ICG at 780 nm 

(excitation) and at 830 nm (emission) wavelengths, respectively.  The factors for relating 

lumps in optical properties at the emission wavelength to those independently generated 



58 

for lumps in optical properties at the excitation wavelength are given in Table 3.2.  For 

example, in order to generate lumps in the absorption coefficients due to endogenous 

chromophores, the spatial distribution and strength of lumps in axiµ  were first calculated 

using Eq. (3.7), and the strength of these lumps were then multiplied by the 

corresponding factor from Table 3.2 to obtain lumps in amiµ .  For endogenous lumpy 

object models, the forward solution was solved in the presence of lumps in ( axiµ , amiµ , 

sxµ , and smµ ) as well as in the presence of a prescribed fluorescent target.  For 

exogenous lumpy object models, the forward solution was solved in the presence of 

lumps in ( axiµ , amiµ , sxµ , and smµ ) and  ( axfµ  and amfµ ) as well as in the presence of a 

fluorescent target.   

 

Table 3.2 Constant factors to obtain lumps at emission wavelength from the generated lumps at excitation 
wavelength. 

Lumps in amiµ  smµ  axfµ  

Multiplication 
factor 

1.2968 0.9030 0.1692 

      

 
The fluorescent target was taken to be a spherical volume of 1 cm3 centered at 

spatial coordinates (0.5599, -2.4707, 2.4968) with higher contrast than the background.   

Generation of the optical property heterogeneity map and solution of the forward 

solution was conducted on a workstation with Intel Pentium IV 2.80 GHz and 1.0 GB 

RAM.  The calculation of the volume integral in Eq. (3.8) was a computationally time 
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consuming step and has been performed using a Simpson quadrature method for 

numerical integration provided in MATLAB®. 

 The background tissue optical properties are provided in Table 3.3.  The target 

was assumed to have the same optical properties as the background except for the values 

of axfµ  and amfµ .  The values of axfµ  and amfµ  for the target were 100, 50 and 25 times 

more than that of the average background values, and are presented as three different 

case studies in this work.  While actual TBR values may be ten-fold or greater, we 

employ these ratios assuming molecular targeting of agents.  Twenty five point sources 

and 128 detectors on the hemispherical surface were employed to obtain the synthetic 

measurements, as shown in Fig. 3.2. 

 

Table 3.3 Average background optical properties. Also given are the parameters used in equations (3.2) 
through (3.4). The optical properties used in the simulations are similar to breast tissue optical properties 
reported in literature (see Table 3.1). 

wavelength↓ 
aiµ , 

[cm-1] 

sµ , 

[cm-1] 

afµ , 

[cm-1] 

ω , 

[rad/s] 

c, 

[cm/s] 

g, 

[ ] 

φ , 

[ ] 

τ , 

[s] 

excitation 

(780 nm) 
0.02483 108.792 0.00299 

emission 

(830 nm) 
0.0322 98.241 0.000506 

6.28e8 2.25e10 0.9 .016 0.56e-9 
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Fig. 3.2 The positions of laser sources and detectors on the breast phantom.  The stars are the positions of 
the sources and the circles are the positions of the detectors.  
 
 

3.2.3 Inverse imaging algorithm 

As described in Section 2.2.2, the starting point for formulating the reconstruction as an 

optimization problem begins with defining the error function, ( )axfE µ : 

( ) ( ) ( ) ( ) ( )
1

1
2axf

BN
p p p pcal mea cal meap

E µ log Z log Z log Z log Z ,
=

⎡ ⎤∗ ∗⎛ ⎞⎛ ⎞= − −∑ ⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
   (3.9) 

subject to the constraint axf{ l u }µ≤ ≤ , where l is the lower and u is the upper bound of 

axfµ .  For optical tomography problems, a range, i.e., the lower and upper bounds, is 

specified for the optimization variables based on physical consideration.  In above 

equation cal denotes the value calculated by the forward problem; mea denotes the 

synthetic measured values and NB is the number of detectors.  The superscript * denotes 
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the complex conjugate of the complex number ZP.  ZP is comprised of the referenced 

fluorescent amplitude, ACref p
I , and the referenced phase shift ref pθ  measured at 

boundary point, p, in response to point illumination.  Specifically, the referenced 

measurement at boundary point p can be given by: 

ACref p
.p ref pZ I exp i⎛ ⎞

⎜ ⎟
⎝ ⎠

= − θ                                      (3.10) 

The reference scheme was used in the synthetic data to remove the influence of the 

unknown source strength.71  In this scheme, the emission fluence, mΦ , from multiple 

collection fiber locations were referenced with respect to the excitation fluence data 

from the same fiber as given in the following equation:  

( )
( ) 1

m p
B

x p
p ,...,N

Φ
=

Φ
                                         (3.11) 

where p is the position of collection on the surface of the phantom.  Thus, the relative 

phase shift and AC ratio were calculated from the difference in phase [i.e., 

( ) ( ) ( )m m xp p p
∆θ = θ − θ ] and the ratios of amplitude [i.e., 

( ) ( ) ( )AC AC ACm m xp p p
I I I∆ = ].    

The penalty modified barrier function method with simple bounds constrained 

optimization technique PMBF/CONTN was used for reconstruction and is presented in 

detail elsewhere.57  In the PMBF/CONTN method, the modified barrier penalty function, 
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M (termed hereafter as the barrier function), is used to incorporate the constraints 

directly within the optimization variable: 

( ) ( )
1

min axf axf axf axf
axf

N
,

i ii

l uM , , E f l f ui iµ µ µ µ
µ =

⎧ ⎫⎛ ⎞ ⎛ ⎞λ η = −η λ − + λ −∑ ⎜ ⎟ ⎜ ⎟⎨ ⎬
⎝ ⎠ ⎝ ⎠⎩ ⎭

  (3.12) 

where η  is a penalty/barrier term; f is a logarithmic function; N is the number of nodal 

points; andl uλ λ are vectors of Lagrange multipliers for the bound constraints of the 

lower and the upper bounds, respectively.  From Eq. (3.12) one can see that the simple 

bounds are included in the barrier function M.   

The PMBF/CONTN method is performed in two stages within an inner and an 

outer iteration.  The outer iteration updates the Lagrange multiplier λ  and the barrier 

parameter η  using the formulations presented elsewhere.57  Using the calculated values 

of the parameters λ  and f, the constrained truncated Newton with trust region method is 

applied to minimize the penalty barrier function described in Eq. (3.12). Once 

satisfactory convergence within the inner iteration is reached or a specified number of 

inner iterations has been exceeded, the variables describing PMBF convergence and 

fractional change in the outer iteration are recalculated to check for convergence.  If 

unsatisfactory, the Lagrange multipliers, λ , and the barrier parameter, η , are updated 

and another constrained optimization is started within the inner iteration.  Herein we use 

the modified method of Breitfeld and Shanno72 for initializing the Lagrange multipliers 

without a priori information.  This approach effectively removes the need to choose an 

appropriate initial value of the Lagrange multipliers based upon ground truth, which, in 

actual patient imaging, may or may not be available.   This algorithm is novel in the 
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sense that the constrained have been included within the optimization variable and no a 

priori information is required for the regularization parameters.  The algorithm has been 

validated from experimental data employing planar and point illumination/collection 

geometries.57 

The image reconstruction computations were performed on a LINUX 

workstation with AMD Opteron 250, 2.4 GHz and 4.0 GB RAM.  For image 

reconstruction, synthetic measurements of emission photon density wave amplitude and 

phase delay were obtained by solving the forward problem in the presence of the 

fluorescent target and various lumpy optical backgrounds.  These synthetic 

measurements were input into the PMBF/CONTN inverse algorithm to recover the 

exogenous optical property ( axfµ ) distribution for tumor detection task.  In this initial 

study for detecting the target in the reconstructed tissues, we use the optical property 

map of the reconstructed axfµ  and the a priori knowledge about the location of the 

actual target.  If the reconstructed map shows a single structure whose centroid lies 

within 1 cm radius of the actual target’s centroid, then we look for any other structures 

present in the domain. If no other structures are present, then it is deemed that the target 

was detected successfully.  If other structures are present, but they are located outside a 2 

cm radius of the centroid of the actual target, then successful detection of the target is 

accomplished in the presence of artifacts.  However, if no structure is present within 1 

cm radius of the actual target’s centroid, then the reconstruction algorithm has failed to 

detect the target.  Another case of failure occurs when a structure is reconstructed near 

the actual target’s location but is less than half of the actual target’s volume.  In all of 
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these cases further investigation is recommended to define the criteria for the detection 

tasks. 

 

3.2.4 Figures of merit for image analysis 

In order to assess the performance of the PMBF/CONTN algorithm for the detection 

tasks, both qualitative (visual) and quantitative (centroid of the reconstructed target and 

RMSE) measures were used.  The general mesh viewer, GMV, software was used to plot 

the reconstructed images.   

The centroid of the reconstructed target, cr , was calculated using the following 

expression: 

,1

1

C

T
axf

T
axfi

N
iii

N

i

µ

µ

∑
==

∑
=

r
r                                               (3.13) 

where index i represents the nodes present in the reconstructed target.  The term NT 

denotes total nodes present and ir  denotes the coordinates of the ith node in the 

reconstructed target.  The centroids of the reconstructed targets can be compared with 

the centroid of the actual target to assess the detection accuracy of the algorithm. 

Similarly, the RMSE values were calculated using the expression:  

( ) ,
21

1
calc actual

axf axf i

N
RMSE

Ni
µ µ

⎧ ⎫⎪ ⎪= −∑ ⎨ ⎬
= ⎪ ⎪⎩ ⎭

                          (3.14) 

where N is total number of nodes in the domain.  Superscript calc denotes the values 

obtained using reconstruction algorithms; and actual denotes the actual distribution of 
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axfµ  which was used to generate the synthetic image data sets.  RMSE values of the 

reconstructed target are used to assess the relative accuracy of the algorithm for different 

lump strengths and TBR. 

 
3.3 Results and discussion 

3.3.1 Generation of lumpy backgrounds 

The generation of lumpy backgrounds required ~40 min of CPU time for each 

independent optical property parameter (with a predefined lump strength value).  Figures 

3.3(a) through 3.3(c) illustrate movies of cross sections of an example distribution of 

axiµ , sxµ , and axfµ  for the 25% endogenous and exogenous lumpy background model in 

the absence of a fluorescent target. 

 

3.3.2 Tomographic image reconstruction 

The “ground truth” target position defined by TBR of 100:1 absorption ( axfµ ) in the 

phantom is shown in Fig. 3.4. 

Figure 3.5 illustrates the PMBF/CONTN recovery of absorption coefficient 

owing to fluorophore from synthetic data with lumpy endogenous background (i.e. 

lumps in axiµ , amiµ , sxµ , and smµ ) of 1% lump strength.  Reconstructed images for 

other lump strengths are not shown here for brevity, but the fluorescent target was 

recovered for lump strength up to 100%.  We found that reconstructed images show the 

insensitivity to the various lump strength values and can be easily reconstructed for 1%-

100% lumps in the background. Each image reconstructed with PMBF/CONTN required 



66 

 

 
Fig. 3.3 Figures of the lumps in endogenous and exogenous optical properties using Lumpy object model.  
The lumps in axiµ  (a), sxµ  (b), and axfµ  (c) are shown as the cutplanes to the breast geometry (Fig. 3.1) 
parallel to yz-plane and passing through x=0.20 cm.  The spread of the lumps are 5mm and there are 100 
lumps uniformly generated in the hemispherical volume.  The lumps have the strength values of 25% of 
the average background values of axiµ , sxµ , and axfµ  given in Table 3.3. 

 

(a) 

(b) 
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Fig. 3.3 Continued 

 

 

 
Fig. 3.4 Actual distribution of exogenous optical property of the target inside the breast phantom.  The 
colorbar shows the values of axfµ  in cm-1.  The target has axfµ  value 100 times more than that of the 
background.  The Fig. shown is a cut plane parallel to yz-plane and passing through point x=0.5.  The 
lumps in the background are not shown here. 

  

(c) 
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~3 hr of CPU time.  The centroid and the mean displacement of the reconstructed targets 

are given in Tables 3.4 and 3.5, respectively, and show that the reconstructed target 

locations have little error, indicating good detection capability of the PMBF/CONTN in 

the presence of endogenous lumps.   

The RMSE values as a function of endogenous lump strength for the targets 

reconstructed are shown in Fig. 3.6.  The figure shows that the changes in RMSE values 

are small for different lump strengths.  However, the small change in RMSE is 

consistent with the modest change in boundary measurements owing to change of 

endogenous optical property.64, 73  It should be noted that the RMSE values for different 

lump strengths are used to compare the relative error in the image reconstruction task.  

 
 

 
Fig. 3.5 Figure showing the recovered distribution of exogenous optical property in the presence 
of 1% lumps in endogenous optical properties using the PMBF/CONTN inverse algorithm.  The 
figure shows the isosurface corresponding to the 70% of the maximum value of the reconstructed 

axfµ . 



 

Table 3.4 Centroid of the reconstructed targets with varying lump intensities. The coordinate dimensions are in centimeters. 

Endogenous lumps only Endogenous as well as exogenous lumps 
Lump strength 

100:1 100:1 50:1 25:1 

1% (0.5173, -2.7055, 2.5588) (0.5173, -2.7054, 2.5588) (0.4017, -2.7209, 2.5800) (0.4380, -2.6519, 2.5980) 

5% (0.5172, -2.7054, 2.5591) (0.5431, -2.6830, 2.5688) (0.3803, -2.6922, 2.5791) (0.4082, -2.6914, 2.5983) 

10% (0.5437, -2.6826, 2.5680) (0.5436, -2.6832, 2.5680) (0.4302, -2.7235, 2.5706) (0.4059, -2.7416, 2.5339) 

25% (0.3821, -2.6616, 2.5925) (0.5097, -2.6809, 2.6371) (0.3969, -2.6314, 2.6429) (0.7496, -2.6415, 2.8959)d 

50% (0.3071, -2.6685, 2.5565) (0.3334, -2.6102, 2.5604) (0.3405, -2.6317, 2.5568) (0.3908, -2.4834, 2.5743)e 

100% (0.1791, -2.6538, 2.6027)a (0.2750, -2.5631, 2.6173)b * c * f 

 
* could not reconstruct the target 
a one artifact at (-4.0357, 0.1921, 2.9389) 
b one artifact at (-4.0356, 0.1927, 2.9389) 
c couple of artifacts at (0.9162, -2.9192, 2.652) and (-4.0355, 0.1945, 2.9389) 
d one artifact at (-3.3784, 0.1012, 3.2824) 
e one artifact at (-3.3784, 0.1012, 3.2824) 
f one artifact at (-3.8683, 0.2660, 2.9282) 
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Table 3.5 The mean displacement of the reconstructed targets with respect to the actual target’s centroid. 
The dimension is in centimeters. 

Endogenous lumps 
only 

Endogenous as well as exogenous 
lumps Lump strength 

100:1 100:1 50:1 25:1 
1% 0.2466 0.2465 0.3075 0.2407 
5% 0.2466 0.2248 0.2968 0.2864 

10% 0.2241 0.2247 0.2936 0.3138 
25% 0.2779 0.2577 0.2715 0.4738 
50% 0.3265 0.2735 0.2787 0.1864 

100% 0.4356 0.3228 * * 
* could not reconstruct the target 
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Fig. 3.6 The root mean square error (RMSE) values of the reconstructed images in the presence of 
endogenous lumps in the background.  The target-to-background ratio (TBR) is 100:1 and the RMSE is 
calculated with respect to the actual distribution of the fluorophore shown in Fig. 3.4. 

 
 

In contrast to the case of endogenous optical property heterogeneity, as the lump 

strength of exogenous contrast becomes comparable to that of the target, the task of 

discriminating the target from the background becomes more difficult.  Except for the 
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case where TBR contrast ratio was 100:1, we could not reconstruct the target in a 

background containing exogenous and endogenous lump strengths up to 100% as shown 

for endogenous lumps alone.  The target could not be reconstructed for lump strength 

values exceeding 50% in the case of TBR of 50:1 and 25:1.  It should be noted that in 

case of 50:1 TBR with 100% lumps in the background, we did see a reconstructed 

volume at the position of actual target, but since its volume was less than that of the 

actual target’s volume, our criteria did not enable definitive identification. 

Fig. 3.7 shows the PMBF/CONTN recovery of absorption coefficient in the 

presence of 1% endogenous and exogenous lumps in the background for the three cases 

of TBR of 100:1, 50:1, and 25:1.   Figures illustrating recovery at other lump strengths 

are not shown here for brevity.  The centroid and the mean displacement of the 

reconstructed targets are given in Tables 3.4 and 3.5, respectively, for all the three cases 

of TBR values (100:1, 50:1 and 25:1). 

The RMSE values were calculated as a function of TBR and are plotted in Fig. 

3.8 for each case of endogenous and exogenous lump strength ranging from 1% to 50%.  

The general trend is that the RMSE value increases as the contrast decreases for each 

lump strength.  This can be explained by the fact that as the contrast decreases the target 

has lower fluorophore concentration and thus the background lumps in exogenous 

optical properties are more pronounced with respect to the target.  Thus, the inverse 

algorithm becomes more prone to fail, which it does at lump strength values exceeding 

50% in the case of 50:1 and 25:1 TBR values. 
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Fig. 3.7 The recovered distribution of exogenous optical property in the presence of 1% lumps in 
endogenous as well as exogenous optical properties using the PMBF/CONTN inverse algorithm.  
Figures (a), (b), and (c) are respectively for TBR values of 100:1, 50:1, and 25:1.  The figures 
show the isosurfaces corresponding to the 70% of the maximum value of the reconstructed axfµ . 

 

(b) 

(a) 
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Fig. 3.7 Continued 
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Fig. 3.8 The root mean square error (RMSE) values of the reconstructed images in the presence of 
endogenous as well as exogenous lumps in the background.  The plots for all the three cases of TBR 
values are shown and the RMSE is calculated with respect to the actual distribution of the fluorophore 
including the target distribution shown in Fig. 3.4 and the exogenous lumps in the background.  The values 
for 100% are not shown here since we could not reconstruct the target for the TBR values of 50 and 25. 
  

 

(c) 
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 It is important to note that in all of the above reconstruction tasks, the inverse 

algorithm had no prior knowledge about the lumps.  In fact, the inverse algorithm was 

provided with only the average background values of the optical properties.  This is also 

practically significant because in the real world nothing will be known about the spatial 

distribution of the optical properties of the tissue to be imaged.  Since the approximate 

average values of the optical properties can be assessed through FDPM spectroscopy 

measurements, the average background values may be an appropriate input into the 

inverse imaging algorithm.   

Finally, the results contained herein represent single cases of tomographically 

reconstructed targets in a background of lumps.  In order to perform OAIQ for target 

detection and estimation tasks, random generation of background lumps across hundreds 

or thousands of cases need to be simulated in order to generate a statistical number of 

reconstructed images.  As a result, we will be able to generate RMSE for lumpy 

backgrounds with varying lump strengths in order to ascertain error bars in each of these 

strength value points.  This will be helpful in determining the error bars on Fig. 3.6 in 

order to better understand its behavior.  In this work, we demonstrate the feasibility of 

generating images from lumpy backgrounds without a priori information.  With the 

ability to reconstruct targets in the presence of lumpy backgrounds, we can now engage 

in OAIQ for fluorescence-enhanced optical tomography.  Accordingly, the assessment of 

our imaging system using OAIQ tools is the main focus of the next two sections in this 

dissertation. 
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3.4 Conclusions 

In fluorescence-enhanced optical tomography, the natural anatomical background is one 

source of randomness in the task of detecting a molecularly targeting fluorescent agent.  

Another source will be the lower level expression of disease markers throughout normal 

tissue which will be responsible for a “background” heterogeneity that also may impact 

image quality.  Computer algorithms for analysis of task performance of fluorescence 

imaging require a method of simulating natural anatomical background of endogenous 

optical properties and the heterogeneous background expression of disease markers; as 

well as a robust image recovery program which does not require the use of a priori 

information.   Herein, we provide a preliminary assessment of the image reconstruction 

algorithms and lumpy background model as method to establish the feasibility for using 

OAIQ tools for assessing image performance.  
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4. ASSESSMENT OF A FLUORESCENCE-ENHANCED OPTICAL 

IMAGING SYSTEM USING THE HOTELLING OBSERVER∗ 

 

4.1 Introduction 

Recently, numerous investigations have demonstrated the use of fluorescently labeled 

agents for molecularly-targeted imaging in small animal studies.  Despite the potential 

advantages of non-radioactive and non-mutagenic imaging, to date, there have been no 

optical imaging studies of fluorescently labeled agents for molecular imaging in the 

clinic.  While there has been demonstration of fluorescence-enhanced optical 

tomography in phantoms of clinically relevant volumes and homogeneous optical 

properties,10, 57 there has been no systematic study predicting potential performance in 

detection tasks for the relevant case of non-uniform distribution of fluorescent contrast 

agents or heterogeneity of endogenous optical properties owing to normal anatomical 

tissue structure.   

In this contribution, a lumpy-object model developed by Rolland and Barrett12 is 

used to simulate the anatomical structure as well as the heterogeneous background 

expression of disease markers that lead to non-uniform background distribution of 

fluorescent imaging agent.  The lumpy-object model has been utilized by previous 

researchers in (i) the simulation studies to incorporate variability present in the 

reconstructed images of clinical positron emission tomography (PET) and single photon 

                                                 
* Reprinted with permission from “Assessment of a fluorescence-enhanced optical imaging system using 

the Hotelling observer,” by A. K. Sahu, A. Joshi, M. A. Kupinski, and E. M. Sevick-Muraca, Optics 
Express 14, 7642-7660 (2006).  ©2006 by Optical Society of America. 
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emission computed tomography (SPECT);13 (ii) the generation of synthetic 

mammograms;74 as well as (iii) the observer studies involving digital radiography.75 

Pineda et al.21 have used lumpy-object model to explore the impact of normal 

anatomical tissue structure upon absorption imaging using time-dependent 

measurements of light propagation in the time-domain.  We have employed lumpy-

object model to demonstrate the ability to tomographically image fluorescent targets in 

the breast from frequency-domain measurements of fluorescence.76  In fluorescence-

enhanced optical imaging using frequency-domain techniques, intensity modulated NIR 

light is launched onto the tissue surface, wherein it propagates within the tissue, 

encounters a fluorophore, and generates emission light.  Both emission and excitation 

light travel throughout the medium and the amplitude attenuation and phase delay of the 

emitted fluorescent light relative to the incident excitation light are detected at the 

surface.  In order to tomographically image fluorescent targets deep inside the tissue, the 

boundary measurements are used within an optimization framework to determine 

interior distributions of the optical properties.10, 57   

In this study, the Hotelling observer is used to assess the detection of a 

fluorescent target from boundary frequency-domain measurements.  The Hotelling 

observer’s signal-to-noise ratio (SNRHot) is a measure of the task performance and has 

been widely used to evaluate the imaging hardware for tumor detection task in imaging 

modalities such as PET,77, 78 SPECT,79, 80 digital mammography,81, 82 and optical 

coherence tomography.83  Evaluation of imaging system for target detection tasks using 

the Hotelling observer requires a large number of imaging data sets and, thus, is not 
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easily performed using patient image or experimentally obtained phantom data.  

However, the use of lumpy-objects to simulate heterogeneous distribution of optical 

properties that may be typical of human tissue allows generation of sizeable imaging 

data sets from computer simulation.  Consequently, we simulate measurement data and 

incorporate expected systematic measurement error and noise of a fluorescence imaging 

system in order to use the Hotelling observer to assess performance in detection tasks.  

To our knowledge, this is the first time that an observer model is used to statistically 

assess the detection performance of a fluorescence-enhanced optical imaging system 

through analyzing the statistics of the imaging data sets. 

In the following Section 4.1, we present (i) the imaging equation describing the 

propagation of modulated excitation and emission light in the tissue-like medium and the 

generation of emission light that is collected as measurements at the tissue boundary; (ii) 

a model to simulate the heterogeneous distribution of optical properties of biological 

tissues; (iii) the description of systematic measurement errors and noise; and (iv) an ideal 

linear observer and its figure of merit used to quantify the detection performance.  

Section 4.2 reports how the detection capability of the imaging system, as quantified by 

Hotelling observer’s SNR, is affected by: (i) perturbations in endogenous and exogenous 

optical properties; (ii) target depth; and (iii) excitation light leakage through rejection 

filters. 
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4.2 Methods 

In the objective quality assessment of imaging systems, an imaging model is specified, 

an evaluation criterion is defined, and the observer evaluating the system is described.  

These basic components of the image quality assessment are described in this section for 

fluorescence-enhanced optical imaging. 

 

4.2.1 The imaging equation 

As described in Section 2.1, the time-dependent generation and propagation of photon 

density waves diffusely transiting a highly scattering medium are described by the 

coupled diffusion equations, which are presented for the frequency-domain 

measurements as:30  
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iD S
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                (4.2) 

Equation (4.1) describes the propagation of excitation light (subscript ‘x’) inside the 

tissue medium, whereas Eq. (4.2) describes the generation as well as the propagation of 

the emission light (subscript ‘m’).  Here ω  is the modulation frequency of the NIR 

source (rad/s); Dx,m is the photon diffusion coefficient (cm) at excitation/emission 

wavelengths at position r; c is the speed of light in the medium (cm/s); , ( , )x m ωΦ r  is the 

complex excitation/emission fluence rate (photons/(cm2s)) at position r ; ( , )S ωr  is the 
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photon source strength (photons/(cm3s)) at position r; φ  is fluorescence quantum; and τ  

is fluorescence lifetime (s).  Symbol ,ax miµ  denotes the absorption due to endogenous 

chromophores in the tissue; and ,ax mfµ  denotes the absorption due to the exogenous 

fluorophores, which represent the only source of emission light from tissue.  The 

diffusion coefficient is given by: 

,
, , ,

1
3( (1 ))

,x m
ax mi ax mf sx m

D
gµ µ µ

=
+ + −

                        (4.3) 

where ,sx mµ  denotes the scattering coefficients at excitation/emission wavelength; and g 

is the coefficient of anisotropy of the medium.  Collectively, the terms axiµ , amiµ , sxµ , 

and smµ  are referred to as endogenous optical properties; and, axfµ  and amfµ  as 

exogenous optical properties.  The coupled diffusion equations are solved with the 

Robin type boundary conditions:84 

,
, ,2 0,x m

x m x mD γ
∂Φ

+ Φ =
∂ ⊥

                                    (4.4) 

where ⊥  denotes the normal direction outward to the surface, and γ  is a constant 

depending upon the optical refractive index mismatch at the boundary.  Equation (4.1), 

(4.2), and (4.4) can be solved numerically to yield, 

,

,, ,x m

x m

i
x m ACI e θ−Φ =                                                (4.5) 

where .x mθ  is the measured phase lag and 
,x mACI  is the measured amplitude of the photon 

density wave at the excitation/emission wavelengths.  The background tissue optical 

properties and values of the other parameters involved in Eq. (4.1) through (4.4) are 
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listed in Table 4.1, and are similar to those used in Section 3.  Herein, we chose the 

excitation and emission wavelengths to correspond to Cardio-Green as a typical 

fluorophore used in imaging agent development. 

For notational convenience, the process of imaging is often represented by the 

imaging equation 

( ) ,= +g H f n                                                   (4.6) 

where f is the object being imaged; H is the imaging operator that describes how the 

imaging system maps the object into a vector of discrete measurements g; and n is the 

vector of noise in the measurement system.  A Galerkin-type finite element method 

(FEM) is employed to solve Eq. (1), (2), and (4) over a breast-shaped geometry 

described in Fig. 4.1 and used in the prior experimental work in our laboratory.10  The 

formulations in Eq. (1) through (5) are discretized for FEM representation and can be 

represented by Eq. (6).  Accordingly, the nonlinear operator H is provided by the finite 

element representation of coupled diffusion equations described in Eq. (1) and (2); f is a 

vector containing the spatial values of the optical parameters to be imaged (in our case, 

the absorption coefficient owing to exogenous fluorophore, ,ax mfµ ) at each discrete point 

within the domain of breast geometry; and g is a vector containing the measurements of 

light intensity ( ACI ) and phase lag (θ ) at the specified boundary locations (denoted as 

detector points in Fig. 4.2).  The only source of fluorescence is due to the exogenous 

fluorophore.  From Eq. (4.6), one can see that vector g is the “noisy” image data returned 

by the imaging system.  In this simulation study, the vector g is obtained by adding the 

FEM solution of the coupled diffusion equations to the noise modeled from experimental 
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errors and considerations.  The various noise considered in the imaging system is 

described in Section 4.2.3.2. 

 

Table 4.1 Average background optical properties. The parameters used to solve the coupled diffusion 
equations are also tabulated. 

wavelength↓ 
aiµ , 

[cm-1] 

sµ , 

[cm-1] 

afµ , 

[cm-1] 

ω , 

[rad/s] 

c, 

[cm/s] 

g, 

[ ] 

φ , 

[ ] 

τ , 

[s] 

excitation 

(780 nm) 
0.02483 108.792 0.00299 

emission 

(830 nm) 
0.0322 98.241 0.000506 

6.28e8 2.25e10 0.9 .016 0.56e-9 
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Fig. 4.1 The breast-shaped geometry consisting of a 10 cm diameter hemispherical top to simulate a 
human breast.  The bottom cylindrical base has 20 cm diameter and is 2.5 cm high.  Also shown is 1 cm3 
target at a depth d.  All dimensions are in centimeters.  
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Fig. 4.2 The locations of the point sources and detectors on the breast-shaped geometry.  The red points 
denote the sources and the blue points denote the detectors. 

 

 
4.2.2 Simulated background heterogeneity 

The lumpy-object model12 is employed to simulate the non-specific distribution of the 

fluorescent agent as well as the heterogeneity of the endogenous tissue optical properties 

due to the natural anatomical structure.  Lumpy backgrounds consist of single structures 

or “blobs” located randomly within the domain.  Mathematically, these structures are 

represented by: 

0 0
1

( ) ( , ),
pN

n
n

b b lump l w
=

= + −∑r r r                                       (4.7) 

where ( )b r  is the lumpy background; b0 is the spatial mean of the lumpy background; Np 

is the number of lumps; and nr  is the uniformly distributed location of nth lump. The 

function lump has the following form: 
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0 0

2 2
1 3( ) exp exp2 2( )2 2

.n nlump l dn Vw w
l

Ω

− − − −
− = −

Ω

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫
r r r r

r r r             (4.8) 

In this expression, l0 is the lump strength; w is the lump width; Ω  is the domain; and 

V(Ω ) is the volume of the domain.  The volume integral term in Eq. (4.8) is designed 

such that the mean of function lump is zero; making the mean of the lumpy background 

equal to b0 .45  This makes lumpy-object model useful for fluorescence imaging, because 

it enables user to specify an average value of any optical property and then introduce 

perturbations in that optical property using lumpy-objects to simulate the behavior of the 

natural biological tissue.  This is also relevant because the average optical properties of 

human breast tissues are widely reported in the literature (see for review Table 3.1 in 

Section 3). 

In Section 3, the evaluation of the volume integral term in Eq. (4.8) was 

performed using Simpson’s quadrature based numerical integration technique and 

required ~40 min of CPU time for each lumpy background.  This approach is not 

feasible for the present study and hence we have used a far less time consuming 

approach based on the trapezoidal rule to evaluate the volume integral term in this 

section.   

In order to implement lumpy backgrounds and to solve the coupled diffusion 

equations using FEM, the breast geometry is discretized into 34413 regular tetrahedral 

elements comprising a total of 6956 nodes.  The lump strength, l0, is set to be a 

prescribed percentage of the mean background value b0.  The lump spread, w, and the 

number of lumps, Np, are set to be 5 mm and 100 respectively.  While other works have 
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used a Poisson distribution of lumps to represent non-uniform distribution of nuclear 

imaging agents,85, 86 we chose a fixed number of lumps owing to our rationale to mimic 

heterogeneous tissue structure.  The domain Ω  in Eq. (8) is taken to be the 

hemispherical portion of the breast geometry shown in Fig. 4.1.  For instance, 5% lumpy 

background of the scattering coefficient, sxµ , indicates that 100 lumps are placed at 

locations uniformly distributed within the hemispherical portion of the breast geometry 

each having a strength 0.05 times the spatial average of sxµ  and a spatial spread of 5 

mm.  The process of generating lumpy background in an optical property at one 

wavelength and how it relates to the values at another wavelength is detailed in Section 3 

and has been followed in this section.  It is noteworthy that lump strengths that are less 

than or equal to 100% were assigned, thereby removing the possibility of negative 

optical property values.  While there are other models, like clustered lumpy-object 

model which can describe anatomical heterogeneity,85 in this first work, we examine the 

simplest, which is the lumpy-object model.  Anatomical tissue structure representation 

using the clustered lumpy-object model is one of the motivations of our future research 

work. 

The generation of the optical property heterogeneity map and the solution of the 

coupled diffusion equations were performed on a LINUX workstation with AMD 

Opteron 250 (2.4 GHz) and 4.0 GB RAM.  Twenty five points for illumination and 128 

points for collection are employed on the breast geometry to generate the complex 

solution of the coupled diffusion equations.  Figure 4.2 illustrates one view of the 

illumination and collection points on the breast geometry. 
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4.2.3 Experimental conditions 

This section describes the systematic errors and noise associated with the 

instrumentation of a fluorescence-enhanced optical imaging system. 

 

4.2.3.1 Excitation light leakage 

Figure 4.3 describes a typical experimental setup used in our laboratory for imaging 

studies on phantoms mimicking the shape and average optical properties of the human 

breast.10, 87  It includes: (1) a gain-modulated image intensifier; (2) a 16-bit cooled 

charged-coupled device (CCD) camera; and (3) a modulated laser diode.  The phantom 

is illuminated by the modulated excitation light delivered at discrete points on the 

surface by fiber optics and the emission light is collected from fiber optics and delivered 

to the intensified CCD camera for measurement.  The collected light at the phantom 

surface is a mixture of both emission as well as excitation light. Since only the emission 

light is desired, a scheme to reject the excitation light is often employed.  For this 

purpose in our laboratory, an 830-nm band-pass filter and a holographic filter are used to 

reject 785-nm excitation light and to selectively pass 830-nm emission light.  The 

performance of a filter is quantified by the optical density (OD),  

10 10
0

log log .IOD T
Iλ

⎛ ⎞
= − = ⎜ ⎟

⎝ ⎠
                             (4.9) 

Subscript λ  denotes the dependence of OD on the wavelength of the light; T is the 

transmittance; I0 is the intensity of the incident light; and I is the intensity of the 

transmitted light.  Equation (4.9) shows that the higher the OD, the lower the 
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transmittance.  The performance of the filters decreases when the angle of incidence of 

light deviates from zero.  The filter specifications and OD values as a function of 

incident angle for emission and excitation light are given elsewhere.87 
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Fig. 4.3 Schematic of the experimental setup.  The various components are labeled to describe: (A) a gain-
modulated image intensifier, (B) a 16-bit cooled CCD camera, (C) a modulated laser diode used as a light 
source, (D) an 830-nm band pass filter, (E) a holographic notch filter, (F) the breast shaped phantom, and 
(G) the detector fibers leading to an interfacing plate.  The Figure is not to scale. 

 

 
It is noteworthy that the complete elimination of the excitation light from 

measurement of emission at the tissue boundary is not possible.  The presence of a small 

amount of excitation light in the detected light is termed as excitation light leakage, and 

is a source of error in the imaging data set.  Therefore the detected light is a mixture of 

the emission light and the excitation light which “leaks” through the filters.  The overall 

intensity and phase of the detected light is thus affected by the excitation light leakage, 

and is obtained by adding the transmitted emission and excitation photon density waves, 

i.e. xΦ  and mΦ .  Accordingly, if the emission and excitation photon density waves at 
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the collection points are given by sin( )m m my I tω θ= + , and sin( )x x xy I tω θ= + , 

respectively, then the overall photon density wave transmitted through filters is given by 

10 10 sin( ),m xOD OD
m xy y y I tλ λ ω θ− −= + = +                             (4.10) 

where 

( )1/ 22 2 ( )2 210 10 2 10 cos( )m x m mOD OD OD OD
m x m x m xI I I I Iλ λ λ λ θ θ− − − += + + × −        (4.11) 

10 sin 10 sinarctan
10 cos 10 cos

.
m x

m x

OD OD
m m x x

OD OD
m m x x

I I
I I

λ λ

λ λ

θ θθ
θ θ

− −

− −

⎛ ⎞+
= ⎜ ⎟⎜ ⎟+⎝ ⎠

                      (4.12)   

Here 
m

ODλ  and 
x

ODλ  are the OD values of the filters for emission and excitation 

wavelengths, respectively. 

The OD values of 0.3009 for emission light and 5.8470 for excitation light are 

taken for 830-nm band pass filter; whereas an OD value of 6 for the excitation light is 

taken for holographic filter.87  The angle of incidence is assumed to be 0o while 

determining the above OD values.  Zero degree incident angles can be achieved by 

allowing the fiber delivered light to pass through a GRIN lens before it arrives at the 

filters,88 or collimating the imaged plane before passing through the image quality 

filters.87  

In this study, the effect of using different filter efficiencies on the detection 

performance of the imaging system is studied.  For this purpose, we simulated excitation 

light rejection with OD values varying from 3 to 7, simulating the range of ODs used in 

studies found in the literature and the potential deterioration of filter performance owing 

to the non-normal incidence of collected light. 
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4.2.3.2 Noise 

In optical imaging systems, two main types of fundamental noise† are thermal and 

quantum noise.  The thermal noise is a result of the random fluctuations in the current 

due to the thermal (Brownian) motion of charge carriers in any conductor.  This is also 

known as dark current.  An example of dark current in the CCD system occurs when the 

thermal fluctuations in the CCD material releases electrons, which contribute to the 

overall number of photoelectrons.  Similarly, the randomness incurring in the optical 

image measurements due to the counting of random arrival of photons is responsible for 

quantum noise.  Both types of noise follow Poisson distribution and are often non-

additive.44, 89  

Amplification and quantization noise are the specific types of non-fundamental 

noise‡ in an optical imaging system.  In any intensified CCD detector system, the 

random conversion of electrons to light gives rise to amplification noise.  Quantization 

noise, however, is an inherent noise in the amplitude quantization process and occurs 

due to the finite resolution of the analog-to-digital converters (ADC).  Both types of 

noise are additive and, in particular, amplification noise has a Gaussian distribution.44 

Imaging systems typically consist of many components which individually give 

rise to the noise in the measurement.  Thus the resulting noise becomes too complex to 

be described by a single form of distribution.  In most cases, researchers are forced to 

choose between one of these assumptions: (1) the noise from one particular component 

is dominant over that of other sources, and thus can be neglected; or (2) the noise 

                                                 
† Referring to the corpuscular nature of light 
‡ Arising from the instrumentation of the system 
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associated with different components of the imaging system are additive, in which case 

the overall noise becomes Gaussian due to the central limit theorem.  Therefore, the 

actual experimental setup (see Fig. 4.3) and the noise associated with its various 

components are analyzed to make proper assumption about the distribution of the overall 

noise.  The CCD camera used in our laboratory has a regulated temperature control that 

keeps the chip temperature to as low as -41oC. At such low temperature, the typical dark 

current of the CCD is in the order of 0.1 electrons per pixel per second (e/p/s) of the 

exposure time.  An exposure time of 400 ms further ensures that the dark current noise in 

the measurements is negligible.  Hence the noise of the detector system is mainly 

governed by the image intensifier.90, 91  The image intensifier contains a wavelength 

specific photocathode, a micro channel plate (MCP), and a phosphor screen.  The 

random striking of photons to the photocathode is the source of quantum noise.  As this 

occurs before the amplification process, the noise becomes amplified in the MCP.  In 

addition, the multiplication (gain) of electrons in the MCP introduces amplification 

error.  These two noises are assumed to be additive, so that the cumulative noise of the 

image intensifier is Gaussian due to the central limit theorem.  Since the quantum noise 

is dependent upon signal∗, the overall noise is also assumed to be signal-dependent.  

Thus the standard Gaussian noise with variance dependent upon the intensity of the light 

is used.  Specifically, we add 5% Gaussian noise to the detected light (coming through 

the filters), so that final measured intensity is given by: 

                                                 
* In this context, the word “signal” means “the object being measured”, unlike “the object being detected”  
   in the target detection tasks. 
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0 (1.0 0.05 (0,1)),AC ACI I= + ×                                      (4.13) 

where 0
ACI  is the intensity of the light before it enters the image intensifier; and (0,1)  

denotes a Gaussian distribution with zero mean and unit variance. 

In contrast, a model to describe the noise in the phase measurements is not as 

simple.  Therefore a typical experiment in our laboratory has been compared with the 

simulation, which shows that the noise in phase measurements follows approximately a 

uniform random distribution.  Consequently, a random value in the interval (-2o, +2o) has 

been considered as the conservative noise estimate in the phase measurements.  

Mathematically, this noise can be described by: 

4 ( 0.5),nθ ξ= °× −                                               (4.14) 

where ξ  is a uniformly distributed random number in [0, 1].  The noise, nθ , is added to 

the phase of detected light, which is a mixture of both emission and excitation photon 

density waves, to obtain the noisy estimate of phase measurements. 

 

4.2.4 Detection tasks 

For detection tasks, there are two mutually exclusive hypotheses possible: (i) the signal-

present hypothesis (H1) where the measurements are made from a patient/phantom with 

a target (t); and (ii) the signal-absent hypothesis (H0) where patient/phantom contains no 

target.   

1 : ( )H = + +g H f t n                                    (4.15) 

0 : ( ) .H = +g H f n                                             (4.16) 
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Here exp( )ACI iθ= −g  as described in Eq. (4.5); f represents the normal, non-target 

portion of the anatomy, while t represents the target (signal) portion.  Both f and t are 

stochastic in real situations and vary from patient to patient.  In the case of fluorescence 

imaging, the stochastic nature in f arises from both the non-specific fluorophore 

deposition as well as the heterogeneity of the endogenous tissue optical properties due to 

the natural anatomical structure.  The stochastic nature of f is modeled using lumpy-

objects as described in the previous section.  This study involves “signal-known exactly” 

(SKE) cases wherein the size and location of target is known, and so the stochastic 

nature of t is not considered.  

The target is taken to be a spherical volume of 1 cm3 centered in z-axis of the 

geometry shown in Fig. 4.1.  The fluorescent uptake of the target is considered to be 10 

times higher than the average background uptake, which means that its axfµ  and amfµ         

values are 10 times greater than the corresponding average background values.  Five 

locations of the target are considered at depths varying from 1 cm to 5 cm.  The depth of 

the target is measured as the distance between the tip of the hemispherical portion of the 

breast geometry (coordinates: 0, 0, 5) and the center of the spherical target volume. 

 

4.2.4.1 Hotelling observer 

The Hotelling observer is a linear discriminant that computes the confidence level using 

only the linear manipulations on the measurement data.44  Its test statistic is given by the 

equation: 

1( ) ,T
Hotχ −= ∆ gg g K g                                           (4.17) 
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where ∆g  is the vector difference in the means of the vectors of discrete measurements 

under the H1 and H0 hypotheses; Kg is the average covariance of the vector g (assumed 

to be the same under each hypothesis); and superscript T denotes the transpose of the 

matrix. Mathematically, 
, , ,

( )( )T
n f n f n f

= − −gK g g g g , where 
,

...
n f

 denotes average 

over all noise, n, and object variations, f.  While the covariance matrix maybe different 

under H1 and H0 hypotheses, we assume that for a weak fluorescent signal, it is the 

same.44 

The Hotelling observer is called an optimal linear observer because it maximizes 

a measure of separability between the two hypotheses, namely the target-present (H1) 

and target-absent (H0).  The degree of overlap of the density functions of the Hotelling 

test statistic, ( )Hotχ g , determines the separability of the two hypotheses.  As the degree 

of the overlap increases, the detectability of the target decreases.  The SNR associated 

with the Hotelling test statistic is a measure of this overlap, and is given by the following 

expression: 

2 1 .T
HotSNR −= ∆ ∆gg K g                                             (4.18) 

Thus, the higher the value of the SNRHot, the higher the separability between the two 

hypotheses, and the lower the overlap of the density functions of ( )Hotχ g  under the two 

hypotheses. A higher value of the SNRHot corresponds to improved detectability of the 

target. 

In both Eq. (4.17) and (4.18), the calculation of the average covariance matrix, 

Kg, is dependent upon the size of the measurement data sample.  Sample size should be 
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large enough to ensure a well conditioned covariance matrix, so that the inverse of the 

matrix, Kg
-1, is stable.92  Decomposition of Kg into two terms, one representing the 

stochastic nature of f and the other the noise in the system,14 improves its conditioning 

even when large numbers of g are not available.  The decomposition approach is used to 

estimate the overall covariance matrix, Kg, as 

= +g g nK K K                                                  (4.19) 

The first term, gK , is average-data covariance matrix, and the second term, nK , is 

average noise-covariance matrix.  The two matrices are respectively given by 

( )( )| , | ,

T

n f n f n f n f
f

= − −gK g g g g , and 
,

T

n f
=nK nn , where nnT denotes the 

tensor product of n with itself.  The advantage of this decomposition is that     is usually 

diagonal and thus improves the conditioning of the overall covariance matrix, Kg. 

 

4.2.5 Simulated measurements 

As shown in Fig. 4.2, twenty five illumination and 128 collection points are used to 

obtain the boundary measurements of excitation/emission photon density wave 

amplitude (
,x mACI ) and phase delay ( ,x mθ ) by solving the coupled diffusion equations.  

The vector g has a dimension of 3200×1 for both intensity and phase measurements.  

The overall covariance matrix, Kg, has a dimension of 3200×3200.  In order to obtain a 

reasonable estimate of Kg, 7000 measurement data sets (see Appendix C) were generated 

under both hypotheses (target-present and target-absent) using the lumpy backgrounds as 

described in Section 4.2.2.  Noise computed by Eq. (4.13) and (4.14) were then added to 
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g to evaluate the influence of noise.  A Gaussian elimination method was used to 

compute the inverse of matrix Kg.  It should be noted that gK  for a homogeneous 

background case becomes a null matrix, so we only considered nK  when calculating Kg 

for such cases.   

The calculations of SNRHot values were performed on a LINUX workstation with 

AMD Opteron 285 (2.6 GHz) and 8.0 GB RAM.  The SNRHot was then used to quantify 

the detection capability of the imaging system and to assess how target detection task is 

affected by (i) strength of lumpy backgrounds, (ii) target depth, and (iii) filter 

performance in rejecting excitation light. 

 

4.3 Results 

The 7000 imaging data vectors, g, required ~94 hrs of CPU time to simulate target-

present and target-absent cases.  Additionally, the algorithm to compute the SNRHot value 

required ~2 hrs of CPU time. 

An example distribution of axiµ , sxµ , and axfµ  for the hundred percent 

endogenous and exogenous lumps in the background is illustrated in Fig. 4.4(a) through 

4.4(c).  The lumpy backgrounds for other lump strengths are not shown here for brevity. 
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Fig. 4.4 Lumpy backgrounds of endogenous and exogenous optical properties using 
Lumpy object model.  The lumps in axiµ , sxµ , and axfµ  are shown as cutplanes to 
the breast geometry (Fig. 4.1) parallel to yz-plane and passing through x=-1 cm.  In 
each case, one hundred lumps are uniformly generated in the hemispherical volume 
with spatial spreads of 5 mm and strength values equal to hundred percent of the 
average background values of optical properties as given in Table 4.1. 

( )a

( )b

( )c
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4.3.1 Influence of lump strength 

The detectability (SNRHot) of the fluorescent target superimposed in the lumpy 

backgrounds of endogenous and exogenous optical properties at a depth of 1 cm was 

first examined as a function of lump strength.  Figure 4.5 illustrates how SNRHot of 

intensity ( ACI ) and phase (θ ) measurements wanes as a function of the lump strength of 

(a) endogenous optical properties, and (b) endogenous as well as exogenous optical 

properties.  Both Figures show that the majority of the information is contained by 

intensity measurements, portrayed by the higher SNRHot values of intensity 

measurements than phase measurements.  In both Figures, the SNRHot of intensity and 

phase measurements decrease as the lump strength increases.  The decrease in SNRHot 

with increasing endogenous lump strengths indicates that endogenous lumps do affect 

the detectability of the target.  This partially answers our concern in Section 3 we 

showed single cases of tomographically reconstructed images and advocated the need to 

use sufficiently large imaging data in order to better understand the effect of lumpy 

backgrounds on target detection tasks.  Eppstein et al.73 have also reported difficulty in 

detecting a target when background variations in endogenous optical properties exceed a 

specific range.  Similarly, the overall decrease in the information of both intensity and 

phase measurements as endogenous-and-exogenous lump strength increases is consistent 

with our previous study regarding the sensitivity of the detection performance on uneven 

distribution of disease markers in the background (see Section 3).  Indeed, when lumpy 

backgrounds in exogenous properties are added to an already heterogeneous background 

in endogenous properties, the information content is expectedly reduced.  Nonetheless, 
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in both cases of a heterogeneous anatomical backgrounds alone and of the addition of 

non-uniform background distribution of fluorescent contrast agent in a heterogeneous 

anatomical background, a large sample of reconstructed images may provide further 

insight into the effect of lumpy backgrounds on detection tasks 
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Fig. 4.5 SNRHot computed from simulated measurements of light intensity (filled 
circles) and phase (open circles) as a function of strength of lumps in (a) the 
endogenous optical properties, and (b) endogenous as well as exogenous optical 
properties vs. the strength of lumps.  The target is a 1 cm3 spherical volume at a 
depth of 1 cm and contrasted from its surroundings by 10:1.  The centroid of the 
target is at (0, 0, 4) inside the breast geometry (Fig. 4.1). 

( )a

( )b
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4.3.2 Influence of target depth 

Figure 4.6 illustrates the plots of SNRHot with target depths varying from 1 cm to 5 cm in 

homogeneous backgrounds of the optical properties (i.e. the background optical 

properties have no spatial variations and are equal to the average values given in Table 

4.1).  The plots show that the SNRHot for both intensity and phase measurements 

decreases as the target depth increases with intensity measurements providing more 

information as evident from higher SNRHot.  However, the SNRHot does not follow this 

trend in the presence of heterogeneous backgrounds as shown in Fig. 4.7 which 

illustrates SNRHot versus target depth in the presence of lumpy backgrounds of 

endogenous as well as exogenous optical properties with hundred percent lump 

strengths.  Figure 4.7 shows that the phase measurements contain more information (i.e. 

higher values of SNRHot) than the intensity measurements when depth is greater than 

~1.5 cm.  This indicates the importance of phase measurements in the fluorescence-

enhanced imaging when the target is embedded deep within the tissue.  However, it is 

not our intention to establish a general statement based exclusively on this result, and 

further investigations, including experimental validation, are needed.  We have verified 

that the increase in SNRHot illustrated in Fig. 4.7 as the target depth increases from 4 to 5 

cm is not due to mesh discretization levels, but more likely due to the increased signal 

from more detectors as the target is probed by more detectors in the hemispherical 

geometry.  The increase in SNRHot of amplitude and phase measurements with target 

depth is consistent in our studies (see below in Fig. 4.8). 
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Fig. 4.6 SNRHot computed from simulated measurements of light intensity (filled 
circles) and phase (open circles) in homogeneous background of optical 
properties vs. the depth of 1 cm3 spherical target contrasted from its surroundings 
by 10:1.  The centroid of the target lies in the z-axis of breast geometry (Fig. 
4.1).  The target depth is measured as the distance from its centroid to the point 
(0, 0, 5) in breast geometry. 
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Fig. 4.7 SNRHot computed from simulated measurements of light intensity (filled 
circles) and phase (open circles) in hundred percent lumpy backgrounds of 
endogenous (

axi
µ , 

ami
µ , 

sx
µ , and 

sm
µ ) as well as exogenous (

axf
µ , and 

amf
µ ) 

optical properties vs. the depth of 1 cm3 spherical target contrasted from its 
surroundings by 10:1.  The centroid of the target lies in the z-axis of breast 
geometry (Fig. 4.1).  The target depth is measured as the distance from its 
centroid to the point (0, 0, 5) in breast geometry.  
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4.3.3 Influence of excitation light rejection efficiency 

Figure 4.8 illustrates the changes in the SNRHot of (a) intensity and (b) phase 

measurements with varying target depths for increasing OD values.  The target is present 

in lumpy backgrounds of both endogenous and exogenous optical properties with one 

hundred percent lump strengths.  As anticipated, the SNRHot improves for all target 

depths as the OD value increases, a result of more efficient excitation light rejection.  

Surprisingly, the SNRHot becomes insensitive to OD when OD≥5 at all target depths.  

This result maybe reasonable when the emission fluence is greater than the excitation 

fluence so that the ‘leakage’ is not the dominant noise factor in heterogeneous 

backgrounds.  However, as the background heterogeneity decreases, we might expect 

higher SNRHot with increased filter performance.  Overall, the Hotelling analysis 

provides an important tool to optimize quality of the filters used in the imaging system 

under realistic situations. 

  

4.4 Discussion 

Most imaging modalities typically involve phantom studies as the first step before the 

clinical trials.93-95 Phantom studies are used as a verification for the validity of the 

imaging method.  In fluorescence-enhanced optical imaging, phantom studies that 

incorporate optical properties variations representative of heterogeneous tissue structure 

is a difficult task given that the anatomical structure of one patient is randomly different 

from another.  Specifically, the optical properties of a tissue medium are characterized 

by the absorption and scattering coefficients.  The absorption coefficient  is a measure of  
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Fig 4.8 SNRHot computed from simulated measurements of (a) intensity, ACI , and 
(b) phase, θ , in one hundred percent lumpy backgrounds of endogenous as well 
as exogenous optical properties vs. the depth of 1 cm3 spherical target contrasted 
from its surroundings by 10:1.  The centroid of the target lies in the z-axis and 
the target depth is measured as the distance from its centroid to the point (0, 0, 5) 
in breast geometry (Fig. 4.1).  The various plots show the affect of varying 
optical densities (OD) of the excitation light rejection filter. 
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the amount of light absorbed by: (i) oxy- and deoxy-hemoglobin in the blood flowing 

through blood capillaries, (ii) water retained in the tissue, and (iii) lipids present in the 

cell membrane.65  The scattering coefficient is a measure of the amount of light scattered 

due to the refractive index mismatch between the extracellular and intracellular 

compartments in a tissue.  These tissue properties affect the absorption and scattering of 

light in a tissue and vary spatially.  The same may be said about the distribution of 

molecularly targeting, NIR fluorescent contrast agents.  Heterogeneous distribution of 

imaging agent will depend upon the level of expression of the marker not only in the 

diseased target tissue, but also in the surrounding normal tissue.  

The performance of an imaging system can be characterized by how an observer 

fares in the task of detecting a diseased target tissue.  An observer, either a human or a 

computer algorithm, which performs the task of target detection, is specified; and the 

figures of merit to quantify the task performance are established.14-16  Human observers 

can be assessed using psychophysical studies and receiver operating characteristic 

(ROC) curve analysis,96 but such studies do not separate the hardware from the 

reconstruction algorithms.51  Thus, to directly assess the quality of an imaging system, 

mathematical observers that employ only the raw measurements are used.97  This 

technique has been successfully used in PET and SPECT imaging and allows the 

imaging hardware to be optimized independently while still using task performance as 

the guide.  The next step in this process is to assess human performance using 

reconstructed images (see Section 5).   
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4.5 Conclusions 

In brief, we have presented and demonstrated a method of evaluating fluorescence-

enhanced optical imaging systems using task-based methods.  Specifically, we have 

investigated the SKE cases where the location, shape and contrast of the target are 

assumed to be known.  We employed the Hotelling observer to directly assess the target-

detection-based information content of the imaging measurements.  This analysis has led 

to quantitative comparisons of the performance of our imaging system at varying target 

depths, light-rejection filter properties, and background strengths.  In addition, 

fluorescence-enhanced optical imaging has typically been evaluated using a target in a 

homogeneous background of optical properties.  We have used the lumpy-object model 

to simulate patient variability which is known to adversely affect task performance in 

other modalities and, thus, should be accounted for in fluorescence-enhanced optical 

imaging.  Description of the image-reconstruction algorithms is not within the scope of 

this paper.  However, upon assuming the Hotelling observer is a reasonable surrogate for 

the Bayesian observer, we have shown that we can assess and potentially optimize our 

imaging hardware independently from the reconstruction algorithm.   

Specifically, the Hotelling observer study demonstrates that the detectability of 

the target decreases substantially when the lumpy backgrounds are considered to 

simulate the anatomical structure and/or the heterogeneous distribution of the disease 

markers that may be targeted by fluorescent contrast agents.  We have demonstrated the 

importance of phase-information when detecting targets that are deep within the tissue.  

Finally the performance of the Hotelling observer provides an important tool to optimize 



105 

the quality of the filters used in the imaging system.  As a natural progression in the 

OAIQ, the next section addresses the performance of human observers using 

reconstructed images. 
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5. PSYCHOPHYSICAL ANALYSIS OF THE RECONSTRUCTED 

IMAGES BASED ON A GAUSS-NEWTON ALGORITHM∗ 

 

5.1 Introduction 

Due to the lack of sufficient clinical trials involving fluorescence-enhanced optical 

imaging modality, the classification studies using psychophysical tools and receiver 

operating characteristic (ROC) curves are not widely reported in the literature.  The 

psychophysical studies of human observers for the task of non-invasive detection of a 

malignant lesion inside biological tissues is almost always established before a specific 

imaging modality is deemed task efficient and safe for clinical usage.  For example, the 

diagnostic mammography method holds a vast amount of psychophysical data analyzing 

how radiologists perform the task of detecting a suspicious region using clinical x-ray 

images.98-104  Moreover, these analyses are often adduced in order to establish the 

validity of x-ray mammography as an efficient imaging modality for breast cancer 

diagnostics.105-108  Although x-ray mammography is a “clean” and robust imaging 

method, it is not capable of performing functional imaging, a key aspect of the newer 

developments in molecular imaging.  Mammography is mainly capable of detecting 

calcification and masses, and thus it alone is usually unable to prove that an abnormal 

area is cancerous.  Therefore, if mammography raises significant suspicion of cancer, 

then additional breast imaging or biopsy is often suggested before making final 

                                                 
* Parts of this section are adapted from the manuscript “Assessment of a fluorescence-enhanced optical 

imaging system through psychophysical analysis of simulated patient data” to be submitted to Optics 
Express (2006).  
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decisions.  Fluorescence-enhanced optical imaging, on the other hand, has the functional 

imaging ability besides being a robust imaging modality suitable for breast imaging.109-

111  Functional imaging is a means of simultaneously quantifying the structural and 

functional aspects of a biological system, and hence it enables fluorescence imaging 

modality not only to detect the structural anomalies in breast tissues but also to 

understand the biological processes that led to such malignancies in the tissue.  Thus, 

fluorescence imaging as a functional imaging modality provides experimental tools that 

address physiological questions of interest in a relatively noninvasive manner.   

 In the absence of clinical data, the present study employs a simulated approach to 

obtain breast imaging data corresponding to clinical patients, enabling assessment of 

fluorescence imaging via psychophysical tools.  In this work, clinical conditions 

involved in imaging a patient’s breast are accounted for in the simulation.  A lumpy-

object model12 is used to simulate the anatomical structure associated with mammarian 

tissues, as well as the heterogeneous background expression of disease markers, and a 

human observer’s performance in detecting a fluorescently labeled malignant lesion is 

analyzed in a “double-blinded” manner typical of clinical trials.  A Gauss-Newton (GN) 

based tomographic imaging algorithm is used to obtain 3D images of the simulated 

patients’ breast based on the boundary measurements of fluorescence emission.   

The feasibility of image reconstruction in the presence of heterogeneous 

backgrounds represented by lumpy-object model was established in Section 3 through 

successful reconstruction of targets using a PMBF/CONTN algorithm.  Our motivation 

in Section 3 was to examine whether a target superimposed in heterogeneous 
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backgrounds can at all be reconstructed, so that a decision about the applicability of 

OAIQ tools in our system could be arrived at.  This is the reason why we examined only 

the single cases of reconstructed target in varying lumpy backgrounds.  However, with 

the ability to reconstruct targets in heterogeneous backgrounds, we have investigated a 

large number of cases in this section so that the human observer performing target 

detection task can be analyzed using psychophysical tools.  The GN based algorithm is 

utilized in this study as a replacement to the PMBF/CONTN algorithm so that a large 

number of reconstructions can be performed in feasible amount of time. 

In the following Section 5.2, we present (i) a brief description of the image 

reconstruction algorithm used to make decisions about the presence of a fluorescent 

target; (ii) tools to perform psychophysical analysis for a fluorescence-enhanced optical 

imaging system; (iii) a description of how to obtain simulated data sets similar to the 

clinical breast imaging.  In Section 5.3, we report how a human observer’s performance 

is affected due to the variations in the tissue type and the non-uniform distribution of the 

disease markers in the background. 

 

5.2 Methods 

The assessment of an imaging system requires: (i) an imaging model describing how the 

measurements are obtained; (ii) a methodology to interpret imaging measurements vis-à-

vis the observer detection task; and (iii) the OAIQ tools for observer performance 

evaluation.  These components comprising the framework of image quality assessment 

are described in this section apropos of the fluorescence-enhanced optical imaging.  
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5.2.1 The imaging model and the reconstruction algorithm 

As described in Section 2.2, the fluorescence imaging problem is typically solved in two 

steps: (i) a photon transport model is used to obtain predicted boundary fluorescence 

measurements for a given fluorescence absorption map (the forward problem); and (ii) 

an iterative scheme is used to successively generate the fluorescence absorption maps 

until the predicted boundary fluorescence measurements are within a specific tolerance 

when compared to the actual boundary fluorescence measurements (the inverse 

problem).  As described in previous sections, the coupled diffusion equations accurately 

model the photon transport in large scattering media, such as biological tissues, and are 

mathematically represented by: 

[ ]x x axi axf x x
iD S
c
ω µ µ⎡ ⎤−∇ ⋅ ∇Φ + + Φ =⎢ ⎥⎣ ⎦

+                           (5.1) 

[ ]
[ ]2

1 ,
1

m m ami amf m axf x
i iD
c
ω ωτµ µ φµ

ωτ
+⎡ ⎤−∇ ⋅ ∇Φ + + + Φ = Φ⎢ ⎥⎣ ⎦ +

                (5.2) 

Equation (5.1) describes the propagation of excitation light (subscript ‘x’), whereas Eq. 

(5.2) describes the generation as well as the propagation of the emission light (subscript 

‘m’).  Here ω  is the modulation frequency of the NIR source; Dx,m is the photon 

diffusion coefficient at excitation/emission wavelengths; c is the speed of light in the 

medium; ,x mΦ  is the complex excitation/emission fluence rate; xS  is the excitation light 

source strength (photons/(cm3s)); φ  is fluorescence quantum; and τ  is fluorescence 

lifetime.  Parameter ,ax miµ  denotes the absorption due to endogenous chromophores in 

the tissue; and ,ax mfµ  denotes the absorption due to the exogenous fluorophores.  The 
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diffusion coefficient is given by , , , ,1 3( (1 ))x m ax mi ax mf sx mD gµ µ µ= + + − , where ,sx mµ  

denotes the scattering coefficients at excitation/emission wavelength and g is the 

coefficient of anisotropy of the medium.  Collectively, the terms axiµ , amiµ , sxµ , and 

smµ  are referred to as endogenous optical properties; and, axfµ  and amfµ  as exogenous 

optical properties.  The coupled diffusion equations are solved with the Robin type 

boundary conditions:84 

,
, ,2 0,x m

x m x mD γ
∂Φ

+ Φ =
∂ ⊥

                                    (5.3) 

where ⊥  denotes the normal direction outward to the surface, and γ  is a constant 

depending upon the optical refractive index mismatch at the boundary. 

 As previously described in Section 2.2.1, solving the coupled diffusion equations 

in (5.1) and (5.2) in a finite element framework is equivalent to solving the following 

system of linear equations simultaneously: 

,x x xΦ =K S                                                     (5.4) 

.m m x m x→Φ = ΦK B                                                (5.5) 

Here xK  and mK  are the elemental stiffness matrices; xS  is the excitation source 

matrix; x m→B  is the coupling matrix.  xΦ  and mΦ  are the vectors containing the nodal 

values of excitation and emission fluence, and so are N×1 vectors, N being the number of 

nodal points in the discretized solution domain.  The goal of the fluorescence imaging 

problem is to reconstruct axfµ  from the boundary measurements of mΦ .  We use a 

Gauss-Newton based optimization method to solve the inverse problem.  Along these 
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lines, the fluorescence image reconstruction is posed as an optimization problem 

wherein an L2 norm based error between the experimentally measured fluence ( meas
mΦ ) 

and the forward solver calculated fluence ( calc
mΦ ) is sought to be minimized with respect 

to the optimization variable, axfµ .  The image reconstruction problem is written as: 

*1min ( ) ( ),
2m

axf

calc meas calc meas
m m m mE

µ Φ = Φ −Φ Φ −Φ                            (5.6) 

where superscript * denotes the conjugate transpose of a vector; calc
mΦ  and meas

mΦ  are 

vectors of size M, the total number of boundary measurements.  As previously described 

in Section 2.2.2, the iterative optimization scheme for a GN based algorithm is given by: 

* 1
1( ) ( ) ( ) ,

m m maxf k axf k E E Eµ µ
Φ Φ Φ

−
+ = − J J J                                (5.7) 

where the subscript k denotes the iteration number; and the matrix 
mEΦ

J  is evaluated 

with the value of axfµ  at the kth iteration.  In Eq. (5.7), matrix 
mEΦ

J  represents the 

Jacobian sensitivity matrix of the error function, 
m

EΦ , and can be calculated as follows: 

axf mmE EµΦ Φ= ∇J  

*1 ( ) ( )
2

calc meas calc meas
m m m m

axfµ
∂ ⎡ ⎤= Φ −Φ Φ −Φ⎢ ⎥∂ ⎣ ⎦

 

.
calc

calc measm
m m

axfµ
∂Φ ⎡ ⎤= Φ −Φ⎣ ⎦∂

                                        (5.8) 

In Eq. (5.8), calc
m axfµ∂Φ ∂  is calculated using the system of equations represented by Eq. 

(5.4) and (5.5), which constitute the forward problem.  Taking the derivatives of both 

sides of Eq. (5.4) and (5.5) with respect to axfµ  yields 
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∂ ∂Φ

Φ + =
∂ ∂

K K 0                                           (5.9) 
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The above Eq. (5.9) and (5.10) are combined to give 

1 1 1 1 .m x m x m
m x m x m x x m m

axf axf axf axfµ µ µ µ
− − − −→

→

∂Φ ∂ ∂ ∂
= Φ − Φ − Φ
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B K KK K B K K           (5.11) 

Equations (5.4), (5.5) and (5.11) show that m axfµ∂Φ ∂  in Eq. (5.11) is an N×N matrix, 

whereas calc
m axfµ∂Φ ∂  required for the calculation of the Jacobian is an M×N describing 

the sensitivity of only the boundary measurements with respect to the nodal values of 

axfµ .  Accordingly, calc
m axfµ∂Φ ∂  in Eq. (5.8) is obtained by taking inner product 

between a Dirac matrix and m axfµ∂Φ ∂ .  The Dirac matrix, D, is an N×M matrix in 

which each column is unity at nodes corresponding to the boundary detector location and 

zero elsewhere.  Thus 

,
calc
m m

axf axf

D
µ µ

∂Φ ∂Φ
=

∂ ∂
 

1 1 1 1, x m x m
m x m x m x x m m

axf axf axf

D
µ µ µ

− − − −→
→

∂ ∂ ∂
= Φ − Φ − Φ

∂ ∂ ∂
B K KK K B K K           (5.12) 

where .,.  denotes the standard inner product of vectors.  To reduce the computational 

cost, the adjoint theorem (see Appendix A3) is applied in Eq. (5.12).  Hence 

1 * 1 1 *( ) , ( ) ,
calc
m x m x

m x m x m x x
axf axf axf

D D
µ µ µ

− − −→
→

∂Φ ∂ ∂
= Φ − Φ

∂ ∂ ∂
B KK K B K  
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1 *( ) , ,m
m m

axf

D
µ

− ∂
− Φ

∂
KK                                                                (5.13) 

which when used in Eq. (5.8) yields the Jacobian sensitivity matrix, 
mEΦ

J .  

In Eq. (5.7), the matrix *

m mE EΦ Φ
J J  is not explicitly inverted, rather the system of 

linear equations 

* ,
m m mE E k Ed

Φ Φ Φ
= −J J J                                              (5.14) 

is solved for kd  and the next iterate is taken as 

1( ) ( ) .axf k axf k kdµ µ+ = +                                           (5.15) 

In this study, we have used MATLAB® function lsqr() to solve the system of equations 

represented by Eq. (5.14).  The details of the algorithms used in function lsqr() can be 

found in the published work by Paige et al.112  In addition, a novel vectorization scheme 

given by Fedele et al.113 was implemented for finite element global matrix assembly and 

Jacobian sensitivity calculations in order to avoid computationally intensive loop 

implementation. 

 In this study we have used a GN based imaging algorithm as a replacement to the 

PMBF/CONTN imaging algorithm described in Section 3.  Although PMBF/CONTN is 

a detailed and more efficient imaging algorithm since it can take into account any a 

priori information at hand as well as the physical considerations of the tomographic 

problem, our current approach is to focus on such means which enable us to make fast 

decisions about target’s presence so that a large number of cases can be investigated.  

For this reason, we have used the GN based scheme with single iteration for all cases.  
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The main concern of our investigation is to find a specific answer to whether or not a 

target is present.  Consequently, we have investigated the location of the target as well as 

a rough estimate of its size without any worries about the fluorophore concentration at 

the target’s site because the GN based algorithm is not capable of answering such 

questions and, at the same time, it’s not something we intended to do herein.  To be 

specific, this study employs the imaging algorithm as a quick means to perform target 

detection task, (a yes/no decision,) so that a large number of cases can be investigated in 

a reasonable amount of time.  For example, a typical imaging reconstruction problem 

that requires more than couple of hours when solved using a full PMBF/CONTN 

routine, but requires only 10 minutes for performing a single iteration of GN based 

scheme.  As described in the following section, the psychophysical analysis of an 

imaging modality requires observer investigations of numerous reconstructed images to 

draw conclusions about the diagnostic accuracy of the modality.  Using GN based 

algorithm enables us to perform such analyses in a feasible amount of time.   

  

5.2.2 Psychophysical analysis 

Psychophysics describes and investigates individual percepts so that they can be 

communicated and shared by others.114  In detection tasks, the individual perception 

usually is the answer to a simple question: “Is there a target present?”  The 

psychophysical approach that involves this kind of decision making falls under the 

category of signal detection theory (SDT) and has been well researched.44  In these 

binary detection tasks, an observer usually classifies the imaging data at hand into one of 
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the following two groups: signal-present (H1) or signal-absent (H0), implying that 

hypothesis H1 or H0 is true, respectively.  Two types of restrictions are imposed on the 

manner by which observer makes decisions.  First, no randomness is allowed in the 

decision rule, meaning that the repeated observations of the same imaging data must 

result in the same decision.  Second, every observation must result in an unequivocal 

decision.   

 The description provided previously in Section 2.4.2 follows that an observer’s 

decision is based on the imaging data g obtained through the imaging system.  The 

imaging data g is usually contaminated by noise, as is evident from the imaging 

equation, ( ) ,= +g H f n  where H is an operator describing how the imaging system maps 

the object f being imaged to the discrete measurements g; and n is the noise in the 

measurement system.  In fluorescence imaging, since g is measured only at the 

boundaries and is used afterwards to make predictions about the interior tissue, an 

observer making decisions based totally on g can not always be correct.  In addition, the 

noise in the imaging data enhances the difficulty of the observer making decisions.  As a 

result, the following four scenarios exist for any observation: 

1. True positive (TP): H1 is true; observer decides H1 is true. 

2. False positive (FP): H0 is true; observer decides H1 is true. 

3. False negative (FN): H1 is true; observer decides H0 is true. 

4. True negative (TN): H0 is true; observer decides H0 is true. 

Furthermore, if N is the total number of decisions made by an observer; and NTP denotes 

the number of true positive decisions made by the observer, etc; then  
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.TP TN FP FNN N N N N= + + +                                       (5.16) 

In the limit of an infinite number of observations, the actual true- and false-positive 

fractions can be obtained: 

lim TP

N
TP FN

NNumber of true positive decisionsTPF
Number of actual positive cases N N→∞

⎡ ⎤
= =⎢ ⎥ +⎣ ⎦

         (5.17) 

lim TN

N
TN FP

NNumber of true negative decisionsTNF
Number of actual negative cases N N→∞

⎡ ⎤
= =⎢ ⎥ +⎣ ⎦

         (5.18) 

1FP

TN FP

NFPF TNF
N N

= = −
+

                                    (5.19) 

1FN

TP FN

NFNF TPF
N N

= = −
+

                                    (5.20) 

By definition each of the above fractions lies in the range from zero to one.  It is obvious 

that the observer performance can be completely specified by two of the fractions, e.g. 

TPF and FPF.  In medical terminology, the TPF is referred to as the sensitivity since it 

tells how sensitive the decision criterion is to the presence of a target.  Similarly, the 

FPF is referred to as specificity since a criterion with low specificity yields many false 

or meaningless positive decisions.  

  

5.2.2.1 The ROC curve 

Receiver operating characteristic (ROC) curve for an observer is obtained by plotting the 

sensitivity (TPF) against the specificity (FPF).  Different points along an ROC curve 

represent different levels of bias in the decision making.  Both sensitivity and specificity 

depend upon the decision threshold (bias) used by individual observer, and thus vary 
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with each observer’s criterion of what to call positive and what to call negative.  As a 

result, ROC analysis facilitates a systematic tool for quantifying the impact of variability 

among individuals’ biases.  It can also incorporate the effect of varying conditions on the 

performance of diagnostic modality.  For example in mammography, the sources of 

variability can include (i) different radiologist’s decision thresholds, (ii) different 

amounts of time between interpreting mammograms, or (iii) variation within cases due 

to the inherent imprecision of breast compression.115  In short, the ROC analysis 

averages the effect of different conditions on the accuracy of the diagnostic modality.  

Therefore, the area under the ROC curve (AUC) is viewed as the diagnostic accuracy of 

the imaging modality.44  Since both the FPF and the TPF range from 0 to 1, the area 

under the ROC curve also ranges from 0 to 1.  In general, a classification system with 

higher AUC value is preferred over the ones with lower values.44 

 

5.2.3 Simulated imaging data 

It is obvious from the discussions in previous sections that the assessment of an imaging 

modality via psychophysical tools of OAIQ requires (i) a task, (ii) an observer, and (iii) 

patient data so that the observer can perform the detection task.  Due to the lack of 

sufficient clinical trials for fluorescence-enhanced diagnostic of breast malignancies, we 

have resorted to simulation study as an appropriate alternative.  Thus, in lieu of the 

actual patient data, we have used synthetic patient data obtained through modeling the 

randomness associated with anatomical structure of mammarian tissues in this study.  

Specifically, we have used a breast-shaped geometry (see Fig. 4.1) to model the shape of 
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a typical human breast.  In order to model (i) random spatial variations in the absorption 

and scattering optical properties characteristic of natural anatomical tissue structure, and 

(ii) non-uniform distribution of the disease markers, we have used the lumpy-object 

model.12  The description of lumpy-object model is given in previous sections (refer to 

Section 2.3.1, 3.2.2 and 4.2.2).   

 Clinical conditions for breast cancer imaging involve patients who might or 

might not have a malignancy.  In addition, there is no knowledge of the tissue structure 

of an individual patient.  It is well known that the anatomical tissue structure of one 

patient is randomly different from another, which, coupled with the uncertainty 

associated with the location of malignancy (if there is one), implies that the simulation 

studies must incorporate these variations associated with true imaging scenario.  In 

consequence, we have attempted to simulate a “double-blinded” type of situation in 

which the human observer performing the detection task had no prior knowledge of 

target’s presence as well as the simulated background∗ tissue structure.  Also, the image 

reconstruction algorithm had no information regarding the background tissue structure.   

 In summary, the following describes the steps involved to simulate clinical trials 

for breast imaging: 

1. A breast-shaped geometry (see Fig. 4.1) of volume ~300 cc was used to simulate a 

human breast. 

2. The lumpy-object model was employed to simulate background tissue structure.  

Lumps in endogenous optical properties were used to simulate the natural anatomical 

                                                 
* In the context of SDT, the term “background” refers to the space consisting of the whole domain except  
   the target.  
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structure of the tissue, whereas lumps in exogenous optical properties were used to 

simulate the non-uniform distribution of the disease markers in the background. 

3. A dice was thrown to decide whether or not to place a fluorescent target.  In case the 

target must be placed, a random location inside the breast geometry was chosen as 

the center of the target (a spherical volume of 1 cc). 

4. The imaging data were generated by adding the diffusion model’s solutions at the 

boundary detector locations to the noise typical of a clinical imaging setup (as 

described in Section 4.2.3.2). 

5. The noisy imaging data was input to the GN based imaging algorithm.  The imaging 

algorithm had no prior information about the spatial variations of endogenous optical 

properties which characterize the anatomical structure of biological tissues. 

6. The reconstructed images of all the cases were given to a human observer (Amit 

Sahu, Baylor College of Medicine, Houston, TX) in order for him to perform the 

detection task.  A yes/no decision on target’s presence were obtained from observer 

for all the cases.  The observer had no prior information about target’s presence, 

target’s location, and the background variations in endogenous and exogenous 

optical properties. 

7. The human observer’s decisions were compared with truth in order to estimate the 

true-positive and true-negative fractions. 

 As described in previous sections, twenty five source points and 128 detector 

points (see Fig. 4.2) were used for collecting the boundary measurements of emission 

photon density wave amplitude (
mACI ) and phase delay ( mθ ).  Following the treatment 
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given in Section 4.2.3.2, we added 5% Gaussian noise to 
mACI  and uniform random noise 

in range ( 2 , 2 )− ° + °  to mθ .  The tomographic image reconstruction computations were 

performed on a LINUX workstation with AMD Opteron 285 (2.6 GHz) and 8.0 GB 

RAM.  The general mesh viewer, GMV (LANL, Las Alamos, NM), software was used 

for 3D visualization of the spatial distribution of reconstructed fluorophore activity 

( axfµ ).  The true-positive fractions were calculated for the human observer performing 

the target detection task in order to assess the effect of (i) endogenous lumpy 

backgrounds, and (ii) exogenous lumpy backgrounds on the reconstructed images.  

 

5.3 Results and discussion 

The lumpy backgrounds were generated using the approach described in Section 4.  The 

generation of synthetic patient data required ~1 min for each case.  A single iteration of 

the GN based algorithm to produce reconstructed images required ~8 min of CPU time.  

The human observer performing the detection task spent on an average ~1-2 min to 

arrive at a final decision for each case. 

 

5.3.1 Sensitivity of the classifier performance to background variations 

At first, the sensitivity of the classifier performance to the variations in the tissue type 

was examined.  To accomplish this, we the studied how detectability of 1 cc fluorescent 

targets (TBR=50) superimposed in the lumpy backgrounds of endogenous optical 

properties was affected by the variations in lump strength.  As mentioned earlier, the 

target locations were chosen randomly inside the hemispherical portion of the breast-



121 

shaped geometry.  However, the targets were restricted to depths 2 cm or less from the 

surface of the hemisphere.  Table 5.1 reports the decisions made by a human observer on 

the presence of a target based on the visualization of reconstructed images.  The table 

lists the human observer’s decisions for varying endogenous lump strengths in the 

background as well as the truth for each case.  The TPF values were calculated as a 

function of varying lump strengths and are plotted in Fig. 5.1.   

 Next, we performed a similar study to examine the effects of both the tissue type 

as well as the non-uniform distribution of the disease markers on the performance of a 

human observer.  However, in this case the targets were allowed to be placed deeper (2.5 

cm or less) as compared to the above study.  In addition, the number of lumps (Np) was 

set to 50, as opposed to the value 100 in the above study, so that a comparable number of 

true-positives can be detected.  Our rationale behind this is that the higher level 

heterogeneous backgrounds in exogenous optical properties make it difficult to detect an 

underlying target.  Thus we reduced the number of lumps in the background to obtain 

higher true-positives in this case as well.  Since the study was performed to compare the 

results of different lump strengths rather than making an absolute statement, the choice 

of a lower Np (or a lower sample space, for that matter) did not introduce any bias.  The 

human observer’s decisions based on the reconstructed images generated herein are 

reported in Table 5.2 and a plot similar to Fig. 5.1 is shown in Fig. 5.2. 
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Table 5.1 Results of the Qualitative Analysis (Visual Inspection): A human observer’s decisions on the 
presence of a randomly located 1 cc spherical fluorescent target (at depths 2 cm or less from the 
hemispherical surface of the breast-shaped geometry) having 50 times more contrast than the background.  
The background endogenous optical properties are heterogeneous in nature represented by the lumpy-
object model (Number of lumps, Np=100; lump width, w=0.5 cm).     

lump strength 5 % 10 % 25 % 50 % 100 % 
case human truth human truth human truth human truth human truth 

1 no no no no yes yes no no no no 
2 no no yes yes no no yes yes no no 
3 yes yes yes yes no no yes yes no yes 
4 yes yes no  no  yes yes yes yes no no 
5 yes yes no no yes yes yes yes no no 
6 yes yes yes yes no no no no yes no 
7 no no yes yes no no no no yes yes 
8 no no no no no no no no no no 
9 yes yes no no no no yes yes no no 

10 yes yes yes yes no no no no no no 
11 no no yes yes yes yes no no no no 
12 yes yes yes yes no no no no yes no 
13 yes yes yes yes yes yes yes yes no no 
14 no no no no no no yes yes yes yes 
15 no no no no yes yes no no no no 
16 no no yes yes yes yes yes yes no no 
17 yes yes yes yes no no yes yes yes yes 
18 no no no no yes yes no no no yes 
19 yes yes no no yes yes no no no no 
20 yes yes no no no no no no yes yes 
21 yes yes no no no no no no yes yes 
22 no no yes yes yes yes yes yes yes yes 
23 no no no no no no yes yes yes yes 
24 yes yes yes yes yes yes no no yes yes 
25 yes yes yes yes no no yes yes no yes 
26 no no yes yes no no yes yes yes no 
27 no no yes yes yes yes no no no no 
28 no no no no yes yes no yes yes yes 
29 no no no no no no no no no no 
30 yes yes no no no no no no yes yes 
31 yes yes yes yes yes yes no yes yes yes 
32 no no yes yes yes yes yes yes no yes 
33 yes yes no no no no yes yes no no 
34 yes yes yes yes yes yes no no yes yes 
35 no no yes yes yes yes no no no no 
36 yes yes no no no no no no no no 
37 yes yes no no no no no no no yes 
38 no no yes yes yes yes no no no no 
39 yes yes no no yes yes no no no no 
40 no no no no no no no no no no 

 TPF=21/21 TPF=20/20 TPF=20/20 TPF=15/17 TPF=12/17 
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Table 5.2 Results of the Qualitative Analysis (Visual Inspection): A human observer’s decisions on the 
presence of a randomly located 1 cc spherical fluorescent target (at depths 2.5 cm or less from the 
hemispherical surface of the breast-shaped geometry) having 50 times more contrast than the average 
background.  The background endogenous as well as exogenous optical properties are heterogeneous in 
nature represented by the lumpy-object model (Number of lumps, Np=50; lump width, w=0.5 cm). 

lump strength 5 % 10 % 25 % 50 % 100 % 
case human truth human truth human truth human truth human truth 

1 yes yes yes yes no no yes yes yes yes 
2 yes yes yes yes yes yes no no yes yes 
3 yes yes no no yes yes yes yes no no 
4 no no yes  yes  no no yes yes no yes 
5 no no no no no no no yes no no 
6 yes yes no no yes yes yes yes no yes 
7 yes yes yes yes no no no no no no 
8 yes yes no no yes yes no no no no 
9 no no yes yes no no no yes no no 

10 yes yes yes yes yes yes no no yes yes 
11 no no no yes no no no yes yes yes 
12 no no no no yes yes no no yes yes 
13 no no yes yes no no no no yes yes 
14 no no no no yes yes yes yes no yes 
15 yes yes yes yes no no no no no yes 
16 no no yes yes yes yes no no no no 
17 no no no no yes yes yes yes no yes 
18 yes yes yes yes no no no no no yes 
19 yes yes no no yes yes no no no yes 
20 yes yes yes yes no no no no no no 
21 yes yes yes yes yes yes no no no yes 
22 no no no no no no yes yes yes yes 
23 no no no no yes yes yes yes no no 
24 no no yes yes no no no no no no 
25 no no yes yes yes yes yes yes yes yes 
26 no no no no yes yes no no yes no 
27 yes yes no no no no no no no yes 
28 no no yes yes yes yes yes yes no yes 
29 yes yes yes yes no no yes yes yes yes 
30 yes yes yes yes yes yes yes no yes yes 

 TPF=15/15 TPF=16/17 TPF=15/15 TPF=11/14 TPF=10/20 
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Fig. 5.1 The true-positive fraction (TPF) of human observer’s diagnostic test 
(based on the visualization of reconstructed images) in a “double-blinded” 
type setup vs. the strength of endogenous lumps (Number of lumps, Np=100; 
lump width, w=0.5 cm).  The fluorescent target is a 1 cc spherical volume 
randomly located at depths of 2 cm or less, and is contrasted from its 
surroundings by 50:1.  A total of 40 simulated patients, as shown in Table 
5.1, were considered for each lump strength value. 
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Fig. 5.2 The true-positive fraction (TPF) of human observer’s diagnostic test 
(based on the visualization of reconstructed images) in a “double-blinded” 
type setup vs. the strength of endogenous as well as exogenous lumps 
(Number of lumps, Np=50; lump width, w=0.5 cm).  The fluorescent target is 
a 1 cc spherical volume randomly located at depths of 2.5 cm or less, and is 
contrasted from its surroundings by 50:1.  A total of 30 simulated patients, 
as shown in Table 5.2, were considered for each lump strength value. 
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Both figures (Figs. 5.1 and 5.2) show that the TPF value decreases as the lump 

strength increases.  In other words, when the background becomes more heterogeneous 

in the optical properties, the “sensitivity” of the human observer to the presence of a 

target decreases, resulting in his/her inability to positively detect targets in some of the 

cases.  This is consistent with our study in Section 4 involving the Hotelling observer, 

wherein we showed that the perturbations in background endogenous and/or exogenous 

optical properties adversely affected the SKE detection task (see Section 4.3.1).  In fact, 

the Hotelling observer studies performed only a statistical manipulation on imaging data 

g, and, unlike the present study, computationally intensive reconstructions were not 

performed to evaluate the imaging system. Yet, the Hotelling observer analysis was 

successful in making similar predictions, albeit in SKE cases which is in contrast with 

the present study.  This is a positive outcome with regards to establishing the feasibility 

of OAIQ tools for fluorescence-enhanced optical imaging systems.  Nonetheless, we 

advocate experimental validation to provide further insight into the effects of 

heterogeneous backgrounds.  We present this simulation-only study as an aid to 

understanding the feasibility of OAIQ tools rather than applied as a blanket statement. 

 Finally, our lack of success in finding an appropriate decision variable has 

restricted us from employing an ROC curve analysis in the present simulation study.  In 

actual conditions, a relevant study can be done with respect to the type of disease marker 

that has been used to tag a malignant site.  Therein, the level of expression of the marker 

in the malignancy with respect to the background seems to be an apt choice for decision 

variable.  For example, a group of patients can be imaged with different disease markers 
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and the true-positives/true-negatives for each disease marker can be plotted as different 

points along an ROC curve.  To explain why this particular analysis is difficult in 

simulation studies, we first mention that different patients have been characterized by 

randomly generated backgrounds of endogenous and exogenous optical properties in our 

methodology of simulating patient data.  Therefore, if a certain patient with no 

malignancy is imaged with different disease markers, the reconstructed images will be 

exactly the same for each case, without regards to the type of marker used.  This is due 

to our method of characterizing a patient by a fixed* background level of expression of 

the disease marker (represented by the exogenous optical properties), which, in turn, 

makes a simulated patient’s characteristics independent of the level of expression of the 

marker in malignant site.  This limits our ability to perform an ROC curve analysis based 

on the above mentioned decision variable.  Our future studies will address different 

methods to simulate patient data so that the above mentioned ROC curve analysis can be 

performed.  Additionally, we will make an effort in the direction of finding decision 

variables suitable with the present simulation methodology. 

 

5.4 Conclusions  

We have presented an approach to perform psychophysical analysis for a fluorescence-

enhanced optical imaging system.  Specifically, we have employed a simulation 

methodology to obtain synthetic patient data similar to clinical breast imaging.  A 

lumpy-object model is used to simulate patient variability and the noise associated with 

                                                 
* Although the backgrounds are generated with a randomized lumpy-object model, they remain fixed once 
   assigned to a certain patient. 
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the imaging system has been considered in the imaging data. A GN based tomographic 

algorithm has been used to obtain reconstructed images for multiple cases of randomly 

located targets in random heterogeneous backgrounds.  A human observer’s performance 

in detecting a target through visualization of reconstructed images has been evaluated.  

Specifically, the sensitivity of the human observer’s performance to the variations in the 

tissue type and the background expression of the disease markers have been investigated.  

The study demonstrates that the detection capability of the human observer decreases as 

the strength of the background variations increases.  Furthermore, the study helps 

interpret the results of Hotelling observer analysis presented previously in Section 4.3.1. 
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6. CONCLUSIONS AND SUGGESTED FUTURE WORK 

 

In this dissertation, we have presented a rationale for using the OAIQ tools to assess a 

fluorescence-enhanced optical imaging system.  Our studies mark the first instance of 

implementing these tools in fluorescence imaging systems.  Of particular interest was to 

analyze how a highly non-linear fluorescence imaging system can be assessed by such 

tools that have been previously validated for mostly linear imaging systems.   

Due to the unavailability of sufficient clinical trials and due to the fact that 

fluorescence-enhanced optical imaging is a new and upcoming technology, the imaging 

data involving real patients are not widely reported or easily accessible.  For this reason, 

we have resorted to the methods of simulation as a rational alternative to obtaining 

imaging data sets typical of clinical breast imaging.  In simulations, we have used a 

lumpy-object model with the assumption that it can reasonably mimic the patient 

variability associated with the mammarian tissue structure as well as the background 

expression of the disease markers.  With the ability to generate imaging data, we have 

addressed the issue of image quality assessment for fluorescence imaging systems in the 

following manner: 

 
1) As a first step toward establishing the feasibility of OAIQ tools, we assess a 

tomographic image reconstruction algorithm’s performance in the task of 

detecting a fluorescently labeled target embedded in the lumpy backgrounds of 

the optical properties.  Specifically, we assessed the performance of a novel 

PMBF/CONTN imaging algorithm developed by Roy et al.57  Based on single 
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cases of tomographically reconstructed images, we showed that the image 

reconstruction was (i) unaffected by normal anatomical heterogeneity manifested 

in endogenous tissue optical properties of absorption and scattering, and (ii) 

restricted by heterogeneous distribution of fluorophore in the background as the 

contrast was decreased. 

 
2) Next, we made an attempt to evaluate the fluorescence imaging system 

independently from the image reconstruction algorithm.  Accordingly, we used a 

Hotelling observer to directly assess the detection capability of the imaging 

system based on the imaging measurements.  The Hotelling observer’s analysis 

helped in comparing the performance of our imaging system at varying 

background strengths, target depths, and light-rejection filter properties.  Our 

results showed that the SNR of Hotelling observer (i) decreased as the strength of 

lumpy perturbations in the background was increased, (ii) decreased as the target 

depth was increased, and (iii) increased as the excitation light leakage was 

decreased, and reached a maximum for filter OD values of 5 or higher at xλ . 

 
3) Finally, we presented a method to perform psychophysical analysis of the human 

observer performing the target detection task.  We developed a GN based 

tomographic algorithm for this study so that multiple cases of reconstructed 

images can be obtained in feasible amount of computation time.  Our results 

showed that the detection capability of the human observer was sensitive to both 

the endogenous as well as the exogenous lumps in the background.  The results 
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were consistent with the Hotelling observer’s predictions in similar type of 

studies.  

 

The results contained in the dissertation provide a preliminary assessment of the 

fluorescence-enhanced optical imaging system with regards to the feasibility of the 

OAIQ tools to assess the imaging performance as well as to aid in the translation of 

fluorescence imaging to the clinics.   

 

6.1 Future directions 

The following is a list of suggested research work for future development of OAIQ tools 

and fluorescence imaging, in general, guided along the central theme of making 

fluorescence imaging suitable for clinics. 

 
1) Bochud et al.46 have shown that the clustered lumpy-object model represents the 

natural anatomical tissue structures more realistically than the lumpy-object 

model.  Studies similar to this dissertation can be done by using clustered lumpy 

objects to model patient variability.  Since clustered lumps are, indeed, many 

clusters of the lumpy-objects, it can be expected that the performance of the 

image reconstruction algorithm will be even more sensitive to clustered lumps.   

2) Using a statistical model of the measurement system will help in accounting for 

any statistical information about the measurements noise.  This will further aid 

in developing approached for localization of targets by use of maximum-
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likelihood estimation.  Furthermore, the probability of target detection and 

Cramer-Rao bounds44 can be used for the optimization of the imaging system.  

3) In Section 4, it was reported thatc the Hotelling observer’s SNR was biased with 

respect to the sample size.  A study can be performed to find the nature of bias 

so that the true value of the Hotelling observer’s SNR can be calculated using a 

computationally feasible sample size. 

4) Research can be performed in the direction of finding suitable decision variables 

for ROC curves so that simulation studies can be analyzed psychophysically.  

Accordingly, new methods to simulate patient data need to be devised.   

5) Other tomographic image reconstruction algorithms, such as PMBF/CONTN, 

can be tested in studies similar to the analyses given in Sections 3 and 5. 

6) DeGrand et al.116 have recently demonstrated a method to construct tissue-like 

phantoms NIR fluorescence imaging applications.  A similar approach can be 

applied to manufacture breast phantoms suitable for the research work described 

in this dissertation. 

7) Studies can be performed to analyze the nature of covariance matrix, Kg, in 

different experimental conditions.  For example, the existence of significant off-

diagonal elements in the covariance matrix implies that some of the detectors are 

correlated and, thus, can affect the signal detectability. 
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APPENDIX A 

 

A1. L2 norm 

Norm is a concept closely related to distance in metric spaces.  For example, in ordinary 

vector analysis, the norm of a vector is the distance between the vector and the zero 

vector (origin).  L2 norm is a special type of norm which, for a vector f in an N 

dimensional space such that f can be represented as an ordered set {fn}, is defined as:44 

1
2

2
2

1

|| ||
N

n
n

f
=

⎡ ⎤
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∑f                                                   (A1) 

L2 norm is most commonly used norm because it is easy to derive and is a natural choice 

for least squares minimization problems.  

 

A2. L2 inner product 

L2 inner product of two real functions f and g on a metric space X with respect to some 

variable x X∈  is given by:117 

( )
2

,
L X

f g fgdx= ∫                                                     (A2) 

 

A3. Adjoint theorem 

If a and b are vectors and A is a linear operator, then the adjoint theorem states: 

*, , ,=a b a bA A                                                 (A3) 
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where .,.  denotes the standard inner product; *A  is the adjoint of A.  For complex 

matrices the adjoint operator is the conjugate transpose operator. 

 

A4. Stationary process 

A random process where all of its statistical properties do not vary with time is known as 

stationary process.  In a strict sense, the stationarity of a random process is defined by 

the time invariance of all of its probability distribution functions.  Often times the 

stationarity requirements of a strict sense stationary (SSS) process are more than 

necessary and a more relaxed type, wide sense stationary (WSS), is used.  A random 

process is stationary in a wide sense if it is shift invariant, i. e. the statistical properties 

do not change in space.44, 118  
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APPENDIX B 

 

B1. Central limit theorem 

The central limit theorem can be stated as:119 

If x  is the mean of a random sample size taken from a population with mean µ  and 

finite variance 2σ , then the limiting form of  

,
/

xz
n
µ

σ
−

=                                                        (B1) 

as n →∞ , is the standard normal distribution (0,1) . 

 

B2. Student’s t-distribution 

The student’s distribution arises in cases (probably true for all practical statistical work) 

where the random samples are selected from a normally distributed population whose 

variance is not known. 

 Suppose 1,..., nx x  are independent random variables selected from a normal 

distribution with mean µ  and variance 2σ .  Let the mean of the sample be  

1( ... ) ,n
n

x xx
n

+ +
=                                                  (B2) 

and variance of the sample be  
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Central limit theorem shows that the estimate of the mean, which is represented Eq. (B1) 

is normally distributed with zero mean and unit variance.  If the sample is large, 2
ns  

provides a good estimate of the 2σ .  But if the sample size is small, the value of 2
ns  

varies considerably from sample to sample and the distribution of  

/
n

n

xt
s n

µ−
=                                                        (B4) 

deviates appreciably from that of a standard normal distribution.  Gosset120 showed that t 

has the probability distribution function 

( 1) / 22(( 1) / 2)( ) 1
( / 2)

th t
ν

ν
ννπ ν

− +
⎛ ⎞Γ +

= +⎜ ⎟
Γ ⎝ ⎠

                                     (B5) 

with ν  equal to 1n − .  The distribution of t is called t-distribution and the parameter ν  

is called the number of degrees of freedom.  Note that the distribution depends only on 

ν , and the dependence on µ  and 2σ  has been eliminated.  This makes the t-distribution 

important for statistical analysis purposes.  In other words, it enables statisticians to 

perform exact significance tests and construct exact confidence intervals based on the 

available, often small, size of the sample. 

 

B3. Hotelling’s T-square distribution 

Hotelling’s T-square distribution is a multivariate method and is the multivariate 

counterpart of the Student’s t-distribution.  It is a statistic for the multivariate test of 
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difference between the mean values of two groups.  The null hypothesis is that the 

centroids∗ don’t differ between two groups. 

 From the above Section B2, we see that  

/
n

n

xt
s n

µ−
=  

has a t-distribution provided that x is normally distributed, and is applicable as long as x 

does not differ greatly from a normal distribution.  In order to test the hypothesis that the 

value of the µ  is equal to 0µ , a hypothesized value of population mean, we will have  
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which gives  

0 2
2 0 2 1 0

2

( ) ( )( ) ( ).
/

n
n n n

n

xt n x s x
s n

µ µ µ−−
= = − −                               (B7) 

In the multivariate framework, when t2 is generalized for p variables 1 2, ,..., pX X X , each 

a vector of length n, it becomes  

 2 0 1 0( ) ( ),TT n X S Xµ µ−= − −                                         (B8) 

where 
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∗ The centroid of several continuous variables is the vector of means of those variables. 
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1S −  is the inverse of the sample variance-covariance, or simply, the covariance matrix, S, 

which is given by 

1 ( )( ) ,
1

T
ij i i j jS X X X X

n
= − −

−
                                       (B9) 

where superscript T denotes the matrix transpose.  S is a square matrix of size p.   
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APPENDIX C 

 

Bias in Hotelling SNR 

In Section 4.2.4.1, Eq. (4.19) describes that the overall covariance matrix, Kg, is 

decomposed into two matrices, gK  and nK .  The disadvantage of this decomposition is 

that it introduces bias in the estimate of the SNRHot.  In other words, the estimate of 

SNRHot varies with the number, N, of imaging data sets, g.  The value of SNRHot 

decreases as N increases and reaches a constant (true value of SNRHot) for large N.  To 

illustrate using a smaller data set than described in the text, Fig. C1 describes a plot of 

SNRHot versus N, where the imaging measurements were conducted on the breast 

phantom with only one source lighted so that the length, M, of each vector g equals 128.  

Figure C.1 shows that the true value of SNRHot is achieved for approximately N≥10×M.  

Sain et al.92 also advocate using number of imaging data sets ten times more than the 

length of g.  For this reason, the theoretical value of N for our study involving 25 sources 

and 128 detectors should be 10×25×128=32000.  Due to the computation time 

limitations and the fact that the values of SNRHot are used only relatively for comparing 

different case studies (with constant M), we chose N=7000 to obtain reasonable 

estimates of SNRHot.  
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Fig. C.1 SNRHot computed from simulated measurements of intensity, IAC, in one hundred percent 
lumpy backgrounds of endogenous as well as exogenous optical properties vs. the number of imaging 
data sets, N.  The centroid of the target lies in the z-axis and it is contrasted from its surroundings by 
10:1.  One twenty eight point detectors (as shown in Fig. 4.2) are used for the collection of light and 
only one source is lighted such that the measurement data set is a vector of 128×1. 
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